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Abstract

Aiming for strong security assurance, researchers in academia and industry focus

their interest on formal verification of cryptographic constructions. Automatising

formal verification has proved itself to be a very difficult task, where the main

challenge is to support generic constructions and theorems, and to carry out the

mathematical proofs.

This work focuses on machine-checked formalisation and automatic verifica-

tion of cryptographic protocols. One aspect we covered is the novel support for

generic schemes and real-world constructions among old and novel protocols: key ex-

change schemes (Simple Password Exponential Key Exchange, SPEKE), commitment

schemes (with the popular Pedersen scheme), sigma protocols (with the Schnorr’s

zero-knowledge proof of knowledge protocol), and searchable encryption protocols

(Sophos).

We also investigated aspects related to the reasoning of simulation based proofs,

where indistinguishability of two different algorithms by any adversary is the crucial

point to prove privacy-related properties. We embedded information-flow techniques

into the EasyCrypt core language, then we show that our effort not only makes some

proofs easier and (sometimes) fewer, but is also more powerful than other existing

techniques in particular situations.
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Chapter 1

Introduction

1.1 Motivation

The high and increasing volume of communication exchanged through insecure

channels, e.g. the Internet, confers increasing significance on security guarantees of

cryptographic protocols. A cryptographic protocol is a set of algorithms performing

a security-related function that employ cryptographic methods, e.g. composition of

cryptographic primitives. The increasing complexity in the design of such protocols

leads to more complex and longer proofs. For this reason, lack of rigour in the

published research of the past few decades has been appreciated and debated [38, 93].

“In our opinion, many proofs in cryptography have become essentially

unverifiable. Our field may be approaching a crisis of rigor.”

[Bellare and Rogaway (2004)]

“Do we have a problem with cryptographic proofs? Yes, we do. The prob-

lem is that as a community, we generate more proofs than we carefully

verify (and as a consequence some of our published proofs are incorrect).”

[Halevi (2005)]

To address this problem, many tools have been developed based on different

approaches [128, 120, 123, 129, 73, 74, 91, 64, 49, 127, 150, 90, 15, 29, 4, 80, 160, 51, 70,

12, 125, 45, 26, 20, 138, 69, 31] and all employ formal methods to mechanise the math-

ematical reasoning required to capture security properties; tools and approaches will

be discussed in Section 2.6. The research community witnessed the effectiveness of

these tools for verifying security properties and finding attacks. In a nutshell, formal

models allow for mechanising proofs of security of cryptographic protocols with
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respect to mathematical models. The benefits brought by formal methods are mani-

fold: not only they improve rigour in cryptographic proofs, by also they offer further

important and desirable properties as repeatability, reproducible results, automation

on verification, and a more reliable design as a basis for real implementations [24].

The research questions in this field are therefore related to investigating the potential

of the formal models used in cryptography by looking from (at least) two points of

view: first, what security properties can be studied and what in details the currently

available tools allow for reasoning about; and second, the degree of automation and

support that can be obtained by using those tools.

1.1.1 The research problem

Novel protocols often base their construction on pre-existing cryptographic primitives

and security properties used as building blocks. A modern cryptographer wanting to

mechanise a formal proof is supposed to focus on the of the protocol she is designing.

However, she will likely encounter an obstacle to overcome: not all cryptographic

primitives and not all security properties are supported by those tools, even less by a

single tool. The reason of such incompleteness is that not only proofs are generally
difficult to mechanise, but also modelling protocols in a way that the model covers all

the security aspects to analyse is difficult as well. So the cryptographer is left with

two choices: she can either mechanise all the unsupported blocks by herself or leave

a gap in the proof. The former choice would require to implement the unsupported

blocks and prove their security; in many cases, it also requires to modify the source

code of the tool. Needless to say, this would decouple the time that was originally

dedicated to the protocol analysis. The latter choice would definitely leave part of the

proof as future works, and some researchers might not like leaving such gaps, so that

they might just give up using formal tools; also, sometimes it is not easy to model

only part of the protocol and get satisfactory results by the partial mechanisation.

In summary, the problems are that the corpus of mechanised security analysis of

cryptographic primitives and cryptographic protocols is not complete, and that proofs

structures still require much improvement to tame their complexity. Those problems

come from the generally difficult and time-consuming tasks ofmodelling protocols
and security properties, and proving security claims. Clearly, solving those

problems would require an immense effort, so we could not pretend to solve them,

but we contributed toward their solution: i) by re-modelling protocols to analyse more

security properties than previous models; ii) by adding support to new cryptographic

primitives in existing tools or verification environments; iii) by enriching the growing
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corpus of mechanised proofs of novel constructions; and iv) by implementing a proof

technique to ease some special (but common) proof structures.

1.2 Contributions

With the strongmotivation discussed in the previous Section 1.1, we planned our work

to touch different aspects of the formal verification process in different cryptographic

models that can capture different security aspects and properties.

Mechanised
Security Analysis Formal Verification of

Cryptographic Protocols

Proofs of security

Information Flow

Lazy
Sampling

Schnorr ZKPoK

Σ-protocols

Pedersen

Commitments

Key Exchange

SPEKE

Searchable Encryption

Σoφoς

Fig. 1.1 A scheme of our contributions (thick red ellipses in the diagram) in the context of

mechanised security analysis.

Referring to Figure 1.1, we tackled different problems in the context of mechanised

security analysis, and our contribution can be summarised with the following list.

• Our first contribution came with the opportunity to formally specify the Simple

Password Exponential Key Exchange (SPEKE) protocol, which is part of the

standard ISO/IEC 11770-4. Our formalisation covers from its first specifica-

tion [105] to our last (now included in the standard) which came along with

their formal verification of several attacks and security properties [95, 104].

The SPEKE protocol is a very lightweight protocol for letting machines ex-

change a key in the setting where they already share a (weak) password. We

completed our implementation in a formalism referred as the symbolic model

which will be explained in Section 2.3.1. With this work, we gained experience

in the formal tool ProVerif [49] which we used to formalise a list of security

properties and attacks, including malleability. Importantly, the SPEKE protocol
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has been verified in the past in the AVISPA tool [160], but their model was

not capturing all the aspects as we do and could not find any attacks to the

protocol.

• Our second contribution was providing generic construction of commitment

protocols and sigma protocols that can be instantiated with any implemen-

tations. Commitment schemes are a cryptographic primitive that have been

widely used by its own or as a building block in other protocols; for example,

verifiable secret sharing, zero-knowledge proofs, and e-voting [131, 87, 146].

Before our work, one would have had to manually write all the structures,

cryptographic experiments and theorems for each implementation of the above

mentioned protocols. As motivating example, we successfully used our im-

plementation to verify the Pedersen commitment scheme [136, 126] and the

Schnorr protocol of zero knowledge proof of knowledge (as a sigma protocol),

see Chapter 4. This work has been carried on in a formalism denoted as the

computational model which will be explained in Section 2.3.2.

• To study more complex protocols, we further investigated searchable encryp-

tion protocols. We found those very challenging from the point of view of

automation, as no proofs were available (in tools) in searchable encryption that

could cope against adaptive adversaries. Our contribution toward this direction

starts including a precise formalism for index based symmetric searchable

encryption protocols. As a motivating example, we proved the forward secrecy

of the Sophos scheme [52], we discuss it more in details in Chapter 6. During

this proof that took more than one year, we faced several challenges, including

new theories and new theorems extending the already existing theories in the

formal language we chose, EasyCrypt.

• Furthermore for the proof of Sophos, we introduced some information flow

extending the core logic of EasyCrypt, see Chapter 5. The aim of our extension

is to simplify indistinguishability proofs involving the theoretical strategy of

lazy sampling [39], whose pattern is common in security theorems involving

oracles. We relate to the current implementation in EasyCrypt of lazy sampling,

and we propose a novel strategy based on the labelling of variables typical of

information flow analysis. This was very challenging, as we needed to modify

the source code of EasyCrypt; however, we succeeded in our intent and many

other proofs can benefit by our strategy.
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1.3 Structure

In Chapter 2, we introduce some concepts that are required to follow smoothly

the content of the next chapters. The first part of the chapter illustrates formal

definitions of security and cryptographic games, on which the properties we discuss

in the dissertation are based. The last part of the chapter discusses cryptographic

models to design protocol and that are the basis for their security analysis.

We illustrate our work in details grouped by two main topics: the symbolic model,

Chapter 3, and the computational model, Chapters 4, 6, and 5. In those chapters,

we first highlight the motivation and the state-of-the-art upon which we based our

contribution. Then, we will show in details our contribution and draw conclusions.

Finally in Chapter 7, we will summarise conclusions of the whole dissertation

and discuss limitations, points of improvement and future works.

1.4 Publications

Here is a list of co-authored publications related to security, cryptography and formal

verification; the publications relevant to this thesis are put first in the following list

and marked with a gray line.

Analyzing and patching SPEKE in ISO/IEC – Chapter 3
Feng Hao, Roberto Metere, Siamak F. Shahandashti, Changyu Dong
TIFS 2018 (IEEE Transactions on Information Forensics and Security)

Automated Cryptographic Analysis of the Pedersen Commitment
Scheme – Chapter 4
Roberto Metere, Changyu Dong
MMM-ACNS 2017 (International Conference on Mathematical Methods, Models, and

Architectures for Computer Network Security)

End-to-End Verifiable E-Voting Trial for Polling Station Voting at
Gateshead
Feng Hao, Shen Wang, Samiran Bag, Rob Procter, Siamak F Shahandashti,

Maryam Mehrnezhad, Ehsan Toreini, Roberto Metere, Lana Liu

IEEE Security & Privacy, 2020

Modelling Load-Changing Attacks in Cyber-Physical Systems
Luca Arnaboldi, Ricardo M Czekster, Roberto Metere, Charles Morisset

Electronic Notes in Theoretical Computer Science, 2020
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Poster: Towards aData Centric Approach for theDesign andVerification
of Cryptographic Protocols
Luca Arnaboldi, Roberto Metere

CCS 2019, (Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security)

TrABin: Trustworthy analyses of binaries
Andreas Lindner, Roberto Guanciale, Roberto Metere

Science of Computer Programming, 2018

Incentive-driven attacker for corrupting two-party protocols
Yilei Wang, Roberto Metere, Huiyu Zhou, Guanghai Cui, Tao Li

Soft Computing, 2018

Socially-conforming cooperative computation in cloud networks
Tao Li, Brij Bhooshan Gupta, Roberto Metere

Journal of Parallel and Distributed Computing, 2018

Sound transpilation from binary to machine-independent code
Roberto Metere, Andreas Lindner, Roberto Guanciale

Brazilian Symposium on Formal Methods, 2017

A certificateless signature scheme and a certificateless public auditing
scheme with authority trust level 3+
Fei Li, Dongqing Xie, Wei Gao, Kefei Chen, Guilin Wang, Roberto Metere

Journal of Ambient Intelligence and Humanized Computing, 2017

Efficient delegated private set intersection on outsourced private
datasets
Aydin Abadi, Sotirios Terzis, Roberto Metere, Changyu Dong

IEEE Transactions on Dependable and Secure Computing, 2017



Chapter 2

Background

The security protocols discussed in this dissertation rely on common cryptographic

notions and definitions. This Section introduces such preliminaries and cryptographic

models used to reason about security of protocols.

2.1 Security notions in cryptography
In the past, cryptographers struggled to invent cryptographic systems that could

provide information-theoretic security that could be applicable to diverse contexts,

such as secret communication, integrity or availability. Information-theoretic security

schemes are unbreakable by construction, even by an adversary with unbounded

computational power. For example, a well known information-theoretic secure

scheme is the one-time-pad. Unfortunately, it comes at the price of secretly pre-

sharing a key of the same length of the message and can be used only once; so the

communicating parties would need as many pre-shared keys as the messages they

intend to exchange in the future. This is not just a problem of one-time-pad, but a

problem of all information-theoretic secure schemes [147].

To circumvent this problem, a relaxed definition of security called computational
security, can be adopted. Computational security limits to adversaries with polynomi-

ally bounded computational resources, and with a small probability of breaking the

security. This notion allows for using a small key to encrypt a large amount of plain-

texts; it moreover allows for asymmetric encryption. Computational security relies

on the truthfulness of the famous open-problem in complexity theory P ≠ NP [82],

whose discussion is out of our scope.

2.1.1 Negligible functions
Computational security relaxes standard security properties definitions by letting

them fail at most for a negligible probability. Negligible functions are the necessary

formality to capture such a concept. The family of negligible functions describes those
functions that decrease faster than the inverse to a polynomial.
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Definition 2.1.1 (Negligible function). A function µ : N→ R is negligible if, for all
positive natural c, there exists a natural number n0 such that

∀n ∈ N, n0 < n⇒ |µ (n)| < 1
nc

.

Informally, if n is a security parameter and a security property holds up to

negligible probability on n, then we can tune the strength of a security property by

increasing or decreasing n. Increasing the security parameter n increases both the

time required by honest parties to run the protocol and the breaking algorithm of

the attackers. The key concept is that while the former increases polynomially (as it

is an efficient algorithm), the latter increases super-polynomially, e.g. exponentially.

2.1.2 Cryptographic experiments
In cryptography, security properties are often related to cryptographic experiments,

or games, where a benign entity called the challenger plays against the adversary.
Both the challenger and the adversary are interacting probabilistic processes that

challenger adversary
interaction←−−−−−−−−−−→

allow the game to be modelled as a probability space. Finally, a security property is

captured as a statement over the probability of an event E related to a cryptographic

experiment that equal or are negligibly close to a target probability p:

∃µ, Pr [E] ≤ p + µ (n)

where µ is a negligible function over the security parameter n. For example, an event

E can be the adversary winning the game, and the security property may require

that the probability of such an event must be negligible (or negligibly close to 0).

2.1.3 Computational indistinguishability
Computational indistinguishability is a central notion to the theory of cryptography.

We provide a definition based on cryptographic game, where the challenger plays

against an adversary, called a distinguisher, who is challenged to tell two probability

distributions apart. For example, the security of an encryption system is defined as

indistinguishability of ciphertexts, where the adversary is asked for two plaintexts

and then challenged with an encryption of one of them; the adversary should not be

able to guess which plaintext corresponds to the challenge better than a coin toss.

And indistinguishability experiment should capture the security of the protocol

for the security parameter n tending to infinite. The necessary formalism to have this

asymptotic approach is given by an infinite sequences of random bitstrings, called

probabilistic ensembles, that can be efficiently sampled. The following formal notation

is adapted from of Hazay and Lindell [99], Goldreich [85], and Katz and Lindell [109].
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Notation 2.1.1 (Probability ensemble). Given an index value a ∈ {0, 1}⋆, and a
security parameter n ∈ N, we denote a probability ensemble X indexed by a and n the
set of all random variables Xa,n for all a and all n:

X = {Xa,n}a∈{0,1}⋆,n∈N .

Additionally, there exists an efficient sampling algorithm S such that for all a and n,
S (1n, a) and Xa,n are identically distributed.

In the notation and throughout the whole dissertation, we denote as {0, 1}⋆
the

set of bit strings of any length, and as 1n
the n-bit string of ones: 11 . . . 1 (length

n) and is the standard convention in cryptography that emphasises that the length

is provided or known to the algorithm, in some security definitions n is called the

security parameter.
The input of the parties in a protocol or in a cryptographic experiment is described

by the value a indexing a probability ensemble X [99], while the description of the

output is included in the random variable Xa,n ∈ X . The random variable Xa,n ∈ X
is what the adversary will finally inspect.

We are interested in the indistinguishability between two different constructions

Π0 and Π1 of the same protocol, i.e. they provide the same functionality. Their

output can be seen as two random variables Xa,n and Ya,n in the ensembles X and Y
respectively to the games. The result of the adversarial strategy, or any other event

capturing security, can be seen as the event E as a function over one such variable.

So, we can relate Π0 and Π1 through the probability of events E0 and E1, whose

(absolute) difference is at the basis of the concepts of indistinguishability:

|Pr [EX (Xa,n)]− Pr [EY (Ya,n)]| ,

where Xa,n and Ya,n are random variable in the ensembles X and Y . The event we
generally refer to in cryptographic lemmas relate to the output of an adversary to

be able to determine a predicate over the challenging string. Finally the event is the
experiment outputting 1 whenever the adversary guesses correctly. So we write

Pr [A (Xa,n) = y] for the probability of the event when the adversary provided with

Xa,n and outputs y. We equivalently write Pr [A (Π) = y] for Pr [A (Xa,n) = y] if
Xa,n relates to the construction Π.

The ability of the adversary, or distinguisher, to guess is measured by her proba-

bility to win a distinguishing game, which is called the advantage of the adversary. In
the game, the adversary is provided a trace of either Π0 or Π1 and outputs b ∈ {0, 1}
if she thinks that the trace corresponds to Πb. More precisely, an indistinguishability

game is a cryptographic experiment ExpΠ0,Π1 that relates the two constructions Π0
and Π1 as illustrated in 2.1 and described as follows:

1. The challenger initialises the protocols in Π0 and Π1 and provides some related

parameters to the distinguisher.

2. Depending on the security property and the adversarial capabilities, the distin-

guisher may be allowed to decide (some of the) inputs of the parties.
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Fig. 2.1 Flow of the experiment for indistinguishability two protocols described by two

constructions Π0 and Π1.

challenger A
initialises Π0 and Π1

info−−−−−−−−−−−−→
inputs

←−−−−−−−−−−−− (optional) generates inputs

b←$ {0, 1}
runs Πb on the inputs

and generates c
c−−−−−−−−−−−−→
b′←−−−−−−−−−−−− conjectures that c was from Πb′

↓
b = b′

3. The challenger flips a coin to generate the challenge using either Π0 or Π1,

then he sends the challenge to the adversary.

4. The adversary accepts the challenge and answers back with 0 if associates the

challenge to Π0, 1 otherwise.

5. Finally, the challenger outputs whether the adversary guesses correctly or not.

We notice that the indistinguishability experiment here defined is a trivial generali-

sation of common indistinguishability experiments [148, 109].

Definition 2.1.2 (Advantage). Given an experiment ExpAΠ0,Π1 of indistinguishability
over two constructions Π0 and Π1 of the same functionality run against the adversary
A, the distinguishing advantage Adv of the adversary is defined as

AdvExp
Π0,Π1 (1n) def= |Pr [A (Π0) = 1]− Pr [A (Π1) = 1]| .

The events [A (Πb) = b′] happen when the adversary is provided with the chal-

lenge of Πb and outputs b′, i.e. guesses correctly in the case Πb′ generated the

challenge, incorrectly in the case Π1−b′ .

The advantage allows to easily define the computational indistinguishability if

related to a negligible function as upper bound. Our definition of computational

indistinguishability is based on the definition of computational indistinguishability
of ensembles by Katz and Lindell [109], with the only change that the ensembles are

generated by an indistinguishability experiment.

Definition 2.1.3 (Computational indistinguishability). Given an indistinguishability
experiment ExpAΠ0,Π1 over two constructions Π0 and Π1 of the same protocol run against
the adversary A, the probabilistic ensembles X , due to Π0, and Y , due to Π1, are
computationally indistinguishable, denoted asX c≡Y , if and only if for any probabilistic
polynomial-time adversary A exists a negligible function µ such that

AdvExp
Π0,Π1 (1n) ≤ µ (n)
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where n is the security parameter related to the length of protocols’ secrets.

For simplicity, the constructions themselves are said to be indistinguishable,

without explicitly referring to their probabilistic ensembles. In such cases, given two

constructions Π0 and Π1, we would write

Π0
c≡ Π1.

2.2 Proof structures in cryptography
Modern cryptography relaxes the concept of security to computational security, the
adversary is seen as a modern computer, whose resources are bounded to be poly-

nomial on a security parameter. In this scenario, the probability to break security is

required to be negligible, and it is related to the computational hardness of the adver-

sarial strategy. In our work, we focus on security properties defined by mathematical

theorems, that can be therefore provable, and in particular we discuss game-based

proofs that can be automatised in a tool run by a machine. The structure of proofs in

computational security vary, but often are game-based, that is captured by a crypto-

graphic experiment again an efficient adversary, as introduced in Section 2.1.2. In

this section we will briefly discuss the concepts of reduction, sequence of games,

simulation-based proofs, and proofs where the adversary is provided with oracle
1

access to functionalities. All those concepts are not disjoint: for example, both

game-based and simulation-based proofs can be structured as a sequence of games.

2.2.1 Reduction
In cryptography, some security properties are defined on hardness assumptions. For

example in the Diffie-Hellman key exchange protocol, confidentiality of the key is

based on the hardness of computing the discrete logarithm. The proof of similar

properties is usually carried out by showing how to transform the original problem

into an instance of the hard problem. This is a common approach in complexity

theory called reduction. For example, the security of the RSA cryptosystem can be

reduced to the factorisation of integers, which is known to be hard. In cryptography,

proofs by reduction are often argued by contradiction: we suppose that the original

problem is easy to solve, then we show that we can break the hardness of some other

problem known (or assumed) to be hard. This contradiction implies that the original

problem is hard too. For example, we assume that RSA is not secure, then we show

that this implies that integer factorisation can be solved efficiently.

2.2.2 Sequence of games
The proof of security properties based on games can become complicated, long and

very difficult to follow, thus to verify. To tame such complexity, the original game is

1
In cryptography, oracles are black-box efficient abstractions of functionalities that can be used in

experiments to capture certain security properties.
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transformed to another game whose security is known, so the proof becomes proving

the soundness of the transformation. More in details, a transition would transform

the probability over an event E related to a game G to the probability over the event

Ẽ related to another game G̃. Assume we have to prove that

∃µ, Pr [E] ≤ p + µ (n) ,

where µ is a negligible function over the security parameter n and p is the target

probability that capture security. If we can prove that the difference between Pr [E]
and Pr

[
Ẽ

]
is negligible, and if we can also prove that

∃µ, Pr
[
Ẽ

]
≤ p + µ (n) ,

then the original statement is easily provable. If the above is a known result, e.g.

hardness of factoring integers, the only piece to prove is the equivalence of G and G̃
up to a negligible probability. We would write the transition as G G̃.

When a transition from a game G to a game G̃ is still too complex, then multiple

intermediate games G1, G2, . . . , GN are created, and the proof follows an approach

called sequence-of-games [148, 93, 40]. A proof structured as a sequence of N + 2
games requires to prove N + 1 sub-goals, each of which needs to show that the

advantage in indistinguishability between all adjacent games (often called the distance)
is negligible.

G G1  G2  · · · GN  G̃

By transitivity, one finally has G  G̃, and the benefit of this structure can be

appreciated when each sub-goal is verifiable with little effort.

Generally, the transition from a game Gi to the next Gi+1 is of three types: it

can be based on indistinguishability, it can be based on failure events, or it can be a

bridging step that we discuss below. There is no recipe on how to create such games,

and it is matter of the taste and creativity of the cryptographer carrying out the proof.

Indistinguishability

In a transition based on indistinguishability, a game Gi+1 is created from Gi with a

small change that, if detected by the adversary, it implies the existence of an efficient

algorithm to tell the two games apart. If we relate two events Ei defined on Gi

and Ei+1 defined on Gi+1 to two probability ensembles, then we can refer to the

computational indistinguishability of Definition 2.1.3. In brief, the indistinguishability

to prove requires to show that |Pr [Ei]− Pr [Ei+1]| is negligible.

Failure events

Assume we have two games Gi and Gi+1 that proceed identically unless the event

F (for failure) happens. Events such as F are often called bad events and need to

be negligible, e.g. a repeated value sampled from a uniformly random distribution.

The difference in probability of two events Ei defined on Gi and Ei+1 defined on

Gi+1 can be bound by the probability of the occurrence of the failure event F in
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either game [27]. Formally, the bound is provided by Lemma 2.2.1, called fundamental
lemma [40, 27] or difference lemma [148]. We adapted the lemma by Barthe et al. [27]

to our notation so far, as it is the most appropriate to code-based games, where

termination is also explicitly considered.

Lemma 2.2.1 (Difference lemma). Let Gi and Gi+1 be two games, Ei an event defined
on Gi, Ei+1 an event defined on Gi+1 and F an event defined in both games. If both Gi

and Gi+1 terminate, then

Pr [Ei ∧ ¬F ] = Pr [Ei+1 ∧ ¬F ]⇒ |Pr [Ei]− Pr [Ei+1]| ≤ Pr [F ] .

This is a simple calculation.

|Pr [Ei]− Pr [Ei+1]| = |Pr [Ei ∧ F ] + Pr [Ei ∧ ¬F ]− Pr [Ei+1 ∧ F ]− Pr [Ei+1 ∧ ¬F ]|
= |Pr [Ei ∧ F ]− Pr [Ei+1 ∧ F ]|
≤ Pr [F ]

The second equality follows from the assumption Pr [Ei ∧ ¬F ] = Pr [Ei+1 ∧ ¬F ].
The inequality follows by the fact that bothPr [Ei ∧ F ] andPr [Ei+1 ∧ F ] are bounded
by Pr [F ].

In code-based proofs, the failure condition can be implemented by setting a flag

variable to true when a condition capturing the bad event holds. For example, the

condition may test if a collision is found in a random function, in which case the flag

is set to true.

Bridging steps

It is also common to see transitions to games whose changes are purely conceptual

and transform a game to another equivalent game, e.g. maps reimplemented as lists

or statements swapped with others: those are commonly called bridging steps and
they prepare the ground for a transition of one of the above two types. While in

principle, bridging steps may seem unnecessary, without it, the proof would be much

harder to follow [148].

2.2.3 Simulation-based proofs
Simulation-based proofs are based on the concept of computational indistinguishabil-

ity. We define some of our security properties, for the most for searchable encryption

in Chapter 6, using the standard simulation model of secure computation [85], where

the adversarial entity is a distrusted participant of the protocol. In a simulation-based

proof, a distrusted party is challenged to distinguish between two constructions: the

real protocol execution (with real inputs) and a simulation of it. Such simulation is

not provided with the data of which privacy is desired. The key concept is that if a

distinguisher is not able to tell the real protocol and the simulation apart, then the

execution of the protocol cannot leak any information about the private inputs of

the real parties
2
.

2
Information leaked by the output of the protocol is not considered as leaked.
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Secure computation

An important class of protocols in cryptography are secure computation protocols, or

secure function evaluation protocols. By employing a secure computation two ormore

distrusting parties may compute a function of their private input that shall remain

private. Secure computation embraces network communication protocols adopted in

a large variety of real world contexts, such as secure communication in the Internet,

e-commerce and banking, cloud computation, WiFi an mobile phone networks,

proximity networks (NFC, RFID, Bluetooth, and others), blockchain technologies and

e-voting. More precisely, no information about the input data shall be leaked beyond

what is expected to be inferred by knowing their own private input and the final

output produced at the end of the protocol
3
.

The difference between secure computation and traditional cryptography is that

privacy is to be preserved against distrustful participants rather than against entities

external to the protocol. This difference on the adversarial model does not split apart

secure computation and traditional cryptography: for example when two participants

in a n-party protocol interact, if an attack revealing the private key hold by one

participant can be found with traditional cryptography, then the same attack might

be carried out by any distrustful participant of the protocol.

An example of secure computation, restricted to two parties is illustrated in

Figure 2.2. In secure computation, the main focus is to protect participants’ privacy

Fig. 2.2 Two-party secure computation scheme.

Alice Bob

x
m1−−−−−−−→ y
m2←−−−−−−−
. . .

f1 (x, y) f2 (x, y)

from each other. Proofs in secure computation are generally structured in a simulation-

based approach, where honest parties are simulated without the parties’ input. The

privacy is captured by an indistinguishability theorem, where the corrupted parties

cannot tell the real protocol and the simulation apart; therefore, the protocol does

not leak any information about parties’ inputs.

Formal definitions

In such a setting, privacy has to be protected against adversary who can corrupt par-

ticipants and can control the communication channel. The simulator has to simulate

the execution with corrupted participants as the alternative game to be distinguished

from the real execution by the distinguisher. To do so, the simulator needs to emulate

the view and the result of the protocol from the eyes of the corrupted party (without

3
Or at some point of the protocol, e.g. in commitment schemes the input is eventually revealed,

but it is crucial to protect its privacy up to the revealing phase
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knowing the honest party’s private input). We adapt our Definition 2.2.1 of view

from Hazay and Lindell [99].

Definition 2.2.1 (View). Let Pi be the i-th party executing the protocol Π run by
N ≥ 2 participants. Then the view of Pi in the protocol Π, denoted as viewΠ

Pi
, is defined

as
viewΠ

Pi
(x, n) def= (x, r, m1, m2, . . . , mj)

where xi is Pi’s input, r is Pi’s internal random tape, m1, m2, . . . , mj are the messages
received by Pi during the execution of Π, x = (x1, x2, . . . , xN) are the parties’ inputs,
and n is the security parameter.

Notation 2.2.1 (Output). We denote the output of a Pi in the protocol Π as outputΠ
Pi
,

and the joint output of all N ≥ 2 parties as

outputΠ (x, n) def=
(
outputΠ

P1 (x, n) , outputΠ
P2 (x, n) , . . . , outputΠ

PN
(x, n)

)
.

where x = (x1, x2, . . . , xN) are the parties’ inputs and n is the security parameter.

From this point on, we restrict our definitions to two-party protocols, even though

the same concepts can be extended to multi-party protocols, whose discussion is out

of our scope. If we want, for example, to capture the security of a secure computation

protocol with respect to semi-honest adversaries, we can require that the probability

ensemble emulated by the simulator and the functionality result to be computationally

indistinguishable from the probability ensemble of the view and the output of real

executions of the protocol, as captured by Definition 2.2.2 by [99]. Semi-honest, or

honest-but-curious, adversary is one who runs the protocol honestly but tries to infer

as much information as possible from running the protocol.

Definition 2.2.2 (Security against semi-honest adversary). We say that the protocol
Π, run by two parties, securely computes a functionality f = (f1, f2) in the presence
of semi-honest adversaries if there exist two polynomial-time simulators Si, such that
for all i ∈ {1, 2}, we have

{Si (1n, xi, fi (x)) , f (x)}x,n

c≡
{
viewΠ

Pi
(x, n) , outputΠ (x, n)

}
x,n

where x = (x1, x2) are the parties’ inputs, the simulator Si emulates the behaviour of
the N parties excluding the adversarial Pi, x = (x1, x2) are the parties’ inputs, and n
is the security parameter.

Simulating an indistinguishable view and output of the protocol does not capture

capabilities of a malicious adversary. To capture such stronger notion of security, we

require that adversary in an ideal model are able to simulate executions of the real

protocol. The ideal model provides the intended functionality of the real protocol

by mean of a trusted third party. We consider two-party protocols as our discussion

involve only two-party protocols. In the ideal model, we have the honest party, the

malicious party, and a trusted third party. The adversary sends inputs to the trusted

party, who sends the result back to all parties. This last operation can be prevented
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by the adversary instructing the third party to abort. At the end, the honest party

outputs the value it received from the trusted party, while the adversary output the

input of the honest party, the input she used (that may or may not equal the original

one from the corrupted party), and the result obtained from the trusted party. So,

intuitively, if the adversary cannot do more harm in the real protocol than it would

in the ideal model, then the real protocol is secure.

Notation 2.2.2. Let f be a functionality and Π a two party protocol for computing f .
We denote the real execution of Π on inputs (x, y), in the presence of the adversary A
that corrupts the party Pi and uses auxiliary input z, as

RealΠ,A(z),Pi
(x, y, n)

where n is the security parameter. Similarly, we denote the ideal model of f on inputs
(x, y), in the presence of the adversary A′ that corrupts the party Pi and uses auxiliary
input z, as

Idealf,A′(z),Pi
(x, y, n) .

We report the definition of secure two-party computation by Hazay and Lin-

dell [99] with the notation above.

Definition 2.2.3 (Security against malicious adversary). Let f be a functionality and
Π a two party protocol for computing f . The protocol Π, run by parties P0 and P1, is
said to securely computes the functionality f in the presence ofmalicious adversaries if
for every non-uniform probabilistic polynomial-time adversary A in the real execution
there exists a non-uniform probabilistic polynomial-time adversary A′ in the ideal
execution, such that for all i ∈ {0, 1}, we have

RealΠ,A(z),Pi
(x, y, n) c≡ Idealf,A′(z),Pi

(x, y, n) .

where A and A′ corrupt the party Pi and use auxiliary input z, and n is the security
parameter.

2.2.4 Oracles
An oracle is an entity that provides black-box access to functionalities. The caller

(including the adversary) provides inputs, and the oracle will always provide the

corresponding output without leaking any information about its internal procedures.

In the context of indistinguishability of two protocols Π0 and Π1, an adversary is

allowed to call an oracle which can be programmed with either Π0 or Π1. The

adversary is finally challenged to determine what protocol was used to program the

oracle.

The astute reader could argue that this behaviour can be actually captured by

providing the adversary with the full description of the functions along with the

transcripts of the protocol. However a more astute reader would also consider that

the full description of the functions may have super-polynomial length (e.g. a random

function [109]), and the (polynomial) adversary would not even have enough time



2.2 Proof structures in cryptography 17

Fig. 2.3 Flow of the experiment oExpA,O
Π0,Π1

for indistinguishability between a protocol de-

scribed by the constructions Π0 and Π1, where the adversary A is allowed to interact with

the oracle O at most a polynomial number of times.

challenger
initialises

Π0 and Π1 oracle O

b←$ {0, 1} programs O with Πb−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A uses Πb

info−−−−→
interacts←−−−−−−→

conjectures of having

b′←−−−− interacted with Πb′

↓
b = b′

to read its input. In the case when this problem is to overcome, the definitions of

security are slightly modified to give the adversary access to an oracle.
The adversary is not provided with an output generated by a run of a protocol

(or a simulation of it), but she interrogates the oracle upon chosen input at most a

polynomial number of times. The oracle masks the internal behaviour, so it can be

either the real execution of the protocol or not, without the adversary knowing. The

indistinguishability game oExpΠ0,Π1 , illustrated in Figure 2.3 relating the two con-

struction Π0 and Π1, is slightly different from the experiment illustrated in Figure 2.1,

and it can be described as follows:

1. The challenger flips a coin to program the oracle to use either Π0 or Π1.

2. The challenger initialises the protocols in Π0 and Π1 and provides some related

information to the distinguisher.

3. The adversary is allowed to interact with the oracle O a polynomial number

of times
4
, then sends her best guess to the challenger.

4. Finally, the challenger outputs whether the adversary guesses correctly or not.

Definition 2.2.4 (Computational indistinguishability with oracles). Given an indis-
tinguishability experiment oExpA,O

Π0,Π1 over two (terminating) constructions Π0 and Π1
run against the adversary A, the probabilistic ensembles X , due to interaction with an
oracleO programmed with Π0,O0, and Y , due to interaction withO programmed with
Π1, O1, are computationally indistinguishable, denoted as X c≡ Y , if and only if for
any probabilistic polynomial-time adversary A exists a negligible function µ such that

AdvoExp
Π0,Π1 (1n) = |Pr [A (O0) = 1]− Pr [A (O1) = 1]| ≤ µ (n)

4
The adversary gets no extra information from the oracle if not the output of the interrogated

functions.
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where n is the security parameter, andA has no access to the internal state of the oracle,
which is programmed uniformly at random with Π0 or Π1.

For simplicity, the constructions themselves are said to be indistinguishable,

explicitly omitting reference to both their probabilistic ensembles and the oracles,

with the notation

Π0
c≡ Π1.

Despite the notation is identical, this definition is different from the Definition 2.1.3

in the fact that the adversary is not directly provided with the ensemble generated

by running Πb; in fact, the adversary constructs the ensemble by interacting with

the oracle O.
As the reader may already have noticed, the Definitions 2.2.3 and 2.2.4, defining

respectively a secure computation protocol and computational indistinguishability,

are related. In particular, the oracle O in the latter can be programmed either with

the real protocol, defining the Real execution in the former, or with the simulation,

defining the Ideal execution in the former. Hence, the indistinguishability between the

Real and the Ideal executions in the former definition relates to the indistinguishability

of the constructions Π0 and Π1 in the latter definition.

2.2.5 Adaptive adversary
We will define the security of searchable encryption schemes, see Chapter 6, against

adaptive adversary. In contrast to non-adaptive adversaries where the strategy (i.e.

inputs and queries) are chosen beforehand, i.e. before the cryptographic experiment

runs, an adaptive adversary can change its strategy during the execution of the

protocol: in particular, the adversary can choose inputs and procedure calls depending

on partial output of the protocol. We note that the adversary in the indistinguishability

Definition 2.2.4 is allowed to interact with the oracle without a prescribed strategy

and therefore make its next step of strategy dependent from the (partial) output

obtained by interacting with the oracle. Thus, Definition 2.2.4 can be used to model

security against adaptive adversaries
5
. Petcher and Morrisett [137] mechanised

security against non-adaptive adversary of a searchable encryption scheme, and they

note that, to tackle the adaptive version, they would need to employ oracles.

2.3 Formal models in Cryptography
To formally prove security properties of protocols, cryptographer adopt mathematical

models. Cryptographic models can be intuitively seen as points of view to describe

the same protocol and to capture different aspects of it. In this context, the security

analysis of a cryptographic protocol is seen as the reasoning process over a proto-

col specification, given an adversarial model and initial assumptions. In brief, the

mathematical description of the protocol, over which the reasoning is carried out,

5
The same definition can model non-adaptive adversaries too, depending on if the adversary is

additionally restricted to choose input and queries beforehand or not.
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is the cryptographic model. It is important to stress that every such a model is an

abstraction of the real settings where the protocols actually run.

Several models have been proposed in the literature to reason about cryptographic

protocols, but two became more popular than others amongst cryptographers: the

symbolic model [76] and the computational model [89], both dating back to nearly

40 years ago. In a nutshell, the symbolic model assumes the security of crypto-

graphic primitives and uses them as black-boxes, so that the focus is shifted to the

composition of the (parts of the) protocols; conversely, the computational model

allows for reasoning about the mathematical details of cryptographic primitives and

therefore their security properties. More details about the two models are presented

in Sections 2.3.1 and 2.3.2. A through discussion of their differences is illustrated in

Appendix A.3, where we show a formalisation of asymmetric encryption through

the lens of either of the models.

The need for automated reasoning

The symbolic and the computational model have been used in on-paper proofs of

cryptography for long time. In the past decades, research and industry have witnessed

an escalation in the amount of cryptographic constructions, and consequently the

mathematical proofs of their security claims increased in both amount and complexity.

Their review, often by peers, became a very time consuming process, and attacks

were found to protocols believed to be secure for decades [120]. More importantly,

such incidents were evidence that cryptography was (and is) suffering from a lack of

rigour.

The response of the research community to the lack of mathematical rigour in

cryptography have been that of delegating some of the reasoning process to machines,

by means of automatic tools. Automated tools mitigate such issues and aid the

reasoning about cryptographic protocols, with the concomitant benefit of speeding

up the reviewing process. In particular, they started implementing automated tools to

aid the formal verification of security protocols that handle either the computational

or the symbolic model. Those tools significantly reduce the amount of trust to put

in on-paper proofs, as they cover all gaps that are commonly assumed as obvious to
simplify the discussion in the proofs. Those mechanised proofs are easily reproducible

using a machine.

The Sections 2.3.1 and 2.3.2 will introduce two reasoning models that are used to

represent reality: they balance efficiency, expressiveness, completeness and generality

to reach different degrees of automation.

2.3.1 Symbolic model
The symbolic model was introduced by Yao in 1983 [76], but literature witnesses its

informal usage even before [134]. It describes cryptographic protocols abstractly. On

one hand, its high level of abstraction allows to make tools for automatic reasoning.

On the other hand, its expressibility is limited and potentially hard-to-apply to

realistic scenarios. In particular, (i) messages are literals, that simplifies the reasoning

on their properties, like equality; (ii) cryptographic primitives are assumed to be
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perfect and used as black boxes, that allows to focus on other properties, like the

composition of protocols; and (iii) the adversarial strategies are predefined and limited

to the inference rules provided, that on one side it limits the proofs to case-by-case

reasoning [18], but on the other side it makes the automation easier. In this model,

adversaries can handle the messages through insecure channels, that is they can

eavesdrop, intercept, deliver, block or tamper with messages.

The symbolic model can capture errors in the logic of the design, but cannot fully

describe situations where the cryptographic primitives cannot be treated as black

boxes or some cases when the security properties are defined computationally.

Most of the automatic tools aiming to aid proofs for cryptographic protocols [111,

129, 49, 143, 66, 14, 30, 158, 79, 139, 124, 12, 144] work in the symbolic model, some

providing computational soundness for special cases [17].

2.3.2 Computational model
Automatic tools supporting the computational model [45, 26, 11] have been developed

later than those in the symbolic model, due to their inherent more detailed description

of the real world, hence their complexity.

Differently from the symbolic model, the computational model is closer to com-

plexity theory, e.g. algorithms are Turing machines with random tapes, when mod-

elling cryptographic protocols and can capture many low level details which are

needed in proofs. This offers the possibility to reason with the principles on which

the machines are built: messages are bit strings, and algorithms and adversaries are

probabilistic algorithms. Mathematical theories are first-class citizens in the computa-

tional model, which therefore allows for reasoning with probabilities, complexity, and

cryptographic assumptions. This allows for rigorous proofs that cannot be obtained

in the symbolic model.

Security is defined against efficient adversaries can break the security properties

with only a negligible probability, if certain assumptions hold.

Due to the many mathematical details, theories, and lemmas, the computational

model shows harder proofs and it is generally more difficult to automate. This is

usually reflected in the huge amount of effort (thousands of lines of code
6
) that hardly

scale or lead to reusable code [56].

2.4 Reasoning in theAppliedPiCalculus inProVerif
ProVerif [49] is a tool for reasoning in the symbolic model. It has proved successful

in formally verifying dozens of protocols, and has been widely accepted by the

community. ProVerif’s input language is a dialect of the Applied Pi Calculus [50, 5],

and we limit our informal illustration of the language to the subset that will be useful

for our model of the SPEKE protocol that we will discuss in Chapter 3.

The language is strongly typed, and arbitrary types can be declared. Functions are

modelled by constructors and destructors. Constructors are abstractions of functions

6
We remark that the most of the code is used by mathematical proofs in theorem provers.
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whose signature is their name, their arity, and in typed languages the type of the

arguments and the returning type. Constructors with arity 0 model constants, while

constructors with higher arity model generic functions. Destructors can be roughly

considered as inverse of constructors and determine reductions applied to construc-

tors; for example, the decryption function is a destructor for the encryption function

as its application to an encryption of a message reduces to the mere plain message (as

long as the decryption key is correct). To model other properties, as commutativity,

associativity, or other properties, additional equations can be provided
7
.

The basic syntax of the language is provided in Figure 2.4, adapted from the

manual of ProVerif. Its basic elements are called terms to which expressions can

Fig. 2.4 ProVerif’s language syntax for processes (Applied Pi Calculus). E are expressions,

M patterns, and P processes, illustrated in the Backus-Naur form. Every else branch and

suchthat condition are optional. The nil process 0 may be implicit.

E ::= a, b, c, . . . names (atomic data), variables, tables

| f (E, E, . . . , E) function application

| (E, E, . . . , E) tuples (built-in application)

| ¬E negation

| E ♦E binary function application (♦ can be =, ̸=, ∧, or ∨)

M ::= x : T bind to variable x of type T
| = E equality test

| f (M, M, . . . , M) data constructor with patterns

P ::= 0 nil

| in (E, M) ; P input from channel E of pattern M
| out (E, E) ; P output an expression to a channel

| P |P parallel composition

| !P infinite replication

| νa.P restriction

| if E then P else P conditional

| let M = E in P else P evaluation

| insert t (E) ; P insert E to table t
| get t (M) suchthat E in P else P read from table t
| event e (E) ; P record event e with arguments E

be applied: terms are expressions too. The available expressions allow for equality

and inequality (just the not-equal) of terms, conjunction and disjunction, negation,

pairing (in tuples), and function application. A name is atomic data, while a variable

can be substituted by any term. Tables are particular extensions of the language

which in the Applied Pi Calculus are absent; however, it is easy to show how restricted
channels

8
, appropriately used, can act exactly as such tables. Both constructors and

7
Adding equations generally comes at the price of slowing significantly the reasoning process as

more cases must be analysed.

8
restricting a channel to processes that model entities makes such a channel private to those

entities; otherwise, by default a channel is accessible by the attacker.
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destructors are function symbols, but in the tool they determine different sets of rules

and semantics.

The main abstraction of the Pi Calculus is the process. A process describes the

algorithm that an entity follows according to the specifications of a protocol scheme.

They can (i) include variables, constants, functions, and (private) nonces (i.e. νx.P
restricts the value x to the process P ) (ii) write to and read from any channel c,
denoted by out (c, _) and in (c, _) respectively, (iii) insert and extract elements to and

from any table t, insert t (_) and get t(_), and (iv) record events. Processes can be put

in sequential or parallel execution with other processes including themselves, with

implicit barriers at in (_, _) operations, for unbounded number of times of replication.

Such instruments allow for symbolic modelling of protocols. In fact, the parties can

send messages to the others, can instantiate (private) nonces and do some operations

whose result can be used later on in the protocol, can check for validity of received

messages, and can receive external values before engaging the protocol.

To model security properties, the language offers some facility. The secrecy of

names is verified in terms of unreachability and indistinguishability. The unreachabil-

ity of the secret by the attacker determines whether the knowledge of the attacker can

be augmented with such secret by using the inference rules determined with respect

to the model. From the point of view of indistinguishability, the tool determines

whether the attacker can distinguish between executions that use different secrets.

More sophisticated security properties, like entity authentication, bilateral un-

known shared-key resilience, and others, can be formalised through events and

correspondences [46]. Events must be explicitly included as extra lines into the

processes, can take arguments, and will be recorded in the traces of execution. Corre-

spondences are implications related to execution of events. By default the content of

events is not accessible to the attacker, until the attacker is already aware of them or

it will be by other rules. Moreover, the attacker is not directly capable of recording

events, but it may induce processes to do so.

For example, we want to capture authentication. Then, an event e1 (A, B) can be

inserted through the lines of the process and can be interpreted as “Alice believes

of having started an authentication with Bob”
9
. Similarly, an event e2 (A, B) can

be interpreted as “Alice believes of having completed an authentication with Bob“.

Thus, authentication can be defined as a relationship between the events e1 and e2,

e2 (A, B) ⇒ e1 (A, B). The interpretation of e2 (A, B) ⇒ e1 (A, B) as authentica-
tion property is that the event e2 must always be preceded by e1 in any possible

trace records, so the overall interpretation would be “Whenever Alice believes of

having completed an authentication with Bob, then the authentication procedure was

actually started by Alice authenticating Bob“ or, in other words, “Alice is sure that

she’s speaking to Bob“.

The reasoning engine of ProVerif will execute a main process and record traces

of execution. At the same time, the attacker’s knowledge and the tables, if any,

are accordingly updated. The reasoning core of ProVerif will try and compute all

9
As a curiosity, capturing belief is typical of the BAN logic [7], but events generalise them to

interpret other kind of statements related to the purpose of the protocol. Events have been introduced

on top of a criticism to a lack of formality in the BAN logic [161].
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(infinite) traces of execution and, where possible, it applies theorems for pruning

allowing for reasoning about unbounded number of executions of the processes
10
.

Security properties or attacks are eventually checked by inspecting traces, tables, the

attacker’s knowledge, and, for equivalences, relations between traces and processes.

We refer to the paper by Blanchet [49] for additional details.

2.5 Reasoning in the probabilistic Relational Hoare
logic in EasyCrypt

EasyCrypt is a tool for reasoning in computational model and imperative code. To

do that it implements different logics [21]: apart from higher-order logic (HOL), it

embeds Hoare logic (HL) to allow for reasoning about pre and post conditions of

procedures’ execution, a probabilistic Hoare logic (pHL) which allows for reasoning

on probabilities of pre and post conditions, and a probabilistic relational Hoare logic

(pRHL) to relate two procedures. We call judgement any proposition in HL, pHL and

pRHL. To better illustrate facts later in the dissertation, we need to borrow some

formula from the pHL [43] and pRHL [26, 24].

Let us consider a probabilistic
11
procedure c, declared in the module M , and a pre

and a post condition Ψ and Φ. We denote by A[m1,m2,...] the validity of the relation A
whose propositions can relate to the memories m1, m2, and so on; we also denote by

c [m] that the procedure c runs in the memory m. We use a pHL judgement to relate

the probability of the post condition Φ to be true after running c with precondition

Ψ to a real number e; we use the notation

|= M.c : Ψ ⇒ Φ ♦ e

where e is a real-typed expression and ♦ is a logic operation among <, ≤, =, ≥,
and >, and is valid for all memories m. One example is termination. Termination is

formally expressed as losslessness, that is the probability that the post condition T
(true) holds after running c is 1.

|= M.c : T⇒ T = 1

To relate two procedures, we use pRHL judgements. Let us consider the proba-

bilistic procedures c1 and c2 declared in the modules M1 and M2 respectively, and

a pre and a post condition Ψ and Φ. The conditions are binary relations that can

refer to memories where the procedures run. Rather than having a single procedure

M.c, we have the relation between the procedures as M1.c1 ∼ M2.c2. We say that

the judgement denoted by

|= M1.c1 ∼M2.c2 : Ψ ⇒ Φ
10
The reasoning may not terminate, as discussed in Section 2.6.

11
Technically, it is expressed in the pWHILE language.
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is valid if for all memories m1 and m2 as environments for c1 and c2 respectively,

the validity of Ψ[m1,m2] before the execution implies that a proper transformation

of Φ′[m′
1,m′

2] where the memories m′1 and m′2 have been modified by the execution

of c1 and c2 respectively. This judgement is helpful to reason about probability of

cryptographic games with the following rule.

|= M1.c1 ∼M2.c2 : Ψ ⇒ Φ Φ ⇒ A[m1] ⇒ B[m2]

Pr [M1.c1 [m1] : A] ≤ Pr [M2.c2 [m2] : B]

Or similarly, for equality, we have

|= M1.c1 ∼M2.c2 : Ψ ⇒ Φ Φ ⇒ A[m1] ⇔ B[m2]

Pr [M1.c1 [m1] : A] = Pr [M2.c2 [m2] : B]

As the reader may have already noticed, the pRHL naturally allows for captur-

ing the definitions of security and reason about the proof structure illustrated in

Section 2.2.

In the pRHL, we can also describe computational equivalence up to a bad or

failure events whose probability can be reduced to negligible or to cryptographic

assumption, as introduced in Section 2.2.2. The rule to apply to the proof in this

case is more complex than the equivalence described above. In particular, two

algorithms are equivalent if an invariant can be stated when calling the distinguisher

A. The invariant must hold in the case that every oracle function is accessed and

in the case those functions are never used. Plus, we must prove the termination

of the distinguisher. More formally, the A is asked to distinguish between two

constructions Π1 and Π2, running in memories m1 and m2. A is not directly given

the construction, but can access to its functionality through an oracle O, whose
procedures are programmed with either of the constructions. Moreover, A has no

access to the internal state of the oracle. So, assuming that the precondition Ψ holds,

the indistinguishability of the two constructions up to the bad event b (that can

happen in the rightmost construction Π2) can be written as:

∀i. |= oi ∼ oi : ¬b ∧ I∧ ={ai} ⇒ (¬b⇒ I)∧ ={ri}
∀i. ∀m. b [m]⇒ oi : T⇒ T

∀i. |= oi : b⇒ b
|= A (OΠ1) ∼ A (OΠ2) : Ψ ⇒ (¬b⇒ I∧ ={A})

∧∀r1 r2 A1 A2, (¬b⇒={r} ∧ A1 ≡ A2)⇒ ¬b⇒ r1 ⇒ r2

|Pr [Π1⟨m1⟩ = 1]− Pr [Π2⟨m2⟩ = 1]| ≤ Pr [b] (2.1)

where oi (ai) are n callable procedures whose arguments are ai, I is an invariant

relation that can involve the memories m1 and m2, ={•} denotes equality of the

same variable or internal state in both memories, and ri is the return value of the

distinguisher. The goals above capture the following concepts respectively: (i) for all

called procedures with the same arguments, if the bad event b do not happen, then

the procedures show the same result (statistically speaking), and the invariant I is

respected before and after the execution; (ii) for all memories, the occurrence of the
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bad event implies that all callable procedures terminate; (iii) for all called procedures,

they never reset the bad event to F (false); (iv) if the bad event does not occur, then

the invariant I is respected and the result of the distinguisher provided with OΠ2 is

the same as the result of the distinguisher provided withOΠ1 ; moreover for all results

and adversaries, the absence of the bad event would put in relation the results in such

a way that the first result entails the second. More informally, the last point states

the indistinguishability when the bad event will not occur in the postcondition. The

above is one of the core rules to prove computational indistinguishability through

the advantage using oracles.

EasyCrypt

We present a brief overview of the EasyCrypt language, based on the pRHL. More

information about Easycrypt and the syntax of its language can be found in [21, 3].

Those who are familiar with EasyCrypt can skip the rest of this section.

EasyCrypt handles the computational model, in which adversaries are proba-

bilistic algorithms. To capture this, we have modules that are containers of global

variables and procedures. Procedures capture the idea of algorithm, and one can

reason about procedures running in a memory (as an execution environment). In

the computational model, one has to reason about the probability of adversaries

returning some specific results. EasyCrypt captures this idea as the probability of

running a procedure M.c in a memory m with post-condition Q evaluating true,

where M is the module containing the procedure c, written as

Pr[M.c(. . .) @ &m :Q].

To express and to prove properties, EasyCrypt supports judgements (assertions)

in (i) basic higher-order logic for implemented theories, (ii) Hoare logic (HL), (iii)

probabilistic Hoare logic (pHL), and (iv) probabilistic relational Hoare logic (pRHL).

For the last three of them, there are concepts of pre-condition P and post-condition

Q, as well as procedures M.c, M.c1, N.c2, . . . , inside modules M , N , running in

some memory m. The post-condition Q of the probability expression and the three

judgements can relate to a special term res identifying the return value of the

procedures involved.

HL hoare[M.c :P ⇒ Q] - When P is true relating to some memory m and M.c
terminates in m, then after running M.c, Q always evaluates to true in the

(modified) memory.

pHL phoare [M.c :P ⇒ Q] < r - When P is true relating to some memory m
and M.c terminates in m, then after running M.c, Q evaluates to true in the

(modified) memory with probability less than r ∈ [0, 1] ⊂ R. Other supported
relations are the common relations =, >, ≥, and ≤.

pRHL equiv[M.c1 ∼ N.c2 :P ⇒ Q] - When P is true relating to some memory m
and M.c1 and N.c2 terminate in m, then after running them in two separate

copies of m, Q always evaluates to true in the corresponding memories.
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In cryptography, security is usually defined by requiring certain properties to hold for

all adversaries. To capture the for all quantifier, in EasyCrypt, adversaries are defined

with abstract procedures, which means the adversaries can do anything without

any prescribed strategies. Working with abstract procedures may require to assume

their termination. In Easycrypt, the idea of termination is modelled by the keyword

islossless. We can declare a procedure to be lossless using the following syntax:

islossless M.c.

The statement is defined as a pHL judgement phoare[M.c : T⇒ T] = 1%r, which
means the procedure M.c always returns and terminates with a probability 1 (1%r
means real number 1).

Other common construction for reasoning with Turing machines is judgements

in the Hoare logic (HL), where roughly an algorithm c is put in the middle of a

pre-condition P and a post-condition Q ({P} c {Q}). The meaning of the Hoare

triplet is that if the precondition P is true in some environment (read memory) before

running c, and if c will terminate its execution in the environment, then after running

c the condition Q is desired to hold true. In EasyCrypt, being the procedure c in the

module M , we would have

hoare[M.c :P ⇒ Q]

Another type of judgements is of type probabilistic Hoare logic (pHL), that is

a Hoare triplet related to some expression r evaluating in the [0, 1] ∈ R domain.

Loosely speaking, the meaning of {P} c {Q} < r is: If the precondition P is true

in some environment before running c, and if c terminates its execution in such

environment, then after running c the condition Q will hold true with probability

strictly less than r. Other supported relations are the common relations =, >, ≥, and
≤. In EasyCrypt, being the procedure c in the module M , we would have

phoare [M.c :P ⇒ Q] < r

The last type of judgement supported in EasyCrypt is of type probabilistic re-

lational Hoare logic (pRHL). These judgements compare two algorithms c1 and c2
for the same precondition and post-condition ({P} c1 ∼ c2 {Q}) [43]. The meaning

of a pRHL judgement is that if the precondition P is true in some environment

before running both c1 and c2 , and if they terminate their execution their own copy

of the environment, then after running them, the condition Q will hold in both

respective separated environments with the same probability. In EasyCrypt, being

the procedures c1 and c2 in the modules M and N , we would have

equiv[M.c1 ∼ N.c2 :P ⇒ Q]

Working with abstract algorithms may require to assume their termination. If

we want to manipulate them, we often require them to be lossless, capturing the

idea that the probability of returning whatever value is 1. We can formally define

the termination property of an algorithm by stating that it is lossless with a pHL

judgement where both the precondition and post-condition are simply true values:
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islossless M.c
def= phoare[M.c : T⇒ T] = 1%r

where 1%r means 1 of type real.

All the above constructions are useful for our formalised proof. For example the

Pedersen commitment scheme [136] we discuss in Chapter 4, we capture the security

properties of correctness, perfect hiding and computational binding. In particular,

we express correctness as a HL judgement, we compare the hiding experiment with

an artificial experiment and then a pHL to finalise the proof, and we use a pHL

judgement to compare the binding experiment to the discrete logarithm experiment.

2.6 Spectrum of the tools available
In this section we will very briefly explore the tools that we considered to base

our work on. When our journey begun, we did not know any of the tools that we

are going to mention. We discuss what characteristics of the tools persuaded us to

eventually use ProVerif (for analysis in the symbolic model) and EasyCrypt (for

analysis in the computational model).

Symbolic model

Automatising the reasoning in the symbolic model is based on the inspection of the

state space determined by the formal description of the protocol (model checking).

The main challenge is due to the infinite state space to explore. This fact is mainly

due to the unbounded number of concurrent executions of the protocol (sessions),

the number of parties to consider (honest parties and corrupted parties), and the

unbounded message size. Comon-Lundh and Cortier [65] showed that the number of

parties can be bounded depending on the security property to study (one for secrecy

and two for authentication). For unbounded sessions, the security of protocols is

generally undecidable [77], while finding attacks to protocols when the number of

sessions is bounded is an NP-complete problem, regardless of the message size [140].

Therefore some tools limit the number of sessions exploring only a part of the state

space: FDR (Failures Divergences Refinement Checker) [120] and SATMC (SAT-based

Model-Checker) [15] use standard model checking techniques, Murφ [129] expands

FDR methodology by adding more constructs, e.g. symmetry reduction or reversible

rules, Maude [73] adopts rewriting logic where multiple concurrency models can

be expressed, CL-AtSe (Contraint-Logic based Attach Searcher) [64] [127] handles

infinite states models, and OFMC (On-The-Fly Model-Checker) [29] combines the use

of lazy data-types, as a simple way of building an efficient on-the-fly model checker

for protocols with infinite state spaces, and the integration of symbolic techniques, for

modeling a Dolev-Yao intruder. OFMC can give results even for unbounded number

of sessions in some special cases. The above tools are generally suitable to model

and find attacks; however, when attacks are not found, it does not mean that the

protocols are secure, as attacks could lie in the unexplored part of the state space.

Other tools restrict their reasoning to subclasses of protocol or allowing user

interaction in order to provide results with infinite sessions: Interrogator [128], NPA
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(NRL Protocol Analyzer) [123] and its successor Maude-NPA [80], Athena [150],

Cryptyc [90], ProVerif [49], TA4SP (Tree-Automata based Automatic Approximations

for the Analysis of Security Protocols) [51], Scyther [70], Tamarin [125]. The major

disadvantage of these tools is that they are incomplete, they may not terminate or

require user interaction to guide the tool to the right direction. In some cases, they

limit the number of sessions to guarantee termination, like Scyther [70].

All the above mentioned tools vary from the points of view of efficiency, express-

ibility and capability. As a natural consequence, efforts have been put to collect

(some) of those tools by creating an intermediate language that could be lifted to

the languages of the tools: examples are CAPSL (Common Authentication Protocol

Specification Language) [74], AVISPA (Automated Validation of Internet Security

Protocols) [160] and AVANTSSAR [12]. CAPSL’s intermediate language exports

to Maude, NPA, Athena and the verifier [127], AVISPA’s intermediate language

HLPSL [63] exports to SATMC, CL-AtSe, OFMC and TA4SP, AVANTSSAR’s interme-

diate languages are HLPSL and others, and it exports to SATMC, CL-AtSe, OFMC.

In our work, wemodelled the protocol SPEKE in the symbolic model. The protocol

specification is based on the Diffie-Hellman key exchange, relying on the group theory,

and its security is based on the computational hardness of the discrete logarithm.

Those characteristics would require additional equations to model group theory and

at the same time allow for modelling multiple attacks, such as impersonation, reply

and malleability attacks, and security properties, such as secrecy and authentication.

Modelling group theory in the symbolic model increases significantly the state

space to explore, and the only tools that (partially) supported it were ProVerif and

Tamarin
12
. We dedicated the same learning-time to those tools. What persuaded us

to use ProVerif was its support a stronger notion of secrecy (through equivalence

properties) as well as authentication; so the only novel application would have been

malleability, which we modelled by mean of properties over events in the traces of

execution. What discouraged us to use Tamarin was mainly the difficulty of the

language, and the (subjectively) unnatural way of describing a protocol through

atomic interrelated rules. Tamarin mixes many syntaxes together and runs regardless
of typos or undeclared variables making it difficult to review our own work (as

beginners); on the same time frame dedicated to other tools, we could not build

enough confidence on the language to understand the synergy between its own

constructs. To the best of our understanding, the main advantage of using Tamarin

over ProVerif would have been its ability to deal with properties that depend on the

precise state of agent sessions and mutable global state [125]. However, we did not

have such properties to study in the SPEKE protocol.

Computational model

The automated tools to reason in the computational model [37] is generally based

on sequences of cryptographic games. The proof is done as a small-step reduction
until a final game whose probability is known is reached. The transformation from

12
We also considered CryptoVerif to reach guarantees in the computational model, but we could

not reach the same level of automation.
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a game to another needs to be (at most) negligible. The tools we considered are:

CryptoVerif [45], EasyCrypt [26], the Foundational Cryptographic Framework [138],

CryptHOL [31].

CryptoVerif is a highly automated tool [45] where the protocols may be written in

the pi calculus [5]. Even if its automation is very appealing, it applies to some proofs

only; complex proofs deviating from the supported ones requires either interactive

mode, very difficult to use, or changing the internal core of CryptoVerif. This fact

discouraged us from using it. However it has been successfully used to prove security

for the popular TLS [48].

EasyCrypt is a tool for reasoning about relational properties of probabilistic

computations with adversarial code. Even though it does not provide automatic

proofs, it allows to write both algorithmic code and functional to model protocols. In

particular, we find the former very close to usual programming languages. So anyone

familiar with an imperative programming language would understand the modelling

(but not the proofs) in EasyCrypt.

FCF works entirely under the theorem prover Coq, which is believed to be correct.

However, it support only constructions in functional style and, in its current status,

it could not handle security properties with oracles [138]. We needed to model

searchable encryption security with oracles.

CryptHOL is based on Isabelle/HOL [135] and supports reasoning in the com-

putational model [119]. It supports functional language description only, which we

find much less natural than the code-based (imperative) approach of EasyCrypt that

also resembles object orientied. Towards proofs of security, functional or imperative

does not matter, as long they describe the same semantics; however, imperative

languages are more likely to be adopted in real implementations, and therefore a

non-expert in EasyCrypt will find the model very easy to understand and can ap-

preciate how it reflects to actual code. Also, at the time we had chosen what tool to

work with, CryptHOL was not mature enough to be considered, as EasyCrypt was

already supporting game-based proofs and indistinguishability proofs (required for

simulation-based proofs). Recent works [55] show how the tool has been extended

to be a competitive choice to work with; in particular, the mechanisation of their ex-

tended trapdoor permutation has been done contemporarily with ours in EasyCrypt,

its theoretical description is provided in Section 6.2.2.

Computational soundness can be obtained also on the basis of a symbolic analy-

sis [6], if the cryptographic primitives satisfy strong security properties. This imposes

restrictions to the protocol, de facto limiting the case studies. As our work investi-

gates relaxed security properties, e.g. schemes that leak information, we opted to

directly work in the computational model.
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In this chapter, we present a formal analysis of the key exchange protocol SPEKE.

We carry out the analysis in the symbolic model with the tool ProVerif. We study

many security properties that relate to confidentiality and authentication and model

attacks to the scheme. Among the properties, we modelled malleability with events

and discuss benefits and limits of this approach. We compare the security of several

variants of the SPEKE protocol and propose a patch that has been included in the

standard ISO/IEC 11770 [104]. Importantly, the SPEKE protocol has been verified in

the past in the AVISPA tool [160], but their model was not capturing all the aspects

as we do and could not find any attacks to the protocol.

3.1 Simple Password Exponential Key Exchange
Simple Password Exponential Key Exchange (SPEKE) is a well-known Password

Authenticated Key Exchange (PAKE) protocol aiming to establish a high-entropy

session key for secure communication between two parties based on a low-entropy

secret password known to both without relying on any external trusted parties.

The idea of bootstrapping a high-entropy secret key based on a low-entropy secret
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password is counter-intuitive, and for a long time had been thought impossible until

the seminal work by Bellovin and Merrit who proposed the first PAKE solution called

Encrypted Key Exchange (EKE) [41]. Since then, research on PAKE has become

a thriving field: many PAKE protocols have been proposed, and some have been

included into international standards [100, 104].

However, the original EKE protocol was found to suffer from several limitations:

the most significant one was the leakage about the password [106]. Motivated by

addressing the limitations, Jablon proposed another PAKE solution called the simple

password exponential key exchange (SPEKE) in 1996 [105]. SPEKE proves to be a

more practical protocol than EKE since it does not have the same password leakage

problem as in EKE. Although researchers raised concerns on some other aspects

of SPEKE [163, 157] such as the possibility for an online attacker to test multiple

passwords in one go, no major flaws have been reported. Over the years, SPEKE has

been used in several commercial applications: for example, the secure messaging on

Blackberry phones [2] and Entrust’s TruePass end-to-end web products [1]. SPEKE

has also been included into the international standards such as IEEE P1363.2 [100]

and ISO/IEC 11770-4 [104].

Given the wide usage of SPEKE in practical applications and its inclusion in

standards, we believe a thorough formal analysis of SPEKE is both necessary and

important. In this chapter, we revisit SPEKE and its variants specified in the original

paper [105], the IEEE 1363.2 [100] and ISO/IEC 11770-4 [103] standards. We first

observe that the original SPEKE protocol is subtly different from those defined in

the standards. The difference has significant security implications, which are not

explained in the standards.

3.1.1 Password Authenticated Key Exchange
Since the invention of the first PAKE solution in [41], many PAKE protocols have

been proposed, among which only a few have been actually used in practice. Notable

examples of PAKE that have been deployed in practical applications include EKE [41],

SPEKE [105] and J-PAKE [96]. These three protocols happen to represent three

different ways of constructing a PAKE. EKE works by using the shared password as

a symmetric key to encrypt Diffie-Hellman key exchange items. Variants of EKE, e.g.

SPAKE2 [9], often differ only in how the symmetric cipher is instantiated. SPEKE

works by using the shared password to derive a secret group generator for performing

Diffie-Hellman key exchange. There are variants of SPEKE, such as Dragonfly [98]

and PACE [42], which use different methods to derive the secret generator from the

password. J-PAKE works by using the password to randomize the secret exponents

in order to achieve a cancellation effect. A distinctive feature of J-PAKE as compared

to the other two is its use of Zero Knowledge Proof (ZKP) [96] to enforce participants

to follow the protocol specification. By comparison, the use of ZKP is considered

incompatible with the design of EKE and SPEKE.

A PAKE protocol serves to provide two functions: authentication and key ex-

change. The former is based on the knowledge of a password. If the two passwords

match at both ends, a session key will be created for the subsequent secure commu-
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nication. In the following, we review some common properties of a secure password

authenticated key exchange protocols based on [41, 105, 96]; we also refer the reader

to classic definitions of authentication from Lowe [121]. Formal treatments of PAKE,

based on authenticated key exchange models proposed by Bellare and Rogaway in

1993 [36], can be found in [35, 88, 110, 8].

Correctness. In the setting of key-exchange protocols, the protocol is correct if it

gives both authentication and key distribution in presence of honest parties [161].

This is a basic and necessary step in a formal model to prove that without influence

of attackers, honest parties should always complete the protocol as expected.

Secrecy of the pre-shared password. This property requires that the execution

of the protocol must not reveal any data that would allow an attacker to learn the

password through off-line exhaustive search. If the attacker is directly engaging in

the key exchange, he should be limited to guess only one password per protocol

execution.

Implicit key authentication. Assume the key exchange protocol is run between

Alice and Bob. The protocol is said to provide implicit key authentication if Alice is

assured that no one other than Bob can compute the session key [153].

Explicit key authentication. Explicit authentication can only be achieved with

a confirmation phase [153]. This property requires that the entities have actually

computed the same key. It completes and strengthens the implicit key authentication;

in fact, if the two participants are the sole entities who can learn the session key and
they have actually computed the key, the successive communication shall be secure.

Weak and strong entity authentication. Weak or strong entity authentication

respectively correspond to the weak agreement and injective agreement properties of
Lowe [121]. A protocol achieves weak authentication if a participant believes she

is speaking with another participant, and the other participant indeed started an

authentication process with her. Even though this may seem a sufficient property

for mutual authentication, it is not. In fact, nothing can be said about the problem

where the party is tricked to communicate with some replayed session of the other

party. With strong authentication, the additional property of agreeing with both the

session and the session key is required. Strong entity authentication ensures that

replay attacks and man-in-the-middle attacks are prevented.

Perfect forward secrecy. Perfect forward secrecy (PFS) ensures that the confi-

dentiality of past session keys is preserved even when the long term secret, i.e.,

the password, is disclosed. This property implies that an attacker who knows the

password still cannot learn the session key if he only passively eavesdrops the key

exchange process.

3.1.2 The Original SPEKE
The original specification of the SPEKE protocol in Jablon’s 1996 paper [105] is as

follows. Participants agreed on a group G of safe prime order p = 2q + 1 where q is

also a prime. The SPEKE protocol operates in the subgroup of G of prime order q
where the discrete logarithm problem is assumed to be hard. Two remote parties, Alice

and Bob, share a common secret password s from which they apply a function f(·)
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to compute the group generator: g = f(s) = s2 mod p. Unless specified otherwise,

all modular operations in the rest of the chapter are performed with respect to the

modulus p. We will omit “mod p” in the notation for simplicity.

The SPEKE protocol runs in two phases: the key-exchange phase and the key-
confirmation phase, as illustrated in Figure 3.1. In the first phase, Alice chooses a secret

Fig. 3.1 Original SPEKE scheme. A and B share the password s and computed g = s2

mod p.

Alice Bob

pw, q, p← 2q + 1 pw, q, p← 2q + 1
g ← f (pw) g ← f (pw)

x←$ Z⋆
q x←$ Z⋆

q

X ← gx Y ← gy

A, X−−−−−−−→
B, Y←−−−−−−−

abort if abort if

Y /∈ {2, . . . , p− 2} X /∈ {2, . . . , p− 2}
else k ← H (Y x) else k ← H (Y x)

key-exchange phase
(optional) confirmation phase

H (H (k))
−−−−−−−→

H (k)
←−−−−−−−

abort if abort if

hash is wrong, hash is wrong,

otherwise accept otherwise accept

value x uniformly at random in Z⋆
q = {1, . . . , q − 1}, and sends gx

to Bob. Similarly,

Bob chooses a secret value y uniformly at random in Z⋆
q , and sends gy

to Alice. Upon

receiving gy
, Alice verifies that its value is between 2 and p− 2. This is to prevent

the small subgroup confinement attack. Subsequently, Alice computes a session key

k = H((gy)x) = H(gxy) where H is a cryptographic hash function (used as a key

derivation function here). Similarly Bob verifies gx
belongs to {2, . . . , p− 2} and then

computes the same session key k = H((gx)y) = H(gxy). The key-exchange phase
is completely symmetric. The symmetry in the design helps simplify the security

analysis and reduce the communication rounds especially in a mesh network.

The second phase serves to provide explicit assurance that both parties have actu-

ally derived the same session key. This is realized in the original SPEKE paper [105]

as follows: one party sends H(H(k)) first and the other party replies with H(k) later.
The above key confirmation method has two subtle issues. First, it is ambiguous

which party should sendH(H(k)) first. As wewill explain, this ambiguity also carries

over to the SPEKE specifications in the ISO/IEC and IEEE standards. Second, from

a theoretical perspective, the direct use of the session key in the key confirmation
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process renders the session key no longer indistinguishable from random after the

key confirmation is finished, hence breaking the session-key indistinguishability

requirement in a formal model [36].

In the standards, the key confirmation phase is optional and it is left to the

applications to decide whether it is added. With the absence of this phase, key

confirmation will have to be deferred to the later secure communication stage where

the session key is used to encrypt and decrypt messages (in the authenticated mode)

and the decryption will only work if the session keys used at the two sides are equal.

3.1.3 Contribution
The contribution of our work is illustrated in Figure 3.2 and can be summarised as

follows.

Non-Interference
Correspondences
Event based
Observational
equivalence

Original SPEKEIEEE P1363.2:D26

ISO/IEC 11770-4:2006

-calculusπ
models in

Patch

A ⇒ B

ProVerif
core

ProVerif files

π

security
properties

&
attacks

Correctness

Entity authentication

Key authentication

Perfect forward privacy

proofs
& attacks

Malleability

Session swap

Impersonation

Bilateral Unknown-share

Fig. 3.2 An illustration of our contribution modelling the SPEKE protocol and its security

proofs and attacks.

We build a formal model in the Applied Pi Calculus and verify several variants of the

SPEKE protocol by using ProVerif. Our model was able to find attacks that showed

vulnerabilities to some authentication properties of the protocol; so we propose a

patch that verifies the broken properties. The formal model also aided the verification

of an improved key confirmation procedure, which is more round-efficient than the

one defined in the standards. Finally, we identify an efficiency problem with the

key confirmation procedure specified in both the ISO/IEC and IEEE standards and

accordingly propose an improved procedure.

The work presented in this chapter extends the earlier conference paper [97]

by adding a formal analysis of the patched SPEKE protocol, and details of how the

proposed patch was accepted and included into the revision of ISO/IEC 11770-4.

The two attacks and the efficiency issues, initially reported in [97], were discussed

and acknowledged by the technical committee of ISO/IEC SC 27, Working Group 2.

Accordingly, the ISO/IEC 11770-4 standard was revised. The latest revision ISO/IEC

11770-4:2017, incorporating our proposed patch and the improved key confirmation

procedure, was formally published in November 2017 [104].
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3.1.4 Previous attacks
In [163], Zhang proposed an exponential-equivalence attack on SPEKE. This attack

exploits the fact that some passwords are exponentially related. For example, two

different passwords s and s′ may have the relation that s′ = sr mod p where r
is an arbitrary integer (r ̸= 1). By exploiting this relation, an active attacker can

rule out two passwords in one go, and in the general case can rule out multiple

passwords in one go if they are all exponentially related. This attack is especially

problematic when the password is digits-only, e.g., a Personal Identification Numbers

(PIN). As a countermeasure, Zhang proposed to hash the password before taking

the square operation: in other words, redefining the password mapping function

to f(s) = (H(s))2 mod p. The hashing of passwords makes it much harder for the

attacker to find exponential equivalence among the hashed outputs. Zhang’s attack

is acknowledged in IEEE P1363.2 [100], which adds a hash function in SPEKE when

deriving the base generator from the password.

Tang and Mitchell illustrated three attacks on the SPEKE protocol [157]. The

first attack is essentially the same as Zhang’s [163]: an active attacker is able to test

multiple passwords in one execution of the protocol by exploiting the exponential

equivalence of passwords. The authors suggest to hash the identities of the parties

along with the password to get the generator, that is g = H (s∥A∥B) where A and

B are identities of two communicating parties. However, this countermeasure has

the limitation that it breaks the symmetry of the protocol; instead of allowing the

two parties to exchange messages simultaneously in one round, the two parties

must first agree whose identity should be put first in the hash, which requires extra

communication. The second attack is a unilateral Unknown Key-Share (UKS) attack.

In this attack, the user is assumed to share the same password with more than one

servers
1
. By replaying messages, the attacker may trick the user into believing that

he is sharing a key with one server, but in fact he is sharing a key with a different

server. To address the attack, they propose to include the server’s identity into

the computation of g. However, same as before, this countermeasure breaks the

symmetry of the original protocol. The last attack they show is a scenario where two

sessions are swapped. Here, the two parties run two concurrent sessions, and the

attacker swaps the messages between the two sessions. At the end of the protocol,

the parties will have shared two session keys, but they may get confused which

message belongs to which session. They call this a generic vulnerability, which we

call a sessions swap attack. To address this problem, they propose to include the

“session identifier” into the computation of g, but their paper gives no details on the

definition of the “session identifier”.

3.1.5 Specification in standards
When SPEKE was included into the IEEE P1363.2 and ISO/IEC 11770-4 standards,

the protocol was revised to prevent the exponential-equivalence attack reported

1
We remark that it is unusual to assume a user shares the same password with multiple server in

the security model for PAKE, as a server will be able to trivially impersonate another server. However,

in practice, many users do reuse passwords across several accounts.
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in [163] and [157]. In the revised protocol, the password is hashed first before

computing a secret generator. More specifically, the generator is obtained from

g = (H(s))2 mod p instead of g = s2 mod p as in the original 1996 paper.

It is also worth noting that the key confirmation procedure of SPEKE defined in

the standards is also different from that in the original SPEKE paper [105]. In IEEE

P1363.2 [100] and in ISO/IEC 11770-4:2006 [103], the key confirmation is defined as

follows.

Alice → Bob : H(3∥gx∥gy∥gyx∥g)
Bob → Alice : H(4∥gx∥gy∥gxy∥g) (3.1)

As explicitly stated in the ISO/IEC 11770-4 standard, there is no order in the above

two steps. In the same standard, it is also stated that there is no order during the

SPEKE exchange phase. We find the two statements contradictory: the fact that gx

comes before gy
in the definition of key confirmation implies there is an order during

the key exchange phase.

We would like to highlight that the above issue was carried over from Jablon’s

original 1996 paper [105], which specifies that “Alice” sends the first confirmation

messageH(H(k)). Given the symmetric nature of the protocol, it is ambiguous which

party is “Alice”. This ambiguity was unquestioned at the time of standardization

and consequently was inherited by the specifications in IEEE P1363.2 and ISO/IEC

11770-4:2006.

We presented the above issue to the ISO/IEC SC 27 technical committee. The

issue was acknowledged and rectified in the latest revision ISO/IEC 11770-4:2017.

We will explain the details of the change later.

3.2 New attacks
In this section, we review the two new attacks that were reported in [97]: an imper-

sonation attack and a key-malleability attack. We will first explain how the attacks

work on the original SPEKE protocol [105] and then explain their applicability to the

SPEKE variants defined in the IEEE and ISO/IEC standards [100, 103].

3.2.1 Impersonation attack
The first attack happens in the setting of parallel sessions: a user is engaged with

another user in multiple sessions running in parallel. We illustrate the attack of

Mallory who will be able to impersonate the user Bob to Alice, by launching parallel

sessions with Alice to make Alice believe she is communicating with Bob, but actually

Bob is not involved at all in the communication.

The attack is illustrated in Figure 3.3. Details of each step are explained below.

1. Alice chooses a secret exponent x and computes X ← gx
. She initiates the

protocol by sending A, X to the insecure channel.

2. Mallory is in control of the channel and intercepts all the messages to Bob

who never receives anything. So, Mallory receives the first message from
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Fig. 3.3 Impersonation attack on SPEKE

Alice Mallory (impersonating Bob)

Choose arbitrary z (Session 1)

x ∈R Z∗q , X ← gx 1. (A, X)
−−−−−−−→

k ← KDF(Y z·x) 4. (B, Y z)
←−−−−−−−−

Start key confirmation 5. H(H(k))
−−−−−−−−−→

Verify key confirmation 8. H(k)
←−−−−−−

{Xz, H(H(k))} ↓↑ {Y z, H(k)}

y ∈R Z∗q , Y ← gx 2. (B, Xz)
←−−−−−−−−

(Session 2)
k ← KDF(Xz·y) 3. (A, Y )

−−−−−−−→
Verify key confirmation 6. H(H(k))

←−−−−−−−−−
Reply key confirmation 7. H(k)

−−−−−−→

Alice and generates an exponent z such that Xz ∈ {2, . . . , p− 2}2. Mallory,

impersonating Bob, initiates a parallel SPEKE session with Alice by sending

her B, Xz
.

3. Alice follows the second session generating an exponent y and computing

Y ← gy
. She sends A, Y to the insecure channel.

4. Mallory intercepts the message and raises it to the power of z (with overwhelm-

ing probability, Y z
will not be 1 or p− 1). Then, Mallory sends back to Alice

B, Y z
in the first session.

5. At this point, Alice computes the key k = H ((Y z)x) = H (gxyz) for the first
session, generates the key confirmation challenge H(H(k)), and sends it to

Bob.

6. Mallory intercepts the challenge from the first session and relays it to Alice in

the second session.

7. Following the protocol, Alice answers the challenge with H (k).

8. Finally, Mallory intercepts Alice’s answer in the second session and replays it

in the first session to pass the key confirmation procedure.

At the end of the above attack, Alice authenticates Mallory as “Bob” in both

sessions. However, Mallory does not know any secret password and the real “Bob”

has never been involved in this key exchange. This indicates a serious flaw in the

authentication procedure. We should note that in the above attack, we assume the

2
When z = 1 the work of Mallory reduces to simply relaying Alice’s messages to herself in the

other session, which may be detected if Alice checks for duplicate of messages.
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initiator of the session is responsible for sending the first key confirmation message.

This is allowed by the protocol since SPEKE specifications in both the IEEE and

ISO/IEC standards permit the two parties to start the key confirmation in any order.

This attack can be regarded as a special instance of the Unknown Key-Share

(UKS) attack [94]. Alice thinks she is communicating with “Bob”, but actually she

is communicating with another instance of herself. This confusion of identities in

the key establishment can cause problems in some scenarios. For example, using the

derived session key k in an authenticated mode, like AES-GCM, Alice may send an

encrypted message to Bob: “Please pay Charlie 5 bitcoins”. Mallory can intercept

this message and (without knowing its content) relay back to Alice in the second

session. Since the message is verified to be authentic from “Bob”, Alice may follow

the instruction (assume Alice is an automated program that follows the protocol).

Thus, although Alice’s initial intention is to make Bob pay Charlie 5 bitcoins, she

ends up paying Charlie instead.

3.2.2 Key-malleability attack
The second attack is a man-in-the-middle attack as shown in Figure 3.4. The attacker

chooses an arbitrary z from {2, . . . , q − 2}, raises the intercepted item to the power

of z and passes it on. The parties at the two ends are still able to derive the same

session key k = H(gxyz), but without being aware that the messages have been

modified.

Fig. 3.4 Key-malleability attack on SPEKE

Alice A MITM Bob B

x ∈R Z∗q , X ← gx (A, X)
−−−−−−→

(B, Y )
←−−−−−−

y ∈R Z∗q , Y ← gx

Choose arbitary z
k ← KDF(Y z·x) (B, Y z)

←−−−−−−
Raise to power z (A, Xz)

−−−−−−→
k ← KDF(Xz·y)

The fact that an attacker is able to manipulate the session key without being

detected has significant implications on the theoretical analysis of the protocol. In the

original SPEKE paper, the protocol has no security proofs; it is heuristically argued

that the security of the session key in SPEKE depends on either the Computational

Diffie-Hellman assumption (i.e., an attacker is unable to compute the session key) or

the Decisional Diffie-Hellman assumption (i.e., an attacker is unable to distinguish the

session key from random). The existence of such a key-malleability attack suggests

that a clean reduction to CDH or DDH is not possible. As an example, z can be a result

of an arbitrary function f(·) with the incepted inputs, i.e., z = f(gx, gy). Because of
the correlation of values on the exponent, standard CHD and DDH assumptions are

not applicable since they require the secret values on the exponent be independent.
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This correlation would require additional theoretical efforts to show that the

ability to inject such randomness is harmless; in fact, the DDH and CDH require that

the secret values are independent.

3.2.3 Discussion on standards
Explicit key confirmation

Recall from Section 3.1.5 that the SPEKE schemes specified in the standards differ

from the original SPEKE paper in how the explicit key confirmation is defined. More

specifically, the key confirmation procedure in IEEE P1363.2 and ISO/IEC 11770-4

includes additional data in the hash: i.e., key exchange items gx
and gy

. This change

does not prevent the impersonation attack; the attacker is still able to relay the key

confirmation string in one session to another parallel session to accomplish mutual

authentication in both sessions. However, the key-malleability attack no longer

works if the key confirmation method in IEEE 1363.2 or ISO/IEC 11770-4 is used. We

should emphasize that the key confirmation method in both standards are marked

as “optional”. Hence, the key-malleability attack is still applicable to the implicitly
authenticated version of the SPEKE in both standards.

Definition of shared secret

In the earlier conference version of the paper [97], we point out that the definition of

the shared secret in ISO/IEC 11770-4:2006 [103] is ambiguous. The shared low-entropy

secret, denoted π in that standard document [103], is defined as follows.

“A password-based octet string which is generally derived from a password
or a hashed password, identifiers for one or more entities, an identifier of a
communication session if more than one session might execute concurrently,
and optionally includes a salt value and/or other data.

The above definition seems to include the “identifiers for one or more entities” as

part of the shared secret. If the entity identifiers were included, the impersonation

attack would not work, but the key-malleability would still work. However, the

standard does not provide any formula about π. It is not even clear if one or both

entities’ identifiers should be included, and if only one identifier is to be included,

which one and how. Furthermore, the word “generally” weakens the rigour in the

definition and makes it subject to potentially different interpretations.

By comparison, the definition of the shared secret in IEEE P1363.2 (D26) [100] is

clearer. It is specified as follows:

“A password-based octet string, used for authentication. π is generally
derived from a password or a hashed password, and may incorporate a salt
value, identifiers for one or more parties, and/or other shared data.”

This definition clearly indicates that the incorporation of “a salt value, identifiers

for one or more parties, and/or other shared data” is not mandatory (as indicated by
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the use of the word “may”). Based on the definition, it is clear that both attacks are

applicable to the SPEKE scheme defined in IEEE P1363.2.

The issue about the ambiguity in the definition was acknowledge by ISO/IEC SC

27 after we first pointed it out in [97], and was rectified accordingly. In the latest

revision in ISO/IEC 11770-4:2017, the definition of the shared secret has been revised

to follow the same as in IEEE P1363.2 (D26) [100]. In this revision, the two reported

attacks are addressed by making technical changes to the SPEKE specification, as we

will explain in the next section.

3.3 Patched SPEKE
There are several reasons to explain the cause of the two attacks. First, there is no

reliable method in SPEKE to prevent a sent message being relayed back to the sender.

Second, there is no mechanism in the protocol to verify the integrity of the message,

i.e., whether they have been altered during the transit. Third, no user identifiers

are included in the key exchange process. It may be argued that all these issues can

be addressed by using a Zero Knowledge Proof (ZKP) (as done in [96]). However,

in SPEKE, the generator is a secret, which makes it incompatible with any existing

ZKP construction. Since the use of ZKP is impossible in SPEKE, the attacks were

addressed in a different way.

Our proposed patch is to redefine the session key computation. Assume Alice

sends gx
and Bob sends gy

. The session key computation is defined below.

sA = H(A∥gx)
sB = H(B∥gy)

sID = max(sA, sB)∥min(sA, sB)
k = KDF(sID∥gxy) (3.2)

When the two users are engaged in multiple concurrent sessions, they need to ensure

the identifiers are unique between these sessions. As an example, assume Alice and

Bob launch several concurrent sessions. They may use “Alice” and “Bob” in the first

session. When launching a second concurrent session, they should add an extension

to make the entity identifier unique – for example, the entity identifiers may become

“Alice (2)” and “Bob (2)” respectively in the second session, and so on. The use of the

extension is to make the entity identifier distinguishable among multiple sessions

running in parallel.

The new definition of the session-key computation function in Eq. 3.2 prevents

both the impersonation and key-malleability attacks (as well as the session swap
attack reported in [157]), which we will formally prove in the next section. The key

confirmation remains “optional" as it is currently defined in the standards. Further-

more, this patch preserves the optimal one-round efficiency of the original SPEKE

protocol.
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Fig. 3.5 Patched SPEKE (included in ISO/IEC 11770-4:2017 [104]).

Alice Bob

pw, q, p← 2q + 1 pw, q, p← 2q + 1
g ← f (pw) g ← f (pw)

x←$ Z⋆
q x←$ Z⋆

q

X ← gx Y ← gy

A, X−−−−−−→
B, Y←−−−−−−

abort if Y /∈ {2, . . . , p− 2} abort if X /∈ {2, . . . , p− 2}
sA ← H (A||X) sA ← H (A||X)
sB ← H (B||X) sB ← H (B||X)

sID ← max (sA, sB) ||min (sA, sB) sID ← max (sA, sB) ||min (sA, sB)
k ← KDF (sID||Y x) k ← KDF (sID||Xy)

An alternative patch, suggested in the earlier conference paper [97], is to refine

the session key computation as follows.

M = H (min(A, B)∥max(A, B))
N = H (min(gx, gy)∥max(gx, gy))
k = KDF(M, N, gxy) (3.3)

As we will formally analyse in Section 3.4, the above solution also prevents the

two attacks. However, the advantage of the solution in Eq. 3.2 is that the hash output

has a fixed bit length, which makes it easier to implement the max and min functions.

The final patch, which has been included into the latest revision of ISO/IEC 11770-4

published in 2017, is summarized in Figure 3.5.

3.3.1 Improved key confirmation
As highlighted in Section 3.1.5, neither of the key confirmation procedures defined in

IEEE P1363.2 (D26) and ISO/IEC 11770-4 (2006) is symmetric. In both standards, they

state that there is “no special ordering” of the key confirmation message. This implies

that the messages can be sent simultaneously within one round. But in fact, these

procedures require two rounds instead of one, because the second message depends

on the first. This issue also applies to the key confirmation method in Jablon’s original

1996 paper [105]. If both parties attempt to send the first message at the same time

without an agreed order, they cannot tell if the message that they receive is a genuine

challenge or a replayed message, and consequently enter a deadlock.

To address the above issue, we propose an improved key confirmation method

which preserves the symmetry of the protocol and hence allows the key confirmation
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to be completed within one round. It works as follows.

Alice → Bob : H(A∥B∥gx∥gy∥gxy∥g)
Bob → Alice : H(B∥A∥gy∥gx∥gxy∥g) (3.4)

An alternative solution, proposed in our earlier paper [97], is based on NIST SP

800-56A Revision 1 [19]. It works as follows.

Alice→ Bob : MAC(kc, “KC_1_U”∥A∥B∥gx∥gy)
Bob → Alice : MAC(kc, “KC_1_U”, ∥B∥A∥gy∥gx)

In the above method, MAC is a message authenticated code (MAC) algorithm, the

string “KC_1_U” refers to unilateral key confirmation, and kc is a MAC key. To

allow the session key to remain indistinguishable from random even after the key

confirmation phase, kc should be derived differently from the session key, e.g., by

adding a specific parameter to the key derivation function say kc = KDF(gxy, “KC”).
There is no dependence between the two flows, so Alice and Bob can send messages in

one round. During the revision of ISO/IEC 11770-4, the hash based key confirmation

method in Eq. 3.4 was preferred and was included into the latest standard since it

requires minimum changes in the standard.

3.4 Formal analysis
We formally model the following variants of the SPEKE protocol in the Applied Pi

Calculus [142]: the original Jablon’s protocol [105], the ones in IEEE P1363.2:D26 [100]

and ISO/IEC 11770-4:2006 [103], the earlier patch proposed by Hao and Shahandashti

in 2014 [97], and the final patch described in our paper [95] and included into ISO/IEC

11770-4:2017 [104], each in two modes:

• without explicit key confirmation,

• with explicit key confirmation as described in the respective documents.

It is worth noting that a meaningful key exchange process should always be com-

pleted with some form of key confirmation, let it be explicit or implicit. The explicit

key confirmation is realized by executing the explicit key confirmation procedure,

which requires extra rounds of communication. But the explicit key confirmation pro-

cedure is optional [100, 103]: without it, the key confirmation is deferred to the secure

communication stage, and this is called implicit key confirmation [153]. However, the

exact mechanisms for implicit key confirmation are not specified in [105, 100, 103],

which makes it difficult to model SPEKE with implicit key confirmation. To address

this issue, we assume the implicit key confirmation is realized in the secure com-

munication stage by prepending the first encrypted message with an explicit key

confirmation string as defined in the respective explicit key confirmation procedure.

Thus, our formal model treats SPEKE with implicit and explicit key confirmations as

essentially the same with the only difference being that the latter requires additional

rounds of communication.
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In the model, we formally specify the following:

The two parties. Following the formalism illustrated in Section 2.4, the original

SPEKE protocol illustrated in Figures 3.1 is constituted by two processes, one for

the Initiator, PI , and one for the Responder, PR. All variants of the SPEKE protocol

involve two parties: the Initiator I and the Responder R. They are modelled as two

processes PI and PR. We use the initiator and the responder for the convenience of

naming in our model. Essentially we assume that one party initiates the protocol by

sending data in the first flow, and the other party responds by sending data in the

second flow. Thus a one-round protocol is implemented in two flows. This does not

change the security analysis of the protocol. Below we give the “vanilla” specification

of the protocol. In the “vanilla” specification, we abstract out key reconstruction

by a function symbol kdf , and the confirmation messages sent by the Initiator and

the Responder are abstracted by the symbols kcfI and kcfR respectively. The actual

specification of each variant has its own definitions of kdf , kcfI and kcfR to capture

the differences between the variants.

Fig. 3.6 The processes for the Initiator, PI , and the Responder, PR. In the above specification,

the notation = X means abort if the incoming value is not X .
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PI ← in (c, (I, R)) ;
get t (= I, = R, g) in
νx.let X = gx in
out (c, (I, X)) ;
in (c, (= R, Y )) ;
let k = kdf in
out (c, kcfI) ;
in (c, = kcfR) ;
out (c, enc (k, m)) ;
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PR ← in (c, (I, R)) ;
get t (= R, = I, g) in
νy.let Y = gy in
out (c, (R, Y )) ;
in (c, (= I, X)) ;
let k = kdf in
in (c, = kcfI) ;
out (c, kcfR) ;
out (c, enc (k, m)) ;

As can be easily seen in Figure 3.6, the code inside the boxes is the part modelling

the protocol scheme depicted in Figure 3.1, where the key reconstruction part is

abstracted by the function symbol kdf , and the confirmation messages sent by the

Initiator and the Responder are abstracted by the symbols kcfI and kcfR respectively,

where we omit their arguments for simplicity. We highlight the symmetric nature of

the protocol letting both processes to write to the channel simultaneously.

The other lines (outside the box) in Figure 3.6 serve to model the behaviour of the

protocol and to verify some security properties
3
. In particular, the first line is to let

the processes know the identities involved in the protocol; they read them from the

channel c at the very beginning. The second line checks whether the password table

3
It can be seen as a trick to make ProVerif happy and simplify the modelling of the secrecy of the

key.
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contains a suitable password to communicate to the other party; otherwise, they

abort. The last line is useful to verify the secrecy of the shared key k through the

privacy of the message m, and the perfect forward secrecy. The details are deferred

to Section 3.4.2 where we discuss the security properties.

The pre-shared password. A table t of passwords is filled with all secret group

generators that would be calculated from the passwords, i.e., g ∈ G is the secret

group generator for A and B. From the point of view of the symbolic protocol design,

sharing a password and then computing the generator is the same as having directly

shared the secret generator.

Themain process. Informally, the main process P is an infinite repetition of the

parallel execution of the Initiator’s process PI and the Responder’s process PR. Due

to the symmetric nature of the SPEKE protocol, the naive implementation of the main

process brings false attacks where the Initiator speaks to itself. To avoid this issue,

we must explicitly support the session within the two parties. However, the session

s is not private information, and we disclose it to the attacker by outputting it to the

insecure channel c, i.e. out (c, s). At this point, we have the infinite repetition of the

following process: ! (νs.out (c, s) ; (PI |PR)). The two parties would never engage the
protocol if they do not share the password. For this reason, we have an environment

process PP which is in charge of inserting shared passwords into a table that can

be accessed by PI and PR, but not the attacker. In order to record events and verify

correspondences, we also have a process PA, which records the agreements between

the parties through events.

Finally, the main process P that the tool checks has the following structure:

P ← (PP | (! (νs.out (c, s) ; (PI |PR))) |!PA) .

The process PA collects information from two tables, one filled in by the Initiator

and the other by the Responder. We emphasise that the protocol can be initiated

by either of them and the two tables are put together recording a single event. For

security properties that do not require tables to record events, the process will be

simply 0; otherwise, depending on the property to prove, the events eS end eC can

be recorded, where eS means that the involved parties in the protocol agree with the

participants, the session, and the reconstructed session key at the end of the protocol,

and eC means that the involved parties in the protocol agree with the participants,

the session, the secret group, the secret nonce, and the reconstructed session key at

the end of the protocol.

Modelling attacks and security properties

The reasoning engine of ProVerif will execute a main process and record traces of

execution. The traces are potentially infinite, as the amount of concurrent executions

of the protocol is unbounded; however, the reasoning core contains built-in theorems

that detect some special structure in the trace expansion that are able to provide

final statements over infinite traces without the need to expand them. Attacks and

security properties are both statements that relate to the infinite traces of execution. A

security property is a statement over those traces that capture a desirable behaviour
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of the protocol. The difference with attacks is that an attack depicts a situation

that is not desirable, so the resilience against the attack can be seen as the negation

of the relation. We modelled some attacks as either direct attacks or resilience to
those attacks, as sometimes a negation to a statement can yield to a more complex

formula, so we found convenient sometimes to interpret the final result manually.

So, the Sections 3.4.1 and 3.4.2 show which statements we modelled to capture the

corresponding attacks or security properties.

3.4.1 Attacks
The attacks are modelled as follows and results are shown in Table 3.1.

Table 3.1 Summary of results of attacks in ProVerif.

Variants IMP SS UKS MAL

Jablon 1996 [105] × × × ×
IEEE P1363.2:D26 [100] × × × X

ISO/IEC 11770-4:2006 [103] × × × X
ISO/IEC 11770-4:2017 X X X X

The results are grouped by variants with and without key confirmation phase (KC).

Legend. Impersonation (IMP), Sessions Swap (SS), bilateral Unknown Key-Share (UKS), and Malleabil-

ity (MAL). Outcomes: (X) - no attacks possible, (×) - attacks found.

An important comment about the attacks is that they strictly relate to security

properties: for example, if strong entity authentication (described in Section 3.4.2) is

met, then impersonation and session swap attacks would be automatically ruled out.

However if only weak entity authentication is met, still impersonation should not be

possible, but a session swap attack (among the same authenticated entities) may still

be viable.

Bilateral UKS

Informally, a successful bilateral UKS attack makes two honest parties I and R believe

that they share k with some other party [62]. To capture this attack, we use the

following correspondence:

∀h1,h2, h′1, h′2 ∈ H, s, s′ ∈ S, k ∈ K.

eS (h1, h2, s, k, h′1, h′2, s′, k)⇒ h1 = h′1 ∧ h2 = h′2

If an initiator and a responder recorded the same key, then it must be that they agree

on the entities. If we required that they should agree on the session too, then we

could put s = s′ in logical AND with the two equivalences. On the contrary, if we

wanted to force the tool to show bilateral UKS attacks in the same session, we could

state s = s′ as a premise.
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Impersonation attack

The impersonation attack is a problem that generally affects SPEKE protocols and an

instance of such an attack has been shown in Section 3.2.1. To formalise this attack,

we build a model in which there exists only one honest party and the attacker. In

this case, if the honest party ever shares a key with another party, then the other

party must be the attacker, and the attacker must impersonate another honest party

in order to run the protocol up to this point. In fact, all SPEKE variants without key

confirmation phase are vulnerable to this attack.

To verify, we can check for every honest party, session and key, the event of

authenticating the other party is not recorded in any trace (i.e. the adversary cannot

establish a shared key with the honest party). Formally, we check the following

property:

∀h1, h2 ∈ H,s ∈ S, k ∈ K.

¬ (eRI (h1, h2, s, k) ∨ eIR (h1, h2, s, k)) .

When such property is verified, any impersonation cannot be carried out.

Sessions swap

A man-in-the-middle is able to perform the sessions swap attack if it can let a

honest party in some session s share a key with another honest party in some other

concurrent session s′ and vice versa. This attack occurs in a key-exchange protocol

where the key does not depend on the session. Formally, we say that for every two

parties and for every key, the presence of an agreement on the Initiator, Responder,

and session key must imply the equivalence of the sessions.

∀h1, h2 ∈ H,s, s′ ∈ S, k ∈ K.

eS (h1, h2, s, k, h1, h2, s′, k)⇒ s = s′.

Malleability

The malleability of the session key is an attack that affects many variants of the

SPEKE protocols, and it was described in Section 3.2.2. The attacker can simply raise

to the power of the same exponent z the two messages exchanged in the first phase

of the protocol before delivering them to the intended parties. This behaviour allows

the attacker to change the value of the exchanged key from gxy
to gxyz

, where x
and y are the secret fresh exponents generated by respectively the initiator and the

responder. Capturing malleability in ProVerif is not directly supported, but cases in

which it can be done are not excluded a priori. We modelled malleability similarly

to how the manual suggests for modelling properties requiring two commutative

exponents for the Diffie-Hellman based protocols.
4
Capturing the malleability attack

in ProVerif requires more efforts than other attacks, because it is based on an extra

4
When we tried to implement a further level of group exponentiation equality, the computation

required weeks instead of minutes even for the easiest verification in a modern workstation.
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level of group exponentiation equality (three commutative exponents). This results

in a larger search space when the reasoning engine checks the property, and ProVerif

slows down considerably (taking minutes instead of milliseconds to verify the non-

malleability property on a 3.2 GHz computer with 64 GB RAM running Linux). To

detect malleability, we require the two honest parties to write into a table some

values they agree with, plus their secret fresh exponents and the secret generator

(the password). This way, when checking for correspondence, we can check whether

the key is indeed what is expected with regard to the private inputs of the parties.

Formally, for every pair of parties, session, generator, two exponents and key,

where the parties agree on the identities, the session, the generator and the key (they

cannot agree on the other party’s secret), then the key they agree on is computed

equivalently to the formula provided by the protocol.

∀h1, h2 ∈ H, x, y ∈ Z⋆
q, g ∈ Z⋆

p, s ∈ S, k ∈ K.

eC (h1, h2, s, h, x, k, h1, h2, s, g, y, k)⇒
k = kdf (a, b, gx, gy, gxy, s) ∨ kdf (b, a, gy, gx, gxy, s) .

Note the key k may have two different values depending on in the protocol who is

the initiator and who is the responder.

We remark that the kdf is expected to have the additional property of being

commutative in the first two pairs of arguments, emphasising the symmetric nature

of the protocol.

3.4.2 Security properties
The security properties are modelled as follows and results are shown in Table 3.2.

Table 3.2 Summary of results on formal verification of security properties in ProVerif.

Variants IKA EKAWA SA PFS

Jablon 1996 [105] X × × × X
IEEE P1363.2:D26 [100] X × × × X

ISO/IEC 11770-4:2006 [103] X × × × X
ISO/IEC 11770-4:2017 X X X X X

The results are grouped by variants with and without key confirmation phase (KC).

Legend. Implicit Key Authentication (IKA), Explicit Key Authentication (EKA), Weak Entity Authen-

tication (WA), Strong Entity Authentication (SA), Perfect Forward Secrecy (PFS). Outcomes: (X) -
verified, (×) - attacks found.

Correctness

This property checks whether the protocol gives authentication and key distribution

in presence of honest parties [161]. With respect to executability, which is a very

similar property that simply tests whether the protocol reaches the end, the property

of correctness additionally checks if at the end of the execution, the two parties
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indeed hold what they were supposed to, in our case the correct key. Even though

correctness is generally the easiest to prove, it should not be neglected when formally

modelling a protocol, in order to avoid either logical or typographic errors
5
. To

check the correctness of the models, we need to reconstruct the session key kdf . Its
implementation depends on the SPEKE variants.

Formally, for all the sessions and nonce exponents, we require that there exists at

least a trace in which the event collecting private and shared values of the participants

is recorded and is such that the two honest participants agree on their identities, the

password, and the session key with the right formula.

∀ s ∈ S x, y ∈ Z⋆
q, g ∈ Z⋆

p.

eC(A, B, s, g, x, kdf (A, B, gx, gy, gxy, s) ,
A, B, s, g, y, kdf (A, B, gx, gy, gxy, s))

where A and B are honest parties and g is the generator calculated from the shared

password. If such an event is raised, then there exists a run of the protocol in which

the two parties have authenticated each other and they have correctly computed the

session key.

Secrecy of the pre-shared password

Secrecy of the pre-password can be modelled in two ways, observational equivalence

or by inspection of the attacker’s knowledge whether it can infer the secret with

combinations of elements in the trace of execution. We chose the former, as it covers a

stronger notion of security
6
. Formally, if we call πg the process describing the protocol

where two honest parties A and B share the password g, and πg′ the same protocol

but with g′ instead of g, then the observational equivalence πg ≈ πg′ describes the

property that any attacker cannot distinguish between the two runs of the protocol

with probability (non-negligibly) better than a blind guess, and therefore no extra

information about the secret password can be gained.

Implicit key authentication

Implicit key authentication is verified when only the two participants can reconstruct

the session key. This concept is modelled by using the key to encrypt a secret message

with deterministic encryption; event based properties (similar to the events we used

for explicit authentication) could have been used as well but they would have not

add any benefit. We then check for observational equivalence of two runs of the

processes PI and PR where in the last line (Figure 3.6) the message encrypted is

provided by a choice, out (c, enc (k, [m, m′])). Similar to how we determine the

secrecy of the password, if we call πm the process describing the protocol where two

honest parties A and B encrypt m, and πm′ the same protocol but with m′ ̸= m, then

the observational equivalence πm ≈ πm′ is verified. If the observational equivalence

5
Executability may not fully check this as the last algorithm may still conceal undetected typos,

that, depending on how the key exchange protocol is modelled, it may yield to incorrect key.

6
Observational equivalence may not terminate in ProVerif, but luckily it did for our model.
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holds and therefore the message m remains secret, it trivially follows that the shared

key is at least as secret as m. In fact, the decryption function is public, and the

reconstruction of the key will irredeemably compromise the secrecy of m.

Explicit key authentication

Explicit key authentication is verified when only the two participants can recon-

struct the session key, and they actually do. It is therefore defined as implicit key

authentication and an agreement on the computed key for the same session. Formally,

∀h1, h2 ∈ H, s ∈ S, k, k′ ∈ K.

eS (h1, h2, s, k, h1, h2, s, k′)⇒ k = k′

In other words, in a trace of execution the presence of the event eS where the

first and fifth arguments being equal (agreement on the initiator), the second and

the sixth being equal (agreement on the responder), and the third and the seventh

being equal (agreement on the session) implies that the fourth and the eighth are

equal (equivalence of the reconstructed key). When this property is true, a protocol

completed between two authenticated parties in the same session guarantees that

the parties agree on the session key. This property, along with the implicit key

authentication, gives explicit key authentication.

Weak and strong entity authentication

Weak entity authentication guarantees that two parties are indeed speaking to each

other. Strong entity authentication requires agreement on other values than the

mere entities. These values are supposed not to be injected, produced or inferred by

an attacker. Those two properties share similarities in their formality. The events

involved are 1) eI to record that the initiator I believes that it has started a protocol

with the responder R; 2) eR to record that R believes that it has started a protocol

with I ; 3) eIR to record that I believes that it speaks to R at the end of the protocol,

and 4) eRI to record that R believes that it speaks to I at the end of the protocol. The

first and the third are recorded by the honest initiator, while the the second and the

fourth by the honest responder. Mutual weak authentication is provided by the two

following symmetric correspondences, one for each honest party:

∀h1, h2 ∈ H. eIR (h1, h2)⇒ eR (h1, h2)
∀h1, h2 ∈ H. eRI (h1, h2)⇒ eI (h1, h2)

And mutual strong authentication by the following:

∀h1, h2 ∈ H, s ∈ S, k ∈ K.

eIR (h1, h2, s, k)⇒ eR (h1, h2, s, k)
∀h1, h2 ∈ H, s ∈ S, k ∈ K.

eRI (h1, h2, s, k)⇒ eI (h1, h2, s, k)
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where they agree also on the session and the exchanged session key. Agreeing on the

session will prevent any replay attack from other sessions, even concurrent, while

agreeing on the key will guarantee that no attacker can let two authenticated parties

not to share the same key. However, a key-malleability attack is still possible even if

the protocol can achieve strong entity authentication.

Perfect forward secrecy

Usually, key exchange protocols verify (or claim) the perfect forward secrecy (PFS)

property. For the password authenticated key exchange protocols, this property

means that if passwords are compromised, the past session keys derived from such

passwords still remain secret. Hence, an adversary can only keep a record of past

communication which has not been compromised. We can reformulate this concept as

a passive adversary whom is given the password and eavesdrops (unbounded number

of) executions of the protocol trying to reconstruct any of the session keys. In practice,

to verify this property we disclose the secret generator g to the attacker, out (c, g),
then we query the non-interference property on the encrypted message. Since the

passive attacker can compute any decryption, the non-interference property captures

the perfect forward secrecy, i.e., if the encrypted message cannot be reconstructed, it

must be that any session key cannot be reconstructed either.

3.5 Summary of results
The ProVerif scripts that we created to model and verify the protocols are available

at GitHub
7
. There are in total 54 scripts related to our formal analysis, each for

a different variant and a property
8
. ProVerif will give one of the following four

responses: (i) the property is true, (ii) the property is false, (iii) the property cannot

be proved, and (iv) non-termination. A property cannot be proved when an attack at

the Horn clauses has been found but no attacks at the Pi Calculus level of abstraction

can be reconstructed. This happens because the translation from the Pi Calculus

to the Horn clauses is such that what can be proved at the level of Horn clauses

implies a truth value at the Pi Calculus level; however if an attack to a property (a

false) is found at the Horn clauses level, it might be a false attack due to limits in the

reasoning core: hence, the need for reconstructing the attack at the Pi Calculus level

to detect (possibly) false attacks.

We formally modelled many variants of the SPEKE protocol in ProVerif. Both

variants with and without key confirmation (KC) are compared in Table 3.3.

The original SPEKE with KC was proposed in two flavours. In the first, they

engage a challenge/response communication, while in the second, the two parties

send a hash to each other. Both of them show the same vulnerabilities. Similarly, the

IETF I-D v02 is the only variant in which we modelled the B-SPEKE and theW-SPEKE.

They are different ways of computing the key, but they address security properties

about offline dictionary attacks or Denning-Sacco attacks. Since we do not model

7
https://github.com/nitrogl/speke-verification

8
In ProVerif some security properties are incompatible and cannot lie in the same file.

https://github.com/nitrogl/speke-verification
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Table 3.3 Summary of results on efficiency and formal verification in ProVerif

Variant RND/E IKA EKAWA SA PFS IMP SS UKS MAL

Jablon 1996 [105] 1/3 X × × × X × × × ×
IEEE P1363.2:D26 [100] 1/3 X × × × X × × × X

ISO/IEC 11770-4:2006 [103] 1/3 X × × × X × × × X
ISO/IEC 11770-4:2017 1/2 X X X X X X X X X

The results are grouped by variants with and without key confirmation phase (KC).

Legend. Round efficiency: without explicit key confirmation (RND), with explicit key confirmation

(E). Security properties: Implicit Key Authentication (IKA), Explicit Key Authentication (EKA),

Weak Entity Authentication (WA), Strong Entity Authentication (SA), Perfect Forward Secrecy (PFS).

Attacks: Impersonation resilience (IMP), Sessions Swap resilience (SS), bilateral Unknown Key-Share

resilience (UKS), and Malleability resilience (MAL). Outcomes: (X) - verified/no attacks, (×) - attacks
found.

such properties, their formal verification gives the same results, and we included

them for completeness. They must be grouped by this first difference, because many

security properties are expected either not to be verified or not to make any sense,

i.e. Explicit Key Authentication (EKA) is never expected in the one-round variants of

the protocol since there is no explicit confirmation of the exchanged key. We decided

not to include our model of the patch proposed by Tang and Mitchell [157] because

it was not very clearly proposed and for what we tried to model, they cannot reach

strong authentication nor verify sessions swap resilience.

The results are summarised in Table 3.3. The proposed patch (as well as the patch

in [97]) improves the round efficiency over the previous SPEKE variants [105, 100, 103]

by allowing the explicit key confirmation steps to be completed within one round.

As a result, it requires only 2 rounds to finish the key exchange with explicit key

confirmation as opposed to 3 rounds previously. All variants have the Implicit

Key Authentication (IKA) property, confirming that the session key will not be

learned by the attacker, and that the attacker cannot get confidential information

by eavesdropping. This does not contradict the impersonation attack shown in

Section 3.2, since that attack works without the adversary learning the session key.

However, that attack demonstrates that the adversary is able to manipulate the two

parallel sessions to make them generate identical session keys. Consequently, the

adversary is able to pass the explicit key confirmation by replaying messages. This

is confirmed by our formal analysis that the original SPEKE [105], and the SPEKE

in standards [100, 103] do not fulfil the explicit key authentication property. Also,

the existence of the impersonation attack shows that these variants do not fulfil

the weak/strong entity authentication which concerns assuring the identities of

the entities involved in the key exchange protocol. The proposed patch prevents

the Session Swap attack (SS), the UKS attack, and the Malleability (MAL) attack by

making the session key depend on the session, the identities, and the transcript of the

key exchange process. We emphasise that these security properties are verified before
any key confirmation either implicit or explicit. To guarantee that the participants

are mutually authenticated, the key confirmation becomes necessary. Such key

confirmation must include all of the key points above, i.e., session, identities, and a
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transcript of the key exchange messages, so avoiding the above mentioned attacks.

Including only the identities allows to verify weak entity authentication only.

Our formal analysis using ProVerif confirms that our proposed patch prevents

the two attacks as identified earlier. However, this analysis does not constitute a

complete proof of security for SPEKE, as one might expect from formal authenticated

key exchange models [36, 35, 110, 88, 8]. In particular, we have not proved that SPEKE

is resistant against off-line dictionary attacks based on standard security assumptions

such as DDH or CDH. We highlight that the original SPEKE was designed without

a security proof. Retrospective efforts to prove the security of a protocol based

on standard number theoretical assumptions may turn out to be very hard if not

impossible. We leave further analysis of SPEKE to future work.

3.6 Conclusions
The SPEKE protocol was firstly proposed by Jablon over two decades ago. Since then,

it has been adopted by international standards, and built into smart phones and other

products. We identified two weaknesses in the standardized SPEKE specification,

which affect all implementations that follow the IEEE 1362.3 and ISO/IEC standards.

Accordingly we proposed a patched SPEKE to address the identified issues. We

formally modelled the discovered attacks against SPEKE and proved that the proposed

patch was not affected by these attacks, but this does not rule out other attacks not

covered by our model. In addition, we contributed to improve the round efficiency of

the protocol in the key confirmation phrase. Our proposed patch and the improved

key confirmation procedure have been included into the latest revision ISO/IEC

11770-4 published in July 2017. However, the SPEKE specification in IEEE P1363.2

(which is currently not maintained) remains unfixed.

The problems in SPEKE discussed in this chapter have evaded 20 years cryptanal-

ysis (informal and formal) by the security and standardization communities. Reasons

can be manifold. One reason can be that its popularity was not comparable to other

protocols, despite of its adoption in several commercial applications: for example, the

secure messaging on Blackberry phones [2] and Entrust’s TruePass end-to-end web

products [1], that became obsolete. Another reason can be that it relies on pre-shared

password, which requires additional care when modelling, so that tools needed to

offer more capabilities and only after decades of research we can enjoy more mature

verification tools. Another reason can be that it was previously modelled in another

tool, AVISPA [160], which did not find any attacks; this might have discouraged

researchers to model SPEKE capturing more details, as we did, and see if they could

find indeed problems.

The initial discovery of the two attacks on SPEKE was down to manual analysis,

which was later formally verified by applying the ProVerif tool. Importantly, the

formal analysis shows that those (an many more) attacks cannot affect the patch

we proposed, strongly supporting its security claims. The mechanised proofs that

we produce are not only helpful for proving security properties of similar protocols,

but also as a remainder that the same problems may happen in other protocols. The

lesson we learned is that traditional human cryptanalysis can be significantly aided by
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using modern automated proof techniques in at least two aspects: the first is that the

machines can be exhaustive when inspecting all (modelled) scenarios and therefore

can find attacks where human cryptanalysis is limited, the second is that formal and

mechanised analysis strengthens security arguments with additional evidence and

improved reproducibility. This will result in improving security protocols, especially

those that have been included in international standards and are more likely to be

adopted for compliance.
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In this chapter we mechanise formal definitions of commitment schemes and

sigma protocols, along with the security properties typical for those schemes, from

Hazay and Lindell [99] and other textbooks [149]; a diagram of our contribution is

illustrated in Figure 4.1. Then we show a computational model of them and illustrate

the corresponding implementation in EasyCrypt, along with the mechanised proof

of the security properties. To show the effectiveness of our mechanisation, we

formally modelled and verified the Pedersen commitment scheme [136] and the

Schnorr’s protocol of Zero Knowledge Proof of Knowledge (ZKPoK) [145] by mean

of cryptographic experiments and reductions to the discrete logarithm assumption

of hardness.

4.1 Commitment schemes
In a commitment scheme, one wants to commit a message while preserving its secrecy

for the time being until it is eventually revealed.

Our contribution is the support for generic commitment schemes, and our real-

world motivating example is the popular Pedersen protocol.
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Fig. 4.1 Description of our contribution for commitment schemes and Σ-protocols.
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Commitment schemes are cryptographic primitives and their security is described

as theorems that capture the internal behaviour of the protocol itself [99]. For this

reason, the symbolic model is not suitable, as it treats cryptographic primitives as

black boxes; therefore, we carried out our formalisation in the computational model.

Some frameworks are available to work in such a model. CryptoVerif [45] is based on

concurrent probabilistic process calculus. Although it is highly automatic, it is limited

to prove properties related to secrecy and authenticity. The tool gga
∞
[11] specialises

in reasoning in the generic group model and seems promising when attackers have

access to random oracles, which does not apply to our setting. Certicrypt is a

fully machine-checked language-based framework built on top of the Coq proof

assistant [27]. However it is no longer maintained. EasyCrypt [26] follows the

same approach as CertiCrypt and supports automated proofs as well as interactive

proofs that allow for interleaving both program verification and formalisation of

mathematical theories. This is desirable because they are intimately intertwined

when formalising cryptographic proofs, and can leave the tedious parts of proofs to

machines.

Recently, a machine-checked formalisation of Σ-protocols to prove statements

about discrete logarithms has been developed in CertiCrypt [28]. A commonality

between the work in [28] and our work is that the Schnorr protocol proved in [28] is

also based on the discrete logarithm assumption.

4.1.1 Definitions and properties
Commitments are very useful in secure computation, for example, in verifiable secret

sharing, zero-knowledge proofs, and e-voting [131, 87].

The commitment must be bound to the original message, which means that the

committer cannot change the message bound to the commitment once the message

has been committed. Informally, the hiding property preserves the secrecy of the

original statement to adversaries, while the binding property binds the commitment

to its original value in the sense that finding a new value with the same commitment

is infeasible, so it is not easy to cheat on the commitment.

More formally, a two-party commitment scheme is a protocol between a committer

C and a receiver R which runs in two phases. Let M be the space of messages to

commit to. The first phase is called commitment phase, where the party C sends R
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its commitment for a private message m ∈M and secretly holds an opening value.

The second phase is called verification phase, where the party C sends R the original

message m along with the opening value, so that R can verify that the message

committed in the first phase was indeed m.

Definition 4.1.1 (Commitment scheme). We define a commitment scheme π as the
triplet (G, C,V) such that:

• G (1n) outputs a public value h;

• C (h, m) takes as input the public value h and the message m and outputs (c, d),
where c is the commitment to send in the first phase and d is the opening value to
be send in the second phase; and

• V (h, m, c, d) takes as input the public value h, the message m, the commitment
c and the opening value d, and outputs true if verification succeeds or false
otherwise.

Let π = (G, C,V) be a commitment scheme, its security properties are (i) correct-

ness, i.e. for every message the commitment generated is valid, (ii) computational or

perfect hiding, where any attacker cannot learn information from the commitment c
about the message m with any advantage (perfect), or with a negligible advantage

(computational), and (iii) computational or perfect binding, where the message m is

uniquely bound to c (perfect) or finding another message with the same commitment

has negligible probability of success (computational).

While correctness is defined without adversary, the other two properties are

experiments played against any polynomially-bound adversary. Adversaries are

probabilistic polynomial-time algorithms with abstract procedures. The adversary
of the hiding experiment is called the unhider, while the adversary of the binding

experiment is called the binder. Formally, we define the adversary U shaping the

unhider which is required to have the following two procedures:

• U .choose, accepting the public value h as argument and returning twomessages

in Zq, and

• U .guess, accepting the commitment value c and returning a boolean value.

And we define the adversary B shaping the binder which is required to have the

following procedure:

• B.bind, accepting the public value h as argument and returning a quintuplet

(c, m, d, m′, d′).
Constraining the adversary to have the above specific abstract procedures is not a

restriction, since inside they can still call any kind of polinomially-bound routine

of their choice. We base our formal definitions for all these security properties on

algorithmic experiments that capture the security properties, see Figure 4.2.

Since the hiding and the binding experiments are defined against an adversary,

they can be illustrated as adversary against a challenger, see Figure 4.3 and Figure 4.4.

Finally, the formal definitions based on the constructions above.
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Fig. 4.2 Constructions for the security properties desired in commitment schemes.

Corrπ,m (1n)
1 h← G (1n);
2 (c, d)← C (h, m);
3 b← V (h, m, c, d);
4 return b

HExpU ,π (1n)
1 h← G (1n);
2 (m0, m1)← U .choose (h);
3 b←$ {0, 1};
4 (c, _)← C (h, mb);
5 b′ ← U .guess (c);
6 return b = b′

BExpB,π (1n)
1 h← G (1n);
2 (c, m, d, m′, d′)← B.bind (h);
3 v ← V (x, m, c, d);
4 v′ ← V (x, m′, c, d′);
5 return v ∧ v′ ∧m ̸= m′

Fig. 4.3 Alternative view of the hiding experiment, where the unhider U tries to win against

its challenger.

challenger U
h← G (1n) h−−−−−−−−−−−−→

m0, m1←−−−−−−−−−−−− (m0, m1)← U .choose(h)
b ∈R {0, 1}

(c, _)← C (h, mb) c−−−−−−−−−−−−→
b′←−−−−−−−−−−−− b′ ← U .guess (c)

↓
b = b′

Fig. 4.4 Alternative view of the hiding experiment, where the binder B tries to win against

its challenger.

challenger B
h← G (1n) h−−−−−−−−−−−−→

c, m, d, m′, d′←−−−−−−−−−−−− (c, m, d, m′, d′)← B.bind(h)
v ← V (h, m, c, d)

v′ ← V (h, m′, c, d′)
↓

v ∧ v′ ∧m ̸= m′
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Definition 4.1.2 (Correctness). For all messages m in the message space M , we say
that the scheme π is correct or computationally correct if the following are respectively
true:

Pr [Corrπ,m (1n) = 1] = 1 (4.1)

Pr [Corrπ,m (1n) = 1] ≥ 1− µ (n) (4.2)

where µ is a negligible function on the security parameter n.

Definition 4.1.3 (Hiding). For all probabilistic polynomial-time algorithms U , we say
that the scheme π satisfies the security property of hiding or computational hiding if
the following are respectively true:

Pr
[
HExpU ,π (1n) = 1

]
=

1
2 (4.3)

Pr
[
HExpU ,π (1n) = 1

]
≤

1
2 + µ (n) (4.4)

where µ is a negligible function on the security parameter n.

Definition 4.1.4 (Binding). Let π = (G, C,V) be a commitment protocol. Then we
can define the binding properties for each polynomial time adversary B.

(perfect binding) ∃µ. Pr
[
BExpB,π (1n) = 1

]
= 0

(computational binding) ∃µ. Pr
[
BExpB,π (1n) = 1

]
≤ µ (n)

where µ is a negligible function on the security parameter n.

4.1.2 Automatic verification of thePedersen commitment scheme
Despite being a basic primitive in secure computation, to formalise it and have a

computer generated proof is far from trivial. In the security proof generated by

humans, many small gaps are left by the prover as they are easy to prove. However,

for a machine the gaps can be huge and extra efforts need to be spent to let the

machine complete the proof. In particular, to prove the perfect hiding property, we

created a sequence of games that vary slightly to allow the machine to carry out the

proof. This additional construction is absent from proofs in the original paper and is

either absent or omitted in textbooks. In addition, to prove computational binding,

we constructed a discrete logarithm game to allow for reduction.

Modelling the scheme and the properties

The abstract commitment scheme is modelled by the following few lines, prototyping

the algorithms introduced in Section 4.1.1:

module type CScheme = { (* Abstract commitment scheme *)
proc gen() : value
proc commit(h: value, m: message) : commitment * openingkey
proc verify(h: value, m: message, c: commitment, d: openingkey) : bool

}.
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The Pedersen commitment protocol, shown in Figure 4.5, runs between the

committer C , holding a secret message m ∈ Zq to commit to, and the receiver R.

Both agree on the group (G, q, g), where q is the order of G and g is its generator.

Commitment phase

• R samples a value h ∈R G and

sends it to C .

• C samples an opening value d ∈R
Zq, computes the commitment c
as gdhm

, and sends c to R.

Verification phase

• C sends the pair (m, d) to R.

• R checks whether gdhm
matches

to the previously received com-

mitment c, and either accepts if
they match or reject if the do not.

Its formal definition is given by the following algorithms:

G (1n):
x← G;

return x

C (x, m):
d←$ {0, 1}q;

c← gdxm
;

return (c, d)

V (x, m, c, d):
c′ ← gdxm

;

return c = c′

Fig. 4.5 Pedersen commitment protocol.

C R

m ∈ Zq

x←$ G
d←$ Zq

x←−−−−−−−
c← gdxm

c−−−−−−−→
commitment phase
verification phase

m, d−−−−−−−→
check c = gdxm

We modelled the protocol in EasyCrypt as the following three procedures inside

the module module Ped : CScheme:
proc gen() : value = {

var x, h;
x =$ FDistr.dt; (* This randomly samples an element in the field Z_q *)
h = g^x; (* g is globally defined from the cyclic group theory *)
return h;

}
proc commit( proc verify(

h: value, m: message h: value, m: message,
) : commitment * openingkey = { c: commitment, d: openingkey
var c, d; ) : bool = {
d =$ FDistr.dt; var c';
c = (g^d) * (h^m); c' = (g^d) * (h^m);
return (c, d); return (c = c');

} }
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The Pedersen commitment scheme security properties we prove are correctness,

perfect hiding, and computational binding. Their model in EasyCrypt is shown in

Figure 4.6. Those properties rely on the existence of a group (G, q, g) in which the

discrete logarithm assumption holds (with regards to a secure parameter n):

∀A.∃µ. Pr [DLogA (1n) = 1] ≤ µ (n) .

Fig. 4.6 Commitment scheme properties. Correctness (left), hiding experiment (middle) and

binding experiment (right) modelled in EasyCrypt.

module Corr(S:CScheme) = { module HExp( module BExp(
proc main(m: message) S:CScheme, U:Unhider) = { S:CScheme, B:Binder) = {

: bool = { proc main() : bool = { proc main() : bool = {
var h, c, d, b; var b, b', m0, m1, h, c, d; var h, c, m, m',
h = S.gen(); h = S.gen(); d, d', v, v';
(c, d) = S.commit(h, m); (m0, m1) = U.choose(h); h = S.gen();
b = S.verify(h, m, c, d); b =$ {0,1}; (c, m, d, m', d')=B.bind(h);
return b; (c, d)=S.commit(h, b?m1:m0); v = S.verify(h, m , c, d );

} }. b' = U.guess(c); v' = S.verify(h, m', c, d');
return (b = b'); return v /\ v' /\ (m <> m');

} }. } }.

The construction of the hiding experiment and of the binding experiment, in-

troduced in Section 4.1.1 and modelled in Figure 4.6, can be instantiated with the

Pedersen commitment scheme and result as in Figure 4.8.

Following such constructions, the desired security for this protocol is defined by

the following two formulas, for all U and for all B:

(perfect hiding) Pr
[
HExpU ,Ped (1n) = 1

]
=

1
2

(computational binding) ∃µ. Pr
[
BExpB,Ped (1n) = 1

]
≤ µ (n)

where µ is a negligible function on the security parameter n.

Correctness

Correctness in EasyCrypt is formalised with a HL judgement:

hoare[ Corr(Ped).main : T⇒ res].
Its proof is straightforward. The first step is to unfolding the definition of Corr(Ped).main,
which is the correctness algorithm described in Figure 4.6 instantiated with Ped. Then
we have c = gdhm

and c′ = gdhm
which are always equal.

Perfect hiding

In the Pedersen protocol we prove the perfect hiding:

∀U . Pr
[
HExpU ,Ped (G, q, g) = 1

]
=

1
2 (4.5)
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In EasyCrypt, we modelled it with the following lemma:

lemma perfect_hiding: forall (U <: Unhider) &m,
islossless U.choose ⇒ islossless U.guess ⇒
Pr[HExp(Ped, U).main() @ &m : res] = 1%r / 2%r.

Where U <: Unhider is the adversary U with abstract procedures choose and guess,
of whichwe needed to assume they terminate islossless U.choose and islossless U.guess.

Perfect hiding can be proved by comparing the hiding experiment to an inter-

mediate experiment in which the commitment is replaced by gd
which contains no

information about mb. The experiment is described in Figure 4.7.

Fig. 4.7 The intermediate hiding experiment is almost equal to the hiding experiment, but

the commitment is replaced by a random group element.

1 HIntermU ,Ped (G, q, g)
2 h←$ G;

3 b←$ {0, 1};
4 d←$ Zq;

5 (m0, m1)← U .choose (h);
6 c← gd

; // msg independent
7 b′ ← U .guess (c);
8 return b = b′;

module HInterm(U:Unhider) = {
proc main() : bool = {

var b, b', x, c, d, m0, m1;
x =$ FDistr.dt;
b =$ {0,1};
d =$ FDistr.dt;
(m0, m1) = U.choose(g^x);
c = g^d; (* message independent *)
b' = U.guess(c);
return (b = b');
}

}.

We prove it by first showing that for all adversaries, the probability of winning

the hiding experiment is exactly the same as winning the intermediate experiment.

∀U . Pr
[
HExpU ,Ped (G, q, g) = 1

]
= Pr [HIntermU ,Ped (G, q, g) = 1]

In code,

lemma phi_hinterm (U<:Unhider) &m:
Pr[HExp(Ped,U).main() @ &m : res] = Pr[HInterm(U).main() @ &m : res].

To prove that, we unfold the two experiments in a pRHL judgement. The first

experiment is automatically instantiated by EasyCrypt as the algorithm HExp in

Figure 4.8.

The proof is done by comparing the execution of the two experiments and is

based on the fact that the distribution of hmbgd
is taken over gd

.

Then, we prove that for all adversaries, the probability of winning the intermediate

experiment is exactly a half.

∀U . Pr [HIntermU ,Ped (G, q, g) = 1] = 1
2

In EasyCrypt, we have:

lemma hinterm_half (U<:Unhider) &m:
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Fig. 4.8 Hiding experiment (left) and binding experiment (right) algorithms, instantiated

with the Pedersen commitment scheme.

HExpU ,Ped (G, q, g)
1 h ∈R G;

2 b ∈R {0, 1};
3 d ∈R Zq;

4 (m0, m1)← U .choose (h);
5 c← gdhmb

;

6 b′ ← U .guess (c);
7 return b = b′

BExpB,Ped (G, q, g)
1 h ∈R G;

2 (c, m, d, m′, d′)← B.bind (h);
3 v ← c = gdhm

4 v′ ← c = gd′
hm′

5 return v ∧ v′ ∧m ̸= m′

islossless U.choose ⇒ islossless U.guess ⇒
Pr[HInterm(U).main() @ &m : res] = 1%r/2%r.

Combining the two lemmas, by transitivity, we prove perfect hiding for Pedersen

commitment protocol as in equation (4.5).

Computational binding

For the Pedersen protocol, we prove the computational binding property.

∀B. ∃µ. Pr
[
BExpB,Ped (G, q, g) = 1

]
≤ µ (4.6)

where µ is a negligible function. The proof is done by a reduction to the discrete

logarithm assumption. In cryptography, proof by reduction usually means to show

how to transform an efficient adversary that is able to break the construction into an

algorithm that efficiently solves a problem that is assumed to be hard. In this proof,

the problem assumed to be hard is the discrete logarithm problem [109, p. 320]. We

show that if an adversary can break the binding property, then it can output (m, d)
and (m′, d′) such that gdhm = gd′

hm′
. If this is true then the discrete logarithm of

h = gx
can be computed by

x = d− d′

m′ −m
.

We capture the reduction by two modules in EasyCrypt, whose algorithms are

illustrated in Figure 4.9. A small technical subtlety is that since the adversary is

abstractly defined, it can return m = m′ with some probability. This can cause

division by zero. Therefore, we check the output from the adversary to avoid it.

Formally, the adversary assumed to break the binding experiment is B and we

construct an adversary A to break the discrete logarithm experiment with equal

probability of success:

∀B. Pr
[
BExpB,Ped (G, q, g) = 1

]
= Pr

[
DLogA(B) (G, q, g) = 1

]
The above is captured in EasyCrypt by the lemma:
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lemma computational_binding: forall (B <: Binder) &m,
Pr[BExp(Ped, B).main() @ &m : res] =
Pr[DLog(DLogAttacker(B)).main() @ &m : res].

To prove the lemma, we unfolded the experiments as much as possible, i.e. up to

abstractions, in a pRHL judgement which created an equivalence of the two experi-

ments in the sense illustrated in Section 2.5. The binding experiment is automatically

unfolded to the experiment BExp in Figure 4.8.

The automatic tactics could not automatically prove the lemma, as the expression

(d− d′) / (m′ −m) used by the attacker A (modelled as DLogAttacker) in the DLog

experiment was too complex to be automatically used by the prover into the binding

experiments and needed to be manually guided.

Assuming that the discrete logarithm is hard, then the probability of the experi-

ment BExpB,Ped (G, q, g) returning 1 must be negligible. Finally,

∀B. ∃µ. Pr
[
BExpB,Ped (G, q, g) = 1

]
≤ µ

which is the definition of computational binding we gave in equation (4.6).

Fig. 4.9 The discrete logarithm experiment (left) and an adversary reducing the binding

experiment with the Pedersen protocol to the discrete logarithm experiment (right).

DLogA (G, q, g)
1 x ∈R Zq;

2 x′ ← A.guess (gx);
3 if x′ = ⊥ then
4 b← false;

5 else
6 b← (x′ = x);
7 return b

A (B) .guess (h)
1 (c, m, d, m′, d′)← B.bind (h);
2 if c = gdhm = gd′

hm′ ∧m ̸= m′ then

3 x← d− d′

m′ −m
;

4 else
5 x← ⊥;
6 return x

module DLog(A:Adversary) = {
proc main () : bool = {

var x, x', b;

x =$ FDistr.dt;
x' = A.guess(g^x);
if (x' = None)

b = false;
else

b = (x'= Some x);

return b;
}

}.

module DLogAttacker(B:Binder) : Adversary = {
proc guess(h: group) : F.t option = {

var x, c, m, m', d, d';
(c, m, d, m', d') = B.bind(h);
if ((c = g^d * h^m) /\

(c = g^d' * h^m') /\ (m <> m'))
x = Some((d - d') * inv (m' - m));

else
x = None;

return x;
}

}.
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4.2 Σ protocols
Sigma protocols is a concept generalising those protocols that involve three sent-

received-sent messages exchanged by two parties [68] whose scheme is illustrated

in Figure 4.10.

Fig. 4.10 Sigma protocols.

prover P verifier V

(x, w) x

compute r r−−−−−−−→
c←−−−−−−− challenge c

response s s−−−−−−−→

Informally, they involve two partiesP (called the prover) and V (called the verifier)

who share a problem x whose solution w is known only to P , or, more generally, x
and w are belong to some relation R. The first step is done by P who commits w
to the value r and send it to V . In the second step, V challenges P sending her the

challenge value c. In the last step, P sends its response s to the challenge back to V .

Now, V verifies the response against x, r, and c. The goal of P is to convince V that

she knows w, without actually disclosing it.

Sigma protocols present clear relation with commitment schemes, see Section 4.1,

and an exhaustive comparison can be found in [99], i.e. how to build efficient commit-

ment schemes from sigma protocols. They can enjoy previous formal verification [28]

in a language called CertiCrypt (unmaintained an obsolete).c The formal proof done

in CertiCrypt required about a few thousand lines of code, while in EasyCrypt only

about 300 (we are considering only the abstraction supporting Sigma protocols and

the Schnorr protocol as its instantiation). Clearly, the proof technique share simi-

larities, yet they are different enough to be freshly re-done in EasyCrypt, since the

two theorem provers are not compatible. We completed those proofs of security and

pushed the EasyCrypt code online in the summer of 2017, but it has been merged to

the official branch only recently in 2019
1
.

4.2.1 Definitions and properties
Sigma protocols is a concept generalising those protocols that involve three sent-

received-sent messages exchanged by two parties [68], of which scheme is illustrated

in Figure 4.10. We borrow our definitions from Hazay and Lindell [99]. The aim of

1
https://github.com/EasyCrypt/easycrypt/blob/1.0/theories/crypto/

SigmaProtocol.ec

https://github.com/EasyCrypt/easycrypt/blob/1.0/theories/crypto/SigmaProtocol.ec
https://github.com/EasyCrypt/easycrypt/blob/1.0/theories/crypto/SigmaProtocol.ec
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sigma protocols vary from proof of knowledge to proof of membership, and they are

defined with respect to a binary relation R.

In this relation, given (x, w) ∈ R, w is called the witness to the statement x. The
only property required to the relation R ⊂ {0, 1}⋆×{0, 1}⋆

is that for all (x, w,∈) R,

then the length of w is polynomial on the length of x. This restriction suggests that

w can be thought as a (polynomial) solution to a computational problem x.
Informally, sigma protocols involve two parties P (called the prover) and V (called

the verifier) who share a problem x whose solution w is known only to P , or, more

generally, x and w are belong to some relation R.

The first step is done by P who commits w to the value r and send it to V . In the

second step, V challenges P sending her the challenge c. In the last step, P sends its

response s to the challenge back to V . Now, V verifies the response against x, r, and
c. The goal of P is to convince V that she knows w, without actually disclosing it.

Definition 4.2.1 (Sigma protocol). Given a binary relation R, we define a sigma
protocol Σ as the quintuplet (G, C, T ,R,V), run by a prover P and a verifier V , such
that:

• (x, w)← G (1n) outputs a pair statement-witness (x, w) ∈ R, where x is publicly
known and w is private to the prover;

• (m, σ)← C (x, w) takes as input a statement x and a witness w and outputs a
message m and a secret state σ that is hold by the prover;

• c ← T (x, m) takes as input a statement x and a message m and outputs a
challenge c;

• r ← R ((x, w) , (m, σ) , c) takes as input a statement-witness pair (x, w), a
message-state pair (m, σ) and a challenge c, and outputs a response r; and

• V (x, m, c, r) takes as input a statement x, a message m, a challenge c and a
response r and verifies that the (x, w) ∈ R (this must be done by the verifier
without knowing w).

Sigma protocols present clear relation with commitment schemes, and an ex-

haustive comparison can be found in [99], i.e. how to build efficient commitment

schemes from sigma protocols. We refer to the the triplet of the message, challenge

and response produced by a run of a sigma protocol as a transcript.

Definition 4.2.2 (Transcript). A sigma protocol Σ = (G, C, T ,R,V) for the relation
R, run by a prover P that knows (x, w) ∈ R and a verifier V that knows x, produces a
transcript (m, c, r) where m, c and r are the messages exchanged between R and V . In
an honest execution, they are

m, _← C (x, w)
c← T (x, m)
r ← R ((x, w) , (m, σ) , c) .

The desired properties of sigma protocols are the following:
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Completeness The verifier always accepts valid statement-witness pairs (valid pairs

are those belonging to the relation R).

Special soundness It is efficient to find the witness w corresponding to an x, i.e.
such that (x, w) ∈ R, given two transcripts of the same initial message r with

different challenge c.

Special honest verifier zero knowledge The protocol can be simulated by only

knowing the known initial value x (the problem) and the challenge, in such a

way c that the transcript generated by the simulator has the same probability

of the sigma protocol run by two hones parties on x.

Those properties are captured by the Definitions 4.2.3, 4.2.4, and 4.2.5 respectively.

We base our formal definitions for all these security properties on algorithmic

experiments that capture the security properties, see Figure 4.11.

Fig. 4.11 Constructions for the security properties desired in Σ protocols.

CompletenessΣ (1n)
1 (x, w)← G (1n);
2 (m, σ)← C (x, w);
3 c← T (x, w);
4 r ← R ((x, w) , (m, σ) , c);
5 b← V (x, m, c, r);
6 return b

SoundnessAΣ (x, t, t′)
1 w ← A (t, t′);
2 (m, c, r)← t;
3 (m′, c′, r′)← t′;
4 v ← V (x, m, c, r);
5 v′ ← V (x, m′, c′, r′);
6 h← c ̸= c′ ∧m = m′;
7 return h ∧ v ∧ v′ ∧ (x, w) ∈ R

SpecialHVZKAΣ,Sim (1n)
1 (x, w)← G (1n);
2 c←$ δ;
3 b←$ {0, 1};
4 if b then
5 m, σ ← C (x, w);
6 r ← R ((x, w) , (m, σ) , c);
7 else
8 m, c, r ← Sim (x, c);
9 b′ ← A (m, c, r);

10 return b = b′

Definition 4.2.3 (Completeness). Given a sigma protocol Σ for the relation R, run by
a honest prover P and a honest verifier V , then Σ respects the property of completeness

if and only if
Pr [CompletenessΣ (1n) = 1] = 1.

Definition 4.2.4 (Special soundness). A sigma protocol Σ for the relation R, run
by a prover P and a verifier V over the statement x, respects the property of special
soundness if and only if

Pr
[
SpecialSoundnessAΣ (x, t, t′) = 1

]
= 1,
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where A is a polynomial-time algorithm, and t and t′ are two (accepting) transcripts of
an execution of Σ over the same statement x.

Special soundness ensures that a Σ protocol is an interactive proof, i.e. its result
cannot be re-used or the knowledge cannot be transferred.

Definition 4.2.5 (Special honest verifier zero knowledge). Given a sigma protocol
Σ = (G, C, T ,R,V) for the relation R, run by a prover P and a verifier V over the
statement x, then Σ respects the property of special honest verifier zero knowledge if
and only if exists a polynomial-time simulator Sim such that

Pr
[
SpecialHVZKAΣ,Sim (1n) = 1

]
= 1

2 + µ (n) ,

where A is a polynomial-time algorithm, t and t′ are two (accepting) transcripts of an
execution of Σ over the same statement x, and µ is a negligible function on the security
parameter n.

Special honest verifier zero knowledge ensures that an adversary A external to

the protocol cannot infer any knowledge about the witness, including the result, i.e.

whether the prover knows the witness or not.

4.2.2 Automatic verification of the Schnorr protocol
The Schnorr protocol for zero-knowledge proof of knowledge relies on the hardness

of discrete logarithm since it instantiates the statement x and the witness w as x = gw
.

The statement x can be interpreted as the problem of computing discreet logarithm,

whose solution is w. Since the discreet logarithm is hard to compute, with the Schnorr

protocol a prover can demonstrate the knowledge ofw, given x: hardly, any adversary
would be able to prove the same.

Modelling the scheme and the properties

The abstract sigma protocol scheme is modelled by the following few lines, prototyp-

ing the algorithms introduced in Section 4.2.1:

module type SigmaScheme = {
proc gen() : statement * witness
proc commit(x: statement, w: witness) : message * prover_state
proc test(x: statement, m: message) : challenge
proc respond(sw: statement * witness, ms: message * prover_state, e: challenge) : response
proc verify(x: statement, m: message, e: challenge, z: response) : bool

}.

The Schnorr protocol, illustrated in Figure 4.12, runs between the prover V ,

holding a secret witness w ∈ {2, ..., p− 1}, and the prover B, where both know

x = gw
. Both agree on the group (G, q, g), where q is the order of G and g is its

generator.

The Schnorr protocol runs the following way

• P samples a value y uniformly at random from Z⋆
q and sends it to V .
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Fig. 4.12 Schnorr’s zero-knowledge proof of knowledge. The values t, p, and g are accepted

public knowledge, where t is the length of the challenge, p is a prime number and g is a

generator of Z⋆
q .

prover P verifier V

w ←$ {2, ..., p− 1}
x← gw x

y ←$ {1, . . . , p− 1}
r ← gy r−−−−−−−→

c←−−−−−−− c←$ {0, . . . , 2t−1}
s← y + cw s−−−−−−−→

check gs = r · xc

• V generates a challenge c by sampling at ranomd from {0, . . . , 2t−1}, and sends
it to P .

• Finally, P responds with s to V , where s = y + cw, and the verifier V can

check whether gs = r · xc
.

Its formal definition is given by the following algorithms:

G (1n):
w ←$ {2, ..., p− 1};
x← gw

;

return (x, w)
C (x, w):

y ←$ {1, . . . , p− 1};
r ← gy

;

return (r, y)

T (x, r):
c←$ {0, . . . , 2t−1};
return c

R ((x, w) , (r, y) , c):
s← y + cw;

return s
V (x, r, c, s):

return gs = r · xc

We modelled the protocol in EasyCrypt as the following file procedures inside

the module module SchnorrPK : SigmaScheme:
proc gen() : statement * witness = {

var x, w;
w <$ FDistr.dt \ F.zero;
x = g^w;
return (x, w);

}

proc commit(x: statement, w: witness) : message * secret = {
var r, y;
y <$ FDistr.dt;
r = g^y;
return (r, y);

}

proc test(x: statement, r: message) : challenge = {
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var c;
c <$ FDistr.dt;
return c;

}

proc respond(xw: statement * witness, ry: message * secret, c: challenge) : response = {
var s, w, y;
w = snd xw;
y = snd ry;
s = y + c*w;
return s;

}

proc verify(x: statement, r: message, c: challenge, s: response) : bool = {
var v, v';
v = r*(x^c);
v' = g^s;
return (v = v');

}

We proved the completeness, special soundness and special honest verifier zero

knowledge security properties for the Schnorr protocol as follows. Their model in

EasyCrypt is shown in Figure 4.13. Those properties rely on the existence of a group

(G, q, g) in which the discrete logarithm assumption holds (with regards to a secure

parameter n):
∀A.∃µ. Pr [DLogA (1n) = 1] ≤ µ (n) .

The construction of the completeness experiments, the special soundness ex-

periment and of the special honest verifier zero knowledge experiment, introduced

in Section 4.2.1 and modelled in Figure 4.13, can be instantiated with the Schnorr

protocol illustrated in Figure 4.14. Through cryptographic experiments, we rigorously

re-formalise the proofs of Schnorr.

Following such constructions, the desired security for this protocol is defined by

the following three formulas, for all algorithms A:

(completeness) Pr [CompletenessSchnorr (x, w) = 1] = 1,

(special soundness) Pr
[
SpecialSoundnessA,Schnorr (x, t, t′) = w ∧ (x, w) ∈ R

]
= 1,

(special HVZK) ∃µ. Pr
[
SpecialHVZKASchnorr,Sim (1n) = 1

]
= 1

2 + µ (n) ,

where µ is a negligible function on the security parameter n. We remark that the

algorithmA for the special soundness is not an adversarial entity, but it is an algorithm

that efficiently recovers the witness given two accepting transcripts with the same

challenge. This ensures that the protocol is an interactive proof, i.e. its result cannot be
re-used or the knowledge cannot be transferred. Very differently, the special honest

verifier zero knowledge is a simulation based proof, as introduced in Section 2.2.3,

where the adversarial entity A tries to distinguish between the real construction and

an ideal, simulated construction.

Completeness

Completeness in EasyCrypt is formalised with a HL judgement:
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Fig. 4.13 Security properties of Sigma protocols. Experiments modelled in EasyCrypt that

capture completeness, special soundness and special honest verifier zero knowledge.

module Completeness (S: SigmaScheme) = {
proc main(x: statement, w: witness) : bool = {

var e, m, s, z, b;
(m, s) <@ S.commit(x, w);
e <@ S.test(x, m);
z <@ S.respond((x, w), (m, s), e);
b <@ S.verify(x, m, e, z);
return b; } }.

module SpecialSoundnessExperiment (S: SigmaScheme, A: SigmaAlgorithms) = {
proc main(x: statement, m: message,

e: challenge, z: response,
e': challenge, z': response) : witness option = {

var s, sto, w, r, v, v';
sto <@ A.soundness(x, m, e, z, e', z');
if (sto <> None) {

w = oget sto;
v <@ S.verify(x, m, e , z );
v' <@ S.verify(x, m, e', z' );
r = R x w;
if (e <> e' /\ r /\ v /\ v') {

s = Some(w);
} else {

s = None;
}

} else {
s = None;

}
return s; } }.

module SpecialHVZK (S: SigmaScheme, A: SigmaAlgorithms, D: SigmaTraceDistinguisher) = {
proc gameIdeal() : bool = {

var b, e, i, m, s, t, to, x, w;
(x, w) <@ S.gen();
(m, s) <@ S.commit(x, w);
e <$ de;
to <@ A.simulate(x, e);
i = 0;
while (to = None) {

to <@ A.simulate(x, e);
i = i + 1;

}
return oget to;

}

proc gameReal() : bool = {
var b, t, m, e, z, x;
(x, m, e, z) <@ Run(S).main();
return (m, e, z);

}

proc main() : bool = {
var b, b';
b <$ {0,1};
if (b) {

t <@ gameIdeal();
b' <@ D.distinguish(x, t);

} else {
t <@ gameReal();
b' <@ D.distinguish(x, t);

}
return (b = b');

}
}.
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Fig. 4.14 Completeness experiment, special soundness experiment and special honest verifier

zero knowledge experiment, instantiated with the Schnorr protocol.

CompletenessSchnorr (x, w)
1 y ←$ {1, . . . , p− 1};
2 r ← gy

;

3 c←$ {0, . . . , 2t−1};
4 s← y + cw;

5 b← gs = r · xc
;

6 return b

SpecialSoundnessA,Schnorr (x, t, t′)
1 w ← A (t, t′);
2 (r, c, s)← t;
3 (r′, c′, s′)← t′;
4 v ← s = r · xc

;

5 v′ ← s′ = r′ · xc′
;

6 h← c ̸= c′ ∧m = m′;
7 if h ∧ v ∧ v′ then
8 return w
9 else
10 return ⊥

SpecialHVZKASchnorr,Sim (1n)
1 w ←$ {2, ..., p− 1};
2 x← gw

;

3 c←$ {1, . . . , 2t−1};
4 b←$ {0, 1};
5 if b then
6 y ←$ {1, . . . , p− 1};
7 r ← gy

;

8 s← y + cw;

9 else
10 r, c, s← Sim (x, c);
11 b′ ← A (r, c, s);
12 return b = b′

lemma schnorr_completeness x w &m:
R x w =>
Pr[Completeness(SchnorrPK).main(x, w) @ &m : res] = 1%r.

Its proof is straightforward. The first step is to unfolding the definition of Completeness(Schnorr).main,
which is the completeness algorithm described in Figure 4.14 instantiated with

Schnorr. Then we have s = y + cw as an assignment, then the verification checks if

the equality gs = r · xc
holds. Let us develop gs

substituting s with its assignment

and show the algebra steps to prove the equality.

gs = gy+cw = gy · gcw = r · (gw)c = r · xc,

where r = gy
and x = gw

by previous assignments. So the verification is always

accepting under the premise (x, w) ∈ R.

Special soundness

In the Schnorr protocol we prove the special soundness:

Pr
[
SpecialSoundnessA,Schnorr (x, t, t′) = w ∧ (x, w) ∈ R

]
= 1 (4.7)

In EasyCrypt, we modelled it with the following lemma:

lemma schnorr_special_soundness (x: statement) r c c' s s' &m:
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c <> c' =>
g^s = r*(x^c ) =>
g^s' = r*(x^c') =>
Pr[SpecialSoundnessExperiment(SchnorrPK, SchnorrPKAlgorithms)

.main(x, r, c, s, c', s') @ &m :
(res <> None /\ R x (oget res))] = 1%r.

Where ch <> ch' is the premise stating that the challenges differ, g^r = msg*(h^ch )
and g^r' = msg*(h^ch') are the premises ensuring that the transcripts are accepted.

The two accepting transcripts are (r, c, s) and (r, c′, s′).
Showing that this lemma holds can be done with algebra steps, similarly to what

we have done for the completeness. The core calculus of this proof may recall a small

part of the proof of binding for the Pedersen commitment scheme, see Section 4.1.2

for a comparison.

The algorithm illustrated in Figure 4.15 is efficient and produces a witness w such

that (x, w) ∈ R.

Fig. 4.15 The algorithm A to prove special soundness of the Schnorr protocol.

1 A (x, t, t′):
2 (r, c, s)← t;
3 (r′, c′, s′)← t′;
4 v ← gs = r · xc

;

5 v′ ← gs′ = r′ · xc′
;

6 if r = r′ ∧ c ̸= c′ ∧ v ∧ v′ then

7 w ← s− s′

c− c′
;

8 return w

9 else
10 return ⊥

module SchnorrPKAlgorithms {
[· · ·]
proc soundness(

x: statement, r: message,
c: challenge, s: response,
c': challenge, c': response

) : witness option = {
var sto, w, v, v';
v = (g^s = r*(x^c ));
v' = (g^s' = r*(x^c'));
if (c <> c' /\ v /\ v') {

w = (s - s') / (c - c');
sto = Some(w);

} else {
sto = None;

}
return sto; } }

To prove the validity of the algorithm, we first use the two premises of accepting

transcripts.

gs = r · xc,

gs′ = r · xc′
.

In summary, the two transcripts t = (r, c, s) and t′ = (r′, c′, s′) passes to A have the

same commitment r = r′, different challenge c ̸= c′ and such that the transcripts are
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accepting. So, if we divide the two accepting equations, we have:

gs

gs′ = r · xc

r · xc′

gs−s′ = xc

xc′

gs−s′ = xc−c′
.

Since we need to find a w such that (x, w) ∈ R, and the relation in the Schnorr

protocol is x = gw
, we make the substitution and write

gs−s′ = (gw)c−c′

gs−s′ = gw(c−c′).

Now we apply the discreet logarithm log to both hands of the equality and write

log
(
gs−s′) = log

(
gw(c−c′)

)
s− s′ = w (c− c′)

w = s− s′

c− c′
,

where we applied the theorem for which ∀x, log (gx) = x, and the last step is always

legitimate as the denominator is non-null, c ̸= c′ hence c−c′ ̸= 0. So the assumptions

that the two transcripts are accepting and c ̸= c′ are enough for the existence of a

polynomial algorithm A to always reconstruct a valid witness, thus to achieve the

special soundness for the Schnorr protocol.

Special honest verifier zero knowledge

For the Schnorr protocol, we prove the special honest verifier zero knowledge prop-

erty. Exists a simulator Sim such that, for any polynomial-time distinguisherA, there
exists a negligible function µ such that

Pr
[
SpecialHVZKASchnorr,Sim (1n) = 1

]
≤ µ (n) (4.8)

where n is the security parameter. In EasyCrypt we capture the security property

with

lemma schnorr_shvzk (D<: SigmaTraceDistinguisher) &m:
Pr[SpecialHVZK

(SchnorrPK, SchnorrPKAlgorithms, D).main() @ &m : res] = 1%r/2%r.

The simulator Sim is illustrated in Figure 4.16 and its output samples the response

s, then reconstructs the message r using the challenge c, inverting the operation that

would have been done sampling r first and then computing the response s with the

challenge c.
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Fig. 4.16 The simulator Sim to prove special honest verifier zero knowledge of the Schnorr

protocol.

1 Sim (x, c):
2 s←$ Zq;

3 r ← gs

xc
;

4 return (r, c, s)

module SchnorrPKAlgorithms {
[· · ·]
proc simulate(x: statement, c: challenge)

: message * challenge * response = {
var r, s;

s <$ FDistr.dt;
r = (g^s) * (x^(-c));

return (r, c, s); } }

The proof is done by showing that the transcript t′ = (r′, c′, s′) produced by the

simulator and the transcript t = (r, c, s) produced by a real execution of the Schnorr

protocol are statistically equivalent, t
s≡ t′.

To do that we first show that each parts of the transcripts are statistically equiv-

alent, i.e. r
s≡ r′, c

s≡ c′ and s
s≡ s′. Then, we show that their relationships are the

same.

First we show the equivalence of the challenges. Following the experiment illus-

trated in Figure 4.14, we notice that c = c′, which trivially implies their equivalence

c
s≡ c′.
We remain to prove the equivalences of the messages and the responses. In the

real execution, s (response) is produced after r (message), which depends on y (secret

state of the prover). First, y is sampled from Zq , then r ← gy
and finally s← y + cw.

Differently in the simulation, r′ is produced after s′. First, s′ is sampled from Zq , then

r′ ← gs′
x−c

.

For the equivalence of the responses, we notice that clearly s′
s≡ y, as they follow

the same distribution. Also, y + cw has the same probability as y of being sampled

from Zq, implying that s
s≡ y. Transitivity of

s≡ finally implies that s
s≡ s′.

The last equivalence to show is r
s≡ r′. It is easy to see that

r
s≡ r′ · xc

Now, if we substitute r with gy
and x with gw

, we have

gy s≡ r′ · gcw

⇒ gyg−cw s≡ r′

⇒ gy−cw s≡ r′

⇒ y − cw
s≡ log (r′) .
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where in the last equivalence we applied the theorem ∀x, log (gx) = x after having

applied the log to both hands of the equivalence. At this point we notice that y and

y − cw have the same probability of being sampled, so y
s≡ y − cw, then

y
s≡ log (r′)⇒ gy s≡ r′.

Substituting back gy
with r, we have demonstrated that r

s≡ r′.
At this point, we show that the relationship between the elements of the triplet

are consistent. In particular, it is easy to see that

gs = rgcw
and gs′ = r′gcw.

This completes the proof that the two transcripts are statistically equivalent, t
s≡ t′.

Therefore, the Schnorr protocol illustrated in Figure 4.12 respects the property of

special honest verifier zero knowledge. This proof follows the original one from

Schnorr, that we adapted to explicitly use cryptographic games to formalise the

reductions.

4.3 Conclusion
We extended the corpus of theories of EasyCrypt with commitment schemes and Σ
protocols, by mechanising their security properties following the theory from Hazay

and Lindell [99]. To show the effectiveness or the mechanisation, we propose an

automated verification of the Pedersen commitment scheme and the Schnorr protocol

of zero knowledge proof of knowledge. We adapted the proofs to be captured as

cryptographic experiments; this also simplifies the formalisation of the reductions

to cryptographic hardness assumptions. Even though we did not find significant

gaps in the formal analysis on papers, our work strengthens their confidence and the

theorems can be re-used for different cryptographic schemes that use commitment

schemes or sigma protocols as cryptographic primitives. We analysed and successfully

mechanised the proof of the security properties of the above mentioned protocols:

• perfect hiding and computational binding for the Pedersen commitment scheme,

and

• completeness, special soundness and special honest verifier zero knowledge

for the Schnorr protocol.
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In this chapter, we address the problem of indistiguishability between two lazy

constructions that typically raise in formal proofs that involve random oracles. We

propose a proof strategy that may simplify proofs if related to the currently adopted

approach by introducing information flow labels to variables. In detail, we introduce

new syntax and tactics at the core of EasyCrypt and finally show a case study were

we prove indistinguishability between two lazy constructions that use an internal

map that emulate a random function.

5.1 Introduction
A significant amount of cryptographic proofs are based on the concept of indistin-

guishability between two different algorithms c1 and c2, denoted as c1 ∼ c2, by an

attacker who decides their initial inputs, inspects their final outputs, but is unaware

of their internal construction. These proofs can be very complex and articulated. To

break down their complexity, intermediate subsequent constructions are created and

differ by very little one another, e.g. few lines of code. Once the indistinguishability

between all the adjacent constructions is demonstrated, they are finally combined

to prove the original statement. One case of indistinguishability between two sub-

sequent constructions is when a probabilistic assignment moves from a procedure
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to another. Figure 5.1 illustrates one such a case, where M1 and M2 are two very

similar constructions that include the procedures init, f , and g. The implementation

of both M1 and M2 perform lazy sampling, i.e. instead of making random choices

upfront, they delay making random choices until they are actually needed [39]. The

Fig. 5.1 Two constructions M1 and M2; they differ only on the implementation of g.

M1:

v ∈ {0, 1} ∪ ⊥

proc init()
1 v ← ⊥;
proc f()

2 if v = ⊥ then
3 v ←$ {0, 1};
4 return v

proc g()
5 if v = ⊥ then
6 v ←$ {0, 1};
7 return

M2:

v ∈ {0, 1} ∪ ⊥

proc init()
1 v ← ⊥;
proc f()

2 if v = ⊥ then
3 v ←$ {0, 1};
4 return v

proc g()
5 return

procedure init is called once to initialise the value v. The difference between the

procedures f and g is that the latter does not return a value. M1 and M2 differ in the

internal behaviour of the procedure g. In detail, the probabilistic assignment of v
disappears from M2.g which can only be done when M2.f is called. Upon calling f
the first time after having called g, the value v is freshly sampled in M2 but already

stored in M1.

The adversary cannot call init nor access v directly but can call f and g a polyno-

mial number of times and inspect the output. This kind of situation in formal proof

is common when constructing simulators where structures depending on private

values are simulated by random values or random oracles.

We focus on the indistiguishability between M1 and M2, denoted as M1
c≡M2.

During a proof of indistiguishability between any two constructions, one must show

that the (even small) differences will not affect the distribution of the output to lead

the adversary to tell the constructions apart. M1 and M2 differ in their internal

behaviour, so if the adversary calls g before f , then M1.f would simply return a

stored value, while M2.f would first sample it from {0, 1}. Informally, at some point

in the proof, we would encounter a proof obligation with the following structure.

Ψ⇒
return M1.v ∼ M2.v ←$ {0, 1} ;

return M2.v

⇒M1.v ≃M2.v

(5.1)
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where Ψ is some precondition at that point of the proof flow that depends on previous

steps, and at the end we need to show that M1.v and M2.v are equally distributed. A

more formal notation will be introduced later in the discussion. However generally,

M1.v and M2.v are not equally distributed, e.g. if M1.g deterministically assigned 1
to v instead of sampling from {0, 1}, then M1 and M2 would not be indistiguishable.

To discharge the above proof obligation, one can reason about to the history of

the value v, on whether it was used from its last sampling or not. In the literature, the

problem in the proof obligation has been addressed in proofs of equivalence between

a lazy sampling and eager sampling [39]. The lazy sampling technique delays the

random sampling of a value until the point in the flow of a program execution where

it is first used. Differently, the eager sampling technique chooses the same value at

random before the execution. Therefore, to prove the indistiguishability between M1
and M2, one could start building their equivalent eager games, Eager1 and Eager2
then use the transitivity property to complete the proof.

Eageri Eagerj

M1 M2

c
≡

c
≡

c
≡

We call this the eager-lazy approach and a mechanised example of this technique

has been showed by Barthe et al. [27] and it is the state-of-the-art approach to

indistinguishability proofs between lazy constructions [27, 154, 10].

The core idea is that if v has not been used in the game since it was last sampled,

then it is perfectly fine to resample it. Despite of this simple intuition, the actual

implementation that mechanises this concept is far from trivial. To appreciate the non-

triviality of such approach, we discuss the core lemma that allows one to substitute

an already sampled value with a resampled one. The following lemma is by Barthe

et al. [27] with the informal notation we used in the proof obligation above, as

introducing their notation would unnecessary require additional sections.

Lemma 5.1.1 (Lazy/eager sampling). Let C[•] be a context, c1 and c2 commands, E a
boolean expression, δ a distribution expression, and v a variable such that C[•] does not
modify FV (e) ∪ FV (δ)1 and does not use v. Assume

Ψ ∧ e⇒
v ←$ δ; c1; if e then v ←$ δ; ∼ v ←$ δ; c1;

⇒M1.v ≃M2.v,

(5.2)

where Ψ states that the values used in c1 and c2 are equivalent, and

Ψ ∧ ¬e⇒
c2; ∼ c2;

⇒M1.v ≃M2.v ∧ ¬e.

(5.3)

1FV are the free variables in an expression.
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Let c = if e then v ←$ δ; c1; else c2; and c′ = if e then c1; else c2;, then

Ψ ∧ e⇒
C[c]; if e then v ←$ δ; ∼ v ←$ δ; C[c′];

⇒M1.v ≃M2.v.

(5.4)

The intuitive discussion that they give is the following.

In the above lemma e indicates whether v has not been used in the

game since it was last sampled. If it has not been used, then it is perfectly

fine to resample it. The first two hypotheses ensure that e has exactly

this meaning, c1 must set it to false if it has used the value sampled

in v, and c2 must not reset e if it is false. The first hypothesis is the
one that allows to swap c1 with v ←$ δ, provided the value of v is not

used in c1. Note that, for clarity, we have omitted environments in the

above lemma, and so the second hypothesis is not as trivial as it may

seem because both programs may have different environments.

We stress that the context C[•] and the environments in the above lemma are already

complex in the task of proving the indistiguishability between a lazy construction and

its corresponding eager construction, and they purposely omit further details. They

would become even more complex in the case of directly proving indistiguishability

between two lazy constructions like M1 and M2. This extra complexity is usually

tamed by creating additional intermediate games.

From the Lemma 5.1.1 and the related discussion, we can highlight that using the

eager-lazy approach to prove M1
c≡M2 has the following limitations or problems.

First, an intermediate game Eageri for each M1 and M2 needs to be created,

that include the resampling operation; in fact, it is not present in either M1 or M2.

So, from one indistiguishability to prove, M1
c≡M2, we now have (at least) three

2
,

M1
c≡ Eager1, Eager1

c≡ Eager2, and Eager2
c≡M2.

Second, two restrictions or assumptions need to be valid: i) the space of the

sampled values must be finite, otherwise the an eager construction will never possibly

terminate; and ii) especially when complexity is to be considered, the whole eager

process has to be bound, for example by a polynomial, not to jeopardise the final

result.

And third, and perhaps the most challenging, if a value is sampled in one of the

algorithms and other variables are dependent on it, the former approach needs to

re-sample that value, and the new value should affects in cascade all the dependent
variables. The side effects of its value may modify the behaviour of other procedures

in such a way that the Lemma 5.1.1 may not be even applicable.

2
The equivalence of the lazy construction and eager construction must be proved separately using

that lemma.
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Contribution

With this work, we propose an alternative proof strategy, illustrated in Figure 5.2, that

addresses the problems of the eager-lazy approach by introducing basic information

flow support to the algorithmic language.

A ⇒ B

Indistinguishability

proof
tactics

EasyCrypt
example

EasyCrypt
core

lemmas

pRHL

Labelling typical of
information flowprogram A program B

x←δ$

x←δ$x

A.x ≃ B.x
s

is A.x disclosed
or manipulated?

generally here
A.x ≃ B.x

s

Fig. 5.2 Our proposed alternative; without our extension, EasyCrypt could reason only if

the random samplings appear in the same function/algorithm or in some cases with a very

difficult strategy that require extra constructions.

The core idea of our proof strategy is to embed the knowledge of when a variable

is used in the variable itself, rather than delegating this to logical propositions in

the context or the environment. As a case study, we prove the equality of two

constructions with multiple procedures where a random sampling of a value migrates

from a procedure to another, and both procedures can be called by the adversary;

nevertheless, our example is simply a general pattern that highlights the issue that

is present in the same form in many indistinguishability proofs. To the best of our

knowledge, this is the first time that such a theoretical proof for indistinguishability

has been implemented for imperative code in a theorem prover. To do that, we extend

the pWhile language, which is at the core of the pRHL reasoning in EasyCrypt, then

we implement the new semantics spread across three proof tactics, that allow for

reasoning about a new dedicated information flow type that label values conveniently.

5.2 Information flow in formal methods
We refer to the literature to highlight the difference in the context or in the formal

settings that highlight the novelty of our implementation.

Theorem provers have been used in the literature to certify verified properties

of programs with information flow [57, 122, 23], other approaches are language-

based and aim to reach non-interference [165], some of which aim to produce code

along with proofs [156]. Information flow is often studied along access control

policies [155]; therefore, their relation to network security is stronger than their

relation to cryptography. In our context, information flow is the analysis to track the
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transfer of information from a variable to another during the flow of an execution

of an algorithm. We implement the classic information flow technique of marking

variables with security labels that can change during the flow.

The closest literature to our work is by Barthe et al. [24] and by Grimm et

al. [92]. Barthe et al. build on top of the ideas of Swamy et al. [156] and Nanevski et

al. [130] and extend refinement types to relational formulae. Differently from our

approach, they express the non-interference properties in the post condition, rather

than directly label the data with security flags, as it is usually done in information

flow analysis. They offer a classic implementation of a random oracle, that lazily

samples (and memoizes) the random function, using a mutable reference holding a

table mapping hash queries. When relating two programs, the queries are made in

both leftmost and rightmost executions. To verify the equivalence properties, they

introduce several invariants that must hold and that relate the tables stored by either

of the two executions. They also relate sampled entries with an injective function

that ensures they have indistinguishable distributions
3
. This approach requires the

manual insertion (and proof) of program-dependent lemmas, which is not the case

for us.

The other work that relate to us is from Grimm et al. They provide logical relation

for a state monad and use it to prove contextual equivalences. They show perfect

security of one-time-pad, that is very basic and certainly can be described with

the pRHL. They are able to automatically produce proofs based on the equivalence

of (bijective) random sampling operations. However, their work do not apply to

equivalences with oracles, that is our case study.

5.3 Preliminaries

5.3.1 Reasoning in the pRHL
We implemented our approach in the probabilistic relational Hoare logic (pRHL) with

EasyCrypt. Both have been introduced in Section 2.5, and this section highlights the

parts relevant to the discussion of the information flow labelling that we implemented.

More information about EasyCrypt and the syntax of its language can also be found

in [21, 3].

Algorithms in EasyCrypt lie inside modules, that are containers of global variables

and procedures. Procedures capture the idea of algorithms running in a memory as

an execution environment, and one can reason about their deterministic behaviour

(HL) or probabilistic behaviour (pHL) expressing the outcome of such procedures. For

the most, we report the notation for the semantics of the pRHL judgements from [25].

An example of an HL and a pHL judgements where running a procedure c for every
memory m with precondition Ψ and post-condition Φ are denoted as

|= c : Ψ⇒ Φ HL judgement

|= c : Ψ⇒ Φ < p pHL judgement

3
This is what is usually done in the pRHL.



5.4 The pifWhile language 83

where in both we reason about Φ after running c, assuming that Ψ held true before

running c, with the difference that, while in the first we reason directly about Φ, in

the second we reason about the probability of the event modelled by Φ to be the

specified relation with the real number p (in the specific example less-than p). We use

similar notation for the pRHL judgements, used to reason about two procedures in

comparison. Given two procedures c1 and c2 for any memory they run, a precondition

Ψ and a post-condition Φ, then we write

|= c1 ∼ c2 : Ψ⇒ Φ (5.5)

to say that if the precondition Ψ holds in the context of initial memories relating to

c1 and c2, then the post-condition Φ holds true, relating to the memories modified

accordingly with the execution of c1 and c2. Both the precondition and the post-

condition can refer to variables in the memory and contain relations about them;

additionally, the post-condition can refer to the return value of the procedures. From

pRHL judgements in Equation 5.5, one can derive probability claims to prove security

of cryptographic constructions. Basically, we want to relate the pRHL judgement to

two events, E1 and E2, that refer to the memoriesM1 andM2 in which c1 and c2
respectively run. If the judgement is valid and Φ⇒ E1 ⇒ E2, then the judgement is

interpreted as an inequality between probabilities, if the precondition Ψ holds for

every initial memoriesM1 andM2, denoted asM1ΨM2. Formally,

(|= c1 ∼ c2 : Ψ⇒ Φ) ∧ (M1ΨM2) ∧ (Φ⇒ E1 ⇒ E2)
⇒ Pr [c1 ⟨M1⟩ : E1] ≤ Pr [c2 ⟨M2⟩ : E2] .

In the case when c1 or c2 return a value, the events E1 and E2 may involve the return

value, which we generically denote as r ⟨M1⟩ and r ⟨M2⟩ for respectively side 1 and

side 2 of the judgement. <

5.4 The pifWhile language
The first step of our contribution is the modification of the core language of Easy-

Crypt to smoothly work with labelled values.

The imperative code at the core of EasyCrypt follows the syntax of the pWhile
language [25], and its semantics is determined by the proof tactics of the theorem

prover. A program in the pWhile language is defined as the following set of commands:

C ::= skip no operation

| V ← E deterministic assignment

| V $← E∆ probabilistic assignment

| C; C sequence

| if E then C else C conditional branch

| while E do C while loop

where V are variables bound in the memory of C , E is an expression, E∆ is an

expression of type distribution.
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Information flow labelling may be implemented to transparently extend the

semantics of the already existing syntax; however, we opted for extending the syntax

with two dedicated statements, secure assignment and secure probabilistic assignment,
that manipulate variables labelled for information flow control purposes. The reason

of our choice is twofold. First, we do not affect the semantics of the other statements,

therefore the soundness of all the theories across the theorem prover cannot be

jeopardised by our extension. Second, the code produced is as clear as before, the

usage of the assignment from and sampling to the special variables is very transparent

and mistake-free. In fact, the two new statements behave as the regular deterministic

and probabilistic assignments, apart from their special semantics during the proofs.

In particular, we extended the pWhile language with two syntax symbols, ←↩ for
secure assignment and $←↩ for secure probabilistic assignment, to the pifWhile language.
A program in the pifWhile language is defined as the following set of commands:

C̃ ::= C any command in the pWhile
| C̃; C̃ sequence

| if E then C̃ else C̃ conditional branch

| while E do C̃ while loop

| V ←↩ Ẽ deterministic assignment from a labelled value

| Ṽ $←↩ E∆ probabilistic assignment to a labelled value

where Ẽ and Ṽ are respectively an expression and a variable labelled for information

flow purposes, and the two syntax rules directly related to the added symbols are

framed. Our extensions are the last two statements whose semantics will be explained

in Section 5.6. In summary, the right hand value of the secure assignment is to be

treated with the information flow labelling that we implemented, as well as the left

hand value of the secure probabilistic assignment.

5.5 Information flow support
The most common practice to extend a language with information flow theory is

through associating security labels to variables. Some implementations delegate all

the information flow labels to the language interpreter [23], while we decided to make

it explicit in the language itself by creating a new type that is a triplet. In particular,

we associate them their value, the distribution from where they are sampled (if any),

and a confidentiality label. For the sake of our demonstration, we did implement

basic all-or-nothing confidentiality, that is the value can be labelled as either secure

or leaked, leaving partial leakage to future improvement of our work.

Delegating labels to the language interpreter has the benefit of managing labels

transparently to the programmer, who is not required to know how to manipulate

them. However, since information flow analysis can be an expensive task, this ap-

proach still requires extra syntax for letting the coder to decide which variables must

be treated or not in the analysis. On the contrary, a great advantage of our approach,
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explicit to the language, is that the mathematical theory of the the information flow

labelling can be extended without the need for changing the core of the language.

We now introduce the definitions and then notation of the security labels that

we associate to the variables. We denote the family of all the distributions over any

set by ∆, and the set of all the distributions over a generic set X by ∆X . Since we

introduce labelling for merely controlling information leakage, we introduce a new

EasyCrypt theory named Leakable. Here we define two new types, confidentiality
and leakable. The former type models a set C with only two values, H interpreted as

secret and L interpreted as leaked to the adversary.

C ≡ {H, L} .

The latter type models a family of sets that relate to a generic set X whose elements

are labelled with a distribution over X and a confidentiality value:

X̃ ≡ X × (∆X ∪ {⊥})× C.

where ⊥ is used if the value is not associated to a sampling distribution. Unions with

the ⊥ value can be easily implemented through option (or maybe) type. Due to the

nature of the leakable type as a triplet, projection functions are already defined in

the language. For any x̃ = (x, δ, c) ∈ X̃ , we have the following functions:

π1 (x̃) def= x, π2 (x̃) def= δ, π3 (x̃) def= c.

We define three additional functions over leakable values: (i) Λ : X̃ → {T, F} testing
whether a leakable value has been leaked or not, (ii) ∈R: X̃ → ∆X → {T, F} whose
output is T if the leakable value is sampled from the provided distribution and F
otherwise, and (iii) ≃: X̃ → X̃ → {T, F} modelling the equality of two leakable

values ignoring the confidentiality label. So, let ṽ = (v, δv, cv) and w̃ = (w, δw, cw)
be two leakable values over the set X (ṽ, w̃ ∈ X̃) and δ ∈ ∆X be a distribution over

the same set, then we define

Λ ṽ
def= cv ̸= H,

ṽ ∈R δ
def= δv = δ,

ṽ ≃ w̃
def= v = w ∧ δv = δw.

An extract of the code implementing the feature above described is in Figure 5.3.

5.6 Proof tactics
Tactics are inference rules allowing (part of) a theorem, or goal, to mutate into

another goal. The proof is not completed until a final tactic is able to derive the

tautology from the current theorem. Sometimes the goal structure can be split into
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Fig. 5.3 Implementation of the information flow types, predicates, and operations

type confidentiality = [ SECRET | LEAKED ].
type 'a leakable = 'a * ('a distr) option * confidentiality.

op is_secret ['a] (v: 'a leakable) = SECRET = v.`3.
op is_leaked ['a] (v: 'a leakable) = !(is_secret v).
op sampled_from ['a] (d: 'a distr) (v: 'a leakable) = v.`2 = Some d.

op ovd_eq ['a] (v w: ('a leakable) option) =
((oget v).`1, (oget v).`2) = ((oget w).`1, (oget w).`2).

abbrev (===) ['a] (v w: ('a leakable) option) = ovd_eq v w.
abbrev (<=) ['a] (v: 'a leakable) (d: 'a distr) = sampled_from d v.

several sub-goals to be independently proven, then finally combined altogether. In

the pRHL, the proof can be seen as an execution environment of an algorithm, and

the tactics confer semantics to the syntax used in the code of the algorithm.

Before introducing the tactics to manipulate the new syntax (←↩ and $←↩), we illus-
trate their semantics, using the notation introduced in Sections 2.5 and 5.3. Roughly,

←↩ and $←↩ are syntactic sugar for the deterministic assignment← and probabilistic

assignment
$← respectively, with the side effect of updating the information flow

labels, depending on the context they are manipulated.

v ←↩ x̃

v ← x
x̃← (x, δ, L)

v ← x
x̃← (x, δ, H)

x̃ $←↩ δ

x $← δ
x̃← (x, δ, H)

We describe the three tactics related to the syntax introduced in Section 5.4, for

the special types introduced in Section 5.5:

declassify makes a controlled variable be labelled as leaked, L;

secrnd makes a controlled variable in a probabilistic assignment from a distribution

δ be labelled as sampled from δ and secret, H.

secrndasgn works when two procedures are in relation and makes a probabilistic

assignment mutate to a simple assignment.

The tactics declassify and secrnd work in the HL and pHL similarly, and in the pRHL

can be called side by side, their semantics is summarised in Figure 5.4 (we write the

semantic rules where the top part are the conditions that need to be for the tactic to

be applied, so the logical implication is bottom-up). The tactic declassify mutates the

syntax of←↩ into two deterministic assignments: the first labels the right hand value

of←↩ as leaked, and the second assigns the bare value of the labelled variable to the

left hand value of←↩. The tactic secrnd mutates the syntax of
$←↩ into a probabilistic
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assignment and a deterministic assignment: the first binds a new
4
variable v in the

memoryM where the algorithm runs, then it assigns to v a value sampled from the

distribution δ at the right hand of
$←↩, and the second assigns to the left hand the

value v labelled with δ and H (secret). We remark that at this point of the flow, freshly

sampled values must be secret; whether it will remain secret until the end of the flow,

it depends on the other parameters of the goal, precondition, postcondition and the

successive statements. As the two tactics declassify and secrnd simply rewrite the

newly introduced syntax to assignments that are already supported in EasyCrypt,

their soundness is entailed by that of the language.

Fig. 5.4 Proof rules in the HL for declassify and secrnd. Their corresponding to pHL and sided

pRHL are trivially constructed from them.

[declassify]

r : Y m : Ỹ |= c; r ←↩ m : Ψ⇒ Φ
|= c; m← (π1 (m) , π2 (m) , L) ; r ← π1 (m) : Ψ⇒ Φ

[secrnd]

m : Ỹ v : Y |= c; m $←↩ δ : Ψ⇒ Φ v /∈ FV (M)
|= c; v $← δ; m← (v, δ, H) : Ψ⇒ Φ

The semantics for the tactic secrndasgn, illustrated in Figure 5.5, is more complex

and involves an invariant that must hold before and after calling every corresponding

procedures of the two construction. For a variable, the invariant can be as simple as

the following

←↩
I (ṽ, w̃, δ) def= ¬Λ w̃ ∧ w̃ ∈R δ.

When modelling a random oracle, the values are usually stored in a map or a table.

We implemented support to maps that model functions, where initially all the domain

is mapped to ⊥ and it is interpreted as an empty map. A map M shaping a partial

function from X to Y is defined to always reach an option codomain, M : X →
Y ∪ {⊥}. We use the notation M (x) to denote the value of the domain element x in

the map M . The domain of definition of the map M , denoted as MX , is defined as

MX
def= {x ∈ X|M (x) ̸= ⊥} .

So an empty map is easily defined as the empty domain of definition of the map itself.

M = ∅ ⇔MX = ∅.

When the same tactics are applied to maps, the invariant looks more complicated,

because the maps would not be consistent if compared directly. So more properties

need to be taken into account. Formally, given two maps M, N : X → Ỹ ∪ {⊥}
and a distribution δ ∈ ∆Y over the set Y , we define the invariant for secure random

4
The variable has never been declared or used in the memory before this point in the flow.
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assignment from the map N to the map M as:

←↩
I (M, N, δ) def= ∀x ∈ X,

(x ∈ NX ⇒ N (x) ∈R δ)
∧ (x ∈MX ⇒ x ∈ NX ∧ π1 (M (x)) = π1 (N (x)))
∧ (x ∈MX ⇒ Λ M (x)⇒M (x) = N (x))
∧ (x /∈MX ⇒ x ∈ NX ⇒ ¬Λ N (x)) .

The invariant ensures that for all elements x in the domain X the following properties

hold: (i) if x is set in N , then it is distributed as δ; (ii) if x is set in M , then it is

also set in N and both hold the same sampled value; (iii) if x is set in M and it has

been leaked to the adversary, then x is also set in N and its image equal that in N ,

M (x) = N (x); and (iv) if x is not set in M but is set in N , then the value (in N ) is

secret.

The proof case supported by the tactic secrndasgn is in a relational proof, where

the procedure at left shows a sampling from the distribution δ to a labelled value

v, followed by an assignment from it, and the procedure at right shows the same

assignment but without any sampling:

v $← δ; x← v ∼ x← v

The only case when these two algorithms behave the same is when v in the right

algorithm is secret and its distribution label is δ. In fact, if a value has been sampled

in the past but remains secret, no output from any other function may have disclosed

its content, therefore we can mutate the sampling in the left algorithm with an

assignment whose right value is the one in v from the rightmost algorithm. As shown

in Figure 5.5, the tactics splits the current in two sub-goals.

Fig. 5.5 Proof rule in the pRHL for secrndasgn. This tactic requires to prove two sub-goals.

[secrndasgn-g1]

m ⟨M1⟩ , m ⟨M2⟩ : X → Ỹ ∪ {⊥} x : X ṽ : Ỹ δ ∈ ∆Y

s1 = m (x) $←↩ δ a1 = r ←↩ m (x) a2 = r ←↩ m (x)
|= c1; s1; a1 ∼ c2; a2 : Ψ⇒ Φ M′

1 =M1 with ṽ

|= c1 ⟨M′
1⟩ ∼ c2 :

Ψ ∧ ṽ ⟨M′
1⟩ = m ⟨M2⟩ ⇒ Φ ∧ ṽ ⟨M′

1⟩ = m ⟨M2⟩ ∧ ¬Λ ṽ ⟨M1⟩

[secrndasgn-g2]

m ⟨M1⟩ , m ⟨M2⟩ : X → Ỹ ∪ {⊥} x : X ṽ : Ỹ δ ∈ ∆Y

s1 = m (x) $←↩ δ a1 = r ←↩ m (x) a2 = r ←↩ m (x)
|= c1; s1; a1 ∼ c2; a2 : Ψ⇒ Φ M′

1 =M1 with ṽ

|= {c1; m (x)← ṽ; a1} ⟨M′
1⟩ ∼ c2; a2 : Ψ ∧ ṽ ⟨M′

1⟩ = m ⟨M2⟩
⇒ Φ ∧m (x) ⟨M′

1⟩ ∈R δ∧ ←↩
I (m ⟨M′

1⟩ , m ⟨M2⟩ , δ)
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The first goal requires that the value ṽ has not been leaked before the execution of

the relevant statements:

¬Λ ṽ ⟨M1⟩ .

The second goal mutates the probabilistic assignment into a deterministic assignment

with the same exact value in the other construction. Importantly, this detail solves the

cascading problem of re-sampling that affects the eager-lazy approach. Borrowing the

stored value from the other construction guarantees that no further assignments need
to be adjusted where the stored value has been used

5
. As we will show in Section 5.7,

the invariant will play a crucial role to support the two proof obligations generated

when applying the tactic secrndasgn.
Solving this problem will allow us to relate the already sampled value from the

other construction avoiding the need for re-sampling: we emphasise that this tactic

is the key to overcome the cascading adjustment that may be required if using the

eager tactics involving re-sampling.

As a final comment, we notice that the tactic secrndasgn is not symmetric, i.e.
it requires the probabilistic assignment

$←↩ to appear on the leftmost algorithm.

However, the logic for pRHL judgements allows to swap the leftmost algorithm with

the rightmost (equivalence of algorithms is symmetric). This can be easily done

with the EasyCrypt tactic symmetry. If the probabilistic assignment
$←↩ appears on

the rightmost algorithm, then symmetry can be simply applied before secrndasgn.
So, extending our tactic to be symmetrically applicable would be a very minor

improvement and definitely is not a limitation in its logic.

5.6.1 About the soundness of introduced tactics
Toward soundness, it is of crucial importance

6
to forbid the coder to abuse our syntax

by modifying incorrectly the labels in the construction itself. If incorrectly labelled,

in fact, the tactics introduced would make it possible to disprove the tautology, i.e.

T = F. This would be a very unpleasant situation as the automatic SMT solvers in

EasyCrypt may find their way to prove everything, as implied from the assumption F.
To avoid such situations, our implementation forbids direct or indirect usage (inside

other expressions) of variables and maps with information flow labels if not with

their dedicated syntax; moreover, no regular tactics are able to discharge statements

with labelled values.

The syntactic structures←↩ and $←↩ that we introduced are simply a translation to

multiple assignments, and the tactics that manipulate them in the proof environment

can be seen more as a semantic translation rather than a full language extension. As

introduced in Section 5.6, the two tactics declassify and secrnd, illustrated in Figure 5.4,
simply rewrite the newly introduced syntax to assignments that are already supported

in EasyCrypt. Their soundness is trivially entailed by the language itself: without

the tactic secrndasgn, the syntactic structures←↩ and $←↩ are uniquely mapped to

multiple statements with no other effects whatsoever:

5
Using that value does not automatically imply that it has been disclosed to the adversary.

6
I explicitly thank Benjamin Gregoire for this important note.
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v ←↩ x̃

v ← x
x̃← (x, δ, L)

declassify

x̃ $←↩ δ

x $← δ
x̃← (x, δ, H)

secrnd

It is important to remark that we modified the parser of the language such that it

forbids regular assignment from and to labelled type, e.g. x̃← (x, δ, L) or x← f (x̃)
for any f . This way, the user cannot freely access the internal value nor manipulate

the confidentiality label, but needs to use their dedicated syntax.

Conversely, the introduction of the tactic secrndasgn requires more attention,

as it introduces ambiguity of their translation: in particular, it is able to mutate a

probabilistic assignment into a deterministic assignment.

ỹ $←↩ δ ∼ ỹ $←↩ δ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x̃ $←↩ δ
x←↩ x̃

∼
y ←↩ ỹ

x̃← ỹ
x←↩ x̃

∼
y ←↩ ỹ

secrndasgn

past flow

Nevertheless, the reasoning behind this semantic behaviour is already present

in the EasyCrypt language and exactly the same as the tactic rnd when applied to

probabilistic assignments drawing from the same distribution in the pRHL. The tactic

rnd is well supported in EasyCrypt and illustrated in Figure 5.6.

Fig. 5.6 The tactic rnd in the pRHL in EasyCrypt can be applied to probabilistic assignments;

logic implication is bottom-up. The two isomorphisms f2,1 and f1,2 can be explicitly provided.

[rnd]

x, y : X f : X → X → {T, F} δ1, δ2 ∈ ∆X f2,1, f1,2 : X → X
|= x←$ δ1 ∼ y ←$ δ2 : Ψ⇒ f (x, y)

|= {} ∼ {} : Ψ⇒
∀y, Pr [y ← δ2] > 0⇒ y = f1,2 (f2,1 (y))
∀y, Pr [y ← δ2] > 0⇒ Pr [y ← δ2] = Pr [f2,1 (y)← δ2]
∀x, Pr [x← δ1] > 0⇒ x = f2,1 (f1,2 (x)) ∧ f (x, f1,2 (x))
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The limitation of the tactic rnd is that it requires both probabilistic assignments

to happen at the bottom of the flow of the proof: our tactic secrndasgn overcomes

this limitation by applying the reasoning of rnd to two probabilistic assignments

that happen to be in different parts of the flow (and therefore cannot possibly be at

the bottom of the flow of the proof). We remark that our approach automatically

applies the reasoning of rnd and therefore implements a very different idea from the

eager-lazy approach. In the eager-lazy approach, in fact, a redundant probabilistic

assignment is artificially injected into the code that prepares the algorithm to be

suitable for rnd to be independently applied later. Differently, our approach directly

applies the result of the rnd by making sure that the missing probabilistic assignment

was actually executed previously in the flow and, importantly, its value has not been

manipulated since the last time it was sampled.

Implicit application of the tactics rnd and swap

As the reader can see, the assignment x̃← ỹ produced by secrndasgn captures their

equality (after the execution of the assignment). Such equality can be exactly the

post-condition of the tactic rnd illustrated in Figure 5.6, where x̃ = (x, δx, cx) , ỹ =
(y, δy, cy) ∈ X̃ , the isomorphisms f1,2 and f2,1 are both the identity, δ = δ1 = δ2 is

a distribution over X , and f is the proposition x̃ = ỹ, under the precondition Ψ =
(δx = δ ∧ δy = δ ∧ cx = cy). With such constraints, the post-condition propositions

produced by applying rnd are trivially true:

[rnd]

x̃, ỹ : X̃ δ ∈ ∆X

|= x←$ δ ∼ y ←$ δ : (δx = δ ∧ δy = δ ∧ cx = cy)⇒ x̃ = ỹ

|= {} ∼ {} : (δx = δ ∧ δy = δ ∧ cx = cy)⇒
∀y, Pr [y ← δ] > 0⇒ y = y

∀y, Pr [y ← δ] > 0⇒ Pr [y ← δ] = Pr [y ← δ]
∀x, Pr [x← δ] > 0⇒ x = x ∧ x̃ = x̃

The precondition Ψ = (δx = δ ∧ δy = δ ∧ cx = cy) is forcibly introduced by the

invariants introduced by the application of the tactic secrndasgn and must be proved,

otherwise the proof cannot be completed. To complete the soundness in the reasoning

of the tactic secrndasgn, we need to show that the above situation is uniquely and

unequivocally captured. This can be done by showing that

• the past flow definitely contained a corresponding sampling (that could have

been discharged with rnd), and

• that sampling could have been moved to the current point in the flow.

The first part is proved by the invariant that requires the value of ỹ to be labelled

as H and sampled from the distribution δ. This requirement is uniquely producible
by the application of the tactic secrnd anywhere in the past flow: the tactic can

be applied only to the syntax
$←↩, that unfolds exactly to x←$ δ and produces the

statement x̃← (x, δ, H) that validate the precondition Ψ.
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The last part can be seen as a virtual extension
7
of the tactic swap in EasyCrypt:

indeed, swap is very simple and allows tomove a statement from a position to another

and it fails if the swapped statements are dependent. The only constructs that are

able to manipulate (read or write) a labelled value are either
$←↩ or←↩ that can be

singularly discharged only by secrnd and declassify respectively, or in an equivalence

by secrndasgn itself. We have two cases to show the independency since the last
sampling: (i) the value ỹ have never been used, (ii) the value ỹ have been read.

Write operations are not in our case list, as they would represent the last sampling
operation.

The first case (i) is trivial, as there cannot be dependent lines and the reasoning

is as sound as the tactic swap. The second and last case (ii) implies that the variable

ỹ has been accessed in another statement (assignments, or condition in guards or

loops). The parser allows only syntax←↩ to be used forbidding anything else. This

way, the only tactic to discharge the special assignment←↩ is declassify, whose effect
will be to mark ỹ as leaked, L: this will simply prevent the user to prove part of the

post-condition of secrndasgn− g1 (see Figure 5.5), where the variable is required to

be secret, H, and the proof cannot be completed.

As we have covered all possible scenarios, this concludes our discussion about

the soundness of the proposed approach and extension.

5.7 Sample usage in pRHL proofs
To show the effectiveness and simplicity of application of our approach, we show

an example where an adversary cannot distinguish between two constructions,

implemented as two modules M1 and M2, while given oracle access to a subset of

the internal procedures of one module or (exclusively) the other. The proof structure

reproduced here is exactly the same of many other indistinguishability proof where

preconditions and post-condition are more complicated; this structure is common

especially in simulation-based proofs of complex constructions: we used this approach

in the proof of Sophos, see Chapter 6. In such and similar proofs a simulator replaces

structures depending on (unknown) private inputs with randomly sampled values:

in this Section, we show a very simplified case study.

Both themodulesM1 andM2 emulate the behaviour of a random function f : X → Y ,

as can be seen in Figure 5.7. Both implementations are lazy: the first time when

the input x ∈ X is used for calling the procedure f , a value y is freshly sampled at

random from a distribution δ and stored to an internal map m, the next times when

f (x) will be called, the value will be retrieved its image from m. Additionally to f ,
the adversary can also call the procedure g : X → {⊥} whose signature is identical
to f apart from the empty return value, i.e. it produces no output. The only difference

between M1 and M2 is in the implementation of the function g, where in the former

7
The tactic swap has the same limitation of rnd, i.e. it cannot reason outside of the current flow of

execution.
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Fig. 5.7 Sample equivalent programs.

module M1: RF = {
var m: (X, Y leakable) fmap

proc init() = { m = empty; }

proc f(x: X) = {
var ret: Y;

if (!(dom m x)) {
m.[x] </$ dv;

}

ret </ oget m.[x];

return ret;
}

proc g(x: X) = { }
}.

module M2: RF = {
var m: (X, Y leakable) fmap

proc init() = { m = empty; }

proc f(x: X) = {
var ret;

if (!(dom m x)) {
m.[x] </$ dv;

}

ret </ oget m.[x];

return ret;
}

proc g(x: X) = {
if (!(dom m x)) {

m.[x] </$ dv;
}

}
}.

the procedure g does nothing, and in the latter g actually fills the map (if not already)

with a value that can be later retrieved by calling f on the same argument.

Formally, we can show that, given a non-singleton uniform distribution δ, and
a probabilistic polynomial time adversary A, then the advantage of distinguishing

between the two constructions M1 and M2 is zero:

AdvAM1,M2 (1n) = 0.

Following the definition of advantage given in Section 2.1.3, the probability of

distinguishing either must be the same

Pr [A (M1) = 1] = Pr [A (M2) = 1] .

The proof of the above lemma follows the complete formal proof conducted in

EasyCrypt, with the examples in Figure 5.7. Inspecting into the details of the proof

of the above statement, the indistinguishability can be split into showing that the

outputs of the corresponding procedures f in M1 and M2, upon the same inputs, are

equally distributed. To keep consistency during the flow, we also use the invariant

←↩
I (m ⟨M2⟩ , m ⟨M1⟩ , δ). For simplicity, we denote m ⟨M1⟩ as M and m ⟨M2⟩ as
N , so the invariant shows the same notation as defined in Section 5.6.



94 Information flow in the pRHL

Formally, we have to prove the validity of the invariant before calling the distin-

guisher A, along with the following pRHL judgements:

|= {} ∼ {} : Ψ⇒ Φ (5.6)

|= M1.g (x) ∼M2.g (x) : Ψ⇒ Φ (5.7)

|= M1.f (x) ∼M2.f (x) : Ψ⇒ Φ ∧ r ⟨M1⟩ = r ⟨M2⟩ (5.8)

where the precondition Ψ includes the invariant and the arguments passed to the

function, Ψ =←↩
I (M, N, δ) ∧ x ⟨M1⟩ = x ⟨M2⟩, the post-condition includes the

invariant Φ =←↩
I (M, N, δ), and (the latest judgement only) includes the return values

r ⟨M1⟩ and r ⟨M2⟩.
The first pRHL judgement (5.6) is trivial, as nothing is executed and Φ is obviously

entailed by Ψ. The second judgement (5.7) shares similarities with the first, as

M1.g (x) = {} is the empty algorithm and both produce no output. From here, we

have two cases (a) when x is already in the map m of the memoryM2, and (b),

conversely, when x /∈ NX and about to be sampled. In the case (a), we reduce to the

first judgement (5.6), while in (b) we reduce to the following

|= {} ∼ m (x) $← δ : Ψ⇒ Φ.

Here, the action of sampling into m (x) ⟨M2⟩ does not jeopardise the validity of the

invariant. In particular, only the last part of the invariant may be affected, i.e. when

x /∈MX but x ∈ NX . So, if we apply the tactic secrnd, then we can keep track of the

confidentiality of m (x) ⟨M2⟩ and prove that ¬Λ m (x) ⟨M2⟩, as requested by the

invariant. Finally, the third pRHL judgement (5.8) is the one that benefits the most

from our work. All the cases when the value is in the domain of both M and N , i.e.

x ∈M∧x ∈ N or x /∈M∧x /∈ N , the algorithms of either sides are exactly the same,

and doing consistent operations in both maps M and N does not affect the validity

of the invariant. The most relevant and interesting part is, again, when x /∈MX but

x ∈ NX . Different from the judgement (5.7), the procedure also produces an output,

that corresponds to the values stored in the memories: m (x) ⟨M1⟩ and m (x) ⟨M2⟩.
In particular, we need to show that they are (probabilistically) the same, as in this

case the judgement (5.8) reduces to the following:

|= m (x) $← δ; r ← m (x) ∼ r ← m (x) :
Ψ ∧ x /∈MX ∧ x ∈ NX ⇒ Φ ∧ r ⟨M1⟩ = r ⟨M2⟩ ,

The information flow labels associated to the value m (x) can be used to apply the

secrndasgn tactic as explained in Section 5.6. Following the rules for the tactic as

illustrated in Figure 5.5, the goal splits in two proof obligations:

|= {} ∼ {} : Ψ′ ⇒ Ψ′ ∧ r ⟨M′
1⟩ = r ⟨M2⟩ (5.9)

|= m (x)← v; r ← m (x) ∼ r ← m (x) : Ψ′ ⇒ Φ′ (5.10)
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where

M′
1 =M1 augmented with ṽ,

Ψ′ = Ψ ∧ x /∈MX ∧ x ∈ NX ∧ v ⟨M′
1⟩ ≃ m (x) ⟨M2⟩ , and

Φ′ = Φ ∧ r ⟨M′
1⟩ = r ⟨M2⟩ ∧m (x) ⟨M′

1⟩ ∈R δ.

To finish the proof, we see that the proof obligation (5.9) holds, as the confi-

dentiality of the value in ṽ is secret as the invariant; this fact holds because the

value borrowed from the map was sampled in the past, and it has never been used or

revealed. The validity of the last proof obligation (5.10) is trivial, as the return values

now are simple assignments of the same values in both sides, and the value clearly

must have been labelled as sampled from δ (no other probabilistic assignments are

even used in the structure of M1 nor M2).

5.8 Conclusion
In this chapter, we showed our implementation that uses information flow labelling

with the purpose of proving indistiguishability between two constructions where

random samplings are drawn in different procedures that are callable as oracles.

Firstly, we extended the core syntax of EasyCrypt to label variables enabling for

information flow analysis for code-based pRHL reasoning. Secondly, we implemented

the semantics of such new syntax through creating new tactics to carry out proofs

manipulating labelled variables and maps. We finally showed a case study that, if

compared with the eager-lazy approach, can noticeably simplify the proof and does

not involve additional intermediate games. Moreover, we see our contribution as a

sound basis to support information flow analysis for code-based pRHL reasoning.
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In this chapter, we propose formal definitions for dynamic Symmetric Searchable

Encryption (SSE) schemes, then we show a formal proof of forward secrecy with the

aid of a mechanised formal proof in EasyCrypt for the recent SSE scheme Sophos, as

a case study. The scheme inherently requires the proof to be carried out against an

adaptive adversary and in the Random Oracle Model. As such, our mechanisation

is the first of its kind for searchable encryption schemes. Furthermore, our work

patches the on-paper proof, of which flaws may affect the proofs of successive

proposed variants [54] that are based on the same simulation-based proof idea.

Figure 6.1 illustrates our contribution, where we first propose generic definitions

and support for SSE schemes to be able to describe different important SSE protocols.

Translated to practice, we extended the corpus of theories of EasyCrypt to support

abstract searchable encryption schemes, permutations, collection of one-way trapdoor

permutations, function self-composition, as well as extending existing theories (in

EasyCrypt) with novel proofs to aid our main proof. Then, we show the effectiveness

of our mechanisation by implementing the real protocol Σoϕoς and proving forward

secrecy.
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Fig. 6.1 Description of our contribution for searchable encryption schemes.
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6.1 Searchable Encryption
Day by day, an increasingly amount of sensible data is being outsourced to remote

cloud servers by individuals, companies, and governmental bodies. Additional func-

tionality over those data is offered in the form of cloud services such as email and

collaborative tools, personal data synchronisation and backup, document sharing and

file hosting, and other services. Searchable encryption is one of such services enabling

a client to search documents by keyword, where the documents are encrypted and

stored on an untrusted server. The security goal is to guarantee privacy to client’s

both documents and queries.

To achieve privacy, the simple basis is that of encrypting the data before sending

it to the server. However, if a client wants the server to be able to perform operations

over the encrypted data, then expensive cryptographic techniques are required, such

as fully-homomorphic encryption [83] or ORAM-based constructions [132]. Their

inefficiency excludes them from being adopted in practical implementations. To

improve the efficiency, either functionality is reduced or security is relaxed to allow

some information leakage. Finding an acceptable balance of security and performance
is very important towards the adoption of practical secure implementations. Com-

panies need to use such secure implementations in accordance not only with the

security demand of clients, but also with legal regulations by which they need to

abide, such as the most recent European General Data Protection Regulation (GDPR)

approved in 2016, where, for example, outsourcing non-encrypted either financial

data or computation of medical data becomes a felony.

There are two flavours of searchable encryption schemes, static and dynamic.
Static schemes have been proposed where the corpus of documents cannot be updated

by adding or removing documents [72, 60, 61, 71, 113, 114] among others. This is

quite restrictive, as any change in the database would require the client to re-create

and encrypt the whole new database and reinitialise the whole settings; so, dynamic
schemes have been proposed to include the update functionality [84, 159, 108, 108,

152, 52, 81, 141] among others. The current state of the art studies dynamic schemes,

where the database can be updated, and the database of documents may be detached
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from the database containing the index of the documents
1
, index based dynamic

searchable encryption.

Efficient searchable encryption schemes allow for a small amount of leakage to

the server, as the server must distinguish between encrypted documents containing a

keyword from those that do not. The impact of such leakage has been underestimated

for long time. This is witnessed by many conceptual and practical attacks that would

allow the server to reconstruct a large portion of client’s data or queries [102, 117,

58, 164] from the leakage. The research efforts are towards minimising such leakage

to protect client’s privacy. Researchers propose new definitions and constructions

to describe the security of searchable encryptions schemes to address the security

flaws. One of the most important property in dynamic schemes is forward security.
Forward security prevents the keyword searched in the past from being related to

newly updated documents [71]. The work that best highlighted the importance of

forward security was by Zhang et al. [164], in which they showed how devastating

file-injection attacks could be for queries’ privacy. They show a series of attacks that

can be run on searchable encryption schemes where the server can learn that newly

added documents match previous search queries
2
. With such information and the

ability to inject as few file as logarithmic to the number of keywords, a server could

reconstruct the content of past queries, hence break their privacy. Forward secure

schemes do not leak such information to the server, making those attacks ineffective.

Before the file-injection attack, only few schemes were forward secure [60, 152]

among the efficient ones supporting updates, as opposed to others that were not [84,

108, 107, 59, 133, 115, 58]. Forward security became one of the main properties of

novel dynamic schemes [54, 81, 151].

Sophos

Sophos, proposed by Bost [52], is the first scheme putting forward privacy on top

of the discussion, and whose performances degrade gracefully on scaling with the

number of document, updates and search queries.

In Sophos, the client stores a state for each keyword. This state changes upon

updates, when the same keyword is paired with a document on the server. The

new state is not linkable to the previous update and search queries, and it is not

revealed until a search query. Upon search, the state is provided to the server, who

can correctly retrieve the matching documents. An old state would not produce the

correct search result. To avoid the server to pre-compute future states, trapdoor

permutations are used. Upon updates, no information is leaked to the server and the

scheme is therefore forward secure.
For its importance on providing an acceptable balance between security and per-

formance, Sophos became the motivating example of our mechanisation of searchable

encryption schemes.

1
This separation does not change the security scenario if both databases are outsourced to untrusted

servers.

2
This information was believed to do no harm in many dynamic schemes at the time, so it was

acceptable to leak.
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6.1.1 Formal methods and Searchable Encryption
Our security analysis, that we will illustrate in Section 6.4, is carried out in the

computational model, introduced in Chapter 2. We mechanised the proof with the

aid of EasyCrypt [26], a tool that employs formal methods to model cryptographic

protocols, see Section 2.5.

As the computational model was required, other tools such as the Foundational

Cryptographic Framework [138], CryptHOL [31], and CryptoVerif [45] have been

considered. The definitions of Sophos are based on oracles, therefore they are required
to model security properties against adaptive adversaries [137]. We introduced

security against adaptive adversary in Section 2.2.5. This requirement drove our

choice of which tool to use.

To the best of our knowledge, the only application of formalmethods to Searchable

Encryption is due to Petcher and Morrisett in 2015 [137], who provided a mechanised

formal proof for the construction in [59] written in the Foundational Cryptographic

Framework (FCF) [138]. They, however, support only constructions in functional style

and security against non-adaptive adversary that prepares all the queries in advance.

Almost nothing of their work can be reused to carry out proofs against adaptive

adversaries; this limitation is because the proofs would be entirely different [137]. On

the contrary, EasyCrypt allows for reasoning about imperative code, which is much

more natural, as the most of the constructions in Searchable Encryption are written

in imperative languages or pseudo-language: knowing a programming language

would suffice to appreciate whether the model in EasyCrypt reflects the original

construction.

Recently, Stoughton and Varia have shown the capability of EasyCrypt to carry

out proofs in the Random Oracle Model against adaptive adversaries [154]. Similarly

to their work, we explicitly limit the number of times that the adversary can call

the oracle, allowing us, where possible, to get concrete upper bounds in the proofs

without explicitly employing complexity theory and cryptographic assumptions.

Differently from their work, we used the standard definitions of simulation-based

paradigm [116], and we needed to refer to some cryptographic assumptions; in

particular, the one-wayness of trapdoor permutations, which will be briefly intro-

duced in Section 6.2.2. Our proof is valid for honest-but-curious adversary
3
, and,

by appropriately changing the client construction, the theorem can be turned to be

capture malicious adversary [52]. In particular, the minimum leakage provided to the

simulator is enough to produce computationally equivalent output as the original

protocol. Therefore, the proof we produce is valid in absence of side channels and

other sources of leakage.

CryptHOL supports reasoning in the ROM [118]. However, at the time we started

and chosen what tool to work with, CryptHOL did not support simulation based

proofs as opposed to EasyCrypt. Additionally, CryptHOL does not support imperative

code reasoning, which we find much more natural to describe complex protocols, e.g.

searchable encryption protocols, to check against the typical real implementations.

3
A distrusted party of the protocol that at least plays the protocol as it is supposed to, but still

tries to infer any information from running it.
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CryptoVerif is a highly automated tool [45] where the protocols may be written in

the pi calculus [5]. Even if its automation is very appealing, it applies to some proofs

only; complex proofs deviating from the supported ones requires either interactive

mode, very difficult to use, or changing the internal core of CryptoVerif. However it

has been successfully used to prove security for popular TLS [48].

Some (on-paper) effort to support indistinguishability in the ROM, see Sec-

tion 2.1.3, have been done in the symbolic model too [78]. However, the ideas

they proposed have not been implemented in proof assistant tools. And their possible

application to adaptive security in SE or the security guarantees one can prove for

SE schemes are not clear and less intuitive to apply.

6.1.2 Notation andDefinitions of Dynamic Searchable Encryp-
tion

Dynamic searchable encryption schemes have the practical functionality of letting

the client update (add or delete) the documents. We notice that, naively, updates

to documents can be always added to any searchable encryption scheme by simply

re-starting everything with the freshly updated database. We consider dynamic

schemes only those that do not need an almost full reinitialisation of the protocols,

e.g. re-indexing all the documents or recreating secrets. For example, Curtmola

et al. [71] define the scheme with five algorithms including the encryption of the

database and focusing on searches only. Even if they discuss the updates (outside

of their definitions), it cannot be considered a dynamic scheme, as it is required to

re-initialise (or re-start), and the client needs to reconstruct all the secrets for newly

inserted documents, following the idea of Chang et al. [60].

Several formal definitions have been given in the literature for different construc-

tions [133, 52, 114, 151, 152], especially where a formal proof is provided or at least

sketched. Even though they are fairly good for reasoning with the ad-hoc construc-

tions in the related papers, none is obviously applicable to describe the schemes

studied in other papers. Among the many definitions, we selected that of Naveed

et al. [133] and Stefanov et al. [152], as we found them more easily comparable and

clear to the point.

We stress that this comparison is not done to show that it is always impossible to
adapt those definitions one another, but to show that those adaptations would gener-

ally require the security analysis (theorems and proofs) to be adapted, reconsidered or

patched accordingly. We propose to solve this problem by using common definitions

that provide primitives that can be used to model existing searchable schemes. Their

impact can be especially appreciated when analysing different schemes or when

reusing the same lemma or proof argument for a novel scheme.

Naveed et al. [133] define a dynamic scheme through five probabilistic polynomial-

time procedures run by the client, some of which interact with the server (protocols),

and two functionalities offered by the server, for uploading and downloading new

documents. The definitions by Stefanov et al. [152] share similarities with the defini-

tions in Bost [52], Lai et al. [114], or Song et al. [151], among others. Minor formal

differences can be appreciated among them too: while Bost and Lai et al. describe
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the scheme with an algorithm (for initial setup) and two protocols (for update and

search), differently Stefanov et al. and Song et al. use three protocols; also, return

values are different and arguments do not follow the same order.

Another aspect to consider is whether the algorithms make use of explicit state

(Naveed et al.) or not (Song et al.): if the state is formally passed as argument the

algorithm is stateless, as it does not need to have memory of the state
4
.

To quickly appreciate those differences, Figure 6.2 reports an extract of the formal

definitions of Naveed et al. and Stefanov et al.

Fig. 6.2 Comparison of definition for dynamic SSE schemes. The leftmost shows five stateful

procedures, while the rightmost counts three stateless procedures.

Extract from Naveed et al. [133] Extract from Stefanov et al. [152]

We now show how describing one scheme through the definitions of the other is

far from straightforward. The first step is to use a single notation. We denote

• as λ the security parameter,

• as K the key generated by the initialisation procedures,

• as w a keyword from the list of all keywords W ,

• as DB and EDB the plaintext database and its encryption (including construc-

tions enabling for searches) respectively,

• as d a document index or document ID,

• as σ a secret state stored by the client,

4
As separate objects, the server and the client are required to have their own state (for example,

private keys or the encrypted database) regardless of their formalisation for reasoning with stateful or

stateless procedures.
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• as u a triplet for the update operation that can be (add, d, w) or (del, d, w)
where w is a unique list of n keywords, and

• as I a map from keywords to matching document IDs, where I (w) ⊆ I are
the documents containing the keyword w.

A skeleton of the procedures by Naveed et al. and by Stefanov et al. with unified

notation are illustrated in Algorithms 1 and 2 respectively. We opted to convert

the definitions by Naveed et al. to be stateless. In their stateful form, they do not

completely show what is the intended output affecting the server-side database

description, nor the client’s state σ. The client’s state σ is a storage required to run

the procedures and can include the key generated with keygen. Those interpretable
parts have been completed by reading through the specific construction they propose

and its security analysis.

Alg. 1. Prototype of definitions
in Naveed et al. [133]

Naveed:

keygen(1λ)→ K (client only)

indexgen(K, DB, W, I;⊥)→ σ; EDB
search(σ, w; EDB)→ I (w) ; EDB′

add(σ, d; EDB)→ σ′; EDB′

remove(σ, d; EDB)→ σ′; EDB′

Alg. 2. Prototype of definitions
in Stefanov et al. [152]

Stefanov:

setup(1λ, DB; 1λ,⊥)→ σ; EDB
search(σ, w; EDB)→ σ′, I (w) ;⊥
update(σ, u; EDB)→ σ′; EDB′

The last step is to describe one construction through the definition of the other.

In Naveed et al. the initialisation phase and the update operations are each split in

two procedures.

The most relevant incompatibility is that Naveed.search modifies the index data

structure, but Stefanov.search is required not to (no output). This small detail may

break (at least) the correctness of the construction, as successive calls would use

the old state. One may simply think of modifying the Stefanov.search procedure to

return EDB′; however, the security analysis in Stefanov et al. relies on that being ⊥
when they prove security in a simulation-based fashion. Therefore, this modification

would require the proof to be revised under this light. This difficulty, would suggest

to prefer the definitions of Naveed et al.

In an attempt to lift the definitions of Stefanov et al. to those of Naveed et al.,

then another important incompatibility raises. In particular, one should be able to

instantiate the initialisation procedures Naveed.keygen and Naveed.indexgen through

the initialisation procedure Stefanov.search. This could be attempted in the way

illustrated in Algorithm 3.



104 Searchable encryption security in the computational model

Alg. 3. An attempt to lift the definitions of Stefanov et al. [152] to those of

Naveed et al. [133].

Naveed:

keygen(1λ)
1 (σ, EDB)← Stefanov.setup

(
1λ,⊥; 1λ,⊥

)
2 k ← extract the key from σ
3 return k

indexgen(k, DB, W, I;⊥)
4 (σ, EDB)← Stefanov.setup

(
1λ, DB; 1λ,⊥

)
5 forall w ∈ I do
6 forall i ∈ I (w) do
7 (σ, EDB)← Stefanov.update ((σ, (add, i, w)) ; EDB)

8 return σ; EDB

In the initialisation part, Naveed.keygen and Naveed.indexgen must be called subse-

quently, as the key k is required for calling Naveed.indexgen. Then Stefanov.search
will be run twice, re-creating the secrets (including k) so that the first may became

obsolete. This surely breaks the construction of Stefanov et al. that needs to patched.

One possible patch could be that of modifying the behaviour of the Stefanov.search,
leveraging the fact that when it is called by Naveed.keygen, ⊥ is passed in place of

the database DB that could not be used. So, if no database is passed, the state σ is

populate with the sole key, and EDB is not created; otherwise, Stefanov.search does

not create a new key, but populates the rest of σ (if any) and EDB. However, this

would also require to modify the signature of Stefanov.search to allow for passing k
(or σ) as a new argument. All the analysis done in Stefanov et al. must be reconsidered

in the light of those modifications when described with the analysis of Naveed et al.

The above mentioned are examples of the difficulties in adopting existing def-

initions to describe different constructions of searchable encryption schemes. We

discuss our solution to those difficulties in Section 6.3.1, where we provide general

definitions in such a way that those constructions can be seen as instances or refine-

ments of them. This will make not only easier to compare and reuse the analysis

of different schemes, but also unify the description of the security claims of future

constructions.

6.2 Cryptographic Primitives and Concepts
We provide a mechanised security analysis of Σoϕoς , whose model is illustrated

in Section 6.3.2, in terms of adaptive security to prove that the scheme is forward
secure, as defined in Section 6.2.5. The cryptographic constructions required to model

the protocol are Pseudo-Random Functions (PRF), hash functions, and one-way

trapdoor permutations. Hash functions are modelled as random oracles, and formal

definitions of Pseudo-Random Functions and trapdoor permutations are provided in

Sections 6.2.1 and 6.2.2.
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6.2.1 Pseudo-random functions
A family of pseudo-random functions is such that its functions, if randomly chosen,

are indistinguishable from a random function, that is a function whose image is

determined at random.

We borrow the definitions from Katz and Lindell [109], whose discussion refers to

mapping strings of length n to strings of the same length for simplicity. We consider

a random function f : {0, 1}n → {0, 1}n
and a keyed function F : {0, 1}λ ×

{0, 1}n → {0, 1}n
, where the length of the strings n is the security parameter.

We use k ∈ {0, 1}λ
to index the family F , whose elements are the functions Fk :

{0, 1}n → {0, 1}n
. We define the security of F in terms of advantage. We employ a

distinguishing experiment prf against an adversary A trying to distinguish between

Fk and f , where preliminarily a key k for F is (uniformly) generated. We give the

adversary the ability to interrogate an oracle O that can be programmed either with

the truly random function f , denoted as Of , or the pseudo-random function Fk,

denoted as OFk
. We write the security definition of indistinguishability according

with the definition 2.2.4, where the experiment oExp is renamed as prf , as illustrated
in Figure 6.3.

Fig. 6.3 Flow of the experiment for indistinguishability between Fk and f .

challenger
k ←$ {0, 1}n oracle O

b←$ {0, 1}
programs O with Fk if b, otherwise with f

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A

info−−−−−→
interacts←−−−−−−−→

sets b′ to 1 if

thinks that O is

programmed with Fk,

b′←−−−−− b′ to 0 otherwise

↓
b = b′

Definition 6.2.1 (Computationally secure pseudo-random function). The function
F is a family of secure pseudo-random functions if and only if for any PPT adversary
A, there exists a negligible function µ such that

Advprf
Fk,f

(
1λ

)
= |Pr [A (OFk

) = 1]− Pr [A (OR) = 1]| ≤ µ (λ) .

where k is chosen uniformly at random and n is the security parameter.

6.2.2 Collection of trapdoor permutations
A permutation is an invertible function where the domain and the codomain coincide,

it basically shuffles the domain. A collection of permutations f can be obtained by
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Fig. 6.4 Flow of the inverting experiment defining the security of trapdoor permutations.

challenger A (inverter)

(α, τ)← K (1n)
y ←$ R (α) α, y−−−−−−−−−−−−→

x←−−−−−−−−−−−− guesses the inverse x
↓

fα (x) = y

indexing the domain D through the index α, Dα, that indexes the permutation fα as

well. The permutation fα is called a trapdoor permutation if its values are easy to

invert with the knowledge of a value τ (the trapdoor) associated to α. Otherwise if τ
is not known, the permutation fα cannot be efficiently inverted.

We follow the formalisation and, for the most, the notation of Lindell in [116].

We consider the sets A, T , and Dα, where A is the set for indexing the permutations

fα and its domain Dα, α ∈ A, T is a set of trapdoors.

A collection of trapdoor permutations is defined by the quadruplet (K,R,F ,B)
of efficient algorithms, K for key generation,R for random sampling, F for forward
mapping, and B for backward mapping. More formally,

• K (1n) generates a pair (α, τ), of which τ is called the trapdoor;

• R (α) samples both the domain and the codomain of fα returning an uniformly

distributed element;

• Fα (x), where x ∈ Dα, forward maps domain elements to codomain elements,

F (α, x) = fα (x);

• Bτ (y), where y ∈ Dα, backward maps codomain elements to domain elements,

B (τ, y) = f−1
α (y).

The security of a trapdoor permutation fα is defined as the hardness of finding

its inverse in the case the trapdoor τ is not unknown. In such context, the function

fα should be as secure as a one-way function; differently when τ is known, fα must

be efficiently invertible.

Formally, the security of fα is defined through the inverting experiment iExp,
illustrated in Figure 6.4, and described as follows:

• K (1n) is run to obtain (α, τ), thenR (α) is run to choose a uniform y in the

codomain Dα.

• The inverter A is given α and y as input, and output x.

• The output of the experiment is 1 if and only if y = fα (x).

Definition 6.2.2 (Trapdoor permutation). A collection of quasi one-way permutations
π = (K,R,F ,B) is called a trapdoor permutation if the four algorithms K,R, F , B
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are efficient, i.e. they are probabilistic polynomial-time algorithms, and if for every PPT
adversary A, exists a negligible function µ such that:

Pr
[
iExpAπ (1n) = 1

]
≤ µ (n) .

where n is the security parameter. This probability corresponds to the following

Pr
[
A (1n, α, y) = f−1

α (y)
]

where y is a uniformly random value sampled with toR (α), (α, τ) has been generated
by calling K (1n), and τ is unknown to A.

The security Definition 6.2.2 is adapted from Katz and Lindell [109]. We remark

that the minimum probability of inverter A is that of guessing from Dα, so |Dα|−1

has to be negligible too.

6.2.3 Database
The search functionality of searchable encryption scheme allows the client to retrieve

a collection of documents that contain a selected keyword. The positions where

the keyword lie in the document do not affect the search result. We work with

index-based schemes, whose database offering the search functionality is detached

from that of the actual documents. For the reasons above, the database of documents

is usually simplified as a list of keyword-index pairs, or (equivalently) as a map from

document indexes to set of keywords [59, 58, 133, 152, 52, 54, 151].

Definition 6.2.3 (Database). Given the set of all keywords {0, 1}⋆ and a set of document
indexes {0, 1}l, where l is an upper bound to the number of document indexes5, then
the (plaintext) database of documents DB is a map from document indexes to a subset
of keywords.

DB : {0, 1}l → W ⊆ {0, 1}⋆ .

The result of a search operation with some keyword w ∈ {0, 1}⋆
is therefore

{d|w ∈ DB (d)} and is sometimes shortly denoted as DB (w).

6.2.4 Leakage
The degree of confidentiality of a SSE scheme is determined by a the leakage function

L =
(
LI ,LU ,LS

)
which models all the information that is inherently revealed by

running the protocols Update and Search, LU and LS respectively, as well an

initial leakage LI in the initialisation phase Setup.
The leakage relates to file-access, search and update patterns that can be inferred

by a (partial) history of incoming messages, that can be recorded by the server, while

interacting with the client. Briefly, the file-access pattern leaks what encrypted files

5
Some scheme may relate modified documents to different indexes, so that the number of deletion

impact the number of index that can be used.
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are downloaded from the database, search pattern relates search queries with the

same keyword, and update pattern relate update operations upon the same keyword.

Definition 6.2.4 (History). We define the history Hist as the list of snapshots of the
database DB, paired with the update and search queries performed on it, indexed with
the timestamp of such queries.

Hist = {(i, DB, e)} ,

where i is the timestamp, DB is the current database, and e is either an update query
or a search query. An update query includes the operation and its operands, e.g. e =
(add, w, d) with keyword w and index d, while a search query is the sole keyword e = w.

We also define a function with the same name Hist (w) as returning the subset of
the history whose queries relate to the keyword w.

Hist (w) def= {(i, DB, e) ∈ Hist ∧ e relates to w} .

The history is the internal state of the leakage function and must be refined to
meet the confidentiality criteria desired.

To do that, following the definitions from [54], we derive from the history Hist
both the search pattern and the update pattern. We do not use the file-access pattern in

our discussion, as no interaction with the actual encrypted data storage is modelled.

Definition 6.2.5. Given the history Hist, we call the search pattern sp (w), related
to a keyword w ∈ {0, 1}⋆, the ordered collection of timestamps when a search was
performed with w.

sp (w) def= {i| (i, DB, w) ∈ Hist} .

Similarly, we call the update pattern up (w), the ordered timestamps of update queries
from the history that relate to w.

up (w) def= {i| (i, DB, e) ∈ Hist (w) ∧ e is an update query} .

Finally, we call the query pattern qp (w), the ordered timestamps of update queries
from the history that relate to w.

qp (w) def= {i| (i, DB, e) ∈ Hist (w)} ,

where d is document index.

We define the patterns to only include the timestamps, as the minimum leaked

information from the patterns, as in Bost et al. [54] for the search and update pattern,

and as in Bost [52] or Song et al. [151] for the query pattern. Depending on the

amount of leakage of the schemes, their definition differ and is augmented with other

information contained in the history; for example, the update pattern may also leak

the operation, the document index, or other operands included in e from the history

entry. In our discussion, the update pattern also leaks the document index, so we call

it an update-access pattern, as it further leaks the access to file indexes for the update

operations.
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Definition 6.2.6. Given the history Hist, we call the update-access pattern uap (w),
related to a keyword w ∈ {0, 1}⋆, the ordered collection of pairs timestamp-index
related to update operations.

uap (w) def= {(i, d) | (i, DB, e) ∈ Hist (w) ∧ e is an update query related to d} .

6.2.5 Adaptive security
The security of a searchable encryption scheme is based on the confidentiality of the

client’s data, notwithstanding the server is leaked some information. For dynamic

schemes, security should be guaranteed against adaptive adversaries, as defined

in Section 2.2.5. We define adaptive security for a SSE scheme Σ in terms of a

particular distinguishing cryptographic experiment SSE Exp that follows the standard

real-ideal experiment [86], specialising the Definition 2.2.4 of indistinguishability.

An illustration of the experiment SSE Exp is shown in Figure 6.5. We denote as

Fig. 6.5 Adaptive security for the SSE scheme Σ with respect to the leakage function L.
The indistinguishability experiment SSE Exp is run between the games Σ0 = Σ and Σ1 =
Σ1 (Sim,L), wrapping the simulator Sim and the leakage function L.

challenger
initialises

Σ0 and Σ1 oracle O

b←$ {0, 1} programs O with Σb−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A uses Σb

info−−−−→
interacts←−−−−−−→

conjectures of having

b′←−−−− interacted with Σb′

↓
b = b′

SSE RealA,O
Σ the experiment, played against the distinguisherA, in the case the oracle

O is programmed with the real construction Σ; similarly, we denote as SSE IdealA,O
Sim,L

the experiment in the case the oracle O is programmed with the ideal construction

Σ′ = Σ′ (Sim,L), that wraps together a simulator Sim and the leakage L. In Σ′,
the leakage filters the original input values and produces the appropriate leakage

to give as input to the simulator Sim. At the end, the simulator tries to produce

an output that is computationally indistinguishable from the real construction. We

follow the definition of [58] for adaptive security, and adapt it to the formality of

simulation-based definitions and indistinguishability with oracles, as introduced in

Section 2.2.3.

Definition 6.2.7 (Adaptive security). A dynamic SSE scheme Σ is adaptively secure

with respect to a leakage function L, if and only if for any PPT adversaryA, exist a PPT
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simulator Sim and a negligible function µ such that

AdvSSE Exp
Σ,Σ′(Sim,L) = |Pr [SSE RealA,Σ (1n) = 1]− Pr [SSE IdealA,Sim,L (1n) = 1]|

≤ µ (n)

where n is the security parameter, and Σ′ = Σ′ (Sim,L) is the construction built with
the simulator and the leakage function.

Forward security

Intuitively, forward security avoids updated keywords to be leaked when running an

update query, so that the server cannot learn that the updated document matches a

keyword previously queried. More formally, if a SSE scheme Σ is adaptively secure

with respect to a leakage function L that leak at most the operation (add, delete, . . . )

when running the update protocol, then Σ is forward secure.

Definition 6.2.8 (Forward-security). A dynamic SSE scheme Σ is forward secure, if
and only if Σ is adaptively secure with respect to a leakage function L where update
calls do not leak more information than the operation o (e.g. add or delete) and the list
of updated documents with the number of keywords updated in the documents (but not
which ones).

LU (input) ⊆ {o, {(di, wi)}} .

where input are all the parameters required to run the update protocol, and the set
{(di, wi)} captures all updated documents as the number of keywords wi modified in
document di.

We focus on forward security only; for definitions of the leakage function to

guarantee backward security we refer to [54].

6.3 Modelling Searchable Encryption

6.3.1 Definitions of dynamic searchable encryption
Referring to the divergence of definition introduced in Section 6.1.2, the definitions

we propose do not restrict schemes to follow index based schemes, where the server

works with a database of documents’ indexes rather than the (encrypted) documents

themselves. From the point of view of the language, we relaxed algorithms’ and

protocols’ arguments to allow for generic types, that can easily be refined depending

on the specific construction to mechanise. Our code is therefore supportive for

searchable encryption schemes in EasyCrypt, and we showed its effectiveness by

instantiating Sophos with it and mechanising its forward security.

One way to describe a dynamic SSE scheme Σ is through the definition used

for Σoϕoς in [52]. Other definitions have been used to support batch or file addi-

tions [112] and seldom is shown that single updates can be composed to achieve this

functionality. However, the definition in [52] does not include those cases; therefore,
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we define them in a more generic way. Dynamic SSE schemes are played by two

entities, the server S and the client C , and are defined by the following.

• Setup, a protocol that initialises states and secrets of the client C and the

server S.

• Update, a protocol played by C and S whose scope is to modify the (index)

database by adding new pairs keyword-index or removing them.

• Search, a protocol played by C and S whose aim is to let S provide results

with which C can reconstruct a list of all indexes whose documents contain a

search keyword w.

The protocols may modify the secrets and the states of the client and the server;

they can be implemented either by explicitly passing states (stateless) or implicitly

(stateful).

We separate the algorithms run by the client from those run by the server, then

we combine them to create the protocols.

Definition 6.3.1 (SSE Client). We define the client of a SSE scheme as the quadruplet
C = (Ic,Uc,Sc,Oc) such that:

• Ic

(
1λ, DB

)
initialises the local state σ. Optionally an output can be returned to

be sent to the server, e.g. the encrypted database and initialisation values for the
indexes.

• Uc (o, in), where o is the operation to perform, e.g. addition of a new keyword-
index pair or deletion of an document, and in includes the operands of o. The
output is sent to the server and include values to record the update securely on
server-side.

• Sc (w), where w is the keyword to search. Its output is sent to the server and
includes the tokens required for retrieving the search result.

• Oc (x) is an algorithm offering access to extra functionality. In particular, we use
it to offer the two hash random oracles of the Σoϕoς implementation.

Definition 6.3.2 (SSE Server). We define the server of a SSE scheme as the triplet
S = (Is,Us,Ss) such that:

• Is (a) where a is input received from the client. It creates a (possibly empty)
database EDB.

• Us (o, in) where o is the operation to perform and in is the input sent by the client
to perform such operation.

• Ss (in) where in is a message sent by the client required to carry out the search.
It provides a return value from which the index list can be elaborated.

Definition 6.3.3 (SSE Scheme). We define an SSE scheme as taking a client implemen-
tation C and a server implementation S as Σ (C, S) = (I,U ,S,O), where
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• I
(
1λ

)
models the initialisation algorithm Setup and should setup C and S by

properly calling Ic and Is.

• U (o, oin) models the protocol Update whose first algorithm is Uc and the last is
Us, then it outputs the view of the protocol.

• S (w) models the protocol Search whose first algorithm is Sc and the last is Ss,
then it outputs the view of the protocol.

• O (x) is an algorithm offering access to extra functionality. It can simply reply
the Oc from the client.

Confidentiality of SSE schemes focus on the Update and Search phases. So,

even if Ic and Is may be modelled to play a communication protocol (as we do) like

the other algorithms, its security is sometimes assumed as granted, hence the Setup
phase simply runs smoothly and once. To show the usability of our definitions, we

implemented the scheme Σoϕoς [52] as described in Section 6.3, then we proved its

adaptive security as discussed in Section 6.5.

In many constructions, Update and Search are one-round protocols. For this

reason what is returned from the client from Uc will be the exact input for Us, and

similarly, the output of Sc will be exact input for Ss. We show a generic model of

one-round SSE protocols in Algorithm 4.

Alg. 4. Generic SSE protocol structure G where Update and Search are

one-round protocols.

C = (Ic,Uc,Sc,Oc), S = (Is,Us,Ss)
G (C, S) = (I,U ,S,O)

I (λ)
r ← Ic (λ)
Is (r)
return r

O ← Oc

U (o, oin)
r ← Uc (o, oin)
if r ̸= ⊥ then
Us (o, r)

return r

S (w)
w′ ← Sc (w)
if w′ ̸= ⊥ then

r ← Ss (w′)
else

r ← ∅
return r

Naveed and Stefanov modelled with our formalism

To correctly describe their models with our formalism, we need to split their descrip-
tions into server-side and client-side operations. In fact, their formalism describes

the whole protocol as in Definition 6.3.3. We denote

• as λ the security parameter,

• as K the key generated by the initialisation procedures,
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• as w a keyword from the list of all keywords W ,

• as DB and EDB the plaintext database and its encryption (including construc-

tions enabling for searches) respectively,

• as d a document index or document ID,

• as t a list of tokens or tags, each relating both a document index and a keyword,

• as σ a secret state stored by the client,

• as u a triplet for the update operation that can be (add, d, w) or (del, d, w)
where w is a unique list of keywords, and

• as I a map from keywords to matching document IDs, where I (w) ⊆ I are
the indexes of the documents containing the keyword w.

We illustrate the description of Naveed et al. [133] server-side and client-side in

Algorithms 5, and analogous description of Stefanov et al. [152] in Algorithm 6

respectively.

Alg. 5. Prototype of definitions in Naveed et al. [133]

NC: // client

keygen(1λ)→ K

indexgen(K, DB, W, I)→ σ; EDB
search(σ, w)→ σ, I (w)
add(σ, d)→ σ, i, t
remove(σ, d)→ σ

NS: // server

setup(EDB)→ EDB′

search(EDB, I (w))→ EDB′

add(EDB, i, t)→ EDB′

remove(EDB, i)→ EDB′

Alg. 6. Prototype of definitions in Naveed et al. [133]

SC: // client

setup(1λ, N)→ σ

update(σ, u)→ σ, t
search(σ, w)→ σ, t

SS: // server

setup(1λ, N)→ EDB
update(EDB, t)→ EDB′

search(EDB, t)→ EDB′, I (w)

We show how our definitions can be instantiatedwith either the protocol proposed

by Naveed et al. [133] or the one proposed by Stevanov et al. [152].
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Alg. 7.Model of the protocol of Naveed et al. [133] in high level pseudo-code

with our formalism.

Naveed:

Client state: σ

Server state: EDB

Server:

proc Is():
1 EDB← NS.setup(EDB);

proc Us(o, in):
2 if o = add then
3 i, t← in
4 EDB← NS.add(EDB, i, t);
5 else if o = del then
6 i← in
7 EDB← NS.remove(EDB, i);

proc Ss(I (w)):
8 EDB← NS.search(EDB, I (w));

Client:

proc Ic(1λ):
1 k ← NC.keygen(1λ);
2 store k into σ;
3 W ← extract all keywords from DB;

4 σ, EDB← NC.indexgen(k, DB, W,⊥);
5 return EDB

proc Uc(o, d):
6 if o = add then
7 σ, i, t← NC.add(σ, d);
8 return (i, t)
9 else if o = del then
10 σ ← NC.remove(σ, d);
11 flag d into σ for later deletion;

12 return ⊥

proc Sc(w):
13 // NC.search() deletes documents

14 // in σ flagged for deletion too

15 σ, I (w)← NC.search(σ, w);
16 return I (w)

Alg. 8.Model of the protocol of Stefanov et al. [152] in high level pseudo-

code with our formalism.

Stefanov:

Client state: σ

Server state: EDB

Server:

proc Is(1λ, N):
1 EDB← SS.setup(1λ, N);

proc Us(o, in):
2 t← in
3 EDB← SS.update(EDB, t);

proc Ss(t):
4 EDB, I (w)← SS.search(EDB, t);
5 return I (w)

Client:

proc Ic(1λ):
1 N ← extract number of keywords from DB;

2 σ ← SC.setup(1λ, N);
3 return N

proc Uc(o, d, w):
4 σ, t← SC.update(σ, o, d, w);
5 return t

proc Sc(w):
6 σ, t← NC.search(σ, w);
7 return t
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6.3.2 Sophos
As a case study, we formally model the protocol Σoϕoς . The cryptographic con-

structions required to model the protocol are Pseudo-Random Functions (PRF), hash

functions, and one-way trapdoor permutations. Hash functions are here modelled

as random oracles. We modelled Σoϕoς as an instance of the definitions supporting

SSE schemes discussed earlier in Section 6.3.1. While modelling, we needed to fix

some slightly interpretable pseudo-code directives. For example, there was a directive

“Output each ind” inside a loop in the Search protocol by the server side, which may

be interpreted as new message sent to the client at every loop iteration, or alterna-

tively as the Search protocol’s output is somehow intermittent. To us this sounded

a little odd; furthermore it is in clear contrast with the statement “both Search and

Update are single round”. Nevertheless we consider this detail of minor relevance,

even if we needed to take them into account. Further similar minor details will not

be discussed here, as of poor interest.

The model we implemented is illustrated in Algorithm 10. The construction we

give (and therefore its model) is functionally equivalent to the original Σoϕoς , that
is reported in Algorithm 9.

Alg. 9. The original construction of Σoϕoς , extract from [52].

We made the following two modifications on the client. First, we treat the stored

value c in W [w] differently, but with respect to its original meaning, that is the
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Alg. 10. Σoϕoς model in pseudo-code; the highlighted parts points to the

main differences with the original description.

Σoϕoς = G (C, S)

Client local variables:

k ∈ {0, 1}λ

τ ∈ T // trapdoor
W : {0, 1}l → Dα × N

Server local variables:

α ∈ A

T : {0, 1}l → {0, 1}m

Server:

proc Is(α):
1 α← α
2 T← ∅

proc Us(add, t, e):
3 T (t)← e

proc Ss(kw, s, c):
4 r ← []
5 i← 0
6 while i < c do
7 t← H1 (kw, s)
8 e← H2 (kw, s)
9 e← e⊕T (t)

10 r ← e :: r
11 s← Fα (s)
12 i← i + 1
13 return r

Client:

proc Ic(1λ):
1 k ←$ {0, 1}λ

2 α, τ ← K
(
1λ

)
3 W ← ∅
4 return α

proc Uc(add, w, i):
5 kw ← Fk (w)
6 if w /∈W then
7 s←$ Dα

8 c← 0
9 else
10 s, c←W [w]
11 s← Bτ (s)
12 c← c + 1
13 W [w]← (s, c)
14 t← H1 (kw, s)
15 e← i⊕H2 (kw, s)
16 return (t, e)

proc Sc(w):
17 if w ∈W then
18 kw ← Fk (w)
19 s, c←W [w]
20 r ← (kw, s, c)
21 else
22 r ← ⊥
23 return r

proc Oc(i, kw, s):
24 h← ⊥
25 if i = H1 then
26 h← (H1 (kw, s) ,⊥)
27 else if i = H2 then
28 h← (⊥, H2 (kw, s))
29 return h
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number of documents relating to w that have been stored, subtracted by 1. We find

more comfortable to use natural numbers
6
, so lines 8 and 12 in the client side of

Algorithm 10 have been properlymodified, yet the c values stored inW are completely

equivalent to the original ones. Second, we deferred the line 18 to be run only if

required. Apart of being bad programming practise to do unnecessary computation,

this line has unpleasant side effects when the simulation F is simulated by R. In

particular, it stores a value into R’s internal map and unnecessary overcomplicates

the equivalence proof, as one side may sample a value in the Update protocol,

while the other may sample the same value later in the Search protocol. This race

situations can be solved using advanced proof tactics as the eager-lazy techniques,

based on re-sampling and requiring extra constructions and difficult proofs [22].

We made the following two modifications on the server. First, we have converted

the for loop to a while loop, see lines 6 and 12 in the server side of Algorithm 10.

This change is simply because for loops are not supported in EasyCrypt, but luckily

while loops are, and we could rewrite it equivalently. Second, in line 10 we explicitly

collect all indexes before sending them to the client, or returning them as output of

the Search protocol.

6.4 Formal Analysis of Forward Security

6.4.1 On the choice of a simulation-based proof in the pres-
ence of an adaptive adversary

Our formalisation supports definitions of security against adaptive adversary. An

adversary is adaptive if the input to the queries provided by the scheme may be

dependent on the result of previous queries, as opposed to a non-adaptive adversary

that chooses all the input upfront.

In a first attempt, we modelled the adaptive behaviour with loops and traces.

In particular, the adversary is given the current trace of execution and asked what

operation to call next, so that her strategy can depend on the output from previous

operations. This is done in a loop running at most a polynomial number of times.

However, the support for loops in EasyCrypt was limited at the time, so we adopt a

formalism where the adversary is provided with protocol functionalities as oracle

calls
7
. The former construction find its theoretical basis on the real and ideal games

in [86] where they show that this definition is equivalent to the latter with oracle

accesses. Informally, the two are equivalent because the two operations (i) of asking

the adversary what operation to perform and (ii) distinguishing the ensembles are

abstract, so they could reflect any strategy of the adversary.

So in our formalism, adversaries are restricted to call external functions (as oracles)

at most a polynomial number of times, and the distinguish operation of the adversary

is abstract modelling for all adversaries. Being able to call the oracle during the

6
They use integers starting from -1 and get mistaken in the algorithm for searches in the simulator.

7
Our code provides both models, with loops and with oracles, but we focused on the latter only.
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distinguish operation captures the adaptive adversary, as queries can be chosen upon

any strategy, i.e. inputs to queries can depend on results of other queries.

The cryptographic experiment modelling adaptive security for searchable encryp-

tion schemes is illustrated in Algorithm 11. The structure of the experiment is that of

Alg. 11. Simulation-based experiment for adaptive security of a SSE scheme

Σ. Here, Σ′ is an SSE game wrapping the leakage function L and the

simulator Sim. The oracle O can be programmed with either Σ or Σ′ and
provides black-box access to internal procedures Σ.U , Σ.S and Σ.O or Σ′.U ,
Σ′.S and Σ′.O, respectively, but no access to the initialisation function is

provided.

Σ′ (Sim,L)
proc I(λ):

1 l← L.LI (λ)
2 r ← Sim.I (l)
3 return r

proc U(o, oin):
4 l← L.LU (o, oin)
5 r ← Sim.I (l)
6 return r

proc S(w):
7 l← L.LS (w)
8 r ← Sim.I (l)
9 return r

proc O = Sim.O

SSE Exp (Σ, Sim,L,A)
proc main():

1 b←$ {0, 1}
2 Σ′ = Σ′ (Sim,L)
3 if b then
4 Σ.I (λ) // real
5 b′ ← A (OΣ)
6 else
7 Σ′.I (λ) // ideal
8 b′ ← A (OΣ′)
9 return b = b′

an indistinguishability game, as defined in Definition 2.2.4. Here, since the leakage

function is stateful, we found it intuitive to model it in algorithmic style, as it can

enjoy an internal global state
8
and, during the proof, the internal state is concealed

from the adversary.

Our contribution on the simulated protocol Σ′ in Algorithm 11, along with the the

experiment SSE Exp will make easier to instantiate security theorems for adaptive

security of any index-based dynamic SSE scheme. As usual in the computational

model, the most difficult part are the proofs. To show the effectiveness of our

contribution, we instantiated the SSE protocol Sophos [52] and proved its forward

security.

6.4.2 Forward security - Definition
Adapting its security definition in [52] to the Definition 6.2.8, the adaptive security

of Σoϕoς is defined as:

8
We could emulate stateful behaviour with immutable functional style: in that case, the function

would have required to explicitly pass the state as an extra argument.
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Theorem6.4.1 (Forward security ofΣoϕoς). Given the SSE schemeΣoϕoς constructed
with a collection of trapdoor permutations, a pseudo-random function, and two hash
functions modelled as random oracles, and given the following leakage function

L =
(
LI

(
1λ

)
,LU (o, w, i) ,LS (w)

)
= (⊥,⊥, (sp (w) , uap (w)))

where o is an operation, w is a keyword, i is a document index, ⊥ stands for no leakage,
sp is the search pattern and uap is the update-access pattern as in Definitions 6.2.5
and 6.2.6. Then for all PPT adversary A, exist a PPT simulator Sim and a negligible
function µ such that

AdvSSE Exp
Σoϕoς,Sim,L ≤ µ (λ) ,

where λ is the security parameter.

One can argue about the leakage LU saying that the operation cannot be hidden

to the server; however, such information is known even before engaging the Update
protocol itself, being the addition the only supported operation. The server either

does nothing if the operation is not an addition or, if malicious, whatever it does is

out of the protocol and could potentially be done independently. Since the knowledge

of the malicious server is not augmented by running the Update protocol, there is

no leakage.

6.5 Forward security - Proof
In this section we show the proof extracts of forward security for the searchable

encryption protocol Σoϕoς illustrated in Theorem 6.4.1 and whose construction is

shown in Algorithm 10.

Proof structure

As the last part of our contribution, we show the most interesting and challenging

extracts of the mechanised proof and differences with the original on-paper proof by

Bost [52]. We do not discuss the full proof here as many parts would be redundant or

exactly as the original proof. The structure of our discussion will touch the following

aspects:

• Differences in the intermediate games between ours patched proof and the

original proof with patches to overlooked gaps, Section 6.5.1.

• Game reduction strategy we adopted, Section 6.5.2.

• Sequence of computationally indistinguishable games that reaches the conclu-

sion of the Theorem 6.4.1, Section 6.5.3.

The full description of intermediate games is provided at the end of Appendix B.

To simplify some steps of the proof, we used the extension that we introduced in

Chapter 5; however, we do not discuss them in detail because of they would introduce

unnecessary complexity to the proof. Also, we developed that approach late in the
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proof and changing everything in function of that would have been an engineering

effort that would have not added much to the contribution itself.

6.5.1 Differences between the mechanised proof and the on-
paper proof

While obviously we recognise and emphasise the goodness of the majority of the

original proof, we also aim at highlighting what parts in the proofs we found to be

source of imprecisions, and what gaps should not be taken for granted when carrying

on simulation-based proofs. The main sources of imprecisions are three:

• random functions are treated as collision-free;

• permutations are treated as cycle-free; and

• indistinguishability is entailed by equivalence of a single procedure, rather

than all procedures.

Also, it is not often that the effort of mechanising a proof in the computational model

brings such aspects to the light. A counterexample that shows the incorrectness of

an equivalence between two games is illustrated in Appendix B.1.

Since we have to prove Theorem 6.4.1, we needed to model the simulator and

the leakage function (as an algorithm, as discussed in Section 6.3.1); the model of

the simulator is illustrated in Algorithm 12, that can be compared to the original

description in Algorithm 13. We omit the server’s part, as it does not change across

the whole proof.

Some changes have been done with respect to the original simulator in the proof

of Σoϕoς , as it was incorrect. First, we needed to adjust the correctness of early

termination due to empty update pattern, see line 15 in Algorithm 12. In the original,

when the update pattern had only one element, the simulator incorrectly returned

with empty. Second, we only fill the table W when required, see line 21; if W is

filled needlessly as in the original simulator, then the equivalence proof would be

much more complex to formally carry out. Third, we fixed the timestamps updates in

line 30. This change is very important to simulate the number of (supported) queries,

from this number depends the correctness of the result; without it, would not be

possible to produce probabilistically equivalent output as the real protocol. Finally,

as we already explained for the model of Σoϕoς in Algorithm 10, we were required

to transmute the for loop into an equivalent while loop, see line 19. Reaching the

simulator game is only the last step of the proof, which counts 16 intermediate games.

Original proof highlights. The on-paper proof is structured as a sequence of

intermediate games from the real execution to the ideal execution. At a certain point,

the proof reaches a game simulating the hash functions and storing their value in two

separate tables, one of which is lazily updated from the other in the Search protocol.

The authors spotted two bad events, each of which appears in two places. As in many
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Alg. 12. Model of the simulator Sim in pseudo-code - server parts are

not shown as they equal previous games; the highlighted parts show the

difference with the original description. The procedures fk, fw, SimH1 and

SimH2 are random function implementations.

Simulator:

(α, τ) ∈ A× T
t ∈ N
W : N→ Dα

F : N→ K
T : N→ {0, 1}m

E : N→ {0, 1}l

TH1 : K × {0, 1}l → {0, 1}m

TH2 : K × {0, 1}l → {0, 1}l

proc fk(w)
proc fw(w)
proc SimH1(kw, s)
proc SimH2(kw, s)
proc I(⊥):

1 α, τ ← K (λ)
2 t← 0 // timestamp
3 T ←W ← F ← E ← TH1 ← TH2 ← ∅

proc U(⊥):
4 T (t) ∈R {0, 1}m

5 E (t) ∈R {0, 1}l

6 r ← (T (t), E (t))
7 t← t + 1
8 return r

proc O(i, z):
9 h← ⊥

10 if i = H1 then
11 h← (SimH1 (z) ,⊥)
12 else if i = H2 then
13 h← (⊥, SimH2 (z))
14 return h

proc S(sp (w) , uap (w)):
15 if uap (w) ̸= ∅ then
16 w̄ ← min {sp (w)}
17 kw̄ ← fk (w̄)
18 i← 0
19 while i < |uap (w)| do
20 if i = 0 then
21 W (w̄)← fw (w̄)
22 s←W (w̄)
23 else
24 s← Bτ (s)
25 j, o, e← uap (w) [i]
26 TH1 (kw̄, s)← T (j)
27 TH2 (kw̄, s)← e⊕ E (j)
28 i← i + 1

29 r ← as server would

30 t← t + 1
31 return r

Alg. 13. The original construction of the simulator in the proof of forward

security of Σoϕoς , extract from [52].
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other proofs, the game copes with the bad events, to keep the consistency of the

constructions. After that, they discharge the bad event reducing it to the hardness of

inverting the trapdoor permutation. The last part reaches a game close enough to be

shown indistinguishable from the simulator. Finally, the sequence of games is put

together to have the final form of the theorem.

Our proof is very similar from the point of view of the sequence of games, but it

differs at the point where we have to provide a game which copes with the bad events

to keep consistency. The reason why we deviated is because we spotted six bad events

and the complexity of the many tables read and written by different procedures called

in an unpredictable order made too difficult to fix all the inconsistency issues coming

from the bad events. We will explain how we circumvented the necessity of coping

with consistency later in Section 6.5.2.

To make the reader’s more comfortable while following our discussion on the

most interesting parts of the proof, the Table 6.1 summarises the sequence of games

from the construction of Σoϕoς to its simulation Σ′ (Sim,L) that uses the simulator

Sim and the leakage function L.

Table 6.1 Summary of the sequence of games with the difference of construction with respect

to the previous game in the chain.

Σoϕoς

∼ G1 distinguish between PRF and a keyed RF

∼ G2 distinguish between H1 and a Random Oracle

∼ G3 distinguish between H2 and a Random Oracle

∼ G4 distinguish between keyed RF and RF

≤ G5 introduce bad events bc, bt, bh1 , bh2 , bt1 , bt2

≤ G6 ignore bh2

≤ G7 ignore bh1

≤ G8 ignore bt

≤ G9 ignore bt2

≤ G10 ignore bt1

≤ G11 ignore bc

∼ G12 remove all bad events (no bad events assumed to happen)

∼ G13 simulate result using update-access pattern

∼ G14 remove unused RF (as its result is simulated)

∼ G15 simulate result using search pattern

∼ G16 remove an unused internal table (as simulated)

∼ Σ′ (Sim,L) full simulation with Sim and the leakage function L

Bad events. During the mechanisation of the proof, we could spot six bad events.

We collect all bad events in the game G5 which does not keep consistency, see

Appendix B.2 for more details. We pay the price for this laziness by doubling the bad

events handling, therefore the final probability which eventually stays negligible.

The first event we discuss, bc, happens due to repetitions of the random function

F replacing the PRF. The probability of each event happening is related to the

birthday problem. The birthday problem studies the probability of having (at least)
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two equal birthday dates in function of the number of people in the trial (assuming

their independence). This is similar to that of finding collisions in a random function,

and it is bounded by q2/ |K| where q is the polynomial bound in the oracles, and K
is the sampling set. This bad event is handled twice in games G5 and G11, so we have

Pr [G5 (A) : bc] = Pr [G11 (A) : bc] ≤
q2

|K|
. (6.1)

In the next parts of our discussion, the formulas will become more complex, so we

introduce here a short notation we adopt from now on in the discussion. We use

AG for Pr [G (A) = 1] and conveniently Ai for Pr [Gi (A) = 1]. Additionally, we
denote the probability of the event e in the game G run against the adversary A,
Pr [G (A) : e], as A : e. So for example, Ai : G (A)i = 1 is exactly Ai that is the

probability of distinguishing result. So that the equation above can be re-written as

A5 : bc = A11 : bc ≤
q2

|K|
. (6.2)

The second bad event, bt, reflects the fact that trapdoor permutations may be

affected by repetitions and cycles (up to fixed points). Clearly, if this event would not

be negligible, the probability of being able to invert a values without knowing the

trapdoor would become too high to be the trapdoor permutation considered secure.

However, one-way functions have been studied for long to be used for pseudo-random

generation [101], so we borrow the upper bound from the birthday problem again

that applies to pseudo random generators. The bad event bt may occur in our games

G5 and G8, so we have

A5 : bt = A8 : bt ≤
q2

|Dα|
(6.3)

The other bad events, bh1 , bh2 , bt1 , bt2 , are those related to the hardness to invert

the trapdoor permutation originally spotted. The condition by which they set the bad

event to true in the hash function simulation is incorrect. Interestingly enough, they

silently fixed it in the more recent paper [54]. Even with this fix, the other bad events

are not handled. Differently from their proof, we treat those events independently,

the only risk is to overestimate the upper bound of the security of the scheme, but

the most important goal is to show that the upper bound is a negligible function; in

particular, they do not discuss one of the two occurrences of the bad event, so part of

the proof was missing anyway. We do not re-propose here the proof of these bad

events as it would be the same as in the original proof; hence, we limit to state the

result. Finally, these bad events may happen in our games G5, G6, G7, G9, G10.

A5 : bh1 = A5 : bh2 = A5 : bt1 = A5 : bt2 = A6 : bh2 = A7 : bh1 =
= A9 : bt2 = A10 : bt1 ≤ Pr

[
A (1n, α, r) = f−1

α (R (α, r))
]

.
(6.4)

We proved that all the bad events we shown here on paper are the exact distance

between those games and either the previous or the next in the sequence of games.

We will join all together in Section 6.5.3.
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6.5.2 A different strategy in game reductions
Motivation

Reasoning about equivalence of probabilities related to output of algorithms is sup-

ported in EasyCrypt, and the proof of such theorems can be split with the rules

briefly illustrated in Section 2.5. A major source of imprecision in the original proof

was due the incorrect application of statistical equality of procedures, or their indis-

tinguishability. In particular, they let suffice the output of a single oracle function to

state the indistinguishability of two games. On the contrary, following the rule, in

general one should prove the indistinguishability of the output of all the functions,

plus other sub-goals, see the Rule 2.1 in Section 2.5.

The most challenging and time-consuming part of the proof is that of finding

suitable invariant while proving equivalence (or equivalence up-to-bad-event) while

comparing abstract procedures. We remark that usually on-paper proofs assume

many obvious-looking steps, sometimes introducing big gaps to complete the proof

faster. However, sometimes we forgive some cases and the gaps introduced become

flaws in the proof. And a proof with errors is not a proof until they are fixed. The

invariant can be very long and as such prone to be incomplete or incorrect: they are

stated at the beginning of the goal to prove, and until we find an easier sub-goal to

prove that highlight some error. This process takes its time.

The reason why we brought this argument here is because the invariant con-

ditions in this proof are strictly related to the consistency. The great effort to find

invariant allowed us to find, with the aid of EasyCrypt, all the inconsistency prob-

lems relatively quickly; patching them was more time consuming. In particular,

we spend much time in the last game - the one with the simulator - and the game

collecting all the bad events, G5. To support the inherent difficulty of fixing all

inconsistency problems with six bad events, we show in Table 6.2 the read and write

accesses to internal maps and tables by all the procedures involved with only two bad
events and only simulating one hash function, H1. With four additional bad events the

table would have become even more complex. The complexity of Table 6.2 reflects

the complexity of keeping the internal maps and tables consistent during the proofs
9
,

including all the cases when the read or write accesses are guarded by if conditions,

lie inside loops, or are hidden through calls to other procedures.

In an indistinguishability proof, it is common to spot negligible events whose

handling howevermay cause inconsistency in the data structures used that are storing,

mirroring, or simulating other structures. It is intuitive to create an intermediate

game which takes into account those (bad) events and, in the case they happen, fixes

the consistency they may break. The intuition behind is that of stating an equality

with the previous game, then comfortably discharge the bad events, i.e. reducing

them to known theorems or cryptographic assumptions. If we consider the games

G1, G̃2, and G3 and a negligible function µ, then formally we want to prove

A1 = A
G̃2
∧ A

G̃2
≤ A3 + µ ⇒ A1 −A3 ≤ µ,

9
Those inconsistencies lead the distinguisher to tell the games apart.
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Table 6.2 Table of accesses of maps in the original G̃2 (with our notation). H1 is simulated

by the client, who offers oracle access to it, i.e. the server can call it. Legend: “r” read access,

“w” write access,
⋆
indirect access by calling H1,

†
the operation is guarded (it may never run),

the initialisation routines are in gray.

F W T TH1 T

client

Ic w w w

Uc r/w
†

r/w r/w
⋆†

r
⋆†
/w

Sc r/w
†

r w
†

r
†

server

Is w

Us w

Ss r
⋆†

r
⋆†

r r
⋆
/w

⋆†
r
⋆†

H1 r
†

r
†

r/w
†

r
†

where G̃2 has all the bad events sorted up. Forcing the first equality may require the

use of extra structures, or changes in the proof that then shall be reviewed in light

of the new change. In the unfortunate case when we have to prove equality up to

bad event with many procedures passed to an adversary as oracle access, we have to

keep in mind the rule 2.1 in Section 2.5. In particular, this would require us to find

one invariant that holds in all cases of procedures called.

Our strategy

Finding an invariant without coping with what happens in the bad events, hence

keeping consistency, is expected to be easier, since we can introduce the invariants

with the assumption that no bad events happen, therefore avoiding those cases. We

show the algebraic steps that prove that our strategy can be used as an alternative

strategy helping to circumvent the need for coping with consistency. Let’s assume G2
is a game with three bad events b1, b2, and b3. Let us adopt the very short notation, G

j
i

to denote a game identical to Gi apart from the removed bad event bj , and similarly

Aj
i denotes Pr

[
Gj

i (A) = 1
]
.

This exercise becomes easier only under the assumption that alternatively show-

ing that A1,2,3
2 −A3 ≤ µ̃ is relatively simple, and is based on the fact that also easy

is showing that two procedures differs only by the if of a bad event. We want to

ultimately show that A1 −A3 ≤ µ, same as above. We build a G2 with all the bad

events guarded by if statements, but in those cases, we do nothing or return a very

distinguishable output. The following should be relatively easy to prove, as in the

bad events we can distinguish easily:

A1 −A2 ≤ A2 : (b1 ∨ b2 ∨ b3) ,

where A2 : (b1 ∨ b2 ∨ b3) is the event when at least one of the three bad events

happens, but nothing is said about the probability of distinguishing.
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Then we start removing the bad events one by one, as we would have done in

the above case too, so this part does not really add anything.

A2 −A1
2 ≤ A2 : b1

A1
2 −A

1,2
2 ≤ A1

2 : b2

A1,2
2 −A

1,2,3
2 ≤ A1,2

2 : b3

Applying the union of events, we can rewrite:

A2 : (b1 ∨ b2 ∨ b3) ≤ A2 : b1 +A2 : b2 +A2 : b3

where we removed the eventual intersections: we are not interested whether the

events are independent or not, as long as all of them are eventually negligible. If we

compose them up, we get:

A1 −A1,2,3
2 ≤

∑
i∈{1,2,3}

A2 : bi +A2 : b1 +A1
2 : b2 +A1,2

2 : b3

Being based on the same bad events, we expect A2 : b2 = A1
2 : b2 and A2 : b3 =

A1,2
2 : b3.

A1 −A1,2,3
2 ≤

∑
i∈{1,2,3}

A2 : bi +A2 : b1 +A1
2 : b2 +A1,2

2 : b3

Since the distance between A1,2,3
2 and A3 is easy to get and it is negligible, we finally

have:

A1 −A3 ≤ 2 ·
∑

i∈{1,2,3}
A2 : bi + µ̃ ≤ µ.

since the above sum of negligible functions is still negligible.

6.5.3 Finalising the proof
As a final result, we show the sequence of games that we proved, then we join them

together and replace the bad event probabilities with those discussed above. A small

detail in the mechanised proof is that we modelled Σoϕoς to accept generic hash

functions, then we modelled them as random oracles. This adds two addends to the

right hand of the final inequality, which can be removed since at last, they were

assumed to be indistinguishable from random.

In summary (see Table 6.1), we started with the experiment simulating the PRF

with a truly random functionF , then, similarly, the experiment to distinguish between

provided hash functions and random oracles. We built the game G5 which does

include all the bad events we spotted and since it does implement the alternative

strategy discussed above, we continued by progressively removing the bad events.

From the game G12 to the simulator, we have a sequence of equalities. If we call
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B = {bc, bt, bh1 , bh2 , bt1 , bt2} the set of all bad events, we can write:

AΣoϕoς −A1 = Advprf
F,R

(
1λ

)
A1 −A2 = AdvH1

H1,ROM1

(
1λ

)
= 0

A2 −A3 = AdvH2
H2,ROM2

(
1λ

)
= 0

A3 = A4

A4 −A5 ≤
∑
b∈B

A5 : b

A5 −A6 ≤ A6 : bh2

A6 −A7 ≤ A7 : bh1

A7 −A8 ≤ A8 : bt

A8 −A9 ≤ A9 : bt2

A9 −A10 ≤ A10 : bt1

A10 −A11 ≤ A11 : bc

A12 = A13 = A14 = A15 = A16 = AΣ′(Sim,L)

where the advantage using random oracles for hash functions is 0 as we are in the

ROM, so they are exactly implemented with random oracles. Putting all together, we

have

AΣoϕoς −AΣ′(Sim,L) ≤ Advprf
F,R

(
1λ

)
+

+ k · Pr
[
A (1n, α, r) = f−1

α (R (α, r))
]

+

+ k′
q2

|K|
+ k′′

q2

|Dα|

where k, k′ and k′′ are positive constants, so they are not jeopardising the negligibility
of the second hand of the inequality.

The probability of distinguishing can therefore be done as small as required, i.e.

it is negligible. Hence,

Σoϕoς
c≡ Σ′ (Sim,L) .

This result does confirm that Σoϕoς is forward secure in accordance to the definition

provided and our mechanisation patches the original proof, and we finally have

AdvSSE Exp
Σoϕoς,Sim,L ≤ µ (λ) .
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6.6 Conclusion
We proposed new atomic definitions of algorithms to model searchable encryption

schemes. We have shown that such definition can be combined to model existing

scheme, in particular Σoϕoς [52].
With the aid of the tool EasyCrypt, we propose a proof of forward secrecy of the

protocol Σoϕoς patching the original proof. We compare ours with the most relevant

previous work by Petcher and Morrisett [137], where they analyse the security of a

searchable encryption protocol. The proof they described in their paper was among

the most complex mechanized cryptographic proofs that has been completed to date

(2015): if we compare to their work, we expanded even further than them by adding

random oracles and adaptive adversaries.



Chapter 7

Conclusion

In this dissertation, we investigated the potential of the state-of-the-art tools that

allow to reason about the security of cryptographic protocol in either symbolic model

and the computational model. Moreover, we contributed to push (some of) their

limits a bit further to show novel mechanisation of old and recent protocols.

In the symbolic model, we conducted a formal analysis of the Simple Password

Exponential Key Exchange (SPEKE) protocol, which is part of the standard ISO/IEC

11770-4. Our formalisation covers from its first specification [105] to our last (now

included in the standard) which came along with its formal verification of many

security properties [95, 104]. We used the formal tool ProVerif [49] do automatise

the anaylsis; we pushed the tool to its limit by formalising a large number of security

properties and attacks: correctness, secrecy of the pre-shared password, implicit and

explicit key authentication, weak and strong entity authentication, perfect forward

secrecy, bilateral unknown key-share, impersonation, session-swap and malleability.

In the computational model, we automated security proofs of commitment and

sigma protocols. In particular we successfully implemented the Pedersen commitment

scheme [136, 126] and the Schnorr protocol of zero knowledge proof of knowledge

(as a sigma protocol). Furthermore, we implemented the proof of forward secrecy

of the Sophos scheme [52], that is a very complex searchable encryption scheme.

We automated the sequences of games from the real construction to a simulated

construction, with a very complex proof that patches some flaws in the original

proof. Moreover to simplify the proof, we extended the core logic of EasyCrypt with

labelling of variables typical of information flow analysis. We relate to the existing

strategy of lazy sampling [39], that has been mechanised in EasyCrypt, showing that

our approach can simplify the proof in some cases; other proofs can benefit by our

contribution.

7.1 Future work
When we modelled the SPEKE protocol, we analysed malleability by modelling it as

correspondences. A limitation of our approach directly relates to the limitation of

the symbolic model to cover the complete group theory, which is at the basis of the

protocol. As such, we have been able to model malleability attacks based on double
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exponentiation only. A future work towards improving the support of malleability

attacks can be that of extending the equational theory of ProVerif to allow for more

comprehensive state space of equalities.

Inspired by a previous model of SPEKE [160] that did not find any attacks to the

protocol, another interesting extension to our work can be that of modelling the same

protocol and its security properties in various other languages, e.g. Tamarin. This

would be a very interesting task to compare verification results and attacks across

different tools. This might be done by extending existing tools that export to other

languages [74, 13, 16].

We consider our work on commitment schemes comprehensive of all the desirable

properties that can be automatically verified in the computational model; conversely,

we limited our analysis of sigma protocols to the basic properties of stand-alone

sigma protocols: completenss, special soundness and special honest verifier zero

knowledge. We did not have the time to cover properties related to the composition

of sigma protocols. As an ongoing work, we already implemented and proved some

of those properties in EasyCrypt
1
, and plan to generate trustable executable code

from the EasyCrypt schemes for zero-knowledge protocols.

We mechanised the sequence of games in the proof of forward secrecy for the

protocol Sophos [52], from the real construction to the ideal simulated construction.

This allowed us to write the final theorem in terms of advantage of breaking hardness

assumptions that relate to failure events. One bit of the mechanisation that we

reserve as future work are the reductions of (some of) the single failure events to

cryptographic assumptions, i.e. hardness of inverting trapdoor permutations.

Another important extension to our work relates to the information flow tech-

niques that we implemented at the core of EasyCrypt, that analyses all-or-none

leakage. An obvious improvement would be an extension that cope with partial
leakage. Even though our implementation can easily be extended with definitions

for partial leakage, we expect that already existing tactics would need to be refined

and new tactics would need to be implemented. Another important extension would

be to support more fundamental types and data structures. We only support basic

types and maps, so an interesting future work can be the extension of our tactics to

support lists, tuples and other data structures that currently are not supported.

1
In collaboration with Benjamin Gregoire at INRIA.
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Appendix A

Cryptography

A.1 A popular example of secure computation: the
two millionaires

The first and probably most popular example of a secure computation protocol is

the two millionaires’ problem [162], formulated almost 30 years ago by A. Yao and

also known as Yao’s millionaires’ problem. Its main objective is very simple: two

millionaires wish to determine who is richer. The formal description of such a

problem simplifies the amount of wealth by a natural number, reducing the problem

to determine which number is greater than the other. A simple way to solve it could

be to first share and then compare their wealth. But additionally, they also do not

want to reveal their actual wealth to the other millionaire. Therefore the solution

above needs to be rethought in light of this additional, but not less important, privacy

requirement.

Different solutions to this problem have been proposed, all based on different

cryptographic primitives; however, we do not discuss them, as our interest is in its

generalisation as all secure computation protocols.

A.2 Symmetric and asymmetric cryptography
Encryption systems are the core of cryptography. An encryption system is used

when we want to protect the confidentiality of communication. For example, Alice

wants to send the message m to Bob through an insecure channel in a way that only

Bob can understand it. Encryption systems aim to solve this problem requiring Alice

and Bob to hold some relating secrets, e.g. they both hold the same secret key k, that
Alice can use to encrypt the message before sending it through the channel, and that

Bob can use to decrypt and recover the original message.

A.2.1 Symmetric Encryption
Symmetric encryption is based on Alice and Bob knowing a secret key k before

the communication. For this reason, symmetric encryption is also called private-
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key encryption. Secret keys can be generated by a probabilistic efficient algorithm.

Throughout this dissertation, we consider an algorithm efficient if it can be described

as a probabilistic polynomial-time (PPT) Turing machine, i.e. it runs in time polyno-

mial in n, where n is called the security parameter.. This is inline with the definition

of Goldreich [85] but we do not introduce the formality typical of complexity theory

as not necessary for our discussion. We now define symmetric encryption, borrowing

the definition of symmetric encryption system from Katz and Lindell [109] using the

shorter notation of Bellare et al. [33] as we find it more convenient.

Definition A.2.1 (Symmetric encryption). A private-key encryption scheme is a
tuple of probabilistic polynomial-time algorithms (keygen, E ,D) such that:

1. The key-generation algorithm keygen takes as input 1n (i.e. the security parame-
ter written in unary) and outputs a key k; we write k ←$ keygen (1n) (emphasising
that keygen is a randomized algorithm). We assume without loss of generality
that any key output by keygen (1n) satisfies |k| ≥ n.

2. The encryption algorithm E takes as input a key k and a plaintext message
m ∈ {0, 1}⋆, and outputs a ciphertext c. Since E may be randomized, we write
this as c←$ Ek (m).

3. The decryption algorithm D takes as input a key k and a ciphertext c, and
outputs a message m or an error. We assume that D is deterministic, and so write
m← Dk (c) (assuming here thatD does not return an error). We denote a generic
error by the symbol ⊥.

It is required that for every n, every k output by keygen (1n), and every m ∈ {0, 1}⋆,
it holds that Dk (Ek (m)) = m.

If (keygen, E ,D) is such that for k output by keygen (1n), algorithm Ek is only
defined for messages m ∈ {0, 1}ℓ(n), then we say that (keygen, E ,D) is a fixed-length
private encryption scheme for messages of length ℓ (n).

So when Alice wants to communicate, she does not send m directly, but rather

sends its (probabilistic) encryption c←$ Ek (m). This way, Bob can decrypt it and

recover the original message, m← Dk (c). The confidentiality of the message m is

therefore subject to the secrecy of the key k and the difficulty of reconstructing m
by the adversary from inspecting ciphertexts.

A.2.2 Asymmetric encryption
A revolutionary point of view in the field cryptography was introduced in 1976, when

Diffie and Hellman [75] shown to public for the first time the so called Diffie-Hellman

key exchange introducing asymmetric cryptography. The novelty of asymmetric

cryptography is that the key for the encryption algorithm can be publicly disclosed,

so the sender needs no secrets to create the encrypted message. Yet, the encrypted

message can only be decrypted by the owner of the corresponding private key. For

this reason asymmetric cryptography is also called public-key cryptography.
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With the goal of protecting the confidentiality of communication, Alice and Bob

could employ a protocol based on an asymmetric cryptosystem, as illustrated in

Figure A.1. In a preliminary phase the distribution of keys take place (securely), so

Fig. A.1 Protocol based on asymmetric encryption. It assumes that the keys have been

properly and already distributed.

Alice Bob

m, kp ks

r ←$ {0, 1}⋆

c← Ekp (m)
c−−−−−−−→ m← Dks (c)

that Bob holds a secret key ks whose corresponding public key kp is provided to

Alice. At this point, Alice can encrypt the message m with kp and send the ciphertext

c← Ekp (m) to Bob. The key point of the security in for a probabilistic asymmetric

cryptosystem is that the knowledge of kp and c is not enough to efficiently reconstruct

the original message m.

Formally we describe a probabilistic asymmetric encryption through the Def-

inition A.2.2. Throughout this chapter, we borrow our definitions from Katz and

Lindell [109], with the notation of Bellare et al. [34].

Definition A.2.2 (Probabilistic asymmetric encryption). A public-key encryption

scheme is a triple of probabilistic polynomial-time algorithms (keygen, E ,D) such that:

1. The key-generation algorithm keygen takes as input the security parameter 1n

and outputs a pair of keys (kp, ks). We refer to the firs of these as the public key
and the second as the private key. We assume for convenience that kp and ks

each has length at least n, and that n can be determined from kp, ks.

2. The encryption algorithm E takes as input a public key kp and a messsage m
from some message space (that may depend on kp). It outputs a cyphertext c, and
we write this as c←$ Ekp (m). (Looking ahead, E will need to be probabilistic to
achieve meaningful security.)

3. The deterministic decryption algorithm D takes as input a private key ks and
a ciphertext c, and outputs a message m or a special symbol ⊥ denoting failure.
We write this as m← Dks (c).

It is required that, except possibly with negligible probability over (kp, ks) output by
keygen (1n), we have Dks

(
Ekp (m)

)
= m for any (legal) message m.

A function µ : N → R is negligible if for every constant c > 0 there exists an

integer nc such that µ (n) ≤ n−c
for all n ≥ nc.

The validity of a key pair strongly relates to the recovering of the plaintext from

its corresponding ciphertext, but additional properties may be required, e.g. the

length of the keys that in our definition is assumed to be a least n for simplicity.
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The advantages brought by asymmetric encryption over symmetric encryption

are three. The first advantage is that key distribution (Alice needs to be sure that kp

is Bob’s) does not need a secure channel, and an authenticated channel suffices (e.g.

Needham-Shroeder protocol). The second advantage is that the amount of key to

store is reduced. For receiving messages, a party needs only one secret key, while all

other parties use the corresponding public key. For sending messages, a public key

for every entity is required; but differently from symmetric encryption, it is public

information that can be centrally (and publicly) stored somewhere, allowing for

non-expensive on-demand retrieval. The last advantage is that it allows two parties

who had not previous interaction to communicate securely. This is a particularly

important aspect that permeated the digital world and the Internet, e.g. a customer

can buy online from a seller securely from a very long distance.

A.3 Symbolic vs Computational
To better appreciate the difference of reasoning between the symbolic model and the

computational model, introduced in Section 2.3, we give a step-by-step formalisation

of a generic two-party asymmetric encryption system. We introduced its definitions

and concepts in Section A.2.

On the basis of the Definition A.2.2, the descriptions in the two models can be

manifold, depending on the aspects of interest. We provide a fairly introductory

description in the two models and compare them, showing similarities and dissimi-

larities. We remark that our interpretation is enough to capture the confidentiality of

the message in both models; different interpretations may cover additional security

properties.

A.3.1 A symbolic interpretation of asymmetric encryption
We refer to the formality of the applied pi calculus. The first step in the formal

description are the basic elements defining the cryptosystem: sets, functions, theories

and algorithms. Sets are commonly modelled and referred to as types. Functions

are operations or predicates over those types and can be either deterministic or

probabilistic. Theories determine the mathematical properties of sets and functions.

Finally, algorithms are stateful or stateless processes: a process is a sequence of

operations, they may return a value and can call other algorithms as sub-processes.

In the symbolic model, elements of sets are algebra terms and (initially) have

only the equality property. To have more algebraic properties, one must explicitly

add equations; the only equalities considered are those explicitly given. Some tools

provide built-in equalities for popular sets like group theory, integer, pairing, and

other theories; nevertheless they do not model the whole underlying mathematical

theories. The behaviour of functions is modelled through rules and equations, that

must be manually provided to capture the desired properties; otherwise, functions

are considered as one-way functions. Theories are restricted to the explicit equations

provided, so any implicit relation between algebra terms are ruled out from the rea-
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soning as they are considered irrelevant (or redundant)
1
. Noticeably in the symbolic

model, given the two terms c and Ekp (m, r) (both ciphertexts), they never equal, if

no rules or equations explicitly allow for it. Finally, algorithms, called processes,

are seen as sequences of statements, with assignments, conditionals, network I/O

operations, and calls to functions. Recursive functions may lead to non-terminating

expansion, as they may expand forever. Other forms of loops are absent, as they

would be absorbed by a single term and assumed to always terminate. They may be

split into multiple sub-processes. The key generation algorithm keygen would not be

explicitly called in the symbolic model, as the complexity aspects (first argument)

are not captured. Rather, the randomness (second argument) would be captured by

a fresh sampling of the secret key ks, and kp is commonly the result of a one-way

function, say PK, applied to ks. In pseudocode,

K = ks ←$ Ks; kp ← PK (ks) ; send (kp)

where ←$ denote probabilistic assignment, and to remark that the public key is

public domain, kp is published in clear. As encryption is assumed to be perfect, keys

are always valid; hence, the above description does not break the confidentiality

of ks, equivalently to calling keygen to generate both
2
. Even if we assume that the

key distribution phase already took place, the model needs to formalise the key

generation. Later in the model, we use the key in a way that implicitly captures the

secure key distribution phase.

Summing up, apart from definitions, the model will have the equation to recover

the plaintext from the ciphertext and the process P describing the protocol. Following

the Definition A.2.2, we would model the equation

∀ks r m, Dks

(
EPK(ks) (m, r)

)
= m, (A.1)

that reconstructs the original message. A process K is called before the protocol

itself to make sure that the keys are correctly generated and exchanged. Finally, we

would describe the protocol in Figure A.1 with the processes:

A = r ←$ {0, 1}⋆ ; c← Ekp (m, r) ; send (c)
B = receive (c) ; m← Dks (c)
P = K; !(A|B)

(A.2)

where A is (supposedly) run by Alice, and B by Bob, r is some randomness freshly

sampled from {0, 1}⋆
, and P runs K at the beginning followed by infinite executions,

denoted as !, of the concurrent execution, denoted as |, of A and B.

Very importantly, if we instantiate the encryption system to follow the practical

construction of Rivest-Shamir-Adleman (RSA), the symbolic model would not change3.

1
This is one of the key aspects that allow the symbolic model to be more suitable for automation

than the computational model.

2
A freshly sampled value is always secret until published or reconstructed.

3
One might pick up different and more meaningful naming for functions, but the final result would

be the same, as perfect encryption is assumed.
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Before illustrating the security property of confidentiality of the message in the

symbolic model, we introduce a computational interpretation of the same protocol

to compare with.

A.3.2 A computational interpretation of asymmetric encryp-
tion

In the computational model, sets are generally modelled by specific mathematical

set theories, with all their definitions, propositions, and lemmas. For example, the

theory of finite bit strings can model the set {0, 1}n
. Functions are modelled through

their mathematical definitions and theorems. Theories collect the definitions and the

lemmas of sets and functions. Finally, algorithms are modelled as either functional

or code-based. The former would adopt a single function per algorithm (this is the

approach of CryptHol [32]); the latter follows an imperative style with a sequence of

statements, including assignments, conditionals, loops, and function calls (this is the

approach of EasyCrypt [26]). We adopt the code-based approach here as closer to

programming languages and pseudocode.

Differently from the symbolic model, complexity and probability about algorithms

are the most analysed aspects, so the key generation algorithm keygen is nothing

especial: the keys are simply the output of the algorithm. The definitions of the

asymmetric scheme can be formalised as in Algorithm 14.

Alg. 14. A computational model description of asymmetric encryption.

Π:

proc keygen (n, r) : K

proc E (kp, m, r): C
proc D (ks, c): P
Protocol:

proc keyDistrib ():
r ←$ {0, 1}⋆
(Bob.ks, Alice.kp)← keygen (1n, r)

proc run (m):
Alice.m← m
c← Alice.send ()
Bob.receive (c)

Alice:

m ∈ P
kp ∈ KP
proc send ():

r ←$ {0, 1}⋆
c← E (kp, m, r)
return c

Bob:

m′ ∈ P
ks ∈ KS
proc receive (c):

m′ ← D (ks, c)

Additionally, an (abstract) operator V to test the validity of the generated keys

ks and kp must be provided to rule out invalid keys, V (ks, kp). Differently from the

symbolic model, the reconstruction property does not need special attention and

is exactly the equation in Definition A.2.2. Furthermore, that equation will not be

the only one considered throughout the reasoning: any other implicit equation that

could be (even in principle) evinced from the theories would be considered.
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Not assuming perfect cryptography, the algorithms in the computational model

are suitable to describe real-world algorithms in details. So if we specialised the asym-

metric encryption, as modelled in Algorithm 14, with the RSA cryptosystem, then

we could include mathematical theories and construction details. The construction

is illustrated in Algorithm 15 for completeness, but we do not discuss in detail as it

would be out of our scope.

Alg. 15.A computational model of asymmetric encryption instantiated with

the RSA cryptosystem.

RSA:

N ∈ N
C ≡ Z⋆

N × {0, 1}⋆
P, set of prime numbers

gcd : N0 × N0 → {T, F}, greatest common divisor

⊕ : Z⋆
N × {0, 1}⋆ → Z⋆

N , XOR with randomness

λ : N0 → N0, totient function
KP ≡ KS ≡ Z⋆

λ(N)
C ≡ P ≡ Z⋆

N

proc keygen (n, r):
p←$ P
q ←$ P
N ← pq // relating to n, e.g. N > 2n

e←$ {e ∈ N | 1 < e < λ (N) ∧ gcd (e, λ (N)) = 1}
d← e−1 mod λ (N)
return (d, e)

proc E (kp, m, r):
c← (m⊕ r)kp mod N
return c

proc D (ks, c):
m← cks mod N
return m

A.3.3 Reasoning about security properties
Desirable security properties vary from a protocol to another, but are generally

described upon the concepts of execution traces and of indistinguishability.
Execution traces are the most peculiar to the symbolic model: a security property

holds if it does for all traces of each run of the protocol in concurrent executions.

A trace can be seen as a growing list of values generated by the execution of the

protocol and partly available to the adversary. The computational model would let

the same property hold except for a negligible number of traces.

Indistinguishability is the most peculiar concept to the computational model:

a security property holds if any adversary can distinguish the execution of two

processes by at most a negligible probability. The symbolic model denotes this notion

as process equivalence, and their proof are more difficult to automate than properties

on single traces, so that the most equivalence proofs are still manual [47].
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We now refer to our example of the generic asymmetric encryption scheme,

informally illustrated in Figure A.1, formally defined in Definition A.2.2 and formally

modelled in symbolic in Equation A.2 and in computational in Algorithm 14. Here,

the desirable security property is the confidentiality of the message sent by Alice

to Bob.

In the symbolic model, confidentiality of m can be captured as a predicate on

traces. We denote the set of all traces of the execution of Π = (keygen, E ,D) as TΠ,

and the adversary’s knowledge as KA (t) where t is a given trace. Given the trace t,
KA (t) is a set containing all the terms that the adversary can infer by composing

all the equations, functions, and values that are available, recursively. The predicate

that capture confidentiality of m is the following:

∀t ∈ TΠ, m /∈ KA (t) . (A.3)

In other words, m must not be reachable by the adversary’s knowledge.

We omit a more formal description, as it would require us to report the whole

semantics behind the inference rules, by which the number of traces can explode

to infinite. A complete formal description can be read in the work from Cortier et

al. [67], where they show how two notions of secrecy, described upon either traces or
indistinguishability, relate. The former captures syntactic secrecy, where the adversary
cannot reconstruct the full confidential data; the latter captures a stronger notion of

secrect, strong secrecy [67], where the adversary has no information at all about the

confidential data.

In the computational model, we would capture strong secrecy with an argument

on indistinguishability: informally, an encrypted message should be indistinguish-

able from another ciphertext. To do so, we define a cryptographic experiment of

indistinguishability, PubK illustrated in Figure A.2. The adversary of this experiment

is called a distinguisher, denoted as A, which is an abstract probabilistic polynomial

Turing machine without a prescribed strategy, but with at least two procedures:

• choose (kp) that is given the key kp used for encryption and outputs two (equal-

length) messages m0 and m1; and

• distinguish (c) that is given a ciphertext c and outputs a boolean value to

relate back to either m0 or m1.

The experiment challenges the distinguisher by sending one of the messages she

chooses, then checks whether the distinguisher correctly guesses which of the two

messages was encrypted. The description of the adversary and the security experi-

ment in the computational model are formalised in Algorithm 16. We notice that the

adversary is an eavesdropper by the fact that the only data provided to distinguish is

the ciphertext.

With the formal definitions of our security experiment in Algorithm 16, we can

define security in terms of the probability of the experiment returning 1, i.e. the

adversary is able to distinguish, non-negligibly better than a coin toss.
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Fig. A.2 Flow of the experiment for the indistinguishability of encryptions of a probabilistic

asymmetric encryption.

challenger A
r ←$ {0, 1}⋆

(ks, kp)← keygen (1n, r)
kp−−−−−−−−−−−−→

m0, m1←−−−−−−−−−−−− (m0, m1)← A.choose(kp)
b←$ {0, 1}
r ←$ {0, 1}⋆

c← Ekp (mb, r) c−−−−−−−−−−−−→
b′←−−−−−−−−−−−− b′ ← A.distinguish (c)

↓
b = b′

Alg. 16. Computational model interpretation for indistinguishability of

ciphertexts for a public-key cryptosystem against an eavesdropper A.
A: // adversary
proc choose(ks) : P × P // plaintexts

proc distinguish(c) : {0, 1}

PubKΠ,A :

proc main():
r ←$ {0, 1}⋆

(ks, kp)← keygen (1n, r)
(m0, m1)← A.choose (kp)
b←$ {0, 1}
r ←$ {0, 1}⋆

c← Ekp (mb, r)
b′ ← A.distinguish (c)
return b = b′
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Definition A.3.1 (Indistinguishable encryptions in the presence of an eavesdropper).
An probabilistic asymmetric encryption scheme Π = (keygen, E ,D) is said secure in
terms of having indistinguishable encryptions in the presence of an eavesdropper if

∀A, ∃µ, Pr [PubKΠ,A (n) = 1] ≤ 1
2 + µ (n) ,

where µ is a negligible function on the security parameter n.

As the reader may appreciate, the interpretation in the computational model,

even for a basic primitive as the asymmetric encryption, adds more complexity in the

definitions and more details in the properties to prove. This complexity is reflected to

the actual proofs and their automation by tools; unfortunately, the symbolic model,

which can be highly automated, cannot capture all arguments in cryptography, nor

in the same depth as the computational model. For this reason, the computational

model offers stronger security guarantees.

We stress that our two models of the probabilistic asymmetric cryptosystem are

simplified with the aim to highlight the typical reasoning on the symbolic and the

computational models. Also, they are not the only possible interpretation, nor the

most comprehensive in terms of security properties (we basically cover only security

against chosen-plaintext attacks).

As a final remark, we emphasise that the two models show some similarities that

sometimes overlap; in other words, in some cases the symbolic model may provide

the same guarantees as the computational model. Nevertheless, we do not cover such

overlap, and we refer to the seminal work of Abadi et al. [6] and the more recent

survey from Blanchet [44] on techniques to port symbolic results to computational

equivalents. For example, strong secrecy can be captured by the symbolic model in

some cases [44], but we used the definition based on execution traces as it is the most

common type of definition for security properties in the symbolic model.



Appendix B

About the proof of Sophos

B.1 Flaws in the original proof

B.1.1 The extract of the original proof
During our mechanisation of the proof of security by Bost [52] of the protocol Σoϕoς ,
we encountered imprecisions in the proof steps that lead us to change the construction

of the games to patch the proof. In particular, we refer to the equivalence between

the games G1 and G̃2 that are reported in Algorithms 17 and 18 respectively. This

was not the only mistake in the original proof, but definitely the most interesting.

We quickly report a legend of their notation in Table B.1, as it is slightly different

from ours.

Table B.1 Notation in the original construction of Σoϕoς and its proof of forward secrecy.

SK, PK a secret key (the trapdoor) and a public key

W table storing search tokens

T table storing encrypted indexes

Key table lazily filled by a random function

H1 table lazily filled by a random function for the hash function H1
UT table lazily filled by a random function backing up hash values (for H1)

ST , UT search token and update token

ind document index

trapdoor permutation

In their proof they argue:

The point of G̃2 is to ensure consistency of H1’s transcript: in G̃2, H1 is

never programmed to two different values for the same input by Search’ line
7. Instead of immediately generating the UT derived from the c-th ST for
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Alg. 17. The game G1 in the proof of security of Σoϕoς [52]. This is an

adaptation from the construction of the real protocol after the pseudo-

random function has been replaced by the random function whose values

are memorised in the table Key.

Alg. 18. The game G̃2 in the proof of security of Σoϕoς . This is an extract

from their proof [52].
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keyword w from H1, G̃2 randomly either choses them if (Kw, STc+1) does
not already appear in H1’s transcript, or, if this is already the case, sets UTc+1
to the already chosen value H1 [Kw, UTc+1]. Then, G̃2 lazily programs the

RO [random oracle] when needed by the Search protocol (line 7) or by an

adversary’s query (line 5 of H1), so that it’s outputs are consistent with the

chosen values of the UT ’s.

And finally claim:

Because of this, H1’s outputs in G̃2 and G1 are perfectly indistinguishable,

and so are the games:

Pr
[
G̃2 = 1

]
= Pr [G1 = 1] .

As we are about to show, both the argument and the claim are incorrect.

B.1.2 Flaws
The first flaw that can be spotted is in the simulation of the hash function. In particular,

the guard at line 4 of H1 should additionally test if k = Key [w], otherwise simply

calling twice H1 with different k would incorrectly raise the bad event. Interestingly

enough, the authors must have noticed this problem, as their successive work [54]

based on Σoϕoς fixes the guard.
Fixing this (minor?) mistake still is not enough to amend their argument, as other

flaws can be spotted. In this on-paper proof, we could appreciate three important

aspects that have been overlooked.

• some random functions, i.e. Key, are incorrectly treated as collision-free
1
;

• permutations are treated as cycle-free; and

• indistinguishability is entailed from the equivalence of a single procedure, H1,

rather than all procedures.

In the example we are about to show, where we demonstrate inconsistency issues in

G̃2, we put ourselves in the situation when a collision in the random function occurs

(with positive probability). We remark that collisions in the construction of Σoϕoς do
not cause any problem; however, for the equivalence of the constructions G̃2 and G1,

collisions play a role that make G̃2 not be perfectly indistinguishable from G1, thus

breaking the proof. Fortunately, collisions are expected to be negligible events, so

that a patch in this part of the proof can be made without breaking forward secrecy

or throwing the whole proof away.

The claim we prove mistaken is the perfect indistinguishability of the two con-

structions G̃2 and G1.

Pr
[
G̃2 = 1

]
= Pr [G1 = 1] .

1
Noticeably, other random functions, i.e. the hash functions, are correctly treated as collision

resistant.
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The above is equivalent to say that any situation that would allow a distinguisher to

tell the two constructions apart must be impossible, i.e. the advantage must be 0.∣∣∣Pr
[
G̃2 = 1

]
− Pr [G1 = 1]

∣∣∣ = 0.

We emphasise that this is not the only case where the inconsistency between the

internal tables will break the perfect indistinguishability, yet it is enough to motivate

the need for patching the original proof.

Operations leading to distinguish

The sequence of operations that allows a distinguisher to tell G̃2 and G1 apart is

very simple. Just after the setup (all tables are empty), two search operations on the

keywords q and q′ ̸= q are followed by two update operations over the same keywords.

After the two search operations, the table Key contains two entries corresponding to

q and q′.
The two updates called subsequently have a non-zero probability of breaking the

consistency we need for later searches and calls to H1. In particular, while the values

in Key and W can be the same due to collisions when sampling twice from the same

distribution, differently the pre-computed (actually sampled) hash values in UT can

differ. With non-zero probability, we have that Key [q] = Key [q′] and W [q] = W [q′].
If we focus on such a case, then the two constructions are easily distinguishable with

the strategy described by the following steps:

Step 1 A call to search on q will output the values Key [q] and W [q]. At the same

time, the call will program the hash function H1 with the value stored on

UT [q, 0] by the previous update in G̃2 and do nothing else in G1.

Step 2 Now the adversary can call the hash function H1 on (Key [q] , W [q]) that will
output the value UT [q, 0] in G̃2, while in G1 it will output the corresponding

hash value.

Step 3 Similarly to the first step, a call to search on q′ will output the values Key [q′]
and W [q′], and at the same time will program the hash function H1 with the

value stored on UT [q′, 0].

Step 4 The adversary can call the hash function H1 on (Key [q′] , W [q′]) that will
output the value UT [q′, 0].

Step 5 Finally, if the result from the hash function differ from the previous, then it

must be interacting with the construction G̃2, as in G1 it would never happen.

In detail in step 4, the adversary might be calling the hash function on the same

values as step 2, as Key [q] = Key [q′] and W [q] = W [q′] has non-zero probability. If

the adversary were interacting with G̃2, then she would certainly notice that H1 on

the same value unexpectedly produces two different digests
2
. On the contrary, if the

adversary were interacting with G1, the two digests would be the same.

2
In such a case, the hash function H1 would not even be a function!
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This argument incontestably proves that G̃2 and G1 are not perfectly indistin-

guishable and breaks the validity of the original proof of Sophos in [52].

B.2 The main game of the proof compared to the
original

We did not need to completely change the original proof of Sophos provided by

Bost [52]. The most of that proof is correct; however, they overlooked some steps

that became flaws in their reasoning that we had to patch. The main sources of

imprecisions are three:

• random functions are incorrectly treated as collision-free;

• permutations are incorrectly treated as cycle-free; and

• indistinguishability is incorrectly entailed by equivalence of a single procedure,

rather than all procedures in the games.

The proof itself is complex and, while reading, the many details easily hide those

steps. We noticed those problem because we tried and formalised the proof in the

theorem prover EasyCrypt, where every gap must be filled. So, the structure of our

proof is overall similar, but it differs on the important points already highlighted in

Chapter 6. In particular, the main intermediate game of their proof, G̃2, is build in the

classic fashion of bad events. In G̃2, all bad events are introduced while simulating

oracle with random functions, and the construction keeps its internal consistency in

the case bad events happen with the aim of being perfectly indistinguishable from
the previous adjacent game in the proof. The original game G̃2 is illustrated in

Algorithm 18 and their aim was to build it in such a way that

Pr
[
G̃2 = 1

]
= Pr [G1 = 1] .

As we showed in Appendix B.1, they did not manage to prove such equality, de facto

invalidating their proof. So, we patched not only themistakes in the pseudocode of the

construction of Sophos and the simulator, but also the flaws in the indistinguishability

proof of the sequence of games. While the former might be considered as minor

mistakes or not (yet overlooked by the authors and the many reviewers
3
), the latter

definitely invalidate the proof. By a quick look at the successive work based on [52],

the same flaw is very likely to affect (some of) the proofs in Bost et al. [54], where

the proof structure and claims are almost exactly the same.

The construction related to the main game of our mechanised proof is G5, and it

is illustrated in Algorithm 23. Differently from the main intermediate game G̃2 of

the original proof (see Algorithm 18), in G5 of our model we discard the bad events

without keeping consistency. The reason behind our choice is that we found it very

difficult to keep consistency with so many asynchronous tables and bad events. The

3
Both [52] and [53] report the same imprecisions.
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price we pay for that is that we double the probability of some of the negligible

events: more details are discussed in Chapter 6. For completeness, we also report

all the other intermediate games. The original construction, patched and formalised

with our formalism, have been shown in Algorithm 10; similarly the simulator have

been illustrated in Algorithm 12.

Alg. 19. The model of G1 client in pseudo-code. The pseudo-random func-

tion F is substituted with a keyed random function kf .

G1.Client:

k ∈ {0, 1}λ

τ ∈ T // trapdoor
W : {0, 1}l → Dα × N
kf : {0, 1}l → {0, 1}l → {0, 1}l // keyed

random function

proc Ic(1λ):
1 k ←$ {0, 1}λ

2 α, τ ← K
(
1λ

)
3 W ← ∅
4 return α

proc Sc(w):
5 if w ∈W then
6 kw ← kf (k, w)
7 s, c←W [w]
8 r ← (kw, s, c)
9 else
10 r ← ⊥
11 return r

proc Oc(i, kw, s):
12 h← ⊥
13 if i = H1 then
14 h← (H1 (kw, s) ,⊥)
15 else if i = H2 then
16 h← (⊥, H2 (kw, s))
17 return h

proc Uc(add, w, i):
18 kw ← kf (k, w)
19 if w /∈W then
20 s←$ Dα

21 c← 0
22 else
23 s, c←W [w]
24 s← Bτ (s)
25 c← c + 1
26 W [w]← (s, c)
27 t← H1 (kw, s)
28 e← i⊕H2 (kw, s)
29 return (t, e)



B.2 The main game of the proof compared to the original 159

Alg. 20. The model of G2 client in pseudo-code. The hash function H1 is

replaced with the random oracle h1.

G2.Client:

k ∈ {0, 1}λ

τ ∈ T // trapdoor
W : {0, 1}l → Dα × N
kf : {0, 1}l → {0, 1}l → {0, 1}l

h1 // random oracle for H1

proc Ic(1λ):
1 k ←$ {0, 1}λ

2 α, τ ← K
(
1λ

)
3 W ← ∅
4 return α

proc Sc(w):
5 if w ∈W then
6 kw ← kf (k, w)
7 s, c←W [w]
8 r ← (kw, s, c)
9 else
10 r ← ⊥
11 return r

proc Oc(i, kw, s):
12 h← ⊥
13 if i = H1 then
14 h← (h1 (kw, s) ,⊥)
15 else if i = H2 then
16 h← (⊥, H2 (kw, s))
17 return h

proc Uc(add, w, i):
18 kw ← kf (k, w)
19 if w /∈W then
20 s←$ Dα

21 c← 0
22 else
23 s, c←W [w]
24 s← Bτ (s)
25 c← c + 1
26 W [w]← (s, c)
27 t← h1 (kw, s)
28 e← i⊕H2 (kw, s)
29 return (t, e)

Alg. 21. The model of G3 client in pseudo-code. The hash function H2 is

replaced with the random oracle h2.

G3.Client:

k ∈ {0, 1}λ

τ ∈ T // trapdoor
W : {0, 1}l → Dα × N
kf : {0, 1}l → {0, 1}l → {0, 1}l

h1 // random oracle for H1
h2 // random oracle for H2

proc Ic(1λ):
1 k ←$ {0, 1}λ

2 α, τ ← K
(
1λ

)
3 W ← ∅
4 return α

proc Sc(w):
5 if w ∈W then
6 kw ← kf (k, w)
7 s, c←W [w]
8 r ← (kw, s, c)
9 else
10 r ← ⊥
11 return r

proc Oc(i, kw, s):
12 h← ⊥
13 if i = H1 then
14 h← (h1 (kw, s) ,⊥)
15 else if i = H2 then
16 h← (⊥, h2 (kw, s))
17 return h

proc Uc(add, w, i):
18 kw ← kf (k, w)
19 if w /∈W then
20 s←$ Dα

21 c← 0
22 else
23 s, c←W [w]
24 s← Bτ (s)
25 c← c + 1
26 W [w]← (s, c)
27 t← h1 (kw, s)
28 e← i⊕ h2 (kw, s)
29 return (t, e)
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Alg. 22. The model of G4 client in pseudo-code. The keyed random function

kf is replaced with the random function fk.

G4.Client:

k ∈ {0, 1}λ

τ ∈ T // trapdoor
W : {0, 1}l → Dα × N
fk : {0, 1}l → {0, 1}l

h1 // random oracle for H1
h2 // random oracle for H2

proc Ic(1λ):
1 k ←$ {0, 1}λ

2 α, τ ← K
(
1λ

)
3 W ← ∅
4 return α

proc Sc(w):
5 if w ∈W then
6 kw ← fk (w)
7 s, c←W [w]
8 r ← (kw, s, c)
9 else
10 r ← ⊥
11 return r

proc Oc(i, kw, s):
12 h← ⊥
13 if i = H1 then
14 h← (h1 (kw, s) ,⊥)
15 else if i = H2 then
16 h← (⊥, h2 (kw, s))
17 return h

proc Uc(add, w, i):
18 kw ← fk (w)
19 if w /∈W then
20 s←$ Dα

21 c← 0
22 else
23 s, c←W [w]
24 s← Bτ (s)
25 c← c + 1
26 W [w]← (s, c)
27 t← h1 (kw, s)
28 e← i⊕ h2 (kw, s)
29 return (t, e)
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Alg. 23. The model of G5 client in pseudo-code. Bad events are introduced

as well as the simulation of hash functions.

G5.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 if (kw, s) ∈ TH1 then
15 bt1 ← 1
16 return ⊥
17 if (kw, s) ∈ TH2 then
18 bt2 ← 1
19 return ⊥
20 if s ∈ sc then
21 bt ← 1
22 return ⊥

23 Tt [(w, c)] ←$ {0, 1}λ

24 Te [(w, c)] ←$ {0, 1}λ′

25 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
26 h← ⊥
27 if i = H1 then
28 h← (SimH1 (kw, s) ,⊥)
29 else if i = H2 then
30 h← (⊥, SimH2 (kw, s))
31 return h

proc Sc(w):
32 if w ∈W then
33 kw ← f (w)
34 if f has collisions then
35 bc ← 1
36 return ⊥
37 sc ←W [w]
38 c← |sc| − 1
39 r ← (kw, sc [c] , c)
40 i← 0
41 while i < |sc| do
42 s← sc [i]
43 TH1 [(kw, s)]← Tt [(w, i)]
44 TH2 [(kw, s)]← Te [(w, i)]
45 i← i + 1

46 else
47 r ← ⊥
48 return r

proc SimH1 (kw, s):
49 if (kw, s) /∈ TH1 then
50 ws ← {w ∈ f |f (w) = kw}
51 W ′ ←W |{w∈W |w∈ws∧s∈W [w]}
52 if W ′ ̸= ∅ then
53 bh1 ← 1
54 return ⊥
55 else
56 TH1 [(kw, s)] ←$ {0, 1}λ

57 return TH1 [(kw, s)]
proc SimH2 (kw, s):

58 omitted as analogous to SimH1

proc Ic(1λ):
59 α, τ ← K

(
1λ

)
60 W ← ∅
61 TH1 ← Tt ← ∅
62 TH2 ← Te ← ∅
63 bc ← bt ← 0
64 bh1 ← bh2 ← bt1 ← bt2 ← 0
65 return α
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Alg. 24. Themodel ofG6 client in pseudo-code. Bad event bh2 is not handled.

G6.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 if (kw, s) ∈ TH1 then
15 bt1 ← 1
16 return ⊥
17 if (kw, s) ∈ TH2 then
18 bt2 ← 1
19 return ⊥
20 if s ∈ sc then
21 bt ← 1
22 return ⊥

23 Tt [(w, c)] ←$ {0, 1}λ

24 Te [(w, c)] ←$ {0, 1}λ′

25 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
26 h← ⊥
27 if i = H1 then
28 h← (SimH1 (kw, s) ,⊥)
29 else if i = H2 then
30 h← (⊥, SimH2 (kw, s))
31 return h

proc Sc(w):
32 if w ∈W then
33 kw ← f (w)
34 if f has collisions then
35 bc ← 1
36 return ⊥
37 sc ←W [w]
38 c← |sc| − 1
39 r ← (kw, sc [c] , c)
40 i← 0
41 while i < |sc| do
42 s← sc [i]
43 TH1 [(kw, s)]← Tt [(w, i)]
44 TH2 [(kw, s)]← Te [(w, i)]
45 i← i + 1

46 else
47 r ← ⊥
48 return r

proc SimH1 (kw, s):
49 if (kw, s) /∈ TH1 then
50 ws ← {w ∈ f |f (w) = kw}
51 W ′ ←W |{w∈W |w∈ws∧s∈W [w]}
52 if W ′ ̸= ∅ then
53 bh1 ← 1
54 return ⊥
55 else
56 TH1 [(kw, s)] ←$ {0, 1}λ

57 return TH1 [(kw, s)]
proc SimH2 (kw, s):

58 if (kw, s) /∈ TH2 then
59 TH2 [(kw, s)] ←$ {0, 1}λ

60 return TH2 [(kw, s)]

proc Ic(1λ):
61 α, τ ← K

(
1λ

)
62 W ← ∅
63 TH1 ← Tt ← ∅
64 TH2 ← Te ← ∅
65 bc ← bt ← 0
66 bh1 ← bh2 ← bt1 ← bt2 ← 0
67 return α
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Alg. 25. Themodel ofG7 client in pseudo-code. Bad event bh1 is not handled.

G7.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 if (kw, s) ∈ TH1 then
15 bt1 ← 1
16 return ⊥
17 if (kw, s) ∈ TH2 then
18 bt2 ← 1
19 return ⊥
20 if s ∈ sc then
21 bt ← 1
22 return ⊥

23 Tt [(w, c)] ←$ {0, 1}λ

24 Te [(w, c)] ←$ {0, 1}λ′

25 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
26 h← ⊥
27 if i = H1 then
28 h← (SimH1 (kw, s) ,⊥)
29 else if i = H2 then
30 h← (⊥, SimH2 (kw, s))
31 return h

proc Sc(w):
32 if w ∈W then
33 kw ← f (w)
34 if f has collisions then
35 bc ← 1
36 return ⊥
37 sc ←W [w]
38 c← |sc| − 1
39 r ← (kw, sc [c] , c)
40 i← 0
41 while i < |sc| do
42 s← sc [i]
43 TH1 [(kw, s)]← Tt [(w, i)]
44 TH2 [(kw, s)]← Te [(w, i)]
45 i← i + 1

46 else
47 r ← ⊥
48 return r

proc SimH1 (kw, s):
49 if (kw, s) /∈ TH1 then
50 TH1 [(kw, s)] ←$ {0, 1}λ

51 return TH1 [(kw, s)]
proc SimH2 (kw, s):

52 omitted as analogous to SimH1

proc Ic(1λ):
53 α, τ ← K

(
1λ

)
54 W ← ∅
55 TH1 ← Tt ← ∅
56 TH2 ← Te ← ∅
57 bc ← bt ← 0
58 bh1 ← bh2 ← bt1 ← bt2 ← 0
59 return α
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Alg. 26. The model of G8 client in pseudo-code. Bad event bt is not handled.

G8.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 if (kw, s) ∈ TH1 then
15 bt1 ← 1
16 return ⊥
17 if (kw, s) ∈ TH2 then
18 bt2 ← 1
19 return ⊥

20 Tt [(w, c)] ←$ {0, 1}λ

21 Te [(w, c)] ←$ {0, 1}λ′

22 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
23 h← ⊥
24 if i = H1 then
25 h← (SimH1 (kw, s) ,⊥)
26 else if i = H2 then
27 h← (⊥, SimH2 (kw, s))
28 return h

proc Sc(w):
29 if w ∈W then
30 kw ← f (w)
31 if f has collisions then
32 bc ← 1
33 return ⊥
34 sc ←W [w]
35 c← |sc| − 1
36 r ← (kw, sc [c] , c)
37 i← 0
38 while i < |sc| do
39 s← sc [i]
40 TH1 [(kw, s)]← Tt [(w, i)]
41 TH2 [(kw, s)]← Te [(w, i)]
42 i← i + 1

43 else
44 r ← ⊥
45 return r

proc SimH1 (kw, s):
46 if (kw, s) /∈ TH1 then
47 TH1 [(kw, s)] ←$ {0, 1}λ

48 return TH1 [(kw, s)]
proc SimH2 (kw, s):

49 omitted as analogous to SimH1

proc Ic(1λ):
50 α, τ ← K

(
1λ

)
51 W ← ∅
52 TH1 ← Tt ← ∅
53 TH2 ← Te ← ∅
54 bc ← bt ← 0
55 bh1 ← bh2 ← bt1 ← bt2 ← 0
56 return α
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Alg. 27. The model of G9 client in pseudo-code. Bad event bt2 is not handled.

G9.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 if (kw, s) ∈ TH1 then
15 bt1 ← 1
16 return ⊥

17 Tt [(w, c)] ←$ {0, 1}λ

18 Te [(w, c)] ←$ {0, 1}λ′

19 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
20 h← ⊥
21 if i = H1 then
22 h← (SimH1 (kw, s) ,⊥)
23 else if i = H2 then
24 h← (⊥, SimH2 (kw, s))
25 return h

proc Sc(w):
26 if w ∈W then
27 kw ← f (w)
28 if f has collisions then
29 bc ← 1
30 return ⊥
31 sc ←W [w]
32 c← |sc| − 1
33 r ← (kw, sc [c] , c)
34 i← 0
35 while i < |sc| do
36 s← sc [i]
37 TH1 [(kw, s)]← Tt [(w, i)]
38 TH2 [(kw, s)]← Te [(w, i)]
39 i← i + 1

40 else
41 r ← ⊥
42 return r

proc SimH1 (kw, s):
43 if (kw, s) /∈ TH1 then
44 TH1 [(kw, s)] ←$ {0, 1}λ

45 return TH1 [(kw, s)]
proc SimH2 (kw, s):

46 omitted as analogous to SimH1

proc Ic(1λ):
47 α, τ ← K

(
1λ

)
48 W ← ∅
49 TH1 ← Tt ← ∅
50 TH2 ← Te ← ∅
51 bc ← bt ← 0
52 bh1 ← bh2 ← bt1 ← bt2 ← 0
53 return α
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Alg. 28. The model of G10 client in pseudo-code. Bad event bt1 is not

handled.

G10.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if f has collisions then
3 bc ← 1
4 return ⊥
5 if w /∈W then
6 sc ← ∅
7 s←$ Dα

8 c← 0
9 else
10 sc ←W [w]
11 s← Bτ (s)
12 c← |sc|
13 W [w]← sc||[s]
14 Tt [(w, c)] ←$ {0, 1}λ

15 Te [(w, c)] ←$ {0, 1}λ′

16 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
17 h← ⊥
18 if i = H1 then
19 h← (SimH1 (kw, s) ,⊥)
20 else if i = H2 then
21 h← (⊥, SimH2 (kw, s))
22 return h

proc Sc(w):
23 if w ∈W then
24 kw ← f (w)
25 if f has collisions then
26 bc ← 1
27 return ⊥
28 sc ←W [w]
29 c← |sc| − 1
30 r ← (kw, sc [c] , c)
31 i← 0
32 while i < |sc| do
33 s← sc [i]
34 TH1 [(kw, s)]← Tt [(w, i)]
35 TH2 [(kw, s)]← Te [(w, i)]
36 i← i + 1

37 else
38 r ← ⊥
39 return r

proc SimH1 (kw, s):
40 if (kw, s) /∈ TH1 then
41 TH1 [(kw, s)] ←$ {0, 1}λ

42 return TH1 [(kw, s)]
proc SimH2 (kw, s):

43 omitted as analogous to SimH1

proc Ic(1λ):
44 α, τ ← K

(
1λ

)
45 W ← ∅
46 TH1 ← Tt ← ∅
47 TH2 ← Te ← ∅
48 bc ← bt ← 0
49 bh1 ← bh2 ← bt1 ← bt2 ← 0
50 return α
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Alg. 29. The model of G11 client in pseudo-code. Bad event bc is not handled.

G11.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

bc, bh1 , bh2 , bt1 , bt2 , bt ∈ {0, 1}

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if w /∈W then
3 sc ← ∅
4 s←$ Dα

5 c← 0
6 else
7 sc ←W [w]
8 s← Bτ (s)
9 c← |sc|

10 W [w]← sc||[s]
11 Tt [(w, c)] ←$ {0, 1}λ

12 Te [(w, c)] ←$ {0, 1}λ′

13 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
14 h← ⊥
15 if i = H1 then
16 h← (SimH1 (kw, s) ,⊥)
17 else if i = H2 then
18 h← (⊥, SimH2 (kw, s))
19 return h

proc Sc(w):
20 if w ∈W then
21 kw ← f (w)
22 sc ←W [w]
23 c← |sc| − 1
24 r ← (kw, sc [c] , c)
25 i← 0
26 while i < |sc| do
27 s← sc [i]
28 TH1 [(kw, s)]← Tt [(w, i)]
29 TH2 [(kw, s)]← Te [(w, i)]
30 i← i + 1

31 else
32 r ← ⊥
33 return r

proc SimH1 (kw, s):
34 if (kw, s) /∈ TH1 then
35 TH1 [(kw, s)] ←$ {0, 1}λ

36 return TH1 [(kw, s)]
proc SimH2 (kw, s):

37 omitted as analogous to SimH1

proc Ic(1λ):
38 α, τ ← K

(
1λ

)
39 W ← ∅
40 TH1 ← Tt ← ∅
41 TH2 ← Te ← ∅
42 bc ← bt ← 0
43 bh1 ← bh2 ← bt1 ← bt2 ← 0
44 return α
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Alg. 30. The model of G12 client in pseudo-code. Complete removal of bad

events.

G12.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : {0, 1}l ×Dα → {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : {0, 1}l ×Dα → {0, 1}λ′

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if w /∈W then
3 sc ← ∅
4 s←$ Dα

5 c← 0
6 else
7 sc ←W [w]
8 s← Bτ (s)
9 c← |sc|

10 W [w]← sc||[s]
11 Tt [(w, c)] ←$ {0, 1}λ

12 Te [(w, c)] ←$ {0, 1}λ′

13 return (Tt [(w, c)], i⊕ Te [(w, c)])

proc Oc(i, kw, s):
14 h← ⊥
15 if i = H1 then
16 h← (SimH1 (kw, s) ,⊥)
17 else if i = H2 then
18 h← (⊥, SimH2 (kw, s))
19 return h

proc Sc(w):
20 if w ∈W then
21 kw ← f (w)
22 sc ←W [w]
23 c← |sc| − 1
24 r ← (kw, sc [c] , c)
25 i← 0
26 while i < |sc| do
27 s← sc [i]
28 TH1 [(kw, s)]← Tt [(w, i)]
29 TH2 [(kw, s)]← Te [(w, i)]
30 i← i + 1

31 else
32 r ← ⊥
33 return r

proc SimH1 (kw, s):
34 if (kw, s) /∈ TH1 then
35 TH1 [(kw, s)] ←$ {0, 1}λ

36 return TH1 [(kw, s)]
proc SimH2 (kw, s):

37 omitted as analogous to SimH1

proc Ic(1λ):
38 α, τ ← K

(
1λ

)
39 W ← ∅
40 TH1 ← Tt ← ∅
41 TH2 ← Te ← ∅
42 return α
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Alg. 31. The model of G13 client in pseudo-code. Simulate results using

update-access pattern.

G13.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : N→ {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : N→ {0, 1}λ′

t : N // timestamp
T : {0, 1}l → (N×Dα)⋆

Client:

proc Uc(add, w, i):
1 kw ← f (w)
2 if w /∈W then
3 sc ← t0 ← ∅
4 s←$ Dα

5 c← 0
6 else
7 t0 ← T [t]
8 sc ←W [w]
9 s← Bτ (s)

10 c← |sc|
11 W [w]← sc||[s]
12 T [w]← t0||[(t, i)]
13 Tt [t] ←$ {0, 1}λ

14 Te [t] ←$ {0, 1}λ′

15 t← t + 1
16 return (Tt [t], i⊕ Te [t])

proc Oc(i, kw, s):
17 h← ⊥
18 if i = H1 then
19 h← (SimH1 (kw, s) ,⊥)
20 else if i = H2 then
21 h← (⊥, SimH2 (kw, s))
22 return h

proc Sc(w):
23 if w ∈W then
24 kw ← f (w)
25 sc ←W [w]
26 c← |sc| − 1
27 r ← (kw, sc [c] , c)
28 t0 ← T [t]
29 i← 0
30 while i < |t0| do
31 s← sc [i]
32 t̃, _← t0 [i]
33 TH1 [(kw, s)]← Tt

[
t̃
]

34 TH2 [(kw, s)]← Te

[
t̃
]

35 i← i + 1

36 else
37 r ← ⊥
38 t← t + 1
39 return r

proc SimH1 (kw, s):
40 if (kw, s) /∈ TH1 then
41 TH1 [(kw, s)] ←$ {0, 1}λ

42 return TH1 [(kw, s)]
proc SimH2 (kw, s):

43 omitted as analogous to SimH1

proc Ic(1λ):
44 α, τ ← K

(
1λ

)
45 W ← ∅
46 TH1 ← Tt ← ∅
47 TH2 ← Te ← ∅
48 return α
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Alg. 32. The model of G14 client in pseudo-code. It removes the call to the

random function from the update procedure. To prove this step, we used

information flow techniques, as explained in Chapter 5.

G14.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → D⋆

α

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : N→ {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : N→ {0, 1}λ′

t : N // timestamp
T : {0, 1}l → (N×Dα)⋆

Client:

proc Uc(add, w, i):
1 if w /∈W then
2 sc ← t0 ← ∅
3 s←$ Dα

4 c← 0
5 else
6 t0 ← T [t]
7 sc ←W [w]
8 s← Bτ (s)
9 c← |sc|

10 W [w]← sc||[s]
11 T [w]← t0||[(t, i)]
12 Tt [t] ←$ {0, 1}λ

13 Te [t] ←$ {0, 1}λ′

14 t← t + 1
15 return (Tt [t], i⊕ Te [t])

proc Oc(i, kw, s):
16 h← ⊥
17 if i = H1 then
18 h← (SimH1 (kw, s) ,⊥)
19 else if i = H2 then
20 h← (⊥, SimH2 (kw, s))
21 return h

proc Sc(w):
22 if w ∈W then
23 kw ← f (w)
24 if f has collisions then
25 bc ← 1
26 return ⊥
27 sc ←W [w]
28 c← |sc| − 1
29 r ← (kw, sc [c] , c)
30 t0 ← T [t]
31 i← 0
32 while i < |t0| do
33 s← sc [i]
34 t̃, _← t0 [i]
35 TH1 [(kw, s)]← Tt

[
t̃
]

36 TH2 [(kw, s)]← Te

[
t̃
]

37 i← i + 1

38 else
39 r ← ⊥
40 t← t + 1
41 return r

proc SimH1 (kw, s):
42 if (kw, s) /∈ TH1 then
43 TH1 [(kw, s)] ←$ {0, 1}λ

44 return TH1 [(kw, s)]
proc SimH2 (kw, s):

45 omitted as analogous to SimH1

proc Ic(1λ):
46 α, τ ← K

(
1λ

)
47 W ← ∅
48 TH1 ← Tt ← ∅
49 TH2 ← Te ← ∅
50 return α
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Alg. 33. The model of G15 client in pseudo-code. It simulates results using

the search pattern.

G15.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → Dα

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : N→ {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : N→ {0, 1}λ′

t : N // timestamp
T : {0, 1}l → (N×Dα)⋆

Client:

proc Uc(add, w, i):
1 if w /∈W then
2 t0 ← ∅
3 W [w] ←$ Dα

4 c← 0
5 else
6 t0 ← T [t]
7 s← Bτ (W [w])
8 c← |sc|
9 T [w]← t0||[(t, i)]

10 Tt [t] ←$ {0, 1}λ

11 Te [t] ←$ {0, 1}λ′

12 t← t + 1
13 return (Tt [t], i⊕ Te [t])

proc Oc(i, kw, s):
14 h← ⊥
15 if i = H1 then
16 h← (SimH1 (kw, s) ,⊥)
17 else if i = H2 then
18 h← (⊥, SimH2 (kw, s))
19 return h

proc Sc(w):
20 if w ∈W then
21 kw ← f (w)
22 if f has collisions then
23 bc ← 1
24 return ⊥
25 t0 ← T [t]
26 c← |t0| − 1
27 i← 0
28 while i < |t0| do
29 if i = 0 then
30 s←W [0]
31 else
32 s← Bτ (s)
33 t̃, _← t0 [i]
34 TH1 [(kw, s)]← Tt

[
t̃
]

35 TH2 [(kw, s)]← Te

[
t̃
]

36 i← i + 1
37 r ← (kw, s, c)
38 else
39 r ← ⊥
40 t← t + 1
41 return r

proc SimH1 (kw, s):
42 if (kw, s) /∈ TH1 then
43 TH1 [(kw, s)] ←$ {0, 1}λ

44 return TH1 [(kw, s)]
proc SimH2 (kw, s):

45 omitted as analogous to SimH1

proc Ic(1λ):
46 α, τ ← K

(
1λ

)
47 W ← ∅
48 TH1 ← Tt ← ∅
49 TH2 ← Te ← ∅
50 return α
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Alg. 34. The model of G16 client in pseudo-code. It removes the unused

lines related to W from the update operation; at the same time it moves its

filling to the search operation. This is the last step before the simulator.

G16.Client:

f : {0, 1}l → {0, 1}l // random function
τ ∈ T // trapdoor
W : {0, 1}l → Dα

TH1 : {0, 1}l ×Dα → {0, 1}λ

Tt : N→ {0, 1}λ

TH2 : {0, 1}l ×Dα → {0, 1}λ′

Te : N→ {0, 1}λ′

t : N // timestamp
T : {0, 1}l → (N×Dα)⋆

Client:

proc Uc(add, w, i):
1 if w /∈ T then
2 t0 ← ∅
3 else
4 t0 ← T [t]
5 T [w]← t0||[(t, i)]
6 Tt [t] ←$ {0, 1}λ

7 Te [t] ←$ {0, 1}λ′

8 t← t + 1
9 return (Tt [t], i⊕ Te [t])

proc Oc(i, kw, s):
10 h← ⊥
11 if i = H1 then
12 h← (SimH1 (kw, s) ,⊥)
13 else if i = H2 then
14 h← (⊥, SimH2 (kw, s))
15 return h

proc Sc(w):
16 if w ∈W then
17 kw ← f (w)
18 if f has collisions then
19 bc ← 1
20 return ⊥
21 t0 ← T [t]
22 c← |t0| − 1
23 i← 0
24 while i < |t0| do
25 if i = 0 then
26 if w /∈W then
27 W [w] ←$ Dα

28 s←W [0]
29 else
30 s← Bτ (s)
31 t̃, _← t0 [i]
32 TH1 [(kw, s)]← Tt

[
t̃
]

33 TH2 [(kw, s)]← Te

[
t̃
]

34 i← i + 1
35 r ← (kw, s, c)
36 else
37 r ← ⊥
38 t← t + 1
39 return r

proc SimH1 (kw, s):
40 if (kw, s) /∈ TH1 then
41 TH1 [(kw, s)] ←$ {0, 1}λ

42 return TH1 [(kw, s)]
proc SimH2 (kw, s):

43 omitted as analogous to SimH1

proc Ic(1λ):
44 α, τ ← K

(
1λ

)
45 W ← ∅
46 TH1 ← Tt ← ∅
47 TH2 ← Te ← ∅
48 return α
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