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Abstract 

The field of cell gene therapy has seen significant progress in recent years. The last 

decade has seen the licensing of the first Cell Gene Therapy (CGT) treatments in 

Europe and clinical trials have demonstrated safety and efficacy in the treatment of 

numerous severe inherited diseases of the blood, immune and nervous systems. 

Specifically, autologous viral vector-based CGT treatments have been the most 

successful to date. However, the manufacturing processes for these CGT treatments 

are at an early stage of development, and high levels of complexity, process variability 

and a lack of advanced process and product understanding in vector/cell 

manufacturing are hindering the development of new processes and treatments.  

Here, Multivariate Data Analysis (MVDA) and Machine Learning (ML) techniques, 

which have not yet been widely exploited for the development of CGT processes, were 

leveraged to address some of the main hurdles in the development and optimisation 

of CGT processes. Principal component analysis (PCA) was primarily used for feature 

extraction to understand the main correlations and sources of variability within the 

process data, and to evaluate the similarities and differences between batches. 

Additionally, a sparse PCA algorithm was developed to ease the interpretation of the 

principal components with a large number of variables present in the dataset.  

Predictive modelling techniques were utilized to model the relationships between 

process variables and critical quality attributes (CQAs) of the viral vector and cell drug 

products. The infectious titres of lentiviral vector (LV) products from both adherent cell 

cultures and suspension cell cultures were modelled and predicted successfully and 

critical process variables were identified with statistically significant correlations to this 

CQA. In cell drug product manufacturing, the LV copy number in the patient’s 

transduced cells was also modelled and process parameters in LV manufacturing and 

cell drug product manufacturing were linked to this CQA. 

Overall, the modelling process recovered valuable information from historical process 

data from the early stages of process development. This data frequently remains 

unexploited, due to its commonly truncated and unstructured nature; however, this 

work showed that MVDA/ML techniques can yield beneficial insights despite less than 

ideal data structure and features.  
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Chapter 1  

Introduction 

 

1.1 Research background 

The search for cures to human disease is arguably one of the greatest challenges in 

modern society. Technological progress has expanded the discovery, production and 

delivery of therapeutic drugs, significantly improving the quality of life and life 

expectancy of people who have access to treatments. Even though many previously 

incurable diseases are now considered curable, there are thousands of diseases for 

which no treatment is currently available. Many of these diseases are genetic diseases, 

in which a change in the deoxyribonucleic acid (DNA) is observed, that differs from the 

healthy DNA sequence. Genetic diseases are of particular interest in the scientific 

community and society as they affect a large portion of the population and have a great 

socioeconomic impact (Khera et al., 2018). According to the National Human Genome 

Research Institute, around 280 million people on earth are affected by a genetic 

disease today (“National Human Genome Research Institute,” 2020).  

Genetic diseases, or disorders, are caused by genome abnormalities, such as a 

mutation in a single gene referred to as monogenic, mutations in multiple genes 

referred to as polygenic, or by a chromosomal abnormality. In a chromosomal 

abnormality, a portion of the chromosomal DNA is either missing, is in irregular form, 

or extra chromosomal DNA is present. The most common disease associated with 

chromosomal abnormality is Down syndrome (Rodwell and Aymé, 2014). Monogenic 

diseases are rarer than polygenic diseases but are believed to affect ~6% of the 

population at some point throughout their lives (Rodwell and Aymé, 2014). It is 

common for monogenic diseases to manifest at a young age as a result of inherited 

genes, even leading to premature death. Efforts to understand and treat monogenic 

diseases have resulted in the establishment of various rare disease initiatives, but the 

progress so far is largely limited due to the complexity of the available solutions 

(Prakash et al., 2016). Cystic fibrosis, Duchene muscular dystrophy, β-thalassemia 

and hemophilia are some of the most common monogenic diseases that still lack a 

well-established cure (Prakash et al., 2016). In contrast to monogenic diseases, 

polygenic diseases have been linked to environmental conditions and lifestyle. 

Polygenic diseases include both early and late-onset diseases such as asthma, height 
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and body mass index characteristics, which fall under the early-onset diseases, and 

cardiovascular disease, diabetes, Altzheimer’s, senile dementia, osteoarthritis and 

cancer which fall under the late-onset diseases (Oliynyk, 2019).  

The most important tool in identifying genetic diseases was developed in 2003, as a 

result of the Human Genome Project (HGP). The HGP generated a physical and 

genetic map of the human genome. Sequencing the human genome provided the 

information necessary to generate a map for each human chromosome. Comparing 

the genome from one person to another, allowed scientists to determine the exact 

location or area that genes differ from a healthy to a person suffering from a genetic 

disease (Harold et al., 2009). Knowing the location of the abnormality in the genome 

later allowed for targeted methods aiming to provide treatment to the genetic disease. 

Even though the identification of the mutated genes and chromosomal abnormalities 

became possible, treatment strategies that alter the genes have not been widely 

applied yet. Treatment has heavily relied on either surgical options i.e. cardiovascular 

disease, blood transfusions i.e. β-thalassemia, and addressing the mutant or absent 

protein i.e. diabetes (Rosenberg and Rosenberg, 2012).  

Gene-editing techniques for cell gene therapy treatments were initially applied on 

humans in the 1990s, giving the ability to directly treat a genetic disease at its genetic 

roots. Cell gene therapy (CGT) utilises the modification of human DNA in order to treat 

a genetic disease. With the use of genes as drugs, the malfunctioning gene can be 

replaced or counteracted within the cells affected by the genetic disease. CGT 

approaches can be characterised as ex vivo, in situ, or in vivo. In ex vivo gene therapy, 

the patient’s cells are isolated and the target cell types are cultured in vitro, facilitating 

the selection, expansion and/or their differentiation process before they are genetically 

modified and introduced into the targeted tissue (Naldini, 2011). The ex vivo CGT 

method allows the modification and extensive characterisation of cells outside the 

patient’s body. It is safe from an immunologic perspective and it allows good control 

over the process (Herrero et al., 2012; Suhonen et al., 2006). With ex vivo CGT, it is 

also possible to identify the cells that contain and produce the therapeutic gene in 

sufficient quantity and to control the production rate and level of the therapeutic gene 

expression (Bethesda, MD, National Institutes of Health, 2016). In in situ gene therapy 

genetic material is introduced into the target tissue directly, resulting in low 

transduction efficiency, often leading to re-appearance of the genetic disease (Davis 

and Cooper, 2007; Hu et al., 2007). Finally, in the in vivo method, the transfer of genetic 
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material occurs through an appropriate vector into the target tissue. The in vivo method 

is a promising technique, once vector development issues and vector tissue targeting 

issues are improved (Nayerossadat et al., 2012). Figure 1-1 illustrates in vivo and ex 

vivo CGT approaches. 

 

Figure 1-1: Cell gene therapy approaches for the treatment of genetic diseases in 
humans. The genetically modified vector can be either introduced directly into the patient’s 
cells (in vivo CGT), or they can be introduced into the patient stem cells in the lab and then be 
re-introduced into the patient (ex vivo CGT) (Worgall and Crystal, 2014).  
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1.2 Cell gene therapy  

The following section provides a summary of the history of CGT before reviewing the 

current state of the art, including the progress that has been made with viral and non-

viral approaches to CGT. 

1.2.1 History of cell gene therapy  

The idea for gene therapy was initially conceived in the early 1970s, almost 30 years 

before the completion of the HGP project. The main scientific discoveries that set the 

foundation for its development date back to the beginning of the 20th century and can 

be seen in Error! Unknown switch argument.. In 1928, Frederick Griffith described 

the transforming principle. Based on his findings, a non-virulent bacterium cell, Type I 

pneumococcus, could be transformed into a virulent type bacterium cell when it came 

in contact with an intracellular material from a virulent bacterium cell (Griffith, 1928). 

Up to this point, scientists believed that genes were composed of proteins and not 

DNA. In later years (1944), Avery, McLeod and McCarty showed that the 

transformation of a non-virulent bacterium cell to a virulent type bacterium cell was due 

to DNA transfer and not proteinic transfer. This was proven by precipitating the protein 

using chloroform, and repeating experiments based on the transforming principle by 

Griffiths. With this discovery, the research into understanding the molecular structure 

of DNA intensified, revolutionising the understanding of molecular genetics.  

Another important discovery for the transfer of genetic material between bacteria was 

presented by Norgon D. Zinder and Joshua Lederberg in 1952 (ZINDER and 

LEDERBERG, 1952). Zinder and Lederberg observed that genetic recombination 

occurred between a drug resistant mutant of salmonella and the wild type, when the 

two colonies were separated by a fine glass filter. The genetic material only passed 

through the fine glass filter when a certain active substance transferred it through. After 

purification, they concluded that the substance responsible for carrying the DNA was 

a bacteriophage. Zinder and Lederberg named this phenomenon ‘genetic transduction’ 

and their discovery extended research into phages and eukaryotic viruses, as the 

material for gene transfer (Wirth et al., 2013). The capability of viruses to deliver genes 

into cells of interest became apparent in the 1960s. However, it was not possible at 

the time to strip the viruses of their pathology causing genes and to replace them with 

therapeutic genes that could be transferred to the patient’s genome. The technology 

to combine DNA from two different species was initially developed in the ‘70s and is 

still used today. With the use of enzymes, DNA is cut, synthesised and bound on 
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specific genes that are then transported with vectors into the host organisms. The 

recombinant DNA technology led to the production of the first drugs for medical 

biotechnology, such as human insulin (Khan et al., 2016).  

Even though recombinant DNA technology has been available since the ‘70s, the first 

human gene therapy trial took place in the early ‘90s. The slow progress from concept 

to clinical application is due to the complexity of the cellular and tissue barrier that 

needs to be overcome for gene transfer to be successful, whilst leaving the essential 

regulatory mechanisms of the cells uninterrupted (Giacca, 2010). Moreover, the 

amount of the gene-correcting cells must be sufficient in order to alter the genetic 

mutation, they must not trigger the immune system of the host, and they must survive 

long-term. The first human cell therapy treatments were conducted in 1989. Rosenberg 

and his collaborators used ex vivo modified tumour-infiltrating lymphocytes (TILs) to 

treat five patients with advanced melanoma (Rosenberg, 1992). The patients showed 

no signs of infections and the study showed that the tumour did not grow at the injection 

site. In two of the patients, there was no evidence of viable tumour cells after the 

surgical removal of the tumour three weeks after the gene-therapy treatment was 

initiated.  

Following Rosenberg, Michael R. Blaese conducted the first gene-therapy trial with a 

therapeutic gene in 1990. The subject of this trial were two children with an adenosine 

deaminase severe combined immunodeficiency (ADA-SCID); a genetic disease that 

causes a severed or absent immune system due to a deficiency in adenosine 

deaminase (ADA). The two children were treated with white blood cells modified ex 

vivo to express the gene for ADA production in the body. Only one of the children 

exhibited a temporary response to the treatment, but the cause of the therapeutic effect 

could not be successfully identified, as the patient had also simultaneously received 

enzyme replacement therapy. In 1999, gene therapy encountered a major setback with 

the tragic death of Jesse Gelsinger. Jesse suffered from a milder form of ornithine 

transcarbamylase deficiency, a genetic disease of the liver which is usually fatal. 

However, he showed a genetic mutation of the ornithine transcarbamylase gene in part 

of his cells. Jesse was part of a clinical trial where he was injected with an adenoviral 

vector, carrying a corrected gene. After the injection, Jesse showed a severe immune 

response linked to the adenoviral vector and was declared brain dead after suffering 

from multiple organ failure (Wirth et al., 2013).  
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Over the next decade, substantial research went into improving the safety of viral 

vectors used in CGT treatments. In 2003, China became the first country to approve a 

CGT drug for the treatment of head and neck squamous cell carcinoma after five years 

of clinical trials with the only side-effect observed being self-limited fever (Pearson et 

al., 2004). Following China’s success, the first successful phase three clinical trial was 

achieved in Europe in 2009. The trial targeted patients with malignant brain tumours, 

introducing an adenoviral vector with the therapeutic gene after the tumour had been 

surgically resected (Wirth et al., 2009). Since then numerous gene therapy trials have 

shown promising results, including trials for ADA-SCID (Aiuti et al., 2009), beta 

thalassemia (Cavazzana-Calvo et al., 2010), Wiskott-Aldrich syndrome (Boztug et al., 

2010), X-linked severe combined immunodeficiency (Hacein-Bey-Abina et al., 2010) 

and haemophilia B (Jessup et al., 2011). 

 

Figure 1-2: Key advances in the development of cell gene therapy. Image adapted from 
the work of Wirth et al. (Wirth et al., 2013). 

1.2.2 Cell gene therapy today  

Today, CGT has re-emerged as a promising treatment offering extraordinary 

therapeutic benefits, while showcasing a remarkable safety record in numerous phase 

I and II clinical trials (Naldini, 2015). The success of CGT today, is attributed to the 

engineering of improved viral and non-viral vectors (explained in detail in section 1.2.3) 

1928: Transforming principle.  

1944: Genetic information is carried in the form of DNA.

1952: Introduction of transduction as a mechanism of genetic transfer. 

1953: Double-helix structure of DNA.  

1961: Genetic mutation could be inherited as a result of virus transfection.  

1962: First documented heritable gene transfer in mammalian cell lines. 

1968: Proof-of-concept for virus mediated gene transfer.

1989: First officially approved gene transfer into humans.

1990: First therapeutic gene transfer in ADA patients.

1999: The death of Jesse Gelsinger. 

2003: China becomes the first country to approve a gene-therapy based product for clinical use. 

2009: First successful phase III clinical trial in the EU. 

2012: EMA recommended for the first time a gene therapy product for approval in the EU.  
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used to transduce the patient’s cells, that have in turn improved the quality, safety and 

efficacy of the conducted clinical trials (Keeler et al., 2017; Kotterman et al., 2015; 

Naldini, 2015). These developments led large biopharmaceutical companies to 

increase research and manufacturing investments in CGT treatments between 2010 

and 2016.  

Successful clinical trials carried out so far have mainly focused on the treatment of 

severe genetic diseases of the blood, nervous and immune system (Naldini, 2015). 

For example, for the treatment of ADA-SCID a CGT product manufactured by Orchard 

Therapeutics Ltd., called Strimvelis, is currently available in Europe. The drug was 

used in a clinical trial with 12 children participating, and achieved a 100% survival rate 

outcome, at three years post-treatment. The intervention-free survival rate for this drug 

is 92% and shows significant reduction in severe infections in cases of children with 

ADA-SCID. Children diagnosed with ADA-SCID within the first six months of their lives, 

who remain untreated, suffer persistent infections that lead to the end of their lives 

before age one (Gaspar et al., 2006). There is also an available treatment for B-cell 

acute lymphoblastic leukaemia called Kymriah®, which is a lentivirus transduced 

autologous T-cell, and a treatment for inherited retinal disease called Luxturna®, 

utilising a recombinant adeno-associated virus (rAAV) (Golchin and Farahany, 2019). 

Following the progress so far and based on the current pipeline, the Food and Drug 

Administration (FDA) predictions are optimistic, expecting to approve between 10 and 

20 new cell and gene therapy products per year by 2025 (Gottlieb and Marks, 2019). 

1.2.3 Viral and non-viral vectors  

The methods for in vivo and ex vivo gene delivery can be divided into two main 

categories, viral and non-viral, based on the type of gene transfer method that is used. 

In viral vector-based CGT treatments, the natural ability of viruses to transfer DNA to 

foreign cells is leveraged by modifying the virus’s genome. The pathogenic parts of the 

virus’s genome are stripped away, and a therapeutic gene is incorporated. The part of 

the virus’ genome responsible for replication is also deleted, resulting in no immune 

system response from the patient. However, the system can still suffer from the 

immunogenicity of the virus, which can trigger an inflammatory response and lead to 

the degeneration of the transduced tissue. Toxic production can also occur, along with 

mutagenesis due to the insertion. Moreover, the ability of viral vector-based systems 

to target specific tissue cells is limited due to the tropism-specific nature of the virus, 

i.e. the distribution of cell surface receptors (Arbuthnot, 2015; Gardlík et al., 2005; 
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Nayerossadat et al., 2012). To solve the targeting limitations of viral vectors, designing 

viruses with specific receptors has allowed the retargeting of the viral vector to cells 

that were not receptive to the original virus (Wickham, 2003). Some viral vectors that 

have been previously used in CGT treatment are retroviral vectors, adenoviral vectors, 

adeno-associated vectors, lentiviruses, the herpes simplex virus (HSV), poxvirus 

vectors and the Epstein-Barr virus.  

On the other hand, non-viral CGT treatments utilise chemical and physical methods to 

transfer DNA to targeted cells. Physical methods utilise electrical, ultrasonic, 

mechanical, hydrodynamic or laser-based energy so that the DNA can penetrate the 

targeted cells in a transient manner. Naked DNA, DNA particle bombardant by gene 

gun, ultrasound, magnetofection, hydrodynamic and electroporation have all been 

used as physical methods to transfer DNA into targeted cells (Nayerossadat et al., 

2012). Chemical methods, which are more common than physical methods, are based 

on modifying the properties of nucleic acids to so that they have reduced hydrophilicity 

and neutralized charge, in order to increase cellular uptake. Chemical methods 

generally utilise nanomeric complexes, which consist of negatively charged nucleic 

acids compacted by polycationic nanomeric particles. The nanomeric complexes are 

stable enough to produce their bound nucleic acid upon degradation and usually enter 

the cells by endocytosis (Nayerossadat et al., 2012). In order for cationic particles to 

enter the targeted cells, they are attached to a lipid anchor or a DNA-binding cationic 

polymer (Liu et al., 2003), such as proteins (Boeckle and Wagner, 2006), small 

chemical compounds (Xu et al., 1999), antibodies (Wolschek et al., 2002), vitamins, 

carbohydrates (Chiu et al., 2004), and peptide ligands (Y. Zhang et al., 2004). Cationic 

systems offer benefits including low toxicity and antigenicity (capacity to bind with other 

receptors) and long-term expressions, but low efficiency compared to viral systems.  

To date viral vector-based treatments have been more successful than non-viral 

vectors due to significantly higher transduction efficiency, i.e. the ability to express 

gene of interest in the target cells of the patient. Methods using non-viral methods have 

so far failed to achieve the transduction efficiency of viral vectors, but are characterised 

by higher availability, lower immunologic response, no limitations in the size of 

transgenic DNA that can be used and cost-efficiency in their production process (Hirai 

et al., 1997; Nayerossadat et al., 2012; Robertson et al., 1996). However, both viral 

and non-viral vector treatments need to overcome their drawbacks in order to be 

applied in clinical applications. In both treatments the extracellular and intracellular 
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targeting and delivery needs to be improved, as well as the long-time expression of the 

transgene in the patient’s cell. Finally, the toxicity and side-effects of viral and non-viral 

vector treatments on the human body needs to be minimised or suppressed completely 

(Nayerossadat et al., 2012).  

1.3 Research aims 

The main aim of this work is to utilise advanced modelling approaches to address some 

of the key manufacturing challenges in viral vector production and cell drug product 

manufacture. Specific challenges to be addressed include characterising the high 

levels of variability in viral vector production and cell drug product manufacture, 

assessing process comparability across different production scales, and deriving 

valuable process knowledge where there is currently a lack of advanced expertise.  

The objective is to deliver valuable insights from the modelling activities to the project 

sponsor, GlaxoSmithKline, to aid them with the development of their cell gene therapy 

manufacturing processes. Much of this work is in-line with the objectives of the Quality 

by Design initiative, which encourages detailed understanding of the process design 

and control space and relationships between process parameters and attributes of the 

product (Mishra et al., 2018). This work should thereby provide insights into 

appropriate modelling techniques, their benefits and the challenges involved in their 

application to CGT manufacturing processes, which should serve to support future 

work leveraging advanced multivariate data analytics in CGT manufacturing. To 

achieve the main aim, this work focuses on:  

a) exploiting unsupervised learning methods, such as PCA, to assess process 

variability and comparability in viral vector production and cell drug product 

manufacture, 

b) utilising supervised learning techniques, such as partial least squares (PLS) 

regression, to model the relationships between process parameters and critical 

quality attributes of the viral vector and cell drug products in viral vector production 

and cell drug product manufacture, respectively, 

c) the development of several alternative programming approaches to sparse 

principal component analysis (PCA), in order to ease the interpretation of the PCA 

model and provide insights into process variability and comparability when applied 

to cell gene therapy manufacturing processes, 

d) a review of the data-driven modelling approaches and the challenges faced in their 

application to cell gene therapy manufacturing processes. 



 10 

These are the broad aims of this research. More detailed and specific objectives are 

provided further on, after reviewing the literature on cell gene therapy manufacturing 

processes, CGT manufacturing challenges and applications of multivariate data 

analysis to closely related bioprocesses. 
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Chapter 2  

Literature review 

2.1 Cell gene therapy manufacturing processes 

2.1.1 Production processes for cell gene therapy treatments 

As mentioned in section 1.1, there are two types of cell gene therapy that show 

promising results: in vivo and ex vivo. In viral in vivo gene therapy, the manufacturing 

process is essentially the manufacturing of the viral vector. For the production of 

lentiviral and adenoviral vectors (viruses commonly used in viral-based cell gene 

therapy treatments), the most well-established production methods rely on the 

transient transfection of plasmid DNA into host cells. Host cells for gene expression 

that are typically used are HEK293; derived from human embryotic kidney cells, 

HEK293T adherent cells; an adaption to the HEK293 cell line, PER.C6; an industrially 

relevant cell line for adenovirus manufacture and sf9 insect cells; which is a clonal 

isolate of Spodoptera frugipedra Sf21 cells, commonly used for the expression of 

recombinant proteins from baculovirus (Kotin, 2011; Manceur et al., 2017; Sharon and 

Kamen, 2018; van der Loo and Wright, 2015).  

Typically, the upstream viral vector manufacturing process starts with cell thaw of 

frozen cells and seed train, followed by further cell expansion in the bioreactor, and 

finally transfection of plasmid DNA into host cells, followed by harvesting (Kotin, 2011; 

Merten et al., 2010; Schweizer and Merten, 2010). Seed train involves the generation 

of an adequate number of cells using various cultivation systems, e.g. T-flasks, shake 

flasks or roller bottles, in order to provide a sufficient number of cells for the inoculation 

of the bioreactor (Schweizer and Merten, 2010). Factors such as scale, type of viral 

vector and upstream processing methods impact the choice of downstream processing 

operations. In a typical downstream process, the first step is clarification, aiming to 

remove cells and cell debris. The clarification process is followed by the concentration 

of the feed stream, treatment with endonuclease, such as Benzonase® to digest host 

and plasmid DNA, size exclusion chromatography or anion exchange chromatography 

for removal of protein contaminants, diafiltration and sterile filtration (Kotin, 2011; 

Merten et al., 2010; Schweizer and Merten, 2010). In ex vivo gene therapy, the 

patient’s cells are extracted, isolated and cultivated in vitro into a culture of the target 

cell types. This facilitates cell selection, expansion, and/or differentiation before or after 

genetic modification (Naldini, 2011). The focus of this thesis is on the manufacture of 
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ex vivo cell gene therapy treatments, which are mainly applied to hematopoietic stem 

cells (HSCs), relevant to immunological and blood disorders (Marintcheva, 2018).  

An overview of the production process for an ex vivo CGT treatment is presented in 

Figure 2-1, showing complex raw materials used and the product streams. There are 

a number of complex raw materials used for viral vector production and cell processing, 

including recombinant viral vector plasmids, modified producer cells, reagents, buffers, 

cytokines and culture media.  

 

Figure 2-1: Schematic representation of the production process in ex vivo CGT, showing 
the two main production lines in the manufacturing process: viral vector production, followed 
by processing of the patient’s cells ex vivo during CDP manufacture (Emerson et al., 2020; 
Kotin, 2011; Merten et al., 2010; Naldini, 2011; Schweizer and Merten, 2010). 

The following section describes the manufacturing processes involved in lentiviral 

vector production and cell drug product manufacture.  

2.1.2 3rd generation lentiviral vector packaging system and plasmid 
production 

A viral vector system is derived from its parent genome by a series of genetic 

modifications, which are designed to remove the viral genes that are potentially 

pathogenic and to maintain and promote genes that are required for the replication of 

the virus in the intended virus-producing cells (Giacca, 2010). The third-generation 

lentivirus was originally developed in the Naldini and Trono laboratories (Gándara et 

al., 2018) and is a system that is widely used in R&D and clinical applications 

(Lundstrom, 2018; Merten et al., 2016; Milone and O’Doherty, 2018). The system is 

well-characterized, capable of delivering genetic material into both dividing and 

nondividing cells, stably integrates into the host cell genome, providing long-term 
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expression in the target cells, and carries a large amount of genetic material compared 

to other viral vector systems (Gándara et al., 2018). Compared to previous 

generations, the third-generation lentiviral vector (LV) system offers enhanced safety 

due to a number of viral genes that were deleted from the system to create replication-

incompetent and self-inactivating vectors (Gándara et al., 2018). 

All generations of the LV system are based on the human immunodeficiency virus-1 

(HIV-1). The third-generation system utilises four plasmids, including a transfer 

plasmid containing the transgene or therapeutic gene of interest, in addition to three 

other plasmids containing packaging genes, which are co-transfected into the producer 

cells with the transfer plasmid (Gándara et al., 2018). One of the plasmids codes for 

the Rev protein, which is a trans-activating protein responsible for HIV-1 protein 

expression, another encodes Gag, which encodes viral structural proteins and Pol, 

which encodes the retrovirus-specific enzyme reverse polymerase, and the final 

plasmid codes for the Vesicular stomatitis virus glycoprotein, which forms the virus 

envelope (Gándara et al., 2018).  

Plasmid DNA for vaccine and cell therapy applications are commonly produced in 

bacterial fermentations, followed by downstream processing to concentrate and purify 

the plasmid DNA. The manufacture of plasmids with low variability and high quality 

(good manufacturing practices (GMP) standard) is an important aspect of CGT 

production (Lopes and Calado, 2018). More details on these processes can be found 

in the literature (Prather et al., 2003; Urthaler et al., 2012). 

2.1.3 Adherent cell culture process for lentiviral vector production 

This section provides a description of an adherent cell culture process for the 

production of LVs, which is similar to the process under study in chapter 5 of this thesis. 

Due to confidentially reasons, the exact process which is explored in chapter 5 is not 

described. However, Merten et al. (2010) and Ausubel et al. (2012) described adherent 

cell culture processes for the production of LVs by transient transfection, using a third-

generation LV system and 293T producer cells, which are sufficiently similar to be 

consistent with the data that is analysed in chapter 5.  

2.1.3.1 Producer cells  

293T cells are commonly used for the production of LVs in adherent cell culture 

systems. 293T cells are derived from human embryonic kidney (HEK) 293 cells by 

transfection with a plasmid encoding for the simian virus 40 (SV40) large T antigen 
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(LTA) and a sub-clone was selected for its high yield of lentiviral vectors in transient 

transfection systems (Merten et al., 2010). 

2.1.3.2 Seed train 

The process begins with the thawing of cells from a working or master cell bank. The 

process described by Ausubel et al. (2012) begins with a working cell bank of 293T 

cells. Cells were grown in a medium supplemented with fetal bovine serum and 

incubated at 37oC with 5% CO2. Every three to four days cells were trypsinized and 

counted before being resuspended in fresh media. This process involved removing 

media from the cell culture flasks, washing the cells with phosphate-buffered saline 

(PBS) and removal of the waste. A mixture of Trypsin and PBS was then added to the 

cell culture flasks and the cells were incubated at 37oC for 3-15 minutes. The purpose 

of the Trypsin addition was to process dislodge the cells and reduce aggregation. Next 

the Trypsin was deactivated by adding medium to the cell culture and cells were 

recovered using centrifugation. Following this, cells were reseeded into appropriately 

sized vessels and expanded further.  

2.1.3.3 Expansion in cell factory stacks  

In large-scale adherent culture processes, such as the process described by Merten 

et al. (2010), the 293T cells were then transferred to cell factory stacks for further 

expansion until the desired number of cells for transfection is obtained. The cell factory 

stacks consist of flat trays stacked vertically. These offer a larger volume than the 

flasks used in the seed train and feature a large surface area for the adherent 239T 

cells to attach to, with a relatively small footprint (Rout-Pitt et al., 2018). Cells are 

expanded until a sufficient number is obtained for the intended quantity of viral vectors 

to be produced.  

2.1.3.4 Transfection  

Continuing with the process described by Merten et al. (2010), after 3 days in the cell 

factory stacks, the medium was changed 2 hours prior to transfection. Cells were then 

transfected with a transfer plasmid and three packaging plasmids, using the Calcium 

Phosphate transfection method first described by Graham et al. (1977). The medium 

was changed the following day and the viral supernatant was harvested twice, at 24 

hours and 48 hours after transfection.  

2.1.3.5 Downstream processing  

Merten et al. (2010) provided a description for the downstream processing of GMP-

grade LVs. The objective of downstream processing is the concentration and 
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purification of the LVs, including the elimination of process and cell-derived 

contaminants, and the formulation of the final LV product.  

The first step was the clarification of the harvested LVs using low retention membrane 

filters of decreasing pore size. Next, the filtered stock was treated with an 

endonuclease (Benzonase) overnight at 4oC to remove plasmid DNA and residual 

DNA contaminants. After the filtration and Benzonase treatment, approximately two-

thirds of the viral vector particles were recovered, and the infectivity dropped by less 

than two-fold. DNA content was reduced by around 85%. Anion-exchange 

chromatography was then used to capture the virus particles. The viral stock was 

pumped over a DEAE ion exchange chromatography column, and the column was 

washed with PBS and step-eluted with NaCl, leading to the removal of more than 99% 

total proteins. The eluate was then concentrated between 20 to 30-fold using tangential 

flow filtration. After this, the stock was passed through a hollow-fibre cartridge for 

further reduction of protein and DNA contents. The viral stock was then equilibrated 

into the formulation medium by size-exclusion chromatography. The collected eluate 

was then sterile filtered generating the final LV product (Merten et al., 2010). 

2.1.4 Bioreactor-based suspension culture process for lentiviral vector 
production 

The bioreactor-based production of LVs begins with the seed train, which is similar to 

that of the adherent cell culture process, with minor differences due to the use of 

different cell types and media (Thomas et al., 2013). HEK293-F and HEK 293-H are 

two industrially relevant cell lines that have been adapted for growth in suspension 

cultures using serum free media (Malm et al., 2020). A bioreactor-based suspension 

culture process for the production of LVs was described by Thomas et al. (2013). 

Initially in process development, 293-F cells were grown in shaker flasks using serum 

free media. The cells were transfected with helper and vector plasmids using 25kD 

linear polyethyleneimine (PEI) and the process was optimised based on the cell density 

at the time of transfection, the DNA to PEI ratio and the plasmid volume ratios. 

Following the optimization, the process was upscaled to a single-use bioreactor 

system. The cell growth rate in the shaker flasks was replicated in the bioreactor 

system by controlling the dissolved oxygen concentration and the pH of the culture. 

The cell culture was expanded from 2L to 10L in the bioreactor and then transfected 

with the optimized PEI transfection procedure. The LVs were then harvested and 

concentrated using ion exchange chromatography followed by size exclusion 

chromatography. 
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In this work, the downstream processing of the large-scale suspension culture 

productions was not investigated.  

2.1.5 Cell drug product manufacture 

In cell drug product (CDP) manufacture, the patient’s cells are extracted, processed 

and transduced with the viral vectors, before being prepared for transplantation back 

to the patient. The essential steps of ex vivo gene therapy are isolation of the patient’s 

cells and in vitro culture of the target cell types, to enable their isolation, expansion 

and/or differentiation before or after a genetic modification takes place (Naldini, 2011). 

Hematopoietic stem cell (HSC) gene therapies are some of the most successful and 

well-developed gene therapies to date (Morgan et al., 2017), partly due to the long-

standing clinical experience in HSC transplantation (Naldini, 2011). HSC gene 

therapies have been used to treat  

Merten et al. (2010) described the transduction of CD34+ cells (HSCs and progenitor 

cells) from umbilical cord blood using LVs containing the WAS gene. CD34+ cells were 

obtained from the umbilical cord blood by immunomagnetic selection and activated 

overnight by incubating the cells in medium supplemented with antibiotics and 

cytokines. Following selection of CD34+ cells, the preactivated cells were transduced 

with the LVs for 6 hours in the presence of hexadimethrine bromide. The next day cells 

were washed and tested. The final part of the process that remains is preparation of 

the cell drug product, which was not described. 

2.1.6 Viral vector and cell drug product quality attributes 

Critical quality attributes of the LV product described by Merten et al. (2010) included 

the infectious titre and the physical titre. The infectious titre is a measure of the 

concentration of virus particles capable of infecting cells to cause cytopathic effect 

following in vitro infection. Merten et al. (2010) determined the infectious titre by 

quantitative polymerase chain reaction (qPCR) through infection of HCT 116 cells with 

serial dilutions of viral vector (Palmer and Ng, 2004). The units of the infectious titre 

may be expressed as infectious genomes per millilitre or transducing units per millilitre. 

The physical titre is a measure of the concentration of total viral vector particles in 

vector preparation (Palmer and Ng, 2004). Merten et al. (2010) determined the physical 

titre using a so-called ELISA apparatus. 

In the quality control of the GMP-grade LV product described by Merten et al. (2010), 

several important tests were carried out. Firstly, the LV product was tested to ensure 

that there were no replication-competent LV particles present. The transfer of plasmid 
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DNA, adenoviral and SV40 genomic sequences to target cells was tested by qPCR. 

Total protein content and total DNA content were measured by spectroscopy and 

spectrofluorimetry. Finally, the presence of cellular DNA was tested by qPCR. For 

more specific details on the testing methods, such as the qPCR approaches, the 

reader is referred to the paper (Merten et al., 2010). 

The CQAs of the final cell drug product described by Merten et al. (2010) included the 

total cell count, cell viability and the number of vector copies per cell. Cells were 

counted by inverse microscopy and viability was measured by trypan blue dye 

exclusion. The number of vector copies integrated per cell was determined by qPCR 

as described by Charrier et al. (2007). 

2.2 Cell gene therapy manufacturing challenges  

2.2.1 Scale up and scale out 

With the field of gene therapy experiencing significant progress in recent years, 

investment in clinical trials has increased and with it, the demand for viral vectors has 

grown. For clinical applications, it is also important that the viral vectors are high purity 

and high concentration and produced in accordance with current good manufacturing 

practice (CGMP) regulations. Popular and successful viral vectors, such as LVs and 

rAAVs, have traditionally been produced in laboratory scale systems using adherent 

cell lines. Such systems are severely limited in their practical scalability and cost 

effectiveness, which means that they are not suitable for meeting current and future 

viral vector demands (Manceur et al., 2017; Vlachakis, 2019). Adherent cell cultures 

are typically grown in flasks and transferred to cell factory stacks, which are multilayer 

flat plastic trays. These systems require a significant degree of manual handling during 

the cell expansion, transfection and harvesting phases of viral vector production 

(Merten et al., 2010; van der Loo and Wright, 2015). Henceforth, scaling cell factory 

stacks to larger sizes is neither practical nor efficient (McCarron et al., 2016). 

Transient transfection techniques are also a challenge to scale up because it is difficult 

to efficiently transfect large numbers of cells and the process is susceptible to variation 

(van der Loo and Wright, 2015). The calcium-phosphate (CaP) coprecipitation method 

is challenging to implement at large-scale because it requires large volumes of plasmid 

DNA, serum or albumin (potential contaminants) are required in the culture to reduce 

the toxic effect of CaP on cells, and it is highly sensitive to variations in pH (McCarron 

et al., 2016). Lipid based reagents that are effective at small scale are toxic expensive 

making them less suitable for large scale transfection (van der Loo and Wright, 2015). 
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The transient transfection method that is reported to be the most suitable for scale up 

in the literature involves the use of polyethyleneimine (PEI). PEI is relatively 

inexpensive and less toxic to cells than CaP, and PEI mediated transfection is less 

sensitive to changes in conditions and can be conducted on adherent or suspension 

cultures, with or without serum (McCarron et al., 2016). 

Transient transfection processes have been the ‘gold-standard’ production systems for 

GMP-grade viral vectors up to now (McCarron et al., 2016; Merten et al., 2010). This 

is largely due to the fact that transient transfection systems were fast to develop, in 

compassion to stable cell lines, which require extensive development to establish 

clonal production cell lines (Manceur et al., 2017; McCarron et al., 2016; Schweizer 

and Merten, 2010; van der Loo and Wright, 2015). However, transient transfection 

systems are not well suited to large scale production due to the high levels of variability 

associated with the transfection procedure and a requirement for large volumes of 

expensive plasmid DNA, with the potential to end up as a contaminant of the final cell 

drug product (McCarron et al., 2016).  

Researchers and manufacturers of CGT treatments are developing scalable systems, 

such as bioreactor-based suspension cultures, including stirred tank, rocker, hollow-

fibre and fixed bed bioreactors (McCarron et al., 2016; Merten et al., 2016; van der Loo 

and Wright, 2015), to overcome the challenges associated with traditional adherent 

cell culture systems. Additionally, stable cell lines are being developed due to their 

advantages for large-scale manufacturing, including the removal of need for expensive 

plasmid DNA, ability to produce virus over extended periods, and lower costs and 

complexity in downstream processing due to the fewer DNA impurities (McCarron et 

al., 2016). It is expected that stable cell lines will be established and become widely 

adopted in the future, as they offer the reduced process variability and manufacturing 

costs and increased safety compared to transient manufacturing processes (Merten et 

al., 2016). 

Up until this point, the discussion has been related to the upstream manufacturing 

process for viral vectors. The downstream process is heavily dependent on the 

upstream process, as factors such as scale, choice of reagents and upstream methods 

impact the selection of downstream unit operations. Adapting downstream processes 

to deal with larger quantities of viral vector supernatant and changes to its composition 

is another area where manufacturers must focus on development. This will require 

manufacturers to transfer technology and scale up unit operations, utilising knowledge 
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and cooperation from a wide range of scientific and engineering disciplines. A large 

amount of capital and time is required to be invested up front to optimise and validate 

the manufacturing processes in accordance with GMP guidelines to ensure the safety 

and efficacy of the product (van der Loo and Wright, 2015). 

2.2.2 Process complexity and variability  

High levels of process variability is a major challenge in CGT manufacturing. Process 

variability comes from two main sources: the manufacturing methods and the input 

materials (Cai et al., 2009; McCarron et al., 2016; Merten et al., 2010). In viral vector 

production, the producer cells, plasmid DNA, transfection reagents and culture media 

are all complex raw materials with the potential to introduce variability into the process 

(Emerson et al., 2020). Lot-to-lot variability in reagents, such as the HEPES-buffer 

saline that is used in transfection, has been reported to contribute significantly to 

process variability (van der Loo and Wright, 2015). Producer cells are sensitive to 

storage and process conditions and can undergo a limited number of passages before 

mutations start to cause adverse effects (Merten et al., 2010). Variability in storage 

and process conditions early in the seed train can cause differences in cell condition 

and metabolic state that amplify variability throughout the rest of the process 

(Streefland et al., 2013).  

The use of complex mammalian cell lines, such as HEK 293 or 293T cells, heightens 

this issue because they are susceptible to variation and they introduce additional 

critical process parameters (CPPs) in cultivation compared to yeast or bacterial 

cultivations (Streefland et al., 2013). Identification of CPPs and implementation of tight 

control schemes is necessary to reduce batch-to-batch variability. The transfection 

process is an example of a procedure that requires tightly controlled conditions and is 

otherwise a key source of process variability (McCarron et al., 2016). As mentioned 

previously, adherent cell culture processes involve a high degree of manual handling, 

which can be a source of variability introduced by human operators. Manual tasks 

include passaging and counting cells, adding reagents and transferring materials 

between vessels (Kotin, 2011; Merten et al., 2010; Schweizer and Merten, 2010). The 

process operators are highly trained and skilled; however, manual process inevitably 

introduce more variability than machine automated processes. Furthermore, the 

systems are open systems to allow operators to interact with them and this creates a 

larger risk of contamination (Kotin, 2011; McCarron et al., 2016; Rout-Pitt et al., 2018; 
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van der Loo and Wright, 2015). The shift toward bioreactor production will reduce some 

of these issues as bioreactors are closed systems with a high degree of automation. 

In cell drug product manufacture, the patient’s cells are a key source of variability, as 

the cell characteristics can vary greatly from patient to patient. This can be partly 

attributed to genetic heterogeneities, epigenetic differences, or transcription regulation 

diversities (Stroncek et al., 2010). Additionally, cells used in autologous cell therapies 

can differ due disease type, treatment history or stage of the disease. Materials such 

as growth factors and cytokines used in cell drug product manufacture exhibit genetic 

polymorphisms and it is likely that these impact cell health and behaviour in vitro 

(Stroncek et al., 2010). The cell collection process can even contribute to variation in 

the quantity and viability of cells obtained (Stroncek et al., 2010).  

Another important consideration is the high degree of complexity involved in CGT 

therapy manufacturing, which is inherent to the complex biological systems involved. 

Viral vector production is a particularly complex phase of the process, where many 

CPPs are involved and the mechanisms by which the process conditions impact viral 

vector production are not well understood. The viral vectors are complex biological 

nano particles, which are sensitive to their environment, meaning that carefully 

controlled conditions are required to prevent their degradation during downstream 

processing, formulation and storage (Emerson et al., 2020; Merten et al., 2016). 

Production of most viral vectors is biphasic, meaning that different conditions are 

required in the cell expansion phase versus the virus production phase, due to shifts 

in cell state and metabolic activity (Gálvez et al., 2012; Petiot et al., 2015). There is in 

general a lack of advanced process knowledge due to processes and products being 

at a relatively early stage of development (Kaemmerer, 2018; Vlachakis, 2019). 

2.2.3 Material characterization and process measurements 

Characterization of materials is a highly important aspect of CGT manufacturing. The 

complex raw materials, such as the culture media and reagents, should be well 

characterised to ensure quality and to understand the composition of materials going 

into the process. However, it is difficult to characterize all the materials going into the 

process as there is a lack of capable technology. Difficult to characterize materials 

include animal derived components in culture media, producer cells and the patient’s 

cells (Li et al., 2010; Stroncek et al., 2010). Characterization of the viral vector and cell 

drug products is also essential so that the quality of the product can be controlled and 

so that the product attributes can be related to the manufacturing process variables to 
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guide process development and optimisation. It is also critical to characterize the final 

cell drug product to ensure its safety, potency and efficacy (Merten et al., 2010). This 

represents a significant challenge in CGT manufacturing because assays are difficult 

and costly to develop and often there is a significant delay between collecting the 

sample and receiving the results. Moreover, the error in some of the key assays is 

high, for example the infectious titre assays for viral vectors have errors as high as 

36% (Roldão et al., 2009). 

The lack of advanced process understanding in CGT manufacturing is exacerbated by 

a lack of online process measurements for key molecular compounds and process 

parameters. Currently, the slow turnaround time associated with offline or at-line 

measurements for important process parameters such as the cell concentration, cell 

viability and properties of the culture, mean that it is difficult to develop online process 

monitoring and/or control schemes (Ansorge et al., 2011). This is a major limitation for 

the optimisation of viral vector manufacturing processes, since operators are unable 

to track batch progress and correct trajectories in real time (Emerson et al., 2020). 

Moreover, it hinders the development of process knowledge as it is not possible to 

learn more about the process mechanisms in the absence of good data on the 

chemical, physical and biological elements involved.  

2.3 Multivariate data analysis in the chemical and biochemical 
industries 

Multivariate data analysis covers an array of data-driven modelling approaches, which 

involve multiple variables in a single relationship or set of relationships (Hair, 2014). 

The advantage of these techniques over traditional univariate or bivariate techniques 

is that they capture the relationships between numerous variables simultaneously, 

often facilitating a reduction of dimensionality and a simplified interpretation of the 

overall dataset (Hair, 2014; Kirdar et al., 2007; A S Rathore et al., 2014). These 

techniques are highly relevant in the analysis of bioprocess manufacturing data, since 

these datasets are often complex with high dimensionality. Previously, practitioners 

have recognised that the use of univariate or bivariate techniques under these 

circumstances is likely to produce misleading results (A S Rathore et al., 2014). 

Moreover, theoretical/mechanistic process models are frequently not available for 

bioprocesses due to the large number of variable interactions and inherent complexity 

in biological systems. Reduced order more models, such as multivariate data analysis 
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(MVDA) models, are significantly easier to realise in many cases (O’Malley et al., 

2012). 

MVDA and machine learning (ML) techniques have a diverse range of uses, across 

different industries, and even within manufacturing. Some well-established uses of 

MVDA in chemical and biochemical processing are outlined in Figure 2-2. One simple 

distinction to make between different MVDA applications is between online and offline 

applications. Online applications include the use of MVDA models to make inferences 

from process data in order to monitor and/or control processes in real time or near-real 

time. Offline applications include retrospective investigations of historical process data 

to gain insights into process behaviour. Other applications, such as the 

characterization of materials, may be conducted online or offline depending on the 

objective. Here, some of the relevant applications of MVDA to mammalian and 

microbial process are reviewed to provide examples of the potential benefits that 

MVDA can bring to CGT processes.  Both bacterial and mammalian cell cultures are 

of relevance since they are used in the manufacture of CGT treatments. Specifically, 

bacterial cell cultures are used for production of plasmids and mammalian cell cultures 

are used in viral vector production and processing of the patient’s cells.  

 

Figure 2-2: Applications of MVDA in bioprocessing (Emerson et al., 2020). Online 
applications include process monitoring and control. Offline applications include process 
comparability during scale-up and technology transfer and assessment of process variability. 
Other applications are both online and offline, such as characterisation of material and 
prediction of key process parameters. 
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2.3.1 Retrospective investigations of process data  

Retrospective investigations of process data may be carried out using data that 

originates from a design of experiments (DoE) or using historical process data from 

production or development periods where no DoE was conducted. The approach to 

the analysis and the main challenges depend on the structure of the data and its 

provenance. Data originating from a DoE has key features which are uncorrelated by 

design, to allow for relationships between independent variables and the dependent 

variables, e.g. product quality attributes, to be observed under controlled conditions. 

While a DoE may produce more ideal data, there is an abundance of data that is 

produced during the development of processes and during production campaigns. This 

data is often influenced by external factors, and features multicollinearity, and at times 

too much or too little variation to observe the variable relationships. Nevertheless, this 

data has been shown to provide valuable insights and can offer a perspective on 

process behaviour that is not observable under DoE conditions. For example, insights 

into process drift or variability during production campaigns may be an important area 

of interest. MVDA has frequently been used for general investigations into historical 

process data, where the broad objective is to derive beneficial insights into process 

behaviour. There are also more specific research objectives which have been explored 

within these investigations, for example, these include evaluation of process variability, 

comparability across production scales, quality and robustness of process control or 

relationships between process parameters and product critical quality attributes 

(CQAs).  

Le et al. (2012) analysed 243 batches from the manufacturing of a recombinant IgG 

molecule using Chinese Hamster Ovary (CHO) cells. The seed train was operated in 

the same manner for all batches (80L, 400L to 2000L) and the full production scale 

was operated in fed-batch mode. Inspection of the process data revealed that during 

the production period, there was significant variation in the pre-harvest antibody 

concentration, lactate concentration profiles and the maximum cell density. To gain a 

deeper understanding of the process behaviour, the authors decided to use supervised 

learning techniques, PLS regression and support vector regression (SVR), with 

process parameters as inputs to predict the final antibody titre and lactate 

concentration. It was found that the inclusion of data from early in the production 

greatly increased model predictive performance and that the history of the culture 

significantly influenced the process outputs. It was also observed that the lactate 

concentration profile provided a good reference for the state of the cell culture and the 
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final antibody yield. Henceforth, it was suggested that the lactate concentration should 

be monitored to allow operators to intervene early and steer the metabolism of cells in 

the culture towards higher lactate consumption, and ultimately higher product titres.  

Mercier et al. (2014) studied a process with high relevance to CGT processes due to 

the use of human cells (PER.C6 cell line) in a process at the early stages of 

development. The dataset contained 17 2L and 10 10L bioreactor-based cultivations 

operated in perfusion mode. Multiway PCA was used initially to assess the key features 

of variance and correlations within the data. MPCA facilitated the identification of the 

root causes for batch deviations and uncovered differences in process conditions 

between the 2L and 10L scales, which were previously considered to be comparable. 

The authors also developed multiway PLS regression models to predict the viability 

and doubling time of the cell culture; however, this was unsuccessful due to information 

missing from the early development dataset. The authors concluded that the value of 

early development process runs could be greatly improved by taking a more strategic 

and structured approach to experimentation from the very beginning of process 

development. Nevertheless, the authors stated that the utilisation of MVDA on early 

development datasets is a worthwhile endeavour, as they able to generate insights 

useful for process development and scale-up.  

2.3.2 Process comparability  

Evaluation of process comparability is an important usage of MVDA, which has been 

widely reported in the literature. In bioprocessing, process comparability is a highly 

relevant topic due to the fact that many processes are operated in batch or fed-batch 

mode, henceforth there is a need to evaluate batch-to-batch variability. Moreover, 

there is a requirement to assess process comparability throughout the phases of 

process development, scale-up and optimisation. PCA is a frequently exploited 

technique in this regard, since it has the ability to capture information from the whole 

set of process parameters in a reduced set of latent components, which highlight key 

features of variance in the data. This allows the researcher to more easily assess 

differences in process conditions between batches and to later identify the root cause 

(Kirdar et al., 2008).  

Lopes and Calado (2018) analysed online and offline process data from 11 batches of 

E. Coli DH5-α in the production of plasmids (pVAX-LacZ). PCA was initially used to 

assess process variability and comparability and multivariate analysis of variance was 

used to evaluate the statistical significance of the differences identified. Following the 
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feature extraction exercise, linear discriminant analysis (LDA) was used to predict the 

cell growth phase at numerous timepoints throughout the process, based on the rates 

of change in metabolite concentrations. The PCA and LDA models both provided a 

comparison of the performance of batches and the LDA model enabled prediction of 

the metabolic state of the culture that could be useful in process monitoring.  

Rathore et al. (2014) investigated an unspecified cell culture process, with a dataset 

comprised of small-scale (2L), pilot-scale (2000L), and production-scale (15,000L) 

runs. PCA was used for feature extraction, where the two most important latent 

components identified two clusters of batches. One of the groups contained 

production-scale and pilot-scale runs that used specific raw material lots and was 

associated with atypical product attributes, elevated culture osmolality and elevated 

lactate and sodium concentrations. The PCA model provided a comparison of the 

process characteristics between the three scales and shed light on key correlated 

features within the data. Subsequently, PLS regression was used to link the process 

conditions and cell culture growth dynamics to the product quality attributes.  

2.3.3 Characterization of materials  

Characterisation of materials is sometimes a requirement, for example, in the quality 

control of a biopharmaceutical product it is necessary to know the concentrations of 

certain potential contaminants, and other times it is a beneficial, for example online 

characterisation of a bioreactor-based suspension culture can offer improved process 

monitoring and control.  Raw materials are a key source of variability, particularly 

complex biological raw materials, which can have a significant influence on process 

performance. It is therefore desirable to characterize the raw materials before they’re 

introduced to the process in order to minimize process variability and optimize product 

yield and quality attributes.  

Lopes et al. (2004) analysed a fermentation process producing an active 

pharmaceutical ingredient (API), where the main nitrogen source for the culture was 

soyabean flour. From past experience, it was known that a simple change in the 

soyabean flour material lot could impact the yield of the API. To investigate this further, 

the authors took 25 soyabean flour samples from 25 fermentations and characterised 

them using FT-NIR reflectance spectroscopy. PCA was applied to the NIR spectra and 

the resulting latent components were passed to a Kohonen network with four output 

nodes. This enabled classification of the API concentration into four categories ranging 

from poor to very good. The accuracy of the model was around 70% and 
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misclassifications were always within one neighbourhood of the true value; henceforth, 

the authors concluded that the model was able to successfully predict the process 

outcome using the FT-NIR characterisation of the soyabean flour feed material.   

Li et al. (2010) explored the characterisation and quality assessment of media 

components used in a CHO cell culture for the production of recombinant proteins. The 

authors noted that in good biopharmaceutical manufacturing practice there are two key 

requirements, the first is the correct identification of raw material components, and the 

second is the quality assessment of raw materials prior to their use. With this in mind, 

the authors decided to characterize the material with different spectroscopic 

techniques and found that Raman spectroscopy was most suitable. After pre-

processing the spectra, PCA and soft independent modelling of class analogy were 

successfully applied to the spectra to identify five chemically defined commercial media 

components. Analysis of the variance in the spectra also provided insights into the 

consistency of the media samples. The authors suggested that the strategy could be 

used in a number of applications, including for in-house sample handling, tracking and 

quality control. 

2.3.4 Process monitoring and control 

The online monitoring and control of bioprocesses is currently hindered by a lack of 

online sensors for the measurement of key process variables (Melcher et al., 2017; 

Rathore et al., 2010; Streefland et al., 2013). Without sensors to measure variables 

such as cell density or product concentration online, there is no basis upon which to 

build an online control scheme for optimising these critical process parameters. The 

ultimate objective is to set up online feedback control loops to optimise the product 

yield and quality (Melcher et al., 2017). Even online monitoring of these parameters 

could provide great benefits, as it would allow process operators to observe the batch 

trajectory and react to process deviations in real time (Chen et al., 2011). Due to the 

lack of direct online measurements, researchers have focused efforts on predicting key 

process variables, using known process variables and process analytical technology, 

such as spectroscopic methods, which are capable of providing online readings 

(Emerson et al., 2020).  

Zheng and Pan (2016) studied a batch glutamate fermentation process, using 

Corynebacterium glutamicum. Such processes are difficult to control due to high levels 

of variability associated with the biological materials and due to a lack of online process 

measurements (Zheng and Pan, 2016). The authors therefore decided to develop a 
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predictive model to enable the tracking of process performance.  In their work, they 

developed a Gaussian process regression (GPR) model to predict the glutamate 

concentration online, using other online available process measurements as the model 

inputs. Model validation was carried out in 10 5L fermentation runs and it was found 

that the GPR model could provide effective guidance for online process control and 

optimisation of the glutamate yield. 

Melcher et al. (2017) developed predictive models for key process parameters in a fed-

batch E.Coli fermentation, including cell dry mass, optical density and protein 

concentration. Structured additive regression (STAR) models were used in 

combination with boosting to select predictor variables. The model inputs included 

online available process variables and 2D florescence spectroscopic data. The use of 

STAR models allowed incorporation on curvilinear and interaction effects and boosting 

enabled the most important spectroscopic frequencies and process variables to be 

determined and utilised in the prediction. The results showed that the STAR model 

could predict the cell dry mass, optical density and soluble protein concentration with 

relative errors of ±3%, ±6% and ±16%, respectively. The authors concluded that this 

would allow effective online monitoring. 

Clavaud et al. (2013) conducted an MVDA study on process data from 10 production 

scale bioreactor (12,500L) runs, during the manufacture of monoclonal antibodies 

using CHO cells, cultivated in fed-batch mode. The process was monitored using a 

Fourier transform near infrared multiplex analyser. Initially, the resulting NIR spectra 

were pre-processed and analysed using PCA, which showed that a significant portion 

of the variance could be explained by deviations in the process trajectory. From. This 

information, it was clear that the spectra could be used to evaluate process variability 

and detect abnormal process behaviour. The authors followed up by using PLS 

regression to predict key process variables, including metabolite concentrations, viable 

cell density and product titre. The modelling results demonstrated accurate predictive 

performance for all of the media components that were modelled, leading the authors 

to conclude that the models could be effective in process monitoring and/or control.  

2.4 Multivariate data analysis in cell gene therapy manufacturing 

Multivariate data analysis has not yet been widely exploited in CGT manufacturing 

(Emerson et al., 2020). This may be attributed to the fact that CGT products and their 

manufacturing processes are still at a relatively early stage of development, with many 

changes taking place, such as development of stable cell lines and transition to 
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scalable cell culture systems (McCarron et al., 2016; Merten et al., 2016; Ramirez, 

2018). In the literature, MVDA has been leveraged to contribute towards solutions for 

several key manufacturing challenges that are faced in bioprocessing. This includes 

mammalian and bacterial cell bioprocesses for production of proteins, monoclonal 

antibodies and other active pharmaceutical ingredients. Many of the challenges that 

MVDA has already been used to tackle are relevant to CGT manufacturing, including 

characterization of materials, evaluation and targeted reduction of process variability, 

assessment of process comparability throughout process development, scale-up and 

technology transfer and providing insights into process behaviour. This thesis is mainly 

focused on using MVDA to generate beneficial insights into process variability, 

comparability and the relationships between manufacturing process variables and 

critical quality attributes of the viral vector and cell drug products.  
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2.5 Objectives of this work  

The specific objectives of this work include the following: 

• Provide a review of appropriate modelling techniques for bioprocess analytics and 

describe the particular challenges of applying these techniques to data from cell 

gene therapy manufacturing processes, detailing the steps taken to overcome 

challenges encountered. 

• Development of linear and nonlinear programming approaches to solve and identify 

sparse PCA models, which ease the interpretability of the PCA model, enabling 

greater clarity of insights derived from the modelling activity. 

• Analyse data from the adherent viral vector manufacturing process, the cell drug 

product manufacturing process and the bioreactor-based viral vector 

manufacturing process, in order to derive useful insights into process behaviour.  

More specifically, for the adherent viral vector manufacturing process data, the 

objectives are to: 

o utilise unsupervised learning techniques to assess and evaluate within process 

variability and batch-to-batch clustering in both the upstream and downstream 

processes 

o explore supervised learning techniques and develop predictive models to 

identify critical process parameters and capture the relationship between 

process parameters and critical quality attributes of the viral vector product. 

For the cell drug product manufacturing data, the objectives are to: 

o utilise unsupervised learning techniques to assess and evaluate within process 

variability and batch-to-batch clustering 

o develop predictive models to identify critical process parameters in CDP 

manufacture and capture the relationship between process parameters and 

critical quality attributes of the cell drug product. 

For the cell drug product manufacturing data and adherent viral vector manufacturing 

data combined, the objectives are to: 

o develop predictive models to identify critical process parameters and capture 

the relationship between process parameters and critical quality attributes of the 

cell drug product. This time investigating whether the effect of process 

parameters from viral vector manufacturing are influential on critical quality 

attributes of the final cell drug product. 

For the bioreactor-based viral vector manufacturing data, the objectives are to: 
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o utilise unsupervised learning techniques to assess within process variability and 

batch-to-batch clustering and to evaluate process comparability across different 

bioreactor production scales. 

o develop predictive models to identify critical process parameters and capture 

the relationship between process parameters and critical quality attributes of 

viral vector product. Evaluate the performance of models used to make 

predictions across a range of bioreactor volumes.  
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Chapter 3  

Model development and evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, a range of MVDA techniques are summarised, the theory is described 

with references to more detailed literature and examples of practical applications. 

Further to the presentation of multivariate models, key model development practices 

such as variable selection, data partitioning and cross validation are discussed. The 

material in this chapter is a foundation for the methodology implemented throughout 

this thesis and it also serves as a functional collection of data analysis techniques and 

practices, which are beneficial in a wide variety of disciplines.   
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3.1 Exploratory data analysis  

Exploratory data analysis (EDA) is often carried out as the first phase of a MVDA 

investigation. The purpose of EDA is to assess the data structure and to highlight the 

key features of variance, correlations and patterns, which may be present. It also 

provides an overview of the dataset, such that similarities and differences between 

samples, systematic trends and outliers can be identified (Behrens, 1997; Biancolillo 

and Marini, 2018).  EDA can provide many insights into the system under study and 

can help to identify specific areas that the practitioner should focus on in subsequent 

analysis or investigations. It provides information that is highly relevant to predictive 

modelling, therefore, EDA is usually carried out prior to the development of predictive 

models in order to guide selection of samples, variables and models. In this thesis, 

principal component analysis was the primary tool used for EDA.  

3.1.1 Principal component analysis 

Principal component analysis (PCA) is frequently used in MVDA as a feature extraction 

or pattern recognition technique (Hair, 2014). It is also used as a data compression 

technique, as it summarizes large datasets using a greatly reduced number of latent 

variables, which capture the maximum amount of information possible. PCA has 

proved to be a useful technique across many fields of science and engineering, 

including geophysical research (Li et al., 2013), bioinformatics (Zheng et al., 2012), 

signal processing (Harmouche et al., 2014) and chemometrics (Bro and Smilde, 2014), 

to name a few. There are numerous claims to the first use of PCA in the literature, the 

most famous early work was published by Karl Pearson in 1901. Hotelling (Hotelling, 

1933) notably redeveloped the technique in the 1930s, when PCA took on the format 

that is most commonly used today. 

3.1.1.1 Theory 

Given a data matrix X, comprised of 𝐼 observations on 𝐽 observed variables, the aim 

of PCA is to reduce this data to a set of k new variables, where k is small relative to 𝐽. 

The new variables are a weighted-linear combination of the original variables, known 

as variates, latent variables or principal components (PCs), which may be written as 

𝒕 = 𝒙1 × 𝒘1 + ⋯ + 𝒙𝐽 × 𝒘𝐽. In matrix notation this becomes 𝒕 = 𝑿𝒘, where 𝒘 is the 

vector of loadings with elements 𝒘𝑗(𝑗 = 1, … , 𝐽) and 𝒕 is a vector of scores. The 

weightings are determined by maximising the variance of each component in order to 

maximise the amount of information explained by the set of latent variables. The 

principal components are restricted to a set of principal axes where all components are 
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mutually orthogonal so that covariance is eliminated. This design means PC one 

captures the most variation, and the variation captured in subsequent PCs decreases 

monotonically. Since multiplying 𝒘 by an arbitrarily large number will make the 

variance of 𝑡 also arbitrarily large, it is necessary to normalize the weighs, implemented 

by requiring that their norm, i.e. sum of squares, is equal to one (Bro and Smilde, 2014). 

Consider first a single PC. The formal problem is given by (3.1):  

 argmax
‖𝑤‖=1

𝑣𝑎𝑟(𝒕) (3.1) 

The variance of t is given by 𝒘𝑇𝑸𝒘 where 𝑸 is the covariance matrix  

 
𝑸 =

𝑿𝑇𝑿

𝑛 − 1
 

(3.2) 

It is assumed that the data matrix X is mean centred, so that all latent variables are 

also mean centred. The problem rewritten below is a standard problem in linear 

algebra. 

 argmax
‖𝑤‖=1

(𝒘𝑇𝑸𝒘) (3.3) 

If the variance explained by one PC is insufficient, a PCA model can be determined 

with multiple PCs, which will still represent a significant dimension reduction if the 

number of PCs is small compared to the original number of variables (Bro and Smilde, 

2014). For models with more than one PC, the principal components subsequent to 

PC one are subject to an orthogonality constraint (3.4), to ensure that the variance 

explained by each of the PCs is independent.  

𝑓𝑜𝑟 𝑘 ≥ 2, 𝒘𝑘
𝑇𝒘𝑘−𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1, . . , 𝑘 − 1  (3.4) 

The scores and loadings vectors may be written into a standard regression equation, 

in this way PCA may be viewed as a modelling activity, and standard regression tools 

may be used to assess the quality of the model. For a PCA with multiple components, 

the model representation is given by equation (3.5): 

 𝑿 = 𝑻𝑷𝑇 + 𝑬 

 

(3.5) 

where P is the loadings matrix and T is the scores matrix, which represents the 

observations in the latent variable space. The product of the scores and loadings 

matrices give an estimation of the original data.  

 𝑻𝑷𝑇 = 𝑿̂ (3.6) 
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To judge the quality of the scores as a summarizer of the original data, the explained 

variation of 𝒕 may be calculated using equation (3.7). 

 
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =

‖𝑿‖2 − ‖𝑬‖2

‖𝑿‖2
100 

(3.7) 

In this work, standard PCA was implemented using the inbuilt PCA function in 

MathWorks® software MATLAB.  

3.1.1.2 Determining the number of principal components 

As mentioned previously, the initial components explain the most variation while later 

components explain a smaller percentage. Usually, it is not desirable to explain all of 

the variance in the original dataset because it is known to contain a degree of noise. 

Numerous methods have been described for selecting the optimal number of principal 

components, where the aim is to capture all of the important features of variance while 

rejecting principal components containing a large percentage of noise. One popular 

method is known as the scree test, where the eigenvalues or percentage of variation 

explained is plotted for each corresponding principal component. The number of 

principal components is then determined based on the point at which the decrease in 

variance explained becomes linear. This point indicates that the model is starting to 

capture a larger percentage of noise and therefore represents a good stopping point 

(Bro and Smilde, 2014). Figure 3-1 shows an example of the scree test applied to a 

PCA model trained on a classic dataset. The scree test method was the method 

chosen in this work. 

 

Figure 3-1 Explained variance versus number of components in a PCA model for a 
classic wine dataset. The dashed line shows the point at which the loadings begin 
decreasing in a linear fashion. 

Scree test suggests 7 components 

to be selected, as this is the point 

at which variance explained begins 

to decrease in a linear fashion
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3.1.2 Parallel coordinates plots 

Parallel coordinates plots map each observation in a dataset as a line on a graph, 

which tracks its values across multiple variables. An example is shown in Figure 3-2. 

 

Figure 3-2: Example of a parallel coordinates plot for Fisher’s Iris dataset. The plot 
shows four variables recorded for 3 different plant species, which are represented by 
the different colours on the plot. 

Parallel coordinates plots allow the observer to identify trends and correlations 

between multiple variables while utilising colour to show an additional dimension, 

which can be a categoric or continuous response variable for example. Figure 3-2 for 

example shows four variables: petal length, petal width, sepal length and sepal width 

and their relationship to a categoric variable, the plant species to which the samples 

belong. Each sample is given by one line on the plot. In this plot, it is easy to see that 

petal length and petal width are positively correlated with one another because the 

majority of the lines on the plot do not cross over one another, i.e. they remain in the 

same order on the y-axis. Additionally, the fact that these two variables provide 

separation of the colours (plant species) indicates that both are predictive of the plant 

species. Conversely, sepal length and sepal width are less powerful predictors for 

classifying the plant species. In this thesis, parallel coordinates plots were used to 

further evaluate features of process variability that were identified with PCA.  

3.1.3 Other EDA tools 

Additional EDA tools that were used in this thesis include histograms, bivariate scatter 

plots and the correlation matrix. All three of these techniques were used for data 

exploration to understand the characteristics of the data and to provide initial insights 

into the trends and correlations present.  
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3.1.3.1 Histograms 

Histograms are used to visualise the distribution of variables, which is an important 

characteristic to understand when trying to make inferences from data. A histogram 

plots the distribution of a numeric variable on a bar graph. Each bar typically represents 

a range of values called a bin and the height of each bar represents the frequency of 

datapoints that fall within the corresponding bin. Figure 3-3 shows an example of a 

histogram for Fisher’s Iris dataset. The histogram shows the distribution of sepal width 

for the Virginica plant species, which closely follows a normal distribution. 

 

Figure 3-3 Histogram example for the sepal width of the Virginica species found in the 
Fisher’s Iris dataset. 

Statistical techniques often make assumptions about the distribution of data and 

histograms can be used to check which techniques are applicable and whether the 

assumptions are valid. The plots can also help to identify outliers and gaps in the data 

that may need to be addressed. Typical distributions that can be identified using 

histograms include symmetric unimodal (normal distribution), left or right skewed, 

uniform, bimodal or multimodal distributions. More information on histograms and 

distributions can be found in (Hair, 2014). 

3.1.3.2 Scatter plots 

Bivariate scatter plots use markers to show the datapoints for one variable plotted 

against another. The plots can be implemented for one independent variable versus 

another independent variable and for an independent variable versus a dependent 

variable. They allow for visualisation of any correlation between the two variables, 

whether it be linear or nonlinear, hence they quickly provide useful insights into the 

variable relationships in a dataset. Additionally, if there are classes or categories 

present in the data, colouring the datapoints by the class highlights any differences 

between the classes that are present in the two variables. This can be a useful exercise 

for determining whether the variables may be good predictors in a classification task. 

Figure 3-4 shows a matrix of scatterplots for the four variables in the Fisher’s Iris 
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dataset in the off-diagonal elements, while the diagonal elements display a histogram 

for each variable. 

 

Figure 3-4 A matrix of scatter plots for the Fisher’s Iris dataset on the off-diagonal 
elements, while the diagonal shows histograms for each variable  

Figure 3-4 shows that there is a strong positive linear correlation between petal length 

and petal width. It is also evident that these two variables are good predictors of plant 

species. The other scatter plots show some weaker correlations for certain species, 

for example petal length and sepal length correlate positively for the versicolor and 

virginica species. Some of these observations were also made with the parallel 

coordinates plot (Figure 3-2) of the Fisher’s Iris dataset, demonstrating that EDA 

techniques can serve purposes that overlap, although they generally excel at different 

things. The scatter plots can highlight linear and nonlinear corelations with more clarity 

than parallel coordinates (Hair, 2014). 
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3.1.3.3 Correlation matrix and heatmaps 

The correlation matrix is a useful tool for quickly evaluating the Pearson’s linear 

correlation coefficient between each pairing of variables in a multivariate dataset. It 

can be visualised by plotting the coefficient matrix as a heatmap, where positive 

correlations are one colour and negative correlations are another and the depth of 

the colour can be made to scale with the magnitude of the coefficient. An example of 

a heatmap for Fisher’s Iris data is shown in Figure 3-5. 

 

Figure 3-5 Heatmap of a correlation matrix for the four independent variables in the 
Fisher’s Iris dataset. 

The heatmap in Figure 3-5 shows that there are no significant negative correlations, 

but it highlights the large positive correlation between petal length and petal width. It 

also highlights the moderate positive correlation between sepal length and petal 

width/length. Heatmaps are good for getting an overview of the linear correlations in a 

dataset and can be used to display a relatively large number of variables at once. 

3.2 Predictive modelling 

Predictive modelling techniques model the relationship between a set of independent 

variables (model inputs) and one or more response variable. If the response variable 

is categorical, the prediction task is described as classification; alternatively, if the 

response variable is a continuous metric variable, the prediction task is described as 

regression. Once the prediction model has been trained to model the relationship 

between the predictors and the response, it can be used to predict the outcome of 

future events (Kuhn and Johnson, 2013). This means the model can be used to explore 

hypothetical scenarios to guide decision making and the model structure and 

coefficients can provide insights into the system from which the data originates. 
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Important applications of predictive models in bioprocessing where previously explored 

in chapter 2, section 2.3. In this thesis, multiple linear regression (MLR) and partial 

least squares (PLS) regression were used for prediction of critical quality attributes of 

the viral vector and cell drug products. 

3.2.1 Multiple linear regression 

MLR is a classic statistical technique with origins dating back to the late nineteenth 

century (Stanton, 2001). It has been widely used by scientists and statisticians to 

understand the relationships between variables in systems of interest. It is a 

fundamental technique in statistics, which is still frequently used today. MLR models 

the relationship between two or more regressors or predictor variables and a response 

variable of interest. The goal of MLR is to use the known values for a set of predictor 

variables to predict the unknown value of the response variable (Hair, 2014). 

3.2.1.1 Theory 

Given a set of predictor variables, X, and a response variable, 𝒚, the goal of MLR is to 

identify a set of coefficients, 𝜷, that minimises the sum of squares difference between 

𝒚 and 𝒚̂, where 𝒚̂ is the estimate of 𝒚 given by the MLR model, as in equation (3.8). 

𝒚̂ =  𝜷𝑿 + 𝑐     (3.8) 

Here, the set of coefficients, 𝜷, is a vector with m elements corresponding to each of 

the m variables in X and 𝑐 is a scalar intercept term. The problem of fitting the MLR 

model to training data to identify the coefficients is solved using a least squares 

optimisation algorithm (Hair, 2014), where the objective is to minimise the error, 𝜀, 

given by equation (3.9) 

𝜀 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1      (3.9) 

where n is the number of observations. The quality of the model fit to the training 

data and estimation of the model’s predictive capability are both important aspects to 

evaluate when developing a regression model. Error and goodness-of-fit metrics are 

discussed further in section 3.3. 

3.2.2 Partial least squares regression 

Partial least squares (PLS) regression is a popular regression model that is widely 

used in science and engineering domains. For example, PLS has been used in 

chemometrics to relate high-dimensional spectral data to chemical composition 

(Leardi, 2000) and in geophysical research to relate sea temperatures to hurricane 

activity (Smoliak et al., 2010). PLS regression was first introduced by Wold (1966) who 

demonstrated its application in the field of econometrics. 
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Like PCA, PLS is a latent variable method meaning that the original variables are 

summarised on a set of latent variables, which are weighted linear combinations of the 

original variables. However, unlike PCA, PLS is a supervised learning technique 

meaning that it models the relationship between a set of independent variables, X, and 

a set of response variables, Y. When the number of predictor variables is large 

compared to the number of observations, X is likely to be singular and the multivariate 

linear regression approach is no longer feasible (Abdi, 2010), due to the 

multicollinearity. PLS regression solves this problem by decomposing X to latent 

variables, which overcomes problems with multicollinearity. This property makes PLS 

very attractive for modelling linear relationships between X and Y when the data is high 

dimensional and/or when J is large and the data contains a high degree of 

multicollinearity. 

 

3.2.2.1 Theory 

In PLS regression both X and Y are decomposed to a set of latent vectors. The 

decomposition of X and Y is carried out simultaneously with a constraint that the 

resulting latent vectors must maximise the covariance between X and Y (Abdi, 2010). 

The decomposition of X is given by (3.10): 

𝑿 = 𝑻𝑷𝑻 + 𝑬      (3.10) 

Here, T is the score matrix, P is the loading matrix and E is an error matrix, 

corresponding to X. In some algorithms T is normalised using (3.11): 

𝑻𝑇𝑻 = 𝑰     (3.11) 

where I is the identity matrix. Y is estimated as described by (3.12): 

𝒀̂ = 𝑻𝑩𝑸𝑇     (3.12) 

where B is a diagonal matrix with the regression weights in the diagonal elements and 

Q (D x R) is the loading matrix corresponding to Y. The columns of T are referred to 

as latent vectors. In order to determine T, such that covariance between X and Y is 

maximised, additional conditions are required (Abdi, 2010). Specifically, two sets of 

weights w and q are created.  

𝒕 = 𝑿𝒘  𝑎𝑛𝑑  𝒖 = 𝒀𝒒    (3.13) 

with the constraints that 𝒘𝑇𝒘 = 1, 𝒕𝑇𝒕 = 1 and 𝒕𝑇𝒖 is maximal. After the first latent 

vector is obtained, it is subtracted from both X and Y and the procedure is reiterated 

until X becomes a null matrix (Abdi, 2010). 
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The determination of the regression weights and the loadings is an iterative process. 

An explanation of the NIPALS algorithm follows. The first step is to create two matrices: 

E = X and F = Y. These matrices are then mean centred and scaled to a standard 

deviation of one. A vector u is also initialized with random values. The following steps 

are then carried out (the symbol ∝ is used because the result of the operation is 

normalized): 

 
Step 1 – estimate weights 

𝒘 ∝ 𝑬𝑇𝒖 

Step 2 – estimate X factor scores  

𝒕 ∝ 𝑬𝒘 

Step 3 – estimate Y weights 

𝒒 ∝ 𝑭𝑇𝒕 

Step 4 – estimate Y scores 

𝒖 = 𝑭𝒒 

Step 5 – if t has not converged, then go back to step 1, if t has converged  

Step 6 – compute the value of b which is used to predict Y from t 

𝒃 = 𝒕𝑇𝒖 

Step 7 – compute the factor loadings for X 

𝒑 = 𝑬𝑇𝒕 

Step 8 – deflate the E and F matrices 

𝑬 = 𝑬 − 𝒕𝒑𝑇 

𝑭 = 𝑭 − 𝑏𝒕𝒒𝑇 

Step 9 – store the vectors t, u, w and q in their corresponding matrices, and store the 

scalar b as a diagonal element of B.  

Step 10 – if E is a null matrix, then the whole set of latent vectors has been obtained, 

otherwise the procedure can be re-iterated from Step 1 to determine additional latent 

vectors. 

3.2.3 Variable selection methods 

Variable selection is a key part of predictive modelling, as models containing redundant 

variables are unnecessarily complex and often have reduced predictive capability 

compared to models with redundant variables removed (Arlot and Celisse, 2010; 

Hastie et al., 2001). Furthermore, it is often of interest to interpret the model coefficients 

to gain understanding of the relationships between predictor variables and the 
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response variables. In this case, redundant variables increase the risk of 

misinterpretations (Mehmood et al., 2012).  

In this thesis, some pre-selection of variables was carried out to remove variables that 

could be confidently ruled out with low/no relevance to the analysis. Variables that 

were not thought to be relevant but could not confidently be ruled out were kept in the 

analysis. This is because one of the objectives of the analysis was to increase 

understanding of variable inter-relationships, where there was a recognised lack of 

existing knowledge. Henceforth, it was important not to bias the models and limit the 

learning opportunities by discarding variables. After pre-selection, two rule-based 

approaches to variable selection were utilised in order to select the best predictor 

variables for the models based on trends captured by the data. The two variable 

selection methods employed were the variable importance for PLS projection (VIP) 

method and a forward variable selection method. 

3.2.3.1 VIP selection method 

The VIP method is a variable selection procedure for PLS models (Andersen and Bro, 

2010; Chong and Jun, 2005; Mehmood et al., 2012). The VIP score is a measure of 

the importance of each variable in the model, based on its PLS weight for each latent 

variable and the percentage of variance in y that each latent variable explains. In the 

VIP selection method, a PLS model is trained using all of the variables available and 

the VIP score for each variable is calculated. Subsequently, variables with a VIP score 

lower than a predetermined threshold are removed from the model. The VIP score for 

a variable j is given by equation (3.14).  

𝑉𝐼𝑃𝑗 = √
𝑝

∑ 𝑆𝑆(𝑏𝑚.𝑡𝑚
𝑀
𝑚=1 )

∑ 𝒘𝑚𝑗
2𝑀

𝑚=1 𝑆𝑆(𝑏𝑚 . 𝑡𝑚)   (3.14) 

where p is the number of variables, 𝑆𝑆(𝑏𝑚 . 𝑡𝑚) is the percentage of variance in y that 

is explained by latent variable m and 𝒘𝑚𝑗 is the PLS weight for the jth variable on latent 

variable m. A threshold of one has commonly been used as a variable selection 

criterion because the average VIP score is equal to one (Mehmood et al., 2012). 

However, 0.83 and 1.21 have been reported to yield more relevant variables 

depending on the features of the dataset. Chong and Jun (2005) found that for datasets 

with low proportion, high multicollinearity, or an equal coefficients structure, a threshold 

of greater than one is more appropriate. 

One drawback to the VIP selection method is that it is dependent upon the initial model 

capturing the important relationships between X and Y (Andersen and Bro, 2010). In 
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cases where there are too many redundant variables, the noise in the model is can 

cause the VIP selection method to fail. An alternative method is forward variable 

selection. 

3.2.3.2 Forward variable selection method 

Forward variable selection is a classic statistical approach to variable selection, based 

on selecting the variables that offer the best performance one-by-one (Andersen and 

Bro, 2010). A procedure for forward variable selection is described by the following 

steps: 

1. Select the first variable based on the variable with the highest Pearson’s 

correlation coefficient with the response. 

2. Add and then remove each of the remaining variables to the model to calculate 

model performance metrics. Select the variable that explains the most variation 

in y, when added to the model.  

3. Keep adding variables to the model according to step 2 until the adjusted R2 

increases by less than 0.01. 

In chapter 6, forward variable selection was carried out with 1000 randomly selected 

subsets to derive a range of alternative models. Each subset included 2/3rds of the 

observations randomly selected from the training data. The decision was made to use 

two thirds of the data in each subset because this was found to work well in practice, 

i.e. it provided diverse models for evaluation and it used enough of the data to ensure 

that relevant variables were selected. The advantage of forward variable selection 

compared to VIP selection method is that it does not require a good PLS model to be 

obtained prior to variable selection. Forward variable selection was used in chapter 6 

because it was difficult to identify a set of predictor variables that offered good PLS 

model performance prior to variable selection; henceforth, the VIP was not suitable. 

3.2.3.3 Stepwise variable selection 

Stepwise variable selection methods utilise a set of rules to select variables for a 

regression model and they allow variables to be both added and removed as the steps 

are executed. These methods offer increased flexibility by adopting rules from both 

forward and backward selection methods, which often arrive at different results. In the 

work conducted in Chapters 5 and 6, a stepwise selection method was explored and 

was found to identify good predictive models, however, these models did not offer 

improved performance over the alternative methods that were explored, and the 

variables selected were in agreement with the alternative methods. Hence, the 
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stepwise selected models are not presented. The stepwise selection method that was 

employed is outlined below: 

1. Starting with no variables in the model. The first variable is selected based on 

the highest correlation coefficient with the output variable  

2. Add the next variable with the highest t-value and acceptable multicollinearity 

(tolerance value less than 0.6)  

3. Check the t-value of variables in the model, remove any that are insignificant 

(t< 1.9, α=0.05, x DoF) and remove any variables with tolerance less than 0.6 

4. Repeat steps 2 and 3 until there are no more variables with a significant t-value  

3.2.4 Representing nonlinear effects 

PCA and PLS are multivariate linear models because the model coefficients are linear. 

Nonlinear effects can be represented by these models by applying nonlinear 

transformations to the variables prior to passing them into the PLS or PCA model. The 

practitioner may want to apply data transformations or add nonlinear effects based on 

theoretical reasons related to the nature of the variables, or for data derived reasons, 

where data observations indicate that a transformation may be necessary or beneficial 

(Hair, 2014). Two common nonlinear transformations were utilised in this thesis: 

curvilinear effects and moderator effects. 

3.2.4.1 Curvilinear effects 

In cases where the relationship between a predictor variable and the response is 

known to be nonlinear, this can be taken into account by applying power 

transformations to the independent variable and adding the power terms to the model. 

This can be used to implement polynomial relationships with any degree, although its 

best to use the simplest model that offers good performance, due to the potential for 

overfitting the data (Hair, 2014). In this thesis, quadratic terms were tested and used 

to improve model fit when nonlinearities were present in the regression errors.  

3.2.4.2 Moderator effects 

Sometimes in regression, there are cases where the relationship between an 

independent variable and the response is affected by another independent variable. 

This type of effect is referred to as a ‘moderator’ or ‘interaction’ effect. One common 

moderator effect is the bilinear moderator, which can be represented by creating a new 

variable that is the cross-product of the two independent variables. A bilinear 

moderator effect for variables i and j can be formed by adding the term (𝑿𝑖𝑿𝑗) to the 

model. The interpretation of a regression coefficient changes slightly when moderator 
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effects are used. Consider, the following regression equation with two variables and 

one moderator effect: 

𝒀 = 𝑏0 + 𝑏1𝑿1 + 𝑏2𝑿2 + +𝑏3𝑿1𝑿2    (3.15) 

Here, the regression coefficient 𝑏3 indicates the unit change in the effect of 𝑿1 as 𝑿2 

changes. In the unmoderated relationship, the coefficient 𝑏1 represents the effect of 𝑿1 

across all levels of 𝑿2. The same is true for 𝑏2. Henceforth, in unmoderated regression 

coefficients 𝑏1 and 𝑏2 are averaged across levels of the other independent variables, 

whereas in a moderated relationship they are separate from the other independent 

variables (Hair, 2014). The bilinear moderator effect was found to have a statistically 

significant effect on models used in this work. Other transformations that were explored 

but were not found to be significant included log transforms and inverse transforms.  

 

3.3 Model validation 

Model validation techniques play a critical role in the development of predictive models, 

since they test a model’s significance, robustness and predictive ability (Rücker et al., 

2007). Model validation methods allow practitioners to compare the quality of different 

models to select the best model and to evaluate its performance.  

3.3.1 Regression metrics 

The coefficient of determination (𝑅2) provides a measure of the amount of variance in 

the response, y, that is explained by the regression model. 𝑅2 values close to 1 indicate 

that the regression model performs well and explains a large percentage of the 

variance in y, while a measure close to zero indicates poor performance. An 𝑅2 value 

of 0.6 can be said to explain approximately 60% of the variance in the response (Hair, 

2014). Negative 𝑅2 values indicate that the model provides predictions of y that are 

worse than if all response had been predicted as the mean of y. 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
=

∑ (𝒚𝑖−𝒚̂𝑖)2𝑁
𝑖=1

∑ (𝒚𝑖−𝒚̿𝑖)2𝑁
𝑖=1

    (3.16) 

 

The adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ) is adjusted for the number of variables 

in the regression model. There is a slight penalty applied to the 𝑅𝑎𝑑𝑗
2  score, as variables 

are added to the model, which is a basic method to stop redundant variables being 

added to a regression model. 
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𝑅𝑎𝑑𝑗
2 =

(1−𝑅2)(𝑁−1)

𝑁−𝑝−1
     (3.17) 

The mean absolute error and mean square error provide estimates of the 

generalisation error of a predictive model. The generalisation error is discussed in the 

next section.  

𝑀𝐴𝐸(𝑥) =
1

𝑁−1
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1     (3.18) 

𝑀𝑆𝐸(𝑥) =
1

𝑁−1
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1     (3.19) 

In chapters 5, 6 and 7, primarily the MAE and 𝑅2 metrics were used to evaluate 

regression models, with a focus on the out-of-sample testing through either cross-

validation or hold-out testing. The MAE was preferred over the MSE because it is less 

sensitive to outliers and the 𝑅2 metric provides an intuitive estimation of the variance 

explained by the model. These metrics were evaluated together with a visual 

assessment of the model fit, which is an important sensibility check. 

3.3.2 Bias, variance and model complexity 

The generalisation performance of a statistical or machine learning model describes 

its prediction capability on independent test data that has not been used to train the 

model (Hastie et al., 2001). Evaluation of the generalisation performance is of critical 

importance in practice because it guides model selection and provides a measure of 

quality of the chosen model. The concepts of bias and variance, which are influenced 

by model complexity, play an important role in determining the generalisation ability of 

a data-driven model. Consider data that is partitioned into two parts: a training set and 

a test set. A model given by (3.20) is fitted to the training data and used to predict the 

response for the test data. 

𝒚 = 𝑓(𝑥) + 𝑒     (3.20) 

The model error in both training and testing can be described by (3.21). 

𝐸𝑟𝑟𝑜𝑟 = 𝐸 [(𝒚 − 𝑓(𝑥))
2

]    (3.21) 

The error can be further decomposed as: 

𝐸𝑟𝑟𝑜𝑟(𝑥) = (𝐸[𝑓(𝑥) − 𝑓(𝑥)]) + 𝐸[(𝑓(𝑥) − 𝐸[𝑓(𝑥)])2] + 𝜎𝑒
2  (3.22) 

𝐸𝑟𝑟𝑜𝑟(𝑥) = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟  (3.23) 

The irreducible error is the error that cannot be reduced by developing a good model, 

for example, noise in data contributes to error that cannot be reduced no matter how 
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good the model (Hastie et al., 2001; Rodríguez et al., 2010). The variance term 

represents the magnitude of variation in the predicted responses, which can be 

attributed to models that capture noise in the training data. Such models are described 

as ‘over-fitted’ to the training sample. The bias term describes the accuracy of the 

model, where a high bias model fails to capture the relationship between X and y. 

Models with high bias are described as ‘under-fitted’ to the training data (Hastie et al., 

2001).  

Both bias and variance depend upon the complexity of the model. A model that is too 

simple, e.g. containing too few predictors, will be under-fitted to the training data with 

high bias. The model will explain insufficient variation in the response because there 

are relationships that the model fails to capture. Conversely, a complex model, e.g. 

with too many predictors, will often be over-fitted to the data with high variance. This 

is because the complex model has many degrees of freedom to capture the variance 

in the training data, including the noise component, and it therefore becomes highly 

specified to the training data. Figure 3-6 illustrates the concepts of bias, variance and 

model complexity. 

 

Figure 3-6: a) Training error and test error versus model complexity, b) bias-variance 
trade-off versus model complexity. The optimal model with minimal generalisation error is 
the model with minimal test error. Figure adapted from (Hastie et al., 2001). 

 A model that is under-fitted fails to explain variation in the response variable for the 

training data, because it doesn’t capture the relationships between the predictors and 

the response. It will also fail to explain sufficient variation in the response variables for 

independent test samples. The underfitted model therefore has poor goodness of fit 

and performance metrics for both the training data and the test data. A model that is 

over-fitted will explain a significant portion of the variation in the response variable for 

the training data. However, due to the noise captured by the model, it will not predict 
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the response accurately for independent test samples. The training metrics and the 

training goodness of fit can be misleading due to the fact that increasing model 

complexity will always lead to improved training performance metrics and goodness of 

fit. In other words, training metrics provide very little insight into model over-fitting and 

maximising training performance alone will result in models with high variance. Testing 

models on unseen data is therefore very important for controlling model complexity 

and avoiding overfitting the model. 

Models that are under-fitted and over-fitted both have poor generalisation ability to 

unseen data. The ideal model is therefore the model which minimises both variance 

and bias, although to some extent there is a trade-off between the two competing 

objectives (Hastie et al., 2001). Selection of predictor variables and determination of 

the appropriate degree of model complexity therefore have a direct impact on model 

predictive performance.  

3.3.3 Cross validation 

The concept of generalisation ability and data partitioning can be traced back to Larson 

(1931). Larson showed that when a model is trained through re-substitution, where all 

samples in a dataset are used for both training and validation, the resulting model was 

heavily biased due to the model fitting the noise component in the data. Such models 

gave poor predictions on unseen data that was not used in model training. 

Consequently, Larson proposed that data could be split randomly into a training set 

and a validation set, which could be used to evaluate - and avoid - model over-fitting. 

The idea of splitting the data in two parts: a training set and test set is now commonly 

referred to as the hold-out method, which is the simplest form of cross-validation (CV) 

(Arlot and Celisse, 2010).  

In addition to fitting a model, there are two main objectives of CV (Arlot and Celisse, 

2010; Hastie et al., 2001). These are: 

1. Model selection – estimating the performance of a number of alternative 

models, often with varied complexity. For example, with PLS regression the 

practitioner must determine which variables to use and how many latent 

variables to use. CV may be used to evaluate the predictive performance of 

models with different predictors and different numbers of latent variables. 

2. Model assessment – having selected the best performing model, estimating its 

generalisation error on unseen data. 
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Since Larson’s early work on data partitioning, CV techniques have been expanded 

upon to provide more robust estimates of model predictive performance (generalisation 

ability). A simple extension, when a sufficiently large volume of data is available, is the 

partitioning of the data into three parts: a training set, a validation set and a test set. 

The training set is used to train the models, the validation set is used to estimate the 

prediction error to evaluate and compare models, and the test set is used to assess 

the prediction error of the selected model (Hastie et al., 2001). The number of 

observations to assign to each part is a decision that depends upon the signal-to-noise 

ratio and the number of observations available. Hastie et al. (2001) suggested that a 

typical split might be 50% for training, and 25% each for validation and testing, as 

shown in Figure 3-7. 

 

Figure 3-7 Partitioning of data into three parts: training (50%), validation(25%) and 

testing (25%), adapted from Hastie et al. (2001). 

While the three-way data partitioning can be effective, the results can vary greatly 

depending upon on the partitioning, i.e. which observations are included in the training, 

validation and test sets (Arlot and Celisse, 2010). Ideally, all three partitions should 

contain samples that are representative of the population, without bias towards a 

specific set of conditions (Efron and Gong, 1983). Indeed, there are algorithms for 

assigning observations to the training, validation and testing sets to partition the data 

in the least biased way. One such algorithm is the Kennard-Stone algorithm, which 

partitions the data into a training and test set based the Euclidean distance between 

observations over the predictor variable space (Kennard and Stone, 1969). The 

objective of this algorithm is to select observations for the test set with uniform 

distribution over the predictor variable space. 

Other forms of cross validation are also available, which reduce the dependence of the 

prediction error on how the data is divided by splitting the data into more subsets 

(Stone, 1974). These include: 

• Leave-one-out (LOO) CV  

• K-fold CV  

• Repeated K-fold CV  

  

Training Validation Test
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3.3.3.1 K-fold cross-validation 

5-fold CV is an example of K-fold CV where the data is split into five subsets, as 

illustrated in Figure 3-8. In 5-fold cross validation, the data is split into five folds (equally 

sized portions with the exception of remainders) and the model is trained (Tr) five times 

on 4/5ths of the data, each time leaving out a different portion (1/5th) of the data for 

validation (Va). The validation error (MSE or MAE) is then averaged across the five 

folds to estimate the model’s prediction error. In K-fold CV, each data point is included 

in the training set exactly K-1 times. As K is increased, the variance of the prediction 

error estimate is reduced (Rodríguez et al., 2010). However, the computational 

demand is increased as the model training algorithm must be executed K times. 5-fold 

and 10-fold CV are popular due to their lower computational and demand, low bias and 

sufficiently stable error estimates (Rodríguez et al., 2010). 

3.3.3.2 Leave-one-out cross-validation 

LOO CV takes this logic to its extreme by leaving out exactly one data point for 

validation each time, which can be extremely computationally expensive for large 

datasets (Rodríguez et al., 2010; Stone, 1974).  

3.3.3.3 Repeated K-fold cross-validation  

Repeated K-fold CV involves repeating K-fold CV x times, each time permuting the 

order of the dataset so that different observations are grouped together in the K folds. 

This is another way to reduce the variance of the prediction error estimate. The larger 

the number x, the lower the variance. In the literature, anywhere from 5 to 10,000 

repeats have been used (Fushiki, 2011). The main idea is to use a sufficient number 

of repeats for the error estimate to become stable, such that it varies little each time 

repeated K-fold CV error is calculated. 
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Figure 3-8 Illustration of data partitioning with a hold-out test set and a 
training/validation set used for model training and 5-fold cross validation. In 5-fold cross 
validation, the data is split into five folds (equally sized portions) and the model is trained (Tr) 
five times, each time leaving out a different portion of the data for validation (Va). The validation 
error (MSE or MAE) is averaged across the five folds to estimate the model’s prediction error. 

In Figure 3-8, there are initially two sets of data: a training/validation set and a hold-

out test set. The training/validation set may be used to evaluate different models using 

repeated K-fold CV. For a PLS model, the number of latent variables can be varied, 

and the optimal model can be selected as the model with the minimum prediction error 

estimate obtained from K-fold CV. The model can then be trained using all of the 

observations in the training/validation set and the prediction error can then be 

estimated one more time, using the test set that was held out of model training. 

3.3.4 Bootstrap sampling 

Bootstrapping is a method of testing that uses random sampling with replacement. By 

repeatedly fitting a model of interest to bootstrap samples, it is possible to evaluate 

variation in key model performance statistics and model coefficients. The bootstrap is 

based on the law of large numbers, which indicates that, with sufficient data the 

empirical distribution will be a good estimate of the true distribution for the population 

(Efron and Gong, 1983). In this work, the parametric bootstrap was used to determine 

confidence intervals for the regression coefficients of PLS models, as the parametric 

bootstrap makes no assumptions about the underlying distribution (Efron and 

Tibshirani, 1986). The confidence intervals were determined by recording the model 

coefficients obtained from fitting the model to 2000 bootstrap samples. The 5% and 

Training & validation Test
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95% confidence intervals were then determined by obtaining the 5th and 95th quantiles 

from the vector of estimates for each model coefficient. 

The confidence intervals for the regression coefficients provide insights into the 

reliability of the regression model and the significance of each predictor variable. For 

example, regression coefficients with confidence intervals that cross zero are 

considered insignificant and can be removed from the model. Wide confidence 

intervals are a sign of instability in the model, indicating that the model structure and 

variable selection may be wrong or that the data are of poor quality.  

3.3.5 Testing chance correlations with Y-randomization 

Y-randomization tests are carried out to detect and quantify chance correlations 

between the predictor variables and the response, which may be present in a 

prediction model (Kiralj and Ferreira, 2009; Rücker et al., 2007). Prediction models are 

designed to capture a physical or cause-and-effect relationship between the predictors 

and the response variables that are part of a mechanism. However, it is known that 

adding variables to a regression model will always result in an increase in the quality 

of the model fit to the training data, irrespective of whether the predictors contain 

relevant information. This is because the model fits the noise in the data and learns 

any chance correlations that may be present. Y-randomization involves fitting the 

prediction model multiple times, each time keeping the original matrix of predictors, X, 

and randomly permuting the values in Y. The performance metrics are then averaged 

across multiple randomizations. The resulting models should have poor performance 

metrics because the mechanistic connection between X and Y has been broken. The 

better the performance metrics when the model is fitted to Y-randomized data, the 

greater the presence of chance correlations in the dataset. Y-randomization has been 

widely utilised in the development of quantitative structure-activity relationship models, 

where large numbers of predictors are used, making the models susceptible to chance 

correlations (Kiralj and Ferreira, 2009). In this work, the average coefficient of 

determination, for the model fit to the Y-randomized data, was used to evaluate the 

chance correlation. Kiralj and Ferreira (2009) classified the chance correlation based 

on the coefficient of determination, as described by (3.24) to (3.27).  

𝑅𝑦𝑟𝑎𝑛𝑑
2 < 0.2 → 𝑛𝑜 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛   (3.24) 

0.2 < 𝑅𝑦𝑟𝑎𝑛𝑑
2 < 0.3 → 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  (3.25) 

0.3 < 𝑅𝑦𝑟𝑎𝑛𝑑
2 < 0.4 → 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  (3.26) 

0.4 < 𝑅𝑦𝑟𝑎𝑛𝑑
2 → 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛   (3.27) 
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3.3.6 Data partitioning 

As discussed in the cross-validation section (section 3.3.3), partitioning data is an 

important part of model validation. K-fold CV, LOO CV and repeated K-fold CV are 

based on splitting the data randomly. This works well with these techniques because 

the data is split into numerous folds; henceforth, the resulting performance metrics are 

averaged across numerous folds and are not heavily dependent on one single partition. 

In contrast, when a hold-out set is utilised (based on one single partition), it is important 

to ensure that the hold-out and training sets are both representative of the full range of 

conditions observed in the data. In this work, the Kennard-Stone algorithm was used 

to identify the most suitable hold-out test set.  

3.3.6.1 Kennard-Stone algorithm 

The Kennard-Stone algorithm carries out the following process to assign observations 

to training and test sets:  

1. Select a pair of observation that are furthest apart, based on Euclidean distance 

over the independent variable space. These observations are assigned to the 

training set and removed from the list of unassigned observations. 

2. Compute the Euclidean distance between each of the unassigned observations 

and the observations in the training set. Add the observation with the largest 

Euclidean distance from the observations in the training set. 

3. Stop when adding to the training set when the desired test-training ratio has 

been achieved 

3.4 Data pre-processing  

Data pre-processing involves essential transformations and processing of the data to 

get it into the correct and most useful format, prior to carrying out modelling or MVDA.  

3.4.1 Dummy variable coding  

Dummy variables are used to convert categorical variables into a numerical format, 

which can be interpreted by statistical/ML models. Models such as principal component 

analysis and partial least squares regression, which are used in this thesis, are 

designed to work with metric variables only, i.e. quantitative data where the quantity 

describes the degree to which the subject may be characterised by the attribute (Hair, 

2014). Categoric data cannot be simply represented by different numbers because the 

varying quantity does not reflect a physical attribute. 
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3.4.1.1 Indicator coding 

One way to code dummy variables is to generate L-1 metric variables to represent a 

categorical variable with L levels. Taking a coin toss as an example, a coin toss has 

two levels and one dummy variable can model these two levels by setting the variable 

to 1 for heads, and 0 for tails, or vice versa. The omitted category is termed the 

reference category. With this type of coding, the model coefficients assigned to dummy 

variables represent the category differences from the reference category (Hair, 2014).  

3.4.1.2 Effects coding 

An alternative to the indicator coding system is called effects coding, where the 

reference category is assigned a value of minus one across the set of dummy 

variables. With this type of coding, the model coefficients assigned to the dummy 

variables represent deviations from the mean of all categories (Hair, 2014). 

3.4.2 Unfolding of 3D data 

Most statistical and ML models, including PCA and PLS, deal with data in a 2D array. 

Traditionally the two dimensions represent variables and observations. However, there 

are many data sources that feature a third dimension. Temporal variation is a common 

example. Batch or fed-batch processes are common sources of 3D data in the 

chemical and biochemical industries, since variables are often recorded online and 

offline, where they are traced over the duration of the batch (Kourti, 2003).  

Unfolding is a method by which 3D data is transformed into a 2D array, by combining 

two of the original dimensions along one axis of the 2D array. The interpretation of the 

unfolded data and the resulting models is dependent upon which two dimensions are 

combined and which one is preserved. For temporal data, and for batch process data, 

the most common unfolding method is to preserve the batch or observation dimension 

on the first axis (rows) and to combine the variable and time dimensions along the 

second axis (columns) (Ündey et al., 2003). This is illustrated in Figure 3-9. 
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Figure 3-9 Illustration of 3D data unfolded into a 2D array. This figure shows a) 3D batch 
process data, b) unfolding of the data preserving the batch dimension and c) unfolding of the 
data preserving the variable dimension. 

Unfolding the data in this way, the columns become variable-time instances, thus 

retaining a sensible physical meaning and capturing information on the dynamics of 

the process. The resulting model coefficients represent effects associated with the 

variable at a given point in time. Comparison of model coefficients, for a given variable 

at different time points, shows how the variable relationships change over time. With 

high sampling frequency, there will be a high degree of multicollinearity due to the 

autocorrelation in the profile of each variable. The use of latent variable methods is 

able to overcome problems associated with multicollinearity (Hair, 2014).  

The second most common approach to unfolding batch process data is to preserve the 

variable dimension. Using this unfolding approach with PCA results in scores that show 

the development of a batch over time, i.e. its trajectory, and the loadings will reflect the 

correlation of the variables from an ‘overall’ perspective without taking into account 

time dependency and correlation (Ramos et al., 2021). In this work, method 1 

(preserving batch dimension) is used in order to capture the dynamics of the variables 

and their correlation. 
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3.4.3 Scaling and centring 

Scaling and centring data are standard practices in MVDA and machine learning, 

which serve several purposes, depending on the particular model being used. For 

example, PCA requires the data to be mean centred because without mean centring, 

the first principal component can correspond with the mean of the data instead of the 

direction of maximum variance. Henceforth, mean-centring data for PCA is critical to 

avoid misinterpretations of the PCA model (Bro and Smilde, 2014). Conversely, 

multivariate regression and PLS regression can be implemented directly without mean 

centring the data, although the interpretation of model coefficients changes when the 

data is centred versus uncentred (Seasholtz and Kowalski, 1992). 

Centring removes the offset from the data and allows the practitioner to focus on 

differences between observations rather than similarities. In regression, the model 

coefficients indicate the effect of unit increases in the independent variable on the 

response variable. When the data is centred, the model coefficients refer to deviations 

from the mean henceforth negative coefficients. When the data is centred, the model 

coefficients reflect the impact of unit changes in that variable (van den Berg et al., 

2006). Henceforth, centring can be used to improve the interpretability of regression 

models.  

Scaling is carried out in order to remove the impact of different units and scales, so 

that variables of large magnitude do not dominate the latent projections. Additionally, 

the standardised regression coefficients obtained from models using scaled data, allow 

direct comparison of the importance of each variable (Hair, 2014). 
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Chapter 4  

Sparse principal component analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, sparse PCA is introduced as an alternative method to standard PCA 

that derives simplified principal components, which are easier to evaluate and interpret. 

Henceforth, sparse PCA is beneficial in applications where interpretation of the PCA 

model is important, including applications explored in this thesis. In the introduction, 

works focusing on the interpretability of PCA are reviewed, including sparse PCA 

methods, which have been widely researched in recent years. Four different 

optimisation programs for sparse PCA are then developed as an alternative to other 

sparse PCA methods in the literature. In the results section, the performance of the 

four optimisation programs is evaluated and compared to one another, as well as to 

other popular sparse PCA approaches in the literature. The comparison is carried out 

using standard datasets from the literature and synthetically constructed datasets. The 

best performing technique, out of the four optimisation programs developed in this 

chapter, was then utilised in Chapters 5 and 6 to perform sparse PCA on the data from 

adherent viral vector production and cell drug product manufacture. 
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4.1 Introduction 

Sparse PCA is a variation of standard PCA, which seeks to obtain sparse loadings; 

consisting of a combination of zero and nonzero elements. Loadings of the standard 

PCA model which are close to zero typically don’t contribute significantly to the 

variation in scores; however, they must still be taken into account when analysing the 

contribution of the original variables. In sparse PCA, the idea is to force those small 

magnitude loadings to zero, to end up with sparse principal components where the 

variables with nonzero values contribute significantly to the scores and the variables 

with zero loadings may be ignored entirely. This significantly simplifies the 

interpretation of the PCA model and provides insights into the system under study with 

greater clarity. 

The difficulty of interpreting PCA models is an issue that has long been recognised. 

Rotation techniques were initially developed for the closely related factor analysis in 

1931 (Thurstone, 1931) and later for PCA (Jolliffe, 1989), these involve rotation of the 

principal component axes in order to obtain a ‘simple structure’. There are however 

several drawbacks to rotation techniques, including the fact that they involve 

complicated post-processing of the PCA solution with many options for the rotation 

method. These can lead to different rotated solutions, which impact model 

interpretation (Jolliffe, 1995). Informal thresholding techniques have frequently been 

used in practice, whereby the PCA solution is modified and loadings smaller than a 

given magnitude are artificially set to zero. This simple ad hoc approach may be 

effective in some cases, however, it relies on an arbitrary choice for the threshold and 

can be misleading in several ways (Jolliffe, 1995). 

More recently, other informal thresholding techniques, heuristics and algorithms have 

been developed. Farcomeni (2009) proposed a branch and bound algorithm to find the 

best sparse dimension reduction of a matrix and suggested methods to choose the 

number of nonzero loadings for each principal component. This algorithm allowed the 

user to specify the number of nonzero loadings directly, or to specify the degree of 

sparsity based on an objective function, which maximises variance and penalises 

nonzero loadings. Ma (2013) developed an iterative thresholding technique to obtain 

sparse eigenvectors, based on the orthogonal iteration method in matrix computation 

with an additional thresholding step to determine sparse basis vectors for the 

subspace. Gajjar et al. (2017) utilised a genetic algorithm with exhaustive and non-

exhaustive search approaches to evaluate different possible sparse solutions. Several 
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other “greedy” methods have been proposed for the solution of all possible sparse 

combinations; however, these are computationally expensive (Jolliffe and Cadima, 

2016). 

The same interpretation problem arises in multiple regression, where variable selection 

techniques are used to reduce the number of variables in the model and ease 

interpretation. The Least Absolute Selection and Shrinkage Operator (LASSO) is a 

variable selection technique introduced by Tibshirani (1996), which produces accurate 

and sparse models through the use of a cost function, which simultaneously minimizes 

model error and penalises model complexity. The first computational approach to 

sparse PCA was developed by Jolliffe et al. (2003), where they applied the LASSO 

constraint to the formulations of PCA, in a technique they named SCoTLASS. Consider 

the first principal component and the variance maximization definition of PCA, outlined 

in chapter 3, section 3.1.1. The SCoTLASS constrained sparse principal component 

analysis problem is defined by (4.1) and (4.2): 

 

max
𝑊𝑇𝑊=1

𝑇𝑟(𝑾𝑇𝑿𝑇𝑿𝑾)    (4.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, ‖𝑾‖1 ≤ 𝑡    (4.2) 

Here, t is a tuning parameter to be selected to induce sparsity in the loadings, W. When 

𝑡 ≥ √𝑾, the standard PCA solution is obtained. As t is reduced from √𝑾, the loadings 

progressively shrink with some eventually shrinking to zero. For 𝑡 = 1, there must be 

exactly one nonzero loading for each principal component. Given an appropriate value 

for t, SCoTLASS succeeds in producing sparse principal components with zero and 

nonzero coefficients; however, a drawback to SCoTLASS is that it is computationally 

expensive to solve (Zou and Hastie, 2005).  

Zou and Hastie (2005) developed the elastic net, a generalised version of the LASSO, 

which is a convex combination of the ridge and LASSO penalties, based on the L2-

norm and L1-norm, respectively. The elastic net overcame a limitation of the LASSO 

whereby in cases where the number of variables, p, exceeds the number of samples, 

n, at most n variables can be selected. Zou et al. (2006) later used the elastic net to 

produce sparse principal components, in a technique which they called sparse PCA. 

Their sparse PCA approach was based on formulating PCA as a regression type 

optimisation problem with the elastic net penalty integrated into the regression 
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criterion, leading to principal components with sparse loadings. They also suggested 

an algorithm with improved computational efficiency compared to SCoTLASS, making 

their sparse PCA approach viable for larger problems. 

Since the introduction of sparse PCA by Zou et al. (2006), numerous other approaches 

have been developed and ‘sparse PCA’ has become the general term used to describe 

techniques which produce sparse principal components. Several works have utilised 

L1-regularisation to produce solutions for sparse PCA. d’Aspremont et al. (2007) 

developed a semi-definite programming approach, called direct sparse PCA (DSPCA), 

which utilised a convex relaxation to L1-constrained sparse PCA. Convex relaxation is 

a technique in operational research to ease the computational burden of difficult 

nonconvex problems. For large problems, d’Aspremont et al. suggested a Nesterov’s 

smooth minimization technique to solve DSPCA efficiently. d’Aspremont et al. (2008) 

further developed this work with a greedy algorithm to speed up computation. Journee 

et al. (2010) developed a generalized power method to solve the Lagrangian form of 

the SCoTLASS problem (4.1) and (4.2), as given by (4.3). 

 

max
𝑾𝑇𝑾=1

𝑇𝑟(𝑾𝑇𝑿𝑇𝑿𝑾) − 𝜆‖𝑾‖1    (4.3) 

The generalized power method made use of a further reformulation of (4.3) that 

provides great computational savings when 𝑝 ≫ 𝑛, as well as an objective function 

which is differentiable and convex (Journée et al., 2010).  Other works utilised a convex 

combination of L1 and L2 norm penalties, with approaches similar to that of Zou et al. 

(2006). Qi et al. (2013) developed a new penalty function, which uses a tuning 

parameter to determine how much the L1-norm and L2-norm penalties contribute to 

the overall penalty. They called this approach sparse PCA by choice of norm. They 

also proposed an efficient iterative algorithm to solve the optimization problem. 

Xiaoshuang et al. (2013) developed a sparse PCA approach using a joint L2,1-norm 

penalty term, which was based on a modification of SPCA algorithm developed by Zou 

et al. (2006), where the elastic net penalty was replaced with the joint L2,1 norm. They 

also relaxed the orthogonality constraint to provide more flexibility in the features that 

are selected, allowing variables with less important features to be ignored, with zero 

loadings across all components.  

A key drawback to the L1 and L2-norm regularisation approaches is that non-sparse 

model parameters are known to shrink as the regularisation weight is increased, which 
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can lead to models with incorrect structure and biased model coefficients (Willis and 

von Stosch, 2017; Zou et al., 2006). A more natural choice for the regularisation 

penalty function is the L0-norm (4.4), which directly penalises the total number of 

nonzero model parameters. 

𝑃 = ∑ ‖𝑾‖0
𝑚
𝑗=1      (4.4) 

L0-regularisation does not induce shrinkage of nonzero model parameters, allowing 

the correct structure to be identified as well as unbiased values for the nonzero model 

parameters (Ulfarsson and Solo, 2011; Willis and von Stosch, 2017). This provides 

clear benefits over L1 and L2-regularisation; however, the solution is more difficult to 

obtain since the L0-norm is non-convex and discontinuous. Regularisation problems 

utilising L0-norm penalties are known to be NP-hard. Consequently, L0-regularisation 

does not scale well to problems with larger numbers of variables, although various 

transformations and L0-norm approximations have been used to circumvent this issue.  

A few works in the literature have developed approaches to sparse PCA based on L0-

norm penalties. Ulfarson and Solo (2011) developed a technique called sparse variable 

noisy PCA (svnPCA), based on L0-regularisation of a noisy PCA model, which is an 

alternative representation of PCA. svnPCA completely removes some variables from 

the PCA model by simultaneously zeroing the loadings of some variables across all of 

the components, acting as a variable selection method for PCA.  In addition to their 

L1-regularised sparse PCA method, Journee et al. (2010) implemented L0-

regularisation with the generalised power method that was described previously. Their 

reformulation of the objective function and efficient algorithm allows L0-regularisation 

to be implemented with large datasets, including cases where the number of variables 

exceeds the number of observations in the data.  

In this work, linear and nonlinear programs are developed for sparse PCA by L0-

regularisation and approximate L0-regularisation. L0-regularisation was explored for 

the benefits that were outlined previously and L0-approximations were used to ease 

the computational demand to solve sparse PCA with larger datasets. Linear and 

nonlinear programming solvers are readily available in software, such as Excel, Matlab 

and Python; henceforth, these approaches were explored as accessible alternatives 

to the L0-regularised sparse PCA solutions in the literature.   
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4.2 Method 

In this work, four different approaches to sparse PCA were developed and tested 

utilising different optimisation programs: 

1. Mixed integer nonlinear programming (MINLP) 

2. Nonlinear programming (NLP) 

3. Mixed integer linear programming (MILP) 

4. Linear programming (LP) 

All four of the approaches were based on configuring sparse PCA as an optimisation 

problem, where the sparse principal components were determined sequentially using 

an appropriate cost function. The sparse PCA optimisation problem is inherently 

nonlinear as the objective function and constraints feature nonlinear functions of the 

decision variables. However, it is possible to solve nonlinear problems using linear 

solvers through sequential linear programming (SLP). SLP obtains the solution to a 

nonlinear problem by finding the solutions to a sequence of linear subproblems 

approximating it. In this work, linear programming approaches utilising SLP were 

explored as well as nonlinear programming approaches to evaluate and compare their 

performance. Additionally, both the L0-norm penalty and relaxed approximations to the 

L0-norm penalty were explored. The integer programming approaches, MINLP and 

MILP, were utilised to implement the full L0-norm penalty. The non-integer variants, 

NLP and LP, were used to apply approximate L0-norm penalties, which ease the 

computational demand. 

There are three main features required to define the optimisation problem, which are 

implemented in all four approaches. These are: 

1. The objective function 

2. Normalisation of the loadings 

3. Orthogonality constraints 

The objective function is used to maximise the variance of the principal components 

and at the same time induce sparsity. The basic form of the cost function is given by 

equation (4.5):  

𝐽 = −𝒑𝑻𝑸𝒑 + 𝜆𝑃𝑒𝑛     (4.5) 

Here, 𝒑 is the loadings vector, 𝑸 is the covariance matrix, 𝜆 is the regularisation/ 

penalty parameter and 𝑃𝑒𝑛 is the penalty function. This equation represents a trade-

off between the variance captured by the principal component and the sparsity of the 
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loadings, which can be controlled by adjusting the penalty parameter 𝜆. The variance 

is given by the function 𝒑𝑻𝑸𝒑, since this term is nonlinear with respect to the loadings, 

it can only be implemented directly with nonlinear programming solvers. The MINLP 

approach allows direct implementation of the nonlinear functions which are required to 

set up the sparse PCA optimisation problem, as well as implementation of the full L0-

norm penalty. For this reason, the MINLP model will be explained first in full. The other 

three approaches will be explained by detailing the aspects which deviate from the 

MINLP model. 

4.2.1 Mixed integer nonlinear programming (MINLP) 

The objective function for the NLP approach is given by equation 4.6.  

𝐽(𝜆) = −𝒑𝑇𝑸𝒑 + 𝜆‖𝒑‖0     (4.6) 

The implementation of the L0-norm penalty requires the use of a vector of binary 

variables, 𝜹, which is the same length as p, so that each element of the loadings vector 

has a corresponding binary parameter. Using constraints given in equation 4.8 and 

4.9, the binary variable, 𝜹𝑗, is set to one when the corresponding loading is nonzero 

and set to zero when the corresponding loading is zero. The NLP cost function given 

by equation 4.7 is then equivalent to equation 4.6. 

 

 𝐽(𝜆) = −𝒑𝑻𝑸𝒑 + 𝜆 ∑ 𝜹𝑗

𝑁

𝑗=1

 (4.7) 

 𝐿𝑗𝜹𝑗 ≤ 𝑝𝑗 ≤ 𝑈𝑗𝜹𝑗 , (𝑗 = 1, … , 𝑁) (4.8) 

 𝜹𝑗 ∈ {0,1}, (𝑗 = 1, … , 𝑁) (4.9) 

 −1 ≤ 𝒑𝑗 ≤ 1, (𝑗 = 1, … , 𝑁) (4.10) 

 𝒑𝑇𝒑 ≤ 1 (4.11) 

 
𝑓𝑜𝑟 𝑘 ≥ 2, 𝑷𝑘

𝑇𝑷𝑘−𝑖 = 0,

(𝑖 = 1, … , 𝑘 − 1) 
(4.12) 

 

The decision variables for the NLP model are the loadings, 𝒑 (𝑗 = 1, … , 𝑁), and the 

binary variables, 𝜹𝑗 (𝑗 = 1, … , 𝑁). The upper and lower bounds, 𝑈𝑗 and 𝐿𝑗, are set to 1 

and -1 respectively. The loadings are also bound between -1 and 1. The constraint 

given in equation 4.11 is in place to normalise the loadings vector to ensure that the 
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optimisation problem is bounded. Note that the constraint given by (4.11) is a nonlinear 

function of the decision variables and therefore requires approximation in the linear 

programming approaches. The constraint given by (4.12) is the orthogonality 

constraint, which is applied to all principal components that are subsequent to principal 

component 1, whenever there is more than one principal component to be determined. 

4.2.2 Nonlinear programming (NLP) 

The NLP approach is the same as the MINLP approach with the exception of the 

penalty term in the cost function. The NLP approach is a relaxed version of the MINLP 

approach, which uses an approximation to the L0-norm penalty. In the literature, 

several alternative approximate L0-norm penalty functions have been proposed, 

including the exponential (Bradley and Mangasarian, 1998), log (Weston et al., 2003) 

and seamless-L0 (SELO) (Dicker et al., 2013) penalty functions. The formulas for these 

are listed in Table 4-1. 

 

Table 4-1: Popular L0-norm approximations from the literature. In these formulae, p 
represents the loadings vector, and 𝜖1, 𝜖2 and 𝜖3 are tuning parameters that affect the shape 

of the penalty. 

Penalty function Formula 

Log ∑ 𝑙𝑜𝑔(|𝒑𝑗| + 𝜖1)

𝑁

𝑗=1

 

Exponential 1 − 𝑒−𝜖2|𝒑𝑗| 

SELO 
1

log (2)
log (

|𝒑𝑗|

|𝒑𝑗| + 𝜖3

+ 1) 

 

For this work, the SELO penalty function was selected as the literature indicates that 

the SELO penalty is a smooth function that very closely approximates the L0-norm 

(Dicker et al., 2013; Shi et al., 2018). The cost function for the NLP approach can be 

obtained by substituting the L0-norm approximations in Table 4-1 into equation (4.13). 

The only additional modification to the constraints is the relaxation of the binary 

variables, 𝜹𝑗, so that they may take any value in the range of 0 to 1. Constraint (4.8) 

ensures that 𝜹𝑗 is assigned to the absolute value of its corresponding loading 

parameter. Consider the SELO approximation as an example, the final cost function is 

given by equation (4.14). 
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 𝐽(𝜆) = −𝒑𝑻𝑸𝒑 + 𝜆𝑃𝑒𝑛 (4.13) 

 𝐽 = −𝒑𝑻𝑸𝒑 + 𝜆 ∑
1

log (2)
log (

𝜹𝑗

𝜹𝑗 + 𝜖3
+ 1)

𝑁

𝑗=1

 (4.14) 

 

4.2.3 Mixed integer linear programming (MILP) 

As mentioned in the introduction to this section, the LP approaches utilise SLP to solve 

a sequence of linear subproblems which approximate the nonlinear sparse PCA 

optimization problem. The nonlinear functions which are to be approximated include 

the variance term in the cost function and the normalisation of the loadings. The first 

order Taylor series approximations to the variance term, 𝑝𝑇𝑸𝑝, and the normalisation 

of the loadings described by constraint (4.11) are given by (4.15) and (4.16), 

respectively.  

 

 2𝒑𝑘
𝑇𝑸𝒑𝑘−1 − 𝒑𝑘−1

𝑇 𝑸𝒑𝑘−1 (4.15) 

 2𝒑𝑘
𝑇𝒑𝑘−1 − 𝒑𝑘−1

𝑇 𝒑𝑘−1 ≤ 1 (4.16) 

To ensure convergence of the solution, the cutting plane method (Kelley, 1960) is used 

to reduce the search space with successive iterations. The application of this technique 

involves storing constraint described by equation 4.16 from all previous iterations and 

applying them in the constraints for the current iteration. This reduces the search space 

with each iteration until the solution meets the prescribed convergence criterion given 

by (4.17). 

 

 |(2𝒑𝑘
𝑇𝑸𝒑𝑘−1 − 𝒑𝑘−1

𝑇 𝑸𝒑𝑘−1) − 𝒑𝑻𝑸𝒑| ≤ 𝜖4 (4.17) 

Here, 𝜖4 is a sufficiently small number, for example, 1x10-8. This convergence criterion 

requires that the absolute difference between the linearized variance term and the 

nonlinear variance term is smaller than 𝜖4. The final cost function is given by equation 

4.18. The MILP cost function utilises the full L0-norm penalty, with the same 

implementation as the MINLP approach where 𝜹𝑗 is the binary variable indicating 

whether the corresponding loading is zero or nonzero. Notice that the term 𝒑𝑘−1
𝑇 𝑸𝒑𝑘−1 

was dropped from the cost function as it is a constant. 
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 𝐽 = −2𝒑𝑘
𝑇𝑸𝒑𝑘−1 + 𝜆 ∑ 𝜹𝑗

𝑁

𝑗=1

 
(4.18) 

 

4.2.4 Linear programming (LP) 

The LP model is the relaxed version of the MILP approach, where the only differences 

arise in the cost function. The LP model makes use of the same L0-norm 

approximations as the NLP model; however, since the L0-norm approximations are 

nonlinear, they were linearized using a first order Taylor series approximation in 

combination with SLP. A first order Taylor series approximation of the penalty function 

at the k+1 iteration is given by equation (4.19):  

 

𝐹(𝒑𝑘+1) ≈ 𝐹(𝒑𝒌) +
𝑑𝐹(𝒑)

𝑑𝜹
|

𝑘
(𝜹𝑘+1 − 𝜹𝑘)   (4.19) 

Since 𝐹(𝒑𝑘) and 
𝑑𝐹(𝒑)

𝑑𝜹
|

𝑘
𝜹𝑘 are constants, they will not affect the optimal solution, 

leaving the cost function as described by equation (4.20).  

 

𝐽𝑘+1(𝜆) = −2𝒑𝑘+1
𝑇 𝑸𝒑𝑘 + ∑

𝑑𝐹(𝒑)

𝑑𝜹
|

𝑘
𝜹𝑘+1

𝑁
𝑖=1    (4.20) 

Table 4-2 below provides the 
𝑑𝐹(𝒑)

𝑑𝜹
|

𝑘
term for the L0-norm approximations, which may 

be substituted into equation 4.20 to derive the cost function at the k+1 iteration in terms 

of the relaxed binary variables 𝜹𝑗,𝑘.  
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Table 4-2: Formulae for the linearised versions of the penalty functions listed in Table 
4-1. 

 𝑭(𝒑) 𝒅𝑭(𝒑𝒋,𝒌)

𝒅𝜹𝒋,𝒌
 

Log 
∑ 𝑙𝑜𝑔(|𝒑𝑗| + 𝜖1)

𝑁

𝑗=1

 

1

𝜹𝑗,𝑘 + 𝜖1
 

Exponential 1 − 𝑒−𝜖2|𝒑𝒋| 𝜖2𝑒−𝜖2|𝜹𝑗,𝑘| 

SELO 1

log (2)
log (

|𝒑𝑗|

|𝒑𝑗| + 𝜖3

+ 1) 
1

log (2)
(

𝜖3

(2𝜹𝑗,𝑘 + 𝜖3)(𝜹𝑗,𝑘 + 𝜖3)
) 

 

4.2.5 Summary of the four programming approaches to sparse PCA 

The LP and MILP approaches to sparse PCA utilised SLP to linearise the nonlinear 

objective function and constrains, with the cutting plane technique used to converge 

on a solution. The NLP and MINLP iterative solutions as the nonlinear objective 

function and constraints were implemented directly, and with the NLP approach, a 

multi-start procedure was employed. Table 4-3 summarises the differences in the 

objective function and the normalisation of the loadings for the four approaches.  

 

Table 4-3: Summary table showing the objective function and constraint for 
normalisation of the loadings, that were used in the four sparse PCA methods. 

 Objective function Normalisation of loadings 

MINLP 𝐽 = −𝒑𝑻𝑸𝒑 + 𝜆‖𝒑‖0 𝒑𝑇𝒑 ≤ 1 

NLP 𝐽 = −𝒑𝑻𝑸𝒑 + ∑
1

log (2)
log (

𝜹𝑗

𝜹𝑗 + 𝜖3
+ 1)

𝑁

𝑗=1

 𝒑𝑇𝒑 ≤ 1 

MILP 𝐽 = −2𝒑𝑘
𝑇𝑸𝒑𝑘−1 + 𝜆‖𝒑‖0 2𝒑𝑘

𝑇𝒑𝑘−1 − 𝒑𝑘−1
𝑇 𝒑𝑘−1 ≤ 1 

LP 

𝐽 = −2𝒑𝑘
𝑇𝑸𝒑𝑘−1 

+ ∑
1

log (2)
(

𝜖3

(2𝜹𝑗,𝑘 + 𝜖3)(𝜹𝑗,𝑘 + 𝜖3)
)

𝑁

𝑗=1

 
2𝒑𝑘

𝑇𝒑𝑘−1 − 𝒑𝑘−1
𝑇 𝒑𝑘−1 ≤ 1 

 

The MILP and LP approaches were solved using the intlinprog and linprog functions in 

Matlab version 2019a, respectively. NLP was solved using the fmincon function in 

Matlab version 2019a. Finally, MINLP was solved using the bonmin solver, available 
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in the OPTI toolbox, using MATLAB version 2019a. Table 4-4 provides more 

information on the solver settings that were used throughout.  

 

Table 4-4: Details of solvers and solver options used in the LP, MILP, NLP and MINLP 
approaches to sparse PCA 

Method Solver and solver options 

LP Solver: linprog 

Convergence tolerance = 1x10-7 

Non-default options: None 

Loadings initial values: all set to a small number e.g. 0.01 

MILP Solver: intlinprog 

Convergence tolerance = 1x10-7 

Non-default options: None 

Loadings initial values: all set to a small number e.g. 0.01 

NLP Solver: fmincon 

Non-default options: algorithm = ‘Sequential Quadratic Programming’ 

(default = ‘Interior-Point Algorithm’), max iterations = 2x105 (default = 

1x103), max function evaluations = 6x105 (default = 3x103) 

Loadings initial values: Multi-start procedure with initial values 

obtained from a Latin hypercube design 

MINLP Solver: bonmin (OPTI toolbox) 

Non-default options: max iterations = 9x105 (default = 1x103), max 

function evaluations = 2x106 (default = 3x103) 

Loadings initial values: all set to a small number e.g. 0.01 

 

Note that for the LP and MILP solvers, non-default options were explored to try to 

improve the speed of convergence, however, none were found to offer significantly 

improved performance. 

4.2.6 Tuning of the regularisation parameter and evaluation of model 
performance 

A common requirement of regularisation methods is the determination of the optimal 

regularisation penalty or degree of sparsity. Typically, this involves optimising a 

selected criterion, such as the Bayesian information criterion, Akaike information 

criterion, or the index of sparsity (IS), which serve to optimise the trade-off between 

variance explained and degree of sparsity (Gajjar et al., 2017; Journée et al., 2010; Qi 
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et al., 2013; Willis and von Stosch, 2017). In this work, the IS was the selected criterion 

used to optimise the variance-sparsity trade-off. The formula for the IS is given by 

(4.21). 

 

𝐼𝑆 =
𝑉𝑎𝑉𝑠

𝑉𝑜
2

𝑇𝑁𝑍𝐿

𝑚𝑙
    (4.21) 

 

Here, 𝑉𝑎, 𝑉𝑠 and 𝑉𝑜 are the adjusted, unadjusted and ordinary total variance, 

respectively, TNZL is the total number of zero loadings, 𝑚 is the number of principal 

components and 𝑙 is the number of variables. In order to optimise the IS, a simple 

search method was carried out to evaluate solutions over a range of penalty weights, 

using sufficiently small intervals to ensure that a near optimal solution could be 

obtained. This heuristic procedure was automated within a script in Matlab. The IS was 

the primary metric used to evaluate and compare sparse PCA solutions. The adjusted 

variance explained and the TNZL were also calculated and recorded to compare the 

variance explained and the degree of sparsity in the solutions.  

4.2.7 Example datasets and data pre-processing 

Two datasets were utilised to compare the performance of the four programming 

approaches to sparse PCA with one another, and with popular sparse PCA 

approaches from the literature.  

Pitprops data 

The pitprops is a classic dataset used to evaluate PCA models that was first introduced 

by Jeffers (1967). The pitprops dataset consists of 13 variables and 180 observations. 

The data contains several underlying factors, where the variables are correlated to one 

another to varying degrees. For this reason, the underlying structure is considered to 

be relatively complex and it therefore provides a good benchmarking dataset to 

compare the performance of sparse PCA solutions, as several authors have done 

(Farcomeni, 2009; Gajjar et al., 2017; Journée et al., 2010; Shen and Huang, 2008; 

Ulfarsson and Solo, 2011; Zou et al., 2006). 

Synthetic data 

While the pitprops data is good for evaluating the quality of sparse PCA solutions, it is 

relatively small with only 13 variables. To test the scalability of the sparse PCA 

solutions a number of synthetic datasets were generated with different numbers of 
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variables and underlying factors. In total, seven datasets were generated, with 

underlying factors and number of variables shown in Table 4-5. 

 

Table 4-5: Number of variables and number of factors in seven synthetic datasets.  

Dataset 1 2 3 4 5 6 7 

No. of variables 10 20 30 40 60 100 200 

No. of factors 2 2 3 3 5 5 5 

 

For example, dataset 2 with 20 variables was generated as follows. Two underlying 

factors 𝑉1 and 𝑉2 were assigned to the 20 variables by adding an independent gaussian 

noise component to each one. 𝑉1 was assigned to the first eight variables and 𝑉2 was 

assigned to variables 9 to 20. 

 

𝑽1~𝑁(0,290)     (4.22) 

𝑽2~𝑁(0,300)     (4.23) 

𝑿𝑖 = 𝑽1 + 𝜖𝑖
1,   𝜖𝑖

1~𝑁(0,1),   𝑖 =1,2,…,8   (4.24) 

𝑿𝑖 = 𝑽1 + 𝜖𝑖
2,   𝜖𝑖

2~𝑁(0,1),   𝑖 =8,9,…,20   (4.25) 

 

Data pre-processing  

Following the standard practice outlined in chapter 3, section 3.4.3, the data were 

autoscaled using equation (4.26). 

 

𝑿𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑿−𝑿̅

𝜎𝑋
    (4.26) 

 

PCA was then conducted on the covariance matrix, as calculated by equation (4.27): 

 

𝑸 =
𝑿𝑇𝑿

𝑛−1
     (4.27) 

 

where 𝑿 is the scaled data and 𝑛 is the number of observations. 
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4.3 Results  

This section begins with a comparison of the four approaches to sparse PCA, in order 

to select the best approaches based on the quality of the solution and the ability to 

scale to larger problem sizes. The pitprops dataset was explored initially to test and 

compare the quality of the sparse PCA solutions to one another.  

4.3.1 Comparison of the four programming approaches to sparse PCA 

The four programming approaches to sparse PCA are compared here, using the 

pitprops dataset and synthetic datasets. 

4.3.1.1 Pitprops data 

The pitprops dataset was initially used to evaluate and compare the performance of 

the four programming approaches to sparse PCA. The pitprops dataset is particularly 

useful for comparing the quality of the solutions obtained, due to the numerous 

underlying factors present within the data. For all of the approaches, when the penalty 

parameter is sufficiently small, the loadings are all nonzero. Increasing the penalty 

leads to increased sparsity in the loadings and consequently a reduction in the 

variance explained by each principal component. To determine the optimal penalty 

parameter and corresponding sparse PCA solution, the penalty parameter was varied 

across an appropriate range of values and the index of sparsity was recorded. The 

solution which maximised the index of sparsity was then determined to be the optimal 

solution. An example of this tuning of the regularisation parameter is provided for the 

NLP approach later in section 4.3.2. Key model performance metrics for the optimal 

solution for each of the four approaches are displayed in Table 4-6, including the 

adjusted variance explained, the index of sparsity and the time taken to solve.  

  



 72 

Table 4-6: Comparison of the four different approaches to sparse PCA: MILP, LP, 
MINLP and NLP, when fitting a six-component model to the pitprops dataset. 
These near optimal solutions were obtained after a trial and error search through 
different penalty terms to maximise the index of sparsity for each of the four 
approaches.   

 Penalty 

applied (𝝀) 

Adjusted variance 

explained (%) 

Index of 

sparsity (IS) 

Time to 

solve (s) 

MILP 0.15 79.6 0.488 381.6 

LP 1.6 75.4 0.425 51.5 

MINLP 0.1 79.6 0.488 23.5 

NLP 0.03 79.6 0.489 25.2 

 

On the basis of the IS value, the MILP, MINLP and NLP approaches were evenly 

matched, producing IS values of 0.49. The solutions were nearly identical with respect 

to the values of the loadings and the elements selected as nonzero were consistent 

across all three approaches. With the LP approach, it was not possible to identify a 

single regularisation parameter that could be applied to all components to produce a 

competitive IS value. For example, a penalty value of 0.17 resulted in no nonzero 

elements being selected in component 6, yet component 1 has too many nonzero 

elements compared to the optimal solutions obtained with the other three approaches. 

As a result, the maximum IS value obtained with the LP approach was significantly 

lower than the other three approaches. To demonstrate this, Table 4-7 shows a 

comparison of the loadings produced from the LP and MILP approaches. It is possible 

to obtain a better solution using the LP approach by varying the regularisation 

parameter for each principal component individually; however, this is laborious and 

offers no advantage compared to the alternative approaches, which are able to obtain 

good solutions while only requiring the identification of a single penalty parameter.  

To highlight the benefit of sparse PCA over standard PCA, Table 4-8 shows the 

loadings for the first 6 components of standard PCA. Comparing these to the sparse 

loadings produced from the LP and MILP approaches, it is clear that sparse loadings 

reduce the level of complexity involved in interpreting the principal components. 

Additionally, Figure 4-1 shows a biplot for standard PCA next to a biplot of the sparse 

PCA model produced by the MILP approach. Figure 4-1 shows that the scores of the 

first two principal components are impacted minimally by the choice of model, however, 

the loadings are easier to interpret because the majority of small loadings present in 
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the PCA model are set to zero, leaving the large contributors only. Here, the sparse 

PCA model clearly shows that PC1 represents contributions from variables 1 and 2 

and 6 to 10, which are all positively correlated, while principal component 2 represents 

variables 3 and 4, which are again positively correlated. 
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Table 4-7: Comparison of the MILP and LP sparse PCA solutions for the pitprops dataset. The rows Topdiam to Diaknot present the loadings 
for the 13 variables in the pitprops dataset. The percentage of explained variance (PEV) for each component and the number of zero loadings (NZL) 
are provided in the bottom two rows. 

Variable MILP, 𝝀 = 0.15 
 

LP, 𝝀 = 1.8 
 

 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 

Topdiam 0.42  0.29    0.44    -0.08  

Length 0.43  0.29    0.45  0.01    

Moist  0.71     0.03 -0.73     

Testg  0.71     0.08 -0.66     

Ovensg   -0.50   0.73    1.00   

Ringtop 0.27  -0.42    0.24      

Ringbut 0.40  -0.34    0.40      

Bowmax 0.31      0.29      

Bowdist 0.38      0.38      

Whorls 0.40      0.40 0.18     

Clear    -1.00         

Knots     1.00  -0.03    -1.00  

Diaknot   0.53   0.68 -0.01  1.00    

PEV (%) 31.3 14.2 14.2 7.4 6.6 5.9 31.8 14.5 7.5 7.2 6.4 0.0 

NZL 6 11 7 12 12 11 2 10 11 12 11 13 
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Table 4-8 Loadings of the first 6 principal components of a 
standard PCA model of the pitprops data 

Variable Standard PCA 

 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 

Topdiam -0.30 -0.25 -0.18 -0.08 0.06 -0.22 

Length -0.31 -0.23 -0.20 -0.08 0.06 -0.25 

Moist 0.03 -0.59 0.22 -0.09 -0.21 0.29 

Testg -0.08 -0.50 0.44 -0.05 -0.22 0.11 

Ovensg -0.18 0.29 0.60 0.16 -0.30 -0.45 

Ringtop -0.32 -0.05 0.31 0.05 0.38 -0.22 

Ringbut -0.34 0.00 0.06 0.03 0.20 -0.11 

Bowmax -0.33 -0.01 -0.24 0.11 -0.15 0.20 

Bowdist -0.33 -0.14 -0.21 0.02 0.06 -0.08 

Whorls -0.34 0.00 -0.13 -0.05 0.01 0.06 

Clear 0.21 -0.31 -0.14 0.89 0.08 -0.19 

Knots 0.31 -0.20 0.16 -0.22 0.69 -0.12 

Diaknot 0.29 -0.21 -0.26 -0.31 -0.33 -0.66 

 
Figure 4-1 PCA biplot of components 1 and 2 for the pitprops 
data. a) standard PCA model, b) sparse PCA model obtained using 
the MILP approach.

a)

b)
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4.3.1.2 Synthetic data 

Synthetic datasets were generated, as described in section 4.2.7, to test the scalability 

of the four sparse PCA approaches. For this test, the synthetic data has been 

generated with very simple underlying factors which are easy to identify because the 

aim here is to test scalability rather than accuracy and precision. The smallest synthetic 

dataset (dataset 1) consists of ten variables and two underlying factors, while the 

largest (dataset 7) contains 200 variables and five underlying factors. Taking synthetic 

dataset 2 as an example, two underlying factors are present. Factor 1 is composed of 

correlated variables 1 to 8, and factor 2 includes correlated variables 9 to 20. The PCA 

solution was considered successful when the nonzero loadings correctly identified the 

underlying factors in the data. For example, Table 4-9 shows the sparse PCA solution 

for dataset 2 obtained using the NLP approach, which correctly identifies the two 

underlying factors. 

 

Table 4-9: NLP sparse PCA solution for synthetic dataset 2, featuring two principal 
components (PC1, PC2).  

Variable PC1 PC2 

1 0.0 0.4 

2 0.0 0.4 

3 0.0 0.4 

4 0.0 0.4 

5 0.0 0.4 

6 0.0 0.4 

7 0.0 0.4 

8 0.0 0.4 

9 -0.3 0.0 

10 -0.3 0.0 

11 -0.3 0.0 

12 -0.3 0.0 

13 -0.3 0.0 

14 -0.3 0.0 

15 -0.3 0.0 

16 -0.3 0.0 

17 -0.3 0.0 

18 -0.3 0.0 

19 -0.3 0.0 

20 -0.3 0.0 
 

Table 4-10 shows the time taken to obtain solutions for the seven synthetic datasets. 

Time recordings in Table 4-10 indicate that all of the underlying factors were 

successfully identified in the time stated (s), where no time is given, the respective 

SPCA approach did not produce a solution with the solver settings specified in Table 
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4-4. In most cases where the solver did not produce a solution, the solver began to 

converge extremely slowly, and used up excessive computer memory. The information 

in Table 4-10 is also displayed graphically in Figure 4-2, which helps to show the rate 

of increase in time to solve when the number variables and factors is increased. 

 

Table 4-10: Time to solve (seconds) synthetic datasets 1 to 5, for each of the 
SPCA approaches. The number of variables (n) and the number of PCs that were 
determined for each dataset is stated in the table. The shaded boxes indicate that no 
solution was obtained. 

 MILP LP MINLP NLP 

Dataset 1 
(n=10, 2PCs) 

29.6 2.1 27.5 8.2 

Dataset 2 
(n=20, 2PCs) 

 7.9 579.3 10 

Dataset 3 
(n=30, 3PCs) 

 15.3 2966.6 18.5 

Dataset 4 
(n=40, 3PCs) 

 474.1  43.2 

Dataset 5 
(n=60, 5PCs) 

 1340.9  129.5 

Dataset 6 
(n=100, 5PCs) 

   657.4 

Dataset 7 
(n=200, 5PCs) 

   3664.9 

 

 
Figure 4-2: Time to solve versus the no. of variables in the dataset, for the seven 
synthetic datasets, for the four programming approaches to sparse PCA 
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Table 4-10 shows that the MILP approach lacks scalability compared to the other 

approaches, since it was only able to produce a solution for dataset 1 containing 10 

variables. The MILP approach attempts to solve the full L0-constrained optimisation 

problem, where the objective function is nonconvex and discontinuous, and the 

computational complexity is known to be NP-hard. The results show that the scalability 

of the MILP approach to L0-regulairised sparse PCA is limited by the computational 

complexity of the problem. Henceforth in practice, the MILP approach is applicable to 

small problems with fewer than approximately 20 variables. 

The LP approach, a relaxed version of the MILP approach, was able to produce 

solutions for all five synthetic datasets. The time to solve the LP problem increased 

exponentially with the number of variables; however, the rate of increase was lower 

compared to the MILP approach and the time to solve remains reasonable with up to 

60 variables. This result shows that smooth approximations to the L0-norm penalty 

greatly reduce the computational complexity, leading to a solution within a reasonable 

number of iterations and decreasing the solution time. Using the LP approach with the 

synthetic datasets, it was possible to identify a single penalty parameter that obtained 

the correct loadings to represent the underlying factors in the data, whereas the LP 

solution for the pitprops dataset was substandard. This is likely due to the relatively 

simple structure of the synthetic data compared to the pitprops data.  

The MINLP approach produced solutions for datasets 1 to 3, although for datasets 2 

and 3, it was the slowest of the three successful approaches. As with the LP and MILP 

approaches, the solve time increased exponentially with the number of variables. 

Compared to the MILP approach, the MINLP solved the full L0-constrained 

optimisation problem with greater efficiency. This may be partly attributed to the need 

to carry out SLP with the MILP approach and to differences in the performance of the 

solver used in the MILP (Matlab, intlinprog) and MINLP (Matlab OPTI toolbox, bonmin) 

approaches.  

Finally, the NLP approach produced solutions for all five datasets, and it was 

significantly faster than the LP approach for the two largest datasets. When compared 

to the MINLP approach, the use of the L0-norm approximation made the NLP approach 

significantly faster and scalable to larger problems, while retaining the ability to 

produce sparse loadings with the correct underlying factors identified. In both cases, 

MILP versus LP and MINLP versus NLP, the relaxed non-integer variants 

outperformed their respective integer programming variants with regards to scalability. 
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This outcome demonstrates that the high computational complexity associated with 

the L0-norm penalty limits its scalability, and that L0-norm approximations offer a more 

practical alternative. It is possible that different solvers may offer improved 

performance. Additionally, more powerful computer hardware would likely reduce the 

computation time and increase the scalability of the full L0-constrained optimisation 

problems. However, with the hardware utilised in this work and the solvers that were 

chosen, the full L0-constrained approaches were not suitable for problems with more 

than 30 variables.  

4.3.1.3 Summary of the tests on the pitprops and synthetic datasets 

The LP approach was shown to have limitations with the pitprops dataset due to the 

inability to identify a single regularisation parameter that could be applied to all principal 

components to produce a competitive solution. The MILP approach produced 

competitive solutions for the pitprops dataset; however, it lacked scalability as it was 

unable to produce a solution for the 20-variable synthetic dataset. The results indicate 

that the MILP approach is limited to somewhere between 10 and 20 variables. The 

MINLP approach was the more successful approach using the full L0-norm penalty, as 

it successfully scaled to the 30-variable dataset. There are problems within chemical 

engineering and other domains, which do not exceed 30 variables and the MINLP 

approach is a viable method to apply full L0-regularisation in these instances, with 

commonly available hardware and solvers. However, the NLP approach is scalable to 

problems with 200 variables and considering the quality of the solutions obtained with 

the pitprops dataset, the relaxed NLP solution was just as good as the MINLP solution, 

thus providing no reason to select the MINLP approach over the NLP approach. There 

may be some instances where the practitioner desires to use the full L0-norm penalty, 

in most cases however, it appears that the NLP approach is the best of the four 

approaches when considering the quality of the solution, the time to solve and 

scalability. 

4.3.2 NLP multi-start  

The NLP solver in Matlab, intlinprog, requires initial values for model parameters, 

which are the loadings in this case. The initial values can impact the rate of 

convergence and the final solution obtained; however, it is difficult to predict the effect 

of the initial values and to determine what they should be. The initial values should not 

violate the model constraints. For the sparse PCA model, options for the initial values 

include (i) loadings from standard PCA, (ii) all zeros, (iii) all x, where x denotes a small 



 80 

positive or negative number within the problem boundaries or (iv) randomly chosen 

small numbers of magnitude less than one within the problem boundaries. 

Due to the fact that it’s difficult to predict the impact of the initial values on the solution, 

it was decided that a multi-start procedure would be used to produce multiple solutions 

with different starting points. To generate a set of starting points with a wide coverage 

across the space of possible starting points, a Latin hypercube design was applied. In 

order to ensure that the starting points where within the problem boundaries, the 

starting points were scaled to a maximum absolute value of √1 𝑛⁄ , where n is the 

number of variables. The number of starts is a parameter that needs to be specified. 

For a larger number of starts, the final solution obtained is likely to be closer to the 

global optimum, due to increased coverage of the space of possible starting points. 

The drawback is increased computational demand and time to solve. Henceforth, the 

number of starts must be selected with this trade-off in mind. Figure 4-3 shows the 

index of sparsity, variance explained and total number of zero loadings plotted against 

the regularisation parameter for models identified from 10, 50, 200 and 400 starts.  

 

 

Figure 4-3: (a) Index of sparsity, (b) total number of zero loadings and (c) adjusted 
variance explained versus the regularisation parameter, for sparse PCA models 
identified after 10, 50, 200 and 400 starts. 
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The index of sparsity is zero when 𝜆 is zero and the variance explained by the model 

is maximal, due to complete nonzero loadings in the unpenalized solution. As 𝜆 

increases, the TNZL increases, variance explained decreases and the IS increases 

because the first loadings to be reduced to zero are the ones which explain a small 

portion of the variance. The IS peaks when the trade-off between sparsity and variance 

explained reaches an optimal balance. The 400, 200 and 50 start models reach 

maximum IS at the same point (𝜆 = 0.03), while the 10 start model peaks at 𝜆 = 1. The 

different solutions are obtained due to the presence of local optima. As 𝜆 increases 

further, the TNZL increases and the variance explained decreases. The IS decreases 

as the loss of variance explained by the model outweighs the gain in sparsity. For 

models obtained from 400 starts, the TNZL increases monotonically with the increasing 

magnitude of 𝜆; whereas for the models produced from 10 starts, the TNZL fluctuates 

as 𝜆 increases. This contrast can be attributed the fact that there is more variation in 

the quality of the solutions (distance from global optimum) for the 10 start models, 

because the initial values have reduced coverage.  

When it comes to determining the number of starts that should be used to solve a given 

problem, the number of starts is likely to increase based on the number of variables 

because there are more solutions. It is difficult to know prior to investigating the 

problem whether or not the number of starts will be sufficient. Here, 50 starts were 

sufficient to obtain the best solution (max IS), that was also identified using 200 and 

400 starts. 

4.3.3 Comparison of the NLP approach to alternatives in the literature 

The following section first compares the NLP sparse PCA solution for the pitprops data 

with other popular solutions in the literature. Table 4-11 shows the NLP method sparse 

PCA and the solution developed by Gajjar et al. (2017), which used a greedy search 

algorithm to search through all possible sparse combinations. Table 4-12 shows the 

sparse PCA solutions by Zou et al. (2006), utilising the elastic net penalty function, and 

Farcomeni (2009), using a branch and bound algorithm to optimise the degree of 

sparsity. The total adjusted variance explained, the total number of zero loadings and 

the SI for these four solutions are displayed in Table 4-13. Additionally, the SI and total 

number of zero loadings for one of the solutions obtained by Journee et al. (2010), 

using the generalised power method is presented. Together these represent high 

performing sparse PCA solutions obtained by a variety of alternative methods. 
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Table 4-11: Sparse PCA solution for the pitprops data using the NLP approach, compared to the sparse PCA solution obtained by Gajjar et 
al. (2017). 

Variable NLP Gajjar et al. (2017) 

 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 

Topdiam 0.42  0.29    -0.5      

Length 0.43  0.29    -0.51      

Moist  0.71      0.77     

Testg  0.71      0.64     

Ovensg   -0.50   0.73 0.15  0.64    

Ringtop 0.27  -0.42      0.61    

Ringbut 0.40  -0.34    -0.23  0.46    

Bowmax 0.31      -0.36      

Bowdist 0.38      -0.44      

Whorls 0.40      -0.32   0.23   

Clear     1.00     -0.97   

Knots    1.00       -1  

Diaknot   0.53   0.68      1 

NZL 6 11 7 12 12 11 6 11 10 11 12 12 

PEV 31.3 14.2 14.2 7.4 6.6 5.9 29.3 14.2 13.4 8.0 6.7 6.0 
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Table 4-12: Sparse PCA solutions for the pitprops data, produced by Zou et al. (2006) and Farcomeni (2009). 

Variable Zou et al. (2006) Farcomeni (2009) 

 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 SPC1 SPC2 SPC3 SPC4 SPC5 SPC6 

Topdiam -0.48      -0.423      

Length -0.47      -0.43  -0.283    

Moist  0.79      0.707     

Testg  0.62      0.707     

Ovensg 0.18  0.66      0.6   0.704 

Ringtop   0.59    -0.268  0.455    

Ringbut -0.29  0.47    -0.403      

Bowmax -0.34 -0.03 -0.05    -0.313      

Bowdist -0.41      -0.379      

Whorls -0.38      -0.4      

Clear    -1      1   

Knots     -1      1  

Diaknot      1   -0.594   0.71 

NZL 6 10 9 12 12 12 6 11 9 12 12 11 

PEV 29.1 14.4 13.4 7.4 6.7 6.0 31.3 14.2 11.7 7.5 6.6 5.9 
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Table 4-13: Comparison of the performance metrics for sparse PCA solutions for the 
pitprops data. 

Method NZL Adjusted variance 

explained (%) 

Index of 

sparsity 

Gajjar et al. (2017) 62 77.6 0.501 

Zou et al. (2006) 61 77.2 0.483 

NLP 59 79.6 0.489 

Farcomeni (2009) 61 77 0.47 

Journee et al. (2010) 60 76.7 Not provided 

 

The NLP approach produced a sparse PCA solution with the second highest IS value 

in Table 4-13. Zou et al. (2006) obtained a solution with more zero loadings; however, 

the NLP approach scored higher on the IS, indicating a better ratio of adjusted 

explained variance to nonzero loadings in the model. The greedy approach developed 

by Gajjar et al. (2017) achieved the highest IS. The branch and bound approach 

developed by Farcomeni (2009)  performed similarly to the NLP method, with a slightly 

lower IS score. Journee et al. (2010) did not provide the loadings or the IS values for 

their pitprops solutions, so the IS was not obtained. However, from the variance 

explained and number of zero loadings, it can be seen that their solution offers similar 

performance, on the pitprops data, to the other methods in Table 4-13.  

Overall, the results show that with small datasets, such as the pitprops dataset, the 

NLP approach to sparse PCA is capable of delivering high quality solutions, with similar 

performance to popular sparse PCA approaches in the literature. As far as scalability 

is concerned, the NLP approach was previously shown to solve problems with 100 

variables in a reasonable time, allowing for heuristic procedures to be implemented to 

determine the optimal regularisation parameter. With a problem of 200 variables in 

size, the NLP approach was capable of identifying 5 sparse principal components in 

approximately 1 hour. While this is still feasible, it is close to the limit of what is practical 

when there is a need to optimise the regularisation parameter, given that there are 

significantly faster alternatives in the literature. Efficient approaches for large and/or 

high dimensional datasets include the generalised power method (Journée et al., 2010) 

for L0 and L1-regularised solutions, and the DSPCA method by d’Aspremont et al. 

(2007) for L1-regularisation. 
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4.4 Conclusions 

In this work, LP, MILP, NLP and MINLP approaches were used to derive sparse PCA 

models with L0-norm and approximate L0-norm penalties applied to the PCA loadings. 

The LP approach produced substandard solutions due to difficulty achieving an 

appropriate degree of sparsity. The MILP approach performed well with the pitprops 

dataset (13 variables); however, it proved to be impractical for larger problems after 

failing to obtain a solution for the 20-variable synthetic data, with the solver settings 

that were specified. The MINLP approach also produced a good solution for the 

pitprops data and scaled to larger problems than the MILP approach (30-variable 

synthetic dataset was solved); although ability to scale to larger problems was still 

limited. The NLP method performed the best out of the four approaches, as it produced 

high quality solutions, comparable to high-performing sparse PCA algorithms in the 

literature, and it scaled to problems with up to 200 variables. This scalability is sufficient 

to make the NLP method a feasible choice for many PCA applications that are 

encountered. In chemical engineering for example, PCA has regularly been applied to 

chemical process data, which often features less than 100 variables. Conversely, in 

bioinformatics it is common to analyse high-dimensional genome data consisting of 

several thousand variables, where the NLP sparse PCA method would be infeasible 

or impractical compared to alternative sparse PCA approaches in the literature. The 

NLP approach to sparse PCA that was developed here will later be applied to the CGT 

process data in chapters 5 and 6. The CGT process data used in chapters 5 and 6 

featured approximately 80 and 160 process variables for analysis with sparse PCA, 

respectively. 
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Chapter 5  

Analytics for viral vector production: adherent cell process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter focuses on an adherent cell process for viral vector manufacturing and 

the use of MVDA to investigate historical process data, with the overall aim to derive 

beneficial insights into process behaviour and to contribute towards solutions for critical 

manufacturing challenges. The MVDA approach was conducted in two phases:  

1) feature extraction was carried out using PCA and the sparse PCA approach that 

was developed in chapter 4, 2) predictive modelling was carried using regression 

methods to model the relationship between process variables and critical quality 

attributes of the viral vector product. 
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5.1 Introduction  

The most well-established method for GMP-grade lentiviral vector production is 

through the transient transfection of adherent cell cultures (Ausubel et al., 2012; 

Merten et al., 2016; Rout-Pitt et al., 2018). In this chapter, an adherent culture process 

for LV production, and the following downstream processing of the LVs, is investigated 

using MVDA to address some of the key manufacturing challenges described in 

chapter 2. These include high levels of variability in materials and production methods 

and a lack of advanced process knowledge, due to the inherent complexity in the 

system and process that are still in development.  

The sparse PCA algorithm that was developed in chapter 4 was applied here to carry 

out feature extraction to provide insights into process variability and correlations 

between process parameters. This was followed by predictive modelling using PLS 

regression to model the relationships between process parameters from LV production 

and the infectious titre of the LV product. The infectious titre is a CQA of the LV product, 

which is a measure of the concentration of infectious particles produced from each 

batch. The aim was to identify critical process parameters influencing the infectious 

titre and to quantify the relationship to shed light on process behaviour. 

5.1.1 Data 

For this work, data was combined from the production of two different viral vector 

products to treat different unspecified diseases. The manufacturing process is the 

same for the two products, the only difference being the therapeutic plasmid that is 

used in the 3rd generation lentiviral vector system. 29 batches of LV manufacturing 

were available for the analysis, 13 of these were for treatment 1 and 16 batches were 

for treatment 2. The datasets were readily integrated as they contained all of the same 

variables. The LV manufacturing data consisted of 98 manufacturing process variables 

i.e. input parameters and 16 dependent variables recorded on the certificate of analysis 

for the final LV product. Of the 98 process variables, 17 were categorical and 81 were 

metric. 
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Table 5-1 Unit operations and a description of the types of variables available in the 
adherent viral vector production dataset  

Unit operation No of 
variables 

Description of variable types 

Cell expansion 36 Metric 

Number, volume, concentration and viability of 

cells, volumes of reagents and volume of growth 

media 

Categorical 

Material lots for growth media and reagents 

Transfection 15 Metric 

Number, volume, concentration and viability of 

cells, volumes of reagents, volume of growth 

media and volume and concentration of 

plasmids, duration of process 

Categorical 

Material lots for growth media, reagents and 

plasmids  

Endonuclease 

treatment 

8 Temperature, oscillation speed, volumes of 

reagents 

Categorical 

Material lots for reagents  

Ion exchange 

chromatography 

12 Metric 

Number, volume, concentration and viability of 

cells, column settings, volumes before and after 

processing 

Categorical 

Column settings 

Concentration 

step 

4 Volumes before and after processing, 

concentration method 

Categorical 

Type of concentration method 

Sterile filtration 5 Filter area 

Categorical 

Filter type 

 

5.2 Methods  

5.2.1 Pre-processing of process data 

The pre-processing of the cross-sectional process data involved typical steps, such as 

the handling of missing data and representation of categorical variables as dummy 

variables. The following section details the pre-processing steps that were taken to 

obtain datasets for the PCA, sparse PCA and PLS analyses that were conducted.  
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5.2.1.1 Processing of cross-sectional process data  

1. The variables in the dataset were evaluated for missing data and variables with 

significant portions of missing data (greater than 20% across more than 20% of 

the batches) were removed from the analysis. 

2. After removing missing data, categoric variables were coded as dummy 

variables, meaning that x new variables were created to replace the original 

categoric variable. Here x denotes the number of categories minus one. See 

chapter 3, section 3.4.1 for details of dummy variable coding. 

3. For PCA, sparse PCA and PLS, the data inputs were auto-scaled, i.e. each 

variable was transformed by subtracting the mean and dividing by the standard 

deviation. Mean centring and scaling were both carried out due to the improved 

interpretability of the results, which they provide, for more details the reader is 

referred to chapter 3, section 3.4.3. 

5.2.1.2 Processing of product quality data 

The product quality data modelled here was the infectious titre LV product as recorded 

on the certificate of analysis for each batch. The infectious titre was the response 

variable that was predicted with PLS regression modelling. The response variable 

required scaling. Autoscaling was applied to the response variable, consistent with the 

scaling applied to the input variables. The measurement error on a typical infectious 

titre assay is reported to be around 35-40% in the literature (Roldão et al., 2009), which 

is the approximate error of the infectious titre used in this work. 

5.2.2 PCA and sparse PCA 

The sparse PCA algorithm that was developed in chapter 4 was applied to the cross-

sectional process data to carry out feature extraction. Sparse PCA was used to obtain 

simplified principal components for easier interpretation compared to standard PCA; 

however, standard PCA was also applied to the data in order to compare the results 

and check whether there were any important differences in the model outputs. For 

details on the sparse PCA algorithm, the reader is referred to the nonlinear 

programming approach to sparse PCA, which was described in chapter 4, section 

4.2.2. For more details on standard PCA, see chapter 3, section 3.1.1.  

5.2.3 Development of PLS regression models 

In this chapter, PLS models were developed to predict the infectious titre of the LV 

product using the process parameters from cell expansion and downstream processing 



 91 

as predictor variables. The following list details the steps taken to develop the PLS 

models: 

1. Initially predictor variables were pre-selected by ruling out duplicate variables 

and variables of no relevance to the analysis. The pre-selection was kept to a 

minimum to allow the data to reveal key correlations and the variable selection 

procedure to remove redundant variables of low predictive power. 

2. The scaled predictor variables in the matrix X, and the scaled response variable 

in the vector y, from the training dataset, were then passed to the repeated K-

fold cross-validation script in MATLAB (details on the repeated K-fold cross 

validation method are provided in chapter 3, section 3.3.3). This script carried 

out 5-fold cross validation, with 2000 repeats, for models with n latent 

components, where n was varied from 1 to 8.  

3. The model with the smallest cross validation mean absolute error (MAE) score 

was selected and the number of latent components was determined.  

4. Next the PLS model was fitted to the whole of the training data and the variable 

importance of projection (VIP) selection method (detailed in chapter 3 section 

3.2.2) was used to select the most important predictor variables from the model. 

The threshold VIP cut-off was varied between 1 and 1.4, due to the high degree 

of multicollinearity in the data. 

5. The reduced model was put through repeated 5-fold cross validation (2000 

repeats) and the number of latent components was varied from 1 to 10.  

6. The optimal model (minimum cross validation) was then selected and fitted to 

the whole of the training data to evaluate model fit and determine model 

parameters.  

7. After identifying the reduced model, residual plots were checked and some 

nonlinearity in the errors was observed. Consequently, nonlinear model terms 

were investigated by generating new variables with squared terms and 

interaction terms. See chapter 3, section 3.2.3 for information on nonlinear 

transformations. 

8. The VIP selection technique was reapplied to the model with additional 

nonlinear variables and those with low VIP scores (less than 0.8) were removed. 

9. Using the bootstrap technique detailed in chapter 3, section 3.3.4, the stability 

and distribution of the model regression coefficients were evaluated with 2000 

bootstrap samples. This provided confidence intervals for the standardised 

regression coefficients (beta coefficients). 
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5.2.3.1 PLS model performance evaluation 

Model performance was evaluated through repeated K-fold cross validation (CV MAE 

and CV R2), model fit to the whole training data (visual inspection, MAE and R2) and 

bootstrapping (stability of regression coefficients). 

 

5.3 Results and discussion  

5.3.1 Sparse PCA results and comparison with PCA 

Sparse PCA and standard PCA were applied to the process variables from adherent 

LV production to develop an understanding of the corelations between the process 

parameters and the main features of variance in the manufacturing data. Figure 5-1 

below shows the percentage of variance explained by each of the first six principal 

components for sparse PCA and standard PCA. The information in Figure 5-1 may be 

used to decide how many principal components should be used in the model, as 

discussed in chapter 3, section 3.1.1. In this case, six principal components are 

sufficient to explain around 60% of the variation in the data and subsequent 

components explain less than 5% each. These initial components provide information 

about the correlation between the original variables and batchwise information on 

process conditions, where the clustering and separation of batches highlights 

similarities and differences in process conditions. The variation in later components is 

the result of smaller deviations in process conditions, where the signal to noise ratio is 

small and therefore the observations are of less significance (Bro and Smilde, 2014). 

For the purpose of this exploratory analysis, the first six components are sufficient to 

highlight the key features in the data, while looking into components seven and beyond 

would yield limited insights.  
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Figure 5-1: Variance explained by the first 10 principal components in the standard PCA 
and sparse PCA models. The PCA models were built on process variables from adherent 
cell culture viral vector production. 

It can be seen in Figure 5-1 that the sparse PCA model explains slightly less variation 

in each principal component than standard PCA. This is the expected result due to the 

sparse loadings (see chapter 4, section 4.1); however, the reduction in explained 

variance is relatively small and the advantage gained in the ease of interpretation of 

the sparse principal components is significant. Table 5-2 demonstrates this with a 

comparison of the number of nonzero loadings on each principal component (PC) for 

sparse and standard PCA. 

 
Table 5-2: Number of nonzero loadings in each principal component (PC). 

  PC1 PC2 PC3 PC4 PC5 PC6 

Sparse 

PCA 

No. of nonzero loadings 39 27 28 17 14 13 

Cumulative variance 

explained (%) 
22.8 37.5 45.6 51.1 55.9 60.8 

PCA 

No. of nonzero loadings 53 53 53 53 53 53 

Cumulative variance 

explained (%) 
23.1 38.1 46.7 52.8 58.0 63.1 
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Table 5-2 shows that the first sparse principal component in sparse PCA has the most 

nonzero loadings and that there is a trend where the number of nonzero loadings 

decreases in subsequent components, making interpretation easier. Sparse principal 

components 2 and 3 feature around half of the original variables and components 4 to 

6 feature close to one quarter of the original variables. The simplified principal 

components come at a relatively small cost to the explained variance with a drop of 

2.3% compared to standard PCA across the 6-component model. 

5.3.1.1 Components 1 and 2 

Figure 5-2 shows the scores for the PCA (Figure 5-2a) and sparse PCA (Figure 5-2b) 

models for components 1 and 2.  

 

Figure 5-2: PCA (a) and sparse PCA (b) scores plots for principal components 1 and 2.  

a)

b)



 95 

The scores on the first two components are very similar for both models and there are 

three main clusters present, circled in blue. The plot markers were coloured from red 

to green, representing low to high infectious titre, respectively. Interestingly, the three 

clusters present on components 1 and 2 show clear differences in the infectious titre, 

which indicates that the process conditions represented by the clusters are correlated 

to the infectious titre. In particular, the batches circled in group 1 all score high on 

component 1 and show a low infectious titre, while the opposite is true for group 3. 

Group 2 batches show mixed levels of infectious titre, scoring in between group 1 and 

3 on component 1 and scoring low on component 2, which appears to be less strongly 

correlated to infectious titre. Observing correlations to the product CQAs is not the goal 

of this exercise, however, correlations that are identified are informative about process 

behaviour and provide useful information for the predictive modelling which follows.  

To better understand the process conditions that are resulting in the clustering of the 

batches in Figure 5-2, it is necessary to investigate the loadings for components 1 and 

2. The sparse PCA model will be investigated here because of the advantage it offers 

through the relative simplicity of the sparse loadings vector. To observe the main 

variables contributing to the scores, the variables with nonzero loadings were plotted 

on a parallel coordinates diagram and the batches were coloured by the group that 

they were assigned to in Figure 5-2. Figure 5-3 and Figure 5-4 below show parallel 

coordinates plots for component 1 variables with positive and negative loadings, 

respectively. The reader is referred to chapter 3, section 3.1.2 for an explanation of 

parallel coordinates plots. 

In Figure 5-3, the main variables responsible for the separation of the groups on 

component 1 are material lots, the number of cells seeded during cell expansion, cell 

suspension volumes, rest time before transfection, parameters of the ion exchange 

chromatography column and the area of the filter used for sterile filtration. 
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Figure 5-3: Parallel coordinates plot of variables with positive loadings on component 
1 of the sparse PCA model. The batches have been grouped and coloured based on the 
clusters observed on components 1 and 2 in Figure 5-2. 

Variables with negative loadings on component 1 are shown in Figure 5-4. In Figure 

5-4, the key variables contributing to the separation of the groups on component 1 are 

material lots, cell concentrations during expansion, volume of the cell suspension prior 

to transfection and volume of the viral vector supernatant in downstream processing. 

To highlight the differences between group 1 batches and group 3 batches, which have 

opposing scores on component 1, group 3 batches are characterized by: 

• low total number of cells seeded into cell factories, 

• high cell concentration at thaw and first passage, 

• average to high total volume of cell suspension per cell factory, 

• short rest time before transfection,  

• low conductivity and column peak asymmetry factor in ion exchange 

chromatography, 

• average to high viral supernatant volume in downstream processing. 

Group 1 batches are characterized by the opposite of the above conditions. 

Interestingly, group 3 batches achieved high infectious titres while group 1 batches 
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achieved low infectious titres; henceforth, it is likely that at least some of the 

aforementioned variables had an impact on the infectious titre. Group 2 batches scored 

close to group 3 on component 1 but differed on a few parameters, such as slightly 

lower cell concentrations in expansion, higher conductivity in ion exchange 

chromatography and larger sterile filter area. In addition to the metric variables that 

were mentioned, there were a number of different materials lots used between the 

three groups, including CaCl2, buffer 1 and viral vector plasmids.  

The above observations are not true for all batches in all instances, as different 

combinations of the aforementioned variables are influencing the scores. Exact score 

contributions for each batch and variable can be calculated; however, in this instance 

it is sufficient to have an overview of the key variables influencing the scores without 

investigating the scores on a batch by batch basis.  

 

Figure 5-4: Parallel coordinates plot of variables with negative loadings on component 
1. The batches have been grouped and coloured based on the clusters observed on 
components 1 and 2 in Figure 5-2. 

Figure 5-5 and Figure 5-6 show parallel coordinates plots for component 2 variables 

with positive and negative loadings, respectively. Component 2 separated group 2 from 

groups 1 and 3. Group 2 batches were characterised by the following: 

• a low total number of cells during cell expansion, 
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• high total volume of cell suspension transferred to each cell factory, 

• lower cell concentrations than group 3, 

• low shaking rate during endonuclease treatment, 

• short rest time before transfection in most cases, 

• low column peak asymmetry factor in size exclusion chromatography, 

• higher than average refrigeration temperature during clarification, 

• use of different raw material lots including transfection plasmids, CaCl2, buffer 

1 and NaOH buffers. 

 

 

Figure 5-5: Parallel coordinates plot of variables with positive loadings on component 
2. Batches in group 1 and 3 in Figure 5 2 score similarly on PC 2 and have therefore been 
coloured the same (green), whereas group 2 batches scored differently and are coloured in 
blue. This identifies variables causing differences in scores on PC 2. 
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Figure 5-6: Parallel coordinates plot of variables with negative loadings on component 
2. Batches in group 1 and 3 in Figure 5 2 score similarly on PC 2 and have therefore been 
coloured the same (green), whereas group 2 batches scored differently and are coloured in 
blue. This identifies variables causing differences in scores on PC 2. 

5.3.1.2 Components 3 and 4 

Figure 5-7 below shows the scores for components 3 and 4 for PCA (Figure 5-7a) and 

sparse PCA (Figure 5-7b). Comparing sparse PCA and standard PCA, component 3 

results in very similar separation of the batches with 7, 10 and 11 scoring low and 19, 

20, 24 and 25 scoring high. Similarly, component 4 pulls out batch 21 in both cases, 

however component 4 provides less separation of the remaining batches in the sparse 

PCA model, due to the fewer variables contributing to the scores.  
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Figure 5-7: PCA (a) and sparse PCA (b) scores plots for components 3 and 4. 

To examine the variables causing the separation on component 3, the variables were 

split into three groups as shown on Figure 5-7, and these groups were plotted on 

parallel coordinates diagrams in Figure 5-8 and Figure 5-9 below.  

a)

b)
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Figure 5-8: Parallel coordinates plot of variables with positive loadings on component 
3. The batches have been coloured according to groups 4, 5 and 6 in Figure 5-7 to highlight 
the variables responsible for differences in the group scores. 
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Figure 5-9 Parallel coordinates plot of variables with negative loadings on component 
3. The batches have been coloured according to groups 4, 5 and 6 in Figure 5-7 to highlight 
the variables responsible for differences in the group scores. 

Group 4 (G4) and group 6 (G6) on Figure 5-7, represent different process conditions, 

in several cases the process conditions are at opposite ends of the range, hence the 

opposing scores. To better understand the process conditions leading to the 

separation on component 3, group 4 is characterized by: 

• average to low total number of cells during expansion, 

• low total plasmid 1 volume, 

• low oscillation rate during endonuclease treatment, 

• short rest time before transfection, 

• low volume of viral vector supernatant, 

• use of different material lots including plasmids, buffer 1 and NaOH. 

Group 6 (G6) scores high on component 3 largely due to the use of different material 

lots, high therapeutic plasmid volume and a large volume of viral vector supernatant in 

downstream processing. In general, component 3 has less clearly defined clusters than 

components 1 and 2, which is indicative of unstructured process variability that occurs 

batch-to-batch, whereas many of the features observed on components 1 and 2 were 

deliberate changes to process conditions. 
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Component 4 separated batch 21 from the rest, the parallel coordinates plot for 

component 4 are in the appendix chapter 9, section 9.1. Batch 21 was separated on 

component 4 due to the use of different raw material lots including plasmids and 

buffers, the total number of cells during expansion was low, the total volume of cell 

suspension transferred to cell factories was high and the plasmid 1 volume was high. 

Interestingly batch 21 was close to group 3 on components 1 and 2, which featured 

high infectious titres, yet batch 21 had a comparatively low titre. Component 4 variables 

may have contributed to the difference in infectious titre, which will be investigated in 

the next section on predictive modelling.  

Components 5 and 6 capture around 5% of the variance each, and subsequent 

components capture less. Much of the variability in the later components is the within 

process variability that is unstructured and not introduced deliberately. The variables 

on the later components are a mixture of variables from cell expansion, including 

volumes of cell suspension, cell concentration, cell numbers and volumes reagents, 

and variables from downstream processing. The scores for component 5 and 6 are 

available in the appendix, chapter 9, section 9.1, along with a parallel coordinates plots 

showing the key contributing variables.  

Six components were sufficient to explain around 61% of the variance in the data and 

components 1 to 4 gave a good overview of the main features in the data, attributed to 

systematic variation of process conditions and within process variability. The amount 

of variance explained by the components of the PCA or sparse PCA model is 

influenced by the features of the dataset, but also by several factors that practitioners 

tend to vary in their approach. These include the choice of categorical variable 

representation, the type of scaling applied and the extent to which redundant variables 

or highly correlated variables are removed in pre-processing. The interpretation of 

results can be the same as long as these factors are taken into consideration. Another 

choice for this analysis was the inclusion or exclusion of categorical variables in the 

PCA model and thus the following section briefly compares features of the sparse PCA 

model with and without categorical variables. 

5.3.1.3 Comparison of sparse PCA with and without categorical variables  

Figure 5-10 shows a comparison of the variance explained by the first 10 components 

of the sparse PCA model when metric variables are used exclusively versus when 

categorical variables are also included. One feature that stands out is the reduced 

variance explained by each comopnent of the model when categorical variables are 
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included. This is caused by the categoric variable representation whereby, for a 

categoric variable with n categories, n-1 dummy variables are required to represent 

this single categoric variable. This partioning of the variance of a single categoirc 

variable into multiple dummy variables leads to PCA models requiring a greater 

number of components to capture the variance in the data. 

 

Figure 5-10: Comparison of sparse PCA with and without categorical variables: bar chart 
of cumulative variance explained for components 1 to 10. 

Figure 5-11 shows the scores on the first two components of the sparse PCA models, 

with (Figure 5-11a) and without (Figure 5-11b) categorical variables included. The 

negative and positive loading variables happen to be inversed due to a rotational effect; 

however, it is still feasible to compare the two set of loadings and it can be seen that 

the clusters formed are very similar. In both plots there are three main clusters present 

and the batches cluster in the same groups with minor shifts in scores for some 

batches. Two reasons for this observation are as follows: some of the changes to the 

material lots used are correlated to changes in the metric variables, hence they 

influence the scores in the same direction. Another reason is that the metric variables 
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are more influential on the score contributions due to their greater number. The latter 

may also be influenced by the choice of categoric variable representation and scaling.  

 

Figure 5-11: Comparison of sparse PCA scores for components 1 and 2 with (a) and 
without (b) categorical variables included. 

The inclusion or exclusion of the categorical variables is a choice of the practitioner, 

and it depends on what aspects of the data the researcher is interested in. In many 

cases, it is worthwhile comparing the results with and without categoric variables to 

see what different features are observed. In this chapter, the data with categoric 

variables, which were mostly material lots, were explored because it helped to identify 

materials that were sources of variability. The next section explores the relationship 

between the sources of variability that were identified here with key process outputs, 

such as the infectious titre of the viral vector product.  

a)

b)
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5.3.2 Predictive modelling of lentiviral vector infectious titre 

In this section, the results from modelling the infectious tire of the lentiviral vector 

product are presented. Initially a PLS model was developed using the metric variables 

exclusively. The methodology for the development of the PLS model was explained in 

section 5.2. Figure 5-12 shows the fit of the optimised PLS model that was initially 

developed for the infectious titre when the model is fitted to the entire training dataset. 

The model uses as 18 predictor variables selected by the VIP selection method (see 

chapter 2, section 3.2.2) and 4 latent variables determined through repeated K-fold 

CV. Specifically, Figure 5-12a shows the predicted infectious titre versus the measured 

infectious titre and Figure 5-12b shows the residuals against the fitted values.  

 

Figure 5-12: PLS model for the infectious titre using metric variables only, without 
transformations. The model uses 18 variables selected by the VIP selection method, with 4 
latent variables determined from repeated 5-fold CV. The graphs show measured versus fitted 
infectious titre (a) and the residuals versus fitted values (b), for training data fit. 

b)

a)
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The adjusted R2 value for the training fit is high at 0.94% and the model appears to fit 

the data well with the exception that there is noticeable heteroscedasticity in the 

residual plot. Heteroscedasticity can arise due to measurement error that is a function 

of the value being measured i.e. it becomes larger or smaller depending upon where 

the measured value is within the range of the test or instrument (Hair, 2014). 

Additionally, it can be indicative of extra factors or nonlinear effects, which are not 

being captured by the model. Model parameters and performance measures for the 

overall model fit and cross validation are detailed in Table 5-3.  

The next step in model development was to investigate the potential for nonlinear 

terms to improve the model fit. To do this, the basic PLS model that was identified 

above was used as a starting point and the variables that were selected for this model 

were used to create new variables which were nonlinear transformations of the 

originals, including quadratic terms and moderator effects (see chapter 3, section 

3.2.3). The new set of variables were reduced through the same VIP variable selection 

procedure. Figure 5-13 shows the fit of the optimised PLS model with the inclusion of 

nonlinear transformations.  

Visually in Figure 5-13, the nonlinear transformations improved the model fit and 

resulted in more normally distributed residuals. Furthermore, the cross-validation 

performance metrics, CV R2 and CV MAE, were improved from 0.74 and 0.34 for the 

basic model to 0.88 and 0.23 for the model with nonlinear transformations, 

respectively. 
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Figure 5-13: PLS model for the infectious titre using metric variables only and nonlinear 
transformations of the original variables. The model uses 29 variables selected by the VIP 
selection method, with 5 latent variables determined from repeated 5-fold CV. The graphs 
show measured versus fitted infectious titre (a) and the residuals versus fitted values (b), for 
training data fit. 

Statistics and performance measures for both the base model and the model with 

transformations are provided below in Table 5-3. These results indicate that there are 

nonlinear effects present in the manufacturing variables, which are correlated to the 

infectious titre.  

  

a)

b)
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Table 5-3: PLS models for prediction of infectious titre in adherent viral vector 
production: parameters and performance measures for the PLS models with and without 
transformations. 

 Model with no 

transformations 

Model with transformations 

R2 adj. 0.85 0.96 

F-ratio 34.5 53.5 

No. of latent variables 4 5 

Residual degrees of 

freedom (RDOF) 

24 23 

CV R2 0.74 0.88 

CV MAE 0.340 0.229 

No of variables 18 29 

 

To shed light on the influential process parameters in the optimised PLS model with 

transformations, Table 5-4 and Table 5-5 below provide details of the variables used 

and their standardised regression coefficients. Table 5-4 shows variables without 

interactions, ordered according to the sequence of the unit operations they belong to. 

Table 5-5 shows interaction terms that were identified, ordered according to the 

sequence of the unit operation of the first variable that is stated. Bootstrap estimates 

of the standardised regression coefficients are given in the tables (Table 5-4 and  

Table 5-5) along with bootstrap estimates of the 90% confidence interval. A full list of 

the variables and coefficients for the basic PLS model is given in the appendix, chapter 

9, section 9.2. To aid discussion and to provide perspective on the relative importance 

of each variable in the model, the effect size has been categorised as small, medium 

or large based on magnitude of the standardised regression coefficient: 

• Large effect size – beta > 66th percentile  

• Medium effect size – 33rd percentile < beta < 66th percentile 

• Small effect size – beta < 33rd percentile 
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Table 5-4: PLS model for prediction of infectious titre: this table contains a list of variables 
in the PLS model with nonlinear transformations, no interaction terms are presented in this 
table. The mean beta coefficient from bootstrap testing is presented along with its 95% and 
5% confidence intervals. 

Variable Variable position Mean 
beta 

Upper 95% 
confidence 
interval (CI) 

Lower 
5% CI 

Cell concentration 
(cells/ml) at thaw 

Cell thaw 0.076 0.132 0.022 

Viability (%) at thaw Cell thaw -0.080 -0.047 -0.117 

Viability (%) at thaw 
squared 

Cell thaw -0.074 -0.043 -0.111 

Total number of cells  Seeding cell factories 0.085 0.122 0.038 

Total number of cells 
squared 

Seeding cell factories 0.134 0.208 0.063 

Total volume of plasmid 
1 (μl) 

Transfection -0.066 -0.031 -0.101 

Total volume of plasmid 
1 (μl) squared 

Transfection -0.066 -0.031 -0.101 

Temperature set to (ºC) Endonuclease treatment -0.053 -0.013 -0.095 

Temperature set to (ºC) 
squared 

Endonuclease treatment -0.050 -0.015 -0.089 

A %B Ion exchange 
chromatography 

-0.085 -0.049 -0.119 

A %B squared Ion exchange 
chromatography 

-0.083 -0.043 -0.124 

Δ conductivity squared Ion exchange 
chromatography 

-0.030 0.031 -0.074 

Sterile filter area (cm2) Sterile filtration -0.079 -0.049 -0.108 

Pre-filtration volume (ml) Sterile filtration 0.049 0.091 0.000 

Sterile filter area (cm2) 
squared 

Sterile filtration -0.079 -0.049 -0.108 

Pre-filtration volume (ml) 
squared 

Sterile filtration 0.047 0.101 -0.011 

 

Starting with cell thaw, it was found that a higher cell concentration was correlated to 

higher infectious titre, however, the higher the viability of the cells at thaw, the lower 

the infectious titre. The magnitude of these effects was categorised as medium. It is 

not immediately clear why the viability of the cells at thaw would negatively correlate 

to the viral titre. This is something that warrants further investigation into the possible 

explanations. The higher the initial cell concentration, the easier it is to grow the cells 

to the desired number necessary for the transfection procedure. It was observed in 

feature extraction, that the cell concentration at thaw is correlated positively with the 
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cell concentration in the cell factories and the total number of cells present. Henceforth, 

the impact of these parameters on the infectious titre is likely to be closely linked. 

Supporting this, the total number of cells used to seed the cell factories during 

expansion was correlated positively to the infectious titre with a large effect size. It is 

known that under normal conditions, the larger the number of cells present at 

transfection; the more viral vector product can be produced (Petiot et al., 2015; Shen 

and Kamen, 2012). However, there is an exception to this, as it has been reported in 

the literature that there is a cell density limit, that when exceeded leads to lower yield 

of viral vector product (Petiot et al., 2015). This ‘cell density effect’ has been observed 

to change depending on factors such as the type of cells used and the type of virus 

(Petiot et al., 2015). In this case, the data indicates that no cell density effect is 

occurring and a positive correlation between cell count and infectious titre is observed. 

From an operational perspective, this indicates that the higher cell count should be 

targeted to achieve consistently higher titres. 

The total volume of plasmid 1 used during transfection was negatively correlated to the 

infectious titre with medium effect size. In a study by Bauler et al. (2019), lentiviral 

vectors were produced by transient transfection of SJ293TS cells - a cell line derived 

from HEK293T cells that is adapted for growth in suspension culture. In their 

experiments, two different therapeutic plasmid doses were tested, 0.55 and 1.1 μg of 

DNA per 106 cells, and it was observed that the highest titres were produced when the 

volume of therapeutic plasmid was low. They also observed that for the lower plasmid 

DNA concentration, the infectious titre was significantly impacted by the cell seeding 

density. In order to better to understand the effect of the plasmid 1, a transformed 

variable was added to the model, which was equal to the total mass of plasmid 1 

divided by the cell concentration after seeding the cell factories. This variable had a 

small positive beta coefficient of 0.124. The results indicate that the plasmid mass per 

cell was correlated positively to the infectious titre with small effect size, yet the volume 

of plasmid 1 was negatively correlated to the infectious titre with medium effect size. 

The results may indicate that the plasmid solution contains a chemical that impacts the 

process, the magnitude of this effect warrants further investigation. Other variables 

highly correlated to plasmid 1 volume could help explain this observation, however 

none were found within the dataset.  

During endonuclease treatment to break down DNA contaminants, the temperature 

setpoint was negatively correlated to the infectious titre with medium effect size. The 
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viral vectors are known to be sensitive to temperature (Higashikawa and Chang, 2001), 

the data indicates that higher temperatures in endonuclease treatment may be 

detrimental to the infectious titre. The temperature range observed in the data is small, 

between 4 and 6 oC, however these small deviations that were permitted are being 

pulled out as influential. The known temperature sensitivity of the viral vectors and their 

increased stability at lower temperatures reported in the literature, both support the 

findings of the model (Higashikawa and Chang, 2001). The appropriate action after 

validating this finding would be to tighten the temperature control of the refrigeration 

unit and to operate at the lower temperature setting. The control of this parameter is 

already tight so this may be difficult to improve, however, this parameter was also found 

to be important in the models developed in chapter 6 where some additional 

considerations are discussed. 

Ion exchange chromatography appears to be an important step in downstream 

processing with two variables negatively correlated to infectious titre, namely the  

A %B setting and the change in conductivity. Ion exchange chromatography is used to 

separate the negatively charged virus particles from positively charged proteins. It is 

known that the choice of solvents used for flushing the column is highly influential on 

column performance and the infectious titre (Rout-Pitt et al., 2018). A %B is the ratio 

of buffers used for column elution, which is controlled based on an optimised elution 

profile. The significant regression coefficient of this parameter in the PLS model may 

indicate that control of the elution process could be further improved. It may also be 

the case that variation in the process upstream of the ion exchange unit operation is 

contributing to variability that Is observed in ion exchange column parameters. In any 

case, the A %B parameter and the change in conductivity are an early indication of 

process performance, as they are correlated to the infectious titre. From an operational 

perspective, perhaps this early indication could be used to take informed actions to 

improve the recovery of viral vectors from the column.  

In the penultimate unit operation, the sterile filter area was found to have a critical 

influence on the infectious titre. Specifically, sterile filter area was correlated negatively 

to the infectious titre, indicating that a larger area resulted in greater loss of infectious 

virions. Sterile filtration has been reported in the literature to be a critical process step 

where the sterility of the product is enhanced at the expense of a loss infectious 

particles (Merten et al., 2010). It is known that the choice of sterile filter and its mode 

of operation impacts the viral vector recovery percentage (Merten et al., 2016). The 
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data here indicates that the smaller filter is the preferential filter for sterile filtration, so 

long as there are no issues with the sterility of the product. Additionally, the pre-filtration 

volume was correlated positively with the infectious titre. A larger volume is likely to be 

correlated to a greater number of virions present, furthermore there may be an effect 

where a larger volume of media helps to flush the virions through the filter, improving 

the recovery percentage. 

Table 5-5: PLS model for prediction of infectious titre: this table contains a list of the 
interaction terms that were identified for the PLS model with nonlinear transformations. The 
mean beta coefficient from bootstrap testing is presented along with its 95% and 5% 
confidence intervals. 

Variable Process position Mean 
beta 

Upper 
95% CI 

Lower 
5% CI 

(Viability (%) at thaw) x (Volume 
of plasmid 1) 

Cell thaw -0.107 -0.079 -0.138 

(Volume of buffer 2 used to 
wash cells per flask (mL)) x 

(Volume of plasmid 1) 

First passage -0.046 -0.001 -0.106 

(Total number of cells) x 
(Conc1) 

Seeding cell factories 0.150 0.214 0.075 

(Total number of cells) x 
(Volume of plasmid 1) 

Seeding cell factories 0.076 0.109 0.036 

(Plasmid 1 conc. (μg/μl)) x 
(Conc1) 

Transfection 0.075 0.126 0.027 

(Temperature set to (ºC)) x 
(Volume of therapeutic plasmid) 

Benzonase treatment -0.078 -0.045 -0.114 

(A %B) x (Volume of plasmid 1) Ion exchange 
chromatography 

-0.101 -0.067 -0.133 

(Final pool volume (L)) x 
(Volume of plasmid 1) 

Ion exchange 
chromatography 

-0.102 -0.020 -0.200 

(Sterile filter area (cm2)) x 
(Conc1) 

Sterile filtration -0.068 -0.004 -0.119 

(Pre-filtration volume (ml)) x 
(Conc1) 

Sterile filtration 0.072 0.115 0.035 

(Sterile filter area (cm2)) x 
(Conc2) 

Sterile filtration -0.071 -0.027 -0.114 

(Sterile filter area (cm2)) x 
(Volume of plasmid 1) 

Sterile filtration -0.077 -0.047 -0.106 

(Pre-filtration volume (ml)) x 
(Volume of plasmid 1) 

Sterile filtration 0.021 0.059 -0.024 

 

Several interaction effects were identified, and these are shown in Table 5-5. The 

interactions identified were of the form 𝛽𝑿1𝑿2. The interpretation of the beta coefficient 

in this instance changes, as explained in chapter 3, section 3.2.3. The coefficients for 

the interaction effects indicate the change in the effect of 𝑿1 on the response variable 

as 𝑿2 changes. The sign of the regression coefficient still indicates the direction of the 

effect on the infectious titre. Several of the process variables were found to have a 

moderator effect with the plasmid 1 volume, meaning that their relationship with the 
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infectious titre changes depending on the plasmid 1 volume. The cell viability at thaw 

interacted with the plasmid 1 volume and resulted in a negative correlation with a large 

effect size. The total volume of buffer 2 used to wash cells interacted with the plasmid 

1 volume, featuring a negative correlation to infectious titre with medium effect size. 

The interaction between concentration of the plasmid 1 and the cell concentration and 

total number of cells during expansion, resulted in positive correlations to the infectious 

titre with large effect sizes.  

Other interactions present include the total number of cells during seeding of cell 

factories which interacted with the concentration of cells and correlated positively to 

the infectious titre. This interaction suggests that a greater number of cells at higher 

density is beneficial for the infectious titre, which supports an earlier observation that 

no ‘cell density effect’ is occurring. The sterile filter area and the concentration of the 

cells during cell expansion also interacted. Higher total number of cells and cell 

concentration were found to be correlated positively with the infectious titre with a 

medium to large effect size. High cell concentration in cell expansion should therefore 

correspond to high concentration of viral vectors in the supernatant in downstream 

processing. This may explain the interaction effect between the cell concentration and 

the filter area because the higher the concentration of infectious particles entering the 

sterile filter, the higher the losses will be during the filtration step, as there is less media 

to flush the virus particles through. This concludes the relationships that were found 

between the process parameters and the infectious titre for adherent viral vector 

manufacturing. 

5.4 Conclusions 

This chapter explored data from the production of two lentiviral vector products for use 

in CGT treatments. The data was explored first of all by carrying out feature extraction, 

using a programming approach to sparse PCA that was developed in chapter 4, 

followed by predictive modelling with PLS regression to relate process parameters to 

product quality attributes. The sparse PCA algorithm performed well and extracted the 

same key features as the standard PCA model on the first 3 components i.e., the 

principal component scores and clustering was very similar, and the interpretation of 

the loadings was consistent with standard PCA. It achieved this while using fewer 

variables in the model, making the loadings vector and the variable contributions easier 

to evaluate.  
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The feature extraction work revealed that there were three main clusters present in the 

data, two of which contained high infectious titre batches and one of which exclusively 

containing batches with a low infectious titre. This was an early indication that the 

process parameters contained variation that was correlated to the infectious titre of the 

virus product. Many of the variables contributing to the separation in scores on 

components 1 and 2 were from expansion of the producer cells. Variation was 

observed as early as cell thaw in the total number of cells and the cell concentration, 

differences in the total number of cells and their concentration were in many cases 

translated through the whole of the upstream process, i.e. cell concentration at thaw 

correlated to cell concentration at first passage and seeding of the cell factories. There 

was also variation in the amounts of buffers and reagents used, such as the amount 

of buffer 2 used to wash the cells when passaging. In the transfection procedure, there 

were different plasmid 1 concentrations and volumes used.  

In downstream processing, the most significant areas of variability were in the ion 

exchange chromatography, endonuclease treatment and sterile filtration. Several 

process parameters pulled out from each of these unit operations in the first three 

principal components, which explained 45% of the variation in the data. Most of the 

categorical variables that were highlighted on components 1 to 3 were material lots for 

viral plasmids and buffers including buffer 1, NaOH, buffer 2 and CaCl2. Principal 

components 4 to 6 explained less significant portions of the variation in the data and 

separated single batches or small clusters of batches from the rest, due to 

comparatively small changes to process conditions.  

In predictive modelling of the infectious titre, numerous correlations were identified and 

the PLS model that was developed demonstrated good predictive capability with cross 

validation R2 and MAE of 0.88 and 0.229, respectively. The risk of identifying chance 

correlations was minimized through the cross validation and variable selection 

procedure and chance correlations within the model were tested by permutating the y 

data and refitting the model repeatedly. The degree of chance correlation was deemed 

to be low with an average training R2 of 0.21 for the permutated data, see chapter 3, 

section 3.3.5 for more details on the y-randomization. 

The process parameters with the most significant positive correlations to the infectious 

titre were the total number of cells and their concentration in the cell factories, the 

concentration of the plasmid 1 solution combined with the concentration of the cells, 

and the pre-filtration volume. The most influential process parameters with negative 
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correlations to the infectious titre were the sterile filter area, the volume of plasmid 1 

used in transfection, the A%B buffer ratio in ion exchange chromatography, viability of 

cells at thaw and the temperature of refrigeration during endonuclease treatment.  

The model indicates that to maximise the infectious titre, the smaller sterile filter area 

should be used, smaller of the two plasmid 1 doses, and the cell concentration and 

total number of cells in the cell factories should be controlled to achieve the upper 

levels that were observed in this dataset. Going beyond the limits that were observed 

within the dataset may lead to further improvements, however this would need to be 

explored with experiments. The A% B buffer ratio in ion exchange chromatography 

was negatively correlated to the infectious titre. If this parameter is already under 

control based on an optimal elution profile, then it may be worthwhile exploring the 

parameters upstream that are responsible for the variation in the buffer ratio. The 

temperature of the refrigerators during endonuclease treatment should be controlled 

more tightly at the lower temperature setting. 

To summarise the sponsors’ (GSK) feedback on the modelling results, the sterile filter 

area was already identified as likely having a significant impact on infectious titres and 

the models confirmed this. The positive correlation between cell concentration and 

infectious titre is also a known and explainable effect and consistently achieving high 

cell concentrations is the goal of the cell expansion phase of the process. The models 

highlighted that the ion exchange column settings, plasmid volumes and temperature 

of refrigeration were important parameters with significant effects on infectious titre. 

With the exception of the refrigeration temperature, these were seen as potentially 

valid effects, although the findings would need to be verified through further 

experimentation. The temperature of refrigeration is already under tight control and 

studies on virus stability at GSK indicated that the temperatures observed in 

refrigeration should not significantly impact the product CQAs. 
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Chapter 6  

Analytics for cell drug product manufacturing 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

This chapter focuses on the manufacturing of the cell drug product. In this process, the 

patient’s cells are transfected with the viral vectors ex vivo and prepared as an 

injectable solution for grafting back to the patient. Many of the challenges faced are in 

common with viral vector production, such as high process variability and a lack of 

advanced process knowledge. MVDA was used with a similar approach to chapter 4 

in order to derive useful insights into the cell drug product manufacturing process. 
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6.1 Introduction 

The cell drug product (CDP) manufacturing process is where the patient’s extracted 

cells are processed ex vivo and transduced with the viral vectors containing the 

therapeutic gene of interest, before being prepared as an injectable solution for 

transplantation back to the patient. The steps involved in CDP manufacturing were 

discussed in chapter 2, section 2.1.5. The overall process includes procedures which 

are necessary for the extraction of the patient’s cells and for their transplantation back 

to patient; however, the CDP manufacturing dataset only contains information from the 

manufacturing process that transforms the extracted cells to an injectable cell drug 

product. 

Many of the challenges of CDP manufacturing are shared in common with viral vector 

manufacturing, including high levels of variability in the complex raw materials, 

numerous unit operations involving a high degree of manual handling and a lack of 

advanced expertise; particularly with respect to knowledge of relationships between 

process parameters and CQAs of the CDP. In this chapter, data from CDP 

manufacturing was explored using the sparse PCA algorithm that was developed in 

chapter 4. This feature extraction work identified the most important sources of 

variability in the manufacturing process and showed how it is reflected in the process 

parameters. It also provided information on the correlation between process variables, 

which provided insights into the translation of variance through the process, in some 

cases across multiple unit operations. The scores of the sparse PCA model showed 

how the key features of variance in the manufacturing data impacted different batches. 

Following on from feature extraction, the CDP manufacturing data was combined with 

the data from LV manufacturing to form a single dataset, which was investigated with 

predictive modelling techniques. The task was to model the relationship between 

process parameters and CQAs of the CDP, from both LV manufacturing and CDP 

manufacturing. The LV manufacturing data was included because the CQAs that were 

modelled are quality measurements of the final CDP, which was transduced with the 

LVs prior to the measurements being taken. Henceforth, it was of interest to explore 

any potential links between LV manufacturing and the CQAs. The overall aim was to 

identify critical process parameters and quantify the relationships between process 

parameters and the CQAs. The enhanced process understanding that this may provide 

would be beneficial for the development of CGT manufacturing processes.  
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6.1.1 Data  

The data that was available for analysis of the cell drug product manufacturing process 

was from the production of treatment 1, the same treatment 1 that was analysed in 

Chapter 5. 23 batches of historical CDP manufacturing data were available for the 

analysis, each of which involved the processing of cells from a different patient. The 

CDP manufacturing data consisted of 225 manufacturing process variables i.e. input 

parameters and 13 dependent variables, which were recorded on the certificate of 

analysis for the final cell drug product. Of the 225 process variables, 55 were 

categorical and 170 were metric. The LV manufacturing data used in this chapter were 

from the 13 batches of LVs for treatment 1 that were studied in chapter 5, see chapter 

5, section 5.1.1 for more details on this dataset. Of the 13 batches in total, 8 were used 

for transduction of the cells from 23 patients, henceforth 8 of the LV batches were 

included in the analysis. More specifically, the 8 batches were used to generate 23 

samples, some of which were duplicates, to be matched up with the 23 samples of 

CDP manufacturing data. The LV manufacturing data was aligned with the CDP 

manufacturing data using the traceable batch numbers that were supplied with both 

datasets.  

6.2 Method 

6.2.1 Pre-processing of process data 

The following section details the pre-processing steps that were taken to obtain 

datasets for the PCA, sparse PCA and PLS analyses that were conducted in chapter 

6. 

6.2.1.1 Processing of cross-sectional process data  

The pre-processing of the cross-sectional process data was the same as described in 

chapter 5, section 5.2.1, the reader is referred to 5.2.1 for details. 

6.2.1.2 Processing of product quality data 

The product quality data that was analysed in chapter 6 included the number of viral 

vector copies integrated per cell (LV copy number) and the percentage of CD34+ cells 

in the cell drug product. The response variables required aligning to the correct input 

data and autoscaling was applied to the response variables, consistent with the scaling 

applied to the input variables.  
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6.2.2 PCA and sparse PCA 

The sparse PCA algorithm that was developed in chapter 4 was applied to the cross-

sectional process data to carry out feature extraction. Standard PCA was carried out 

to compare the variance explained by each principal component for the sparse and 

non-sparse PCA models. For details on the sparse PCA algorithm, the reader is 

referred to the nonlinear programming approach to sparse PCA, which was described 

in chapter 4, section 4.2.2. For more details on standard PCA, see chapter 3 section 

3.1.1.  

6.2.3 Development of PLS regression models 

In this chapter, PLS models were developed to predict the LV copy number and CD34+ 

cells percentage in the cell drug product using the process parameters from LV 

manufacturing and cell drug product manufacturing. The following list details the steps 

taken to develop the PLS models: 

1. Initially predictor variables were pre-selected by ruling out duplicate variables 

and variables of no relevance to the analysis. This reduced the original 225 

process variables down to 166 potential predictor variables to be selected. The 

pre-selection was kept to a minimum to allow the data to reveal key correlations 

and the variable selection procedure to remove redundant variables of low 

predictive power. 

2. The scaled predictor variables in the matrix X, and the scaled response variable 

in the vector y, from the training dataset, were then passed to a MATLAB script 

which carried out forward variable selection on random subsets of the data to 

generate numerous alternative models (more details of the forward variable 

selection methodology are provided in chapter 3, section 3.2.2).  

3. The models identified in the previous step were then put through repeated 5-

fold cross validation, with 2000 repeats, for models with n latent components, 

where n was varied from 1 to the maximum number of variables in the model. 

4. The top performing models in cross validation were selected based on the mean 

cross validation R2, the percentage of cross validation R2 values less than 0.6 

and the mean R2 with Y permutated. 

5. Using the bootstrap technique detailed in chapter 3, section 3.3.4, the stability 

and distribution of the model regression coefficients were evaluated with 2000 

bootstrap samples. This provided confidence intervals for the standardised 

regression coefficients (beta coefficients). 
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6. Finally, the model was applied to the test set that was held-out of model 

development and the performance was evaluated.  

6.2.3.1 PLS model performance evaluation 

Model performance was evaluated through repeated K-fold cross validation (CV MAE 

and CV R2), model fit to the whole training data (visual inspection, MAE and R2) and 

bootstrapping (stability of regression coefficients). 

6.3 Results and discussion  

6.3.1 Feature extraction with sparse PCA results  

In this section, the results from applying the sparse PCA algorithm to data from the 

CDP manufacturing process are presented. Figure 6-1 shows the cumulative variance 

explained for each variable added to the sparse PCA model. Results from standard 

PCA are shown in Figure 6-1 to provide reference points for the variance explained by 

non-sparse principal components. Figure 6-1 shows that 5 components explain over 

60% of the variance in the data and subsequent components explain less than 5% 

each. Additionally, the variance captured decreases in a linear fashion from component 

5 onwards. Based on this observation and applying the methodology discussed in 

chapter 3 section 3.1.1, 5 components were selected for analysis. 

 
Figure 6-1: Variance explained by each component of the sparse PCA model compared 
to standard PCA, for the process variables in cell drug product manufacturing.  
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Figure 6-2 shows the scores for principal components 1 and 2, which explain 32% and 

12.7% of the variance, respectively. Components 1 and 2 do not show well defined 

clusters. Instead the batches are spread out, indicating that the process conditions 

vary on a batch-to-batch basis and that the process variables vary over a continuous 

range as opposed to discrete levels. This is in contrast to principal components 1 and 

2 for viral vector manufacturing in chapter 5, where there were three distinct groups 

characterized by a unique set of operating conditions. 

 

 
 

Figure 6-2: Scores for components 1 and 2 of the sparse PCA model for CDP 
manufacturing. The batches are coloured from red to green representing the scaled LV copy 
number; red indicates a low copy number while green indicates a high copy number.  

Figure 6-3 shows a plot of the loadings for variables with nonzero loadings on 

component 1. Loading plots have been used instead of parallel coordinates because 

there are no distinct clusters of batches for which to interpret the process conditions. 

The loading plot allows correlations between variables to be observed, where loadings 

that are similar in value indicate positive correlation between them and loadings with 

opposite signs indicate that the variables are negatively correlated.  

The significant variables on component 1 (Figure 6-3) come from unit operations 

across the whole process, including mononuclear cells (MNCs) separation, separation 

of the CD34+ cells, first and second transduction and preparation for infusion. Figure 

6-3 shows a large group of variables that are positively correlated to a high degree 

(Pearson’s R close to 1). This highlights a feature in the data where the number of 
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CD34+ cells for seeding is positively correlated with multiple volume related variables 

throughout the rest of the process. These volume related variables are mostly volumes 

of growth media and cytokines used in the resuspension of the cells after washing or 

medium changes, prior to and in between the two transduction steps. Furthermore, the 

number of CD34+ cells is positively correlated with several variables that reflect earlier 

stages in the process; these are the temperature of the centrifuge during MNC 

separation, the volume of MNCs recovered and the volumes of CD34 reagent and cell 

wash buffer used in separation of CD34+ cells. Additionally, the concentration of cells 

expressed as cell count before second transduction was correlated positively with the 

number of CD34+ cells that were seeded. Other variables present on component 1 

with smaller loadings include the temperature and speed of centrifugation during 

several of the washing steps 

.
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Figure 6-3: Bar plot of principal component 1 loadings showing each of the variables with nonzero loadings on component 1 in the sparse 
PCA model. The input variables are process variables from CDP manufacture.
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Figure 6-4 shows the loadings for component 2 variables, which again cover a wide 

range of unit operations. Component 2 displays a degree of correlation with the LV 

copy number, as the high copy number batches in green scored higher than most other 

batches. The variables with the largest magnitude loadings on component 2 include 

the volumes of cell wash buffer used in MNCs separation and isolation of CD34+ cells, 

and the concentration of CD34+ cells after washing to remove antibodies introduced 

by the CD34 reagent. The loadings indicate that a larger volume of cell wash buffer in 

CD34+ separation corresponds to lower cell concentration after washing. The volume 

of LV supernatant and the viral titre also feature on component 2 and are negatively 

correlated to one another; these parameters are controlled to reach a desired 

multiplicity of infection and concentration of LV, so the correlation is dictated by the 

operating regime. Other prominent variables on component 2 include the speed and 

temperature of centrifugation during the numerous washing steps throughout the 

process. Figure 6-4 shows that the centrifugation speed and temperature are 

negatively correlated to one another. 

Component 2 shows a degree of correlation with the LV copy number, as batches 20 

to 23 all have high LV copy numbers and score high on component 2. It is likely that 

one or more of the variables on component 2 are correlated to the LV copy number. 

This was investigated further in the predictive modelling, which follows in section 6.3.2.  
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Figure 6-4: Bar plot of principal component 2 loadings showing each of the variables with nonzero loadings on component 2 in the sparse 
PCA model. The model inputs include process variables from CDP manufacture.
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Figure 6-5 shows the scores for components 3 and 4, which explain around 7% and 

6% of the variance respectively. Component 3 captures variance which spreads the 

batches out in a well-distributed manner, as with components 1 and 2. Component 4 

on the other hand, singles out batch 7, which scores significantly lower than the rest of 

the batches.  

 
 

Figure 6-5: Scores for components 3 and 4 of the sparse PCA model, for the CDP 
manufacturing data. The batches are coloured from red to green representing the scaled LV 
copy number; red indicates a low copy number while green indicates a high copy number.  

The scores for components 3 and 4 which explain around 7% and 6% of the variance, 

respectively, can be seen in Figure 6-6. Variables that stand out with the largest 

magnitude loadings on component 3 are the volume of MNCs recovered, the number 

of tubes used in the antibody washing steps, the CD34 reagent volume and the number 

of columns/tubing sets used for separation of CD34+ cells. The loadings indicate that 

the volume of MNCs recovered is positively correlated with the total number of MNCs 

in the supernatant after washing and the volume of CD34 reagent used for separation 

of CD34+ cells. Other variables present include the concentration of CD34+ cells once 

separated, the volumes of cell wash buffer used in the isolation of MNCs and CD34+ 

cells, the speed of centrifugation during washing steps, the volume of buffer 2 and 

retronectin used in preparation of bags for transduction, rest times after first and 

second transduction, viability of the cells after first transduction and the time of 

incubation at 5oC after second transduction.
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Figure 6-6: Bar plot of principal component 3 loadings showing each of the variables with nonzero loadings on component 3 in the sparse 
PCA model. The model inputs are process variable from CDP manufacture.
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Component 4 (Figure 6-5) separated batch 7 from the rest of the batches; the 

characteristics of batch 7 which separate it from the rest of the batches are a low 

volume of buffer 2 used in preparation of bags for transduction, a large volume of cell 

wash buffer per tube in separation of CD34+ cells and long centrifuge durations at high 

temperature during several of the washing steps. Some of these effects are likely 

compounded as a greater volume of wash buffer will require more centrifugation. 

Visually, components 3 and 4 do not display a correlation with the LV copy number. 

To summarize the sparse PCA results, the first three principal components captured 

approximately 62% of the variance in the data and the score plots revealed that the 

variation on these components occurred on a batch-to-batch basis. The fact that the 

variance is not concentrated in the first few principal components, rather it is split over 

many, indicates that there are many uncorrelated features in the CDP manufacturing 

data. This observation may be expected because the key input material at the start of 

CDP manufacturing is the patient’s cells. Each of the batches in the dataset were 

concerned with the processing of cells from a different patient, henceforth the cells 

were a key source of batch-to-batch variability. The number of cells in the bone marrow 

sample and their physiological condition are known to vary significantly from patient to 

patient, depending on multiple genetic and environmental factors, including the cell 

extraction process (Stroncek et al., 2010). Component 1 captured variation in the 

volumes of MNCs recovered and the number of CD34+ cells that were seeded for 

transduction; these parameters are likely impacted by the number of cells present in 

the bone marrow sample and their physiological condition. 

Components 1 to 3 showed that there was correlation between variables across the 

whole process for example the volume of MNCs recovered was correlated to the 

volume of growth media and cytokines that were used during both transductions. Many 

of the key variables were volume related variables including volume of cells, LV 

supernatant, buffers, cytokines and regents. In many cases these volume related 

variables varied on a continuous basis, as opposed to featuring a small number of 

discrete values. For example, for the volume of MNCs recovered, there were 23 unique 

values, whereas for centrifuge temperature there were two or three unique values 

between the 23 batches. These volume related variables explain why the scores are 

well distributed on components 1 to 3, with a lack of clearly defined clusters. In addition 

to the volume related variables, the numerous washing steps were a key source of 
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variability, with the temperature, speed and duration of centrifugation appearing on the 

first three principal components. 

The fact that the variance was distributed across numerous components meant that it 

was difficult to summarize key features of variance in the CDP manufacturing data 

because rather than having a few key features, it has many uncorrelated features. PCA 

was useful in identifying this characteristic of the dataset and it could also be very 

useful in characterising batches of interest. For example, if a particular batch behaved 

atypically in processing or resulted in unusual (good or bad) CQAs, PCA could be used 

to quickly characterise the unique features. In this work, effort was spent developing 

regression models to achieve the same goal – understanding the process conditions 

leading to good and bad CQAs. 

6.3.2 Predictive modelling of the lentiviral vector copy number and the 

percentage of CD34+ cells 

In this section, the results from modelling the Lentiviral vector copy number and the 

percentage of CD34+ cells are presented. A full description of the methodology that 

was used to develop the predictive models was outlined in section 6.2.3. The approach 

involved generating multiple models by using random subsets of the data to select 

variables in a forward variable selection procedure. This process led to the 

identification of close to 100 models for each of the output variables. The performance 

of each of the models was then evaluated using repeated K-fold cross validation and 

the presence of chance correlations in the model was tested by fitting the models to 

random permutations of the data.  

Top performing models for the LV copy number and the CD34+ cells percentage can 

be seen in Table 6-1 and Table 6-2, respectively. The tables show the variables 

included in the model and their beta coefficients, alongside key performance measures 

including the cross validation R2, the percentage of test R2 that were lower than 0.6 

and the average training R2 when the Y data was randomly permutated. These tables 

(Table 6-1 and Table 6-2) are provided to show examples of high performing models 

that were identified for each output. In order to narrow down the models that were 

identified to a smaller subset of the best performing models, a number of performance 

criteria were specified. Table 6-3 shows the performance criteria that were specified 

for the models; different criteria were specified for each of the output variables based 

on differences in overall performance.   
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Table 6-1: Top multivariate regression models for the lentiviral vector copy number, identified by a forward variable selection procedure 
repeated on random subsets of the data. The table shows two alternative models and lists the variables with their standardised regression 
coefficients. On the right of the table, key performance metrics are displayed including the mean cross validation R2, the percentage of test R2 that were 
lower than 0.6 during repeated 10-fold cross validation and the mean training R2 from repeated Y permutations. 

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Mean 
R2

test 
R2

test < 
0.6 (%) 

Mean 
R2

Yperm 

Temp. of 
refrigerated 
trolley bags 

(ºC) 

Vol. of 
MNCs 

recovered 
(ml) 

Time since 
seeding 

(min) 

Vol. of 
growth 
media 

added (ml) 

Vol. of 
Ca/Mg 
solution 

added (ml) 

Concentratio
n of total 

cells 
(cells/ml) 

Wash temp. 
(ºC) 

None 0.92 0.8 0.35 

-1.1 -0.84 -0.77 0.49 -0.7 0.36 0.19 N/A 

Temp. of 
refrigerated 
trolley bags 

(ºC) 

Vol. of 
growth 
media 

added (ml) 

Vol. of 
MNCs 

recovered 
(ml) 

Viability (%) Time since 
seeding 

(min) 

Volume of 
Ca/Mg 
solution 

added (ml) 

Average 
cells density 

(cells/ml) 

Wash temp. 
(ºC) 

0.93 1.1 0.4 

-1.11 0.5 -0.82 -0.12 -0.72 -0.64 0.36 0.15 

 

Table 6-2: Top multivariate regression models for the CD34+ cells percentage, identified by a forward variable selection procedure repeated 
on random subsets of the data. 

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Mean 
R2

test 
R2

test < 
0.6 (%) 

Mean 
R2

Yperm 

Vol. after dilution 
with cell wash 

buffer (ml) 

Speed (rpm) Conc. of cells No. of ells in 
supernatant 

Vol. of buffer 2 
per wash 
(ml/bag) 

Centrifuge time 
(min) 

0.903 0.8 0.3 

-0.91 -0.41 0.36 -0.3 -0.18 -0.13 

Vol. after dilution 
with cell wash 

buffer (ml) 

Speed (rpm) Conc. of cells 
(cells/ml) 

No. of cells in 
supernatant 

Vol. of buffer 2 
per wash 
(ml/bag) 

Wash temp. (ºC) 0.897 0.9 0.3 

-0.92 -0.52 0.4 -0.25 -0.15 -0.1 
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Table 6-3: Maximum and minimum performance criteria used to select the best 
performing models from the full list of models that were identified with the forward 
variable selection procedure. 

 Minimum mean 

CV R2 

Maximum  

R2
test < 0.6 (%) 

Maximum 

mean R2
Yperm 

LV copy no. 0.6 10 0.4 

CD34+ cells percentage 0.6 12 0.4 

 

After filtering the models with the above performance criteria, the model parameters 

were evaluated by compiling tables of the variables that were featured in the high 

performing models. One way to assess variable importance is to compare the number 

of times each variable was selected for the model. Variables that were selected more 

frequently are likely to be of greater importance. Another method for evaluating the 

importance of the variables is to compare the beta coefficients and to observe how 

they change across different models. Both methods were utilised in this work. 

Table 6-4 and Table 6-5 show the variables selected for the prediction of the LV copy 

number, with positive and negative regression coefficients, respectively. Similarly, 

Table 6-6 and Table 6-7 show the variables selected for the CD34+ cells percentage. 

These tables display all of the influential variables that were identified for the respective 

outputs. Displayed in the columns is the mean, maximum and minimum of the beta 

coefficient, across all of the models where the variable was selected. The sign on the 

mean beta coefficient indicates the direction of the relationship with the output variable 

and the magnitude indicates its importance relative to the other variables. The 

maximum and minimum beta coefficients across models are insightful because it is 

important to check that the sign on the regression coefficient does not change, as this 

would put the models in disagreement and decrease confidence in the relationship 

between the process parameter and the CQA. Additionally, the maximum and 

minimum beta coefficients across all folds of repeated K-fold cross validation are 

displayed in the tables 6.4 to 6.7. The minimum and maximum across folds is a check 

on the stability of the regression coefficient, which is more thorough than the maximum 

and minimum across models.  

As with the maximum and minimum beta coefficient across models, the maximum and 

minimum across folds should both have the same sign. However, for some of the 

variables shown in tables 6.4 to 6.7, the sign switches across the folds. While this does 

reduce confidence in the regression coefficient for the variables concerned, they 
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should not be completely disregarded, especially where the sign only changes by a 

small margin. Due to the low number of batches available for the analysis and 

conditions that are not repeated or repeated very few times, the partitioning of the data 

in cross validation can greatly influence the regression coefficients. This is one reason 

why some instability in the regression coefficients may be tolerated and may not be 

indicative of a false relationship. 

 
Table 6-4: List of variables with negative regression coefficients in the CD34+ cells 
percentage regression models. The variables are listed in order of descending regression 
coefficient magnitude, meaning that the most important variables are at the top of the table. 
Alongside the variable name is the manufacturing process step during which the variables are 
recorded, the mean, maximum and minimum of the regression coefficient across all models, 
and the maximum and minimum across all folds of the repeated K-fold cross validation. 

Variable Process step Mean 
across 
models 

Max 
across 
models 

Min 
across 
models 

Max 
across 
folds 

Min 
across 
folds 

Final volume after 
dilution with cell wash 

buffer (ml) 

MNCs separation -0.94 -0.9 -1.03 -0.55 -1.25 

Total volume of MNCs 
recovered (ml) 

MNCs separation -0.57 -0.53 -0.62 -0.27 -0.85 

Speed (rpm) Washing -0.52 -0.37 -1.03 -0.12 -1.69 

Number of cells in 
supernatant (cells/ml) 

3rd wash -0.41 -0.41 -0.41 -0.09 -0.68 

Total time of incubation 
at 5C (h) 

Prep for infusion -0.37 -0.37 -0.37 -0.04 -0.96 

Viability (%) Release cell count -0.3 -0.3 -0.3 -0.19 -0.42 

Temperature (oC) 1st transduction 
washing 

-0.29 -0.29 -0.29 -0.16 -0.59 

Cells remaining in 
supernatant 

Recovery washing 
transduced cells 

-0.26 -0.19 -0.32 0.14 -0.52 

Number of cells in the 
supernatant 

1st wash (antibody 
elimination) 

-0.25 -0.22 -0.29 0.03 -0.67 

Volume of buffer 2 per 
wash (ml/bag) 

Washing bags and 
plates 

-0.19 -0.15 -0.23 0.12 -0.47 

Time since seeding 1st transduction 
washing 

-0.17 -0.15 -0.2 0.11 -0.75 

Temperature (oC) Recovery washing 
transduced cells 

-0.16 -0.1 -0.23 0.08 -0.4 
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Table 6-5: List of variables with positive regression coefficients in the CD34+ cells 
percentage regression models. The variables are listed in order of descending regression 
coefficient magnitude, meaning that the most important variables are at the top of the table. 
Alongside the variable name is the manufacturing process step during which the variables are 
recorded, the mean, maximum and minimum of the regression coefficient across all models, 
and the maximum and minimum across all folds of the repeated K-fold cross validation. 

Variable Process step Mean 
across 
models 

Max 
across 
models 

Min 
across 
models 

Max 
across 
folds 

Min 
across 
folds 

Concentration of total 
cells (cells/ml) 

Cell count 
(transduced) 

0.43 0.53 0.34 0.77 -0.03 

Concentration of viable 
cells (cells/ml) 

Cell count 
(transduced) 

0.39 0.43 0.35 0.59 0.08 

Incubation time with LV 2nd transduction 
washing 

0.39 0.39 0.39 0.54 0.22 

Column plate number 'Vector process' 0.36 0.36 0.36 0.69 0.16 

Temperature (oC) Prep for infusion 0.21 0.21 0.21 0.46 0.05 

Method LV DEAE started 
at (h) 

'Vector process' 0.18 0.25 0.11 0.45 0.01 

 
 
Table 6-6: List of variables with negative regression coefficients in the LV copy number 
regression models. The variables are listed in order of descending regression coefficient 
magnitude, meaning that the most important variables are at the top of the table. Alongside 
the variable name is the manufacturing process step during which the variables are recorded, 
the mean, maximum and minimum of the regression coefficient across all models, and the 
maximum and minimum across all folds of the repeated K-fold cross validation. 

Variable Process step Mean 
across 
models 

Max 
across 
models 

Min 
across 
models 

Max 
across 
folds 

Min 
across 
folds 

Temperature of 
refrigerated trolley bags 

(oC) 

Vector process -1.11 -1.1 -1.14 -0.79 -1.51 

Total volume of MNCs 
recovered (ml) 

MNCsseparation -0.85 -0.82 -0.93 -0.56 -1.21 

Time since seeding 1st transduction 
washing 

-0.75 -0.72 -0.77 -0.42 -1.19 

Volume of Ca/Mg 
solution added (ml) 

'Vector process' -0.66 -0.58 -0.7 -0.05 -0.98 

Number of cells in the 
supernatant 

1st wash (antibody 
elimination) 

-0.16 -0.16 -0.16 0.1 -0.35 

Viability (%) Cell count 
(transduced) 

-0.12 -0.12 -0.12 0.03 -0.28 
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Table 6-7: List of variables with positive regression coefficients in the LV copy number 
percentage regression models. The variables are listed in order of descending regression 
coefficient magnitude, meaning that the most important variables are at the top of the table. 
Alongside the variable name is the manufacturing process step during which the variables are 
recorded, the mean, maximum and minimum of the regression coefficient across all models, 
and the maximum and minimum across all folds of the repeated K-fold cross validation. 

Variable Process step Mean 
across 
models 

Max 
across 
models 

Min 
across 
models 

Max 
across 
folds 

Min 
across 
folds 

Volume of growth media 
added (ml) 

1st transduction 
washing 

0.49 0.5 0.47 0.72 0.31 

Average cells density 
(x106/ml) 

Cell count 
(transduced) 

0.36 0.36 0.36 0.53 0.17 

Concentration of total 
cells (x106 cells/ml) 

Cell count 
(transduced) 

0.34 0.36 0.26 0.6 0.01 

Temperature (oC) 1st wash (antibody 
elimination) 

0.18 0.19 0.15 0.34 -0.03 

Number of cells in 
supernatant (x106/ml) 

3rd wash 0.1 0.15 0.04 0.5 -0.25 

 
Tables 6.4 to 6.7 present information about the stability of the regression coefficients, 

which is important for understanding the reliability of the relationships that were 

identified. The variables are listed in descending order of regression coefficient 

magnitude to make it easy to identify the most important variables with positive and 

negative correlations to the respective output variables. In Figure 6-7, Figure 6-8 and 

Figure 6-9 that follow, the variables are listed alongside process flow diagrams for LV 

manufacturing and CDP manufacturing. The purpose of this is to make it easier to 

follow the position of the variable relative to the whole manufacturing process. The 

regression coefficients are coloured green where the regression coefficient is positive 

and red where the coefficient is negative.  
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Figure 6-7: Process parameters predicting the lentiviral vector copy number: process 
parameters from viral vector manufacturing that were found to be predictive of the lentiviral 
vector copy number, placed alongside their respective unit operations. 

 

Temperature of trolley bags  
Copy No. β = -1.11

Volume of Ca/Mg added (ml)
Copy No. β = -0.65

Viral vector process

Cell thaw 

1st passage

2nd passage

Transfer to cell factories

Transfection

1st harvest

2nd harvest

Clarification

Anion-exchange chromatography

Concentration

Gel filtration chromatography

Sterile filtration

• Post-filtration volume measured - Vector process
R = 0.96

• Total solution volume (ml) - Vector process

R = 0.96
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Figure 6-8: Process parameters predicting the lentiviral vector copy number: process 
parameters from ex vivo cell processing that were found to be predictive of the lentiviral vector 
copy number, placed alongside their respective unit operations. 

 

 
 

Figure 6-9 Process parameters predicting the lentiviral vector copy number: process 
parameters from ex vivo cell processing that were found to be predictive of the lentiviral vector 
copy number, placed alongside their respective unit operations. 

Cell drug product manufacture: 
BM sample to cryopreservation

BM Sample

MNC separation

Washing steps

Incubation with reagent

Washing (antibody elimination)

Separation of CD34+ cells

Positive fraction, cell count, samples

Cryopreservation

• Total number of cells – Cell count pre-selection
R = 0.78

• CD34 Reagent volume (ml) - Incubation with reagent

R = 0.76

Total volume of MNCs recovered (ml)
Copy No. β = -0.85

No. of cells in supernatant
Copy No. β = -0.16

Temperature in washing (oC)
Copy No. β = 0.18

Final volume after dilution 
with cell wash buffer (ml)
CD34+% β = -0.94

Total volume of MNCs 
recovered (ml)
CD34+(%) β = -0.57

No. of cells in 
supernatant
CD34+(%) β = -0.41

Cell drug product manufacture: 
Bag preparation to final product

Bag preparation

Washing bags

Transfer cells to bags

2nd transduction

Replace medium

1st transduction

Recovery of transduced cells

Preparation for infusion

Volume of growth media added (ml) 
Copy No. β = 0.49

Viability (%) Copy No. β = -0.12

Average cell density (cells/ml)
Copy No. β = 0.36

Time since seeding (h)
Copy No β = -0.75

Concentration of total cells (cells/ml) *
Copy No. β = 0.33

Concentration of total cells (cells/ml) *
CD34+(%) β = 0.43

Volume of buffer 2/wash (ml/bag)
CD34+(%) β = -0.19

Time (min)
CD34+(%) β = -0.13

Incubation time with LVV (h)
CD34+(%) β = 0.39

Centrifuge speed (rpm)
CD34+(%) β = -0.52

Temperature in washing (oC)
CD34+(%) β = -0.30

Total time of incubation at 5oC (h)
CD34+(%) β = -0.37

Temperature in washing (oC) 
CD34+(%) β = 0.21

Release cell count viability (%) 
CD34+(%) β = -0.30

* Correlated to multiple others, see 
principal component 1
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In order to further analyse the variables that were identified in the predictive models, 

the following text provides information on the variables and their role in the 

manufacturing process and considers possible explanations for the process 

parameter- critical quality attribute (PP- CQA) relationships that were identified. 

Volume of Ca/Mg added – Calcium and magnesium ions were added to the lentiviral 

vector product in the final stage of the lentiviral vector manufacturing process because 

the manufacturer was aiming to keep the concentration of these ions consistent with a 

previous cell culture media formulation. This parameter was identified as an important 

predictor variable for the LV copy number, with a negative beta coefficient of medium 

to large effect size. It is worth noting that this parameter is also positively correlated 

with the post-sterile filtration volume of the lentiviral vector product. It has been 

hypothesised that this volume of Ca/Mg added is negatively impacting the lentiviral 

vector copy number due to damage caused to the virions by high local concentrations 

of salt ions when added to the viral vector formulation. The LVs are known to be highly 

sensitive to high concentrations of salts (Merten et al., 2016), which can cause a loss 

of infectivity (Zimmermann et al., 2011). If there is ever a need to add salt ions to the 

viral vector formulation, the model indicates that the addition should be carried out in 

such a way as to minimise high local concentrations, for example through constant 

mixing with a slow addition rate. 

Temperature of refrigerated trolley bags – The temperature of refrigerated trolley 

bags was identified as an important predictor variable for the LV copy number with a 

negative beta coefficient of large effect size. The temperature of refrigerated trolleys 

bags was also found to be negatively correlated to the infectious titre with small effect 

size. This result indicates that a high temperature of refrigeration, during clarification 

of the lentiviral vector supernatant, may be negatively impacting the LV copy number. 

The lentiviral vectors are known to be temperature sensitive. In a study by Higashikawa 

et al. (2001), HIV-1 derived LVs were incubated at 4, 20, 37, 45 and 50 oC, for different 

lengths of time and the vector titres were then determined. They found that with respect 

to the transduction efficiencies, the half-lives of the LVs decreased rapidly as 

temperature was increased above 4 oC. It is therefore plausible that even small 

increases in storage temperature could cause the LVs to lose potency to a significant 

degree. The magnitude of the beta coefficient, which was strictly negative across 

models and folds, instils confidence that this parameter has a reliable negative 

correlation with the LV copy number. This parameter had a min, max and range of 3.8, 
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5.4 and 1.6 oC, respectively. This indicates that the control is already relatively tight. It 

may be difficult to improve the tightness of this control due to limitations of the 

equipment and the potential significant capital cost to upgrade.  

Concentration of cells after second transduction – The cell concentration, 

determined in the cell count after the second transduction, was correlated positively to 

the LV copy number with small effect size. The model indicates that operating at the 

higher cell concentration is correlated to higher LV copy numbers. The cell 

concentration is known to be an important parameter in the transduction process and 

studies in the literature have linked higher cell density with higher transduction 

efficiency. 

In a study by Uchida et al. (2019), the effect of cell density on transduction efficiency 

was investigated by transducing CD34+ cells at a range of concentrations, 5 x104 to 5 

x105 cells/ml, with lentiviral vectors expressing an enhanced green fluorescent protein 

(eGFP). After three days, the transduction efficiency was evaluated by determining the 

percentage of cells expressing the eGFP. It was found that the higher cell density 

cultures exhibited significantly higher transduction efficiency. The high-density culture 

(5 x105 cells/ml) had a 2.7-fold higher eGFP percentage compared to the low-density 

culture (5 x104 cells/ml). Zhang et al. (2004) transduced 293T cells with lentiviral 

vectors and they also showed that higher cell density led to increased transduction 

efficiency. It has been hypothesised that cell-to-cell contact increased the efficiency of 

lentiviral transduction, perhaps due to secondary transduction from exposed to non-

exposed cells (Uchida et al., 2019).  

Time since seeding – After transferring the cells to the Retronectin coated bags, the 

cells are incubated for a period before the first transduction takes place. The models 

indicate that the incubation time is negatively correlated to the lentiviral vector copy 

number with a large effect size. This parameter was selected for multiple models and 

had strictly negative regression coefficients across models and folds, increasing 

confidence in the correlation with the LV copy number. This parameter had a range of 

1.75 hours. 

Volume of growth media added – After the first transduction procedure the cells are 

washed and resuspended in fresh medium. The volume of growth media that was 

added for resuspension of the cells was correlated positively to the LV copy number 
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with medium effect size. The volume of growth media had a min, max and range of 11, 

101.95 and 90.95 ml, respectively. 

Incubation time with LV – The duration of time that the cells were incubated with the 

CD34 reagent was found to be an important predictor of the CD34+ percentage, where 

a positive correlation was identified with medium effect size. The cells are incubated 

with the reagent to allow time for the antibody conjugates (including dextran 

microbeads) in the CD34 reagent to bind to the antigen on the CD34+ cells. The 

percentage of CD34+ cells recovered is dependent on sufficient labelling of the CD34+ 

cells with the dextran microbeads. This process is not instantaneous because it is 

subject to rate limitations in mass transfer and bonding between the antibodies and 

antigens. This provides an explanation for the sign on the beta coefficient, which 

indicates that a longer incubation period is correlated to greater recovery of CD34+ 

cells. Studying the mass transfer and bonding process may provide insights into the 

minimum incubation time that should be used to avoid negatively impacting the 

percentage of CD34+ cells. Unfortunately, the model does not provide this information, 

it indicates that longer incubations could be beneficial and that the variation that is 

currently permitted is impacting the CD34+ cell percentage. The incubation time had a 

range of 1 hour. 

Final volume after dilution with cell wash buffer – the final volume of the cell 

suspension after dilution with cell wash buffer is negatively correlated to the CD34+ 

cells percentage with large effect size. The buffer volume is usually scaled in 

accordance with the number of cells (Kwok et al., 2007). However, it is possible that 

the cell-to-buffer ratio changes or that the volume of cell wash buffer impacts recovery 

of the CD34+ cells. The final volume after dilution with cell wash buffer had a min, max 

and range of 540, 1415 and 875 ml, respectively. 

Total volume of MNCs recovered – the total volume of MNCs recovered is negatively 

correlated to the CD34+ cells percentage with medium effect size. In feature extraction, 

it was observed that the volume of MNCs recovered was positively correlated with the 

final volume after dilution with cell wash buffer and the volume of CD34 reagent used. 

It also correlated positively with the number of cells in the bone marrow sample and its 

volume. The volume of CD34 reagent was adjusted in proportion to the volume of the 

cell suspension, meaning that the concentration of CD34 reagent should be 

approximately equal. Given that the cell number also correlates positively with the 

volume of MNCs recovered, if there is a physical mechanism negatively impacting the 
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the CD34+ cells percentage, the data suggests that it is unconnected to the cell density 

and concentration of CD34+ reagent. The total volume of MNCs may have an impact 

on another physical mechanism that is related to the recovery of the CD34+ cells. 

Another unrecorded parameter which is relevant here is the density of the cells in the 

solution. To further understand and identify a possible mechanism to explain this 

correlation, a number of hypotheses may need to be tested. The total volume of MNCs 

recovered had a min, max and range of 250, 600 and 350 ml, respectively. 

No. of cells in the supernatant – After MNCs separation, the cells go through several 

wash cycles. The number of cells remaining in the supernatant after centrifugation was 

found to be negatively correlated to the CD34+ cells percentage with medium effect 

size. This parameter is also positively correlated to the volume of MNCs recovered. 

This parameter is likely to be part of the same effect as the volume of MNCs recovered. 

The number of cells in the supernatant had a range of 0.1x106 ml. 

Washing after first transduction – centrifuge speed, temperature and wash time. 

The washing step after first transduction produced several variables that were 

negatively correlated to the CD34+ cells percentage. The duration of the wash and the 

temperature of the wash were correlated negatively to CD34+ percentage with small 

effect size, whilst the speed of centrifugation was correlated negatively with medium 

effect size.  

Total time of incubation at 5oC – the total time of incubation at 5oC was negatively 

correlated to the CD34+ cells percentage with medium effect size. The incubation 

periods had a range of 11.08 hours. 

Temperature in washing – After the second transduction, the cells were incubated at 

5oC before being washed and resuspended in saline. The temperature of the centrifuge 

during the wash was found to be positively correlated with the CD34+ cells percentage. 

Cell viability measured in release cell count – The cell viability percentage, as 

recorded in the release cell count, was negatively correlated to the CD34+ cells 

percentage with small effect size. The cell viability had a min, max and range of 98, 

100 and 2%, respectively. 

6.4 Conclusions 

The focus of this chapter was on the CDP manufacturing process, where the LVs are 

used to transduce the patient’s cells to create the CDP, which is grafted back to the 

patient. In order to understand the main sources of variability in the CDP manufacturing 
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process and to explore the correlations between process parameters, the CDP 

manufacturing data was explored using the sparse PCA algorithm developed in 

chapter 4. Following on from this, the CDP manufacturing data was combined with the 

LV manufacturing data to form a dataset for investigation with predictive modelling 

techniques. The aim of this work was to relate the manufacturing variables from both 

CDP manufacturing and LV manufacturing to two critical quality attributes of the CDP, 

namely, the LV copy number and the CD34+ cells percentage. 

The first three principal components of the sparse PCA model captured close to 50% 

of the variance in the data and the score plots revealed that variability in the CDP 

manufacturing process largely occurred on a batch-to-batch basis, as the scores were 

evenly distributed on the first three components. Key variables on principal component 

1 were the total number of CD34+ cells that were isolated, the volume of MNCs 

obtained from MNCs separation, the volumes of buffers and reagents, and the volume 

of growth media and cytokines used for in the cell culture during the transduction steps. 

Many of these variables were highly correlated and the source of the variability begins 

with the volume of the bone marrow (BM) sample and its composition, particularly the 

number of cells and their viability.  

Several variables from the numerous washing steps throughout the process featured 

on principal components 1 to 3, including the temperature, speed and duration of 

centrifugation, showing that the washing steps are important regions of variability in 

the process. The temperature of centrifugation was negatively correlated to the speed 

in many instances and these parameters were correlated to other variables, such as 

the volume of cell wash buffer that was used. Principal component 2 showed a degree 

of correlation with the LV copy number, as batches 20 to 23 all scored high on 

component 2 and featured high LV copy numbers. The most influential variables on 

principal component 2 included the volume of cell wash buffer used in MNCs 

separation and isolation of CD34+ cells, and the concentration of the CD34+ cells 

before seeding into bags for transduction. These process parameters were identified 

as possible sources of the correlation that was observed with the LV copy number. In 

addition to the metric variables that were analysed with sparse PCA, there were 

numerous categorical variables in the original dataset. As with the LV manufacturing 

data, most of the categorical variables were representing different material lots and 

pieces of equipment that were used in the process. Material lots included buffers, 

reagents, cytokines, growth media and retronectin used for bag coatings. Equipment 
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included bags, bag transfer sets and the column and tubing sets used the separation 

of CD34+ cells.  

For the CD34+ cells percentage, the MNCs separation step which is carried out prior 

to the labelling of the CD34+ cells, produced two key predictive variables. The final 

volume after dilution with cell wash buffer and the volume of MNCs recovered both 

correlated negatively with the CD34+ cells percentage and were correlated positively 

to one another.  The model indicated that a larger volume of cell suspension may have 

negatively impacted the labelling and/or the recovery of the CD34+ cells. The dilution 

with cell wash buffer may have altered the cell concentration to produce an adverse 

effect or there may have been another adverse effect associated with the processing 

of a larger volume of cell suspension. Other important variables with negative 

correlations to the CD34+ cells percentage included the number of cells present in the 

supernatant after the third wash of the MNCs, the speed and temperature of 

centrifugation in the washing step before first transduction, the total time of incubation 

at 5oC during prep for infusion and the viability of the cells in the release cell count. 

The most significant variables with positive correlations to the CD34+ cells percentage 

were the concentration of cells after second transduction, the incubation time with LVs 

during the first transduction and the column plate number in LV manufacturing. 

The most influential variable in the LV copy number models came from LV 

manufacturing, where the temperature of refrigerated trolley bags after the clarification 

step was negatively correlated to the LV copy number with large effect size. Another 

influential variable from LV manufacturing was the volume of Ca/Mg solution added to 

the final formulation of the LVs.  In addition to correlating negatively with the CD34+ 

cells percentage, the total volume of MNCs recovered also correlated negatively with 

the LV copy number. The rest time between seeding of bags and first transduction is 

the final variable that was negatively correlated to the LV copy number. The volume of 

growth media used for cell suspension before first transduction was positively 

correlated to the LV copy number with medium effect size and the concentration of 

cells after second transduction was positively correlated with small effect size.   

Overall the models provided insights into PP-CQA relationships and identified several 

process parameters which are potentially critical process parameters, directly 

influencing the LV copy number and CD34+ cells percentage. A number of these were 

supported by literature evidence, or by the observations of process experts. Process 

parameters that are confirmed to have cause-and-effect relationships with the CQAs 
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should be optimised and placed under improved process control where appropriate 

and where it is practical to do so. In some instances, the deviations permitted within 

the process specification may need to be reduced. In cases where the physical 

mechanism connecting the process parameter to the product CQAs is not clear, 

possible explanations for the mechanism should be considered by drawing from the 

knowledge of process experts. It is especially important to consider what the identified 

process parameters may be representing physically and what other parameters of the 

system the variable is related to, which perhaps are not explicitly recorded in the 

dataset. This is particularly important for variables with medium and large effect sizes, 

as the model indicates that these parameters have a significant influence on the 

process CQAs. 
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Chapter 7  
Analytics for bioreactor-based viral vector production 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Due to the increasing demand for large quantities of viral vectors for use in clinical 

trials, manufacturers and research laboratories are developing scalable approaches to 

viral vector production. As discussed in chapter 2, viral vector production using 

adherent cell lines has limited scale-up potential. One of the alternative approaches 

for viral vector production is bioreactor-based suspension cultures. In this chapter, 

historical process data from bioreactor production is analysed using MVDA, focusing 

solely on the upstream process. The upstream process involves the bioreactor-based 

expansion of a producer cell culture, followed by transient-transduction and production 

of the viral vectors.  
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7.1 Introduction 

Chapter 5 focused on the manufacturing of LVs using adherent human embryonic 

kidney 293 cells (HEK 293) as the producer cell line. A typical adherent cell process, 

such as the process described by Merten et al. (2010), involves growing the cells in 

flasks before transferring them to cell factory stacks, where they are expanded further 

before transfection takes place. Although the cell factory stacks offer a large surface 

for the cells to attach to; they are limited in scalability as their design and requirement 

for manual handling makes them unsuitable for scale-up. Bioreactors, of which there 

are many different types, are far more suitable for large-scale applications. 

Consequently, manufacturers are developing and exploring the potential of bioreactor-

based LV manufacturing to meet the increasing demands for high quality (GMP 

standard) and high-volume LVs. 

In addition to scalability, bioreactor LV production alleviates some of the other 

challenges associated with LV manufacturing through its closed system design and 

ability to automate some of the manual tasks. One challenge that remains is the high 

degree of complexity of the process, which means that the relationships between 

process parameters and product CQAs are still relatively poorly understood. Moving 

from cell factory stacks to a bioreactor, the new environment features different 

manipulatable process parameters and design features that present new challenges 

when trying to understand process behaviour. Additionally, characterization of the 

process and product is required, and comparability must be demonstrated across the 

various production scales. 

In this chapter, the analysis of process data from the bioreactor production of LVs is 

presented to identify potential learning opportunities contained within the data. The 

bioreactor process data consisted of both offline and online process measurements for 

2L, 50L and 200L bioreactors, which required different pre-processing compared to the 

2D cross-sectional data (sample and variable) that was analysed in chapters 5 and 6. 

This is due to the additional time dimension resulting in 3D data (sample, variable and 

time). The details of this pre-processing are explained in the methods section within 

this chapter. The approach to the analysis was first to explore the data with PCA with 

the objectives to identify the key features of variance within the data, to assess the 

variability within each of the process scales and to evaluate process comparability 

between the scales. The main challenge here was scaling the variables appropriately 

to make sensible comparisons across different bioreactor scales. After appropriate 
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scaling was applied, which is described in the methodology, PCA was found to be a 

useful tool for comparing the batches from different scales. 

Following data exploration, the online and offline process parameters were used as 

inputs to a PLS model to predict the infectious titre of the LV product. The objectives 

of this predictive modelling task were to identify critical process parameters and 

evaluate their relationship with the infectious titre to increase understanding of the 

process behaviour and offer useful insights to guide process development and 

optimisation.  

7.1.1 Data  

A description of the bioreactor-based suspension culture process for the production of 

LVs is provided in chapter 2, section 2.1.4. The process data consisted of 22 batches 

with 10 online and 21 offline variables. The online and offline process variables are 

listed in Table 7-1. 16 of the batches were at the 2L scale, while four were 50L and two 

were 200L. Table 7-2 provides a summary of the 22 batches available for the analysis 

with information on key parameters, including the batch duration and cell seeding 

density, and two CQAs for the LV product, namely the infectious titre and the physical 

titre. The cell seeding densities, infectious titre and physical titre have been scaled to 

protect this confidential information; however, the scaling preserved the distribution of 

the data and shows where the cell seeding densities were varied. 

 

Table 7-1: Online and offline process variables available in the bioreactor-based LV 
production dataset. 

 Online Offline 

1 Jacket temperature Cell diameter 

2 Vessel temperature  Glucose conc. 

3 pH Glutamate conc. 

4 Oxygen partial pressure Glutamine conc. 

5 Stir speed Lactate conc. 

6 Air sparge flowrate Load cell weight 

7 Air overlay flowrate  N2 sparge flowrate 

8 CO2 flowrate Air overlay flowrate 

9 Substrate A Air sparge flowrate 

10 Substrate B CO2 sparge flowrate 

12  O2 sparge flowrate 

13  Offline pH 

14  Vessel temperature 

15  Jacket temperature 

16  Osmolality 

17  Sample volume 
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18  Vessel volume 

19  Viability 

20  Viable cells 

21  Volume of base added  

 

 
Table 7-2: Summary data for the 22 bioreactor-based LV batches. 

Batch Batch 
volume (L) 

Batch 
duration 

(h) 

Scaled cell 
seeding 
density 

Scaled 
infectious 

titre 

Scaled 
physical 

titre 

1 2 119.4 -0.20 -0.73 -0.34 

2 2 119.3 -0.40 -0.83 -0.28 

3 2 119.4 -0.33 -0.75 -1.00 

4 2 119.4 -0.38 -1.15 2.20 

5 2 50.2 2.15 -0.75 -0.34 

6 2 50.4 3.70 -0.83 -1.00 

7 2 99.0 -0.22 Unavailable Unavailable 

8 2 99.5 -0.18 Unavailable Unavailable 

9 50 99.6 -0.29 -0.36 -0.32 

10 2 117.7 0.28 Unavailable Unavailable 

11 2 117.7 0.32 Unavailable Unavailable 

12 50 116.8 -0.37 0.66 1.27 

13 2 170.2 -0.27 0.23 -0.26 

14 2 170.2 -0.41 -0.47 -0.63 

15 50 73.3 -0.42 Unavailable Unavailable 

16 2 95.1 -0.46 Unavailable -0.81 

17 2 95.0 -0.32 Unavailable -1.46 

18 200 94.8 -0.36 0.17 0.23 

19 50 73.4 -0.26 Unavailable Unavailable 

20 2 118.5 -0.60 1.50 1.34 

21 2 118.5 -0.45 1.55 0.87 

22 200 119.0 -0.53 1.77 0.54 

 
The batches varied in duration between 50 hours and 170 hours and featured some 

variation in the cell seeding densities. Infectious and physical titres were not available 

for all batches, limiting the selection of batches available for predictive modelling of 

these two parameters. For more information on the physical and infectious titres, the 

reader is referred to chapter 2, section 2.1.6, on the CQAs of viral vector products.  

7.2 Method 

7.2.1 Pre-processing of process data 

The pre-processing of the time-series data involved typical steps, such as the handling 

of missing data, as well as some pre-processing steps which were specific to the 

application. For example, these included the alignment of batches of different time 
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durations and the derivation of additional process parameters. The following section 

details the pre-processing steps that were taken to obtain datasets for the PCA and 

PLS analyses that were conducted.  

7.2.1.1 Processing of offline and online process variables 

1. Missing data was analysed across all of the samples, and samples containing 

more than 20% missing data in the online and offline process parameters were 

removed from the analysis. 

2. The variables in the dataset were evaluated for missing data and variables with 

significant portions of missing data (greater than 20% across more than 20% of 

the batches) were removed from the analysis. 

3. At this point, much of the missing data was removed from the analysis; however, 

there were small percentages of missing data present in the online variables for 

some runs. To fill in this missing data, linear interpolation was applied to the 

online process data. 

4. Intrinsic properties such as pH and oxygen concentration were comparable 

across production scales without requiring scaling factors. However, to make 

process variables representing extrinsic properties comparable across 

production scales, appropriate scaling factors had to be determined and applied 

to the data.  

a. The gas flowrate variables: air sparge, CO2 sparge and air overlay, were 

scaled by the reactor volume. 

b. Volume related variables, such as the volume of acid and base added to 

the reactor, were scaled by the reactor volume. 

c. The working volume of the reactor was converted to a percentage. 

d. The stirrer speed was scaled based on the power number of the vessel. 

5. The offline data, which consisted of between 5 to 8 datapoints throughout the 

duration of each batch, was interpolated using 3rd order polynomials. The 

purpose of this interpolation was to 1) obtain data at consistent timepoints for 

all of the batches, 2) obtain data at shorter intervals to align with online data and 

3) allow numerical determination of the gradients of some offline parameters, 

such as the cell and metabolite concentrations. While carrying out the 

interpolations, each graph was checked to ensure that the profile obtained was 

in-line with the expected trend. Some datapoints are highly influential in the 

offline data because there are so few datapoints available and this is a potential 
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source of error. A graphical example of this interpolation is provided in Figure 

7-1. 

 

Figure 7-1: Example interpolation of offline data using a 3rd order polynomial.  

The practice of fitting 3rd order polynomials to the metabolite and cell 

concentrations was reported by Le et al. (2012). The polynomial model allowed 

for augmentation of additional datapoints and numerical determination of the 

gradient of each variable throughout the process. In this work, the polynomial 

fits were assessed for each of the offline variables and fits with R2 greater than 

0.7 were deemed good enough to represent the data. Other techniques such 

as splines may have been used; however, the low frequency of the offline data 

is a limiting factor in the quality of the interpolation. The 3rd order polynomial is 

relatively constrained in its flexibility which is good for avoiding overfitting the 

data, yet it is suitable for capturing the smooth curves that are expected in the 

temporal profiles of the offline process variables, including the osmolality, and 

the metabolite and cell concentrations (Le et al., 2012).  

6. The polynomial fits to the offline data were used to generate new variables 

including rates determined by the polynomial gradient and variables that were 

divided by the cell concentration. Appendix (chapter 9, section 9.3) provides an 

example calculation using fictional data. The following is a list of the new 

variables that were created: 

a. Specific glucose, glutamine, glutamate and lactate concentrations i.e. on 

a per cell basis (g/cm3.cell) 
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b. Specific glucose, glutamine, glutamate and lactate concentration 

gradients (g/cm3.cell.h) i.e. rates of change in concentration on a per cell 

basis 

c. Viable cell concentration gradient (cells/ml.h), i.e. cell growth rate, and 

viability gradient (%/h) 

d. Osmolality gradient (mOsm/h) 

e. Vessel volume gradient (L/h) 

f. Specific flowrates of air and CO2 (L3/h.cell) 

g. Specific O2 partial pressure (Pa/cell) 

7. The online, offline and derived process variables were compiled into a single 

data table for each of the batches. 

8. The 22 batches of process data featured a range of batch durations. A 

requirement for the analysis is that each of the batches features the same 

number of datapoints. In order to align the batches to equal length, the time of 

transfection was taken as the central timepoint, to which the temporal profiles 

of different batches were aligned. Henceforth, the time of transfection was taken 

as time 0 and data was truncated from both ends of the temporal profiles, so 

that each batch spanned from -x hours to y hours, with respect to the time of 

transfection. Here x and y are the minimum length of time between inoculation 

and transfection and the minimum length of time between transfection and the 

batch endpoint, respectively, for all of the batches included in the analysis. 

Figure 7-2 illustrates this method of aligning data. 



 152 

 

Figure 7-2 Illustration of the batch time alignment method and the cutting of the data 
required to obtain uniform batch lengths 

9. The 3D data, with batch/observation, variable and time dimensions, was 

unfolded into a 2D matrix, in accordance with the requirements for the 

multivariate methods that were applied. The unfolding of 3D data can be carried 

out in various ways depending on which aspect of the data the practitioner 

wishes to focus on. For process data, it is logical to preserve the 

batch/observation dimension on one axis and to combine the variable and time 

instances on the second axis. This means that ‘variables’ in the traditional sense 

become variable-time instances, i.e. each variable is one of the original 

variables at a specific timepoint. Henceforth, this unfolding approach maintains 

sensible physical meaning. An illustration of the data unfolding is provided in 

chapter 3, section 3.4.2 

10. For PCA and PLS the data inputs were auto-scaled, i.e. each variable was 

transformed by subtracting the mean and dividing by the standard deviation. 

Mean centring and scaling were both carried out due to the improved 

interpretability of the results, which they provide (see chapter 3, section 3.3.4). 

7.2.1.2 Processing of product quality data 

The product quality data included the infectious titre and the physical titre for each 

batch, which were the response variables used in this analysis. The response variables 
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only required aligning to the correct input data and scaling. Autoscaling was applied to 

the response variables, consistent with the scaling applied to the input variables.  

7.2.2 PCA 

The PCA method used in this chapter was the standard PCA algorithm. The main 

reason for this is because the data consisted of numerous variables (1000+), which 

was a result of unfolding the 3D data with variable and time instances along one axis. 

Unfortunately, a limitation of the sparse PCA algorithm is that the solution time 

increases exponentially with the number of variables in the problem. However, 

standard PCA is not overly complex in this situation because the number of original 

variables included in the analysis was relatively few (less than 20). The approach to 

PCA was the same as in chapters 5 and 6, the main difference being the use of 

temporal data. For details on the PCA technique, the reader is referred to chapter 3. 

7.2.3 Development of PLS models 

In this chapter, PLS models were developed to predict the infectious titre and physical 

titre using the online and offline process variables as model inputs (predictor variables). 

The following list details the steps taken to develop the models: 

1. The data was partitioned into a training set and a hold-out test set, using the 

Kennard-Stone algorithm to select the batches for each set. The Kennard-Stone 

algorithm selects batches for the test set with uniform distribution over the 

predictor variable space, which is achieved by evaluating the Euclidean 

distance between observations. More details of the algorithm are in chapter 3, 

section 3.3.6. 

2. After partitioning, autoscaling was applied to the training set and the same 

scaling parameters were applied to the test set.  

3. The scaled predictor variables in the matrix X, and the scaled response variable 

in the vector y, from the training dataset, were then passed to the repeated K-

fold cross-validation script in Matlab (details of the repeated K-fold cross 

validation method are provided in chapter 3, section 3.3.3). This script carried 

out 5-fold cross validation, with 2000 repeats, for models with n latent 

components, where n was varied from 1 to 10.  

4. The model with the smallest cross validation MAE score was selected, thus the 

number of latent components was determined.  

5. Next the PLS model was fitted to the whole of the training data and the VIP 

selection method (detailed in chapter 3, section 3.2.2) was used to select the 
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most important predictor variables from the model. The threshold VIP cut-off 

was varied between 1 and 1.4. 

6. The reduced model was put through repeated 5-fold cross validation (2000 

repeats) and the number of latent components was varied from 1 to 10.  

7. The optimal model (minimum cross validation) was then selected and fitted to 

the whole of the training data to evaluate model fit and determine model 

parameters.  

8. Using the bootstrap technique detailed in chapter 3, section 3.3.4, the stability 

and distribution of the model regression coefficients were evaluated with 2000 

bootstrap samples. This provided confidence intervals for the standardised 

regression coefficients (beta coefficients). 

9. Finally, the model was applied to the test set that was held-out of model 

development and the performance was evaluated.  

7.2.3.1 PLS model performance evaluation 

Model performance was evaluated at four key stages throughout model development; 

these are summarized in Table 7-3. See chapter 3, section 3.3.1 for more information 

on the PLS model performance evaluation. 

Table 7-3: Key stages of model development and model performance evaluation 
methods. 

Model development 

stage 

Performance evaluation methods 

1. Model fit to the 

training data as a 

whole 

• Visual inspection of model fit and regression errors 

• Performance metrics: Model significance (F-stat), 

R2, MAE 

2. Repeated K-fold 

cross validation 

with the training 

data 

• Performance metrics evaluated for latent 

components from 1 to 10: MAE, mean square 

error (MSE), R2 

3. Bootstrap 

sampling 

• Distribution of the beta coefficients (standardised 

regression coefficients) was evaluated and 

confidence intervals determined 

• Visual inspection of beta coefficient confidence 

intervals across temporal profiles of predictor 

variables 



 155 

4. Model fit to the 

test data that was 

held out of model 

development 

• Visual inspection of model fit and regression errors 

• Performance metrics: MAE, MSE, R2 

 

7.3 Results and discussion  

7.3.1 Feature extraction with PCA 

When conducting feature extraction with the bioreactor-based viral vector production 

data, there were a few choices to be made with respect to the batches that should be 

included in the analysis. There were two key factors that were varied in the available 

data; these were the scale of the bioreactor and the cell seeding density. Table 7-2, in 

section 7.1.1 provides details on the bioreactor scales and cell seeding densities. In 

the data that was available, there were batches at the 2L, 50L and 200L scales and a 

few of the batches were conducted with higher cell seeding densities. One point of 

interest for the analysis was the comparability of the batches across different scales, 

henceforth, it was decided that the cell seeding density should be kept as consistent 

as possible and the batches from different scales should be included in the analysis. 

Batches 5, 6, 10 and 11 were therefore excluded from the analysis (see Table 7-2, 

section 7.1.1).  

The variance explained by each component in the PCA model is shown in Figure 7-3. 

Six components were selected for the analysis, as beyond six components the 

variance explained decreases below 5% and the signal-to-noise ratio becomes low. 

See chapter 3, section 3.3.2 for more details on selection methods used to determine 

the number of components. Collectively the first six components explain 84.2% of the 

variance in the data. This is a greater amount of explained variance compared to the 

PCA models for the adherent LV and CDP manufacturing data. When the same 

number of principal components captures a larger percentage of the variation, this 

indicates that there are a greater number of correlated features. This is expected with 

the bioreactor data because each variable has auto-correlation, where observations 

around a similar time-point are correlated. 
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Figure 7-3: Explained variance against number of principal components in the PCA 
model. The proposed cut off point shows the number of components that were selected for 
the analysis.  

Principal components 1 and 2 are plotted on Figure 7-4, explaining 28.1% and 19.4% 

of the variance, respectively. Components 1 and 2 capture variation within each scale 

and between the scales. The 2L batches are spread out on components 1 and 2 with 

score ranges of around 150 and 120, respectively. The 200L batches score low on 

components 1 and 2, separating them from the rest of the batches. Similarly, the 50L 

batches are separated from the rest due to high scores for component 2. The distance 

between the 50L batches and 2L batches is approximately 30 on component 2, which 

is less than range of scores observed within the 2L batches. The distance between the 

200L batches and the rest of the batches on component 1 is around 40, which is small 

compared to the range of scores observed on component 1. The separation between 

the 2L, 50L and 200L batches, shows that there are some differences between the 

scales that are captured by components 1 and 2. However, the small distances 

between the different scales compared to the overall variation in scores shows that 

these differences are not big with respect to the process variability that is present 

irrespective of scale. This observation implies that the process comparability is 

relatively good and that process variability within each scale is an important 

consideration. 
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Figure 7-4: Principal component 1 versus principal component 2, explaining 28.1% and 
19.4% of the variance respectively. The marker colours indicate the batch volume, which 
varied between the 2L, 50L and 200L scales. 

Figure 7-5 shows the loadings for principal components 1 and 2. Component 1 

highlights correlation between multiple variables, as several variables feature large 

magnitude loadings. The largest contributors are the osmolality, cell viability, number 

of viable cells, volume of base added, and the specific concentration of O2, glucose, 

glutamate, glutamine and lactate. Component 1 highlights positive correlation between 

osmolality, cell viability in the mid to late stages of the process, and the specific 

concentration of oxygen, glucose, glutamate and glutamine in the mid to late process. 

These parameters correlate negatively with the concentration of viable cells mid to late 

in the process and the specific concentration of glutamine and lactate early in the 

process. Several variables have loadings that switch sign going from the early stage 

of the process to the mid to late stages of the process; these include the concentration 

of cells and the specific concentration of metabolites and oxygen. This implies that a 

higher concentration early in the process correlates to lower concentration late in the 

process and vice versa.  
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Figure 7-5: Loadings on component 1 (a) and loadings on component 2 (b) for each of the variable-time instances in the unfolded time-series 
data. Variable-time instances belonging to the same variable have been coloured the same and repeated colours may be distinguished as the variables 
from the legend appear in the plot from left to right.

b)

a)
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The main variables contributing to component 2 scores are the online pH, vessel 

volume, cell viability and concentration, specific air sparge and overlay flowrates, and 

the specific O2, glucose, glutamate and lactate concentrations. The loadings indicate 

a negative correlation between the pH from the start of the process and the cell 

concentration and viability. This is also reflected in the variables which are on a per 

cell basis, such as the specific gas flowrates and some of the specific metabolite 

concentrations, which correlate positively with the pH. Table 7-4 characterizes the 

200L, 50L and 2L batches based on the variables highlighted by components 1 and 2. 

In order to ensure that the gas flowrates were comparable, the data was put into 

consistent units and the flowrates were divided by the reactor volume. Table 7-4 shows 

that despite the scaling, there are some differences in the air overlay and sparge 

flowrates between the 2L, 50L and 200L scales. The rest of the variables contributing 

to the separation of the 50L and 200L batches from the 2L batches are also varied 

within each scale. 

 

Table 7-4: Characteristics of the 50L and 200L batches influencing principal component 
1 and 2 scores. 

Scale Observation Causes 

50L High on 

component 2 

High pH, low viability early on, high air sparge and 

overlay flowrates, high specific glucose, glutamate and 

oxygen concentrations early in the process 

200L Low on 

component 1 

High pH, low osmolality, high air overlay flowrate, high 

viable cell concentration late in the process 

 

The scores for components 3 and 4 explain 12.8% and 10.3% of the variance, 

respectively, and these are shown on Figure 7-6. The 50L and 200L batches score 

high on component 3 when compared to most of the 2L batches, whereas component 

4 captures variation with no direct link to scale. The variation between each of the 

scales is small compared to the variation that is present within each scale, as was the 

case with components 1 and 2. This is further evidence that the processes are 

comparable in terms of the variables included in this analysis. 
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Figure 7-6: Principal component 3 versus principal component 4, explaining 12.8% and 
10.3% of the variance respectively. The marker colours indicate the batch volume, which 
varied between the 2L, 50L and 200L scales. 

The largest contributors to component 3, as shown in Figure 7-7, are the air overlay 

and sparge flowrates, which have large positive loadings and correlate positively to 

one another. Other key contributors were the osmolality, throughout the process, and 

the cell viability and specific concentrations of glucose, glutamate and lactate, early in 

the process. The gas flowrates are the main variables causing the 50L and 200L 

batches to score high on component 3. These variables were already listed in  

Table 7-4, as they were found to be driving the separation of the 50L and 200L batches 

on components 1 and 2. The large separation of the 2L batches on component 3 shows 

that there is also significant variation in component 3 key variables within the 2L 

batches.  The main contributors to component 4, as shown in Figure 7-7, were the 

vessel volume, cell viability, and specific concentrations of glutamine and lactate. It is 

interesting that the cell viability late in the process correlates positively with the specific 

glutamate and lactate concentrations at the mid-point of the process. These 

parameters are a source of variability that is present within each scale.
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Figure 7-7: Loadings on component 3 (a) and loadings on component 4 (b) for each of the variable-time instances in the unfolded time-series 
data. Variable-time instances belonging to the same variable have been coloured the same and repeated colours may be distinguished as the variables 
from the legend appear in the plot from left to right.

b)

a)



 162 

The scores for principal components 5 and 6, which explain 8.4% and 5.2% of the 

variance respectively, are shown in Figure 7-8. The 50L and 200L batches are 

dispersed within the spread of the 2L batches, indicating that components 5 and 6 

capture variance that is independent of scale. Batch 11 is separated from the rest of 

the batches on component 6, indicating that this batch features some unique 

behaviour.  

 
 

Figure 7-8: Principal component 5 versus principal component 6, explaining 8.4% and 
5.2% of the variance respectively. The marker colours indicate the batch volume, which 
varied between the 2L (red), 50L (blue) and 200L (green) scales. 

The loadings for components 5 and 6 are displayed in Figure 7-9. The specific lactate 

concentration is a key contributor on component 5 and the loadings indicate that the 

specific lactate concentration late in the process is negatively correlated to the volume 

of base added. Lactate accumulation lowers the pH of the culture and base addition is 

sometimes required to maintain the pH at the desired level. Other variables with 

significant loadings include the vessel volume, which correlated to the specific lactate 

concentration in the latter half of the process. The lactate accumulation and correlated 

parameters varied across all batches at all scales. The loadings on Figure 7-8 indicate 

that batch 11 stands out due to differences in the osmolality, and the CO2 sparge 

flowrate and pH late in the process.



 163 

 

 
Figure 7-9: Loadings on component 5 (a) and loadings on component 6 (b) for each of the variable-time instances in the unfolded time-series 
data. Variable-time instances belonging to the same variable have been coloured the same and repeated colours may be distinguished as the variables 
from the legend appear in the plot from left to right.

b)

a)
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7.3.1.1 Summary of PCA 

• The first three components explained 60.3% of the variance in the process data. 

The main sources of variability in the process data, as indicated by the loadings 

on the first three components, were the culture pH and osmolality, cell viability 

and concentration, air sparge and overlay flowrates, volume of base added and 

the specific concentrations of the metabolites. The loadings showed that there 

were significant correlations between all of these key process variables. 

• Components 1 to 3 captured variance that separated the 50L and 200L batches 

from the 2L batches, mainly due to differences in the air overlay and sparge 

flowrates, despite the scaling factor that was applied. This may be down to 

differences in the working volume between the scales; however, the difference 

was relatively insignificant and the variation present on components 1 to 3 within 

the 2L scale was more significant than the variation between the different 

scales, as shown by the spread of scores.  

• Components 4 and 5 collectively explained 13.6% of the variance in the process 

data. Components 4 and 5 captured variance that was independent of scale. 

Component 4 demonstrated correlation between the vessel volume, cell viability 

and the specific concentrations of glutamine and lactate. Component 5 showed 

that there were differences in the accumulation of lactate and consequent base 

addition. 

7.3.2 Predictive modelling of the infectious titre  

This section presents the PLS models that were developed for the prediction of the 

infectious titre of LVs produced in the bioreactor-based suspension culture process. In 

order to develop models with optimal predictive performance and minimal complexity, 

model development was carried out using repeated K-fold cross validation to identify 

the optimal number of latent components and variable selection was implemented 

using the VIP selection approach. Model performance was validated through the 

repeated K-fold cross validation and a test on data that was held out of the model 

development process.  

After the generation of transformed variables, the complete list of variables available 

for the analysis was 41. Initially pre-selection of the variables was carried through 

examination of the variable profiles and testing of PLS models on a trial-and-error 

basis. Through this approach it was possible to rule out 20 of the variables, which 

negatively impacted PLS model performance. The remaining 21 variables were used 
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to generate a PLS model, which demonstrated good performance in cross validation 

and testing. This model served as a basis from which to improve model performance 

and reduce model complexity through variable selection using the VIP selection 

approach. The performance of the base model and two reduced complexity models is 

displayed in Table 7-5. 

Table 7-5: Performance metrics for three PLS models with varying degrees of 
complexity, as determined by the VIP threshold value used in variable selection. 
Performance metrics are provided from the repeated K-fold cross-validation and the model fit 
to the hold-out test set. 

 No of 
variables 

No of 
latent 

variables  

CV R2 CV MAE Test R2 Test 
MAE 

All 
variables 

21 2 0.86 0.29 0.97 0.24 

VIP > 1 20 1 0.90 0.20 0.95 0.27 

VIP > 1.4 10 1 0.90 0.16 0.97 0.24 

 

Table 7-5 shows that all three models performed well. The base model with all 21 

variables featured two latent components and achieved an R2 score of 0.86 and a MAE 

of 0.29 in repeated K-fold cross validation. Additionally, it predicted the viral titre for the 

two batches in the test set with high accuracy (test R2 = 0.97, test MAE = 0.24). Given 

the known large error in the infectious titre assay (35-40%), the models perform very 

well. This raises the question of model over-fitting; however, the thorough cross-

validation and testing has been implemented to avoid this and the metrics suggest that 

the models are not over-fitting. This also indicates that despite the measurement error, 

the models are capturing an underlying physical relationship between the process 

variables and the infectious titre. Initially a VIP threshold of one was applied, as is 

common practice because one is the average VIP score for all variables in the model. 

This model resulted in an improvement to the cross-validation performance metrics 

compared to the base model (R2 increased by 0.04 and MAE decreased by 0.09) and 

featured only one latent component. The model demonstrated high accuracy with the 

test set (test R2 = 0.95, test MAE = 0.27), although the base model performed 

marginally better. The VIP threshold of one reduced the number of variables included 

by one, although many timepoints of the 20 remaining variables were also excluded 

from the model, leaving only the portions of the time series profiles that correlated to 

the infectious titre.  
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To explore further reduction of model complexity, the VIP threshold was increased 

above one. In the literature, it has been recommended to do so when the portion of 

predictive variables is small or when there is a high degree of correlation between 

predictors (Chong and Jun, 2005). The latter is true in this case. A VIP threshold of 1.4 

was found to work well, reducing the number of variables in the model down to ten, 

while maintaining good performance in cross validation and testing (CV: R2 = 0.9,  

MAE = 0.16; Testing: R2 = 0.97, MAE = 0.24). Visual inspection of the model fit to the 

training data did not reveal any nonlinearities or trends in the errors to suggest that the 

model requires further adaptions. The fit to the training data for the 10-variable model 

is displayed in Figure 7-10.  

 

Figure 7-10: The 10-variable reduced complexity model fitted to the training data: a) the 
predicted viral titre and actual viral titre (scaled) with error bars showing the MAE from repeated 
K-fold cross validation, b) the regression residuals which were confirmed to be normally 
distributed. 

The fit to the training data gave an R2 of 0.96 and MAE of 0.14. The errors shown in 

Figure 7-10 are normally distributed and an Anderson test confirmed that the errors 

were normally distributed at the 90% confidence level (p = 1x10-3). The 10-variable 

model retains the most important predictor variables for the infectious titre; although, 

the model can be reduced further without losing performance as there is a high degree 

of correlation between the predictors. The 10 variables included in the model are listed 

in Table 7-6 in order of importance based on average VIP score for each variable, i.e. 

average VIP across the numerous timepoints that were selected for the model for each 

variable.  
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Table 7-6: Variables retained in the reduced model after removing variables with VIP 
scores less than 1.4. The variables are displayed in descending order of importance based 
on average VIP score. Note, the average VIP scores shown are less than 1.4 because the 
reduced model was fitted to the training data and VIP scores were re-calculated.  

No. Name Avg VIP No. Name Avg VIP 

1 Osmolality 1.06 6 Glucose conc. per 
cell 

0.94 

2 Specific glucose cons. rate 1.04 7 Online pH 0.91 

3 Glucose conc. 1.02 8 Lactate conc. per 
cell 

0.90 

4 Viable cells gradient 0.99 9 Glutamate conc. 0.90 

5 Specific lactate prod. rate 0.95 10 Glutamine conc. 
per cell 

0.89 

The PLS model parameters were used to derive standardised regression coefficients 

for the model. The magnitude of these beta coefficients indicates the relative 

importance of each variable-time instance and the sign indicates whether the 

correlation to the infectious titre is positive or negative. Following model development, 

the models were repeatedly fitted to bootstrap samples to determine confidence 

intervals for the standardised regression coefficients. Figure 7-11 shows the model 

coefficient for 9 of the 10 variables listed in Table 7-6. The specific glutamine 

concentration was left out because it was the least important of the 10. it correlated 

negatively with the infectious titre late in the process and for the first half of the process 

the 90% CI on the beta coefficients crossed zero, indicating that correlation during the 

first half of the process was of low confidence and low importance. 
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Figure 7-11: Standardised regression coefficients (beta coefficients) for nine key process parameters that were retained in the reduced 
complexity model after variable selection. The magnitude of the beta coefficent indicates the relative importance of the correlation with the viral 
titre and the sign indicates whether the correlation is negative or postitive. The beta coefficients for each variable are shown to vary throughout the 
process due to temporal variation in the original data. The blue central line shows the mean beta coefficient, while the dashed black lines show the 
upper and lower 90% confidence intervals for the beta coefficients, obtained from fitting the model to 2000 bootstrap samples.
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The following section discusses the process variables and their regression coefficients 

with respect to a scaled timeline, from 0 to 88, in order to keep the real process timings 

confidential. The online pH correlated positively with the infectious titre from the 

beginning of the process until around a scaled time of 70, then in the late stages of the 

process the signs on the coefficients switch and the pH correlates negatively with the 

infectious titre at the end of the process. The glucose concentration is initially positively 

correlated to the infectious titre and rapidly becomes negatively correlated to the 

infectious titre at a scaled time of 38. The glutamate concentration is positively 

correlated with the infectious titre throughout the process. Conversely, the osmolality 

of the media is negatively correlated with the infectious titre throughout. The viable 

cells gradient is an important predictor between the scaled time period 10 and 60. 

During this period a high cell growth rate correlated positively to the infectious titre. 

The beta coefficients for the specific glucose concentration were initially positively 

correlated to the infectious titre before becoming negatively correlated at a scaled time 

of 20, similar to the beta coefficients for the glucose concentration. The confidence 

intervals are wide in places, partly due to the increased error in the specific 

concentrations as a consequence of combining two offline variables, which were 

interpolated. The beta coefficients for the specific lactate concentration follow a similar 

trend. Initially they are positively correlated to the infectious titre before becoming 

negatively correlated at a scaled time of 40.  

The specific glucose consumption rate is positively correlated with the infectious titre 

throughout most of the process; however, this correlation peaks between a scaled time 

of 10 and 50. The specific lactate production rate was initially positively correlated to 

the infectious tire and rapidly becomes negatively correlated at a scaled time of 18. In 

order to analyse the relationship between the process variables and the infectious titre, 

it was also important to understand the correlation between the predictor variables. For 

this purpose, four timepoints were selected across the duration of the process and the 

correlation between predictor variables at these timepoints was evaluated with a 

Pearson’s correlation matrix. The four scaled timepoints: 5, 35, 55, and 95, were given 

the labels early, mid-early, mid-late and late, respectively, for convenience in the 

discussion. To display the correlations between the key predictor variables, Figure 

7-12 shows a heatmap of the Pearson’s correlation matrix, where the colours blue and 

red represent negative and positive correlations, respectively.  
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Figure 7-12: Heatmap of a correlation matrix containing the Pearson’s linear correlation coefficients between key predictor variables. Each 
variable has been included at four timepoints throughout the process; early (5), mid-early (35), mid-late (55) and late (95).  The colour bar on the right 
shows that significant negative correlations are coloured blue, while significant positive correlations are coloured red.
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The heatmap (Figure 7-12) reveals significant correlations between all of the key 

predictor variables, in some cases these correlations are time dependent. High glucose 

consumption rate at the mid-early stage, where it was found to be most important, 

correlated positively with the specific lactate (R = 0.79) and glucose (R = 0.66) 

concentrations early, the online pH up to the mid-late stage (R = 0.73) and the glucose 

concentration early (R = 0.83). Variables negatively correlated to the glucose 

consumption rate mid-early included the specific lactate production rate mid-late to late 

(R = -0.66), the specific glucose concentration mid-late to late (R = -0.78), the 

osmolality throughout (R = -0.87) and the glucose concentration mid-early to late (R = 

-0.76). The aforementioned correlations represent important correlated features in the 

process data that are predictive of the infectious titre. Based on the experimental 

conditions that were observed in the dataset that was provided, the optimal conditions 

for high infectious titre may be described by the following process features: 

• Low osmolality throughout the process  

• High specific glucose consumption rate, particularly in the early to middle phase 

• High specific lactate production rate initially, up to a scaled time of 20, and low 

specific lactate production rate thereafter  

• High cell growth rate up to the middle point of the process 

• High pH up until a scaled time of 70, then pH should drift low 

• High specific glucose and specific lactate concentrations early in the process 

• Low glucose concentration and low specific glucose concentration late in the 

process 

• High glutamate concentration throughout the process 

• Low glutamine concentration at the end of the process 

The descriptions ‘high’ and ‘low’ apply to the range that was observed in the data that 

was used to train the PLS model. The following section highlights observations from 

the literature relevant to the model findings, including some insights into potential 

influential variables and mechanisms that could explain the differences in process 

performance between the batches. 

Osmolality – The osmolality is an important parameter of the culture in viral vector 

production (Coroadinha et al., 2006; Shen and Kamen, 2012). Shen and Kamen (2012) 

investigated the effect of osmolality on the production of adenoviral vectors using HEK 

293 cells. The results showed that the growth of cells under hyperosmotic conditions 

was favourable and that the osmotic pressure should be reduced for the virus 
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production phase for optimal titres. However, both hypo and hyper osmotic stresses 

were found to improve viral productivity. Additionally, it was observed that the optimal 

osmolality for cell expansion and preparation for infection differed from the optimal 

osmolality for virus production. Higher osmolality (370 mOsm or greater) was favoured 

for the cell expansion phase and a lower osmolality (290 mOsm) was optimal for the 

virus production phase. 

Coroadinha et al. (2006) found that increased osmotic pressure was beneficial for the 

production yield and the stability of a Moloney murine leukaemia virus, of the retrovirus 

family. To manipulate the osmolality of the media, the authors compared the use of 

NaCl, sorbitol and fructose, and it was found that the viral productivity was dependent 

upon the osmotic agent chosen. The authors concluded that a balance must be struck 

between cell yield, viral productivity and retroviral stability. They did not investigate the 

effect of varying the osmolality between the cell expansion and viral production phases.  

Another study attributed a loss of viral infectivity in downstream processing to damage 

caused by high osmotic pressure (Zimmermann et al., 2011). Literature sources refer 

to the culture osmolality as a critical attribute, and it is measured in quality control (QC) 

analysis of the viral vector product (Merten et al., 2010). From the literature, it is evident 

that the culture osmolality is a key parameter in transient virus production processes, 

which has been found to impact cell expansion, viral productivity and the stability of 

virions. However, the existing literature indicates that the optimal osmolality is 

dependent on numerous factors including the type of producer cells, the virus type, the 

osmotic agents and the phase of the process, as cell expansion and virus production 

phases often require different conditions (Petiot et al., 2015; Shen and Kamen, 2012). 

pH – Holic et al. (2014) produced vesicular stomatitis virus- glycoprotein (VSV-G) 

pseudotyped lentiviral vectors using transient transfection of HEK293T cells and tested 

the impact of pH on LV production. The pH was varied between 6 and 8, and it was 

found that infectious and physical titres were increased by two to threefold at pH 6 

compared to neutral. Valkama et al. (2018) produced LVs with transient transfection of 

adherent 293T cells in a fixed-bed bioreactor. Referencing the findings of Holic et al., 

the authors decided to reduce the pH from 7.2 down to 7 after PEI-mediated 

transfection for some of the runs. The runs with the lowered pH demonstrated the 

highest titres that were achieved, and it was also found to increase the ratio of 

functional LVs to p24 protein. In control flasks without pH control, the pH drifted to 



 173 

values lower than 7 by the end of the process, which indicated the plausibility of 

decreasing the pH in the bioreactor. 

In the data that was analysed in this work, the pH was controlled within a dead band 

with a range of 0.2, and the drift towards low pH at the end of the process occurred 

due to changes in the media composition. The model indicated that high pH was 

favourable up to a scaled time of 70 and low pH was favourable thereafter. Literature 

sources indicate that the pH may be a critical process parameter impacting the LV 

infectious titre.  

Specific glucose consumption and lactate production rates – Glycolysis and 

glutaminolysis are the main sources for energy production in HEK 293 cells (Petiot et 

al., 2015). The specific glucose consumption rate is indicative of the metabolic state of 

the cells, which is known to be highly important for process performance, as the 

energetic state of cell has been linked to viral productivity (Petiot et al., 2015). With 

HEK293 SF cells, the efficiency of glucose consumption has been increased using low 

protein media, which resulted in a 3 to 4-fold increase in adenovirus cell productivity 

(Nadeau et al., 2002).  

The lactate production rate is linked to the glucose consumption rate and depends 

upon the relative activity of the numerous metabolic pathways. Figure 7-12 showed 

that the glucose consumption rate and lactate production rate correlated positively to 

a degree. The activity of the metabolic pathways is also dependent on the composition 

of the media. The concentrations of metabolites, such as glucose and lactate can 

influence the metabolic pathways (Merten et al., 2001; Petiot et al., 2015). Some cell 

lines have been shown to switch from lactate production to lactate consumption during 

the culture and cells consuming lactate were shown to have up to 6 times greater 

energy efficiency than lactate producing cells (Petiot et al., 2015). HEK 293 cells used 

for viral vector production have been reported to shift from lactate production to lactate 

consumption (Le Ru et al., 2010; Nadeau et al., 2000).  

It is clear that the metabolic activity and energetic state of the cells is highly important 

for viral vector production, and that these factors are impacted by the media 

composition, including the concentration of key metabolites, such as glucose, 

glutamine and lactate. The PLS model showed that a high glucose consumption rate 

was favourable throughout the process, particularly in the early to middle phase, where 

the regression coefficients peaked. It also showed that lactate production was 

favourable initially, but quickly transitioned to a negative correlation with the infectious 
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titre; indicating that at the time of transfection high glucose consumption and low 

lactate production was favourable. The ratio of glucose consumption to lactate 

production is related to the efficiency of glucose utilization, and higher efficiency has 

previously been linked to higher cell productivity, which is consistent with the model 

regression coefficients beyond 10 hours into the process.   

Glucose and lactate concentrations – As previously discussed, the composition of 

the media can significantly impact viral vector production. The concentrations of key 

metabolites can influence the activity of metabolic pathways and the efficiency of ATP 

production, which have previously been linked to viral vector productivity. The 

relationship between metabolite concentrations and the rate of their production or 

consumption is relatively complex because of their interdependency. Glucose and 

glutamine are key metabolites utilised for adenosine triphosphate (ATP) production in 

HEK 293 cells, henceforth, it is important that these metabolites do not become 

depleted. In the fed-batch bioreactor process, the concentration of glucose is 

monitored, and glucose is fed into the reactor if the concentration decreases below a 

pre-defined threshold. Glutamine is provided by a slow release compound added to 

the media. 

Additionally, the accumulation of lactate and ammonia at high concentrations leads to 

toxic effects, such as inhibition of cell growth, changes to intracellular pH and cell 

apoptosis (Merten et al., 2001; Petiot et al., 2015). However, small amounts of lactate 

and ammonia added to cell cultures has previously been reported to increase specific 

viral productivity compared to cultures with no lactate or ammonia added (Petiot et al., 

2015). 

Cell concentration and growth rate - The cell growth rate was found to be an 

important predictor variable and correlated positively with the infectious titre, while the 

cell concentration was not found to be an important predictor variable. As previously 

mentioned, cells in the log phase are in the optimal state for viral productivity, which is 

consistent with the model findings (Petiot et al., 2015). This correlation is not always 

found with other types of suspension culture and viral productivity in Lentiviral vectors 

has been shown to be negatively affected if the cell concentration exceeds a critical 

limit. However it appears that this critical threshold is not crossed in the process data 

that is under study (Nadeau et al., 2002; Petiot et al., 2015). In the complex model that 

featured 21 process variables, the cell concentration was found to correlate positively 

with the infectious titre; however, the VIP scores were below 1. This may be because 
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the cell concentration was within a good range for all of the batches and therefore did 

not produce a significant effect on the titre. Alternatively, the metabolite concentrations 

may be acting as an inferential measurement that is representative of the cell 

concentration, due to the metabolite concentrations being more accurate 

measurements than the cell concentration. It was reported that determination of the 

cell concentrations was sometimes affected by aggregation of the cells, thus 

decreasing the accuracy and reliability of the measurement. This also applies to the 

cell growth rate, which was determined numerically from the polynomial interpolation 

of the cell concentration data. 

7.3.2.1 Additional sources of variability 

There is the possibility that key predictor variables for the LV infectious titre are acting 

as surrogate variables for other parameters that are not directly present in the dataset. 

Additional factors that were not part of this analysis include the material lots for cell 

culture media, substrates, producer cells, plasmids and reagents. Furthermore, there 

was no information included from the seed train processing steps. Several authors 

have acknowledged the importance of tightly controlled conditions throughout the seed 

train before the cells are inoculated into the bioreactor (Glassey et al., 2011; Streefland 

et al., 2013). This is because the seed train has been shown to represent a key source 

of variability, where small changes in conditions can impact the condition of the cells, 

leading to variability that is translated through the rest of the process. The seed train 

is a likely source of the variability occurring in the bioreactor-based LV production 

process and in future work it would be beneficial to work include data from the seed 

train in the analysis.  

7.3.2.2 Concluding remarks 

Interestingly many of the aforementioned variables have been shown to influence viral 

productivity in previous studies; however, in the data that was analysed in this work, 

these parameters were highly correlated to one another, as well as to the infectious 

titre. It is likely that some of these parameters have a cause-and-effect relationship 

with the viral titre, although it is difficult to know which parameter(s) is/are the root 

cause, due to the high degree of correlation. Some of the correlations between the 

predictor variables may have occurred by chance, while others are known to be 

physically linked, directly or indirectly. For example, the specific glucose concentration 

and the non-specific glucose concentration have a simple relationship and can be 

expected to correlate to a high degree. Additionally, the glucose consumption rate in 

the middle part of the process can be expected to correlate negatively with the glucose 
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concentration at the end of the process, provided that glucose feeding was consistent 

between batches. These relationships are well understood by process experts. 

However, the impact of culture pH and osmolality on the metabolic activity of the cells 

is less clear and both are linked to the concentration of metabolites in the media. 

Henceforth, decoupling the physical mechanisms and cause-and-effect relationships 

within the data is relatively complex.  

7.3.2.3 Prediction of 50L and 200L infectious titre using model trained with 2L 
batches 

The models that were previously presented were trained on 2L, 50L and 200L batches, 

and then tested on 2L batches, which was determined by the Kennard-Stone algorithm 

used to partition the data. The successful model development using all three scales 

demonstrated that there is comparability between the scales with respect to the key 

process variables that influence the infectious titre. To confirm this observation, an 

experiment was carried out where the 2L batches were used to train the PLS model 

and it was then used to predict the viral titre of the 50L and 200L batches. Figure 7-13 

shows the model fit to the test data, which consists of two 50L batches and two 200L 

batches. The model explained approximately 82% of the variation in the infectious titre 

for the 50L and 200L batches (R2 = 0.82) and the MAE was low at 0.35. The results 

show that performance at the 2L scale can be used to predict performance at the 50L 

and 200L scale, which is further evidence that the processes are comparable. Process 

comparability is highly important for process development and increases the value of 

experimentation at low scale, which is preferable to conducting experiments at large-

scale. Furthermore, if GMP standard LVs are to be produced at a range of scales, it is 

crucial that the product is consistent irrespective of the production volume.  
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Figure 7-13: PLS model fit to the 50L and 200L batches when trained on the 2L batches. 
The R2 and low MAE values were 0.82 and 0.35, respectively, demonstrating that the model 
can predict the infectious titre of the 50L and 200L batches with high accuracy. 

 

7.4 Conclusions 

The bioreactor-based suspension culture process is a scalable manufacturing solution 

for the production of LVs. In this chapter, the process variability and comparability 

between the 2L, 50L and 200L scales was investigated with PCA and the relationships 

between process variables and the infectious titre was explored with PLS regression. 

The PCA model showed that there was a high degree of similarity between the 2L 

batches and the 50L and 200L batches and that the most significant variation that was 

present occurred within each scale. This was most noticeable for the 2L batches, as 

these were the most numerous. The first 5 principal components captured variation on 

a batch-to-batch basis, resulting in a relatively even distribution of the batch scores. 

Small differences observed between the scales was mainly due to differences in air 

overlay and sparge flowrates. Other key parameters such as the specific metabolite 

concentrations, culture osmolality, pH and viable cell concentrations were comparable 

between the three scales. A high degree of correlation was observed between key 

process parameters including the culture osmolality and pH, the cells concentration 

and viability and the specific concentration of oxygen, glucose, glutamate, glutamine 

and lactate. 

Predictive models were developed for the infectious titre and the physical titre of the 

LV product; however, only the infectious titre model demonstrated good model fit and 
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predictive performance. The poor performance of the physical titre PLS model may be 

due to influential factors that are not present in the dataset or it may be the case that 

the variation present in the physical titre data is low with respect to the error of the 

physical titre measurement. Fortunately, the infectious titre is the one that contains 

more critical information because it is a measure of the number of fully infectious virions 

that are produced, rather than both noninfective and infective. The infectious titre was 

modelled successfully with a 10-variable reduced complexity PLS model 

demonstrating good predictive performance (R2 = 0.9, MAE = 0.16) in repeated 5-fold 

cross validation (2000 repeats) and in testing with a hold-out set (R2 = 0.97, MAE = 

0.24). This model was developed using batches from the 2L, 50L and 200L scales, 

further demonstrating that comparability between the scales was good. Additionally, it 

was possible to generate the PLS model by training on the 2L batches and to use this 

model to successfully predict the outcome of the 50L and 200L batches (R2 = 0.82, 

MAE = 0.35). 

The key predictor variables for the infectious titre were found to be the pH, osmolality, 

cell growth rate, the specific concentrations of the metabolites and their rates of change 

in concentration in the media. Literature sources indicate that many of these key 

process parameters have previously been found to influence the performance of 

transient viral vector production processes. As indicated by the PCA model and 

confirmed in the predictive modelling activity, there was significant correlation between 

these key process parameters. Due to the high degree of correlation in the dataset, it 

is difficult to gain a clear understanding of which parameters are the root-cause, driving 

the differences in the infectious titre. Process experts are best placed to understand 

the correlations between predictor variables and to interpret the relationships between 

predictor variables and the viral titre.  

It is likely that further experiments are necessary to evaluate the relationships between 

the influential variables identified in the PLS model and the LV infectious titre. Such 

experiments may prove to be extremely valuable for process and product development 

and would lead to increased understanding of process behaviour. The findings of this 

predictive modelling activity have identified likely candidates, which are influencing 

process performance. This information may be used to guide future experiments to 

gain a deeper understanding of the physical relationships and to confirm the route to 

process optimisation. Through leveraging information contained in historical process 
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data, the modelling activity will thereby have provided an efficient pathway for process 

optimisation and development.
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Chapter 8  

Conclusions and future work 

 

In this work, multivariate data analysis techniques were applied to historical process 

data from the manufacture of LVs, in adherent and suspension cell cultures, and from 

cell drug product manufacturing.  The key manufacturing challenges for each of these 

three processes was described, the main aspects being high levels of variability in 

materials and production methods, and a lack of advanced process knowledge due to 

processes and products being in relatively early stages of development. In the 

chemical and biochemical process industries, MVDA and ML techniques have been 

widely exploited for the development and optimisation of manufacturing processes, 

including for increased efficiency and sustainability. To date, there have been very few 

publications and little publicly available information on the application of MVDA or ML 

in cell gene therapy manufacturing. Although, several publications have described the 

need for such techniques in cell and gene therapy manufacturing.  

Here MVDA was leveraged to produce beneficial insights into the behaviour of viral 

vector and cell drug product manufacturing processes. The datasets from the adherent 

cell culture process for LV production and cell drug product manufacturing were both 

cross-sectional datasets, with two dimensions: variable versus batch/observation. Both 

datasets featured high dimensionality with numerous process variables and relatively 

few batches, which was challenging for model development. The use of latent variable 

methods was key to overcoming high dimensionality and multicollinearity within the 

data.  In order to further simplify the interpretation of principal components, linear and 

nonlinear programming approaches to sparse PCA were developed. The techniques 

presented relatively simple and more accessible alternatives to sparse PCA 

approaches presented in the current literature. After successfully demonstrating their 

performance on benchmark datasets, the mixed integer nonlinear programming 

approach to sparse PCA was applied to the two cross-sectional datasets to carry out 

feature extraction with simplified principal components.  

In viral vector production with the adherent cell culture process, key areas of process 

variability were identified, for example, the cell expansion phase of the process was 

found to contribute significantly to process variability with differences in the production 

volume, total cell count and cell concentrations, which translated to variability in the 
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downstream process. The models provided information on the major sources of 

variability, which could be targeted in efforts to reduce overall process variability. 

Predictive modelling identified likely critical process parameters, such as the sterile 

filter area, which had significant correlations with to the infectious titre and/or infectivity 

of the LV product.  

Process data from manufacturing of the final cell drug product was also analysed, 

where sources of variability and correlations between process variables were 

observed. The LV copy number and percentage of CD34+ cells in the cell drug product 

were modelled using variables from LV production (adherent cell culture) and from cell 

drug product manufacturing as model inputs. Interestingly, a few parameters from LV 

manufacture, such as the temperature of refrigeration during clarification and the 

volume of Ca/Mg added to the LV product formulation, were found to be significant 

predictors of the LV copy number. This demonstrated the ability to model the 

relationship between process parameters and CQAs across numerous unit operations. 

The CD34+ cells percentage and LV copy number were both predicted with high 

accuracy and likely critical process parameters were identified.  

Bioreactor-based suspension culture processes are far more scalable than adherent 

cell culture processes, henceforth they are likely to become more widely adopted for 

GMP manufacture of LVs in the future. Here, online and offline process variables from 

the bioreactor production of LVs were analysed with MVDA. The 3D data, with batch, 

time and variable dimensions presented new challenges compared to the cross-

sectional data. The alignment of temporal profiles of the numerous batches was a key 

challenge and alignment based on the time transfection was found to produce a 

coherent dataset suitable for feature extraction and predictive modelling. Through 

application of PCA, batches at the 2L, 50L and 200L scales were found to be highly 

comparable in terms of key the process parameters. Predictive modelling revealed 

significant correlations between 11 key process variables and the infectious titre. The 

most important predictor variables included the culture osmolality, specific glucose 

consumption rate, glucose concentration, cell growth rate and the specific lactate 

production rate. It was found to be possible to train a PLS model on the 2L batches 

and predict the infectious titre resulting from 50L and 200L batches, based on the 11 

key process variables.  

Overall the models provided insights into process variability, comparability and the 

relationships between process parameters and CQAs of the viral vector and cell drug 
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products. Some findings had already been noticed by process experts, for example the 

sterile filter area used in downstream processing of the LVs was already recognized 

as a likely critical process parameter, and the modelling work supported this 

observation, which was a useful confirmation for GSK. Other findings highlight CPP-

CQA relationships that were previously not recognized and so here the models have 

identified relationships that expand process understanding and have potential to be 

optimised to improve process performance. In the development of predictive models, 

model validation, testing, Y-permutations and bootstrap sampling were carried out to 

evaluate the significance of the relationships identified and to test for the presence of 

chance correlations. This was designed to provide confidence in the models identified; 

however, in some cases it will still be necessary to validate the findings of the models 

through further experiments. This is particularly important because the number of 

batches available was low and there were few repeats of process conditions. 

Nevertheless, the model findings have provided GSK with direction by highlighting 

process-parameters that have a potential impact on CQAs, which can be investigated 

further with a DoE. If the relationships are confirmed, then the process parameters can 

be optimised leading to impactful improvements to process and product. 

In addition to experiments to validate the model findings, in future, it would be 

interesting to apply predictive modelling techniques to a greater number of product 

CQAs. For example, it could be beneficial to model the transduction efficiency in the 

CDP manufacturing process or to investigate whether there is any link between 

manufacturing variables and the levels of impurities in the viral vector and cell drug 

products. The modelling approaches carried out in this work could be used to guide 

the methodology. Furthermore, it would be interesting to investigate the application of 

a wider range of MVDA/ML techniques to see if there are any additional benefits and 

insights that can be gained. PCA and PLS were chosen in this work because of their 

relatively simple model structure, which allows interpretation of variable relationships. 

Other interpretable models that could be explored include K-means clustering for 

feature extraction or regression trees for predictive modelling. 

The linear and nonlinear programming approaches to sparse PCA that were developed 

in chapter 4 could be modified and transferred to a predictive modelling technique, 

such as PLS regression. Regularisation of predictive models is an important area of 

research, since regularisation offers an alternative to variable selection techniques and 
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simplifies the process by combining the model fitting and variable selection procedures 

into one process.  
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Chapter 10  

Appendix 

10.1 Appendix A  
 

 

Figure A1: PCA and sparse PCA scores plots for components 5 and 6. 

 

 
Figure A2: Parallel coordinates plot of variables with positive loadings on component 4 
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Figure A3: Parallel coordinates plot of variables with negative loadings on component 4 

 
 

 
Figure A4: Parallel coordinates plot of variables with positive loadings on component 5 
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Figure A5: Parallel coordinates plot of variables with negative loadings on component 5 

 
 

 
Figure A1: Parallel coordinates plot of variables with positive loadings on component 6 
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Figure A2: Parallel coordinates plot of variables with negative loadings on component 6 
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10.2 Appendix B  

 
Table B1: List of variables included in the basic PLS model for the prediction of the 
infectious titre. The basic model had no transformations applied to the data. In the columns, 
the mean beta coefficient from bootstrap sampling is presented along with upper (95%) and 
lower (5%) confidence intervals. 

Variable Variable position Mean 
beta 

Upper 95% 
confidence 
interval (CI) 

Lower 
5% CI 

Cell concentration at thaw Cell thaw 0.226 0.351 0.071 

Total number of cells  Cell thaw 0.114 0.225 -0.026 

Viability at thaw Cell thaw -0.239 -0.132 -0.338 

Number of cells seeded per 
flask at thaw Cell thaw -0.034 0.084 -0.162 

Volume of buffer 2 used to 
wash cells per flask (mL) First passage -0.066 0.000 -0.133 

Cell concentration at first 
passage First passage -0.043 0.154 -0.221 

Total number of cells  Seeding cell factories 0.310 0.419 0.176 

Total volume of plasmid 1(ul) Transfection -0.288 -0.173 -0.398 

Temperature set to (C) 
Endonuclease 

treatment -0.158 -0.028 -0.264 

Plasmid 1 concentration 
(mg/ml or ug/ul) Transfection 0.047 0.142 -0.063 

Column peak asymmetry 
factor Prep for ion exchange 0.099 0.216 -0.031 

A %B 

Ion exchange 
chromatography -0.281 -0.139 -0.422 

Δ conductivity 

Ion exchange 
chromatography -0.164 -0.067 -0.256 

Volume (L) 
Ion exchange 

chromatography -0.090 0.007 -0.205 

Final pool volume (L) 
Ion exchange 

chromatography -0.069 0.073 -0.185 

Sterile filter area (cm2) Sterile filtration -0.316 -0.220 -0.407 

Pre-filtration volume (ml) Sterile filtration 0.190 0.312 0.049 
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10.3 Appendix C  

This appendix explains how gradients were determined for offline variables in 

Chapter 7. Initially, the 3rd order polynomials were fitted to the offline data using a 

least squares fitting algorithm in Matlab 2019. The form of the polynomial is given 

by (C1) where 𝛿, 𝛾, 𝛽 and 𝛼 are the polynomial coefficients, x represents the 

variable and y is a vector of fitted values. 

𝒚 = 𝛿𝒙𝟑 + 𝛾𝒙𝟐 + 𝛽𝒙 + 𝛼     (C1) 

After the coefficients were obtained from the fitting algorithm, the gradient at each 

point in x was determined numerically by differentiating the polynomial equation 

and substituting the model coefficients into (C2). 

𝑑𝒚

𝑑𝒙
= 3𝛿𝒙𝟐 + 2𝛾𝒙 + 𝛽     (C2) 
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