
School of Computing

Modelling Energy Efficiency and
Performance Trade-offs

Ali Alssaiari

Submitted for the degree of Doctor of
Philosophy in the School of Computing,

Newcastle University

November 2021

© 2021,



- B -



Dedication

I would like to dedicate this thesis to my loving parents and my family (my wife Eman),

my son (Alhassan) and my daughters (Enas, Zainab and Kindah).

- i -



- ii -



Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in

part for consideration for any other degree or qualification at Newcastle University, or

any other university. This dissertation is my own work and contains nothing which is

the outcome of work done in collaboration with others, except as specified in the text

and Acknowledgements.

Ali Abdullah Y Alssaiari

November 2021

- iii -



- iv -



Acknowledgements

First of all, praises and thanks be to Allah, who has granted me countless blessings,

patience and perseverance during this research project, and indeed, throughout all my

life. I would also like to express my gratitude and thanks to my supervisor Dr Nigel

Thomas, for his invaluable guidance, enormous support and constant encouragement

throughout my PhD study. Without your great continuing support and encourage-

ment, this research would never be a reality. I also would like to thank my colleagues

at the School of Computing at Newcastle University for their inspiration and support

over the years. Special thanks, to Osamah Alrajeh, Said Kamil, Talal Alharbi and

Amjad Aldewish for their support.

I wish to also acknowledge the support of my friends Idris Musa, Abdullah Faqihi,

Ahmmad Alhatrushi and the various people who has touch my life during my time of

study. In addition, I would like to give my special thanks to all the children in Saudi

School, they made Saturday a valuable day in my life during my volunteering in the

school since 2016.

Finally, and most importantly, I wish to thank my mother (Shethra Alsaiar), my

father, my brothers and my sister. I also wish to express my sincere thanks to my wife

(Eman), my son (Alhassan) and my daughters (Enas, Zainab and Kindah) for their

great patience, sacrifices, encouragement, infinite love and enormous support. They

all were the real motivation for facing all the difficulties during my study.

- v -



- vi -



Abstract

Power and energy consumption in data centres is a huge concern for data centre

providers. As a result, this work considers the modelling and analysis of policy and

scheduling schemes using Markovian processing algebra known as PEPA. The first

emphasis was on modelling an energy policy in PEPA that dynamically controls the

powering servers ON or OFF. The focus is to identify and reflect the trade-off between

saving energy (by powering down servers) and performance cost. While powering down

servers saves energy, it could increase the performance cost. The research analyses the

effect of the policy on energy consumption and performance cost, with different com-

binations of dynamic and static servers used in the policy against different scenarios,

including changes in job arrival rate, job arrival duration and the time needed by

servers to be powered On and start process jobs. The result gave interesting outcomes

because every scenario is unique, and therefore, no server combinations were found to

give low energy and high performance in all situations.

The second focus was to consider the impact of scheduler’s choice on performance

and energy under unknown service demands. Three algorithms were looked at: task

assignment based on guessing size (TAGS), the shortest queue strategy and random

allocation. These policies were modelled using PEPA to derive numerical solutions in

a two servers system. The performance was analysed considering throughput, average

response time and servers’ utilisation. At the same time, the energy consumption

was in terms of total energy consumption and energy consumption per job. The

intention was to analyse the performance and energy consumption in a homogeneous

and heterogeneous environment, and the environment was assumed to be homogeneous

in the beginning. However, the service distribution was considered either a negative

exponential (hence relatively low variance) or a two-phase hyper-exponential (relatively

high variance) in each policy. In all cases, the arrival process has been assumed to

be a Poisson stream, and the maximum queue lengths are finite (maximum size is 10

jobs). The performance results showed that TAGS performs worse under exponential
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distribution and the best under two-phase hyper-exponential. TAGS produce higher

throughput and lower job loss when service demand has an H2 distribution. Our

results show that servers running under TAGS consume more energy than other policies

regarding total energy consumption and energy per job under exponential distribution.

In contrast, TAGS consumes less energy per job than the random allocation when the

arrival rate is high, and the job size is variable (two-phase hyper-exponential).

In a heterogeneous environment and based on our results on the homogeneous environ-

ment, the performance metrics and energy consumption was analysed only under two-

phase hyper-exponential. TAGS works well in all server configurations and achieves

greater throughput than the shortest queue or weighted random, even when the second

server’s speed was reduced by 40% of the first server’s in TAGS. TAGS outperforms

both the shortest queue and weighted random, whether their second server is faster or

slower than the TAGS second server. The system’s heterogeneity did not significantly

improve or decrease TAGS throughput results. Whether the second server is faster or

slower, even when the arrival rate is less than 75% of the system capacity, it approxi-

mately showed no effect. On the other hand, heterogeneity of the system has a notable

effect on the throughput of the shortest queue and weighted random. The decrease or

increase in throughput follows the trend of the second server performance capability.

In terms of total energy consumption, for all scheduling schemes, when the second

server is slower than the first server, the energy consumption is the highest among all

scenarios for each arrival rate. TAGS was the worst and consumed higher energy than

both the shortest queue strategy and weighted random allocation. However, in terms

of energy per job, when servers are identical, or server2 is faster, it was observed that

the shortest queue is the optimal strategy as long as the incoming jobs rate does not

exceed 70% of the system capacity ( arrival rate <15). Furthermore, the TAGS was

the best strategy when the incoming task rate exceeds 70% of the system capacity. So,

as more jobs are produced, the energy per job decreases eventually. Choosing the en-

ergy policy or scheduling algorithm will impact energy consumption and performance

either negatively or positively.

- viii -



Contents

Nomenclature xix

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Aims and objectives of the research . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and related work 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Power and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Energy consumption in data centres . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Server energy consumption . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Network energy consumption . . . . . . . . . . . . . . . . . . . 15

2.3.3 Cooling system energy consumption . . . . . . . . . . . . . . . . 15

2.3.4 Power metrics in data centre . . . . . . . . . . . . . . . . . . . . 15

2.4 Servers energy and power saving mechanism . . . . . . . . . . . . . . . 17

2.4.1 Server virtualisation . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Workload variation optimisation . . . . . . . . . . . . . . . . . . 18

2.4.3 Voltage and frequency scaling mechanism . . . . . . . . . . . . . 19

2.4.3.1 Dynamic Voltage and Frequency Scaling (DVFS) . . . 20

2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Performance Evaluation Process Algebra (PEPA) . . . . . . . . . . . . 26

2.6.1 The Syntax of PEPA. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 Continuous Time Markov Chain CTMC . . . . . . . . . . . . . 30

2.7 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 Experiments objectives . . . . . . . . . . . . . . . . . . . . . . . 34

2.8.2 Experiments environments . . . . . . . . . . . . . . . . . . . . . 35

2.8.3 Notations and Terminologies . . . . . . . . . . . . . . . . . . . . 37

- ix -



3 Dynamic Server Allocation in a homogeneous system 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Dynamic server allocation model . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 The High/Low heuristic . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The High/Low policy model in PEPA . . . . . . . . . . . . . . . . . . . 43

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Increasing arrival rate . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Changes in period duration . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Changing the switching time . . . . . . . . . . . . . . . . . . . . 53

3.4.4 Changing the cost deference . . . . . . . . . . . . . . . . . . . . 54

3.4.5 The fault rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.6 Evaluation summary . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Modelling TAGS: Task Assignment Based on Guessing Size in homogeneous
environment using PEPA 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Shortest queue model in PEPA . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 The model under exponential service . . . . . . . . . . . . . . . 61

4.2.2 The model under hyper exponential service . . . . . . . . . . . . 62

4.3 Random allocation model in PEPA . . . . . . . . . . . . . . . . . . . . 64

4.3.1 The model under exponential demand . . . . . . . . . . . . . . 64

4.3.2 The model under hyper exponential service . . . . . . . . . . . . 65

4.4 Task Assignment Based on Guessing Size model . . . . . . . . . . . . . 65

4.4.1 TAGS model in PEPA under exponential service demand . . . 67

4.4.2 TAGS model in PEPA under hyper-exponential service demand 70

4.5 TAGS timeout optimisation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 TAGS Performance and Energy Consumption in Homogeneous environment 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Performance analysis under exponential service demand . . . . . 77

5.2.2 Performance analysis under hyper-Exponential service demand . 82

5.3 Energy model and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Energy consumption under exponential service demands . . . . 88

5.3.2 Energy Consumption Under Hyper-Exponential Service Demands 92

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

- x -



6 TAGS Performance and Energy Consumption in Heterogeneous environment 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Model in PEPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 TAGS PEPA model in heterogeneous environment . . . . . . . . 99

6.2.2 Shortest queue PEPA model in heterogeneous environment . . . 101

6.2.3 Weighted random PEPA model in heterogeneous environment . 102

6.3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 TAGS analysis in heterogeneous environment . . . . . . . . . . . . . . . 104

6.4.1 TAGS Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.2 TAGS utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.3 TAGS total energy consumption . . . . . . . . . . . . . . . . . . 111

6.5 Performance analysis of TAGS vs shortest queue and weighted random
in heterogeneous environment . . . . . . . . . . . . . . . . . . . . . . . 114

6.5.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.2 Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Energy consumption analysis . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.1 Total energy consumption . . . . . . . . . . . . . . . . . . . . . 119

6.6.2 Energy per job . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Conclusion and future work 127

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography 133

Appendix A Energy data in heterogeneous environment 139

A.1 Total energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Energy per job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 Server 1 active energy consumption . . . . . . . . . . . . . . . . . . . . 146

A.4 Server 2 active energy consumption . . . . . . . . . . . . . . . . . . . . 149

A.5 Server 1 and 2 total active energy consumption . . . . . . . . . . . . . 152

A.6 Server 1 Idle energy consumption . . . . . . . . . . . . . . . . . . . . . 155

A.7 Server 2 Idle energy consumption . . . . . . . . . . . . . . . . . . . . . 158

A.8 Total Idle consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

- xi -



Appendix B Performance data in heterogeneous environment 165

B.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.2 Job loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.3 Average response time . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.4 Utilisation Server 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.5 Utilisation Server 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

- xii -



List of Figures

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 With the Cascade Effect, a 1-Watt savings at the server-component
level creates a reduction in facility energy consumption of
approximately 2.84 Watts [46]. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Taxonomy of dynamic energy-efficient management mechanism . . . . . 17

2.3 Underlying CTMC of the simple PEPA model of M/M/1/3 . . . . . . . 30

2.4 The PEPA model for M/M/1/3 . . . . . . . . . . . . . . . . . . . . . 32

2.5 Alternative PEPA model for M/M/1/3 . . . . . . . . . . . . . . . . . 33

2.6 A taxonomy of queue models for AQTMCC by [30]. . . . . . . . . . . . 36

3.1 High/Low policy PEPA Model . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Total cost based on number of dynamic servers at different arrival rates 48

3.3 Performance cost based on number of dynamic Servers at different
arrival rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Energy cost based on number of dynamic servers at different arrival rates 49

3.5 Total cost at different period length . . . . . . . . . . . . . . . . . . . 50

3.6 Queue length at different period length rates . . . . . . . . . . . . . . . 50

3.7 Total cost and queue length for different period rates . . . . . . . . . . 50

3.8 Energy cost for different high arrival period duration rates . . . . . . . 50

3.9 :Energy cost based on number of dynamic servers at different period
length rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Total cost based on number of dynamic servers at different period rates 51

3.11 Total cost and waiting jobs for 5 dynamic servers at different
switching time Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Energy cost and number of servers in powering on / off states at
different switching time rates. . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Changing cost difference . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.14 Energy cost for different server combinations . . . . . . . . . . . . . . . 54

3.15 Fault rate at different duration rate . . . . . . . . . . . . . . . . . . . . 55

4.1 Shortest Queue PEPA hyper exponential model in Homogeneous
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Random allocation PEPA model under exponential demand . . . . . . 64

- xiii -



4.3 Jobs allocation flow in TAGS . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 A PEPA TAGS exponential model . . . . . . . . . . . . . . . . . . . . 69

4.5 A PEPA TAGS hyper exponential model . . . . . . . . . . . . . . . . . 71

4.6 Throughput varied against timeout rate t when the arrival rate λ =11,
and the average service µ= 10 for exponential service demand in
homogeneous environment . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Throughput varied against arrival rate λ, when the average service µ=
10 for exponential service demand in homogeneous environment. . . . 78

5.2 Average response time, varied against arrival rate λ, when the average
service µ= 10 for exponential service demand in homogeneous
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Job loss, varied against arrival rate λ, when the average service µ= 10
for exponential service demand in homogeneous environment. . . . . . 80

5.4 (a) server1 utilisation and (b) server2 utilisation, varied against
arrival rate λ, when the average service µ= 10 for exponential service
demand in homogeneous environment. . . . . . . . . . . . . . . . . . . 81

5.5 Throughput varied against arrival rate λ, when the average service µ=
10, and proportion of short job α = 0.99, and the service rate µ1=100µ2. 82

5.6 Job loss varied against arrival rate λ, when the average service µ= 10,
and proportion of short job α = 0.99, and the service rate µ1=100µ2 . . 83

5.7 Average response time varied against arrival rate λ, when the average
service µ= 10, and proportion of short job α = 0.99, and the service
rate µ1=100µ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.9 Total energy consumption varied against arrival rate λ, µ= 10. . . . . 89

5.10 Average energy consumption per job varied against arrival rate λ, µ=
10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 Total energy consumption varied against arrival rate λ, when the
average service µ= 10, and proportion of short job α = 0.99, and the
service rate µ1=100µ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.12 (a) server1 utilisation and (b) server2 utilisation, varied against
arrival rate λ, µ = 10, α = 0.99, µ1=100µ2 . . . . . . . . . . . . . . . . 94

5.13 Energy per job varied against arrival rate λ, µ = 10, α = 0.99, µ1=100µ2 95

6.1 A PEPA TAGS hyper exponential model in Heterogeneous environment 100

6.2 Shortest Queue PEPA hyper exponential model in Heterogeneous
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 TAGS throughput varing against timeout rate . . . . . . . . . . . . . . 104

6.4 Total job loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

- xiv -



6.5 Job loss at server1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Job loss at server2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 TAGS Sever1 utilisation varying against arrival rate . . . . . . . . . . . 109

6.8 TAGS sever2 utilisation varying against arrival rate . . . . . . . . . . . 110

6.9 TAGS total energy consumption varying against arrival rate . . . . . . 112

6.10 TAGS server1 active energy consumption varying against arrival rate . 112

6.11 TAGS server2 active energy consumption varying against arrival rate . 113

6.12 Throughput varied against arrival rate. . . . . . . . . . . . . . . . . . . 114

6.13 Job loss varied against arrival rate. . . . . . . . . . . . . . . . . . . . . 115

6.14 Average response time varied against arrival rate. . . . . . . . . . . . . 117

6.15 S1 Utilisation varied against arrival rate. . . . . . . . . . . . . . . . . . 118

6.16 S2 utilisation varied against arrival rate. . . . . . . . . . . . . . . . . . 118

6.17 Total Energy Consumption varying against arrival rate. . . . . . . . . . 119

6.18 Total Idle Consumption varying against arrival rate. . . . . . . . . . . . 120

6.19 Server1 Active Energy Consumption varying against arrival rate . . . . 121

6.20 Server2 Active Energy Consumption varying against arrival rate . . . . 122

6.21 Server1 Idle Energy Consumption varying against arrival rate . . . . . 123

6.22 Server2 Idle Energy Consumption varying against arrival rate . . . . . 123

6.23 Energy Consumption per job varying against arrival rate . . . . . . . . 124

- xv -



- xvi -



List of Tables

2.1 Comparison of related work in terms of techniques, limitations and
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Notations and Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 PEPA Model Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 AMD opteron CPU specifications . . . . . . . . . . . . . . . . . . . . . 86

5.2 The equivalent utilisation level for each P-state . . . . . . . . . . . . . 86

5.3 Total energy consumption results and percentage difference. . . . . . . 88

5.4 P-state value at different arrival rates . . . . . . . . . . . . . . . . . . . 91

6.1 The TAGS timeout rate values that maximise throughput at each
arrival rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Total energy consumption for all combinations . . . . . . . . . . . . . . 140

A.2 Energy per job in heterogeneous environment . . . . . . . . . . . . . . 143

A.3 Server 1 active energy consumption in heterogeneous environment . . . 146

A.4 Server 2 active energy consumption in heterogeneous environment . . . 149

A.5 Total active energy consumption in heterogeneous environment . . . . . 152

A.6 Server 1 Idle energy consumption in heterogeneous environment . . . . 155

A.7 Server 2 Idle energy consumption in heterogeneous environment . . . . 158

A.8 Total Idle energy consumption for all combinations . . . . . . . . . . . 161

B.1 Throughput for all server combinations in heterogeneous environment . 166

B.2 Job loss for all server combinations in heterogeneous environment . . . 169

B.3 Response time for all server combinations in heterogeneous environment 172

B.4 Server 1 Utilisation for all server combinations in heterogeneous
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.5 Server 1 Utilisation for all server combinations in heterogeneous
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

- xvii -



- xviii -



Nomenclature

. List of Acronyms

TOC: Total Ownership Cost

PEPA: Performance Evaluation Process Algebra

DPM: Dynamic Power Management

DVFS: Dynamic Voltage and Frequency Scaling

TOC: Total Ownership Cost

DPM: Dynamic Power Management

DFS: Dynamic Frequency Scaling

CMOS: Complementary Metal Oxide Semiconductor

CPU: Central Processing Unit

FCFS: First-Come-First-Served

CTMC: Continuous Time Markov Chain

PUE: Power Usage Effectiveness

DCiE: Data Centre Infrastructure Effciency

ODEs: Ordinary Differential Equations

TAGS: Task Assignment Based on Guessing Size

CDN: Content Delivery Network

MTBF: Mean Time Between Failures

MTTR: Mean Time To Repair

SPN: Stochastic Petri Net

GSPN: Generalized Stochastic Petri Net

SLA: Service Level Agreement

SLO: Service Level Objective

VMs: Virtual Machines

AQTMCC: Applying Queue Theory for Modelling of Cloud Computing

ERP: Energy-Response Time Product

SPA: Stochastic Process Algebra

ACPI: Advanced Configuration and Power Interface

- xix -



- xx -



Acronym

- xxi -



- xxii -



1
Introduction

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Aims and objectives of the research . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

- 1 -



Chapter 1: Introduction

1.1 Introduction

The rapid growth in new technological breakthroughs and manufacturers’ enormous

production processes provide cheap and useful user-friendly products that are more

accessible to many people, regardless of their economic situation. This growth has led

to increased worldwide consumer usage of evolving technologies. These technologies

mostly rely on electricity. The global success of technological development and usage

has resulted in a dramatic increase in power demands and consumption worldwide.

Studies show that global energy demands have increased by 100% between 1990 and

2014. In 1990, the power consumption was 10k TWh, which increased to 20k TWh

worldwide in 2014 [13]. The U.S. Energy Information Administration (EIA) estimates

that future demand and consumption of energy will increase by 2.2% per year, which

would presumably be about 40k TWh in 2040 [9]

The fast-paced growth of global power consumption raises concerns about energy-

related carbon dioxide emissions as many countries still rely on fossil fuels (gas, oil,

and coal) to produce electricity. In 2010, the carbon dioxide emissions were estimated

to be around 31.2 billion metric tons, which is anticipated to increase by 16%, equiv-

alent to 36.4 billion metric tons, in 2020 [9]. Many countries have introduced diverse

environmental requirements to reduce CO2 emissions. For example, the British Gov-

ernment aims to reduce greenhouse gas emissions by at least 80% in 2050 from a 1990

baseline, according to the Climate Change Act 2008 requirements [14].

1.2 Motivation

The cost of energy is one of the many challenges facing large-scale computing. Accord-

ing to [42], data centre owners expect to spend more capital on energy than their IT

infrastructure, which currently contributes more to the Total Ownership Cost (TOC).

The Environmental Protection Agency (EPA) has issued a report to the U.S. Congress

regarding the energy efficiency of servers and data centres. The report highlighted sev-

eral important points related to the energy consumption of data centres. According

to the report, data centres’ electricity demands grew 100% between 2000 and 2006.

Data centres in the U.S. consumed 61 billion kWh in 2006, representing 1.5% of total

electrical consumption in the country [4].
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Reducing energy consumption in data centres cannot be achieved without a deep

understanding of their needs and energy consumption mechanisms, which necessitates

understanding how data centres operate and the amount of energy each component

consumes. In data centres, one of energy management’s main objectives is reducing

energy consumption by servers. Researchers introduce many techniques and policies

to achieve this goal. One of such is the dynamic server allocations, where servers are

dynamically switched on or off according to a specific policy. Moreover, the Dynamic

Voltage and Frequency Scaling (DVFS) is another approach used to control servers

energy consumption. The impact on performance is the primary concern associated

with these energy reduction techniques. In contrast, the improvement of performance

techniques directly affects increased energy consumption. For example, a technique for

improving system throughput or average response time under variable service demand

might increase energy consumption.

1.3 Problem Statement

Selecting an energy policy or a job scheduler based on energy efficiency and perfor-

mance is vital to obtaining maximum performance with minimum energy consumption.

However, the selection process needs an understanding of each policy and scheduler

impact on energy and performance. In this thesis, we initially consider evaluating the

high/low heuristic policy introduced by Slegers et al. [52]. The policy dynamically

switches on or off servers to reduce energy consumption. Moreover, we evaluate and

study the Task Assignment Based on Guessing Size (TAGS) algorithm, introduced by

Harchol-Balter [23]. TAGS purpose is to improve the performance where the service

demand is not known. These systems will be modelled by Performance Evaluation

Process Algebra (PEPA) to derive performance metrics and evaluate energy consump-

tion. As a result, this research investigates the impact of dynamically switching off

servers to minimise power consumption on performance. Also, this study investigates

the high variability in service demand and the benefits of redirecting large jobs to

specific servers and the effect these decisions have on energy and performance.
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The research questions become:

1. Can dynamically shut down a group of servers in the data centre minimise energy

consumption without degrading the overall performance?

2. Can the TAGS mechanism of forwarding jobs to specific servers when job service

demand is unknown improves performance without increasing energy consump-

tion?

1.4 Aims and objectives of the research

This research aims to evaluate energy consumption and performance trade-off. To

achieve this aim, the following objectives will be undertaken:

1. To identify the current energy-efficient approaches and techniques.

2. To evaluate the energy consumption and performance in the high/low energy

policy that has been introduced to reduce energy consumption. To fulfil the

requirement to answer question 1.

3. To evaluate and compare the energy consumption of some current algorithms

that increase performance but do not consider energy consumption. To fulfil the

requirement to answer question 2.

(a) To investigate and compare the energy consumption and performance of

TAGS, the shortest queue and random allocation algorithms in a homo-

geneous environment. There are many scheduling algorithms we can use

to allocate work. TAGS is the focus of the study as an unusual type of

scheduling algorithm which is suitable for variable demand. We study the

performance and energy consumption of TAGS to compare that to other

well-known algorithms. We chose the shortest queue as provably the best

strategy for exponential traffic, while random allocation is chosen because

it is the simplest job allocation strategy.

(b) To construct PEPA Models for TAGS, the shortest queue and random al-

location algorithms in a heterogeneous environment.
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(c) To investigate and compare the energy consumption and performance of

TAGS, the shortest queue and random allocation algorithms in a heteroge-

neous environment.

4. To evaluate and compare existing approaches by using performance evaluation

processing algebra (PEPA).

- 5 -



Chapter 1: Introduction

1.5 Contributions

This section highlights the main contributions achieved throughout the work presented

in this thesis. These contributions are detailed as follows:

1. Contributions from Chapter 3 to answer question 1:

(a) Developed and analysed a PEPA model for the high/low policy. Which

dynamically controls switching servers on or off according to two service

demand periods. The high period represents the excessive demand in a

period, while the low period represents a period where the service demand

is reduced.

(b) Presented an investigation of the energy and performance trade-off of the

high/low policy by different server combinations in four different scenar-

ios. These scenarios include changing the arrival rate, changes in period

duration, changing the switching time needed by servers to switch from one

state to another and changing the cost difference between holding the job

in the queue and the cost of saving energy.

2. Contributions from Chapters 4, 5 and 6, respectively, to answer question 2:

(a) Developed an energy model based on P-state value.

(b) Presented an energy and performance evaluation of TAGS, the shortest

queue and random allocation algorithms in a homogeneous environment.

The performance metrics considered are throughput, average response time,

job loss and servers utilisation. Simultaneously, the energy consumption

evaluation observed total energy consumption by servers and energy per

job.

(c) Developed PEPA models for TAGS, the shortest queue and random alloca-

tion algorithms, in a heterogeneous environment.

(d) Evaluated energy and performance for TAGS, the shortest queue and ran-

dom algorithms in a heterogeneous environment using the developed PEPA

models.
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Chapter 1
Introduction

Chapter 2
Background and related work

Chapter 3
Dynamic Server Allocation

Chapter 4
Modelling TAGS: Task 
Assignment Based on 

Guessing Size in 
homogeneous environment

using PEPA.

Chapter 5
TAGS Performance and 
Energy Consumption in 

Homogeneous
Environment.

Chapter 6
TAGS Performance and
Energy Consumption in 

Heterogeneous
Environment.

Modelling and Evaluating TAGS

Chapter 7
Conclusion and Future Work

Figure 1.1: Thesis structure

1.6 Thesis structure

This thesis consists of 7 chapters that cover two main concepts (i) dynamic server

allocation energy policies in Chapter 3 and (ii) the TAGS scheduling algorithm in

Chapters 4, 5 and 6. The aim is to evaluate each concept in terms of performance

and energy consumption trade-off. It is worth noting that, as there are two different

concepts, the experiment requirements and setups for each concept are different. So,

the dynamic server allocation experiment in Chapter 3 is different from the TAGS

experiments in Chapters 4, 5 and 6. Figure 1.1 presents an overall vision of the

research that shows how the various chapters are connected.

This thesis organised as follows:

Chapter 2 presents an overview of the related background topics and relevant literature

to this thesis. In addition, the PEPA modelling language, which we adopted as the

modelling method throughout this thesis, is introduced.

Chapter 3 investigates the performance and energy cost of dynamically switching on

or off servers. In this chapter, we modelled in PEPA a high/low policy. In addition,

we evaluate the energy and performance cost under four scenarios.

Chapter 4 presents TAGS, the shortest queue and random allocation algorithms, and
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their PEPA models specifications in a homogeneous environment. The system is

modelled under two service demand types: (i) exponential service demand and (ii)

a two-phase hyper-exponential service demand. Moreover, it describes the timeout

optimisation mechanism for TAGS.

Chapter 5 presents performance and energy consumption analysis of TAGS, the short-

est queue and random allocation in a homogeneous environment. The results showed

TAGS under two-phase hyper-exponential service demand consumes less energy per

job than the shortest queue and random allocation.

Chapter 6 presents PEPA models and analysis of performance and energy for TAGS,

the shortest queue and random allocation in a heterogeneous environment. In this

chapter, we adjust the PEPA models to adopt the heterogeneity of the system.

Chapter 7 presents the overall conclusions of the thesis and propose some areas of

further investigation.

1.7 Related Publications

The following papers represent the thesis published contributions:

1. Ali Alssaiari and Nigel Thomas. ”Performance modelling of dynamic server al-

location for energy efficiency using PEPA.” 32nd UK Performance Engineering

Workshop, University of Bradford. 2016.

In this paper, we considered modelling the high/low policy in PEPA to control

powering on or off servers dynamically. The main focus was identifying and

reflecting on the trade-off between saving energy (by powering down servers) and

performance cost. While powering down servers save energy, it could increase

the performance cost. The experiment analysed the effect of the policy on energy

consumption and performance cost. Multiple combinations of dynamic and static

servers in different scenarios were used in the experiment. These scenarios include

changes in job arrival rate, job arrival duration, the time needed by servers to

power on fully and serve jobs. The results give an interesting outcome because
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every scenario is unique, and therefore, no server combination gives low energy

and high performance in all scenarios. This paper forms Chapter 3.

2. Ali Alssaiari Ray Adderley Jm Gining, and Nigel Thomas. ”Modelling energy ef-

ficient server management policies in PEPA.”Proceedings of the 8th ACM/SPEC

on International Conference on Performance Engineering Companion. 2017.

3. Ali Alssaiari and Nigel Thomas. ”Performance and Energy Consumption of

TAGS in a Heterogeneous Environment Under Unknown Service Demand.” 35th

UK Performance Engineering Workshop 16 December 2019. .

In this paper, TAGS a job allocation algorithm is modelled in PEPA. The working

environment is assumed to be heterogeneous, and the job size distribution is

assumed to be H2 hyper exponential. Furthermore, the queues are bonded.

We use a two nodes system with exponentially distributed incoming tasks. We

analysed the performance metrics and energy consumption under different arrival

rates. The results show that TAGS can perform well for a different range of

performance metrics. In contrast, TAGS increases total energy consumption.

Finally, we calculate the energy per job to analyse the benefit of using TAGS in

a heterogeneous environment. This paper and paper 5 forms Chapter 6.

4. Ali Alssaiari and Nigel Thomas. ”Energy Consumption by Servers under Un-

known Service Demand.” Electronic Notes in Theoretical Computer Science 353

(2020): 21-38.

In this paper, we evaluate energy consumption under unknown service demands

using three strategies: TAGS, the shortest queue strategy and the random allo-

cation in a homogeneous environment. We modelled these policies using perfor-

mance evaluation processing algebra (PEPA) to derive numerical solutions. Our

results show that servers running under TAGS consumes more energy than other

policies in terms of total energy consumption. In contrast, TAGS consumes less

energy than the random allocation in terms of energy per job when the arrival

rate is high, and the job size is variable. This paper forms the basis of Chapters

4 and 5.

- 9 -



Chapter 1: Introduction

5. Ali Alssaiari and Nigel Thomas. ”Energy Consumption of TAGS in a Heteroge-

neous Environment under Unknown Service Demand”. Sustainable Computing:

Informatics and Systems, Volume 30, 2021.

In this paper, we modelled the TAGS job allocation algorithm using PEPA. The

working environment is assumed to be heterogeneous, and the job size distribu-

tion is assumed to be a two-phase hyper-exponential. Furthermore, the queues

are bounded. A two nodes system implemented with exponentially distributed

incoming tasks. We analysed the performance metrics and energy consumption

under different arrival rates. We found that TAGS can perform well and improve

performance, although it increases total energy consumption. Finally, we calcu-

lated the energy per job to evaluate TAGS in a heterogeneous environment. We

demonstrated that TAGS reduces energy consumption per job when the system

is under a heavy load. This paper along with Paper 3 forms Chapter 6.
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Chapter 2: Background and related work

2.1 Introduction

This chapter presents an overview of the related background topics and relevant lit-

erature to this thesis. Section 2.2 discuss the power and energy and the difference

between them. Section 2.3 contains a brief introduction to energy consumption in

data centres, including primary power metrics used to assess the efficient use of energy

in data centres. Section 2.4 briefly shows some mechanisms used to reduce energy and

power consumption. Related previous studies are presented in Section 2.5.

Finally, Section 2.6 presents the PEPA modelling language, which we adopted as

the modelling method throughout this thesis. We present the syntax of PEPA and

demonstrate the Continuous Time Markov Chain (CTMC) analysis techniques.

2.2 Power and energy

It is imperative to differentiate between the terms power and energy specifically. Power

and energy could be defined in terms of the work being performed by a system. The

energy (E) is a measure of how much work was completed over a time duration, while

the power (P) defined by [17] as ” the time rate of doing work”. In computing, this

could be defined as the rate of electricity consumption. Power measured in Watts (W)

and energy measured in Joules or Watt-hour (Wh). The relation between the power

and energy defined as in equations 2.1

E = P.T (2.1)

Where E is the energy, T refers to the period of time, and P is the power.

The Central Processing Unit (CPU) power consumption consists of dynamic power

consumption, short circuit power consumption, and power leakage. The CPU dynamic

power is created by the logic gates within the CPU chip. Dynamic power can be

calculated using Equation 2.2 [10].

P = CV 2F (2.2)
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where P is the power, C is the capacitance, V is the supply voltage, and F is the CPU

clock frequency.

In order to reduce the power consumption, one or more of the parameters must be

decreased. The C value is related to the low-level system design. The voltage V and

clock frequency F could be reduced by using DVFS, which is well known Dynamic

Power Management (DPM) technique. The DVFS technique will be discussed in more

detail in Section 2.4.3.

It is clear that the main difference between power and energy is the relation between

energy and time. Increasing the time required to process a task will increase the energy.

Thus, reducing power consumption by servers does not necessarily reflect a reduction

in its energy consumption. For example, consider a job that needs a time duration T

to be processed successfully at a power rate P ; if the processor performance reduces

to save power, the processing time to accomplish the job will increase, resulting in an

energy increase or remains the same.

2.3 Energy consumption in data centres

The energy consumed by a data centre can be divided into two main categories: (i)

energy consumed by IT equipment (e.g. servers, networks, and storage), and (ii) energy

consumed by infrastructure facilities (e.g. cooling system and supporting infrastructure

components) [55].

- 13 -



Chapter 2: Background and related work

Figure 2.1: With the Cascade Effect, a 1-Watt savings at the server-component level
creates a reduction in facility energy consumption of approximately 2.84 Watts [46].

2.3.1 Server energy consumption

In the context of a data centre, ’server ’ refers to computing and storage servers. This

does not include communication equipment, which falls under the network domain

category [37]. Servers in data centres are considered to be the main consumer of

energy. Studies have shown that servers have become the dominant IT source of power

consumption in data centres. According to [61], servers are responsible for nearly 56%

of power consumption in data centres. Thus, it can reasonably conclude that running

servers in idle mode or at low levels of utilisation represent a considerable waste of

power [3]. A study by Emerson Network Power [46] found that a 1-Watt reduction in

power at the server level reduces total facility energy consumption by approximately

2.84 Watts, as illustrated in Figure 2.1. In 2010, the estimated total number of installed

servers in the United States alone was 15.8 million [5].

Many studies have focused on low-level power models that consider reducing energy

consumption in each component in the server, e.g. CPU, Memory and storage disk

or considered network components such as switches and routers. In contrast, there is

another approach which, considers a more abstract modelling level. The abstract mod-

elling level considers the job distributed between servers and shut down idle servers to

save energy. The second approach is more generic and not focused on the application,

operating system or hardware component.
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2.3.2 Network energy consumption

The term “network” comprises all the communication equipment in a data centre used

by servers to send or receive data, such as routers. The energy consumed by a network

in a data centre is about 4% of the total IT equipment consumption of power, as stated

in [46]. However, the network energy consumption accounts for around 10% of total

IT equipment energy use [5].

2.3.3 Cooling system energy consumption

Cooling systems in data centres are responsible for 38% of total facility energy con-

sumption [46]. However, this figure is said to be higher, maybe as much as higher 50%

[48]. There is a direct relationship between the energy consumption of servers and

cooling system energy consumption. When the server energy consumption increases,

this leads to a rise in temperature in the room housing the servers. Consequently,

to reduce the server room temperature, the cooling system works harder and thus

consumes more energy.

2.3.4 Power metrics in data centre

Data centre owners and operators need a clear and effective mechanism to measure

and calculate actual IT energy consumption and energy efficiency in their data centres.

Accordingly, to calculate the efficient use of energy in data centres, it is essential

to establish agreed standardized measurement metrics. Several energy metrics have

been introduced and applied for different scales and components in data centres [60].

Prominent among these metrics is Power Usage Effectiveness (PUE) and Data Centre

Infrastructure Efficiency (DCiE). Both metrics are considered and applied as primary

metrics and are used to measure two parameters: total energy input to the data centre

and IT equipment power. Malone et al. [36], introduced PUE in 2006, and defined it

as ”the ratio of the total facility power to the IT equipment power. The Green Grid

adopted PUE in 2007 [22]. PUE is illustrated in Equation 2.3, while DCiE is defined
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as the inverse of PUE, as seen in Equation 2.4

PUE =
The total facility energy

The IT equipment energy
(2.3)

DCiE =
The IT equipment energy

The total facility energy
(2.4)

From the previous equations, IT equipment energy is the energy consumed by IT

equipment to operate required tasks (e.g. processing and storing data). Whereas the

Total Facility Energy is the energy that is specifically dedicated for the data centre

facility (i.e. the measured energy at the utility meter) [2]. The total facility energy

includes the IT equipment energy and any systems that used energy to support the

IT equipment. Such as Power delivery components (e.g. UPS systems, switchgear,

generators, power distribution units (PDUs) and batteries), Cooling systems and other

miscellaneous component loads [2].

Avelar et al [2], conducted a comprehensive examination of PUE. The optimal data

centre efficiency is achieved when the PUE value is equal to 1. That means all power

that goes into the facility is consumed or used by the IT equipment for its operation.

However, any PUE value of more than 1 means more power in the system can support

the IT load, which implies the existence of data centre overhead. The overhead occurs

because not all power that enters the data centre is used by the IT equipment (e.g.

servers, network and storage). Realistically, some of the total power used by the data

centres are used by supporting systems such as cooling, lighting and other infrastruc-

ture systems. Moreover, in reality, there is a consequent loss of power that occurs in

the power system [8].

It is essential to look at the PUE value considering the total energy consumed in the

data centre. Some data centre managers sometimes misunderstand the PUE value

because the PUE value only shows the efficient use of power, not the total decrease or

increase of power usage. For instance, if the total input power to the facility was 300

kWh and the IT equipment consumed 150 kWh, meaning the PUE value is:

PUE =
300

150
= 2
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Figure 2.2: Taxonomy of dynamic energy-efficient management mechanism

The data centre manager may have intended to use virtualisation effectively to reduce

the IT power consumption by 50%, so he had the IT usage of power reduced by 75kwh.

However, because there are overhead management or power losses in other parts of the

data centre, the PUE value might not reflect this decrease in power consumption

resulting in the calculation below:

PUE =
255

75
= 3

So, given the anomaly that arises from such a situation, the data centre managers

must investigate further or understand the cause of the rise or fall in the expected

PUE value, such as UPS losses.

2.4 Servers energy and power saving mechanism

Reducing energy consumption in data centres involves a range of approaches. It must

consider the multiple elements of the data centre (e.g. the IT equipment and support

systems such as cooling systems). However, in this thesis, we will only discuss some of

the power and energy-saving methods used on servers, as our models and analysis in

Chapters 3, 4, 5 and 6 considers servers only. There are different mechanisms used to
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reduce servers’ energy consumption, such as virtualisation, dynamic server allocation,

and voltage and frequency scaling approach.

2.4.1 Server virtualisation

In cloud computing, virtualisation is an approach whereby multiple independent virtual

operating systems run on one computer. Virtualisation is achieved by increasing server

utilisation so that the same amount of processing in multiple servers is achieved using

fewer servers. As a result, the number of running servers in the data centre can

be considerably reduced, leading to a decrease in power and energy consumption by

servers and cooling systems [59]. Multiple studies analyse the energy-saving potential

of virtualisation in data centres, such as [6, 32, 61]. A comparison study by Buchanan et

al. [6] compared PC energy consumption and that of Virtual Machines (VMs) in data

centres equipped with 500 PCs, showed that there is a saving in power consumption

when using virtualisation. A Mapper framework introduced in [61] used to explore the

dynamic allocation of resources in virtualised machines to optimise energy consumption

and performance. Also, Sharma and Sharma [49] introduced a new VMs load balancing

algorithm applied to reduce costs and response time. The drawback of virtualisation is

the energy overhead in virtualised servers. A virtualised server consume more energy

than a physical server due to an increase in utilisation. This situation can be attributed

to the energy overhead, which highly depends on the hypervisor used. Therefore, it

becomes essential to have a trade-off between shutting down idle servers and energy

overhead due to virtualisation [31].

2.4.2 Workload variation optimisation

The workload in computing refers to application utilisation, for example, works im-

posed on a computer, the number of task requests arrived in the system and the load

due to task processing. Fehling et al. [16] categorised the application workload pattern

in cloud data centres into five categories. First, Static Workload, where the utilisation

over time has slightly fluctuated within specific boundaries or nearly constant. Second,

Periodic Workload, when system utilisation increases to a peak level at reoccurring
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time intervals. Third, Once-in-a-lifetime Workload represents a particular case of pe-

riodic workload where the consistent utilisation of the system over time is impacted by

an outburst of workload that occurs just once. Forth, Unpredictable Workload, where

resources experience random workload over time, leading to volatile utilisation. Fifth,

Continuously Changing Workload where system utilisation facing continuous growth

or decline over time due to continuous change in the workload arrives at the system.

Workloads in the cloud frequently change over time, as do the resource needs, arrival

rates, and operating duration. Therefore, It is essential to take into account the effect

of workload variability on energy usage. As a result, comprehending the distribution

of different server workloads and their corresponding hardware needs is important.

Several workload optimisation techniques might be employed to mitigate the impact

on energy usage. Additionally, identifying the workload differences across different

servers would aid in improving server utilisation and lowering energy usage. Workload

prediction is one technique that can be used to adjust the server resources to save

energy. In this approach, resource consumption is recorded based on workload so that

the resources required in the future can be predicted[28].

2.4.3 Voltage and frequency scaling mechanism

Processors nowadays feature energy-saving techniques that preserve a low power con-

sumption by decreasing the operating frequencies of the processors. The used mech-

anism of voltage and frequency scale determines the relationship between power and

frequency. Gandhi et al. [19] categorised the scaling mechanism under three broad

categories. (i) Dynamic Frequency Scaling (DFS) a.k.a. T-states is a power-saving

strategy in which the CPU is operated at a lower-than-maximum clock frequency.

(ii) Dynamic Voltage and Frequency Scaling (DVFS) a.k.a. P-states power-saver

technique that lowers power consumption by decreasing the processor’s voltage and

frequency at various levels. Finally (iii) DVFS + DFS ,this technique investigates the

advantages of using both techniques by implementing the DFS at the lowest perfor-

mance state in DVFS.
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2.4.3.1 Dynamic Voltage and Frequency Scaling (DVFS)

The DVFS is the processor’s capability to change its voltage and frequency in run

time. A processor with a DVFS functionality can adjust its frequency up or down

dynamically based on the number of jobs currently operating and the energy efficiency

policy [7]. Therefore, DVFS allows the processor to reduce its power consumption by

reacting to the change in workload demand in real-time by reducing its speed (i.e.

scale down the frequency) when the workload is low.

The processors with DVFS-feature are classified into two types: ideal and non-ideal.

The ideal processor can scale up or down the voltage and frequency continuously, which

means the frequency and voltage can be any value between the processor’s minimum

and maximum supported voltage and frequency. On the contrary, a non-ideal processor

has only supported some predefined frequency levels, and the processor is constrained

to switching between these certain levels [7, 12].

Section 5.3 presents our energy model, which depends on the assumption that the

CPU is equipped with the DVFS capability, and the CPU moves from one performance

state (P-state values) to another based on the system utilisation. Therefore, the CPU

requires the DVFS to adjust its voltage and frequency accordingly.

2.5 Related work

Slegers et al. [52] introduced a model to examine the cost of holding the job in the

queue and the energy consumption cost by evaluating different heuristics of powering

servers on or off. Six heuristics were introduced, including idle, static, threshold, semi-

static, high/low arrival period and average flow heuristic. Heuristics control powering

on or off servers according to job demand with different criteria. However, the model in

[52] does not consider the server setup time (i.e. the time needed by a server to be fully

powered on or down). Moreover, the benefit of powering down servers considered only

the direct impact on the power consumption by servers and ignored the cascade effect

(i.e. indirect energy saving in other IT components) [46]. Furthermore, it does not

consider different locations of servers and assumes all servers are in one data centre

location. Likewise, it assumes that all servers are homogeneous, meaning they are
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identical in their components and energy consumption, which is not always accurate

in practice.

Mitrani [40] proposed a policy to reduce power consumption in a data centre by pow-

ering down a block of servers when the service can meet the job demand without that

block of servers. The model assumed the data centre consists of N servers where n is

permanent and always on and ready to serve the job while N - n is reserved servers

that can dynamically be powered on or off according to the demand. Two thresholds

control the availability of the reserved servers, ‘U ’ and ‘D ’, where U refers to Up and

D refers to Down. Reserved servers powered on as a block if the job demand increased

from U to U + 1 and powered off in the same fashion if job demand dropped from D

+ 1 to D. Reserved servers consume energy while powering on or off but cannot serve

the job until fully powered on. The author assumes that a job cannot be lost when

powered off reserved servers as the job will be transferred to another server.

Mitrani [41] extended the previous model in [40] by introducing multiple reserve blocks

that can be turned on and off dynamically in response to different loading conditions.

The aim was to investigate whether this approach reduces energy costs more than

the single reserve-block approach. The results showed minimal advantages of using

multiple reserve blocks instead of a single reserve block. Moreover, although the small

amount of saving in large-scale systems can be valuable, a single reserve-block policy

is sufficient in contrast to a complicated process of finding the optimal energy saving

policy.

In another study, Van Do [58] proposed a simple energy-aware policy that controls the

energy consumption of physical servers and moves to a low-power consumption level

(e.g. sleep state) when no virtual machines are allocated to the physical server. In

addition, when virtual servers are assigned to a physical server, they start operating

at a high-power consumption level. The model consists of three different dynamic

mechanisms to control the allocation request of virtual servers. The first mechanism

allocates the request to the physical machine with the most significant number of

virtual machines, but it is not entirely loaded. In contrast, the second mechanism

maps the virtual machine request to the least loaded physical server. The last scheme

prioritises physical servers and numbers them from lowest to highest priority. Then,
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when the job request arrives, it automatically chooses the fully loaded physical server

that meets the prioritising scheme to place the request and activate the virtual machine.

Lent [35] studied the optimal energy consumption in an energy proportional data

centre, where servers became available on demand. The main objective was to analyse

the optimal energy requirements by servers to avoid violating the performance service

level objective. Three different scenarios were considered, including servers running

at or below the maximum utilisation, controlling the average response time up to a

specific limit and reducing the probability of job response time exceeding a time limit

deadline.

On the other hand, Ricciardi et al. [47] investigated a case considering the turning off

of a subset of servers in the data centre to save power. The decision of switching on or

off servers depend on fluctuation in service demand and the available service. Conse-

quently, when the difference between the demand and the available service increased,

more servers turned on to meet the increase in service demand. On the contrary, more

servers turned off when the difference between service demand and available service

decreased.

In terms of evaluating the trade-off between reducing energy consumption in data

centres and job performance to obtain the maximum revenue Ghamkhari et al. [20]

proposed a systematic approach to maximise the profit in data centres. A practical

service level agreement (SLA) is considered in the model, and other factors include

the availability of local renewable power at the data centre and the workload.

Phung-Duc [44] considered a multi-server queuing model with setup time and impatient

customers to analyse the power saving and the performance trade-off in data centres.

In his model, the server shut down immediately if it has no job to do. In contrast, off

servers are switched on when a new job arrives in the system.

Vimal et al. [38] presented an algorithm for cluster shutdown that turns off servers in

an entire cluster of a Content Delivery Network (CDN) in a data centre. A real-world

trace from a group of commercial CDN was used to evaluate the cluster shut down

technique, and results show that a reduction by 67% can be achievable.

Gandhi et al.[18] studied the issue of the topic energy-performance trade-off in server
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farms by utilising the Energy-Response Time Product (ERP) to find the optimal

server farm management policy. They looked at three policies. The first policy is

NEVEROFF, where any server that goes idle remains in the idle state until a new job

arrives. The second policy is INSTANTOFF, which in contrast to the previous policy,

any server that goes to state idle turns off as long as there are no jobs in the queue.

However, the server turns on as soon as the job arrives. The final policy is SLEEP,

where any server in an idle state moves to a sleep state instead of being turned off.

However, every job arrival to the system turns on a sleeping server; when available,

working servers can not serve the number of jobs in the queue. They prove that for a

single server under Poisson arrivals, the optimal policy with respect to ERP is either to

always keep the server on or idle (NEVEROFF policy) or always to turn the idle server

off and to turn it back on when the job arrives (INSTANTOFF policy), or to put the

server in one of the sleep states when idle (SLEEP policy). For a multi-server system,

based on their finding, they suggest the previous policies generalisation sufficient to

find a near-optimal policy.

Phung-Duc [45] proposed a mathematical model in order to reduce the waiting time

needed by a server to switch on. The number of jobs in the system, states of servers,

job distribution, and the generating functions are all utilised to derive the mean queue

length and the mean power consumption.
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Table 2.1: Comparison of related work in terms of techniques, limitations and methods.

Reference Used Technique Limitation Method

Slegers et al. [52]
Heuristics control powering on or off homogeneous servers dynamically
according to job demand with different criteria.

Servers are homogeneous..
Simulation of a
pre-existing mathematical model
by same authors

Mitrani [40]

Powering down a block of servers when the service can meet the job demand
without that block of servers.
Servers are turned on and off, not individually, but in a block.
The job can not be lost when powered down the reserved servers,
as the job will be transferred to other servers.
Jobs are impatient and liable to defect.

Single block only.
Homogeneous only.

Mathematical model
and numerical experiments.

Mitrani [41]
Multiple reserve blocks can be turned on and off dynamically
in response to different loading conditions.
Customers can be patient or defect.

Minimal advantages over single block method.
Complicated process to find the optimal saving policy.
Homogeneous only.

Mathematical model
and numerical experiments.

Van Do [58]
An energy-aware policy that controls the energy consumption of physical servers
and moves to a low-power consumption level(e.g. sleep state)
when no virtual machines are allocated to the physical server.

Did not look at the impact of servers environment
(Homogeneous or Heterogeneous).

545454

Lent [35]

Analysed the optimal energy requirements by servers
to not violate the performance Service Level Objective (SLO).
Servers became available on-demand.
SLO-1 limiting the utilisation level of servers.
SLO-1constraints the average job response time.

Homogeneous servers only.
Servers can hibernate but not sleep or be switched off.
The characteristics of the workload such as average time to
complete or waiting time average are known.

Mathematical model
and real experiment
on real hardware

Ricciardi et al. [47]
A data centre energy manager, which turning off a subset of servers to save power.
Switching on or off servers depends on fluctuating service demand
and the available service resources.

Did not look at the impact of servers environment
(Homogeneous or Heterogeneous).

Simulation of the model
against available real data traces from
Google and Naples LHC Tier2Grid site

Ghamkhari et al. [20]

An analytical model to calculate profit in large data centres.
Evaluating the trade-offs between reducing energy consumption in data centres
and job performance to obtain the maximum revenue.
Considered in the model practical Service Level Agreement (SLA),
availability of renewable power and stochastic nature of data centres workload.

Did not look at the impact of servers environment
(Homogeneous or Heterogeneous).

Simulation

Phung-Duc [44]

A multi-server queuing model with setup time and impatient customers
to analyse the power saving and the performance trade-off in data centres.
The server is shut down immediately if it has no job to do.
Jobs leave without receiving the service if the waiting time is larger than the timer.

No consideration on different servers specification
impact on energy and performance.

Mathematical model
and numerical experiments.

Vimal et al. [38]
An algorithm for cluster shutdown that turns off servers in an entire cluster
of a Content Delivery Network (CDN).

Turn off entire clusters or leave them entirely.
Cannot turn off servers individually. Servers are
Homogeneous with identical capacities.

Linear energy model.
The algorithm Simulation result
was validated against
real load traces from a large set of Akami
clusters ( data centres) in the USA.

Gandhi et al.[18]

Energy-performance trade-off in server farms
by utilising the Energy-Response Time
Product (ERP) to find the optimal server farm management policy.
Three Policies govern the switch between server states:
NEVEROFF: Servers goes Idle when there is no job in the queue.
INSTANTOFF: turn off any server when there is no job in the queue.
SLEEP: moves idle server to sleep state.

Servers are homogeneous
A discrete event simulator
is written in the C++ language
to verify the theoretical results

Phung-Duc [45]
A mathematical model to reduce server setup time and power consumption.
Servers states and job distribution were utilised to derive the mean queue length
and mean power consumption.

Servers are homogeneous
Mathematical model
and numerical experiments.

Hotta et al. [28]
Profile-based power-performance optimisation by using DVS.
Workload prediction.
Adjust the server resources to save energy by using the DVS technique.

Servers are homogeneous Real Experiment

Buchanan and Yampolsky [6]
Compared energy consumption in data centre equipped with 500 PCs.
The result proved virtualisation reduce energy consumption.

Unused servers move to idle states, not shutdown.
No analysis of heterogeneity impact on energy consumption.

Real Experiment

Warkozeket al. [61]
Introduced Mapper framework dynamically allocate resources in
virtualised machines to optimise energy consumption and performance.

Servers are homogeneous Real Experiment

Sharma [49] Proposed a VM load balancing algorithm to reduce costs and response time. Virtual machines are identical.
Simulation-based on CloudSim 11
and Cloudsim based tools 12

-
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As seen in Table 2.1, the literature employs a variety of approaches and methodologies.

Most prior research has concentrated on conducting experiments and drawing conclu-

sions in a homogeneous environment. Moreover, some conducted the experiments in

a heterogeneous environment but without examining the effect of heterogeneity on

energy use.

The purpose of this study is to conduct a new investigation into performance and en-

ergy consumption trade-offs. This study examines the influence on energy consumption

of (1) single queue multi-servers with dynamically powered on or off servers in a homo-

geneous environment, (2) individual queue server pairs, and how work is distributed

amongst queues in a homogeneous and heterogeneous environment. Unlike previous

research, we considered the impact of heterogeneity on energy and performance.

It is well established that various research methodologies are required to create novel

insights or avoid skewed outcomes [29, 39]. As a result, we employed a modelling

language distinct from those used in previous investigations. PEPA [24] was used

to model and analyse the systems under consideration. Further details of PEPA are

presented in Section 2.6.

In summary, in this research, we (1) used PEPA to build models in Chapters 3, 4, 6 (2)

investigated the techniques of powering on or off servers dynamically and their impact

on performance and energy trade-off in a homogeneous environment in Chapter 3, (3)

investigated the impact of scheduling algorithms on performance and energy trade-offs

in a homogeneous environment in Chapter 5, and in a heterogeneous environment in

Chapter 6.
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2.6 Performance Evaluation Process Algebra (PEPA)

Performance modelling is the modelling of the dynamics of systems. In performance

modelling, we are interested in timing and probability because we want to ensure

the resources in the system are used reasonably and efficiently. Given the difficulty

of constructing Markov processes for big systems despite their broad application, an

intermediate system description language is frequently employed. High-level modelling

formalisms such as queuing networks, Stochastic Petri Nets (SPNs) and Stochastic

Process Algebra (SPA) are used to build models more easily. Queuing networks are

restricted in expressiveness and lack formal interpretation. In contrast, SPNs models

have formal interpretation but lack explicit structure, making the model building much

easier but the analysis can be more difficult. However, In contrast to SPA SPNs are

not compositional [26]. Different research papers address SPA and SPNs. Donatelli

et al [11] presents a comparison between an SPA, PEPA, and Generalized Stochastic

Petri Net (GSPN), Gilmore et al [21] introduced PEPA nets formalism which uses

PEPA as the inscription language for labelled stochastic Petri.

As mentioned previously in Chapter 1, we will use PEPA to carry out the modelling

and the analysis throughout this thesis. PEPA is an extension to classical process

algebras, which was introduced by Jane Hillston [24]. PEPA was developed to be a

high-level description language for Markov processes. Therefore, The model specifi-

cations written in PEPA are Markovian and can be mapped to a Continuous Time

Markov Chain (CTMC). PEPA is used to effectively define, construct and analyse

models in various systems for the performance evaluation. These models included but

not limited to Healthcare systems [63] , resource allocation [53], network protocols [43],

and security protocols [64] In PEPA, systems are represented as a set of components

that can be individually or multiply engaged in activities. Each component represents

an element of the system or behaviour. The occurrence of each activity in the sys-

tem is determined by the associated rate for each action in that activity. An activity

arrival represented as a pair (arrival, λ) consist of the action type arrival associated

with the activity rate λ, where arrival ∈ A and A is a set of activities.The activity

rate is a random parameter representing the activity duration. The supported rate of
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any action by PEPA follows the negative exponential distribution. Thus, the rate λ

can be any positive real number R≥0 = {λ ∈ R | λ ≥ 0} or unspecified (represented

as ⊤). Unspecified, or passive, rate means the component does not have control over

the rate of this action. Therefore, while the cooperation of the components might be

necessary to carry out such an activity, the component is not engaged in the work. So,

the rate of the activity is determined by another component of the system. Various

features of performance modelling, including compositionality, formality and abstrac-

tion, are supported in the PEPA. Following is a brief description of the most important

supported features in PEPA.

• Parsimony: PEPA is a simplified language with a few basic elements, which are

components and activities. This parsimonious allows the modeller to understand

the language easily and have great flexibility when building the model.

• Formal Definition: The simple structured operational semantics of the language

presents a formal description of all expressions. Equivalence notions were de-

veloped based on these semantic rules to provide a formal basis for models and

components comparison and manipulation.

• Compositionality: In PEPA, forming the interaction between the model’s com-

ponents can be done by the cooperation combinator. This cooperation combina-

tor gives the modeller flexibility to simplify any part of the model in isolation

of other components interaction in the model. The model simplification and

aggregation techniques can be developed, which are complementary to this com-

binator.

2.6.1 The Syntax of PEPA.

A comprehensive formal overview of PEPA syntax is given in [24], but for brevity, the

following informal overview will suffice in this thesis. As mentioned earlier, components

and activities are the primary building blocks of the language PEPA, so models are

structured based on them. Furthermore, PEPA has a small collection of combinators.

The combinators of the language can be used to construct expressions that describe
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and define the behaviour of components through their activities and interactions. The

syntax for terms and describing components interactions in PEPA can be defined as:

P ::= (α, f).P | P ▷◁
L

Q | P +Q | P/L | A

Prefix: (α, f).P

The prefix is the mechanism used to represent and construct the behaviour of the

system components. The component (α, f).P performs the activity (α, f) of action

type α and an exponentially distributed duration with rate f . After triggering the

activity (α, f), the components behave as (P ). The rate f could be just a constant or

a functional system’s current state to allow a certain amount of that activity. Moreover,

the passive rate ⊤ can be used instead of f in shared activities.

Choice: P + Q The notion of choice means the system may behave as component P

or component Q. P + Q enables all current activities in P and Q. A race condition

governs which component will be triggered. The probabilistic choice depends on the

speed of the first action in both P and Q.

Cooperation: P ▷◁
L

Q

The components can interact with each other over shared activity. The cooperation

combinator represents a set of shared action types L, where L ⊆ A. The set of shared

action called cooperation set defines the interaction between both components P and

Q. So, if components P and Q interact over a different set P ▷◁
K

Q, they will have

different behaviour from P ▷◁
L

Q, if L ̸= K.

If there are other activities for P or Q not in the cooperation set, they will not be

affected and processed independently.

A component P cooperates over shred activity will not be able to process the shared

action without the involvement of the other component Q. Therefore, the component

P might be blocked waiting for component Q to engage. It is worth mentioning that

the cooperation between the components will happen over shared activities with the

same action type, but the rate will be for the slowest activity.

In PEPA, if components do not have shared activity P ▷◁
K

Q where K = ∅, they will

proceed independently. As there is no shared activity between P and Q the set K
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could be replaced by ∅, which refers to the empty set, P ▷◁
∅

Q. Also, the shorthand

∥ parallel combinator represents this case as P ∥ Q. Moreover, if there are many

identical components, synchronised over an empty set ▷◁
∅

, i.e. N copies of component

P instead of represent them as Pi ∥ ... ∥ PN , we could represent them with a shorthand

notation P [N ], which means there are N instance of component P .

A component in PEPA can cooperate with one or more components; this is called

multi-way cooperation. Therefore, all engaged components need to be synchronised in

order to fulfil the activity. The cooperation set will have an impact on the behaviour of

the model. For Example, by considering the following system which consists of three

components P , Q and S and some α type activities.

(
(α, r).P ▷◁

L
(α,m).Q

)
▷◁
L

(α, n).S

In this system, P , Q and S would provide three-way synchronisation between them

on the activity of type α.

If the cooperation set changed we will have different possibilities of the model be-

haviour, considering the following changes:

((α, r).P ∥ (α,m).Q) ▷◁
L

(α, r).S

In this case, components P and Q will run in parallel as they do not have shared

activity, but both of them can cooperate with component S over set ▷◁
L

. However,

because both components are inside brackets, the parallelism here means both compo-

nents will compete to cooperate with component S. As a result, two activities of type

α will be possible, but only one of them can be processed. However, if the cooperation

set changed to be as follow:

((α, r).P ▷◁
L

(α,m).Q) ∥ (α, r).S

The behaviour will be different. The new cooperation set will mean there are two α

type activities one synchronise P and Q and one in S; in contrast to the previous

cooperation set, both activities can proceed.

- 29 -



Chapter 2: Background and related work

Hiding: P/L

The hiding means that the component P/L will behave as P with all activities except

hidden activities in set L. Therefore, the hidden activity is not observed externally.

Moreover, such an activity cannot be involved in any cooperation with other compo-

nents.

Constant: A
def

= P

The behaviour of component P can be given to a constant A. So, whenever A occurs,

the P component will replace it.

2.6.2 Continuous Time Markov Chain CTMC

arrive        serve
Arrival Q0      Service 

arrive        serve
Arrival Q1      Service 

arrive        serve
Arrival Q2      Service 

arrive        serve
Arrival Q3      Service 

(serve, s)

(arrival, a) (serve, s)

(serve, s)
(arrival, a)

(arrival, a)

Figure 2.3: Underlying CTMC of the simple PEPA model of M/M/1/3

PEPA support two analysis techniques CTMC and Ordinary Differential Equations

(ODEs). Hillston [24] stated a system could be represented as a stochastic process

employing a derivation graph. The derivative graph represents the state transition

diagram of a continuous-time Markov chain. By translating a PEPA model to a
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Markovian process, a negative exponential distribution is assumed to rule the duration

of all activities. The CTMC can be used to analyse and evaluate small systems due

to the state space expansion problem. Therefore, Hillston in [25] introduces the ODEs

to allow PEPA to approximate a massive discrete-state system as a continuous state

system.

In this thesis, we are using the CTMC to analyse and evaluate our models.

A simple Example

Figure 2.3 illustrates the derivation of CTMC by presenting a simple queue system

in PEPA. In this example, we considered the M/M/1/N Queue, where the arrival

process is a Poisson process, and the service time is exponentially distributed. The

number of servers in the system is one server. The buffer capacity is finite N = 3. In

this example, jobs arrive at a single queue and are then served by the server on an

FCFS basis. All places in the queue are initially empty Q0. When an arrival action

happens with rate a, then one place in the queue will become full. Then, the system

can serve this job by the action serve at rate s or continuous receiving jobs. If at least

one place in the queue is occupied, the server can do the service action with rate s.

When the server serves the job, one place in the queue will become empty. The job

arrival to the system will continue until all places in the queue become full, then the

job arrival will be blocked by the system. This is done by removing the arrival action

from the last position in the queue Q3 and only keeps the serve action.

The model in PEPA is shown in Figure 2.4 and alternative PEPA specification is shown

in Figure 2.5 . The model generates four states of the underlying process. Let assume

these states can be labelled as x0,..., X4, which is identified as follows:

X0 ←→ Arrival ▷◁
arrive

Q0 ▷◁
serve

Service

X1 ←→ Arrival ▷◁
arrive

Q1 ▷◁
serve

Service

X2 ←→ Arrival ▷◁
arrive

Q2 ▷◁
serve

Service

X3 ←→ Arrival ▷◁
arrive

Q3 ▷◁
serve

Service

by using the global balance equation, ΠQ = 0, the steady-state distribution of the

system can be obtained. When applying the global balance equation on the states of
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Q0
def

= (arrival ,⊤).Q1 ,
Q1

def

= (arrival ,⊤).Q2 + (serve,⊤).Q0 ,
Q2

def

= (arrival ,⊤).Q3 + (serve,⊤).Q1 ,
Q3

def

= (serve,⊤).Q0 ,

Arrival
def

= (arrive, a).Arrival ,

Service
def

= (serve, s).Service,

Arrival ▷◁
arrive

Q0 ▷◁
serve

Service

Figure 2.4: The PEPA model for M/M/1/3

the underlying process, we will get:

aΠ(X0) = sΠ(X3) + sΠ(X1)

(a + s)Π(X1) = aΠ(X0) + sΠ(X2)

(a + s)Π(X2) = aΠ(X1)

(s)Π(X3) = aΠ(X2)

The normalisation equation will be as :

3∑
i=0

Π(Xi) = 1

Metrics such as throughput and average response time and utilisation can be calculated

from these steady states probabilities. More details can be found in [24].

Alternative PEPA model

It is worth mentioning, the PEPA model presented in Figure 2.4 can be rewritten

as in Figure 2.5. The two models are isomorphic - meaning that they have a 1:1

equivalence in the underlying CTMC. As such, their steady-state solutions are identical

by definition. The point of this form of specification is that it is more concise to specify,

especially when the maximum queue size is large. Adding other places is easy by just

changing the system equation. For example, if N= 100, that can be specified by

changing the system equation to be:

Arrival ▷◁
arrive

QEmpty[100] ▷◁
serve

Service
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QEmpty
def

= (arrival ,⊤).QFull ,
QFull

def

= (serve,⊤).QEmpty

Arrival
def

= (arrive, a).Arrival ,

Service
def

= (serve, s).Service,

Arrival ▷◁
arrive

QEmpty[3] ▷◁
serve

Service

Figure 2.5: Alternative PEPA model for M/M/1/3

However in the original model Figure 2.4 each place has to be specified in the Queue

component, i.e. Q1, Q2, ..., QN . However, sometimes we need to use this model if

there are triggers which occur at specific queue sizes (e.g. threshold levels for change

of behaviour).

2.7 Research methodology

To fulfil the research aims and objectives and provide answers to the research questions,

we studied two main concepts: (i) job allocation in a single queue multi servers system

and (ii) job allocation in a single queue and single service system.

First, for job allocation in a single queue multi servers system, and based on the work

we have previously discussed in Section 2.5, we select the dynamic server allocation

scheme [52] to be modelled in PEPA. In Chapter 3 we explained the system in-depth

and modelled one of its policies in PEPA to demonstrate how it works. The next

step was solving the PEPA model, which yielded the steady-state solution. The ex-

periment’s results were utilised to make a trade-off between performance and energy

consumption. Chapter 3 experiment and results represent the attempt to answer re-

search question1.

Second, for the job allocation in a single queue and single service system. Whereas

queues are separate, and each queue is connected to a single server. TAGS scheme

a job allocation scheme [23] was chosen to be modelled in PEPA along with shortest

queue strategy and random allocation. Chapter 4 discussed the TAGS scheme in detail

and presented how the TAGS, shortest queue and random allocation PEPA models

work. Chapter 5 studied performance metrics such as throughput, average response
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time and servers utilisation. Additionally, the energy model that was used to determine

energy usage in terms of overall energy consumption and energy consumption per task

is presented in section 5.3. Furthermore, the experiment results were utilised to trade-

off performance and energy usage in a homogeneous setting. On the other hand, we

studied TAGS in a heterogeneous environment; Chapter 6 describes the modification

to the PEPA models to implement system heterogeneity. Furthermore, it shows the

experiment’s performance and energy consumption results. It is worth mentioning that

the same energy model is applied to homogeneous and heterogeneous environments.

Chapters 4, 5 and 6 represent an effort to address research question 2.

2.8 Experiments

There are three experiments conducted to answer the research questions: (i) dynamic

server allocation in chapter 3, (ii) TAGS in homogeneous environments in chapter 5

and (iii) TAGS in a heterogeneous environment in chapter 6.

2.8.1 Experiments objectives

In this thesis, we conducted three main experiments to fulfil the requirements to answer

research questions in Section 1.3 and meet the research objectives in Section 1.4. The

experiments and their related chapters are as follow:

Dynamic server experiment in Chapter 3: In a single queue multi-server system,

this experiment evaluated the trade-off between performance and energy usage. The

primary objective of this experiment is to determine the energy and performance con-

sequences of a management policy that dynamically powers on or off servers.

TAGS experiment in a homogeneous environment in Chapter 5: In this experiment,

job allocation in a single queue and single service system is the main focus. Queues

are separate, and each queue is connected to a single server. TAGS scheme a job

allocation scheme [23] was chosen to be modelled in PEPA. The main aim of this

experiment is to investigate the scheduling scheme impact on performance and energy
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in a homogeneous environment. Particularly the TAGS as it is the focus of the study

as a particularly different type of scheduling algorithm that is suitable for variable

demand.

TAGS experiment in a heterogeneous environment in Chapter 6 The same tech-

nique is used in this experiment as in the preceding experiment in Chapter 5. However,

the focus is on the heterogeneous environment to analyse the effect of changing the

environment on performance and energy trade-off.

2.8.2 Experiments environments

The following are the experimental conditions in terms of hardware and software en-

vironments in which these experiments were completed:

Hardware environments: All experiments in this thesis were performed in a PC

with the following specifications: Intel Core i7 (3770) 3.4GHz Quad-Core Processor

and Installed memory (RAM) 8.0 GB.

Software environments: The operating system is Windows 8.1 Enterprise. The Soft-

ware to analyse and simulate PEPA models is Eclipse IDE for Java Developers, versions

Neon and Oxygen.3a equipped with version v25 of the PEPA Eclipse Plugin [27, 57].

Queuing Concept The idea of ”queueing” in the context of this thesis is based on the

queuing theory. Many research publications make wide use of the queuing system in

their cloud computing modelling. Ghomi et al. [30], conducts a systematic literature

review, which categorises cloud computing modelling techniques based on the queuing

theory into seven categories based on their focus area: (1) performance, (2) quality

of service, (3) workflow scheduling, (4) energy savings, (5) resource management, (6)

priority-based servicing, and (7) reliability. The author focus in the literature is on

queuing theory for cloud environment modelling. So queuing models were classified into

two categories: (1) single-queue models, such as M/M/1, G/M/1, and M/M/k, and

(2) queuing network models, such as a Jackson network and an open/closed network.
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Figure 2.6: A taxonomy of queue models for AQTMCC by [30].

In Figure 2.6, Ghomi et al [30] summarised the queuing models used in modelling

cloud computing in the Applying Queue Theory for Modelling of Cloud Computing

(AQTMCC) survey by categorising them into seven groups.

The M/M/1 is being utilised to model performance and energy consumption in a cloud

environment. The research in this thesis focuses on task allocation in two scenarios:

(1) a single queue multi-server system with dynamically powered-on or powered-off

servers; and (2) a single queue and single service system with distinct queues and each

queue connected to a single server.

Validation: There was not a specific validation of the PEPA models was undertaken

within this thesis. Nevertheless, there is a relation of the results to pre-existing results

within the field.

Reliability: Regarding the reliability of results, the Eclipse Plugin is a tool used to

construct and solve PEPA models for many years and was used in many research

papers. So, it is proven that its performance results are reliable. Performance metrics,

including (throughput, utilisation, and population) are calculated automatically by the
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PEPA Eclipse tool. However, as with any numerical calculation, there will be some

rounding errors and formation errors due to the software’s finite representation of real

numbers. In CTMC solver, there are just floating-point errors in the calculation, but

they are consistent; they are the same every time we solve the model. Nevertheless,

there is not an explicit error tolerance controller.

Reproducibility: PEPA models and experiment findings may be replicated in various

environments without affecting the accurate results, as long as PEPA eclipse v25 is

used with the same model parameters.

General Limitation: The major limitation in all experiments in this thesis is related

to PEPA and available computing resources. The state-space expansion in PEPA leads

to an unsolvable model under the available computing resources. So, to overcome this

issue, the queue size, the number of the queues and servers in each PEPA model

were limited. However, the servers and queues numbers and the queue size could

be increased easily without significant changes to the model under higher computing

resources

2.8.3 Notations and Terminologies

It is necessary to specify notations and terminology before utilising them in the thesis

to minimise ambiguity and inaccuracies. As a result, Table 2.2 contains the notation

and terminology for each chapter. The fact that some notations are used across all

chapters while others are only used in specific chapters should be noted.
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Table 2.2: Notations and Terminologies

Notation used in all chapters
Notation Meaning

λ The job arrival rate.
µ The average service rate.
Q1 The first queue.
Q2 The second queue.
Q0 Component represent the initial state of the queue.

Chapter 3 Notations
Notation Meaning
Arrivalhigh Component refer to the high arrival period.
arrivalH The high arrival action.
Arrivallow Component refer to the low arrival period.
arrivalL The low arrival action.

ε The rate of low arrival action.
highPeriodEnd Action refer to the end of high arrival period.

β The rate of highPeriodEnd action.
lowPeriodEnd Action refer to the end of low arrival period.

γ The rate of lowPeriodEnd action

λ The average arrival .
Serverstatic Component refers to a server that is always available and cannot change state.
ServerOn Component refers to a server when its state is on.
ServerOff Component refers to a server when its state is Off.

ServerPoweringOn Component refers to a server when its state is powering on.
powerup Action of powering up the server.

ServerPoweringOff Component refers to a server when its state is powering off.
poweroff Action of powering off the server.

ServerfailOn Component refers to a server when its state is failing during powering on.
ServerfailOff Component refers to a server when its state is failing during powering off.

C1 The weight assigned to energy.
C2 The weight assigned to the performance.

Chapters 4,5,6 Notations
Notation Meaning
Timer1 The first timer which governs the decision to terminate

the job at the first server after a specific processing time.
Timer2 The timer in the second server used to model the repeated service.
K1 The maximum length of the first queue.
K2 The maximum length of the second queue.

arrival The arrival process.
service1 The service process at first server.
service2 The service process at second server.
timeout The timeout action which kills the job at server1 when triggered.
tick1 The tick action of the timeout clock.

repeateservice the repeat service action, that repeats the amount of service
that timed out previously in server1.

µ1 The service rate at Server1
µ2 The service rate at Server2
t The timeout rate
α The proportion of short job.
α′ The proportion of long job.
σ′ The difference in performance between Server1 and Server2.
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3.1 Introduction

In this chapter, we present a PEPA model of a policy for managing the turning on

and off of servers, previously studied by Slegers et al. [50, 51, 52] and Nguyenet al.

[42]. Various assumptions and modifications to the original model have been made

to help model the policy in PEPA. The main focus was identifying and reflecting on

the trade-off between saving energy (by powering down servers) and performance cost.

Powering down servers saves energy, but it could increase the performance cost. The

experiment in this chapter analysed the effect of the policy on energy consumption and

performance cost. Different combinations of dynamic and static servers are used in

this policy against different scenarios, including changes in job arrival rate, job arrival

duration, and the time needed by servers to fully power on and serve the jobs.

This chapter consists of 4 main sections. Section 3.2 presents related work of dynamic

server allocation that forms the basis of our PEPA model in this chapter. Section

3.3 presents the PEPA model of high/low policy. Section 3.4 presents the formulas of

energy and performance costs and shows the evaluation results of the model in four

scenarios. Section 3.5 presents the chapter conclusion and future work.

3.2 Dynamic server allocation model

The problem of unnecessary power consumption in the data centre by servers has been

the subject of increasing focus; however, the amount of energy that can be saved by

switching servers on or off according to demand has not been given more consider-

ation. Slegers et al. [52] proposed several heuristics regarding organise server usage

according to demand. This approach is further examined in [42] by using JAVA to

implement the heuristics policies and simulate dynamic servers allocation for power

efficiency management according to demand. The heuristics referred to in [42] were

simulated experimentally. The heuristics were individually tested by running through

the circumstances established in the design of the experiments. A variety of experi-

mental scenarios were established so that the heuristics could be adequately appraised;

this was of particular importance as the conclusion presented in [2] determined that
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no heuristic is universally applicable but that each heuristic characteristic that is ap-

propriate in only certain circumstances.

The system in [42] consists of a given number (N) of homogeneous servers. These

servers may be in any of five conditions; namely, “powered up”, wherein the server

may be either active or idle, “powering up”, “powered down”, “powering down”, and

“fault”. While in the “powered down” condition, the server may be in a quiescent

condition or completely turned off, although, whichever happens, to be the case, its

power consumption would be little or nothing. In the transitional conditions, i.e.

“powering down” or “powering up”, and the “fault” condition, servers are unable to

respond to service demands but would nevertheless still be consuming power. Although

the “fault” condition could coincide with any of the other four conditions, the author

of [42] only considered the fault in the transitional states (Powering up and Powering

down) due to the increased likelihood of faults becoming apparent then. This, it is

surmised, should be sufficient to indicate how consistently the system is performing.

In order to analyse the relative costs inherent in system operation, costs were assigned

to each system condition. These were as follows: “Powered up”: Cup , “Powering up”:

CpowUp ,“Powered down”: Cdown ,“Powering down”: CpowDown and “Fault”: Cfault .

The first four of these represent relative power costs per time unit. In contrast, Cfault

represents the proportionate detriment suffered by the system as a result of a server

being faulty and, consequently, inoperative.

An additional cost was identified in respect of system operation, this being Cjob the

cost of holding jobs in the queue for over one time unit. This represented a requirement

of increasing the rate at which jobs were handled to meet increased service demand.

The final additional cost identified was Cpow the beneficial consequence of holding

a server in the “powered down” condition per unit time. These costs are expressed

comparatively, so if Cpow =1 and Cjob = 2, it may be surmised that the cost associated

with holding a job in the queue is twice that of the benefit accrued as a result of

holding a server in the “powered down” condition.

There are several heuristics noted in [42], and [52], each of which has its advantages

and disadvantages with regard to power conservation, performance and consistent

performance. In total, there are six policies introduced in [52] and simulated in JAVA
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in [42].

The first heuristic is the Static Allocation Heuristic, where servers never turn off or

on; instead, a fixed number of servers are permanently available. The second heuristic

is the Semi-static Allocation Heuristic, which is a modification to the Static Heuristic

by adding some servers that are always available, and some that power off when the

arrivals turn off or power on when more jobs arrive. The third heuristic is the Idle

Heuristic, a straightforward method that depends on the number of waiting jobs in

the queue. This heuristic turns off any idle server and turns on more servers if jobs are

waiting in the queue. The fourth heuristic is the Threshold Heuristic, in contrast to

the Semi-static Allocation Heuristic, which responded to changes in the behaviour of

arrivals; this heuristic used a more straightforward mechanism to employ a threshold

on the number of jobs in the queue to determine when to turn servers on or off. The

fifth heuristic is the High/Low Heuristic, which depends on the current arrival period

of the system and takes many factors into its decision of switching servers on or off.

The Sixth heuristic, similar to the High/Low Heuristic but instead of using two types

of arrival periods, this policy averages out the high and low arrival rates into one

arrival rate.

In this chapter, only one heuristic, the High/Low Heuristic, was considered out of the

six heuristics to be discussed in Section 3.2.1 and modelled using PEPA in Section 3.3.

3.2.1 The High/Low heuristic

The high/low heuristic bears comparison with the semi-static allocation heuristic, but

in this instance, transition periods are included in the heuristic’s determinations. The

high/low heuristic also builds arrival periods, job accomplishment times and job queue

length into its decision-making processes, and in consequence, is the most complex.

Despite its inherent complexity, the high/low heuristic maintains its stability as a result

of job arrival rates still being categorised in high λhigh or low λlow binary form and

the job time µ being maintained as a constant. The high/low heuristic is a complex

application that incorporates system performance and stability into its determinations.
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3.3 The High/Low policy model in PEPA

To meet the implementation environment requirements in PEPA, several modifications

have been made to the original policy formulated in [42]. This modification was neces-

sary as implementing the policy as described by [42] in PEPA necessitated computing

resources that are not available to this project. Running a model in PEPA requires

a machine with relatively large memory. This experiment has been completed on a

personal computer with limited memory space. Thus, as a graceful compromise, a

small-scale model was undertaken, sufficient to meet the experiment’s requirements.

The policy outlined in [42] examines numerous factors in the system, including the

switching time, processing time, queue size and the arrival period. This policy de-

pends on the arrival period and considers the switching time to determine how many

servers should be switched on or off. Unlike [42] that used JAVA to simulate and model

this policy, the model in this chapter uses PEPA. As a result, policy behaviour has been

modified. Because some JAVA features helped implement this policy in [42], which are

not available in PEPA. Some noteworthy features affected include flow control state-

ments that help repeat the processes and conditional statements that facilitate flexible

decision making. For this project’s purpose, the experiment repeated different values

for the arrival periods, the switching time between servers and the number of dynamic

servers. Also, the job duration had a fixed rate of µ in each period. These policy

modifications were conducted using the arrival period as an indicator to switch the

servers on or off. So, there are two arrival periods with specific arrival rates assigned

to each period that indicate the arrival job. Moreover, to control switching between

periods, periods end rates indicate each period’s duration. Figure 3.1 illustrates PEPA

model for this policy.

The number of jobs in the system at the current time, i, is specified by the current

state of Qi. The maximum number of jobs is bounded at N . Arrivals into the system

occur at either a high rate λ, by action arrivalH, or at a low rate ε (typically zero) by

action arrivalL. The arrival stream switches between the high and low rate through

the actions highPeriodEnd and lowPeriodEnd at rates β and γ respectively. Hence,

a high period has a duration 1/β and the low period has a duration 1/γ. Thus the
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Q0

def

= (arrivalH , λ).Q1 + (arrivalL, ε).Q1 ,

Qi

def

= (arrivalH , λ).Qi+1 + (arrivalL, ε).Qi+1 + (service, µ).Qi−1 , 1 ≤ i < N,

Qn

def

= (service, µ).Qn−1 ,

Arrivalhigh
def

= (arrivalH , λ).Arrivalhigh + (highperiodEnd , β).Arrivallow ,

Arrivallow
def

= (arrivalL, ε).ArrivalLow + (lowperiodEnd , γ).Arrivalhigh ,

ServerPoweringOn

def

= (powerup, η ∗ (1− ρ).ServerOn + (powerup, η ∗ ρ).ServerfailOn ,

ServerOn

def

= (service, µ).ServerOn + (hperiodEnd , β).ServerPoweringOff ,

ServerPoweringOff

def

= (poweroff , ξ ∗ (1− ρ).ServerOff + (poweroff , ξ ∗ ρ).ServerfailOff ,

ServerOff

def

= (lperiodEnd , γ).ServerPoweringOn ,

ServerfailOn

def

= (repair , ω).ServerOn ,

ServerfailOff

def

= (repair , ω).ServerOff ,

Serverstatic
def

= (service, µ).Serverstatic,

(Arrivalhigh ▷◁K ServerOn ▷◁K ... ▷◁
K

ServerOn) ▷◁
ϕ
Serverstatic[m] ▷◁

L
Q0

Where K = {lowperiodEnd, highperiodEnd}
and L = {arrivalH, arrivalL, service}

Figure 3.1: High/Low policy PEPA Model

average arrival rate is given as:

λ =
λγ + εβ

γ + β

Jobs leave the system according to the service process, which is determined by the

number of active servers. M servers are static and remain permanently available to

serve the jobs. The remaining servers turn on and off in response to the high and

low periods of arrivals. Thus, when a high period ends, these dynamic servers will

become unavailable for service, but they will turn back on when a low period ends.

Static servers and dynamic servers are distinguished in the PEPA model with two

components, Serverstatic and ServerOn. A dynamic server’s status is indicated by the

component ServerOn or ServerOff , which is part of the model. A dynamic server may

change state from ServerOn to ServerOff and back again. The Serverstatic component,

on the other hand, refers to a server that is always available and cannot change state.

It is assumed that there is a delay in turning servers on and off (rates η and ξ respec-
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tively). Therefore when a high period begins, there will be a delay until the dynamic

servers become available to serve the jobs. Suppose this delay is considerable, and the

high arrival rate dramatically exceeds the service capacity of the static servers. In that

case, there may be a significant increase in the number of waiting jobs in the system

during this time. During the turning on and turning off periods, servers will consume

power but not provide a service. Hence, if these periods are long, they would represent

a potentially significant inefficiency in the system.

It is further assumed that servers may fail when switching on and off with probability

p. Following failures, servers undergo repair at a rate ω. Typically, failures would be

expressed by considering the metrics Mean Time Between Failures (MTBF) and Mean

Time To Repair (MTTR) in continuous operation. However, in our model, we have

only a probability that a server can fail. Moreover, in the PEPA model, as mentioned

earlier, the failure only occurs during powering up or down the server. Thus, the

MTBF would depend on the probability p and the frequency that a server switches on

and off. Following failures, servers undergo a repair at a given rate. In this case, the

repair rate is equivalent to 1/MTTR. Krasich [33] discussed, with examples, the uses

of terms MTBF and MTTR in a variety of contexts.

We distinguish whether servers fail in the turning on or turning off state so that

following repair, the server will return to the same state as other dynamic servers.

It is assumed that all dynamic servers must begin to turn on or off simultaneously.

Therefore a highPeriodEnd action may only occur if all the dynamic servers are on.

Likewise, a lowPeriodEnd action may only occur when all the dynamic servers are off.

Clearly, such synchronisation is not ideal. However, typically the switching rates of

the arrival on and off periods are much longer than the switching periods needed to

power servers on and off; if they were not, powering off would not be a sensible option.

Hence, this synchronisation between the server state and the arrival state would not

affect the average arrival rate unless the failure rate is high and the average repair

time is excessive.

The problem associated with this model is to find the best number of static and

dynamic servers needed to minimise the energy usage for a given set of parameters

(arrival rates, service rate, switching rates, failure probability and repair rate). We
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will explore this problem in the next section.

3.4 Evaluation

Experiments are conducted based on several scenarios. These scenarios represent var-

ious data centre environments and preferences. The first scenario compares different

combinations of dynamic and static servers against different high arrival rates. The

second scenario compares the same combinations of servers applied in the first scenario

against different durations of high arrival periods, where the arrival rate is high, but

the durations are varied. The third scenario varies the switching time for powering the

servers on or off. The fourth scenario considered variations in the costs of holding jobs

in the queue and the benefits of saving energy by powering down servers while varying

different ratios. Finally, the total fault in all server combinations was examined and

presented to describe which combination could be the best in terms of stability.

Two costs are considered in this chapter, energy cost and performance cost. The

probability that the queue is not empty represents the performance cost. The energy

cost is the cost of energy consumed by all servers, except when they are powered

down or in a repair state. Building the model in PEPA spared the use of a lot of

the calculation involved in obtaining the queue size. The queue size in this chapter

is limited to 16 jobs. The queue size is bounded because PEPA does not support

unbounded queues. Moreover, the available computing resources can not handle more

than 16 jobs in the queue before the model suffers from the state-space expansion, as

mentioned previously in Section 2.8. The energy and performance cost formulas are

presented below:

• Energy Cost:

C1 ∗ (Serveron + ServerPoweringon + ServerPoweringoff + Serverstatic

• Performance Cost:

C2 ∗ (1− Prob(Q0))
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C1 represents the weight assigned to energy, while C2 is the weight assigned to the

performance. These two weights are used to indicate the relative costs that are used

for trading off the merits of performance and energy usage. As such, where a data

centre values performance over energy-saving, C2 will be assigned a higher value than

C1. Rates C1 and C2 are arbitrary weights; individually, they are not necessarily

proportional to anything, but they combine to give a relative performance-energy

metric. For example, in a system where we are only interested in performance, C2

might equal one, and C1 might be zero. But in another situation, C1 and C2 can take

any positive value that depends on how you look at the system.

The total of both costs (energy and performance) are used to represent the overall

performance cost. The aim is to have an indicator for comparison between different

combinations of servers. Where total costs are low in any server combination, it is said

to have the lowest overall performance cost, making it a better preference for data

centres.

The experiment was repeated for each combination of servers against each specified

value of arrival rates, length of period and switching time. The findings from each com-

bination of servers in each scenario were then compared to analyse their performance

and energy saving.
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It’s important to note that the figures in this chapter do not have precise units of

measurement. They were scaled by the use of weights.

3.4.1 Increasing arrival rate

In this scenario, the experiment configuration and settings for the average request

processing time is set to 12. The high arrival rate was increased from 10, representing

the low arrival rate, to 50, which uses high server capacity (resources) at the highest

arrival rate. The low arrival rate was set to 10. In addition, the high arrival time

and low arrival time were set to 10, meaning both periods are neither too short nor

too long. The holding job cost C2, and the benefit of servers being down C1 is set to

1. In this case, the data centre does not prioritise energy over performance and vice

versa. The probability of failure during powering up or down servers was set up at

10%, which is sufficiently high for this experiment environment and system model to

monitor the effect of servers’ failure on the system. Finally, the rates of powering up

and down servers were set to 100 for both states, which means switching servers on or

turning them off will take a short period of time.

The experiment has been carried out by increasing the high arrival rate in a repetitive

fashion on each combination of dynamic and static servers. Figure 3.2 shows the

lowest total cost at the highest arrival rate of 50 is given 3 dynamic servers and 3

static servers. The lowest total cost at the arrival rate of 10 occurs where there are
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Figure 3.4: Energy cost based on number of dynamic servers at different arrival rates

5 dynamic servers and 1 static server. The reason for the 3 dynamic servers’ and 3

static servers’ better performance than the other server combinations in total cost can

be attributed to the decline in the performance cost at a high arrival rate with this

combination. From Figure 3.3 it can be observed that performance cost increases when

there are more dynamic servers, say five, at a higher arrival rate of 50. The reason

for that is the increase in waiting jobs in the queue. This is evident because, in this

model, the decision to switch on additional servers to complete the job depends on the

duration of the period. In fact, an investigation shows the 5 dynamic servers perform

better in terms of energy saving in this experiment compared to other combinations

of dynamic and static servers Figure 3.4. It is worth mentioning, in this scenario, the

energy cost at all arrival rates for each server combination is the same because, as we

mentioned earlier, the decision of switching on or off servers depends on the rate of

period duration, not on the arrival rate. Section 3.4.2 takes an in-depth look at the

impact of different duration of high arrival periods on the system.
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3.4.2 Changes in period duration

In this experiment, the high arrival and low arrival rates were set at fixed values of 50

and 10, respectively. Six (N=6) servers were used in this model, with five turned on

or off depending on the duration of the high arrival period, which the last is a static

server that is always on to serve jobs in high and low arrival periods. With an average

processing time of job requests of 12, the rates for powering up and down servers were

set to 100 for both states. The probability of system failure during transition states

were 10%, which can be considered acceptable for this small model.

In this scenario, the high arrival period duration rate is varied at 0.1, 1, 10, and 100.

These rates represent a longer period at a low rate and a short and faster period at

a bigger large rate. The objective of altering the duration is to show the impact of

unstable durations of high arrivals. The idea is to analyse the impact of a short high
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arrival period on system performance. For instance, a high arrival period could be

reached before deciding whether to power on additional servers to serve the job. As

a result, the waiting jobs in the queue will grow, leading to increased performance

costs. The job holding cost C2 was considered in this scenario to be 1, and the energy

benefits of powering down servers C1 as 1. This setup means the data centre does not

prioritise energy saving over performance and vice versa.

Figure 3.5 shows that total cost decreases when the duration is shorter, e.g. 100, while

Figure 3.6 shows that an increase in the job queue leads to a corresponding increase in

performance cost. This increase in performance cost has not been reflected in the total

cost due to the higher decrease in energy cost. Figure 3.7 combines the two preceding

graphs to show the correlation between the factors. Figure 3.8 shows that when the

arrival period is short, the system does not have sufficient time to switch on additional

servers compared with a long arrival duration. This leads to a decrease in energy cost.

A further analysis was conducted by varying the combination of servers that are dy-

namic and static for each period length rate. The objective is to map out the impact of

different durations with different server combinations to highlight the best energy and

total cost savings. Figure 3.9 below indicates that at the longest high arrival period

(e.g. 0.1), the energy cost for all server combinations is similar. However, at shorter

periods, the energy cost becomes lower when there are more dynamic servers involved.

Figure 3.10 below shows the total cost for the same settings, confirming that at the

shortest duration, a combination of 1 static and 5 dynamic servers leads to higher
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total costs. However, this does not mean that having the least number of dynamic

servers will reduce total cost. For example, 5 static servers and 1 dynamic have higher

costs than 3 static and 3 dynamic servers. This is because the short period ceases

before sufficient servers can be switched on to serve the jobs. So, the energy cost for 3

dynamic servers is much less than 5 static servers. Hence, the total cost with 5 static

servers is more than the total cost with 3 dynamic servers and 3 static.
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3.4.3 Changing the switching time

In this case, the experimentation was configured in the same way as in Section 3.4.1.

However, instead of varying the high arrival periods, the switching time between having

the servers on and off vary at 0.1, 1, 10, and 100. Here, the numbers are ordered from a

slower to a faster switching time. The high arrival period duration was set to 10, which

is neither too short nor too fast. For this configuration, we considered five dynamic

and one static server because it is helpful to observe servers switching states (on or

off) in relation to switching time. Hence, no other combinations of servers are used.

At faster switching times, the overall performance cost is lower. Interestingly, Figure

3.11 shows that a long switching time leads to an increase in performance cost. This is

because servers with slower switching times are unable to respond to more job requests,

which causes a backlog of jobs waiting in the queue. Consequently, having more jobs

in the queue increases the performance cost, which increases the total cost as a result.

On the other hand, the performance cost is lowered with faster switching times as the

server can be switched on and respond to job requests quickly, which avoids any delay

that causes a queue backlog. The energy cost declines with a fast switching time, as

shown in 3.12 below. Further investigation reveals that a fast switching time reduces

the number of servers that are in powering on or off states, helping to lower energy

costs.
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3.4.4 Changing the cost deference

In all previous scenarios in this chapter, the setup does not prioritise energy over

processing the jobs in the queue. However, here we look at various data centre options

for deciding between energy and performance. The same setup used in Section 3.4.1

is applied in this scenario for the arrival rate and powering on or off state rates.

However, the period length was set to 10. In addition, the benefits of saving energy

C1 is constant at 1 while the cost of holding a job in the queue or performance cost

increased from 0.25, 1 and 4.

When the cost of holding a job is higher than the cost of saving energy, the total cost is

higher with a larger number of dynamic servers. Figure 3.13 shows the combination of

5 dynamic servers and 1 static server performs worse than other combinations and even

more poorly than a combination of 5 static servers and 1 dynamic. This is because

having more dynamic servers during a period duration that is not too long leads to

increased performance cost by having more waiting jobs in the queue, which increases

the total cost. Even though there are energy savings when there are more dynamic

servers used, Figure 3.14 shows the energy saved is not as big as the relative increase

in performance cost; thus, energy cost becomes less profound in the total cost.
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3.4.5 The fault rate

Fault rates are considered in order to determine data centre performance accurately

due to the impact of switching state failures (on or off). In this scenario, the same

setup as Section 3.4.2 was used, with a fault rate of 10%.

The fault population increases dramatically when the duration of the high arrival

period is short. This can be understood because when the period length is short,

more switching on requests is initiated in a short time. However, before servers are

switched on, the period ends and sends a request to switch off servers. Hence, there

is an increased risk of a server failure at this moment. This can be clearly seen when

there are more servers set up to be dynamic servers.
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3.4.6 Evaluation summary

The experiment results from each scenario demonstrate that no one combination per-

forms well in all different scenarios. However, each has its own strengths and weak-

nesses. The combination of 5 static servers and one dynamic is the most stable com-

bination because it does not involve a high level of switching. The combination of 5

dynamic servers and 1 static performs well in decreasing energy costs when the period

is short, but very poorly in terms of performance as it increases the total cost by in-

creasing the waiting job in the queue. However, this combination performs well when

the switching time between servers is too fast. The combination of 3 dynamic servers

and 3 static servers provides better overall performance than the other combinations

with an increased arrival rate, giving us a mid-position in terms of energy saving.

There is clearly no one combination of servers that suits every condition, as each is

adaptable in one scenario but not necessarily good in another. The performance of

each combination is affected by many factors. These factors include the difference

between arrival rates, length of period, probability of faults, and switching time. So,

the choice of which combination to use for data centres depends on their preference

for performance or energy saving. So, the operator of the data centre can config-

ure the combination of servers according to the situation to have a balance between

performance and energy consumption.

3.5 Conclusions and future work

In this chapter, a policy to limit power consumption by servers in data centres was

discussed and modelled in PEPA. Numerical experiments were carried out under dif-

ferent scenarios. In each scenario, there was more than one combination of servers in

order to find out which combination is better under each operating condition. The

result of the conducted experiments shows that there is no one combination of servers

under this policy that can perform well in all situations.

Our model in PEPA has some limitations. Firstly, the model depends only on the

length of the arrival period to take the decision of switching on or off more servers.

Secondly, we assumed all servers in any state consume the same amount of energy.
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However, it is not true in practice as servers processing jobs consume more energy

than servers in a powering-on or powering-off state. Moreover, not all servers in data

centres are identical in hardware which means each server consume a different amount

of energy. Finally, the experiment setup in some scenarios changed only one factor and

fixed the others, which in practice may not be the situation. One particular scenario

worth considering is where all servers are overloaded during short, intense high arrival

periods, and then there are no arrivals for a very long time. In this situation, we would

want to save power during the long low periods, but we would not want to switch off

all the dynamic servers immediately as there would be a lengthy backlog of jobs to

process.

Future work in this direction could look at an extended model to consider more servers

with extended queue size. In addition, each server state could be assigned different

energy costs to represent as close as possible the actual cost of energy consumption.

Finally, it would be useful to change more than one factor at a time instead of changing

only one factor with other factors fixed, as in some scenarios. Clearly, there are many

other options for managing servers that remain to be explored using the approach

presented in this chapter.
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4.1 Introduction

In this chapter, the TAGS, the random allocation policy and the shortest queue strat-

egy has been modelled in PEPA. An introduction to the PEPA language was given in

Section 2.6, and a formal presentation of which can be found in [24]. In all cases, it can

be assumed that jobs arrive into the system in a Poisson stream and receive a single

service before leaving the system. Jobs are assumed to be independent and identically

distributed. The system has been modelled under two service demand types: (i) expo-

nential service demand and (ii) a two-phase hyper-exponential service demand. There

are two queues, one per server. The queues are bounded with a maximum capacity of

10 jobs each, as PEPA does not support infinite queues [57]. As a result, queues can

be full, leading to rejecting new arrival jobs from joining the queue. We assume that

all queueing is First-Come-First-Served (FCFS).

There is no direct relationship between this chapter and Chapter 3. Having a single

queue and multiple servers is the topic of discussion in Chapter 3, which is an attempt

to answer the first research question (Question 1). In contrast, in Chapter 4 and the

subsequent Chapters 5 and 6, we looked at individual queue server pairs and how we

distribute work between queues in an attempt to address the second research question

(Question 2). Therefore, experiments settings and parameters such as the number of

servers and number and size of queues are distinct from those in Chapter 3.

The specification of PEPA models and parameters for each algorithm have been pre-

sented in more detail in the following sections.

Section 4.2 presents the shortest queue models under exponential and hyper expo-

nential service demand. Section 4.3 shows the PEPA models for random allocation.

Section 4.4 presents TAGS and its models in PEPA. Finally, Section 4.5 illustrates the

timeout optimisation mechanism for TAGS.

4.2 Shortest queue model in PEPA

The shortest queue strategy overcomes the problem of load balancing between the

queues. The shortest queue strategy is known to be optimal when the arrival and
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service distributions are negative exponential. However, this does not hold for hyper-

exponential service, as we will see. When jobs arrive, the policy forwards them to the

queue with the least waiting jobs, thus leading to no queue becoming full while other

queues still have available capacity. So, the probability of losing jobs is less significant

as long as the arrival rate does not exceed the system capacity. However, a short

job might be delayed for a long time when getting stuck behind a long job, as this

strategy only counts the waiting jobs and not their service demands. The shortest

queue involves a management overhead as the policy has to have knowledge of the

states of the queues. If the latency in polling queues is long, then this overhead might

be significant, leading to poorer performance in practice. However, In the thesis, the

aspect of management overhead has not been included.

4.2.1 The model under exponential service

The first section of the model represents the first queue Q1. Component Q10 symbolise

the initial state of the queue. In that state, the queue is empty and waiting for a job to

arrive. The activity (arrival1 ,⊤).Q1i consist of action type arrival1 and rate T , the

action will be carried out, and then the processed component will behave as the compo-

nent Q1i which represents the following state of the queue. Component Q1i will have

two different activities to choose of them, the first activity (arrival1 ,⊤).Q1i + 1 which

means the queue can do the action arrrival1 and then behave as Q1i + 1 which rep-

resents the following position in the queue. The second activity is (service1 ,⊤).Q1i−1

which means the queue can serve the job and return back to previous state. The com-

ponent Q1N represents the state where the queue is full, and the only available action

is to serve the job, and there is no possibility to receive a new job. When performing

the activity (service1 ,⊤) then the queue will return to previous state Q1N−1 .

Q10
def

= (arrival1 ,⊤).Q1i ,

Q1i
def

= (arrival1 ,⊤).Q1i+1 + (service1 ,⊤).Q1i−1 , 1 ≤ i ≤ N,

Q1N
def

= (service1 ,⊤).Q1N−1 ,
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The following section represents the second queue Q2 in the model. It works in the

same fashion as Q1.

Q20
def

= (arrival2 ,⊤).Q2i ,

Q2i
def

= (arrival2 ,⊤).Q2i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < N,

Q2n
def

= (service2 ,⊤).Q2n−1 ,

The following specification represents the servers. The component Server1, has only

one activity to perform action service1 at rate µ1 then acts as Server1. Server2

components act in the same fashion, but with action service2 and rate µ2.

Server1
def

= (service1 , µ1 ).Server1

Server2
def

= (service2 , µ2 ).Server2

The following section of the model represents the dispatcher.

S0

def

= (arrival1,λ1).S1+(arrival2,λ2).S21 + (service1 , u1 ).S21 + (service2 , u1 ).S1

S1j
def

= (arrival2 , λ1+λ2 ).S1j−1+(service1 , µ1 ).S1j−1+(service2 , µ2 ).Sj+1 , 1 ≤ j < N

S1N
def

= (arrival2 , λ1 +λ2 ).S1N−1 +(service1 , µ1 ).S1N−1 +(service2 , µ1 ).S1N , N = 10

S2j
def

= (arrival1 , λ1+λ2 ).S2j−1+(service1 , µ1 ).S2j+1+(service2 , u1 ).S2j−1 , 1 ≤ j < N

S2N
def

= (arrival1 , λ1 + λ2 ).S2N−1 + (service1 , µ1 )S2N+(service2,µ1).S2N−1 N = 10

Finally, the system equation that shows the interaction between the model components.

Q10 ∥ Q2 0 ▷◁
K

S0 ▷◁
L

Server1 ∥ Server2

4.2.2 The model under hyper exponential service

The previous model has been modified to support the hyper-exponential service dis-

tribution. At each service action, there is a probabilistic branch of the next service
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action to be performed as either Server1 or Server1′. Server1 represents a short

service duration, and Server1′ represents a long service duration. α′ = (1 - α). The

modified components have been highlighted in the model as shown in Figure 4.1

Q10
def

= (arrival1 ,⊤).Q1i ,
Q1i

def

= (arrival1 ,⊤).Q1i+1 + (service1 ,⊤).Q1i−1 , 1 ≤ i ≤ N,

Q1N
def

= (service1 ,⊤).Q1N−1 ,

Q20
def

= (arrival2 ,⊤).Q2i ,
Q2i

def

= (arrival2 ,⊤).Q2i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < N,

Q2n
def

= (service2 ,⊤).Q2n−1 ,

Server1
def

= (service1,α ∗ µ1 ).Server1 + (service1 , α′ ∗ µ1 ).Server1
′

Server1 ′ def

= (service1,α ∗ µ2 ).Server1 + (service1 , α′ ∗ µ2 ).Server1
′

Server2
def

= (service2,α ∗ µ1 ).Server2 + (service2 , α′ ∗ µ1 ).Server2
′

Server2 ′ def

= (service2,α ∗ µ2 ).Server2 + (service2 , α′ ∗ µ2 ).Server2
′

S0
def

= (arrival1 , λ1 ).S1 + (arrival2 , λ2 ).S21 + (service1 , u1 ).S21 + (service2 , u1 ).S1

S1j
def

= (arrival2 , λ1 + λ2 ).S1j−1 + (service1 , µ1 ).S1j−1 + (service2 , µ2 ).Sj+1 1 ≤ j < N

S1N
def

= (arrival2 , λ1 + λ2 ).S1N−1 + (service1 , µ1 ).S1N−1 + (service2 , µ1 ).S1N N = 10

S2j
def

= (arrival1 , λ1 + λ2 ).S2j−1 + (service1 , µ1 ).S2j+1 + (service2 , u1 ).S2j−1 1 ≤ j < N

S2N
def

= (arrival1 , λ1 + λ2 ).S2N−1 + (service1 , µ1 ).S2N + (service2 , µ1 ).S2N−1 N = 10

Q10 ∥ Q2 0 ▷◁
K

S0 ▷◁
L

Server1 ∥ Server2

Where K = (arrival1, arrival2, service1, service2) and l = (service1, service2)

Figure 4.1: Shortest Queue PEPA hyper exponential model in Homogeneous Environ-
ment
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Q10
def

= (arrival1 , λ1).Q11

Q1j
def

= (arrival1 , λ1).Q1j+1 + (service1 , µ1).Q1j−1 , 1 ≤ j ≤ N

Q1N
def

= (service1 , µ1).Q1N−1

Q20
def

= (arrival2 , λ2).Q21

Q2j
def

= (arrival2 , λ2).Q2j+1 + (service2 , µ2).Q2j−1

Q2N
def

= (service2 , µ2).Q2N−1

Server1
def

= (service1 , µ1).Server1

Server2
def

= (service2 , µ2).Server2

Q1 0 ∥ Q2 0 ▷◁
K

Server1 ∥ Server2

Where K = (service1, service2)

Figure 4.2: Random allocation PEPA model under exponential demand

4.3 Random allocation model in PEPA

The random allocation policy assigns arrival jobs to a queue randomly. So, it does not

take into consideration how many jobs are already waiting in the queue. As a result,

one queue might be overflowing with jobs while the other queue is empty or half full.

Moreover, the probability of losing jobs is high, as sending a job to a full queue results

in dropping that job permanently. Furthermore, short jobs might be delayed for a

long time when getting stuck behind a long job, which is not detected by the random

scheduler. However, random allocation can be an attractive option as no knowledge

about the system is needed. Hence it is relatively trivial to implement.

4.3.1 The model under exponential demand

Queues are modelled in a similar way to the shortest queue. The difference between the

random allocation and the shortest queue models is queues in the random allocation

model are parallel. There is no dispatcher forwarding the job to the shortest of them.

The full model is illustrated in Figure 4.2
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4.3.2 The model under hyper exponential service

The components Server1 and Server2 modified to support hyper exponential demand

service in the same way as in Section 4.2.2. Other component in the model stay

unchanged the modification shown below:

Server1
def

= (service1 , α ∗ µ1 ).Server1 + (service1 , α′ ∗ µ1 ).Server1
′

Server1 ′ def

= (service1 , α ∗ µ2 ).Server1 + (service1 , α′ ∗ µ2 ).Server1
′

Server2
def

= (service2 , α ∗ µ1 ).Server2 + (service2 , α′ ∗ µ1 ).Server2
′

Server2 ′ def

= (service2 , α ∗ µ2 ).Server2 + (service2 , α′ ∗ µ2 ).Server2
′

4.4 Task Assignment Based on Guessing Size model

The TAGS scheme was initially introduced by Harchol-Balter [23] in order to address

the problem of jobs with long service demands unduly delaying jobs with a short

service. The main justification of this algorithm is to allocate jobs where the service

demand is unknown before execution. In this approach, a job is sent to a single server

queue. The server starts processing the first job in the queue until the job is completed

and departed successfully or until a fixed time out is reached. If the timeout is reached

before the job is completed, then the job is transferred to the next server. When the

job arrives at the next server, the same steps are repeated, but the timeout for this

level increases. The process is repeated with a longer timeout each time until the last

server is approached. The job in this final stage receives an uninterrupted service until

completion. It is assumed that there is no checkpointing, and so any service accrued

at the previous stage must be repeated.

The main difference between TAGS and multi-level feedback queuing is that in the

TAGS approach, the job is killed if it reaches the end of the time out period on a

server. Afterwards, it is transferred to the next server and starts from the beginning.

In contrast, in multi-level feedback queuing, the service resumes on the next server from

where it stopped on the previous server. Thus, the effort is not lost, but the resource

is consumed in recording the execution state, which can be significant. Figure 4.3

illustrates the concept of TAGS.
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Arrival Departures

Restart
Departures

Figure 4.3: Jobs allocation flow in TAGS

When compared to the random allocation and the shortest queue, TAGS can overcome

the problem of short jobs getting stuck behind a long job. However, there is an

overhead in the repeated service, which can affect performance. For example, consider

a system consisting of 2 servers with their bounded queues. If the timeout is too short

at the first server, then too many jobs will be killed and transferred to repeat the

service from scratch in the subsequent server. As a result, the jobs will be delayed

leading to degrading the performance (increasing the response time).

Furthermore, the next queue might become full, leading to an increase in job losses. On

the contrary, if the time out is too long, most jobs will be served at the first server, and

fewer jobs will be transferred to the second server. However, the possibility of losing

jobs in the first queue will increase as many short jobs will be stuck behind longer

jobs, and the second server will be underutilised. As a consequence, the throughput

of the system will be decreased. So, optimising the time out value is crucial to have

the most advantages of TAGS.

Thomas [56] studied and modelled TAGS in PEPA in a homogeneous environment

and showed that TAGS could perform well for various performance metrics compared

to random allocation and the shortest queue strategy when the job size variability is

high; however, the timeout values need to be optimised.

TAGS mechanism indicates that there is an energy overhead as repeating the same

job from scratch means the processing time will become longer. As we discussed

in Section 2.2 the energy has linear relationship with the processing time. So, the

energy consumption for the same job in TAGS compared to the shortest queue random
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allocation will be more. We investigate the performance and energy in Chapter 5 in a

homogeneous environment and in Chapter 6 in a heterogeneous environment.

Thomas’s study [56] has been extended to consider the energy consumption level and

performance using the TAGS scheme. The energy consumed were compared with this

consumed by the random allocation and the shortest queues strategies.

In this thesis, the models and analysis have been extended to consider a heteroge-

neous environment. Chapter 5 shows the results in a homogeneous environment while

Chapter 6 describes the changes in the PEPA models to add the system heterogene-

ity. In addition, it shows the results of performance and energy in a heterogeneous

environment.

4.4.1 TAGS model in PEPA under exponential service de-
mand

As PEPA is a Markovian Process Algebra, the deterministic timeout used in TAGS is

modelled by an Erlang distribution. The service distribution is considered as either a

negative exponential (hence relatively low variance) or a two-phase hyper-exponential

(relatively high variance). In all cases, the inter-arrival periods are negative exponen-

tially distributed, and the maximum queue lengths are finite. PEPA does not support

unbounded queues. Therefore, we have to use a finite queue. The model specification

can be generalised or extended by adding more components. Hence, the queue capac-

ity can be extended to any number of jobs. However, the constraint in this model

evaluation is related to the available computing resource to generate and solve the

PEPA model’s steady-state, as stated previously in Section 2.8.

The notations of the PEPA model have been summarised in Table 4.1. Figure 4.4

illustrates the TAGS model in PEPA under exponential demand while Figure 4.5

illustrate the model under hyper-exponential demand.

For numerical tractability and ease of understanding, the number of nodes is restricted

to two, as this is sufficient to investigate the consequences of using the TAGS scheme

on energy consumption. The queue size is bounded, and hence a job can be lost at

arrival by being dropped from the first node or at the subsequent node after completing
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Notation Meaning
Q1 the first queue.

Server1 the first server.
Timer1 the first timer which governs the decision to terminate

the job at the first server after a specific processing time.
Timer2 the timer in the second server used to model the repeated service.

the remaining part of the job receives service from action service2 until completion.
Q2 the second queue.
K1 the maximum length of the first queue.
K2 the maximum length of the second queue.

arrival the arrival process.
service1 the service process at first server.
service2 the service process at second server.
timeout the timeout action which kills the job at server1 when triggered.
tick1 the tick action of the timeout clock.

repeateservice the repeat service action, that repeats the amount of service
that timed out previously in server1.

λ the job arrival rate.
µ the average service rate.
µ1 The service rate at Server1
µ2 The service rate at Server2
t The timeout rate
α The proportion of short job.
α′ The proportion of long job.
σ′ The difference in performance between Server1 and Server2.

Table 4.1: PEPA Model Notation

a timeout service. Thus, a proportion of jobs might be lost from the second node if the

load is high and the timeout at the first node is too short. In contrast, a long timeout

at the first node will increase the probability of losing a job at the first node as the

queue becomes full, rejecting new arrivals from joining the queue.

The queues are modelled in such a way that each job is represented as a separately

named derivative of the queue. The timeout at the first node is modelled using an

Erlang distribution, and the number of ticks is fixed. While the queue is not empty,

the timeout clock starts at the beginning of each derivative of the queue. This is done

by introducing the tick action at each derivative. A race exists between the timeout

action and the service process service1. If the timeout action wins, the job is killed and

transferred to the second node to restart the service from the beginning. Otherwise,

the task departs the system since it is finished before the timeout action is triggered.
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In both situations, the timeout clock is reset. If a job is waiting in the queue, the race

starts again; otherwise, if the queue is empty, the server enters an idle state until a

new job arrives.

After timing out, the job restarts at the second node and receives a repeated process of

the amount of service (the same number of ticks) that timed out in the first node. To

overcome the resampling problem, this is represented by introducing the repeatservice

action in timer2, while the remaining part of the job receives service from action

service2.

Q10
def

= (arrival, λ).Q1i ;

Q1i
def

= (arrival , λ).Q1i+1 + (service1 ,⊤).Q1i−1

+(tick1 ,⊤).Q1i + (timeout ,⊤).Q1i−1 ; 1 ≤ i < K1

Q1n
def

= (service1 ,⊤).Q1n−1 + (tick1 ,⊤).Q1n + (timeout ,⊤).Q1n−1

Server1
def

= (service1, µ).Server1;

Timer10
def

= (timeout , t).Timer1n + (service1 ,⊤).Timer1n

Timer1i
def

= (tick1 , t).Timer1i−1 + (service1 ,⊤).Timer1n 1 ≤ i ≤ n

Q20
def

= (timeout ,⊤).Q2i
Q2i

def

= (timeout ,⊤).Q2i+1 + (tick2 ,⊤).Q2i
+(repeatservice,⊤).Q2 ′

i , 1 ≤ i < K2

Q2K2

def

= (timeout ,⊤).Q2K2 + (tick2 ,⊤).Q2K2

+(repeatservice,⊤).Q2 ′
K2 ,

Q2 ′i
def

= (timeout ,⊤).Q2 ′
i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < K2

Q2 ′
K2

def

= (timeout ,⊤).Q2 ′
K2 + (service2 ,⊤).Q2 ′

K2−1 ,

Timer20
def

= (repeatservice, t).(service2 , µ).Timer2n

Timer2i
def

= (tick2 , t).Timer2i−1 , 1 ≤ i ≤ n

((Q10 ▷◁
service1

Server1 ) ▷◁
K

Timer1n) ▷◁
timeout

(Queue20 ▷◁
L

Timer2n)

where K = (service1, timeout, tick1) and L = (repeatservice, service2, tick2)

Figure 4.4: A PEPA TAGS exponential model
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4.4.2 TAGS model in PEPA under hyper-exponential ser-
vice demand

When considering TAGS, the exponential distribution is not the most interesting to

use, as the main motivation for TAGS is to enable the throughput of short jobs in the

presence of long-running jobs. Hence TAGS will perform best with a mixed workload

where there are lots of short jobs and a few very long-running jobs. Modelling the

hyper-exponential distribution in PEPA involves the implementation of some extra

factors to produce the required probabilistic branching. Each timeout and service1

action must, therefore, take place twice with rates multiplied by α and (1- α) to

determine whether the next job will be served at the appropriate rate, µ1 or µ2 (in

Server1 and Server1′ respectively). In the second node, the branching process is less

complex, with the branching taking place at the repeatservice action. Clearly, the

probability that a short job time out will be less than the probability that a long job

times out, which necessitates computing the resultant probability α′. Figure 4.5 shows

the TAGS model after the H2 distribution support change has been implemented.
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Q10
def

= (arrival, λ).Q1i ;

Q1i
def

= (arrival , λ).Q1i+1 + (service1 ,⊤).Q1i−1

+(tick1 ,⊤).Q1i + (timeout ,⊤).Q1i−1 ; 1 ≤ i < K1

Q1n
def

= (service1 ,⊤).Q1n−1 + (tick1 ,⊤).Q1n + (timeout ,⊤).Q1n−1

Server1
def

= (service1 , α ∗ µ1 ).Server1 + (service1 , (1− α) ∗ µ1 ).Server1
′

+(timeout , α ∗ t).Server1 + (timeout , (1− α) ∗ t).Server1 ′

+(tick1 , t).Server1

Server1 ′ def

= (service1 , α ∗ µ2 ).Server1 + (service1 , (1− α) ∗ µ2 ).Server1
′

+(timeout , α ∗ t).Server1 + (timeout , (1− α) ∗ t).Server1 ′

+(tick1 , t).Server1 ′

Timer10
def

= (timeout , t).Timer1n + (service1 ,⊤).Timer1n

Timer1i
def

= (tick1 , t).Timer1i−1 + (service1 ,⊤).Timer1n 1 ≤ i ≤ n

Q20
def

= (timeout ,⊤).Q2i

Q2i
def

= (timeout ,⊤).Q2i+1 + (tick2 ,⊤).Q2i
+(repeatservice,⊤).Q2 ′

i , 1 ≤ i < K2

Q2K2

def

= (timeout ,⊤).Q2K2 + (tick2 ,⊤).Q2K2 + (repeatservice,⊤).Q2 ′
K2 ,

Q2 ′i
def

= (timeout ,⊤).Q2 ′
i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < K2

Q2 ′
K2

def

= (timeout ,⊤).Q2 ′
K2 + (service2 ,⊤).Q2 ′

K2−1

Timer20
def

= (repeatservice, α′ ∗ t).(service2 , µ1 ).Timer25
+(repeatservice, (1− α′) ∗ t).(service2 , µ2 ).Timer25

Timer25
def

= (tick2 , t).Timer24

Timer24
def

= (tick2 , t).Timer23

Timer23
def

= (tick2 , t).Timer22

Timer22
def

= (tick2 , t).Timer21

Timer21
def

= (tick2 , t).Timer20

((Q10 ▷◁
K

Server1 ) ▷◁
K

Timer15 ) ▷◁
timeout

(Queue20 ▷◁
L

Timer25 )

where K = (service1, timeout, tick1) and L = (repeatservice, service2, tick2)

Figure 4.5: A PEPA TAGS hyper exponential model

4.5 TAGS timeout optimisation

In contrast to random allocation and shortest queue, TAGS involved time out factor.

So to have a standardised comparison between the three algorithms, the timeout rate

values for the TAGS algorithm have to be optimised to obtain the maximum through-

put for each arrival rate. It is worth mentioning the optimisation in this context refers
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Figure 4.6: Throughput varied against timeout rate t when the arrival rate λ =11, and
the average service µ= 10 for exponential service demand in homogeneous environment

to the best timeout rate achieved, producing the maximum throughput under the

experiment setup. Consequently, this cannot be generalised for different experiment

setups or environments.

Subsequently, the maximum throughput is used as a comparison factor in all following

chapters. For example, if the timeout value t that gives the maximum throughput is

t =8 for the arrival rate λ =12. Consequently, when we compare the three algorithms

for performance or energy for the arrival rate 12, we considered the TAGS throughput

when the timeout rate is 8 for the arrival rate λ =12.

In Figure 4.6 The timeout optimisation process for TAGS to obtain the maximum

throughput has been presented. It can be seen timeout rates varied from 4 to 60 for

the arrival rate λ = 11. The timeout rate that gives the highest throughput is t = 52.

So, for any comparison with other algorithms at arrival rate λ = 11 we considered the

throughput when the timeout rate t = 52.
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4.6 Conclusion

This chapter illustrated the PEPA models of TAGS and the shortest queue and random

allocation Schemes. The three algorithms in models in PEPA are presented under two

service demand distributions. These service demands are: (i) the exponential service

demand, and (ii) the two-phase hyper exponential demand.

TAGS mechanism relies on the timeout factor in contrast to the other two poli-

cies. Therefore, a timeout rate optimisation mechanism for TAGS is expected before

analysing or comparing the three schemes. We showed how to optimise time out values

for TAGS that produce the highest throughput.

In the next chapter, Chapter 5 will present the results of the performance and energy

consumption of this chapter PEPA model in a homogeneous environment.
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5.1 Introduction

In Chapter 3, we studied one energy policy and modelled it in PEPA. Subsequently, we

analysed it in different scenarios regarding its energy consumption and performance.

In contrast, in Chapter 4, we discussed and presented some scheduling algorithms

introduced to improve the system’s performance. These algorithms have been modelled

in PEPA under two service demand types: (i) exponential service demand and (ii) two-

phase hyper-exponential service demand.

The primary goal of this chapter is to investigate each of the algorithms described in

Chapter 4 in terms of performance and energy consumption and to produce comparable

results. Both chapters, Chapter 3 and this chapter evaluated a homogeneous environ-

ment. The main difference between this chapter and Chapter 3 could be summarised

as the chapter 3 focused on energy policies and their impact on performance. In con-

trast, this chapter focused on some performance scheduling algorithms and compared

them in terms of their performance’s potential benefits and their energy consumption.

It is essential to emphasise that this chapter’s experiment setting and technique are

distinct from those in Chapter 3. As a result, the queue sizes, number of servers and

arrival and service rates are not comparable to the experiment described in Chapter

3. In summary, the experiments described in this chapter and Chapter 6 are separate

from the experiment described in Chapter 3, as they are trying to answer the research

question 2.

This chapter, along with Chapters 3 and 6, make use of performance metrics such as

throughput, utilisation, and average response time. However, there are three primary

metrics in terms of energy consumption: cost (discussed in Chapter 3), total energy

consumption and energy per job (discussed in this chapter and Chapter 6). Chapter

3’s energy cost is a relative measure for energy consumption. By contrast, we introduce

the energy consumption metric associated with the P-state value in Chapters 5 and 6.

Thus, the energy measurements are expressed in terms of Watt per time unit. Addi-

tionally, energy per job was included to link energy usage with throughput and serve

as a benchmark for trading offs performance and energy consumption and comparing

algorithms. Section 5.2, presents the performance analysis. Section 5.3 illustrates the
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energy model and analysis.

5.2 Performance analysis

This section represents the performance evaluation of TAGS, shortest queue and ran-

dom allocation under two service demand types: (i) exponential service demand in

Section 5.2.1 and (ii) two-phase hyper-exponential service demand in Section 5.2.2.

The performance metrics we have been studied are the throughput of the system and

job loss. Furthermore, we looked at the utilisation of servers as well as the average

response time.

5.2.1 Performance analysis under exponential service de-

mand

The TAGS model specified in Figure 4.4 represents the case of exponential demand

analysed to obtain the throughput and the average response time.

Figure 5.1 shows the throughput varied against arrival rate λ. The TAGS algorithm

is optimised for the maximum throughput, the best values of t being 72, 62, 56, 54,52,

54, 54 and 54 (for λ = 19, 17, 15, 13, 11, 9, 7 and 5, respectively). The random

allocation and the shortest queue strategies results are included for contrast as well.

Figure 5.4 shows the utilisation of both servers.

Figure 5.3 shows the job loss at the shortest queue strategy is nearly insignificant at

all arrival rates (0.5 at the highest arrival rate and 10−12 at the lowest arrival). At

the same time, the random assignment is slightly higher at high arrival rates, and the

TAGS is the worst when the arrival rate λ > 11. In addition, Figure 5.3 shows that the

average response time by TAGS is the worst in all arrival rates. These findings indicate

that TAGS is not very useful compared to the random and shortest queue strategies

under exponential service demand, notably as the service demand increases resulting

in an increase in the incomplete jobs rate in TAGS. This is expected as it is well known

that the optimal strategy for exponential arrivals and service demands is the shortest

queue. Winston [62] has shown join the shortest queue is optimal when the queue size
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Figure 5.1: Throughput varied against arrival rate λ, when the average service µ= 10
for exponential service demand in homogeneous environment.

is finite, and jobs are exponentially distributed in a homogeneous environment and

servers serving jobs on FCFS basis.

Therefore, analysing these algorithms under a service demand with higher variance

would give better results for TAGS. Section 5.2.2 will investigate the system under a

two-phase hyper exponential service demand.
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Figure 5.2: Average response time, varied against arrival rate λ, when the average
service µ= 10 for exponential service demand in homogeneous environment.
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Figure 5.3: Job loss, varied against arrival rate λ, when the average service µ= 10 for
exponential service demand in homogeneous environment.
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Figure 5.4: (a) server1 utilisation and (b) server2 utilisation, varied against arrival
rate λ, when the average service µ= 10 for exponential service demand in homogeneous
environment.

- 81 -



Chapter 5: TAGS Performance and Energy Consumption in Homogeneous
environment

4

6

8

10

12

14

16

18

5 7 9 11 13 15 17 19

T

Arrival Rate

Throughput hyper Expo Hemo

Shortest Queue Random TAGS

Figure 5.5: Throughput varied against arrival rate λ, when the average service µ= 10,
and proportion of short job α = 0.99, and the service rate µ1=100µ2.

5.2.2 Performance analysis under hyper-Exponential ser-

vice demand

Hyper-exponential distribution has a greater variance than exponential demand, which

makes it an appropriate distribution to investigate the performance metrics for TAGS.

Figure 5.5 shows the throughput varied against arrival rate when service demand

has an H2 distribution. Results are presented for TAGS, shortest queue and random

allocation. The proportion of short jobs was set to α= 0.99 and the average service

to µ = 10. The long job size was set to be 100 times longer than the short job by

specifying the service rate µ2 at the second node to be 100 times less than the service

rate at the first node: µ1 = 100µ2.

TAGS outperforms the shortest queue and random allocation when service demand

increases and load variability is high. The explanation of why TAGS is better than

the shortest queue is easy to clarify. The shortest queue strategy will lose jobs when
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Figure 5.6: Job loss varied against arrival rate λ, when the average service µ= 10, and
proportion of short job α = 0.99, and the service rate µ1=100µ2

a long job occupies both queues. This can happen when one long job arrives in the

system and is forwarded to the first server. Subsequently, If another long job arrives,

it will be forwarded to the second server as the first one is already occupied. As a

result, both queues will become full, and if any new job arrives in the system will be

dropped from the queue leading to an increase in the job loss rate. In contrast, TAGS

reduces the chance that both queues become full if the timeout is well-tuned. The

first queue is unlikely to become full as the timeout mechanism will kill long jobs and

transfer them to the second server. Even though the processing time for each long job

is 100 times longer than any short job, the probability of the second queue becoming

full is relatively small as there are too few long jobs. Figure 5.6 shows the job loss at

each arrival rate for TAGS, the shortest queue and the random allocation.

The results become interesting when we look at the average response time. Figure

5.7 shows the average response time varied against arrival rate. It can be seen that

at low arrival rates (λ < µ = 10), TAGS outperforms the shortest queue and random
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Figure 5.7: Average response time varied against arrival rate λ, when the average
service µ= 10, and proportion of short job α = 0.99, and the service rate µ1=100µ2

allocation. In contrast, when arrival rates increased to be more than the average service

(λ > µ = 10), TAGS performs worse than the shortest queue. This is simply because

TAGS processes more jobs and, in particular, more long jobs, which by their nature

have a longer response time. It is worth noting, the timeout values t for TAGS are the

best values for the highest throughput as mentioned previously in Section 5.2.1. So,

to reduce the average response time for TAGS, the most important is to consider the t

optimisation, in that different values for t from the current values might be obtained.
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5.3 Energy model and analysis

The choice of the energy model is an integral part of the study that demonstrates how

performance values convert into energy. We focus on the case where most of the server

power consumption is due to the CPU, so other components such as memory and hard

disk power consumption have been ignored. In this study, it has been assumed that

the processor is equipped with DVFS capability. Therefore, the process we propose to

estimate the energy consumed Ec by a server has an underlying assumption that this

energy is essentially the processor performance states (P-states) value multiplied by

utilisation. The P-states are defined by the Advanced Configuration and Power Inter-

face (ACPI) specification as the capability of a processor to switch between different

supported operating frequencies. The P0 state represents the highest performance

state which achieves maximum performance and consumes maximum power. States

from P1 to Pn are lower performance states, where n is the maximum P-state imple-

mented by the processor, not to exceed 16. The higher P-state number refers to lower

utilisation of the CPU and lower energy consumption. The number of the P-state is

processor-specific. For example, the AMD Opteron CPU has six performance levels

with frequencies ranging from 1000 to 2600 MHz [54].

In our energy model and based on previous studies [15, 34], the server’s power con-

sumption is assumed to follow a linear relationship with power consumption at any

given time and the CPU utilisation at the same time. To estimate the amount of

energy per job, the system’s throughput is used, from which an estimation of the cost

of each job in Watt and the utilisation of P-state value can be estimated.

In this chapter, the throughput, utilisation and P-state were considered in calculating

the total and the average energy consumption per job. The system was assumed to

be homogeneous, equipped with AMD Opteron CPUs. The value for each P-state in

AMD Opteron CPUs was obtained from [1]. To specify the P-state, the utilisation of

the system U at each arrival rate is calculated by Equation 5.1.

U = 1− Prob(QEmpty) (5.1)
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where Prob(QEmpty) is the probability of the event that the queue being empty.

Table 5.1: AMD opteron CPU specifications

P-state Power(W) Clock (GHz) Voltage (V))
P0 95 2600 MHz 140
P1 90 2400 MHz 135
P2 76 2200 MHz 130
P3 65 2000 MHz 125
P4 55 1800 MHz 120
P5 32 1000 MHz 110
Idle 15 - -

Table 5.1 shows all P-state values. When obtaining the system utilisation and its

corresponding P-state value, the CPU total energy consumption can be calculated by

Equation 5.2.

Ec =
n∑

i=1

(SUi × SPi,active) + ((1− SUi)× SPi,idle) (5.2)

Wher SUi is the Serveri utilisation , SPi,active is the Serveri P-state value and SPi,idle

is the Serveri P-state idle value.

The average energy consumption per job is calculated by equation 5.3, where Ec is

the CPU total energy consumption and T is the system throughput.

AverageEnergyPerJob = Ec/T (5.3)

The document for the processor does not specify at which utilisation level each P-state

should be triggered [1]. However, it was mentioned that these P-states could be pro-

Table 5.2: The equivalent utilisation level for each P-state

P-state Utilization P-state value in Watts

P0 100 95
P1 80 90
P2 60 76
P3 40 65
P4 20 55
P5 10 32
Idle 0 15
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Figure 5.8: Linear regression

grammed to trigger at a specific utilisation level. Therefore, the equivalent utilisation

level for each P-state was obtained from [54] and depicted in Table 5.2. However, by

looking at these values, it will be noticed that some utilisation levels fall between other

levels not connected to any P-state value. For example, P4 triggered when utilisation

reached 20% and P3 triggered when utilisation reached 40%. However, if the utilisa-

tion is 35%, there is no specific P-state value connected to it, and its equivalent P-state

value will be considered P4. This will have an impact on energy consumption calcula-

tion according to the method used. Therefore, there are two methods to use P-state

value. The first is assuming each P-state covers a range of utilisation. For example,

P4 is triggered when the utilisation is 20%, and the system keeps in this P-state until

the utilisation increases to 40%; then, the system moves to P3. Notwithstanding, this

approach does not accurately depict the rise or reduction in energy consumption that

occurs when varying utilisation levels. The second is using the linear regression to

obtain the equivalent P-state value in Watts for each utilisation. We used the linear

regression to find a formula of the energy consumption for any utilisation value not in

Table 5.2. Figure 5.8 shows the linear regression values and formula
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5.3.1 Energy consumption under exponential service demands

Results presented in this section are discussed in terms of total energy consumption and

energy per job under exponential demand. It is worth observing that the difference

in total energy consumption between the shortest queue and random allocation is

insignificant under the exponential demand. This is especially the case when the

arrival rate λ ≤ 11 which is very close to the average service µ, as shown in Table ??

Table 5.3: Total energy consumption results and percentage difference.

Arrival Rate 19 17 15 13 11 9 7 5
Total Energy Random 192.433 184.659 174.863 163.712 151.898 139.852 127.749 115.638
Total Energy Shortest 197.051 187.595 176.108 164.079 151.974 139.862 127.750 115.638
Total Energy TAGS 205.775 202.326 199.299 191.352 178.001 161.647 144.743 127.777
% difference between Random and TAGS 6.7% 9.1% 13.1% 15.6% 15.8% 14.5% 12.5% 10.0%
% difference between Random and Shortest 2.4% 1.6% 0.7% 0.2% 0.0% 0.0% 0.0% 0.0%

Figure 5.9 shows the effect of varying the arrival rate on energy consumption by the

TAGS algorithm, the shortest queue strategy and random allocation. It can be no-

ticed that the energy consumption of TAGS is higher than random allocation and the

shortest queue in terms of total energy consumption under high and low arrival rates.

The reason is related to the fact that the TAGS timeout mechanism assigns long jobs

to the second node. The second server utilisation increases as it repeats the part of the

service that has been processed in the first node and then processes the subsequent

part of the service. In total, the same job receives processing time equal to timeout

at the first node plus the processing time at the second node. This behaviour excuses

server1 from long jobs, allowing more short jobs to be served, which increases the

utilisation of server1 as well. See Figure 5.4 for more clarification. based on that, the

repetition of the process for the timed-out jobs along with the extra jobs processed in

the first server leads to an increase in the energy consumption by TAGS. On the other

hand, the shortest queue strategy assigns the job to the server with the shortest queue,

and the job receives service until completion without interruption. Hence, the system

utilisation at both nodes is balanced; there is no repeat as the job is only processed at

one node.

Interestingly, while the difference in total energy consumption between random al-

location and the shortest queue strategy is relatively small at each arrival rate, the
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Figure 5.9: Total energy consumption varied against arrival rate λ, µ= 10.

difference between random allocation (the least energy consumption) and TAGS (the

highest) follows a different trend. At the lowest arrival rate (λ = 5), the difference

is approximately 10%, increasing to approximately 15.8% when the load increased to

50% of the system capacity. Afterwards, the difference decreases to 6.7% at the highest

arrival rate (λ = 19). This behaviour can be explained like that TAGS mechanism

from the beginning consuming more energy because the longer job receives processing

in two servers with repeating of processing a part of the same job in both servers.

In contrast, in the random allocation, the job receives the processing only once at

one server, So the energy at a low arrival rate by random is less than TAGS. How-

ever, when the load increases, the random allocation starts consuming more energy,

leading to decreased energy consumption difference between TAGS and random allo-

cation. All three policies continuously increase energy consumption when the arrival

rate increases, but the increase ratio by each one is different.
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Figure 5.10: Average energy consumption per job varied against arrival rate λ, µ= 10.

In terms of average energy consumption per job, the TAGS algorithm with the best

timeout values at each arrival rate also consumes higher energy than the shortest

strategy and random allocation. See Figure 5.10. It is also worth pointing out that

the TAGS algorithm can cost more energy per job when the arrival rate is relatively

low. This can happen because the utilisation in both nodes at low arrival rates is less

than the utilisation at higher arrival rates. Thus, the throughput is relatively small,

but the energy reduction percentage is not as much as the reduction in the throughput

percentage. Thus, it leads to an increase in the average energy per job at a low arrival

rate. For example, when the arrival rate λ = 5, the average energy consumption per

job is more than when the arrival rate λ = 7. Table 5.4 illustrates the total energy

consumption at rates λ = 5 and 7, which is 127.78 and 144.47 Watts per time unit,

respectively, and the throughput is 5 and 7 per time unit. Moreover, the energy per

job is 25.56 and 20.68 Watts for the same arrival rates values. Thus, while the increase
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Table 5.4: P-state value at different arrival rates

Utilisation Throughput Energy Consumption
Rates 5 7 5 7 5 7
Server 1 31.96 44.74 3.29 4.47 62.03 69.77
Server 2 38.09 53.32 1.80 2.53 65.74 74.97

Throughput - - 5 7 - -
TAGS Total - - - - 127.78 144.47

TAGS Energy per Job - - - - 25.56 20.68

in total energy consumption at λ = 7 is approximately 13%, the throughput increased

by 40%, decreasing the average energy consumption per job by ≈ 19% compared to

energy per job at λ = 5.

- 91 -



Chapter 5: TAGS Performance and Energy Consumption in Homogeneous
environment

110

120

130

140

150

160

170

180

190

200

5 7 9 11 13 15 17 19

W
at

ts
 /

 T
im

e 
u

n
it

Arrival Rate 

Total Energy Consumption hyper Expo Hemo  

Shortest Queue Random TAGS

Figure 5.11: Total energy consumption varied against arrival rate λ, when the average
service µ= 10, and proportion of short job α = 0.99, and the service rate µ1=100µ2

5.3.2 Energy Consumption Under Hyper-Exponential Ser-

vice Demands

The same methodology to calculate the energy consumption under exponential demand

has been implemented in this section to calculate energy under hyper exponential de-

mand. In order to evaluate the TAGS energy consumption under the hyper-exponential

distribution, we considered the scenario when the long job is 100 times longer than

the short job µ1 = 100µ2, and the proportion of the short job is α = 0.99. Figure 5.11

shows total energy consumption varied against arrival rate λ when service demand has

the H2 distribution. Results for energy consumption are shown for TAGS, shortest

queue and random allocation strategies.

Figure 5.11, shows that TAGS consumed more energy than the shortest queue and

random allocation at all arrival rates in terms of total energy consumption. It is also

interesting to note that, while the difference in total energy consumption between
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TAGS and random allocation at a higher arrival rate is as high as ≈ 14.44%, it is

reduced to ≈ 8.4% at a low arrival rate λ=5. A possible explanation for this might

be that at high arrival rate, the utilisations of server1 and server2 under TAGS are

higher than the utilisation under the random allocation by 25% for server1 30% for

server2, As shown in Figure 5.12. Both servers under the TAGS mechanism consume

more energy than any server running under the random allocation policy. While under

the low arrival rate, the difference in the utilisation of server1 between TAGS and the

random allocation was reduced to ≈ 11% for server1 but for server2 the difference

increased to 43%. It should also be noted that to calculate energy consumption, we

use the performance state (P-state value), which increases gradually when utilisation

is increased. Hence, at a high utilisation level, more energy is consumed.

In terms of energy consumption per job, TAGS consumes less energy than random

allocation and the shortest queue when service demand exceeds 75% of the system

capacity (arrival rate λ >15) as shown in Figure 5.13. We think the reason is related

to the TAGS mechanism, which sends long jobs from the first server to the second

server, clearing the way to serving more short jobs at the first server. That approach

produces a higher throughput compared to random allocation strategies, as shown in

Figure 5.5. In contrast, TAGS consumes more energy per job at a low arrival rate

than the shortest queue and random allocation. In fact, TAGS performs poorly in

energy consumption when the service demand is low as the TAGS mechanism involves

repeating the amount of service from the timeout period at the second server.

The shortest queue is the best strategy in terms of energy per job under hyper ex-

ponential service demand as long as the service demand does not exceed 75% of the

system capacity.

For all three algorithms, energy per job consumption shows an opposite trend to total

energy consumption. While total energy consumption decreases at a low arrival rate,

the energy per job increases. This behaviour is related to the fact that the utilisation

increases at a higher arrival rate, leading to more energy consumption. At the same

time, the throughput of the system increases, as shown in Figure 5.5. Consequently,

the energy per job decreases at high arrival rates and increases at low arrival rates.
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Figure 5.12: (a) server1 utilisation and (b) server2 utilisation, varied against arrival
rate λ, µ = 10, α = 0.99, µ1=100µ2 - 94 -
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Figure 5.13: Energy per job varied against arrival rate λ, µ = 10, α = 0.99, µ1=100µ2

There is a correlation between energy consumption, throughput and task size. The

processing of more jobs leads to a higher throughput. However, producing higher

throughput will increase the total energy consumption. In contrast, it will reduce the

energy per job. Although increasing throughput increases total energy consumption,

the energy per job will depend on the amount of longer jobs that arrive in the system.

If the system receives numerous long jobs, the throughput will be decreased as the time

to process these jobs will be longer. As a result, the energy consumption per job will

increase. On the other hand, if more short jobs arrive into the system are successfully

completed, the throughput increases, resulting in a drop in energy consumption per

job.
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5.4 Conclusion

We have studied energy consumption by the TAGS policy and compared it with that of

the shortest queue strategy and random allocation. We have focused on these policies

in the case of the high variability in workload. Our model assumed we have a two-node

system where servers are identical regarding energy consumption and performance. In

practice, the downside is that data centres are heterogeneous environments in which

energy consumption may differ from server to server. We rely on the processor perfor-

mance states (P-states) value to calculate energy consumption. The main downside

of this is that we neglect energy consumption by other server components, such as

hard disk and memory. Our analysis of energy consumption under the exponential

distribution and hyper-exponential distribution concluded that the TAGS mechanism

consumes more energy than the other two policies regarding total energy consumption.

The energy consumed per job followed the same trend under the exponential distribu-

tion. In contrast, when the arrival rate was high, TAGS consumed less energy per job

under the hyper-exponential distribution than random allocation. The shortest queue

was the best policy as long as the arrival rate was less than 75% of the system capac-

ity. This chapter’s primary focus was to evaluate and compare energy consumption

by TAGS, shortest queue strategy and random allocation.

Variations among server specifications and processing capabilities are other factors that

should be taken into consideration. We assumed servers are homogeneous regarding

performance and energy, while in reality, the data centre has a heterogeneous environ-

ment. It is worthwhile to study energy consumption when servers are not identical.

Suppose we have two servers with different performance capabilities. In that case, it

will be valuable to investigate this combination and its impact on the performance and

energy of TAGS.

The three strategies performance and energy consumption will be investigated in a

heterogeneous environment in the next chapter.
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6.1 Introduction

Chapters 4 and 5 considered modelling and evaluating the performance and energy

consumption of TAGS in a system with groups of physical hosts having a homogeneous

environment. Therefore, the PEPA model was designed to represent the interactions

in such an environment. The system environment’s heterogeneity is an essential factor

to be considered in modelling servers performance and energy consumption in data

centres. In this case, the PEPA model needs to be redesigned to adapt to the system

environment changes.

In this chapter, we adjust the PEPA models to adopt the heterogeneity of the system.

Section 6.2 introduces the methodology to add heterogeneity to the system. Moreover,

it shows the updated PEPA models. Section 6.3 presents the experiment setup.

In Section 6.4, we investigated the TAGS performance and energy under different time-

out values to show the effect of timeout on TAGS performance and energy. Section 6.5

compared TAGS, the shortest queue and weighted random in terms of performance

metrics (i.e. throughput, job loss, average response time and servers utilisation). Fi-

nally, Section 6.6 compared the three mechanisms in terms of energy consumption,

focusing on total energy consumption and energy per job.

6.2 Model in PEPA

Chapter 5, modelled and evaluated TAGS in a homogeneous environment under two

service demand types: (i) exponential service demand in Section 5.2.1 and (ii) two-

phase hyper-exponential service demand in Section 5.2.2. Results showed that TAGS

performs well under hyper exponential service demand. Therefore, this chapter mod-

elled and analysed TAGS, shortest queue and weighted random under hyper exponen-

tial demand in a heterogeneous environment.

The heterogeneity context in this chapter refers to the difference in performance be-

tween the first and second nodes. So, new parameters were introduced to represent

the difference in performance between the two nodes in the model. The parameter σ

is used to represent the difference in performance between Server2 and Server1. The
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value of σ equals 1 in case both servers are identical in performance. In contrast, if

the second server performance is less than the first server, the σ value is less than

one or more than one if the second server performance is better than the first server

performance. The exact value of σ depends on the difference percentage between the

two servers, e.g. if the second server is faster than the first server by 10% then σ =

1+(1*10%) = 1.1. In the same fashion, if server2 is slower than server1 by 10% then

σ = 1-(1*10%) =0.9. So, the σ value in this model is used to control the second server

performance.

It is worth mentioning that we assume servers are identical in terms of their energy

consumption regardless of the performance difference. An argument might be made

that it is unrealistic to assume that both servers consume the same amount of en-

ergy regardless of their performance differences. Nevertheless, this assumption forms

because newer servers often tend to be faster and more energy-efficient.

6.2.1 TAGS PEPA model in heterogeneous environment

This chapter reused the same models introduced in Chapter 4. However, the models

were updated to reflect the change in the working environment. As mentioned in the

previous Section 6.2, a new parameter σ introduced to represent the difference in per-

formance between Server1 and Server2. The σ parameter used in Timer2 component

in PEPA model as this component incorporate Server2 representation, refer back to

Section 4.4.1. The other components in the model remain without changes. Figure

6.1, shows the updated model.
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Q10
def

= (arrival, λ).Q1i ;

Q1i
def

= (arrival , λ).Q1i+1 + (service1 ,⊤).Q1i−1

+(tick1 ,⊤).Q1i + (timeout ,⊤).Q1i−1 ; 1 ≤ i < K1

Q1n
def

= (service1 ,⊤).Q1n−1 + (tick1 ,⊤).Q1n + (timeout ,⊤).Q1n−1

Server1
def

= (service1 , α ∗ µ1 ).Server1 + (service1 , (1− α) ∗ µ1 ).Server1
′

+(timeout , α ∗ t).Server1 + (timeout , (1− α) ∗ t).Server1 ′

+(tick1 , t).Server1

Server1 ′ def

= (service1 , α ∗ µ2 ).Server1 + (service1 , (1− α) ∗ µ2 ).Server1
′

+(timeout , α ∗ t).Server1 + (timeout , (1− α) ∗ t).Server1 ′

+(tick1 , t).Server1 ′

Timer10
def

= (timeout , t).Timer1n + (service1 ,⊤).Timer1n

Timer1i
def

= (tick1 , t).Timer1i−1 + (service1 ,⊤).Timer1n 1 ≤ i ≤ n

Q20
def

= (timeout ,⊤).Q2i
Q2i

def

= (timeout ,⊤).Q2i+1 + (tick2 ,⊤).Q2i
+(repeatservice,⊤).Q2 ′

i , 1 ≤ i < K2

Q2K2

def

= (timeout ,⊤).Q2K2 + (tick2 ,⊤).Q2K2 + (repeatservice,⊤).Q2 ′
K2 ,

Q2 ′i
def

= (timeout ,⊤).Q2 ′
i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < K2

Q2 ′
K2

def

= (timeout ,⊤).Q2 ′
K2 + (service2 ,⊤).Q2 ′

K2−1

Timer20
def

= (repeatservice,α′ ∗ t ∗ σ).(service2 , µ1 ∗ σ).Timer25

+(repeatservice,(1-α′) ∗ t ∗ σ).(service2 , µ2 ∗ σ).Timer25

Timer25
def

= (tick2 , t).Timer24

Timer24
def

= (tick2 , t).Timer23

Timer23
def

= (tick2 , t).Timer22

Timer22
def

= (tick2 , t).Timer21

Timer21
def

= (tick2 , t).Timer20

((Q10 ▷◁
K

Server1 ) ▷◁
K

Timer15 ) ▷◁
timeout

(Queue20 ▷◁
L

Timer25 )

where K = (service1, timeout, tick1) and L = (repeatservice, service2, tick2)

Figure 6.1: A PEPA TAGS hyper exponential model in Heterogeneous environment
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6.2.2 Shortest queue PEPA model in heterogeneous envi-
ronment

The only modification to the previous shortest queue hyper exponential model in

chapter 4 is adding the σ parameter to the components Server2 and server2′. The

full model in a heterogeneous environment is shown in Figure 6.2.

Q10
def

= (arrival1 ,⊤).Q1i ,
Q1i

def

= (arrival1 ,⊤).Q1i+1 + (service1 ,⊤).Q1i−1 , 1 ≤ i ≤ N,

Q1N
def

= (service1 ,⊤).Q1N−1 ,

Q20
def

= (arrival2 ,⊤).Q2i ,
Q2i

def

= (arrival2 ,⊤).Q2i+1 + (service2 ,⊤).Q2i−1 , 1 ≤ i < N,

Q2n
def

= (service2 ,⊤).Q2n−1 ,

Server1
def

= (service1 , α ∗ µ1 ).Server1 + (service1 , α′ ∗ µ1 ).Server1
′

Server1 ′ def

= (service1 , α ∗ µ2 ).Server1 + (service1 , α′ ∗ µ2 ).Server1
′

Server2
def

= (service2,α ∗ µ1 ∗ σ).Server2 + (service2 , α′ ∗ µ1 ∗ σ).Server2 ′

Server2 ′ def

= (service2,α ∗ µ2 ∗ σ).Server2 + (service2 , α′ ∗ µ2 ∗ σ).Server2 ′

S0
def

= (arrival1 , λ1 ).S1 + (arrival2 , λ2 ).S21 + (service1 , u1 ).S21 + (service2 , u1 ).S1

S1j
def

= (arrival2 , λ1 + λ2 ).S1j−1 + (service1 , µ1 ).S1j−1 + (service2 , µ2 ).Sj+1 1 ≤ j < N

S1N
def

= (arrival2 , λ1 + λ2 ).S1N−1 + (service1 , µ1 ).S1N−1 + (service2 , µ1 ).S1N N = 10

S2j
def

= (arrival1 , λ1 + λ2 ).S2j−1 + (service1 , µ1 ).S2j+1 + (service2 , u1 ).S2j−1 1 ≤ j < N

S2N
def

= (arrival1 , λ1 + λ2 ).S2N−1 + (service1 , µ1 ).S2N + (service2 , µ1 ).S2N−1 N = 10

Q10 ∥Q20 ▷◁
K

S0 ▷◁
L

Server1 ∥Server2

Where K = (arrival1, arrival2, service1, service2) and l = (service1, service2)

Figure 6.2: Shortest Queue PEPA hyper exponential model in Heterogeneous Envi-
ronment
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6.2.3 Weighted random PEPA model in heterogeneous en-
vironment

In this chapter, the analysis was performed in a heterogeneous environment. Therefore,

as both nodes have different performance capabilities, we should balance the load. So

for that, we used the weighted random strategy, not the random strategy. Similar to

the shortest queue modification in the previous section. The only modification to the

previous random allocation hyper exponential model in chapter 4 components Server2

and server2′ was updated by adding σ parameter to weight the performance difference.

The updated components are shown below:

Server2
def

= (service2 , α ∗ µ1 ∗ σ).Server2 + (service2 , α′ ∗ µ1 ∗ σ).Server2 ′

Server2 ′ def

= (service2 , α ∗ µ1 ∗ σ).Server2 + (service2 , α′ ∗ µ2 ∗ σ).Server2 ′

while the rest of the model stays the same as in Figure 4.2.

6.3 Experiment design

The analysis is performed over a simplified case with two nodes with exponentially

distributed incoming tasks with an arrival rate of λ, with an interval of 5 to 19 tasks

per time unit.

In this part of the experiment, we have the following parameters:

• σ: represents the difference in performance between Server1 and Server2. This

parameter is used to control the performance of Server2 as we mentioned pre-

viously in section 6.2.

• λ: represents the job arrival rate. The interval varied from 5 to 19 tasks per time

unit with a step of 2.

• µ1: represents the average service rate at Server1.

• µ2: represents the average service rate at Server2.

• α: represents the probability of the short job.
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• α′: represents the probability of a long job.

• t: represents the time out rate (used with TAGS only). The interval varied from

4 to 60 with step of 2.

• µ1=100µ2: for all scenarios, the long job is 100 times longer than the short one.

We considered different scenarios to study the heterogeneity of the system. The first

scenario is when the second server is faster and the speed difference varied by 10%,

20%, 30% and 40%. The second scenario is when the second server is slower by 10%,

20%, 30% and 40%. Finally, we compare these two scenarios with the previous scenario

in Chapter 5 where servers were identical.

In Section 6.4, we studied TAGS performance and energy consumption under different

timeout rates t to show the effect of timeout value on each metric.

Section 6.5, presents the performance comparison between TAGS, the shortest queue

and weighted random schemes, while section 6.6 presents the energy comparison be-

tween them.
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Figure 6.3: TAGS throughput varing against timeout rate

6.4 TAGS analysis in heterogeneous environment

As mentioned previously in Chapter 4 and Chapter 5, in contrast to the shortest queue

and random allocation schemes, TAGS algorithm behaviour and working mechanism

incorporate the time out factor. Therefore, TAGS results need to be optimised first in

terms of throughput, utilisation and energy consumption before comparing with the

shortest queue and the weighted random. Optimising timeout values is essential as

the best time out value t differs from one performance or energy metric to another.

6.4.1 TAGS Throughput

We first studied the performance metrics starting with the system throughput. Figure

6.3 shows a comparison of throughput among different arrival rates in three different

servers combination.

In all server combinations, TAGS throughput increases by increasing the timeout rate.

As mentioned before, in PEPA, a race condition controls the behaviour of the model
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when there is more than one activity. So, by increasing the timeout rate, the proba-

bility of triggering timeout action increases. Hence, each time’s processing duration in

the first server became shorter, resulting in more short jobs processed at the first server

and transferring more jobs to the second server as longer jobs. It is worth noting, the

percentage increase in throughput is higher with a higher arrival rate. For example,

when servers are identical, and the arrival rate is high λ=19, and the timeout rate

increases from 4 to 36; consequently, the throughput increases by 18%. In contrast,

when the arrival rate is low λ=5, the throughput increased only by less than 1% (

0.71) for the same timeout values.

TAGS is sensitive to the timeout rate, so when the timeout rate is low, e.g. t=4,

the throughput is the lowest among all timeout values for each arrival rate. The

throughput increased each time the timeout rate increased up to a level when increasing

the timeout, resulting in a decrease in the throughput. The reason for this behaviour

can be connected to the increase in job loss at Server2. The timeout rate value that

yields peak throughput differs for each arrival rate. The timeout rate value that the

throughput starts decreasing at is different for each arrival rate. For example, when

Server2 is faster by 10% and the arrival rate λ=19, the throughput starts decreasing

when the timeout rate t > 38. While for arrival rate λ=11 the throughput decreases

when the timeout rate t > 20. Figure 6.4 shows the total job loss at the first and

the second server. A higher timeout rate kills and transfers more short jobs to the

second server. While this mechanism reduces the job loss at the first server, it leads to

overflow at the second queue resulting in an increase in the job loss rate at the second

server, as shown in Figure 6.6. Consequently, the cumulative job loss starts increasing,

leading to a decrease in the total throughput.

Table 6.1 shows TAGS optimised time out values for maximum throughput at each

arrival rate for all server combinations. We considered the TAGS best timeout value

for throughput presented in this section when we compared TAGS, the shortest queue

and the random allocation in Section 6.5 and Section 6.6.
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Figure 6.4: Total job loss
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Figure 6.5: Job loss at server1
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Figure 6.6: Job loss at server2
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Table 6.1: The TAGS timeout rate values that maximise throughput at each arrival rate.

Identical Server2 Faster by 10% Server2 Faster by 20% Server2 Faster by 30% Server2 Faster by 40%
Arrival Rate

Timeout rate Throughput Timeout rate Throughput Timeout rate Throughput Timeout rate Throughput Timeout rate Throughput
5 18 5.000 18 5.000 20 5.000 20 5.000 20 5.000
7 18 6.999 18 6.999 20 6.999 20 6.999 22 6.999
9 18 8.991 20 8.993 20 8.994 20 8.995 22 8.995
11 18 10.957 20 10.964 20 10.968 22 10.971 22 10.974
13 20 12.856 22 12.869 22 12.881 24 12.890 24 12.899
15 24 14.616 24 14.642 26 14.665 26 14.686 28 14.705
17 28 16.169 30 16.209 30 16.248 32 16.285 32 16.319
19 36 17.473 38 17.535 38 17.597 40 17.657 42 17.714

Server2 Slower by 10% Server2 Slower by 20% Server2 Slower by 30% Server2 Slower by 40%
Arrival Rate

Timeout rate Throughput Timeout rate Throughput Timeout rate Throughput Timeout rate Throughput
5 18 5.000 16 5.000 16 5.000 14 5.000
7 18 6.999 16 6.998 16 6.997 14 6.996
9 18 8.989 16 8.986 16 8.982 14 8.975
11 18 10.951 18 10.940 16 10.929 16 10.912
13 20 12.839 18 12.820 18 12.799 18 12.774
15 22 14.589 22 14.560 20 14.528 20 14.497
17 28 16.126 26 16.083 26 16.039 24 15.998
19 34 17.409 32 17.344 30 17.280 30 17.220
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6.4.2 TAGS utilisation
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Figure 6.7: TAGS Sever1 utilisation varying against arrival rate

The utilisation of Server1 decreases by increasing the timeout rate (faster action).

Because more jobs transferred to the second server, leaving only shorter tasks to receive

processing at the first server Figure 6.7. If the timeout is very short, then Server1 will

only transfer jobs to Server2 and will not process effectively any jobs. In contrast, the

utilisation in the second server increases by increasing the time out rate. The server

started serving more jobs, which relatively do not have a long duration. Thus, most of

the time, the server is active and not idle, as shown in Figure 6.8. When the time out

rate reaches a level leading to overflow, the second server’s utilisation starts decreasing

as job loss increases.
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Figure 6.8: TAGS sever2 utilisation varying against arrival rate
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6.4.3 TAGS total energy consumption

Less total energy consumption is achieved when the timeout rate is low. However, we

illustrated in Section 6.4.1 that this is not ideal for the throughput.

The time out rate increase results in more jobs being transferred to the second server.

Accordingly, the second server utilisation increases, leading to an increase in total en-

ergy consumption as shown in Figure 6.9. Even though there is a reduction in the

utilisation of the first server compared with Figure 6.7, which reduces its active energy

consumption in Figure 6.10, this is not enough to reduce the cumulative energy con-

sumption by both servers. However, it is worth noting that the total energy increases,

reaching a peak level when further increases in timeout rate, leads to a decrease in

energy consumption. The reason for that is related to the first server, as it began

processing fewer jobs and moved to an idle state quickly.

Calculating energy consumption in the energy model depends on the P-state value,

which depends on server utilisation. So, when the utilisation is high, the P-value is

high, leading to increased energy consumption.
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Figure 6.9: TAGS total energy consumption varying against arrival rate
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Figure 6.10: TAGS server1 active energy consumption varying against arrival rate
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Figure 6.11: TAGS server2 active energy consumption varying against arrival rate
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Figure 6.12: Throughput varied against arrival rate.

6.5 Performance analysis of TAGS vs shortest queue and

weighted random in heterogeneous environment

This section demonstrates and compares the performance of TAGS, the shortest queue

and the weighted random on three performance metrics: (i) Throughput, (ii) Utilisa-

tion and (iii) Average response time. TAGS algorithm results obtained for the best

timeout values give each server’s combinations the maximum throughput at each ar-

rival rate. The best timeout values and their corresponded throughput was given Table

6.1.

For readability and clarity of comparison on graphs, we omitted some servers combi-

nations. The results are shown in graphs for the five servers combination. However,

the full results for all servers combinations are given in appendices. Appendix A shows

the energy data and Appendix B presents performance data.
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Figure 6.13: Job loss varied against arrival rate.

6.5.1 Throughput

Figure 6.12 shows the system throughput for the three algorithms in 5 server combi-

nations. The system’s heterogeneity did not significantly improve or decrease TAGS

throughput results, whether the second server is faster or slower. When the arrival rate

is less than 75% of the system capacity, the effect is approximately nothing. However,

these results can not be generalised for TAGS, as we optimised the timeout values

for the maximum throughput at each arrival rate for each combination. Hence, we

would get different throughput results if timeout values were adjusted or optimised for

a particular metric, such as reducing average response time or energy consumption.

On the other hand, the system’s heterogeneity has a notable effect on the throughput of

the shortest queue and weighted random. The throughput decrease or increase follows

the trend of the second server performance capability. TAGS works well in all server

configurations and achieves greater throughput than the shortest queue or weighted

Random. Even when the second server’s performance in TAGS is less by 40% of

the first server, TAGS always outperforms both the shortest queue and the weighted
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random, whether their second server is faster or slower than TAGS second server.

Figure 6.13 shows that job loss is the least for TAGS than the shortest queue and

random allocation. Moreover, it should also be noted that for any server configurations,

the difference in job loss between TAGS and the shortest queue at the lowest arrival

rate (λ= 5 and 7) is imperceptible.

6.5.2 Utilisation

Figure 6.14 shows the average response time. TAGS performs well and outperforms the

shortest queue and the random as long as the system load is low ( λ ≤ 11), especially

when Server2 is fast.

The average response time increases for all three algorithms when the arrival rate

increases. Notwithstanding, TAGS has a slightly different behaviour when the demand

exceeds 75% of the system capacity. The average response time starts decreasing at

this level. This behaviour could be explained as TAGS deals with job variability by

unbalancing the load to increase the proportion of completed short jobs successfully.

So, both servers in TAGS will not become busy processing two long jobs, while other

shorter jobs wait for a long time. On the other hand, the shortest queue and weighted

random do not have the mechanism that prevents two long jobs of occupied both

servers for a long time. So, the probability of both servers being blocked by a long job

increases. Consequently, the average response time increases.

Figures 6.15 and 6.16 shows the utilisation of server1 and server2. While the differ-

ence in utilisation between servers combinations for weighted random is noticeable, the

system’s heterogeneity does not indicate a substantial difference in server1 utilisation

for TAGS. However, the disparity in utilisation between TAGS’ servers combinations

is apparent in Server2 results. For example, when Server2 is faster by 40%, the util-

isation is lower than when it is slower by 40%. A slow server serving long jobs will

be in high utilisation, while the faster server can serve the same number of long jobs

without increasing the utilisation.

TAGS works to maximise the utilisation of both servers by unbalancing the load. So,

servers are configured in a way that best suits the time required for job fulfilment. As
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Figure 6.14: Average response time varied against arrival rate.

a result, the first server serves more short jobs, and the second server is devoted to

long jobs.

It is worth noting that, in the random allocation scheme, the utilisation of server1

or server2 is equivalent since the load between the two servers is adjusted by sending

additional tasks to the faster server. In contrast, although the shortest queue scheme

has a balance mechanism by sending the job to the shortest queue, the utilisation

of server2 is higher, especially when server2 processing speed is slow compared to

server1.
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Figure 6.15: S1 Utilisation varied against arrival rate.
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Figure 6.16: S2 utilisation varied against arrival rate.
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Figure 6.17: Total Energy Consumption varying against arrival rate.

6.6 Energy consumption analysis

This section illustrates the energy consumption by TAGS, the shortest queue and

weighted random. We studied the energy consumption of the three algorithms under

hyper-exponential service demand in a heterogeneous environment.

6.6.1 Total energy consumption

Calculating energy consumption in the energy model depends on the P-state value,

which depends on server utilisation Equation 5.2. So, when the utilisation is increased,

the P-state moves the processor to a higher frequency to meet the demand, which leads

to increased energy consumption.

From Figure 6.17 It can be noticed that when the second server is slower than the

first server, the energy consumption is the highest among all scenarios for each arrival

rate. This behaviour is due to a slower server processing the job for a longer time and

increasing the utilisation as the job needs more processing resources.

TAGS consume energy more than the shortest queue and weighted random allocation;
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Figure 6.18: Total Idle Consumption varying against arrival rate.

this is expected as TAGS relies on the timeout mechanism to improve the system’s

throughput. However, this mechanism causes long jobs to be killed and transferred

from the first server to the subsequent server after a preset timeout. Furthermore, the

job was reinitiated from scratch on the second server. The same job receives service

twice, initially at the first server with a processing time equivalent to t, then at the

second server from scratch until completion or exhausted. So, the total processing time

for long jobs is equal to t along with the processing time in the second server. Thus,

serving more short jobs at the first server increased its active energy consumption.

So, in total, TAGS consumes more energy than both shortest and weighted random

schemes.

Figure 6.18 shows TAGS improves energy usage efficiency by reducing the idle energy

consumption compared to both the shortest queue and weighted random. However,

the reduced amount of idle consumption does not reduce the total energy being used

under TAGS.

An in-depth analysis of each server’s energy consumption when it is active or idle will

provide a simple indication of each scheme’s effect on each server’s energy consumption.
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Figure 6.19: Server1 Active Energy Consumption varying against arrival rate

Figures 6.19 and 6.20 show that energy consumption follows the utilisation trend

when servers are active, for utilisation refer to Figures 6.15 and 6.16. This behaviour

is expected as the utilisation level determines the P-value state, which we used to

calculate the energy consumption. The variation of server combinations tested does not

significantly impact energy consumption by server1 for TAGS. However, the effect is

noticeable for server2. Increasing the speed of Server2 reduced the energy consumed.

Both servers have a noticeable effect on energy consumption for the shortest queue

when server2 is slower than server1. Server2’s slower processing capability increases the

processing time required to complete the job, leading to increased energy consumption.

For server1, the increase in energy is related to extra job processed by Server1, because

when Server2 is occupied by a job and takes an uninterrupted duration to process it,

the queue becomes longer. Consequently, more jobs dispatch to Server1 because its

queue became shorter as it processed the job at a higher speed.

When considering the idle energy consumption by servers, the TAGS mechanism of

processing more short jobs at the first server and longer jobs at Server2 reduces idle

consumption when the rate of incoming jobs increases. However, there is no impact of
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Figure 6.20: Server2 Active Energy Consumption varying against arrival rate

servers combinations on Server1 idle consumption, and the difference between combi-

nations is insubstantial. The reason is that the TAGS mechanism keeps Server1 busy

regardless of Server2 processing speed. On the contrary, Server2 idle consumptions

show a noticeable difference between servers combinations. So, when Server2 is faster,

the idle consumption is more than when it is slower because a faster server serves the

job in a shorter time and moves to an idle state. Figures 6.21 and 6.22 shows the

energy consumed by servers in the idle state.

Regardless of the servers’ combination, both servers in the weighted random scheme

consume the same energy because the load is balanced. When the incoming task rate

increases, weighted random is more energy-efficient than shortest queue or TAGS in

all server combinations. However, it is the worst in terms of performance.
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Figure 6.21: Server1 Idle Energy Consumption varying against arrival rate
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Figure 6.22: Server2 Idle Energy Consumption varying against arrival rate
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Figure 6.23: Energy Consumption per job varying against arrival rate

6.6.2 Energy per job

While low arrival rates give us the least total energy consumption, it is the worst

scenario in terms of throughput. So, we need to use different metrics in order to trade

off performance and energy. Hence, we introduce the energy per job as defined in

Equation 5.3. Figure 6.23 shows the energy consumption per job in all scenarios. The

energy per job is low when we have a high arrival rate. In contrast, energy consumption

per job increases when the arrival rate decreases.

In terms of energy per job, when servers are identical, or server2 faster, the shortest

queue is the best strategy as long as the incoming jobs rate does not exceed 70% of

the system capacity ( arrival rate λ < 15). Furthermore, when the incoming task rate

is more than 70 % of the system capacity, TAGS will be the best strategy. This is

because the timeout mechanism in TAGS reduces the job losses at the first queue. As

a result, TAGS produces more jobs at a high arrival rate than the shortest queue and

weighted random, so, as more jobs are produced, the energy per job decreases, as per

Equation 5.3.
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It is worth noting that TAGS performed better than the shortest queue and weighted

random when the second server was slower. Figure 6.23 shows that TAGS consumes

less energy at arrival rates λ = (15, 17, 19) when Server2 speed is less by 30%, but

when speed difference increases to 40% TAGS starts to be the best from lower rate (

starting from λ =13. In fact, TAGS at a slower speed and higher arrival rates show a

higher percentage of energy reduction per job than the shortest queue. For example,

for arrival rates λ =(13, 15, 17, 19) the difference between TAGS and shortest queue

consumption is approximately ( 1.66%, 6.12%, 10.44%, 13.49%) respectively when

Server2 speed less by 30%, but when the Server2 speed reduced by extra 10% the

difference increased to ≈ ( 5.44% , 10.44%, 14.66%, 17.989%) for the same arrival rates.

This behaviour is related to the TAGS mechanism when Server2 is slower that does

not prevent TAGS from producing more jobs as the first server will not be blocked by

any job that needs processing time longer than the timeout value. So, more jobs will

be served by Server1. On the contrary, the shortest queue and weighted random do

not have a mechanism to mitigate the possibility of having two long jobs occupying

both servers, which means the system’s throughput reduces.

6.7 Conclusion

In this chapter, we studied the performance and energy consumption of the TAGS

algorithm in a heterogeneous environment and compared the performance and energy

results with the shortest queue and weighted random results. Our approach for calcu-

lating the energy consumption focused on the CPU energy consumption and neglected

other server components. We used the processor performance states (P-state) values

to find the energy consumption by the server. We considered nine combinations of

servers. The first combination is that all servers are identical. In contrast, in the

second combination, the second server is slower than the second server by 10%, 20%,

30% and 40%. In the same fashion, the second server is faster than the first server in

the last scenario.

The analysis of the result shows that the TAGS algorithm is sensitive to the time out

value. TAGS can perform well and increase the system throughput in all scenarios
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when the time out well-tuned is not very long nor very short. The very long time

out causes a low throughput. In the same fashion, if the timeout is very short, the

throughput is decreased.

The TAGS algorithm consumes more energy than the shortest queue and the weighted

random in all servers combinations concerning the total energy consumption.

The energy per job can be used to identify the best time out value for TAGS that

produces the highest possible throughput with minimal impact on energy consumption.

There is a correlation between energy consumption and throughput, as well as the

server speed. The same discussion presented previously in Section 5.3.2 regarding the

correlation between the throughput, total energy consumption and energy consump-

tion per job in a homogeneous environment is applied to the results in the hetero-

geneous environment in this chapter. In addition, this chapter shows a correlation

between considered metrics (throughput, total energy consumption and energy per

job) and the performance difference between servers. The throughput of the system is

increased when the second server is faster. On the other hand, under the same setup,

the total energy decreased. This decrease in total energy can be explained as the

second server under the TAGS scheme receives longer jobs, which takes longer to be

processed. So, if the second server is fast, the processing time will be reduced, leading

to reduce total energy consumption. Moreover, producing higher throughput reduce

the energy consumption per job. However, suppose the second server is less efficient in

performance, and the configuration allows more jobs into the first server to be timed

out and transferred to the second server. In that case, the total energy consumption

will be increased due to being busy processing more jobs. Moreover, the throughput

will be reduced because more jobs will be dropped from the second queue as the queue

will be full. As a result of the increase in total energy consumption and the decrease

in throughput, the energy per job will be increased.
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7.1 Conclusion

This thesis considered the trade-off between performance and energy consumption by

examining the impact on performance and energy consumption of two main concepts.

(1) single queue multi-servers with dynamically powered on or off servers in a homo-

geneous environment, (2) individual queue server pairs, and how work is distributed

amongst queues in both a homogeneous and heterogeneous environment.PEPA was

used as the modelling language in this thesis, in contrast to previous literature stud-

ies that used simulation, mathematical models or experiments in a real environment.

Furthermore, unlike previous research in the literature, we considered the impact of

heterogeneity on energy and performance in the individual queue server pairs experi-

ments, where the focus was on the TAGS scheduling algorithm. This thesis contributes

by developing PEPA models for some job scheduling algorithms and a dynamic servers

allocation policy in queueing-type systems. In particular, this thesis demonstrates that

PEPA can be used to compare performance and energy consumption for queuing type

systems. The PEPA models can be generalised to any context with a comparable

structural model.

Apart from PEPA models, the energy model proposed in this thesis depends on the

processor P-state value, making it a generic model in the context of CPU energy con-

sumption. Therefore, it applies to any discrete-state model of any type. This energy

model does not need to be a PEPA model or a Markov chain. Furthermore, the energy

model can be used in real-world experiment scenarios or simulation experiments, and

it is not necessary to use formal modelling in these cases.

In Chapter 3 a policy to limit power consumption by servers in data centres was

discussed and modelled in PEPA. The numerical experiments were carried out under

different scenarios. There was more than one combination of servers in each scenario

to determine a better one under each operating condition. The conducted experiments

showed that no one combination of servers under this policy could perform well in all

situations.

In chapter 5, energy consumption by the TAGS policy was studied, and compared with

that of the shortest queue strategy and random allocation. The focus on these policies
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was in the case of the high variability in workload for a homogeneous environment.

The analysis of energy consumption under the exponential and hyper-exponential dis-

tribution led to the conclusion that the TAGS mechanism consumes more energy than

the other two policies regarding total energy consumption. The energy consumed per

job followed the same trend under the exponential distribution. In contrast, TAGS

consumed less energy per job under the hyper-exponential service demand. This find-

ing led to further investigation of these policies in a heterogeneous environment in

chapter 6.

Chapter 6 studied the TAGS algorithm’s performance and energy consumption in a

heterogeneous environment and compared the performance and energy results with the

shortest queue and weighted random results. The analysis of the result showed that

the TAGS algorithm is sensitive to the time out value. While in terms of performance,

TAGS was observed to perform well and increase the system throughput in all scenarios

when the time out is well-tuned and not very long nor very short. The very long time

out causes a low throughput. In the same fashion, if the time out is too short, the

throughput is also decreased. In terms of the total energy consumption, the TAGS

algorithm consumes more energy than the shortest queue and the weighted random in

all servers combinations. While in terms of energy per job, when servers are identical,

or server2 is faster, it was observed that the shortest queue is the best strategy as long

as the incoming jobs rate does not exceed 70% of the system capacity ( arrival rate

λ < 15). Furthermore, when the incoming task rate is more than 70% of the system

capacity, the TAGS was observed to be the best. Consequently, the energy per job

can be used to identify the best time out value for TAGS that produces the highest

possible throughput with minimal impact on energy consumption.

7.2 Limitations

In Chapter 3 the model in PEPA has some limitations. Firstly, the model depends only

on the arrival period’s length to switch on or off more servers, indicating dependence

on only one factor for decision-making. Secondly, we assumed that all servers in any

state consume the same amount of energy. Finally, the experiment configurations in
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some scenarios changed only one factor and fixed the others, which may not be the

situation in practice.

For TAGS experiments in Chapters 5 and Chapter 6 the processor performance states

(P-states) value was relied upon to calculate energy consumption. The main downside

of this is that energy consumption by other server components, such as hard disk and

memory, was neglected. Moreover, in a heterogeneous environment, the first and sec-

ond node variation was in performance only. In contrast, it was assumed there was no

difference in energy consumption between nodes regardless of the performance differ-

ence. However, when there is a performance difference, usually there is a difference in

energy consumption between servers.

7.3 Future work

For the dynamic server allocation approach in Chapter 3, the future work in this

direction could look at an extended model to consider more servers with extended

queue size. Also, each server state could be assigned different energy costs to represent

the actual cost of energy consumption as close as possible. Finally, changing more than

one factor would be useful instead of changing only one factor, as was done in some

scenarios. Another scenario that could be studied is when the job size is variable. In

addition, it will be valuable to compare the high/low policy with other existing policies

to find out which policy is more useful under different scenarios. There are many other

options for managing servers that remain to be explored using the approach presented

in Chapter 3 and further investigation about them could open new possibilities.

For TAGS, it is worth looking at the possibility of improving the throughput without

increasing energy consumption. So, it is worthwhile evaluating a system working with

a hybrid scheduling approach. The idea could be a system working under the shortest

queue strategy up to a level when both queues reach a waiting job threshold. Then,

the system switches to using TAGS as a scheduling approach by identifying the node

that is processing the current job for a long time, and its queue is longer than the

other node’s queue. Then, classify this other node as the subsequent node that will

receive the long jobs.

- 130 -



Chapter 7: Conclusion and future work

Another option is to investigate the benefit of changing the TAGS algorithm behaviour.

Thus, a threshold T is introduced to the first queue instead of killing the job when

the timeout is triggered. So, as long as the number of waiting jobs in the queue is

still less than T , the first server keeps processing the job even when the time out is

triggered. Meanwhile, the second node could be switched off or moved to a low power

consumption state and only switched back when the threshold triggered.

This approach could be helpful to reduce energy consumption by TAGS when the

arrival rate is low.
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A
Energy data in heterogeneous

environment

In this Appendix, the full data of the total energy consumption and energy per job for

all servers combinations in the heterogeneous environment presented. Moreover, the

active energy consumption and idle energy consumption for both server1 and server2

presented.
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A.1 Total energy consumption

Table A.1: Total energy consumption for all combinations

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 123.3466754 115.3948424 113.7971632

7 138.4718742 126.8568209 123.5679039

9 153.1826067 137.7139113 132.4807403

11 166.6668144 147.8562245 140.6300522

13 178.3581929 157.2075605 148.0993625

15 185.8435485 165.6883616 154.9596555

17 190.7528244 173.1984271 161.2697226

19 193.0821488 179.6565567 167.076584

S2 Faster by 10%

5 121.3369726 114.7352549 112.572252

7 135.6947108 126.0001329 122.0016782

9 151.0355433 136.7185973 130.6382015

11 164.2325743 146.7805587 138.5646088

13 175.660711 156.1054658 145.8555781

15 184.0350522 164.6081708 152.5755136

17 188.529631 172.1817483 158.7786567

19 191.1538358 178.735209 164.5094697

S2 Faster by 20%

5 120.3876119 114.1742603 111.446842

7 134.3610487 125.265107 120.5567738

9 148.1123478 135.8573882 128.9320231

11 161.166102 145.8423375 136.6453203

13 173.0781593 155.136926 143.7635541

15 181.4089889 163.6521626 150.3451984

17 187.0050659 171.2760733 156.4401981

19 189.7601614 177.9096842 162.0902838
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Table A.1 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 118.9018413 113.6912926 110.4093556

7 132.2982542 124.6275361 119.2197005

9 145.5609044 135.1048735 127.347711

11 159.011026 145.0167726 134.857358

13 170.4635738 154.2790097 141.808655

15 179.4372405 162.8000152 148.2547457

17 184.615755 170.4640384 154.2415815

19 187.7261459 177.1655774 159.8081514

S2 Faster by 40%

5 117.6278942 113.27113 109.4499217

7 131.1272118 124.069229 117.9788672

9 144.0454077 134.4416732 125.8727156

11 156.5162545 144.2846915 133.187778

13 168.1140563 153.5137483 139.9779842

15 176.8293697 162.0356159 146.2916906

17 183.0086146 169.7317346 152.171171

19 185.7015755 176.4912526 157.6527548

S2 Slower by 10%

5 125.7997743 116.9883459 115.135287

7 141.8170304 128.9725038 125.2712966

9 157.0231683 140.2550233 134.4765267

11 170.2669722 150.7189781 142.8587781

13 180.8334467 160.2762688 150.5116314

15 188.1264057 168.8239711 157.5133302

17 192.0042135 176.248763 163.9273531

19 194.8819429 182.4998831 169.8028253
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Table A.1 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20 %

5 127.4315248 118.8905718 116.6029622

7 144.0841814 131.4608925 127.1305675

9 159.7445784 143.2005021 136.6453196

11 173.7255706 153.9821885 145.2706231

13 183.1902786 163.6923737 153.1114989

15 188.7223278 172.1997159 160.2541102

17 193.7586729 179.4146815 166.7665228

19 196.4809553 185.3673467 172.6990523

S2 Slower by 30%

5 131.1314093 121.2001181 118.2198361

7 148.9385026 134.4274774 129.1679934

9 164.5695234 146.6463388 139.0104053

11 176.4494806 157.7060789 147.8886923

13 184.8885731 167.448219 155.9208629

15 190.9218559 175.7509842 163.2015403

17 194.5496867 182.6300519 169.802831

19 197.8068975 188.2250498 175.7745887

S2 Slower by 40%

5 133.8700926 124.0619436 120.0096934

7 152.5218638 138.0185349 131.4102384

9 167.9952999 150.7062968 141.5993276

11 178.9717536 161.9173122 150.7399234

13 185.9346496 171.4740654 158.9646882

15 191.4899369 179.3939044 166.3769241

17 195.6124423 185.8561197 173.0514262

19 198.4134371 191.0695245 179.0348207
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A.2 Energy per job

Table A.2: Energy per job in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 24.66960081 23.26579995 24.23262654

7 19.78468102 18.51245145 19.58464037

9 17.03662684 15.92934639 17.02582147

11 15.21034852 14.32708374 15.40843088

13 13.87406254 13.25058887 14.29503127

15 12.71472842 12.49102703 13.48295047

17 11.79776312 11.94085354 12.86559449

19 11.05059962 11.53782354 12.3817098

S2 Faster by 10%

5 24.26761134 23.10698473 23.85786187

7 19.38741667 18.34098903 19.20274484

9 16.79546751 15.74709295 16.64019492

11 14.97992645 14.13584278 15.0204626

13 13.64997247 13.05178289 13.9053403

15 12.56894806 12.28566436 13.09178801

17 11.63115994 11.55272912 12.47298575

19 10.90121553 11.32130504 11.98749631

S2 Faster by 20%

5 24.07768392 22.97293383 23.51831008

7 19.19634685 18.19547327 18.85633273

9 16.46807304 15.5916351 16.29019525

11 14.69470334 13.9719959 14.66823662

13 13.43671345 12.88081611 13.55151362

15 12.37040625 12.10851904 12.73664084

17 11.50950226 11.54699353 12.11659701

19 10.78364491 11.13375983 11.62979382
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Table A.2 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 23.78049667 22.85833879 23.20933571

7 18.90133344 18.07049957 18.54075127

9 16.18308677 15.45753526 15.97115489

11 14.49339114 13.83011149 14.34706755

13 13.2240794 12.73227851 13.2288415

15 12.21819348 11.95419902 12.41276372

17 11.33653835 11.38755579 11.79162904

19 10.63190054 10.96977892 11.30372021

S2 Faster by 40%

5 23.52569039 22.75930125 22.92707397

7 18.73384182 17.96206129 18.25212104

9 16.01331152 15.34072866 15.67918295

11 14.2622554 13.70609994 14.05305122

13 13.0326685 12.60207192 12.93340226

15 12.02536534 11.81859942 12.11621012

17 11.2142832 11.24719675 11.49409862

19 10.48335869 10.82521748 11.00523689

S2 Slower by 10%

5 25.16034005 23.62016148 24.6482212

7 20.26372024 18.88035223 20.00765704

9 17.46806519 16.30918809 17.45273172

11 15.54828375 14.71776741 15.83782248

13 14.08454263 13.65236738 14.72630184

15 12.89513807 12.90576209 13.91589542

17 11.90668309 12.37072605 13.30027162

19 11.19452498 11.98331307 12.81840921
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Table A.2 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 25.4868324 24.04641406 25.11151407

7 20.58887931 19.31884834 20.47868835

9 17.77623246 16.75868903 17.92784467

11 15.87935333 15.17786857 16.31559023

13 14.28979336 14.12468719 15.20615476

15 12.96206799 13.39310158 14.39770403

17 12.04706247 12.87412237 13.78422419

19 11.32826672 12.50094043 13.30499956

S2 Slower by 30%

5 26.22712718 24.56859849 25.63099756

7 21.28540103 19.85004279 21.00625844

9 18.32297154 17.29861652 18.45971919

11 16.14523593 15.72783088 16.8503415

13 14.44606703 14.6882434 15.74327241

15 13.14207327 13.97209365 14.93718108

17 12.12977256 13.46627186 14.32645783

19 11.44693715 13.10239657 13.85080265

S2 Slower by 40%

5 26.7753772 25.2227189 26.21728664

7 21.80145519 20.50617921 21.60102394

9 18.71818616 17.95894271 19.05906129

11 16.40108049 16.39717659 17.45285487

13 14.5557116 15.37024608 16.34855091

15 13.20879511 14.66383812 15.54542139

17 12.2275577 14.16252014 14.93839793

19 11.52246547 13.80012793 14.46775822
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A.3 Server 1 active energy consumption

Table A.3: Server 1 active energy consumption in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 47.47023761 46.41730753 45.42060477

7 55.38405832 53.56779548 51.51602391

9 63.27886885 60.34092750 57.07624451

11 71.08917045 66.66814993 62.16014486

13 78.20713018 72.50192594 66.81983020

15 84.33237492 77.79262388 71.09958360

17 89.60479552 82.47773406 75.03608189

19 93.03707833 86.50660025 78.65865824

S2 Faster by 10%

5 47.47023761 46.26589187 44.65645111

7 55.38405832 53.31982731 50.53894326

9 62.92752081 60.00195320 55.92678754

11 70.68199983 66.25205650 60.87163010

13 77.77798224 72.02783024 65.42005844

15 84.33237492 77.28404813 69.61225069

17 89.17715864 81.96183950 73.48204509

19 92.61007030 86.01070172 77.05717905

S2 Faster by 20%

5 47.27083461 46.13735981 43.95435715

7 55.10592478 53.10749536 49.63753065

9 62.92752081 59.70927092 54.86237746

11 70.68199983 65.88994499 59.67426999

13 77.77798224 71.61215167 64.11493618

15 83.89189119 76.83495515 68.22085455

17 89.17715864 81.50321018 72.02318294

19 92.61007030 85.56714913 75.54795463
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Table A.3 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 47.27083461 46.02690631 43.30715233

7 55.10592478 52.92366402 48.80343752

9 62.92752081 59.45405435 53.87405182

11 70.28140146 65.57201824 58.55890324

13 77.34271151 71.24479618 62.89543090

15 83.89189119 76.43555224 66.91678818

17 88.72797565 81.09284215 70.65164178

19 92.16212415 85.16804164 74.12431464

S2 Faster by 40%

5 47.27083461 45.93098067 42.70860376

7 54.83755587 52.76297795 48.02933625

9 62.58650370 59.22957927 52.95386719

11 70.28140146 65.29070619 57.51732584

13 77.34271151 70.91786130 61.75335609

15 83.43481577 76.07808051 65.69212468

17 88.72797565 80.72352651 69.36000399

19 91.69452731 84.80699912 72.77965782

S2 Slower by 10%

5 47.47023761 46.73698182 46.25538541

7 55.38405832 54.07690027 52.57867544

9 63.27886885 61.02715982 58.32130414

11 71.08917045 67.50869404 63.55052237

13 78.20713018 73.46764074 68.32470993

15 84.75614915 78.84540851 72.69267858

17 89.60479552 83.57079361 76.69402905

19 93.44201998 87.59505669 80.35940783
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Table A.3 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 47.68354473 47.11855128 47.17100152

7 55.68074940 54.67618315 53.73859032

9 63.65016269 61.82583458 59.67431572

11 71.08917045 68.47747757 65.05516308

13 78.63369433 74.56758623 69.94664928

15 84.33237492 80.02390936 74.40252678

17 90.00984062 84.77009410 78.46525804

19 93.82395351 88.76917719 82.16623219

S2 Slower by 30%

5 47.68354473 47.58195420 48.17965233

7 55.68074940 55.39227412 55.00959311

9 63.65016269 62.76800120 61.14972173

11 71.51130386 69.60572354 66.68838725

13 78.63369433 75.82384578 71.69920842

15 85.16399444 81.33628696 76.24121530

17 90.00984062 86.07600170 80.35939121

19 94.18215214 90.02898363 84.08483694

S2 Slower by 40%

5 47.92171771 48.15677811 49.29625525

7 56.01030923 56.26381164 56.40841823

9 64.05653184 63.89701010 62.76482162

11 71.51130386 70.92898205 68.46712856

13 78.63369433 77.25126103 73.59809976

15 85.16399444 82.78352422 78.22217951

17 90.39166227 87.48881090 82.38602846

19 94.18215214 91.37775471 86.11873391
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A.4 Server 2 active energy consumption

Table A.4: Server 2 active energy consumption in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 55.28578604 46.41730753 45.42060477

7 66.24349813 53.56779548 51.51602391

9 76.70309547 60.34092750 57.07624451

11 85.71688131 66.66814993 62.16014486

13 93.18611714 72.50192594 66.81983020

15 96.40026256 77.79262388 71.09958360

17 97.25308779 82.47773406 75.03608189

19 96.72707558 86.50660025 78.65865824

S2 Faster by 10%

5 52.77830345 45.74576363 44.65645113

7 62.77846400 52.74688407 50.53894327

9 74.37557773 59.43806016 55.92678755

11 83.08687926 65.74214780 60.87163012

13 90.24964854 71.60095102 65.42005847

15 94.14382300 76.95345824 69.61225071

17 94.90687236 81.72513045 73.48204511

19 94.74815023 85.85294412 77.05717908

S2 Faster by 20%

5 51.79320032 45.17434939 43.95438432

7 61.39260292 52.04213287 49.63756559

9 70.72834112 58.65622199 54.86241880

11 79.26087781 64.93365183 59.67431657

13 87.02742918 70.80819386 64.11498703

15 91.30779840 76.20975099 68.22090885

17 93.00469045 81.05375972 72.02323997

19 93.00927905 85.26649916 75.54801374
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Table A.4 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 49.93942177 44.68220971 43.30712955

7 58.81887852 51.43047446 48.80340811

9 67.54493527 57.97253489 53.87401691

11 76.97261317 64.22153098 58.55886379

13 84.20051233 70.10513731 62.89538771

15 88.84767111 75.54593970 66.91674192

17 90.47275831 80.45096136 70.65159305

19 90.91940790 84.73719330 74.12426399

S2 Faster by 40%

5 48.34993293 44.25390350 42.70860375

7 57.62615155 50.89456730 48.02933622

9 65.99508497 57.36954273 52.95386716

11 73.85991607 63.58943400 57.51732581

13 81.26904701 69.47726451 61.75335606

15 86.05093673 74.94967937 65.69212464

17 88.46754808 79.90659021 69.36000395

19 88.86097206 84.25688870 72.77965777

S2 Slwer by 10%

5 58.34648866 48.08582883 46.25538544

7 70.41721012 55.69840332 52.57867548

9 81.49491913 62.82521069 58.32130418

11 90.20875585 69.39942992 63.55052242

13 96.27446212 75.36500244 68.32470998

15 98.82478242 80.65210237 72.69267864

17 98.81443121 85.19054279 76.69402911

19 98.56771586 88.96572876 80.35940789
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Table A.4 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 60.16909747 50.07764437 47.17097042

7 72.94921663 58.20385378 53.73855102

9 84.51909668 65.70157528 59.67426999

11 94.52400849 72.50211562 65.05511233

13 98.78848942 78.52729089 69.94659470

15 99.99208159 83.68547856 74.40246936

17 100.59840451 87.94132164 78.46519872

19 100.18085136 91.36930894 82.16617187

S2 Slower by 30%

5 64.78539992 52.49583520 48.17967421

7 79.00589617 61.18913588 55.00962061

9 90.53912383 69.05873855 61.14975356

11 97.50046553 76.02012385 66.68842241

13 100.90743160 81.95715529 71.69924605

15 101.90478750 86.80397664 76.24125468

17 101.58534310 90.64719386 80.35943165

19 101.47701516 93.67502504 84.08487773

S2 Slower by 40%

5 67.96424985 55.49167733 49.29625525

7 83.14725405 64.79811864 56.40841823

9 94.40705569 72.99529156 62.76482162

11 100.64747590 79.95117165 68.46712856

13 102.21260891 85.55274133 73.59809976

15 102.61357545 89.90196812 78.22217951

17 102.52950908 93.25951149 82.38602846

19 102.23378755 95.87527154 86.11873391
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A.5 Server 1 and 2 total active energy consumption

Table A.5: Total active energy consumption in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 102.75602365 92.83461507 90.84120953

7 121.62755644 107.13559097 103.03204783

9 139.98196432 120.68185499 114.15248902

11 156.80605176 133.33629987 124.32028972

13 171.39324733 145.00385188 133.63966039

15 180.73263748 155.58524775 142.19916720

17 186.85788331 164.95546812 150.07216378

19 189.76415392 173.01320049 157.31731649

S2 Faster by 10%

5 100.24854106 92.01165550 89.31290224

7 118.16252232 106.06671137 101.07788653

9 137.30309855 119.44001336 111.85357509

11 153.76887909 131.99420429 121.74326021

13 168.02763078 143.62878125 130.84011691

15 178.47619792 154.23750638 139.22450140

17 184.08403100 163.68696995 146.96409020

19 187.35822053 171.86364584 154.11435813

S2 Faster by 20%

5 99.06403493 91.31170919 87.90874147

7 116.49852769 105.14962823 99.27509624

9 133.65586193 118.36549291 109.72479627

11 149.94287764 130.82359682 119.34858656

13 164.80541142 142.42034553 128.22992321

15 175.19968959 153.04470614 136.44176340

17 182.18184909 162.55696990 144.04642292

19 185.61934935 170.83364829 151.09596837

152



Table A.5 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 97.21025638 90.70911603 86.61428189

7 113.92480330 104.35413848 97.60684563

9 130.47245608 117.42658924 107.74806873

11 147.25401463 129.79354922 117.11776703

13 161.54322384 141.34993349 125.79081861

15 172.73956230 151.98149194 133.83353010

17 179.20073395 161.54380351 141.30323483

19 183.08153205 169.90523493 148.24857863

S2 Faster by 40%

5 95.62076754 90.18488417 85.41720751

7 112.46370741 103.65754526 96.05867247

9 128.58158866 116.59912201 105.90773435

11 144.14131753 128.88014020 115.03465166

13 158.61175852 140.39512581 123.50671215

15 169.48575249 151.02775988 131.38424933

17 177.19552373 160.63011672 138.72000794

19 180.55549937 169.06388782 145.55931559

S2 Slower by 10%

5 105.81672627 94.82281065 92.51077085

7 125.80126844 109.77530359 105.15735092

9 144.77378798 123.85237051 116.64260832

11 161.29792631 136.90812396 127.10104479

13 174.48159230 148.83264318 136.64941991

15 183.58093157 159.49751088 145.38535721

17 188.41922674 168.76133640 153.38805816

19 192.00973584 176.56078545 160.71881572
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Table A.5 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 107.85264220 97.19619565 94.34197195

7 128.62996603 112.88003693 107.47714134

9 148.16925937 127.52740985 119.34858571

11 165.61317894 140.97959319 130.11027541

13 177.42218375 153.09487711 139.89324398

15 184.32445651 163.70938792 148.80499614

17 190.60824513 172.71141574 156.93045676

19 194.00480487 180.13848613 164.33240406

S2 Slower by 30%

5 112.46894466 100.07778941 96.35932654

7 134.68664558 116.58141000 110.01921372

9 154.18928652 131.82673975 122.29947529

11 169.01176939 145.62584739 133.37680966

13 179.54112593 157.78100107 143.39845446

15 187.06878193 168.14026361 152.48246998

17 191.59518373 176.72319556 160.71882286

19 195.65916730 183.70400867 168.16971468

S2 Slower by 40%

5 115.88596755 103.64845543 98.59251050

7 139.15756328 121.06193028 112.81683647

9 158.46358753 136.89230166 125.52964325

11 172.15877976 150.88015371 136.93425712

13 180.84630324 162.80400235 147.19619951

15 187.77756988 172.68549234 156.44435902

17 192.92117135 180.74832239 164.77205692

19 196.41593969 187.25302625 172.23746783
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A.6 Server 1 Idle energy consumption

Table A.6: Server 1 Idle energy consumption in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 11.07108835 11.28011364 11.47797682

7 9.50005460 9.86061498 10.26792802

9 7.93279470 8.51602816 9.16412563

11 6.38231132 7.25996229 8.15488125

13 4.96927008 6.10185430 7.22985107

15 3.75330037 5.05155693 6.38024412

17 2.70663138 4.12147947 5.59877940

19 2.02526237 3.32167809 4.87963375

S2 Faster by 10%

5 11.07108835 11.31017234 11.62967487

7 9.50005460 9.90984106 10.46189586

9 8.00254351 8.58332057 9.39231322

11 6.46314191 7.34256422 8.41067428

13 5.05446356 6.19597070 7.50773059

15 3.75330037 5.15251824 6.67550608

17 2.79152489 4.22389369 5.90728327

19 2.11003104 3.42012274 5.19755577

S2 Faster by 20%

5 11.11067338 11.33568823 11.76905297

7 9.55526904 9.95199272 10.64084225

9 8.00254351 8.64142319 9.60361750

11 6.46314191 7.41444978 8.64837150

13 5.05446356 6.27849027 7.76682050

15 3.84074421 5.24167116 6.95172289

17 2.79152489 4.31493975 6.19689327

19 2.11003104 3.50817579 5.49716359
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Table A.6 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 11.11067338 11.35761521 11.89753461

7 9.55526904 9.98848650 10.80642453

9 8.00254351 8.69208820 9.79981766

11 6.54266779 7.47756388 8.86979158

13 5.14087252 6.35141685 8.00891393

15 3.84074421 5.32095972 7.21060319

17 2.88069568 4.39640508 6.46916852

19 2.19895630 3.58740571 5.77978137

S2 Faster by 40%

5 11.11067338 11.37665815 12.01635711

7 9.60854502 10.02038553 10.96009736

9 8.07024146 8.73665049 9.98249063

11 6.54266779 7.53340931 9.07656316

13 5.14087252 6.41631922 8.23563603

15 3.93148178 5.39192420 7.45372062

17 2.88069568 4.46972078 6.72558153

19 2.29178256 3.65907905 6.04671960

S2 Slower by 10%

5 11.07108835 11.21665263 11.31225806

7 9.50005460 9.75954865 10.05697285

9 7.93279470 8.37979887 8.91695921

11 6.38231132 7.09309938 7.87886666

13 4.96927008 5.91014279 6.93110576

15 3.66917367 4.84256051 6.06398652

17 2.70663138 3.90448777 5.26964749

19 1.94487428 3.10560018 4.54200480
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Table A.6 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 11.02874311 11.14090432 11.13049202

7 9.44115615 9.64058037 9.82670917

9 7.85908628 8.22124777 8.64836242

11 6.38231132 6.90077867 7.58016879

13 4.88458953 5.69178410 6.60912203

15 3.75330037 4.60860719 5.72455133

17 2.62622275 3.66640535 4.91802712

19 1.86905370 2.87251644 4.18331812

S2 Slower by 30%

5 11.02874311 11.04891063 10.93025695

7 9.44115615 9.49842361 9.57439258

9 7.85908628 8.03421099 8.35546816

11 6.29851035 6.67680184 7.25594483

13 4.88458953 5.44239430 6.26120796

15 3.58820915 4.34807697 5.35953905

17 2.62622275 3.40715954 4.54200810

19 1.79794492 2.62242252 3.80244105

S2 Slower by 40%

5 10.98146155 10.93479789 10.70859147

7 9.37573268 9.32540796 9.29670099

9 7.77841480 7.81008270 8.03484219

11 6.29851035 6.41411156 6.90283313

13 4.88458953 5.15902706 5.88424436

15 3.58820915 4.06077470 4.96628252

17 2.55042438 3.12669186 4.13968466

19 1.79794492 2.35466754 3.39867643

157



A.7 Server 2 Idle energy consumption

Table A.7: Server 2 Idle energy consumption in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 9.51956339 11.28011364 11.47797682

7 7.34426321 9.86061498 10.26792802

9 5.26784764 8.51602816 9.16412563

11 3.47845130 7.25996229 8.15488125

13 1.99567553 6.10185430 7.22985107

15 1.35761066 5.05155693 6.38024412

17 1.18830973 4.12147947 5.59877940

19 1.29273248 3.32167809 4.87963375

S2 Faster by 10%

5 10.01734315 11.41342702 11.62967487

7 8.03213393 10.02358045 10.46189586

9 5.72990119 8.69526334 9.39231322

11 4.00055335 7.44379014 8.41067428

13 2.57861662 6.28071380 7.50773059

15 1.80555393 5.21814619 6.67550608

17 1.65407510 4.27088464 5.90728326

19 1.68558426 3.45144042 5.19755577

S2 Faster by 20%

5 10.21290359 11.52686288 11.76904758

7 8.30725194 10.16348606 10.64083531

9 6.45394234 8.85047208 9.60360929

11 4.76008249 7.60429093 8.64836225

13 3.21828431 6.43809016 7.76681041

15 2.36855511 5.36578527 6.95171211

17 2.03169194 4.40416363 6.19688195

19 2.03078102 3.56786015 5.49715185
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Table A.7 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 10.58091151 11.62456133 11.89753913

7 8.81818187 10.28491110 10.80643036

9 7.08590486 8.98619609 9.79982459

11 5.21434360 7.74565955 8.86979941

13 3.77947744 6.57765935 8.00892250

15 2.85693400 5.49756359 7.21061238

17 2.53432538 4.52382980 6.46917819

19 2.44565751 3.67293675 5.77979143

S2 Faster by 40%

5 10.89645323 11.70958771 12.01635712

7 9.05495933 10.39129818 10.96009736

9 7.39357763 9.10590073 9.98249064

11 5.83226918 7.87114201 9.07656317

13 4.36142529 6.70230323 8.23563604

15 3.41213538 5.61593184 7.45372062

17 2.93239517 4.63189713 6.72558153

19 2.85429353 3.76828573 6.04671961

S2 Slower by 10%

5 8.91195964 10.94888258 11.31225805

7 6.51570736 9.43765154 10.05697284

9 4.31658567 8.02285389 8.91695920

11 2.58673454 6.71775478 7.87886664

13 1.38258428 5.53348284 6.93110575

15 0.87630047 4.48389974 6.06398651

17 0.87835537 3.58293883 5.26964748

19 0.92733274 2.83349747 4.54200479
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Table A.7 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 8.55013946 10.55347187 11.13049820

7 6.01305917 8.94027519 9.82671698

9 3.71623279 7.45184451 8.64837150

11 1.73008037 6.10181664 7.58017887

13 0.88350528 4.90571250 6.60913287

15 0.64457089 3.88172077 5.72456273

17 0.52420503 3.03686045 4.91803890

19 0.60709674 2.35634418 4.18333009

S2 Slower by 30%

5 7.63372156 10.07341810 10.93025260

7 4.81070087 8.34764375 9.57438712

9 2.52115064 6.78538806 8.35546184

11 1.13920086 5.40342962 7.25593785

13 0.46285768 4.22482359 6.26120049

15 0.26486484 3.26264360 5.35953123

17 0.32828022 2.49969683 4.54200007

19 0.34978524 1.89861864 3.80243295

S2 Slower by 40%

5 7.00266348 9.47869031 10.70859147

7 3.98856788 7.63119667 9.29670099

9 1.75329757 6.00391248 8.03484219

11 0.51446349 4.62304692 6.90283313

13 0.20375683 3.51103600 5.88424436

15 0.12415787 2.64763735 4.96628252

17 0.14084653 1.98110545 4.13968466

19 0.19955250 1.46183069 3.39867643
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A.8 Total Idle consumption

Table A.8: Total Idle energy consumption for all combinations

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 20.59065174 22.56022729 22.95595364

7 16.84431780 19.72122996 20.53585604

9 13.20064234 17.03205631 18.32825125

11 9.86076262 14.51992459 16.30976250

13 6.96494561 12.20370860 14.45970215

15 5.11091104 10.10311387 12.76048825

17 3.89494111 8.24295895 11.19755880

19 3.31799486 6.64335618 9.75926751

S2 Faster by 10%

5 21.08843150 22.72359936 23.25934974

7 17.53218853 19.93342151 20.92379172

9 13.73244470 17.27858390 18.78462644

11 10.46369526 14.78635436 16.82134856

13 7.63308018 12.47668451 15.01546117

15 5.55885430 10.37066443 13.35101216

17 4.44559999 8.49477833 11.81456653

19 3.79561530 6.87156316 10.39511154

S2 Faster by 20%

5 21.32357697 22.86255111 23.53810055

7 17.86252097 20.11547878 21.28167756

9 14.45648585 17.49189527 19.20722679

11 11.22322440 15.01874070 17.29673374

13 8.27274787 12.71658043 15.53363091

15 6.20929931 10.60745643 13.90343501

17 4.82321683 8.71910338 12.39377523

19 4.14081207 7.07603594 10.99431544
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Table A.8 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 21.69158489 22.98217654 23.79507374

7 18.37345091 20.27339760 21.61285489

9 15.08844837 17.67828430 19.59964226

11 11.75701139 15.22322342 17.73959098

13 8.92034995 12.92907620 16.01783643

15 6.69767821 10.81852331 14.42121557

17 5.41502105 8.92023488 12.93834671

19 4.64461381 7.26034246 11.55957280

S2 Faster by 40%

5 22.00712661 23.08624586 24.03271423

7 18.66350435 20.41168371 21.92019472

9 15.46381908 17.84255122 19.96498127

11 12.37493696 15.40455131 18.15312633

13 9.50229780 13.11862246 16.47127207

15 7.34361716 11.00785603 14.90744124

17 5.81309084 9.10161791 13.45116306

19 5.14607609 7.42736478 12.09343920

S2 Slower by 10%

5 19.98304799 22.16553521 22.62451611

7 16.01576196 19.19720019 20.11394569

9 12.24938036 16.40265276 17.83391841

11 8.96904586 13.81085416 15.75773330

13 6.35185436 11.44362563 13.86221151

15 4.54547415 9.32646025 12.12797303

17 3.58498675 7.48742660 10.53929497

19 2.87220702 5.93909765 9.08400958
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Table A.8 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 19.57888257 21.69437619 22.26099022

7 15.45421532 18.58085556 19.65342615

9 11.57531908 15.67309227 17.29673391

11 8.11239169 13.00259532 15.16034766

13 5.76809481 10.59749660 13.21825490

15 4.39787126 8.49032797 11.44911405

17 3.15042778 6.70326580 9.83606602

19 2.47615044 5.22886062 8.36664821

S2 Slower by 30%

5 18.66246467 21.12232873 21.86050955

7 14.25185702 17.84606736 19.14877970

9 10.38023693 14.81959904 16.71093000

11 7.43771121 12.08023146 14.51188268

13 5.34744721 9.66721789 12.52240846

15 3.85307399 7.61072056 10.71907028

17 2.95450297 5.90685636 9.08400817

19 2.14773015 4.52104116 7.60487401

S2 Slower by 40%

5 17.98412502 20.41348820 21.41718293

7 13.36430057 16.95660463 18.59340197

9 9.53171237 13.81399517 16.06968437

11 6.81297384 11.03715848 13.80566627

13 5.08834637 8.67006306 11.76848872

15 3.71236702 6.70841206 9.93256504

17 2.69127091 5.10779730 8.27936932

19 1.99749741 3.81649823 6.79735287
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B
Performance data in

heterogeneous environment

In this Appendix, the performance metrics data for all servers combinations presented.

The data includes throughput, job loss, average response time and utilisation for

server1 and server2.
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B.1 Throughput

Table B.1: Throughput for all server combinations in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 4.99994614 4.95984847 4.69603091

7 6.99894399 6.85251336 6.30942930

9 8.99136948 8.64529579 7.78116583

11 10.95746190 10.32005027 9.12682500

13 12.85551311 11.86419427 10.36019857

15 14.61639937 13.26459076 11.49300784

17 16.16855860 14.50469403 12.53496080

19 17.47254949 15.57109588 13.49382166

S2 Faster by 10%

5 4.99995533 4.96539277 4.71845518

7 6.99911252 6.86986578 6.35334580

9 8.99263704 8.68214836 7.85076149

11 10.96351006 10.38357323 9.22505601

13 12.86894250 11.96047062 10.48917718

15 14.64204095 13.39839393 11.65429149

17 16.20901371 14.90398904 12.72980343

19 17.53509371 15.78750934 13.72342192

S2 Faster by 20%

5 4.99996645 4.96994686 4.73872662

7 6.99930303 6.88441049 6.39343692

9 8.99390884 8.71347920 7.91470090

11 10.96763223 10.43818926 9.31572920

13 12.88098908 12.04402925 10.60867134

15 14.66475597 13.51545651 11.80414838

17 16.24788472 14.83295828 12.91123225

19 17.59703356 15.97929961 13.93750279
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Table B.1 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 4.99997300 4.97373381 4.75710968

7 6.99941380 6.89673994 6.43014400

9 8.99463165 8.74038915 7.97360691

11 10.97127818 10.48558233 9.39964613

13 12.89039249 12.11715637 10.71965788

15 14.68606965 13.61864688 11.94373381

17 16.28502011 14.96932631 13.08059989

19 17.65687566 16.15033254 14.13765985

S2 Faster by 40%

5 4.99997629 4.97691598 4.77382861

7 6.99948324 6.90729349 6.46384422

9 8.99535412 8.76370844 8.02801498

11 10.97415872 10.52704213 9.47749894

13 12.89943471 12.18162770 10.82298234

15 14.70469833 13.71022151 12.07404701

17 16.31924317 15.09102566 13.23906955

19 17.71393892 16.30371426 14.32524864

S2 Slower by 10%

5 4.99992345 4.95290203 4.67113980

7 6.99856831 6.83104331 6.26116773

9 8.98915630 8.59975509 7.70518501

11 10.95085315 10.24061421 9.02010224

13 12.83914227 11.73981510 10.22059938

15 14.58894078 13.08128648 11.31895042

17 16.12575156 14.24724485 12.32511319

19 17.40868354 15.22950140 13.24679393
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Table B.1 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 4.99989652 4.94421212 4.64340628

7 6.99815562 6.80479965 6.20794483

9 8.98641367 8.54485108 7.62196026

11 10.94034291 10.14517867 8.90379208

13 12.81965903 11.58909727 10.06904778

15 14.55958477 12.85734413 11.13053233

17 16.08347873 13.93607086 12.09836117

19 17.34430872 14.82827215 12.98001187

S2 Slower by 30%

5 4.99983885 4.93313113 4.61237749

7 6.99721384 6.77215051 6.14902429

9 8.98159576 8.47734492 7.53047237

11 10.92888834 10.02719828 8.77659912

13 12.79854045 11.40015279 9.90396779

15 14.52752941 12.57871501 10.92585939

17 16.03902181 13.56203512 11.85239457

19 17.28033402 14.36569629 12.69057059

S2 Slower by 40%

5 4.99974628 4.91865862 4.57750244

7 6.99594878 6.73058269 6.08351895

9 8.97497752 8.39171321 7.42950167

11 10.91219287 9.87470686 8.63697799

13 12.77399929 11.15623423 9.72347269

15 14.49715401 12.23376192 10.70263198

17 15.99767075 13.12309658 11.58433636

19 17.21970334 13.84548936 12.37474514
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B.2 Job loss

Table B.2: Job loss for all server combinations in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 0.00005387 0.04015153 0.30396909

7 0.00105645 0.14748664 0.69057070

9 0.00863692 0.35470421 1.21883417

11 0.04258772 0.67994973 1.87317500

13 0.14478098 1.13580573 2.63980143

15 0.38472991 1.73540924 3.50699216

17 0.83432594 2.49530597 4.46503920

19 1.53435114 3.42890412 5.50617834

S2 Faster by 10%

5 0.00004468 0.03460723 0.28154482

7 0.00088770 0.13013422 0.64665420

9 0.00736989 0.31785164 1.14923851

11 0.03653921 0.61642677 1.77494399

13 0.13134432 1.03952938 2.51082282

15 0.35893923 1.60160607 3.34570851

17 0.79395853 2.09601096 4.27019657

19 1.47201087 3.21249066 5.27657808

S2 Faster by 20%

5 0.00003355 0.03005314 0.26127338

7 0.00069729 0.11558951 0.60656308

9 0.00609550 0.28652080 1.08529910

11 0.03240144 0.56181074 1.68427080

13 0.11923459 0.95597075 2.39132866

15 0.33623368 1.48454349 3.19585162

17 0.75484854 2.16704172 4.08876775

19 1.40969152 3.02070039 5.06249721
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Table B.2 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 0.00002700 0.02626619 0.24289032

7 0.000586383 0.10326006 0.56985600

9 0.00537111 0.25961085 1.02639309

11 0.02875859 0.51441767 1.60035387

13 0.10983720 0.88284363 2.28034212

15 0.31478293 1.38135312 3.05626619

17 0.71777679 2.03067369 3.91940011

19 1.34996372 2.84966746 4.86234015

S2 Faster by 40%

5 0.00002371 0.02308402 0.22617139

7 0.00051705 0.09270651 0.53615578

9 0.00464943 0.23629156 0.97198502

11 0.02586772 0.47295787 1.52250106

13 0.10074759 0.81837230 2.17701766

15 0.29617596 1.28977849 2.92595299

17 0.57492694 1.90897434 3.76093045

19 1.29296295 2.69628574 4.67475136

S2 Slower by 10%

5 0.00007657 0.04709797 0.32886020

7 0.00143253 0.16895669 0.73883227

9 0.01085482 0.40024491 1.29481499

11 0.04922291 0.75938579 1.97989776

13 0.16123482 1.26018490 2.77940062

15 0.41219020 1.91871352 3.68104958

17 0.87733693 2.75275515 4.67488681

19 1.59793536 3.77049860 5.75320607
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Table B.2 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 0.00010349 0.05578788 0.35659372

7 0.00184520 0.19520035 0.79205517

9 0.01359869 0.45514892 1.37803974

11 0.05976949 0.85482133 2.09620792

13 0.18074880 1.41090273 2.93095222

15 0.41726903 2.14265587 3.86946767

17 0.91946512 3.06392914 4.90163883

19 1.66194197 4.17172785 6.01998813

S2 Slower by 30%

5 0.00016120 0.06686887 0.38762251

7 0.00278804 0.22784949 0.85097571

9 0.01842748 0.52265508 1.46952763

11 0.07124627 0.97280172 2.22340088

13 0.20196085 1.59984721 3.09603221

15 0.47373198 2.42128499 4.07414061

17 0.96403615 3.43796488 5.14760543

19 1.72545398 4.63430371 6.30942941

S2 Slower by 40%

5 0.00025378 0.08134138 0.42249756

7 0.00405383 0.26941731 0.91648105

9 0.02505560 0.60828679 1.57049833

11 0.08799515 1.12529314 2.36302201

13 0.22657715 1.84376577 3.27652731

15 0.50417861 2.76623808 4.29736802

17 1.00513494 3.87690342 5.41566364

19 1.78615632 5.15451064 6.62525486
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B.3 Average response time

Table B.3: Response time for all server combinations in heterogeneous environment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 0.20326085 0.23898310 0.43930825

7 0.25951324 0.30136246 0.47725241

9 0.33571446 0.35710236 0.50316692

11 0.42324798 0.40801711 0.52313921

13 0.53074265 0.45636981 0.54000438

15 0.59265748 0.50368738 0.55530736

17 0.61431295 0.54993037 0.57000767

19 0.60615562 0.59378680 0.58476877

S2 Faster by 10%

5 0.18434024 0.22474182 0.41279365

7 0.22942398 0.28343615 0.44953501

9 0.32161954 0.33656331 0.47452438

11 0.39975323 0.38557157 0.49361189

13 0.49282006 0.43246507 0.50953117

15 0.55282017 0.47863051 0.52376459

17 0.57738939 0.51608436 0.53722182

19 0.57467078 0.56721373 0.55052288

S2 Faster by 20%

5 0.18159588 0.21296307 0.38885550

7 0.22561885 0.26845926 0.42448901

9 0.28378870 0.31925955 0.44865450

11 0.35329384 0.36652839 0.46697739

13 0.44633087 0.41206230 0.48209809

15 0.51598659 0.45713406 0.49544467

17 0.55048146 0.50163253 0.50788536

19 0.55402450 0.54423789 0.52000410
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Table B.3 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 0.16841806 0.20307098 0.36714779

7 0.20573060 0.25577120 0.40175302

9 0.25523370 0.30449494 0.42517666

11 0.33930722 0.35018170 0.44283038

13 0.42017975 0.39445845 0.45726792

15 0.48264625 0.43850350 0.46986913

17 0.51861404 0.48218343 0.48146718

19 0.52576065 0.52418520 0.49261601

S2 Faster by 40%

5 0.15795896 0.19465398 0.34738314

7 0.20317503 0.24489237 0.38102765

9 0.25066206 0.29175707 0.40377680

11 0.30796077 0.33600581 0.42083827

13 0.38615386 0.37912461 0.43468433

15 0.45404462 0.42221209 0.44665133

17 0.49518197 0.46511771 0.45754218

19 0.49948527 0.50653928 0.46788566

S2 Slower by 10%

5 0.22943103 0.26136047 0.46882047

7 0.30268490 0.32939683 0.50808258

9 0.39810826 0.38995401 0.53504912

11 0.49510549 0.44552960 0.55605969

13 0.59186710 0.49874386 0.57406184

15 0.63751995 0.55080702 0.59067418

17 0.64325533 0.60091903 0.60691717

19 0.63923569 0.64735182 0.62350603
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Table B.3 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 0.23879961 0.28919419 0.50184791

7 0.31999133 0.36400347 0.54256992

9 0.42973704 0.43044239 0.57075013

11 0.58215051 0.49188423 0.59299852

13 0.64418618 0.55096742 0.61238991

15 0.67389537 0.60788917 0.63063192

17 0.68291486 0.66103512 0.64882011

19 0.67336651 0.70891565 0.66772954

S2 Slower by 30%

5 0.28601431 0.32469903 0.53903432

7 0.40363161 0.40780272 0.58139455

9 0.54269932 0.48169076 0.61099820

11 0.64630240 0.55055867 0.63474876

13 0.71308575 0.61593900 0.65586901

15 0.72726326 0.67649608 0.67617669

17 0.71064657 0.73084315 0.69685975

19 0.70766315 0.77885240 0.71875677

S2 Slower by 40%

5 0.31375681 0.37145908 0.58118960

7 0.45974404 0.46506587 0.62541673

9 0.62381485 0.54872656 0.65672170

11 0.75697080 0.62615870 0.68233229

13 0.77379793 0.69612181 0.70564874

15 0.76397105 0.75729018 0.72862777

17 0.74798987 0.81066495 0.75256781

19 0.72917189 0.85801639 0.77836068
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B.4 Utilisation Server 1

Table B.4: Server 1 Utilisation for all server combinations in heterogeneous environ-
ment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 0.26192744 0.24799242 0.23480155

7 0.36666303 0.34262567 0.31547147

9 0.47114702 0.43226479 0.38905829

11 0.57451258 0.51600251 0.45634125

13 0.66871533 0.59320971 0.51800993

15 0.74977998 0.66322954 0.57465039

17 0.81955791 0.72523470 0.62674804

19 0.86498251 0.77855479 0.67469108

S2 Faster by 10%

5 0.26192744 0.24598851 0.22468834

7 0.36666303 0.33934393 0.30254028

9 0.46649710 0.42777863 0.37384579

11 0.56912387 0.51049572 0.43928838

13 0.66303576 0.58693529 0.49948463

15 0.74977998 0.65649878 0.55496626

17 0.81389834 0.71840709 0.60618112

19 0.85933126 0.77199182 0.65349628

S2 Faster by 20%

5 0.25928844 0.24428745 0.21539647

7 0.36298206 0.33653382 0.29061052

9 0.46649710 0.42390512 0.35975883

11 0.56912387 0.50570335 0.42344190

13 0.66303576 0.58143398 0.48221197

15 0.74395039 0.65055526 0.53655181

17 0.81389834 0.71233735 0.58687378

19 0.85933126 0.76612161 0.63352243
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Table B.4 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 0.25928844 0.24282565 0.20683103

7 0.36298206 0.33410090 0.27957170

9 0.46649710 0.42052745 0.34667882

11 0.56382215 0.50149574 0.40868056

13 0.65727517 0.57657221 0.46607240

15 0.74395039 0.64526935 0.51929312

17 0.80795362 0.70690633 0.56872210

19 0.85340291 0.76083962 0.61468124

S2 Faster by 40%

5 0.25928844 0.24155612 0.19890953

7 0.35943033 0.33197430 0.26932684

9 0.46198390 0.41755663 0.33450062

11 0.56382215 0.49777271 0.39489579

13 0.65727517 0.57224539 0.45095760

15 0.73790121 0.64053839 0.50308529

17 0.80795362 0.70201861 0.55162790

19 0.84721450 0.75606140 0.59688536

S2 Slower by 10%

5 0.26192744 0.25222316 0.24584946

7 0.36666303 0.34936342 0.32953514

9 0.47114702 0.44134674 0.40553605

11 0.57451258 0.52712671 0.47474222

13 0.66871533 0.60599048 0.53792628

15 0.75538842 0.67716263 0.59573423

17 0.81955791 0.73970082 0.64869017

19 0.87034171 0.79295999 0.69719968

176



Table B.4 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 0.26475046 0.25727305 0.25796720

7 0.37058959 0.35729464 0.34488606

9 0.47606091 0.45191682 0.42344251

11 0.57451258 0.53994809 0.49465541

13 0.67436070 0.62054773 0.55939186

15 0.74977998 0.69275952 0.61836324

17 0.82491848 0.75557298 0.67213153

19 0.87539642 0.80849890 0.72111213

S2 Slower by 30%

5 0.26475046 0.26340596 0.27131620

7 0.37058959 0.36677176 0.36170716

9 0.47606091 0.46438593 0.44296879

11 0.58009931 0.55487988 0.51627034

13 0.67436070 0.63717371 0.58258614

15 0.76078606 0.71012820 0.64269740

17 0.82491848 0.77285603 0.69719946

19 0.88013701 0.82517183 0.74650393

S2 Slower by 40%

5 0.26790256 0.27101347 0.28609390

7 0.37495115 0.37830614 0.38021993

9 0.48143901 0.47932782 0.46434385

11 0.58009931 0.57239256 0.53981112

13 0.67436070 0.65606486 0.60771704

15 0.76078606 0.72928169 0.66891450

17 0.82997171 0.79155388 0.72402102

19 0.88013701 0.84302216 0.77342157
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B.5 Utilisation Server 2

Table B.5: Server 1 Utilisation for all server combinations in heterogeneous environ-
ment

Combination Arrival rate TAGS Shortest Random

S1 S2 Identical

5 0.36536244 0.24799242 0.23480155

7 0.51038245 0.34262567 0.31547147

9 0.64881016 0.43226479 0.38905829

11 0.76810325 0.51600251 0.45634125

13 0.86695496 0.59320971 0.51800993

15 0.90949262 0.66322954 0.57465039

17 0.92077935 0.72523470 0.62674804

19 0.91381783 0.77855479 0.67469108

S2 Faster by 10%

5 0.33217712 0.23910487 0.22468834

7 0.46452440 0.33176130 0.30254028

9 0.61800659 0.42031578 0.37384579

11 0.73329644 0.50374732 0.43928838

13 0.82809223 0.58128575 0.49948463

15 0.87962974 0.65212359 0.55496626

17 0.88972833 0.71527436 0.60618112

19 0.88762772 0.76990397 0.65349628

S2 Faster by 20%

5 0.31913976 0.23154247 0.21539683

7 0.44618320 0.32243426 0.29061098

9 0.56973718 0.40996853 0.35975938

11 0.68266117 0.49304727 0.42344252

13 0.78544771 0.57079399 0.48221264

15 0.84209633 0.64228098 0.53655253

17 0.86455387 0.70638909 0.58687454

19 0.86461460 0.76214266 0.63352321
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Table B.5 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Faster by 30%

5 0.29460590 0.22502924 0.20683072

7 0.41212121 0.31433926 0.27957131

9 0.52760634 0.40092026 0.34667836

11 0.65237709 0.48362270 0.40868004

13 0.74803484 0.56148938 0.46607183

15 0.80953773 0.63349576 0.51929251

17 0.83104497 0.69841135 0.56872145

19 0.83695617 0.75513755 0.61468057

S2 Faster by 40%

5 0.27356978 0.21936082 0.19890953

7 0.39633604 0.30724679 0.26932684

9 0.50709482 0.39293995 0.33450062

11 0.61118205 0.47525720 0.39489579

13 0.70923831 0.55317978 0.45095760

15 0.77252431 0.62560454 0.50308529

17 0.80450699 0.69120686 0.55162790

19 0.80971376 0.74878095 0.59688536

S2 Slower by 10%

5 0.40586936 0.27007449 0.24584946

7 0.56561951 0.37082323 0.32953514

9 0.71222762 0.46514307 0.40553605

11 0.82755103 0.55214968 0.47474222

13 0.90782771 0.63110114 0.53792628

15 0.94157997 0.70107335 0.59573423

17 0.94144298 0.76113741 0.64869017

19 0.93817782 0.81110017 0.69719968
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Table B.5 continued from previous page

Combination Arrival rate TAGS Shortest Random

S2 Slower by20%

5 0.42999070 0.29643521 0.25796679

7 0.59912939 0.40398165 0.34488553

9 0.75225115 0.50321037 0.42344190

11 0.88466131 0.59321222 0.49465474

13 0.94109965 0.67295250 0.55939114

15 0.95702861 0.74121862 0.61836248

17 0.96505300 0.79754264 0.67213074

19 0.95952688 0.84291039 0.72111133

S2 Slower by 30%

5 0.49108523 0.32843879 0.27131649

7 0.67928661 0.44349042 0.36170753

9 0.83192329 0.54764080 0.44296921

11 0.92405328 0.63977136 0.51627081

13 0.96914282 0.71834509 0.58258663

15 0.98234234 0.78249043 0.64269792

17 0.97811465 0.83335354 0.69720000

19 0.97668098 0.87342542 0.74650447

S2 Slower by 40%

5 0.53315577 0.36808731 0.28609390

7 0.73409547 0.49125356 0.38021993

9 0.88311350 0.59973917 0.46434385

11 0.96570243 0.69179687 0.53981112

13 0.98641621 0.76593093 0.60771704

15 0.99172281 0.82349084 0.66891450

17 0.99061023 0.86792630 0.72402102

19 0.98669650 0.90254462 0.77342157
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