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Abstract

Disasters affect millions of people annually, causing large social impacts, and detrimental
economic impacts. Emergency professionals recurrently tackle these impacts, therefore they
require assessment methods to understand potential consequences and enable the delivery of
resilient resolutions. One method of achieving this is through numerical modelling, specifically
agent-based modelling. However, current models simulating human behaviours and movement
are bespoke in nature and non-transferable. It has also been found that current modelling tools
have either focused on the microscale (e.g. individual confined spaces) or macroscale (e.g. city
scale), without considering how the two scales may be interlinked. Further to this, the inclusion
of human behaviour has been over-simplified and generic, lacking the inclusion of unique
populations with varied characteristics.

The aim of this research is to develop a modelling framework, utilising agent-based modelling,
to form a more robust representation of human behaviour within an enhanced evacuation model
environment. This will allow emergency planners to be better prepared, reduce the interruption
after an event (thereby reducing social and economic impacts) and potentially reduce the
mitigation required beforehand. The individual agents within the framework capture a range
of robust human behaviour indicators (e.g. walking speed, obedience, and patience), allowing
the accurate replication of an emergence scenario response. Initially, the research focused on
creating a macroscale evacuation model for a test city, to assess whether the inclusion of varied
population characteristics and groups of people affected evacuation time. The varied
characteristics included a range of ages, gender, and mobility in the form of walking speed. It
was then possible to compare this with the parameters of existing evacuation models. This
research has found that by enhancing the representation of human behaviour within a model
environment more accurate predictions of evacuation time can be produced. To produce more
robust human behaviour, models must include a range of population characteristics (such as
age, gender and mobility), the grouping of agents and walking speed ratio. When all the
variables are included in the model, there is an average increase of 70% in the time to evacuate
Newcastle city centre. Even with less variables, i.e. only considering population characteristics,
there has been an average increase of 45% in the time to evacuate Newcastle city centre

compared with existing models.

To further examine human behaviour and the more intricate and detailed behaviours such as
patience, a microscale model was created to consider the capacity of the pathways and to

introduce congestion. The two microscale models were created of a pavement and a crossroads,



to replicate people passing and waiting behind slower people, whilst still including the varied
population characteristics. When capacity is captured at the microscale, there is an average 61%
increase in the time to exit the pavement and when on a crossroads there is an average 87%

increase in the time to exit compared to 1.34m/s (3mph) models.

Overall, this research has found that there is a need to provide more robust representation of
human behaviour characteristics within evacuation models. This must be carried out not only
at the macroscale in terms of enhancing population demographics but also at the microscale by
capturing intricate behaviours such as taking over and giving way. Without an ability to exhibit
these characteristics evacuation simulations cannot effectively capture human behaviour and
therefore produce robust simulation times. The inclusion of more representative human
behaviour in simulations and the continual need to improve provides the opportunity to reduce
the likelihood of increased fatalities and injuries caused by those unable to evacuate in time due
to current underestimations. The improvement of computational simulation of evacuations
alongside existing simulation techniques allows emergency professionals to plan and prepare

better for a range of events to protect global communities.
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Chapter 1. Introduction

This chapter will begin to explore the questions posed by this thesis and outline the current
research gap that exists. This will introduce the aim of the project as well as the research
objectives and questions to be answered throughout the thesis. It is also necessary to detail the
scope of the research as this topic area is vast so it would not be possible to cover all potential
outcomes. Finally, the structure of the thesis will be set out for the reader, to give a brief

overview of the work completed within each chapter.

1.1 Research Gap

Natural disasters affect millions of people annually, causing large numbers of fatalities,
detrimental economic impact and the displacement of communities. It has been reported that
between 1994 and 2013, 218 million people were affected by natural disasters annually (CRED,
2015). Policymakers and industry professionals are regularly faced with these consequences
and therefore require tools to assess the potential impacts and provide sustainable solutions,
often with only very limited information. The ability to respond to natural hazard events varies
greatly across the globe (Cutter, 2016) (Aka, et al., 2017) (Singh-Peterson, et al., 2015), with
those in developed countries able to dedicate time and money towards early warning systems,
(Wenzel, et al., 2001) (Durage, et al., 2013) (Glade & Nadim, 2014), creation of risk registers
(Glavovic, et al., 2010) (Markovic, et al., 2016) and improved emergency communications
(Miao, et al., 2013) (Lu & Xu, 2014). For example, America’s Presidential alert was issued
to 200 million mobile phone users across the country to test whether crucial information could
reach individuals in an emergency scenario, with the hope that the information would reach
75% of all phones in America (BBC, 2018) (Vega, 2018). Whereas communities in the
developing world are often ill-prepared and under-resourced to plan mitigation and risk
reduction strategies beforehand, resulting in bigger impacts and consequences for those
affected (Barnes, et al., 2019) (Monirul Qader Mirza, 2003) (Tingsanchali, 2012) (Ismail-
Zadeh & Takeuchi, 2007) (Birkmann, et al., 2010) (Toya & Skidmore, 2007).

This difference can be demonstrated by considering two natural disaster events that occurred
2015. In the UK during the winter of 2015, unprecedented levels of flooding were experienced
by communities across Yorkshire, Lancashire and Cumbria. It has been reported that the floods
are ranked as the “most extreme on record in the UK” (The Guardian, 2016). This resulted in
communities being cut off from each other, financial obligations and the destruction of wildlife
habitats. A bridge over the River Wharfe in Tadcaster (BBC, 2015 A) and Pooley Bridge in
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Cumbria (BBC, 2015 B) both collapsed during the storm events fracturing communities (Figure
1-1). Due to the damage caused, funding needed to be raised to repair these assets and repairs
were anticipated to take in the region of 12-18 months before a sense of normality could return.
However, twelve months on from the event, over 700 families had still not regained access to
their properties and Cumbria County Council approximated the recovery costs to date at £500
million (BBC, 2016).

(b)

Figure 1-1 — (a) Flooding at Pooley Bridge in the Lake District Photo Credit: Owen Humphreys/PA (The
Guardian, 2016), (b) Collapse of Tadcaster Bridge over River Wharfe in 2015 Photo Credit: Giles Rocholl
(BBC, 2015 A)

In the same year, Nepal was hit by a magnitude 7.8 earthquake on the 25" April 2015 (BBC,
2015 C), followed by severe aftershocks, the consequences were devastating with over 9,000
fatalities (Rafferty, 2016). Over 2.8 million people were displaced by the earthquake and a
separate UN report estimated that more than 8 million people (approximately 25% of Nepal’s
population) were affected by the event and its aftermath (Rafferty, 2016). Initial estimates for
the damage cost ranged between $5 billion and $10 billion (Rafferty, 2016). In the aftermath
of the event, aid was pledged from across the globe, totalling $4.1 billion towards rebuilding
efforts (Rowlatt, 2016). However, one year on from the earthquake “virtually none of the
800,000 buildings” destroyed had been rebuilt (Figure 1-2), with political turmoil over the
introduction of a new constitution cited as the reason for slow progress (Rowlatt, 2016). In
2018, three years after the earthquake, it was reported that “only 16% of the $4.2 billion pledged”
had been utilised in reconstruction and recovery efforts (Thapa, 2018) (The Kathmandu Post,
2018).
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Figure 1-2 — (a) Earthquake Damage in Nepal Photo Credit: Niranjan Shrestha/AP Images (Rafferty, 2016),
(b) Damage Caused by Nepal Earthquake Photo Credit: Rex Shutterstock (McKie, 2015)

Whilst direct comparisons cannot be drawn between the two events due to the differing event
types, it is possible to consider them separately. It is clear to see that there were disproportionate
impacts for communities in Nepal from the 2015 earthquake event, this was two-fold. Firstly,
unlike the flood event in the UK, the earthquake occurred with no warning preventing the
communities from preparing and secondly the event occurred in a country struggling with
chronic disorganisation and under-funding at a government level. Whereas, in the UK, when
largescale flooding occurred, there was not only pre-warning in the form of flood and storm
warnings but a swift and prompt response to the event aftermath. Therefore, it is imperative that
policy makers, researchers and industry professionals can make “good” decisions to provide
sustainable and resilient risk reduction and mitigation strategies and to lessen the consequences
for communities across the globe. Key to this is the development of appropriate tools for

emergency professionals to help assess impacts and provide solutions.

The impacts and consequences of natural disasters can be both large and wide reaching in terms
of financial damages, people affected and fatalities (Table 1-1). Between 2000 and 2011, a total
of 2.7 billion people were affected by a natural disaster, resulting in 1.1 million fatalities and
$1.3 trillion in terms of financial damage (Figure 1-3) (International Civil Defence Organisation,
2016). Natural disasters severely hinder the ability of communities to develop and in particular
to do this sustainably. When communities are impacted by disasters the immediate need is
restoration for present needs whether this be, for example, clean water, shelter or access to
healthcare. However, this may not be the most sustainable measures for future generations or
in fact even long-term solutions, with structures replaced like for like or worst rather than built
back better, this only further adds to the long-term suffering of communities. Hence,
government and international NGOs, who have the resources and power to provide post-disaster

solutions must balance the immediate needs (e.g. temporary shelters in the response and
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recovery disaster management phases) with the long-term sustainable and permanent solutions

during the learn and prepare phases of the disaster management cycle.

Table 1-1 — Table of Possible Impacts of Disasters (Lindell & Prater, 2003) (CRED, 2015) (see Chapter 2 for

further information)

Impacts of Disasters

Social

Environmental

Financial

Loss of Housing
Loss of Access to facilities
Displacement of

communities

Pollution of water systems
Devastation of habitats
Change of predator/prey

relationships

Cost to repair, replace and
to mitigate or prepare for

the next event

Impacts can also be combined e.g. if a water system becomes polluted, communities need
to move to find a suitable clean water source or finance the cost of installing a new or

repairing an existing water system
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Figure 1-3 — Diagram of the Economic and Human Impact of Disasters (2000 — 2011) Financial Cost of
Disasters (Total Damage = $1.3 trillion), People Affected by Disasters (Total Number = 2.7 billion people
affected), Fatalities Caused by Disasters (Total Number = 1.1 million people killed), definition of a disaster
categorised as a Natural Disaster by EM-DAT (International Civil Defence Organisation, 2016)

During 2016, the UN convened for the first time in its 70-year history a world summit on

humanitarian assistance, stating that “today, the scale of human suffering is greater than at any

time since the Second World War” (United Nations, 2016). It is estimated that up to 130 million

people across the globe, currently rely on humanitarian assistance to survive (United Nations,

2016). This has resulted in a renewed focus on disaster management policy (Ismail-Zadeh &



Takeuchi, 2007) (Birkmann, et al., 2010), which has the potential to greatly reduce the suffering
of communities across the globe (Cutter, 2016) (Aka, et al., 2017) (Singh-Peterson, et al., 2015).
Consequently, there have been many international improvements and a recognition of the
rewards of better planning for natural disasters; including improved early warning systems
(Wenzel, et al., 2001) (Durage, et al., 2013) (Glade & Nadim, 2014), improved application of
risk registers on a range of scales (Glavovic, et al., 2010) (Markovic, et al., 2016) and improved
emergency communications (Miao, et al., 2013) (Lu & Xu, 2014). There has also been a
recognition that mitigation strategies come hand in hand with impact reduction interventions
and emergency responses to produce a full complement of measures and to support

communities effectively.

However, in the aftermath of a large-scale natural disaster it has been found that failure of
infrastructure systems can have disproportionate impacts on society (Gardoni & Murphy,
2020). Another example were the communities affected by Hurricane Katrina, who should have
been able to cope with the impacts of the natural hazard as there was good infrastructure in
place, but there was still a large amount of suffering afterwards as their infrastructure failed
(Kates, et al., 2006) (U.S. Homeland Security and Counterterrorism, 2006) (Olshansky, 2006).
The reason for this is that these systems provide us with access to clean water supplies,
transportation and medical supplies, all of which are vital in the aftermath of a disaster and help
to minimise short and long term social, economic and environmental impacts. The main event
may also not be the main cause of the issues, with secondary events, e.g. aftershocks or tsunami,
causing further and in some instances more disastrous consequences (Lubkowski, et al., 2009).
It is likely that these effects will be further exacerbated by climate change, either through larger
impacts or more frequent event occurrence, as well as through differences in the development

of countries and global instability (Riebeek, 2005).

As stated above, in the developed world, natural hazards still affect society; however, in general,
developed economies have the resources to be able to consider effective mitigations strategies
pre-event, rather than firefighting the consequences post event (Cutter, 2016). This is a far
more effective strategy for dealing with natural hazards and is achieved through the
development of regulatory frameworks that develop mitigation strategies and plans to minimize
the impacts of potential disasters. For example, in the UK the Civil Contingences Act 2004 was
brought in to provide a single framework for civil protection in the UK (Cabinet Office, 2013).
Whilst, in the USA a national preparedness goal has been set out, which encourages the shared
responsibility from the entire nation (FEMA, 2016) (Sadiq, et al., 2016). This demonstrates that

informed governmental policy on disaster management can be seen as a driver for change.
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The regulatory frameworks encourage government agencies and local offices to create
contingency plans for dealing with the aftermath of hazard events. In the UK, these take the
form of Local Resilience Forums who create community risk registers (Northumbria Local
Resilience Forum, 2014 ) (London Resilience Partnership, 2017), which sit alongside the
National Risk Register (Cabinet Office, 2008) (Cabinet Office, 2015). The aim of the plans and
risk registers is to formally categorise the local risks and to put forward a possible plan for
emergency professionals to respond to a series of events. However, there is a regulatory demand

to thoroughly test these plans, to ensure that the response is appropriate.

Currently, there is a reliance on testing contingency plans, developed through regulatory
frameworks, either through real-world simulation, which is costly in both monetary and
resource terms (Cabinet Office & National Security and Intelligence, 2013) or through scenario
based methodology in table-top exercises, which can be unrealistic. Within the UK, regular
real-life simulations are conducted, for example in March 2017, a mock terrorist exercise was
conducted on the River Thames in London, including more than 200 Met Police officers (Beake,
2017). Another example occurred in June 2015, when a week long terrorist attack was simulated
in central London, this involved over 1,000 police officers, 2,000 causalities made up of actors
and dummies and the event took over 6 months to plan and execute (BBC, 2015) (Paton &
Warrell, 2015). However, there is an alternative and more robust method to test; using
computational approaches, which would allow for multiple runs and adjustments without the
large financial or resource costs. However, at present, policies and regulatory frameworks do

not explicitly outline the use of computational systems and modelling to help their progress.

To tackle this problem, researchers have been developing modelling techniques and
approaches, such as Cellular Automata, System Dynamics and Fault Tree Analysis, to try and
simulate hazard types under particular scenario conditions (e.g. fire on a metro network,
(Zhong, et al., 2008) (Lo, et al., 2014). However, these models are often non-transferable,
meaning it is not possible to keep software “current” or future proofed as the modelled problems
are bespoke in nature. An alternative modelling approach is agent-based modelling, which has
been described as “one of the most important generic modelling frameworks to have been
developed to date” (Batty, et al., 2012). It has the capability to allow “one to simulate the
individual diverse agents, measuring the resulting system behaviour and outcomes over time”
(Crooks, et al., 2008).

Despite the benefits of current agent-based modelling, as with any modelling technique, there

are some problems with the approach and applicability. For example, existing evacuation and



disaster relief models predominantly rely on evacuees following the routes determined by
emergency planners based on available data and the expected route of the natural disaster, e.g.
hurricane. Also, agents are often determined to all act in the same way during the evacuation,
e.g. moving at the same walking speed. However, this has been found to not be the case and
more evacuees follow routes decided from their own experience (Dow & Cutter, 2000), (Wu,
et al., 2012) and due to age differences, illness and other factors walking speeds are not the
same (Wu, et al., 2012). There are also a number of other variables, which have been found to
affect the likelihood of an evacuee leaving their home and performing an evacuation
(Whitehead, et al., 2000) (Ng, et al., 2016). These include but are not limited to their age,

gender, income, home or pet ownership.

Current models do not consider such variables, do not include route preference based on
experience and do not realistically simulate human behaviour. Instead current models are
generic and lump together agents with the same constraints e.g. all agents are required to move
at the same speed (Wood, et al., 2016). Therefore, it can be argued that current models are

limited and not well verified, validated and calibrated compared to known conditions.

1.2 Research Aim

The aim of this project will be to create a modelling tool, which includes a set of robust
human behaviour rulesets, to enhance the simulation of evacuations. This will be beneficial
for a range of management professionals in the NGO sector as well as government. This will
allow emergency planners to be better prepared, reduce the interruption after an event and
potentially reduce the mitigation required beforehand. For communities, robust evacuation
models will allow better preparation for hazards, including through evacuation, which may

ultimately result in saved lives and a reduction in the levels of human suffering encountered.

This project will use an agent-based modelling framework, to better determine human
behaviour and people movement during an emergency scenario for the benefit of emergency
planners and managers. This will require individual agents to have unique characteristics and
to act independently of each other. It is important to capture robust human behaviour indicators
in the model such as walking speed, obedience and crowd dynamics, to be able to accurately
replicate a response to an emergency scenario. It will be imperative that the model can consider
a range of natural disasters and other emergencies such as terror attacks, to allow planners to

be able to implement the model for a range of scenarios.



1.3 Objectives and Research Questions

The primary aim of this project can be separated into several broad areas of research, which in
turn can be broken down further into smaller streams. The associated research questions to be

answered have been set out alongside the objectives.
The main objectives of the project are:

1. Identify, review and understand the disaster management methodologies,
modelling techniques and anticipated human behaviour traits, including the
formulation of a series of case studies based on recent real-life natural hazard
events and the definition of a series of probabilistic agent “rulesets”.

Method: The broad topics to be identified, reviewed and understood are existing
disaster relief management methodologies predominantly for evacuation procedures,
the challenges, differences and limitations on current modelling practice particularly for
agent-based models, the differing city types seen across the globe and their anticipated
growth. Exploration of past natural disaster events will be considered, which required
some form of evacuation and intervention from emergency managers, including
successful and failed events. An analysis will be carried out for each failure occurrence,
to identify common themes, mechanisms of failure and barriers to implementation of
disaster management plans. Literature will be explored for available human behaviour
traits both in normal “everyday” scenarios and under hazard conditions, to identify
behaviour types. Where possible quantitative evidence of behaviours will be sought for
inclusion within modelling rulesets. Comparisons will also be drawn between the
behaviour types and current models, to understand the limitations and successes of
software and models to date.
Research Questions:
a. What are the current models available for assessing evacuations in natural
disasters?
b. What different types of cities exist and how are they expected to grow and be
affected by factors such as climate change?
c. What are the obstacles and common issues to completing evacuations
successfully and reproducing this accurately in simulations?
d. What are main behaviour types found in literature and can these behaviours be
quantified?



Output: A critical literature review covering the broad topics of disaster relief
management and human behaviour traits, a series of case studies exploring past natural
disaster event evacuations and their successes and failures, as well as the determination

of a set of probabilistic agent “rulesets”.

Identification of a suitable agent-based model or modelling software, which can be
used or adapted for this research.
A suitable agent-based model will be identified during the literature review or case study
compilation. This model will either be adopted or adapted based on previous studies to
enable the simulation and analysis of an evacuation procedure in a city environment.
As part of this, a critical review will be required of several models and software
packages to ensure appropriate selection. This review will involve initially compiling
and running a simple model e.g. a prey-predator model, which are commonly available
as a standard. For those that successfully run the model, a simple evacuation model will
be formulated to test capabilities further e.g. inclusion of spatial data.
Research Questions:

a. What are the successes/limitations of each model or software package?

b. Can the agents be manipulated as unique agents? E.g. determined by age, gender

or family group.

Output: A critical evaluation of modelling software and available agent-based models,

identifying the potential for including more realistic human behaviour traits.

Implementation and testing of the macro agent-based model, to ensure it can
reproduce a range of individual behaviours for the analysis of largescale
evacuation procedures (e.g. city scale).
An initial evacuation model will be constructed on a city scale to explore individual
agent behaviour in a largescale environment. The city will be based on Newcastle upon
Tyne. This model will aim to reproduce a range of behaviour types identified from
literature and critically assess the initial success and limitations.
Research Questions:

a. Are the agents demonstrating unique characteristics and behaving independently

of each other?
b. How realistic is the simulation of the unique agents?

c. Isthe model well calibrated, verified and validated?



Output: A city scale agent-based model of Newcastle upon Tyne featuring a range of

behaviour traits to simulate a unique population.

Refinement and testing of the agent-based models to incorporate interactions
between agents and hence simulate the intricacies of crowd behaviour on a micro
scale (e.g. pavement, crossroads).
Two secondary agent-based models will be created to focus on the smaller scale
interactions of human behaviour within a crowd. This will take the form of a pavement
or single road and a crossroads junction. This model will aim to again reproduce a range
of behaviour types as identified in literature and an assessment will be made of the
attainment and confines of this.
Research Questions:

a. Are the agents demonstrating unique characteristics and behaving independently

of each other?

b. How realistic is the simulation of the unique agents?

c. Isthe model well calibrated, verified and validated?
Output: Two microscale agent-based models of a pavement and crossroad junction

featuring an increased range of behaviour traits to simulate overtaking and giving way.

Recommendations to evacuation simulation users e.g. modellers and emergency
management professionals (including: NGOs, charities and governments), plus
reflection on the success of the project and recommendations for further research
work.

Based on the outcomes of the research work, recommendations will be made to the main
involved parties in order to improve disaster management procedures. It is important to
provide a generalised modelling framework/tool but also to allow a degree of flexibility
and adaptation. An assessment of the success of the project will provide useful
information on further areas of research, ways to improve the modelling technique as
well as the general successes and failures.

Output: An assessment of the thesis including a recommendation for further work.

1.4  Scope of Research

The potential of this thesis topic is vast and as such it has been necessary to carefully consider

the extents to which this PhD can cover. It is important that the PhD is kept to a manageable

size and as such there has been a skew towards natural hazards within the thesis. However,
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there are many similarities between natural and manmade hazards, which means many of the

recommendations and findings are also relevant to those threats.

The range of human behaviours are also enormous and initially many behaviour types were
identified for inclusion within the modelling environment. This study focuses on key
behaviours (such as flee behaviour, routes and crowd behaviour), however other behaviours
have not been discounted. For example, cognitive mechanisms are considered but then not
included within the model; however, their inclusion within models could still offer further
benefits. The intent from the offset was to focus solely on pedestrian behaviours without
vehicles impeding on available space. This is an idealised scenario but was based on the
increasing amount of pedestrian or shared space which has been constructed in UK cities. This
allowed the focus to be tailored towards pedestrians and the intricate movements that they may
make. The decision was also made to limit the scope of the pedestrian speeds used, in this case
the focus was on walking only and did not include running. Running does form an integral part
of an evacuation simulation, however the city simulations covered a 2km x 3km area of
Newcastle, with some routes equating to over 4km in distance. A worst-case scenario was
therefore assumed that no pedestrians had the ability to run such large distances and walking
speeds were instead maintained. Discussion around walking speeds and the potential need to
consider running are covered in the conclusions. A high level of compliance is also maintained
within this thesis, research within this area was not extensive enough to categorise an
appropriate ruleset although it has been suggested that the level of compliance may influence
the success of evacuations. Therefore, this was not explored further within the modelling
simulations. Finally, thought was given to the inclusion of a hazard model within the simulation,
as it is plausible that different hazards will produce different behaviours and potential issues for
emergency responses. However, the aim of this thesis was to establish a working evacuation
simulation with a robust inclusion of human behaviour that was not specific to a single scenario
but had the potential to be transferable to many different scenarios. In the future, it is possible
that there will be additional scope to further the modelling techniques identified in this thesis

with the addition of other behaviour types and rulesets.

This thesis also needed to set out initial criteria for the choice of modelling platform, as there
is a large and ever-increasing number of options available. To limit the scope the criteria for
modelling software were limited to options that were free to access, open source, provided
comprehensive user guides and model libraries to explore. Hence, a first filtration process
occurred which has not been documented in this thesis but did consider a much wider range of

platforms. For example, at the time it was not possible to access a free version of Oasys Mass
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Motion, consideration was given to purchasing a licence, but this was prohibitively expensive
for the scope of this project. A selection of available models was also analysed, similar criteria
(e.g. free to access, comprehensive literature available) were again established to manage the

scope of the research.

1.5 Structure of Thesis

Chapter 2 — Background: This chapter will set out the background to natural disasters,
defining a disaster and the different types of events that are experienced across the world. It
will also examine the impacts and consequences of disasters for global communities. It is these
impacts and consequences, which make it necessary to consider how improvements can be
made and the importance of doing so. Governmental policy can be a key driver in improving
responses to disasters and this will be explored for examples of good practice, whilst identifying
if further improvements may be beneficial. Finally, modelling options will be examined to
consider how models currently deal with disaster scenarios and where developments may be

sought.

Chapter 3 — Human Behaviour: This chapter will explore the potential behaviours during a
hazard event, then use these behaviours to formulate a series of desired model rulesets. From
the rulesets, a literature review will be carried out to capture realistic values to reflect the
behaviour traits, which can be verified and validated. This will help to ensure that the agent-
based model is robust.

Chapter 4 — Macroscale Model Setup: This chapter will set out the human behaviour that is
deemed most important when considering emergency scenarios and based on those behaviours
identify a series of rulesets for inclusion within an agent-based model. With the aim that this
can improve the representation of human traits in the model environment. To understand the
potential impacts of improving human behaviour, a macroscale model (city scale) has been
developed to showcase this range of potential behaviours. A detailed description of the model
environment and key user variables will be set out. The proposed testing regime has been set
out alongside the anticipated outcomes of each test. Validation, calibration and verification of

the models has also been considered to ensure the validity of the models proposed.

Chapter 5 — Macroscale Modelling Testing: This chapter will assess the outcomes of the
macroscale city evacuation model, which has been tested to ensure that the rulesets have
reproduced appropriate behaviours. A series of tests have been carried out to assess the effects
of population characteristics, walking speeds and the grouping of agents. The limitations of the

model environment will be examined to understand how well human behaviour is represented.
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Chapter 6 — Microscale Model Setup: This chapter will address the limitations of the
macroscale model by replicating intricate human behaviours in a microscale model
environment (a pavement and at a crossroads). With the hope of further improving the
representation of behaviour traits in a computational model. A detailed description of the model
environment and key user variables will be set out. The proposed testing regime has been set
out alongside the anticipated outcomes of each test. Validation, calibration and verification of
the models has also been considered to ensure the validity of the models proposed.

Chapter 7 — Microscale Modelling Testing: This chapter will assess the outcomes of the
microscale models, which have been tested to ensure that the rulesets have reproduced
appropriate behaviours. A series of tests have been carried out to assess the effects of population
density, patience levels and population distribution. The limitations of the model environment

will be examined to assess the human behaviour represented.

Chapter 8 — Conclusions & Future Work: This chapter draws conclusions from the main
findings of the research presented in this thesis and provides recommendations for future

research.
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Chapter 2. Background

This chapter will set out the background to natural disasters, defining a disaster and the different
types of events that are experienced across the world. It will also examine the impacts and
consequences of disasters for global communities. It is these impacts and consequences, which
make it necessary to consider how improvements can be made and the importance of doing so.
Governmental policy can be a key driver in improving responses to disasters and this will be
explored for examples of good practice, whilst identifying if further improvements may be
beneficial. Finally, modelling options will be examined to consider how models currently deal

with disaster scenarios and where developments may be sought.

2.1 What is a disaster event?

Natural disasters are major events that cause adverse effects, through natural earth processes.
These may be hydrological (e.g. flooding, tsunamis), geological (e.g. earthquakes, volcanoes)
or, meteorological / climatological (e.g. cyclones, tornadoes). There are also manmade events,
such as pandemics (e.g. Coronavirus or Ebola) or terrorist attacks which can have similar effects

to that of natural disasters.

2.1.1 Types of Events

A disaster can be defined as “a sudden, calamitous event that seriously disrupts the functioning
of a community or society and causes human, material and economic or environmental losses
that exceed the community’s or society’s ability to cope using its own resources” (International
Federation of Red Cross and Red Crescent Societies, 2016). Alternatively, the UN Office for
Disaster Risk Reduction (UNDDR) considers disasters as: “a serious disruption of the
functioning of a community or a society involving widespread human, material, economic or
environmental losses and impacts, which exceeds the ability of the affected community or
society to cope using its own resources” (UNISDR, 2009).These events are primarily caused
by nature but some have human causation. A disaster can be summarised by the following
equation, Equation 2-1. This shows that communities are impacted by a hazard of a given
severity and it is their ability to withstand the event (i.e. capacity) and initial vulnerability to

the event that dictates whether the event results in a disaster.

Equation 2-1
(Vunlerability + Hazard)

Capacity

= Disaster
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Hazard events or disasters can be categorised into natural events; hydrological, geophysical,

meteorological and climatological or human events; war and terrorism (Table 2-1). Biological

events are normally a result of nature but can also be caused by humans.

Event Type

Table 2-1 — Table of Disaster Definitions and Examples

Definition
“Events caused by deviations in the

normal water cycle and/or overflow of

Example

Floods — river, flash, storm

surge, coastal

Interchangeable with geological.

Hydrological bodies of water caused by wind set-up” | Wet Mass Movement (rock
(United Nations, 2010). fall)
Avalanche
“A hazard originating from solid earth” | Earthquakes
) (desinventar - Disaster Information | Landslides
Geophysical )
Management System, 2016). | Tsunamis

Volcanic Activity

Meteorological

“A hazard caused by short-lived, micro-
to meso-scale extreme weather and
atmospheric conditions that last from
minutes to days” (desinventar - Disaster
Information Management System, 2016).

Tropical Cyclones
Fog

Convective Storm
Extratropical Storm
Storm/Wave Surges

Extreme Temperature

Climatological

“A hazard caused by long-lived, meso- to

macro-scale  atmospheric  processes
ranging from intra-seasonal to multi-
decadal climate variability” (desinventar
- Disaster Information Management

System, 2016).

Drought
Wildfire

Biological

“A hazard caused by the exposure to

living organisms and their toxic

substances (e.g. venom, mould) or vector-
borne diseases that they may carry”
Information

(desinventar - Disaster

Management System, 2016).

Epidemics
Pandemics
Disease

Insect/Animal Plagues

War

“A state of armed conflict between

different countries or different groups

Fighting
Bombing
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within a country” (Oxford Dictionary,
2016 A).

A surprise incident which “unlawfully | Bomb

) uses violence and intimidation, especially | Mass shooting
Terrorist

against civilians, in pursuit of political or | Chemical attack
Attack

religious aims” (Oxford Dictionary, 2016 | Biological attack
B).

It is important to understand whether different types of natural and manmade disasters can have
varied impacts and consequences for the communities they affect. It is likely that certain event
types cause greater fatalities, whilst others affect greater numbers, and some cause the greatest

financial damages.

2.1.2 Evolving Events

Consideration also needs to be given to how hazards evolve, i.e. hurricanes, floods and terrorist
attacks can often have cascading failures. There is an initial hazard event i.e. the storm event,
this causes an initial impact for a community, which requires a response. However, there then
may be further impacts caused by infrastructure failures e.g. if the road network is damaged, it
is then difficult to transport supplies into a disaster zone. This was well documented during
Hurricane Katrina when cascading failures compounded the impacts of the disaster further, for
example, during Hurricane Katrina two dozen hospitals were left without electricity, meaning
the duty of care could not be completed, resulting in many potentially preventable deaths (Gray
& Herbert, 2007) (Table 2-2).

Table 2-2 — Hurricane Katrina Case Study

Case Study

Hurricane Katrina, USA 2005
Hurricane Katrina hit the Gulf Coast of the United States of America at the end of August

2005. It has been cited as “one of the most costly and deadly natural disasters ever
experienced by the United States” (Baker, 2014). The hurricane caused over 1,800 fatalities
and displaced more than 250,000 people (Baker, 2014). Financially, the hurricane caused
devastation with the damage cost estimated to be as high as $150 billion for the federal
government, with insurance claims anticipated between $20 - $45 billion (Milken Institute,
2005). On top of this, it was estimated that there was an initial loss of 400,000 jobs in
September 2005 (Milken Institute, 2005).
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This natural event caused a huge financial and social toll on the public, it also caused
complete destruction to the environment and community, due to the breach of the levees and
exceptional levels of flooding caused (Figure 2-1 & Figure 2-2). This was a large scale event
in a developed country, but due to the unpredictable nature of hurricanes, the late issue of a
mandatory evacuation and the lack of available transportation (Reynolds, 2005) (Oslen,
2005), the consequences were overwhelming and severely impacted the sustainable growth
of the area until reconstruction was well under way. It is estimated that the full reconstruction

of New Orleans may take as long as 11 years (Figure 2-3).

(CNN, 2016) (Live Science, 2013)
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Figure 2-3 — The sequence and timing of reconstruction after Katrina in New Orleans with actual experience

(solid lines) and sample indicators for the first year along a logarithmic time line of weeks after the disaster.

The long-term projections (dashed lines) are based on an emergency period of 6 weeks, a restoration period
of 45 weeks, and a 10-fold historical experience for reconstruction. (Kates, et al., 2006)
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2.2 Impacts of Disasters

The data in this section has been collated to demonstrate the frequency of natural disasters and
how communities have been affected (including fatalities and economic impacts), to enable an
exploration of the current disaster trends across the globe, with emphasis given to the past 20
years. The data has been obtained from the EM-DAT, the International Disaster Database
produced by the Centre for Research on the Epidemiology of Disasters (CRED) (Guha-Sapir,
etal., 2016) and from the “The Human Cost of Disasters: A Global Perspective” report (CRED,
2015). For a disaster to be included within the EM-DAT database, it must meet one of the
following criteria: (1) 10 or more people died, (2) 100 or more people were affected, (3) there
was a declaration of a state of emergency or (4) there was a call for international emergency
assistance (EM-DAT, 2016).

2.2.1 Who is affected by disasters?

The prevalence of natural disasters has remained relatively static over the past 20 years,
however the number of people affected, fatalities and economic costs continue to grow (CRED,
2015). It has been reported that between 1994 and 2013, 218 million people were affected by
natural disasters annually (CRED, 2015). It has also been estimated that between 2000 and
2011, a total of $1.3 trillion worth of damage, 2.7 billion people have been affected and 1.1
million fatalities were caused as a result of natural disasters (International Civil Defence
Organisation, 2016) (Figure 2-4). Figure 2-4 shows several years where there are evident peaks
regarding financial damage, number of fatalities and number of people affected. Regarding the
economic costs, there are peaks in 2005 (Hurricane Katrina & Hurricane Rita), 2008 (Cyclone
Nargis & Sichuan Earthquake) and 2011 (Tohoku Earthquake & Tsunami). In respect of the
fatalities, these were highest in 2004 (Boxing Day Tsunami), 2008 (Cyclone Nargis & Sichuan
Earthquake) and 2010 (Haiti Earthquake). Concerning the number of people affected, the
largest peak was in 2002 (Asia/European Flooding & China Drought).

18



w
a1
o

w
o
o

250

200

150

100

Financial Damage (US$ hillions)

a1
o

700

600

ul
o
o

People Affected (millions)
[y N w
o o o
o o o

o

Fatalities (thousands)
[N = N N
(o2 o [ox) o a1
o o o o o

o

() 363

214
190

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

(b) 659

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

(©) 308

245 242

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

Figure 2-4 — Diagram of the Economic and Human Impact of Disasters (2000 — 2011) — (a) Financial Cost
of Disasters (Total Damage = $1.3 trillion), (b) People Affected by Disasters (Total Number = 2.7 billion
people affected), (c) Fatalities Caused by Disasters (Total Number = 1.1 million people killed), definition

of a disaster categorised as a Natural Disaster by EM-DAT (International Civil Defence Organisation,

2016)
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This demonstrates that in terms of natural disasters, the disaster types occur in different
proportions, affect different numbers of people, cause differing amounts of fatalities and incur
different financial costs, as shown in Figure 2-5 and Figure 2-6(a). The disaster types also affect
infrastructure including housing, health facilities and schools differently (Figure 2-6(b)). From
these figures it is possible to draw several conclusions; hydrological events are the most
frequent, geophysical hazards are the deadliest, hydrological events affect the greatest number
of people and meteorological hazards are the costliest. In terms of damaged houses and
health/school facilities hydrological events are the worst, but for destroyed health and school

facilities the worst is from meteorological events.
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(International Civil Defence Organisation, 2016)
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2.2.2 Locations affected by disasters

Natural disasters are experienced across the globe, with Asia experiencing the largest number
of disasters followed by the Americas, and then Africa and Europe, and Oceania experiencing
the smallest numbers (CRED, 2015). In terms of specific countries, India, China, the USA and
Philippines have each experienced the largest number of natural disasters, at 243 — 509 disasters
across a 20-year period (CRED, 2015). In 2016 this resulted in “over 65 million refugees and
displaced people in the world” (Cosgrave, et al., 2016) (Figure 2-7), causing increasing
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numbers of people across the globe who have been displaced to seek refuge and safety
elsewhere. The level of protracted displacement, a period of at least three years, has now

reached 14 million (Cosgrave, et al., 2016).
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Figure 2-7 — Graph of Number of Displaced People across the Globe (UNHCR - The UN Refugee Agency,
2015)

Prevalence of natural disasters does not necessarily link to the financial impact of disasters.
The lowest frequency of natural disasters occur in low-income countries (17%), whilst the other
income groups have more of an even split, high income (26%), upper-middle income (30%),
lower-middle income (27%) (CRED, 2015). However, the lowest number of fatalities from
natural hazards occurs in high-income group (13%), followed by upper-middle (19%),
conversely the highest fatalities are in the lower-middle group (35%) and low-income (33%)
(CRED, 2015). Therefore, it could be argued that low-income countries are disproportionately
impacted by natural disasters, as with each disaster that occurs the community is severely

impacted, causing the development of these countries to be broken by the cycle of recovery.

However, in absolute values the USA has experienced the largest financial impact due to
natural disasters, followed by Japan then China (CRED, 2015) (Table 2-3). This shows that in
some cases, the frequency of disasters impacts the level of financial toil. However, the disaster
type (e.g. hydrological, meteorological, or geophysical) has a greater impact on the likely
financial cost. The disaster type also significantly contributes to the other impacts such as

number of people affected and fatalities.
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Table 2-3 — Top Ten Countries reporting Economic Losses from Natural Disasters in terms of Absolute
Values adapted from (CRED, 2015)

Largest Disaster Economic Losses
Type (USS$ billion)

USA Storms 739
Japan Floods 482
China Floods 453
Italy Floods / Earthquakes 66
Germany Floods 56
Thailand Floods 46
India Floods 46
Mexico Storms 39
France Storms 39
Turkey Earthquake 35

In terms of economic damage by country’s income group, the economic damage in absolute
terms shows that high-income countries experience the largest losses (64%) and upper-middle
(26%), whereas low-income is much smaller (3%) or lower-middle (7%) (CRED, 2015).
Alternatively, if the economic damage is expressed as a percentage of GDP, then for the low-
income countries the losses are greatest (5.1%) compared to the lower-middle (0.2%), high-
income (0.3%) and upper-middle country groups (0.6%) (CRED, 2015). Financial damage as
a percentage of a country’s GDP, vastly changes the countries affected by financial hardship
(Table 2-4). Korea Democratic People’s Republic has the largest proportion of economic losses
in terms of GDP (38.9%), followed by Mongolia (33.9%) and Haiti (14.9%) (CRED, 2015).
Therefore, it could be argued that again low-income countries are disproportionately impacted,
as the disasters that occur result in funds being diverted to recovery efforts rather than allowing
communities to continue developing, this can also compound debt problems for low-income

countries.

24



Table 2-4 — Top Five Countries reporting Economic Losses in terms of % of GDP (CRED, 2015)

Country Largest Disaster Economic Losses (%
Type of GDP)
Korea Democratic Floods 38.9
People’s Republic
Mongolia Wildfires 33.9
Haiti Earthquakes 14.9
Yemen Floods 11.1
Honduras Storms 6

For the period 2000 — 2016, there were many high impact individual natural disasters, the
costliest of these was the Tohoku earthquake in Japan (March 2011), with estimated damage
of $210 billion, followed by Hurricane Katrina in the USA (August 2005) at $125 billion and
then the Sichuan earthquake in China (May 2008) with costs of $85 billion (EM-DAT, 2016).
This ties in with the top ten countries reporting economic losses from natural disasters by
absolute values, which were USA, Japan, and China. However, as a product of GDP the
financial losses would not be as significant, which is partly why these countries have been able
to recover from these events alongside the fact that these developed countries have appropriate

plans and recovery in place to lessen the impacts of disasters in the first instance.

2.3 Consequences of Disasters

After the initial impact of disasters (i.e. number of people affected, financial losses and
fatalities), there can be several short and long-term consequences of a hazard event. This can
severely impact community’s ability to develop and grow resiliently as each event requires a
significant period of recovery and restoration. These recovery and restoration events also divert
limited resources (both physical and monetary) from other development opportunities. This has

the potential to significantly impede communities.

2.3.1 Infrastructure in Disasters

Infrastructure in disasters will often be severely and significantly impacted by the hazard events
that occur. As demonstrated, natural hazard events are not limited to one area of the world and
can be experienced across the globe. However, the event type and consequences can be varied
depending on the location due to factors such as the type of infrastructure, government policies
and GDP of the country etc.

Society relies heavily on infrastructure, including power generation, water supply and

transportation, but the reliance is often not seen until a failure occurs. Due to the size of
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infrastructure networks, the affected community need not even be near the disaster location as
networks cover large areas. It can be stated that “the societal disruption caused by
infrastructure failures is therefore disproportionately high in relation to actual physical
damage” (Chang, 2014). Recent disasters, such as Hurricane Katrina, have shown that
infrastructure systems are vulnerable and result in both large financial and societal losses.
Hence, there is a need to understand and provide more resilient infrastructure. It has been
suggested that this should be tackled with three inter-related strands; “lower probabilities of
failure, less-severe negative consequences when failures do occur and faster recovery from
failures” (Chang, 2014) (Bruneau, et al., 2003). Better understanding of the infrastructure,
human behaviour, and role of disaster management through computational modelling could aid
this by providing a tool to test multiple scenarios (failures). Hence, potentially reducing the

consequences of disasters and allowing for faster recoveries to occur.

2.3.1.1 Categorisation of Cities

Despite events affecting different locations, research has shown that cities can be categorised
into different types, either through similarities in geometric shapes (Bethelemy & Louf, 2014)
or the economic growth of a city (Macomber, 2016). Hence, when developing plans and
policies, it may be beneficial to utilise this principle and to work collaboratively towards
creating suitable methodology and models in similar city types rather than creating numerous
bespoke models.

Bethelemy & Louf (2014) propose a quantitative method for categorising cities according to
street pattern. This was applied to 131 cities across the world, resulting in four large city types
based on blocks of a certain area and shape (Table 2-5) (Figure 2-8). This categorisation cannot
fully capture the intricacies of every city, especially as different neighbourhoods can sometimes
exhibit alternative street patterns depending on the historical growth of a city. However, it is
possible to use this simplification as an indicator to similar city layouts and street patterns,
which could be beneficial for emergency planning professionals.

Table 2-5 — Categorisation of Cities based on Street Pattern adapted from (Bethelemy & Louf, 2014)

Group No.  Representative City Description

1 Buenos Aires, | Blocks of medium size, with shapes that are square or
Argentina (only) regular rectangles. Small areas are almost exclusively
square.
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2 Athens, Greece Dominant fraction of small blocks with shapes
broadly distributed.

3 New Orleans, USA | Similar to group two for diversity of shapes but is
more balanced in terms of areas, with a slight

predominance of medium size blocks.

4 Mogadishu, Somalia | Small, square-shaped blocks, together with a small

fraction of small rectangles.
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Figure 2-8 — Four City Types (Graphs (LEFT) depict the Average Distribution of the Shape Factor for each

group found by the clustering algorithm (the curve corresponds to the area bin from small to large: dashed

green, orange, and blue). (City Layouts (RIGHT) typical street patterns for each group (plotted at the same

scale in order to observe differences in both shape and areas) Group 1 — Buenos Aires, Group 2 — Athens,
Group 3 — New Orleans, and Group 4 — Mogadishu). (Bethelemy & Louf, 2014)

However, the idea of city categorisation is not a new concept and the notion of categorising
based on the support of cities and internal structure was proposed in 1945 by Harris & Ullman.
A city’s support was split into three possibilities; (1) central places performing comprehensive
services for a surrounding area, (2) transport cities performing break-of-bulk and allied services
along transport routes, and (3) specialised function cities performing one service (Harris &
Ullman, 1945). Although the relevance of this has decreased over time, it does highlight that
cities can have primary functions but generally for many cities, there will now be a combination
of all support mechanisms as cities have grown and amalgamated over time. The other idea
explored was that cities have an internal structure made up of business, industrial and

residential areas. This was captured within three theories: concentric zones, sectors, and
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multiple nuclei (Figure 2-9). While the categorisation of cities has moved on since this research
was first published, it does illustrate that simple categorisation can be a useful tool, even if just
to create generalised city zones, which in turn allows likely infrastructure assets to be identified
e.g. homes, offices or factories.

o

CONCENTRIC ZONE THEORY SECTOR THEQRY

THREE GENERALIZATIONS OF THE
INTERNAL STRUCTURE OF CITIES

DISTRICT

Central Business District
Whalesale Light Manufacturing
Low-class Residential
Medivm-class Residential
High-class Residential
Heavy Manufacturing
Outlying Business District
Residential Suburb

" Industrial Suburb
Commuters’ Zone
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@ MULTIPLE NUCLEI
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Figure 2-9 — Generalisation of Internal Structure of Cities (The concentric-zone theory is a generalisation for
all cities. The arrangement of the sectors in the sector theory varies, from city to city. The diagram for multiple
nuclei represents one possible pattern among innumerable variations) (Harris & Ullman, 1945)

An alternative method for categorising cities has been carried out based on the economic
growth. The study aimed to identify cities into four areas based on two concepts: legacy vs.
new cities and developed vs. emerging economies (Macomber, 2016) (Table 2-6). The study
also considered the role of “smart cities” and what a city of the future might look like and by
categorising in terms of economic growth, it is possible to highlight investment opportunities.
Whilst this may be a welcome opportunity for investors, however it is a less beneficial way of
categorising cities for emergency planning professionals as disasters can affect any city
regardless of economic growth. Although this may be a base indicator of available funds for
recovery and restoration projects, it would not be useful in terms of assessing similar city

layouts for computational modelling.
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Table 2-6 — Categorisation of Cities based on Economic Development adapted from (Macomber, 2016)

Type ‘ Representative City  Description

Developed
Economy,
City

Legacy

London, Detroit,

Tokyo, Singapore

In a city such as this, to build anything new,
something that previously existed must be
dismantled. There is often slow economic
growth in developed economies which
results in zero-sum situations. Elites live in
these cities so solutions that arise usually
function to help people spend their excess
cash.

Emerging Economy,

Legacy City

Mumbai, Sao Paolo,

Jakarta

Many physical and institutional structures
already exist within these megacities. But
there are fast growing populations and
severe congestion, so opportunities can be
realised to improve efficiency and
liveability, particularly for those with cash

to pay for the benefits available.

Emerging Economy,

New City

Phu My Hung —
Vietnam, Suzhou —

China, Astana —

Cities with high population growth and high
GDP/capita growth. There are few obstacles

to growth as few physical or social

Economy, New City

Kazakhstan structures exist. Opportunity to build it right
first time, but if missed informal sprawl will
occur and new settlements will be hard to
reach afterwards in terms of vital services.

Developed N/A Cities like this are rare, most new cities in

the developed world are in fact linked to
large existing municipalities e.g. New
Songdo City, South Korea or Masdar City,
Abu Dhabi.

Categorisation of cities is a beneficial tool as it allows comparisons to be made between similar
cities and for mitigation methods to be tried and tested then recommended, whilst ensuring that
the recommendations are appropriate due to the similarities. It also allows a model to be created

with a series of ‘test’ cities replicating the most common city types. Hence, permitting more
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users to benefit from a model environment when creating and developing contingency plans

for natural disaster scenarios, rather than relying on entirely bespoke solutions each time.

2.3.2 Communities in Disasters

When disasters do strike, it is not only infrastructure that will be affected by the event but also
the people and communities that live and utilise the infrastructure in question. Although it is
important to understand how infrastructure fails during these disaster scenarios, it is also

imperative that understanding develops regarding how communities respond.

The response of a community can have a large impact on that of the infrastructure, for example
if a mandatory evacuation order is put in place to protect lives, then the transport network needs
to be able to respond by allowing residents to leave the area in a safe manner. However, human
behaviour is not always predictable, and communities do not necessarily respond in the
perceived “safest” manner. For example, in the USA, where there are many hurricane warnings
and evacuation orders, it is not always guaranteed that the community will choose to leave their
homes. This has been attributed to a number of factors such as; homeownership, presence of
pets, past damage experiences, access to a vehicle and presence of a disability (Whitehead, et
al., 2000) (Ng, et al., 2016). This is not particularly helpful for those tasked with planning for
emergency scenarios, but by better understanding the human response to situations, it is

possible to create more robust emergency plans.

The impact of human behaviour expected behaviour types and the link with computational
modelling will be explored further in Chapter 3.

2.4 Disaster Management

Due to the prevalence of natural hazards, plus the threats of terrorism and epidemics, the need
for adequate procedures and policies to deal with these eventualities has come to the forefront.
This has led to a recognised disaster management cycle as displayed in Figure 2-10, which has
been adapted from (Rosenberg, 2015), (Haigh, 2011) & (Warfield, 2002). Despite the
unpredictability of natural hazards, it is possible to carry out Disaster Management or
Emergency Management. These management techniques are concerned with the creation of
plans and systems, which aim to reduce community vulnerability to hazards and enable them
to cope with the impacts of disasters. The cycle contains four main stages: Preparation,
Response, Recovery and Mitigation. The cycle is continuous and can begin at any stage, using

lessons learned previously.
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Figure 2-10 — Disaster Risk and Management Cycle

The Preparation, or more commonly known as Preparedness stage, is concerned with planning
on how to respond to an event before any event has occurred. Emergency Management
Professionals will use this time to prepare plans, exercises, training and/or warning systems to

a provide resilience within communities.

The Response stage is associated with the immediate aftermath of an event when efforts will
be made to minimise the impacts and hazards caused by the disaster in the short term. This may
include initially emergency aid relief or search & rescue teams. The aim is to sustain life by
providing but not limited to temporary shelter, clean water, transportation, and food. This stage
IS an emergency so focuses on the basic needs of a community. In some instances, this may

include simple repairs to damaged infrastructure, if this will support the community best.

The Recovery stage encapsulates the restoration and reconstruction of communities to a
“normal” state in the longer term. This may include further temporary housing or repairs to
houses, grants to allow restoration, and access to medical care. It is hard to determine when the
recovery stage begins, and the response stage ends. There is potential within this stage to
increase preparedness, which in turn reduces future vulnerability.
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Finally, the Mitigation stage, which is almost simultaneous to the recovery stage. The aim of
this stage is to minimise the effects of a future disaster and where possible to prevent the same
damage occurring again from a similar disaster. Minimisation can occur through changes to
building codes and standards, vulnerability assessments, reconstruction of flood protection or
landslide protection. This stage may also include community education on disasters to offer

communities the opportunity to better prepare for the next instance.

It is vital that lessons are learnt throughout the cycle to ensure communities become more
resilient and less vulnerable when events do occur. Therefore, to develop effective plans, there
is a requirement to model how these systems behave in these events. This can be particularly
challenging as the systems are not only complex, the events that need to be considered are rare
and there is often a lack of knowledge surrounding the existing infrastructure before an event

occurs, particularly in developing countries.

The modelling tool proposed in this thesis has been developed for use by emergency planners
using the disaster management cycle for the mitigation and preparation phases. The aim is to
allow planners to test their emergency plans and procedures using computational simulation
and other techniques to provide appropriate mitigation strategies and to prepare communities
effectively for the potential consequences of hazard events. It is anticipated that the real-world
and table-top simulations that are currently used by emergency professionals will be used in
collaboration with this tool to provide planners the opportunity to test numerous scenarios in a

less resource and cost-intensive manner.

2.5 Policy

Governmental policy can be a key driver for change across the globe and is often closely linked
to the Disaster Management Cycle. Examples of good policy practice can be used to drive
forward changes in other nations as they strive to meet the benchmarks set out. Institutions
such as the United Nations (UN), with their 196 member nations, can also be integral in
achieving international cooperation and collaboration on key policies. The UN also set out their
own policies regarding topics such as disaster management, such as the International Strategy
for Disaster Reduction (UNISDR), and during the 1990s, the UN committed to a decades
programme aimed at disaster reduction (UNISDR, 2016). Their most recent programme is the
Sendai Framework for Disaster Risk Reduction 2015 — 2030, which is promoting “concrete
actions to protect development gains from the risk of disaster” (United Nations, 2020). This

programme is in collaboration with other 2030 Agenda agreements such as the Sustainable
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Development Goals and promotes “The substantial reduction of disaster risk and losses in lives,
livelihoods and health and in the economic, physical, social, cultural and environmental assets
of persons, businesses, communities and countries” (United Nations, 2020). The framework
features 7 global targets and 38 global indicators through an online tool which requires self-
reporting by member states. Hence, it is difficult to assess the success of UN policies in the
majority of instances, as the UN cannot enforce any policies. Hence, there is a reliance on
countries to choose to create their own plans and policies, driven by global best practice where
possible.

2.5.1 UK Policy
2.5.1.1 Local Policy

In the UK, more effective disaster management has been driven through the Civil Contingences
Act (2004) (UK Government, 2004), which provides a single framework for civil protection in
the UK and introduces the duty to create Local Resilience Forums (LRFs) (Cabinet Office,
2013). At the local level, there is a clear set of roles and responsibilities for emergency
preparation and response with responders split into two categories. Category 1 responders are
the organisations at the centre of the response to most emergencies e.g. local authorities and
emergency services. Category 2 responders are co-operating bodies e.g. transport companies,
who would be heavily involved in their own areas of expertise but not in the heart of the
planning work (Cabinet Office, 2013). The LRFs have statutory duties as local authorities to
prevent serious damage to their local communities. Each geographical area is based on police
force boundaries and is “required to prepare to deliver an appropriate emergency response

and to maintain normal services during a crisis” (Newcastle City Council, 2014).

To help this, risks need to be identified in each area, so community risk registers and
frameworks have been set out (Northumbria Local Resilience Forum, 2014 ) (London
Resilience Partnership, 2017). The Northumbria LRF community risk register identifies in the
North East of England, local/urban flooding, local/coastal/tidal flooding, industrial accident,
localised large release of toxic substance, pandemic influenza or animal disease as the key risks
(Northumbria Local Resilience Forum, 2014). In London, a mass evacuation framework has
been created by the London Resilience Partnership “to provide guidance to responders at all
levels on the way in which the evacuation of large numbers of people can be achieved” (London
Resilience Team, 2014).
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Once risks have been identified and management plans are in place, the validity of these plans
needs to be tested to ensure they are adequate in dealing with the anticipated risks. Therefore,
there is a requirement to run emergency planning scenarios. These are included within the Civil
Contingencies Act, which states that Category 1 responders must include provision for carrying
out exercises and training staff on their emergency plans (Cabinet Office & National Security
and Intelligence, 2013). Currently, three types of exercises are proposed, (1) discussion based,
(2) table top and (3) live (Cabinet Office & National Security and Intelligence, 2013) (Table
2-7). Discussion based exercises are relatively cheap to run and easy to prepare so are often
utilised for training purposes. Table-top drills are based on scenarios, which is useful for
validation purposes and exploring weaknesses, with low costs other than staff time, but more
planning and preparation is required. Live exercises are a real-life simulation of an event, which
IS expensive to run, demands very extensive planning and can be disruptive to the general
public. Three case studies from the UK demonstrate the planning required to host a live
simulation and the costs involved (Table 2-8, Table 2-9, and Table 2-10).

All these testing methods are suitable for preparing emergency services or emergency planners,
however there is rarely any interaction with the general public. Live simulation exercises
usually rely entirely on dummies or actors to provide the “general public”. It is important to
effectively prepare emergency service personnel, but without sufficient provision of the
reaction from the public, the tested plans may be ineffective anyway, as the anticipated reaction

is not in line with expectations.

Table 2-7 — Summary of Exercise Types

Discussion Based ‘ Table-Top Live

Cheap to run
Easiest to prepare
Often used for training

purposes

Based on simulation
Useful for validation
Good at exploring
weaknesses
Cheap to run apart from
staff time
Need careful preparation

Live rehearsal e.g. practise
drill
Expensive to set up
Demand extensive
preparation
Can be very disruptive to
public
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Table 2-8 — Case Study: London Mock Building Collapse at Tube Station

Case Study

London Mock Building Collapse at Tube Station

Figure 2-11 — Underground tube carriages
used in the Exercise (London Fire Brigade,
2016)

Figure 2-12 — Disused Power Station
utilised as venue for the exercise, showing
the derailed tube trains and rubble (BBC -

Press Association, 2016)

In February 2016, the London emergency services
took part in “Europe’s biggest ever disaster training
exercise” (London Fire Brigade, 2016). This
involved coordinating the fire, police, and
ambulance services into the four-day scenario, with
the opportunity to practice disaster response. The
exercise involved “over 1000 casualties, thousands
of tonnes of rubble, seven tube carriages and
hundreds of emergency service responders... and
has been over a year in planning” (London Fire
Brigade, 2016). The event was also observed by
independent evaluators, to allow improvements to be
made to the response procedures and lessons learnt.
The scenario was funded by the European
Commission Exercise Program, on behalf of the
London Resilience Partnership, in addition over £1
million was donated in kind by partner organisations
( e.g. Transport for London — Tube Carriages,
McGee Demolition Group — Rubble & Machinery
and RWE npower — Littlebrook venue) (London Fire
Brigade, 2016). This provided a good opportunity for
many different emergency services and interlinked
parties to test procedures as part of a real-life
simulation, however this was not without significant

financial, time and effort costs.
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Table 2-9 — Case Study: London Mock Terrorist Attack on River Thames

Case Study

London Mock Terrorist Attack on River Thames

In 2017, over 200 Met Police officers simulated a
terrorist attack on a tourist boat on the river Thames
(BBC, 2017 A). Around 12 “terrorists” hijacked the

boat, which was then intercepted by the police as

part of their first large training event on water (The

j 5"

Guardian, 2017). This event was carried out in

response to a 2016 report that “found security
Figure 2-13 — Simulated terror attack on the measures on the river Thames needed to be

River Thames (BBC, 2017 A) strengthened” (BBC, 2017 A). The aim was to test
the effectiveness of emergency response in a real
life scenario for a number of partner organisations
such as the Port of London Authority, London
Coastguard, RNLI as well as emergency service
personnel (The Guardian, 2017). Arguably this

event was significantly smaller than the real-life

simulation scenarios carried out in previous years
Figure 2-14 — Simulated terror attack on the ; i

River Thames (BBC, 2017 A) that trained 1000s of response practitioners through
the event. This may be in response to the time,
effort and monetary commitment involved in a time

when budgets are often being squeezed.

Table 2-10 — Case Study: North East Terror Attack Simulation at Intu Metrocentre

Case Study

North East Terror Attack Simulation — Metrocentre

It is not just London that needs to test emergency
response plans, there is a requirement that all Local
Resilience Forums plan and test emergency

scenarios too. To meet this requirement, in May

2017, Northumbria Police held a mock anti-terror

exercise in the Metrocentre in Gateshead, one of
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Figure 2-15 — Northumbria Police armed | Europe’s largest shopping centres (BBC, 2017 B).
personnel respond to ‘terror attack’ at ) ] ) ]

Metrocentre (BBC, 2017 B) The aim of the event was primarily for the police
service to test their firearm skills in conjunction
with a number of other emergency service
personnel (such as the Fire & Rescue Service,
Ambulance Service, Local Council, Metrocentre
and NHS England) (The Chronicle - Hannah

Graham, 2017).

Figure 2- — Northumbria Police armed
personnel respond to ‘terror attack’ at
Metrocentre (BBC, 2017 B)

Currently, there is no provision to utilise computational modelling for planning and preparation.
However, this could provide a more robust method for testing scenarios, allowing planners to
test multiple runs without the resource and cost requirements. It also allows for a robust
interpretation of human behaviour modelled on the general public to be included, rather than a
reliance on assumptions, dummies or actors as is currently used. This could enhance the
understanding of the public’s reaction to different events and how this could compromise or
enhance scenarios for emergency personnel. Previously, models would not have been capable
of this but with the emergence of new techniques and additional computer power, it is now

possible to test computationally.

2.5.1.2 National Policy

The UK’s National Security Strategy states that “the security of our nation is the first duty of
government” and that “it is the foundation of our freedom and our prosperity” (Cabinet Office
& National Security and Intelligence, 2010). Therefore, to supplement the Community Risk
Registers produced by LRFs, the UK Government, carries out a National Risk Assessment
(NRA) annually. This is a classified document; however, the Government also produces an
annual publicly available version of this document, namely the National Risk Register (NRR)
(Cabinet Office, 2008). The NRA and NRR were first published in 2008 as a response to the
National Security Strategy, (Cabinet Office & National Security and Intelligence, 2010) with
the aim of capturing a range of emergencies that might have a substantial impact on all, or a
significant part of the UK. These documents outline the larger, national picture of risks
compared with the localised risks considered by the LRFs (Cabinet Office, 2008).

The 2008 NRR showed that highest impact event was anticipated to be pandemic influenza,

but that the most likely events were attacks on transport or electronic attacks, although the
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impacts were deemed to be smaller (Cabinet Office, 2008) (Figure 2-17). An updated NRR
was produced in 2015, this adapted the previous register and better quantified the likelihoods
of risks and impacts, by indicating the relative likelihood of events occurring in the next five
years such as “between 1 in 20 and 1 in 2”. The register was split into two parts: risks of
terrorist or malicious attacks and other risks (Cabinet Office, 2015). In terms of terrorist attacks,
a catastrophic terrorist attack was seen as medium-low plausibility but the highest impact, but
cyber-attacks compromising data confidentiality is highly plausible but low impact (Cabinet
Office, 2015) (Figure 2-18(a)). For the other risks, pandemic influenza has the highest impact
and its relative likelihood of occurring in the next 5 years is between 1 in 20 and 1 in 2 (Cabinet
Office, 2015) (Figure 2-18(b)). In 2017, the NRR was further updated, splitting into two
categories malicious attacks and hazards, diseases, accidents, and societal risks. In terms of the
malicious attacks, an attack on crowded places or transport was identified as the highest
likelihood, whereas a largescale chemical, biological, radiological or nuclear attack was
identified as having the highest impact (Figure 2-19). For the hazards, diseases, accidents and
societal risks, a larger number of possible events had been identified compared to previous
editions, but pandemic influenza was still deemed to be the most likely and highest impact
event, followed by cold and snow which was highly likely but marginally lower impact (Figure
2-20).

To supplement this, the UK government have provided several guidance documents on
emergency planning and preparation. “The government aims to ensure all organisations have
effective, well-practiced emergency plans in place” (Cabinet Office, 2013). Hence, emergency

planning can be used to reduce, control, and mitigate the effects of emergencies.
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2.5.2 USA Policy

The USA, like the UK, is subjected to a number of natural and man-made hazards every year,
for example in 2015 the USA experienced 28 recorded natural disasters with financial costs of
approximately $21 billion (Guha-Sapir, et al., 2016), so there is a need to develop and improve
disaster management strategies. The USA Department for Homeland Security has approached
this by forming a national preparedness goal. This is set out as “a secure and resilient nation
with the capabilities required across the whole community to prevent, protect against, mitigate,
respond to, and recover from the threats and hazards that pose the greatest risk” (US
Department of Homeland Security, 2015), deeming a shared responsibility across the entire
nation (FEMA, 2015). Overall, FEMA’s mission can be described as ensuring; “that as a nation
we work together to build, sustain, and improve our capability to prepare for, protect against,
respond to, recover from and mitigate all hazards” (FEMA, 2017). The National Preparedness
Goal is capability based, with 32 core capabilities (identified as part of a strategic national risk
assessment), which are organised into five mission areas, namely: prevention, protection,
mitigation, response and recovery (US Department of Homeland Security, 2015) (Figure 2-21).
This has been used to identify the types of threats that posed the greatest risk to the USA’s
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security, including natural, technological/accidental and adversarial/human-caused hazards.
Currently, natural hazards, pandemic influenza, technological hazards, terrorism and cyber-
attacks are classified as a significant risk to the USA in their strategic national risk assessment
(US Department of Homeland Security, 2015).

Prevention Protection Mitigation Response Recovery
Planning
Public Information and Warning
Operational Coordination
Intelligence and Information Sharing Community Infrastructure Systems
Resilience
Interdiction and Disruption Long-term Critical Transportation Economic
Screening, Search, and Detecti Vulnerability Environmental Recovery
creening, Search, and Detection
Reduction Response/Health and s;:?aalnshe::"iges
Forensics and Access Control R'sﬁzzgig:i:“er Safety _
Attribution and Identity Assessment Fata"ty Management HDUSI“Q
Verification Services Natural and
Cybersecurity Threats and Fire Management and Cultural
Hazards Suppression Resources
Physical Identification PP
Protective Logistics and Supply
Measures Chain Management
Risk Mass Care Services
M t f
a::g;Tﬁ:n or Mass Search and
Programs and Rescue Operations
Activities On-scene Security,
Supply Chain Protection, and Law
Integrity and Enforcement
Security Operational
Communications
Public Health,
Healthcare, and
Emergency Medical
Services
Situational
Assessment

Figure 2-21 — USA National Preparedness Goal Core Capabilities and Mission Areas (US Department of
Homeland Security, 2015, p. 3)

2.5.3 New Zealand Policy

New Zealand is also susceptible to many natural hazards, including the Christchurch
earthquake (February 2011), which caused 65 fatalities and $3 billion worth of damage (BBC,
2011). Therefore, to reduce this vulnerability, risks categorised by type (e.g. geophysical, social,
and technological) have been identified and analysed by the Institution of Professional
Engineers New Zealand (IPENZ), to enable measures to be put in place to either eliminate or
reduce their impacts. This analysis covers the characteristics of hazards, in order to understand
their relationship with national planning measures, which includes a range of likelihoods and

consequences. The indicative risks show that cyber-attacks affecting data confidentiality are
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likely to occur at least once a year but are likely to have only minor consequences (Institution
of Professional Engineers New Zealand (IPENZ), 2012). Whereas, a very large volcanic
eruption is only likely to occur once in a millennium, however, the consequences would be
considered catastrophic (Institution of Professional Engineers New Zealand (IPENZ), 2012)
(Figure 2-22). In particular, the IPENZ highlights that for natural hazards, each threat has a
different profile thereby suggesting that it is not appropriate to “lump together” all-natural
hazards and it would be more appropriate to target hazard specific reduction measures to each
individual hazard type. The national risk framework also incorporates the localised risks, with
a risk exposure calculated for major settlements in New Zealand. This shows that any measures

to mitigate natural hazards need to recognise the regional differences in terms of risk.
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Figure 2-22 — New Zealand Indicative National Risks (Institution of Professional Engineers New Zealand
(IPENZ), 2012, p. 7)

New Zealand currently has a number of acts included in a regulatory framework, similar to the
UK, including; the Resource Management Act 1991, the Building Act 2004, the Civil Defence
Emergency Management Act 2002, the Local Government Act 2002 and the Local Government
Official Information and Meetings Act 1987 (Institution of Professional Engineers New
Zealand (IPENZ), 2012). However, these acts are inconsistent with their definitions of natural
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hazards, do not include some important threats and the range of restrictions to be imposed are
limited (Institution of Professional Engineers New Zealand (IPENZ), 2012).

2.5.4 Future UK Policy Developments

Despite the lack of recognition across the globe of the merits of computational modelling for
disaster scenarios, the UK Government noted that; “modelling and simulation techniques are
important ways of enabling complex systems to be understood and manipulated in a virtual
environment” (Council for Science and Technology (CST), 2009). As such, there is an
understanding of the benefits of completing computational modelling from a government
perspective. This commitment was shown through the recommendations made in “A National
Infrastructure for the 21 Century” report (Council for Science and Technology (CST), 2009).
Recommendation Three recommended “stimulating better understanding of the complexity
and resilience of the national infrastructure, by commissioning research into scenario planning
and modelling national infrastructure systems, from physical, economic and social
perspectives” (Council for Science and Technology (CST), 2009). Underlining the UK
government’s commitment to facilitating the simulation and modelling of disaster management

systems in natural hazard scenarios.

The creation of modelling tool such as the one developed in this thesis should be used in
conjunction with the scenario testing (table-top and real world) currently carried out at a local
level. In the future, computational evacuation simulation will allow multiple scenarios to be
run with smaller financial and resource contributions. This will then be able to feed into real-
world simulation of events with emergency service personnel able to focus on worst case
scenarios and able to have a stronger understanding of the human behaviour dynamic in play
during hazard events. At a national level ABMs simulating hazard events will be able to support
policy decisions and planning around the National Risk Registers used in nations such as the
UK, USA, and New Zealand. This will allow governments to increase their resilience, robustly
protect communities and provide appropriate action plans.

2.6 Modelling of Natural Disasters

Although still in its infancy, developed country’s governmental policy is beginning to identify
the benefits of being able to model complex situations and scenarios computationally. The only
alternative presently is to complete costly and time-consuming real-life simulation or
unrealistic table-top exercises, which do not allow emergency planners to be sufficiently
prepared for a variety of disaster events.
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To model effectively computationally it is important to choose the appropriate technique that
can complete the required task to the necessary level of detail. Previously computational power
has been a barrier to this type of simulation, but this is no longer anticipated to be an issue. A
clear set of criteria for a model, such as inclusion of a dynamic population or agent to agent
communication, is vital from the offset as is the need to effectively calibrate, verify and validate
any models. There are lots of available techniques for modelling computationally, for example
agent-based modelling, system dynamics and cellular automata, and it is imperative to make
an appropriate choice.

2.6.1 Available Modelling Techniques and Software for Natural Disasters

Management professionals have developed numerous modelling techniques such as system
dynamics, cellular automata, microsimulation, and fault tree analysis to simulate human
behaviour during evacuation and hazard scenarios. Several different techniques will be

evaluated, to ascertain the most appropriate technique for this project.

2.6.2 Event & Fault Tree Analysis

Event and fault tree analysis is an analytical method that is most commonly used in system
reliability, maintainability and safety analysis (Pilot, 2016). It is classified as a “logical and
diagrammatic method to evaluate the probability of an accident resulting from sequences and
combinations of faults and failure events” (Tanaka, et al., 1983). Using this method, it is
possible to calculate the probability of the top event, by logically understanding the mode of
occurrence for an event. This also helps to identify potential failures of a system before an
event occurs. However, a flaw with this analysis is often that exact failure probabilities need to
be used but this can be difficult to evaluate from past events as system environments change.
It may also be necessary to consider the failure of elements that have never failed before
(Tanaka, et al., 1983). This means that for this thesis, this method could only be useful for
working through the disaster management cycle with past events e.g. Hurricane Katrina.
However, this technique would not allow for the creation of a detailed agent population to be
included within a model environment and would only be suitable to use to indicate overall

failures rather than the actions of individuals.

2.6.3 Microsimulation
Microsimulation is a form of computational modelling that examines the interactions of self-
governing individual units’ dependant on randomised parameters, which should represent the

preferences of individuals e.g. the possible choices a vehicle could make at a crossroads or for
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pedestrians crossing a road. Microsimulation is often a tool utilised by social sciences for
applications such as tax and benefit reform (Spielauer, 2011) as well as within transport
research for pedestrian behaviour (Yang, et al., 2006) or traffic demand (Balmer, et al., 2006).
Microsimulation does have a number of benefits over conventional models including,
“computational savings in the calculation and storage of large multidimensional probability
arrays, larger range of output options and explicit modelling of the decision-making processes
of individuals” (Balmer, et al., 2006).

However, the challenge remains that microsimulation relies on creating individual demand
often out of general input data, which can have a large variability particularly in terms of quality,
spatial resolution and intended purpose (Balmer, et al., 2006). On top of this to realistically
simulate a society requires; “detailed data, complicated models, fast computers and extensive
testing” and the more complicated a model gets the more the complexity increases in terms of
understanding operations and assessing predictive power (Spielauer, 2011). Computational
power has significantly increased over recent years, meaning that microsimulation usage has
intensified, and data is routinely collected but it is essential to ensure that this data is “good”
i.e. verified, calibrated, and validated. Despite this, microsimulation does not demonstrate any
ability to allow agents to communication with each other or provide feedback on their
interactions, both of which are required when attempting to robustly simulate human behaviour

in a model environment.

2.6.4 Cellular Automata

Cellular automata are “examples of mathematical systems constructed from many identical
components, each simple, but together capable of complex behaviour” (Wolfram, 1984), which
“can be considered as computational systems” (Wolfram, 1985, p. 170). The typical use is
usually for biological or physical systems. “Cellular automata are especially suitable for
modelling any system that is composed of simple components, where the global behaviour of
the system is dependent on the behaviour and local interactions of the individual components”
(Young, 2006). A cellular automata model consists of a grid of cells, where each cell can have
a number of finite states, over discrete time steps, the cell’s state changes according to a set of
rules, which are either dependant on the previous time step or its neighbours state (Malamud
& Turcotte, 2002).

Cellular Automata has been used for modelling natural hazards (Cai, et al., 2014) (Ntinas, et

al., 2016), as the model is suitable at simulating the spread of hazards e.g. wildfires or flooding.
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This is due to there being a finite set of outcomes e.qg. fire lit, no fire. However, this is not ideal
for simulation of a natural disaster evacuation or response due to the numerous possibilities

rather than the population simply being ‘alive’ or ‘dead’.

2.6.5 System Dynamics

System dynamics is “the mathematical modelling and analysing of devices and processes for
the purpose of understanding their time-dependant behaviour” (Palm 111, 2012). A system can
be defined as “a combination of elements intended to act together to accomplish an objective”
(Palm 111, 2012). A system can be defined as dynamic “if an element’s present output depends
on past inputs”, e.g. subject to changes over time (Palm 111, 2012). Tied to this is that in system
dynamics, an input and output can be defined as a cause and an effect. Hence, system dynamics
is suitable for applications where there are multiple types of components and processes
involved, which change over time. This means it is possible to use system dynamics for
modelling emergency responses. Two of the most popular software packages for modelling
system dynamics are MATLAB and Simulink; Simulink is based on MATLAB but features a
diagram-based interface (Palm 111, 2012).

System dynamics could be utilised for a disaster management application; however, it is not as
optimal due to the limitations regarding the inclusion of a unique population. It is also
“relatively widely accepted within the field of system dynamics that models are not designed to
and cannot perfectly imitate the real world” (Featherston & Doolan, 2012) (Sterman, 2000)
(Forrester, 2003) (Lane, 2000). It has also been claimed that system dynamics is dehumanising
and “relegates people to ‘cogs in a system’ and disregards free will” (Featherston & Doolan,
2012) (Jackson, 1991).

2.6.6 Agent Based Modelling

Agent-based modelling allows over time, for a model to simulate a population, with each
member of the population as a separate agent. Agent-based modelling “simulates the
operations and interactions of multiple agents with macro-level system behaviour emerging
from these individual interactions. Agent behaviour is determined by rules of interactions with
each other and the environment.” (Dawson, et al., 2011). Agents are “endowed with behaviours
that are usually proscribed in a series of rules that are activated under different conditions ...
in the manner of stimulus and response ... and in this sense, agents always engender change”
(Batty, et al., 2012). Hence, agent-based modelling relies on an element of movement or at

least a change between agents (Batty, 2012). The model’s ability to simulate movement and
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interactions from multiple agents at once make it an effective and robust tool to apply to human
behaviour, where there may be many individual decisions made and not just a binary choice.
However, it is not a flawless modelling technique and there are still issues to overcome, it is
accepted that “a model is only as useful as the purpose for which is it constructed” (Crooks &
Heppenstall, 2012). Common issues include aspects such as: (1) path dependency as models
can be very sensitive to their initial conditions, which makes using ABM for predictive
purposes difficult, (2) disaggregated systems as models need to be separated into many agent
characteristics, behaviours and interactions, this can be aided through multiple runs and varying
initial conditions to aid robustness, (3) poor scalability in that models can be created at the
micro or macro scale but combining the differing scales is challenging (Crooks & Heppenstall,
2012).

2.6.7 Summary of Available Modelling Techniques
An overview of potential methods for simulation of natural disasters has been set out and has
been summarised (Table 2-11). There are several criteria that need to be considered to
effectively model human behaviour. The criteria used:

e Agent hierarchy — the ability to arrange/rank as above, below, or on same level as other
agents within the model environment based on a series of values, status, or authority.

e Agent-agent communication — the ability to allow agents to be able to exchange, send
or receive information within the model.

e Agent heterogeneity — the ability for agents to have diverse characteristics or rules.

e Spatially explicit — the ability to vary location in space.

e Representation of feedback — the ability to provide information on the interactions

taking place within the model.

The above criteria are all necessary characteristics for robustly simulating human behaviour,
one of the main modelling aims of this thesis. Based on these, it can be demonstrated that agent-

based modelling is superior in terms of these criteria.

Table 2-11 — Overview of Potential Methods for Simulating Natural Disasters adapted from (Dawson, et al.,
2011)

Agent Agent-agent Agent Spatially  Feedback

Hierarchy = Communication = Heterogeneity  Explicit Represented

Event and Fault
x x N/A x x

Trees
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Microsimulation v x v Maybe x
Cellular v v < v v
Automata
System < x < x v
Dynamics
Agent-B

gent-Based v v v v v
Models

2.7 The Potential Role of Computational Modelling

It has been demonstrated that there is a growing demand and capability to begin modelling
hazard events using computational modelling and that there is a potential to save money, time
and lives if implemented robustly. This would alleviate the need to used current methods which
are inefficient and often unable to simulate several different scenarios. Hazard events will
continue to occur, resulting in devastating impacts and consequences for communities across
the globe. By analysing past events it is possible to examine the potential role computational
modelling and more specifically agent-based modelling could have in responding to events.

2.7.1 Disaster Case Studies

Hazard events do not all have the same impacts and consequences, nor do they have the same
levels of warning. Three case studies have been chosen; Tohoku earthquake & tsunami, the
UK winter flooding, and Fort McMurray wildfire, which demonstrate the different scales, event

types and responses possible.

2.7.2 Case Study: Tohoku Earthquake & Tsunami, March 2011

The Tohoku earthquake and tsunami hit the Pacific Coast of Japan on the 11" March 2011.
The event “caused enormous damage... due to seismic motion and the tsunami it triggered”
(Kazama & Noda, 2012) (Figure 2-23). The earthquake was magnitude 9.0 and was “the
strongest earthquake experienced by Japan since the country began taking measurements”
(Kazama & Noda, 2012). The earthquake and resulting tsunami caused over 15,000 fatalities
and a further 2,500 persons remained missing (Osborne, 2016). During the event nearly 48,000
buildings plus 230,000 vehicles were destroyed and the damage was estimated to be
approximately $300 billion (Osborne, 2016) (Figure 2-23).
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On top of the environment that was destroyed by the earthquake and tsunami, the Fukushima
Daiichi power plant was severely impacted, “causing one of the worst nuclear disasters in
history” (Osborne, 2016). To this day, years after the event, the impacts of this persist as an
exclusion zone remains in place around the plant and thousands of communities continue to

live in temporary accommodation. This demonstrates that the area has struggled to recover

sustainably due to the economic, social, and environmental consequences of the disaster.

(b)

Figure 2-23 — (a) Devastation Caused by Tohoku
Earthquake & Tsunami Photo Credit: Dylan
McCord. U.S. Navy (Oskin, 2017), (b) Damage and
Debris Left by Tohoku Earthquake and Tsunami
Photo Credit: Reuters (Van, 2019), (c) Wave
Caused by Tohoku Tsunami Photo Credit: Reuters
(BBC, 2011).

2.7.2.1 Evacuation Plan

Japan is considered a pioneer in disaster management and is well versed in creating plans for
preparing and responding to hazard events (Zare & Ghaychi Afrouz, 2012). This includes a
far-reaching public engagement programme to help influence evacuation behaviours and
promote appropriate evacuee responses, as well as early warning systems. An initial earthquake
early warning was issued within 8 seconds of the detection of the earthquake’s first P-wave
(Imamura & Anawat, 2012). This was followed by a further tsunami warning within 3 minutes
of the earthquake and revisions were made to the warning after real-time seismic and tsunami
data was received (Imamura & Anawat, 2012). The revisions were made 28 minutes after the
earthquake, increasing the tsunami amplitude from 6m in Miyagi and 3m in Iwate and
Fukushima to 10m instead (Imamura & Anawat, 2012).
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2.7.2.2 Evacuation Successes & Failures

One study of 870 refugees on evacuation behaviours during the 2011 Tohoku earthquake and
tsunami estimated that “there were 496 immediate evacuees and 267 delayed evacuees” with
16% evacuating due to the tsunami warning, 31% evacuating after initially hesitating and 11%
who could not evacuate immediately (Yun & Hamada, 2012). The study also found that 34%
returned to their homes to search for family and 11% did not believe that a wave of such
predicted magnitude could strike the area from past experiences (Yun & Hamada, 2012). This
shows the influence of early warning systems on behaviours but demonstrates that behaviour

can be influenced by previous experiences, which ultimately resulted in greater fatalities.

Although early warning systems issued both earthquake and tsunami warnings, the delay of 28
minutes stating the true anticipated height of the tsunami resulted in those on the coast being
unable to receive the correct information as the communication networks had already been
damaged (Imamura & Anawat, 2012). The initial estimates also meant the tsunami would likely
be contained by the sea wall and break water at Sanriku and other areas (Imamura & Anawat,
2012), which likely affected evacuation behaviours as residents did not believe there was an

immediate threat to their lives.

However, there were large numbers of inhabitants that made the decision to evacuate, but their
journeys were hinder by large traffic jams (Yun & Hamada, 2012), caused by the earthquake
damage. There were also many that travelled to evacuation shelters but those placed on the
coast were actually inundated by the tsunami, resulting in additional fatalities when people
thought they were in a place of safety (Imamura & Anawat, 2012). It was also reported that the
tsunami hit areas, which had not been included in the potential danger zones on maps,

suggesting the predictions may have been inadequate (Imamura & Anawat, 2012).

2.7.2.3 Disaster Management Cycle

Earthquake & Tsunami 2011 Next Event or Year

o Japan has an established Central Council for | Recovery efforts continue
Mitigation |\ ccident Prevention, chaired by the Prime | with the aim of building
Minister. This has resulted in a comprehensive | back better and reducing
ruleset for response to events, a research system | the size of the exclusion
and public education programme. Japan has an | zone around the nuclear

advanced earthquake and tsunami early warning | power plant. Earthquakes
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system, set up from 2003 — 2007. Warnings are
broadcast using the Japanese media and mobile
phone networks. (Zare & Ghaychi Afrouz,
2012)

have hit Japan since the
2011 event but not in the
same location or at the

same magnitude.

Preparedness

The Japanese Meteorological Agency is
responsible for issuing any warnings regarding
tsunamis. The warnings were released quickly
on the 11" March, the first occurred within three
minutes of the earthquake and a second was
released after 28 minutes to warn that the
expected height of the tsunami was greater than
ten metres (Yun & Hamada, 2012). There was
also an initial earthquake warning issued within
8 seconds of the earthquake (Imamura &
Anawat, 2012).

Response

The Japanese Government initially held a
National Committee  for ~ Emergency
Management, led by the Prime Minister,
declaring an emergency, and deploying their
self-defence forces to aid rescues. Ministries
and departments were tasked with relief efforts.
A state of nuclear emergency was also issued by
the government, which allowed 140,000
residents within 20km of the plant to be
evacuated. The Japanese Red Crescent Society
also had a significant role in the initial response.
(Zare & Ghaychi Afrouz, 2012)

Recovery

Efforts to rebuild and rebuild better were
established almost immediately after the event.
The first construction of temporary housing
began only eight days after the disaster, with
construction of the first homes expected to take
just a month (Zare & Ghaychi Afrouz, 2012).
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However, there is still an exclusion zone in
place around the Fukushima Daiichi power
plant, which is anticipated to remain in place
with only small additional areas opened from
2023 (Stewart, 2018).

2.7.2.4 Potential Role of ABM

The use of an ABM evacuation simulation alongside hazard model could have allowed
emergency managers to predict the scale of the disaster and the number of people to be affected.
With events such as earthquakes and tsunamis, there is often little warning, but the use of an
ABM model may have helped to predict the number of people who would need to leave and
the number of possible fatalities dependant on differing evacuation rates. In this case, it may
also have served as a warning for the nuclear power plant, which had not been built to withstand
such a large-scale tsunami. It would also allow countries to be better prepared to respond to
large scale events such as this, through improved logistically planning and suitable placement
of emergency services. The model could also have helped more robustly predict appropriate
safe zones, which could have been communicated to communities to ensure a route to safety
was known through the existing public engagement programmes. By making use of a robust
computational model, it may be possible to run multiple simulations of varied earthquake
intensities and tsunami inundation, thereby providing information to communities for several
scenarios including a worst case to increase evacuation rates rather than relying on past
experiences. In 2012, an ABM was created for the Tohoku event focusing on the village of
Arahama, which after a 1000 simulations achieved an evacuation rate of approximately 82.1%
with 498 agents reaching safety, which correlated with the 90% evacuation rate and 520
evacuees reaching shelter during the actual event (Mas, et al., 2012). This demonstrates the
possibility of capturing complex evacuation behaviours during a tsunami in computational

simulations, which if successful can aid mitigation and preparation phases for future events.

2.7.3 Case Study: UK Winter Flooding, Winter 2015/16

In the UK during the winter of 2015/16, across Yorkshire, Lancashire and Cumbria
unprecedented levels of flooding were experienced by communities. It has been reported that
the floods are ranked as the “most extreme on record in UK” (The Guardian, 2016). This
resulted in communities being cut off from each other, financial obligations, and the destruction
of wildlife habitats.
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A bridge over the River Wharfe in Tadcaster (BBC, 2015 B) and Pooley Bridge in Cumbria
(BBC, 2015 C) both collapsed during the storm events fracturing communities (Figure 2-24).
Due to the damage caused, funding needed to be raised to repair these assets and repairs were
anticipated to take in the region of 12-18 months before a sense of normality could return.
However, twelve months on from the event, over 700 families had still not regained access to
their properties and Cumbria County Council approximated the recovery costs to date at £500
million (BBC, 2016 A). A later assessment of the economic damages of the flooding estimated
that £1.6 billion of costs had been incurred to restore housing, businesses, transport

infrastructure and utilities (Environment Agency, 2018).

On top of this, were the numerous insurance claims for homes and businesses, the estimated
insurance bill was more than £1.3 billion (BBC, 2016 B). Plus, the effects on future insurance
or more likely the lack of it. In this example, even on a relatively small scale, in a developed
country, the consequences can be devastating and can easily affect the sustainable growth of

an area.

(a) (b)

Figure 2-24 — (a) Flooding at Pooley Bridge in the Lake
District Photo Credit: Owen Humphreys/PA (BBC,
2019), (b) Flooding in Lake District Town Centre Photo
Credit: Getty Images (BBC - Press Association, 2016),
(c) Collapse of Tadcaster Bridge over River Wharfe in
2015 Photo Credit: Giles Rocholl (BBC, 2015 D).

2.7.3.1 Evacuation Plan
Numerous storm warnings were issued during each of the storms, to alert those in storm’s path
that there was potential for flooding and danger to life. For example, during Storm Eva, “the

Environment Agency issued 149 flood warnings, seven of them severe and 123 alerts” (BBC,
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2015 E). However, due to the previous flood defences that had been built, particularly in
Cumbria following flooding in 2005, many people did not evacuate their homes (BBC, 2015
E). The flood defences did not successfully protect all the homes though and many people were
left trapped in their homes, this resulted in the need to evacuate after the flood event.

2.7.3.2 Evacuation Successes & Failures

Due to the volume of flooding, inadequacy of the flood defences and the number of people that
remained in their homes during the storm events, both the Army and Royal National Lifeboat
Institution (RNLI) were drafted in to help facilitate evacuations (BBC, 2015 E). This was also
further exacerbated by the prolonged period of poor weather, which resulted in some areas
being “under water for a third time in a month” (BBC, 2015 E). The UK government did claim
though that 20,000 homes had been protected by the flood defences (BBC, 2016 C). Evacuation
attempts were also hindered by the devastation caused by the flooding, which saw many homes
without power and several bridges such as Tadcaster bridge in North Yorkshire or Pooley
Bridge in the Lake District damaged resulting in lengthy detours to reach communities (BBC,
2015 E) (BBC, 2016 B).

2.7.3.3 Disaster Management Cycle

Phase

Mitigation

Flooding 2015
Previous flood defences had been
constructed, for Cumbria this was in
2005. However, these were not
sufficient in protecting all properties
the levels

from of flooding

experienced.

Next Event or Year

The Cumbria Flood Action Plan was
set out to include short term and long-
term actions to reduce flooding in
response to the flooding in 2015
(Department for Environment &

Environment Agency, 2016).

Preparedness

There was plenty of advance
warning for the flooding. These
were issued as flood warnings or

alerts by the Environment Agency.

Response

Due to the levels of flooding
experienced and the numbers of
people needing rescuing, both the
Army & RNLI

evacuate those stuck in homes.

responded to
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An initial clean-up of homes
occurred, which was primarily

carried out by homeowners.

Recovery Further cleaning up and removal of
debris was carried to start the
recovery process. Access to
financial aid was speedier than after
other events (BBC, 2016 C).

Numerous rebuild projects took
place to reconnect communities
including bridges, roads and other

infrastructure.

2.7.3.4 Potential Role of ABM

The use of an ABM simulation could have been beneficial for the flooding that occurred during
in the UK in 2015/16, particularly for emergency planners. The positive of flooding is that it
often comes with plentiful warning, although exact hazard paths and true intensity may be
unpredictable, there is a relatively large information known and warnings tend to be accurate.
This data can therefore be easily accommodated within an agent-based model to help
emergency professionals understand the number of properties potentially affected, the potential
levels of evacuation required, possible amounts of shelter required and the safe location of
shelters. It would also be possible to vary the storm intensity, to run multiple simulations for

different storm events and provide a range of estimates.

Additionally, a model could be used to predict the effects on infrastructure and in turn how this
may affect any evacuation or rescue attempts, for example, the effect of losing Pooley or
Tadcaster Bridge during a flood event. It could also be used as a tool to assess if additional
evacuation routes were provided, whether evacuations could occur quicker. This also works in
reverse if aid needs to be coordinated into communities by understanding beforehand the
potential effects of infrastructure being disrupted.

2.7.4 Case Study: Fort McMurray Wildfires, May 2016
During May 2016, a wildfire broke out southwest of Fort McMurray, in Alberta, Canada,
Alberta’s 5™ largest city (Markusoff, et al., 2016) (Figure 2-25). In the surrounding area, the
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Alberta oil sands rank as one of the world’s largest reserves of oil and the city had already been

affected by the slumping oil prices.

More than 80,000 residents had to evacuate the area as the dry, windy weather fuelled the fire
further and destroyed 80% of homes in one neighbourhood, Beacon Hill (Kassam, 2016). The
evacuation was hastily ordered after a change in conditions meant that the fire, which was under
control had become an inferno. Evacuation orders were used in the wildfire but a combination
of voluntary and mandatory as well as downgrading then upgrading again occurred. This meant
that the evacuation was rushed, and traffic came to a standstill on Highway 63, the only route
in and around the city. Evacuated residents had to endure over 3 weeks out of the city, with

little time to prepare adequately.

The fire spread from 1200 hectares to 10,000 hectares over the course of two days (Kassam,
2016). “Officials estimated that 1,600 — 2,400 structures had been damaged or destroyed by
fire” (Kassam, 2016) (Markusoff, et al., 2016). The economic disruption was also felt in the
oil sands, with disruption in production estimated at 40% of the usual output (Markusoff, et al.,
2016). Total damages are estimated at between $4 billion and $9 billion, but the rebuild could
add $1.3 billion to Alberta’s economy in 2017 (Canadian Business, 2016).

Figure 2-25 — (a) Wildfire in Fort McMurray Photo
Credit: MacLean’s (Markusoff, et al., 2016), (b)
Vehicles Fleeing the Wildfire Photo Credit: Jonathan
Hayward/Canadian Press (The Canadian Press,
2016), (c) Damage caused by Wildfire in Fort
McMurray Photo Credit: Jason Franson (Canadian
Business, 2016)
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2.7.4.1 Evacuation Plan

The evacuation plan was to initially target those most in danger starting with the Centennial
trailer park, with adjacent neighbourhoods of Beacon Hill and Gregoire on alert. At 10pm, the
mayor declared a state of emergency and issued a mandatory evacuation order for at least 500
residents, opening a refuge at leisure centre in the downtown area of the city. By the next
morning, firefighters had worked overnight and were doing well so officials decided to
downgrade some evacuation notices. This was despite the fact that the fire was only 1km from
Highway 63, the only road around and out of the city. In the afternoon, it became clear that the
city needed to be evacuated. Initially voluntary evacuation orders were made to some
neighbourhoods, within 10 minutes these were upgraded to mandatory. The decision making

could be described as haphazard.

2.7.4.2 Evacuation Successes & Failures

The evacuation of the city had both successes and failures during the event. The successes
included evacuating 88,000 residents successfully from the city. This equates to 2% of
Alberta’s population and is the longest prolonged evacuation in Canada’s history (Markusoff,
et al., 2016). There were no fatalities caused by the wildfire, but two teenagers died when their
SUV crashed into a tractor-trailer, this occurred 200km out of the danger zone (Markusoff, et
al., 2016). The local radio stations became a key communication tool for evacuation orders,
playing out the voluntary then mandatory orders. When the station itself needed to be evacuated

an automated evacuation order was left in place.

However, there were aspects of the evacuation that could have been managed more effectively.
Confusion was caused by downgrading some of the evacuation notices when the fire was only
lkm from Highway 63. This was the city’s only escape route t00. For some residents the
evacuation was rushed with some residents only having 30 minutes to leave their homes
(Kassam, 2016). Traffic on Highway 63, the only route out of the city, quickly escalated into
bumper to bumper traffic jams due to the panic caused. On top of this, many of those in the
traffic ran out of fuel for their vehicles and vehicles that travelled south on Highway 63 had to

travel 20 minutes through a wall of fire on two sides (Markusoff, et al., 2016).
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2.7.4.3 Disaster Management Cycle

Wildfire 2015

Next Event or Year

Mitigation

Fire breaks were placed across the area but

were not sufficient to stop the fire.

Strategic placement was made of city’s
emergency operations centre which was
similar to a bunker in the municipal water

treatment plant

The rebuilding process is

under way.

Safety initiatives to clear
away tinder-dry

underbrush.

Preparedness

Evacuation orders were made by the mayor,
but decision making was not clear, and the
mandatory evacuations were rushed causing

traffic to back-up.

Response

Firefighters and other emergency personnel
tackled the blaze to try to minimise the damage

to the city.
88000 people evacuated from Fort McMurray.

Evacuation centres supported by local
communities helped evacuees in the immediate
aftermath, providing, food, shelter, water, and

clothing.

Recovery

15% of the city needs to be rebuilt.

2.7.4.4 Potential Role of ABM
The use of an ABM evacuation simulation would have allowed emergency managers to

understand the congestion issue with evacuating the area with little to no warning. It could also

allow exploration of the number of exit routes required for a settlement, as there was only one

exit route available for inhabitants. Logistically, a model could have helped better prepare the

location of safe zones and the location of emergency resources.
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2.7.5 Available Agent-Based Software

Over recent years there has been an increase in the abundance and accessibility of agent-based
modelling software, meaning there is a vast amount of available options. There are numerous
open-source and free to download software packages, such as NetLogo, RePast, Insight Maker
and TerraME (Figure 2-26). On top of this, there is commercialised software and models
available such as Life Safety Model (LSM), SimWalk and Oasys Mass Motion (Figure 2-26).
Hence, to limit the scope of this thesis, an initial set of criteria for the choice of modelling
platform were chosen. The criteria were that the platform needed to be free to access, open
source, provide comprehensive user guides as well as example model libraries to explore. A
first filtration process occurred which has not been documented in this thesis but did consider
a much wider range of platforms. A selection of available models was also analysed under
similar criteria (e.g. free to access, comprehensive literature available) to manage the scope of
the research. Hence the modelling platforms reviewed are: Netlogo, GAMMA, Miarmy,
SimWalk, and available models: Life Safety Model and Flood Evacuation Model.
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Figure 2-26 — Agent-Based Modelling Software Screenshots, showing (a) Netlogo Predator -Prey Model
(Blades, 2013); (b) RePast Model with GIS Data (Altaweel, 2016); (c) Insight Maker Disease Model (Insight
Maker, 2016), (d) TerraME Software (TerraME, 2016), (e) Life Safety Model (Life Safety Model, 2002); and (f)
Oasys Mass Motion (AEC Magazine, 2011)

2.7.5.1 NetLogo

Netlogo is a “multi-agent programmable modelling environment”, which is available in a free
to download, open source format (NetLogo, 2016) (Wilensky, 1999). It was first created by Uri
Wilensky in 1999 at the Centre for Connected Learning and Computer-Based Modelling
(NetLogo, 2017). The most recent version of the software is 6.0.4, which was released in June
2018. Previous versions of the software are still available to download from their website,
dating back to version 1.3.1. The software is provided with a library of sample models, these
are carefully checked and verified as examples of good coding. One of the available and
checked library models is the Predator-Prey model, in both a rabbits, grass, weeds and wolf,
sheep, grass format (Figure 2-27(b)). The software is readily compatible with other software,
such as ArcGIS using a GIS extension. The software has its own language, which is
programmable by the user for the intended purpose, this allows a greater degree of flexibility.
The graphics are simplistic and rely on a grid system, which can at times make the models

appear crude (Figure 2-27(a)).
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Figure 2-27 — (a) Screenshot of Netlogo Hazard Model from YouTube (Youtube, 2010) , (b) Screenshot of
Netlogo Grass, Sheep and Wolf Predator Prey Model from Model Library (Wilensky, 1997).
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2.75.2 GAMMA

GAMMA is a research group based at the University of North Carolina, researching Geometric
Algorithms for Modelling, Motion and Animation (GAMMA) using general-purpose
computations using graphics processors (GAMMA UNC, 2015). A key part of their research is
crowd and multi-agent simulation, including; collision avoidance, real-time path and motion
planning and crowd flows (Figure 2-28) (GAMMA, 2016). However, it is not known to what
extent the actions of individuals can be modelled to form part of an emergency response.

Figure 2-28 — (a) Screenshot of GAMMA research of Crowd and Multi-Agent Simulation (Youtube, 2009), (b)
Screenshot of GAMMA research of Crowd and Multi-Agent Simulation (Youtube, 2009).

2.7.5.3 Miarmy

Miarmy is “a human logic engine-based Maya plugin for crowd simulation, Al & behavioural
animation, creature physical simulation and rendering” (Basefount, 2017 A). Maya is a
computer animation software created by Autodesk, which can be used for “animation,
environments, motion graphics, virtual reality and character creation” (Autodesk, 2017). The
Miarmy plugin is a free to download software, which allows a user to; “build human fuzzy logic
network without any programming or node connecting, create stunning crowd VFX and support
all renderers” (Basefount, 2017 A). The software has many applications but is widely used in
the video games and film industry, such as in War and Order, Independence Day Resurgence
and The Walking Dead (Basefount, 2017 B) (Figure 2-29). Due to the popularity with video
games and film industries, the software is most applicable when large “army” or crowd scenes
need to be created, this can at times result in a lack of individuality for agents, instead resulting

in whole crowd movements and actions.
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Figure 2-29 — Screenshot of Miarmy software (Youtube, 2014), Screenshot of War and Order Mobile Game
(Basefount, 2017 C).

2.7.5.4 SimWalk

SimWalk is “a leading provider of pedestrian simulation products for public transport, aviation,
sports venues, architecture, urban planning and evacuation” (SimWalk, 2017 A). The software
has been produced by a consultancy team based in Switzerland, with a vision “to improve
walkability, efficiency and safety of the built environment, in railway stations, airports,
stadiums, streets, buildings and landscapes” (SimWalk, 2017 A) (Figure 2-30(a)). The software
is used by clients and research institutes across the globe such as Zurich Airport, SNCF France,
Queensland Rail, University of Pennsylvania and the University of British Columbia (SimWalk,
2017 B). The software has many features and applications including; timetable integration,
boarding/alighting analysis, rail network analysis, group modelling, rolling stock library and
shopping analysis (SimWalk, 2017 C). This allows users the flexibility to incorporate
individuality into agents using several pre-defined features such as walking speed, breadth or
handicaps of agents (Figure 2-30(b)). This software is not free to use, other than the demo
version, although this does not have full functionality, the full Pro version requires a licence fee
of $12,500 (SimWalk, 2017 D). It is also not possible to manipulate the rulesets behind the

programme, limiting its possible uses for this application.

Figure 2-30 — (a) Screenshot of SimWalk Fire Hazard Model (Youtube, 2013), (b) — Screenshot of Agent
Profiles in SimWalk (Youtube, 2016)
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2.7.5.5 Life Safety Model

The Life Safety Model is “a dynamic model that represents people’s interactions with a flood
and provides estimates of the number of people that are likely to be injured or killed as a result
of a flood event, as well as the time that is required for them to evacuate the area at risk” (HR
Wallingford, et al., 2016). The model has been developed over a period of 15 years, using a
number of methods, to allow simulation for a range of events types (e.g. slow rising floods,
dam and flood defence failures, tsunamis and flash floods) (HR Wallingford & BC Hydro,
2016). Several case studies have been used to validate the model, including; Humber Estuary
UK Sea Surge, Canvey Island UK Sea Surge and Windsor New South Wales Australia River
Flooding (HR Wallingford & BC Hydro, 2016). The model captures individual receptors such
as people or cars and their interactions with the floodwater, to provide the estimates for fatalities,

injuries, time to evacuate and damage. The functions of the model are:

e “The number of people that are killed or injured by inundation.

e The movement of vehicles modelled by a simple traffic model.

e The dynamic interaction of the flood wave with vehicles.

e The capacity of each building to withstanding the floodwater.

e People being modelled as individuals and as groups (e.g. families).

e The speed of dissemination of flood warnings.

e The evacuation of people along roads or footpaths, toward refuges (predetermined by
the user)” (HR Wallingford & BC Hydro, 2016).

The model is not free to use other than a 30-day trial and a one year licence fee costs £5000
(HR Wallingford & BC Hydro, 2016) (Figure 2-31). It is also not known if it possible to

manipulate this existing model for alternative applications.

Figure 2-31 — (a) Screenshot of Life Safety Model (HR Wallingford, et al., 2016), (b) Output from Life Safety
Model showing the potential fatalities and injuries (HR Wallingford, et al., 2016).
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2.7.5.6 Flood Evacuation Model

The Flood Evacuation Model has been developed by a team of researchers at Newcastle
University using NetLogo, for a flood event in Towyn, North Wales (Figure 2-32). The model
incorporates remotely sensed information (topography, buildings, and road networks), with
empirical survey data of communities and a hydrodynamic model. The aim of the model is to
“estimate the vulnerability of individuals to flooding under different storm surge conditions,
defence breach scenarios, flood warning times and evacuation strategies” (Dawson, et al.,
2011). The model can be used to “analyse the risks of flooding to people, support flood
emergency planning and appraise the benefits of flood incident management measures”
(Dawson, et al., 2011). This demonstrates well the possible uses of Netlogo and its potential
success, although it is not anticipated that this model can be easily adapted to suit different

applications.
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Figure 2-32 — (a) Screenshot of Flood Evacuation Model (Youtube, 2010), (b) Screenshot of Flood
Evacuation Model (Youtube, 2010).

2.7.5.7 Summary Available Agent-Based Software

An overview of several available agent-based software and existing models has been outlined
(Table 2-12). This has shown that the existing models are unlikely to be suitable for adaptation
for this project as their intended purposes are overly specific. There are lots of available
software packages that are open source and free to use, which is beneficial for this project.
Although, there are software packages that have advanced the graphical output and user
interface, it is anticipated that Netlogo will be most suitable for this thesis. Netlogo offers the
flexibility to create a model environment, which incorporates several rulesets based on
anticipated human behaviour during emergency scenarios, as well as spatial data and a hazard
model if required. Netlogo is also written in its own language and allows a user to fully

determine the extents for their model, whilst not being constrained by existing rules.
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Table 2-12 — Summary of Available Agent-Based Models & Software

Software Name Pros Cons

Netlogo Readily compatible with other | Graphical output is not very
software e.g. ArcGIS advanced/simplistic
Own language — flexibility for | Relies on a gridded system
intended uses
Free to download
Many applications

GAMMA Crowd and multi-agent | Lack of individuality of agents
simulation/flows No inclusion of spatial data
Collision avoidance Unsure of possibility to include
Real-time path and motion | hazard model
planning
Free to download
Many applications

Miarmy Whole crowd movements and | Lack of individuality of agents
actions No inclusion of spatial data
Free to download Unsure of possibility to include
Many applications hazard model
Good graphical output

Model Name Pros Cons

SimWalk User-friendly interface Licence cost
Number of predefined profiles | Designed for specific use -
e.g. walking speeds, transport | transport
layouts Inability to alter the “rules”
Multiple applications

Life Safety Model Includes spatial data Licence cost

Includes a hazard model

Designed for a specific use —

flooding

Flood Evacuation
Model

Includes a large amount of
spatial data

Includes a hazard model

Designed for a specific use —
flooding
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2.8 Main Findings

It has been demonstrated that natural disasters and manmade events are happening across the
globe, causing large financial, social and environmental impacts, which hinders sustainable
development of many communities. The effects of which are disproportionately experienced
by the poor and developing world, who are the least equipped to deal with the after-effects and
often end up “fire-fighting” hazard event to hazard event. However, regardless of location
communities across the globe need to develop appropriate plans and responses to hazard events,

to limit where possible the consequences for communities.

The failure of infrastructure has a big impact and it has been shown that it may be beneficial to
categorise cities into similar types to allow emergency planners to pool resources and robustly
test methodologies. But arguably the “real” losses are for the communities and individuals
affected. However, presently there is a lack of understanding regarding their behaviour which
is often unpredictable. A more robust understanding of human behaviour responses to natural
hazard events would allow us to prepare emergency services better and in turn understand the

impacts on infrastructure systems.

This is supported by the disaster management cycle which has been developed to prepare,
respond, recover and mitigate against events. A major part of this is the creation of plans by
emergency planning professionals but even in the developed world these plans are flawed as it
is difficult to robustly test plans, meaning the methods and plans proposed may be ineffective
and unsuitable. Policy has been developed at both national and local level in the UK, but the
current testing methodology is either through unrealistic table-top, discussion-based exercises
or more costly real-life simulation. Despite this ineffectiveness, computational modelling has

not been introduced even though the UK government has acknowledged the potential benefits.

Computational testing will only be an effective tool to aid emergency management
professionals if appropriate modelling techniques are utilised, which are verified, calibrated and
validated. An evaluation of possible modelling techniques has identified that agent-based
modelling, where appropriately applied, has the most potential to robustly simulate human
behaviour in an emergency scenario. From the software and existing models explored, Netlogo
has been identified as the most appropriate software choice, as it allows flexibility and
adaptation throughout the project as well as being open source and free to download. Several
case studies have also demonstrated the potential benefits of creating agent-based models to aid

emergency planners.
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Chapter 3. Human Behaviour and How to Create Model “Rulesets”

It has been shown in Chapter 2 that it is vital that during disaster events, emergency planners
do not only comprehensively understand how infrastructure may react to events but also how
the affected communities may respond. This is closely inter-linked with infrastructure and the
behaviour of communities should be considered when formulating robust emergency
procedures and plans. Attempts have been made to study human behaviour in varied disaster
scenarios and incorporate these traits within computational models, but this is not exhaustive,
and improvements can still be made. Hence, it is important to first understand the types of
behaviour, which may be present, then to understand how these behaviours could be
incorporated into a model environment. To successfully capture realistic human behaviour, it
IS necessary to ensure that the behaviours can be first quantified but then also validated, verified
and calibrated effectively to ensure their robustness. This chapter will explore the potential
behaviours during a hazard event, then use these behaviours to formulate a series of desired
model rulesets. From the rulesets, a literature review will be carried out to capture realistic
quantifiable values to reflect the behaviour traits, which can be verified and validated. This will

help to ensure that the agent-based model is robust.

3.1 Current Behavioural Models

During an emergency event, human behaviour can be both predictable, for example human
instincts which have developed over centuries and unpredictable due to the stresses and strains
of an unknown event with a range of potential outcomes. Data must be sought to find
quantifiable datasets that can form the basis of human behaviour “rulesets” to include within
computational simulations of hazard events. An element of this will be based on predictable
behaviours whilst other “rulesets” will need to accommodate the anticipated unpredictability of
events. Current models and plans have focused on making all agents the same e.g. same
walking speed (Wood, et al., 2016). However, other studies have identified that not all human
behaviours are the same, for example, more evacuees follow routes decided from their own
experience than the routes dictated to them in emergency scenarios (Dow & Cutter, 2000), (Wu,
et al., 2012) and due to age differences, illness and other factors walking speeds are not the
same (Wu, et al., 2012). Another study has found there are a number of variables such as
ethnicity, income, home ownership that can affect the likelihood of a household evacuating in
the first instance (Whitehead, et al., 2000) (Ng, et al., 2016). Hence, it is hard to anticipate
exactly how humans will react to a scenario until it is presented to them. This does not make it

impossible to predict some behaviours, but to do this, it is necessary to create a more robust
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interpretation of human behaviours based on a wider range of factors than is currently
undertaken in computational simulations. By improving the representation of human behaviour,
emergency professionals will be able to better plan and prepare for hazard events, which in turn

will reduce the suffering of communities.

At present, many hazard events are simulated in real-life with the aim of better understanding
human behaviours and responses, however these events are costly in monetary terms as well as
in resources and time. During June 2015, a week long terrorist attack was simulated in central
London, this involved over 1,000 police officers, 2,000 causalities made up of actors and
dummies and the event took over 6 months to plan and execute (BBC, 2015) (Paton & Warrell,
2015), demonstrating the time and resources required to simulate hazard events in real life. This
also highlights the training received by blue light personnel without capturing the “true”
interaction with the general public, who were made up only of dummies and actors. It can
therefore be argued that real-life simulation serves the purpose of testing plans and protocols of
emergency services but does not grant the opportunity to understand how the public reaction
might affect outcomes. Therefore, it is vital that emergency managers can more accurately
incorporate human behaviour within their plans, and it is envisaged that this can be done with

the appropriate use of robust computational simulation.

It is proposed that human behaviours can take the form of “rulesets” backed with quantifiable
data from studies from across several sectors, within computational simulation. This will allow
emergency planners the opportunity to run numerous scenarios, interlinking this with existing
real-life simulations to test worst-case scenarios and prepare blue light personnel appropriately.
However, it will be necessary to ensure the model is appropriately verified, validated and

calibrated to ensure it is a robust representation of human behaviour.

3.2 Behaviour Types

During hazard events, a range of behaviours are anticipated. This is dependent on several factors,
for example; the type of event (e.g. whether there is clear and present danger, unseen danger or
forecast danger), the population involved, the age of the population, location of the event and
level of warning, which is potentially dominated by the event type. Hence, it is important that
robust models capture a range of human behaviours and within this thesis, the following 11

behaviours are prioritised as the most important traits to be quantified in rulesets:

1. Flee behaviour — run from the hazard, different walking speeds;
2. Interpersonal distance — proximity of humans and interactions;

3. Crowd behaviour — crowd flows, following like sheep behaviour, herding;
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Leader behaviour — influence of leaders on crowds;

. Aggressive behaviour — aggression within a crowd;

4
5

6. Panic behaviour — levels of panic, distress;

7. Stop and drop behaviour — fear of the event, inability to move;

8. Capacity — of streets, roads, safe zones or shelters;

9. Routes — shortest path, known routes, following the leader;

10. Use of social media and communication — ability to influence routes or to cause panic;

11. Cognitive Mechanisms — the time taken for humans to make decisions.

It is argued that the inclusion of these traits will provide a more realistic and robust
representation of human behaviour as it is seen today, whilst focusing on behaviour types
expected during times of stress e.g. panic and fleeing as well as those that affect our everyday

decisions e.g. route planning and use of social media.

3.2.1 Flee Behaviour

Flee behaviour can be categorised as the desire to move away from the hazard, this is applicable
to clear and present danger, unseen danger and forecast danger. The behaviour requires a human
to evacuate to escape the hazard path (Figure 3-1). This will result in a range of walking or
running speeds and will also be influenced by the distances different age or fitness groups can
travel. The movement may also change depending on the units present i.e. single people,
couples or families. The overall average age of the group will also influence flee behaviour, as
there is an anticipated link between walking speed and age. There also needs to be thought
given to the ability to move using alternative methods of travel e.g. own vehicles or public
transport. Physical or mental impairments may also result in a reduced level of mobility and

therefore an ability to exhibit flee behaviour during a hazard event.

Figure 3-1 — (a) Inhabitants fleeing Hurricane Rita, USA (Getty Images, 2015) , (b) Evacuating Residents
after Storm Desmond, UK (PA, 2015)
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3.2.2 Interpersonal Distance

Interpersonal distance can be described as the distance between each human within a crowd.
The distance is changeable and depends on the size of the crowd and the space in which the
crowd exists. It is anticipated that the tolerated distance between humans decreases during
hazard events when compared to “normal” behaviour (Figure 3-2). This has impacts on both

capacity and safety measures during a hazard event and can change the dynamic of the crowd.
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Figure 3-2 — (a) Five Agents in Crowd Scenario idealised “normal” behaviour, (b) Eleven Agents in Crowd
Scenario idealised “hazard” behaviour
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3.2.3 Crowd Behaviour

Crowd behaviour is related to the crowd as a whole and how they behave as a collective (Figure
3-3). This will influence the flow of the crowd and how easily it moves through an area. This
human behaviour is very similar to that of sheep who move in flocks. The term “the crowd
followed like sheep” is linked to the idea that those in the crowd will not act independently and
instead follow blindly in an identical manner. In real life, crowd behaviour will be directly
influenced by other human behaviours such as the number of leaders present, panic and

aggression.

Figure 3-3 — Image of a Crowd exiting a music concert in Paris (Cridland, 2007)
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3.2.4 Leader Behaviour

The number of a leaders in a crowd can have a positive effect on a crowd in terms of influencing
direction as shown by the studies at Leeds University (Univeristy of Leeds, 2008). This type of
behaviour is again associated with animals, particularly sheep and cattle (Figure 3-4). In hazard
events, there should be a number of “informed” individuals within a crowd such as Police or
security personnel, their influence on the crowd is anticipated to be significant and could be

captured through leader behaviour (Figure 3-4).
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Figure 3-4 — (a) Flock of Sheep (Jenkins, 2008) (Jenkins, 2008), (b) Diagram based on Studies carried out at
Leeds University (Univeristy of Leeds, 2008) (Science Daily, 2008)

3.2.5 Aggressive Behaviour

Aggression in a crowd is not always present within a hazard event, but frustrations about lack
of communication and despair at the event, can at times manifest as aggression. The presence
of a crowd can have a neutralising effect to reduce the aggression in some cases. However, the
idea of crowd mentality can influence others to become aggressive or carry out illicit activities
as others are carrying out the same actions, for example the looting seen during the riots in
London in 2011 (Figure 3-5) , arguably this crowd began as an aggressive crowd intent on
rioting. On the other hand, the presence of a large crowd allowed for the illegal activities such
as looting to be carried out by the masses as it appeared appropriate if everyone else was doing
it. Another example of aggressive behaviour in crowds is demonstrated by football fans. Despite,
most fans being in attendance to enjoy the football, a small minority may be there with the
purpose of carrying out aggressive behaviour and inciting the rest of the crowd to join them.
This is often present at large local football matches or international tournaments. For example,
during the 2016 UEFA European Football Championship large groups of Russian and English
fans clashed in episodes of football hooliganism, which resulted in innocent fans being injured
by the violence (Figure 3-5) (BBC, 2016) (Boffey, 2016).
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Figure 3-5 — (a) Looting during London Riots 2011 (Reuters, 2011), (b) England fans facing Russian fans
during Euro 2016 (Horocajuelo & EPA, 2016)

3.2.6 Panic Behaviour

Panic behaviour does not always present during a hazard event and is often related to the type
of hazard event (e.g. clear and present danger, unseen danger or forecast danger), which can
trigger the levels of alarm for an individual. Communication can also play a part in panic, but
it can be difficult to strike the right balance between ill informed, well informed and over
informed. Panic can have different effects on individuals, within simulations irrational
behaviours that were out of character such as a stampede may be the most important to

characterise.

3.2.7 Stop and Drop Behaviour

Stop and drop behaviour is linked to panic and for some individuals the hazard event will cause
them to “freeze”. In some cases, it may also be the appropriate safety advice to stop and drop
rather than fleeing the hazard. For example, this behaviour may be appropriate when the hazard
has an unknown hazard path or there can be a high level of uncertainty should humans continue
moving. This may be appropriate for terrorist attacks that involve firearms or weapons, the
current advice in the UK is to run to a place of safety rather than surrendering, if not then to
hide away from danger and then only when safe to do so tell the emergency services (Figure
3-6) (NPCC, 2017).

RUN
x Run to a place of safety. This is a far better option than to
& .h surrender or negotiate. If there’s nowhere to go, then...
o Nationol Polce Chety’ Counci
()
R HIDE

It’s better to hide than to confront. Remember to turn your
phone to silent and turn off vibrate. Barricade yourself in

if you can. Then finally and only when it is safe to do so...

HHIDE
T E L L Tell the police by calling 999.

Figure 3-6 — UK Advice for Firearms and Weapons Attack (NPCC, 2017)

TELL
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3.2.8 Capacity

Capacity is not necessarily a human behaviour but often dictates the human behaviour displayed.
The capacity is related to the number of people a venue, street or safe zone can accommodate.
Where there is insufficient capacity, there are more likely to be outbreaks of panic and
aggression as people fight for the available space. Capacity needs to be determined on a case
by case basis based on up to date spatial data. The Hillsborough Disaster on the 15" April 1989
is an example of how a lack of understanding about capacity can result in fatal consequences,
with the deaths of 96 people (Conn, 2017). The crowd at Hillsborough were not only hindered
by capacity but experienced multiple other behaviours such as crowd behaviour and reduced
and non-existent interpersonal distance. Several errors compounded the number of deaths and
injuries caused, and a better understanding of the capacity of the venue would have helped

alleviate some of the issues.
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Figure 3-7 — (a) Figure showing Hillsborough football ground at 14:15 — 14:40 (several thousand Liverpool
supporters are gathered outside the ground at the Leppings Lane end, as there are only seven turnstiles,
admission to the ground is slow, (b) Figure showing Hillsborough football ground at 14:52 (Police order
Gate C (a large exit gate) to be opened to alleviate the crush outside the ground, approximately 2000
supporters enter the ground and head for the tunnel leading directly to pens 3 and 4) (BBC, 2016 B).

3.2.9 Routes

The routes individuals take during a hazard event may be different from their “normal” route.
However, it is also plausible that prescribed routes will be overridden by those with local
knowledge. For the most part shortest path algorithms will be sufficient to ensure that
individuals reach their destination in a timely manner, but this needs to be verified and validated
to ensure it is realistic, as well as capturing the alternative possibilities (Figure 3-8).
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Route A

Route B

Origin Destination

Figure 3-8 — Possible Route Selection from Origin to Destination

3.2.10 Social Media Presence and Communication

Social media usage has greatly increased in recent years and can have a big influence on a range
of events. This includes hazard events, where places of refuge, safe routes and resources can be
offered up easily in the immediate aftermath of events, as seen after the recent Westminster,
Manchester, London Bridge and Finsbury Park terrorist attacks in the UK (Figure 3-9). It is
also possible that social media can offer up to date information on places of safety and routes
from emergency personnel, which can in turn directly influence human behaviour during a
hazard event. As previously stated there needs to be a balance struck with communication to

make sure individuals are well informed.
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Please AVOID the area as first responders work
tirelessly at the scene.

Details of a casualty bureau will follow as soon as
possible.
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Figure 3-9 — (a) Twitter Screenshot of offer of help after Manchester Arena attack (Twitter (JesyRae), 2017),
(b) Twitter Screenshot of offer of help after Manchester Arena attack (Twitter (Alix Long), 2017), (c) Police
statement issued on social media after Manchester Arena attack (Twitter (Alix Long), 2017) (Twitter (GM
Police), 2017), (d) Further Police update from the Manchester Arena attack (Twitter (GM Police), 2017)
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3.2.11 Cognitive Mechanisms

It is important that any model of human behaviour realistically simulates anticipated behaviours.
A significant aspect of this is to replicate a human’s ability to think before acting. Humans
follow an input — decision — action —cycle and it is vital that any model captures this effectively.
Whereby a human receives a piece of information, processes it to choose an appropriate action
then performs the chosen decision. For example, a fire alarm goes off in a building, the
individual then processes this information and could choose to stay or flee, the action is chosen
then performed. The length of the cognitive mechanism may vary depending on the hazard

present e.g. clear and present, unseen or forecast.

3.3 Desired Rulesets

From the behaviours described, it is important to capture the main behaviours that are seen in a
hazard event and that also have the potential to be quantified into a “ruleset” as well as being
verified, validated and calibrated within a model. It should also be noted that modelling human
behaviour in agent-based models can be a complex process and it should be considered that a
hierarchy of behaviours may need to exist to achieve an overall “ruleset”. The hierarchy may
range from initial simple movements i.e. running or walking, to direction or following and
finally to more complex social behaviours such as queuing or herding (Figure 3-10). It is
important that models can capture this range of behaviours and any hierarchy that is present to

create a more robust interpretation.

Social: competitive, gueuing, herding

P

Steering: seek, follow, collision avoidance

locomotion: walk, run, stop, turn, side-shift

Figure 3-10 — Hierarchy of Agent Behaviour (Pan, et al., 2007)

It is not possible to consider all the behaviours described within an agent-based simulation
therefore the behaviours have been evaluated to explore which behaviours will be most
appropriate for inclusion (Table 3-1). Based on this evaluation, the main desired behaviours to
simulate are flee behaviour particularly the walking speed distribution in a population,

interpersonal distance, crowd behaviour, capacity and routes.
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Table 3-1 — Potential Behaviours to Incorporate into Modelling Tool
Qualitative /

Exists in
Current Input Parameters  Quantitative?

Behaviour Description
Software/Model

Priority Behaviours to Model

Can input set walking | Quantitative

Run from the )
speeds for different

hazard, )
Flee ] populations but needs
_ varied Yes o
behaviour ) external validation
walking )
e.g. from medical
speeds.

journal.
Attempts have been Quantitative

made to create buffers

Interpersonal | Proximity of Possibly e.g. )
around agents, but this

Distance humans NetLogo Party
has not been
accurately verified.
Lots of models are Quantitative /
available in libraries Qualitative
showing general
Crowd flows, crowd behaviour and
) Yese.g.
Crowd following movement. There are
) ) NetLogo )
behaviour like sheep many studies on
_ Shepherds ) )
behaviour animal behaviour, but
it is assumed that the
model has not been
validated.
Capacity has been Quantitative
captured in some
Of streets, models and it would
Capacity roads, safe Yes be possible to modify

this, but it would need
to be verified on a city
by city basis.

zones/shelters
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Shortest path

Quantitative

Shortest path, ) )
algorithms available,
known .
Routes Yes need to be verified on
routes, follow ) ] )
a city by city basis to
the leader
ensure correct.
Additional Behaviours to Consider Modelling
This is often based on | Quantitative
insects such as ants.
Influence of a Yese.g. Although this may be
Leader -
_ leader on a NetLogo verified there would
behaviour
crowd Follower need to be changes
made to accommodate
human behaviour.
This behaviour is not | Quantitative /
_ Aggression currently captured but | Qualitative
Aggressive o )
_ within a No could be interpreted
behaviour )
crowd from psychological
studies.
This behaviour is not Qualitative
) Levels of currently captured but
Panic . .
_ panic, No could be interpreted
behaviour ) .
distress from psychological
studies.
This behaviour is not Qualitative
Stop and currently captured but
Due to .
drop _ No could be interpreted
_ panic/fear )
behaviour from psychological
studies.
Lots of data available | Quantitative /
on social media usage Qualitative
) Influence of
Use of Social ) and patterns but not
) route, causing No )
Media currently combined

panic

with a model and

verified.

78




There are existing Qualitative

cognitive mechanisms
Yese.g. THERP

The ability (Technique for

within models, which

use the input — action
for agents to Human Error- -
— decision cycle.

o receive Rate Prediction) )
Cognitive ) ) However, it needs to
) information, and Cream _
Mechanism ) . be determined how
compute it (Cognitive

o realistic these
then chose an | Reliability and )
_ _ mechanisms are and
action. Error Analysis

Method)

therefore what level of
verification has been

carried out to date.

3.4 Available Studies on Desired Behaviours — Flee Behaviour

It has been demonstrated that to improve existing models, a more complex and robust model of
human behaviour needs to be included, this has been split down into several priority behaviour
traits. To back-up these rulesets, the rules need to reflect real world data and behaviours
wherever possible. Therefore, a review of existing datasets has been carried out to form the
initial parameters of the desired behaviour types; flee behaviour, interpersonal distance and
crowd behaviour. It is anticipated that the routes and capacity will be captured within these
three main behaviour categories. When considering flee behaviour, the elements that are of
greatest importance are; the walking speed distribution, the distance and speed of running and
the unit movement that occurs e.g. families. A literature review has been carried out to identify
suitable sources of datasets that can be used to aid the understanding of flee behaviour, to enable
appropriate and realistic rulesets to be created.

3.4.1 Flee Behaviour Literature Review

The first study considered is the one-mile walking test. This test is a way of measuring aerobic
fitness, based on the concept of how quickly a participant can complete one mile at moderate
exercise intensity (Anderson & Nichols, 2010) (American Council on Exercise, 2003). The tests
are not completed on treadmills as this would alter the results. The results of the test (Table 3-2)
are split into male and female plus several fitness levels. The general results show that walking
speed declines with age (approx. 20-30%) and is highest in the youngest participants regardless
of sex (Figure 3-11). The male partaker’s record higher walking speeds than the female

regardless of age or fitness levels (approx. 9 -20% difference) (Figure 3-11). There are a range
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of fitness levels for each age group, the difference in fitness results in an approximate change
of 17-26% within each age group. The results also show that when fitness is lower from the
offset the walking speed decreases more than those that are fitter, this is seen more obviously
with the male participants (approx. 20-30%). Finally, walking speed decreases more with age

in females than males (male decrease 19-29% and female decline 28-32%).

One downside of this study is that there are no results for participants under 20 or over 70 i.e.
children and the elderly. Another negative of this study is that participants were aware that they
were completing a test. Therefore, it could be argued that these walking speeds are unrealistic
as they were not observed whilst carrying out everyday activities and instead “pushing” to
complete the test in the best possible time. However, it could be argued that in stressful
situations there may be elements of “pushing” the human body to extremes and in doing so
higher walking speeds are reached. This would need to be validated against real world
observations. Hence, it will be necessary to compare the results of this study to other walking
speeds, to assess the appropriateness of the values.

Table 3-2 — Average Walking Speeds from 1 Mile Walking Test (Anderson & Nichols, 2010) (Anderson &
Nichols, 2010) (American Council on Exercise, 2003)

Age 0-29 0-39 40-49 0-59 60-69 0
Gender M F M F M F M F M F M F
Excellent | 225 | 2.03 | 2.16 | 1.96 | 208 | 1.89 | 2.00 | 1.82 | 1.90 | 1.77 | 1.77 | 1.47
Good 215(1.97|2.07|190|199| 183|193 | 177|183 | 171 | 1.73 | 1.40
Average |2.01|184 194|177 |187|172|181|165|1.70| 159|155 1.28
Fair 190 (170 (184|165 |1.77|160|1.69|153|1.60 | 1.46 | 1.37 | 1.17

Poor 185|163 (179|158 |173|153|163|148|155|1.40|132|111

Speed measurements for each gender are given in metres per second (m/s), calculated from the
minutes taken to complete the 1-mile walking test at each fitness level

Fitness
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Figure 3-11 — (a) Graph of Average Walking Speeds for 1 mile Walking Test (Males Only) (Anderson &
Nichols, 2010) (American Council on Exercise, 2003) (Anderson & Nichols, 2010) (American Council on
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Exercise, 2003), (b) Graph of Average Walking Speeds for 1 Mile Walking Test (Females Only) (Anderson &
Nichols, 2010) (American Council on Exercise, 2003) (Anderson & Nichols, 2010) (American Council on
Exercise, 2003)

The study by Schimpl et al (2011) was “to evaluate the relationship of gait parameters, and
demographic and physical characteristics in healthy men and women”. This was based on the
idea that human motion is considered as an important indicator of health in individuals. The
study included 358 male and female participants from the Cambridge CardioResource study;
demographic data, physical characteristics (e.g. height, weight) and assessment of activity

parameters were collected, to analyse walking speed and health.

The results of this study have shown that walking speed decreases with age, as does the range
of walking speeds (Figure 3-12). The walking speed decreases by 0.0037m/s per year, this is
equivalent to a difference of 1.2 minutes if walking 1km at the age of 20 and then again at the
age of 60 years (Schimpl, et al., 2011). There are several outliers in the 40-59 age bracket,
which may be a result of those with extreme fitness levels who continue to maintain these with
age. The median walking speed is similar from the age of 30 to over 60 in this study, this
suggests that the greatest difference in speed would be seen between those under and over 30

years of age.
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Figure 3-12 — Boxplot showing relationship between walking speed and age (Schimpl, et al., 2011)

The research by Daamen & Hoogendoorm (2003) focused on pedestrian free speed distribution

and the assessment of walking infrastructure and timetables for public transport. This was
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carried out using microscopic and macroscopic pedestrian flow models, which could be
validated with detailed pedestrian flow data. The pedestrian flow data was collected as part of
this study in several experiments. Four variables were considered; free-speed, walking direction,
density and the effect of bottlenecks. The results of the experiments have shown that when there
are no flow constraints on pedestrians, pedestrians walk through the centre of the bottleneck,
which maximises the distance between themselves and the walls (Figure 3-13) (Daamen &
Hoogendoorm, 2003) (Daamen & Hoogendoorm, 2003). However, when at capacity two lanes
are formed, with pedestrians walking diagonally behind each other, therefore minimising the
headway (Figure 3-13) (Daamen & Hoogendoorm, 2003) (Daamen & Hoogendoorm, 2003). In
addition, when congestion does occur, only the width of the bottleneck is used, whereas
upstream the pedestrians “spread out” to use the entire width (Figure 3-13). The results of the
free-speed distribution show that when pedestrians are not constrained by other pedestrians,
that there are a range of speeds to be expected, including a number of individuals who will walk
either very fast or very slow (Figure 3-13). The lowest speed is measured at 0.86m/s, the highest
at 2.18m/s and the mean is 1.58m/s (Daamen & Hoogendoorm, 2003) (Daamen &
Hoogendoorm, 2003).

Trajectones of 10 pedesinans with a density of 0.1 pedim2 {t = 50 sec) Trajectories of 10 pedesiriars with a densily of 0.325 pedim2 (1 = 170 sec)
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Figure 3-14 — Pedestrian
Free Speed Distribution
for Narrow Bottleneck
Experiment (bottleneck
width = 1.0m), with low
density i.e. individuals
are not constrained by
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Hoogendoorm, 2003)
(Daamen &
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The study by Bosina & Weidmann (2017) has focused on a review of all available literature for
walking speeds in the past 80 years. The study collected over 200 measurements from previous
studies on walking speed, to quantify the important influences on walking speeds. This has been
compiled into a series of findings (Figure 3-15 — Figure 3-18). The results as shown by the
histogram of speeds (Figure 3-15) show that stairs slow walking speed. Without the presence
of stairs there is a greater range of speeds demonstrated. The density of pedestrians affects the
speed at which the pedestrians can travel, a greater density of pedestrians slows the walking
speed. The density has a similar reduction in walking speed as when pedestrians encounter
stairs. The Speed Density Relationship (Figure 3-16) shows that in general, as density increases
walking speed decreases and that the range of speeds decreases with density. This study has
considered a greater range of ages when researching walking speeds, from 0 — 100 years of age
(Figure 3-17). The graph shows that speed increases until around 25 years old then decreases
slowly until around age 60 then more steadily declines to 100 years old. When age 100 is
reached, speeds decrease to lower than early age walking speeds. Between the ages of 25 and
60, there is not a large difference in walking speed, approx. 0.4 m/s. However, this will be
noticeable over longer distances. The results also show that as group size increases, the group
walking speed decreases. This is represented as walking speed and as a ratio (Figure 3-18).

When there are fewer members in the group, there is a greater range of speeds experienced.
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Figure 3-15 — Histogram of all speed measurements obtained from literature (Bosina & Weidmann, 2017) (left
= non-stair facilities, right = stairs, top = all densities, bottom = densities < 0.5 P/m?)
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Figure 3-16 — Speed-Density Relation for all literature data except data from stairs used compared to Kladek
Formula (Bosina & Weidmann, 2017) Note: the Kladek formula is used to describe the relation between average
momentary speed and density of motorised urban road traffic (Kretz, et al., 2015)
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Figure 3-18 — Average Reduction in Group Walking Speed and Comparison of Group Walking Speed to Walking
Speed of Groups of 2 People (Bosina & Weidmann, 2017)

The research by Moussaid et al (2010) concentrated on the movement of groups within crowds,
as it has been claimed, “up to 70% of people in a crowd are moving in groups”. The study

analysed the movements of approximately 1500 pedestrian groups under natural conditions, to
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better understand the interactions of group members and to produce group-walking patterns that
influence crowd dynamics (Moussaid, et al., 2010). The results show that walking speed
declines with pedestrian density (Figure 3-19). It also decreases with group size. The walking
speed is slowest when there is a larger group and the crowd is denser. The range of walking
speeds is larger when there is a lower density or a larger group. The study also examined the
formation of groups and found that when in low density situations, groups tend to walk side by
side, but when density increases this formation changes to a V-like pattern. This allows social
interactions to continue within the group but decreases the possible pedestrian flow. Hence, it
can be assumed that as crowd density increases, a trade off must be sought between social

interactions and walking speed (Moussaid, et al., 2010).
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Figure 3-19 — Effects of Group Size on Walking Speed (Moussaid, et al., 2010)

The study by Shen et al (2014) was based on the requirement to include human movement
characteristics with different visibility scenarios into fire-performance based designs and
evacuation calculations. To accommodate this, an evacuation experiment was carried out in a
classroom and recorded with video cameras, to analyse the effects of visibility and gender on
walking speed. The results show that loss of visibility decreases the walking speed (Figure 3-20).
The loss of visibility appears to affect females more than males in this study. There is a smaller
range of walking speeds between good visibility conditions and poor visibility conditions for
males (0.5 — 1.35 m/s — male) than females (0.25 — 1.38m/s — female). One limitation of this
study is that the experiments were classroom based, so would only be appropriate to transfer to

other evacuations with similar layouts to a classroom.
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Figure 3-20 — (a) Mean Velocity of Female Participants in Different Visibility Conditions (Shen, et al., 2014)
Note: female average in good visibility = 0.924m/s, and 0.422m/s in poor visibility (Shen, et al., 2014), (b)
Mean Velocity of Male Participants in Different Visibility Conditions (Shen, et al., 2014) Note: male average
in good visibility = 0.913m/s, and 0.687m/s in poor visibility (Shen, et al., 2014).

The study by Bae et al (2014) aimed to collect a human behaviour dataset in terms of travel
times and interpersonal distance when using a corridor and stairs. An experiment was set up to
simulate the Jungang-ro subway station in good and poor visibility conditions, whilst carrying
out analysis on walking speed, density, travel time, plus interpersonal distance and angle
distribution. The results show that the travel times are greater on stairs but that there are a
smaller range of travel times when using stairs i.e. it takes participants similar times to walk
upstairs (Figure 3-21). There is a decrease in walking speed on stairs and due to poor visibility.
In poor visibility conditions, the walking speed decreases from 0.9m/s to 0.76m/s on the
corridor and from 0.61m/s to 0.57m/s on the stairs (Bae, et al., 2014). The travel times are also
affected by visibility, more so when in a corridor (9.75s to 8.75s) than a walking on stairs
(18.75s to 18.25s) though.
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Figure 3-21 — Comparison of Walking Speed and Travel Time in Normal and Smoke-Filled Conditions (Bae, et
al., 2014)

The study by Silva et al (2014) focused on the “need for safe and efficient pedestrian

infrastructure”. The aim was to create a mathematical model for estimating pedestrian walking
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speed based on several variables and multiple linear regression techniques. The results of their
literature search and analyses suggests that an average walking speed of 1.25m/s (2.80mph)
with a lower estimate of 0.68m/s (1.52mph) and a higher estimate at 1.92m/s (4.29mph) were
appropriate figures. These average figures can be improved upon with their model predicting
walking speeds based on gender and age. The model shows that walking speed declines with
age, the variation between the 18-24 group and 25-34 group is relatively small, but a greater
variation can be seen when compared to the elderly group (>65) (Figure 3-22). The model also
shows that male pedestrians adopted higher walking speeds than females in all age categories

(Figure 3-22).
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The research by Rastogi et al (2011) aimed to explore the design implications of walking speeds
on pedestrian facilities. It is argued that walking speeds are affected by several variables such
as age, gender, land use, temporal variations, mobile phone use, baggage and travelling in
groups, but it is not anticipated that these factors are incorporated into pedestrian facility design.
Therefore, eighteen locations in five cities in India were selected to be analysed in terms of
sidewalks, wide-sidewalks and precincts and the walking speed factors. As part of the literature
review of this study, walking speeds were compiled from previous studies from across the globe
over a 30-year period (Table 3-3). This shows that literature places walking speed at
approximately 1.34m/s (3mph) regardless of location. There are some obvious exceptions to
this such as Saudi Arabia at 1.08m/s (2.42mph) and France at 1.50m/s (3.36mph) (Table 3-3).

The results of the study also show that pedestrians walk fastest when using sidewalks, compared
to wide sidewalks and precincts (Table 3-4). In addition, male pedestrians consistently walk

faster than female pedestrians regardless of the infrastructure (Table 3-4). Young adults exhibit

88



the fastest walking speeds on each type of pedestrian facility, followed by middle-aged adults
and children then older pedestrians (Table 3-4). The larger the group size, the slower the
walking speed, regardless of the facility walked on (Table 3-4). Both baggage and mobile phone
use decreased the walking speed of pedestrians; the greatest effect was when using sidewalks
(Table 3-4).

Table 3-3 — Average Walking Speed in Different Countries (Rastogi, et al., 2011)

Average Speed
Author Year Country (m/s)
Fruin 1971 United States 1.35
Bornstein and
Bornstein 1976 France 1.50
Republic of
Bornstein 1979 Ireland 1.27
Polus et al. 1983 Israel 1.32
Tanaboriboonetal. | 1986 Singapore 1.23
Koushki 1988 Saudi Arabia 1.08
Morrall et al. 1991 Sri Lanka 1.25
Morrall et al. 1991 Canada 1.40
Knoblach et al. 1996 United States 1.43
Lam and Cheung 2000 China 1.23
Tarawneh 2001 Jordan 1.33
Finnis and Walton 2008 New Zealand 1.47
Kotkar et al. 2010 India 1.20

Table 3-4 — Global Walking Speeds adapted from (Rastogi, et al., 2011)

Mean Walking Speed (m/s)

Category
Sidewalks Wide Sidewalks Precincts =~ Overall

Male 1.22 1.17 1.07 1.15

Sex
Female 1.15 1.12 1.05 1.11
Children 1.23 1.21 1.08 1.17
Young Adults 1.37 1.29 1.20 1.29

Age
Middle-Aged Adults 1.21 1.16 1.07 1.15
Older Pedestrians 0.94 0.93 0.90 0.92
2 pedestrians 1.19 1.13 1.09 1.13
3 pedestrians 1.06 1.01 1.00 1.03

Group

) 4 pedestrians 0.91 0.98 1.00 0.97

Size
5 pedestrians 1.01 0.90 0.89 0.94
More than 5 0.99 - 0.83 0.91
Activity |With baggage 1.03 1.09 1.10 1.07
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Without baggage 131 1.20 1.02 1.18
With cell phone 1.05 1.04 0.99 1.02
\Without cell phone 1.31 1.26 1.13 1.23
Commercial 1.11 1.26 - 1.18
Educational 1.42 - - 1.42
Mixed 1.33 1.05 - 1.19
Land Use
Recreational 1.11 1.13 1.16 1.13
Residential 1.08 - - 1.08
Shopping - 1.09 0.92 1.00
Whole data 1.19 1.15 1.06 1.13

The study carried out by Costa (2010) examined the spatial organisation of 1020 groups of
young people, observed in an urban environment whilst walking. The results showed that male
groups of two or three preferred walking abreast less often than female groups. When there was
a mixed group of two walking abreast was more common than for single sex groups. Males
walked at higher speeds than females regardless of group size (Figure 3-23). The mixed groups
walked at similar speeds as the female groups suggesting that groups will walk at the slowest
speed to accommodate all group members (Figure 3-23). A V-shaped formation is the most
frequently observed group construction, with the middle person slightly behind the other

members to form the V. Observations also showed that groups over three tended to split down

into smaller groups.

1.80
1.60

Walking Speed (m/s)
o o o o = = -
N R @ ® O N
o o o o o o o

0.00

Male

= Groups of 2

Mixed
Group Composition

m Groups of 3

Female

Figure 3-23 — Study of Group Size and Walking Speeds in Pescara and Bologna, Italy (Costa, 2010)
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3.4.2 Flee Behaviour Literature Analysis

From the literature findings, it is possible to bring together datasets, to show whether there is a
correlation amongst the literature and to draw conclusions. The literature can be split into three
categories to aid comparison: (1) age & walking speed, (2) group size & walking speed, (3)

influence of stairs and the influence of visibility.

Many of the studies were focused on walking speed and age, but it is important to understand
whether there is agreement between the values. Five of the studies proposed walking speeds for
different age groups and overall, all demonstrate that walking speed decreases with age (Figure
3-24). It can be seen that the one-mile walk test results, despite being the average fitness results,
are estimating significantly greater walking speeds. It is anticipated that due to the nature of
this test that the walking speeds are an overestimation for use in evacuation models. The other
datasets show positive correlation though particular between the Bosina & Weidmann 2014
study and the Schimpl et al 2011 data. The results from Silva et al 2014 and Rastogi et al 2011
are not significantly different from the other datasets and correlate well together.
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Figure 3-24 — Combined Age & Walking Speeds from Literature

Several studies considered the impact of group size on walking speed. The studies showed that
in general as group size increases, walking speed decreases (Figure 3-25). However, as each
study started with a different average walking speed for a single person it is difficult to

determine whether there is any correlation. Therefore, a ratio was calculated from the walking
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speeds, to ascertain whether there is a similar decrease in walking speed with group size in each

study (Figure 3-26). This demonstrated that there was a comparable decline in the ratio. From

this, it was then possible to create a proposed ratio for a group size ruleset (Figure 3-27), using

the Bosina & Weidmann 2014 ratio.
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Figure 3-27 — Proposed Group Size Walking Ratio — Adapted from (Bosina & Weidmann, 2017), (Rastogi, et al.,
2011), (Moussaid, et al., 2010)

Several of the studies focused on the impact of stairs on walking speed, the studies all showed
that compared to walking on a corridor or pavement there was a decrease in walking speed
(Figure 3-28). This is to be expected as additional energy and effort needs to be exerted to climb
upstairs, which results in a reduce speed. The three studies featuring research on stairs correlate
to show that walking speed is approximately half of the “normal” walking speed. The effect of
visibility is not covered in many studies. However, two studies do include visibility, these show
that the loss of visibility has a detrimental effect on walking speed (Figure 3-29). The study by
Shen et al 2014 suggests this is more severe in females than males, as the walking speed is
halved. The extent of the effect is not clear from the two studies, other than the agreement that

there is a decline.

0.7

0.60
0.55 0.55

Walking Speed (m/s)

Bae et al 2014 (Good Visibility)  Bae et al 2014 (Poor Visibility) Bosina & Weidmann 2017 (Good
Visibility)
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Figure 3-28 — Average Walking Speed on Stairs from Literature
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Figure 3-29 — Average Walking Speed in Different Visibility Conditions from Literature

3.4.3 Flee Behaviour Suggested Rulesets

The literature has demonstrated that there is quantifiable data available on which to formulate
flee behaviour rulesets particularly with regards to demographics and walking speed. There are
also several studies available on the effect of obstacles such as stairs and visibility, however it
IS not anticipated that in the initial model creation these behaviours will be as important when
considering the evacuation of a city. Therefore, the proposed rulesets to be included based on

flee behaviour are:

1. A range of walking speeds based on age (centred on Figure 3-24);

2. Allowance for fitness levels within each age bracket (as a spread of walking speeds for
each age);

3. Decrease in walking speed based on group size (based on the proposed ratio in Figure
3-27);

4. Decrease in speed when crowds are denser (to be combined with findings on

interpersonal distance).

From these suggested rules on flee behaviour, it is possible to specify parameters that need to
be included in the agent-based model. Consideration also needs to be given to the parameters
currently included in models (the models are discussed in detail in Chapter 2) (Table 3-5), and
the capabilities of existing software to include the proposed rules (Table 3-6). This has shown
that current models do not include all the required rules but that there is software available that
has the capability to include the necessary parameters.
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Table 3-5 — Existing Models Available Parameters for Flee Behaviour

Parameter SimWalk (Bus SimWalk Flood Life Safety
Station & Fire) (Pedestrians in Evacuation Model
Train Station) Model
Walking Speed v 4 v v
Age x x x x
Group Size x x x x
Sex / Gender x x x x
Stairs x v x x
Other Obstacles 4 v v x
e.g. street
furniture
Fitness levels x x x x
Population/Crowd 4 x v x
Density
Pedestrian 4 x v x
Constraints
Visibility Levels x x x x

Table 3-6 — Existing Software Available Parameters for Flee Behaviour

Parameter ‘ B Gamma Miarmy SimWalk
Walking Speed v v v v
Age v v ? v
Group Size v v v v
Sex / Gender v v ? v
Stairs v v v v
Other Obstacles e.g. 4 v v v
street furniture
Fitness levels v v ? ?
Population/Crowd 4 v v v
Density
Pedestrian Constraints v v ? v
Visibility Levels v v v v
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From the rules proposed for a new agent-based model, it is important to understand if any of
these are already included in existing models and to what extent. To do this several existing
models identified in Chapter 2 are considered including; SimWalk, Flood Evacuation Model
(Netlogo) and Life Safety Model. SimWalk has numerous pedestrian centred models on
transport terminals, these models have a graphic representation similar to a simple computer
game. In some cases, these agents have been given different walking speeds from 11 defined
profiles, however this is then often applied to the whole crowd rather than individual agents.
This results in agents walking at the same speed in rigid lines, without making full use of the
available space. It is not clear whether a mix of the agent profiles can be applied to a scenario
and the impact this may have. The flood evacuation model created in Netlogo contains agents
moving at the same speed although in different directions depending on their evacuation
location. The graphical representation is poor with agents marked only as dots. It does not
appear that the agents have unique identifiers although this would not be impossible even with
simplistic graphics. The Life Safety Model has begun the process of creating unique agents by
colour coding agents based on whether they are deceased, safe or unaware. The graphical
representation is again simplistic as agents are identified as dots which appear to move at the
same speed, due to the scale it is also impossible to identify if agents are walking as individuals
or in groups. These existing models show that there are improvements to be made when
representing unique populations with demographic characteristics but there are software

packages available that can include the necessary parameters.

3.5 Available Studies on Desired Behaviours — Interpersonal Distance

3.5.1 Interpersonal Distance Literature Review

Another important factor when considering crowds is the interpersonal distance between people.
This can be classed as the zone or buffer around people, but this can be interrupted by people
bumping into each other or dense crowds. There may also be cultural differences in the
acceptable distances depending on whether countries are contact or non-contact. A literature
review has been carried out to further the understanding on interpersonal distance and to

identify suitable datasets for compiling rulesets in an agent-based model.

Interpersonal distance can be defined by several measurements taken during social interactions.

Interpersonal distance was first described by Hall (1966) and can be classified into four types;

Public: distance > 2.1m, voices tend to be at higher volume and eye contact is minimal, Social:

distance 1.22 — 2.1m, sustained in more formal communications, Personal: distance 0.46 —

1.22m, usual behaviour when with friends) and Intimate: distance <0.46m, primarily in close

relationships, vision is usually poor and blurred, additionally increased awareness of heat
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(Sorokowska, et al., 2017) (Figure 3-30). The measures proposed by Hall in 1966 are still highly

regarded but it is important to explore the comparison with recent studies too.

Public

Intimate Personal Social Public
0-0.46m 0.46 —-1.22m 1.22 —2.10m 2.10m+

Figure 3-30 — Interpersonal Distance Preference as defined by (Hall, 1966), (Baldassare & Feller, 1975) &
(Sorokowska, et al., 2017)

The study by Sorokawska et al (2017) focused on improving the interpersonal data collected
from hundreds of previous studies. This was in the form of preferred interpersonal distances
across the globe. The dataset included 8943 participants from 42 countries, preferred distances
were related with the individual characteristics of participants and some elements of their
culture. The study’s main conclusion was that individual characteristics (e.g. age and gender)
influence interpersonal distance preference, and that some variations can be attributed to the

temperature of some regions (Sorokowska, et al., 2017).

From the study, it can be concluded that there is a big range in preferred interpersonal distances
across the globe (Figure 3-31). It follows Hall’s pattern in that social distance is greatest,
followed by personal distance and then intimate distance as expected. The mean social distance
is 80-130cm, the mean personal distance is 60 — 110cm and the mean intimate distance is 35-
95cm. There are no clear indications in terms of patterns, but it could be argued that non-contact
countries typically have larger interpersonal distances e.g. Saudi Arabia. The data is ranked
based on social distance and this shows positive correlation with the preference for personal
distance, in that the rank order would be similar. However, there is less of a correlation between
social distance and intimate distance in terms of the rank order, which suggests a preferred
social distance cannot accurately predict a preferred intimate distance (Sorokowska, et al.,
2017).
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participants from 42 countries) (Sorokowska, et al., 2017) Note: Nonoverlap of the confidence intervals between

any two countries indicates significant mean differences. Means for interpersonal distance with strangers are

Two of the personal characteristics, age and gender, have been examined as part of this study
(Figure 3-32). The results show that on average females prefer a greater distance with strangers.
As people age, the preference for a larger personal distance increases, with women preferring a
larger distance with friends. This study has ascertained that age and gender can be used as an
indicator for preferred interpersonal distances. The study also found that the higher the annual

rank ordered.

temperature of a region, the larger the preferred personal distance to a friend.
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Figure 3-32 — Mean Values (cm) of Social (grey), personal (light grey) and intimate distance (dark grey) for men
and women in different age groups summed for all nations (Sorokowska, et al., 2017) Note: Coloured bands
indicate the intimate, personal and social interpersonal distances as defined by (Hall, 1966)

The study by Bae et al (2014) aimed to collect a human behaviour dataset in terms of travel
times and interpersonal distance when using a corridor and stairs. An experiment was set up to
simulate the Jungang-ro subway station in good and poor visibility conditions, whilst carrying
out analysis on walking speed, density, travel time, plus interpersonal distance and angle
distribution. Visibility can impact upon the density and interpersonal distance, the extent of
which is considered in this study (Figure 3-33). When smoke is present, the interpersonal
distance decreases whilst the density increases. This is to be expected as the loss of visibility
encourages a change in pedestrian’s behaviour, resulting in closer formations. The densities are
greater when using stairs in good visibility, presumably as pedestrians have a smaller available
space to pass slower walkers. The range of densities are larger when there is poor visibility.
The range of interpersonal distances is largest when there is good visibility on a corridor,

allowing pedestrians to maintain their preferred distance.
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Figure 3-33 — Comparison of Density and Inter-Person Distance in Normal and Smoke-Filled Conditions (Bae,
etal., 2014)

To further the study, the observations of interpersonal distance and angle were translated into
percentage preference. This was produced for distances and angles to the front and rear, as well
as the left and right. The largest range of interpersonal distances is exhibited at the front and
back compared to the left and right. The average interpersonal distance is 1.027m (front and
rear) compared to 0.473m (left and right) in good visibility (Figure 3-34). With poor visibility,
the distances drop to 0.843m (front and rear) and 0.403m (left and right) (Figure 3-35). This
shows a decrease in interpersonal distance in both directions, but it is greater to the front and

rear. The range of interpersonal distances present during poor visibility is reduced.
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Figure 3-34 — The Distribution of Inter-Person Distance for each condition on the corridor, (a) inter-person
distance (front and rear) in normal condition, (b) inter-person distance (left and right) in normal condition, (c)
inter-person distance (front and rear) in smoke-filled condition, (d) inter-person distance (left and right) in
smoke-filled condition (Bae, et al., 2014)
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There is a large range of interpersonal angles for the visibility conditions. The average
interpersonal angle is 17° (front and rear) and 68° (left and right) for good visibility. During
smoke filled conditions, the average interpersonal angle is 16¢ (front and rear) and 75° (left and

right), showing there is little change due to visibility conditions.
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Figure 3-35 — The Distribution of Inter-Person Angle for each condition on the corridor, (a) inter-person angle

(front and rear) in normal condition, (b) inter-person angle (left and right) in normal condition, (c) inter-person

angle (front and rear) in smoke-filled condition, (d) inter-person angle (left and right) in smoke-filled condition
(Bae, et al., 2014)

3.5.2 Interpersonal Distance Literature Analysis

On completion of the literature review, it is possible to bring together datasets to identify
whether there is any comparison between values of interpersonal distance. This is important to
understand where there is correlation and to determine appropriate rulesets for any future agent-

based model.

The data from the study by Sorokawska et al (2017) is a large dataset for countries across the
globe, for comparison this has been plotted against Hall’s proposed interpersonal distances, to
further aid understanding, the average from Sorokawska’s data for the social, personal and
intimate distance has been calculated (Figure 3-36). This shows that Hall’s distances for
intimate and social distance are an underestimate when compared to this dataset. The average

for the personal distance and Hall’s proposed value is closer and therefore more comparable.

The data can also be ranked; this has been done for each of the interpersonal distance

components (Table 3-7). When ranked by social, personal and intimate distance there are
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similarities in the countries that are identified. It could be argued that there is a European
preference for smaller intimate distances, as four of the five are European countries. However,
there is also three European countries present in the greatest intimate distances, which suggests
there is no European preference for similar intimate distances. Overall, there is no clear
indication of a pattern of preference by continent or temperature from this dataset. However, it
does demonstrate that there is a clear difference on a country by country basis, which should be

expressed within models.

Table 3-7 — Ranking of Social, Personal and Intimate Interpersonal Distance interpreted from (Sorokowska, et
al., 2017)

Smallest Greatest

Social Personal Intimate Social Personal Intimate

Argentina | Argentina | Argentina | Saudi Arabia | Saudi Arabia | Saudi Arabia

Ukraine Ukraine Ukraine Hungary Hungary Hungary
Peru Peru Norway Romania Romania Croatia
Bulgaria Bulgaria Germany Uganda Uganda Canada
Austria Serbia Italy Turkey Estonia Switzerland

Based on these findings, the data has been divided into continents. The data has been split into
Europe, Latin and South America, Asia and Africa. The dataset named as Europe also contains
data from the USA and Canada, this was an inclusion for the original journal article and will be
maintained for continuity. For the countries within Europe, the personal distance correlates
positively with Hall’s measure (Figure 3-37). Both the social and intimate distance are slightly
higher when compared to Hall’s values (Figure 3-37). This is to be expected though from the
ranking, which exhibited European countries at both ends of the scale. For Latin and South
America, there are only five countries in total, which show positive correlation with Hall on all
the interpersonal distance components, there is only a small difference for each (Figure 3-38).
There is a range of countries from across Asia; again, the personal distance correlates well with
Hall’s figure (Figure 3-39). However, the intimate and social distances are both greater than
Hall’s value (Figure 3-39). This could be a result of Asian countries at both ends of the ranking
for each of the interpersonal distances. Finally, there are four African countries in the study;
all three of the interpersonal distance components are higher than Hall’s values (Figure 3-40).
Based on these results it would be possible to provide an average social, personal and intimate
distance for each continent for use in a ruleset for an agent-based model, which would be an

update from Hall’s 1966 figures.
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3.5.3 Interpersonal Distance Suggested Rules
From the literature findings, it is possible to draw several conclusions, to formulate a series of
potential rulesets for the agent-based model to be created. These are based on the literature

reviewed and include:

1. Initial interpersonal distance based on intimate, personal, social and public scale (based
on oval shape rather than circle if possible) (can include age and male/female
differences if required);

2. Initial interpersonal angle/crowd positioning can also be included;

3. Decrease interpersonal distance during danger or smoke being present;

4. Alter interpersonal angles based on danger/smoke presence;

5

Option in future to change interpersonal distance for different areas of the world.

From these suggested rules on interpersonal distance, it is possible to specify parameters that
need to be included in the agent-based model. Consideration also needs to be given to the
parameters currently included in models (Table 3-8), and the capabilities of existing software
to include the proposed rules (Table 3-9). This has shown that current models do not include
all the required rules but that there is software available that has the capability to include the

necessary parameters.

Table 3-8 — Existing Agent Based Models

Parameter SimWalk SimWalk Flood Life Safety

(Bus Station (Pedestrians in Evacuation Model
& Fire) Train Station) Model

Interpersonal x x x x

Distance

(Front/Back)

Interpersonal x x x x

Distance

(Left/Right)

Interpersonal x x x x

Angle

Visibility x x x x

Density of Crowd 4 x v x

Crowd Spacing x 4 x x

Gender x x x x
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Age x x x x

Stairs/Corridor x v x x

Parameter Miarmy SimWalk
Interpersonal v 4 v ?
Distance

(Front/Back)

Interpersonal v 4 v ?

Distance (Left/Right)

Interpersonal Angle v v v ?

Visibility v v v ?

Density of Crowd v v v v
Crowd Spacing 4 v v v
Gender 4 v ? v
Age v v ? v
Stairs/Corridor v 4 v v

From the rules proposed for a new agent-based model, it is important to understand if any of
these are already included in existing models and to what extent, the models are discussed in
detail in Chapter 2. The models considered are; SimWalk, Flood Evacuation Model (Netlogo)
and Life Safety Model. For both the Flood Evacuation Model (Netlogo) and the Life Safety
Model the scale of the models means that interpersonal distance and crowd spacing has not
been included. In SimWalk the agent’s height and breadth can be altered in the 11 agent profiles,
unfortunately this does not appear to affect the interpersonal distance or crowd spacing.
Visually crowds are very uniform and often agents form lines with no distance between agents,

suggesting interpersonal distance is not a parameter within the existing model.

3.6 Available Studies on Desired Behaviours — Crowd Behaviour

Another important part of modelling a crowd is the dynamics of the crowd, this can be shown
through the influence of direction, comparisons to flocking or herding, initial responses to
hazards and the effect of what others do in the crowd. A literature review has been undertaken
to assess crowd behaviour and to find suitable datasets to base rulesets on for an agent-based

model.
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3.6.1 Crowd Behaviour Literature Review

There are many studies available on crowd behaviour, one of which is Low (2000). The
dynamics of a large crowd are important and result in the comfort and security of individuals,
especially during stressful situations such as evacuations. When a crowd is particularly large
there can be an increased risk of injury or loss of life due to the pressures that can be exerted
by the crowd such as crushing, trampling and panic. Therefore, there is a need to be able to
understand the likely movements of any crowd, to minimise the risks to individuals. Previous
models have focused on treating crowds like fluids, i.e. the crowd moves as one continuous
mass, this results in the crowd becoming “identical unthinking elements” (Low, 2000) (Low,
2000). This is untrue though, as crowds can experience fear, panic, different directions of travel,
stumbles or falls. Hence, there is a need to improve modelling so that crowds are made up of

individuals who can think and react to events.

Within this study, Low (2000) introduces the model created by (Helbing, et al., 2000). This
model introduces the idea of individuals within a crowd, particularly during episodes of panic.
The model includes reactions to crushing, panic and loss of visibility, as well as the preference
for individuals to “follow the crowd”, although there are elements of personal tactics. The model
shows that when panic is prevalent in a smoke-filled room, individuals will speed up and herd,
this results in the blocking of an exit (Figure 3-41). If a normal walking speed was assumed this
exit could be easily passed. Also, if this scenario had been modelled as a fluid, it would have
predicted an equal use of both exits, as the actions of individuals were not captured. Hence, a

fluid model would not have reproduced the real behaviour of the crowd.

Herding
behaviour

Figure 3-41 — How Crowd Behaviour Affects Escape from a Smoke Filled Room (Low, 2000) (Low, 2000)
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The model also explored the idea of widening corridors, but again found this slowed the flow
of the crowd, which is often not what would be assumed. This is believed to be due to the
pedestrians who tried to overtake, which then must move back into the main flow at the end of
the widening. Models like this can be utilised to produce low-risk designs and to explore the
best evacuation strategies. The previous barrier of computer power to run the calculations for
the model has been addressed. However, the obstacle remains on validating these types of
models with the real world as data as data is often scarce or non-existent, meaning it is necessary
to determine the difference between “real life” and attempts to model it (Low, 2000).
Nevertheless, improved models of crowd behaviour can be effective in increasing safety in

crowded scenarios.

Helbing et al (2000) also included a panic parameter with their model, to explore the mechanism
of panic and to understand ways to reduce risks. As previously outlined, herding behaviour is
exhibited within the model when there are two exits available, creating congestion at one exit.
This is further considered with mass behaviour in the model. A scenario is created where
pedestrians are attempting to exit a smoke-filled room but need to find an “invisible” exit first
(Figure 3-42(a)). Agents can select an individual direction or follow an average direction of
neighbouring agents within a certain radius or a mixture of both. The model results show that
neither herding behaviour nor individual behaviour performs well (Figure 3-42(b)), as
individuals only accidentally find the exit and herding results in everyone using the same

blocked exit. A mix of the two behaviours is required for optimal survival.

The results show in general as the panic parameter is increased the number of people evacuating
within 30 seconds decreases (Figure 3-42(b)). When exits are relatively narrow and the panic
parameter is small or large, evacuation takes a long time, best strategy is a compromise between
following others and individual problem solving and searching (Figure 3-42(c)). Groups
normally perform better than individuals, but masses are inefficient at finding solutions. The
difference in numbers of people leaving using the two exits provided, shows that when a high
panic parameter is used that evacuees tend to jam at one of the exits rather than equally splitting

between available exits (Figure 3-42(d)).
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Figure 3-42 — Simulation of Evacuation with 2 Exits, (a) Snapshot of Evacuation, (b) Number of people who
manage to escape within 30 seconds as a function of the panic parameter, (c) Time required for 80 individuals to
leave a smoky room, (d) Absolute difference in numbers of people leaving through the left exit or the right exit as

a function of the panic parameter (Helbing, et al., 2000)

Contrary to this, research carried out by Galea (2003) has shown there is a need to determine
the difference between assumed behaviours and those actually exhibited in real-life. Panic is a
good example of this. When studying aviation evacuations Galea noted that there had been a
recurrent myth that those in an evacuation situation faced with a serious hazard who are
untrained and inexperienced will panic and potentially act in a “self-destructive manner”.
However, he argued that this was not based on rational scientific investigation and it was
necessary to clearly identify what types of behaviours are truly exhibited during high stress
scenarios as “panic was not necessarily the driving force behind the evacuation process” and

in fact should be labelled as a rare behaviour.

A study was carried out by Pelechano & Badler (2006), which aimed to explore the role of
trained leaders during building evacuations on the effect of the whole crowd. The model
simulated complex buildings with crowds who were unfamiliar with the building layout or
found routes blocked. Two different scenarios were used; one where agents could communicate
the known routes in the building and the alternative where agents take on roles such as leaders
or followers. The crowds varied in size from 10 to 1000 agents, with simultaneous hazards in

multiple locations in the building, with the measure taken as the time to successful evacuate.
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The results show that without effective communication, it takes significantly longer to reach
100% safety of evacuees (Figure 3-44(a)). Approximately 40% of evacuees escape without any
communication, in the same time 100% escape with communication, meaning the time to
evacuate can be halved with communication. In addition, the larger the crowd, the shorter the
evacuation takes in general, without any trained individuals (i.e. individuals are independent of
each other) (Figure 3-44(b)). This is likely to be as with larger crowds there is more opportunity
of meeting other individuals who know the correct route, so information passes more easily
through the crowd, resulting in agents finding the correct path sooner. This is true if the crowd
doesn’t exceed the capacity, which then blocks the exits and creates congestion, which then
increases the evacuation time. Hence, it can be argued that evacuation time can be constrained

by the number of exits or safe locations and the flow rate of a crowd.

The evacuation time for a crowd decreases as the number of trained/informed individuals
increases, as more individuals know the route to safety (Figure 3-441). However, there is an
optimal number of informed individuals (Figure 3-441 and Figure 3-44(d)). This research puts
the optimal number of informed individuals at approximately 10%. If the number is lower than
10% then the time to evacuate at least doubles, but if greater than 10% and the evacuation time
only decreases by 0.16 times at most (Pelechano & Badler, 2006). Finally, when there are fewer
leaders, the size of groups formed to evacuate tend to be larger as individuals who are not
informed will not leave a group to seek an alternative route (Figure 3-43). With more leaders

present, the emergent behaviour is many smaller groups of people (Figure 3-43).

Figure 3-43 — Snapshot of Crowd Evacuation with (a) a high percentage of leaders and (b) a lower percentage of
leaders (Pelechano & Badler, 2006) (Pelechano & Badler, 2006)

113



(a) (b)

100 — 100 =
90 # .

90 " 77 ra .

&0 ' 80 g // Untrained
gg' 70 5 $ 70 r leaders (%)
w60 7 < 60 s — 20
s 50 ; g s0 60
E‘m T T R 2 40 ,/'_ —— 100

] [/
& ;g —— Communication & 30 e ;SD
—# Mo communication 20 00
10 10
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Simulation time steps Simulation time steps
©) (d)

100 Mh_:_;-:-:-:;jd_.-‘_' e et e el et ] 100 ____T.-_-"_..Tiﬂf-—r'_l'l".: —a—a—a

% = - % e

80 .'I o / 20 e » Trained

70 f ;'r . 70 j leaders (%)
= . Trained - ] —— 0
g 60 leaders (%) £ 60 i - 2
g 50 f — 0 g s0 4
2 40 A - 25 a 40 ,J/ 6
z 20 L 50 E — 10

20 . 100 20 / 100

10 10 );"

0= i

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 S50 60 70 80 90 100

Simulation time steps Simulation time steps
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in a Crowd, (d) Evacuation Times with Smaller Numbers of Trained Leaders (Pelechano & Badler, 2006)
(Pelechano & Badler, 2006)

The study by Pelechano & Badler (2006) (2006) interlinks well with research at the University
of Leeds which has found that “it takes just a minority of 5% to influence a crowd’s direction”
(Science Daily, 2008) (Science Daily, 2008), the remaining 95% will then follow without
consciously recognising it. This is similar to the herd behaviour of animals such as sheep or
cattle (Anitei, 2008). This focuses on direction only using ‘informed individuals’ and did not
cover, for example, how family units move, the influence of walking speeds or the aggression
within the group. The research did find that as the group size increased, the number of ‘informed
individuals’ decreased (Univeristy of Leeds, 2008), which could be key in natural disaster

scenarios where information availability can be scarce due to the impacts on infrastructure.

3.6.2 Crowd Behaviour Suggested Rules
From the literature findings, it is possible to draw several conclusions, to formulate a series of
potential rulesets for the agent-based model. These are based on the literature reviewed and

include:
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1. Herding behaviour to be exhibited, need further exploration of parameters, could set
others to follow each other therefore dependant agents during hazard scenarios.

2. Number of informed individuals or communication to be included to speed up safe
evacuations, approximately 5 — 10%.

3. Crowd needs to be within capacity to ensure that congestion doesn’t occur or explore
what effects this will have on evacuation times.

4. Need to allow for inter-agent communication within the model to allow leaders and
communication to occur.

5. Inclusion of grouping based on number of informed individuals.

6. Should consider including a panic parameter that affects the number of successful
evacuees, group size and congestion at exits, maybe interlinked with the cognitive

mechanism

From these suggested rules on crowd behaviour, it is possible to specify parameters that need
to be included in models. Before that though, it is worth considering the parameters currently
included in models (Table 3-10) and the capabilities of software to include the necessary rules
(Table 3-11). This has shown that current models do not include all the required rules but that

there is software available capable of included the parameters.

Table 3-10 — Existing Models Available Parameters for Crowd Behaviour

Parameter SimWalk SimWalk Flood Life Safety
(Bus Station (GELENEERH Evacuation Model
& Fire) in Train Model
Station)

Communication x x v v
Leaders / Informed x x x x
Individuals

Herding v x x x
Panic ? x x x
General crowd flows 4 4 v v
/ behaviour

Table 3-11 — Existing Software Available Parameters for Crowd Behaviour

Parameter ‘ NetLogo Gamma Miarmy SimWalk
Communication v v ? v
Leaders / Informed Individuals 4 v v v
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Herding 4 v v v
Panic v v v x
General crowd flows / v 4 4 v
behaviour

From the rules proposed for a new agent-based model, it is important to understand if any of
these are already included in existing models and to what extent, the models are discussed in
detail in Chapter 2. The models considered are; SimWalk, Flood Evacuation Model (Netlogo)
and Life Safety Model. For the Flood Evacuation Model (Netlogo) and Life Safety Model the
scale of the models again affects the visibility of crowd behaviours other than identifying pinch
points for congestion, the up-close intricate human behaviours such as passing and giving way
are not shown. In terms of SimWalk, there has been an attempt to model crowd behaviours,
but it is hard to ascertain what the parameters are and responses to hazards seem unrealistic at

times, suggesting further improvements could be made.

3.7 Available Software: SimWalk

SimWalk has been identified as one of the most comprehensive agent-based software packages
currently available. Graphically it is superior to many of the other packages and although this
is not the most important factor, it is another benefit. The main downsides of SimWalk are its
primary focus on transport interchanges although it does have case studies of crowd flows at
the Hajj Mecca pilgrimage (SimWalk, 2017 A) and the exiting of stadiums (SimWalk, 2017 B)
(SimWalk, 2017 C), which are more focused on crowd behaviours. One of these stadium
evacuations was a football stadium in Pennsylvania, USA which after creating a predicted
evacuation time was validated against a real-life simulation of an evacuation, demonstrating

that some of the case studies have been verified, calibrated and validated by SimWalk.

Within SimWalk, there are several agent profiles set up for modellers to use. The profiles
included are; everyman, commuter, sports fan, shopper, traveller, rescue, hooligans, juveniles,
flyers, standard male and standard female. These profiles have a range of pre-set parameters,
which consist of; speed, breadth, height, age, gender and handicaps (e.g. baggage, disability or
child). An initial analysis was carried out to compare the specified walking speeds from the
profiles with the literature values previously found. This consisted of a comparison to all the
literature values and to the specific study by Rastogi et al (2011) who featured several
worldwide walking speeds from the past 50 years. Initially, to compare the studies and SimWalk
profiles, the average walking speed was calculated. The average walking speed for the Rastogi

et al study is 2.94mph and for the collection of literature studies is 2.95mph (Figure 3-45). The
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value for the SimWalk profiles is 3.04mph; this is higher than the other values, suggesting
SimWalk may be over-estimating speeds (Figure 3-45).

A further comparison to literature values has shown that the walking speeds provided in the
SimWalk profiles have large deviations but overall, are closer to the one-mile walking test study
results than any of the other studies considered in this review (Figure 3-45). The exceptions to
this are the commuter and standard female profiles, which are more in line with the other
literature studies (Figure 3-45). The one-mile walk test results were deemed to be over-
estimations of walking speeds since participants were aware that a test was being conducted
and this meant that the results were thought to be higher when compared to other studies. It
would therefore suggest that the SimWalk profiles are over-estimating walking speeds too. The
Rastogi et al study contains a set of international walking speeds, which could also be compared
to the SimWalk profiles (Figure 3-45). Overall this study agrees more with the SimWalk profile
walking speeds. However, it should be noted that the Rastogi et al speeds are all below the one-
mile walking test results, further demonstrating that the 1-mile walk test results are an over-

estimation of walking speed.
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3.8 Rulesets Conclusion

Human behaviour is a vital component of any evacuation or crowd simulation. Three aspects
of human behaviour have been explored in detail; walking speed, interpersonal distance and
crowd behaviours. There are many other areas of human behaviour that could be explored but
a basis has been formed from the three chosen areas. Dependant on modelling results, it may

be necessary to explore further and to incorporate more behaviours in the future.

In terms of walking speeds, the literature has shown that there is a range of walking speeds
dependant on age and sex. The location of a model can also have a variation on the walking
speed. On top of this, the fitness of individuals can affect the overall walking speed. When
walking in groups, there is evidence that this can also alter walking speed. Finally, poor
visibility and the density of the crowd has been shown to decrease walking speeds. At present,
these characteristics are not accurately captured in models and it is believed that this could have

an overall effect on evacuation time, as well as the number of injuries and fatalities.

Interpersonal distance is another key feature of human behaviour and can dictate the density of
acrowd. The scale created in the 1960s for interpersonal distance is still widely applicable today
although there have been advances in terms of the angles of spacing. The literature has shown
thought that there are differences in preference based on age and sex. There are also differences
in interpersonal difference depending on location (e.g. non-contact countries). Interpersonal
distance is shown to be affected by poor visibility, which is possible during an emergency
scenario. The current models have shown little inclusion of interpersonal distance, but it is
anticipated that this could have a large impact on crowd spacing and it needs to be more robustly

modelled.

The third area was the behaviour within crowds, herding behaviour is often represented in
models and is often exhibited by humans during emergency scenarios. This behaviour needs to
be explored further in models to ensure the parameters are appropriate and representative. There
has been some effort to capture leaders, group/following leaders and communication strategies
in models, but again this needs to be examined as there tends to be 100% compliance, which
may be unrealistic. The capacity of crowds is an important area and it can have a big impact on
the flow of the crowd, this needs to be effectively captured. There is some evidence in literature
of panic parameters but it is not anticipated at this stage that this will be included in any models
due to the complexity, but the effects are likely to be seen in the number of successful evacuees,

group sizes and congestion at exits, which will all be captured by one of the three behaviour

types.
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Hence, it is important that any models created to simulate crowds, in particular evacuations,
capture human behaviour effectively. From literature, studies show the potential human
behaviour that may occur, and it is necessary to robustly model this. To move forward, the
suggested rules need to be incorporated into models either by editing existing code or writing
new rules. To begin with, a simple evacuation model will be formed to test simplistic human
behaviour (e.g. changes to walking speed). If this is successful, as a test base, the rules can then
be transferred into more complex scenarios, additional behaviours added in and expanded

further.

3.9 Agent-Based Model Expectations

Current agent-based models have begun to include a limited set of human behaviours during
hazard events and evacuation scenarios as discussed. It has been documented that the inclusion
to date has not been robust and in many cases limited. An improved representation of human
behaviour will be a useful tool for emergency planners who need to prepare and plan for
emergency scenarios, which presently cannot consider the full extent of possible behaviours.

Human behaviour is incredibly complex and can be both predictable and unpredictable at times.
During hazards events, it is anticipated that behaviour will be less predictable than usual due to
the extreme nature of the situation. However, it is possible to predict some common traits that

have not previously been included within a model environment.

This literature review set out to find behaviour traits that are common in evacuations and where
possible identify these in literature alongside quantifiable datasets. This resulted in the eleven
potential behaviours set out earlier in the chapter, which are fleeing, crowd spacing, crowd
behaviour, thinking time, the role of leaders, aggression, panic, stop and drop, route choice,
capacity and the role of social media. It is plausible that all these behaviours could be present
in an emergency scenario, but it is important to identify the most likely behaviours and those
that can be quantified more readily as a starting point within the model environment. Hence, it
was identified that the three priority behaviours should be considered as, fleeing, interpersonal
distance, and crowd behaviour (Table 3-12). These were given priority for several reasons but
primarily due to the ability to quantify these behaviour types through a large volume of
available literature, which provided the possibility to calibrate, verify and validate the behaviour
types. Initially, cognitive mechanisms were also identified as a priority however, after further
investigation it was decided that the cognitive mechanisms currently in existence were not
suitable to be combined within this anticipated agent based model environment and due to the
complexity involved with creating a new robust mechanism, this trait would not be included in

the initial models (Table 3-12). To compensate for the removal of the cognitive mechanism;
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aggression, panic, route choice and capacity were identified to be included as alternative

behaviours that could also influence evacuation timings (Table 3-12).

Table 3-12 — Desired Agent Based Model Inputs to Simulate Human Behaviour

Desired Model Description Included in Model Variables
Inputs (Model Type)
Run from the hazard, ] o
) ) ) Population Distribution
Flee Behaviour varied walking Yes )
Walking Speed
speeds.
Interpersonal o ) )
) Proximity of humans | Yes Population Density
Distance
No variables
Crowd flows, specifically assigned to
Crowd Behaviour | following like sheep | Yes create crowd behaviour,
behaviour but rules introduced
within the code.
) Of streets, roads, safe No of Lanes
Capacity Yes ) )
zones/shelters Population Density
Shortest path, known
Routes routes, follow the Yes Shortest Path
leader
) Influence of a leader
Leader Behaviour No N/A
on a crowd
Aggressive Aggression within a ) )
_ Partially Patience Level
Behaviour crowd
) ) Levels of panic, ) )
Panic Behaviour i Partially Patience Level
distress
Stop and Drop )
_ Due to panic/fear No N/A
Behaviour
Use of Social Influence of route,
) ) ) No N/A
Media causing panic
. The ability for agents
Cognitive ]
) to receive No N/A
Mechanism ] ]
information, compute
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it then chose an

action.

The overall aim of this thesis is to create a modelling tool, which includes more robust human
behaviour rulesets, to enhance the simulation of evacuations. The desire is to be able to do this
on a macro scale i.e. city-wide scale, rather than on a small individual building or floor scale.
The hope is that this tool will be beneficial for identifying larger scale issues such as congestion,
route planning and positioning of shelters amongst other issues. Therefore, chapter 4 will
outline the details of the initial agent-based model created at a city scale with the aim of
identifying the evacuation time of a large area in a built-up environment and including the

priority behaviours set out above.
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Chapter 4. Modelling Techniques & Methodology

In Chapters 2 and 3, the need for agent-based modelling for hazard events was demonstrated
and it has been identified that human behaviour is not robustly included with current agent-
based models. This chapter will outline the macroscale city scale agent-based model and the
human behaviour rulesets to be included as discussed previously in Chapter 3. With the aim
that this can improve the representation of human traits in the model environment for
emergency planning professionals to more robustly simulate evacuation scenarios. From the
assessment carried out in previous chapters, it was identified that the Netlogo software would
be the most appropriate tool to use for this project. Netlogo allows agent hierarchy, agent to
agent communication, agent heterogeneity, feedback representation and is spatially explicit,

which are all required for robustly simulate human behaviour.

The outcomes of the model will then be tested to ensure that the rulesets have reproduced
appropriate behaviours. The proposed testing regime has been set out alongside the anticipated
outcomes of each test. Validation, calibration, and verification of the model has also been

considered to ensure the validity of the model proposed.

4.1 Macroscale Model (City Model)

The initial agent-based model was created at the macro scale and based on the city of Newcastle
upon Tyne, UK, due to my familiarity of the area. It also holds major largescale sporting events
at St James Park, in the past including the Olympics, Rugby World Cup as well as other large
events such as music concerts, there is a large shopping centre, has two universities and a
population of 314,366 (UK Population, 2020). Hence, there is a need to identify the most

suitable evacuation routes across the city during an emergency scenario.

4.1.1 Initial Model Description

The model is based on a 3km x 2km area of Newcastle city centre, including the main shopping
street (Northumberland Street & INTU Eldon Square), St James Park, Quayside and housing
on the edge of the city centre (Figure 4-1). The model interface features a number of variables
that can be set by the user (linking to population types, walking speed, and group size for
example), as well as a GIS map background for the population to move around, with agents
confined to the map’s roads, population counters, a graphical output of the population change
over time and a text output of the predicted evacuation time in minutes (Figure 4-2). The GIS

map background was derived from the Ordnance Survey (OS) MasterMap topographic layer
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to provide some context of the urban environment and for the pedestrian network, which itself
was created using OS Integrated Transport Network (ITN), a road network that provides a
seamless pedestrian network for the agents. A safe zone is marked on the opposite side of the
River Tyne in Gateshead and is identified by a green dot within the model. This safe zone has
not necessarily been identified as the most suitable location in Newcastle but has been assigned

as the population needs to cross the river to reach safety.

Great North

Roval Victoria Ir 1 L
ALl anary Museum: Hancock

Newcastle
pon—ty mrorun (:“ 1e Biscuit Factory
Arthgrs Hill @
Grey's Monument
Agent-based y ~ :
MOdeI Extents @ Btic Centre for
R 9 Cqntemporary Art
Life Science Ct,‘”lf!:‘@‘;} = Newcastle/Castle
D
“,«ﬁ& o\
&
v &
1o l,? 7
;j KEA Gateshead = _ Google s (B

Figure 4-1 — Macroscale Agent-Based Model Extents (Google, 2018)

There are several variables for the user to input into the model such as population size and
walking speeds (Figure 4-2). By altering the variables, it allows the user to simulate a variety
of populations and walking speeds in an area. However, a series of suggested variable values
have been provided to the user, these are based on UK data and literature (Table 4-1). It should
be noted that the evacuation models have begun with an initial inclusion of walking speeds
only and do not include running. It is acknowledged that there are studies which suggest
children and young adults do run when in a panicked scenario, however this model is aiming
to capture a worst-case scenario, therefore walking speeds have been used. The model area is
also relatively large, with some evacuation routes shown to be 4km or longer, it is assumed in
this case that even with panic included most humans could not run for such a prolonged period
again supporting the use of walking speeds only in this thesis. Finally, there was a large volume
of available literature to support the inclusion of varied walking speeds, allowing for
quantification to occur, this was not necessarily available for running speeds over prolonged

periods and in panicked scenarios.
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Table 4-1 — First Iteration City Model Typical Values for User Variables

Typical Variable Values

Variable Typical Value Data Source
>1000 N/A — the population size of

the model was limited to
Population Size 10,000 agents due to
computational power when

running the simulations.

Children = 18% UK Average Population
Male Adults = 32% splits (Office for National
Population Types Female Adults = 33% Statistics, 2014)

Male OAPs = 8%
Female OAPs = 9%

Children = 0.8m/s (1.8mph) Values combined from
Male Adults = 1.34m/s (3mph) literature (Bosina &
Walking Speeds Female Adults = 1.12m/s (2.5mph) | Weidmann, 2017) (Rastogi,

Male OAPs = 0.78m/s (1.74mph) | etal., 2011) (Schimpl, et al.,
Female OAPs =0.76m/s (1.7mph) | 2011) (Silva, et al., 2014)

For a user to operate the model, they must first set the variables (population size, distribution,
walking speeds and precision) using the various buttons and sliders in the model (Figure 4-2
and Figure 4-3). Next the user presses the “load GIS” button, the mapping background is
produced and then the “setup” button creates the variables and places the agents within the
model. Agents are assigned to a random starting position in the model, but this will be onto one
of the building patches (identified by their black colour in the model environment). During the
setup process, the shortest paths from each available node in the model (nodes are identified as
being where each roads join each other) to the single point of safety is calculated, the algorithm
is run once during this phase and does not allow the agents to reroute during the simulation for
example due to congestion on the roads. However, the model does allow faster agents to pass
slower agents as if over-taking on a footpath. Once the setup of the model is complete, the user
uses the “go” button to simulate the evacuation of the city centre. When this occurs, agents
must first move from their building patch to their nearest road, when onto a road the agent
searches the shortest path algorithm to find the route from their nearest node to the point of

safety. Agents then travel at their assigned speeds to the point of safety using the pre-assigned
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shortest path. Once they reach the point of safety the evacuees “exit” the model (command
used is the die command, so agents permanently exit) to simulate them entering an evacuation
centre. A diagrammatic flowchart of the running procedure for the user (Figure 4-4) and an

agent (Figure 4-5) in the model environment have been detailed.
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Builds a city of roads, buildings and
evacuation point (based on Newcastle)

Load GIS

Set Agent Variables
Total Size of Population Value: 100 -10,000
(no-of-evacuees)
Evacuation Population Split Value: 0 -1
(no-of-children, no-of-male-adults, no-of-female-adults, no-  (Represents percentage e.g. 0.01 = 1%, the 5 parameters must
of-male-oaps, no-of-female-oaps) sum to 1)
Walking Speed of Evacuation Population Value: 0 -5
(children-speed, male-adults-speed, female-adults-speed, (Represents speed in nvs, allows for running as well as
male-oaps-speed, female-oaps-speed) walking speeds, can all be the same value or different)

~ Creates the agent population based on the
variables set by the user
m— Runs the model with the user’s agent
population

Figure 4-3 — Model Variables for User to Set in City Evacuation Model
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Agent is assigned model variables
including: population type,
walking speed, group size and
walking speed ratio, agent
identifiable by colour and icon in
the model

Agent calculates the nearest road,
using nodes, then sets its target as
the road to move to it

Agent will travel along the
shortest path to the evacuation
point at its assigned speed

When the agent reaches the
evacuation point, it leaves the
model as if entering an evacuation
centre
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Calculate Shortest Path
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Passing

Exit Model

Calculate Evacuation Time

Output: Evacuation Time

Figure 4-4 — City Evacuation Model Agent Running Procedure
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Figure 4-5 — Agent Thought Process for Macroscale Newcastle Model
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4.1.2 Second Iteration City Model Description

From the initial model, a second iteration of the city scale model was produced. The area
covered remained the same as did the initial variables included. Additional variables were
added into the model, this was to allow the user to include groups within the model of between
one and four in size (Figure 4-6 and Figure 4-7). To reflect the fact that walking speed decreases
with group size, the user can also set a walking speed ratio variable for each group size (Figure
4-6 and Figure 4-7). This allows the user to include a more varied population based on age, sex
and group size. As with the first iteration, the user must input the variables into the model to
create their desired population. A series of suggested user variables have been produced for the
user, based on UK data and literature (Table 4-2).

Table 4-2 — Second Iteration City Model Additional Typical Values for User Variables

Typical Variable Values

Variable Typical Value Data Source
Individuals = 28% UK household size data
) Couples = 35% (Office for National
Group Sizes o
Groups of Three = 16% Statistics, 2017)
Groups of Four = 21%
Individuals = 1 or 100% Values combined from
) Couples = 0.9 or 90% literature (Bosina &
Group Walking Speed )
. Groups of Three = 0.84 or 84% Weidmann, 2017)
atio
Groups of Four = 0.76 or 76% (Moussaid, et al., 2010)

(Rastogi, et al., 2011)
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Figure 4-6 — Second Iteration Evacuation Model
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Load GIS

Builds a city of roads, buildings and
evacuation point (based on Newcastle)

Set Agent Variables

Total Size of Population
(no-of-evacuees)

Evacuation Population Split
(no-of-children, no-of-male-adults, no-of-female-adults, no-
of-male-oaps, no-of-female-oaps)
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(children-speed, male-adults-speed, female-adults-speed,
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Figure 4-7 — Model Variables for User to Set in City Evacuation Model
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4.2 Calibration, Verification & Validation

It is important with any model that efforts are made to calibrate, validate and verify the intended
outcomes. Calibration is the process of checking the model’s quantitative measurements to
optimise them, in this case ensuring that the evacuation time is realistic, and the shortest path
is robust. Verification of the model is comparing the model to a body of evidence to confirm
its accuracy or truth. The model “is checked to see if it behaves as it should” (Ngo & See,
2011). This may be carried out using video footage of evacuations, comparing the displayed
behaviours with descriptions of known behaviours or examining the evacuation times of

previous events and checking if the model can replicate this.

Validation can be described as the “process for determining if a model is able to produce valid
and robust results such that they can serve as the basis for decision makers.” (Ngo & See,
2011) (d'Aquino, et al., 2001). Validation is used to determine how the model fits the real-
world and the original design objectives. There have been many methods set out for validating
agent-based models including: empirical, statistical, conceptual, internal, operational, external,
structural and process validation (Ngo & See, 2011) (d'Aquino, et al., 2001) (Carley, 1996)
(Klugl, 2008) (Parker, et al., 2002) (Troitzsch, 2004) (Windrum, et al., 2007).

It is necessary to consider all these aspects and methods when testing a model to ensure that it
is robust and an accurate representation of the intended scenarios, although it remains a
challenge to complete effectively. There will be some level of inaccuracy within the model as
a result of including several assumptions and it is vital that checks are performed to ensure this
does not result in a flawed model. No single validation, calibration and verification method has
been used within this thesis and instead a series of tests will be completed on the Netlogo

models to calibrate, verify and validate the model where possible as set out in Section 4.3.

4.3 Proposed Testing

It is important that the models created are robustly tested to identify limitations and to ensure
the human behaviours included are in line with expectations. A series of tests have been
proposed for the city scale model to include calibration against route planners, varied
population size, varied population parameters, walking speeds and grouping factors.

Initially, a calibration check will be carried out of the macroscale city model with several route
planners, to ensure that the model produces realistic evacuation time estimates and the routes

taken are the shortest paths. Secondly, an observational check of the number of evacuees in the
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model and walking speeds will be carried out, to understand the spatial variability in the model

and to check the model can compute different evacuation times for different walking speeds.

Once it is ascertained that the model can produce reasonable time estimates for travelling in
the model, a series of tests will be undertaken to understand how population characteristics
effect the model evacuation time, this can be classed as sensitivity analysis. Firstly, data from
the UK will be assessed, this will include the average UK population make up but also the
extremes e.g. areas where there are increased numbers of children or OAPs as these are the
slowest agents in the model. Secondly, population data from across the world will be included
within the model, where there are even greater population extremes e.g. the large OAP
population in Japan. These tests will be carried out before the grouping has been included

within the model.

After exploring the population characteristics, a test will be carried out to include the groups
of agents within the model environment and to understand the possible effect on evacuation
timing. Finally, the walking speed ratio will be tested to assess if this influences evacuation
timing. The population will be based on Newcastle during these tests, which is similar to the

UK average population make up.

Throughout all these tests a comparison will be made to existing agent-based evacuation
models, which include fewer population characteristics and variables. This will allow an
assessment to be made as to whether the inclusion of new variables is having a positive impact

on evacuation timings.

4.4 Model Calibration — Using Route Planners

Before exploring the impact of including a wider range of population characteristics and groups
of agents, as is set out in the proposed testing, it is necessary to check the model is calibrated
correctly to produce realistic evacuation times and the routes taken are the shortest path. Hence,
the aim of this test is to examine whether the model has been setup correctly by allowing an
agent to walk from one point to another and comparing this with the outputs from several route
planners. This will test: (1) the shortest path algorithm, (2) the evacuation time output, (3)

Netlogo outputs and (4) Netlogo graphics.

To carry out the test, the model creates a single evacuee, placed at a varied starting location,
who must evacuate to a known point of safety, which is kept consistent throughout the test.
The variables were set within the model to reduce the evacuation model to one evacuee and set

the walking speed to the approximated speed of the route planners, which is 1.34m/s (3mph).
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The evacuee’s location is randomly generated in the model each time, but its location can be
used to produce a postcode location. This postcode can then be used within a route planner to

compare the journey time and route taken.

The route planners used are Google Maps (Google, 2018), Bing Maps (Bing, 2018), Walkit
(Walkit, 2018) and RAC (RAC, 2018). The route planners were chosen for a variety of reasons
(as outlined below), but it was important to use a range of tools as most tools do not advertise
their chosen walking speed so by using several, a range of speeds can be included. Google
Maps was chosen as it is one of the most popular route planning tools on the market and Bing
Maps is Google’s closest rival. Walkit is an urban walking journey planner which allows the
user to set the walking pace and RAC is a common route planner used for vehicles although it
allows for a walking route to be calculated. Despite the walking speed being difficult to
ascertain from route planners, it is believed the approximate walking speed in the route planners
is 1.34m/s (3mph) (Ro, et al., 2011) (Walkit The Urban Route Planner, 2018) and hence the

agent’s speed was also set to 1.34m/s (3mph) to mirror this.

The main test carried out was to compare the Netlogo model to other route planners, this meant
an assessment could be made between the evacuation times and distances calculated. Twenty-
five simulations were run from a randomly generated starting point on Netlogo, a postcode was
then produced of the same location, which was then inputted in the route planners. The route
planners then all completed the route using their shortest path and walking algorithms.

A range of evacuation times were produced due to the spatial variability of the starting point.
Analysis of the evacuation times shows that 62% of the time other route planners (Google Maps
(Google, 2018), Bing Maps (Bing, 2018), Walkit (Walkit, 2018) or RAC (RAC, 2018)) were
faster than the model and 38% of the time the route planners were slower (Table 4-3 and Table
4-4). The average difference in time was approximately 2% between the Netlogo model and

other route planners (Table 4-4).

Table 4-3 — Evacuation Times from Netlogo and Route Planners (minutes)

. . Walkit
Location Netlogo Google Bing RAC

(med)

1 NE4 6QX St Michaels Church RC 49.18 42 37 40 40
2 NE1 2HF One Trinity Gardens 16.73 15 15 19 17
3 NE1 5AG | 95 Grainger Street 22.33 24 21 25 24
4 NE4 6AQ | Westgate Road 32.48 31 29 34 32
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5 NE4 7JU St Pauls C of E School 40.68 34 33 33 33
6 NE1 7AE Northumberland Street 23.5 25 23 25 26
7 NE1 4SE St James Park 39.42 33 31 32 38
8 NE4 7EH Cambridge Street 42.48 40 39 44 42
9 NE4 5JQ Beaconsfield Street 42.68 42 40 45 42
10 NE2 1AN Petrol Station, Stoddart St | 23.53 23 22 25 25
11 NE4 5NP 414 Westgate Road 60.6 42 42 43 42
12 NE14LY 37 Leazes Terrace 29.37 33 31 33 33
13 NE1 1EE 30 Cloth Market 20.73 22 20 20 22
14 NE2 1XS 2 Coppice Way 27.97 28 25 25 28
15 NE4 7AL | 62 Dunn St 34.85 36 34 34 36
16 NE4 5RJ 5 Tindal Close 38.28 36 35 34 36
17 NE1 6UW | 9 Worswick Street 20.23 24 22 22 24
18 NE4 6RJ 3 Hawthorn Terrace 43.28 39 37 37 39
19 NE4 7SE 2 Maple Terrace 35.98 38 35 38 38
20 NE1 5PN 39B Clayton Street 23.97 26 24 23 26
21 NE4 7BG 57 -71 Penn St 37.17 37 36 38 37
22 NE1 3JE 5—9 Side 14,52 17 16 15 17
23 NE1 8BS 3 Oxford Street 24.8 29 21 21 29
24 NE2 1AP 10 — 16 Boyd Street 23.32 24 22 23 24
25 NE8 2BA | 9 Brandling Street 7.1 8 7 5 8

Table 4-4 — Comparison of Route Planners with Predicted Model Evacuation Time (minutes) in Netlogo (in

terms of % difference)

No. ‘ Start Location ‘ %G %B ‘ %W %R AVG
1 NE4 6QX | StMichaels ChurchRC | 15% | 25% | 19% | 19% 19%
2 NE1 2HF One Trinity Gardens 10% 10% | -14% | -2% 1%
3 NE1 5AG 95 Grainger Street -1% 6% -12% | -7% -5%
4 NE4 6AQ Westgate Road 5% 11% -5% 1% 3%
5 NE4 7JU St Pauls C of E School 16% | 19% | 19% | 19% 18%
6 NE1 7AE Northumberland Street -6% 2% -6% | -11% -5%
7 NE1 4SE St James Park 16% 21% 19% 4% 15%
8 NE4 7EH Cambridge Street 6% 8% -4% 1% 3%
9 NE4 5JQ Beaconsfield Street 2% 6% -5% 2% 1%
10 NE2 1AN Petrol Station, Stoddart . - . . 1%

St
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11 NE4 5NP 414 Westgate Road 31% 31% 29% 31% 30%
12 NE14LY 37 Leazes Terrace -12% | 6% | -12% | -12% -11%
13 NE1 1EE 30 Cloth Market -6% 4% 4% -6% -1%
14 NE2 1XS 2 Coppice Way 0% 11% 11% 0% 5%
15 NE4 7AL 62 Dunn St -3% 2% 2% -3% 0%
16 NE4 5RJ 5 Tindal Close 6% 9% 11% 6% 8%
17 NE1 6UW 9 Worswick Street -19% | -9% -9% | -19% -14%
18 NE4 6RJ 3 Hawthorn Terrace 10% 15% 15% 10% 12%
19 NE4 7SE 2 Maple Terrace -6% 3% -6% -6% -4%
20 NE1 5PN 39B Clayton Street -8% 0% 4% -8% -3%
21 NE4 7BG 57 -71 Penn St 0% 3% -2% 0% 0%
22 NE1 3JE 5-9 Side 17% | -10% | -3% | -17% -12%
23 NE1 8BS 3 Oxford Street -17% | 15% | 15% | -17% -1%
24 NE2 1AP 10 — 16 Boyd Street -3% 6% 1% -3% 0%
25 NES8 2BA 9 Brandling Street -13% 1% 30% | -13% 1%
AVERAGE 0% 8% 4% -2% 2%
KEY: Split Average
Faster Other route planners are: 62% -
Slower Other route planners are: 38%

N = Netlogo, G = Google Maps, W = Walkit (medium), B = Bing Maps, R = RAC Route

Planner
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Figure 4-8 — Locations of Postcodes Used and the % Difference between the Netlogo Model and Route Planners in terms of Evacuation Time (minutes) (Google, 2018)
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In terms of the evacuation distances, there were again differences between the Netlogo model
and the other route planners. The distances calculated from Netlogo also need to be considered
with care as it is not possible to accurately compute the agent’s distance from a gridded cell
system, instead distance is calculated from the speed and time taken, meaning the comparison
with route planners may not be correct. In this instance, 31% of the evacuation distances were
longer than other route planners and in 69% of cases, the other route planners took a shorter
distance route (Table 4-5 and Table 4-6). This resulted in approximately 6% difference in
distance (underestimate); the average route was 2.33km meaning the difference on average
would be around 0.14km or 140m (Table 4-6). It is expected that the differences in evacuation
distance is a result of the route choice and it demonstrates that the level of detail within the
Netlogo model may need refining to include additional information such as steps climbed,
capacity or no access for pedestrians, which could all affect the route taken.

Table 4-5 — Evacuation Distances from Netlogo and Route Planners (kilometres)

No. Start ‘ Location Netlogo Google Bing  Walkit RAC
1 NE4 6QX St Michaels Church RC 3.92 3.35 2.95 3.19 3.04
2 NE1 2HF One Trinity Gardens 1.34 1.20 1.20 1.52 1.29
3 NE1 5AG 95 Grainger Street 1.78 1.92 1.68 2.00 1.85
4 NE4 6AQ Westgate Road 2.59 247 2.31 2.71 2.46
5 NE4 7JU St Pauls C of E School 3.25 2.71 2.63 2.63 2.53
6 NE1 7AE Northumberland Street 1.88 2.00 1.84 2.00 2.03
7 NE1 4SE St James Park 3.15 2.63 2.47 2.55 241
8 NE4 7EH Cambridge Street 3.39 3.19 3.11 3.51 3.28
9 NE4 5JQ Beaconsfield Street 3.41 3.35 3.19 3.59 3.41
10 | NE2 1AN Petrol Station, Stoddart St 1.88 1.84 1.76 2.00 1.87
11 | NE45NP 414 Westgate Road 4.84 3.35 3.35 3.43 3.40
12 | NE14LY 37 Leazes Terrace 2.34 2.63 2.47 2.63 2.57
13 | NE11EE 30 Cloth Market 1.65 1.76 1.60 1.60 1.68
14 | NE2 1XS 2 Coppice Way 2.23 2.23 2.00 2.00 2.16
15 | NE4 7AL 62 Dunn St 2.78 2.87 2.71 2.71 2.81
16 | NE4 5RJ 5 Tindal Close 3.05 2.87 2.79 2.71 2.82
17 | NE1 6UW 9 Worswick Street 1.61 1.92 1.76 1.76 1.83
18 | NE46RJ 3 Hawthorn Terrace 3.45 3.11 2.95 2.95 3.03
19 | NE47SE 2 Maple Terrace 2.87 3.03 2.79 3.03 2.87
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20 | NE1 5PN 39B Clayton Street 1.91 2.07 1.92 1.84 1.95
21 | NE47BG 57 -71 Penn St 2.97 2.95 2.87 3.03 2.92
22 | NE1 3JE 5-—9 Side 1.16 1.36 1.28 1.20 1.27
23 | NE1 8BS 3 Oxford Street 1.98 2.31 1.68 1.68 2.24
24 | NE2 1AP 10 — 16 Boyd Street 1.86 1.92 1.76 1.84 1.83
25 | NE8 2BA 9 Brandling Street 0.57 0.64 0.56 0.40 0.61

Table 4-6 — Comparison of Route Planners with Predicted Evacuation Distances (km) in Netlogo (in terms of %
difference)

Start Location

1 | NE46QX | StMichaels ChurchRC | -22% | -22% | -30% | -22%
2 NE1 2HF | One Trinity Gardens -4% -4% -28% -4% -10%
3 NE1 5AG | 95 Grainger Street -1% 8% -10% 4% 0%
4 NE4 6AQ | Westgate Road 7% -1% -13% -5% -6%
5 NE4 7JU | St Pauls C of E School 26% | -16% | -31% | -22% | -24%
6 NE1 7AE | Northumberland Street 3% 3% -14% 8% 0%
7 NE1 4SE | St James Park 23% | -23% | -28% | -23% | -25%
8 NE4 7EH | Cambridge Street -5% -5% -10% -3% -6%
9 NE4 5JQ | Beaconsfield Street -1% -1% -1% 0% -1%
10 | NE2 1AN | Petrol Station, Stoddart St | -6% 3% -23% -1% -7%
11 | NE45NP | 414 Westgate Road -30% -28% -32% -30% -30%
12 | NE14LY | 37 Leazes Terrace 11% 11% 7% 10% 10%
13 | NE11EE | 30 Cloth Market 3% -3% -9% 2% -2%
14 | NE2 1XS | 2 Coppice Way -1% -6% -15% -3% -6%
15 | NE4 7AL | 62 Dunn St 1% 1% -10% 1% -2%
16 | NE4 5RJ 5 Tindal Close -8% -5% -15% -8% -9%
17 | NE16UW | 9 Worswick Street 11% 11% -71% 13% 7%
18 | NE46RJ | 3 Hawthorn Terrace -13% -13% -22% -12% -15%
19 | NE47SE | 2 Maple Terrace 1% 1% -6% 0% -1%
20 | NE15PN | 39B Clayton Street -1% 5% -11% 2% -1%
21 | NE47BG |57 -71Penn St -2% 1% -6% -2% -2%
22 | NE13JE 5-9 Side 12% 12% -14% 10% 5%
23 | NE18BS | 3 Oxford Street 11% -9% -19% 13% -1%
24 | NE2 1AP | 10 - 16 Boyd Street -3% -3% -14% -2% -6%
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25 | NE8 2BA | 9 Brandling Street 6% 6% -29% 8% -2%
AVERAGE -4% -3% -16% -3% -6%
KEY: Split Average
Longer Route | Other route planners are: 31% 5%
-070
Shorter Route | Other route planners are: 69%

N = Netlogo, G = Google Maps, W = Walkit (medium), B = Bing Maps, R = RAC

Route Planner
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There are routes that are slower, faster, shorter or longer for all route planners (Figure 4-8 and
Figure 4-9), which suggests that the difference lies with the route taken, this is especially
noticeable for the NE4 and NE1 postcode, Figure 4-10 shows their location. The NE4
postcodes tended to be furthest from the evacuation point, whilst the NE1 postcodes are
concentrated within the city centre, it is likely that there are alternative routes available or there
are missing links in the Netlogo model, to result in the large differences in time. For example,
it was viewed that for the St James Park (NE1 4SE) start point, the agents in the model did not
take the preferred routes of the route planner. This is because the agents are free to choose
where they exit the stadium and this did not necessarily agree with the exit location of the route
planners, this resulted in differences of between 4 and 21%. Alternatively, on Westgate Road
(NE4 5NP), the shortest route suggested by Google Maps was 42 minutes whilst an alternative
route took 48 minutes, this would change the percentage difference from 31% to 21%. There
were other instances where agents utilised bridges such as the Tyne Bridge from the Quayside,
which would result in a lengthy climb of stairs, at present this is not considered within Netlogo.

Small differences such as this can then result in differences in the evacuation times.

NEZLS
NE23 NEZ%"»-._,
Area included within NE13 NEZ5
model environment
— - ] TYNE NE27 §
: = : NE12 ZINE30
NE3 NE28SNE29% &
NE15 NE NE g “NESS"
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Figure 4-10 — Postcode Map of Newcastle upon Tyne, marking area used within city evacuation model (derived
from Ordnance Survey OS OpenData) (Ordnance Survey, 2020)
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The times and distances were plotted for the 25 locations to determine if there were any other
general trends (Figure 4-11). The plot shows that as evacuation distance increases, the time to
evacuate increases too. There is some variability in the predicted distance and times of the
route planners, suggesting either the walking speed throughout the route does not always
maintain approximately 1.34m/s (3mph), or external factors can be considered to decrease
walking speed e.qg. hills or congestion. The speed of each route planner and the Netlogo model
can be calculated from the trendline gradients on Figure 4-11 (Table 4-7). These calculated
speeds can be used to explain the average time difference values. For Google and RAC the
slower walking speed of the route planner is counteracted by the shorter distance travelled
resulting in a good match between the evacuation times. The 8% faster times using Bing Maps
can be explained by a combination of the 3% shorter distances travelled and a 2% faster
walking speed. The route planner Walkit is operating at a 5% slower walking speed than
anticipated and is shown to repeatedly underestimate the route distance (on average by 16%),
therefore comparisons should not be drawn between Walkit and the Netlogo model. The strong
correlation between the evacuation times produced by Netlogo and those of Google and RAC

show that the Netlogo model is well calibrated and producing accurate evacuation times.

Table 4-7 — Calculated Netlogo and Route Planner Speeds

. . Calculated
Route Planner Trendline Equation
Speed
1.34m/s
Netlogo y =0.0798x — 3E-15
2.99mph
1.31 m/s
Google y =0.0782x — 0.036
2.93mph
1.31m/s
RAC y =0.0784 - 0.0513
2.94mph
1.27m/s
Walkit y =0.0816x + 0.052
2.84mph
) 1.37m/s
Bing Maps y =0.0757x — 0.1456
3.06mph
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4.5 Conclusion

An initial macroscale city scale model has been created based on the city of Newcastle upon
Tyne, UK. The model features several variables that can be set by the user linking to population
size, population types, walking speed, group size and walking speed ratio, with the aim of
reproducing realistic human behaviour traits. Calibration, validation, and verification is key to
ensure the model is robust. The macroscale model has been successfully calibrated using
existing route planners such as Google Maps, RAC and Walkit, which has shown that the time
estimates produced are realistic and the shortest path algorithm employed is appropriate. A
visual inspection of the simulations was also carried out to ensure that the agents moved as
expected in the model environment. A final observational check was completed using a varied
number of evacuees and walking speeds to understand the spatial variability in the model. The
proposed testing regime for the macroscale has been set out; (1) utilise UK population data and
walking speeds, (2) employ World population data and walking speeds and (3) include grouping
of agents and ratio of walking speed applied to groups. Throughout all these tests, comparison
will be made to existing agent-based models to understand the impact of including additional
population characteristics and variables on evacuations timings. The test results will be

explored comprehensively in Chapter 5.
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Chapter 5. Macroscale Model (City scale) Testing

In chapter 4, the macroscale model was created and the human behaviour rulesets to be included
detailed. In this chapter, the macroscale model will be tested to understand the implications of
including a more robust representation of human behaviour within a city scale evacuation
model. The testing will involve the inclusion of a range of population data from across the UK
and internationally, to highlight the effect of considering slower agents (such as, children and
OAPs) in the model. The macroscale model will also create groups of agents and explore the
effect of this, including a factor to reduce walking speed based on the group size. This
information is supported by the literature review in chapter 3, which includes the varied
walking speeds, grouping of agents and the walking speed ratio, as summarised in section 3.4.2
and 3.5.2. Finally, conclusions will be drawn as to the benefits of incorporating these additional
behaviours in the agent-based model, with the inclusion of quantification where possible.

5.1 Testing Schedule

The model has been calibrated using the route planners and the spatial variability assessed (see
Chapter 4), it was then necessary to test the agent-based evacuation model to understand the
effects of including a more robust representation of human behaviour. These tests were focused
on the addition of population characteristics into the model environment as well as groups of
agents and a walking speed ratio (Table 5-1). A range of population data was applied to the
model environment to simulate UK and International populations, including population

extremes such as a high proportion of children or OAPs, who are the slowest agents.

Table 5-1 — Testing Schedule for Macroscale City Evacuation Model

Test No.  Test Description ‘ Test Aim

1 (Section | UK Population Data & Walking | Understand:
5.2) Speeds - The relationship between walking
speed and evacuation time of a city
(i.e. are they proportional)

- How the -evacuation times are
affected by populations consisting of
different demographics (e.g. age and

sex)
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- How demographic composition
affects evacuation times (e.g.
proportion of slow agents in model)

2 World Population Data & | Understand:
(Appendix | Walking Speeds - If the model needs to be calibrated
A) for different locations (e.g. do
locations with large numbers of
children or OAPs need to input their
own walking speeds)

- To repeat test 1 (section 5.2) for
different locations to understand
how evacuation times may vary
globally

3 Grouping of Agents & Ratio for | Understand:
(Section | Walking Speed Applied to - If the inclusion of groups of between
5.4) Groups 1 and 4 agents affects the evacuation

time of a city
- If the application of a walking ratio
is required to be applied to groups to

affect the evacuation time of a city
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5.2 Test 1 - UK Population & Walking Speeds
5.2.1 Test Aim & Variables

To begin with, the model was tested based on the information gathered in the literature review
regarding varied walking speeds by age and sex of the population. To gain information
regarding the proportion of different agent types, the walking speed data was combined with
UK population data to ensure that the population used was realistic. The aim of this test, was
to ascertain whether using varied walking speeds had any effect on the evacuation time of the
case study area, including whether the population data needed to include the age and sex of the
population or just the age. Within the test, three different scenarios were conducted to gauge
the overall effect on evacuation time: (1) all agents have the same walking speed (2) varied
walking speeds by age only, and (3) varied walking speeds by age and sex. These scenarios
were run with a range of total population sizes (1000, 2000, 5000 and 10000) and population
distributions based on different UK locations (Table 5-2), the test variations have been set out
in Figure 5-1. The five different population distributions are the UK average, Newcastle, East
Devon which has a larger OAP population, Slough which has a larger number of children and
Tower Hamlets which has a larger adult population (Office for National Statistics (ONS), 2016)
(Figure 5-2).

Table 5-2 — Macroscale City Evacuation Model Variables for Test 1 (For the walking speeds: C =
Children, MA = Male Adults, FA = Female Adults, MO = Male OAPs and FO = Female OAPs)

Variables 1.34m/s (3mph) Varied Walking Speed Varied Walking Speed

Walking Speed by age only by age and sex

No of Evacuees 1000, 2000, 5000, 10000
Population See Figure 5-2
Makeup
Walking Speed | All = 1.34 m/s | C=0.8m/s (1.79mph) | C =0.8 m/s (1.79mph)
(Bosina & | (3mph) MA & FA = 1.34 m/s | MA = 1.34 m/s (3mph)
Weidmann, 2017) (3mph) FA =1.12 m/s (2.5mph)

MO & FO =078 m/s MO = 078 m/s

(1.74mph) (1.74mph)

FO =0.76 m/s (1.70mph)

To get an indication on variability in the results, each set of variables and walking speed
scenarios will have five realisations; this will result in 300 sets of evacuation times for this test,

which equates to 60 results per location (Table 5-3). It was also necessary to understand the
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computational power required to run simulations in the model environment and whether
reducing the number of variables had any effect on computational efficiency. The
computational power was not easily quantified, instead this was reported anecdotally from the

user’s perspective.

Table 5-3 — Total Number of Results Expected from Test 1

All Walking Speeds the Same

evacuees | Newcastle UK East Devon | Slough Tower Total Tests
Average Hamlets
1000 5 5 5 5 5
2000 5 5 5 5 5
100
5000 5 5 5 5 5
10000 5 5 5 5 5
Varied Walking Speeds by age only
1000 5 5 5 5 5
2000 5 5 5 5 5
100
5000 5 5 5 5 5
10000 5 5 5 5 5
Varied Walking Speeds by age and sex
1000 5 5 5 5 5
2000 5 5 5 5 5
100
5000 5 5 5 5 5
10000 5 5 5 5 5
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Walking Speeds

No of Agents

Population Makeup

Test 1 — UK Population Data & Varied Walking Speeds

Agents Walking Speed by
Agents Walking Speed age and sex:
All agents 1.33m/s by age: Children 0.8m/s
walking speed Children 0.8m/s Male Adults 1.33m/s

Adults 1.33m/s Female Adults 1.12m/s
OAPs 0.78m/s Male OAPs 0.78m/s
Female OAPs 0.76m/s

1000 Agents 2000 Agents 5000 Agents 10000 Agents

Slough Tower Hamlets
Population Split Population Split
Children 23% Children 20%
Male Adults 33% Male Adults 36%

Newcastle UK Average East Devon
Population Split Population Split Population Split
Children 17% Children 18% Children 15%
Male Adults 34% Male Adults 32% Male Adults 27%

Female Adults 34% Female Adults 38%
Male OAPs 4% Male OAPs 3%
Female OAPs 5% Female OAPs 3%

Female Adults 35% Female Adults 33% Female Adults 29%
Male OAPs 7% Male OAPs 8% Male OAPs 14%
Female OAPs 7% Female OAPs 9% Female OAPs 14%

Figure 5-1 — Testing Regime for Test 1
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(@) Newcastle (b) UK

(c) East Devon (d) Slough

% o

(e) Tower Hamlets

= Children

3% % » Male Adults

= Female Adults
= Male OAPs

= Female OAPs

Figure 5-2 — Population Breakdown of UK Locations
— (a) Newcastle, (b) UK Average, (c) East Devon —
high OAP population, (d) Slough — high child
population, |1 Tower Hamlets — high adult population,
(Office for National Statistics (ONS), 2016)
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5.2.2 Initial Evacuation Times

After completing the simulations for the different population make-ups with varied walking
speeds, the averaged evacuation times for each population type were compiled (Table 5-4).
This showed that there were a range of evacuation times produced when the demographics of
the crowd was considered, demonstrating that there may be an impact of including population
characteristics. However, it was important to understand whether this was a factor of the total
population size, the inclusion of varied population characteristics (by age and/or sex) and the
proportion of these different agents, or a combination of these factors. When walking speed
was the same for all population types, there was little variation seen in the averaged evacuation
times for the different regions (i.e. Newcastle, East Devon, etc.) (Table 5-4). The introduction
of varied walking speed by age only, showed that the slowest agent types (OAPs and children)
have an increased average evacuation time compared with the adults, approximately 60%
slower, whereas adults slowed by only 3% (Table 5-4). Finally, the introduction of varied
walking speed by age and sex demonstrated that the average evacuation times for adult females
increased (by approximately 25%) whereas all other agents had similar evacuation times to the

previous example (Table 5-4).

Table 5-4 — Average UK Evacuation Times (minutes) for different regions in the UK, showing (in the third
column) average evacuation times when all agents walk at 1.34m/s, (in the fourth column) when agents of
different age have different walking speeds and (in the fifth column) when both age and sex are considered in
walking speeds

Variables Evacuation Time (minutes)

Population 1.34m/s Varied Varied
(3mph) Walking Walking
Walking Speed by Speed by
Speed age only age and sex
(minutes) (minutes) (minutes)
Children 112.8 113.9
M Adults 0.6 69.8
Newcastle F Adults 68.5 ' 85.4
M OAPs 113.7
F OAPs Ha8 1176
Children 114.3 114.7
East Devon ™y aquits 07 68.5
O [raws | wr | T [ws
. S .
Population F OAPs 116.7 121.5
Slough Children 113.8 118.8
M Adults 67.4 70.8
(Large A dults 709 83.8
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Child M OAPs 112.9 109.9

population) | F OAPs ' 117.4

Tower Children 116.6 115.2
Hamlets M Adults 20.8 68.3
(Large F Adults 67.3 ' 86.5

Adult M OAPs G0 107.8
population) I F oAPs ' 112
Children 114.9 115.6

M Adults 712 705

UK F Adults 69.2 : 83.4

M OAPs 116.2

F OAPs 1151 117.8

To understand how evacuation times and simulation size (the total number of agents from a
minimum of 1000 to a maximum of 10000) may vary between similar simulations, a plot of all
the simulation results for each walking speed variant has been plotted (100 results for each
variant) in Figure 5-3, Figure 5-4 and Figure 5-5. These figures show that there was a variation
in evacuation times between the 100 results, which resulted from the initial random placing of
agents. When all agents walk at the same speed (1.34m/s), the averaged evacuation time in
Table 5-4 showed little variation between regions, as indicated by the small difference in
standard variation of 1.63 minutes. However, overall, the plot of the 100 simulations has a
standard deviation of 3.01 minutes, showing that there is variation between the evacuation

times produced (Figure 5-3); this is likely to have been caused by the initial starting positions.

In Figure 5-4, the simulations where walking speeds were varied by age are plotted. In this
figure it is clear to see the difference between the adult population and the children or OAPs.
It is also possible to see that the children and OAPs have an increased variation compared to
the adults, the standard deviation for adults is 4.38 minutes whereas children is 6.47 minutes
and OAPs is 9.11 minutes (Figure 5-4). It is likely that this is a result of the random starting
locations of agents, which means a greater or smaller number of slower agents were placed at

the model boundary, this in turn effects the evacuation times produced.

Finally, when walking speed was varied by age and sex, there is now a difference between the
male and female adult evacuation times produced, but the variation is small, the standard
deviation for the male adults is 3.87 minutes and for female adults it is 4.93 minutes. There is
greater variation for the slower agent types (children with a standard deviation of 6.87 minutes

and OAPs with a standard deviation of 7.37 minutes (Male) and 7.56 minutes (Female)), as
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previously stated it is argued that this is a result of their initial random placement in the model
(Figure 5-5).
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Figure 5-3 — All Evacuation Times Produced in Test 1 when Walking Speeds are the Same (1.34m/s or 3mph)
mean of 68.22 minutes and Standard Deviation of 3.01 minutes (note the Simulation No. plotting position is

arbitrary)
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Figure 5-4 — All Evacuation Times Produced in Test 1 when Walking Speeds are Varied by Age only, for each

population type: mean (standard deviation), Children: 114.23 minutes (6.47 minutes), Adults: 70.51 minutes
(3.39 minutes) and OAPs: 113.29 minutes (7.49 minutes)
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Figure 5-5 — All Evacuation Times Produced in Test 1 when Walking Speeds are Varied by Age and Sex, for
each population type: mean (standard deviation), Children: 115.62 minutes (6.87 minutes), Male Adults: 69.57
minutes (3.87 minutes), Female Adults: 84.57 minutes (4.93 minutes), Male OAPs: 112.82 minutes (7.37
minutes) and Female OAPs 117.29 minutes (7.56 minutes)

5.2.3 Effect of Total Population Size

In the previous simulations it was demonstrated that total population size did effect evacuation
times. In this section, the effect of this is explored in more detail. In Figure 5-6, Figure 5-7
and Figure 5-8 the data from the previous simulations is presented by population size and agent
type for the different walking speeds. When all agents travelled at 1.34m/s (3mph), it showed
that as the total population size increased, the overall evacuation time also increased (Figure
5-6). The difference in evacuation time was approximately 5.5 — 6.5 minutes between a
population of 1000 compared to 10000. For the populations with varied walking speed by age
only and for age and sex, a similar increase in evacuation time with increased total population
size was observed. For varied walking speeds by age only, the difference in evacuation time
was approximately 7 — 12 minutes (Figure 5-7) between a population of 1000 compared to
10000. For varied walking speeds by age and sex, the difference in evacuation time was
approximately 5.5 — 10 minutes (Figure 5-8) between a population of 1000 compared to 10000.
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Figure 5-6 — Comparison of Total Population Size for all UK regional locations (e.g. Newcastle, East Devon
etc.) with 1.34m/s (3mph) walking speed for all population types, approximate difference in evacuation times
5.5 — 6.5 minutes as total population size increases, mean of 68.22 minutes and standard deviation of 2.66
minutes
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Figure 5-7 — Comparison of Population Size for all UK regional locations with varied walking speed for
population types by age only, approximate difference in evacuation times 7 — 12 minutes as total population size
increases, for each population type: mean (standard deviation), Children: 114.48 minutes (4.19 minutes),
Adults: 70.82 minutes (3.08 minutes) and OAPs: 113.67 minutes (5.48 minutes)
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Figure 5-8 — Comparison of Population Size for all UK regional locations with varied walking speed for all
different population types, approximate evacuation time difference 5.5 — 10 minutes as total population size
increases, for each population type: mean (standard deviation), Children: 115.62 minutes (4.87 minutes), Male
Adults: 69.57 minutes (2.40 minutes), Female Adults 84.57 minutes (3.12 minutes), Male OAPs 112.82 minutes
(4.05 minutes) and Female OAPs 117.29 minutes (3.87 minutes)

The reason for the difference in evacuation time was the spatial variability of agents within the
model. As the evacuation time is when the last person leaves the area, when the total population
was larger, it was much more likely that there would be slow agents at the spatial extents of
the model and therefore would need more time to evacuate (e.g. furthest from the point of
safety) (Figure 5-9 and Figure 5-10). It should also be noted that when there were varied
walking speeds applied, larger evacuation times were produced for the slowest agents in the
model, which was expected despite there being a smaller percentage of these agent types in the
model as their walking speed was greatly reduced (0.76m/s — 1.12m/s or 1.74mph — 2.5mph)
compared to the standard 1.34m/s (3mph). It was also more likely with larger total populations
that there was a slow agent at the model boundary so with a greater distance to travel and a

reduced walking speed, the evacuation time would increase.
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Figure 5-9 — Macroscale Model with Total Population Size = 1000 agents, agents are not densely covering the
available starting locations with low total population size

Figure 5-10 — Macroscale Model with Total Population Size = 10000 agent, agents are more comprehensively
covering the available starting locations as total population size has increased
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5.2.4 Effect of Population Extremes

Secondly, the effect of population extremes on overall evacuation time was examined, to
understand if there was a need to include a larger number of slow agents in the model
environment. This was conducted for populations at different UK locations which had
population extremes (e.g. larger child, OAP, and adult populations). A comparison of the
locations with varied walking speeds by age and sex showed that there was only a small
difference in the evacuation times for each slower population type even when a population
extreme was present ( Figure 5-11). The largest difference was for the female OAPs, the time
difference was 9.5 minutes between the slowest and fastest evacuation time, the largest
evacuation time was seen where the OAP population was highest and vice versa for the smallest
evacuation time. This indicated that a larger number of a slower population type will influence
evacuation time. In comparison, for the children the evacuation time difference was 4.9 minutes
and male OAPs was 8.6 minutes. Although the number of slow agents has had a small impact
on evacuation time the key factor appeared to be the inclusion of population characteristics in
the first instance as long as there were some slow agents captured, it did not need to be at the

extreme.
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Figure 5-11 — Comparison of Different UK Locations and Average Evacuation Times in terms of Population
Extremes (East Devon — large OAP population, Slough — large child population and Tower Hamlets — large
adult population), with Varied Walking Speeds by age and sex, for each population type: mean (standard
deviation), Children: 115.62 minutes (1.67 minutes), Male Adults: 69.57 minutes (1.00 minutes), Female Adults:
84.57 minutes (1.19 minutes), Male OAPs: 112.82 minutes (3.41 minutes) and Female OAPs: 117.29 minutes
(3.03 minutes)
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5.2.5 Minimum & Maximum Times

To further compare the evacuation times produced for the population extremes, the minimum
and maximum times were plotted (Figure 5-12), this information was taken from all the
available simulations. However, the maximum times were all found to be produced from
simulations, which included a greater number of population characteristics whereas the
minimum times were all produced from simulations with agents travelling at the same speed
(1.34m/s or 3mph). The results show that there was little difference in the minimum and
maximum times produced for each location, for the maximum times, the time difference was
approximately 3.3 minutes and for the minimum times, the time difference was approximately
5.5 minutes. This again contributes to the idea that there is no need to simulate the model at a
population extreme. A further plot was completed to identify the population type for each of
the minimum and maximum evacuation times (Figure 5-13). This showed that all the maximum
times were caused by slower agent population types but interestingly that the minimum was
also attributed to the slower agent types. The maximum times generally tally with the largest
percentage of slower agents as it more probable that one of the agents is at the model extents
and therefore takes a longer time to exit the model. The converse of this is true when the model
runs at 1.34m/s (3mph), in that there were far fewer of the additional agent types (children and
OAPs) to exit the model and all agents were travelling at the same speed, which results in a

faster evacuation time overall.
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Figure 5-12 — Minimum and Maximum Evacuation Times (minutes) at UK Locations, time difference for
maximum times approximately 3.3 minutes, time difference for minimum times approximately 5.5 minutes
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Figure 5-13 — Minimum and Maximum Evacuation Times (minutes), depicting the different population types at
various UK Locations, Newcastle: maximum time by Female OAP, minimum time Male OAP, Devon: maximum
and minimum time by Female OAP, Slough: maximum time by child and minimum time by Male OAP, Tower
Hamlets: maximum time by child and minimum time by Female OAP and the UK: maximum and minimum time
by Male OAP

5.2.6 Effect of Population Characteristics

Once it was ascertained that neither the total population size nor the inclusion of a population
extreme was the primary cause for the differences in evacuation times calculated by the model
the inclusion of the population characteristics was investigated. A comparison was made
between the model considering only walking speeds of 1.34m/s (3mph) and the inclusion of
varied walking speeds based on age or alternatively by age and sex (Table 5-5). This showed
that there were some large time differences between the model simulations, an average of 30.6
minutes when walking speeds were added by age and sex and an average of 30.4 minutes when
walking speeds were added by age only. This resulted in large percentage time differences and
was particularly seen with the slower agent types. For varied walking speeds by age and sex in
Newcastle, the children had 67%-time difference, male OAPs had 68%-time difference and
female OAPs had 75% time difference when compared with a 1.34m/s (3mph) model (Figure
5-14). For varied walking speeds by age only in Newcastle, the children had 65% time
difference and the OAPs had 70% time difference (Figure 5-15).

These large time differences demonstrate that the current evacuation models that include only
agents walking at 1.34m/s (3mph) are producing misleading evacuation times by failing to
consider a range of walking speeds. It also shows that there was little difference in the results

produced by including age and sex versus age only, meaning where computational power is
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restricted it may be beneficial to consider reducing the number of population characteristics

included, as additional variables appeared to make the simulations take longer to complete.

Table 5-5 — Comparison between UK Average Evacuation Times (minutes) and Simulations for different regions
in the UK, showing (in the third column) the difference in average evacuation times between all agents walking

at 1.34m/s and agents adopting walking speeds based on their age only and (in the fourth column) the difference
in evacuation times between all agents walking at 1.34m/s and agents adopting walking speeds based on their

age and sex
Population 1.34m/s (3mph) 1.34 m/s (3mph) Model
Type Model vs. Varied vs. Varied Walking
Walking Speed by Speed by age and sex
age only (minutes) (minutes)
Children 445 45.6
M Adults -1.8
-1.0
Newcastle F Adults 13.8
M OAPs 46.2
47.2
F OAPs 50.5
Children 46.0 46.5
East Devon M Adults 08 30
(Large OAP F Adults 12.2
population) M OAPs 48.8
49.3
F OAPs 54.4
Children 45.6 50.5
Slough (Large M Adults 0.7 0.8
Child F Adults 12.2
population) M OAPs 42.4
455
F OAPs 50.3
Children 48.3 47.0
Tower Hamlets M Adults 0.8 3.2
(Large Adult F Adults 15.0
population) M OAPs 403
41.8
F OAPs 44.9
Average Time Difference 30.4 30.6
Average % Difference 44% 44%
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Figure 5-14 — Comparison of UK Average Population Data to Newcastle Population Data for 1.34m/s (3mph)
Walking Speed vs. Varied Walking Speeds for All Population Types by Age and Sex, Mean Time Difference of
30.9 minutes and Standard Deviation of 23.4 minutes

[«5)
o
>
l_
[y
S Adults -1%|
[+
=
o
o
[a
-10% 0% 10% 20% 30% 40% 50% 60% 70% 80%

% Time Difference
Figure 5-15 — Comparison of UK Average Population Data to Newcastle Population Data for 1.34m/s (3mph)

Walking Speed vs. Varied Walking Speed for Population Types by Age Only, Mean Time Difference of 30.3
minutes and Standard Deviation of 27.1 minutes

165



5.3 Test 3 - Grouping of Agents & Walking Speed Ratio
5.3.1 Test Aim & Variables

The previous tests have shown that the introduction of population characteristics has had an
impact on the evacuation times produced. The inclusion of varied walking speeds by age and
sex was only a small number of the possible human behaviours that could be included within
an agent-based evacuation model. Hence, it was deemed important to consider the impact of
the addition of further behaviour traits on the evacuation times produced. This included the
grouping of agents and a walking speed ratio, as it was previously demonstrated in the literature
review in Chapter 3 that an increase in group size had the effect of decreasing walking speed
(Bosina & Weidmann, 2017) (Rastogi, et al., 2011) (Moussaid, et al., 2010). This means that a
robust agent-based evacuation model that includes groups should also consider the inclusion of

a walking speed ratio.

The aim of this test was to ascertain whether using varied walking speeds, groups of agents and
a walking speed ratio had any effect on the evacuation time of the case study area. Within the
test, the model ran four scenarios to understand the effect on overall evacuation time: (1) all
agents travelling at 1.34m/s (3mph) with groups of agents, (2) all agents travelling at 1.34m/s
(3mph) with groups of agents and a walking speed ratio, (3) agents travelling at varied walking
speeds by age and sex with groups of agents and (4) agents travelling at varied walking speeds
by age and sex with groups of agents and a walking speed ratio . Each simulation was completed
for one total population size of 1000 agents (Table 5-6) with the population make-up based on

Newcastle, the test variations have been set out in Figure 5-18.

The group sizes were based on data from the Office for National Statistics (2016) on the UK
household sizes from 2016, ranging from single person households to houses with four or more
occupants. For ease within the model environment, the largest group size was capped at four
agents. It was initially required to limit the group sizes to ensure that the variable had an impact
on evacuation time, plus literature had shown that the groups larger than four did not
significantly decrease their walking speed further. Hence, it was deemed acceptable to only
include groups of up to four, but this may need to be reconsidered in the future with respects to
capacity and congestion as larger groups will take additional space on the pathways and may
affect evacuation times further. The model also assumed that the groups of agents took the
speed of the slowest agent so if a child was present in a group, all agents would reduce their
speed to that of the child, visually in the models the groups then changed to the colour of a child,

to highlight to the user the slowest agent.
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The walking speed ratio was adapted from previous studies on the impact of group size and
walking speed by Bosina & Weidmann (2017), Rastogi et al (2011) and Moussaid et al (2010)
(Figure 5-17). This meant that for single agents there would be no change to their walking speed
but for agents in groups of four the walking speed would be reduced to 79% of their original
speed (Figure 5-17). In total, each set of variables and walking speed scenarios will be tested

10 times; this will result in 40 sets of evacuation times for this test (Table 5-7).

Table 5-6 — Variables for Macroscale City Evacuation Model in Test 3

Variables ‘ Setting

No of Evacuees 1000 evacuees

Based on population make-up of Newcastle:
Children = 17%,

Male Adults = 34%,

Female Adults = 35%,

Male OAPs = 7%,

Female OAPs = 7%

Children = 0.8 m/s (1.79mph)

Male Adults = 1.34 m/s (3mph)
Walking Speed Female Adults = 1.12 m/s (2.5mph)
Male OAPs = 0.78 m/s (1.74mph)
Female OAPs = 0.76 m/s (1.70mph)
Grouping See Figure 5-16

Walking Speed Ratio See Figure 5-17

Population Makeup

Table 5-7 — Total Number of Results Expected from Test 3

All Walking Varied Walking Speed

Speeds the Same by Age and Sex

Newcastle, 1000 Agents, 10 10 20
Grouping
Newcastle, 1000 Agents, 10 10 20
Grouping & Walking
Speed Ratio
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Figure 5-16 — Breakdown of UK Household Size (Office for National Statistics, 2016)
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Figure 5-17 — Used Group Size Walking Ratio — Adapted from (Bosina & Weidmann, 2017), (Rastogi, et al.,
2011), (Moussaid, et al., 2010)
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Walking Speeds

Population Makeup | No of Agents

Grouping

Ratio

Test 3 — Walking Speed Ratio
Agents Walking Speed

Agents Walking by age and sex:
All agents Speed by age: Children 0.8m/s
1.33m/s walking Children 0.8m/s Male Adults 1.33m/s
speed Adults 1.33m/s Female Adults 1.12m/s
OAPs 0.78m/s Male OAPs 0.78m/s
Female OAPs 0.76m/s

1000 Agents

Newcastle
Population Split
Children 17%
Male Adults 34%
Female Adults 35%
Male OAPs 7%
Female OAPs 7%

Groups of 1 Groups of 2 Groups of 3 Groups of 4
28% 35% 16% 21%

Walking Speed Ratio ~ Walking Speed Ratio ~ Walking Speed Ratio ~ Walking Speed Ratio
1:100% 2:90% 3:84% 4:79%

Figure 5-18 — Testing Regime for Test 3
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5.3.2 Initial Evacuation Times

After completing the simulations for Newcastle with varied walking speeds, the groups of
agents and the walking speed ratio, the averaged evacuation times for each population type
were compiled (Table 5-8), due to the inclusion of groups, the number of population types
increased. This showed that there were a range of evacuation times produced by altering the
variables, demonstrating that there was an impact of including further population characteristics.
There were some large time differences, particularly for the slower agent types compared to the
1.34m/s (3mph) model of between 25% and 127%. The male and female adults were also now
more affected by time differences, ranging between 2% and 33%. The average time difference
between the 1.34m/s (3mph) model and the model with varied walking speeds by age and sex
plus groups was 57%. This was 7% greater than the average time difference without the ratio
but varied walking speeds and groups included indicating that there was a need to also consider
walking speed ratio within the model environment.

Table 5-8 — Comparison of Evacuation Time (minutes) with Varied Walking Speeds, Groups and Walking Speed
Ratio Included for all Population Groups, showing (in the second column) the average evacuation times with all
agents walking at 1.34m/s with grouping and walking speed ratio applied, (in the third column) the average
evacuation times with agents adopting varied walking speeds with grouping and walking speed ratio applied, (in

the fourth column) the difference in evacuation time and (in the fifth column) the percentage difference in
evacuation time

0 al'lel O O
a 0 pDeeds DY age e e
acuation Populatio Deed ana Se pifrerence pifference

oup oup Ratlo e %0

Ratio e
Single Children 63.7 99.2 35.5 57%
Single Male Adults 64.5 65.5 1.0 2%
Single Female Adults 64.4 77.7 13.3 21%
Single Male OAPs 56.2 100.3 44.1 80%
Single Female OAPs 56.1 92.0 35.9 63%
Child Couples 68.1 119.0 50.9 88%
Male Adult Couples 67.0 71.6 4.6 7%
Female Adult Couples 68.0 84.4 16.3 25%
Male OAP Couples 57.0 108.5 51.5 104%
Female OAP Couples 56.5 104.5 48.0 90%
Child Triplets 68.5 94.3 25.9 54%
Male Adult Triplets 66.7 70.3 3.6 7%
Female Adult Triplets 69.3 75.5 6.2 11%
Male OAP Triplets 51.2 85.5 34.3 91%
Female OAP Triplets 40.7 85.0 443 115%
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Child Quads 62.7 104.6 42.0 81%
Male Adult Quads 65.5 66.3 0.9 2%

Female Adult Quads 66.4 85.5 19.1 33%
Male OAP Quads 51.0 79.9 28.9 75%
Female OAP Quads 50.6 105.9 55.3 127%
AVERAGE 60.7 88.8 28.1 57%

The inclusion of groups created a greater number of population types, but a comparison needed

to be made to the original five population types, to understand the impact on evacuation times.

To compare the five main population types, the slowest evacuation time was taken from each

of the 10 simulation runs and averaged to produce an evacuation time estimate. For the slower

agent types, there were large time differences in evacuation time compared to the 1.34m/s

(3mph) model of between 65% and 88% (Table 5-9) (Figure 5-19). The female adults were also

affected by the addition of population characteristics, with an average time difference of 24%.

The average time difference between the 1.34m/s (3mph) model and the varied walking speeds

by age and sex with grouping was 35.5 minutes or 51%.

Table 5-9 — Comparison of Evacuation Time (minutes) with Varied Walking Speeds, Groups and Walking Speed
Ratio Included for Main Population Groups (Children, Male Adults, Female Adults, Male OAPs and Female
OAPs) (in the second column) the average evacuation times with all agents walking at 1.34m/s with grouping

and walking speed ratio applied, (in the third column) the average evacuation times with agents adopting varied

walking speeds with grouping and walking speed ratio applied, (in the fourth column) the difference in
evacuation time and (in the fifth column) the percentage difference in evacuation time

D aried Wa 0
3 0 peeds by age e e
acuation Populatio Deed and Se DiTference pifrerence

oup oup Ratio e %

Ratio e
Children 76.2 126.0 49.8 65%
Male Adults 75.9 75.7 -0.3 0%
Female Adults 74.3 924 18.1 24%
Male OAPs 66.7 118.9 52.3 78%
Female OAPs 65.6 123.3 57.7 88%
AVERAGE 71.7 107.3 35.5 51%
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Figure 5-19 — Comparison of % Difference in Evacuation Times for Different Population Types with Applied
Variables (Inclusion of Groups, Varied Walking Speed by age and sex and a Walking Speed Ratio), Mean Time
Difference of 51%

5.3.3 Minimum, Average & Maximum Evacuation Times

To further compare the evacuation times produced, the minimum, average and maximum times
were plotted (Figure 5-20). This again showed numerically and visually that the range in
evacuation times produced for each overall population type had increased when compared to
the previous tests. This meant that the groups and walking speed ratio were impacting
evacuation time. Overall, it was found that the minimum evacuation times could be attributed
to groups of three or four agents for each population type. It is believed that this was caused by
the fact that there were far fewer groups of three or four, particularly when split across the
population types, and therefore their place in the model was less likely to be at the extents so
despite their walking speed being greatly reduced, the distance to travel was much lower
resulting in a lower evacuation time. Interestingly, the maximum evacuation times were also
attributed to groups of four agents, so when groups of agents were placed at the extent of the
model, the distance to travel increased combined with a reduced walking speed meant the
evacuation times were increased. The total population size did not significantly impact
evacuation times, however in this instance as the population size was only 1000 agents, the
spatial variability of the placement of agents and the number of different agent types has
impacted the minimum and maximum evacuation times. The computational efficiency of the
model was greatly reduced with the introduction of additional variables, which is the reason a
smaller total population size was selected as well as the previous tests demonstrating that total
population size did not significantly affect evacuation times. However, it does still highlight the

need to include a range of walking speeds and population characteristics in order to produce
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accurate evacuation times. To reduce the spatial variability, the model user could run additional

tests or increase the total population size if additional computational power were available.
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Figure 5-20 — Minimum, Average and Maximum Evacuation Times for Agents with Varied Walking Speeds by
Age and Sex, Grouping Applied and a Walking Speed Ratio, for each population type: Mean (Standard
Deviation), Children: 104.3 minutes (8.38 minutes), Male Adults: 68.4 minutes (4.09 minutes), Female Adults:
80.77 minutes (3.89 minutes), Male OAPs: 93.53 minutes (9.52 minutes) and Female OAPs: 96.85 minutes
(12.78 minutes)

5.3.4 Comparison to 1.34m/s (3mph) Model

Finally, the various population characteristics have been compared to the 1.34m/s (3mph)
model to understand their impact on evacuation time. This included the varied walking speeds
by age and sex, the grouping of agents and walking speed ratio. The 1.34m/s (3mph) model
also included the grouping of agents and walking speed ratio for comparison purposes. Three
comparisons were completed (1) all agents walking at 1.34m/s (3mph) but with grouping
applied vs. varied walking speeds by age and sex with grouping of agents, (2) all agents walking
at 1.34m/s (3mph) with grouping applied vs. varied walking speeds by age and sex with
grouping of agents and a walking speed ratio applied, and (3) all agents walking at 1.34m/s
(3mph) with grouping and a walking speed ratio applied vs. varied walking speeds by age and
sex with grouping of agents and a walking speed ratio applied.

For the first comparison, the time differences range between 0% — 106%, for the second 2% —
143% and the third from 1% - 109% (Table 5-10). The average time difference was greatest
(71%) when comparing the 1.34m/s (3mph) model with groups with the varied walking speeds
plus grouping and walking speed ratio (Table 5-10). This was to be expected as there were

fewer factors applied to the 1.34m/s (3mph) model, which is a truer representation of existing
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agent-based evacuation models. However, it does demonstrate that there were still time
differences present between the 1.34m/s (3mph) model with all factors applied when compared
to the varied walking speed with all factors applied, meaning the evacuation times produced
would still be misleading. Alternatively, this all indicates that there would be a benefit of
emergency planners continuing to use a standardised (e.g. 1.34m/s (3mph)) speed provided
additional characteristics were used, although this would still underestimate evacuation times

it would be by a smaller factor.

Table 5-10 — Comparison of % Difference in Evacuation Time (minutes) with Varied Walking Speeds, Groups
and Walking Speed Ratio applied compared with all agents walking at 1.34m/s showing (in second column) the
difference between the 1.34m/s model with grouping added in and agents adopting varied walking speeds by age
and sex with grouping, (in the third column) the difference between the 1.34m/s model with group added in and
agents adopting varied walking speeds by age and sex with grouping and a walking speed ratio applied, (in the

fourth column) the difference between the 1.34m/s model with group and walking speed ratio added in and
agents adopting varied walking speeds by age and sex with grouping and a walking speed ratio applied
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4 D 4 D
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a O peed a O peed -
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O dll( Oup al'lel Oup al'lel .
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Oup Ratio
Single Children 67% 60% 56%
Single Male Adults 0% 2% 2%
Single Female Adults 25% 22% 21%
Single Male OAPs 81% 83% 78%
Single Female OAPs 85% 61% 64%
Child Couples 76% 106% 75%
Male Adult Couples 2% 12% 7%
Fergifp'::“" 20% 32% 24%
Male OAP Couples 81% 118% 90%
Fercnslilcgfp 74% 97% 85%
Child Triplets 62% 96% 38%
Male Adult Triplets 9% 32% 5%
Fema_le Adult 19% 29% 9%
Triplets
Male OAP Triplets 80% 126% 67%
Female OAP Triplets 97% 121% 109%
Child Quads 43% 102% 67%
Male Adult Quads 2% 20% 1%
Female Adult Quads 18% 48% 29%
Male OAP Quads 106% 107% 57%
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Female OAP Quads

55%

143%

109%

AVERAGE

50%

71%

50%

To complete the comparison, the five main population types needed to be assessed, to

understand the impact on evacuation times. This was again produced by taking the slowest

evacuation time from each of the 10 simulation runs and averaging to produce an evacuation

time estimate, before calculating the time difference. In comparison, the data showed that the

greatest time differences were between the 1.34m/s (3mph) model with groups compared with

the varied walking speed with grouping and walking speed ratio applied (Figure 5-21).

Followed by the time differences between the 1.34m/s (3mph) model with all factors applied

and the varied walking speeds with all factors applied. This clearly demonstrates the benefit of

including additional population characteristics within an agent-based evacuation model if a user

wants to produce accurate evacuation times.
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Figure 5-21 — Comparison of % Difference in Evacuation Time with Varied Walking Speeds, Groups and
Walking Speed Ratio Included for Main Population Groups (Children, Male Adults, Female Adults, Male OAPs
and Female OAPs. Comparison 1 = 1.34m/s (3mph) walking speed with grouping and walking ratio applied vs.
Varied Walking Speeds by age and sex with grouping and walking speed ratio applied, Comparison 2 = 1.34m/s

(3mph) walking speed with grouping applied vs. Varied Walking Speeds by age and sex with grouping and

walking speed ratio applied, Comparison 3 = 1.34m/s (3mph) walking speed with grouping applied vs Varied
Walking Speeds by age and sex with grouping applied.
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5.4 Macroscale Model Testing Summary

The testing of the macroscale city evacuation model has demonstrated that including population
characteristics (based on age and sex), varied walking speeds, grouping of agents and a walking
speed ratio improves the robustness of the evacuation simulation when compared to existing
evacuation models, which contain fewer or none of these variables. The addition of population
characteristics based on age and varied walking speeds has shown an average evacuation time
difference of 45% (Table 5-11). The further addition of population characteristics with sex
considered has shown an average time difference of 46% (Table 5-11). This showed there was
little difference between using population characteristics based on age or those based on age
and sex, so where computational efficiency was an issue, the population characteristics could
be reduced without impact. However, if additional variables were to be introduced such as

grouping or the walking speed ratio, it is beneficial to split the population by age and sex.

The final addition of groups and a walking speed ratio has revealed an average time difference
of 70% (Table 5-11). This clearly identifies the benefits of including supplementary variables
in an agent-based evacuation model, these were the average time differences, which if broken
down further show that the slower agent types (children and OAPS) were more significantly
impacted by the introduction of these factors. With the addition of varied walking speeds by
age or age and sex, the slowest population type’s evacuation times were mis-calculated by
between 67% - 83% (Table 5-12). The addition of the grouping and walking speed ratio saw
the miscalculation jump higher still with differences of 92% and 109% (Table 5-12). Hence, if
a user wishes to produce realistic and robust time estimates for an evacuation, it is necessary to
consider a wider range of human behaviours and to effectively capture these within a model,
else risk producing misleading results which could result in additional fatalities and injuries due

to the inability to evacuate in time.

Table 5-11 — Comparison of the Average Results produced from Tests 1 — 3 with the Macroscale City
Evacuation Model based on the addition of population characteristics, walking speeds, grouping and a walking
speed ratio

Population Data Population Walking Population Groups Walking Compared

Types Speeds  Types of Speed to:

(Age) (Sex) Agents Ratio
Newcastle 45%
East Devon 46% 1.34m/s
Slough 44% (3mph) Model
Tower Hamlets 44%
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Tokyo 48%

Johannesburg 44%

Seoul 45%

Newcastle 45%

East Devon 47%

Slough 46%

Tower Hamlets 42% L.34m’s
(3mph) Model

Tokyo 49%

Johannesburg 44%

Seoul 47%

Newcastle +70% 1.34m/s
(3mph) Model
with Groups

Newcastle +50% 1.34m/s
(3mph) Model
with  Groups
and Walking
Speed Ratio

Table 5-12 — Comparison of the Worst Case Results produced from Tests 1 — 3 on the Macroscale City
Evacuation Model based on the addition of population characteristics, walking speeds, grouping and a walking
speed ratio

Population Population Walking Population Groups Walking Comp

Data Types Speeds  Types (Sex) of Speed
(Age) Agents Ratio
Newcastle 70% - OAPs
East Devon 73% - OAPs
Slough 67% - OAPs & Children
1.34m/
Tower 71% - Children ms
(3mph)
Hamlets
Model
Tokyo 76% -OAPs
Johannesburg 70% -Children
Seoul 73% - OAPs
Newcastle 75% - Female OAPs 1.34m/s
East Devon 81% - Female OAPs (3mph)
Slough 75% - Female OAPs Model
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Tower 69% - Children

Hamlets

Tokyo 83% - Female OAPs

Johannesburg 71% - Female OAPs

Seoul 76% - Female OAPs

Newcastle 109% - Male OAPs 1.34m/s
(3mph)
Model with
Groups

Newcastle 92% - Female OAPs 1.34m/s
(3mph)
Model with
Groups and
Walking
Speed Ratio

The macroscale evacuation model has successfully produced a series of evacuation time
estimates for a range of population characteristics, walking speeds, groups of agents and applied
a walking speed ratio. This has resulted in estimates that are more robust for times to evacuate
an area of a city. However, to further improve the model’s time estimates the spatial variability
needs to be improved, capacity and congestion needs to be factored into the model and the
model environment needs to be streamlined where possible. On top of this further validation
needs to be carried out against real-world data or experiments to understand how realistic the

time estimates produced are.

On top of this, despite the successes of the macroscale evacuation model, intricate human
behaviours have not been fully captured such as passing on a pavement or a more complex
interactions at a junction. To further increase the robustness of the model, these behaviours need
to be captured within the model environment, to understand their impact on evacuation timings

and the impact on capacity and congestion within an evacuation scenario.
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Chapter 6. Microscale Model Setup

The previous chapters have demonstrated the need to robustly capture human behaviour within
agent-based evacuation models. A macroscale agent-based model was created based on the city
of Newcastle, to explore the inclusion of additional behaviour traits and their effect on
evacuation timings. The model showed that the inclusion of population characteristics, varied
walking speeds, groups of agents and reduction in walking speed for these groups produced
more accurate evacuation timings for a city. It also demonstrated that current evacuation
models may generate misleading evacuation times. However, the macroscale model could not
capture the small intricate behaviours regarding congestion and capacity, which may have a

further impact on evacuation timings.

This chapter will explore the creation of two microscale agent-based models (one consisting of
a straight length of pavement and the other a crossroads) to understand the impacts of including
capacity of corridors and multi-directional agent movement within the model environment. The
models will again be created using Netlogo, for the reasons previously identified. The
modelling outputs have been tested to ensure the rulesets used produce robust behaviours. The
proposed testing regime has been set out alongside the anticipated outcomes of each test.
Validation, calibration, and verification of the model has also been considered to ensure the
validity of the model proposed.

6.1 Microscale Model (Pavement Model)

The first microscale agent-based model will investigate the interactions of humans when
walking along a straight segment of pavement, specifically all agents moving in one direction
with the ability to overtake slower agents. The model is again created using Netlogo software,
as this is a grid-based system rather than continuous space, the pavement model is defined as
a series of “lanes” (which agents walk along) rather than identifying one area for the agents to
move freely within. The number of lanes, forming the pavement, can be varied to alter the
overall width of the pavement (e.g. modelling a small lane to a large walkway). The aim of
this model is to understand how people move along a pavement, in particular how agents
overtake each other and how this is influenced by factors such as: the width of the pavement,
the walking speeds of individuals and the population density.

The model is not based on any specific segment of pavement and is instead a generic

representation, the maximum dimensions of which are 10 lanes wide by 1km long. The model
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can be used to calculate a travel time over the 1km length. In smaller cities such as Newcastle,
the main shopping street is approximately 500m long, whereas larger cities like London,
Manchester & Edinburgh they are 1km or longer. The 1km length is chosen as a mid-point
between shorter and longer shopping streets in the UK (Table 6-1), and also provides sufficient
length to display the agent behaviours, for example the model will attempt to capture
overtaking behaviours which includes a varied patience level (i.e. how long would a faster

walker wait behind a slower agent before attempting to overtake).

A standard pavement width in the UK is defined as 2m wide and the minimum road width is
4.8m, it is assumed that pedestrians primarily use a pavement when available; however, in
stress situations such as evacuations, pedestrians are likely to move into using the road width
to evacuate an area as quickly as possible (Table 6-2). As previously discussed in Chapter 3,
section 3.4.2, all humans have a preferred interpersonal distance, which is the distance between
themselves and another person, this can be varied depending on the situation, and how well the
people know each other and whether the country is a contact or non-contact country. To
understand the number of lanes required to form the width of a pavement in the model
environment, the interpersonal distance as defined by Hall (1966) is used to find out the
approximate number of lanes that would fit within a standard pavement and minimum road
width (Table 6-2). The lower estimate for each of the distance categories (intimate, social and
public) has been taken from Hall’s (1966) interpersonal distances and does not consider the
person’s location. Using Hall’s (1966) distances, the number of lanes can range from one to
ten lanes, as shown in Table 6-2; hence, it was decided to make this the upper and lower bounds
for the number of lanes variable in this model. However, this model will only investigate three
to five lanes as this would accommodate the grouping previously included in the city scale
evacuation model. However, it is worth noting that this model does not include grouping in the
same manner as the macroscale model, as the aim of this model is to capture the movement of
individuals and understand the influence of the pavement width, walking speeds and patience

for example.

Table 6-1 — Approximate Lengths of UK Shopping Streets (Google Maps, 2020)

Street ‘ Location Length (m)
Northumberland Street Newcastle 480
Oxford Street London 960
Deansgate Manchester 1127
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Royal Mile

Edinburgh

1810

Table 6-2 — Number of People on Pavements & Roads (rounded to the nearest whole number) based on
Interpersonal Distance as defined by (Hall, 1966), (Baldassare & Feller, 1975) & (Sorokowska, et al., 2017),
Road and Pavement Dimensions interpreted from Manual for Streets and Highway Design Guide (Department

Interpersonal Distance

for Transport , 2007)

Number of People on:

Hall, 1966 | Distance (m) | Standard Width Pavement Minimum Width Road
(2m) (4.8m)

Intimate 0.46 4 10

Personal 1.22 2 4

Social 2.10 1 2

6.1.1 Model Description

The aim of this model is to explore the impact on travel time of: (1) agents overtaking each
other on a pavement, (2) varying population density, (3) introducing a patience level for agents,
(4) the variation of pavement width, and (5) including varied walking speed by age and sex.
To achieve this, the model will include several variables, which are a mixture of previously
defined variables taken from the macroscale model and new parameters introduced to simulate

intricate human behaviours.

Table 6-3 — Microscale Pavement Model Variables

Defined in:

Chapter 4 (Table 4-1) & 5 (Table 5-2 and Figure 5-2)
Chapter 4 (Table 4-1) & 5 (Table 5-2)

New Variable

Variable

Population Types & Distribution

Walking Speeds

Patience

No of Lanes New Variable

The previously defined variables, such as the population distribution and walking speeds are
set out fully in Chapter 4 and 5, which allows the user to simulate a mixture of populations and
walking speeds. A series of typical variables are suggested to the user, based on UK data and
literature (Table 6-4).

To complement the previous variables, several new variables are included, specifically the
population density, the number of lanes within the model environment and patience level of

each agent. These variables are specifically included to help simulate the movement of agents,
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particularly when overtaking slower agents. The number of lanes variable is created to simulate
a range of pavement widths (allowing for comparison) and will be varied between three to five
lanes of agents (Table 6-2). The population density is introduced to remove the inconsistency
of initial agent placement caused when using a total population size, as was the case with the

macroscale model.

In this model, the aim is to capture a population moving along a pavement, to do this accurately,
there is a need to allow the agents to overtake. From observations of a typical pavement, it is
easy to see that it is not always possible to pass another person immediately and there may be
time waiting to find a suitable gap to pass. In some instances, a person will slow to the speed
of the slower individual, whilst others will seek the first possible opportunity to overtake and
continue at their preferred speed. This can be interpreted as a level of patience, the person
willing to wait will have a high level of patience whereas the individual looking for the first
opportunity to overtake will have a low level of patience. In stress situations, such as an

evacuation it can be assumed that the levels of patience would be decreased to zero.

In Chapter 3, multiple human behaviours were set out, which included crowd behaviour and
the aggression that may be present. One study suggested the inclusion of a panic parameter, to
capture the panic involved in an evacuation scenario (Helbing, et al., 2000), the inclusion of
which may provide more robust evacuation simulations. Using the principle of the panic
parameter i.e. a random numerical value assigned as a level of panic, the patience level is
created within this model. There is no literature to guide the patience level values and this
would be outside the scope of this study, instead the variable is being used to assess the impact
on overall behaviour and travel times along the pavement. The patience level of the agents
demonstrates the frustration an individual or at times a crowd may experience, which is often
heightened during stress situations. The patience level included in this model is effectively
equivalent to the number of time steps an agent will wait behind a slower agent before
attempting to move around another agent to an empty lane. A low patience level means an
agent will seek to change lanes more often than an agent with a high patience level. To model
this, each agent starts with a level of patience (assigned as a numerical value), which reduces
to zero when they are behind a slower agent (losing one point each time step). When the
patience level reaches zero, the agent will look either side for a gap to move into. If there is no
space available the agent will not move and will continue behind the slower agent at their speed,
whilst continually looking for an available gap. If there is a space available, the agent will

change lanes, accelerate back to their original chosen speed and reset their patience value
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(Figure 6-1). It should be noted that the model has not attempted to capture the pushing and
shoving that may occur during panicked scenarios. This is primarily due to the constraint of
Netlogo’s gridded cell system which does not all true free movement of the agents in the model.
Without the free movement, it is difficult to allow the pushing and shoving to occur as agents
need to base their movement decision on the space ability in their surrounding cells. The user
has the ability to alter the aggression within the crowd by setting low patience levels which
encourages agents to make more movement decisions and to overtake more frequently, which
is as close as this model can get to producing pushing and shoving that may occur. This
approach allows the user to find balance between “normal” scenarios i.e. no hazard event and

scenarios where hazards are present.
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Figure 6-1 — Number of Lanes Agent Movement Diagrams — An example of three agents interacting to
demonstrate the use of the new variables, this shows two slower agents (children) blocking the path of a faster
male adult agent (Figure 6-1(a)). Initially, the male adult has to identify that his path has been blocked, this is

done by looking one patch (i.e. step) ahead along the direction of travel, if an agent is present then the male
adult needs to slow down, so decelerates to the speed the children are travelling at (Figure 6-1(b)). This then
begins the patience level countdown; the patience level is only set at two, meaning the agent will attempt to
move after only two time steps of having a blocked path (Figure 6-1(c)). Once the patience level has reached
zero, the agent looks to identify which of the adjacent lanes are empty, in this example there is only one lane
empty (Figure 6-1(d)). If both lanes were empty, the agent chooses at random the direction of movement, as the
distance to travel is equidistant. On identifying the available lane, the male adult must accelerate back to their
top speed and into the new lane, whilst resetting his patience level (Figure 6-11 (e) and (f)).
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In the previous macroscale model, the agents were randomly assigned a starting location,
meaning it was difficult to compare the travel times produced, as the agents may not always be
placed at the model extents. This is particularly an issue when the population density is low as
each agent may not be placed at the positions furthest from the exit location, which can produce
unrealistic differences in travel time. To alleviate this, a series of agents (Bob (male adult),
Betty (female adult), Ben (child), Barry (male OAP) and Barbara (female OAP)) are created
on home squares so their starting location are constant in the pavement, this allows travel times

over the entire 1km length to be compared more effectively.

The model interface features the variables described, which can be set by the user, and the
representation of the pavement, shown by patches of grass and grey patches marked with lines
to delineate the pavement surface and different lanes (Figure 6-2 and Figure 6-3), which was
interpreted from existing Netlogo models available in the model library on traffic intersections
(Wilensky, 1997) (Wilensky & Payette, 1998). An exit (safety) is marked by a line of red
patches at the end of the 1km stretch, this can then be used to calculate the travel time of the
different agent types placed on home squares. There are also several counters displaying
population types and speeds, alongside a graphical output of the speeds, population levels and
number of people using each lane (Figure 6-2). Once the setup of the model is complete, the
user uses the “go” button to simulate the pavement. A diagrammatic flowchart of the running
procedure for the user to set the variables (Figure 6-4) and an agent thought process (Figure

6-5) in the model environment have been detailed.

Table 6-4 — Microscale Pavement Model Typical Values for User Variables

Typical Variable Values

Variable Typical Value Data Source
Population Density 0.5 N/A
Children = 18% UK Average Population
Male Adults = 32% splits (Office for National
Population Types Female Adults = 33% Statistics, 2014)

Male OAPs = 8%

Female OAPs = 9%
Children = 0.8m/s (1.8mph) Values combined from
Walking Speeds Male Adults = 1.34m/s (3mph) literature (Bosina &
Female Adults = 1.12m/s (2.5mph) | Weidmann, 2017) (Rastogi,
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Male OAPs =0.78m/s (1.74mph) | et al., 2011) (Schimpl, et al.,
Female OAPs =0.76m/s (1.7mph) | 2011) (Silva, et al., 2014)

Patience 2 N/A

No of Lanes >3 N/A
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Figure 6-2 — Pavement Example Congestion Model User Interface
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Set Model Variables

Population Density Value: 0 —0.95
(population-density) (Represents the number of patches occupied in the
model)
Evacuation Population Split Value: 0 -1
(no-of-children, no-of-male-adults, no-of-female-adults,  (Represents percentage e.g. 0.01 = 1%, the 5 parameters
no-of-male-oaps, no-of-female-oaps) must sum to 1)
Walking Speed of Evacuation Population Value: 0-1
(children-speed, male-adults-speed, female-adults- (Represents speed in m/s, allows for running as well as
speed, male-oaps-speed, female-oaps-speed) walking speeds, can all be the same value or different)
Patience Level Value: 1 - 100
(max-patience) (Represents the number of times steps an agent will wait
behind another agent before attempting to switch lanes)
Number of Lanes Value: 0 - 10
(no-of-lanes) (Represents the number of lanes created)

Creates the agent population based on
the variables set by the user 5

. Runs the model with the user’s agent
: population :

Figure 6-4 — Lanes Model User Variables
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6.2 Pavement Model Initial Check

It is important to ensure that the microscale pavement model not only produces robust travel
time estimates but also observes the behaviour of agents, to ensure this is replicating the desired
human behaviours. Several observations can be carried out to verify the anticipated behaviours,
such as, (1) are agents travelling within their lanes, (2) are agents capable of switching to
alternate lanes, and (3) once an agent has switched lane are, they correctly placed in a lane.
Following these observations, the minimum travel times can be calculated to carry out a further

validation check.

The aim of this validation check is to ensure that the microscale pavement model is producing
robust travel time estimates which are not less than the minimum possible exit time of the
model. The pavement is not based on a specific pavement; hence it is not possible to validate
the model using real-life data. Instead the minimum possible distance for each of the population
types from their home squares have been calculated and an evacuation time calculated from the
distance (e.g. speed = distance/time) (Table 6-5).

Table 6-5 — Minimum Calculated Evacuation Times from Microscale Pavement Model

Population Type Distance (m)  Speed (m/s)  Time (minutes)
Child (Ben) 990 0.80 20.8
Male Adult (Bob) 980 1.34 12.4
Female Adult (Betty) 980 1.12 14.9
Male OAP (Barry) 990 0.78 21.4
Female OAP (Barbara) 990 0.76 21.9

The calculated minimum travel time and the model travel times can be plotted on a scatter graph
(Figure 6-6). This shows that all the travel times achieve either the minimum calculated travel
time or greater; all the travel times are above the green line (Figure 6-6). The difference between
the calculated minimum travel time and the model travel time can be calculated and averaged
for all the runs completed. This can be plotted and shows that the slower population types
(children and OAPSs) do not have much variation from the minimum calculated travel times,
whereas the faster agents (male and female adults) have greater variations. This will be
investigated with further modelling testing in Chapter 7 but demonstrates that the model is

producing congestion and considering the capacity of the pavement.
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6.3 Proposed Pavement Model Testing

As previously discussed in Chapter 4, Section 4.2, calibration, verification and validation are
key components of a robust agent-based model. The proposed structural validation is one
approach to ensuring that a model produces the anticipated behaviours and to ensuring it is
accurate. Before any testing of the models can occur, calibration checks should be undertaken
to check the model’s validity. Then a series of tests will be undertaken to understand which

variables primarily affect the evacuation times.

6.3.1 Microscale Pavement Model Proposed Testing

An initial calibration check will be completed to ensure that the evacuation times produced are
realistic estimates. The pavement is not based on any specific pavement, so it is not possible to
compare the travel times with real-life data or utilise route planners as done previously.
However, the distance travelled by the agent can be used to work out a minimum possible
evacuation time at 1.34m/s (3mph) and other speeds if required. Comparison to these figures
will then ensure that the agents are not exiting the model quicker than expected. A visual check
will also be undertaken to confirm that agents are passing each other as anticipated. The testing

schedule for the microscale pavement model will explore the effect of altering variables such
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as the number of lanes, population distribution, patience levels and population density (Table
6-6).

Table 6-6 — Proposed Testing Schedule for Microscale Pavement Model

Test No. | Variable(s) ‘ Research Questions

1A No of Lanes - How the variables (number of lanes, population
Patience Level density and patience level) can be used to create
Population congestion and capacity within an agent-based
Density pavement model

- If the width of the pavement (number of lanes)
influences the travel time of agents

- If the population density influences the travel time
of a pavement

- Ifavaried patience level can influence the overtaking

occurring and effect overall travel time

1B Comparison to - Understand if there are any travel time differences
the 3mph Model between current agent-based models of human
behaviour and the pavements model caused by the

introduction of additional variables

6.4 Microscale Model (Crossroads Model)

The second microscale agent-based model is to investigate the interactions of humans when
using a crossroads, specifically agents walking in two directions. The aim of this model is to
understand how people move along a pavement and interact at a crossroads, in particular how
agents overtake each other or give way to each other and how this is influenced by factors such

as: the width of the pavement, the walking speeds of individuals and the population density.

The model is not based on any specific crossroads and is instead a generic representation,
aiming to reproduce the complex interactions that occur when two or more people meet at a
junction. The maximum dimensions of which are 100m wide (10m per lane) by 500m long. The
model can be used to calculate a travel time over the 1km length. The maximum number of
lanes is 10 in each direction, which is the same as the pavement model, this model is effectively
two pavement models crossing at 90° to each other. The number of lanes can again be varied
to create different crossroad dimensions, this model will only test lane configurations between

three and five lanes. As with the pavement model, this model does not include any grouping
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which was considered in the macroscale model, as the aim of this model is to capture the

movement of individuals at a junction.

6.4.1 Model Description

The aim of this model is to explore the effect on travel time of: (1) agents giving way to each
other at the junction and of agents overtaking each other on a pavement, (2) varied population
density, (3) the introduction of patience, (4) the variation of pavement width, and (5) the
inclusion of varied walking speed by age and sex. To achieve this, the model needs to include
several variables, which are a mixture of previously defined variables taken from the
macroscale model and pavement microscale model plus new parameters introduced to simulate

intricate human behaviours at a junction.

Table 6-7 — Microscale Pavement Model Variables

Variable Defined in:

Population Types & Distribution | Chapter 4 (Table 4-1) & 5 (Table 5-2 and Figure 5-2)
Walking Speeds Chapter 4 (Table 4-1) & 5 (Table 5-2)

Population Density New Variable — Pavement Model

Patience New Variable — Pavement Model

No of Lanes New Variable — Pavement Model

South Exit Percentage New Variable

The previously defined variables, such as the population distribution and walking speeds are
set out fully in Chapter 4 and 5, which allows the user to simulate a mixture of populations and
walking speeds. A series of typical variables are suggested to the user, based on UK data and
literature (Table 6-8). The variables from the pavements model, population density, number of

lanes and patience level, are set out fully in Section 6.1.

To complement the previous variables, one new variable is included, south exit percentage.
This variable is specifically included to help simulate the movement of agents at the crossroads
in terms of their exit direction. The number of lanes and patience level variables, previously
created in the pavement model, are used to simulate a range of pavement widths (allowing for

comparison) and varied levels of frustration for individuals.

In this model, the aim is to capture a population interacting at a crossroads, to do this accurately,
there is a need to allow the agents to overtake and to give way to each other. The south exit
percentage is used to vary the number of agents exiting in each direction, to understand the

implications of all agents travelling in the same direction alongside agents travelling in two
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directions, hence increasing the need to give way. The variable can be altered between 0% and
100% exiting in the south direction. The chosen percentage is then used to allocate agent’s
directions when they reach the centre of the crossroads (marked as blue). The agent’s will be
assigned a random number on entry into the centre area, if this number is lower than the south
exit percentage then the agent will exit to the south and if higher, to the east. This also ensures
that the number of agents is equivalent to the percentage exit split, e.g. if there were 100 agents
with a south exit percentage of 25%, 25 agents would exit south and 75 would exit east. For
this model, five different exit splits will be tested to understand the implications of exit direction

on overall travel time (Figure 6-7).

(@) (b)

0% 25%

100% 75%

(d)

50% 75%

50% 2504
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Figure 6-7 — Possible Exit Splits for Crossroads
Microscale Model (a) all agents exiting to south, (b)
100%  25% agents to east and 75% south, (c) 50% east and
50% south, (d) 75% agents to east and (€)25% south
and | all agents exiting east

0%

An example of ten agents on a crossroads has been set out in Figure 6-8 to demonstrate the use
of the new variables, this shows five slower agents (children) interacting with five faster male
adult agents, all agents have been assigned a number to make it easier to follow their paths.
When agents reach the centre of the crossroads (marked as blue), their exit direction is assigned
at random. Initially, all agents can move forward in their desired directions and speeds apart
from agent 10, who has a blocked path, as described previously this begins the patience level
countdown for this agent (Figure 6-8(b)). In the next time step, the path of agent 7 is also
blocked, agent 10’s patience reaches zero, however, there is no available space to move to so
the agent must give way (Figure 6-8(c)). When additional agents reach the centre of the
crossroads, it creates additional congestion and the agents must give way to each other (Figure
6-8(d)). The agents continue along their desired paths, giving way to each other in the
crossroads and overtaking when necessary to avoid slower agents (Figure 6-81-(k)) until

reaching the exit location.
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In the previous macroscale model and microscale pavement model, the five population types
are all assigned a static home square, this will be recreated in this model too, with the home
squares placed on the northern arm. The model interface is also identical to the microscale
pavement model, other than that there are effectively two pavements at 90° to each other, with
a central blue crossroads area (Figure 6-9). The centre of the crossroads is shown as a blue area
as this allows agents to be assigned an exit direction, as previously outlined. In the same manner
as the macroscale model, a series of typical variables are provided to the user, they are based
on UK data and literature (Table 6-8). The model outputs the travel time recorded for each
population type and those placed on a home square initially. Once the setup of the model is
complete, the user uses the “go” button to simulate the pavement. A diagrammatic flowchart of
the running procedure for the user to set the variables (Figure 6-10) and an agent thought

process (Figure 6-11) in the model environment are detailed.

Table 6-8 — Crossroads Model Typical Values for User Variables

Typical Variable Values

Variable Typical Value Data Source

) ) N/A — gives good spatial
Population Density 0.5 S
variability in the model

Children = 18%

Male Adults = 32%
Female Adults = 33%
Male OAPs = 8%
Female OAPs = 9%

UK Average Population
splits (Office for National

Population Types Statistics, 2014)

Children = 0.8m/s (1.8mph)
Male Adults = 1.34m/s (3mph)

Values combined from

literature (Bosina &

Walking Speeds Female Adults = 1.12m/s (2.5mph) | Weidmann, 2017) (Rastogi,

Male OAPs = 0.78m/s (1.74mph) | etal., 2011) (Schimpl, et al.,

Female OAPs = 0.76m/s (1.7mph) | 2011) (Silva, et al., 2014)

) N/A — encourages a good
Patience 2
level of movement
) o N/A — allows for passing in

No of Lanes >3 in both directions

2 lanes in both directions

South Exit Percentage

50%

Creates an even split leaving
in each direction but does

not test the model extremes.
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Figure 6-9 — Microscale Crossroads Model Screenshot
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Set Agent Variables

Population Density Value: 0 —0.95
(population-density) (Represents the number of patches occupied in the model)
Evacuation Population Split Value: 0 -1
(no-of-children, no-of-male-adults, no-of-female-adults, no- ~ (Represents percentage e.g. 0.01 = 1%, the 5 parameters must
of-male-oaps, no-of-female-oaps) sumto 1)
Walking Speed of Evacuation Population Value: 0 -1
(children-speed, male-adults-speed, female-adults-speed, (Represents speed in m/s, allows for running as well as
male-oaps-speed, female-oaps-speed) walking speeds, can all be the same value or different)
Patience Level Value: 1 - 100
(max-patience) (Represents the number of times steps an agent will wait
behind another agent before attempting to switch lanes)
Number of Lanes Value: 0 - 10
(no-of-x-lanes, no-of-y-lanes) (Represents the number of lanes created in the x and y
direction)
% Leaving South Exit Value 0 - 100
(south-exit-percent) (Represents the percentage of agents will choose the south

exit of the model)

Creates the agent population based on
the variables set by the user

Runs the model with the user’s agent
population

Figure 6-10 — Microscale Crossroads Model User Variables
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6.5 Crossroads Model Initial Check

It is important to ensure that the microscale crossroads model not only produces robust travel
time estimates but also observes the behaviour of agents to ensure this is replicating the desired
human behaviours. Several observations can be carried out to verify behaviour traits, although
this is not checked against real-life data as the crossroad are just a generic representation of a
junction, some of which are similar to the previous pavement model, including: (1) are agents
travelling within their lanes left to right, (2) are agents capable of switching to alternate lanes,
and (3) once an agent has switched lane are, they correctly placed in a lane. Observations can
also be carried out to examine alternative behaviours only seen at the crossroads, (1) are agents
able to give way to each other at the junction, (2) does congestion occur around the crossroads
when agent numbers increase, (3) are agents capable of choosing alternative lanes to avoid
congestion. Following these observations, the minimum travel times can be calculated to carry

out a further validation check.

The aim of this validation check is to ensure that the microscale crossroads model is producing
robust travel time estimates which are not less than the minimum possible exit time of the
model. The crossroads is not based on a specific crossroads; hence it is not possible to validate
and verify the model using real-life data. Instead the minimum possible distance for each
population type (Ben, Bob, Betty, Barry, and Barbara) for the varied lane configurations is
calculated and a travel time calculated from the distance. The pathways for each agent are
calculated from their home square at the northern extents of the model to the safety zone in the
East and South. The journey’s distance is split into three parts: north (distance travelled on the
northern arm), the middle (the blue central crossroads area) and the south/east (distance
travelled on the eastern or southern arm) (Table 6-9). The distances needed to be calculated for
each possible lane configuration and each of the population types, as there will be differences
in the pathways and starting/end locations (Table 6-10). From the distances a travel time can be
calculated for each agent (e.g. speed = distance/time).

Table 6-9 — Example of Calculating the Minimum Pathways for each Population Type to Exit the Microscale
Crossroads Model

3 x 3 - South Exit 3 x 3 — East Exit
North | Middle | South | Total | North | Middle | East | Total
Ben 220 |50 220 490 (220 |30 220 | 470
Bob 210 50 220 480 210 10 220 440
Betty |[210 |50 220 480 [210 |50 220 | 480
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Barry | 220 50 220 490 | 220 50 220 490

Barbara | 220 50 220 490 | 220 10 220 450

Table 6-10 — Crossroads Calibration Check Minimum Distance Travelled for each Population Type to Exit
Microscale Crossroads Model

Lanes 3x3 ‘ 3x4 3x5
Exit Direction | South East South East South East
(m) (m) (m) (m) (m) (m)
Ben 490 470 490 460 490 450
Bob 480 440 480 430 480 420
Betty 480 480 480 470 480 460
Barry 490 490 490 480 490 470
Barbara 490 450 490 440 490 430
Lanes 4x3 ‘ 4x4 4x5
Exit Direction | South East South East South East
(m) (m) (m) (m) (m) (m)
Ben 490 480 490 470 490 460
Bob 480 450 480 440 480 430
Betty 480 470 480 460 480 450
Barry 490 500 490 490 490 480
Barbara 490 440 490 430 490 420
Lanes 5x 3 ‘ 5x4 5x5
Exit Direction | South East South East South East
(m) (m) (m) (m) (m) (m)
Ben 490 470 490 460 490 450
Bob 480 440 480 430 480 420
Betty 480 480 480 470 480 460
Barry 490 490 490 480 490 470
Barbara 490 450 490 440 490 430

The calculated minimum travel time and the model travel times can be plotted on a scatter graph
(Figure 6-12). This shows that all the travel times achieve either the minimum calculated travel
time or greater; all the travel times are above the yellow line (Figure 6-12). The difference
between the calculated minimum travel time and the model travel time can be calculated and

averaged for all the runs completed. This can be plotted and shows that the slower population
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types (children and OAPs) do not have much variation from the minimum calculated travel
times, whereas the faster agents (male and female adults) have greater variations (Figure 6-13
and Figure 6-14.
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Figure 6-12 — Microscale Crossroads Model Calibration Check — Scatter graph of calculated minimum travel
times (minutes) vs. model travel times (minutes)

The comparison of the calculated and computed times shows that when population density is
low, regardless of the other variables the difference is small, this is likely to be a result of the
low number of agents in the model and therefore lack of congestion. As population density
increases, the difference between the computed and calculated times also increases, this is
greater when the exit split percentage is lower i.e. agents need to change direction from north
to east rather than travelling north to south (Figure 6-14). The time differences are higher for
the male and female adults in the model regardless of the lane configuration, this is likely to be
caused by the congestion in the model, which affects the fastest agents the most. This suggests
that the model is capturing congestion and the passing of agents. This is backed up when
population density increases the time difference is greatest for male and female adults too
(Figure 6-13), which demonstrates that congestion is occurring, and capacity of the crossroads
is being captured. It will now be important to test the model further to better understand the
impact of the variables on influencing travel times. The calibration check has shown that the
variables can influence the travel time that the travel times produced are not below the
calculated minimum exit times and that capacity and congestion has been captured in the model

environment.
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Figure 6-14 — Average Travel Time Difference between Calculated Minimum Model Times and Computed Model
Times by Exit Split Percentage

6.6 Proposed Testing and Calibration, Verification & Validation

6.6.1 Microscale Crossroads Model Proposed Testing

It is important to carry out an initial calibration check to ensure the travel times produced by
the model are realistic. The crossroads created was not based on a specific road junction so real-
life times to travel the crossroads cannot be used to calibrate the model. Instead the minimum

possible time to exit the crossroads will be calculated for each available pathway for each of
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the five agents (Bob, Betty, Ben, Barry, and Barbara). This will be done by calculating the
distance travelled and then dividing it by the agent’s speed, to produce a travel time estimate.
This will provide a check to ensure that agents are not exiting the model quicker than the
minimum possible travel time and to ensure that the agents are moving in the model as
anticipated. An observational check will also be carried out to ensure that the model is
performing as expected, e.g. are agents moving to their assigned exits, are agents moving in
their correct lanes and able to overtake, is the patience function still working.

After completing the calibration check, further tests will be run with the model to understand
the effect of altering the variables such as population density, lane configuration and population
distribution (Table 6-11). The model will also be compared to existing agent-based models,

which feature only 1.34m/s (3mph) walking speeds and no other variables.

Table 6-11 — Proposed Testing Schedule for Microscale Crossroads Model

Variable(s) Research Question

1A No of Lanes - How the variables (crossroad configuration,
Population Density population density and exit lane split) can be used to
Exit Split create congestion and capacity within an agent-based

crossroads model

- If the width of the crossroads (number of lanes)
influences the travel time of agents

- If the population density influences the travel time of a
crossroads

- If avaried exit split can influence the number of agent

interactions and effect overall travel time

1B Comparison to the - Understand if there are any travel time differences
1.34m/s (3mph) between current agent-based models of human
Model behaviour and the crossroads model caused by the

introduction of additional variables

6.7 Microscale Model Summary
Two microscale models one of a straight length of a pavement and one of an intersecting
crossroads are created, which are not based on any specific streets but instead generic

representations. The models feature several variables which are the same as the macroscale
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model such as population types and walking speeds as well as several new variables which are:
population density, number of lanes, patience and exit split percentage (crossroads model only).
The aim of these models is to consider capacity and congestion within an agent-based model,
with better representation of more intricate human behaviour traits such as overtaking and
giving way. Calibration, validation, and verification is important to ensure the model is robust.
The two microscale models have both been successfully developed to calculate minimum exit
times, which could then be compared with the model simulations. A visual inspection of the
simulations was conducted to validate that the agents moved as expected in the model
environment, for example exhibiting overtaking and giving way to other agents. The proposed
testing regime for the microscale models has been set out and must test the different pavement
characteristics i.e. varying the number of lanes, population density and patience level and for
the crossroads the additional characteristic of exit split percentage. In the next chapter, these
tests will be completed, and comparisons will be made to existing agent-based models to
understand the impact of including additional variables on exit timings and the inclusion of
capacity and congestion within the model environment. The test results will be explored

comprehensively in Chapter 7.
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Chapter 7. Microscale Model Testing

In Chapter 6, the microscale model of the pavement and crossroads were created and combined
with rulesets capturing robust human behaviour and capacity, including checks to ensure the
behaviours had been validated. In this chapter, these microscale models will be tested to check
the human behaviour parameters are appropriate representations of the anticipated human
behaviours and to understand whether it is possible to include capacity within an agent-based
model. The testing will focus on population data as a UK average as the macroscale model
demonstrated that the population distribution was not a primary contributor to increases in
evacuation time (see Chapter 5, section 5.3.7). The microscale models will not include the
addition of groups of agents or a walking speed ratio, as these models are focused on the
behaviour of individuals and how they react to others. Finally, conclusions will be drawn as to

the benefits of incorporating additional robust behaviours in the microscale models.

7.1 Testing Schedule

Both the pavement and crossroads model have been validated using an observational check of
behaviours and through the comparison of travel times with the minimum possible model exit
times calculated using the distance of the agent’s shortest exit paths (Section 6.2 and 6.5). On
completion of this it was then necessary to test the models to understand the effect of including
robust human behaviour rulesets. These tests were focused on the addition of reactive human
behaviours to capture the capacity and congestion of a pavement and crossroads. The population
distribution data used in both models was based on the UK average (Figure 5-2(b)). Alongside
this, the varied walking speeds by age and sex identified in the macroscale model were
replicated in both the pavement and crossroads model (Table 4-1). In this Chapter, we will run
a series of tests to assess the introduction of the variables being used to create reactive human
behaviours (Table 7-1).

Table 7-1 — Proposed Testing Schedule for Microscale Pavement & Crossroads Models

Pavement

Variable(s) Research Questions
No of Lanes If the width of the pavement (number of lanes) influenced
the travel time of agents.

2 Population - If the population density influenced the travel time of a
Density pavement.
3 Patience Level - Ifavaried patience level influenced the overtaking occurring

and effected overall travel time.
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4 Comparison to - Understand if there were any travel time differences between
the 1.34 m/s current agent-based models of human behaviour and this
(3mph) Model pavement model caused by the introduction of additional

variables.
Crossroads
Variable(s) Research Questions

1 No of Lanes - If the width of the crossroads (number of lanes) influences

the travel time of agents.

2 Population - If the population density influences the travel time of a
Density crossroads.

3 Exit Split - If a varied exit split can influence the number of agent

interactions and effect overall travel time.

4 Comparison to - Understand if there are any travel time differences between
the 1.34m/s current agent-based models of human behaviour and the
(3mph) Model crossroads model caused by the introduction of additional

variables.

7.2 Pavement Testing

7.2.1 Test Aim & Variables

The initial testing of the pavement was based on the number of lanes in the pavement, the
population density and the utilisation of patience level. The aim of this test was to ascertain
whether the: (1) number of lanes in the pavement, (2) population density, and (3) application
of a patience level had any effect on the travel time of agents over a given pavement length of
1km. Within the test, two different scenarios were conducted to assess the overall impact on
travel time: (1) all agents walk at the same speed (1.34m/s or 3mph) and (2) varied walking
speeds by age and sex. These scenarios were run with several numbers of lanes to alter the
pavement width (3, 4 and 5) referred to as Test 1, a range of population densities (0.1, 0.3, 0.5,
0.7 and 0.9) referred to as Test 2 and different patience levels (1, 5, 10, 25, 50 and 100) referred
to as Test 3 (Table 7-2), the test variations have been set out in Figure 7-1. The comparison
between the 1.34m/s (3mph) model and varied walking speeds is discussed in Test 4. To
understand the variability in the results, each set of variables and the varied walking speed
scenario will have 10 realisations, this results in 900 sets of travel times for this test (Table 7-3),
which can then be averaged for comparison purposes. The comparison to the 1.34m/s (3mph)
model will be completed using calculated simulations using the distances travelled by agents

rather than run as simulations.
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Table 7-2 — Microscale Pavement Model Variables for Test 1 (For the walking speeds: C = Children, MA =
Male Adults, FA = Female Adults, MO = Male OAPs and FO = Female OAPS)

Variables 1.34m/s (3mph) Varied Walking Speed by age

Walking Speed and sex

Population Makeup C = 18%, MA = 32%, FA = 33%, MO = 8% and FO = 9%
= Children
m Male Adults
= Female Adults
= Male OAPs
= Female OAPs
Population Density 0.1,0.3,0.5,0.7,0.9
Walking Speed (Bosina | All =1.34 m/s (3mph) | C =0.8 m/s (1.79mph)
& Weidmann, 2017) MA = 1.34 m/s (3mph)
FA =1.12 m/s (2.5mph)
MO =0.78 m/s (1.74mph)
FO =0.76 m/s (1.70mph)
Number of Lanes 3,4,5
Patience Level 1,5, 10, 25, 50, 100

Table 7-3 — Total Number of Results Expected from Test 1

No. of
3 Lanes 4 Lanes 5 Lanes Total
Lanes

0.1 030 01,03 05 07 09 01 03 05 0.7 09

Population
Density
1 10 | 10 | 10 | 10 10 | 10 | 10
5 10 (10 |10 |10 |10 {10 |10 |10 |10 |10 |10 |20 |10 |10 |10 | 150
10 10 |10 |10 (10 |10 |10 |10 |10 |10 {10 |10 |10 |10 |10 |10 | 150
25 10 (10 |10 |10 |10 {10 |10 |10 |10 |10 |10 |10 |10 |10 |10 | 150
50 10 {10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 | 150
10 (10 |10 |10 |10 {10 |10 |10 |10 |10 |10 |10 |10 |10 |10 | 150

Total Number of Simulation Runs = 900

Patience Level

215



Population Makeup

Walking Speeds

No. of Lanes

Density

Patience

Test 1 — Pavement: Number of Lanes, Population Density, and Patience

UK Average
Population Split
Children 18%
Male Adults 32%
Female Adults 33%
Male OAPs 8%
Female OAPs 9%

Agents Walking Speed by
age and sex:
All agents 1.33m/s Children 0.8m/s

walking speed Male Adults 1.33m/s
Female Adults 1.12m/s

Male OAPs 0.78m/s
Female OAPs 0.76m/s

Number of Lanes
4

Population Density
0.5 0.7

Patience Level
1 5 10 25 50 100

Figure 7-1 — Testing Regime for Test 1
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7.2.2 Average Travel Times

After completing the simulations for the varied walking speeds by age and sex with the defined
variables (number of lanes, population density and patience level), the averaged evacuation
times for each population type were compiled (Table 7-4). These results show that there were
a range of travel times produced when the variables were considered, demonstrating that the
model may be successfully reproducing congestion and reactive agent behaviours. However,
it was important to understand if this was an impact of population density, patience level, and
the width of the pavement or a combination of these factors. When walking speeds are all the
same, there was little variation seen in the averaged travel times, standard deviation is 0.07
minutes. Unlike the varied walking speeds, which showed there was large variations for the
male and female adults, (approximately 30-40% difference between the minimum and
maximum times recorded for these population types), suggesting that the model has been
impacted by the variables (Table 7-4). It is important to ascertain from this whether there is a
primary variable influencing travel times or a combination required to produce congestion
within the microscale pavement model.

Table 7-4 — Average, Minimum, Maximum and Standard Deviations for each population type for all 900

simulation runs with varied walking speeds compared to the Average, Minimum, Maximum and Standard
Deviations for the calculated simulations with all walking speeds the same 1.34m/s (3mph)

Varied Walking Speeds by Age and Sex

_ Minimum Average Maximum  Standard Deviation
Population Type _ _ . .
(minutes) (minutes) (minutes) (minutes)

Children 20.72 20.92 21.60 0.24
Male Adults 12.28 17.06 21.09 2.75
Female Adults 14.67 17.92 21.19 2.08
Male OAPs 21.25 21.33 21.69 0.11
Female OAPs 21.80 21.83 21.95 0.03

All Walking Speeds the Same

Minimum Average Maximum  Standard Deviation

Population Type

(minutes) (minutes) (minutes) (minutes)
All 12.19 12.26 12.31 0.07

A plot of all simulation travel times (900 in total) was also compiled to show the variation
(Figure 7-2). This shows the fluctuation in the times produced for male and female adults, the
standard deviation for male adults is 2.75 minutes and female adults is 2.08 minutes, but the
relatively static travel times for the slower agents (children, male and female OAPs), with
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standard deviations around 0.03 — 0.24 minutes. This suggests the children and OAPs are
successfully slowing the adult agent types and causing congestion in the model (Figure 7-2) but
there is a need to understand if there is a particular variable that influences the travel times or a
combination required to cause congestion.
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Figure 7-2 — Average Travel Time (minutes) for all Pavement Simulations, Simulation No. is arbitrary (for each
of the simulation numbers, there are 10 simulation runs averaged to produce a single value, equating to 900
simulations in total), for each population type: mean (standard deviation), Children: 20.92 minutes (0.24
minutes), Male Adults: 17.06 minutes (2.75 minutes), Female Adults: 17.92 minutes (2.08 minutes), Male OAPs:
21.33 minutes (0.11 minutes) and Female OAPs: 21.83 minutes (0.03 minutes)

7.2.3 Test 1 — Effect of Pavement Width

In this section, the effect of the pavement width is explored, it has been demonstrated in Chapter
6, that a range of pavement widths can be anticipated in any city and depending on the scenario
any pavement can be split into a number of lanes. In this test, only pavements of three to five
lanes were considered, but it is anticipated that pavements may form as many as ten lanes during
stress situations such as evacuations. In Figure 7-3, the average travel times for the 900
simulations with varied walking speeds is presented by population type and the number of lanes,
this means there is a range of population densities considered. This shows that there is variation
between the population types, which was expected based on the results of Chapter 5, as it was
shown that the introduction of varied walking speeds results in different travel times for the
population types. However, there is little variation between the number of lanes within each
population type, for example, Children have a standard deviation of only 0.01 minutes and Male
Adults have the most variation at 0.17 minutes. It is anticipated that the male adults have a

larger variation as a result of the male adults passing other agents as their walking speed is the
218



highest in the model. It can be argued that the width of the pavement has no significant impact
on overall travel time and therefore the introduction of congestion into a microscale pavement

model, other than its ability to create space to allow overtaking and interactions to occur in.

25.00

No. of Lanes: =3 =4 =5

20.00
15.00
10.00
5.00
0.00

Children Male Adult Female Adult Male OAP Female OAP
Population Type

Average Travel Time (minutes)

Figure 7-3 — Average Travel Times for each population type when considering the width of the pavement
between three and five lanes, for each population type: mean (standard deviation), Children:20.92 minutes (0.01
minutes), Male Adults: 17.06 minutes (0.17 minutes), Female Adults: 17.92 minutes (0.08 minutes), Male OAPs:

21.33 minutes (0.01 minutes) and Female OAPs: 21.83 minutes (0.00 minutes)

To explore the number of lanes further, the average travel times from the simulations were
plotted in terms of population density and the applied patience level (Figure 7-4 and Figure 7-5).
In terms of population density, again the number of lanes produced little variation, as expected,
but there were larger variations caused by population density, which could be a contributing
factor to the introduction of congestion. When examining the patience level, the number of
lanes again had produced little variation, but larger variations appeared to have been caused by
applying a patience level, which could be aiding the introduction of congestion. The population
density and patience level will be explored further in subsequent sections to understand their

impacts on travel time and capturing congestion in a microscale model.

219



215

21.0 No. of Lanes: =3 m/ m

5
16.5
0.1 0.3 0.5 0.7 0.9

Population Density

Average Travel Time (minutes)
= = = = = N N
~ (o] (o) (o) [{e] o o
(@)1 o (@] o o1 o ()]

o

Figure 7-4 — Average Travel Time for each Population Density when considering the width of the pavement
between three and five lanes, for each population density: mean (standard deviation), 0.1: 18.40 minutes (0.07
minutes), 0.3: 19.15 minutes (0.06 minutes), 0.5: 19.87 minutes (0.13 minutes), 0.7: 20.56 minutes (0.11
minutes) and 0.9: 21.09 minutes (0.02 minutes)
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Figure 7-5 — Average Travel Time for each Patience Level when considering pavement width between three and
five lanes, with 1 being considered as low patience and 100 being high patience, for each Patience Level: mean
(standard deviation), 1: 19.51 minutes (0.15 minutes), 5: 19.57 minutes (0.10 minutes), 10: 19.69 minutes (0.10
minutes), 25: 19.88 minutes (0.05 minutes), 50: 20.01 minutes (0.01 minutes) and 100: 20.23 minutes (0.06
minutes)

7.2.4 Test 2 — Effect of Population Density
A further plot has been compiled to show population density by population type from the 900

simulations of varied walking speeds and altered variables (Figure 7-6). This shows that in
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general as population density increases the average travel time also increases, from an average
of 18.40 minutes (population density of 0.1) to 21.09 minutes (with a population density of 0.9).
Another trend is that the travel times for population types are less varied as the population
density increases, i.e. the travel times converge, as reflected by the standard deviation of 4.01
minutes (at 0.1 population density), which lowers to 0.72 minutes (at 0.9 population density).
It can also be seen that the travel times for the slow agents (children and OAPSs) only make
small changes (standard deviation ranges from 0.04 — 0.27 minutes) with population density
compared with the faster adults (standard deviation ranges from 1.21 — 1.44 minutes),
demonstrating that the adult population is more greatly affected by the introduction of
congestion than the slower agent types. It was anticipated that travel times would increase with
population density as the agents experience more congestion as density increases. It would also
be expected that the travel times would increase by population type with times reducing in
variance as population density increases as the faster agents (adults) are impeded by the slower
population types. It can therefore be argued that the inclusion of population density is a

requirement if a microscale pavement model is to successfully replicate congestion.
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Figure 7-6 — Average Travel Times for each population type when considering population density between 0.1
and 0.9, for each population type: mean (standard deviation), Children:21.03 minutes (0.27 minutes), Male
Adults: 18.95 minutes (1.44 minutes), Female Adults:19.33 minutes (1.21 minutes), Male OAPs: 21.38 minutes
(0.13 minutes) and Female OAPs: 21.85 minutes (0.04 minutes)

7.2.5 Test 3 — Effect of Patience Level
An additional plot has been completed to show the patience level by population type for the
900 simulations of varied walking speed and different variables (Figure 7-7). This shows that

the patience level has had little impact on the slower agent types (children and OAPs), the
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standard deviation ranges from 0.00 — 0.06 minutes. However, for the male and female adults
there has been an increase in travel time with increased patience level, for the male adults from
16.32 minutes to 18.20 minutes and for the female adults from 17.23 minutes to 18.79 minutes.
This suggests that the higher patience level is causing a reduced amount of overtaking in the
model and hence the faster agent types are remaining behind slower agents for longer, resulting
in the increased travel times. It therefore seems necessary to include patience level within a
microscale pavement model if a robust representation of congestion is required.
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Figure 7-7 — Average Travel Times for each population type when considering patience level between 1 and 100,
for each population type: mean (standard deviation), Children: 20.93 minutes (0.06 minutes), Male Adults:
17.21 minutes (0.65 minutes), Female Adults: 18.06 minutes (0.6 minutes), Male OAPs: 21.34 minutes (0.02

minutes) and Female OAPs: 21.83 minutes (0.00 minutes)

A further plot was compiled to consider the patience level and population density within the
microscale pavement model (Figure 7-8). This shows that as population density increases, travel
time increases and that the largest travel time is attributed to the highest patience level each
time. As before when population density increases, the travel time variance decreases, and the
values converge to a similar value. This indicates that both patience level and population density
are having an impact on the model and should therefore both be considered for inclusion when
a model needs to factor in congestion and capacity.
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Figure 7-8 — Average Travel Times based on Population Density between 0.1 and 0.9 and Patience Level
between 1 and 100, for each patience level: mean (standard deviation),1: 20.21 minutes (0.70 minutes), 5: 20.24
minutes (0.59 minutes), 10: 20.46 minutes (0.62 minutes), 25: 20.61 minutes (0.66 minutes), 50: 20.70 minutes
(0.54 minutes) and 100: 20.82 minutes (0.56 minutes)

7.2.6 Test4 — Comparison to 1.34m/s (3mph) Model

There is a need to understand if this microscale model of a pavement differs from a calculated
model with walking speeds of only 1.34m/s (3mph) with no additional variables included. The
calculated travel times for the 1.34m/s (3mph) model were an average of 12.26 minutes. These
calculated travel times were compared with the travel times produced through the 900
simulations for varied walking speeds, this allowed a time difference to be estimated. It has
been shown that for all population types, there is a travel time difference between the 1.34m/s
(3mph) model and the simulated values. The percentage time differences are greatest for the
slower agent types when considering the application of varied walking speeds only, which was
anticipated as their speeds had been reduced significantly compared to the 1.34m/s (3mph)

value (Figure 7-9).

However, when population density and patience level are also considered, the male and female
adults are severely impacted in terms of travel time, although the slower population types
(children and OAPSs) are not. The slower population types are not significantly impacted by the
population density and patience level as they form the slowest agents therefore have less need
to overtake but serve the important purpose of causing congestion for the adult population.
Initially, if population density is kept low (0.1) but patience level is high (100), the male adults
travel time increases by 19% and female adults 29%. When population density is increased (0.9)
and patience is decreased (1), the impact to travel time is further increased to 64% and 63%

respectively. Finally, in a worst-case scenario with high population density (0.9) and high
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patience level (100), the percentage difference in travel times increases to 71% and 72%
respectively. This demonstrates that population characteristics such as varied walking speeds
need to be considered in the first instance when creating an agent-based model of an evacuation
population. If further improvements are sought the inclusion of population density should be
considered followed by a patience level for agents. Overall, this comparison shows that the
microscale pavement model has successfully captured congestion within the model
environment when compared to the 1.34m/s (3mph) model.
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Figure 7-9 — Comparison to 1.34m/s (3mph) Calculated Model and Simulated Agent-Based Model Values,
initially showing the introduction of varied walking speeds for different population types only, then the impact of
varied walking speeds by population types combined with population density and patience levels
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7.3 Crossroad Testing

7.3.1 Test Aim & Variables

The initial testing of the crossroads was based on the number of lanes in the crossroads, the
population density, and the exit split percentage. The aim of these tests was to ascertain whether
the: (1) number of lanes in the crossroads, (2) population density, and (3) exit split percentage
had any effect on the travel time of agents over a given crossroad length of 500m. Within the
test, two different scenarios were conducted to assess the overall impact on travel time: (1) all
agents walk at the same speed (1.34m/s or 3mph) and (2) varied walking speeds by age and sex.
These scenarios were run with several numbers of lanes to alter the crossroad width (3, 4 and 5
in each direction) referred to as Test 1, a range of population densities (0.1, 0.3, 0.5, 0.7 and
0.9) referred to as Test 2 and different exit split percentages (0, 25, 50, 75 and 100%) referred
to as Test 3 (Table 7-5), the test variations have been set out in Figure 7-10. The comparison
between the 1.34m/s (3mph) model and varied walking speeds is discussed in Test 4. For the
crossroads, the patience level was maintained at a constant value of 2, this was informed by the
pavement testing, which showed patience level could affect the travel time of agents and result
in congestion in the model. In these tests, it was important to encourage agent reactions and
therefore overtaking of each other, to ensure this occurred the patience level was kept at 2
throughout to yield good results. To understand the variability in the results, each set of
variables and the varied walking speed scenario will have 10 realisations. This results in 750
sets of travel times per number of lanes in the north-south direction (3, 4 and 5), resulting in
2250 simulations in total in this test (Table 7-6), which can then be averaged for comparison
purposes. The comparison to the 1.34m/s (3mph) model will be completed using calculated

simulations using the distances travelled by agents rather than run as simulations.

Table 7-5 — Microscale Crossroads Model Variables for Test 1 (For the walking speeds: C = Children, MA =
Male Adults, FA = Female Adults, MO = Male OAPs and FO = Female OAPs)

Variables 1.34m/s (3mph) Varied Walking Speed by age

Walking Speed and sex

Population Makeup C =18%, MA = 32%, FA = 33%, MO = 8% and FO = 9%
- = Children
0

m Male Adults
= Female Adults
m Male QOAPs
= Female QOAPs
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Population Density 0.1,0.3,0.5,0.7,0.9

Walking Speed (Bosina | All =1.34 m/s (3mph) | C =0.8 m/s (1.79mph)

& Weidmann, 2017) MA = 1.34 m/s (3mph)
FA =1.12 m/s (2.5mph)
MO =0.78 m/s (1.74mph)
FO =0.76 m/s (1.70mph)

Number of Lanes in 3,4,5

North — South

Number of Lanes in 3,4,5

West — East

Exit Split (%) 0, 25, 50, 75, 100
Patience Level 2

Table 7-6 — Total Number of Results Expected from Test 2

No of Lanes
in N-S
No. of

Lanes in E- 3 Lanes 4 Lanes 5 Lanes

W

Population
05 07 09 0103 05 07 O 1 03 05 07 09

Density

0 10 |10 |10 |10 |10 |10 |10 |10 |10 |10 10 | 10 | 10
25 10 |10 |10 |10 |10 |10 |10 {10 |10 {10 |10 |10 |10 |10 |10 |150
50 10 |10 (10 |10 |10 |10 |10 |10 |10 |10 |10 {10 |10 |10 |10 |150
75 10 |10 |10 |10 |10 |10 |10 {10 |10 {10 |10 |10 |10 |10 |10 |150
10 |10 |10 |10 |10 |10 |10 |10 |10 |10 |10 (10 |10 |10 |10 |150

Total Number of Simulation Runs per Lane Configuration = 750 x 3

Exit Split %

Total Number of Simulation Runs = 2250
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Population Makeup

Walking Speeds

No. of Lanes

No, of Lanes

Exit Split

Test 2 — Crossroads: Number of Lanes, Population Density, and Exit Split

UK Average
Population Split
Children 18%
Male Adults 32%
Female Adults 33%
Male OAPs 8%
Female OAPs 9%

Agents Walking Speed by
age and sex:
All agents 1.33m/s Children 0.8m/s
walking speed Male Adults 1.33m/s
Female Adults 1.12m/s
Male OAPs 0.78m/s
Female OAPs 0.76m/s

Number of Lanes (North — South)
3 4 5

Number of Lanes (West — East)
8 4 5

Exit Split

50 I6)

Figure 7-10 — Testing Regime for Test 2
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7.3.2 Average Travel Times

After completing the simulations for the varied walking speeds by age and sex with the defined
variables (crossroad configuration, population density and exit split percentage), the averaged
evacuation times for each population type were compiled (Table 7-7). This showed that there
were a range of travel times produced when the variables were considered, demonstrating that
the model may be successfully reproducing congestion and agents considering the capacity of
the crossroads. However, it was important to understand if this was an impact of population
density, exit split percentage, the configuration of the crossroads or a combination of these
factors. When walking speeds are all the same, there was little variation seen in the averaged
travel times (standard deviation of 0.21 minutes). Unlike the varied walking speeds, which
showed there was large variations for all agents but particularly for the male and female adults
(approximately 70% difference between the minimum and maximum times recorded for adults
and approximately 50% for children and OAPS), suggesting that the model has been impacted
by the variables (Table 7-7). It is important to ascertain from this whether there is a primary
variable influencing travel times or a combination required to produce congestion within the

microscale crossroad model.

Table 7-7 — Average, Minimum, Maximum and Standard Deviations for each population type for all 2250
simulation runs with varied walking speeds compared to the Average, Minimum, Maximum and Standard
Deviations for the calculated simulations with all walking speeds the same 1.34m/s (3mph)

Varied Walking Speeds by Age and Sex

Minimum Average Maximum = Standard Deviation

Population Type (minutes) (minutes) (minutes) (minutes)

Children 9.39 11.62 18.77
Male Adults 5.53 9.20 17.90 2.85
Female Adults 6.79 10.49 23.68 3.29
Male OAPs 10.05 12.25 21.51 2.55
Female OAPs 9.26 11.39 18.46 1.85
All Walking Speeds the Same
Minimum Average Maximum  Standard Deviation
Population Type _ _ . .
(minutes) (minutes) (minutes) (minutes)
Children
Male Adults
Female Adults 5.22 5.86 6.22 0.21
Male OAPs
Female OAPs
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A plot of all simulation travel times (2250 in total) was also compiled to show the variation.
This shows the fluctuation in the times produced for all population types, the standard deviation
for male adults is 2.85 minutes and female adults is 3.29 minutes, for the children, male and
female OAPs, the standard deviations range from 1.85 — 2.55 minutes. This suggests the
children and OAPs are successfully slowing the adult agent types and each other, causing
congestion in the model (Figure 7-11) but there is a need to understand if there is a particular

variable that influences the travel times or a combination required to cause congestion.
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Figure 7-11 — Average Travel Time (minutes) for all Crossroad Simulations, Simulation No. is arbitrary (for
each of the simulation numbers, there are 10 simulation runs averaged to produce a single value, equating to
2250 simulations in total), for each population type: mean (standard deviation), Children: 11.62 minutes (2.24
minutes), Male Adults: 9.20 minutes (2.85 minutes), Female Adults: 10.49 minutes (3.29 minutes), Male OAPs:
12.25 minutes (2.55 minutes) and Female OAPs: 11.39 minutes (1.85 minutes)

7.3.3 Test 1 — Effect of Crossroad Configuration

In this section, the effect of the crossroad configuration is examined, it has been demonstrated
in Chapter 6 that a range of pavement widths can be anticipated in any city, which then form
the two arms of a crossroads, and depending on the scenario any pavement can be split into a
number of lanes. In this test, only crossroad arms of three to five lanes were considered, to
mirror the number of lanes considered in the pavement model, but it is anticipated that
crossroads may form as many as ten lanes in each direction during stress situations such as
evacuations. In Figure 7-12, the average travel times for the 2250 simulations with varied
walking speeds is presented by population type and the crossroad configuration. This shows

that there is large variation between the population types, which was expected based on the
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results of Chapter 5, as it was shown that the introduction of varied walking speeds results in
different travel times for the population types. However, there is also small variations between
the crossroad configurations within each population type, with standard variations ranging from
0.21 — 0.41 minutes. Hence, it is suggested that the crossroad configuration has no significant
impact on overall travel time and therefore the introduction of congestion into a microscale
crossroad model. Other than the ability to create space for agent interactions such as overtaking
and giving way to occur.

14.00
m3x3 3x4 3x5 m4x3 m4x4 4x5 m5x3 m5x4 5x5

13.00

12.00

11.00
1000 | I

Children Male Adults Female Adults Male OAPs Female OAPs
Population Type

Average Travel Time (minutes)

©
o
o

Figure 7-12 — Average Travel Times for each population type when considering the crossroad configuration
between three and five lanes in each direction, for each population type: mean (standard deviation),
Children:11.62 minutes (0.23 minutes), Male Adults: 9.20 minutes (0.23 minutes), Female Adults: 10.49 minutes
(0.39 minutes), Male OAPs: 12.25 minutes (0.41 minutes) and Female OAPs: 11.39 minutes (0.21 minutes)

To explore the crossroad configuration further, the average travel times from the simulations
were plotted in terms of population density and the exit split percentage (Figure 7-13 and Figure
7-14). In terms of population density, again the crossroad configuration produced little variation
(standard deviation ranged from 0.09 — 0.50 minutes), as expected, but there were larger
variations caused by population density (standard deviation ranged from 1.76 — 2.37 minutes),
which could be a contributing factor to the introduction of congestion. When examining the exit
split percentage, the crossroad configuration again had produced little variation (standard
deviation ranged from 0.10 — 0.58 minutes), but larger variations appeared to have been caused
by applying the exit split percentage (standard deviation ranged from 0.97 — 1.73 minutes),

which could be aiding the introduction of congestion. The population density and exit split
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percentage will be explored further in subsequent sections to understand their impacts on travel

time and capturing congestion in a microscale crossroad model.
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Figure 7-13 — Average Travel Time for each Population Density when considering the crossroad configuration

between three and five lanes in each direction, for each population density: mean (standard deviation), 0.1: 8.72

minutes (0.09 minutes), 0.3: 9.47 minutes (0.09 minutes), 0.5: 10.79 minutes (0.22 minutes), 0.7: 12.27 minutes
(0.51 minutes) and 0.9: 13.70 minutes (0.50 minutes)
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Figure 7-14 — Average Travel Time for each Exit Split Percentage when considering crossroad configuration
between three and five lanes in each direction, for each Exit Split Percentage: mean (standard deviation), 0:
13.02 minutes (0.58 minutes), 25: 11.68 minutes (0.44 minutes), 50: 10.46 minutes (0.40 minutes), 75: 9.82
minutes (0.10 minutes), and 100: 9.97 minutes (0.13 minutes)
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7.3.4 Test 2 — Effect of Population Density

A further plot has been compiled to show population density by population type from the 2250
simulations of varied walking speeds and altered variables (Figure 7-15). This shows that in
general as population density increases the average travel time also increases, from an average
of 8.72 minutes to 13.70 minutes. Another trend is that the travel times for population types are
less varied as the population density increases, i.e. the travel times converge to a similar travel
time, as reflected by the standard deviations at 0.1 population density, which is 2.06 minutes
and at 0.9 it is 0.71 minutes. It can also be seen that the travel times for the slow agents (children
and OAPs) are not as largely affected by increased population density as the faster adult
population types. The standard deviation ranges from 1.38 — 1.71 minutes for children and
OAPs whereas standard deviation ranges from 2.67 — 2.78 minutes for adults, demonstrating
that the adult population is more greatly affected by the introduction of congestion than the
slower agent types. It also suggests that all agent types are affected by the need to give way

caused by the crossroads, which only increases further with a greater population density.

It was anticipated that travel times would increase with population density as the agents
experience more congestion and opportunities to give-way as density increases. It would also
be expected that the travel times would increase by population type with times reducing in
variance as population density increases as the faster agents (adults) are impeded by the slower
population types, but all agents are affected by the greater need to give-way. It can therefore be
argued that the inclusion of population density is a requirement if a microscale crossroad model

is to successfully replicate congestion and capacity in the model environment.
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Figure 7-15 — Average Travel Times for each population type when considering population density between 0.1
and 0.9, for each population type: mean (standard deviation), Children:11.62 minutes (1.67 minutes), Male
Adults: 9.20 minutes (2.67 minutes), Female Adults:10.49 minutes (2.78 minutes), Male OAPs: 12.25 minutes
(1.71 minutes) and Female OAPs: 11.39 minutes (1.38 minutes)

7.3.5 Test 3 — Effect of Exit Split

It has been shown that the exit split percentage has influenced overall travel times of agents in
the crossroad model. An additional plot has been completed to show the exit split percentage
by population type for the 2250 simulations of varied walking speed and different variables
(Figure 7-16). This shows that as the exit split percentage increases, which means more agents,
are travelling south than East, the overall travel time decreases for each population type. For
the slower agent types (children and OAPs) as exit split percentage increases the travel times
converge, this is likely to be a result of an increased number of agents exiting in the same
direction with a percentage increase, so there is less demand on overtaking and giving way to
each other. Male and female adults have the fastest walking speeds within the model, and in
terms of exit split percentage their travel times are always the fastest but decrease with an
increase in exit split percentage. It is anticipated that this is again a result of the reduced
demanded to cross paths with other agents as more agents are travelling in the first instance.
The use of this variable has allowed the inclusion of varied exit pathways, which in this model
are assigned at random. However, this may not always be the case so by including the exit split
percentage, it has been possible to consider that all agents may exit in the same direction, which
may be a necessity, for example, in an evacuation scenario a certain exit may be blocked with

debris and the crowd must exit through one exit only. It therefore seems necessary to include
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exit split percentage within a microscale crossroads model if a robust representation of

congestion and capacity is required.
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Figure 7-16 — Average Travel Times for each population type when considering exit split percentage between 0
and 100, for each population type: mean (standard deviation), Children: 11.62 minutes (1.32 minutes), Male
Adults: 9.20 minutes (1.24 minutes), Female Adults: 10.49 minutes (1.74 minutes), Male OAPs: 10.82 minutes
(1.62 minutes) and Female OAPs: 10.81 minutes (0.87 minutes)

A further plot was compiled to consider the exit split percentage and population density within
the microscale crossroad model (Figure 7-17). This shows that as population density increases,
travel time increases and that the largest travel time is attributed to the lowest exit split
percentage each time. The slowest time is attributed to the lowest exit split percentage as this
value causes an increase in agent interactions with all agents exiting to the east, which results
in additional need to give way at the crossroads. It was also seen that when the population
density increases, the travel time variance also increases, with initially the values converging
to a similar value. This is likely to be caused by the fact that at low population densities there
were fewer agent interactions, meaning the agent’s exit pathways were clear, so their travel
time was not impeded. However, as the population density increases, there were greater
numbers of interactions caused and more overtaking was required, or if this was not possible,
reductions in speed to the slowest agents, and this was heavily influenced by the exit split
percentage. When exit split percentage was at 0%, so all agents need to exit east, there were
greater numbers of interactions than at 100% when all agents exit south. This indicates that both
exit split percentage and population density were having an impact on the model and should
therefore both be considered for inclusion when a crossroad model needs to factor in congestion

and capacity.
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Figure 7-17 — Average Travel Times based on Population Density between 0.1 and 0.9 and Exit Split Percentage
between 0 and 100, for each patience level: mean (standard deviation),0: 13.02 minutes (3.95 minutes), 25:
11.66 minutes (2.91 minutes), 50: 10.44 minutes (1.73 minutes), 75: 9.80 minutes (0.94 minutes) and 100: 9.95
minutes (0.71 minutes)

7.3.6 Test 4 — Comparison to 1.34m/s (3mph) Model

There was a need to understand if this microscale model of a crossroad differs from a calculated
model with walking speeds of only 1.34m/s (3mph) with no additional variables included. The
calculated travel times for the 1.34m/s (3mph) model were an average of 5.86 minutes. These
calculated travel times were compared with the travel times produced through the 2250
simulations for varied walking speeds, this allowed a time difference to be estimated. It has
been shown that for all population types, there is a travel time difference between the 1.34m/s

(3mph) model and the simulated values.

The percentage time differences are greatest for the slower agent types when considering the
application of varied walking speeds only, which was anticipated as their speeds had been
reduced significantly compared to the 1.34m/s (3mph) value (Figure 7-18). However, when
population density and south exit percentage are also considered, there are several conclusions
which can be made. When the population density is low (0.1), none of the population types are
significantly impacted and have a similar time differences to that of applying varied walking
speed only regardless of the south exit percentage. This is a result of the reduction in the number
of interactions occurring as the starting agents on their static “home” squares have an

unhindered journey to their exit.
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However, when population density is high, the south exit percentage plays a key role in
governing the number of interactions that occur. All agent types are most severely hindered in
their journey when the south exit percentage is low (0%), i.e. all agents are exiting to the East,
the percentage time difference ranges from 209% - 238%. This means that the five agents from
their static “home” squares will have to make a change of direction and will therefore but
subject to the possibility of many opportunities to give way and overtake. This results in a
significant time difference with the 1.34m/s (3mph) calculated model. When the south exit
percentage is high (100%), e.g. all agents are exiting South, there are far fewer interactions for
the five static “home” square agents and there is no change in direction required. In this instance
the time difference percentage ranges from 73% - 81%. Demonstrating that these agents, in
particular the male and female adults, are primarily affected by the population density and
therefore the increased likelihood of congestion. When the south exit split is 50:50, i.e. an equal
number of agents will exit in each direction, the time difference percentage ranges from 98% -
130% compared to the 1.34m/s (3mph) calculated model. This highlights that there are more
interactions and congestion occurring than when all agents exit south. It is plausible in any
evacuation scenario that any of these exit splits could occur, either due to a blockage in one
direction or the need to evenly split a crowd through two exits. It is therefore vital that any
agent-based evacuation model can consider the differences that may occur due to variances in
the exit split. This comparison shows that this microscale crossroad model has successfully
captured congestion and capacity within the model environment when compared to the 1.34m/s

(3mph) model.
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Figure 7-18 — Comparison to 1.34m/s (3mph) Calculated Model and Simulated Agent-Based Model Values,
initially showing the introduction of varied walking speeds for different population types only, then the impact of
varied walking speeds by population types combined with population density and south exit percentage

7.4 Microscale Model Testing Summary

The testing of the microscale pavement and crossroad models has demonstrated that including
additional variables: population density, number of lanes, patience level and exit split
percentage, alongside the previously defined population characteristics such as varied walking
speeds by age and sex, improves the robustness of simulations when compared to existing
models which contain fewer or none of these variables.
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The first microscale model based on a pavement, has shown that the introduction of a range of
variables improves the robustness of a computational simulation of a pavement environment.
The variables need to be capable of altering the dimensions of the pavement, incorporating a
range of population densities and including a patience level to replicate the desire to overtake
slower individuals when walking on a pavement, in order to produce a realistic representation.
When compared to a 1.34m/s (3mph) simulation of a pavement, it has been shown that there
are large time differences when compared to this simulation of a pavement. The average time
difference ranged from 40% — 77%, with a worst-case time difference increasing to a range of
73% - 78% (Table 7-8), this demonstrates that current simulations of pavements may be

producing misleading travel times estimates and failing to include a range of behaviours.

The second microscale model of a pedestrian crossroads has shown that there is an additional
variable that needs to be incorporated to produce a realistic simulation. This is an exit split
percentage, which can control the exit directions of the agents, to alter the number of agent
interactions. This must be included alongside the pavement variables to ensure a robust
representation. When compared to a 1.34m/s (3mph) simulation of a crossroads, it has been
demonstrated that there are again large time differences seen. The average time difference
ranged from 63% - 102%, whilst the worst-case time difference increased to a range of 209% -
238% (Table 7-8), this highlights that current models of pedestrian crossroads are likely to be
simulating misleading travel times and are incapable of producing human behaviours to

demonstrate overtaking and giving way to each other at a junction.

Table 7-8 — Comparison of the Average and Worst-Case Results produced from Tests 1 and 2 with the
Microscale Pavement and Crossroad Model based on the addition of population characteristics, walking speeds,
grouping and a walking speed ratio

Average Difference for all Population Types

Population No. of Population Patience Exit Split Compared

Characteristics Lanes Density Level Percentage to:
Newcastle Children: +70% 1.34m/s
(Pavement) | Male Adults: +40% (3mph)

Female Adults: +47% Model

Male OAPs: +73%
Female OAPs: +77%
Newcastle Children: +96%
(Crossroads) | Male Adults: +63%
Female Adults: +78%
Male OAPs: +102%
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Female OAPs: +98%

Worst Case Difference for all Population Types

Newecastle Children: +75% 1.34m/s
(Pavement) | Male Adults: +73% (3mph)
Female Adults: +74% Model

Male OAPs: +76%
Female OAPs: +78%
Newcastle Children: +213%
(Crossroads) | Male Adults: +209%
Female Adults: +238%
Male OAPs: +224%
Female OAPs: +219%

The two microscale models of a pavement and crossroads have successfully produced a series
of travel time estimates with the inclusion of a range of new variables (number of lanes,
population density, patience level and exit split percentage) to incorporate a robust
representation of human interactions. This has resulted in large time differences with current
simulations (ranging from 40% - 238% in worst case scenarios) as a realistic and robust
representation of congestion and capacity has been incorporated into an agent-based model.
This has captured the intricate human behaviours, such as overtaking on a pavement or giving
way at a junction, that were not included within the macroscale city evacuation model. To
further increase the robustness of the macro and microscale models, all the identified behaviours
now need to be combined into a single model environment, the feasibility of this will be

discussed further in Chapter 8.

7.5 Modelling Discussion

This thesis has presented three evacuation ABMs, one macroscale model of a city centre, one
microscale model of a pavement and one further microscale model of a crossroads. These
models have demonstrated that more robust evacuation timings can be produced when
additional variables to simulate additional human behaviour traits have been included. The
purpose of these models has been to capture complex social interactions and human behaviours
within a model environment, the value of this is the ability to explore potential outcomes, which
may or may not be predictable. The focus on this occasion has been on capturing quantitative
population demographics and characteristics and does not full explore the behavioural changes

which can occur during emergency scenarios such as panic and aggression.
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The ultimate aim for these models is to be able to combine the two scales into one single model
environment. This was not possible within the scope and timescale of this thesis but it was
possible to explore ways in which this may be achieved. Currently it is plausible to run a
macroscale simulation of a city centre that then identifies to the user the “pinch points™ in the
city’s pedestrian network where large volumes of congestion may occur. Initially, this can be
seen from a visual inspection of the model simulation when running but it would also be
possible to add counters into junctions to understand the volume of pedestrian traffic flowing
through junctions. An emergency planner with good knowledge of their city could then identify
either a pavement or crossroads model simulation to match the dimensions of the “pinch points”
at the city scale. This data has then been captured in a series of lookup tables of standardised
junction and pavement sizes, which indicates to the user a time difference compared to an
unhindered journey using the junction. This allows emergency planers to understand the
impacts of congestion on these junctions and to adjust their evacuation times accordingly. This

is an initial step in addressing the issue of scalability between these three evacuation ABMs.

Another complex task when working with ABMs is the ability to validate models effectively.
An attempt was made at both the macro and microscale to perform some validation, calibration,
and verification checks but this needs to be improved further. The checks that were carried out
were overall trivial and did not allow effective validation of the models. In the future, more
effective validation should be sought through real-world data, there is lots of data becoming
available on people movement and CCTV capture of city centre environments which could be
utilised to understand how well the computational behaviours matched the real-world
behaviours expected. This is outlined further in section 8.2.

Finally, it has not been possible to model all the behaviours set out in Chapter 3. In Chapter 3,
11 key behaviours were identified to be prioritised for inclusion within evacuation simulations.
This thesis focused on making an initial improvement by including behaviours that were easily
and reliably transformed into quantifiable rulesets to be used in an ABM. This resulted in
several assumptions being made and some behaviours not being included. This includes no
running in the model, only able-bodied agents, no additional transport models and no emerging
leaders or higher-order agents such as Emergency Services being included. These decisions
have been rationalised within this thesis, but it is important when moving forward with the
improvement of evacuation simulations that these types of behaviour are included to explore

their potential impact on evacuation timings.
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Chapter 8. Conclusions and Further Work

8.1 Conclusions

Natural disasters affect communities globally, affecting 2.7 billion people between 2000 and
2011, resulting in high numbers of fatalities (estimated to be 1.1 million people over the same
period), displacement of communities and negative financial implications with costs
approximated as $1.3 trillion over 11 years (International Civil Defence Organisation, 2016).
The aim of this thesis was to “improve the effectiveness of emergency planning” particularly
focusing on the role of evacuations and how this can alleviate suffering for communities by
ensuring people can reach safety successfully. Existing computational evacuation models are
not fit for purpose, do not include a range of “real” human behaviours and those with human
behaviour include oversimplified and standardised behaviours (Chapter 2, 3) (Objective 1 & 2).
In conjunction with this, real-life exercises and table-top scenarios which are used to train
emergency personnel during an emergency scenario, feature no public involvement, at best
there may be some actors and dummies involved and therefore the exercises do not model the
public’s response. It is not possible to run “panicked” real-life simulations but without an
understanding of the public’s response this means that emergency personnel have little
indication on how the public may react in any given scenario and how this may further impact
their services. Hence, there is a need to close this gap and ensure that computational, real-life,
and table-top simulations can work in conjunction and are more robust. In achieving this,
disaster management personnel will gain a better understanding of how individuals react during
hazards. Therefore, enabling them to plan and prepare more accurately to ensure their resources
are directed to the most appropriate locations, thereby taking a proactive rather than reactive
approach, which will reduce human suffering and in the short term has the potential to save
lives (Objective 5).

This thesis has addressed this by introducing more robust human behaviour traits into numerical
evacuation simulations (Objective 1 — 4). The advantage of using numerical simulations is the
ability to produce numerous simulations without incurring large financial or resource costs, as
well as the potential to add in new rulesets and behaviours without causing any harm or
suffering to agents. Improving evacuation simulations will be beneficial for emergency
management professionals when planning and preparing for hazard events. Especially given
that current methods (table-top and real-life scenarios) cannot fully prepare emergency
personnel due to the lack of human behaviours. On top of this, real-life simulations incur large

financial and resource costs with an inability to run multiple simulations. Consequently,
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improved computational models will allow emergency planners to be better prepared, and for
communities, which may ultimately result in saved lives as communities will be able to reach
safety within the allotted time, a reduction in the levels of human suffering encountered and
economic benefits (Objective 5). However, the problem with current models is that the human
behaviour included is not representative and instead agents’ behaviours have been
oversimplified and standardised, in many cases resulting in agents that are exclusively male
able-bodied adults (Objective 1). This thesis specifically created a modelling framework that
utilised agent-based modelling to produce a more robust representation of human behaviour

within an enhanced model environment (Objective 3 & 4).

This thesis identified six key human behaviour traits as key behaviour indicators (Chapter 3)
(Objective 1). The focus of this thesis moved to those behaviours which could be easily
quantified and as such the included behaviours concentrated on: (1) flee behaviour, (2)
interpersonal distance, (3) crowd behaviour, (4) capacity, (5) route choice and (6) patience.
Evacuations often occur at a city level, so the initial focus was on creating a macroscale
evacuation model capable of evacuating a city centre location (Objective 3). This was based on
a 2km x 3km area of the city of Newcastle (UK) with rulesets created to introduce population
demographics (based on age and sex), varied walking speeds, grouping of agents and a walking
speed ratio which met the flee behaviour, crowd behaviour and route choice behaviour traits

previously identified.

The macroscale city evacuation model showed that there are demonstrable differences between
current evacuation simulations and those that include more robust human behaviour
representation (Chapter 4, 5). The addition of these rulesets (population demographics, varied
walking speeds, groups, and a walking speed ratio) has increased average travel times by
approximately 70%, resulting in the potential underestimation of evacuation times in city scale
evacuation simulations, which may lead to additional fatalities and injuries as communities
cannot reach safety in time (Objective 3). This identified the benefit of including supplementary
model variables to capture human behaviour traits as current models are only fit for purpose if
you are male able-bodied adult, with children and OAPs disproportionately affected. Hence,
the difference in travel times could have significant impacts on evacuation planning and
highlights that existing models are not fit for purpose (Objective 5). Using existing models
could lead to communities not evacuating in the anticipated times, which may result in
additional causalities and fatalities, it also means that planners may be placing resources and
service personnel in the wrong locations (Objective 5). The inclusion of even basic

characteristics (population demographics and varied walking speeds) demonstrated a 45%
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increase in travel time, highlighting the need to remove standardised and oversimplified
behaviours, which result in the production of misleading travel times and reduces agents in a
model to male able-bodied adults only (Objective 3).

The macroscale model effectively captured flee behaviour, crowd behaviour and route choice
but due to the scale it did not successfully capture the intricate human behaviours observed on
pavements and at junctions, such as overtaking and giving way, as well as the influence of
capacity in terms of available space. Therefore, to improve the evacuation simulations further,
two microscale models were created of a pavement and crossroads, to address the representation
of the additional behaviour traits (Chapter 6, 7) (Objective 4). To do this the two microscale
models included additional variables to improve the simulation of human behaviour on a more
intricate level, with the aim of replicating overtaking and giving way. The addition of these
traits (population density, lane configuration, patience level and exit split percentage) improves

the computational simulation of a pavement and crossroads environment.

For the pavement, it has been demonstrated that there are large time differences resulting from
the introduction of these rulesets when compared to simpler simulations which focus on
standardised speeds (Objective 4). The average time increase was approximately 40 — 70%,
although in the worst-case scenarios (e.g. high population density and high patience levels), this
was further increased. It should also be noted that the range of times converges as the fastest
agent types are hindered by the congestion in the model. This improved pavement simulation
demonstrates that current simulations of pavements may be producing misleading travel times
estimates and failing to include the necessary behaviour traits to realistically simulate giving

way, overtaking, capacity and congestion (Objective 5).

The second microscale model of a pedestrian crossroads has shown that there are again large
time differences when compared to simpler junction simulations often operating at only one
speed of 1.34m/s (3mph) (Objective 4). The average time difference ranged from 63% - 102%
and if considering the worst-case scenario (high population density and large number of agent
interactions) the time difference increased further because of the congestion created by the
model and the need for agents to wait for a suitable gap to exit. This highlights that current
models of pedestrian crossroads are likely to be simulating misleading travel times and are
incapable of producing robust human behaviours to demonstrate pedestrian overtaking and
giving way. Hence this has the potential to cause additional injuries and fatalities by
underestimating the time to evacuate junctions, which can be numerous in city scale evacuations
(Objective 5).
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The models created in this thesis have successfully incorporated a wider range of human
behaviour traits that could be quantified by literature to form the basis of model rulesets
(Objective 1 —4). This resulted in increases in travel time at both the macro and microscale and
reinforces that current evacuation models are not fit for their intended purpose when focused
on using standardised and oversimplified rulesets for human behaviour (Objective 5). Models
cannot continue to assume that evacuees are able-bodied male adults and must broaden their
human behaviour traits else run the risk of producing misleading simulation results. Ultimately
without improvement, there is the potential for fatalities and injuries to increase as communities
cannot reach safety within the allotted time. Improved evacuation simulation can be of great
benefit for emergency professionals and can be effectively used in combination with existing
table-top and real-life simulation exercises to allow for better preparation and planning
(Objective 5).

8.2 Recommendations and Further Work

8.2.1 Recommendations

This thesis has demonstrated that there are benefits to including more robust representations of
human behaviour within agent-based evacuation models. The inclusion of such behaviours has
impacted on the time estimates produced by models and it can be argued that current models
are likely to be producing misleading time estimates, which has the potential to result in
significant additional injuries and fatalities as communities fail to reach safety within the
predicted times. Hence, it is imperative that future models seek to include more robust
representations of human behaviour to ensure that emergency planning professionals can make

the most appropriate decisions when planning and preparing for events.

It has also been explored that computational modelling could significantly aid the testing of
evacuation plans for governments. This would not alleviate the demand for real-life simulations
(which provide a vital means of training ‘blue light’ personnel) but would ensure that the real-
life simulations chosen were the most appropriate and target the worst-case scenarios. It would
also provide more opportunities to consider the role of the public within scenarios, giving a
range of probabilistic responses, without having to run “panicked” real-life simulations or over-
simplified scenarios with actors and dummies. There would also be the option to test the
emergency services in alternative scenarios depending on the public interaction rather than
assuming the public will comply as requested. The inclusion of the public has the potential to
change outcomes, but it is not viable to include them through the real-life scenarios, (and
assume that they will respond accurately as their behaviours are often still prescribed or staged
to them i.e. you are a casualty with head injuries, when in a situation of stress, it is unlikely the
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public know truly how they would react). It should be noted that the modelling in this thesis
has focused on quantifiable behaviour traits and does not capture these behavioural changes
which are anticipated to occur in times of stress, this will need to be addressed in future
iterations of the model to be of the most benefit to emergency service personnel. However, it
does highlight the strength of computational evacuation modelling in terms of their versatility
and ability to replicate numerous scenarios with many different behaviours and outcomes,
which will be beneficial for those planning for events.

8.2.2 Future Work

However, the models created within this thesis are not flawless and there are still improvements
that could be included to further advance the model and its uses. This thesis set out to begin the
process of identifying and creating human behaviour rulesets for agent-based models, but it was
not possible to consider all possibilities. The scope of this PhD was large, and this has meant
that in some cases, areas could not be thoroughly explored, and others could not be investigated
at all. On top of this, as the models have been created and tested as well as literature explored,
further ideas have arisen. It is hoped that some of the following suggestions could be explored

further to carry on this work in the future.

Firstly, this thesis resulted in the creation of three different agent-based models, which are all
capable of answering different questions due to their differing scales. Scalability in agent-based
models is a widely acknowledged issue and one that has been tackled unsuccessfully numerous
times. In the case of this thesis, if you wish to estimate the evacuation time for a city area then
the macroscale city model should be used. This may then identify pinch points in the model
where congestion needs to be explored in more detail. Exploring this detail would be suited to
the microscale models of the pavement and crossroads. In an idealised scenario a hybrid of the
three models would be created to allow a user to be able to consider the overall evacuation time
of a city then “zoom in” to run microscale models of any pinch points to alleviate congestion
and consider how agents may give way to each other. This was not possible during this thesis
as the modelling software, Netlogo, had reached its limitations. Netlogo is a grid-based system,
rather than continuous space, which means it is not possible to create true free movement for
agents. The inclusion of free movement is a necessity to be able to combine the three models.
It is anticipated that this would involve migrating the programming code to a new agent-based

software, which can simulate free movement, prior to combining the three models.

This thesis considered a wide range of human behaviour traits, but could not include all possible
individual human characteristics, and could not create rulesets for each possible characteristic.

This is a large research task and would require a team including medical and psychology
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researchers to enable additional behaviours to be considered (e.g. level of compliance or panic
behaviour). Consulting these experts, would also allow the patience level to be quantified in an
alternative manner, with testing to ensure the proposed levels are valid. One way in which this
could be done is by using CCTV data of pavements at different times of day, with large amounts
of overtaking and giving way occurring, this would then allow the patience level of individuals
to be tracked and a more robust estimation given on how long agents should wait. It should also
be explored whether some of the included behaviours could be improved further, for example
in terms of walking speed could a bell-curve of possible speeds be used rather than a single
speed for each population type, the inclusion of larger group sizes and the addition of groups

into the microscale models could also be considered.

The agent-based models were validated, calibrated, and verified where possible but this could
be improved further. The microscale models were unspecific in their location but by
collaborating with the Urban Observatory at Newcastle University, their data on streets across
Newcastle could be utilised to validate, calibrate, and verify the model further. This could also
explore the impact of street furniture in the model or the interactions with higher-order agents
such as Police. Their data could also be utilised within the macroscale model by using data
collected during largescale events such as a football match at St James Park, to compare the
travel times produced with real-life data. There is also the potential to further improve pandemic
modelling, particularly in relation to coronavirus, with the collaboration of this real-life data
and the utilisation of more realistic human behaviour rulesets. This could be possible in two
different ways, firstly to understand the change in capacity of spaces in cities such as pavements
with the introduction and maintenance of social distancing and secondly the implications of
congestion caused by the need to widen pavements and therefore the reduction in available road

space.

Finally, the models need to be considered in a wider context, this could be done in several ways.
In simple terms, the macroscale agent-based model could be tested to understand the impact of
the addition of a hazard model and in terms of the number and location of evacuation points
required to reduce evacuation times. It would also be beneficial to create several “test” cities,
which cover the most common spatial layouts of major cities such as gridded or radial. This
would make the models more widely applicable, and it would be possible to explore how the
spatial layout influenced evacuation times, if at all. Ultimately, emergency planning
professionals need to consider a wide range of issues and an emergency scenario as a whole.
This demands the need to consider the logistics and supplies required to sustain a population in

any given city after an evacuation or disaster event has occurred. Hence, it would be logical to
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examine the possibility of combining the current micro and macroscale models with a dynamic
logistics model to further aid the planning and preparation of emergency scenarios. It is also
imperative to consider the interaction of the pedestrian evacuation model with additional
transport whether this be personal cars or the use of public buses to aid evacuation or logistics.
Ultimately the most effective computational simulation for natural hazards, which will be of
most benefit for emergency personnel, will be a multi-faceted approach that brings together as
many diverse components in a single model environment. With the hope that emergency
management professionals can successfully plan and prepare for events and run numerous
scenarios without endangering the public and in due course reduce communities suffering and

their risk of injury or death.
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A. Test 2 —World Population & Walking Speeds
A.1 Test Aim & Variables

To aid comparison, it was decided that the model would simulate several international
populations, where population extremes are often higher and to allow comparison with the UK
evacuation times produced. The data for the varied walking speeds by age and sex was gathered
as part of the literature review and was the same data as used in the UK simulations. Global
population data was used to form real-life population groups. As before, the aim of this test,
was to ascertain whether using varied walking speeds had any effect on the evacuation time of
the case study area, including whether the population data needed to include the age and sex of
the population or just the age. Within the test, the model ran three scenarios to understand the
effect on overall evacuation time: (1) all agents travelling at 1.34m/s (3mph), (2) agents
travelling at varied walking speeds by age only and (3) agents travelling at varied walking
speeds by age and sex. Each simulation was completed for four different total population sizes
(1000, 2000, 5000 and 10000) and population extremes based on different International
locations (Table A-1), the test variations have been set out in Figure A-1. The four different
population make-ups are the World average, Tokyo, Japan which has a larger OAP population,
Johannesburg, South Africa which has a larger number of children and Seoul, South Korea
which has a larger adult population (The World Bank, 2018) (Figure A-2). To get an indication
on variability in the results, each set of variables and walking speed scenarios will have five
realisations; this will result in 240 sets of evacuation times for this test, which equates to 60

results per location (Table A-2).

Table A-1 — Macroscale City Evacuation Model Variables for Test 2 (For the walking speeds: C = Children,
MA = Male Adults, FA = Female Adults, MO = Male OAPs and FO = Female OAPs)

Variables 1.34m/s (3mph) Varied Walking Varied Walking Speed

Walking Speed Speed by age only by age and sex

No of Evacuees | 1000 or 2000 or 5000 or 10000
Population See Figure A-2
Makeup
Walking Speed | All = 1.34 m/s | C=0.8m/s (1.79mph) | C =0.8 m/s (1.79mph)
(Bosina & (3mph) MA & FA = 1.34 m/s | MA = 1.34 m/s (3mph)
Weidmann, (3mph) FA =1.12 m/s (2.5mph)
2017) MO & FO = 0.78 m/s | MO = 0.78 m/s (1.74mph)

(1.74mph) FO =0.76 m/s (1.70mph)
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Table A-2 — Total Number of Results Expected from Test 2

A a O Heeq a 3 a

World Tokyo Johannesburg | Seoul | Total Tests
Average
1000 5 5 5 5
2000 5 5 5 5
80
5000 5 5 5 5
10000 5 5 5 5
Varied Walking Speed by age only
1000 5 5 5 5
2000 5 5 5 5
80
5000 5 5 5 5
10000 5 5 5 5
Varied Walking Speed by Age and Sex
1000 5 5 5 5
2000 5 5 5 5
80
5000 5 5 5 5
10000 5 5 5 5
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Walking Speeds

No of Agents

Population Makeup

Test 2 — World Population Data & Varied Walking Speeds

All agents
1.33m/s walking
speed

1000 Agents

World Average

Population Split
Children 26%
Male Adults 33%
Female Adults 32%
Male OAPs 4%
Female OAPs 5%

Agents Walking
Speed by age:
Children 0.8m/s
Adults 1.33m/s
OAPs 0.78m/s

2000 Agents 5000 Agents

Tokyo Population Johannesburg
Split Population Split
Children 13% Children 29%
Male Adults 31% Male Adults 32%
Female Adults 30% Female Adults 33%
Male OAPs 12% Male OAPs 2%
Female OAPs 15% Female OAPs 3%

Figure A-1 — Testing Regime for Test 2
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Agents Walking Speed
by age and sex:
Children 0.8m/s

Male Adults 1.33m/s
Female Adults 1.12m/s
Male OAPs 0.78m/s
Female OAPs 0.76m/s

10000 Agents

Seoul
Population Split
Children 14%
Male Adults 37%
Female Adults 36%
Male OAPs 6%
Female OAPs 8%



(a) World (b) Tokyo

(c) Johannesburg (d) Seoul
2%
‘ 8% »
= Children
= Male Adults Figure A-2 — Population Breakdown of World
Locations — (a) World Average, (b) Tokyo, Japan —

= Female Adults high OAP population, (c) Johannesburg, South
Africa — high child population, (d) Seoul, South

= Male OAPs Korea — high adult population (The World Bank,

= Female OAPs 2018)
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A.2 Initial Evacuation Times

After completing the simulations at different global locations and with varied walking speeds,
the averaged evacuation times for each population type were compiled (Table A-3). This
showed that there were a range of evacuation times produced by considering the demographics
of the crowd, demonstrating that there may be an impact of including population characteristics.
However, it was important to understand whether this was a factor of the total population size,
the population distribution of different agent types or the inclusion of varied population
characteristics (by age and/or sex) or a combination of these factors, and to check this did not

differ from the results collated from the UK data.

When walking speed was the same for all population types, there was little variation seen in
the averaged evacuation times for the different locations (e.g. Tokyo, Johannesburg etc.) (Table
A-3). The introduction of varied walking speed by age only showed that the slowest agent types
(OAPs and children) have an increased average evacuation time compared with the adults,
approximately 70% slower, whereas adults by only approximately 2% (Table A-3). Finally,
the introduction of varied walking speed by age and sex demonstrated that the average
evacuation times for adult females increased by approximately 20% whilst other agents had

similar evacuation times to the previous tests (Table A-3).

Table A-3 — Average Global Evacuation Times (minutes) for different regions across the world, showing (in the
third column) average evacuation times when all agents walk at 1.34m/s, (in the fourth column) when agents of
different age have different walking speeds and (in the fifth column) when both age and sex are considered in
walking speeds

Variables | Evacuation Times (minutes) |
Population | 1.34m/s Varied Varied
(3mph) Walking Walking
Model Speeds by Speeds by
(minutes) age only age and sex
(minutes) (minutes)
Children 117.7 114.9
Tokyo, Japan M Adults 69.7 69.0
(Large OAP F Adults 69.4 ' 85.7
population) M OAPs 115.9 116.6
F OAPs ' 120.5
Johannesburg Children 116.9 116.2
. 2" M Adults 69.4
South Africa —Fong i | 67.3 708 84.5
(Largf child = o Aps 106.8
population) F OAPs 107.7 112.9
Seoul, South Children 68.9 112.4 114.4
Korea (Large | M Adults ' 70.1 70.3
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Adult F Adults 82.8
population) M OAPs 1136 114.7
F OAPs ' 116.4

Children 117.7 116.3

M Adults 71.4 70.9

World F Adults 68.5 ' 84.0
M OAPs 110.0

F OAPs L 116.9

A.3 Effect of Total Population Size

It was not expected that the population size would have a significant impact on the evacuation
times as it had not with the UK population data, however, it was still important to check that
the larger populations did increase evacuation time in the same manner. When all agents
travelled at 1.34m/s (3mph), but the population was broken down by age and sex, it showed
that as the total population size increased, the overall evacuation time also increased (Figure
A-3). The difference in evacuation time was approximately 3 — 6.5 minutes between a
population of 1000 compared to 10000. For the populations with varied walking speed by age
only and for age and sex, a similar increase in evacuation time with increased population size
was observed. For varied walking speeds by age only, the difference in evacuation time was
approximately 8.5 —12.5 minutes (Figure A-4) between a population of 1000 compared to
10000. For varied walking speeds by age and sex, the difference in evacuation time was
approximately 4 — 16 minutes (Figure A-5) between a population of 1000 compared to 10000.
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Figure A-3 — Comparison of Population Size for all Global population data locations (e.g. Tokyo, Johannesburg
etc.) with 1.34m/s (3mph) walking speed for all population types, approximate difference in evacuation times 3
— 6.5 minutes as total population size increases, mean of 68.53 minutes and standard deviation of 2.41 minutes
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140.00
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Figure A-4 — Comparison of Population Size for all Global population data locations (e.g. Tokyo, Johannesburg
etc.) with varied walking speed for population types by age only, approximate difference in evacuation times
8.5 — 12.5 minutes as total population size increases, for each population type: mean (standard deviation),
Children: 116.17 minutes (4.58 minutes), Adults: 70.51 minutes (3.61 minutes) and OAPs: 112.53 minutes (5.43

minutes)
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Figure A-5 — Comparison of Population Size for all Global population data locations (e.g. Tokyo, Johannesburg
etc.) with varied walking speed for all different population types by age and sex. Approximate evacuation time
difference 4 — 16 minutes as total population size increases. For each population type: mean (standard
deviation), Children: 115.44 minutes (4.87 minutes), Male Adults: 69.57 minutes (2.40 minutes), Female Adults
84.25 minutes (2.97 minutes), Male OAPs 112.05 minutes (6.93 minutes) and Female OAPs 116.69 minutes
(5.23 minutes)

A comparison was made between the UK and World data (Table A-4), which showed overall

the time differences were similar. It is assumed that this time difference was a result of the
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spatial variability in the model and that when the total population size increased, it was more
likely that there was an agent at the extents than when the population was smaller. It was also
more probable that the slower agents were found at the extents as population size increased.
The only larger time difference was seen in the World data when the varied walking speeds
were added into the model by both age and sex, it was anticipated that this difference was more
likely to be attributed to the population characteristics rather than the large total population

size.

Table A-4 — Comparison of Time Difference by Population Size between UK and World Population Data for
total population size of 1000 and 10000, showing (in the second column) when all agents walk at 1.34m/s, (in
the third column) agents adopting varied walking speed by age only and (in the fourth column) agents adopting
varied walking speed by age and sex

1.34m/s Varied Walking Varied Walking Speeds
(3mph) Model  Speeds by age only by age and sex
(minutes) (minutes) (minutes)
UK Data 56-6.5 7.0-12.1 5.6-9.6
Time Difference 0.90 5.10 4.00
World Data 2.85-6.3 85-125 41-158
Time Difference 3.45 4.00 11.70

A.4 Effect of Population Extremes

Across the globe there are further examples of population extremes, which are more
pronounced than the UK data. Hence, further checks were carried out on the implications of
simulating populations with larger numbers of slower agents present. A comparison was made
of the various global locations, which had population extremes (e.g. larger number of children
or OAPs) with varied walking speeds by age and sex, which showed that there was only a small
difference in evacuation time for each of the slower population types (Figure A-6). The largest
difference was for the male OAPs, the time difference was 9.7 minutes between the slowest
and fastest evacuation time, the largest evacuation time was seen where the OAP population
was highest (Tokyo) and vice versa for the smallest evacuation time (Johannesburg). In
comparison, for the children the evacuation time difference was 1.9 minutes and female OAPs
was 7.6 minutes. It was apparent that the population characteristics were influencing
evacuation time through the varied walking speeds rather than the total number of any one

agent type, hence highlighting the importance of capturing a range of traits.
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Figure A-6 — Comparison of Different Global Locations and Average Evacuation Times in terms of Population
Extremes (Japan — large OAP population, South Africa — large child population and South Korea — large adult
population)with varied walking speed by age and sex, for each population type: mean (standard deviation),
Children: 115.4 minutes (0.96 minutes), Male Adults: 69.9 minutes (0.87 minutes), Female Adults: 84.2 minutes
(1.20 minutes), Male OAPs: 112.1 minutes (4.44 minutes) and Female OAPs: 116.7 minutes (3.14 minutes)

A.5 Minimum & Maximum Times

To further compare the evacuation times produced for the population extremes, the minimum
and maximum times were plotted (Figure A-7), this information was taken from all the
available simulations. However, the maximum times were all found to be produced from
simulations, which included a greater number of population characteristics whereas the
minimum times were all produced from simulations with agents only walking at 1.34m/s
(3mph). The results show that there were only small variations in the minimum and maximum
times produced for each location, for the maximum times the time difference was 3.5 minutes
and for the minimum times the time difference was 9.2 minutes. This again contributed to the
idea that there was no need to simulate the model at a population extreme. A further plot was
completed to identify the population type for each of the minimum and maximum evacuation
times (Figure A-8). This showed that the all the maximum times were caused by slower agent
population types but that the minimum was also attributed to the slower agent types. The
maximum times generally tally with the largest percentage of slower agents as it more probable
that one of the agents was at the model extents and therefore took a longer time to exit the
model. The converse of this was true when the model runs at 1.34m/s (3mph), in that there
were far fewer of the slower agent types to exit the model and all agents were travelling at the

same speed, which results in a faster evacuation time overall.
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Figure A-7 — Minimum and Maximum Evacuation Times (minutes) at Worldwide Locations, time difference for
maximum times approximately 3.5 minutes, time difference for minimum times approximately 9.2 minutes
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Figure A-8 — Minimum and Maximum Evacuation Times (minutes), depicting the different population types at

various international locations, Tokyo: maximum time by Female OAP, minimum time by child, Johannesburg:

maximum time by child and minimum time by Male OAP, Seoul: maximum time by Female OAP and minimum
time by Male OAP, and the World: maximum time by Male OAP and minimum time by Male OAP

A.6 Effect of Population Characteristics

As previously, with the UK data neither the total population size nor the population extremes
seemed to significantly affect the differences in evacuation time, which means that the
inclusion of population characteristics were having an impact on evacuation time. A

comparison was made between the model considering only walking speeds of 1.34m/s (3mph)
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and the inclusion of varied walking speeds based on age as well as age and sex (Table A-5).
This showed that there were some large time differences between the model simulations, an
average of 31.15 minutes when walking speeds were added by age and sex and an average of
27.65 minutes when walking speeds were added by age only. This resulted in large percentage
time differences and was particularly seen with the slower agent types. For varied walking
speeds by age and sex in South Korea, the children had 66% time difference, male OAPs had
75% time difference and female OAPs had 76% time difference when compared with a 1.34m/s
(3mph) model (Figure A-9). For varied walking speeds by age only, the children had 63% time
difference and the OAPs had 73% time difference (Figure A-10). These large time differences
again demonstrate that the current evacuation models including only agents walking at 1.34m/s
(3mph) are producing inaccurate evacuation times by failing to consider a range of walking
speeds.

Table A-5 — Comparison between World Average Evacuation Times (minutes) and Simulations for different

international locations, showing (in the third column) the difference in average evacuation times between all

agents walking at 1.34m/s and agents adopting walking speeds based on their age only and (in the fourth

column) the difference in evacuation times between all agents walking at 1.34m/s and agents adopting walking
speeds based on their age and sex

4 0 4 D

5 0]0 (5 al'le( 0]0 (5 al'le(
b GRS O peed D a O peed O
ajde O v agde ald Se C
Children 49.0 46.2
M Adults -1.9
Tok n (Lar -1.4
e Siﬁﬁuaﬂo%ge F Adults 14.3
M OAPs 500 50.9
F OAPs 54.5
Children 48.1 47.5
Johannesburg, South M Adults 03 -14
Africa (Large Child F Adults ' 13.2
population) M OAPs 418 41.2
F OAPs ' 46.8
Children 43.6 45.6
Seoul, South Korea M Adults 10 -0.5
(Large Adult F Adults ' 11.4
population) M OAPs 478 49.0
F OAPs ' 50.4
Average Time Difference 27.65 31.15
Average % Difference 40% 45%
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Figure A-9 — Comparison of World Average Population Data to South Korea Population Data for 1.34m/s
(3mph) Walking Speed vs. Varied Walking Speeds for All Population Types by Age and Sex, Mean Time.
Difference of 27.4 minutes and Standard Deviation of 26.0 minutes.
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Figure A-10 — Comparison of World Average Population Data to South Korea Population Data for 1.34m/s
(3mph) Walking Speed vs. Varied Walking Speeds for All Population Types by Age only, Mean Time Difference
of 30.1 minutes and Standard Deviation of 27.0 minutes
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A.7 Comparison of UK and World Data Evacuation Times

Evaluation of the UK and then World population data combined with the introduction of
additional population characteristics into the agent-based model environment has shown that
current models are producing inaccurate estimates for evacuation times. The average difference
in evacuation time when walking speeds were varied by age and sex was 40% and when walking
speed was by age only, the difference was 39.5%. However, for the slower population types,
the time difference may be as high as 66% (female adults with varied walking speeds by age
and sex) (Table A-6). Such large evacuation time differences could cause detrimental impacts
for communities with increased fatalities and injuries caused by the inability to evacuate in the
allotted time frame. The results so far have also shown that if a user has a lack of computational
power then there were only small differences between including walking speeds varied by age
and sex compared with those just by age so the number of variables could be reduced to increase

computational efficiency.

The macroscale evacuation model has successfully produced a range of evacuation times with
many variants in Test 1 and 2. However, it was difficult to replicate scenarios when using small
numbers of agents as agents were randomly placed across the entire model, meaning the starting
positions were often vastly different and slow agent types were not always placed at the model
extents. This means spatial variability affected the minimum and maximum evacuation times
produced. In the future, consideration should be given to the introduction of population density
into the model, which would reduce the spatial variability by ensuring that all pathways were

similarly populated.

Also, within the model, agents were not fully capable of reacting to each other, agents calculated
a shortest path to the evacuation point, this occurred regardless of the rest of the population i.e.
agents did not make an alternative route choice if there was congestion present. Further to this,
agents were able to “pass” over each other e.g. if there was a slower agent ahead the agent
manoeuvred around the agent rather than being held at a slower speed behind it. This may be a
plausible scenario, but the model was not considering the capacity of the pathways being used
and instead assuming that agents were always able to pass each other. Hence, there is a need to
consider capacity and the “passing” of agents within the model environment, to improve the

accuracy of the time estimates.
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Table A-6 — Comparison of UK (columns 2 — 5) and World (columns 6 — 8) Population Data with 1.34m/s
(3mph) simulation vs. Varied Walking Speeds by age and sex simulation (rows 3 — 8) and age only simulation
(rows 10 — 13), showing % difference in evacuation times

South ower
Newcastle > g Tokyo Johannesburg Seoul

1.34m/s (3mph) vs. Varied Walking Speed by age and sex
Children 67% 68% 74% 69% 67% 69% 66% | 60%
Male
-2% -4% -1% -5% -3% -2% -1% | -2%
Adults
Female
19% 17% 17% 21% 20% 18% 16% | 16%
Adults
Male
68% 72% 63% 60% 78% 63% 75% | 60%
OAPs
Female
75% 81% 75% 67% 83% 71% 76% | 66%
OAPs
Average 45% 47% | 46% 42% 49% 44% 47%
1.34m/s (3mph) Model vs. Varied Walking Speed by age only
Children 65% 67% 67% 71% 71% 70% 63% | 59%
Adults -1% -1% -1% -1% -2% 0% -1% | -1%
OAPs 70% 73% 67% 62% 76% 64% 73% | 61%
Average 45% 46% | 44% 44% 48% 44% 45%
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