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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disease that can lead to restricted

or slowed movement, gait impairments and increased risk of falling. Over recent

decades, instrumented gait analysis (IGA) has contributed much to the understand-

ing of gait impairments in PD. Due to the complexity of gait and high clinical

interest a plethora of features have been suggested for gait analysis in the liter-

ature pertaining to several groups such as: traditional spatio-temporal (e.g. gait

speed), frequency domain, etc. A subset of these traditional gait features has been

proposed and validated in PD and older adults as a comprehensive model of gait

comprising five factors: pace, rhythm, asymmetry, variability, and postural control.

Analysis of gait may be grouped into the assessment of two types of variability,

namely, within-subject variability which is needed for personal disease management

and inter-subject variability which is useful in quantifying the overall impact of PD

on gait. Advances in wearable technology have led to much smaller devices (e.g.

accelerometers) being commercially available in conjunction with greatly increased

battery lives to the degree that not only lab-based but also continuous recordings

over 7 days (real-world) are possible. Wearable technology-based gait analysis is

indeed emerging as a powerful tool to detect early disease and monitor progression.

Data recorded as part of the ICICLE-GAIT 1 study provides acceleration data for

over 100 people with PD and age-matched control subjects in both lab and real-

world conditions. These datasets form the basis for the development of a new Phase

1ICICLE-GAIT is a collaborative study with ICICLE-PD, an incident cohort study (Incidence
of Cognitive Impairment in Cohorts with Longitudinal Evaluation—Parkinson’s disease). The
ICICLE-GAIT study was supported by Parkinson’s UK ((J-0802, G-1301)) and by the NIHR
Newcastle Biomedical Research Centre



plot methodology for gait analysis in PD. In this thesis I present a novel methodol-

ogy for both assessing PD and tracking individual disease progression over multiple

timescales. To accomplish this, I introduce a new feature domain, the Phase domain,

based on a particular type of recurrence plot known as a Poincaré plot. Poincaré

plots are sometimes referred to in the literature as return maps, self-similarity plots

or Phase plots. Phase plots were being used in the early 1990s in ECG studies to

produce self-similarity plots of beat-to-beat intervals. This technique proved to be

reliable in detecting atrial fibrillation. The rare instances of its application to other

fields are very limited and do not demonstrate any modification or development

beyond that which has been used in ECG studies for decades. I develop method-

ology for application to gait analysis and, indeed, any cyclical biosignals. In this

thesis I used the data from the ICICLE-GAIT study to demonstrate that with spe-

cific modifications and newly identified features (comprising the Phase domain), this

novel Phase plot methodology is highly applicable to gait analysis within PD and

provides a framework for: (i) identifying and characterising PD and (ii) individual

disease tracking over the years following diagnosis. Throughout these analyses, tra-

ditional gait features serve as an established reference and benchmark. I employ

statistical methods, such as non-linear mixed effects models and Statistical Para-

metric Mapping, to model PD progression and assess the clinical utility of Phase

plots. I also used Discrete-Time Markov chain modelling, longitudinal analyses, and

functional principal components analysis to demonstrate that Phase plots provide

an objective, personalised, and clinically relevant signature of gait. In the case of

PD patients (and controls to a lesser extent) four distinct Phase plot Types emerge

and occur with high within-subject reproducibility, hence the signature interpreta-

tion. Many features within the Phase domain proved to be highly sensitive to the

disease (people with PD versus controls). Using lab-based data, the Phase domain
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features outperformed traditional spatio-temporal features in classifying PD. Each

domain of features performed similarly well in the prediction of MDS-UPDRS 2 (a

useful proxy for PD progression). Specifically, part III of the UPDRS scale was

used as this relates to motor function. In real-world conditions Phase plot features

showed sensitivity to disease state and physical capability across multiple timescales

e.g., daily fluctuations, and also across 18-month follow up time points. The Phase

plot-based signature of gait is validated under lab-based conditions to reflect partic-

ipants’ capacity for gait as well as under real-world conditions as a compact means

of monitoring PD and walking performance through gait.

2Movement Disorder Society Unified Parkinson’s Disease Rating Scale
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Chapter 1

Background

In this chapter we provide a background of statistical and clinical methodologies

within wearable sensor-based gait analysis.

1.1 PD and Instrumented Gait Analysis

Parkinson’s Disease (PD) can lead to impaired/slowed movement, gait impairments

and increased risk of falling. Wearable technology-based gait analysis is emerging

as a powerful tool to detect early disease and monitor progression [1–3]. Normal

gait describes the variety of walking patterns found in healthy populations [4]. Even

healthy subjects’ gait may present us with a degree of variability resulting from

physical differences like age, height and other anatomical factors [5, 6]. Analysis of

gait is complicated by significant intra-subject variability. The same person’s gait

may vary depending on location, activity and on the measurement techniques them-

selves [7]. At a high level of abstraction, analyses of gait may be grouped into the

assessment of two types of variability, namely, the above mentioned intra-subject

variability, and the inter-subject variability. The latter is more relevant to quanti-

fying the impact of disease and pathology on gait. Instrumented gait analysis has
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Chapter 1. Background

benefits including objectivity during unrestricted activities of daily living. However,

there is significant heterogeneity among subjects e.g. demographic, age, height,

weight, comorbidities [8, 9] etc. which require very versatile bio-markers to be de-

veloped for valid tracking of disease progression. Before development of specialist

tools and sensors, gait analysis was limited to using in-person visual observations.

While limited in detail, this was sufficient for clinicians in the 17th century to iden-

tify distinct phases of the human gait cycle based on gait events (GEs) like the

initial contact (IC or heel strike) and final contact (FC or toe-off) [10]. IC and FC

events are still used today for gait segmentation. In the 19th century more detailed

methods of gait cycle segmentation were proposed including the stance (when a

foot is in contact with the ground) and swing (not in ground contact) phases. The

pendulum theory of locomotion was also proposed at this time [11]. This theory

regards the swing phase of gait as an entirely passive phase, where the leg’s motion

can be described as an inverted pendulum pivoting about the pelvis. This theory,

also referred to as the inverted pendulum model, is still used today for calculating

reliable measures of step length and other features in the spatio-temporal domain

[12]. The kinematics of gait (the evaluation of position, velocity, acceleration of

limbs and joints during walking) were later studied using photographic methods.

This was effective for analysing gait but was time-consuming. In the 1890s Braune

et al studied the angular displacement of the lower limbs using an early method of

three-dimensional motion analysis via light-emitting markers [13]. Several methods

were later developed for measuring the kinetics of gait. Note here the kinetics of

gait refers to the forces being applied and acting on limbs during walking whereas

the kinematics refers only to the motion of said limbs. From the 1940s, more con-

cepts of engineering, anatomy and orthopaedics were being brought into the field of

gait analysis. This led to the use of electromyography (EMG) to measure the elec-

2



Chapter 1. Background

trical activity of muscles during walking, and additional means of measuring gait

kinematics including force plates, and accelerometers. Each of these methods have

undergone significant developments over the decades as their respective technolo-

gies have been developed. For example, in the case of accelerometers, devices are

now small enough (see Figure 1.2 for an example) to be worn discretely and unob-

trusively while also continuously recording at frequencies over 100Hz in three axes

of acceleration for over a week without recharging. This particular development

is crucial for objective gait analysis as it allows for subjects to wear accelerome-

ters on their person in free-living conditions. Over recent decades, instrumented

gait analysis has contributed much to the understanding of gait abnormalities and

moreover the study of the physical manifestations of neurological conditions such as

Parkinson’s disease which can be characterised by its impact on walking. Another

well-known method of assessing Parkinson’s disease and, in particular its progres-

sion, is Positron Emission Tomography, also known as a PET scan. This is used to

assess the ability of a patient’s brain to absorb Levadopa, an important compound

for producing dopamine, a neurotransmitter which is reduced in the case of Parkin-

son’s disease. These scans are expensive and may be impractical to repeat regularly

for elderly patients, hence the clinical and research interest in instrumented gait

analysis [14]. Effective gait analysis relies on the combination of both statistical and

clinical methodologies. Two feature domains in particular dominate the literature,

namely the spatio-temporal domain [15] including intuitive and easily interpreted

features such as stride length and cadence, and the frequency domain, which has a

proven utility within PD particularly in those patients with a tremor (shaking), one

of the main symptoms of the disease. In this thesis I present a novel methodology

for both assessing the management of PD and tracking disease progression on an

individual basis over time periods of several years. To accomplish this, I introduce

3



Chapter 1. Background

a new feature domain, the Phase domain, based on a particular type of recurrence

plot known as a Phase plot. Phase plots are sometimes referred to in the literature

as: return maps, self-similarity plots or Poincaré plots. For simplicity’s sake, phase

plot is the chosen term throughout this thesis. Phase plots were being used in the

early 1990s to assess variability in cardiovascular data [16]. In short, a feature of in-

terest would be extracted from each heartbeat in an ECG recording- each successive

feature was then plotted against the feature immediately prior. The spread of the

resulting 2-dimensional cluster of points would then be quantified as a measure of

beat-to-beat variation. This has proven to be reliable in detecting atrial fibrillation

(rapid and/or irregular heartbeats) which can lead to heart failure. Today, ECG

remains the most prevalent application of phase plot analysis. The relatively rare

instances of its application to other fields e.g. EEG [17], and indeed gait analysis

[18], are very limited and do not demonstrate any modification or development of

the phase plot methodology beyond that which has been used in ECG studies for

decades. I assert and demonstrate in this thesis that with specific modifications

and newly identified features (comprising the Phase domain), this novel phase plot

methodology is highly applicable to gait analysis within PD and provides a frame-

work for individual disease tracking over the years following diagnosis, while also

demonstrating the methodology’s sensitivity to day-to-day fluctuations in gait. In

addition, within both of these time scales, Phase plots can quantify and account for

the impact of ageing on an individual’s disease state.

1.2 Wearable Technology for Gait Analysis

Research into gait analysis in biomedical disciplines started with visual systems typ-

ically consisting of multiple cameras synchronised with force plates which capture

ground reaction forces [19, 20]. These systems have been successfully developed
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Chapter 1. Background

but require specialised and expensive gait labs and also rely on substantial post-

processing. Spatial limitations also lead to restricted and unrealistic subject activ-

ity. Wearable sensors, or “wearables”, have offered an alternative which mitigates

several of these issues such as cost but more crucially they allow for deployment into

real-world conditions. Wearables are transforming the clinical research. Wearable

accelerometers, for example, offer a non-invasive and inexpensive means of continu-

ously monitoring the wearer’s activity [21, 3]. These properties of wearables allow for

realistic performance measuring in real-world conditions [2, 3]. Being able to moni-

tor participants in real-world environments during unscripted activities of daily life

(ADL) is a major advantage. Hillel et al [22] showed that there is a substantial

performance gap when comparing gait recorded in scripted lab-based activities with

that of real-world ADL. In general real-world gait can be regarded as a more objec-

tive measure of the wearer’s performance whereas lab-based gait should be treated

as a measure of their capacity for gait [23, 24], i.e. a potentially unrealistic example

of the wearer’s ideal gait performance. Wearable sensors have been shown to be a

robust tool for quantifying gait in lab-based environments [25, 15].

Wearable technology includes sensors from simple accelerometers to Inertial Mea-

surement Units (IMUs) which include gyroscopes (for gathering rotation and angular

momentum data) and Magnetometers which detect absolute orientation (relative to

the local direction of the Earth’s magnetic field). In this thesis we will focus on

the use of a triaxial accelerometer which records the acceleration of force applied

to an object in three directions. Real-world sensor data recorded during unscripted

activities has been shown to be more sensitive to gait impairments such as those

resulting from PD [26, 1, 24]. The accelerometers used to produce the data for the

analyses in this thesis were configured so that these three directions (or axes) where

consistent with the axes of the wearer’s body (see Figure 1.1).

5



Chapter 1. Background

Figure 1.1: The three planes and axes of the body [27]

For a given triaxial accelerometer signal, X, we define X = (x1, x2, x3) where

xj = (xji)
n
i=1 and n is the number of observations in the signal. x1 corresponds to

the medio-lateral (ML or left-right) acceleration, x2 to the anterior-posterior (AP or

forward-backward) signal, and x3 to the dorso-ventral (DV or vertical) signal. This

DV or vertical signal is particularly useful for gait segmentation (distinguishing the

phases of gait) as it is sensitive to gait events like initial contacts, due to the spike

in acceleration caused by the heel striking the ground. An example of this axis of

acceleration during steady gait can be seen in Figure 2.3.
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Chapter 1. Background

Figure 1.2: An accelerometer sensor- Axivity AX3.

1.3 Thesis Contributions

The main contribution of this thesis will be to introduce a novel domain of gait

features, the Phase domain, based on a modified Phase plot methodology. While

simple Phase plots have previously been constructed from accelerometry in PD, no

attempts have been made to adapt the technique for accelerometry and the number

of Phase domain features in the literature remains limited.

We will validate this domain’s clinical relevance and utility in monitoring Parkin-

son’s Disease (PD) progression via wearable accelerometer sensors.

In addition to demonstrating the utility of the features in monitoring of PD, we will

also show that these adapted Phase plots represent a reproducible and individual

signature of gait.

As part of validating this modified Phase plot methodology, we will provide a frame-

work by which Phase plot analysis could be applied to various periodic bio-signals.
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This will in turn greatly expand the clinical application of Phase plots, which has

previously been almost exclusively limited to ECG analysis.

Given the novelty of the features comprising the Phase domain, it is appropriate

to incorporate traditional features into this thesis. Established features of the well-

known Spatio-temporal (ST) [15] domain serve as a reliable reference throughout our

assessment of the Phase domain. These previously validated features also provide

a benchmark for quantifying the Phase domain’s performance in various contexts.

By comparing with traditional features in this way, we will demonstrate that the

Phase domain and the associated Phase plots provide a compact summary of gait

with performance comparable to that seen in the ST domain, and in some cases

even better.

Environment, or recording setting, is a recurrent them in gait analysis with clear dis-

tinctions being made between controlled lab-based environments, in which scripted

gait tasks are conducted, and real-world environments, where gait is recorded in the

context of unscripted ADL. We investigate the performance of both Phase and ST

domain features in both of these contexts.

The presence of ADL in real-world settings is a source of substantial heterogeneity

and variability among subjects. To address this we also incorporate activity levels

in our analyses and assess the effect of activity on the distribution of gait features.

Disease classification, or the ability of a feature domain to discriminate PD subjects

from Controls, is assessed throughout to demonstrate the Phase domain’s clinical

utility.

A key property of the Phase domain is the compactness of the associated Phase

plots. We aim to validate these Phase plots as representing a reproducible and per-

sonal signature of an individual’s gait.

Traditional features (e.g. ST domain) are an invaluable reference throughout our

8



Chapter 1. Background

analyses. However, as well as benchmarking the performance of Phase domain fea-

tures, we also demonstrate that the Phase domain is indeed providing additional

information not accounted for in the ST domain.

Due to the demographic typically associated with PD, the impact of ageing cannot

be ignored. By including age-matched controls we will more accurately quantify the

sensitivity of Phase domain features, and the progression thereof, to pathology while

controlling for the ageing process. Healthy ageing represents an area of high clinical

interest, we will perform longitudinal analysis to assess the interacting effects of PD

and ageing i.e. the degree to which PD is accelerating the natural ageing process.
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Chapter 2

Phase Plots

In this chapter, we define a novel Phase Plot methodology for feature extraction

from periodic signals such as accelerometry recorded during steady-state walking

(gait). The methodology presented here is applicable to any periodic signal and,

unlike previous applications, does not require any prior extraction of features.

At the centre of this novel feature extraction is the fitting of conic sections (2.1)

to either full or partial phase plot orbits (see Figure 2.4 for an example) allow-

ing for highly detailed assessment of asymmetries and variances in the associated

physical system which in this case is individuals’ walking. Asymmetries in gait are

of significant clinical interest in the case of gait disorders and various neurological

conditions including Parkinson’s Disease (PD). Equation (2.1) shows the general

Cartesian form of a conic section with real variables (x, y) and coefficients a-f with

at least one of a, b, c non-zero.

ax2 + by2 + cxy + dx+ ey + f = 0 (2.1)

10
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2.1 Definition

Given a signal h(t) over times t = 1, 2, ..., n which exhibits periodicity, a phase

plot of h(t) is essentially a scatter plot of y(t) against x(t) where y(t) and x(t) are

defined as in 2.2. A smoothed curve can be found via interpolation to produce a

continuous orbital plot. In this definition, a parameter ν is required which reflects

the periodicity of the signal. For example, in the case of human gait data ν can be

chosen to segment adjacent gait cycles [28], or if h(t) is an ECG signal ν is chosen

to segment adjacent sinus rhythm waveforms, often referred to as R-R cycles [29].

In general we can denote our data as:

D = {x(t) = h(t− ν), y(t) = h(t), t = 1, ..., n} (2.2)

Phase plots offer a method of embedding data into higher dimensional state

spaces. Within this thesis, a phase plot formed of gait accelerometry is defined as

the graph of x(t) vs y(t) as defined above, along with their associated interpolated

curve. In general these are recognisable as clusters of ellipses such as in Figures 2.4,

2.3 and 2.12. Feature extraction is performed on these clusters and their respective

constituent orbits.

2.1.1 Examples

ECG (ν = 1 case)

Take an ECG signal which includes approximately 22 full sinus waveforms (see

Figure 2.1). Let ht, t = 1, ..., 22 be the duration of the waveforms. In this case we

have a single feature per cycle in the data and as such we take ν = 1. The phase

plot in this case is simply a plot of each waveform duration ht as a function of the

previous i.e. x(t) = ht−1, y(t) = ht, t = 2, ..., 22. Although simple, this method has

11
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been used repeatedly in the literature [30, 31, 29]. In general, however, few features

can be extracted from phase plots constructed this way and only two are discussed

in any detail. These are the standard deviations along the axes defined by the lines

y = ±x (provided in Figure 2.2). This is an example of a phase plot formed from

cycle features rather than the signal itself. As a result, no orbits or dynamicacy is

exhibited in phase plots derived in this manner and further analysis is limited to

single two-dimensional cluster analyses.

Figure 2.1: Example ECG data with
clear R-R intervals.

Figure 2.2: Fig. 1. An example Poincaré
plot. The standard deviation of the dis-
tance of the points from each axis deter-
mines the width (SD1) and length (SD2)
associated with the Poincaré plot.

Poincaré plots are a particular type of recurrence plot which are sometimes re-

ferred to in the literature as: return maps, self-similarity plots or Phase plots.

Accelerometry (ν 6= 1 case)

Now let h(t) be the vertical acceleration signal of a subject’s centre of mass (CoM)

during steady state gait as shown in Fig 2.3. We aim to form a phase plot of the

original periodic signal itself, rather than of features derived from it. Some prepro-

12
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cessing is required before plotting is possible. Most importantly, the accelerometry

of all gait cycles are numerically interpolated to ensure they each consist of the same

number of data points. This ensures a constant value of ν can be applied throughout

the signal. For example, a subject walking with an initial contact (IC) or heel-strike

frequency of 2Hz would yield a ν value of approximately 100
2

= 50 assuming 100Hz

accelerometer sampling.

Remark. The sequence of cycle lengths can be easily recorded prior to numerical

interpolation so no information loss is caused by constraining all cycles to be of

equal duration.

Taking the two example cycles (adjacent) of this signal in Figure 2.3 we can

construct the simplest phase plot consisting of a single orbit as shown in Fig 2.4.

Repeating the process for all available cycles in a bout of walking completes the

phase plot (see, for example, Figure 2.12). The centres of successive orbits within a

complete phase plot oscillate about the line y = x, similarly the inclination θ of each

orbit from the x-axis oscillates about π
4

radians (45◦). This oscillation is introduced

by differences in subjects’ alternating (left-to-right) gait cycles.

Remark. These orbital phase plots are far richer in terms of features and infor-

mation but require context-specific pre-processing. Non-orbital phase plots (as in

Figure 2.2) are simpler in this respect but offer less insight into the physical system.

Esser et al [18] constructed phase plots from the vertical CoM excursion. Opt-

ing for vertical acceleration rather than excursion (deviation in height) avoids the

issue of integration drift when estimating vertical position via double integration of

acceleration signals.

13
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Figure 2.3: Vertical accelereation signal
(smoothed) recorded from waist-worn
device. Two adjacent gait cycles high-
lighted.

Figure 2.4: Simple Phase plot consisting
of a single orbit formed of two adjacent
gait cycles shown in Fig 2.3

2.1.2 Meaning of a Phase Plot

Phase plots are closely related to the assessment of variability and autocorrelation

of a signal on various scales, such as cycle-to-cycle or across larger intervals. In fact,

a set of lagged phase plots can form a complete description of the autocovariance

function [29]. The vast majority of relevant literature only concerns non-orbital

phase plots in the context of ECG signals, which do not generalise in terms of inter-

pretation and inference. Broadly speaking however, features and variation thereof

along the y = x axis correspond to long-term variations in the system while those

along y = −x correspond to short term (cycle-to-cycle) changes in the system. In

the case of orbital phase plots we instead consider the variation of orbits’ major and

minor radii lengths (see following section on Conic ellipse models) as respectively

corresponding to long and short term change in the system. Further interpretation

depends largely on the physical system in question as well as the choices of prepro-

cessing and segmentation (how we define the boundary between cycles) which are

not standardised.

While phase plots are mainly to be found in the context of ECG studies, the
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methodology has been applied to gait signals, but only to vertical excursion signals

and without conic, or indeed any kind, of model fitted to the data to exploit the cyclic

nature of gait. Ellipses have been used in the context of phase plot analysis but only

as a visual aide and to illustrate two commonly extracted features, SD1 and SD2

[18, 29]. This approach is very limited and often inappropriate in the case of more

complex phase plots which do not exhibit consistently elliptical orbits. Although

work has been done to augment these features such as that by Fishman et al [32] who

introduced temporal Poincaré variability (TPV) to compliment traditional Poincaré

analysis, the bulk of the literature concerns only SD1, SD2 and their ratio which,

as previously explained often produce an over simplified and impractical measure

of temporal variability in complex physical systems. Many previous applications

of phase plots or Poincaré analysis would have lent themselves very well to ellipse

fitting with the neccesary pre-processing steps. As we will demonstrate for the

case of accelerometry, such pre-processing allows for ellipse fitting and analysis by

preserving the elliptical form of the data rather than summarising each cycle with

point values as is common practice within ECG studies. This allows for much more

detailed features to be extracted and for complexities of the associated physical

system(s) to be reflected in the phase plot. In the case of accelerometry, this leads

to a unique subject-specific phase portrait or fingerprint of subjects’ gait.

This shift towards individualised analysis is of great clinical interest. The valid

application of gait analysis at the level of the individual is vital for informing clinical

decision-making. A small number decision support tools (DSTs) and medication

change proposers (MCPs) have been proposed for management of PD using wearable

technology [33].
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2.2 Conic Ellipse Models

After computing the phase data we can take the general orbit such as the one in

Figure 2.4 and define our data D as in equation (2.2). We propose a novel method of

characterising phase plots based on the fitting of ellipses to orbital phase plot data.

We can define the general ellipse with radii, r1, r2 centred on (g, k) using equation

(2.3). Using this method intriduces parametrisation dependence but also has the

benefit of simple geometric interpretation.

(x− g)2

r21
+

(y − k)2

r22
= 1. (2.3)

In general, ellipses fitted to phase plot orbits have a non-zero inclination, θ. For this

reason, we introduce the rotated coordinate system:

x′ = (x− g) cos(θ) + (y − k) sin(θ),

y′ = (y − k) cos(θ)− (x− g) sin(θ).

From this we derive the equation of an ellipse rotated anti-clockwise by θ about its

centre

((x− g) cos(θ) + (y − k) sin(θ))2

r21
+

((y − k) cos(θ)− (x− g) sin(θ))2

r22
= 1. (2.4)

The representation (2.4) is equivalent to the conic representation (2.1) subject

to the constraint f = 1. The constraint a − c = 1 is also possible. However in the

context of fitting ellipses, the former choice is less prone to eccentricity bias [34]. In

short, eccentricity bias is the tendency of conics fitted to elliptical data to favour
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regions of low curvature where the cost function is steeper.

The conic form of the ellipse equation is more convenient in terms of estimation

but does not have a clear geometric interpretation. We show in Section 8.3.1 that

the angle of inclination θ is related to the conic coefficients by

θ =
arctan( c

b−a)

2
. (2.5)

After finding estimates of Â = (â, b̂, ĉ, d̂, ê)′ we can calculate estimates of r1, r2, g,

and k by expanding equation (2.4) and equating coefficients with conic definition in

equation (2.1) (see full working in Appendix 8.3.1).

2.2.1 Estimation

We aim to estimate A = (a, b, c, d, e, f)′ in equation 2.1 using the data as defined in

2.2. Ordinary least squares is sufficient, however a suitable normalising constraint

must be made to avoid the trivial result Â = 0. Two common methods are to

set a − c = 1 or f = 1. Throughout these analyses the latter (f = 1) is used as

this has been shown to be less prone to eccentricity bias, which occurs due to the

cost function having greater slope in regions of low curvature. In the case of more

eccentric phase plot orbits, this can lead to fitted ellipses favouring the linear regions

of the data parallel to the major axis rather than the vertices. We define the model

as in Equation (2.1) which, with the added constraint f = 1, can be written as

XA + 1 = 0 (2.6)

where X is the n by 5 design matrix with columns x2i , y
2
i , xiyi, xi, yi for i = 1, ..., n

and 1 is the 1-vector of length n. The following least squares objective function is
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popular within the literature

Cs =
n∑
i=1

ε2i = (XA + 1)T (XA + 1). (2.7)

where εi is the distance of each data point i from its associated fitted value. Min-

imising the above objective function leads to following

Â′ = −1TX(XTX)−1

Despite the choice of normalisation constraint (f = 1), the above least squared

error (LSE) methodology is still prone to eccentricity bias and is also not guaranteed

to produce an ellipse i.e. a conic estimation satisfying the condition c2 − 4ab < 0.

Alternatively, we can carry out the estimation step subject to this constraint how-

ever, it will prove useful to instead fit conics without enforcing this constraint and

record instances when it is violated on a per subject basis. In this novel methodology

and application, we cannot assume all phase plots constituent orbits are necessar-

ily well-modelled as an ellipse and as such it would be inappropriate to apply this

constraint. In the rare case of non-elliptical conics being fit to Phase orbits, these

conics are not used feature extraction. This issue is related to goodness-of-fit and is

covered in a later section. It should be noted that, despite the method of estimation

presented here, the parametrisation of an ellipse and the fitting of an ellipse to data

are essentially unrelated issues.

Error functions

Conic sections are often visualised as the intersection of a plane with one or two

cones as shown.

For the purposes of fitting conics to elliptical data, fitting values of A = (a, b, c, d, e)′
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Figure 2.5: The three possible conic sections shown as the intersection of a plane
with cones. The circle is a special case of an ellipse with eccentricity equal to zero.

as in 2.1 corresponds to estimating the function whose intersection with the plane

z = 0 minimises the cost function given in Eq. 2.7

Figure 2.6: The fitted ellipse (red) corresponding to 2.1 with f = 1 fitted to data
(blue).

As previously mentioned, ellipses fitted in this way are prone to eccentricity

bias. This is due to the relatively high gradient of the cost function in regions of the

ellipse with low curvature. This is best shown in contour plots (see below) where

the contours near regions of high curvature are more spaced out. The example
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below demonstrates how the fitted ellipse may deviate more readily from those high

curvature regions of the data, hence resulting in an eccentricity bias which can be

either positive or negative.

Figure 2.7: Contour plot of conic fitted in 2.6 showing considerably higher gradient
in regions of low ellipse curvature

Other error functions are available which can mitigate this bias in ellipse fitting.

For example, we may weight the previous cost function 2.7 by the inverse of the

magnitude of its gradient, |∇(Cs)| resulting in a new error function given by the

surface in Figure 2.8 and the contour plot 2.9.

The ability of this non-standard error function to mitigate eccentricity bias is

again best shown in a contour plot where we can see the contours are being pulled

in near high curvature regions (see Figure 2.8).
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Figure 2.8: A non standard error function for conics, altered to mitigate eccentrity
bias in regions of high curvature

Figure 2.9: Contour plot of 2.8 showing increased gradient in regions of high curva-
ture to reduce eccentricity bias
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2.2.2 Goodness of Fit

Regardless of estimation method and objective function, the goodness of fit of esti-

mated conic sections is important to monitor in this new methodology. The average

radial distance is an intuitive measure of goodness-of-fit of the conic section model

to phase plot data.

The following function can be evaluated on a per phase plot basis and used to

compare the goodness-of-fit of conic models. It it based on the radial distance of

the data points from the fitted ellipse.

Gr =
n∑
i=1

ε2ri =
n∑
i=1

|pi − f(A, pi)|2 (2.8)

where pi = (xi, yi) and f(A, pi) is the point on the ellipse intercepted by the

ray originating from the centroid of the ellipse defined by A and passing through

pi. Using this radial distance in the context of conic sections has been mentioned

briefly by Rosin et al [34]. These rays are shown in Figure 2.13. After defining

this radial goodness of fit measure, it may be temping to use a similar method to

perform ellipse fitting. One significant issue with this approach would be that the

previously mentioned eccentricity bias would not be addressed.

Remark. When plotting an ellipse and radial rays it is helpful to note the relation

between the parameter θ in (2.4) and the actual angle from the x-axis φ, which is

given by:

φ = tan−1(
m

M
tan(θ)) (2.9)

where m and M are the semi-minor and semi-major axes of the fitted ellipse

respectively.

Anatomical factors such as height may impact the scale of phase plots so to make
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Figure 2.10: Ellipse (red) fitted to gait data (black) with radial distances (absolute)
showing the distances used to calculate radial GoF

this measure of fit is consistent across different scales the following function based

on the proportional radial distance is used.

Grp =
n∑
i=1

ε2rpi =
n∑
i=1

|f(A, pi)|/|pi|2. (2.10)

Conic sections as defined in 2.1 can take any of three non-degenerate forms

(ellipse, hyperbola or parabola) based on the value of the discriminant, c2 − 4ab.

The condition for an elliptical conic is

c2 − 4ab < 0 (2.11)

This constraint can be incorporated into fitting procedures to ensure that every

fitted conic is an ellipse however this leads to volatile values of derived features

It is not certain that all phase plot orbits are well-suited to an elliptical conic

model. Some phase plot orbits with particularly high eccentricity may yield a better
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Figure 2.11: Geometric relation between argument of data point and closest point
on fitted ellipse.

goodness-of-fit (2.10) for a hyperbolic or parabolic conic. Instead of constraining

all conics in this way, we instead reject non-elliptical orbits’ features from further

analysis and also record the proportion of non-elliptical conic fits per-phase plot as

an additional empirical measure of goodness-of-fit.

2.2.3 Primary Features

Primary features are those derived from available ellipses fitted to complete orbits

within a phase plot and are each defined in terms of the parameters of Eq. (2.4).

Each of these features have intuitive geometric interpretations: Area and γ (ec-

centricity) are simply the area and eccentricity of the fitted ellipse. As we have
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Figure 2.12: Complete phase plot com-
prising 7 continuous gait cycles

Figure 2.13: A single orbit taken from
Fig 2.12 with fitted conic (ellipse) - red.

seen Phase plots generally take the form of two adjacent clusters of ellipses. These

two clusters are easily distinguished by labelling during the construction stage as

successive orbits become associated with each cluster in an alternating manner.

The relative location and orientation of these clusters forms the basis of several

asymmetry-related features within the Phase domain. In the case of full-orbit fit-

ting for Primary features, we have Asyθ and AsyArea which are the average differences

in ellipse angle (θ) and ellipse area between alternating ellipses. GoF is simply the

reciprocal of the arithmetic mean of the distances shown in Figure 2.13. SDr1 and

SDr2 are measures of the semimajor and semiminor axes of the ellipses and are sim-

ilar to the measures SD1 and SD2 generally extracted as part of Poincaré analysis

[18].
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Primary
Features

Description

Area Fitted ellipse area equal to πr1r2 where are r1 and r2 are
the radii of the ellipse as defined in (2.4)

γ Eccentricity of the fitted ellipse equal to
√

1− r22
r21

.

Asyθ Obliqueness. The relative inclination of adjacent fitted el-
lipses.

AsyArea The ratio of the areas of adjacent fitted ellipses. Averaged
over a full phase plot.

GoF The goodness of fit of the conic section model fitted to the
phase plot 2.13.

SDr1 The standard deviation of the semi-major axis (r1) of the
fitted ellipse. This is analogous to the measure SD1 which is
regularly cited within ECG studies incorporating Poincaré
plots

SDr2 As above for the semi-minor axis r2.

Table 2.1: Phase-plot-derived features from conic parametrisation. *Asymmetry in
this context refers to mean absolute difference between features of ellipses derived
from left or right step cycles. † features extracted from an ellipse fitted to a full
cycle of the original phase data.

2.3 Partial Orbit Fitting

Many phase plot orbits exhibit asymmetries and non-elliptical behaviour in that

curvature is not consistently reflected about their semi-major and semi-minor axes.

For this reason, in addition to the previously described ellipse fitting we also derive

secondary features by segmenting orbits of phase plots and fitting partial ellipses

to the resulting segmented data or half orbits. Phase plot orbits are segmented, or

halved, in two ways based on their semi-major or semi-minor axis (found from the

ellipse fitted to the full orbit). We refer to these as Type I and Type II features

respectively. Both types are still subsets of the secondary features.
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2.3.1 Type I

Here we create two half-orbits by partitioning a complete orbit about its major axis.

We then fit a separate conic section to each half of the cycle as partitioned by the

major axis of the originally fitted ellipse.

Figure 2.14 Figure 2.15

2.3.2 Type II

Here we fit a separate semi-ellipses similarly as above but partitioned by the minor

axis of the originally fitted ellipse.

Figure 2.16 Figure 2.17
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Partitioning and fitting semi-ellipses in this way addresses the issue of asymmet-

ric or inconsistent curvature and adds a large number of potential features such as

those in Table 2.2.

2.3.3 Secondary Features

Secondary
Features

Description

Asyγm Asymmetry in eccentricity of ellipses fitted to gait cycle
after minor axis partitioning Fig 2.16 and Fig 2.17.

AsyγM Asymmetry in eccentricity of ellipses fitted to gait cycle
after major axis partitioning Fig 2.14 and Fig 2.15.

Asyθm As above with ellipse inclination θ in place of eccentricity
γ.

AsyθM As above applied to major axis cycle partitioning
AsyAream Proportional asymmetry of ellipse areas following minor

axis partitioning
AsyAreaM As above following major axis partitioning
GoFm The radial goodness of fit of the conic sections to the phase

data after minor axis partitioning (2.10).
GoFM As above applied after major axis partitioning.
SDGoF The standard deviation of radial goodness of fit measures

from all conic sections (fitted to full and partial cycles)
through out a bout of walking.

Table 2.2: Phase-plot-derived features from conic sections fitted to partial phase
cycles. Proportional asymmetry is used when reporting asymmetry in partial ellipse
area asymmetries as absolute differences in area are likely highly correlated with
physiological factors such as subject height

In total there are 16 features extracted from a phase plot (7 primary and 9 sec-

ondary). The 16 features of the Phase domain will be extracted from both lab-based

(Chapter 4) and free-living (Chapter 5) datasets of participants’ gait accelerome-

try. In addition to these Phase domain features, we all extract features of the

well-established spatio-temporal (ST) domain consisting of 15 features. These tra-

ditional features provide an excellent reference against which the clinical relevance
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of the Phase domain can be assessed. The ST domain and its associated features

are described by Del Din et al [15]. Features within the ST domain, e.g. step length,

step velocity, stride asymmetry etc are already valid biomarkers of physical capa-

bility. Secondary features of the Phase domain are not as intuitive and may not

be as easy to visually gauge as the primary features. Take Asyγm for example, this

should be read as the asymmetry (absolute difference) of γ (eccentricity) between

the two conics fitted to a Phase plot orbit following partitioning about the minor

axes (hence the lower-case m-subscript). Similarly for AsyγM ,Asyθm ,AsyAream etc.

GoFm is the goodness-of-fit of the conic section to each of the resulting partitions

while SDGoF is the standard deviation of all primary and secondary GoF measures.

Note the different interpretations of asymmetry within the Phase domain and

ST domain. For ST features, asymmetry refers to the magnitude of the difference in

feature values associated to the left and right legs respectively whereas within the

Phase domain asymmetry refers to absolute differences in features associated with

successive orbits within a given phase plot. As demonstrated in figures 2.18 complete

phase plots generally exhibit two clusters of ellipses with some degree of obliqueness.

The asymmetry related features defined in 2.2 are calculated by extracting features

on a per orbit basis and taking the absolute difference in mean values associated with

orbits whose centroids are above and below the main diagonal y = x respectively.
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Figure 2.18: Example phase plots of type PW and OW.

We have manually featurised Phase plots to produce the previously listed pri-

mary and secondary features. These features were chosen partly to summarise the

variation seen between participants’ phase plots. Future studies may benefit from

automating this process although this would likely be at the expense of the intuitive

geometric interpretation of the features presented here.

2.4 Feature Interpretation

Phase plot features have the advantage of unambiguous geometric interpretation.

For example, a phase plot whose orbits have generally high eccentricity is clearly

distinguishable from one whose orbits are low in eccentricity. This is in contrast to

more well-known features in the spatio-temporal domain whose intuitive interpreta-

tion is physical e.g. step lengths/durations which are easily observable.

Previous studies have not presented detailed interpretations of the features of

phase plots or following Poincaré analysis, rather they explain that variation in

the minor axis direction corresponds to short-term variation and in the major axis
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direction corresponds to longer term variation. There are important nuances in these

interpretations however, they assume that the phase plot has been constructed using

point values rather than adjacent cycles as in this novel approach.

In the first instance, it is helpful to interpret newly developed features in terms

of previously established features and relevant biomarkers. In our case, gait ac-

celerometry in a PD cohort, we can calculate spatio-temporal features as a reference

throughout analysis of the newly derived primary and secondary features.

SDGoF is a measure of the variation in goodness-of-fit of the different ellipses

fitted to different components (partitions) of a given phase cycle. Higher values

imply that there exist multiple components to the phase cycle(s) in question which

are elliptical themselves but that the complete orbit is not.
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Data and Methods

3.1 Data

The data in these analyses are taken from 203 participants of the “Incidence of

Cognitive Impairment in Cohorts with Longitudinal Evaluation-GAIT” (ICICLE-

GAIT) 1 study [25]. Among the included participants, 92 were people with early

PD diagnosed according to the UK Parkinson’s Disease Brain Bank criteria by a

movement disorder specialist [35] and 111 were healthy control subjects (CL). Ethi-

cal approval was obtained from the “Newcastle and North Tyneside research ethics

committee” (REC No. 09/H0906/82). All subjects gave written informed consent

before participating in this study. In addition, all the methods and experiments

were performed according to the declaration of Helsinki.

1ICICLE-GAIT is a collaborative study with ICICLE-PD, an incident cohort study (Incidence
of Cognitive Impairment in Cohorts with Longitudinal Evaluation—Parkinson’s disease). The
ICICLE-GAIT study was supported by Parkinson’s UK ((J-0802, G-1301)) and by the NIHR
Newcastle Biomedical Research Centre
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3.1.1 Demographic and Clinical Data

Participants’ demographic characteristics such as age and height were recorded.

Severity of the PD motor symptoms was assessed using part III of the modified

version of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) [36]. The UPDRS score is available only for PD subjects and serves

as a valuable proxy for disease progression. The measure is calculated based on

both motor and non-motor features and is designed to characterise the extent and

burden of disease during ADL. All of the data are summarised in Table 3.1.

Demographic/measure CL PD

n 111 92
M/F 53/58 58/34
Age 71.1± 6.9 68.2± 9.8

Height 1.7± 0.1 1.7± 0.1
MDS-UPDRS - 32.7± 10.2

Table 3.1: Demographic and clinical data summary.

3.1.2 Experimental Design and Protocol

Participants were instructed to walk at their preferred pace on a 10 meter walkway.

Gait was sampled at 100Hz using a discretely worn accelerometer (see Figure 1.2)

located at the lower back, specifically at the L5 vertebra. Participants completed

four walks on a straight 10 metre walkway Figure 3.1. PD participants were assessed

while in a clinically defined “ON” state, meaning their symptoms were generally un-

der control at the time of recording. All 203 participants were also assessed in a

real-world setting, completing normal ADL for 7 days while wearing an accelerome-

ter which continuously sampled three perpendicular axes of accelerometry at 100Hz.

Once returned, the data from these sensors was downloaded and fifteen traditional

spatio-temporal (ST) gait characteristics were derived [15]. Sixteen Phase domain
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features were also derived for all the gait data and will be presented in chapter 4.

Features from both ST and Phase domains were each aggregated and are expressed

as their per-bout averages. The above protocol is conducted at baseline, which can

be defined as any time within six months of receiving an official PD diagnosis, and

is then repeated at 18-month intervals resulting in gait data at 0, 18, 36, 54, and

72 month timepoints. As part of the lab-based experiment design, participants also

completed longer continuous bouts of walking on a 25m oval-shaped walkway. These

bouts and hence the associated accelerometry include a large proportion of exclu-

sively right-hand turning between portions of straight line walking. Many of the ST

features as well as the novel phase domain features are associated with asymmetries

in gait and PD itself is known to have asymmetric physiological manifestations. For

these reasons, the straight line intermittent bouts of walking form the focus of the

lab-based analysis. Real gait does of course consist of turning and this will be re-

flected in the analysis of real world gait data for which we will make the reasonable

assumption of no left or right preference in turning.

Inclusion criteria Two inclusion/exclusion criteria were implemented. Firstly,

we only include participants who had available both lab and real-world data at one

or more timepoints. Secondly, accelerometry data recorded at baseline (PD diagnosis

±6 months) was excluded. This decision to not include baseline data is due to a

different sensor configuration being used at participants’ first visit. Considerable

unknown variability may be introduced in the baseline recording. For example,

the state of an individual’s disease and hence the degree of impact of PD on their

gait is a highly complex phenomenon and can depend on several factors including

lifestyle. In particular, the impact of PD on a person’s gait will depend largely on

the suitability of their individual medication regime (dosage, frequency, timing) and

how strictly they abide by it. Omitting the baseline timepoint gives credit to the
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assumption that each of the participants present in the PD cohort are in a stable

routine with regards to their individual medication regime having lived with the

disease and presumably having regular check ups for approximately 18 months. this

is in addition to bypassing any bias introduced by the alternate sensor configuration

at baseline.

Figure 3.1: ICICLE-GAIT2 protocol

3.1.3 Data Processing

The general bout of walking can be segmented as gait initiation followed by steady-

state gait followed finally by gait termination. To allow for valid comparisons the

steady-state section of bouts is where we focus our analyses. This is an important

part of data processing as PD can have a significant impact on gait initiation and

termination. This specific impact of the disease on the individual’s gait initiation

and termination is the subject of many clinical studies [37] [38] and bespoke features

e.g. TUG (timed-up-and-go) [39]. To remove any such complication the first and

last three step cycles from each bout of walking [15] are removed. This trimming of

bouts is carried out on all real-world bouts as well.

Gait detection and segmentation (identifying periods of valid walking) in the

case of real-world accelerometry was performed in MATLAB R© (R2015) and fol-

lowed the process flow outlined by Hickey et al [40]. This process was validated
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in healthy participants who wore a body-mounted camera which was synchronised

with a wearable accelerometer to provide objective context during real-world con-

ditions. This gait detection process was carried out prior to extraction of ST and

Phase domain features.

3.2 General Analysis Aims and Hypotheses

Throughout the majority of the analyses in this thesis, the control subjects serve as

an age-matched reference by which the PD subjects can be assessed. Similarly, the

traditional ST feature domain, which has been validated in a number of studies [15],

[41], serves as an excellent standard against which the novel Phase domain of features

can be assessed. We aim to demonstrate the utility of the novel Phase domain of

features for the monitoring of PD via gait accelerometer-based gait analysis.

As well as the general theme of comparison between PD and CL subjects, there

is also significant clinical interest in within-group and within-subject comparisons.

Specifically, rather than simply comparing PD with CL, we will compare PD at time

t with PD at time t+1 etc. This clinical interest comes from the need to monitor

disease progression. Given the age range of the participants, analyses are prone to

complications caused by comorbidities and other age-related sources of variation.

Again, the inclusion of age-matched controls can help account for this and also shed

some light on the degree to which a PD patient’s decline may be attributable to

the effects of ageing rather than direct results of PD. The longitudinal design of

the experiment and protocol allow us to assess the feature domains in their ability

to assess PD gait over multiple time scales: single bouts, days etc. and to predict

disease progression over time scales of several years.

For each feature domain we will assess how lab-based gait data compares with

real-world data when detecting PD or assessing PD progression. Real-world data
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introduces a huge number of unknown factors due to the potential variety of ADL.

While lab-based data cannot be expected to fully represent an individual’s typical

ADL, the controlled environment and scripted gait tasks do have the advantage of

reproducibility and more straight forward between-subject comparisons, as lifestyle

related factors have been largely removed. We will investigate if any particular fea-

tures within either domain are generally masked by the strictly controlled lab-based

setting. We will, for example, see which combination of features and environment

best predict the PD subjects’ UPDRS score e.g. Phase features in lab setting, ST

in real-world, or some combination etc. Throughout these analyses it is important

not to assume that lab-based can be seen as a subset of real-word gait i.e. a straight

10m walk in a real word setting is not necessarily comparable to the lab-based 10m

walk.

There are several properties of gait Phase plots that we will demonstrate to val-

idate its interpretation as a signature of gait. Firstly, we require reproducibility of

Phase plot type across environments and between bouts at a given timepoint. Sec-

ondly, we will demonstrate sufficient between-subject variability that the signature

offers enough detail to inform decisions at the level of the individual. Lastly we will

show that this signature is clinically relevant - the established ST domain will be

used to demonstrate that an individual’s Phase plot type is of clinical interest and

that any changes to this signature likely represent a change in physical capability

and/or disease state.

3.3 Methods

Statistical t-tests are used for between group differences (PD vs CL). Prior to t-

tests, the distribution and characteristics of features from both domains will be

assessed, and transformed if need be, to better satisfy the assumptions of t-tests e.g.
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normality and homogeneity of variance. In addition to transforming the data we

will also include a Bonferonni correction where appropriate to account for multiple

measures. This is necessary in this case as the large number of features significantly

increases the probability of a type-1 error, when a true null hypothesis is rejected

by chance.

Logistic regression is a popular statistical method for modelling the probability

of an entity belonging to a certain class conditional on certain covariates, in our case

the probability of a participant being part of the PD group rather than the control

group. This is also a commonly used method within the related literature so we can

easily compare the various models’ performances with those of other studies.

Mixed Effects Models Mixed effects models (also known as mixed models or

mixed error component models) are statistical models which comprise both fixed and

random effects. Mixed effects models are useful when data have multiple sources of

random variability, for example, when subjects are sampled multiple times (repeated

measures). They are particularly useful when working with a hierarchical experiment

design such as within the ICICLE dataset where participants are “sampled” in

multiple locations (lab and real-world), at several timepoints (18-month intervals).

Furthermore, at each visit to the lab participants complete four separate bouts of

walking (more repeated measures). During the real-world gait portion of recording,

we may regard each of the seven days of recording as non-independent repeated

measures within each subject. Linear mixed effects models (LMEMs) can be used

for predicting continuous variables such as UPDRS as a model of ST and/or Phase

domain features. LMEMs will also be used to model certain gait features themselves

as part of feature selection. Logistic mixed effects models can also be employed when

classifying PD vs CL.

Non-linear mixed effects models (NLMEMs) have previously been used in mod-
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elling of disease progression [42] [43]. The increased number of parameters of

NLMEMs increases the risk of over-fitting if applying them only to lab-based data

where we may only have four repeated measures per participant for each of the four

timepoints included in these analyses. They are however much more applicable to

real-world data. Each day of accelerometry can be segmented by hour and each

hour treated as a non-independent repeated measures. Daily patterns in gait and

moreover in pathology are of high clinical interest and may be valuable in informing

decision support tools [44].

Depending on experiment designs it is not always immediately obvious whether

an effect should be regarded as fixed or random. As a general rule the predictor

variables that we wish to investigate after accounting for any random variability

should be included as fixed effects. In addition random effects are those with can

be regarded as being drawn from a probability distribution. For example, in clinical

studies, a random effect may be included at the level of the individual to account

for unknown impact of lifestyle on the variable of interest. This is often referred to

as subject-level variability.

Statistical Parametric Mapping Statistical parametric mapping (SPM) is a

method which allows for hypothesis testing across waveforms such as those produced

from brain imaging techniques or throughout the human gait cycle [45]. SPM will

be used applied to the real-world data to better characterise daily patterns in the

gait features of PD and CL subjects.

In any analyses which relate to binary classification (e.g. PD vs CL), the mea-

sures of performance: specificity, sensitivity and accuracy, defined as

true positives + true negatives

false positives + false negatives
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will be reported. Depending on the specific setting, either specificity or sensitivity

can be more important. In many clinical settings a higher sensitivity is preferable

even at the risk of a lower specificity as this corresponds to a reduced probability

of type-2 errors (rejecting a true alternate hypotheses). The trade-off between sen-

sitivity and specificity is controlled by threshold values associated with classifiers.

These threshold values can be selected based on a number of criteria and depending

on research interests. Receiver operating characteristic (ROC) curves are graphs

which summarise the performance of a classifier across all possible threshold values.

These ROC curves are generally summarised by their respective AUC (area under

the curve) value between 0.5, equivalent to random class assignment, and 1, equiva-

lent to perfect classification of all subjects. In the case of binary classification, k-fold

cross validation was used with k = 5 corresponding to an 80%-20% split of the data

into training and test datasets respectively.

Multicollinearity may occur in any analysis with a high number of features. In

our case we will be working predominantly with two feature domains, ST and Phase

with fifteen and sixteen gait features respectively. The variance inflation factor

(VIF) of models can be used to assess multicollinearity associated with features in

the context of the model. VIF can be used to assess multicollinearity within feature

domains and also across all features. There are certain combinations of features that

we might expect to cause high VIF values if included. For example, Step length,

time and velocity are closely related via the equation V elocity = Length/T ime so

it is likely that one or more will initially produce a high VIF value. While highly

correlated variables pose no risk in a predictive context, VIF can shed light on which

on any redundant features which do not bring additional information.

Principal Components Analysis Principal components analysis (PCA) is a

popular method for reducing dimensionality and the number of variables needed in

40



Chapter 3. Data and Methods

analyses. PCA will be applied to both feature domains. Scree plots are a visual

tool which display the proportion of variance explained by successive components

following PCA and can be used to show how many principal components are needed

to represent n% of the variance their respective feature domains. Function principal

components analysis (FPCA) [46] is a statistical method which extends the concept

of PCA to functional data. For our real-world data, we can segment daily gait

features by hour and apply FPCA to the resulting time series. FPCA can then be

used to identify the main patterns of variability in waveforms.

Due to physiological constraints and bounds on certain features we require trans-

formations to meet assumptions of the above mentioned models. Box–Cox (BC)

transformations are versatile. Each feature vi has been replaced with its BC trans-

formed values according to:

v
(λ)
i =


vλi −1
λ
, if λ 6= 0

ln(vi), if λ = 0

There are several benefits to using BC transformations. Two important values

are included in the range of possible values of λ, namely, when λ is taken to be zero

the standard log-transformation is restored, and when λ is taken to be 1 then the

BC transformation is equivalent to a simple location shift.

3.4 Data Consideration on Drop-outs

Due to the uncontrollable factors, many patients were not available at all time points.

Patient drop-out may confound analysis on the PD cohort however. The impact of

including these individuals in the analysis is a subject of investigation as we can

generally assume that patients available at all follow up time points are exhibiting
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on average lower pathology i.e. less deterioration. Missingness due to drop-out or

attrition is a very common issue among longitudinal studies, particularly in those

with clinical aspects. To begin with lab-based analysis we must first choose an

appropriate means of addressing data missingness. Correctly addressing the issue

of missing data requires that we regard the entire dataset i.e. all patient data

available at each time point. Further longitudinal analysis will be carried out in

a later chapter. There is anecdotal evidence that those participants present at

later time points within the ICICLE study may be representative of the PD cohort

as a whole and that their attendance at later time points may be partly due to

a more well-managed disease or less severe symptoms and pathology. These so

called “super survivors” have the potential to introduce significant bias into any

analyses particularly those including later time points. This is a specific case of

survivorship bias [47]. In the context of medical studies with a longitudinal aspect,

survivorship bias refers to the disproportionate representation of individuals in data

due to their increased propensity to be present at follow-up checks. In our case,

a PD subject may not be in attendance at particular time points for a number of

reasons including increased pathology leading to reduced mobility or death. When

assessing this attrition, it is difficult to attribute attendance to any specific features

as this requires disentangling the effects of the disease from the natural deterioration

we may expect from in this age group. The proportion attendance of each group is

summarised in table 3.2. In a later analysis the age-matched control group provide

a useful reference from which the impact of age alone may be estimated. Before

addressing missing data by imputation, we must first identify the mechanism by

which the data are missing. In general there are three possible mechanisms of

missingness [48] [49].

• Missing Completely at Random (MCAR)
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If data are MCAR, then the data (observed and unobserved) are independent

of the fact that the data are missing. In other words, no differences exist

between subjects with full data and those with missing data. If, for example,

all our missing data was due to adverse whether conditions or travel restrictions

unrelated to subjects’ physiology then we may be able to assume MCAR. The

reduced sample size reduces the power of subsequent statistical testing but

crucially does not introduce any bias. In the case of MCAR, the data can

be safely treated as a random sample of the full dataset in question and no

systematic bias would be introduced by performing complete case analysis i.e.

omitting missing or partially missing data. For these reasons, MCAR is a

desirable but often unrealistic situation.

• Missing at Random (MAR)

If data are MAR, then the observed data are systematically related to the

fact that the data are missing. For example, if there was a tendency among

male subjects to decide not to attend follow up sessions and no such tendency

among female subjects, then the probability of a subject having missing data

at any given timepoint is related to gender (fully observed variable) but not

to the condition of their disease or their pathology. If these assumptions hold

then the data are MAR. Complete-case analysis may or not be bias in the

case of MAR data. In any case, the degree of biased can often be estimated

and adjusted for by accounting for the observed variables (in this example,

gender).

• Missing not at random (MNAR)

MNAR is the when the propensity of data to be missing is dependant on the

missing data itself. A common example of this is when the sickest patients in

a clinical are those most likely to drop-out at later timepoints.
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Figure 3.2: The number of participants (by group) in attendance at each follow-up
timepoint

MAR and MNAR are both example of non-ignorable missingness. These mecha-

nisms are non-ignorable due to the bias that is potentially introduced if we perform

complete-case analysis. MCAR is rare in longitudinal studies - data at earlier time-

points likely hold information on the propensity of individuals to attend follow ups.

It should be noted that mechanisms for missingness are not exclusive and incomplete

records can be the result of a combination of these mechanisms. Figure 3.2 shows

the level of attendance at each timepoint. From this we can see a steady decline in

attendance across both the control and PD groups. This decline is deviated from at

the 36 month timepoint when there was an increase is attendance from the control

group. Figure 3.3 shows the number of participants who attended exactly, 1, 2, 3,

or 4 follow-up visits. Interestingly, this shows a relatively uniform spread for the

PD group but with the Controls mainly attending either 1 or 4 timepoints.
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Figure 3.3: The number of participants (by group) in attendance at exactly n time-
points.

Time point
Group 18 36 54 72

Control 0.57 0.84 0.51 0.46
PD 0.89 0.71 0.62 0.52

Table 3.2: Attendance proportion at each timepoint by group.

3.4.1 Modelling Drop-out

We wish is investigate the propensity of participants to attend future timepoints

and quantify the degree to which observed data can predict the probability of con-

tinuation. We aim to estimate Pr(Rit = 1|Y −t−1) where Rit is an indicator variable

equal to 1 if participant i is in attendance and 0 if they are absent at timepoint t.

For compactness we allow Y to include Age, height, group (PD or CL), and UPDRS

(where applicable). Reliably modelling drop-out in longitudinal studies is crucial

to informing future studies and experiment design. Throughout our modelling of

drop-out and the probability of continuation our goal will be to address the following

questions:
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• Do PD and CL participants differ in terms of their propensity to miss a follow

up date or drop out of the study all together?

• Within the PD cohort, can an individual’s continuation probability be mod-

elled on their respective previous observed data?

• Adjusting for the impact of ageing, how does an individual’s probability of

dropping out vary at successive timepoints? I.e. asides from the increase in

age, is there an impact of disease duration on continuation probability?

Time point
Group 18 36 54

Control 0.73 0.52 0.84
PD 0.70 0.71 0.75

Table 3.3: Probability of continuation given a participant’s attendance at a specific
time point.

Continuation probabilities Table 3.3 shows the overall continuation probability

conditional on attendance at previous time points. While helpful, it should be

noted that these probabilities do not actually directly relate to the absolute levels

of attendance at subsequent time points because there are many participants who

temporarily drop-out and return for a later session. I.e. in general we have

Pr(Rit = 1|Rit−1 = 0) > 0.

Logistic regression Logistic regression is the extension of linear regression to

binary classification problems. It seeks to model the probability of an event, in our

case Pr(Rit = 1|Y −t−1), the probability of attending at timepoint t given all available

(prior) information. Logistic regression models can be assessed using performance
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measures: accuracy, specificity, and sensitivity, to gauge each model’s utility in

predicting participant continuation.

We will fit and assess logistic regression models to all extracted gait features and

also separately to each feature domain.

For our dataset we have a relatively small number of discrete timepoints making

it practical to conduct drop-out analysis separately for each timepoint.

Random Forest A random forest classifier is example of an ensemble method.

Ensemble methods aim to improve their predictive power by producing multiple

models and combining them into a more accurate model. In the case of Random

Forests, these individual models are decision trees- a type of decision support tool

similar to a flowchart where each node represents a query on a particular attribute

of the subject in question.

Classifier Accuracy Specificity Sensitivity

All features
Logistic 0.63 0.645 0.64
RF 0.63 0.65 0.65

Phase domain
Logistic 0.60 0.63 0.57
RF 0.64 0.65 0.62

Spatio-temporal domain
Logistic 0.59 0.61 0.56
RF 0.61 0.65 0.56

Table 3.4: Performance measure for predicting Rit given Y −t−1.

From the performance measures presented in Table 3.4 we could argue that Phase

domain features are slightly better at predicting continuation than ST features for

a given classifier. However, overall none of the measures are particularly impressive

(all ≈65%). This reflects the difficulty in explaining drop-out in the case of MNAR

and/or MAR. Neither Phase domain nor ST features were particularly impressive
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at predicting attendance at follow-up timepoints. However this is not surprising

as there are many unknowns which may impact an individual’s ability to attend.

Regardless, we will revisit the problem of predicting drop-out in chapter 5 to assess

how real-world gait and increased ADL can improve this prediction.

3.4.2 Imputation Methods

The simplest approach to addressing drop-out in a longitudinal study is to ignore

all incomplete records and base all following analysis on only those participants

with complete data and full attendance. This known as complete-case analysis.

This is very prone to introducing bias unless the dataset exclusively exhibits MCAR

missingness in which case complete-case analysis can produce valid conclusions.

Last observation carried forward (LOCF) A marginally better method is to

impute a missing observation Yit as Yit−1 assuming Rit = 0 and Rit−1 = 1. This has

the benefit of increasing the amount of data available for analysis and does at least

base newly imputed values on data observed for the participant in question.

Last residual carried forward (LRCF) Similarly, LRCF imputes a missing

observation Yit as Yit−1− Y t. This represents a significant improvement over LOCF

as it does more to maintain any local trends in the data.

For consecutively missed follow-ups both LOCF and LRCF can be carried out

iteratively, although errors will accumulate. Each of these methods, which are based

on the most recent available timepoint for imputation, are simple to implement but

are criticised in the literature [50] partly due to their failure to address random

variation caused by the imputation process itself.
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Multiple imputation by chained equations In summary, complete case anal-

ysis is not appropriate due to the potential bias it would introduce. Similarly, both

LOCF and LRCF would introduce cumulative error in any imputations.

The chosen method for addressing missingness here is multiple imputation by

chained equation (MICE) also known as “sequential regression multiple imputation”.

In addition to those listed above, the reasons for selecting MICE are: creating mul-

tiple imputations rather than just one helps account for uncertainty in the data.

The MICE methodology is flexible with regards to variable type and other com-

plexities such as bounds [51]. This is particularly relevant to our dataset in which

many features are bounded or constrained due to physiological limits or mathemati-

cal definition. For example, spatio-temporal features such as step length asymmetry

defined as the mean absolute difference between left and right step length for a given

bout is unlikely to be more than a small proportion of the corresponding mean step

lengths. Within the Phase domain, primary or secondary measures derived from

ellipse eccentricity have strict constraints due to the definition of eccentricity,

√
1− m2

M2

where m and M are the semi-minor and semi-major axes respectively. This means

eccentricity will not exceed the value of 1. It should be noted, however, that general

conic sections can have any positive value of eccentricity but we are only concerned

with strictly elliptical conics here. The flexibility of MICE means we can rely on

these variables’ complexity being conserved. In general Multiple Imputation is more

efficient where incomplete cases have some data associated with them. In our case

we do have Age data and disease group as well as any previous or future attended

timepoints. MICE is just one of many possible means of imputation, this method is

chosen here for it’s flexibility in handling different variable type and complexity in
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the data.

More information on MICE is available from Azur et al [51] as well as infor-

mation on other approach for multiple imputation [52] but in short the steps for

implementing MICE are as follows:

1. An initial place holder imputation is made. This can be done using a simple

arithmetic mean of available data for each variable to be imputed.

2. The initial imputed values for a single variable are removed (again labelled as

missing data).

3. This variable is then taken as the dependant variable in regression with all

other available variables as independent variables.

4. The missing values for the variable are predicted (imputed) from this regression

model.

5. Repeat steps 2–4 for all variables which had missing data. Once this process

has been carried out for all variables then we say we have completed one cycle

or iteration and all missing values have been replaced with predictions from

regression models which reflect the relationships observed in the data. It is

important to note that while cycling through the variables when a variable is

used as an independent variable having already been taken as the dependant

variable in a previous model then both the observed and imputed values are

used in the new regression model.

6. Steps 2–4 are repeated for some number of cycles and the imputations are

updated at each cycle.

There is no general rule for the optimal number of cycles. Although Raghu-

nathan et al [53] recommends that 10 should be sufficient in most cases there are
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other arguments that approximately 40 cycles improve the quality of the predic-

tions if practical given system resources. Performing multiple cycles ensures that

any dependency on the order in which the variables are cycled through is removed.

30 cycles were performed while imputing the missing data taking approximately 25

minutes on the following system: Processor- Intel(R) Core(TM) i5-4460 CPU @

3.20GHz, 8GB of RAM.
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Accelerometry-based Gait

Analysis in Parkinson’s Disease:

Application of Traditional and

Phase plot Gait Characteristics.

4.1 Aims

The effectiveness and practicality of novel methodology and feature domain intro-

duced in chapter 2 can be demonstrated through its application to PD gait ac-

celerometry. While lab-based gait data are necessarily restricted in its representa-

tion of real-world gait it can provide reliable proof of concept for this Phase plots

methodology and the new Phase domain of features.

As well conducting an initial exploratory analysis of novel Phase plot features

from lab-based gait, in this chapter we will answer the following questions:

• Can novel phase domain features distinguish between PD and CL patients
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based solely on the accelerometry of their respective bouts of walking?

• Do individual subjects reliably reproduce the same type of phase plot across

multiple bouts? I.e. is it fair to refer to phase plots as a signature of gait? If

so, is this the case for both PD and CL subjects?

• How do ST and Phase plot features compare when used to classify PD and

CL subjects, and does a combination of ST and Phase features out perform

either domain alone?

• Do Phase plots hold additional information pertaining to an individual’s gait

and disease state beyond that which can be provided by traditional features

such as those within the ST domain?

4.2 Data and Pre-processing

Here we focus our analyses on the lab-based portion of the ICICLE-GAIT study

as described in chapter 3. In particular, we will be using accelerometry data from

intermittent walks performed four times by each of 203 included participants (92

PD and 111 Control) at up to four evenly spaced timepoints.
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Figure 4.1: Gait cycle showing gait events (GEs). IC = Initial contact (heel strike),
FC = Final contact (toe-off)

Here the data associated to each participant are one or more (depending on

attendance) triaxial acceleration signals X = (x1(t),x2(t),x3(t)) recorded during

straight walking bouts with a waist-worn accelerometer device affixed at the L5

vertebra (see Figure 3.1). These lab-based ambulatory bouts are an example of

scripted activities and as such do not require complicated gait detection. The Phase

domain features here are derived from phase plots constructed from the vertical

axis acceleration, x1(t) employing the zero-crossing (ZC) gait cycle segmentation

method detailed in 2.1

As explained in chapter 2, when constructing cyclic phase plots as opposed to

those based on per-cycle features [18], we must have a method for distinguishing

subsequent cycles and defining the thresholds jn, kn such that we associate x1(i) to

cycle n if jn ≤ i < kn i.e. the boundaries of each gait cycle. Within the field of

gait analysis, gait events (GEs) such as initial contact (IC) and final contact (FC)

of alternating feet are utilised to segment gait (see Figure 4.1). GEs offer intuitive

reference points when performing detailed gait analysis and ICs in particular can
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be accurately and reliably detected with a variety of sensor set-ups. However, when

segmenting gait in this way according to GEs the resulting phase plots are highly

sensitive to small variations in IC timings. This is due to the sharp characteristic

spike in the vertical axis of acceleration associated with heel strikes. This resulting

in a disproportionate impact of IC estimate final on Phase plot features. For this

reason, descending ZCs in the vertical signal were used to segment adjacent cycles

i.e. cycle 1 begins at the earliest value of j such that x1(j) < 0 and x1(j) is

associated with valid gait. Cycle 2 begins at the earliest subsequent index j such

that x(j − 1) > 0 and x(j) < 0 and so on. Segmenting in this manner produces

phase plots which exhibit within-bout stability.

Due to this non-standard gait segmentation, our definition of a gait cycle deviates

somewhat from the model shown in figure 4.1 (left IC to right IC) as descending

ZC events occur shortly before IC events. Essentially this ZC-based method of

gait segmentation produces a slightly left-shifted gait cycle when compared to the

standard IC-to-IC model. This altered gait segmentation method was needed to

ensure robustness and reproducibility of Phase plots and their respective features.

4.3 Lab-based Phase Plot Analysis

Before assessing the utility of Phase plots and features within the Phase domain

we should consider the number of new features being introduced. We employ Bon-

ferroni correction [54] where appropriate to correct for multiple comparisons. Say

we intend to test the hypotheses H01, ...H0i that features 1,...,16 of the Phase do-

main do not differ between PD and CL patients for i = 1,...,16 (each of the phase

domain features). As the number of features, i increases, so does the probability

of a Type I error where by we reject at least one true H0i. Intuitively, investigat-

ing more and more features extracted from a dataset increases the probability of
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finding a spurious difference between PD and CL subjects appearing statistically

significant. A well-known counter action for this increased probability of type 1

errors is to employ the Bonferroni correction by reducing the significance level of

our tests from α to α
i

where i is the number of hypotheses being tested as above. If

we take the standard significance level of α = 0.05 and given that we have 16 Phase

domain features of interest our new significance level adjusted for multiple measures

is αp = 0.05/16 ≈ 0.0031 As a useful reference we will also take note of the p-values

associated with well-established spatio-temporal features throughout these analyses.

4.3.1 Exploratory Analysis

Several features in both domains exhibit significant right or left skew. In several cases

a log transformation was sufficient in addressing this prior to conducting t-tests. To

assess normality (a key assumption of t-tests) we can plot the quantiles of the data

as a function of the theoretical quantiles of a normal distribution with equal mean

and SD. These Quantile-quantile plots are commonly known as qq-plots. For both

PD and control subjects, Asyγm showed significant right skew and deviation from

normality. Figure 4.2 shows the impact of this transform on the data distribution. It

also makes clearer the shift in position and size of the effect of disease on this feature.

To formally test the impact of this transformation we can use qq-plots (Figure

4.3 and 4.4) and observe the improvement shown by comparing before and after.

The quantiles of the data match closely their corresponding theoretical quantiles

implying normality has been achieved. As a more formal assessment we can also

perform Shapiro-Wilk tests for normality. In the case Asyγm we see an initially failed

test (p < 0.01) i.e. the feature is not normality distributed. The transformation

log(Asyγm), however, yields p > 0.05 which validates the choice of transformation

for this particular feature. All features underwent a Box–Cox (BC) transformation
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Feature CL PD Mean difference, % p

Phase Domain

Primary features
Area 0.254 0.167 -34.1 0.045
γ 0.945 0.937 -0.790 <0.01*
Asyθ 6.68 10.23 53.1 <0.01*
AsyArea 3.62 2.48 -31.7 0.22
GoF 6.79 6.69 -1.49 0.79
SDr1 0.040 0.0293 -27.2 <0.01*
SDr2 0.197 0.153 -22.0 0.159

Secondary features
Asyγm 0.018 0.0316 75.61 <0.01*
AsyγM

0.0253 0.0293 15.75 <0.01*
Asyθm 9.48 12.145 28.05 <0.01*
AsyθM 5.48 6.614 20.67 <0.01*
AsyAream 19.12 9.33 -51.2 0.10
AsyAreaM 456.5 72.1 -84.2 0.24
GoFm 29.9 30.05 0.20 0.92
GoFM 53.2 46.3 -12.9 <0.01*
SDGoF 37.8 36.81 -2.65 0.32

Spatio-temporal Domain

Mean characteristics
Step time 0.557 0.541 -3.04 <0.01*
Stance time 0.721 0.703 -2.46 <0.01*
Swing time 0.409 0.394 -3.82 <0.01*
Step length 0.532 0.576 7.50 <0.01*
Step velocity 0.973 1.074 9.41 <0.01*

Variability (var) characteristics
Step time var 0.025 0.019 -28.8 <0.01*
Stance time var 0.084 0.069 -21.9 <0.01*
Swing time var 0.061 0.047 -30.2 <0.01*
Step length var 0.0582 0.061 4.87 0.03
Step velocity var 0.109 0.117 6.70 <0.01*

Asymmetry (asy) characteristics
Step time asy 0.0183 0.0136 -34.7 <0.01*
Stance time asy 0.0470 0.0390 -20.7 <0.01
Swing time asy 0.0390 0.0296 -33.3 <0.01*
Step length asy 0.0397 0.0370 -7.68 0.013
Step velocity asy 0.0713 0.0647 -10.1 <0.01*

Table 4.1: Feature values from the spatio-temporal and phase domains. *Statisti-
cally significant following Bonferroni correction
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which, as detailed in chapter 3, can include the log() transform depending on the

estimated value of λ. It is well known that normality may be assessed using one of

many available goodness-of-fit tests such as Pearson-Chi-square, Shapiro-Wilk etc.

Similarly, λ is estimated by finding the argument which maximises/minimises the

criteria associated with these tests. It should be noted that the approach laid out

here is not the only option, for example, non-parametric tests such as the Kernel

two sample test or the Mann–Whitney test could also be conducted here.

Figure 4.2: Asyγm empirical density before and after log-transform

Table 4.1 shows the extracted values of all 16 Phase and 15 Spatio-temporal

features as well as their respective signed mean differences (PD - Control). P-values

are calculated via two-sample un-paired t-tests. While the study design included
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Figure 4.3: the non transformed feature
shows a qq-plot typical of a feature with
right skew

Figure 4.4: log-transformed data ex-
hibiting normality.

age-matched controls, drop-out and inconsistent attendance in both groups weakens

the case for a paired test, hence the use of an un-paired t-test. Starred p-values

indicate significance at the 5% level adjusted for multiple measures.

Densities

Empirical densities offer a quick visual summary of the distribution of various ex-

tracted features among the cohorts and an indication of which features may have

discriminative power in terms of detecting PD from lab-based gait.

The feature densities presented here are of untransformed data. Due to physio-

logical limitations and specific derivations some of these features have characteristic

empirical densities. For example, step length asymmetry is defined as:

StepLengthAsy = |AverageLeft − AverageRight|

i.e. the average absolute difference between left and right step lengths. For this
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Figure 4.5: Lab based Step velocity by Group

reason, we can expect the associated feature to be bounded below at zero potentially

with heavy right skew. We would also expect that the actual values of this feature

would not be more than a small fraction of the average step length (about 0.55

across all participants). Indeed this is observable in the respective density (Figure

4.6) with a right skew and modal value around 0.01, about 2% the average step

length. Phase domain features are also subject to similar constraints, usually as

a result of their derivation from conic sections. As was previously explained, the

feature γ (primary ellipse eccentricity) is strictly bounded above by 1 as visible in

Figure 4.7.

Box-plots by Group and Time point

Longitudinal analysis will be conducted in detail in Chapter 6, however the follow-

ing box-plots are provided by timepoint as well as disease group. The visualisations

here are constructed following BC transformation of the features in question. These

transformations preserve ordering of the data so all trends and between-group dif-

ferences are also preserved.
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Figure 4.6: Lab based Step length asymmetry by Group

Figure 4.7: Lab based primary ellipse eccentricity by Group

61



Chapter 4. Accelerometry-based Gait Analysis in Parkinson’s Disease:
Application of Traditional and Phase plot Gait Characteristics.

Figure 4.8: Lab based type II ellipse eccentricity asymmetry by Group

Figure 4.9: Standardised step velocity by group and time point
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Figure 4.10: type II ellipse eccentricity asymmetry (Standardised) by Group
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Figure 4.11: Four primary phase domain features by group and timepoint (Plotted
as standardised values)
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Figure 4.12: Two secondary phase domain features, type I and II ellipse eccentricity
γ shown.

Multicollinearity

Multicollinearity is the presence of interdependence or high inter-correlations be-

tween independent variables. Multicollinearity can be assessed via the VIF (Vari-

ance Inflation Factor). In short, VIF is a quantity that can be calculated on a per-

predictor basis which represents the degree to which the coefficient of said predictor

is “inflated” due to correlations with the other predictors in the model. Opinions

differ on where a cut-off should be drawn for VIF and what exactly constitutes “too

much” multicollinearity but the methods for dealing with it and reducing its impact

are clearer. If VIF highlights a multicollinearity issue in the data then those vari-

ables with the highest VIF may be suitable candidates for removal from the model.

To assess the discriminative power of gait features in the context of PD, we may

initially fit two saturated logistic regression models. Here the aim is to model the

probability of being a PD participant as a function of their corresponding features

in either the Phase or ST domain.

P (PDi = 1) = S(β0 + β1xi1 + ...+ βnxin) (4.1)
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where PDi is an indicator variable equal to 1 when participant i has a diagnosis

of Parkinson’s disease and 0 otherwise and xij is the value of the j-th feature for

subject i.

When S(x) is the sigmoid function,

ex

1 + ex
(4.2)

then 4.1 corresponds to a linear model of the log-odds of P which is equal to

log

(
P

1− P

)

If we first take the ST feature domain, then xi1, xi2, ..., xi15 correspond to the

i -th subject’s step length, stance time, step velocity etc respectively. Alternatively,

if we instead take the Phase domain we have xi1, xi2, ..., xi16 corresponding to the

i -th subject’s primary ellipse features (γ, Asyθ etc.) and secondary ellipse features

(Asyγm, AsyγM , GoFm etc). These two saturated models may be used to assess the

discriminative power of each feature domain applied to PD and CL gait. However,

the initial purpose here is to assess multicollinearity within each of the feature

domains by calculating the VIF for each feature in each logistic model (Table 4.2).

For the Phase domain we find an average VIF of 1.73 compared to an average

of 12.21 for the ST domain. Upon further inspection it is clear that a small number

of ST domain features contribute to this relatively large average VIF due to their

physiological dependence on each other. For example, for a given step time, we

have step velocity and step length, essentially proportional to each other. There is

no objective cut-off value for VIF beyond which we conclude a feature should be

removed and the model re-fitted however. Some researchers suggest a cut-off of 5 or

below while other propose that only values exceeding 10 should be cause for concern
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Feature (Phase) VIF VIF* Features (ST) VIF VIF*

Area 1.41 1.38 Step time 22.8 -
γ 2.67 1.62 Stance time 4.57 1.70
Asyθ 1.46 1.35 Step length 44.9 1.05
AsyArea 1.28 1.27 Step velocity 61.6 -
GoF 1.64 1.64 Step time var 2.93 2.80
SDr1 1.41 1.39 Stance time var 3.18 2.84
SDr2 1.35 1.33 Swing time var 2.63 2.52
Asyγm 1.82 1.69 Step length var 12.1 1.51
AsyγM 2.08 2.06 Step velocity var 13.0 -
Asyθm 2.16 2.15 Step time asy 1.75 1.74
AsyθM 1.91 1.88 Stance time asy 2.45 2.46
AsyAream 1.05 1.05 Swing time asy 2.42 2.39
AsyAreaM 1.14 1.13 Step length asy 2.72 2.44
GoFm 1.89 1.45 Step velocity asy 2.57 2.23
GoFM 3.54 - Swing time 3.67 1.75
SDGoF 4.07 -

Table 4.2: Phase and ST domain features’ Variance Inflation Factor (VIF). VIF*
shows values following sequential removal of highest scoring features until all were
within the acceptable region (< 5).

in terms of multicollinearity [55]. A common theme among the relevant literature is

that the consequences of multicollinearity must be assessed in terms of the analysis

in question. In the case of our analyses we should therefore consider the order in

which spatio-temporal features are removed from the respective logistic regression

model. In particular we can see step time, step length and step velocity are all

exhibiting very high VIFs (>25). After removal of the feature highlighted in table

4.1 the domain-specific VIF values reduce to 1.49 and 2.12 respectively.

From the plotted correlation in Figure 4.13 we can see several properties which

support the use of the Phase domain features. Firstly, the within-domain correlation

of the phase domain is considerably lower than that of the spatio-temporal domain

(0.20 and 0.32 respectively). Also, the correlation between domains is very low (0.12)

which gives credit to the hypothesis that this novel feature domain does indeed
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Figure 4.13: Correlation heatmap of feature of ST and Phase domains.

contain additional information beyond that contained in the ST domain alone.

Hierarchical Clustering Clustering based on gait characteristics from each do-

main will help address the aim detailed in section 4.1 regarding the hypothesis that

Phase plots hold gait-related information not available on ST features. From Figure

4.13 we can see that clusters of features are emerging. In the case of traditional

ST features, this is partially to be expected given the relationship between certain

features e.g. step length, time (duration), and velocity. There is no similar intu-

itive clustering to the phase domain however. We perform hierarchical clustering to

quantify these clusters and sub-clusters of features. We will consider agglomerative

hierarchical clustering methods. Here “agglomerative” refers to the way in which

we initiate the clustering method, where each observation (or feature in our case)
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Figure 4.14: Full-linkage complete hierarchical clustering of features in Lab-based
setting. Highest level clustering shown.

begins as its own cluster of size 1. This is an alternative to divisive clustering which

begins with all features in a single cluster and aims to split into successively smaller

clusters based on some heuristic.

There are several methods for agglomerative hierarchical clustering [56]. Here

we use a method known as the complete-linkage method. Other popular methods

such as Ward’s method [57] [58] produce overall similar results.

As displayed in Figure 4.14 hierarchical clustering does to a large extent dis-

tinguish between the phase and spatio-temporal domains with most of the overlap

being accounted for by four secondary Phase features: Asyγm , AsyγM , Asyθm , AsyθM

being clustered with 13 out of 15 ST features and two ST features, step length and

step velocity, being clustered with the majority of phase features. This observation

is based on the second last level of clustering.
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Principal Components Analysis (PCA)

Given the presence of multicollinearity and the large number of features it makes

sense to perform a factor analysis at this stage. PCA is generally used to reduce the

dimensionality of datasets such as those containing the Phase and ST domain fea-

tures by producing a much smaller number of orthogonal and uncorrelated variables

constructed as linear combinations of the original features. These new features are

known as the principal components. For our purposes, it can be used to compare

and contrast the two feature domains in question here by looking at the how well the

top first n principal components capture the variability in their respective domains.

Scree plots in Figures 4.16 and 4.15 show the proportion of variance explained

by each successive principal component. We can see that both domains have com-

parable PC decompositions in terms of cumulative respective variance explained as

both domains have over 60% of their respective variances explained by the first five

principal components.

Figure 4.15: Scree plot for all Phase domain features
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Figure 4.16: Scree plot for Spatio-temporal features.

Prior to performing PCA we centred and scaled (to have unit variance) each

feature. This is best practice in the case of variables prone to significant differences

in magnitudes. Following on from the Box–Cox transformations earlier, several

transformed features in each domain were subject to a shift in location. Neglecting

this step produces vastly different Scree plots showing > 90% variance explained by

just 3 features in each domain. This would lead to a large reduction in features and

model complexity moving forwards, however the subsequent disease classification

analyses would not see a similar increase in efficiency. This 90% figure is only

produced if we don’t scale variables and allow the analysis to be distorted by those

features with outlying magnitudes.

In chapter 6 we will also perform a functional principal components analysis to

better explain trends in these features over the course of the study duration and

assess the ability of the new Phase domain in monitoring disease progression over

several years.
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4.3.2 Discriminative Power in PD

Much of the clinical interest in gait features is directed at diagnostic power and

reliability of certain features in identifying PD gait vs healthy gait. It must be

noted, however, that “healthy” is an ambiguous term here and refers to the gait

of age-matched controls who are by no means completely free from comorbidities

themselves.

Following on from the two saturated logistic regression models in the previous

section, it is standard practice to remove those variables identifies as having cor-

relations with other independent variables or high VIFs. Following their removal,

we can construct Receiver Operating Character (ROC) curves to help assess each

domain’s utility in detecting PD. The ST and Phase plot (PP) feature domains show

slightly different characteristic ROC curves but almost equal AUC (area under the

curve) values. AUC can be interpreted as a combined measure of both specificity

and sensitivity i.e. a high AUC value implies simultaneously a low false positive

rate and low false negative rate. In the context of this analysis, this corresponds

to correctly classifying both PD and CL subjects. The ST and Phase feature do-

mains show noticeably different characteristic ROC curves, provided in Figure 4.17.

The ST domain gave an AUC value of ≈ 0.66 compared with ≈ 0.71 for Phase

plot features. From this it appears both domains are approaching the “acceptable”

range generally defined as 0.7-0.8 in the literature [59]. The crucial context of this

is the environment in which the gait data was recorded - a highly controlled unnat-

ural lab-based setting. The slight difference in the feature domains’ respective ROC

curves shows that depending on a choice of threshold, the Phase domain may have

a reduced specificity compared to the ST domain or a slightly superior specificity

and sensitivity.

There are several available methods for defining an optimal threshold from the

72



Chapter 4. Accelerometry-based Gait Analysis in Parkinson’s Disease:
Application of Traditional and Phase plot Gait Characteristics.

ROC curve. Common criteria involve selecting a point at which the sensitivity and

specificity of the classifier are simultaneously close to the AUC and to each other.

In addition to the standard logistic regression model we also implement a Naive

Bayes (NB) classifier [60]. NB classifiers have several properties which make them

suitable for our purposes:

Insensitivity to irrelevant features. It is plausible that given multicollinearity

in the phase domain and features with similar definitions in the ST domain that

several features are not necessary in disease classification.

Scalable. It will be helpful to apply the same classification method to the free-

living dataset in a later chapter where the vastly increased data size may carry

more computation time consideration than the relatively small lab-based dataset.

There are also downsides to this classifier such as the assumption that each feature

makes an equal and independent contribution to the prediction class which may not

hold here.

Classifier Accuracy Specificity Sensitivity

All features
Logistic 0.65 0.74 0.54
NB 0.65 0.53 0.75

Phase domain
Logistic 0.64 0.74 0.53
NB 0.60 0.41 0.76

Spatio-temporal domain
Logistic 0.60 0.75 0.41
NB 0.61 0.41 0.76

Table 4.3: Performance measures for predicting disease status by feature domain
(top 4 PCs) and classifier type

Table 4.3 shows the performance of three logistic regression models for assessing

the ability of each feature domain to predict PD status in lab-based gait. These

models are fitted using only the first 4 principal components (PCs) of their respective
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domains. For this dataset and classification task, the choice between a Naive Bayes

and logistic regression for detecting PD represents a trade-off between specificity

and sensitivity. Which of these is preferable depends on the context. Within clinical

studies and diagnostics, we may wish to err on the side of caution and accept a

higher than ideal false positive rate (lower specificity) in order to avoid high false

negatives (low sensitivity). One of the motivations for this is that it reduces the

probability of missed diagnoses. Overall the measures shown in table 4.3 are not

excellent with several around the 0.5 region - which might expect to achieve with

random guessing.

In terms of domain comparison, the Phase domain appears to perform at least

as well as the ST domain for both classifiers. These results must be seen in the

context of the environment in which the associated gait took place. The unnaturally

restricted and scripted bouts of walking necessarily restrict the variety of physical

movement and it is unreasonable to assume that ST features based on variability

of gait e.g. step length variability are representative of an individual’s general gait

during ADL. The impact of environment on gait features from each domain will be

investigated in chapter 5. We can safely hypothesise that features within the ST

domain such as step length (variability) will exhibit notably different distributions in

the real-world environment due to ADL and variety of gait. However, in the case of

the novel Phase domain, it is unclear how the transition from lab-based to free-living

may impact feature distributions and the general appearance of phase plots. While

these results appear to show some promise for the performance of Phase domain

features, it must be noted that the results in Table 4.3 are based only on the first

4 principal components of the respective featured domains. While this method is

helpful in reducing the number of variables in a model, there is no guarantee that

the full predictive power contained in each feature domain is represented in just 4
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Figure 4.17: ROC curves for the Phase and ST feature domains.

PCs.

4.3.3 Phase Plots as a Signature of Gait

A small subset of the Phase domain features can be used to categorise all phase

plots into one of four easily recognisable and clearly distinct types. These features

are the angle subtended by successive phase plot orbits Asyθ, the primary ellipse

eccentricity γ and the Euclidean distance between adjacent successive orbits, d.

Human fingerprints can all be categorised as one of a small number of types (see

Figure 4.18) while still containing enough distinctiveness to accurately identify a

single individual. We aim to demonstrate that gait, and specifically Phase plots,

offer a similar categorisation while holding subject-specific information. This level

of individualisation is of particular clinical interest as it is a vital component in
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Figure 4.18: The three main fingerprint types

any decision support tool [44] or indeed any automated means of individual disease

management.

Remark. While this “fingerprint” analogy is helpful, it should be noted that while

fingerprints are immutable and unchanging, gait is not and therefore, an individual’s

Phase plot type is not necessarily fixed over time. In later analysis in chapter 6 we

aim to show the clinical utility of regarding phase plots as snapshots of subjects’

gait at a particular time and disease state. For this reason it is more appropriate to

regard a Phase plots as a signature of gait in the context of the subject’s current

disease state.

Furthermore, the group sizes and longitudinal experiment design allow us to

observe any transitions between phase plot types in free-living environments where

we can rely on other gait measures to contextualise these transitions similar to the

way shown in Table 4.4.

The flow diagram provided in Figure 4.19 shows a proposed method for grouping

phase plot types named: oblique wings (OW), parallel wings (PW), oblique lines

(OL), and single line (SL), examples of each can be seen in Figure 4.20 for PD and
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Figure 4.19: Flow diagram for categorising complete Phase plots.

CL. This categorisation is designed manually to reliably distinguish between the

four apparent Phase plot Types. The regime can be validated by inspecting the

corresponding feature values in the ST domain, see table 4.4. We can see several

combinations (pairings) of plot types which represent significant changes in specific

SP characteristics. We deduce from table 4.4 that a transition from OL to PW

correlates to significant increases in both step length and velocity which reliably

measure physical capability [61]. From this we might intuitively hypothesise that

transitions to SL (the modal phase plot type) would represent positive changes in

ST characteristics. However, our results imply that walking with such a gait pattern

as to produce a PW type phase plot as opposed to SL can result in improved gait

parameters among PD subjects. This algorithm for categorising Phase plots is not

fully objective as it was designed based on subjective observations of many Phase

plots across the PD and CL cohorts.

An additional requirement to validate this fingerprint interpretation of gait-

derived Phase plots is intra-subject consistency i.e. will a participant only produce

a single type of phase plot across multiple bouts of walking? We have the data to

test this as the experiment protocol of the ICICLE-PD study involved participants
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Figure 4.20: Examples of each Phase plot type from PD (left) and Control (Right)
subjects. Average orbits shown (blue).
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Type / Feature SL OL PW OW p†

Step Length (m)
0.636
±0.080

0.552
±0.122

0.721
±0.026

0.729
±0.056

SL vs PW
0.021

OL vs PW
0.047

Step Length Asy (m)
0.028
±0.023

0.28
±0.021

0.405
±0.02

0.597
±0.01

OL vs OW
0.13

SL vs OW
0.19

Step Time Var (s)
0.18
±0.005

0.0202
±0.006

0.0115
±0.002

0.0149
±0.004

SL vs PW
0.063

OL vs PW
0.026

Step Vel (ms−2)
0.840
±0.195

0.974
±0.249

1.42
±0.071

1.52
±0.138

OL vs PW
0.0079

SL vs PW
0.038

Step Vel Var
0.063
±0.024

0.074
±0.022

0.085
±0.056

0.0701
±0.017

SL vs OL
0.31

SL vs OW
0.66

Table 4.4: Typical ST domain feature values for PD participants exhibiting each. †
Significance was assessed at the α = 0.05 level for each transition individually. The
top two transistor (most significant) are shown.

walking 3-4 similar bouts on a 10m walkway. Looking at the results shown in table

4.4 it is temping to make inferences on the implications of participants transitioning

from one type to another. For example, the exhibiting type PW (parallel wings)

appears to be associated with a lower step time variability and greater step velocity

(an established biomarker for physical capability). Such a transition is immediately

discernible from observing phase plots from the participant in question. Lab-based

data alone is unlikely to hold enough variety of gait to reliably test this theory

but does serve as a solid and reproducible baseline. The distribution of Phase plot

types among the PD and CL cohorts is summarised in table 4.5. The p-values are
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PD CL p

n 92 111 -
Asyθ 18.9± 12.1 8.9± 11.4 -
γ 0.937± 0.0083 0.945± 0.011 -
d 0.847± 1.16 0.45± 0.41 -

Counts

SL 48 96 < 0.001
OL 24 5 < 0.001
PW 14 8 0.145
OW 6 2 0.305

Table 4.5: Predominant Phase plot type by group.

calculated using Fishers’ exact test. The distribution of Types among both cohorts’

phase plots is also significantly different. CL subject generally produce single line

(SL) type plots (86%). The approach illustrated in Figure 4.19 is based on subjective

interpretations but is sufficient in distinguishing the four emergent Phase Plot types

for the purposes of subsequent analyses. Alternative methods such as those applied

in handwritten digit classification may perform well here and should be explored in

future analysis that aims to build on this particular avenue of Phase Plot analysis.

It is not uncommon for a given subject in either the PD or control cohort to ex-

hibit more than one Phase plot type distribution at different timepoints. However,

there is evidence even given the controlled lab-based environment that participants

can be attributed a particular Phase plot type and that they are significantly more

likely to reproduce this type at subsequent timepoints. Despite the presence of

within-subject variation, the overall distribution of Phase plot types is very consis-

tent across all timepoints in the case of lab-based data (see Figure 4.21). These

properties of Phase plot Type will also be analysed in greater detail in chapter 6

to see how we might expect PD Phase plot types to evolve with disease progression

(PD group) or with ageing in general (control group). In chapter 5 we will anal-

yse in detail how the added variety of free-living impacts the type of Phase plot
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Figure 4.21: Consistent distribution of Phase plot types across timepoints for lab-
based gait

produced by participants in both groups and also how increased ADL impacts this

classification system for Phase plots.

Type-transitions To validate the fingerprint interpretation of gait there are sev-

eral properties we aim to demonstrate. One of these is within-subject type-consistency

i.e. can we say that each participant predominantly exhibits one specific phase plot

type? Let us assume that the overall proportion of each types is fixed for each group.

then we define

TPD = (pSL, pOL, pPW , pOW ) and TCL = (cSL, cOL, cPW , cOW )

as the respective prevalences of each Phase plot type in the PD and CL group with

4∑
i=1

TPDi =
4∑
i=1

TCLi = 1.
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These values can be estimated by normalising the values given in 4.5. Let giX be

the probability that subject i within group g exhibits phase plots of type X.

H0 : piX = gX for all i and g = PD or CL.

H1 : piX = giX for g = PD or CL.

(4.3)

Say we have a population of size n, four possible Types (states) and four time-

points between which participants may feasibly transition between Phase plot types.

A given subject has the prevalence vector Tg = (gSL, gOL, gPW , gOW ) where g is

p or c depending on the subjects group. Given that
∑
Tg = 1 we can write

gOW = 1 − gSL + gOL + gPW to reduce the number of parameters. Under H0 the

probability of this subject exhibiting Type X at timepoint t is gX . Therefore, the

probability of this same subject exhibiting type Y 6= X at time t+1 is

∑
T 6=X

gT = 1− gX

For each group we have the prevalences Tg = (gSL, gOL, gPW , gOW ) and if we take

these as the initial distribution of types at time t then the probability of a given

subject exhibiting a different type at time t+1 is

τg =
∑

gT (1− gT ).

It then follows (under H0) that the expected number of transitions in a popula-

tion of size ng across lg timepoints is

τgnglg
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τg E[Tr] under H0 Actual Tr p

PD 0.632 175 79 <0.001
CL 0.244 81 52 <0.001

Table 4.6: Phase plot type transitions for lab-based gait

For the lab-based dataset, we can calculate the corresponding values for the PD

and CL groups and this is given in Table 4.6. Under H0 the number of transitions

observed in each group, TRg is distributed as

TRg ∼ Bin(nglg, τg)

we can calculate p-values associated with the test detailed in Equation 4.3. From the

p-values reported in Table 4.6 we can safely conclude that Phase plot types are not

randomly distributed among participants based on a simple group-specific propor-

tion. Rather, there are subject-specific factors which lead to individuals consistently

producing the same Phase plot type.

4.3.4 The clinical Utility of Phase Plots: Estimation of the

MDS-UPDRS (III) score using Mixed Effects Models

Mixed-effects models, sometimes referred to as mixed models, are statistical models

which incorporate both fixed and random effects and are particularly useful in lon-

gitudinal studies which include repeated measures. In our dataset random effects

may be included at the level of the individual. There are many factors related to

lifestyle and other comorbidities which are not observed in our dataset but which

likely impact an individual’s gait and performance at each visit to the lab. Including

a random effect for participant ID allows for this between-subject variation. Fea-

tures within the Phase and ST domains will be treated as fixed effects along with
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other available subject data such as Age, MDS-UPDRS score, and bout index (index

of 3-4 bouts completed at each visit).

To assess the clinical utility of Phase plots we can fit several different mixed

effects models. There are two dependant variables of interest that we aim to model.

Firstly, the group of a subject i.e. can we reliably classify a PD or CL subject? And

secondly, the MDS-UPDRS score. To interpret these mixed effects models we will be

relying on estimated standard errors of fitted parameters as well as associated effect

sizes and confidence intervals. In the case of modelling the disease group we can also

rely on the odd-ratios associated with specific feature effects to see how Principal

components or individual features impact the estimated probability of belonging to

the PD group.

Firstly, we model MDS-UPDRS with the first four principal components of the

ST domain all as fixed effects and Phase plot type as a random effect. Secondly, to

also allow us to compare relative performance of feature domains, we model MDS-

UPDRS with the corresponding principal components of the Phase domain as fixed

effects and with Phase plot type as a random effect as before. As part of the random

effects, an intercept is estimated for each Phase plot type.

All reported fixed effect sizes found in Table 4.7 are statistically significant based

on their respective 95% confidence intervals (reported in appendix Table 8.2) con-

structed from their estimated standard errors. It is promising to see large propor-

tions of variance being explained by the inclusion of phase plot type in these mixed

models, but free-living data analysis is need to fully validate these results as well as

the usefulness of classifying phase plot types in this way.
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Fixed effect effect size Random effect effect size

ST domain
PC1 0.12 (±0.039) OL -1.23
PC2 0.15 (±0.061) OW 2.36
PC3 -0.33 (±0.010) PW -1.84
PC4 -0.53 (±0.012) SL 0.70

Phase domain
PC1 -0.14 (±0.042) OL -1.02
PC2 0.43 (±0.04) OW 2.28
PC3 0.43 (±0.07) PW -1.88
PC4 0.22 (±0.10) SL 0.62

All features
PC1 0.18 (±0.036) OL -1.14
PC2 -0.11 (±0.038) OW 2.43
PC3 -0.072 (±0.051) PW -1.98
PC4 0.24 (±0.063) SL 0.69

Table 4.7: Fixed effect sizes - Modelling MDS-UPDRS on principal components of
Phase and ST domain.

4.3.5 Mixed Effects Logistic Regression

We follow a similar protocol for modelling Group based on lab data- assessing the

fit when using ST only followed by Phase only. Here we fit the following logistic

mixed effects model:

P (PDi = 1) = S(Xiβ + Zibi + εi) (4.4)

where S is the sigmoid function (4.2). PDi is an indicator variable equal to 1

when participant i has a diagnosis of Parkinson’s disease and 0 otherwise. Xi is

the design matrix for the fixed effects, the first four principal components in this

case, and similarly Zi contains the random effects which in this case represents the

predominant Phase plot type exhibited by subject i.

When interpreting these models it is important to bear in mind the context of
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Accuracy Specificity Sensitivity

ST domain
69.2% 68.4% 70.5%

Phase domain
70.8% 70.3% 69.4%

Table 4.8: Predicting disease group using logistic mixed effects models (4.4)

the gait from which features from both domains are derived. The highly controlled

environment within the lab is necessarily masking a huge amount of variation oth-

erwise caused by variation in ADL. These mixed effects models should therefore be

treated sceptically, however they are very useful in terms of steering our further

analysis of free-living data. Establishing a valid baseline (in this case, lab-based

gait features) is important as it allows us to assess the impact of environment on

our novel feature domain as well as quantify the so-called white lab coat effect [62]

in terms of gait patterns. In later chapters investigating longitudinal trends we will

include an effect for timepoint. In general successive timepoints are treated as fixed

effects and the elapsed time between timepoints is assumed equal for all participants

in the study so it stands to reason that the specific effect of going from one timepoint

to the next is approximately equal across all participants. In cases where time is

treated effectively as continuous then it cannot be included as a random effect as

these must be categorical. In our case, we have very distinct timepoints separated

by 18 months. We must acknowledge that not all PD participants have an equally

well-managed diseases. Variation in the disease management and medication regime

discipline could feasibly result in varying impacts associated with each 18-month in-

terval. This potential justification for timepoint as a random effect is explored more

in chapter 6.
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4.4 Conclusions

Phase plot analysis satisfies several key requirements for wide-scale deployment and

clinical assessment within gait analysis:

• Features of the phase domain are derivable from a single discreetly worn device.

• Very small demand on time and data volume. A very brief bout of steady

state ambulation is sufficient to determine an individual’s phase plot type - a

robust and reproducible signature of their gait. This will be validated further

in Chapter 5.

• Results are objective.

The high within-subject consistency of phase plots types means that these fea-

tures may be used to represent a compact and comprehensive overview (a snapshot)

of a person’s gait. This leads us to adopt the signature or “fingerprint” interpretation

of phase plots to reflect their specificity not just to a given subject, but to the state

of their condition (PD in this case) at the time of recording. Strong relationships

between features of phase plots and ST features of gait were found. We identi-

fied several potential transitions of phase plot types which correspond to significant

changes in specific ST characteristics. This helps with interpretation of these novel

phase plot features by linking them to well-known traditional gait characteristics.

Significant effect sizes were found for ST domain features in modelling of MDS-

UPDRS and promising performance measures were shown when predicting disease

group. This domain of traditional features is well-validated in the literature so we

should expect this good performance. Phase domain features appear to perform

similarly well compared to these traditional features both in terms of modelling

MDS-UPDRS, a proxy of disease progression, and detecting the presence of PD

itself. Classification performance measures around 70% are very promising given
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that all of the gait features so far are derived in a single constrained test environment

which is generally understood to mask the disease manifestation in gait. In chapter

6 we will build on this mixed effects modelling to include time point and participant

age as effects.

These lab-based analyses shed light on several characteristics of particular fea-

tures in each domain. Asymmetry and variability features in the ST domain are

prone to skew, likely due to lack of variability in lab-based straight line gait and lim-

itations relating to human physiology. Features of the Phase domain were similarly

prone to skew and strict bounds but these are often traceable back to the mathe-

matical geometric definition of these features e.g. ellipse eccentricity is necessarily

bounded above by 1 due to the definition of an elliptic conic section. Interestingly

step time seems relatively similar across PD and controls, at least when compared

to other spatio-temporal features. It appears that overall, PD participants’ aver-

age step lengths are reduced compared to their healthy counter parts. But due to

similar reductions in step velocity, the overall step time of PD participants’ remains

relatively constant

The highly controlled environment associated with this data brings with it sev-

eral benefits and detriments from an analysis point of view. Firstly, the fact that

this data are fully annotated removes the requirement for any gait detection algo-

rithms to identify the time spans in which bouts of gait were occurring. The same

walkway being used for all participants removes any variability that would otherwise

be introduced by environmental factors such as uneven walking surfaces or adverse

weather conditions. However, while 10m is far enough for sufficiently stable gait to

be recorded, this upper limit on bout length means we cannot analyse the impact

on gait, if any, of prolonged walking or indeed the relationship between gait features

and walking duration. The participants’ awareness of the highly controlled environ-
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ment can itself introduce a bias in the data. There is evidence in the literature to

suggest that simply being aware of their being observed can impact their gait [63].

This psychological phenomenon is often referred to as the “white (lab) coat effect”.

This specific environment-related impact will be quantified in chapter 5 following

analysis of real-world accelerometer data of the same subjects.

The reported classification performance associated with both Phase and ST do-

main features were slightly lower than values reported in a similar study by Rehman

et al [41], however they made use of continuous bouts of walking including right-hand

turning.

Higher frequency sensors may mitigate the small error on IC (initial contact)

estimates which would allow Phase plots to be constructed on gait cycles segmented

by GEs (gait events). This would potentially improve interpretability as each phase

plot orbit would then represent a gait cycle as defined in the model shown in Figure

4.1.

Our exploratory analysis of ST and Phase feature densities highlighted some

interesting and notable characteristic distributions potentially due to constraints

of physiological factors or of their respective mathematical definitions. It is unclear

from these lab-based analyses to what degree these distributions are also characteris-

tic of the recording environment. This will be investigated as part of the assessment

of the impact of environment on gait characteristics in Chapter 5.

For lab-based gait we have shown that:

• These novel phase domain features can distinguish between PD and CL pa-

tients based solely on the accelerometry with performance comparable to that

of traditional features.

• Phase plots are consistent and reproducible within subjects from both PD and

CL groups. This supports their use as a reliable signature of PD subjects’ gait
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and hence disease state.

• In general, a combination of ST and Phase features slightly outperforms either

domain alone. The improvement is not very large however, so this relative

performance will also be assessed in real world setting.

• Analysis of multicollinearity within and between feature domains supported

the hypothesis that the features of this novel domain do indeed carry gait-

related information not explained by ST features alone.

We have successfully demonstrated the effectiveness and practicality of the novel

methodology and feature domain introduced in chapter 2 through its application

to PD gait accelerometry. Lab-based data may represent an unrealistic and non-

representative subset of an individual’s real world gait, however these analyses are

an excellent proof of concept for Phase Plots and the new Phase domain of features

showing that they can match and potentially exceed the performance of ST gait

characteristics in detecting PD. The results of this chapter form a solid foundation

and justification for extending to real-world and longitudinal analysis.
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Real World Gait Analysis

5.1 Introduction

Real-world gait monitoring and analysis is superior to lab-based and scripted tasks

in that the gait data are representative of individuals’ ADL rather than their perfor-

mance of a single constrained task [64–67, 26, 1, 2, 68]. There are, however, signifi-

cant challenges and drawbacks associated with real-world monitoring. In particular,

contextual information was not present as data were only collected with accelerom-

eters. A reliable gait detection algorithm is required. Patterns of gait may differ

greatly between subjects, so extended periods of recording are required to ensure

sufficient gait is present. The protocol, detailed in chapter 3, included seven-day

recording sessions throughout which wearable accelerometers continuously recorded

triaxial acceleration at 100Hz.

5.1.1 Challenges

When working with the real-world portion of the ICICLE dataset we encounter a

different source of missingness due to the unscripted nature of real-world walking.
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Whichever way we segment the seven days of data we have no guarantee of there

being valid gait in any given time span. Even if a participant has perfect attendance

and is present at all timepoints, there are many unknowns which may impact their

activity levels and hence the amount of gait accelerometry available for them in each

day/hour etc. It is understood that PD patients have reduced physical capability

and mobility, and seeing as disease group is an observed variable, we can regard

the mechanism of this missingness as at least partially MNAR. To address this

missingness we can take advantage of the recording protocol which involved seven full

days of continuous monitoring. Moreover, when discretizing daily gait characteristics

by hour, we can aggregate features across the seven days. This increases the validity

of hourly measures by increasing the expected total duration of gait occurring in each

hour. We will also quantify activity levels and factor these into to our analyses to

investigate the relationship between gait characteristics and the total duration of gait

completed per hour. Where we conduct complete-case analysis on real world data

(after aggregating seven days) we must interpret results in the context of parallel

analysis on activity levels. Lab-based gait and the associated gait features are

a measure of capacity of the subject i.e., the highly controlled uniform walking

environment provides an ideal, if unrealistic, setting to record an individual’s healthy

gait where any PD symptoms may be partially masked. This contrasts with real

world data which is recorded continuously with no scripted activities. For this

reason, rather than a measure of capacity, real world gait data is regarded as a more

valid measure of performance based on ADL [23]. Given this distinction between

lab-based and real-world, we must be cautious not to include in our analyses any

assumptions of equivalence between the gait associated to each data sources.
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5.2 Aims

5.2.1 Exploratory

An initial exploratory analysis will be conducted and compared against that of

the lab-based gait characteristics. It may not be immediately obvious what the

source of any differences are e.g., a more relaxed environment, increased variety

of ADL, etc. This initial analysis will serve to highlight any potential differences

and similarities which warrant further scrutiny and analysis. Both similarities and

differences between lab and real-world gait characteristics will be interesting subjects

of analysis. We will also see what real-world phase plots look like and provide a

subjective interpretation at this exploratory stage.

Many ST and Phase domain features have recognisable and characteristic distri-

butions when derived from lab-based data. We will use the real-world derived gait

characteristics to compare and contrast with their corresponding distributions from

real world gait. This will shed light on whether these distributions are the result

of purely physiological constraints, their mathematical definition, or the controlled

circumstances of lab-based gait.

5.2.2 Real World Daily Trends

A major advantage of real-world gait accelerometry is that we are able to analyse

daily patterns and trends in gait characteristics as opposed to a short and potentially

unrepresentative snapshot of an individual’s gait. We will assess how gait charac-

teristics from each feature domain evolve over the course of the day. As previously

mentioned, we will make use of the repeated measures in this real-world portion of

the experiment design by aggregating seven days of hourly segmented data into one

“average” daily pattern. Reliably monitoring and predicting daily trends such as
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these is of clinical interest and may be used to inform decision support tools [44].

Any results from analysis of these daily patterns will be interpreted in terms of the

associated activity levels.

5.2.3 Signature of Gait in Real World Settings

Phase plots and the associated novel feature domain have now been validated as a

reproducible signature of an individual’s gait which hold individual information re-

lating to PD patients’ gait and physical capability. However, this has been validated

only in the case of lab-based data. There are downsides to lab-based gait analysis

e.g., we rely on an individual having sufficient availability and mobility to attend

appointments, which can introduce bias in the associated datasets, especially when

subjects are from elderly or less-mobile demographics which is the case here. For

these and other reasons, it is preferable to have methods which are deployable in real

world settings. We will investigate the utility of Phase plot features and the validity

of this signature of gait in real world scenarios. The increased diversity of ADL in

real world settings leads to several questions regarding the novel Phase domain and

signature of gait.

• Do subjects have a well-defined phase plot type (see Figure 4.20) throughout

their real-world recording? And is it the same as their respective lab-based

Phase plot type?

• If so, how much real-world gait is required to discern this type? What is the

minimum amount of real-world gait needed to predict an individual’s Phase

plot type with high certainty? We know 10m walks are sufficient in lab con-

ditions.

• If not, what are the factors determining a phase plot type? e.g., bout length,
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activity levels, pathology etc.

• Are Phase plot types distributed among PD and CL subjects in the same

proportion as was observed in lab settings (see Table 4.5)?

• Do type-transitions occur at the same rate as in lab-based settings and what,

if any, additional clinically relevant information can be extracted from these

transitions in a real-world setting?

Each of these questions will be approached separately for PD and CL subjects

as we have previously seen that Phase plot features do not manifest themselves

similarly across disease groups.

5.2.4 PD and Relationship with Clinical Scales and Disease

Status

Like our lab-based analyses we can take MDS-UPDRS scores as a reliable proxy for

disease state and progression. We now have a vastly increased volume of data per

subject and can answer more specific and nuanced questions regarding the modelling

of disease progression by gait characteristics. For example, which features in the ST

and Phase domain are best for predicting disease progression and is the performance

of these models dependent on time of day? PD patients may be more likely to

exhibit off-state gait in the morning before their first medication has taken effect.

PD participants in a clinically defined “OFF” state generally do not have their

symptoms under control and so gait recording during this state may provide more

insight into their current level of disease progression.
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5.2.5 Lab versus Real World: The Impact of Environment

We will assess the relative performance of lab and real-world gait characteristics

from the ST and Phase domain. Each setting has its benefits and deficits from an

experiment design point of view. For example, real world gait is recorded during

unscripted ADL and is likely far more representative of an individual’s actual daily

gait, but it can be difficult to annotate a full dataset and detect all valid gait. In

lab-based gait we can reliably classify and segment all gait cycles with a high degree

of certainty at the expense of natural variety of bouts. In the case of the novel Phase

domain is not immediately clear whether the added variety of ADL in real world gait

will improve the performance of phase plots by making them more representative

of individuals’ gait or if it will significantly reduce their interpretability due to the

unknown context during the associated gait recording.

We can quantify the impact of increased variety ADL - by comparing all lab-

derived gait characteristics with those from real-world setting. We can also quantify

the specific impact of environment by comparing ≈10m Lab walks with short real-

world bouts of walking. Although unknown sources of variation will still occur due

to unscripted ADL, this will help quantify the size of the “white lab coat effect” in

the context of short walking bouts.

5.2.6 Questions

Exploratory

• Which gait characteristics are sensitive to the change in recording setting and

how is this reflected in their distributions across PD and CL subjects?

• What, if any, are the main visual differences between phase plots constructed

from lab-based gait and those constructed from real-world gait?
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Real world

• Is seven days of continuous accelerometry sufficient for a reproducible daily

pattern (hourly) of gait characteristics?

• Are intermittent lab-based walking bouts equivalent to real world bouts in

terms of disease classification?

• How do real-world bouts of walking relate to clinical scales (e.g. MDS-UPDRS-

III) and disease state?

• Can we treat lab-based gait as a subset of an individual’s real-world gait or is

it fundamentally different?

• Are short real-world bouts similar to the short walking bouts recorded in lab

settings and, If so, is this consistent across disease Group and feature domain?

• How do overall activity levels and bout lengths relate to gait characteristics?

• How do the daily patterns of gait characteristics vary between and PD and

CL subjects?

• How much real-world gait is required to ascertain an individual’s gait signa-

ture? If it requires more than a short bout such as those recorded in the lab

setting, then this would be an example of lab-data outperforming real world.

Unscripted real-world monitoring necessarily result in a large volume of rele-

vant gait data so it will be helpful in future research to know which bouts hold

the most clinically relevant information.
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5.3 Methods for Real-World Gait Analysis

To allow for valid cross-environment comparisons, we will present similar summary

tables of PD vs CL gait characteristics highlighting significant differences, following

appropriate Bonferroni corrections. As part of our exploratory analysis of real-

world data we will perform a PCA for parallel comparison with Lab-data. It may

be the case that significantly different loadings are observed for the Phase domain

depending on the environment.

5.3.1 Daily Trends

Statistical parametric mapping (SPM) is used for assessing between-group

variations in daily patterns of gait characteristics. In these analyses, “between-

group” may be taken to mean disease group (PD and CL) or between any two

subsets of Phase plot types (SL, OL, PW, OW). SPM was initially developed for

neuroimaging but has more recently appeared in the biomechanics literature [69].

SPM is ideal for region of interest (ROI)-related hypothesis testing because it is

valid for arbitrary 1D geometries such as those produced by gait characteristics over

the course of a day [70], [71]. One such daily pattern is shown for the secondary

Type 1 feature AsyAream in Figure 5.1. As well as these smoothed path plots, polar

plots are helpful in providing a quick overview of a feature’s progression over the

course of a day (see Figure 5.2). SPM will be used for identifying ROIs in daily

patterns of gait features i.e., times in the day (between 06:00 and 23:00) during

which we may expect to see increased discrepancy between PD and CL subjects.

This is closely linked to the detection of OFF-state gait which during which a PD

subjects’ symptoms are not being sufficiently controlled by their medication. SPM

was implemented using the open source spm1d code (v.M0.1, www.spm1d.org) in

MATLAB R© (R2015). Plots such as those shown in Figures 5.1 and 5.2 are produced
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Figure 5.1: Smoothed progression of the Type-1 Secondary feature, AsyArea−m by
group.

Figure 5.2: Polar plot of AsyArea−m by group.

by aggregating all feature values by hour and group in real-world settings. Polar

plots in particular can be helpful in depicting daily patterns.

In the case of 1D data, which is what we have when regarding gait characteristics

over the course of a day, SPM first computes a test statistic continuum (usually

the t-statistic) from a set of experimentally measured 1D signals. This step is
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similar to 1-dimensional mean and standard deviation continuum computation. The

technique then involves conducting statistical inference at a Type I error rate of α

which is usually equal to 0.05 but subject to multiple-comparison correction, by

calculating the critical test statistic value above which a randomly generated test

statistic continua (generated by smooth Gaussian process) would not exceed in (1

- 100α)% of cases. The assumption of Gaussian process is not uncommon in gait-

related studies and has been shown to within the relevant literature [72–74]. If the

experimentally observed continuum exceeds that critical value the null hypothesis

is rejected. This general approach to classical hypothesis testing has been validated

extensively in 1D univariate and multivariate data [70]. In the cases where the null

hypothesis is rejected, this methodology is very intuitive in identifying the time

frames associated with the test statistic exceeding the critical value.

Functional Principal components analysis (FPCA). PCA was used in 4 and

applied to each feature domain to reduce the number of features used and hence sim-

plify the related models. In this chapter looking at real-world gait analysis we will,

again, explore the utility of PCA in dimension reduction but will also expand to use

Function Principal Components Analysis (FPCA). FPCA is a statistical technique

used for identifying and investigating the main modes of variation in waveforms (see

Figure 5.3 for an example).

There are several reasons we may expect to see daily variation in gait charac-

teristics, for example, morning akinesia (impairment of voluntary movement) is a

motor symptom in PD which is attributed to a delayed effectiveness of the subjects’

first medication dose of the day. Tabbasco et al [75] estimated that 60% of subjects

receiving treatment for PD were exhibiting morning akinesia. When implementing

FPCA we will pay close attention to the early morning hours in both PD and CL

groups to assess whether there is a morning effect observable in the extracted gait
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Figure 5.3: Daily Step Velocity trends for a typical PD (left) and CL (right) subject
demonstrating significant within subject variation.

characteristics. Any conclusions drawn from FPCA must be scrutinised carefully

with regards to activity levels among the PD and CL groups- several features such

as step length variability are likely to be skewed in the case of reduced levels of

valid gait or variability in bout length. We can see why a method such as FPCA

is required, in addition to SPM which looks at overall trends, by plotting the sepa-

rate daily trends of features for individual subjects. Spaghetti plots are a standard

approach for this with examples shown in Figure 5.3.

We will also assess how the main modes of variation from 6am to 10pm differ (if

at all) between PD and CL subjects. In addition, the function principal components

will also be assessed to see how they differ depending on subject’s predominant Phase

plot type. We can then quantify the degrees to which an individual’s disease group

(PD or CL) and Phase plot type (SL, OL, PW, or OW) each impact their daily gait

characteristic patterns.

Different methods are available for FPCA depending on the sparsity of the data

[76]. While attrition and attendance lead to discrete drop-out in the data (see

Chapter 3), daily gait patterns generally present as smooth time series, see Figure

5.3, as long as some gait is recorded each hour. Briefly, FPCA is conducted on daily

gait patterns by:
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1. For a given feature X e.g., Asyγm or Step length variability, let X(t) =

[X1(t), ..., Xn(t)] be the collection of zero-mean curves defined by every avail-

able daily time series for X.

2. The first FPC φ1(t) is the function which maximises V ar(s1) where s1 =

(s1,1, ..., s1,i) and

s1i =

∫
φ1(t)Xi(t) dt

subject to the constraint ||φ1(t)||2 =
∫
φ2
1(t)dt = 1.

3. Similarly for φ2(t), we aim to maximise V ar(s2) subject to the constraints:

||φ2(t)||2 =

∫
φ2
2(t) dt = 1

and

〈φ1, φ2〉 =

∫
φ1(t)φ2(t) dt = 0.

4. φ1 represents the main mode of variation in the data. This algorithm continues

similarly for i = 1, 2, 3, ...

5.3.2 Disease Progression and Classification

Mixed effects models (MEMs) are a useful tool for assessing how real-world gait

characteristics can model proxy measures for disease progression such as the MDS-

UPDRS score referenced in Chapters 3 and 4. MEMs can also be used to assess

multicollinearity among gait features which is a likely given the number of gait

characteristics extracted (16 Phase and 15 traditional).

Non-linear Mixed effects models (NLMEMs), in this case based on the logistic

transformation, will be used for assessing how well real-world gait features can be

used to classify PD-CL subjects. As before, the respective activity levels, time of
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day etc. provide important context for this classification. If a particular subset of

the cohorts were completing very little valid gait then this would potentially reduce

the performance of the classification through lack of feature data.

5.3.3 Signature of Gait

We have too few follow-up timepoints (18, 36, 54, and 72-months post diagnosis) to

justify chain analysis on participant phase plot type across follow-up dates. However,

using real world data we are able to extract each participant’s predominant phase

plot type on an hourly basis and regard the resulting daily sequences as a discrete-

time Markov Chain (DTMC), (Xn, n ∈ 1, ..., 17) where Xn is one of the four Phase

plot types: SL, OL, PW, OW. We have no reason to assume this Markov chain is

not strongly connected. There is a directed path between any two states. i.e., the

transition probability, pij > 0 ∀ i, j ∈ {SL,OL, PW,OW}

In the first instance we will aim to answer the questions: are the associated

transition matrices significantly different from the identity matrix I4? [77] [78].

And what significance (if any) is contained in the propensity of subjects, from either

PD or CL group, to transition between the four Phase plot types? The lab-based

analysis in chapter 4 highlighted the clinical relevance of phase plot transitions,

where a participant exhibits a different phase plot type to what was observed at

previous timepoint(s). The real-world recordings provide a much richer and varied

dataset to validate these hypotheses and explore the implications of these transitions.

It is very clear that Phase plot types are not distributed similarly across PD and

CL subjects, indeed the vast majority of CL subjects predominantly exhibit Single

Line (SL) type phase plots. We will examine these distributions of Phase plot types

in real world settings and will extend our analysis to see how an individual’s Phase

plot type may evolve over the course of the day.
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5.4 Results

5.4.1 Exploratory Analysis

To remove variation caused by gait initiation or gait termination, the first and last

3 steps in all detected bouts were disregarded prior to calculation of ST and Phase

domain features. The vast majority of features in Table 5.1 are highly significant,

even following Bonferroni multiple comparisons correction. It is important to bear

in mind however, that statistical significance does not necessary translate to better

performance in disease classification or modelling of disease progression. For these

purposes, we should also pay attention to the effect sizes which in Table 5.1 are

expressed as percentage differences (calculated as CL - PD). We can see, for example,

that across all timepoints, days, and Phase plot types, having a diagnosis of PD

appears to correspond to a 15% reduction in step length and step velocity. Step

time, however, is only slightly reduced (≈ 2%). This same phenomenon was found

in lab-based analysis in chapter 4, where both step velocity and length both reduced

in a manner than preserved a consistent step time (duration).

Figure 5.4 shows the impact of regarding lab-based gait as a subset of real-world

gait. The smaller peak visible in the lower left of each plot is a result of gait recording

completed in the lab- the bias associated with recording environment is clear. Upon

visual inspection, the empirical densities of the ST and Phase domain features in real

world settings are noticeably different to their corresponding densities derived from

lab gait data (see Figure 5.5). These differences, however, are not consistent across

features. For example, ST features relating to variability of gait have much greater

spread, likely a result of increased ADL compared to uniform scripted walking in

the lab.

This impact of environment is investigated fully in section 5.4.7 but for now it
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Feature CL PD Mean difference, % p

Phase Domain

Primary features
Area 0.35082 0.28982 -17.39 <0.01
γ 0.94103 0.93182 -0.9785 <0.01
Asyθ 6.837 8.8683 29.71 <0.01
AsyArea 12.758 9.1264 -28.47 <0.01
GoF 14.641 14.479 -1.107 0.309
SDr1 0.10571 0.069374 -34.37 <0.01
SDr2 0.46739 0.33822 -27.64 <0.01

Secondary features
Asyγm 0.042078 0.065419 55.47 <0.01
AsyγM 0.055168 0.061321 11.15 <0.01
Asyθm 9.8124 11.579 18 <0.01
AsyθM 6.8344 7.3897 8.125 <0.01
AsyAream 36.495 35.11 -3.795 0.301
AsyAreaM 34.59 30.866 -10.76 0.0301
GoFm 68.646 68.761 0.1679 0.723
GoFM 123.56 107.33 -13.13 0.005
SDGoF 35.938 35.198 -2.058 0.349

Spatio-temporal Domain

Mean characteristics
Step time 0.75784 0.746 -1.562 <0.01
Stance time 0.90952 0.89495 -1.602 <0.01
Swing time 0.59941 0.58711 -2.053 <0.01
Step length 0.7803 0.66344 -14.98 <0.01
Step velocity 1.1842 1.0059 -15.06 <0.01

Variability (var) characteristics
Step time var 0.49141 0.44873 -8.685 <0.01
Stance time var 0.48865 0.45469 -6.95 <0.01
Swing time var 0.4527 0.41224 -8.938 <0.01
Step length var 0.33839 0.27388 -19.06 <0.01
Step velocity var 0.48539 0.40079 -17.43 <0.01

Asymmetry (asy) characteristics
Step time asy 0.2129 0.19958 -6.258 <0.01
Stance time asy 0.20785 0.19801 -4.736 <0.01
Swing time asy 0.19983 0.1877 -6.068 <0.01
Step length asy 0.11503 0.09794 -14.86 <0.01
Step velocity asy 0.18779 0.15418 -17.89 <0.01

Table 5.1: Real world feature values (at 18 months post diagnosis) from the spatio-
temporal and phase domains.
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Figure 5.4: Bimodal distributions in the empirical densities of Step time variability
(top) and the Phase feature AsyArea (bottom) as a result of combining lab-based
and real-world data.

is sufficient to show why we must not treat lab-based and real world as equivalent.

Empirical densities for all features within the Phase and ST domains across

environment and disease group can be found in the Appendix (8.1).
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Figure 5.5: An example ST (upper) and Phase domain (lower) feature showing
significantly increased spread due to ADL of real-world setting.

5.4.2 Principal Components Analysis

As in chapter 4 we can conduct a Principal Components Analysis (PCA) of the

features extracted under real-world conditions as well as on each domain separately.

In both feature domains we observed that, in general compared to lab-based data,

the top n PCs accounted for a greater percentage of variance in the feature space.

For example, in lab-based settings, 5 PCs of the Phase and ST domains explained

107



Chapter 5. Real World Gait Analysis

Figure 5.6: Scree plots showing the variance accounted for by each of the first 10
Principal Components (PCs) with each feature domain.

62% and 79% of their respective variances. PCA in real-world settings yielded 86%

and 84.9% for Phase and ST domains respectively (see Figure 5.6). To find an

explanation for this increase in explained variance we can look at the weightings, or

loadings, of each PC to assess the relative importance of the domain’s constituent

features. We can visualise the top 5 PCs of the ST domain by plotting their loadings
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for each feature (see Figure 5.7 for Real-world loadings). From this we can see that

all five of the PCs shown include a noticeable peak in their loadings for a feature

related to either asymmetry or variation e.g., PC1 and PC2 both largely depend on

step length asymmetry. The added variety of ADL in real-world recording appears

to be highlighting gait abnormalities in terms of asymmetries. As in Chapter 4, the

first four PCs of each feature domain will be assessed via their performance as part

of Mixed Effects Models.

Figure 5.7: Feature PCA loadings for the Spatio-temporal domain.

5.4.3 Activity Levels

Both PD and CL exhibit similar activity levels in terms of absolute quantity of gait

per hour and both have a modal value of about 1 minute 44 seconds. This is right

skewed towards greater values in both groups and it is more clinically relevant to

report on mean activity levels. Both groups spent about 12% of each day performing

a walking activity. While activity levels are useful for contextualising the results of

analysis and scrutinising their validity, Figure 5.8 is taken from data aggregated

over all timepoints and days so does not communicate other sources of variability,

for example, between different phase plot types.
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Figure 5.8: The distribution of hourly gait duration recorded under real world con-
ditions

Figure 5.9: Distribution of bout durations across all subjects by disease Group

Figure 5.8 and 5.9 show macro level gait features which are assessed in more

detail by Del Din et al [1].

In general, PD subjects carried out ≈ 14% more bouts than their age-matched

control counterparts, however, these PD bouts where on average 12% shorter in

duration than those of the control group (see Figure 5.9). This resulted in a relatively

comparable average gait duration overall. This difference in overall gait duration
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Figure 5.10: Hourly activity levels by Phase plot Type - showing consistent distri-
bution across types.

is consistent across the course of the day but is most pronounced around 10:00 to

13:00 with percentage difference reducing somewhat towards the late afternoon (see

Figure 5.11). The overall distribution shown for activity levels (assessed by total

hourly gait) in Figure 5.11 is similar to the distribution of bout lengths (an alternate

means of assessing activity) presented by Del Din et [1].

This approach to assessing the pattern or distribution of (bouts of) gait is found

in the literature and is relevant to studies concerning the fractal properties of gait

[79]. Other measures are available such as the α measure which which describes the

distribution of bout lengths [80, 81]. Activity level was distributed similarly across

all Phase plot Types (see Figure 5.10).

To investigate how traditional and Phase domain features are related to activity

levels, the 20% quantiles of hourly gait duration where calculated (see Figure 5.12)

find 5 sub-intervals of an hour each of which correspond to approximately equal

hourly activity levels. The resulting intervals (expressed in seconds) are: (0-126),

(127-313), (314, 620), (620-1188), and (1189 - 3600). Interestingly, this means that

approximately equal number of hours comprise over 20 minutes of gait (fourth in-
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Figure 5.11: Mean hourly activity levels.

Figure 5.12

terval) as comprise under 2 minutes (first interval). This is not too surprising given

the heavily right-skewed distribution shown in Figure 5.8. These quantiles were

averaged across all subjects (PD and Control).

This discretisation of activity levels provides a clear framework for assessing the

relationship (if any) between time spent walking and feature values. An impact of

environment is clear to see in Figure 5.13 however, the contribution of each activity

quantile is not constant (see Figure 5.14), indeed higher levels of activity appear

to be associated with a reduced asymmetry in step velocity. In addition, in Figure

5.15 we can see a consistent location shift associated with disease group. We employ

two-way Analysis of Variance (ANOVA) to quantify and substantiate the impact of

activity on these features and will include an interaction term for disease Group.
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Figure 5.13: Two features (one Spatio-temporal and one Phase domain) demon-
strating different apparent impacts of environment.

Figure 5.14: Two features (as in Figure 5.13), split by activity quantiles defined in
5.12.

This will allow us to disentangle the respective impacts of activity and PD. Boxplots

for all features split by environment and group can be found in the Appendix (8.1).

All features from the ST domain are highly significant with respect to both

Activity Quantile and Group and also yielded significant interaction terms. The

associated effect sizes are particularly large for asymmetry-related features (see Ta-

ble 5.2). The majority of Phase domain features show significant differences across

activity quantiles, however very few exhibit a significant Activity:Group interaction.
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Feature Activity Group (PD) Activity:Group

Phase Domain

Primary features
Area - -17.6 % 0.084
γ 2.6% -1.0% 0.74
Asyθ -16.2% 29.6% 0.124
AsyArea - -28.0% 0.532
GoF - - 0.11
SDr1 - -33.4 0.257
SDr2 -10.0% -28% 0.14

Secondary features
Asyγm -26.9% 55.4% 0.075
AsyγM -19.2% 11.2% 0.94
Asyθm -10.97% 18.0% 0.279
AsyθM -9.29% 8.13% < 0.001
AsyAream 7.57% - 0.280
AsyAreaM - -10.76% 0.193
GoFm 8.70% 0.16% 0.044
GoFM 16.03% -13.13% 0.0024

Spatio-temporal Domain

Mean characteristics
Step time -3.54% -1.56% < 0.001
Stance time -2.82% -1.60% < 0.001
Swing time -3.49% -2.05% < 0.001
Step length -9.87% -14.9% < 0.001
Step velocity -5.44% -15.1% < 0.001

Variability (var) characteristics
Step time var 12.5% -8.69% < 0.001
Stance time var 13.5% -6.95% < 0.001
Swing time var 21.4% -8.94% < 0.001
Step length var -11.49% -19.1% < 0.001
Step velocity var -11.4% -17.4% < 0.001

Asymmetry (asy) characteristics
Step time asy -43.3% -6.26% < 0.001
Stance time asy -42.7% -4.74% < 0.001
Swing time asy -39.2% -6.06% < 0.001
Step length asy -50.9% -14.86% < 0.001
Step velocity asy -52.7% -17.89% < 0.001

Table 5.2: ANOVA results of Phase and ST domain features. Activity and Group
effect sizes are omitted where p > 0.05. Effect sizes have been converted to relative
percentage differences from quantile 1 (0-216s) to quantile 5 (1189-3600s). For the
interaction term, only the associated p-values are reported.
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Figure 5.15: Two features (as in Figure 5.13), split by activity quantile (see Figure
5.12) disease group: PD (red) and CL (green).

These interactions are best visualised in interaction plots such as Figure 5.16. The

differing gradients between successive activity quantiles (x-axis) are evidence of the

interaction between disease group and activity quantile. It is clear from this anal-

ysis that the Phase domain and ST domain of features differ greatly in terms of

their relation to activity levels. In fact, several Phase domain features (for example:

AsyArea and SDr1), appear to be invariant with respect to activity quantiles. On

the other hand, the feature AsyAream appears to be invariant with respect to disease

group once we account for the activity levels, although this is only observed in a sin-

gle feature. Phase plots’ invariance under differing activity levels may be beneficial

in the monitoring of PD progression as it seems to imply that valid Phase domain

features can be extracted from subjects regardless of their activity levels or physical

capability.
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Figure 5.16: GoFM (Phase domain) and step velocity asymmetry (ST domain)
interaction plots.

5.4.4 Daily Trends

Statistical Parametric Mapping

We apply Statistical Parametric Mapping (SPM) to ST and Phase domain features’

time series to identify fluctuations in daily gait across PD and CL subjects. SPM

offers a robust means of assessing differences in gait features between PD patients

and healthy controls on a per hour basis. SPM has been applied in a similar manner

to Alzheimer’s patients’ gait by Buckley et al [82], who proposed that applying

SPM in this way may contribute to personalised care by helping identify when

impairments occur.
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Feature Threshold cluster intervals

Phase Domain

Primary features
Area 06-23 (p < 0.001)
γ 06-23 (p < 0.001)
Asyθ 06-23 (p < 0.001)
AsyArea 06-23 (p < 0.001)
GoF No RoI
SDr1 08-14 (p = 0.007), 15-22 (p = 0.003)
SDr2 No RoI

Secondary features
Asyγm 06-23 (p < 0.001)
AsyγM 06-23 (p < 0.001)
Asyθm 06-23 (p < 0.001)
AsyθM 06-23 (p < 0.001)
AsyAream No RoI
AsyAreaM No RoI
GoFm No RoI
GoFM No RoI
SDGoF No RoI

ST Domain

Mean characteristics
Step time 06-08 (p = 0.007), 21-23 (p = 0.046)
Stance time 06-08 (p = 0.010), 21-23 (p = 0.046)
Swing time 07-09 (p = 0.015), 20-21 (p = 0.05), 22-23 (p = 0.046)
Step length 06-23 (p < 0.001)
Step velocity 06-23 (p < 0.001)

Variability (var) characteristics
Step time var 06-10 (p < 0.001), 15-23 (p < 0.001)
Stance time var 06-10 (p < 0.001), 11-12 (p = 0.036), 15-23 (p < 0.001)
Swing time var 07-13 (p < 0.001), 15-23 (p < 0.001)
Step length var 06-23 (p < 0.001)
Step velocity var 06-23 (p < 0.001)

Asymmetry (asy) characteristics
Step time asy 06-08 (p = 0.032), 19-20 (p = 0.042), 22-23 (p = 0.044)
Stance time asy 08-09 (p = 0.048), 22-23 (p = 0.047)
Swing time asy 15-16 (p = 0.047), 21-22 (p = 0.05)
Step length asy 06-08 (p = 0.006), 14-17 (p = 0.05)
Step velocity asy 06-09 (p = 0.002), 12-17 (p < 0.001), 19-23 (p < 0.001)

Table 5.3: Regions of Interest (RoI) identified by applying SPM to all features for
PD and CL groups. All reported regions yielded p < 0.05. 06-23 represents the full
timeseries.
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When conducting SPM on a particular feature basis to compare daily time series

for PD and CL subjects there are three possible outcomes:

• Case 1: No regions of interest (RoI) are identified by the analysis for the

feature in question (Figure 5.17).

• Case 2: One or more RoIs are identified for the feature (Figure 5.18).

• Case 3: The entire timeseries (all 17 hours) are identified as a single RoI

(Figure 5.19).

Table 5.3 shows the intervals (hour-to-hour) of all RoIs for both Phase and

ST feature domains. There are several noticeable differences between the feature

domains. Firstly, all 15 ST features have at least one RoI associated with them

compared to only 10 of the 16 Phase domain features. Secondly, all but one of the

Phase domain features exhibit either Case 1 or Case 3 listed above. It is possible

for features to appear not significant in terms of SPM analysis but still represent an

overall difference between PD and CL. This is because each point in the parametric

map, SPM(t) is calculated based on feature data associated with a single hour.

SPM has potential to be an excellent means of extracting value from large real-

world datasets such as those resulting from the ICICLE-GAIT study as it takes

advantage of 7-days of continuous recording and could be used to identify fluctua-

tions in gait features associated to particular medication in-take times.

Functional Principal Components Analysis

SPM was performed and demonstrates promise for identifying times of day when

PD symptoms may not be sufficiently masked by medication i.e., OFF-State gait.

However, this methodology works partly by aggregating each subject’s 7-days of gait

data without considering the underlying modes of variation. For example, there may
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Figure 5.17: The Phase domain feature, SDr2 showing no RoIs identified by SPM.

Figure 5.18: The ST feature, Step length asymmetry showing two RoIs identified
by SPM.

Figure 5.19: The Phase domain feature, γ (ellipse eccentricity) showing a single RoI
extending across the full timeseries.
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be subsets of the PD or CL cohorts who, for a given feature, exhibit characteristic

peaks in their respective daily timeseries (see Figure 5.18 for example) while others

remain fairly constant across the day. Functional Principal Components Analysis

(FPCA) is an ideal method for identifying these modes of variation.

Figure 5.20: Daily Step Velocity trends for a typical PD (left) and CL (right) subject
demonstrating significant within subject variation.
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Given the variety of ADL present in real-world data, it may be helpful to scru-

tinise the eigenfunctions associated to each FPC (functional principal component)

following FPCA. Together with their respective fractions of explained variance, these

can help identify any recurring modes of variation or daily gait patterns within the

PD and CL groups. FPCs extracted for each of the seven days of the real-world

recording period are shown in Figure 5.20 for Asyγm and step velocity. The first

eigenfunction (that is the eigenfunction associated with the first fPC) represents

the main mode of variation in the daily patterns of the feature in question. The

first Eigenfunction for the majority of features is a relatively flat timeseries with no

obvious trend compared to subsequent FPCs.

For almost all features of both domains, the main fPC exhibiting a relatively

flat daily signal with a slight trend if any and with little difference between PD and

CL participants. Subsequent fPCs showed more feature-specific characteristic wave-

forms with some features showing clear PD-CL divergence. However, these are not

Figure 5.21: Top four FPCs for Step time asymmetry by group.
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Figure 5.22: Top four FPCs for Step length asymmetry by group.

Figure 5.23: Top four FPCs for AsyAreaM by group.
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Figure 5.24: Top four FPCs for Asyθ by group.

interpreted in detail due to the low fraction of explained variance associated with the

second, third and fourth fPC etc. Given the low variance associated with these fPCs

there is a risk of over-analysing and drawing invalid conclusion. In summary, there

is generally commonality in the daily patterns of features for both disease groups’

main fPC. Differences only appearing in the subsequent fPCs associated with much

smaller fractions of variance.

5.4.5 Signature of Gait in Real-world Settings

The Phase plots shown in Figure 5.25 are taken from bouts of the same participants

as those shown in the similar Figure 4.20 from lab-based gait. The real-world bouts

corresponding to these Phase plots comprised of approximately 25 gait cycles and

where not taken from any particular time of day or timepoint. The most obvious

difference appears to be the much denser clusters of ellipses in each plotted Phase

plot. While the overall Phase plot types are still easily distinguishable, the added

123



Chapter 5. Real World Gait Analysis

Figure 5.25: Examples of each Phase plot type from PD (left) and Control (Right)
subjects in real world gait. Average orbits shown (blue).
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Figure 5.26: Distribution of predominant types in real world setting. Modal Phase
plot across all seven days as each Timepoint.

PD CL p

n 92 111 -
Asyθ 16.3± 6.28 13.2± 8.18 -
γ 0.928± 0.061 0.942± 0.029 -
d 0.898± 1.23 0.47± 0.41 -

Counts

SL 44 91 < 0.001
OL 25 7 < 0.001
PW 17 9 0.0348
OW 6 3 0.305

Table 5.4: Predominant Phase plot type across all timepoints by group.

variability of ADL is leading to occasional disparities in among orbits of an individual

Phase plot. This is particularly apparent in the case of OW and OL type Phase

plots.

When looking at predominant Phase plot Type over all 7 days of real-world

recording (Figure 5.26), the distribution closely resembles the Type distribution seen

in lab-based settings 4.21. In lab-based settings each participant had a well-defined

125



Chapter 5. Real World Gait Analysis

predominant Phase plot type- at a given time point, their predominant type was

simply the type which was produced from their relatively small amount of steady-

state gait. In real world conditions we have a far larger and more unpredictable data

set. In the case of real-world data, we the define a participant’s predominant Phase

plot type as the modal value among the sequence of hourly fitted types across their

respective seven-day recording period. Using this definition produces the familiar

distribution seen in Figure 5.26 but masks a lot of the finer scale variability in Phase

plot type e.g., over the course of the day.

Table 5.4 shows the count data for predominant Phase plot type for all partici-

pants. The between-group proportions show similar patterns to the corresponding

count data for lab-based gait in Chapter 4 with Controls being far more likely to

exhibit a predominantly SL (single line) type Phase plot compared to the PD sub-

jects. A chi-square test of independence showed that there was a highly significant

association between Group and predominant Phase plot Type, χ2(2, N = 202) =

28.6, p < 0.001. PD subjects have a significantly higher propensity to exhibit to type

OL (Oblique lines) and PW (Parallel wings). The values associated with Phase plot

type OW (Oblique wings) are very low, accounting for only about 4% of the total

sample size. Given the relatively small counts associated with OW Phase plots,

it may seem rational to omit these cases from future analysis to avoid introducing

potential bias, however, the count data in Table 5.4 is based solely on predominant

Phase plot types exhibited across all real world data available which totals up to

500 hours for each participant1. The low count values reported in Table 5.4 sim-

ply reflect that it is unlikely for participants of either the PD or Control group to

predominantly exhibit OW type Phase plots in favour of SL, OL, or PW. The OW

type is not necessarily under-represented in the dataset as a whole.

1This calculation is based on the assumption of 7 days of recording at 4 separate timepoints
and comprising the hours 06:00 to 23:00 (17 hours per day).
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Type / Feature SL OL PW OW p†

Step Length (m)
0.741
±0.119

0.714
±0.186

0.709
±0.108

0.691
±0.127

SL vs PW
< 0.001

OL vs PW
< 0.001

Step Length Asy (m)
0.110
±0.108

0.107
±0.090

0.101
±0.086

0.100
±0.105

OL vs OW
0.091

SL vs OW
0.067

Step Time Var (s)
0.478
±0.181

0.464
±0.174

0.462
±0.171

0.461
±0.185

SL vs PW
< 0.001

OL vs PW
< 0.001

Step Vel (ms−2)
1.12
±0.272

1.07
±0.259

1.08
±0.261

1.04
±0.267

OL vs PW
< 0.001

SL vs PW
< 0.001

Step Vel Var
0.457
±0.169

0.431
±0.156

0.436
±0.156

0.423
±0.154

SL vs OL
0.0022

SL vs OW
0.421

Table 5.5: Between-Timepoint type-transitions. ST domain feature values for PD
participants exhibiting each Phase plot Type. Type-to-Type contrasts shown in the
right-most column correspond to those presented in Chapter 4 for valid comparisons.

Phase Plot Type Transitions

In Chapter 4 we were able to observe and investigate type-to-type transitions be-

tween follow-up timepoints. This analysis highlighted the potential significance of

such transitions in terms of traditional features and implications for physical capa-

bility. For example, based on the lab data we may hypothesise that a transition

from PW to OL corresponds to a significant reduction in gait velocity and reduced

physical capability (see Table 4.4).

Table 5.5 shows the results of a similar analysis being applied to real-world gait

data. There are 6 possible Type-to-Type transitions. All transitions that showed
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statistical significance in lab-based settings also showed significance in real-world

settings. Transitions involving the Phase plot Type OW were generally not sig-

nificant, likely due to it being under-represented among the subjects’ predominant

types. Despite this, a transition of SL to OW or OL to OW is approaching signif-

icance in terms of the feature step length asymmetry. This analysis substantiates

the conclusions drawn in Chapter 4 regarding Type transitions and shows that their

apparent clinical relevance is not just an artefact of lab-based gait but is also present

and observable in real-world data.

Hour-Hour transitions Correspond to much smaller scale fluctuations - related

to medication state rather than overall disease decline. So far we have only inves-

tigated Phase plot Type transitions on timescales of over a year. This has been

dictated by the experimental design and follow up dates separated by 18-month

gaps. We have achieved this by determining each subject’s predominant Type at

each timepoint, meaning that the transitions we have observed are more likely the

results of changes in disease state or physical capability over time. To assess the rel-

evance of type transitions to daily disease fluctuations we must reduce the timescale

considerably. To do this, we instead determine each subject’s predominant Phase

plot type on a per hour basis. Since are only looking at the hours of 06:00 to 23:00

this technique results in a discrete-time sequence of Types with length n = 17. One

such sequence is available per subject per day.

Figure 5.27 shows the daily sequence produced by a typical PD patient at time-

point of 36 months and on day 4 of recording. A representative Phase plot is shown

for each hour. This subject has predominant Phase plot type, OL.

It is fairly common for several hours in day to go without sufficient gait data to

discern a Phase plot type. The 7-day recording protocol, however, ensure that in

the vast majority of cases we have several bouts of gait per hour per subject which
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Figure 5.27: A PD subject’s Phase plot Type sequence over a single day. During
the hours 17:00-18:00 and 21:00-22:00 insufficient gait was recorded to produce valid
Phase plots.

allows us to build up a general daily trend or sequence i.e., it is generally unlikely

for a subject to consistently produce no data across particular hours for all 7 days

at a given timepoint.

There are several benefits to regarding subjects’ hourly Phase plot type sequences

rather than their respective predominant type. For example, we can investigate the

previously underrepresented OW type. We can also now contextualise Phase plot

Types in terms of fluctuations on much smaller timescales, a few hours rather than

years.

Hourly Phase plot Type sequences, such the example shown in Figure 5.27, can

be extracted for every participant for each of the seven days for all timepoints at

which they were present. Treating this sequence as a DTMC allows us to quantify

and investigate the nature of between-Type transitions.

Once we have estimated the 4 by 4 transition matrix, P, associated to a pre-

dominant Type and group (PD or CL) we can calculate the respective stationary

distribution π, a non-negative vector of length 4 whose entries sum to 1 and which

satisfies

πP = π.
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We can observe quite easily that all states (Types) in this Markov chain can be

reached regardless of initial state. We can therefore conclude that the underlying

Markov chain is irreducible and is aperiodic. This condition is sufficient to conclude

that there will be a single unique stationary distribution.

The stationary distribution of a Markov Chain describes the proportion of time

spent in each state assuming a sufficiently long run to remove any dependence on the

initial state. In our case, it describes the proportion of time spent exhibiting each

Phase plot type conditional on their respective predominant type at that timepoint.

In Figure 5.28 we can see that for each predominant type, unsurprisingly more

time is spent in that type than any other. However, the specific stationary distri-

butions have some notable differences.

For both disease groups, those with predominant type OW exhibit much more

diffusion in their stationary distribution when compared with the other three types

(see the smaller peaks in the top-right panel of Figure 5.28). This can be interpreted

as showing that Type OW is more likely to be a temporary state that subjects have

an increased tendency to transition out of. This is consistent with findings of chapter

4 regarding the under-representation of OW among predominant Types (< 4%).

Upon further inspection, we can see that this diffusion is particularly expressed in

the CL group. In fact, across all predominant Types except SL, CL subjects yield

notably more diffuse stationary distributions, this can be seen by observing highest

green (CL) peak in OL, OW, and PW panels of Figure 5.28 and noting its reduced

value compared to the equivalent values for the PD group. This trend reverses in

the case of Type, SL in which case controls spend an estimated 79.1% of their time

in their predominant SL state compared to 67.7% for PD subjects.

It is very clear certain type transitions are more feasible than others depending on

the predominant Type. Moreover, for a given predominant Phase plot Type, there
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Figure 5.28: The stationary distributions πType of subjects’ hour-to-hour sequences.
These distributions, πType are estimated separately for subjects with each predomi-
nant type.

are consistently two other types which are more likely to occur than the remaining

fourth. This is clearest in the case of Type OW in the top-right panel of 5.28 where

the Types OL and PW share far more stationary distribution weight than Type

SL. A similar distribution can be seen when conditioning on any of the other three

Types (OL, PW, and SL), where two other Types each represent approximately

twice the weight of their respective stationary distribution when compared to the

fourth remaining Type. This property of πType is consistent across both PD and CL

groups and is more easily visualised by the diagram in Figure 5.29.

An alternative interpretation of this property within the πType is that for each

of the four possible predominant Types, there is a corresponding Type to which

transitions are far less common than from any other Type. For those subjects of

predominant Type OW, the corresponding type is SL which accounts for only 4.5%

of the respective subject’s Types across all timepoints.
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Figure 5.29: Feasible transitions of Phase plot Type. Transition probabilities con-
ditional on starting in the predominant state (Type). Relative probabilities shown
by line width. Probabilities have been normalised across PD and CL.

Table 5.6 shows, for each feature the, two most substantial Phase plot Type

transitions based on percentage change in the respective feature. Given four Phase

plot Types there are 12 possible directed hour-to-hour transitions i.e., the transition

SL − OL is considered separately to OL − SL. However, after treating mirrored

transitions as separate, it becomes clear that these mirrored pairings consistently

yielded approximately equal and opposite effects on the ST features. Due to this

symmetry, we introduce the convention that we report transitions in their positive

direction, defined as the direction in which the respective feature tends to increase.

Looking at the top Type transitions across all ST features shows that the major-

ity (12 out of 15) involve a transition to or from OW and/or SL Type Phase plots.

Interestingly, SL-to-OW (or OW-to-SL) is the rarest Type transition observed across

132



Chapter 5. Real World Gait Analysis

Type / ST Feature Top transition Second transition

Mean characteristics
Step time PW-OL 1.6% OW-OL 1.2%
Stance time PW-OL 1.6% OW-OL 1.3%
Swing time PW-OL 1.5% PW-SL 1.3%
Step length OW-SL 7.2% PW-SL 4.7%
Step velocity OW-SL 7.2% OL-SL 4.9%

Variability (var) characteristics
Step time var OW-SL 3.6% PW-SL 3.0%
Stance time var OW-SL 2.9% OL-SL 2.6%
Swing time var OL-SL 3.2% OW-SL 3.1%
Step length var OW-SL 9.3% OL-SL 6.1%
Step velocity var OW-SL 8.0% OL-SL 6.1%

Asymmetry (asy) characteristics
Step time asy OW-SL 5.4% OW-OL 4.5%
Stance time asy OW-SL 5.2% OW-OL 4.7%
Swing time asy OW-SL 4.7% OW-OL 4.0%
Step length asy OW-SL 10.1% PW-SL 8.1%
Step velocity asy OW-SL 10.9% PW-SL 7.0%

Table 5.6: Hour-to-hour type-transitions. Transitions with the largest and second
largest significant effect sizes shown.

all real-world gait data (see Figure 5.26 and 5.29). Due to experiment design and

practical limitations of gait data we must accept a degree of error in estimating a

participant’s Type each hour, in particular if they have not recorded sufficient gait

activity. This is an indirect effect of the unpredictable nature of real world gait

during ADL and may be addressed in future studies if more detailed annotations of

ADL are made.

5.4.6 PD Classification in Real-world Settings

To assess the clinical utility of Phase plots we can fit several different mixed effects

models. There are two dependant variables of interest that we aim to model. Firstly,

the disease group of a subject i.e., can we reliably classify a PD or CL subject using
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generalised mixed effects models and secondly, the MDS-UPDRS score which is

taken as a proxy for PD-progression. To interpret these mixed effects models, we

will be relying on estimated standard errors of fitted parameters as well as associated

effect sizes and confidence intervals. In the case of modelling disease group, we

can also rely on the odds-ratios associated with specific feature effects to see how

Principal components or individual features impact the estimated probability of

belonging to the PD group. Including a random effect for participant ID allows for

this between-subject variation. Features within the Phase and ST domains will be

treated as fixed effects.

Firstly, we model MDS-UPDRS with the first four principal components of the

ST domain as fixed effects and Phase plot type as a random effect. Secondly, to

also allow us to compare relative performance of feature domains, we model MDS-

UPDRS with the corresponding principal components of the Phase domain as fixed

effects and with Phase plot type as a random effect as before. As part of the random

effects, an intercept is estimated for each Phase plot type.

Similarly to the results of the MDS-UPDRS modelling conducted in Chapter 4,

all fixed effects associated with the first four PCs of each feature domain (as well

as for all features) were significant at the 5% level. Compared to the Lab-based

analysis, the majority the random effects sizes have increased in magnitude. I.e.,

the impact of Phase plot Type on MDS-UPDRS appears more pronounced in Real-

world settings during ADL. To contextualise the effect sizes in Table 5.7, the mean

MDS-UPDRS value for PD subjects is 32.7± 10.2 (see Table 3.1).

Classification performance (Table 5.8) in Real-World settings has increased across

all feature domains and by all three metrics (accuracy, sensitivity, and specificity)

compared with the corresponding results in Chapter 4 (see Table 4.8). Interestingly,

specificity has increased by a greater proportion than sensitivity, suggesting that
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Fixed effect effect size Random effect effect size

ST domain
PC1 1.22 (±0.063) OL -1.73
PC2 0.58 (±0.12) OW 2.57
PC3 0.80 (±0.13) PW -1.02
PC4 0.23 (±0.015) SL 0.18

Phase domain
PC1 1.2 (±0.13) OL -1.47
PC2 -1.14 (±0.026) OW 2.21
PC3 1.30 (±0.032) PW -1.01
PC4 0.73 (±0.046) SL 0.27

All features
PC1 1.16 (±0.013) OL -1.47
PC2 1.14 (±0.025) OW 2.21
PC3 1.3 (±0.032) PW -1.01
PC4 -0.72 (±0.046) SL 0.27

Table 5.7: Effect sizes - Modelling MDS-UPDRS on principal components of Phase
and ST domain.

Accuracy Specificity Sensitivity

ST domain
72.6% 75.7% 71.5%

Phase domain
71.5% 72.0% 71.2%

All features
74.3% 78.4% 73.4%

Table 5.8: Predicting disease group using logistic mixed effects models (4.4)

Real-World gait data offers a lower false positive rate. ROC curves and their re-

spective AUC (Area Under the Curve) values are a well-known measure of binary

classifier performance. Figure 5.30 shows the ROC curves for classification of PD via

NLMEMs (see equation 5.1) with S representing to the sigmoid function (equation

4.2)

135



Chapter 5. Real World Gait Analysis

Figure 5.30: ROC curves for the classification of PD using Phase and ST domain
features in Real-World settings.

P (PDi = 1) = S(Xiβ + Zibi + εi) (5.1)

As in previous analyses, PDi is an indicator variable equal to 1 when participant

i has a diagnosis of Parkinson’s disease and 0 otherwise. Xi is the design matrix

for the fixed effects, the first four principal components in this case, and Zi contains

the random effects which in this case represents the predominant Phase plot type

exhibited by subject i.

5.4.7 Lab vs Real-World: The Impact of Environment

In the lab-based portion of the ICICLE-GAIT study, participants were asked to

perform four intermittent straight line walking trials over a 10 m walkway at their

preferred speed [83] [14]. People with PD were tested approximately one hour after

136



Chapter 5. Real World Gait Analysis

their medication intake. The Real-world portion of the data collection took place

at the end of the lab-based testing session. Participants wore the accelerometer for

one week. Schooten et al [84] showed that just 5 days of continuous accelerometer

data was sufficient for reliable estimation, although their study concerned a trunk-

work sensor. Measuring gait in real life reflects habitual gait performance and is not

confounded by heightened attention or altered by the observer effect found during

lab-based assessment. Wearable accelerometers also allow movement to be captured

continuously over longer periods of time, which is not practical in a laboratory or

clinical setting.

In terms of total recorded data, the approximate ratio of lab-based to real-world

data is 1:20,000. This is based on a single participant accruing ≈ 30 seconds of lab-

based gait followed by 7 continuous days real-world recording. Including only the

hours from 06:00 to 22:00 reduces this to 1:14,000 and finally, only considering times

during which actual ambulation is occurring brings the final ratio to 1:1200 (lab :

real world). Any analyses aiming to assess the impact of recording environment

must be conducted carefully to minimise the bias towards the particular recording

protocol for lab-based gait e.g., fixed length of the 10m walkway. For this reason,

when directly comparing lab and real-world gait we include only comparably short

bouts from real-world settings i.e., those bouts with duration under 25 seconds.

Even at this duration, the variety in real-world settings and ADL has a clear impact

on the empirical distribution of both ST and Phase domain features (see Figures

5.31 5.32).

Comparable bouts were extracted on a per subject basis. Here, bouts are consid-

ered comparable if they are similar in duration. In lab-based settings, this may vary

between subjects due to variations in step velocity / lengths etc. Finding compara-

ble bouts in this way still allows for several conflating factors in addition to recording
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Figure 5.31: Mean step length in lab-based settings and in Real-World conditions
for two short bout durations intervals

Figure 5.32: γ (mean ellipse eccentricity) in lab-based settings and in Real-World
conditions for two short bout durations intervals
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Real-World

Feature Lab-based 0 < T ≤ 15 15 < T ≤ 25

Phase Domain

Primary features
Area 0.113 +109% +93.7%
γ 0.948 -0.214% -0.319%
Asyθ 5.58 +19.5% +13.9%
AsyArea 1.17 +132% +125%
GoF 6.44 +115% +112%
SDr1 0.022 +122% +121%
SDr2 0.054 +167% +163%

Secondary features
Asyγm 0.0128 +130% +131%
AsyγM 0.0129 +152% +147%
Asyθm 8.49 +8.77% +9.13%
AsyθM 4.2 +49.9% +47.5%
AsyAream 3.13 +134% +124%
AsyAreaM 4.45 +147% +143%
GoFm 26.2 +114% +111%
GoFM 35.3 +122% +98%
SDGoF 29.2 -10.3% -11.9%
Spatio-temporal Domain

Mean characteristics
Step time 0.543 +19.5% +21.8%
Stance time 0.703 +15.3 % +15.1%
Swing time 0.389 +21.0% +26.5%
Step length 0.554 +20.2% +23.9%
Step velocity 1.03 +9.3 +10.9

Variability (var) characteristics
Step time var 0.017 +1020% +1490%
Stance time var 0.0413 +390% +472%
Swing time var 0.0295 +275% +580%
Step length var 0.0485 +248% +241%
Step velocity var 0.0927 +152% +238%

Asymmetry (asy) characteristics
Step time asy 0.00994 +1890% +1630%
Stance time asy 0.0256 +570% +457%
Swing time asy 0.0218 +262% +462%
Step length asy 0.031 +293% +146%
Step velocity asy 0.0532 +223% +158%

Table 5.9: Lab-based and Real-World features values from the spatio-temporal and
Phase domains. Features derived from Lab-gait and comparably short bouts (< 25s)
in real-world settings. 139
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environment e.g., medication state. In lab-based gait, participants completed their

respective bouts approximately one hour after medication intake which removes to

some degree the effect of medication from subsequent analyses. It is difficult to

remove this complication from real-world gait data without additional information

on specific medication intake times for PD subjects. By extracting many compara-

ble real-world bouts however, it is reasonable to assume that we may capture both

medication ON and OFF state gait i.e., some bouts recorded when the patient’s PD

symptoms were being masked by medication and some not. Table 5.9 shows the

results of these comparisons. Significance was assessed using the Mann-Whitney

U test. All features’ location shifts (from lab to both duration categories) were

significant at the 1% level. This shows that in real-world conditions, even during

comparable short bouts, both ST and Phase domain features are significantly ef-

fected by the unrestricted environment. The impact of environment and increased

ADL is most clearly apparent in features related to asymmetry and variability with

some features such as Step time asymmetry increasing by a factor of 10 or more.

The general trends observed here when comparing Lab bouts and Real-world bouts

of various length are in line with similar analyses conducted by Del Din et al [1].

As an aside, many of the ST features in the table also exhibit significant increases

across the two bout duration categories shown. This is consistent with the results

of section 5.4.3 where ST gait features showed an increased sensitivity to varying

activity levels compared to Phase domain features. As a general rule, gait recorded

in highly controlled settings represents a participant’s best possible gait or their

capacity. This contrasts with Real-world gait data which reflects the participant’s

actual performance [23].
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5.5 Discussion

The majority of all features showed highly significant differences between PD and

CL with a range of percentage differences; sufficing to say that not all features are

similarly affected by disease group (PD / CL). Visual inspection of the empirical

densities of a given feature from Lab-based bouts and those recorded during ADL in

Real-World conditions shows the substantial impact of recording environment and

experiment protocol. In real-world data the first few PCs all showed high loadings

associated with features related to asymmetry or variability of gait. This relative

importance of variability and asymmetry became a recurring theme in these Real-

World analyses. Segmenting activity levels by 20% quantiles offered a framework to

assess dependence of features on duration of gait carried out by participants. Phase

domain features are generally invariant across all activity quantiles. This may im-

prove their versatility as a clinical tool particularly applied to frail or less mobile

cohorts, as participants need not be required to carry out long durations of gait

to produce a valid set of Phase domain features and associated signature of gait.

Analysis of variance (ANOVA) testing showed that all ST features were sensitive to

activity quantile and that the degree of this sensitivity significantly interacted with

disease group. Overall, in the real-world portion of this experiment, PD and CL

tended to complete similar amounts of gait (in terms of total duration) however this

was distributed differently between groups. PD participants tended to accrue their

total gait duration through 14% more individual bouts than members of the CL

group. The decreased average duration of these bouts, however, largely cancelled

out any difference. SPM analysis demonstrated multiple regions of interest across

daily timeseries for ST domain features whereas features from the Phase domain

tended to either produce a single highly significant region of interest or none at all.

This may demonstrate that, as with activity quantiles, Phase domain features are
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also less sensitive to daily fluctuations than the more traditional ST features. This

strengthens the interpretation of Phase plots as an objective signature of gait but

may also suggest that Phase features are not best suited for detecting OFF-state

gait over very short timescales. The assumption Gaussian Processes has been used

previously in the context gait patterns and kinematics however, assessing the pre-

cise suitability of this assumption in Phase plot is recommended as a future research

task. Statistical non-Parametric Mapping (SnPM) should also be explored as an

alternative as it relies on fewer assumptions for the distribution of the data and

may be more appropriate in this context. Expanding the lab-based analysis has

validated the proposed Phase plot-based signature of gait in real-world settings. For

Real-world gait we have still observed the same four Phase plot types (SL, OL, PW,

OW) and validated that individuals’ predominant lab-based Type is preserved in

their corresponding Real-world gait. Both PD and CL may temporarily transition

out of their predominant Phase plot type on multiple occasions throughout the day.

DTMC analyses of participants’ sequence of daily types highlighted interesting de-

tails about the relative stationary distributions associated to participants with each

predominant type- particularly those associated with Type OW. Following the mod-

elling of MDS-UPDRS scores and disease group via mixed effects models, it appears

that the increased ADL has helped express between-group differences related to dis-

ease group or rather the highly controlled Lab-based environment had been masking

them to some degree. PD classification is more accurate in Real-World settings and

also produces lower false positive/negative rates. As before, combining both ST and

Phase domain features produces notably better performance than either feature do-

main alone. Throughout this chapter it is plain to see that Lab and Real-World

recorded gait data are fundamentally different. The impact of recording environ-

ment is expressed more clearly in ST features related to variability and asymmetry.
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The majority of Phase domain features are also clearly affected by environment with

many features more than doubling their respective lab-based means. The average

increase seen in ST features was considerably larger with one feature increasing

18-fold. This is not surprising given that Real-World gait necessarily included an

increased variety of ADL and turning compared with straight line lab-based bouts.

These results are in line with previous literature in which Real-world gait is superior

to lab-based in the context of classifying PD and identifying risk.
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Longitudinal Analysis

6.1 Introduction

Analysing ST and Phase domain feature over longer periods gives insight into how

PD may impact on gait performance beyond that which can be expected as a result

of healthy ageing. In this chapter we look at the progression of gait features up

to 6 years following PD diagnosis. The age-matched control group allows us to

disentangle the simultaneous impacts of pathology and ageing. It is possible for a

given feature to be sensitive to neither, both, or just one of these effects as shown

by Wilson et al [85]. Understanding the PD-specific impact on gait features is

necessary for targeted and individualised medication tailoring as well as general

disease tracking. I.e. it is important to know the relative extent to which gait

disturbances are acceptable effects of ageing. The ICICLE-GAIT dataset also allows

us to incorporate the impact of recording environment into these analyses and see

if there are significant advantages of one setting over the other e.g. the highly

controlled Lab-based gait sessions may mask the impact of ageing.

In previous chapters we have already taken several Longitudinal approaches.

We validated the Phase plot based Signature of gait partly by analysing timepoint-
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timepoint Phase plot Type transitions and substantiated Lab-based Phase plot Type

transitions by showing their consistency with their corresponding Real-World tran-

sitions. We have also looked in detail at the series of Type-transitions recorded by

participants in Real-World conditions on a daily basis, demonstrating the signifi-

cance of Type-transitions on the small hour-to-hour timescale.

What remains is to:

• Analyse the progression of Phase domain features across all available time-

points. As before, we keep traditional ST features as an established reference.

• Quantify the (interacting) effects of age, group (PD vs CL), and environment

(Lab vs Real-World) on the progression of these features.

6.2 Aims and Hypotheses

Initially, we can form subjective hypotheses based on exploratory analysis. Spaghetti

plots are an accessible means of showing all participants’ trends at each follow-up

timepoint (18, 36, 54, and 72 months) for a given feature. For each aspect of longitu-

dinal trend analysis, we can additionally check for any dependence on environment

e.g. Lab masks ST feature more than it masks some Phase domain features.

For any trends in ST or Phase domain features, or impacts of ageing, we can in-

vestigate how these trends or impacts are masked or preserved in each recording

environment.

In general we form the following hypotheses related to each gait feature:

H0 : The observed progression of feature i is equal in Lab and RW settings.

H1 : Either the Lab or RW recording environment exhibits a greater progression

in either PD or Control participants. Similarly we form the following hypotheses

related to each gait feature:
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H0 : The observed effect of ageing on feature i is equal in CL and PD participants.

H1 : Either the CL or PD participants exhibit greater sensitivity to ageing (in either

recording environment).

6.3 Methods for Longitudinal Analysis in PD

6.3.1 Feature Progression by Group and Environment

Linear mixed effects models (LMEMs) are used to model the progression of both

ST and Phase domain features. Follow-up timepoints (18, 36, 54, 72 months) are

included as fixed effects along with a random intercept for each participant to ac-

count for individual variability. We also include in these models indicator variables

for Environment and Group to allow us to compare feature progression between

PD and CL participants. Finally, each participant’s age at baseline is also included

in the model to control for the impact of ageing. I.e. the value of feature y for

participant i and timepoint t is modelled as

yit = β0i+β1t+β2I(PDi)+β3I(RWi)+β4I(PDi)t+β5I(RWi)t+β6agei+εit (6.1)

where I(PDi) and I(RWi) are indicator variables representing participant Group

and current recording environment, and agei is their baseline age. β0i is the random

intercept for participant i. Finally εit is the residual error for participant i at time

t.

6.3.2 Impact of Ageing

Within any analysis related to PD the impact ageing is an unavoidable factor due

to the demographics of those with a diagnosis- typically those over 60 years of age.
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Figure 6.1: PD participant age distribution.

The particular age distribution for the PD participants included in these analyses

is shown in Figure 6.1.

In addition to controlling for the impact of ageing in models of feature progres-

sion, we can focus in on this effect to better understand how each feature progresses

per year, for example, rather than solely in terms of time since diagnosis. The

overall trend in mean step length associated with age shown in Figure 6.6. As pre-

viously discussed in Chapter 5, Lab and Real-world recorded gait are fundamentally

different measures, for this reason we also separate the plot by environment. Two-

way Analyses of Covariance (ANCOVAs) were performed to assess how the ST and

Phase domain features can be expected to progress as a result of ageing in both PD

and CL subjects. ANCOVA is a useful method for assessing the interaction effect (if

any is present) of two independent variables, in this case, participant age (treated

as continuous) and group (PD or CL).

This particular interaction effect of Age and Group is important as it will help

contextualise the overall progression of gait features in both PD and CL groups by

shedding light on the separate impacts of ageing and pathology on gait. Throughout

these analyses we assume that feature progression observed in the control group is
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the result of the ongoing effect of ageing. Given the demographic and age range

of the participants, it is unrealistic to assume that progression observed even in

control participants is purely the result of healthy ageing. As in the PD group,

there is potential for additional unobserved comorbidities to factor into the observed

progression in gait characteristics. As with previous analyses in this thesis we will

compare and contrast how this effect of ageing is expressed in lab-based and real-

world recording settings.

6.4 Results

6.4.1 Feature Progression (Follow-Up) by Group

Tables 6.1 and 6.2 show the results of LMEMs to assess the progression of ST and

Phase domain features across all available timepoints.

In the first instance we can establish a baseline feature progression from the age-

matched controls and subsequently quantify any additional progression associated

with PD. Seven of the 15 ST domain features significantly progressed in CL subjects

and, to a greater extent, in PD subjects. Six features showed significant progression

in PD only and 2 features did not appear to progress in either group. These results

based on feature progression up to 6 years post-diagnosis are consistent with a recent

longitudinal analyses of a similar subset of ST features [85]. We see a similar picture

within the Phase domain, in that 8 of the 16 Phase domain features progressed

significantly for both Controls and PD. In addition, 3 features appeared to progress

only in PD subjects. There does not appear to be any preference for Primary or

Secondary Phase plot features.

Significance in the column for PD (†) is assessed in terms of progression relative

to Controls i.e. p < 0.05 implies significant deviation from the progression observed
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in the Control group. Conversely, p > 0.05 does not imply no progression with

respect to timepoint, rather that there is not a significant deviation from the trend

(if any) present in CL subjects.
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Control PD PD:Timepoint interaction RW:Timepoint interaction

Feature yearly ∆ p yearly ∆† p† β p β p

Primary features
Area 2.89% 0.079 0.687% 0.915 -0.0016 0.172 -0.00163 < 0.001
γ -0.236% 0.003 0.0543% < 0.001 0.000189 < 0.001 5.82e-05 < 0.001
Asyθ 0.91% 0.001 2.35% < 0.001 0.00129 0.91 0.00857 0.008
AsyArea -5.42% 0.146 -11.6% 0.043 -0.0277 0.446 -0.103 < 0.001
GoF -0.888% 0.526 -0.568% 0.499 0.00257 0.697 -0.102 < 0.001
SDr1 -0.214% < 0.001 2.18% 0.133 -0.0036 < 0.001 -0.00326 < 0.001
SDr2 1.6% 0.195 1.03% 0.025 -7.75e-05 0.637 -0.00071 < 0.001

Secondary features
Asyγm 2.25% 0.016 1.44% < 0.001 4.97e-05 0.512 -0.000389 < 0.001
AsyγM 4.15% 0.001 -0.0452% 0.005 -0.000195 0.025 -0.000415 < 0.001
Asyθm 2.69% 0.006 1.47% 0.001 0.0028 0.79 0.0024 0.427
AsyθM 2.52% 0.024 -0.972% 0.001 -0.0155 0.058 -0.014 < 0.001
AsyAream 12.9% 0.001 10.2% 0.415 -0.265 0.155 -0.248 < 0.001
AsyAreaM -2.95% 0.728 -2.92% 0.93 -3.33 0.709 3.48 0.175
GoFm 0.713% 0.302 -2.39% 0.03 -0.135 0.018 -0.504 < 0.001
GoFM -0.992% 0.945 0.0665% 0.073 0.0524 0.703 -0.858 < 0.001
SDGoF 1.35% 0.238 0.376% 0.628 0.012 0.778 0.0338 0.042

Table 6.1: Phase domain feature progression (real-world) from diagnosis date. † significance assessed in terms of relative
progression relative to Controls. Percentages are calculated from 18-month values.
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Control PD PD:Timepoint interaction RW:Timepoint interaction

Feature yearly ∆ p yearly ∆† p† β p β p

Spatio-temporal Domain

Mean characteristics
Step time 0.0125% 0.812 -1.54% < 0.001 -0.000677 < 0.001 -0.00263 < 0.001
Stance time -0.00705% 0.478 -1.43% < 0.001 -0.000725 < 0.001 -0.00248 < 0.001
Swing time 0.0918% 0.647 -1.66% < 0.001 -0.000686 < 0.001 -0.00249 < 0.001
Step length -0.661% 0.035 -3.08% < 0.001 -0.000408 0.027 -0.00213 < 0.001
Step velocity -0.761% 0.003 -1.65% < 0.001 0.000232 0.376 -0.000878 < 0.001

Variability (var) characteristics
Step time var -0.613% 0.281 -1.12% 0.158 -4.73e-05 0.852 -0.00584 < 0.001
Stance time var -0.635% 0.015 -1.1% 0.65 -0.000107 0.674 -0.00522 < 0.001
Swing time var -0.449% 0.412 -0.525% 0.642 -0.000198 0.414 -0.00497 < 0.001
Step length var -0.513% 0.136 -2.27% < 0.001 -0.000111 0.483 -0.00324 < 0.001
Step velocity var -0.276% 0.192 -1.24% < 0.001 -8.86e-05 0.675 -0.00436 < 0.001

Asymmetry (asy) characteristics
Step time asy -2.02% 0.002 -5.24% 0.799 -0.000127 0.301 -0.00244 < 0.001
Stance time asy -2.17% < 0.001 -5.46% 0.544 -9.8e-05 0.409 -0.00206 < 0.001
Swing time asy -2.12% 0.002 -4.51% 0.431 -0.000128 0.264 -0.00204 < 0.001
Step length asy -3.39% 0.005 -8.21% 0.392 -8.3e-05 0.253 -0.000845 < 0.001
Step velocity asy -1.69% 0.078 -4.8% 0.015 -1.72e-06 0.987 -0.00131 < 0.001

Table 6.2: Spatio-temporal domain feature progression (real-world) from diagnosis date. † significance assessed in terms of
relative progression relative to Controls. Percentages are calculated from 18-month values.
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Figure 6.2: Asyγm Progression by Group and environment. The impact of environ-
ment is progression is clear.

Mean step length is a prime example of Group:Environment interaction. Very

strong progression is visible in the PD cohort but only in Real-World settings where

Figure 6.3: AsyγM is unlike other features in that it appears to show more progression
in the Control group. It is important to note however that the average values is still
consistently higher in the PD group.
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Figure 6.4: Relative progression in many ST features (like step time asymmetry
shown here) is quite pronounced relative to Phase domain features. Asymmetry
and Variability related features are not surprisingly increased with in the presence
of increased ADL.

Figure 6.5: The progression of Step length also shows sensitivity to both Group and
Environment.
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Figure 6.6: Mean step length decreases with age across both disease groups and is
not masked by the highly controlled lab-based recording environment.

we see a decline of about 2cm per year in mean step length (see Figure 6.5). Step

time asymmetry also shows significant progression in Real-World settings particu-

larly in the case of PD participants (see Figure 6.4). The progression of secondary

Phase plot features such as Asygammam and AsygammaM shown in Figures 6.2 and

6.3 respectively, also exhibits sensitivity to environment and group.

6.4.2 Impact of Ageing

Table 6.3 summarises the impact of ageing on gait feature differs considerably be-

tween feature domains in terms of magnitude, direction and relation to PD. In the

case of the ST domain, all mean and variability related features (10 in total) exhibit

a significant decline as participants age following diagnosis (see columns 1-2 of Table

6.3). The effect of ageing on four of these ten features interacts with pathology (PD)

to accelerate this decline. This added impact of ageing for PD participants appears

most apparent in variability-related features. The impact of ageing on length step is
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Feature Age (yearly ∆) Age:PD interaction

Phase Domain

Primary features
Area -7.91e-05 0.172 -0.00182 0.075
γ -0.000356 0.298 0.000383 0.043
Asyθ 0.0219 0.594 -0.0218 0.247
AsyArea 0.0329 0.981 -0.0506 0.577
GoF -0.00714 0.792 0.017 0.176
SDr1 0.0088 0.021 -0.0107 < 0.001
SDr2 0.000787 0.02 -0.000493 0.0129

Secondary features
Asyγm 0.000854 0.006 -0.000591 0.012
AsyγM 0.000502 0.0324 -0.000492 0.048
Asyθm 0.063 0.0166 -0.0485 0.062
AsyθM 0.0234 0.007 -0.00474 0.337
AsyAream 0.312 0.23 -0.0336 0.298
AsyAreaM -0.112 0.329 -0.054 0.499
GoFm -0.189 0.767 0.242 0.126
GoFM -0.0927 0.982 0.145 0.329
SDGoF -0.0542 0.571 0.169 0.121

Spatio-temporal Domain

Mean characteristics
Step time -0.000443 < 0.001 -0.000235 0.1
Stance time -0.000495 < 0.001 -0.000288 0.091
Swing time -0.000419 < 0.001 -0.000195 0.113
Step length -0.00134 < 0.001 -0.00115 0.135
Step velocity -0.00199 < 0.001 -0.00125 0.158

Variability (var) characteristics
Step time var -0.000729 < 0.001 -0.000639 0.033
Stance time var -0.00079 < 0.001 -0.00056 0.017
Swing time var -0.000771 < 0.001 -0.000608 0.059
Step length var -0.000207 < 0.001 -0.000921 0.049
Step velocity var -0.000264 < 0.001 -0.00121 0.006

Asymmetry (asy) characteristics
Step time asy 5.46e-05 0.247 -0.000325 0.044
Stance time asy 8.05e-05 0.147 -0.000421 0.026
Swing time asy -0.00011 0.061 -0.00018 0.101
Step length asy -3.07e-06 0.09 -0.000243 0.253
Step velocity asy 0.000131 0.157 -0.000473 0.015

Table 6.3: ANCOVA results of Phase and ST domain features progression as a
function of age and Group.
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Figure 6.7: The secondary feature Asyθm appears to show sensitivity to participant
age but only in the control group.

Figure 6.8: As seen in 6.7 there is no significant trend in Asyθm relative to PD
participants’ age. This figure shows that, regardless of trends, the average PD value
in this feature is consistently greater than that of the age-matched controls.

shown in Figure 6.6 and is most pronounced in real-world settings for the PD group.

Within the Phase domain, six features show significant increases with participant

age, with five exhibiting interaction with disease group (PD). Interestingly, the

nature and interpretation of this interaction is different between Phase and ST

features. For example, in the case of ST features such as step time variability, age
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and Group (PD) interact in a way which inflates or adds to the overall ageing effect

i.e. the interaction is in the same direction as the main effect of ageing. Or more

simply, any apparent trend in features with respect to ageing is greater in magnitude

in the case of PD participants. This pattern is not reflected in the Phase domain

features however. In several Phase domain features, e.g. Asyθm their is a clear and

significant ageing effect in the control group. The corresponding interaction with

PD however, rather than adding to the main ageing effect, reverses it. This is more

easily shown graphically Figures 6.7 and 6.8 where we can see the trend for CL

subjects, despite a stable average value in PD subjects across the entire age range.

This phenomenon may be explained by the fact that for PD, medication is typ-

ically increased to decrease the rate of disease progression. Features such Asyθm

shown in Figure 6.8 are potentially dopa-sensitive features as their progression ap-

pears to be slowed/halted by PD medication [85]. Galna et al investigated the gait

dysfunction in PD and the specific impact of medication over 18 months [14] and

found that increased (Levodopa equivalent daily dose) was associated with reduced

deterioration in several ST features, thus demonstrating their dopa-sensitivity.

The feature Asyθm , defined in Equation (2), is related to asymmetries of gait

and was shown to correlate negatively with measures of physical capability such

as step length, velocity etc. It is therefore reasonable to submit that an increase

in this feature is favourable from a clinical perspective. Considering this with the

trend shown in Figure 6.7, we might conclude that control subjects’ Phase domain

features are more sensitive to ageing than PD subjects, which contradicts somewhat

the general trend we have seen. However, when overlaying these plots (see Figure

6.8) we can see why this interpretation would be incorrect. While Asyθm does

significantly increase with age in CL subjects, PD values are consistently higher, or

worse, at any given age. A more valid interpretation would then be that pathology
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of PD subjects has accelerated the ageing effect to the extent that relatively young

PD subjects (≈50 years old) have a similar value of Asyθm to CL subjects aged 85

and above.

There are several questions which follow naturally from this. The lines of best

fit shown in Figure 6.8 appear to meet at the right-most age value (≈ 95 years),

suggesting that perhaps the effect of PD is insignificant at this age. Or perhaps that

beyond this age CL subjects actually surpass PD subjects in terms of average Asyθm ,

assuming the trend continues and does not simply plateau. These questions are

impractical to address with the available data as they concern the upper age bracket

present in the ICICLE-GAIT cohort, which introduces significant survivorship bias.

6.4.3 Environment

The vast majority of features from both the ST and Phase domains exhibit significant

Environment:Timepoint interactions. This is expressed in Tables 6.1 and 6.2 as the

effect of Real-World feature progression relative to Lab-based. This is not surprising

as we have previously mentioned the substantial differences caused by recording

protocol/environment. These results demonstrate the large degree to which Lab-

based gait masks the progression of gait features. Only two features: Asyθm and

AsyAreaM , do not have this interaction.

6.5 Discussion and Conclusions

Features from both the Phase and ST domain demonstrate significant progression

up to 6 years following diagnosis. A subset of feature from each domain show

particularly high progression in PD relative to CL. In the ST domain these are: step

length (mean and variability), step time (mean), step velocity (mean and variability),
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stance time, and swing time. In the Phase domain this subset is: γ (full ellipse

eccentricity), Asyθ (angle subtended by adjacent ellipses), and Asyγm (eccentricity

asymmetry in Type-II partial ellipses), see Figure 2.16.

For Phase domain features, in addition to sensitivity to ageing, we found evidence

of PD accelerating the ageing process as early as 18 months following diagnosis.

This increased sensitivity to age was also present to a lesser extent in ST features.

Interestingly, features progression with respect to age did not appear to be masked by

the highly controlled lab-based conditions. Overall, spatio-temporal features showed

more sensitivity to participant age but Phase domain features generally showed a

greater Age:PD interaction, i.e. Phase plot features highlight the increased effect

of ageing in PD subjects relative to controls. This suggests that Phase domain

features may not be dopa-sensitive [86] i.e. the progression of these features may be

independent from dopamine replacement therapies.

All conclusions drawn from these analyses must be considered in the context of

the participants’ age range (see Table 3.1).

Unsurprisingly, results from Lab and Real-world gait accelerometry present very

differently. The increased ADL associated with Real-World gait clearly reveals more

progression in ST and Phase domain features than in Lab settings.
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Overview & Conclusions

7.1 Thesis Contributions

By adapting previously restrictive Phase plot methodology we have introduced a

novel Phase domain of gait features. With the procedure outlined in Chapter 2,

relatively short bouts of walking (< 10s) can reliably yield viable Phase plots. Key

features of this procedure are the segmentation of gait accelerometry data via zero-

crossing events rather than gait events (e.g. heel strikes), and the fitting of conic

sections to all successive cycles, or orbits, that make up a given phase plot. Through

cross-sectional analyses we have successfully demonstrated Phase plots’ clinical rel-

evance in monitoring of Parkinson’s Disease (PD) with a single wearable accelerom-

eter.

Longitudinal analysis showed that, similarly to traditional features, Phase do-

main features predictively evolve following diagnosis. Mixed effects models high-

lighted and isolated the impact of ageing on Phase domain features, allowing us to

quantify the accelerated ageing process associated with PD. Phase plot features are

categorised as either primary or secondary, with the latter being further categorised

as type I or II (see Chapter 2). There was no apparent preference or advantage
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to any of these categories, therefore we suggest that any future application explore

alternate structures.

Phase plots proved to be a robust signature of gait reproducible in both lab

and real-world recording environments. In addition, Phase plot Types provide a

high level classification of gait which can be extracted on a per bout basis. Transi-

tions between Phase plot Types are commonplace in real-world gait recordings, and

were shown to be linked to significant changes in spatio-temporal features linked to

physical capability.

Established features of the well-known spatio-temporal (ST) domain [15] pro-

vided an objective benchmark of against which we assessed the performance of the

novel Phase domain and signature of gait. This benchmark supports the conclusion

that Phase plots are a very promising tool for accelerometer-based gait analysis in

pathological studies.

As expected, the impact of ADL on gait (recorded in real-world conditions) is

substantial and clear in both the novel feature domain and traditional features.

However, the now validated signature of gait is consistent across lab and real-world

gait accelerometry. Between-timepoint transitions observed in lab data are consis-

tently reproduced when analysing corresponding real-world gait data. This is a rare

instance in which gait characteristics are not being masked by a highly controlled

lab-based environment.

The phase domain of feature is also largely invariant under varying activity levels

(total walking time per hour), unlike spatio-temporal features such as step length,

velocity etc. This means that future studies need not rely on participants’ mobility

levels to produce their gait signature. This is particularly beneficial in less mobile

cohorts. In terms of disease classification (PD vs Controls) the phase domain of

features showed similar performance to traditional features. The best performance
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is seen by combining both feature domains.

By including age-matched controls we have accurately quantified the sensitivity

of Phase domain features, and their progression, to pathology while controlling for

the ageing process. Between the compactness of the Phase plots and the low demand

on participant activity, and hence data, the Phase domain and the accompanying

signature of gait offer a unique and reliable snapshot of an individual’s gait. In

several analyses, improved performance was found by combining both traditional

features with the novel Phase domain. We may infer from this that not only can the

Phase domain perform well in itself, but should also be considered as an additional

tool to augment analysis based on more traditional gait features. By modifying and

validating this Phase plot methodology we have expanded the clinical application of

Phase plots and built on previous work [18, 32], which has previously been almost

exclusively limited to ECG analysis. In several of the analyses presented, the added

value of the Phase domain was incremental, however, future studies which look to

apply the domain in other clinical settings may find more prominent added value

e.g. Phase domain features may compliment conventional features to better monitor

response to therapy of other clinical interventions.

7.2 Limitations

Drop-out and attrition were unavoidable sources of variation. Although careful

consideration was given to the imputation method a degree of survivorship bias was

inevitable, especially in the upper age brackets and later follow-up timepoints.

Discretisation of activities levels, by bout length or otherwise, goes some way

to addressing the variation caused by unannotated ADL in real-world gait data.

However, there is considerable variety in daily activities which we cannot practically

label and as such this represents an unobserved source of variation. There are
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examples in the literature of ADL being fully annotated [40] by utilising footage from

a body worn camera, although this requires considerable manual post-processing as

well as the introduction of an addition wearable device. Analyses regarding the

specific impacts of ageing and recording settings could be by controlling for patient

increases in medication. This is usually done by calculating each patients Levodopa

equivalent daily dose (LEDD) [85].

In the field of wearable technology, and moreover within accelerometer-based

gait analysis, there is no universal standard practice for sensor location or configu-

ration. Although there are several advantages to the particular protocol and sensor

configuration within ICICLE-GAIT (discrete, central on the frontal plan, etc), this

is no guarantee the novel methodologies presented here will perform similarly in

other sensor configurations.

7.3 Further Research

In the early development stages of this novel Phase plot analysis, decisions were

made with the initial objective of establishing a stable Phase plot methodology for

continuous signals. Here, “stable” means that we can be confident that a general

bout of walking from any participant will yield a Phase plot to which elliptical conics

may be fitted to produce Phase domain features. This is not a trivial assumption

and required several critical adaptations e.g. segmenting gait cycles via zero-crossing

events in place of the more familiar gait events (e.g. heel strikes). The current state

of the methodology may be considered a minimal viable product (MVP). Having

validated this MVP and the utility of Phase plots, a sensitivity analysis should be

conducted to assess the impact of varying these adaptations as well as the following

factors:

163



Chapter 7. Overview & Conclusions

• Method of smoothing accelerometry data.

• Gait segmentation by zero-crossing instead of IC and how this may be im-

pacted by postural (in)stability.

• Sensor setup and configuration:

What are the benefits associated with different sampling frequencies?

Sensor location e.g. wrist, ankle, trunk etc. How well does this Phase plot

methodology generalise with respect to sensor location.

The augmentation of this feature domain with other signals e,g, gyroscopic

data.

Honing the procedure for Phase plot construction and subsequent feature deriva-

tion is a necessary step in producing a fully generalisable tool applicable to a wide

range periodic bio-signals.
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Appendix

8.1 Lab-based addition figures

8.1.1 densities
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Figure 8.1: All Phase and ST density plots for both disease groups. Lab-based and
real world. 1-8 of 36
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Figure 8.2: All Phase and ST density plots for both disease groups. Lab-based and
real world. 9-16 of 36
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Figure 8.3: All Phase and ST density plots for both disease groups. Lab-based and
real world. 17-24 of 36
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Figure 8.4: All Phase and ST density plots for both disease groups. Lab-based and
real world. 25-32 of 36
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Figure 8.5: All Phase and ST density plots for both disease groups. Lab-based and
real world. 33-36 of 36

8.1.2 Box-plots
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Figure 8.6: All Phase and ST box plots by disease groups. Lab-based and real world.
1-8 of 36
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Figure 8.7: All Phase and ST box plots by disease groups. Lab-based and real world.
9-16 of 36
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Figure 8.8: All Phase and ST box plots by disease groups. Lab-based and real world.
17-23 of 36

173



Chapter 8. Appendix

Figure 8.9: All Phase and ST box plots by disease groups. Lab-based and real world.
24-31 of 36
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Figure 8.10: All Phase and ST box plots by disease groups. Lab-based and real
world. 32-36 of 36

8.1.3 QQ-plots
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Figure 8.11: All Phase and ST QQ-plots for both Lab-based (blue) and real world
(green). Raw features (column 1 and 3) and following Box–Cox transformation
(columns 2 and 4). Estimated BC parameters shown in figure titles (Lab and real
world respectively). Features 1-10 of 36
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Figure 8.12: All Phase and ST QQ-plots for both Lab-based (blue) and real world
(green). Raw features (column 1 and 3) and following Box–Cox transformation
(columns 2 and 4). Estimated BC parameters shown in figure titles (Lab and real
world respectively). Features 11-20 of 36
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Figure 8.13: All Phase and ST QQ-plots for both Lab-based (blue) and real world
(green). Raw features (column 1 and 3) and following Box–Cox transformation
(columns 2 and 4). Estimated BC parameters shown in figure titles (Lab and real
world respectively). Features 21-30 of 36
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Figure 8.14: All Phase and ST QQ-plots for both Lab-based (blue) and real world
(green). Raw features (column 1 and 3) and following Box–Cox transformation
(columns 2 and 4). Estimated BC parameters shown in figure titles (Lab and real
world respectively). Features 30-36 of 36

8.2 Confidence intervals
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Fixed effect 95% Confidence interval

ST domain
PC1 (0.22, 0.38)
PC2 (-0.25, -0.029)
PC3 (-0.46, -0.034)
PC4 (-1.08, -0.51)

Phase domain
PC1 (-0.230, -0.067)
PC2 (0.33, 0.53)
PC3 (-0.58, -0.29)
PC4 (-0.43, -0.017)

All features
PC1 (0.262, 0.399)
PC2 (0.061, 0.23)
PC3 (0.013, 0.22)
PC4 (-0.57, -0.29)

Table 8.1: Fixed effects Confidence intervals associated with Table 4.7

8.3 least squares ellipse fitting

8.3.1 derivation

∂Cost(A)

∂b
=

n∑
i=1

2xiyi(ax
2
i + bxiyi + cy2i + dxi + eyi + 1) = 0 (8.1)

Assuming that the coefficient of xy in 2.1 is non-zero we wish to find the conic

equation of the untilted ellipse 8.2. We can find the parameters of this untilted conic

equation 8.2 by making a substitution to the previous tilted equation such that x is

substituted with Cx+ Sy and y with −Sx+Cy where C = cos(φ) and S = sin(φ)

giving us the conic representation:

a(Cx+Sy)2+b(Cx+Sy)(−Sx+Cy)+c(−Sx+Cy)2+d(Cx+Sy)+e(−Sx+Cy)+F = 0

which gives an xy coefficient of 2aCS + (C2 − S2)b− 2cCS
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a′x2 + c′y2 + d′x+ e′y + 1 = 0 (8.2)

To find the value of φ which yields the untilted ellipse, we set this coefficient to

zero and simplify:

2aCS − 2cCS + bcos(2φ) = 0

=⇒ 2CS(a− c) + bcos(2φ) = 0

=⇒ sin(2φ)(a− c) + bcos(2φ) = 0

=⇒ −sin(2φ)(a− c)/bcos(2φ) = 1

=⇒ φ =
arctan(b/(c− a))

2

Now the values of S and C can be found and the other constants a′, c′, d′, e′ can

be similarly found as the coefficients of the other terms:

a′ = aC2 − bCS + cS2

c′ = aS2 + bCS + cC2

d′ = dC − eS

e′ = dS + eC

Re-writing equation 8.2 by completing the square twice gives:

a′(x+
d′

2a′
)2 + c′(y +

e′

2c′
)2 − d′2

4a′
− e′2

4c′
= 0
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which can be written as

a′(x+ d′

2a′
)2

l
+
c′(y + e′

2c′
)2

l
= 1 (8.3)

where l = d′2

4a′
+ e′2

4c′
.

From 8.3 we can compare with the geometric form 2.3 and read off the values:

xu0 = − d′

2a′
, yu0 = − e′

2c′
, r1 =

√
|a′
l
| and r2 =

√
| c′
l
|.

aΣx4 + bΣx3y + cΣx2y2 + dΣx3 + eΣx2y = −Σx2

aΣx3y + bΣx2y2 + cΣxy3 + dΣx2y + eΣxy2 = −Σxy

aΣx2y2 + bΣxy3 + cΣy4 + dΣxy2 + eΣy3 = −Σy2

aΣx3 + bΣx2y + cΣxy2 + dΣx2 + eΣyx = −Σx

aΣx2y + bΣxy2 + cΣy3 + dΣxy + eΣy2 = −Σy

(8.4)

Where Σx2y =
∑n

i=1 x
2
i yi etc.

8.3.2 code

function [] = Ell_conic_fitting(x, y, fitted_ell)

mean_x = mean(x);

mean_y = mean(y);

x = x-mean_x;

y = y-mean_y;

x_1 = sum(x);

y_1 = sum(y);

x_2 = sum(x.^2);
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y_2 = sum(y.^2);

x_3 = sum(x.^3);

y_3 = sum(y.^3);

x_4 = sum(x.^4);

y_4 = sum(y.^4);

xy = sum(x.*y);

x2y2 = sum((x.^2).*(y.^2));

xy_2 = sum(x.*(y.^2));

yx_2 = sum(y.*(x.^2));

xy_3 = sum(x.*(y.^3));

yx_3 = sum(y.*(x.^3));

A = [x_4 yx_3 x2y2 x_3 yx_2 ;

yx_3 x2y2 xy_3 yx_2 xy_2 ;

x2y2 xy_3 y_4 xy_2 y_3 ;

x_3 yx_2 xy_2 x_2 xy ;

yx_2 xy_2 y_3 xy y_2 ];

B = [x_2 xy y_2 x_1 y_1]’;

X = linsolve(A,B);

phi_hat = (atan(X(2) / (X(3) - X(1)))/2);

S = sin(phi_hat);

C = cos(phi_hat);
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a = round(X(1), 5);

b = round(X(2), 5);

c = round(X(3), 5);

d = round(X(4), 5);

e = round(X(5), 5);

A = [a b, c, d, e];

X = [x.^2; x.*y; y.^2; x; y];

SS = sum((A*X).^2);

NEW_MSS = SS/length(x);

fprintf(’NEW_MSS = %f’, NEW_MSS)

if b^2 - (4*a*c) > 0

disp(’Not ellipse!’)

end

a_ = a*C^2 - b*C*S + c*S^2;

c_ = a*S^2 + b*C*S + c*C^2;

d_ = d*C -e*S;

e_ = d*S + e*C;

x_0u = mean_x -d_/(2*a_);

y_0u = mean_y -e_/(2*c_);

184



Chapter 8. Appendix

x_0 = x_0u*C + y_0u*S;

y_0 = x_0u*-S + y_0u*C;

l = (d_^2/(4*a_)) + (e_^2/(4*c_)) + 1;

h = sqrt(abs(l/a_));

k = sqrt(abs(l/c_));

M = max(h, k);

m = min(h, k);

end
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