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Abstract

Gene regulation is an important mechanism that ensures the correct functioning of a cell and
is generally orchestrated by gene regulatory elements such as transcriptional enhancers.
Identification of these genomic regions are important in understanding a wide range of
phenomena such as evolution, homeostasis and disease. During gene regulation, signals
pertaining to transcriptional activation are transferred across the chromatin regulatory
network from enhancers to genes in the form of transcription factors and cofactors that in
turn, recruit transcriptional machinery such as RNA Polymerase II to increase the rate of
gene transcription. Conceptually, we describe this as a flow of information from enhancers to
genes, mediated by the chromatin conformation. We exploit this relationship in order to
decode the regulatory landscape of genes and identify active enhancers.

This thesis outlines the difficulties associated with identifying pathogenic mutations in the
non-coding genome due to a lack of robust enhancer annotations. We use network theory to
annotate these regions and develop a new method, 3D-SearchE, that serves to predict the
location of novel putative active enhancers. 3D-SearchE achieves this by reverse
engineering the flow of information between enhancers and genes to calculate an imputed
activity score (IAS) at intergenic loci. We show that intergenic loci with a high IAS are also
present for other enhancer associated features including the histone marks H3K27ac,
H3K4me1 and H3K4me2, P300, CAGE-seq, Starr-seq, eQTLs and RNA Polymerase II.
3D-SearchE successfully leverages and summarises the relationship between the 3D
organisation of chromatin and global gene expression and represents a novel enhancer
associated feature that can be used to predict active enhancers.
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Chapter 1 - Introduction

1.1 Finding function in junk: The non-coding genome
Four letters, A, T, C and G represent the fundamental information required for life. Humans
contain in excess of three billion of these letters, termed bases, the equivalent of 3.3
Giga-bytes of data within our DNA. Classically, genes have been regarded as the primary
source of genetic information. Genes are composed of protein coding regions known as
exons and non-coding regions known as introns. The central dogma of genetics implies a
linear relationship between DNA, RNA and protein in which information encoded within the
exons is translated into proteins via the triplet code (Crick 1958). When this flow of
information is disrupted or altered it can often manifest in aberrant cell function and in
extreme cases disease. At the DNA level, variation in the exonic base sequence can directly
affect the amino acid sequence and therefore, protein function. This can occur by a single
nucleotide polymorphisms (SNP) resulting in synonymous or nonsynonymous substitutions
or by copy number variation (CNV) that include duplications and deletions. In the post
genomic era comprehensive databases such as GnomAD (Lek et al. 2016), formerly known
as ExAC and The 100,000 Genomes Project (Caulfield et al. 2017) have been curated
detailing such alterations of the genetic code. Therefore, our ability to study the effects of
SNPs and CNVs and dissect their relevance in the context of human disease has become
increasingly feasible.

While the post-genomic era has had a huge impact in our understanding of many diseases,
it has largely been confined to the study of exonic sequences. However, exons constitute
roughly just two to three percent of DNA (via circa 22,000 genes) in humans and mice. While
exons are needed to synthesise proteins, their expression must be carefully coordinated in
order to give rise to the 200+ cells that constitute every human being. This is achieved in
part by the remaining ~98% of ‘non-coding’ DNA. The non-coding regions can be
categorised, broadly, into two domains. Introns that intersperse exons and intergenic regions
that delineate genes. There has been much debate about the proportion of non-coding DNA
that is functional and can influence gene expression and the proportion that is non-functional
and redundant. During the mid 20th century the term “junk DNA” was initially coined to
describe the apparent lack of function of the non-coding genome. It was first posited by
Ehret and De Haller in which they remark that “it does not follow that all genetic DNA is
competent genetic material (viz. “Junk DNA”)” (Ehret and De Haller 1963). The idea that
most of the non-coding genome is functionless was subsequently formalised by Susumu
Ohno in his article ‘So much “junk” DNA in our genome’ (Ohno 1972). Ohno’s reasoning for
junk DNA was based on previous observations that larger genomes do not scale with
increasing complexity of the organism, known as the C-value paradox (Thomas 1971). This
idea argues that if this is not the case, onions, lungfish and salamanders, all of whom have
larger genomes, can be considered our genetic superiors. These models suggest the
majority of junk DNA within our genomes can be attributed to the presence of pseudogenes
and transposable elements. However, certainly not all DNA beyond exons is junk.

1

https://paperpile.com/c/XWmKOJ/xuvjJ
https://paperpile.com/c/XWmKOJ/rxYNu
https://paperpile.com/c/XWmKOJ/76WYt
https://paperpile.com/c/XWmKOJ/iY0xC
https://paperpile.com/c/XWmKOJ/swuVa
https://paperpile.com/c/XWmKOJ/52hIi


It is within the non-coding genome that many functional elements are thought to reside,
including cis- and trans-regulatory elements. In eukaryotes, cis-regulatory elements include
promoters, enhancers and silencers. Trans-regulatory elements include transcription factors,
DNA editing proteins, post-transcriptional mRNA processing and mRNA binding. Enhancers
are of particular interest given their ability to directly upregulate transcriptional activity.
However, their composition and function is poorly understood. Estimates for the number of
enhancers across the genome run into the hundreds of thousands. This again raises the age
old question of just how much of DNA can be considered functional and how much should
be regarded as junk. The post genomic era has ushered in a new wave of evidence that
suggests an increasingly important functional role for much of the non-coding genome. As
recently as 2012, The Encyclopedia of DNA Elements (ENCODE) was published by The
ENCODE Project Consortium with claims that they had assigned biochemical functionality to
80% of the human genome (ENCODE Project Consortium 2012).

These claims are in stark contrast to those posited by Ohno and his contemporaries. These
differences are partly due to different definitions of the term ‘functional’ (Graur et al. 2013).
For example, from an evolutionary context the biochemically active regions defined by
ENCODE cover a much larger region of the genome when compared to evolutionary
conserved regions which raises doubts about their functionality (Kellis et al. 2014).
Furthermore, ENCODEs data implies that transcription, histone modifications, open
chromatin, transcription factor binding and DNA methylation indicate function which is
disputed (Graur, Zheng, and Azevedo 2015; Kellis et al. 2014). On the contrary, expression
quantitative loci (eQTL) studies have shown how genetic variation across the genome can
result in significant and quantifiable changes in gene expression (F. Zhang and Lupski 2015).
Single nucleotide and copy-number variants have been shown to alter gene expression
patterns through alterations in the structural organisation of chromatin (Sadowski et al.
2019). Additionally, enhancers have been found with a distinct lack of sequence
conservation (Harmston et al. 2017). While there is also increasing evidence that subtle
genome wide influences play a role in complex traits termed the ‘omnigenic’ model (Boyle,
Li, and Pritchard 2017). The ambiguity around the term functional, coupled with a lack of
knowledge about regulatory sequences and the mechanisms via which they act make
estimations about the amount of functional and junk DNA purely academic.

To address these issues, understanding the relationship between DNA sequences such as
genes and enhancers in the context of chromatin organisation will be important. We know
that the ability of enhancers to regulate the transcriptional activity of genes is aided or
impeded by the cell-type specific three-dimensional organisational structure of the
chromatin. This is what allows the 200+ individual cell-types to arise from the single set of
instructions encoded within the DNA. It has also been shown how variants that disrupt the
topological organisation of the chromatin can lead to aberrant gene expression. This would
indicate that genes, enhancers and the organisation of chromatin are critical for the normal
expression of genes. The relationship between the organisation of chromatin, which we will
refer to herein as chromatin architecture, and gene expression is poorly understood. Akin to
the chicken and the egg: It is apparent that the chromatin architecture plays a role in the
regulation of gene expression while gene expression can drive changes in the chromatin
architecture. It is through largely unknown complex feedback mechanisms that manage the
coordinated localisation of enhancers to promoters through changes in the chromatin
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architecture. Thus, ENCODEs assertion that 80% of the genome is functionally relevant may
be correct at the level of chromatin rather than the DNA sequence. It is entirely plausible that
80% of chromatin is functionally active in contorting the DNA into structures that facilitate the
expression of genes, thereby acting as a regulatory entity in and of itself. Therefore,
research that aims to characterise enhancers in the context of chromatin architecture is of
utmost importance.

1.2 Enhancers are diverse in composition and function
Enhancers are defined as cis-acting DNA sequences that harbour motifs corresponding to
transcription factors (TF’s) and cofactors that increase the transcriptional activity of one or
more genes above basal levels of transcription afforded by the core promoter. The first
example of a regulatory sequence was described by Grosschedl and Birnsteil et al. nearly 40
years ago. They were able to demonstrate a 15- to 20-fold reduction in transcriptional activity
of H2A gene activity by deleting a distal sequence of interest from the sea urchin genome
(Grosschedl and Birnstiel 1980). The first description of an enhancer soon followed, after
work by Julian Banerji in the lab of Walter Schaffner identified a 72bp sequence in the simian
virus 40 genome (Banerji, Olson, and Schaffner 1983). Not long after, the first cellular
enhancer was discovered within an intron of the mouse human immunoglobulin heavy chain
gene (Banerji, Olson, and Schaffner 1983). Importantly, it was presented as a cell type
specific enhancer, and thus opened up a new breeding ground for studies into cell-type
specific regulation. Enhancers appear to be the main drivers behind the differentially
expressed sets of genes between cell-types. It is these varying combinations that result in
the diverse array of phenotypes we observe. This has been elegantly demonstrated in the
Drosophila pox neuro gene. Fifteen enhancers were identified as key regulators of the pox
neuro gene’s expression where they were shown to influence the divergence of
developmental phenotypes depending on the presence of one or more of the enhancer
sequences (Boll and Noll 2002).

We now know that enhancers are essential to regulate the transcriptional state of almost all
genes, housekeeping genes being the exception. Enhancers are able to regulate their
cognate genes through direct interactions and have been shown experimentally to occur
through forced chromatin looping (Carter et al. 2002; Deng et al. 2012). More recent studies
have supported this concept by showing the co-localisation of Shh with the ZRS enhancer
through imaging and 5C (see 1.4 Enhancers in context: Chromatin architecture)
(Williamson et al. 2016). While the looping of chromatin has been shown to mediate
enhancer-promoter contacts, the stability of these loops have been questioned. It has been
shown using reporter gene constructs that two genes can be co-regulated by a single
enhancer, leading to co-ordinated bursts of transcription suggesting that enhancer-promoter
contacts are not stable (Fukaya, Lim, and Levine 2016). Other work has shown using live
imaging that the short transcriptional bursting of the Sox2 gene is independent of direct
enhancer contacts (Alexander et al. 2019). These studies suggest that enhancer-promoter
contacts are more dynamic than has been suggested previously (Ghavi-Helm et al. 2014).
These dynamic contacts are intricately linked with the topology of chromatin that is
organised through a complex interplay of enhancers and proteins such as transcription
factors (TFs) and RNA pol II to name a few. This is discussed in detail in 1.4 Enhancers in
context: Chromatin architecture.
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Defining enhancers and understanding their spatio-temporal localisation with promoters is
important in the context of understanding a wide variety of genetic phenomena such as
evolution, homeostasis and disease. For example, the translocation of the GATA2
superhancer to EVI1 results in a downregulation of the GATA2 gene with the concomitant
upregulation of the EVI1 gene manifesting as acute myeloid lymphoma (Gröschel et al.
2014). Despite the success in identifying the regulatory mechanisms of some genes,
attempts to consolidate enhancers, genetic variation and gene expression are often fraught
with problems. The difficulty in understanding this relationship is derivative of the
current issues surrounding enhancer identification and subsequent enhancer-gene
pairing. The enhancer characteristics underpinning these difficulties can be broadly
summarised by the following points:

1) Enhancers are promiscuous. A single enhancer can regulate multiple genes
(Benabdallah et al. 2019), and conversely, a gene may be regulated by multiple
enhancers.

2) Enhancers are dynamic in location and activity. Enhancers can be located upto and
in some cases beyond one megabase away from its cognate gene (Schoenfelder
and Fraser 2019). In addition to this, enhancers can interact with promoters in
mechanistic fashion beyond the prototypical enhancer/ promoter models described
previously. For example, the spatio-temporal activity of enhancers can be extremely
dynamic and may not always be captured by chromosome conformation assays that
reproduce a snapshot style picture of the chromatin contact landscape (Benabdallah
et al. 2019). Additionally, enhancers may not act through direct interactions with the
genes they regulate (Benabdallah et al. 2019; W. Song, Sharan, and Ovcharenko
2019)

3) Enhancer sequence composition is not ubiquitous. There is no known conserved
enhancer sequence that universally defines all enhancers (Harmston 2020).

4) Redundancy. Perturbing one enhancer can have a minimal effect on the expression
of a gene that may rely on several enhancers (Osterwalder et al. 2018). Enhancers
are therefore extremely diverse in both their composition and their mode of action. To
identify enhancers there are several approaches which tend to be low throughput and
very accurate or high throughput with the tradeoff of lower accuracy.

1.3 Identifying enhancers

1.3.1 Enhancer screening
Wet-lab based approaches such as large scale reporter assays such as massively parallel
reporter assays (MPRA) have traditionally been used as a brute force attempt to identify
enhancers genome wide. However, these assays suffer from issues with sensitivity and
specificity (Inoue and Ahituv 2015). More targeted approaches such as with CRISPR-Cas9
technology have proved extremely successful in identifying functional enhancers for specific
genes (Korkmaz et al. 2016). Efforts to scale up CRISPR based screens have been
achieved (Fulco et al. 2019). Still, the method remains prohibitively expensive and relatively
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low throughput. In order to reliably identify enhancers at scale a combination of features that
are commonly associated with enhancers can be used for genome wide identification of
enhancers.

1.3.2 Sequence conservation
Enhancers can be identified by a number of features. One such feature that has been
exploited is sequence conservation. Through comparative genomics, methods have been
developed to identify highly conserved regions across mammalian species which were, in
turn, shown to be enriched in enhancer elements (Bejerano et al. 2004; Pennacchio et al.
2006; Harmston et al. 2017).  However, the conservation of sequence is not limited to
enhancers and therefore such methods result in many false positives. Indeed, it is also
possible to identify enhancers that are not conserved in sequence but are still able to drive
gene expression in a similar fashion to their orthologues (Harmston 2020).

1.3.3 RNA Polymerase II and enhancer transcription
RNA polymerase II is the essential machinery required to carry out transcription of genes
into mRNA. RNA Pol II is able to coordinate transcription through modification of its
carboxy-terminal domain (CTD), a constituent of its largest subunit (Cho et al. 1997).
Changes in the phosphorylation state of the CTD can modulate the transcriptional activity of
RNA Pol II, together these modifications constitute the ‘CTD code’ (Harlen and Churchman
2017). The Phosphorylation of serine 5 and 7 are typically associated with promoter regions
dependent on transcription factor II H (TFIIH). Serine 7 phosphorylation can also be
observed at promoter distal regions. Serine 2 phosphorylation is another modification that
can be found during transcriptional elongation (Komarnitsky, Cho, and Buratowski 2000; Ni
et al. 2011). Both the occupancy of RNA Pol II and the subsequent transcription at
non-coding loci can be indicative of enhancer activity. The physicochemical properties of the
CTD code have also been shown to influence the formation of phase separation and other
similar domains (see 1.4.3 Phase separation and transcriptional factories) (Harlen and
Churchman 2017).

For a more direct assessment of enhancer activity the transcriptional activity of non-coding
sequences can be determined by quantifying the amount of RNA using methods such as
RNA-seq. Like genes, some enhancers are transcribed into enhancer RNAs (eRNA) via
RNA polymerase II (Kim et al. 2010). Several methods have therefore been developed to
measure the transcriptional activity of putative enhancer sequences. Cap analysis of gene
expression (CAGE-seq) has been used in the FANTOM5 project to  compile a list of putative
enhancers across a range of cell-types (Noguchi et al. 2017; Andersson et al. 2014). This
method identifies regions of bi-directional transcription which is a feature associated with
enhancers. However, like most enhancer features, bi-directional transcription may not be
exclusive to enhancers, nor are they ubiquitous across all enhancers (Young et al. 2017).
Alternatively, self-transcribing active regulatory region sequencing (STARR-seq) can be used
to identify enhancers through their transcriptional activity (Arnold et al. 2013). This approach
is more direct and aims to identify sequences of DNA that are able to transcribe themselves
when placed downstream of a minimal promoter. The amount of transcribed sequence is
then mapped back on the reference genome where the read depth is indicative of the
enhancer activity.
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1.3.4 Chromatin modifications
DNA is often sequestered with proteins into chromatin which helps to organise the chromatin
into three-dimensional structures. There is increasing evidence that the proteins that form
the chromatin can directly affect the expression of genes through the modification of its
histone tail that then influences the recruitment of transcriptional machinery. Additionally,
these proteins may have a more passive role in gene regulation such as by modifying the
chromatin architecture that makes the DNA more accessible to transcriptional machinery
and mediating chromatin interactions between enhancers and promoters. Chromatin
modifications can also modulate the physicochemical properties of the chromatin and is
associated with the three-dimensional organisation of chromatin (see 1.3: Enhancers in
context: Chromatin architecture). For example, homotypic attraction describes the
process in which chromatin regions with similar properties tend to attract one another. This
results in localised distinct compartments within the nucleoplasm. There are several models
that describe the consequences of the physicochemical properties and are discussed in
further detail later on (see 1.3.3: Phase separation and transcription factories). These
processes are important to understand in the context of gene regulation as it has been
shown through genomic rearrangements and transposition how active genes can be
silenced through the abnormal juxtaposition with heterochromatic regions in a process
termed position effect variegation (Baker 1968; Karpen 1994). This would suggest that the
topology of the chromatin architecture plays a role in gene regulation.

With the advent of next generation sequencing, the study of these proteins have become
increasingly accessible. Coupled with chromatin immunoprecipitation (ChIP), ChIP-seq as it
is known, has enabled comprehensive genome wide mapping of proteins including
transcription factors and coactivators as well as histone modifications. ChIP-seq works by
sequencing DNA that binds to an antibody specific to a transcription factor or histone
modification allowing for the study of the following genomic features.

1.3.4.1 Coactivators
The P300-CBP coactivator family are two closely related proteins that have been shown to
increase the transcription of their target genes. Both P300 and CBP act via three main
mechanisms to increase the rate of transcription. 1) Modulation of chromatin via histone
acetyltransferase (HAT) activity that relaxes chromatin and  increases the accessibility of
DNA to transcriptional machinery (Raisner et al. 2018). 2) Recruitment of transcriptional
machinery such as RNA polymerase II (von Mikecz et al. 2000). 3) Acting as a
transcriptional coactivator through binding activators such as transcription factors (J. Chen
and Li 2011). P300 has been shown to exist largely at DNaseI hypersensitive sites (DHSs)
while up to 75% of P300 has been shown to bind in regions distal to promoters. Indeed,
P300 has been shown to localise in regions with histone modifications that are indicative of
enhancers (Heintzman et al. 2007).  P300 is therefore often used to identify enhancer
sequences (Z. Wang et al. 2009; Visel et al. 2009).

1.3.4.2 Transcription factor binding
Enhancers can also be identified through their binding of transcription factors (TFs) which
typically bind short degenerate sequences called ‘motifs’. TFs work by binding to enhancers
in a combinatorial fashion with multiple homotypic or heterotypic binding events. It is largely
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through the combinatorial binding of the 1600 known transcription factors that enhancers can
orchestrate the complex spatial and temporal expression of genes (Lambert et al. 2018). In a
similar fashion to coactivators, TF binding at enhancers work to regulate gene expression
through various mechanisms: A) mediating RNA Pol II recruitment or exclusion. B) modifying
histone tails to make transcription more amenable through histone acetyltransferases or
more difficult through histone deacetylase activity (HDAC) (Narlikar, Fan, and Kingston
2002).  C) the recruitment of coactivators such as P300. The action of TFs generally appears
to coordinate the expression of genes through localised changes in chromatin structure and
the surrounding microenvironment (see 1.3.4 Transcription factories), while they are also
directly involved in transcription.

1.3.4.3 Histone modifications
The formation of chromatin occurs when DNA wraps around octamers made up of four core
histones, H2a, H2b, H3 and H4, to form nucleosomes. Here, 147 base pairs of DNA are
wrapped in 1.65 turns around each histone protein with 50bp of free DNA between them.
Each of these four core histones contain a globular C-terminal domain and an unstructured
N-terminal domain that are subject to a diverse set of post translational modifications such
as methylation, phosphorylation, ubiquitination and sumoylation by histone modifying
enzymes.

Histone modifications are one of the most commonly used features to identify enhancers.
There are two main histone modifications that are used: H3K4me1 which is correlated with
enhancers in the active, inactive and primed states (Heintzman et al. 2007); and H3K27ac
which is correlated with enhancers in the active state when found with H3K4me1 (Creyghton
et al. 2010). There is also increasing evidence that promoters can also have enhancer
activity and as such have been termed ePromoters (Dao et al. 2017). Although useful,
histone modifications like all other enhancer features are not a perfect indicator of enhancer
function. In fact, the functional role of histone modifications and their relationship with
enhancers are not fully understood. For example, some studies have shown that both an
increase and decrease in global levels of H3K4me1 result in negligible effects on gene
expression. Some speculate that histone marks such as H3K4me1 may be a bi-product of
the cognate methyltransferase M113/4 whose function is the key driver behind changes in
gene expression. The acetylation of H3K27 is carried out by acetyltransferases such as
P300/CBP. Again, its function is not fully understood but acetylation appears to neutralise the
positive charge on the lysine which means the positive charge no longer attracts the
negative charge of DNA and relaxes the chromatin. This residue can also be antagonistically
tri-methylated during polycomb repressive complex 2 (PRC2) mediated silencing. H3K27ac
has therefore also been suggested to act as a bookmark by preventing PRC2 mediated
methylation (Pengelly et al. 2013).

1.3.5 Chromatin accessibility
Changes to the chromatin generally act to make chromatin less accessible in the case of
heterochromatin or more accessible in the case of euchromatin where genes in the latter are
more likely to be transcribed. Within euchromatin exist DNase hypersensitivity sites (DHSs)
that are known to contain transcriptionally active regions of DNA such as genes and
enhancers. Experimental techniques have therefore been developed to exploit this
phenomenon such as DNase accessibility assays. DNase accessibility assays utilise the
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enzyme DNase I to digest DHSs (Dorschner et al. 2004). An alternative approach is
ATAC-seq. This approach offers a faster and more sensitive approach by inserting
sequencing adapters at open regions of the chromatin using an adapted Tn5 transposase
(Buenrostro et al. 2015). These regions can be overlapped with various other more direct
features of enhancers to aid in their identification.
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Figure 1.1. Enhancer features and mode of action. i) Enhancers can 
recruit transcriptional machinery including RNA Polymerase II and 
transcription factors. ii) Enhancers can recruit chromatin modifiers such as 
P300 to make chromatin more accessible through histone acetyltransferase 
activity. iii) Enhancers are transcribed during activation of a gene to produce 
enhancer RNA’s.  
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1.4 Enhancers in context: Chromatin architecture
The enhancer features described previously can be used to identify enhancer sequences.
However, reconciling them with their cognate enhancers is more difficult. Enhancers are
known to be able to regulate gene expression irrespective of the linear distance and
orientation of the target gene. The reason that distal enhancers are able to interact with
genes that can be up to, and in some cases beyond 1Mb away, is a consequence of the
flexibility of the DNA polymer and their physical interaction with their target promoters
(Dekker et al. 2002a; Bickmore 2013). To understand how and why enhancers work we must
first consider the nature of the relationship between distal enhancers and their target
promoters. This relationship is best explained by the organisation of  chromatin into higher
order structures such as A/B compartments (Lieberman-Aiden et al. 2009a), nuclear lamina
associated domains (LADs) (Lieberman-Aiden et al. 2009b) and topologically associated
domains (TADs) (Dixon et al. 2012; Nora et al. 2012; Sexton et al. 2012a); which package
the linear DNA polymer into increasingly more complex secondary and tertiary structures.
These structures fold the DNA in such a way that the relevant enhancers, TFs and
transcriptional machinery can access genes through chromatin looping and localised
changes in nucleoplasm (Fudenberg et al. 2016; Hnisz et al. 2017). The structural
organisation of the chromatin results in a multilayered topology of chromatin organisation
that dictates a unique set of transcriptional instructions for each of the ~200 different known
cell types. It has also been shown that the phenomenon of chromatin directed transcription
occurs between individual cells of the same type where single cell genomics has shown
variation in the transcriptomes of cell sub-populations (Trapnell 2015).

In previous years, attempts to probe the underlying basis of the chromatin architecture have
been restrained by experimental limitations. It is now an intensely active field of research
largely owing to the development of new protocols such as formaldehyde cross linking
studies including 3C (Dekker et al. 2002b) and its derivatives 4C (Zhao et al. 2006), 5C
(Schoenfelder et al. 2018), Hi-C (Belton et al. 2012) and more specialised enrichment
conformation captures such as promoter capture Hi-C (PCHi-C) (Schoenfelder et al. 2018).
These methods are collectively referred to as 3C based methods. Fundamentally, they all
work by cross-linking, digesting and sequencing interacting DNA fragments. The differences
between the methods arise from the “view-point” where 3C identifies interactions between a
single pair of genomic loci, 4C the interactions between a single loci with many other loci, 5C
that identifies many interacting loci in defined regions and finally, Hi-C that aims to identify
interacting pairs genome wide. Additionally, the study of chromatin architecture has been
improved by technologies such as fluorescent in situ hybridisation (FISH) (Gall and Pardue
1969) have been coupled with superresolution microscopy (Sigal, Zhou, and Zhuang 2018).
This has allowed for the study of chromatin organisation at an unprecedented level of detail
and has furthered our understanding of how gene expression and chromatin organisation
influence one another.

1.4.1 A and B compartments
At the highest level the chromatin is segregated into two distinct types of chromatin, termed
A and B compartments. A compartments typically consist of gene rich chromatin and active
histone marks and are located towards the centre of the nucleus. B compartments on the
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other hand tend to be gene poor, with chromatin markers consistent with transcriptional
silencing and tend to be located at the nuclear periphery (Lieberman-Aiden et al. 2009b).

1.4.2 Topologically associating domains (TADs) and chromosomal
looping
Within A/B domains chromatin is further organised into structures at the 10Kb to Mb
resolution, known as topologically associating domains (TADs) (Dixon et al. 2012; Nora et al.
2012; Sexton et al. 2012b). TADs are the most striking feature observed in chromosome
conformation capture studies and display a relatively higher internal frequency of contacts.
Their function is largely unknown with several explanations as to their existence. TADs are
typically demarcated by boundaries consisting of convergent CTCF binding motifs (Rao et al.
2014). According to the loop extrusion model, the prevailing theory on TAD formation, these
act as stalling sites for DNA loops that are traversed through cohesin rings (Fudenberg et al.
2016). Indeed, depletion of CTCF has been shown to disrupt TAD structure but interestingly,
does not extend further to A/B compartmentalisation (Rao et al. 2014). There is also
increasing evidence that the general organisation of chromatin plays a more subtle role in
the regulation of gene expression (Sadowski et al. 2019).

TADs and similar domains are observed across species from mammals (Dixon et al. 2012;
Nora et al. 2012; Sexton et al. 2012b) to Drosophila (Sexton et al. 2012b) where TADs were
first described. As well as in C.elegans (Crane et al. 2015) and A.thaliana (Congmao Wang
et al. 2015), while TAD like domains have also been described in both yeast and bacteria
(Mizuguchi et al. 2014; Le et al. 2013). TADs are also shown to be conserved between
species and may serve as stable heritable blocks of the genome (Harmston et al. 2017;
Krefting, Andrade-Navarro, and Ibn-Salem 2018). However, TADs at the structural level
show a diversity between the species described, and the mechanisms in which they are
formed and maintained vary too. Despite this, one feature of TADs that remains unwavering
between these species is the association between their structure and gene expression,
particularly in the context of cell fate determination (Gonzalez-Sandoval and Gasser 2016).
Additionally, TAD boundaries correlate strongly with replication domains and may serve as a
regulatory unit of replication timing (Pope et al. 2014). Several studies have also implicated
the perturbation of the TAD architecture by boundary element disruption with disease
(Ibn-Salem et al. 2014; Spielmann and Mundlos 2013; Anne-Laure Valton 2016). However
there is an argument to be had on whether the loss or alteration of TAD structure itself is the
driving factor and or if it is due to the specific perturbation of the boundaries (Despang et al.
2019).

1.4.3 Phase separation and transcription factories
The organisation of chromatin can also be influenced by the physicochemical properties of
chromatin and associated proteins. Liquid-liquid phase separation (LLPS) is thought to be
one of the processes that drive these organisational changes (Hnisz et al. 2017). LLPS
describes membraneless compartmentalisation within the nucleus similar to those such as
nucleoli, cajal bodies and nuclear speckles. These processes are akin to droplets of oil
suspended in water. It is thought that elements such as enhancers and genes, proteins such
as RNA Pol II and TFs and processes such as transcription producing coding- and
non-coding RNA all contribute to the formation of LLPS regions.
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Transcription factories are another model that describe discrete nucleoplasmic regions.
Rather than describing a more general model of compartmentalisation, transcription factories
are specific to foci of transcription. Indeed, phase separation has been suggested to be the
underlying mechanism for the formation of transcription factories (Palikyras and Papantonis
2019).
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Figure 1.2. The hierarchical structure of chromatin. Chromatin is 
organised into A/B compartments, topologically associating domains, 
chromatin loop and nucleosome clusters. Adapted from Dogan and Liu 2018.
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1.5 Predicting enhancer position and target genes
Enhancers are incredibly diverse in their activity across different cell types, in addition to this,
they contain little to no sequence or structural specificity that makes them easy to identify.
This combined with the fact that they can often be located up to 1Mb away, presents a
significant challenge of identifying enhancers and their target genes. Experimental methods
for identifying enhancers are limited by their low throughput or cost or a combination of the
two. Computational methods seek to address these issues by taking advantage of known
enhancer features in order to predict genome wide de novo enhancer sequences. Indeed,
there are many pioneering predictive algorithms that have sought to leverage this
information in order to predict the location of enhancers and their cognate genes. Many of
these algorithms utilise the features that are commonly associated with enhancers to train
and validate their predictions. The use of in silico predictions provides a useful tool to
supplement experimental data that can be costly. Here we will briefly discuss enhancer
prediction methods, the benefits and drawbacks of these methods and outline the key
requirements needed to improve existing models.

There are a plethora of computational methods to annotate enhancers genome wide. At the
time of writing there are currently 749 publications that can be found using the specific
search terms “enhancer prediction” and 131,000 publications are found where the search
terms “enhancer” and “prediction” are used. This highlights not only the sheer number of
methods being developed, but also their widespread adoption in enhancer biology research.
Early enhancer prediction models investigated the DNA sequence as a predictor for
enhancers. These often use k-mer based methods (oligomers of length k) coupled with a
support vector machine (SVM) classifier to predict enhancer sequences (Lee, Karchin, and
Beer 2011). With the advent of new enhancer associated features, methods integrating other
sources of epigenomic data have been developed. RFECS for example utilises a
random-forest based classifier that is trained on chromatin states and aims to predict
enhancers defined by both P300 binding sites and DNase-I hypersensitive sites (Rajagopal
et al. 2013). Other approaches, such as DEEP, present a hybrid SVM/ artificial neural
network (ANN) model trained on multiple sources of enhancer data published from
ENCODE, FANTOM5 and VISTA (Kleftogiannis, Kalnis, and Bajic 2015). One major caveat
of methods that rely on linear genomic data to predict enhancers is that identifying their
cognate gene. Assigning enhancer-promoter pairs is often dealt with by either window based
linkage or nearest gene linkage. The window based linkage approach uses a defined region
around a gene to assign an enhancer (Schmidt et al. 2017; Ouyang, Zhou, and Wong 2009).
The nearest gene linkage approach identifies the nearest gene to an enhancer to establish a
pair (Lee, Karchin, and Beer 2011). However, our knowledge of how enhancers can act over
long distances as well as the complex structure of chromatin undermines the validity of these
approaches. To solve this problem, 3C data that maps the 3D interactions of chromatin, can
be used as a more robust measure of EP pairs (Moore et al. 2020).

Despite the advancements in the prediction of enhancers many problems persist. Much of
these problems are rooted in the quality of the data used to generate and validate the
predictions. A thematic issue in enhancer biology is, as previously discussed, the small
number of validated enhancers in very few cell types due to the current limitations in the
scalability of CRISPR based screening. This has two main problems: one is that the small
number of validated enhancers means that this data is rarely useful to validate a models
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predictions nor does its size lend itself to powerful statistical analysis; secondly, when
enhancer features, such as the histone modifications used by ENCODE, are used in lieu of
directly validated enhancers they should be considered ‘putative enhancers’ as they are not
100% accurate. The use of enhancer features as validation sets such as those provided by
ENCODE, FANTOM5 and other means can lead to ‘validation creep’ in which non-validated
putative enhancers are considered true enhancers. Using putative enhancers in this way can
lead to predictions progressively moving further from the true set of enhancers (Halfon
2019).

The fundamental lack of knowledge of enhancers and how they work can also lead to bias in
the interpretation of results. For example, the use of 3C data in validating EP pairs is
typically based on the interaction between two chromatin fragments that contain a gene and
a predicted enhancer. However, evidence suggests that enhancers can also act to regulate a
gene without persistent direct interactions (Benabdallah et al. 2019), or through indirect
interactions such as with enhancer chains (W. Song, Sharan, and Ovcharenko 2019). The
current use of 3C data means that EP pairs are missed because the 3C technology is not yet
sensitive enough to reliably and consistently detect transient EP contacts. Secondly, the
validation using data representing pairs of interacting chromatin neglects our evolving
understanding of how enhancers regulate gene expression.

To address these challenges higher throughput CRISPR screens have been developed to
produce a more comprehensive list of validated enhancers although these are limited to a
few cell-types (Fulco et al. 2019). Until robust databases of validated enhancers are
available computational methods must be clear in that they are putative to prevent ‘validation
creep’ (Halfon 2019). As such, it is becoming increasingly obvious that models must
incorporate more enhancer features in order to predict and validate putative enhancers.
Therefore, to aid the prediction and validation of enhancers new methods should be
developed to identify novel features of enhancers. For example, 3C methods offer the
opportunity to characterise and understand the spatial features of enhancers within the
chromatin architecture and provide a potential new enhancer feature. This can be achieved
in part by addressing the representation and investigation of EP contacts by considering the
EP pairs beyond the classical model of direct interaction.

1.6 Summary
In order to link non coding variation with changes in gene expression we not only need to
identify enhancers, but must also assign a gene or genes to the enhancer. This will greatly
improve our understanding of how cells manifest with a wide range of phenotypes such as
disease. In recent years there has been a great deal of success in identifying mutations in
specific enhancers that affect specific genes that lead to specific phenotypes. These have
relied upon low-throughput assays that can accurately define enhancer activity. While more
high-throughput methods have been developed, they are neither cost efficient or as reliable.
This has resulted in a scramble to computationally predict enhancer sequences genome
wide using known enhancer features. The problem, however, is that we do not yet know
enough about the makeup of enhancers to produce robust predictions. Nor can we faithfully
predict the genes they regulate. It is also becoming increasingly apparent that while
individual elements are essential for appropriate gene function, they often work in concert
rather than as individuals. The expression of genes, the role of regulatory enhancers and the
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conformation of chromatin in three-dimensional space are intimately linked and exhibit a
recursive influence on one another. To unpick these dynamic relationships and improve
enhancer predictions new integrative approaches must be developed to study gene
regulation genome wide in a more holistic manner.

1.7 Aims and objectives of this thesis
The folding of chromatin into hierarchical structures ultimately acts to localise genes with the
prerequisites for transcription such as RNA pol II and the appropriate chromatin
modifications. The folding of chromatin into said structures also appears to be under the
influence of RNA pol II and chromatin modifications. As to whether gene expression dictates
the chromatin architecture or vice-versa is poorly understood. In either case, it is clear that
the organisation of chromatin plays an important role in mediating the communication
between genes and enhancers.

The aim of this thesis is to present a new body of work that outlines how the chromatin
architecture and gene expression data can be used to find enhancers. To do so we
represented 3C data in the form of networks. This allowed us to to use network theory
approaches to investigate the topological characteristics of various loci within the chromatin
architecture. We then aimed to reconcile these topological characteristics with enhancer loci.
We then sought to improve the characterisation of enhancers by developing a framework to
integrate gene expression data into the network. Ultimately, we hypothesised that the
integration of gene expression data and chromatin conformation (3C) data could be used to
further classify enhancer loci.
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Chapter 2: Targeted sequencing of the GATA2
locus of patients with GATA2-like deficiency
reveals a novel structural alteration

2.1 Introduction
Hematopoiesis is the driving process in the differentiation and cell lineage commitment for
hematopoietic stem cells (HSCs) (Ng and Alexander 2017). The proliferation and
differentiation of HSCs to their terminal state are tightly regulated by epigenetic modifiers,
regulatory elements and a carefully prescribed cocktail of transcription factors (Muench and
Grimes 2015). GATA2 is expressed in early hematopoietic progenitors and is required for
stem cell longevity and lympho-myeloid differentiation (Laurenti et al. 2013). The GATA2
gene is located in chromosome 3 and encodes a transcription factor that plays an essential
role in regulating hematopoiesis by facilitating the development and proliferation of specific
hematopoietic and endocrine cell lineages (Orkin 2000). During normal function both alleles,
maternal and paternal, are transcribed. Perturbation of this delicate equilibrium can have
significant and malignant downstream effects.

Single nucleotide variants (SNVs) in the GATA2 gene have been reported to cause  amino
acid substitutions, frameshift/deletions, loss of intronic enhancer function or aberrant splicing
events (Spinner et al. 2014; Dickinson et al. 2014; Wlodarski et al. 2016; Donadieu et al.
2018; Kozyra et al. 2020). This can lead to the loss of either allele and the resultant
haploinsufficiency leads to phenotypes including, but not limited to, monocytopenia,
neutropenia, and mycobacterial infection, dendritic cell, B and natural killer (NK) lymphoid
deficiencies, as well as familial myelodysplastic syndrome (MDS)/ acute myeloid leukemia
(AML) and Emberger syndrome (Spinner et al. 2014). Typical GATA2 deficiency phenotypes
can also present with the exclusion of any coding mutations. Although less common, the
alteration of gene dosage by structural variation (SV) has been reported. This has been
shown to occur through either germinal losses of the locus or the somatic inversion of its
cognate -110 super enhancer by inv(3) (q21;q26) or t(3;3)(21;q26) (Gröschel et al. 2014;
Vinh et al. 2018).

Here, we present a patient (KERNA) with classical features of GATA2 haploinsufficiency
including severe monocytopenia, B and NK lymphopenia and myelodysplasia but lacking in
any known synonymous mutations in the GATA2 gene. KERNA was screened alongside 11
other patients for SVs that could explain the manifestation of GATA2 haploinsufficient
phenotypes in the absence of a coding mutation. In KERNA we identified a novel de novo
tandem duplication of a region (187Kb) comprising the entire GATA2 gene as well as its -110
enhancer region and a deletion of 25kb of the 5’ end of RPN1.
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2.2 Materials and Methods
Material for KERNA was obtained along with 11 other patients with informed consent through
the French GATA2-like Project and assigned to Newcastle Biobank by material transfer
agreement (Newcastle and North Tyneside 1 Research Ethics Committee Reference
17/NE/0361) for 12 patients (Table 2.1). Extended capture targeted amplicon sequencing
was carried out on a 550,059bp region (chr3:127,849,971-128,400,030) that contains the
GATA2 gene (chr3:128,198,265-128,212,030) flanked by EEFSEC and RPN1, it’s -110 super
enhancer and 8 other neighbouring genes (Figure 1.1). This work was carried out by the lab
of Prof. Matthew Collin.

I received the raw sequencing data as raw Fasta files. These were then processed and
aligned the sequences to GRCh37/hg19 assembly using BWA (v.0.7.6.a) (Li and Durbin
2009) and reads were later indexed using Samtools (v.1.3.1) (Li et al. 2009). Because
amplicon sequencing was used, duplicates were not removed. Two patients, A2163 and
A2744 were previously identified as having non-synonymous mutations within the exons of
the GATA2 gene (Table 2.1). To ensure that none of the remaining 10 patients contained
non-synonymous SNVs the GATA2 gene and its distal enhancer were first screened for
SNVs using GATK3 following the recommended best practices for germline variant calling
(Van der Auwera et al. 2013).

We first carried out a comprehensive search of methods to detect structural variations in
amplicon-based sequencing data. Of those tested, to detect structural variations we opted to
use ONCOCNV (v.6.8) (Boeva et al. 2014); a copy number calling algorithm based on
read-depth to identify a CNV in KERNA and identify any copy number variations in the rest
of the cohort. Although a method designed for tumor vs control CNV detection it is
fundamentally designed to tackle the challenge of detection copy number changes in
amplicon NGS data. Of the 12 patients, two (KERNA and MURET) were sequenced
alongside family members which were used as the controls to generate a baseline model for
the CNV analysis. The baseline model is constructed from a principal component analysis
(PCA) analysis where each principal component accounts for the levels of variation between
the samples. The mother of KERNA (DANMU) was excluded from the control group
following the identification of a population CNV and previously suspected GATA2-like
phenotypes. Common population copy number variable regions were filtered using the
population structural variant reference database provided in the paper by Sudmant et al,
(Sudmant et al. 2015). Results of the CNV analysis were then validated and the breakpoints
were pinpointed by manual inspection using the Integrative Genomics Viewer (IGV)
(Robinson et al. 2011).
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Sample 

Name
File Name Sample Details

DEMSO WTCHG_406087_015 MonoMac with PAP; died after BMT

MURET WTCHG_406087_002 No information

DANMU WTCHG_406087_001 Mother of MURET; died from aplasia

MURSE WTCHG_406087_010 Father of MURET; no symptoms

MURAL WTCHG_406087_020 Sister of MURET; no symptoms

BALMA WTCHG_406087_006 MonoMac with PAP, peripheric thrombocytopenia and 

mycobacteria in infancy (father thrombopenic too)

KERNA WTCHG_406087_012 
MonoMac with mycobacteria, and tri8 in BM, BMT in 

2016 (april) 

HELLA WTCHG_406087_019 Mother of KERNA; no symptoms

KERME WTCHG_406087_005 Father of KERNA; no symptoms

NAGFL WTCHG_406087_013 No information

15MB0044

76 
WTCHG_406087_023 

MDS, tri8, warts, infections; 

c.229+13_229+14insGCCins203_229+13; p.?

A6981 WTCHG_354665_002 MDS and lymphoedema, 59 years old, FL=8986, GATA2 AEI

A2604 WTCHG_354665_004 Colitis and premalignant lesions in colon, Stage III CIN and 

VIN HPV, 28 years old, FL=11400, GATA2 AEI

A2931 WTCHG_354665_007 Developmental delay, MDS with small megakaryocytes, 11 

years, FL=7078, GATA2 AEI

A7200 WTCHG_354665_008 no clinical info, 13 years, FL 3439, no GATA2 AEI 

A2163 WTCHG_354665_019 
known GATA2 mutation (3:128200113G>A, c.1192C>T, 

R398W)

A2744 WTCHG_354665_021 known GATA2 mutation (3:128204841_128204842insC, 

c.599_600insG, G200fs)

Table 2.1. Targeted sequencing data for 12 patients and 5 family members 
obtained through the French GATA2-like Project and assigned to Newcastle 
Biobank by material transfer agreement (Newcastle and North Tyneside 1 
Research Ethics Committee Reference 17/NE/0361) for 12 patients 
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Figure 2.1. Targeted sequencing region (red box). A 550,059bp region 
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2.3 Results

2.3.1 Targeted sequencing GATA2 locus of patients with
GATA2-like deficiency reveals a new structural alteration
We analysed a cohort of 12 patients presenting with a GATA2 deficient phenotype in which
10 were concurrent with the absence of non-synonymous mutations in the coding sequence
of the gene or non-coding mutations in its distal enhancer.

In KERNA we identified a de novo tandem duplication of a region (187Kb) comprising the
entire GATA2 gene as well as its -110 enhancer region and a deletion of 25kb of the 5’ end
of RPN1 (Figure 2.1). All 12 patients were screened for CNVs. Following read depth
analysis, patients KERNA and NAGFL were found to contain CNV’s (Figure 2.2). This was
complemented by work done in parallel suggesting a CNV in KERNA in the capture region
and was determined by MLPA targeting the GATA2 gene in which a 1.5x copy-number
increase was observed between KERNA (Figure 2.3a) and the mother (Figure 2.3b). The
CNV deletion event was determined to be inherited from the mother. However, this was
determined to be a population common CNV region (found in 1.37% of the population) when
cross matching against The Database of Genomic Variants (MacDonald et al. 2014). The
deletion event was shown to remove an alternative transcription start site for RPN1 at
128,400Kb while it is also associated with CTCF and H3K27ac binding peaks suggesting
potential structural changes in the chromatin conformation. The CNV identified in the patient
NAGFL was also within the population variable region and suggests that this region is more
susceptible to SVs (Figure 2.2b).

The exact breakpoint coordinates of the duplication were identified using the IGV genome
browser by identifying soft-clipped reads (mismatched reads at the 5’ and 3’ ends)
(GRCh37/hg19 chr3:128190688-128404309) (+/- 1bp) (Figure 2.4a). The nature of the
duplication was established by analysing the read mapping orientation. Under normal
circumstances for paired-end sequencing data the read orientation will always be divergent
for 5’ to 3’ and 3’ to 5’ reads. When a proportion of the reads (from the duplicated region) are
inverted with respect to the reference genome this results in converging read orientations
and suggests a tandem duplication (Figure 2.4b). Analysis of SNPs (rs2335237 (exon 1)
and rs1573858 (exon 2)) were shown to be heterozygous in KERNA and homozygous in the
mother with a 2:1 ratio suggesting the duplication was inherited from the mother.

This was later confirmed by the lab of Prof Collin with QPCR analysis of GATA2 expression
in PBMC and fibroblasts comparing ∆∆Ct (GATA2-GAPDH) in two controls and the patient
using three primer pairs for GATA2 exons 1-2, exons 3-4, and the GATA2 antisense
transcript (AS1) (Figure 2.5a). Strikingly, the expression of GATA2-AS1 was shown to
increase in both PBMC and fibroblasts by Q-PCR and RNA-seq (Figure 2.5b). GATA2-AS1
is a long non-coding RNA (lncRNA) that has been shown previously to inhibit GATA2
expression through interaction with the GATA1 protein at the GATA2 promoter (L. Zhang et
al. 2019). Following duplication the second copy of GATA2 is placed closer to its distal
enhancer and may activate the transcription of GATA2-AS1 more freely and in turn, inhibit
the expression of all three copies of GATA2 (Figure 2.5c).
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There are no current reported cases of a germinal copy-number gain of the gene or its
regulatory regions associated with a typical GATA2 haploinsufficiency phenotype. The
results from KERNA  suggest a novel mechanism by which a GATA2 deficient phenotype
can manifest through a de novo germline duplication event of  loci containing the GATA2
gene. A manuscript for these findings has been submitted to Blood Advances.
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Figure 2.2. Read-depth analysis of KERNA (a) and NAGFL (b). Two 
patients, KERNA and NAGFL were found to contain duplication and deletion 
events. Read-depth analysis was carried out using ONCOCNV (v.6.8). 
MURSE and MURAL used as controls to construct the baseline model.

A

B
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Figure 2.3. MLPA data for KERNA and DANMU a 1.5x copy-number 
increase of GATA2 was observed between KERNA (a) and the mother (b)

A

B
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Figure 2.4. Identification of breakpoints and duplication type. A) Exact 
breakpoints were identified using IGV genome browser by identifying 
soft-clipped reads (GRCh37/hg19 chr3:128190688-128404309) (+/- 1bp). B) 
Normal read orientation always be divergent for 5’ to 3’ and 3’ to 5’ reads. 
When a proportion of the reads (from the duplicated region) are inverted with 
respect to the reference genome this results in converging read orientations 
and indicates a tandem duplication 
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Figure 2.5. Characterisation of a GATA2 tandem duplication. A) QPCR 
analysis of GATA2 expression in PBMC and fibroblast comparing ∆∆Ct 
(GATA2-GAPDH) in two controls (white) and the patient (gray) using three 
primer pairs for GATA2 exons 1-2, exons 3-4, and the GATA2 anti-sense 
transcript (AS1). B) The expression of GATA2 and GATA2-AS1 determined by 
RNA-seq in PBMC for the patient (grey) and controls (white). C) Structure of 
the tandem duplication with the position of the GATA2 distal enhancer 
(asterisk)  

A B

C
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2.4 Discussion
Immune disorders such as GATA2 haploinsufficiency describe the condition of deficient,
overactive or even malignant immune systems (Hsu, McReynolds, and Holland 2015). The
broad range of phenotypes are driven by the complex nature of the genetic network that
underpins our immune systems. Current strategies are well placed to detect direct mutations
in coding genes that drive specific phenotypes. This is exemplified by the non-synonymous
mutations in the GATA2 gene of our patients A2163 and A2744. Up until recently, most
diagnostic tests for pathogenic mutations have focused on protein coding genes as a result
of the previously prohibitive costs of WGS compared to WES. Targeted capture of a locus
can cast a wider net and include some of the non-coding regions that flank a gene of interest
but, as we show it is still limited. Even with the expansion to WGS difficulties still remain in
interpreting the functional effects of variants beyond exons. We found no pathogenic SNVs
in any of the exons captured in the remaining 10 patients of the cohort. There may be a
subset of these phenotypes that can be explained by other mechanisms. Synonymous
mutations that affect the stability of RNA, for example, have been previously reported
(Kozyra et al. 2020). However, non-coding SNVs and SVs beyond the capture region used in
this study may also contribute towards GATA2 haploinsufficiency.

Mutations in the protein coding genes (2% of the genome) currently only account for roughly
25 to 50% of pathogenic variants in inherited mendelian diseases (Beaulieu et al. 2014),
(Yang et al. 2013). It remains that up to ~50% of pathogenic mutations occur somewhere in
the remaining 98% of the non-coding regions (NCRs) of the genome. In fact, there is also
evidence to suggest that even subtle, genome wide perturbations can also drive complex
transcriptional patterns (Boyle, Li, and Pritchard 2017). These complex transcriptional
patterns and variants across multiple loci have been implicated in complex diseases such as
Alzheimer's (Jiang et al. 2017).

In the last decade the cost of WGS has dropped dramatically and has facilitated more
widespread adoption in clinical diagnostics. For example the 100,000 Genomes Project aims
to establish WGS diagnostics within the UK’s National Health System (NHS) which will allow
researchers to identify drivers of disease across the whole genome (Turnbull et al. 2018). To
do so effectively, these approaches rely on the annotation of the non-coding genome using
linear features such as histone modifications, chromatin accessibility and expression
quantitative trait loci (eQTL) as well as non-linear features such as 3D chromatin interactions
(see Chapter 1). These are then used to annotate variants as pathogenic if they occur in
enhancers or TAD boundaries for example, as perturbations in these regions often result in
gene expression changes. We expect that many variants are falsely labeled as
non-pathogenic due to incomplete characterisation of the non-coding genome. These
problems can be addressed by higher quality data relating to linear features and the
discovery of new ones. There is also a wealth of 3C data that describes the conformation of
chromatin and the interactions between various loci and evidence to suggest that the
chromatin conformation is involved in the regulation of gene expression. This work would
benefit from case and control 5C study of this region to understand if and how this region is
rewired via the duplication event. Currently, there is a  limited understanding of how these
interactions dictate the expression patterns of genes. To address these problems we sought
to predict enhancer loci by analysing the global patterns encoded within the chromatin
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architecture. The results of which will facilitate a better understanding of the relationship
between enhancers and gene expression that is mediated by the chromatin organisation and
ultimately, improve the identification of non-coding variants that contribute towards disease.
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Chapter 3: The identification of enhancer nodes
with network centrality measures

3.1 Introduction
Disease states occur as a result of disrupting the regulation of key genes by mutations at
sensitive loci. These loci can contain enhancer sequences, which when perturbed directly
affects the expression of a gene. Alternatively, more complex and indirect mechanisms can
lead to aberrant gene expression. One example of this is the disruption of the 3D
organisation of chromatin by the ablation of TADs. These changes can affect the localisation
of enhancers to promoters, resulting in the misexpression of genes (Anne-Laure Valton
2016).  Identifying these loci are important when determining the functionality of non-coding
variants across the genome. The lack of functional variants found in 9 of the 12 GATA2
patients discussed in Chapter 2 highlights the importance of this. One solution to identify
functional non-coding variants is to identify direct physical interactions between the loci of
the variant and gene promoters. This is achieved using 3C data and methods have been
developed to identify these promoter-enhancer interactions (Ron et al. 2017). This is
achieved by identifying loci that interact with promoters as these are often enriched for
enhancer elements (Dekker 2008).

Enhancers are typified by their ability to increase the probability of gene expression through
the localisation of RNA pol II and transcription factors and modulation of the chromatin
structure. As discussed previously (See chapter 1: Enhancers), the study of enhancers is
limited by the lack of, or as yet unidentified, a ubiquitous and unifying feature such as the
‘cis-regulatory code’ to identify all enhancers (Yáñez-Cuna, Kvon, and Stark 2013).
Therefore, enhancer associated features such as transcription factors, co-activators, RNA
pol II, histone marks and DNase accessibility have been used in lieu of a definitive feature.
There are numerous publications that have sought to utilise enhancer associated features in
order to drive computational predictions of putative enhancers (Chengqi Wang, Zhang, and
Zhang 2013) and the genes they regulate (Hariprakash and Ferrari 2019). Despite the
apparent success of many of these algorithms, they are hamstrung by our limited
understanding of what an enhancer is and how it works. Our predictions are only as good as
the data that they are built on. Enhancer features, as useful as they have proved, do not
provide absolute and direct evidence for enhancer activity (See Chapter 1: Histone
modifications). These features can also be observed in other genomic elements. For
example, there is a growing ambiguity between promoters and enhancers as evidence
suggests they are more alike than previously reported, such elements are termed
Epromoters (Medina-Rivera et al. 2018; Andersson and Sandelin 2019). So, while there is
progress in the field of enhancer prediction, without further defining what an enhancer is, the
specificity of such algorithms will always be limited. Therefore, identifying additional features
of enhancers is of utmost importance in order to both predict enhancers and further our
understanding of how this class of regulatory element drives cell-type specific gene
expression.

29

https://paperpile.com/c/XWmKOJ/jPSo
https://paperpile.com/c/XWmKOJ/jPSo
https://paperpile.com/c/XWmKOJ/HKHqD
https://paperpile.com/c/XWmKOJ/lu73T
https://paperpile.com/c/XWmKOJ/ShyUL
https://paperpile.com/c/XWmKOJ/8MEwK
https://paperpile.com/c/XWmKOJ/8MEwK
https://paperpile.com/c/XWmKOJ/QWgwr
https://paperpile.com/c/XWmKOJ/Qu5ci+ZTkvx


One particular genomic feature that has come to light in the last decade and contributes
towards gene regulation is the three dimensional folding of chromatin. It is known to
localise cis regulatory elements (CREs) such as enhancers to gene promoters at large
distances across the linear genome to drive cell-type specific gene expression (Schoenfelder
and Fraser 2019). This is observed at the global level where enhancers are dynamically
organised to work in concert and orchestrate the correct spatio-temporal expression of
genes. This organisation is achieved through the folding of the chromatin fibre into
hierarchical compartments, domains and enhancer promoter (E-P) loops. Chromatin
conformation capture (3C) methods (See Chapter 1.4) have emerged as the leading
technology to map the structural organisation of chromatin and thus, elucidate the
mechanisms that drive cell-type specific gene expression.

However, traditional pairwise representations of 3C data are susceptible to missing both
transient and indirect enhancer promoter interactions while some enhancers remain distal to
the gene they regulate (W. Song, Sharan, and Ovcharenko 2019). For example
transcriptional bursting has been demonstrated enabling the periodic transcription of genes
with stronger enhancer sequences shown to result in more frequent bursts (Fukaya, Lim,
and Levine 2016). Enhancer activity has also been observed with a reduction in
enhancer-promoter proximity following the activation of a gene (Alexander et al. 2019).
There is also evidence that enhancers may establish and maintain regulatory circuits by
localising and stabilising the contact between a gene and the primary enhancer. In this
scenario secondary and tertiary enhancers may interact with the gene less frequently than
the primary enhancer, or not at all (W. Song, Sharan, and Ovcharenko 2019). These types
of indirect interactions are susceptible to be missed when 3C data is interrogated in a
pairwise manner. As a consequence, information such as indirect contacts and cooperative
regulatory subnetworks are lost. In addition to this, there is evidence that subtle changes
across the genome can influence gene regulatory networks (Boyle, Li, and Pritchard 2017)
while accumulation of these changes have been implicated with disease phenotypes
(Westra et al. 2013).

To address the analytical problem of identifying indirect associations in networks,
computational network analysis methods such as clustering and module finding algorithms
have been developed for a wide range of applications (Brohée and van Helden 2006). The
unifying aim of these approaches is to identify the modular structures within the networks
based on the properties of the nodes and/or edges. However, these methods have been
found to be less effective than the simpler guilt-by-association methods when tested across
a PPI network in S.cerevisiae (J. Song and Singh 2009). However, network theory has
re-emerged in recent years as computational resources have become more accessible and
performance has increased. Network theory approaches may offer a useful adjunct in
identifying intergenic enhancers by modelling chromatin interactions as networks. In these
approaches 3C contacts are transformed into networks where 3C restriction fragments are
represented as nodes and their interactions as edges. Such networks have been termed
chromatin interaction networks (ChINs) (Sandhu et al. 2012).

Representing 3C data as ChINs can alleviate some of the issues discussed by explicitly
defining indirect relationships and, as a consequence of this, capture the global relationships
between loci across the genome. The use of ChINs has been used to describe all manner of
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biological associations, from proteins to histone marks (Juan et al. 2016; Lundberg et al.
2016). Network measures can then be calculated to describe the topological characteristics
of particular nodes and identify those that are associated with particular biological features.
This approach has been used previously to interrogate the architecture of 3D-genomes in
simple organisms such as yeast (Hoang and Bekiranov 2013; Kruse, Sewitz, and Babu
2013) to more complex organisms such as mice (Babaei et al. 2015; Juan et al. 2016)). And,
of course, in humans; for example, Sandhu et al constructed a ChIN from RNA
polymerase-II mediated interactions describing large scale organisation into chromatin
communities with specific function (Sandhu et al. 2012). Pancaldi et al. were able to use
ChINs and assortativity measures to demonstrate how specific features of the chromatin are
enriched in promoter-promoter contacts vs promoter-non-promoter contacts (Pancaldi et al.
2016). Finally, Thibbodeu and colleagues showed that broad domains and super enhancers
in ChINs maintained unique and distinct topological properties that could be used to
distinguish broad domains from promoters and super-enhancers from normal enhancers
(Thibodeau et al. 2017). The representation and interrogation of 3C data as ChINs can be a
powerful medium by which to understand the relationships between the 3D genome and
gene regulation by enhancers. These specific patterns of 3D chromatin conformation add yet
another layer of complexity to the genome and represent another feature from which
enhancers can be identified.

3.2 Aims
In this chapter we aimed to understand how both cell-type and 3C methods contribute to
variability in the ChIN composition and topology in order to A) understand the effects of
using different cell-type and capture type 3C data on the ChIN architecture. B) investigate
the use of network centrality measures to identify enhancer nodes. C) Assess the limitations
of current enhancer features and improve the labelling of enhancer nodes.

3.3 Materials and Methods

3.3.1 3C datasets
We identified six datasets for analysis across a range of cell types and 3C viewpoints (See
Methods). Three 3C data sets derived from mESCs were used and include a single cell
Hi-C (mcHi-C) for multiple cells that were combined (Nagano et al. 2017). A Promoter
capture Hi-C (PCHi-C) originally generated by Schoenfelder et al. (Schoenfelder et al. 2015)
and reprocessed using CHiCAGO by Pancaldi et al (Pancaldi et al. 2016) as well as a
DNaseI hypersensitive site capture Hi-C (DNaseI-CHi-C) from Joshi et al (Joshi et al. 2015).
Raw data from Nagano et al was aligned and reprocessed previously by Inmaculada
Hernandez (Rico Lab) to the mm9 reference genome and contacts were normalised and
loops were called using the CHiCAGO algorithm with default settings (Cairns et al. 2016).
We then generated a multi-cell Hi-C dataset (mcHi-C) where contacts that existed in at least
two cells were kept. PCHi-C data was also downloaded for 17 primary immune cells from the
publication of Javierre et al (Javierre et al. 2016). We then filtered this dataset for significant
interactions for monocytes, neutrophils and CD4+ T-cells where a score equal or higher than
5 was used as a selection threshold following the recommendation from the CHiCAGO
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documentation. These 6 datasets we also selected on the basis that there were relevant
datasets to annotate putative enhancers.

3.3.2 Enhancer features
Chromatin States

For mESCs a 20 state chromatin state model was downloaded from the publication of Juan
et al (Juan et al. 2016). The state model was generated using ChromHMM (Ernst and Kellis
2012) and determined by a combination of 13 histone marks (H3K20me3, H3K9me3,
H2Aub1, H3K27me3, H2AZ, H3K4me3, H3K4me2, H3K9ac, HeK27ac, H3K4me1,
H3K36me2, H3K36me3 and H3K79me2), 3 cytosine modifications (5hmC, 5fc and 5mc) and
the CTCF insulator protein (Table 3.1).

For the primary immune cells (PICs) an 11 state chromatin state model was downloaded
from the publication of Carillo-de-Santa-Pau et al (Carrillo-de-Santa-Pau et al. 2017). The
state model was also generated using ChromHMM (Ernst and Kellis 2012) and determined
by a combination of 6 histone marks (H3K4me1, H3K27ac, H3K4me3, H3K27me3,
H3K9me3 and H3K36me3). The chromatin states were then collapsed into 5 functional
states transcription (E1 and E2), heterochromatin (E3, E4, E5 and E6), repressed promoter
(E7), enhancer (E8, E9 and E10) and promoter (E11) (Table 3.2). Note that here we also
considered the 10th state of promoters to represent Epromoters thus forming one of the
enhancer annotations.

3C fragments were annotated with the chromatin states of 200bp bins using the findOverlaps
function from Bioconductors GenomicRanges package (v. 1.38.0). The percentage coverage
of each chromatin state for each fragment was then calculated.
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State Associated Function Histone Marks

State 1 (E1) Transcription H3K4me1 & H3K79me3 & 
H3K36me3

State 2 (E2) Transcription H3K4me1 & 5hmC & 
H3K9ac & H3K4me2/3 
H3K36me3

State 3 (E3) Transcription H3K4me1 & 5hmC & 
H3K36me3

State 4 (E4) Transcription H3K36me3

State 5 (E5) Transcription H3K36me3

State 6 (E6) Heterochromatin H3K9me3 & H4K20me3

State 7 (E7) Low Signal N/A

State 8 (E8) Heterochromatin 5fC

State 9 (E9) Low Signal N/A

State 10 (E10) Heterochromatin 5hmC & 5mC

State 11 (E11) Enhancer H3K4me1 & 5hmC

State 12 (E12) Enhancer H3K4me1 &5hmC 
&H3K4me2/3

State 13 (E13) Enhancer H3K4me1

State 14 (E14) Enhancer H3K4me1 & H3K27ac & 
H3K9ac & H3K4me2/3

State 15 (E15) Active Promoter H3K4me1/2/3 & H3K27ac & 
H3K9ac & H3K79me2 & 
H3K36me3

State 16 (E16) Active Promoter H3K4me2/3 & H3K27ac & 
H3K9ac & H3K79me2 

State 17 (E17) Active Promoter H3K4me2/3

State 18 (E18) Bivalent Promoter H3K4me1/2/3 & H3K9ac 
&5hmC & H3K27me3

State 19 (E19) Repressed Promoter H3K27me3

State 20 (E20) Insulator CTCF

Table 3.1. Summary table of chromatin states for mouse embryonic 
stem cells
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State Associated Function Histone Marks

State 1 (E1) Weak Transcription H3K36me3

State 2 (E2) Transcription H3K36me3

State 3 (E3) Heterochromatin H3K9me3

State 4 (E4) Low signal N/A

State 5 (E5) Heterochromatin H3K27me3 & H3K9me3

State 6 (E6) Heterochromatin H3K27me3

State 7 (E7) Repressed Promoter H3K4me1 & H3K4me3 & 
H3K27me3

State 8 (E8) Enhancer H3K4me1

State 9 (E9) Enhancer H3K4me1 & H3K27ac

State 10 (E10) E-Promoter H3K4me1 & H3K27ac & 
H3K4me3

State 11 (E11) Promoter H3K27ac & H3K4me3

Table 3.2. Summary table of chromatin states for primary immune cells 

34



RNA polymerase II

Three RNA polymerase II variants (s2p, s5p and s7p) were downloaded from Juan et al
(Juan et al. 2016).

P300

Processed P300 ChIP-seq data was downloaded from Juan et al (Juan et al. 2016).

FANTOM5 CAGE-seq

Human and mouse permissive enhancers as identified by CAGE-seq were downloaded from
the FANTOM5 data repository (Noguchi et al. 2017; Andersson et al. 2014).

Starr-Seq

Starr-seq data for mESCs were downloaded from Peng et al (GSE143544) as a .tsv file.
(Peng et al. 2020). Rows that contained an activity higher than 0 for columns padj_SL_rep1
and padj_SL_rep2 were filtered to include enhancer activity detected in metastable ESC’s.

Expression quantitative trait loci (eQTL)

Expression QTL data was downloaded from (L. Chen et al. 2016). eQTL’s with a p.value
<0.05 were filtered for and used for analysis.

3.3.3 Annotation of 3C fragments
3C fragments were downloaded and formatted into an 8 column data frame consisting of the
genomic coordinates (chromosome, start, end) for each pair of ligated fragments and an
additional two columns with an ID number for each unique fragment. Additional columns
including the enhancer features were then appended for each annotation.

Coordinates for the primary transcript of protein coding genes from genome build MGSCv37
(corresponding to UCSC version mm9) were downloaded from Ensembl version 75 using
biomart. Gene coordinates from build GRCh37.p13 were downloaded from Ensembl version
75. Protein coding genes according to the Ensembl biotype column were filtered for and the
X, Y and mitochondrial chromosomes were removed. Genes were then assigned to 3C
fragments based on a minimum 1bp overlap using the findOverlaps function from
Bioconductors GenomicRanges package.

3.3.4 Genomic distance
The linear genomic distance was calculated for each ligation product by calculating the
difference in bases between each. The upstream and downstream fragments were
established using the orientation column. The end coordinate of the downstream fragment
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was then subtracted from the start coordinate of the upstream fragment and each value was
assigned to the distance column.

3.3.5 Network Generation
ChINs for each of the cell-types were generated by representing the chromatin fragments
and their interactions into nodes and edges. Any given chromatin fragment may interact with
multiple other chromatin fragments (Figure 3.1a). These chromatin interactions are captured
in the PCHi-C assay and are represented as pairs of contacts (Figure 3.1b). Each contact is
determined by the CHiCAGO protocol with a threshold of 5. The higher the threshold, the
lower the probability of calling a false contact (often caused by self relegation of the ligation
product). Higher thresholds also result in a more sparse network while lower thresholds
result in a more dense network. We then transform the contact data for each cell-type into a
ChIN. In each of the ChINs the chromatin fragments are represented as nodes and their
interactions as edges and will be referred to as nodes and edges hereafter (Figure 3.1c). By
transforming the data into network type representation the contacts can be investigated
beyond the pairwise manner as represented by traditional 3C contact maps. For example if
node A interacts with node B and node B interacts with node C we are able to capture the
indirect relationship between nodes A and C (Figure 3.1c).

Each ChIN was stored as an igraph object where the annotated fragments were transformed
from a dataframe into an unweighted and undirected network (sometimes called graphs)

using the graph_from_data_frame function from igraph (Csardi G 2006). The 3C𝐺 = (𝑉, 𝐸)
fragments are represented as nodes and their interactions as edges and each node and𝑉 𝐸
edge were labeled with their respective annotations. The ChINs were exported to Cytoscape
using the RCy3 library for R (Ono et al. 2015) for visualisation.
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Figure 3.1. The translation of chromatin contacts into networks. A) Enhancers can interact and 
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3.3.6 Network Feature Analysis

Small world properties

Small world properties were identified for each ChIN based on the Watts Strogatz model by
determining if the normalised shortest path and clustering coefficient (Watts andƛ ≈ 1 Ɣ >  1
Strogatz 1998). The average shortest path was calculated using the mean_distance𝐿
function and the clustering coefficient using the transitivity function for each ChIN. An𝐶
ensemble of 100 random networks was also generated based on the Erdos-Renyi model
(Erdős and Rényi 1964) using the erdos.renyi.game function from igraph to serve as a
null-model. Both the average shortest path and the clustering coefficient were𝐿𝑟 𝐶𝑟
calculated for these networks to give an average. and were calculated as and ,ƛ Ɣ 𝐿/𝐿𝑟 𝐶/𝐶𝑟
respectively.

Scale free properties

Scale free networks are defined as networks where the number of nodes with degree k
follows a power law k−α. (A. L. Barabasi and Albert 1999). The possession of scale free
properties were determined for each CH by calculating the degree distribution using the
degree_distribution function in igraph. If the distribution was observed to follow a power law,
the CH was determined to possess scale-free-like properties.

Network measures

All other network measures including the centrality measures were calculated using the
appropriate functions provided within the igraph library (version 1.2.5) for R.

3.3.7 Precision-recall curves
Precision-recall curves plot, at increasing thresholds, the precision which is the fraction of
nodes correctly predicted as enhancers and the recall which is the fraction of the total
number of enhancers predicted. Often, a tradeoff occurs between these two metrics whereby
increased recall reduces the precision and vice versa. When plotted on the same graph the
area under the curve produced by this plot indicates the general classification performance
of the model. The precision and recall of enhancer nodes using centrality measures and the
corresponding area under the curve (AUPRC) were calculated using the precrec library
(version 0.12.7). The baseline values were calculated as the total number of enhancer nodes
as a proportion of the total number of nodes in the ChIN.
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3.4 Results

3.4.1 Different flavours of 3C and contact calling algorithms
contribute to variability in genome coverage, resolution and
contact distances
Each of the three capture types provide a different viewpoint of the true ChIN.  We first
investigated the properties of the genomic fragments and the contacts between them. The
PCHi-C CH captures promoter regions defined by genome annotations of the TSS, these
regions are known as baits. The chromatin interacting with the baits are known as
other-ends (OE’s) and can include chromatin with a wide range of elements including
enhancers. Because the baits are designed to capture TSS regions it is important to note
that these regions are therefore independent of the cell-type and thus are captured
irrespective of whether the TSS is present at active or inactive genes. In contrast, the mESC
DNaseI-CHi-C ChIN relies on a functional annotation where probes are designed to target
DNase I hypersensitive sites (DHSs), while the mESC mcHi-C ChIN captures nearly all
chromatin regions and interactions. In the case of the DNaseI-CHi-C and the mcHi-C ChINs
the probes capture non-promoter as well as promoter regions including enhancers. Each of
the three capture types provide varying perspectives on the true ChIN.

Differences between 3C methods result in the enrichment of different chromatin regions.
This can affect the total number of chromatin interactions captured which affects the
completeness of the ChINs. Each ChIN contains information about the size of the DNA
fragments, in which combinations they interact and at which distances they are able to do
so. Each of these properties are a potential source of variability for the properties of the table
of contacts and are introduced by the cell-type and the 3C capture type. The in silico
pipelines used to process the raw data should not act as a variable as all were processed
using CHiCAGO. This can result in the enrichment of specific regions of the genome, such
as with PCHi-C enrichment at promoters and varying resolutions that affect the size of the
genomic fragments and the contact distance. Here we examine the variability that exists
between the genome coverage, fragment resolution and contact differences. In the six data
sets used we observe a number of differences that can be attributed to the sources of
variation previously discussed.

Differences can be seen between the immune cells; the number of fragments and
interactions vary between approximately 10,000 fragments and 50,000 interactions. When
compared to the changes seen in the mESCs we observe a difference of approximately
200,000 fragments and 5.3 million interactions from the PCHi-C and the mcHi-C data sets.
This is a direct result of using an enrichment protocol for promoters vs the global enrichment
of Hi-C. The largest differences appear when different capture types are used. This is driven
by the enrichment of specific predefined chromatin regions and the technical aspects of each
type of experiment. For example, the distribution of fragment sizes, that is the length of the
linear DNA in base pairs, remains consistent between the three immune cell types when
using the same 3C assay (PCHi-C) (Figure 3.2a.) with an average size between 4kb and
5kb where each experiment uses the HindIII endonuclease. In contrast, the DNaseI, PCHi-C
and mcHi-C assays across the mESC dataset results in distinct fragment size distributions
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(Figure 3.3a.). In particular the mcHi-C dataset yields a median fragment size of 1kb
compared to DNaseI 3.3kb and PCHi-C 5.2kb. This is largely driven by the shorter average
length achieved by the DpnII endonuclease used in the DNaseI-CHi-C dataset as opposed
to the HindIII endonuclease used in the PCHi-C dataset. In the case of the mcHi-C dataset
the bins are artificially extended from the capture to account for the low read depth which is
a common limitation of full Hi-C.

Genome coverage shows the the amount of the genome that is captured by the 3C assay.
The total coverage of the mESC genome achieved by the DNaseI capture is ~22% (12%
covered by the baits), approximately double that of the PCHi-C with ~11% (4.9% covered by
the baits) and is consistent across all 19 autosomes (Figure 3.4). There is an increase in
depth at PCHi-C (yellow) regions that are largely mirrored by the DNaseI regions (blue)
shown in Figure 3.5. Here, 28.66% of DNaseI fragments overlap with PCHi-C fragments
while 55.77% of PCHi-C fragments overlap with DNaseI fragments. Both the DNaseI and
PCHi-C overlap with the mcHi-C dataset in mESC’s (grey) by >99.5% where the mcHi-C
dataset captures ~95% of the total mESC genome. It should be noted that the mcHi-C
dataset coverage is based on the artificial reduction of the resolution due to a low
sequencing depth. Full Hi-C methods are forced to artificially reduce the resolution of the
fragments although computational algorithms are now developed to estimate the size of the
fragments to increase the resolution (Cameron, Dostie, and Blanchette 2020). The areas
with reduced or no coverage for any of the datasets is likely due to chromatin inaccessible
regions as well as low mappability regions.

The final consideration that must be made is related to the contact distances. We do not
observe any significant changes between the contact distances between the three primary
immune cell-types. The distribution of interaction distances remains very similar between
monocytes, neutrophils and T-cells (Figure 3.2b). While the interaction distances are varied
between the different flavours of 3C in the mESCs (Figure 3.3b). The PCHi-C data set
yielded a slightly higher average distance than both the DNase and mcHi-C data sets. This
is in part a consequence of promoters establishing long range contacts with regulatory
regions (Schoenfelder and Fraser 2019). This is particularly prominent in the mcHi-C data
set where intermittent spikes can be seen separated by a distance of 1kb (Figure 3.3b.).
This is an entirely artificial artefact of the processing pipeline. Each segment of the genome
is divided into 1kb bins and no two adjacent bins can be called as an interacting pair. This
results in the gapped output on the density plot where the artefact is more pronounced in
fragments interacting over shorter distances.

Each of these cases highlight some important considerations when building a ChIN for the
analysis of enhancers. The large fragment sizes of mcHi-C are part of the tradeoff for higher
coverage. Conversely, the fragments produced by the DNaseI and PCHi-C are increasingly
smaller with the caveat of capturing fewer interactions. This is related to the resolution of the
fragments for each experiment as higher resolution fragments are more suited to specific
small scale interactions such as between promoters and enhancers. Conversely, the study of
large chromatin structures are more suited to lower resolution fragments to increase the
coverage (See Chapter 1: Chromatin conformation capture).

This tradeoff needs to be carefully considered depending on the type of analysis required.
Comparing PCHi-C vs DNaseHi-C vs mcHi-C the increased resolution of PCHi-C and
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DNaseHi-C may be beneficial in identifying more specific regions of the genome that may
harbour enhancers. However, the lower coverage of higher resolution methods mean that
fewer regions and interactions are captured and therefore are less representative of the true
topology of the chromatin architecture and networks we use to model it. This will ultimately
influence the results of any network theory approaches used to identify enhancer nodes. Our
limited knowledge of where enhancers are located and how they regulate the expression of
genes means that the mcHi-C data set may be beneficial in the context of capturing a wider
sample of the genome meaning more enhancers regions are likely to be captured while it
would also produce a more representative snapshot of the ChINs topology. However, with
the knowledge that PCHi-C and DNaseI capture methods enrich for more transcriptionally
active regions of the genome they are likely to capture most enhancer sequences and may
be considered superior datasets to use for the identification of enhancers given their higher
resolution.
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B

Figure 3.2. Density plots of 3C fragment size and interaction distance 
for three primary immune cells. A) The fragment size in bp for monocytes 
(red), neutrophils (blue) and CD4+ T-Cells (green). B) Distribution of 
interaction distances log10(bp).
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Figure 3.3. Density plots of 3C fragment size and interaction distance 
for three capture types in mESCs. A) The fragment size in bp for PCHi-C 
(red), single cell Hi-C (blue) and DNaseI (green). B) Distribution of interaction 
distances log10(bp).
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3.4.2 How do the different capture types affect the network
topology?
There different types of 3C capture methods can affect the resolution, the contact ranges
and most importantly the coverage of the genome. We then wanted to ask how these
variances may affect the topology of our ChINs and if any differences are found, how this
may bias different types of network analysis. Here we look at the number of interactions and
how these vary between the cell-types of the PIC’s and the different capture types in the
mESCs. However, the large size of the mESC derived mcHi-C ChIN required a large
memory allocation to analyse the features of the network and for this reason we decided
against proceeding with the analysis of this particular network. One of the simplest metrics
used to understand the topology of a network is the degree centrality. The degree centrality
can be used to rank all of the nodes in the network according to the number of edges that
each node maintains. Centrality measures such as this can be used to identify nodes of
interest including promoters and enhancers if they maintain distinct connectivity patterns
within the networks (see 3.4.5 and 3.4.8). It is therefore important to understand if and how
these properties change between cell-types and 3C methods. We first calculated the
average degree for each network. Across the PICs the mean degree deviates by 0.55 edges
between the monocytes (3.56) and the CD4+ T-Cells (4.11) with the neutrophils almost
identical to the monocytes (3.62). In the case of the mESC ChINs there is a dramatic rise in
the mean degree from 2.61 in the PCHi-C ChIN to 9.69 in the DNase ChIN.

Taking a closer look at the node degrees in both the mESC DNaseI and PCHi-C ChINs both
networks also contain a high proportion of leaf nodes, those with a degree of one. These can
either form isolated graphs made up of two nodes, which are detrimental to the connectivity
of the network. Alternatively, they can form the nodes on the edge of the network. We find
that leaf nodes are more frequent in the DNaseI ChIN where they make up 34% compared
to 19% of the PCHi-C ChIN. Each network also contains nodes with high degree centrality
scores. The PCHi-C ChIN contains 9 (0.02%) nodes that exceed a degree of 50, on the
other hand the DNaseI ChIN contains 6903 (4.24%). In fact, the median and the mean
degree in the DNaseI ChIN are three times higher than those in the PCHi-C ChIN (Table
3.3). These results would indicate that the DNaseI capture Hi-C identifies regions of high
connectivity not captured by the promoter capture Hi-C. Of the chromatin regions
represented in both networks the DNaseI ChIN shares only a ~29% overlap with the PCHi-C
ChIN (Figure 3.5). It may also suggest that the DNaseI capture Hi-C method is more
sensitive than the promoter capture Hi-C method in identifying interactions of the same
region. For example, we know that ~55% of the chromatin regions represented in the
PCHi-C ChIN are also found in the DNaseI ChIN (Figure 3.5). Anecdotally, the node with the
highest degree in the DNaseI ChIN has 880 connections. This node is also represented in
the PCHi-C ChIN where the node has a degree of 4 and the size of the 3C fragment is 39%
smaller. We did not however check the extent to which this occurs.

Perhaps more interesting than the relative changes in degree is the shared pattern of
non-uniform distribution of the degree as the median degree in both networks are three
times smaller than the 3rd quartile (Table 3.4). These results would suggest that there are a
small proportion of nodes within the network that are of high degree and the frequency of
nodes increase as the degree gets smaller and that this pattern is more pronounced in the
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DNaseI ChIN. These properties are suggestive of scale-freeness which is explored in further
detail in 3.4.4.

These results show that the PCHi-C derived networks are less well connected than the
DNaseI derived network while the results of 3.4.1 show that the PCHi-C captures less of the
total genome. Together these results would indicate that the DNaseI ChIN is less
representative of the true mESC ChIN than the DNaseI ChIN. If and how these differences
impact the prediction of enhancer nodes is investigated in the following results. .
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Table 3.3. Summary table of the number of nodes, edges and the 
average degree centrality for the promoter capture Hi-C ChINs of 
monocytes neutrophils and T-cells and the DNaseI capture Hi-C, promoter 
capture Hi-C and single cell Hi-C ChINs in mESCs.

Total number 
of nodes

Total number 
of edges

Mean 
interactions

Monocytes 
(PCHi-C)

96,442 171,430 3.56

Neutrophils 
(PCHi-C)

81,242 147,195 3.62

CD4+ T-Cells 
(PCHi-C)

106,848 219,439 4.11

mESC 
(DNaseI)

162,615 791,903 9.69

mESC 
(PCHi-C)

53,920 72,221 2.61

mESC 
(scHi-C)

242,974 5,391,054 -

mESC DNaseI mESC PCHi-C

1st Quartile 1 1

Median 3 1

Mean 9.69 2.61

3rd Quartile 9 3

Maximum 880 78

Table 3.4. Summary statistics of the degree centrality for the DNaseI 
capture Hi-C and promoter capture Hi-C ChINs in mESCs
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3.4.3 DNaseI capture derived networks are more connected
than PCHi-C derived networks
In the previous analysis (see 3.4.2) we identified varying proportions of isolated and leaf
nodes in the PCHi-C and DNaseI ChINs. We therefore analysed the connectivity of all five
networks. The connectivity of the network can be measured in several ways. Since both the
PCHi-C and DNase networks from mESCs contain a proportion of isolated and leaf nodes,
we first looked at the number of connected components; this is the number of isolated
subgraphs, known as components, in the network. These can vary in size from the very
large down to two nodes where both are considered leaf nodes. The number of nodes in the
largest connected component of the DNaseI ChIN is ~66% while for the mESC DNaseI ChIN
almost all of the nodes (~98%) are found in the largest connected component. Comparing
the mESC PCHi-C and DNaseI ChIN we can identify reasons as to why this occurs. There is
evidence that mammalian genomes such as humans and mice are organised into distinct
topological regions including chromosomal regions (See Chapter 1: Chromatin
architecture) and these regions are connected by long range intrachromosomal
interactions. A loss of these interactions may explain the loss of connectivity across the
DNaseI ChIN compared to the DNaseI-CHi-C network. These effects can also be observed
in the PIC networks.  A visual example of the largest 16 connected components for the
monocyte DNaseI ChIN can be seen in Figure 3.6. Each colour represents a unique
chromosome. We can see that the largest connected component contains a mix of different
chromosomes. All of the other 15 subnetworks show distinct chromosome regions
supporting the idea that the interchromosomal interactions are integral for a fully connected
network. We then compared the number of intrachromosomal interactions between the
mESC DNaseI and DNaseI ChINs (Table 3.5). Here we see that the DNaseI ChIN contains
roughly 4 times the amount of intrachromosomal interactions. The reduction in long range
interactions are a product of the specialised nature of the promoter capture Hi-C experiment
enriching for promoter contacts which appear not to interact frequently, if at all in a
trans-chromosomal manner (Johanson et al. 2018). This explains why the nodes of the
DNaseI ChINs are split across many connected components. Although the differences
between the 3C capture types were our primary focus, we also analysed the connectivity of
the PIC networks. All of the PCHiC derived networks form a large number of connected
components that are disconnected from one another (Table 3.5). For the PIC networks, the
total number of nodes that form part of the largest connected component is between ~32%
and ~52%.

The use of PCHi-C datasets to generate our networks results in a disconnected network.
Although the DNaseI capture derived networks are also disconnected, the number of
connected components are small and the majority of nodes are in the largest connected
component. This would lend the DNaseI derived network to be better suited for network
analysis although there are some measures that have been optimised for disconnected
networks such as the harmonic centrality in lieu of the closeness centrality (see 3.4.5 and
3.4.7). In any case, understanding the connectivity of the network is an important
consideration for any future network analysis.
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Interchromasomal 
interactions

Intrachromasomal 
interactions Connected 

components

Percentage 
of nodes in 
the largest 
connected 
component

Density

Monocytes 
(PCHi-C) 170,329 1,101 1938 34.71% 0.000037

Neutrophils 
(PCHi-C) 146,146 1,049 2136 32.26% 0.000045

CD4+ T-Cells 
(PCHi-C) 218,377 1,062 1375 51.63% 0.000038

mESC (DNaseI) 782,466 9,457 776 98.12% 0.000060

mESC 
(PCHi-C) 69,847 2,374 4073 66.23% 0.000048

DNase 
interchromosomal 

interactions 

PCHiC 
interchromosomal 

interactions

Table 3.5. Summary statistics for the networks of the promoter capture Hi-C 
ChINs of monocytes, neutrophils and T-cells and the promoter capture Hi-C and 
DNaseI capture Hi-C ChINs of mESCs   
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interactions

Figure 3.6. Connected components of the monocyte promoter capture Hi-C ChIN. The 
largest 16 connected components for the monocyte PCHi-C derived ChIN. Each colour 
represents a different chromosome. 
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3.4.4 All of the networks have small world and scale free
properties
We have shown that the mESC DNaseI derived network is better connected than the mESC
DNaseI ChIN. To a lesser extent, we also observe small differences in connectivity between
the PIC networks. Changes in connectivity can be realised by genuine biological differences
as likely shown by the differences observed between the PICs. They can also arise as a
result of experimental differences as shown by the differences between the mESC networks.
To understand if these changes resulted in fundamental changes to the networks we further
investigated and charachterised the global architecture of the networks.

Across all of our networks we identified small-world and scale-free-like properties (See
Methods: Network analysis). The scale-free properties of each of the five networks are a
common feature of complex networks and contain several properties that determine how
information is communicated across them. Scale-free networks are defined by the degree
distribution following a power law where the probability that a node has the degree is given𝑘
by: . Where the exponent is between 2 and 3, the network is often𝑃(𝑘) ∼ 𝑘 − γ γ
considered to be scale-free (A.-L. Barabasi and Albert 1999). This is not always the case as
shown by the Reactome and BioGRID networks (Table 3.6). Because of this ambiguity, we
compared the degree distribution of the largest connected components of each ChIN with
the degree distributions of networks derived from Reactome and BioGrid (see methods:
3.3.6 Network Feature Analysis: Scale-free properties). We show that the five networks
follow a power law distribution (R2 = 0.8959 to 0.9412) as both the Reactome (R2 = 0.7096)
and BioGRID (R2 = 0.8843) networks do. We also observe, with the exception of the mESC
DNaseI and mESC PCHi-C ChINs, that is lower than 2 (Table 3.6 & Figure 3.7). Althoughγ
there is evidence to suggest that can sometimes be found to lie either side of this scaleγ
(Choromański, Matuszak, and Miȩkisz 2013) and both metabolic networks such as
Reactome and PPI networks such as BioGRID have been shown to maintain scale-free-like
properties (Jeong et al. 2000; Barabási and Oltvai 2004). To further characterise the
networks, we looked at the percentage of hub nodes. Hubs are nodes that greatly exceed
the average degree and are expected in scale-free networks.  We observe hubs in each of
the five networks,where between 17.5% and 23% of nodes can be classified as hubs when
the degree of a node exceeds the average degree of all other nodes in the network. While
these networks follow some of the general principles to be defined as scale-free they are by
no means definitive. The mESC DNaseI ChIN for example deviates from the power law
distribution and has the lowest R2 value of the ChINs but is still higher than the Reactome
and BioGRID networks which have previously been described as having scale-free
properties. Other tests such as targeted attacks to test network robustness were not carried
out to further characterise the scale-free properties (Ercal and Matta 2013).

Scale-free properties are also associated with small world properties. The small-world
properties define a network in which the number of ‘steps’ to another node is small. This is
charachterised by a high clustering coefficient and an average shortest path .Ɣ >  1 ƛ ≈ 1
The small-world properties were calculated for each of the networks (See Methods: Small
world properties). In each of the networks the shortest path was calculated to be
approximately 1 and the clustering coefficient more than 1. Small-world networks also
contain an abundance of hubs, as previously described, that mediate the short paths.
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Together these properties facilitate quick and efficient information transfer across the
network.

All five networks present properties that are consistent between cell types and more
importantly between the PCHi-C and DNaseI capture methods. These metrics show that the
broad underlying characteristics of the network are not significantly altered between either
cell-types or between capture methods despite the lower connectivity of the DNaseI ChINs.
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Figure 3.7. Degree distribution. Each graph shows the degree distribution for the three 
primary immune cell promoter capture Hi-C ChINs of  A) Monocytes, B) Neutrophils, C) T-cells 
and D) mESC DNaseI capture Hi-C network, E) mESC promoter capture Hi-C network, F) 
Reactome network (provided in splineTimeR), G) BioGRID network (provided in splineTimeR). 
Plots were produced using splineTimeR (version 1.18.0)

D E

F G

mESC DNaseI mESC PCHi-C
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55



Network Nodes Edges Degree 
Exponent

Monocytes 8,104 15,780 1.6513

Neutrophils 3,676 8,953 1.5378

T-Cells 13,251 26,171 1.7582

mESC 
DNaseI

158,907 782,332 2.3052

mESC 
PCHi-C

32,762 51,086 2.7102

Reactome 6,770 148,733 1.2531

BioGRID 19,127 213,150 1.5292

Table 3.6. Summary statistics for the ChINs of the promoter capture Hi-C 
ChINs of monocytes, neutrophils and T-cells and the promoter capture Hi-C and 
DNaseI capture Hi-C ChINs of mESCs   
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3.4.5 Genic and intergenic nodes maintain distinct topological
characteristics
We have so far investigated the large-scale structural features of the networks. We then
sought to understand how individual nodes are connected within the networks and whether
we could relate distinct connectivity patterns with the biological functions of the nodes. We
first looked at whether we could distinguish between nodes that represent genic regions of
the chromatin and nodes that represent intergenic regions of the chromatin. To achieve this,
we first labeled the nodes with genomic data that defined all of the protein coding genes for
each cell type (See methods: Annotation). We observe in the case of monocytes,
neutrophils and CD4+ T-cells that the proportion of genic and intergenic nodes shows little
divergence of ±3% (Figure 3.8). We also observe a small increase of 4% from PCHi-C to
DNaseI in the proportions of genic and intergenic nodes for the mESC networks (Figure
3.8). Of course, the proportion of genic nodes would be expected to be higher given the
nature of a PCHi-C assay, but not drastically so given that the DNaseI capture enriches at
open chromatin regions where many genes are situated.

We then charachterised both genic and intergenic nodes using four commonly used network
measures in order to identify any topological differences between the two sets of nodes
(Figure 3.9). We calculated the average degree which reflects the average number of
edges, or connections, that the nodes in the network maintain. The betweenness centrality
which measures the number of shortest paths that pass through a node. This measurement
reflects how important a node is in connecting other nodes. The harmonic closeness
centrality which is a variant of the closeness centrality for weakly connected networks. The
closeness centrality is measured as the average length of the shortest path from a node of
interest to all other nodes in the network. However, in a disconnected graph some of these
values can be infinite. To solve this problem the harmonic centrality inverses these
distances. This measurement reflects how central a node is in the network relative to all
other nodes. Finally, the eigenvector centrality which measures the influence of a node
within the network. This is calculated relative to the scores of other nodes in the network
where a node with a high eigenvalue score connects to many other nodes with high
eigenvalue scores.

For the PIC networks we observe a significant increase in the average degree and
betweenness centralities of genic nodes vs intergenic nodes. We also observe a significant
increase in the harmonic centrality of genic nodes from intergenic nodes in the DNaseI ChIN.
However, there is no significant difference in the harmonic centrality between genic and
intergenic nodes in both the monocyte (Wilcoxon rank sum test p.value = 0.09) and DNaseI
ChINs (Wilcoxon rank sum test p.value = 0.42). This may be explained, at least in part, by
the higher density of the DNaseI ChIN (Table 3.5) where an increase in edges relative to
nodes would reduce the distance between any two given nodes in the network. We also
observe non-significant differences in the eigenvector scores between genic and intergenic
nodes for monocytes (Wilcoxon rank sum test p.value = 0.082) and neutrophils (Wilcoxon
rank sum test p.value = 0.484). Since the eigenvector centrality is not optimised for
weakly-connected networks this result may be explained by the DNaseI ChIN having fewer
connected components and a higher percentage of nodes in the largest connected
component compared to the monocyte and DNaseI ChINs. For the mESC PCHi-C and
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DNaseI ChINs we observed consistent significant differences between genic and intergenic
nodes for the degree, betweeness and eigenvector centrality scores where the genic nodes
appear to maintain unique connectivity within the network. We were however unable to
calculate the harmonic scores for the mESC DNaseI ChIN due to its size and computational
limitations.

We then considered the differences of connectivity between genic and intergenic nodes
when accounting for the effects introduced by baits and OE’s. 3C experiments are designed
in such a way that most of the interactions of baits are detected. The interactions of OE’s on
the other hand are only detected in the case that the chromatin fragment that they interact
with is a bait. Therefore, baits are likely to be artificially more connected within the networks
as a result of this bias. We therefore analysed the centrality measures (degree,
betweenness, harmonic closeness and eigenvector) and compared the results between
these two subgroups. The baits have a consistently higher average degree than the OE’s
across all five cell-types exemplifying the interaction bias towards baits in our ChIN’s (Table
3.7). As expected, we found that almost all of the centrality scores were significantly higher
for genic nodes when compared with intergenic nodes of the same type (bait and OE).
However, we also observed differences between the centrality scores of baits and OE’s
irrespective of whether they are genic or intergenic. The harmonic closeness centrality
scores are higher in OE’s than baits in all five ChINs while the opposite is true for the
betweenness centrality which is higher in baits compared to OE’s.

As with the degree, these differences are a result of the connectivity bias that exists between
baits and OE’s. For example, the betweenness centrality measures the number of shortest
paths that pass through a given node. I.e. how often a node acts as a bridge to connect
other nodes. Where baits are the loci targeted by the 3C experiment, OE’s by definition,
must be connected to a bait in order to exist within the network, thus explaining the higher
betweenness values of baits over OE’s. The higher closeness of centralities of OE nodes
means that OE nodes tend to be more central in the network. OE’s are more central in the
network because bait nodes that are more central in the network also have a higher degree
centrality, the majority of which are OE’s. For example, using the mESC PCHi-C ChIN, when
ranking the bait nodes by the harmonic closeness, the top 10% of baits have an average
degree of 2.09 while the bottom 10% have an average degree of 0.97. The discrepancies
that exist between baits and OE’s can be normalised depending on the proportion of baits
and OE’s that compose each ChIN and may be implemented in future work that expand
upon the findings of this chapter.

Here we show that genic nodes tend to be better connected within the networks compared to
intergenic nodes and we have discussed why, for some centrality scores and networks, this
does not seem to be the case. These results suggest that genic nodes are more influential in
the networks than intergenic nodes. It is also important to note that a proportion of intergenic
nodes share the same properties as the genic nodes as measured by the centrality scores
shown by a modest overlap in the distribution of each of the centrality scores (Figure 3.10).
One reason for this is that we have not taken into account the activity of the genes and
therefore inactive genes are included in the gene set. Secondly, and more relevant to the
aims of this thesis is that given the importance of enhancers and the biological similarities
reported between promoters and enhancers the intergenic nodes with high centrality scores
may in fact be enhancers.
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Figure 3.8. The percentage of genic and intergenic nodes. The percentage of genic and 
intergenic nodes captured by the baits and the interacting other ends (OEs). Genic nodes are 
labelled using coordinates for the primary transcript of protein coding genes from genome build 
MGSCv37 (corresponding to UCSC version mm9) were downloaded from Ensembl version 75 
using biomart. Excluding chromosomes X and Y.

Monocytes 
(PCHi-C)
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Figure 3.9. Toy networks showing the effect of different centrality scores. A) Degree 
centrality measures the number of edges for each node. B) Closeness harmonic centrality 
measures how central a node is in the network relative to all other nodes. This is measured as 
the inverted average length of the shortest path from a node of interest to all other nodes in the 
network. C) The betweenness centrality that measures the number of shortest paths that pass 
through a node. This measurement reflects how important a node is in connecting other nodes. 
D) Eigenvector centrality measures the influence of a node within the network. This is
calculated relative to the scores of other nodes in the network where a node with a high
eigenvalue score connects to many other nodes with high eigenvalue scores.
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Genic (Intergenic) Degree Harmonic Betweenness Eigenvector

Monocytes 
(PCHi-C)

2.98
(2.20)

217
(215)

12,738 
(3,487)

0.000550
(0.000487)

Baits 14.47
(11.60)

199
(186)

55,170
(30,150)

0.002380
(0.000789)

OE 1.84
(1.77)

221
(215)

2,379
(2,452)

0.000105
(0.000475)

Neutrophils 
(PCHi-C)

2.94 
(2.21)

195
(179)

6,718 
(1,932)

0.000612
(0.000440)

Baits 13.53
(10.62)

176
(136)

27,151
(18,140)

0.002603
(0.001016)

OE 1.87
(1.80)

200
(181)

1,285
(1,181)

0.000082
(0.000413)

CD4+ T-Cells 
(PCHi-C)

3.71 
(2.53)

487
(487)

30,047 
(5,524)

0.000426
(0.000401)

Baits 18.07
(13.29)

441
(431)

143,973
(49,767)

0.002017
(0.000460)

OE 2.09
(1.96)

497
(489)

5,293
(3,945)

0.000080
(0.000399)

mESC (DNaseI) 13.93 
(10.67)

NA 825,498 
(323,468)

0.000555
(0.000107)

Baits 22.28
(15.70)

NA 1,779,626
(847,202)

0.001004
(0.000181)

OE 2.47
(2.20)

NA 39,468
(67,310)

0.000190
(0.000071)

mESC (PCHi-C) 3.07
(1.31)

913
(796)

337,033
(54,791)

0.000686
(0.000380)

Baits 5.11
(3.25)

877
(421)

643,357
(548,604)

0.001096
(0.000035)

OE 1.43
(1.29)

(941)
(798)

87,557
(51,722)

0.000352
(0.000382)

Table 3.7. Summary table of mean centrality scores between genic and 
non-genic nodes. Harmonic scores for the mESC DNaseI network are not 
given due to its size and computational limitations
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3.4.6 There is a low agreement of enhancer associated
features in nodes
To test the hypothesis that integenic nodes with similar topological characteristics to genes
represent enhancers we first identified which nodes contained enhancers. Chromatin states
were initially used in chapter 2 to annotate the nodes as intergenic enhancer nodes or
intergenic non-enhancer nodes. While histone marks are a common feature used in
identifying enhancers, there are many enhancers that are either not defined by these histone
marks or are missed due to technical inefficiencies. To improve the labelling of enhancer
nodes we expanded the annotation of the nodes to include six more enhancer associated
features for the mESC networks, P300, CAGE-seq, Starr-seq and and three RNA
polymerase II (RNAP II) complexes, RNAP s2p, RNAP s5p and RNAP s7p (see chapter
1.3). We also included CAGE-seq and matched cell-type specific eQTL data for the three
immune cells. These enhancer associated features are not completely reliable, nor do they
universally represent all enhancers. These features may also erroneously identify
enhancers. Were these features completely accurate and representative of all enhancers the
set of nodes defined as enhancers by chromatin states would be identical to the set of
enhancer nodes defined by CAGE-seq, and so on. When we look at the overlap of enhancer
associated features (defined by their presence in the same node) we can see that this is not
the case (Figure 3.11).

Between the three different primary immune cell networks the set of nodes that are defined
by all three annotations account for 3.9%, 1.6% and 1.8% for monocytes, neutrophils and
T-cells. This set represents the highest confidence of enhancer activity. The largest set of
annotated intergenic nodes are defined solely by eQTLs with 46% in the DNaseI ChIN, 73%
in the DNaseI ChIN and 68% in the DNaseI ChIN (Figures 3.11a, 3.11b and 3.11c). The
eQTL’s represent loci that are transcriptionally sensitive to SNP’s and can include
enhancers. For each of the cell-types 34%, 19% and 18% of eQTLs overlap in various
combinations with the CAGE-seq and chromatin state annotations indicating likely enhancer
activity. The remaining eQTLs identify additional loci that may contain enhancers that are not
annotated by either CAGE-seq or chromatin state data. Of course, eQTLs also represent
many other loci that can subtly affect gene expression. For the purpose of these analyses
eQTL’s were included as they modulate gene expression, if not directly.

In the mESC networks we find that the total number of RNAPs2p annotations is higher than
RNAPs5 in the DNaseI ChIN (Figure 3.11a) whereas the frequency of RNAPs5p is higher
than RNAPs2p in the DNaseI ChIN (Figure 3.11b). This is to be expected, where s5p is
typically localised to promoters. The largest group in both networks are defined by the three
variants of RNA Pol II. The next largest group is defined by a single annotation, RNAPs2p
which occurs at sites of transcription, elongation or termination. As with the PIC networks we
generally see the highest percentage of overlap between the features that are more
abundant. The smallest group of enhancer nodes are defined by CAGE-seq in the primary
immune cells while CAGE-seq along with P300 and Starr-seq account for the smallest
groups in the mESCs. This is due to CAGE-seq and Starr-seq being much lower throughput
and coverage than chromatin states and eQTLs while P300 ChIP-seq peaks are much less
abundant. This highlights an important tradeoff in using different types of features to identify
enhancers. CAGE-seq, Starr-seq and P300 are often deemed to be more reliable indicators
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of enhancer activity; this means that they typically result in much fewer false positives when
identifying enhancers. However, these features also miss many possible enhancers either
because of the lower throughput and sparser genome coverage when compared with the
eQTLs and chromatin states or, as mentioned previously, these features are not universal
among enhancers. In using multiple features a much broader set of enhancers can be
established. A more nuanced approach using different combinations of features can then be
used to validate predictions (See Chapter 5).

64



8,288

4,546

3,732

701 666
28 16

CAGE-seq

Chromatin 
State

eQTL

CAGE-seq

Chromatin 
State

eQTL

CAGE-seq

Chromatin 
State

eQTL

8,472

1,178 1,687

190 138 7 16

9,855

2,185 1,888

333 260 36 26

In
te

rs
ec

tio
n 

S
iz

e
In

te
rs

ec
tio

n 
S

iz
e

In
te

rs
ec

tio
n 

S
iz

e

C

A

B

65



Figure 3.11. UpsetR plot showing the overlap between enhancer features A) Monocytes, 
B) Neutrophils, C) CD4+ T-Cells, D) mESC DNaseI and E) mESC PCHi-C
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E
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3.4.7 The DNaseI capture Hi-C ChIN contains more regulatory
nodes than the Promoter capture Hi-C ChINs

We next used the enhancer associated features to identify enhancer nodes and understand
how the number of enhancers captured varies between cell-types and more interestingly
between capture types. Based on the presence of at least one enhancer annotation, in the
primary immune cell networks we identified 17,983 (54%), 12,280 (46%) and 14,586 (42%)
intergenic enhancer nodes for monocytes, neutrophils and CD4+ T-cells, respectively
(Figure 3.12). The differences observed in the proportions of intergenic nodes that are
labeled as enhancers shows that the monocyte genome contains more enhancers than
neutrophils and CD4+ T-cells. We observe that the DNaseI ChIN contains more genic nodes
than the DNaseI ChIN that could explain the higher number of enhancer nodes.  This is
consistent with some previous findings (Rico et al. 2017). However, the observed number of
genic nodes in the CD4+ T-cell is higher than those in the DNaseI ChIN. Although we do not
know what proportion of these genes are active.

For the mESC DNaseI ChIN, 29,375 (53%) of intergenic nodes contain at least one
enhancer annotation; while for the mESC DNaseI ChIN this is 6,204 (43%). The mESC
DNaseI ChIN not only captures more enhancers overall but captures more as a proportion of
the total. The higher number of enhancers identified within the mESC DNaseI ChIN
compared to the mESC DNaseI ChIN is due to more enhancer regions being captured as
shown by 34% of mESC DNaseI baits annotated with as enhancers compared to <0.0001%
for the mESC PCHi-C baits (Figure 3.12). This is likely due to the mESC DNaseI ChIN
covering a larger proportion of the total genome (See 3.4.1). It also suggests that many
regulatory nodes are not directly connected to genic nodes. Indeed, we found that in the
mESC DNaseI ChIN 14,219 (48%) of intergenic enhancer nodes were indirectly connected
to a genic node by a degree of 2 or more (Figure 3.13a). These nodes interact in the second
degree or more with promoters via another non-promoter node as shown by node A (Figure
3.13b). These nodes are only present in the DNaseI capture ChIN as all baits in the PCHi-C
are promoters and therefore all intergenic nodes must be connected to a genic node. This
can occur biologically as a result of transient interactions with promoters (Benabdallah et al.
2019) or a complete lack of interaction such as with enhancer chains ((Benabdallah et al.
2019; W. Song, Sharan, and Ovcharenko 2019). These results show that the mESC DNaseI
capture ChIN is able to capture more enhancer nodes as well as a more diverse set of
enhancers that are otherwise lost in PCHi-C ChINs.
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Enhanr

Figure 3.12. The percentage of intergenic enhancer and intergenic non-enhancer nodes. 
The percentage of intergenic enhancer and intergenic non-enhancer nodes captured by the 
baits and the interacting other ends (OEs). Enhancer nodes are defined by the presence of at 
least annotation defined by enhancer chromatin states, P300, CAGE-seq, Starr-seq and and 
three RNA polymerase II (RNAP II) complexes, RNAP s2p, RNAP s5p and RNAP s7p for the 
mESC ChINs. For the primary immune cells, enhancer nodes are defined by the presence of at 
least one annotation of enhancer chromatin states, CAGE-seq or eQTLs. 
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Figure 3.13. Indirect enhancer-promoter pairs. A) Schematic showing the number of 
intergenic enhancer nodes that are not directly interacting with a genic node. For the mESC 
DNaseI ChIN, 14,219 intergenic enhancer nodes do not interact directly with genic nodes. B) 
Indirect interactions between genic and intergenic nodes can only exist in the DNaseI ChIN as 
the PCHi-C ChIN only identifies promoter-OE interactions by design.
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3.4.8 Enhancer nodes maintain unique topological
characteristics from non-enhancer intergenic nodes

To determine if intergenic enhancer nodes maintain distinct topological characteristics to
non-enhancer intergenic nodes we calculated the degree, harmonic closeness (for the
DNaseI ChINs), betweenness, and eigenvector centralities as done previously with the genic
nodes (Table 3.8), compared to non-enhancer intergenic nodes. Enhancer nodes were
defined by the presence of at least one annotation.

We observe an increase in the centrality scores in enhancer nodes compared to
non-enhancer nodes. For the primary immune cells a significant increase in the centrality
measures of the degree (Wilcoxon rank sum test for monocytes, neutrophils and T-cells =
p-value = 2.2e-16), harmonic closeness (Wilcoxon rank sum test for monocytes and
neutrophils p-value = 2.2e-16, T-cells p-value = 3.1e-14), betweenness (Wilcoxon rank sum
test for monocytes and neutrophils p-value = 2.2e-16, T-cells = p-value = 2.2e-16) and
eigenvector (Wilcoxon rank sum test for monocytes and neutrophils p-value = 2.2e-16,
T-cells p-value = 0.00012). For the mESC networks the same significant differences were
observed between enhancer and non-enhancer nodes for the centralities of degree
(Wilcoxon rank sum test for PCHi-C and DNaseI p-value = 2.2e-16), betweenness (Wilcoxon
rank sum test for PCHi-C and DNaseI p-value = 2.2e-16) and eigenvalue (Wilcoxon rank
sum test for PCHi-C and DNaseI p-value = 2.2e-16). As with the genic nodes, we also tested
the differences between the centrality scores of both the baits and the OEs. Results were
consistent with the genic nodes where the harmonic centrality was found to be higher in
enhancer OEs than enhancer baits. Likewise, the degree, betweeness and eigenvector
scores mirrored the same pattern as the genic nodes where scores for the enhancer baits
were higher when compared to enhancer OEs.  These results suggest that the topological
characteristics measured by these centrality scores are more unique genes and enhancers
and that intergenic enhancer nodes and gene nodes tend to share many topological
characteristics within the networks.
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Enhancer 
(Non-Enhancer)

Degree Harmonic 
Closeness

Betweenness Eigenvector

Monocytes 
(PCHi-C)

2.36
(1.86)

222
(207)

3526
(3443)

0.000757
(0.000175)

Baits 13.61
(8.90)

195
(174)

43,421
(12,380)

0.001378
(0.000000)

OE 1.89
(1.61)

223
(207)

1,864
(3,123)

0.000731
(0.000182)

Neutrophils 
(PCHi-C)

2.48
(1.95)

191
(169)

2662
(1318)

0.000801
(0.000138)

Baits 12.99
(8.45)

166
(108)

22,997
(13,675)

0.001591
(0.000487)

OE 1.97
(1.66)

193
(172)

1,672
(771)

0.000762
(0.000122)

CD4+ T-Cells 
(PCHi-C)

2.71
(2.08)

505
(474)

7547
(4038)

0.000768
(0.000131)

Baits 14.76
(11.66)

470
(389)

70,396
(26,903)

0.000404
(0.000523)

OE 2.18
(1.80)

506
(477)

4,738
(3,372)

0.000785
(0.000119)

mESC (DNaseI) 10.62
(2.63)

NA 571,553
(74,722)

0.000161
(0.000053)

Baits 17.48
(7.43)

NA 983,475
(212,061)

0.000203
(0.000080)

OE 2.57
(1.99)

NA 87,620
(56,720)

0.000113
(0.000049)

mESC (PCHi-C) 1.44
(1.20)

913
(707)

83,562
(33,001)

0.000638
(0.000185)

Baits 4.58
(2.53)

619
(316)

1,028,513
(292,101)

0.000091
(0.000005)

OE 1.43
(1.19)

914
(709)

78,829
(31,154)

0.000641
(0.000186)

Table 3.8. Summary table of centrality scores between enhancer and non-enhancer 
nodes
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3.4.9 Some centrality scores can be used to classify enhancer
nodes
Given the unique topological features of enhancer nodes we then attempted to predict
intergenic nodes as enhancers using the degree, betweenness and eigenvector centrality
scores in both the PCHi-C and DNaseI mESC derived networks. Nodes were labelled as
enhancer and non-enhancers based on the presence of a minimum of one enhancer
associated feature of any type. The performance of each centrality score in correctly
classifying the nodes as enhancers was measured by the precision and recall at incremental
thresholds from the maximum to the minimum centrality scores. For the mESC DNaseI ChIN
the results show that both the degree and betweenness centrality scores show modest
performance in predicting intergenic enhancer nodes where the degree centrality AUPRC =
0.55 and betweenness centrality AUPRC = 0.50 compared to a baseline figure of 0.43
(Figure 3.14). The eigenvector centrality performs poorly with an AUPRC = 0.42, below the
baseline. This would suggest that the eigenvector centrality is not well suited for identifying
enhancer nodes despite the mean score being higher in enhancer nodes vs non-enhancer
nodes. However, the eigenvector centrality score should not be discarded as this is only a
simple, one dimensional analysis of the feature. Indeed, some features can only be
described in a multidimensional space and as such we are now investigating the
classification value of all of these features (see Chapter 6.1).

The results for the mESC DNaseI derived network were more consistent with the AUPRC of
all three centrality scores above the baseline (degree AUPRC = 0.75, betweenness AUPRC
= 0.71, eigenvector AUPRC = 0.54, baseline = 0.5). The increase in the AUPRC for each of
the centrality scores of the mESC DNaseI ChIN is likely a combination of factors including
the higher coverage, superior connectivity and closer representation to the true mESC ChIN.
AUC is often used in the literature to describe the predictive performance of features
(Thibodeau et al. 2017). However, AUC neglects the class imbalance that often occurs in
these datasets. That is to say the number of positive vs negative labels are not 1:1. This can
artificially inflate the area under the curve and leads to overstating the classification
performance of these features or models. It has been proposed previously that
precision-recall curves are a much better indicator of classification performance for binary
classification (Takaya Saito 2015). For a single feature an AUPRC of 0.75 and 0.71 could be
considered very good, particularly when SVM and CNN’s when trained on multiple features
achieve a AUPRC between 0.78 and 0.9 (Min et al. 2017).
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Figure 3.14. Precision-recall curves for the classification of enhancer nodes using 
centrality measures. A) Precision-recall curves for the degree (red), betweenness (green) and 
eigenvector (blue) centralities for classifying enhancer nodes defined by at least one annotation 
tested on the mESC DNaseI ChIN. B) mESC PCHi-C ChIN.

A

B
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3.5 Discussion
The primary findings of this chapter are that (i) enhancers and genes within our networks
tend to contain distinct topological features when compared to non-enhancer and intergenic
nodes and that (ii) these features can be used to predict intergenic enhancer nodes. This
suggests that enhancers and genes are more connected within the 3D chromatin structure
than other loci. This commensurate with the looping mechanisms that localise enhancers
and gene promoters resulting in an increased contact frequency (Schoenfelder and Fraser
2019). Furthermore, it is widely accepted that chromatin structure plays a role in gene
regulation. However, to what extent is debatable. Some studies have shown that the
disruption of TADs does not lead to wide scale changes to gene expression (Ghavi-Helm et
al. 2019). Although this may suggest that mechanisms other than the chromatin topology
may regulate gene expression, other explanations such as redundancy in the networks are
equally plausible (Ghavi-Helm 2020). In fact, these mechanisms are shown in the
scale-freeness and small worldness of the ChINs that are characteristically resilient to
perturbation.

Surprisingly, there is currently no previous literature that addresses the topological features
of genes and enhancers in 3C derived ChINs, even though the analysis of network
characteristics of genomic features is not new (see Introduction). By representing 3C data
as ChINs the topological properties can be reconciled with the biological function. We show
that enhancer nodes can be predicted using centrality measures. The local measurement of
the degree centrality and the global measurement of the betweenness, harmonic closeness
and eigenvector centralities provide a tangible link between local and global chromatin
organisation and gene regulation. The centrality measures used provide a useful feature that
can be leveraged in future to improve the prediction of putative enhancer sequences. In
order to do so, it would be beneficial to assess other network properties in addition to the
centrality measures outlined in this chapter, to further characterise enhancers. These may
include clustering approaches to identify communities of nodes for example as we know that
biochemically similar loci tend to form localised structures via homotypic attraction (Robson,
Ringel, and Mundlos 2019) and that genes found within the same connected component
tend to have similar regulation patterns (Viksna et al. 2019). These additional features can
then be combined with the centrality scores to train a machine learning model (Lim et al.
2018). Network analysis of enhancers such as this will benefit greatly from future
improvements in 3C technologies as the resolution, sensitivity and coverage increase. More
faithful network models of chromatin conformation can be created that will reduce the bias
observed in current iterations. This does come with the caveat of an increased requirement
of computational resources, which as we saw with the mESC mcHi-C dataset can be a
limitation. Alternatively, or better still in addition to this, error estimations of the centrality
scores can also be estimated using experimental replicates or between individual cells in the
case of scHi-C datasets. These errors could then be used to normalise the final centrality
scores in order to model the noise produced by these experiments.

We utilised the 5 remaining 3C datasets to examine the differences between cell types and
between different 3C capture types. Between the datasets used for analysis we observed
little variability between the primary immune cell-types in the fragment sizes, which is to be
expected due to all three subject to digestion with the restriction enzyme HindII to isolate the
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interacting fragments of DNA. The contact distance, which is the linear distance between two
interacting fragments, was also consistent between all three cell-types. The experimental
and processing bias can be seen clearly when we then compare the fragment sizes and
contact distances retrieved in the mESC datasets using single-cell Hi-C, DNaseI capture
Hi-C and PCHi-C. Here we observed large differences between the fragment sizes and
contact distance. Furthermore, in the mESC DNaseI ChIN we found there was reduced
connectivity, with a substantial increase in the number of connected components compared
to the mESC DNaseI ChIN. The increased number of connected components were also
observed in the three PIC networks. It has been previously reported, using the PCHi-C
dataset for the primary immune cells, that the occurrence of connected components can be
related to biological function (Viksna et al. 2019); we show this briefly in Figure 3.6 whereby
most of the connected components were enriched for a particular chromosome. Our results
suggest that the capture type used is also a significant determinant of network structure as
demonstrated by the relatively small changes seen between the three PIC networks
compared to the large scale changes observed between the PCHi-C, DNaseI and DNaseI
ChINs in the mESCs. Overall, the type of 3C experiment carried out and the processing
used on that dataset can influence both the fragment size and the enrichment of specific
contact distances. Although these changes are artificial as they are introduced by
experimental bias, they do not appear to significantly alter the fundamental structure of the
networks as shown by the retention of scale-freeness and small worldness across all 5
ChINs. Rather, they present a different viewpoint of the chromatin architecture. There is a
tradeoff between different methods that prioritise the resolution of the fragment sizes and
short range interactions for wider genome coverage and longer range interactions and
vice-versa. While this presents difficulty in choosing between (i) resolution to more
accurately locate enhancer sequences and (ii) coverage to capture more enhancer
sequences, there are potential solutions. For one, it could be beneficial in future work to
combine the networks of different 3C assays carried out in the same cell-type to concurrently
improve both the resolution, coverage and contact distances. This has been achieved either
by combining the various 3C networks into a single consensus network (Rao et al. 2014), or
alternatively, using multiplexed networks (Didier, Brun, and Baudot 2015). For the latter,
distinct networks (in this case various 3C networks) are layered atop one another and layers
are connected where 3C fragments overlap which should, in theory, reduce the loss of
information (such as resolution) compared to simply combining the networks.

Although we observe changes in the contact distances and fragment sizes for each 3C
experiment, it does not appear to affect the large-scale topology of the network. Using the
mESC PCHi-C and DNaseI ChINs we were able to provide a direct comparison between two
3C methods. Across both networks we observed patterns that are consistent with scale-free
and small world properties (Barabási 2009; Watts and Strogatz 1998). Both features are
commonly found within complex networks, although it has been argued that current
definitions of scale-freeness are too broad (Stumpf and Porter 2012). Other more rigorous
definitions of scale-freeness have been presented that were not used for our analysis
(Broido and Clauset 2019). The primary objective of this work was to understand if the
3C method fundamentally disrupted the large scale organisation of the ChINs we
derive from them. The small world and scale-free properties also present an interesting
theoretical framework for the organisation of chromatin and within that, the organisation of
enhancers and genes. For example, the fitness model is one of the two main mechanisms
proposed for the emergence of scale-free properties (Bianconi and Barabási 2001). This
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describes a process in which an inherent trait of a node provides it with increased fitness
over other nodes that leads to fit nodes becoming more connected than less fit nodes, such
as hubs. The enhancer and genic nodes can be considered to be more ‘fit’ than
non-enhancer and non-genic nodes as shown by their higher centrality scores. It may be
therefore interesting to analyse the fitness of nodes by measuring changes in connectivity of
these nodes in networks modelled from time-series 3C data which is already available
(Gibcus et al. 2018). This could be interesting in the context of mitosis where the genome
undergoes drastic changes in the 3D structure of chromatin (Shoaib, Nair, and Sørensen
2020). During mitotic exit the 3D structure of chromatin and regulatory circuits are
re-established and the fitness of nodes may provide clues as to how this is achieved.

While we looked at potential experimental bias arising from the networks themselves our
results also show that variability may also arise from the annotations used to validate our
method. As is common in all enhancer prediction models, the identification of a suitable ‘truth
set’ of validated enhancers is non-trivial. Currently gold standard approaches such as
CRISPR perturbation are limited in both the scalability to assess enhancer sequences
genome wide as well as the availability of this data for multiple cell-types. As there is no
reliable genome-wide gold standard for enhancer identification, we identified several
enhancer associated features that could be used to label the intergenic nodes as enhancers
and non-enhancers. For mESC’s these included histone ChIP-seq summarised in a
chromatin state model, three RNAPII variants, P300 ChIPseq, Starr-seq and CAGE-seq from
the FANTOM project and for the primary immune cells this included chromatin states,
CAGE-seq and eQTL’s (See Methods: Data). The reason why multiple enhancer associated
features are needed is due to the heterogeneity of enhancers and this can be observed by
the lack of full agreement in the overlaps between each of the features (Figure 3.11). This
could be further improved by labelling the nodes using additional annotations. For example,
CTCF plays a role in establishing a range of chromatin structures including the
establishment of chromatin loops (Sjoerd Johannes Bastiaan Holwerda 2013). By using
multiple features we are able to capture a wide range of distinct enhancer classes. However,
a caveat of using such broad definitions is that it can result in many false positives. For this
reason it is important to acknowledge that they are putative enhancers as there is no direct
evidence that they are functional, this is commonly known as validation creep (Halfon 2019).
The low agreement between features highlights the need to uncover new features of
enhancers, something that we demonstrate could be achieved using centrality measures
and indeed the propagation method outlined in chapters 4 and 5.
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Chapter 4: Integrating gene expression with
chromatin interaction networks: The development
of 3D-SearchE

4.1 Introduction

The increased availability of whole genome sequencing (WGS) and functional annotations
means that identifying functional non-coding variants is becoming more feasible. Often,
understanding whether non-coding variants are functional relies on determining whether they
occur within regulatory elements such as enhancers. However, current definitions of
enhancers are broad and non-specific while their mode of action is poorly understood.
Additionally, non-coding variants can occur at loci that induce structural changes in the
chromatin organisation. This can affect the localisation of enhancers to gene promoters. The
ability to identify these regions and define whether a variant is functional or not relies solely
on the annotations available for the cell-type in question. We have shown in Chapter 3 that
network theory approaches are a potentially useful tool in further annotating the genome by
deciphering the complex relationships between the chromatin architecture genes and
enhancers. However, these approaches neglect a key bit of information, the expression of
the genes. One area of particular interest in structural genome biology is how gene
expression and chromatin conformation are linked (Dekker and Misteli 2015). Naturally, this
relationship includes gene regulatory elements such as enhancers. As explained in previous
chapters the conformation of chromatin mediates the flow of information between enhancers
and genes by localising the two in 3D space or insulating them from one another depending
on the specific expression patterns required between cell-types and during the life cycle of
those cells.

Network analysis becomes a particularly powerful approach when the nodes and edges of a
network are labeled with a priori information that describe the biological properties of the
fragments and interactions they represent. In the previous chapter we show that by labelling
the nodes with enhancer data can facilitate a better understanding of how enhancer and
genic nodes maintain distinct connectivity patterns within the ChINs. This analysis links two
of the main components that control gene regulation; enhancers and chromatin architecture.
Importantly though, it does not account for the expression of genes. We hypothesised that
the integration of RNA-seq data would improve the characterisation and identification of
enhancer nodes. To link the properties of the chromatin architecture with enhancers required
measuring centrality scores for each enhancer node and measuring the differences
observed against non-enhancer nodes (see Chapter 3). In order to link gene expression
with enhancer nodes and the chromatin architecture the process is more complicated. Here,
the gene expression in all of the genic nodes must be reconciled with all of the enhancer
nodes while taking into account the chromatin architecture that links them all together. To
achieve this, we adopted a network propagation approach.
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Network propagation can be thought of as the transfer of heat from one radiator to many
others via copper pipe. The heat transferred to a group of 2 radiators that are directly
connected to the heat source will be higher than the heat transferred to a group of 5
radiators. Similarly, a radiator connected to the heat source via another radiator will receive
less heat than a radiator connected directly to the heat source. The conductivity of the
copper pipes can also be determined by a value called alpha to control how far the heat is
able to travel from the source. For networks and propagation the same logic is used to
determine the topological properties of nodes where heat can be any value, the radiators
can be any entity and represented by nodes while alpha is often user defined based on
contextual considerations.

In recent years network propagation has emerged as the state-of-the-art in many fields and
particularly in the investigation of PPI networks to identify associations between genes and
novel drivers of disease, (Peña-Castillo et al. 2008; Navlakha and Kingsford 2010). For
example, it has shown particular promise through the propagation of mutational frequencies
across PPI networks in order to identify previously unreported cancer drivers (Hofree et al.
2013). Fundamentally, network propagation aims to describe the associations and
relationships between the nodes in the network. This type of analysis is not limited to the
study of biological systems either. The most famous is the PageRank algorithm which was
first employed by Google (Page et al. 1999). PageRank works by returning websites
(represented as nodes) in order of their importance. Imagine, for website A its importance is
a function of the number of websites linking to it, in this example two with B and C, and the
importance of B and C determined by the number and importance of the websites linking to
them. Using such a process enables all of the websites to be ranked relative to one another.
Network propagation has the distinct benefit of incorporating a priori information about the
nodes; meaning that some nodes are more important than others and as such connections
to these nodes are considered more favourable by the propagation algorithm (Cowen et al.
2017). We proposed that a network propagation algorithm was therefore ideal to rank the
intergenic nodes according to their connectivity to genic nodes (with the assumption that
ChINs are gene centric). In this case, the RNA-seq values would act as the a priori
information. Here we propose a methodology to apply network propagation across ChINs to
rank intergenic nodes and hypothesise that higher ranking intergenic nodes represent loci
harbouring enhancers. In this chapter we outline the development of a method to integrate
gene expression data with ChINs by propagating RNA-seq values in order to rank intergenic
nodes.

4.2 Development of 3D-SearchE

4.2.1 Using Network Propagation to Integrate Gene Expression
and 3C Data

Our network-based propagation algorithm was provided by the lab of Professor Rosalba
Giugno (University of Verona) and was originally designed for smoothing mutational
frequencies across PPI networks. These algorithms exist in various guises, most notably as
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Google PageRank as mentioned previously. Here, we outline the adaptation of this algorithm
to integrate and propagate RNA-seq values across ChINs to generate an imputed activity
score (IAS) at intergenic nodes. Gene expression data for the primary immune cells were
downloaded from (L. Chen et al. 2016) and the mean expression across 200 individuals
were used. Gene expression data for the mESC’s were downloaded from (Kolodziejczyk et
al. 2015) using the serum population and the mean expression per gene. Both RNA-seq
datasets were integrated into the ChINs and analysed in the same way (see chapter 5 for
the results from mESCs).

The propagation process is defined by several components and parameters. Firstly, the
interactions between all the nodes in the network (Figure 4.1a) are defined by the adjacency
matrix (Figure 4.1b). In this case the is symmetric as the network is unweighted; all of𝐴 𝐴
the edges are bidirectional. is then normalised using a symmetric normalisation method𝐴
defined in by the equation (Figure 4.1e) where D is the𝐴 = 𝐷 − 0. 5 * 𝐴 * 𝐷 − 0. 5
diagonalised degree sum of (Figure 4.1c). The result is a degree normalised transition𝐴
matrix that defines the probabilities of transitioning from a one node to another (Figure𝑊'
4.1d).

Each node also contains an a priori value, in our case these are set by the expression
values of each gene as defined by an normalised RNA-seq dataset. The a priori values are
then mapped to the appropriate nodes defined by where to is𝑌: 𝑉 −>  [0, 𝑀𝐴𝑋] 0 𝑀𝐴𝑋
given by the expression of each gene (Figure 4.1f). The amount of gene expression that can
be propagated from node A to the rest of the network is defined by two hyperparameters.
The first is the alpha value, . It is able to restrict the propagation of expression valuesα
anywhere between 0 to 100% and is defined by a unit interval [0,1] (Figure 4.1g).  The
second parameter is defined as the number of times the algorithm is iterated and can also
be set to 1 to limit the amount of propagation or more to increase the amount of propagation
(Figure 4.1g).

All of the inputs are defined with and which can be used to determine the function Fα,  𝑊' 𝑌
given by where F(v) defines an imputed expression value at𝐹𝑡: = α𝑊'𝐹𝑡 − 1 + (1 − α)𝑌
any given intergenic node, taking into account both the global topology of the network and
the relative expression levels of all the genes in the network. This algorithm is best described
as simulating a process of propagating information across the network, starting from node A
and where node A in the network contains an a priori value (Figure 4.1h). The propagation
algorithm then propagates this value from A to the rest of the network (Figure 4.1h). This
process results in all intergenic nodes that are connected to a genic node receiving an
imputed activity score (IAS) that is determined by both the activity of the connected genes
and the topology of the ChIN. A visual example of IAS enrichment in the largest connected
component of the monocyte ChIN can be seen in Figure 4.2. The IAS can then be used to
rank intergenic nodes in order to predict which nodes contain enhancers.
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Figure 4.1. Network propagation schematic A) i) A toy model of network propagation run with two 
iterations  with an insulating score of 0.2. A single gene node A contains an a priori expression value. aii) In 
the first iteration, the value from A is smoothed to its. aiii) In the second iteration the values are further 
smoothed and important nodes such as B and C are ranked higher. B) i)This process is achieved by 
representing the interactions between nodes of the network in an adjacency matrix. ii) The degree of each 
node is represented in the diagonal matrix. iii) The probabilities of transitioning from one node to another 
is calculated from the diagonal matrix and the adjacency matrix using equation 1. These results are then  
represented in the degree-normalised transition matrix. iv) The expression value for each node at the start 
and after each of the two iteration values after propagation using equation 2.
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Figure 4.2. IAS in the largest connected component of the monocyte PCHi-C network. 
Nodes are organised based on an Edge-weighted Spring-Embedded Layout where the 
frequency of interaction denotes the edge weight. Nodes are then coloured from yellow to red 
based on the imputed activity score calculated by 3D-SearchE. 
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4.2.4 Primary immune cell chromatin interaction networks
We initially used the promoter capture Hi-C (PCHi-C) dataset containing 17 primary immune
cell-types with matched gene expression data to prototype our method. Each of the 17 cell
types originates from a common multipotential hematopoietic stem cell (HSCs) and therefore
each network will share common interactions. These cells are then differentiated into several
lineages to form a selection of specialised blood cells. The 3D-folding of chromatin and
cell-type specific chromatin contacts play a major role in this process as they coordinate the
localisation of enhancers to genes resulting in cell-type specific gene expression. We first
investigated how the proportion of shared and cell-type specific interactions vary between
the ChINs of three cell types. We generated our initial results using the networks of
monocytes, neutrophils and CD4+ T-cells as these contained matched gene expression
data. Both monocytes and neutrophils originate from the common myeloid progenitor cell.
While T-cells originate from the common lymphoid progenitor cell. We then calculated the
percentage of shared chromatin interactions between these three cell-types (Table 4.1).
Typically, cells with a common lineage tend to share a higher proportion of their interaction.
For example, Naive_CD4+ T-Cells share just over a third (36.1%) of their interactions with
naive B cells. This is to be expected as they both originate from the common lymphoid
progenitor (Figure 4.3). This is comparably higher than the percentage of interactions Naive
CD4+ T-Cells share with cells originating from the common myeloid progenitor. However,
monocytes share 41.6% of their interactions with neutrophils while a higher percentage of
51.8% with T-cells. Neutrophils share 48.5% of their interactions with monocytes and 42.9%
with T-cells. While T-cells share 27.0% with monocytes and 19.2% with neutrophils. These
data show that all three cell-types share many chromatin interactions with each other;
monocytes share a higher proportion of their interactions with T-cells than neutrophils,
despite monocytes and neutrophils being more closely related. Interestingly, the chromatin of
neutrophils is involved in a peculiar physical function known as neutrophil extranuclear trap
(NET) that can trap, neutralise and kill pathogenic material (Papayannopoulos 2018). This
may explain, in part, why neutrophils appear as distinct from monocytes as they are from
T-cells despite the differences in the lineage.

As well as testing the performance of the method in the individual cell-type networks, we
also tested the ability of our model to identify cell-type specific enhancer nodes from two
consensus networks (Figure 4.4). The use of consensus networks were included to
understand how the predictive performance of propagation is affected in a ChIN consisting of
monocyte, neutrophil and T-cell interactions. Secondly, to understand if cell-type specific
RNA-seq could be propagated on a ChIN composed of the interactions of the other two
cell-types. This would be particularly useful in cases where 3C data is unavailable for
particular cell-types.

The first consensus network consisted of the nodes and edges from the monocyte,
neutrophil and CD4+ DNaseI ChINs. This network contained a total of 361,221 unique edges
and 158,538 unique nodes. The second was composed of 17 different cell-types resulting in
a total number of  728,835 interactions composed by a total of 253,146 unique nodes, of
which 20,817 contained promoters.
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Monocytes Neutrophils Naive_CD4
+ T-Cells

Total Number of Interactions 171,430 147,195 329,439

Monocytes 1.000 0.485 0.270
Neutrophils 0.416 1.000 0.192

Naive_CD4+ T-Cells 0.518 0.429 1.000
Macrophages_M0 0.528 0.360 0.256
Macrophages_M1 0.492 0.334 0.243
Macrophages_M2 0.514 0.357 0.258
Megakaryocytes 0.424 0.312 0.253

Endothelial_precursors 0.334 0.241 0.204
Erythroblasts 0.435 0.341 0.259

Foetal_thymus 0.450 0.365 0.338
Total_CD4_MF 0.499 0.417 0.473

Total_CD4_Activated 0.517 0.437 0.467
Total_CD4_NonActivated 0.502 0.424 0.475

Naive_CD8 0.527 0.446 0.498
Total_CD8 0.518 0.428 0.478
Naive_B 0.521 0.427 0.361
Total_B 0.548 0.448 0.381

Table 4.1. The percentage of shared interactions for monocytes, neutrophils and CD4+ T-cells
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Figure 4.3. Differentiation lineage of multipotential hematopoietic stem cells. Adapted from 
https://en.wikipedia.org/wiki/Haematopoiesis#/media/File:Hematopoiesis_simple.svg
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Monocytes Neutrophils

T-Cells Consensus

Figure 4.4. A consensus network of monocytes, neutrophils and CD4+ T-cells. The networks of 
monocytes, neutrophils and CD4+ T-cells are collapsed into a single network that contains nodes unique 
to each cell-type (red, blue and green), nodes unique to two cell-types (purple) and nodes present in all 
three cell-types (orange).
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4.2.3 Mapping gene expression data to the network
We implemented our propagation method using the matched RNA-seq gene expression data
and ChINs for each of the three cell-types; monocytes, neutrophils and T-cells. Assigning the
gene expression to the ChINs is not trivial as genes can map to multiple 3C fragments
(Figure 4.5a). This can lead to some genes being annotated to multiple nodes leading to the
gene expression values being multiplied by the number of nodes they map to. There are two
ways in which the RNA-seq data can be assigned to the genic nodes. One is to use the TSS
coordinates meaning the gene will only ever map to a single node. The other is to use the
whole gene body (WG) coordinates  which for large genes can result in mapping to multiple
nodes. The TSS mapping was used initially to simplify the model, however the method was
designed to incorporate whole gene mapping for future testing.

In the case of WG mapping the problem of gene expression values being multiplied by the
number of nodes they map to persists. There are two solutions to this problem. One is to
simply divide the gene expression value by the number of nodes the corresponding gene
maps to. The other is to introduce the genes as nodes within the network and propagate
their values into the ChIN. Here we opted for the latter and treated the gene as individual
nodes within the ChINs (Figure 4.5b). Each gene node has an associated RNA-seq score
that reflects the activity of the gene. This serves as the a priori information that is to be
propagated from gene nodes (circular nodes that represent the genes) to genic nodes
(square nodes that represent the 3C fragments that genes map to) and then across the
network to intergenic nodes (triangle nodes) (Figure 4.5b). This approach was taken as it
could be incorporated into the existing framework more easily. In this chapter we explore the
results for TSS mapping. Here, the gene expression values could be assigned directly as the
TSS will only map to a single node. However, we retained the same protocol for both the
TSS and WG mapping procedures for direct comparison. The results for WG mapping can
be seen in chapter 5.

The network propagation algorithm uses an undirected network as input. As such, the flow of
information, in this case RNA-seq values, are propagated in all directions. Because of this,
the genes nodes can receive a proportion of the propagated scores following propagation.
As the gene nodes are not part of the true topology of the network and genes are already
represented in the network by the genic nodes we developed a two-step propagation
strategy. In simple terms, we generated two networks: one containing the genes connected
to the genic nodes (circle and square nodes) and the second the chromatin interaction
network (square and triangle nodes) (Figure 4.6a). In the first step, the RNA-seq scores
were propagated to the genic nodes; thus normalising by degree. In the second step, the
activity scores in genic nodes appropriated from the first step were propagated across the
ChIN (Figure 4.6b). The details of how this is achieved using the propagation algorithm are
outlined as follows:

We define a set of associations representing genes and the chromatin fragments they𝐺𝐹
map to and a set of interacting chromatin fragments as defined by the 3C data. A matrix𝐹𝐹

of the cell-type specific RNAseq counts defines the expression profile of each gene ( )𝑀 𝑝1
where is the highest count value in . And two networks and𝑀𝐴𝑋 𝑀 𝐺1 = (𝑉1, 𝐸1, 𝑤1)

where V1 is the set of unique names in GF, E1 is the set of unique𝐺2 = (𝑉2, 𝐸2, 𝑤2)
associations in GF, w1 is a weight function denoting the reliability of each interaction and a
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fragment-fragment interaction network G2=(V2,E2,w2) where V2 is the set of unique names
in FF, E2 is the set of unique associations in FF and w2 is a weight function denoting the
reliability of each interaction.

The aim is to impute an activity score (IAS) for based on gene expression and the𝑉𝑓𝑖 𝑀
topology of the chromatin interaction network . However, as a single gene can map to𝐺2
multiple chromatin fragments, and many genes can map to a single fragment we employ a
two step propagation strategy . Here we propagate the values of from to across𝑀 𝑉𝑔 𝑉𝑓𝑔 𝐺1
in step one and from to across in step two. Here, acts as as the intermediary𝑉𝑓𝑔 𝑉𝑓𝑖 𝐺2 𝑉𝑓𝑔
between and where .𝐺1 𝐺2 𝑉1 ∩ 𝑉2 = {𝑉𝑓𝑔 :  𝑉𝑓𝑔 ∈ 𝑉1 𝑎𝑛𝑑 𝑉𝑓𝑔 ∈ 𝑉2}

Following propagation the intergenic nodes can be compared relative to one another by their
imputed activity scores (IAS) reflecting their probability of being an enhancer node (Figure
4.6c).

88



I II III IV

A
B

C

A B C

I II III IV

Figure 4.5. Mapping of genes to 3C fragments. A) Genes can be mapped to a single 3C 
fragment using the TSS or by the whole gene body which results in some genes mapping to 
multiple 3C fragments. B) Genes are represented as circles, the 3C fragments they map to as 
squares while intergenic 3C fragments are represented as triangles. 
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Figure 4.6. Schematic diagram of the network propagation used to impute activity 
values at intergenic nodes. A) Genes are mapped to nodes representing genic chromatin 
fragments. Each gene has an associated gene activity value determined by RNA-seq data. 
B) Gene activity is propagated from gene nodes to genic chromatin nodes in propagation
step one. Activity scores are then imputed in intergenic chromatin nodes by propagating the
scores from genic chromatin nodes. C) Ranking of non-genic nodes by the imputed activity
score to identify high confidence enhancer nodes.
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4.2.4 Parameter Optimisation to Reflect Biologically relevant
Enhancer Distances
There are two hyper-parameters that can influence the propagation of gene expression
across the network; alpha and the number of iterations. The alpha score is often called the
insulating parameter, and restricts the amount of propagation across the network. The
number of iterations determines how many times the algorithm is executed to propagate
gene expression across the network. To be able to apply our model to various 3C networks
and cell-types we initially optimised the parameters to reflect the general biological
properties of enhancer promoter interactions rather than optimising the parameters for each
individual ChIN. Here we limited the propagation of gene expression to nodes at 2 and 3
degrees away the most and maximised the difference in IAS between the nodes (Figure
4.7). This would ensure that nodes that are proximal to genic nodes were prioritised ahead
of nodes located at larger differences that are less likely to impose a regulatory effect on a
gene.

In the example network given there are 3 genic nodes (F2, F7 and F8) and 5 intergenic
nodes (F1, F3, F4, F5 and F6). Each gene connected to a genic node is given an arbitrary
value between 20 and 90 and these are then propagated across the network with various
settings. With very strict settings such as with 2 iterations and an alpha of 0.1 the majority of
the expression is retained in the intergenic nodes that are direct neighbours of the genic
nodes, F2, F7 and F8, with very little spreading to the intergenic nodes that are connected
indirectly. With more lenient settings such as with 10 or 100 iterations and an alpha of 0.5 we
can see that while the indirect intergenic nodes receive a higher value, nodes such as F5
and F6 receive the same score. This is despite each of these nodes being located at
different distances to the genic nodes. The ‘goldilocks’ parameters were found to be 2
iterations with an alpha value of 0.2. This alpha value retained high IAS in nodes near genic
nodes. This is useful considering enhancers will tend to be proximal to genes in 3D-space in
order to activate gene expression. It also maximised the differences in the scores between
each of the nodes to better resolve intergenic nodes of different topology and proximity to
genic nodes. These parameters were again shown to be optimal when testing the
performance in predicting enhancer nodes on the real ChINs (see 4.4.9).
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4.2.5 Annotation of the nodes using chromatin states
In order to identify whether IAS is able to identify enhancers we annotated the networks
using a chromatin state model from the publication of Carrillo-de-Santa-Pau et al,
(Carrillo-de-Santa-Pau et al. 2017).  Using a multivariate hidden Markov model, ChromHMM
(Ernst and Kellis 2017) provides an 11 state classification; transcription (2 states),
heterochromatin (4 states), repressed promoter (1 state), enhancer (2 states) and active
promoter (2 states) (Figure 4.8a). The genome is segmented into these states by learning
the various occupancy combinations of  6 histone marks, H3K4me1, H3K27ac, H3K4me3,
H3K27me3, H3K9me3 and H3K36me3. Enhancers, for example, are characterised by
H3K4me1 such as in state 8 (Figure 4.8a) and sometimes in combination with H3K27ac as
in state 9 (Figure 4.8a). As discussed previously, regions with a combination of H3k4me1,
H3K27ac and H3K4me3 can represent enhancer regions (See Chapter 1: Histone
modifications) however this state was not included as an enhancer in the initial analysis.

The chromatin state profile of the genomes of each of the cell-types show that
heterochromatin is by far the most abundant chromatin state, covering up to 85% of the
entire genome (Figure 4.9). Interestingly, the chromatin profile of monocytes (Figure 4.9a)
contains ~5% less heterochromatin than neutrophils (Figure 4.9b) and T-cells (Figure 4.9c).
Instead, the monocytes contain a higher percentage of both enhancer and transcription
chromatin states suggesting that monocytes contain more active chromatin. They do not,
however, contain a higher percentage of active promoter states, nor a lower percentage of
repressed promoter states meaning the increase in active chromatin is not necessarily a
consequence of a higher number of active genes.

The PCHi-C dataset enriches specifically for promoters and the chromatin they interact with.
To understand how the chromatin profile of this dataset diverges from the genome wide
chromatin profile we then annotated the nodes with the chromatin states and calculated the
percentage composition of chromatin states for each node. In each cell-type we observe a
decrease in the percentage of heterochromatin states, most notably in monocytes where we
observe a percentage point drop of 11.44 (Figure 4.10a); twice that of neutrophils with 5.42
(Figure 4.10b) and 26 times larger than T-cells with a 0.44 decrease (Figure 4.10c). This
reduction is largely shifted towards a slightly higher enrichment of chromatin with
transcription states and a much larger enrichment of enhancer states. Results show that the
percentage of the total genome labelled as enhancers stands at 3.75% for monocytes,
1.31% for neutrophils and 2% for CD4+ T-cells. This percentage increases in the chromatin
regions captured by PCHi-C with 12.23% for monocytes, 4.18% for neutrophils and 4.8% for
CD4+ T-cells. These results confirm that the ChINs contain enhancers that can now be used
to validate the predictions of our model.

93

https://paperpile.com/c/XWmKOJ/CUs7M
https://paperpile.com/c/XWmKOJ/fjDa


3D-SearchE

Histone Modifications

Annotation of the Nodes

i)

ii) iii)

iv)

Figure 4.8. Annotation of nodes using chromatin states defined by combinations of 
histone modifications. A) Publicly available 11 chromatin state model based on six histone 
modifications. (Figure from Carrillo-de-Santa-Pau et al. 2017) B) Chromatin states were 
annotated to the nodes based on the genomic coordinates. Nodes labelled with enhancer 
chromatin states are denoted with a green star.
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Figure 4.9. Genome wide chromatin state composition for monocytes, 
neutrophils and CD4+ T-Cells. The percentage of each chromatin state 
genome wide for monocytes (A), neutrophils (B) and T-Cells ©.
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Figure 4.10. PCHi-C chromatin state composition for monocytes, 
neutrophils and CD4+ T-Cells. The percentage of each chromatin state in 
loci captured in the PCHi-C data set for monocytes (A), neutrophils (B) and 
T-Cells (C).
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4.2.6 Initial results
We generated an initial set of results using the monocyte derived network due to the high
enrichment of enhancers as defined by the chromatin states. Genes were mapped to the
network as described previously using the TSS coordinates and propagation of the gene
expression was carried out using two iterations and an alpha of 0.2 on the monocyte specific
network. We first tested how well the IAS metric correlated with each of the chromatin states:
Do nodes with a higher percentage of enhancer states receive a higher IAS from the
propagation? Intergenic nodes were selected and the IAS and chromatin state coverage
were plotted for each state (Figure 4.11). The correlation between IAS and each chromatin
state was then calculated where 1 indicates a perfect correlation and -1 a perfect
anti-correlation. For the two enhancer chromatin states E8 and E9 we observed a correlation
of 0.024 and 0.015, respectively. While for the repressed heterochromatin state E5 we
observe an anti-correlation of -0.009. While a pattern emerges with a correlation between
IAS and enhancer chromatin states and an anti-correlation with heterochromatin states the
evidence is weak.

We again tested our model using the same parameters and monocyte gene expression, this
time using the consensus network of monocytes, neutrophils and T-cells (Figure 4.12). In
this experiment the correlation between IAS and the two enhancers states E8 and E9
increased by 0.038 and 0.028  to 0.062 and 0.043, respectively. While the anti-correlation
between IAS and E5 increased by -0.001 to -0.01. Again, a pattern of correlation with the
enhancer states is seen, accompanied by an anti-correlation with the repressed
heterochromatin state E5. The use of a consensus network appears to marginally improve
the correlation between IAS and enhancer chromatin states. We therefore opted to use the
consensus three cell-type network for the next set of analyses.
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Figure 4.11. Scatter plots of IAS vs the percentage of each chromatin state across the 
nodes of the cell-type specific networks. 
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Figure 4.12. Scatter plots of IAS vs the percentage of each chromatin state across the 
nodes of the three cell-type consensus networks. 
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4.2.7 Labelling of nodes into active and inactive
Despite showing a promising difference between the enhancer states and heterochromatin
states the actual correlation between each of the states and IAS is relatively low. While the
low correlation can be due to inefficiencies in the model, both the labelling of the nodes and
the testing methods themselves may also be less than optimal. We noticed in the previous
analysis that the distribution of the coverage of chromatin states for the fragments appeared
to be bimodal.

Upon further investigation, for some chromatin states including the enhancer states, the
average distribution of the states across the nodes are bimodal (Figure 4.13): the majority of
nodes with these states cover either less than 10% or more than 90% of the chromatin. In
this case, Spearman correlation would be a more appropriate measure of correlation due to
the non-normal distribution. The next problem arises from the non-uniform chromatin
fragment sizes from the PCHi-C dataset. Because we are measuring the correlation between
the percentage coverage of each chromatin state and IAS nodes representing, for example,
a large 10kb fragment with 10% coverage of E8 contains a larger enhancer region than a
small 1kb fragment with 10% coverage of E8. This is further compounded by the fact that
nodes representing larger fragments tend to have a higher degree, or number of connections
(See chapter 3.). This results in this group of nodes generally receiving a higher IAS value
than smaller fragments (See chapter 5). In addition to this, we also observe a slight
correlation between IAS and other states, most notably E10 which can be defined as a
hybrid E-promoter or less active enhancers (See chapter 1: Enhancers). This highlights
both the ambiguity in defining enhancers based on classical histone modifications and the
potential to mislabel intergenic nodes as non-enhancers when using a single method for
validation.

For these reasons we collapsed the promoter, enhancer and transcription states into a single
‘active’ state and the heterochromatin states and repressed promoter states into an ‘inactive’
state. Active and Inactive nodes were determined by a simple majority, i.e. if more than 50%
of the node was active it was labelled as active. Using this method of labelling we were able
to minimise the effects of variable enhancer distribution and fragment sizes, while reducing
the number of false negatives. Improvement in the labelling of nodes is investigated and
discussed in further detail in chapter 5.
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Figure 4.13. Distribution of chromatin state annotation across the nodes of the monocyte, 
neutrophil and T-cell networks. The distribution of each chromatin state for every node 
generated from the fragments of the PCHi-C dataset for monocytes (A), neutrophils (B) and 
T-Cells (C).
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4.2.8 IAS is enriched in nodes labelled as active
Using the active and inactive labels we then compared the relative levels of IAS in each of
the two groups and extended the analysis to include the cell-type specific networks of
neutrophils and T-cells. Here we observe that IAS in nodes annotated as being active are
significantly higher (Kolmogorov-Smirnov test Monocytes p.value = <2.2e-16, Neutrophils
p.value = <2.2e-16 and T-Cells p.value = <2.2e-16). The IAS is 2.89, 4.34 and 4.04 fold
higher than the inactive nodes for monocytes, neutrophils and t-cells, respectively. Higher
levels of IAS in active intergenic nodes show that our model is able to discriminate between
active and inactive nodes (Figure 4.14).

These results confirm that our model is, to some degree, able to identify active nodes as
defined by chromatin states with gene expression and 3C data with no other a priori
knowledge or input. This is achieved by leveraging the underlying relationship between gene
expression and the complex interactions of chromatin. One of the relationships that our
model is able to take advantage of is the tendency of chromatin to interact with regions of a
similar composition. When testing the correlation between genic nodes, which are inherently
active, and both active and inactive intergenic nodes we see this effect. Across all three
cell-types a positive correlation is seen in the interactions between genic nodes and active
intergenic nodes and a negative correlation between genic nodes and inactive intergenic
nodes (Table 4.2). This means that the propagated gene expression data, by virtue of the
network architecture, is more likely to reach an active intergenic node. The underlying
relationships that our model is able to leverage are explored and discussed in further detail
in chapter 5.
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Figure 4.14. IAS in nodes annotated as active and inactive. Active and inactive intergenic 
nodes are defined by the percentage of chromatin states for transcription, enhancers and 
promoters covering >=50% of the chromatin represented by the node. Inactive nodes are defined 
by the percentage of of chromatin states for heterochromatin and repressed promoter covering 
<50% of the chromatin represented by the node. A significant difference is observed between 
each of the groups (Kolmogorov-Smirnov test Monocytes p.value = <2.2e-16, Neutrophils 
p.value = <2.2e-16 and T-Cells p.value = <2.2e-16).

Intergenic Monocyte Nodes

Intergenic T-Cell Nodes

Intergenic Neutrophil Nodes

103



Cor.test on fragment chromatin 
state interactions 

Intergenic 
Active 

Intergenic 
Inactive

Monocytes 0.239 -0.239

Neutrophils 0.252 -0.252

T-Cells 0.251 -0.251

Table 4.2. The correlation between active genic nodes and intergenic active and intergenic 
repressive nodes in the three cell-type networks for monocytes, neutrophils and T-cells. 
The Pearson correlation between active and inactive nodes Active and inactive nodes are 
defined by the percentage of chromatin states for transcription, enhancers and promoters 
covering >=50% of the chromatin represented by the node. Inactive nodes are defined by the 
percentage of of chromatin states for heterochromatin and repressed promoter covering <50% of 
the chromatin represented by the node.
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4.2.9 IAS is predictive of active nodes
Following on from the previous results we carried out a more comprehensive analysis,
including the cell-type specific and 17 cell-type consensus networks along with two
additional parameters for propagation. RNA-seq values mapped to nodes containing the
TSS of the corresponding gene and for each cell-type, network and parameter combination
IAS was calculated. Initially this method of mapping RNA-seq values to nodes was chosen to
avoid the multiple mapping of RNA-seq values of genes that span more than one node in the
consensus networks. We used the active and inactive labels as described previously to
validate our results.

Following propagation ROC curves were produced and the area under the curve (AUC)
calculated to determine the ability of the model to identify enhancer nodes across the
cell-type specific networks, the three-cell consensus network and the 17 cell-type consensus
network (Table 4.3). Results show that in all three types of networks and in all cell-types the
propagation set with an alpha value of two and an iteration value of two returned better
performance. Interestingly, the consensus network made up of the interactions of the
monocytes, neutrophils and CD4+ T-Cells yielded a better AUC score than the individual
networks.

Although this is a commonly used metric, an often overlooked caveat is that when the
labelling set is imbalanced, the results of ROC curves can be biased. In this case the
percentage of nodes labelled as active is 48%, 37% and 40% for monocytes, neutrophils
and T-cells. Because of this, the predictive performance is likely underestimated for
neutrophils and to a lesser extent T-cells, using the AUROC metric. A more comprehensive
analysis of IAS in predicting enhancer nodes is provided in chapter 5.
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Cell-specific Consensus (3 
cell-types)

Consensus (17 
cell-types) 

Mono Niter2a1 0.604 0.648 0.645 
Mono Niter2a2 0.605 0.650 0.648 
Mono Niter10a5 0.603 0.640 0.628 
Neut Niter2a1 0.617 0.658 0.654 
Neut Niter2a2 0.617 0.660 0.656 
Neut Niter10a5 0.617 0.656 0.644 
T-cell Niter2a1 0.649 0.654 0.655 
T-cell Niter2a2 0.650 0.656 0.656 
T-cell Niter10a5 0.646 0.649 0.640 

Table 4.3. Predictive performance measured by the area under the ROC curve. The area 
under the ROC curve was calculated to measure the predictive performance of our model across 
3 cell-type specific networks for monocytes, neutrophils and T-cells as well as, 3 cell-type and 17 
cell-type consensus networks. The expression data of monocytes, neutrophils and T-cells were 
propagated across their respective cell-type specific networks as well as both consensus 
networks. For each propagation we also tested three parameters (first column). 
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4.2.10 Mapping RNA-seq to nodes by the coordinates of the
TSS or whole gene body differentially affects the imputed score
in intergenic nodes

Gene enhancers typically target the promoter by the transcriptional start site. For this reason
we initially utilised this mapping procedure as outlined in chapter 3 to assign RNA-seq
values to the nodes.  However, we can also map RNA-seq values to nodes using the
coordinates of the whole gene. Here we revisit the mapping procedure and investigate the
effects of using each type of mapping on a toy network.

The mapping function defines the mapping of gene expression from an𝑌: 𝑉 −>  [0, 𝑀𝐴𝑋]
RNA-seq data set to genic nodes in the propagation algorithm. This requires the annotation
of the genic nodes using gene data from Ensembl (See Chapter 3:Methods). One notable
consideration for this is the gene size in relation to the size of the 3C fragments. For the
DNaseI capture experiment the median fragment size is 2.8kb. Compare that to the median
gene size in mice of 5.2kb we start to see a potential problem in the assignment of genes to
genic nodes. For example, take gene X with an associated RNA-seq value of 100 where the
TSS maps to a single node, node A (Figure 4.15a). In this scenario genic node A would start
with a value of 100 if the values were assigned directly based on the presence of that gene.
This offers the most simplistic method of assigning RNA-seq values to genic nodes.
However, when using the whole gene body, genes can map to multiple nodes. Take gene Y ,
with an associated RNA-seq value of 100 that maps to two gene nodes, nodes A and D
(Figure 4.15b). In this scenario nodes A and D would each start with a value of 100;
because gene Y mapps to two nodes it’s associated RNA-seq value has been doubled. This
poses the potential problem of artificially inflating the RNA-seq values for genes that map to
multiple nodes. In the mESC DNaseI ChIN for example, there are 23,506 genes that map to
117,546 nodes meaning that each gene maps to 5 nodes on average.

In order to test the effects of TSS and WG mapping we propagated the expression of genes
X and Y across the toy network with one iteration and an alpha of 0.2 using both mapping
types (Figure 4.15c). The imputed activity scores were then used to rank the intergenic
nodes for each mapping procedure . As expected the WG mapping resulted in slightly higher
final imputed activity scores for the intergenic nodes. However, the final ranking of the
intergenic nodes were identical. These results show that the mapping procedure, whether
TSS or WG, does not have an effect on the ranking of intergenic nodes when the gene body
node D is only connected to the TSS node A. This is because all of the intergenic nodes are
still in topologically identical positions in the network in relation to the source of where the
values are being propagated from making the duplication of RNA-seq score arbitrary. To
understand this concept we can calculate the distance of each intergenic node to the gene
node using the shortest path measure. For the intergenic nodes B and  C the shortest path
to the genic nodes A and D are 1 and 2 respectively, while for E and F it is 2 and 4. This is
reflected in the final rankings of these nodes whereby B and C are ranked joint 1st, with E
and F ranked joint second.

We then considered a scenario whereby gene Z maps to nodes A and E (Figure 4.15d) . In
this case, the shortest path to the gene nodes would change depending on the use of TSS
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or WG assignment (Figure 4.15d). Nodes B, C and D all have a shortest path of 1 to node A
(TSS) while node F has a shortest path of 2. While to node E (Gene body) the distance is 1,
3, 3, and 4 for B, C, D and E, respectively. Here we can see that using either TSS or WG
mapping results in different rankings of nodes B and C. For TSS mapping C is ranked joint
1st with B whereas for WG mapping node B is ranked ahead of node C.

We have shown how using WG mapping can separate nodes more clearly than TSS
mapping based on their connectivity with genic nodes. Here we discuss the framework
developed to assign the RNA-seq scores to each genic node using the WG mapping
process. Using WG mapping can result in inflated values for genes that span more than one
node compared to smaller genes and therefore creating a bias with respect to large genes
following propagation. There are technical solutions to solve this problem, such as dividing
the RNA-score associated with each gene by the number of nodes it maps to. Instead of
adding a new normalisation step into our workflow we consolidated the normalisation
process into our existing framework. The normalisation process can also be imagined as
normalising the RNA-seq values by the number of connections it has to nodes.  As such we
included genes as nodes in the network where their edges connected them to the nodes
they mapped to. We then used the propagation algorithm to propagate the RNA-seq value
for each gene from the gene node to the genic node(s) that they map to (Figure 4.16).

Finally, we applied these principles to the mESC DNaseI ChIN. The results confirm that WG
mapping (AUPRC = 0.650) results in an improvement in the classification of enhancer nodes
over the use of TSS mapping (AUPRC = 0.629) (Figure 4.17). We therefore opted to use the
WG mapping as the default mapping procedure for 3D-SearchE.
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Figure 4.15. Toy networks showing the effect of whole genome vs TSS gene mapping 
procedures. A) Using TSS mapping gene X maps to node A. B) Using TSS mapping gene 
Y maps to nodes A and D. C) In this scenario, the resulting IAS for genes X and Y with the 
same starting values are ranked identically. D) Using TSS mapping gene Z mapps to nodes 
A and E. E) In this scenario when gene Z has the same starting value as genes X and Y the 
final IAS ranks node C differently.
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Figure 4.16. Toy networks showing the effect of direct vs smoothed assignment of 
gene expression scores to genic nodes. Using smoothed gene expression prevents 
genes that map to multiple genes from artificially inflating their IAS values when propagating 
to other nodes in the network. 
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Figure 4.17. Precision-recall curve for TSS IAS vs WG IAS. The area under the precision 
recall curve for TSS mapping is 0.629 compared to 0.650 when classifying nodes annotated 
with at least one enhancer feature from enhancer chromatin states, P300, CAGE-seq, 
Starr-seq and and three RNA polymerase II (RNAP II) complexes and RNAP s2p.
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4.3 Discussion
A major problem in the identification of enhancers is their heterogeneity in both composition
and location. In this chapter, we have outlined the development of a method that will be used
to predict enhancers by leveraging the relationship between gene expression and chromatin
interactions. To achieve this we first model 3C interaction data as networks. We then utilise a
network propagation algorithm based on random walks to both integrate gene expression
data within the network. In doing so, we are then able to impute an activity score (IAS) in
intergenic nodes by propagating the gene expression values from genic nodes across the
network. The IAS is a metric that summarises the importance of an intergenic node in the
context of its proximity to all of the genic nodes within the network, the relative expression of
those genes as well as the topology of the entire network.

The use of network propagation has been used previously in other fields. In cancer research
for example, network propagation has been used to identify previously unknown proteins
involved in the progression of cancers by propagating mutational frequencies across a
protein-protein interaction network (Hofree et al. 2013). This method relies on the
assumption that the interactions of the biological components have a functional effect. We
utilise this same concept using chromatin-chromatin interaction networks and propagating
gene expression values instead of mutational frequencies. Here, the underlying assumption
is that the activity, defined by the gene expression, of one chromatin fragment is influenced
by, or can influence the activity of all other chromatin fragments. This assumption is merited
by what we know about chromatin organisation and gene regulation. For example, chromatin
organisation is known to show preference to chromatin of similar composition; distinct A/B
compartments contain majority euchromatin and heterochromatin (S. Wang et al. 2016). At
the more local level, transcriptional factories have been hypothesised to localise and
influence the transcriptional activity of co-expressed genes (Sutherland and Bickmore 2009).
The hierarchical organisation of chromatin suggests that there exists a global influence on
gene expression and network propagation provides a useful tool to model this.

Our results show that by computing IAS using the topology of the chromatin interaction
networks (ChINs) and global gene expression we can independently identify nodes with
active chromatin states. There are several limitations in both the model and the testing
methodology that can be improved. The 3C data used to create the ChINs contain various
biases. These include the resolution of the chromatin fragments and the enrichment for
specific regions of chromatin. The resolution of the fragments can vary and can be
determined by the capture type, for example the type of restriction enzymes used and the
accessibility of said restriction sites. This can lead to the undersampling of interactions in
more connected regions that are captured as larger fragments. This information is partly
captured by the interaction frequency and in theory could be used to weight the edges of the
network prior to propagation, although this was not considered at the time.

The flavour of 3C can also greatly affect the enrichment of specific regions of chromatin. In
our networks we use a PCHi-C, or promoter capture Hi-C, dataset to create our networks.
This has the advantage of capturing enhancers, due to their likely proximity to genes.
However, by enriching for chromatin in the proximity of promoters only a selective sample of
global chromatin topology is captured. Interestingly, this is possibly highlighted by the
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marginal increase in performance of the model across the three cell-type consensus
network. By including the nodes and edges of closely related cell-types we are also ‘filling in
the gaps’ of some chromatin regions missing in the dataset either through the enrichment of
specific chromatin regions or inefficiencies in the experimental protocol and/or the in silico
post-processing of the data. In theory, using a more expansive 3C capture such as Hi-C (all
against all) should yield better predictions. The analysis of networks derived from different
3C experiments and their advantages and limitations are provided in chapter 3.

Our network propagation algorithm also uses RNA-seq data as an input. In order to identify
enhancer nodes within the network we used the expression levels of genes as our a priori
information to then impute the activity scores at intergenic nodes. Because we use gene
expression data the starting values at genic nodes are not uniform. Therefore, intergenic
nodes proximal to genic nodes of high and low expression could receive a different IAS.
However, provided that gene expression is controlled, at least partially, by the organisation,
folding and looping of chromatin to localise enhancers to promoters, the relative differences
in gene expression levels should reflect the relative differences in the network topology
(Panigrahi and O’Malley 2021). However, this still poses a problem when assessing the
performance of the model at a global level. The effects of differentially expressed regions of
the network are examined in further detail in chapter 5.

The inputs used can include bias and noise into the model. However, the methods used to
test the model at this stage were not ideal and also skewed the results. Correlation of IAS
with the chromatin state coverage was not a good measure of performance and ROC curves
are undermined by the imbalance in the positive and negative labels. Related to this problem
is the process of reliably identifying enhancer nodes. Chromatin states remain one of the
most popular methods for identifying enhancers due to their ability to profile chromatin with
genome wide coverage and their relative availability for many cell-types (Ernst and Kellis
2017). As highlighted in the introduction and an important motivation for this thesis,
chromatin states and many other enhancer associated features do not capture the full
repertoire of enhancers for any genome. Without a reliable ground truth the true false
negative rate of our model cannot be truly measured. To alleviate some uncertainty we can
incorporate a more comprehensive and diverse set of enhancer associated features. In the
following chapter we include CAGE-seq, eQTL, Starr-seq, RNA Pol II Chip-seq and P300
Chip-seq data data sets.

The results of this chapter provide a proof of concept and a first step in the prediction of
enhancers by first identifying active regions of chromatin. In the following chapter we further
investigate the use of network propagation as a tool to identify enhancers while also
evaluating other network theory approaches.
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Chapter 5: 3D-SearchE: A method to leverage
gene expression and chromatin architecture to
classify intergenic enhancers

5.1 Introduction

Currently, enhancer associated features such as histone modifications, coactivators and
transcription are used in lieu of any definitive and universal enhancer feature. It is therefore
paramount to identify new enhancer features that can be used to further characterise them.
In chapter 3 we have demonstrated the potential of using network theory to identify the
topological properties of intergenic enhancers. However, there is currently a dearth of
computational tools designed to leverage biological data using network based approaches.

Here we present 3D-SearchE - a network analysis tool that will be made available to the
scientific community to propagate gene expression data across 3C networks in order to
identify enhancer regions of interest. 3D-SearchE can be found at
https://github.com/manind95/3D-SearchE/tree/main/propagation_v13 and will be made
publicly available in the near future. In this chapter we present the work that builds on the
initial proof-of-concept presented in chapter 4. In chapter 4 we outlined a method to
integrate gene expression data with chromosome conformation data in order to classify
enhancers. We presented an initial proof of concept that demonstrates the feasibility of using
network propagation as a tool to classify nodes as active enhancer loci as defined by
chromatin states.

5.2 Aims
In this chapter we expand on the work of chapter 4 by measuring the performance of
3D-SearchE in classifying enhancer nodes using the PIC and mESC networks using the
enhancer annotations from chapter 3. The aims of this chapter were to A) Further validate
the use of network propagation as a tool to classify enhancer nodes using additional
enhancer features. B) Understand the mechanisms that underpin the performance of the
classifications and where classification performance may be lost. C) Develop a method to
link putative enhancers with their cognate genes. D) Improve the classification performance
of 3D-SearchE.
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5.3 Results

5.3.1 Imputed activity scores generated by 3D-SearchE are
significantly higher in enhancer nodes with multiple annotations
In chapter 3 we showed that enhancers were uniquely connected within the ChINs. In
chapter 4 we propagated gene expression across the three immune cell ChINs and
demonstrated that this can also be used to identify enhancer nodes. Using this propagation
approach, in this chapter we outline the development of 3D-SearchE. 3D-SearchE works by
calculating an imputed activity score (IAS) at intergenic nodes based on the transcriptional
activity of gene nodes and the topology of the network. It then identifies likely gene-enhancer
pairs using a novel distance based approach to define gene regulatory neighbourhoods.
Based on the results of chapter 4 we extended our analysis to the DNaseI and
promoter-capture HiC derived network from mESCs. For mESCs there is a more
comprehensive and diverse set of enhancer annotations available that include the histone
modifications and FANTOM5 CAGE-seq data available for the immune cells in addition to
P300 ChIP-seq, Starr-seq and RNA-pol ChIP-seq. For these analyses we used only the
RNA Pol II s2p variant and excluded the s5p and s7p variants. This was done as
3D-SearchE aims to identify actively transcribed intergenic regions based on the relative
levels of gene transcription. The s5p and s7p were then included for comparison in 5.3.4.
For the primary immune cells we included both FANTOM5 CAGE-seq data and eQTL data.

Following propagation, intergenic nodes were identified using an Ensembl gene database
(see chapter 3).  In the mESC DNaseI ChIN we found that intergenic nodes that contain at
least one enhancer feature there was a significant enrichment of IAS in enhancer nodes
compared to non-enhancer nodes (Wilcoxon rank sum test p.value = < 2.2e-16). We next
stratified the nodes into 6 groups based on the different combinations of the 5 enhancer
features. The median value of IAS in each group increased as the number of enhancer
features increased. While the median score from nodes absent of any enhancer annotations
to the group labelled with all five annotations increased by a factor of 46 (Figure 5.1a).
These results show that 3D-SearchE not only enriches IAS more in enhancer nodes
compared to non-enhancer nodes, but it also enriches IAS in nodes that are more likely to
contain enhancers based on the presence of multiple enhancer associated features. This is
despite the fact that the number of nodes decreases in each group reducing the likelihood of
IAS enrichment by chance (Figure 5.1b).

To then understand the influence of using a different capture type and cell-types we then
extended our analysis to promoter capture Hi-C (PCHi-C) ChINs. The mESC PCHiC ChIN
uses the same 5 enhancer annotations used for the mESC DNaseI ChIN and can be used
as a direct comparison. For the monocyte, neutrophil and T-Cell ChINs we used chromatin
states, FANTOM5 CAGE-seq and eQTLs as enhancer annotations. The PCHi-C ChINs of
mESCs, monocytes, neutrophils and T-cells generally result in a higher number of connected
components - i.e. the network is more disconnected than the DNaseI capture (See chapter
3). Despite this, 3D-SearchE also performs well on these more disconnected ChINs as well
as between cell-types with varying numbers and sizes of connected components. Comparing
the performance of 3D-SearchE across these networks shows that despite the lower
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connectivity IAS is still enriched in enhancer nodes and shows a significant increase in
enrichment between each group (Wilcoxon rank sum test p.value = < 2.2e-16). These results
were consistent when using the PCHi-C ChINs where the IAS calculated from the mESC
PCHi-C ChIN shows a 14-fold enrichment between enhancer nodes with 5 annotations
compared to the non-enhancer nodes. For monocytes IAS showed an increased fold-change
of 29X, neutrophils 17X and CD4+ T-Cells 26X between enhancer nodes with 3 enhancer
annotations compared to non-enhancer annotations (Figures 5.1c, 5.1d, 5.1e and 5.1f).

Our results show that 3D-SearchE significantly imputes high gene expression values at
enhancer nodes in DNaseI and DNaseI ChINs as well as between different immune cell
types. These imputed expression values can be therefore used as a proxy of the enhancer
activity at these intergenic regions that are often determined by assays such as Starr-seq
(Arnold et al. 2013). This is achieved independently from any a priori knowledge enhancer
associated features, using only gene expression and 3C contact data. These results show
that 3D-SearchE can be used to leverage the intrinsic relationship between the chromatin
topology and gene expression to identify which nodes harbour enhancers.
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Figure 5.1. Boxplot of IAS for groups of nodes labelled with 1 to 5 enhancer 
annotations. A) Intergenic nodes are stratified into enhancer and non-enhancer groups 
based on the number of enhancer associated features that were annotated previously. The 
imputed activity score is then plotted along the X-axis for each group of nodes. The 
enhancer group contain a significantly higher average imputed activity score compared to 
the non-enhancer group (Wilcoxon rank sum test p.value = <2.2e-16). B) The number of 
intergenic nodes that contain 0 to 7 enhancer annotations. C) IAS enrichment in each set for 
the mESC PCHI-C derived network. D) IAS enrichment in each set for the monocyte 
PCHI-C derived network. E) IAS enrichment in each set for the neutrophil PCHI-C derived 
network. F) IAS enrichment in each set for the CD4+ T-Cell PCHI-C derived network.

F
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5.3.2 Precision and recall of enhancer classifications by
3D-SearchE

We have shown that IAS is significantly higher in nodes labeled with enhancer annotations.
We next used these scores to plot precision-recall curves to quantify the performance of IAS
in classifying nodes as enhancers and non-enhancers. This was achieved by calculating the
area under the precision-recall curve (AUPRC) (Figure 5.2). The AUPRC quantifiably
measures the ability of IAS to classify nodes as enhancers and non-enhancers by measuring
the precision given by and the recall given by𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑡𝑝 / 𝑡𝑝 + 𝑓𝑝

ability across incremental cut-off thresholds of IAS. At each cut-off𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑡𝑝 / 𝑡𝑝 + 𝑓𝑛
the precision and recall is established. The precision and recall at each cutoff is then plotted
that shows the trade-off between precision and recall. The area under the plotted curve can
be used to summarise both, whereby a high area under the curve represents a high
precision and a high recall. The use of precision-recall curves rather than a ROC curve, as
used initially in chapter 2, was used to address the class imbalance in our labels . This is
shown by the smaller proportion of enhancer nodes compared to non-enhancer nodes in the
DNaseI ChINs (see chapter 3). In a ROC plot this ratio is assumed to be 50:50 giving a
baseline of 0.5. For a precision-recall curve, this is calculated as the ratio of positive to
negative labels, in this case enhancer vs non-enhancer nodes (Takaya Saito 2015).

Beginning again with the mESC DNaseI ChIN we assessed the overall performance of IAS
in correctly classifying enhancer nodes. We show that IAS can be used to classify enhancer
nodes containing at least one annotation with an AUPRC of 0.650 over a baseline of
0.469. The baseline is calculated as the ratio of enhancer nodes (n = 27,539) divided by the
total number of intergenic nodes (n = 58,672). This is equal to a performance of 0.181 over
baseline (Figure 5.2a).

For context, we then assessed the performance of each individual enhancer associated
feature in classifying the other 4 features. For example, the AUPRC of P300 when
classifying enhancer nodes labeled by enhancer chromatin states, Starr-seq, FANTOM5
CAGE-seq and the RNA Pol II. The AUPRC of IAS is also calculated for classifying nodes
with this set of enhancer labels for direct comparison. The performance above baseline for
each feature was as follows (AUPRC of IAS using the same labels in brackets): P300 = 0.11
(0.193), enhancer chromatin states = 0.101 (0.164),  Starr-seq = 0.088 (0.190), CAGE-seq =
0.089 (0.187), RNAPs2p = 0.021 (0.173). In each case, IAS performs better at classifying
enhancer nodes than any of the single enhancer features. This shows that both the
connectivity of enhancer nodes and their proximity to genes within the network can be used
to distinguish enhancer nodes from non-enhancer nodes.

We then extended the analysis to understand if our method can be used in the PCHi-C
ChINs as well as between cell-types. For the mESC PCHi-C ChIN there is a 0.095 increase
over the baseline (Figure 5.2b), a 0.086 decrease when compared to the mESC DNaseI
ChIN. The differences observed between the two capture methods are likely due to the
smaller representation of the mESC genome by PCHi-C compared to a DNaseI capture that
covers 50% more of the total genome. This has two main effects. One is the number of
potential enhancers that are captured; the proportion of intergenic nodes in the DNaseI ChIN
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labelled as enhancers is 50% compared to 43% for the DNaseI ChIN. The second is that a
lower coverage capture of the genome by the PCHi-C results in a less representative
topology of the network. In the DNaseI ChIN we observe a lower average degree of 2.61
compared to 9.69 for the DNaseI ChIN (Table 5.1). We note that this does not drastically
alter the density of the network which calculates the ratio between the number of actual
connections vs the number of potential connections; the number of potential connections is
given by the binomial coefficient of the number of nodes. This suggests that the PCHi-C isn’t
losing information about the topology of the network, rather it is sampling a smaller
proportion of the network. We observe a similar performance for the other three PCHi-C
ChINs with little variation in the performance between cell-types; monocytes 0.116,
neutrophils 0.110 and CD4+ T-Cells 0.100 (Figures 5.2c, 5.2d and 5.2e).

As the mESC DNaseI ChIN appeared to be the best with respect to using IAS to classify
enhancer nodes we then compared IAS to the, betweenness, eigenvector and degree
centrality scores first investigated in chapter 3, now using the 5 enhancer labels to identify
only active enhancer nodes. When comparing the features, IAS (AUPRC = 0.650) is
comparable to the classification performance of the betweenness centrality (AUPRC =
0.676) and the degree centrality (AUPRC = 0.722) (Figure 5.3). This shows that IAS, the
betweenness centrality and the degree centrality can be used to discriminate between
enhancer and non-enhancer nodes. As discussed in chapter 3 this cannot be used for
feature selection and these features, including the eigenvector centrality which performs
relatively poorly in this test (AUPRC = 0.516), may contribute differently to the performance
of a machine learning classifier using all of the available features.

121



Figure 5.2. A precision recall curve measuring the overall performance of IAS in the 
prediction of enhancer nodes containing a minimum of 1 enhancer feature. A) mESC 
DNaseI derived network AUPRC = 0.650 over a baseline of 0.469. B) mESC PCHi-C 
derived network AUPRC = 0.493 over a baseline of 0.398. C) Monocytesderived network 
AUPRC = 0.0.651 over a baseline of 0.535., D) Neutrophil derived network AUPRC = 0.566 
over a baseline of 0.456. E) CD4+ T-Cell derived network AUPRC = 0.0.523 over a baseline 
of 0.423. F) An overlay barchart showing the AUPRC (blue) relative to the baseline score 
(red) for each of the the precision recall curves.
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Figure 5.3. A precision recall curve measuring the performance of IAS and three 
centrality scores in the classification of enhancer nodes containing a minimum of 1 
enhancer feature. IAS (AUPRC = 0.650), betweenness centrality (AUPRC = 0.676), degree 
centrality (AUPRC = 0.722), eigenvector centrality (AUPRC = 0.516).
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5.3.3 Classification performance of IAS varies depending on
the number of labels
In the previous analysis we quantified the ability of IAS to classify any node that contains at
least one enhancer associated feature. For a node with multiple enhancer associated
features from independent experiments that include both direct and indirect evidence for
enhancers it could be argued that the probability of it containing an enhancer is higher. Since
IAS is meant to reflect the probability of finding an enhancer in any given node we next
looked at how IAS performs in classifying nodes with multiple enhancer associated features.

As shown in Figure 5.1 we have already demonstrated that IAS is generally higher in nodes
with an increasing number of distinct annotations. Using any combination of the five
enhancer associated features in the mESC networks we again stratified the nodes into five
groups based on the number of distinct enhancer associated features. We then looked at
how well IAS is able to classify nodes as enhancers and non-enhancers in each of these
groups by plotting the precision-recall curves.

For the mESC DNaseI ChIN the model performs poorly in identifying nodes with just a single
annotation with an AUPRC of 0.325 which is 0.023 above the baseline of 0.302 meaning that
IAS on its own is not necessarily a good feature to be used to classify nodes with a single
annotation in the mESC DNaseI ChINs (Figure 5.4a). However, in nodes with multiple
enhancer features the model performs better with a performance over baseline of 0.075,
0.069, 0.075 and 0.062 as the number of features increases. This suggests that IAS is better
at classifying nodes with multiple enhancer features than those with one and is consistent
across all 5 ChINs (Figure 5.4).

One possible explanation for this trend is that IAS is able to identify some features better
than others. We therefore looked at the composition of features that make up each group
(Figure 5.5 and 5.6). For the mESC DNaseI ChIN, in nodes containing one feature, 46% are
defined by enhancer chromatin states and the histone marks that make up each state are an
indirect assessment of enhancer activity and can be found in non-enhancer regions of the
genome. As more annotations are included and the AUPRC rises the percentage of
enhancer chromatin states is reduced from 44% to 14.3% (Figure 5.5). In particular the
percentage of the RNAP variants increase between the groups. Additionally, we know that
RNA Pol II is able to mediate chromatin interactions and we observe the same performance
patterns across the groups  for the degree centrality, which is the number of  interactions a
node has. While the reasons are likely more complex than this, these may be contributing
factors. We therefore investigated the performance of IAS in identifying each feature in
further detail in 4.3.4.

In the mESC PCHi-C we observe an even performance in classifying each of groups with the
exception of those nodes that contain two enhancer associated features in which we
observed a dramatic increase in performance with an AUPRC of 0.0.029 above the baseline
for nodes with a single enhancer annotation; two annotations AUPRC = 0.040, three
annotations AUPRC = 0.015, four annotations AUPRC = 0.011 and five annotations AUPRC
= 0.006. When we extended this analysis to the primary immune cell networks we observed
more even performance between each of the annotation groups suggesting that IAS is not
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necessarily better at classifying between nodes containing different enhancer associated
features PRC for each network even though we see a significant increase of IAS between
the groups in Figure 5.1.
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Figure 5.4. Precision-recall for classifying combinations of multiple enhancer features 
A) A precision recall curve measuring the overall performance of IAS in the prediction of
enhancer nodes containing at minimum 1 to 5 enhancer annotation for the mESC DNaseI
ChIN (AUPRC over baseline = 0.023, 0.075, 0.069, 0.075 and 0.062). B) An overlay
barchart showing the AUPRC (blue) relative to the baseline score (red) for the precision
recall curve in part A. C and D)  For the mESC PCHi-C ChIN (AUPRC over baseline =
0.0.029,  0.040, 0.015,  0.011, 0.006. E and F) For the monocyte ChIN (AUPRC over
baseline = 0.034, 0.075, 0.020). G and H)  For the neutrophil ChIN (AUPRC over baseline =
0.053, 0.059, 0.013). I and J) For the neutrophil ChIN (AUPRC over baseline = 0.048, 0.058,
0.007)
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Figure 5.5. Composition of annotation groups one to seven for the mESC DNaseI 
ChIN. Each pie chart represents a set of nodes with one to five enhancer annotations in the 
mESC DNaseI network and shows the breakdown of each feature within each group
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Figure 5.6. Composition of annotation groups one to seven for the mESC PCHi-C 
ChIN. Each pie chart represents a set of nodes with one to five enhancer annotations in the 
mESC promoter capture Hi-C network and shows the breakdown of each feature within 
each group
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5.3.4 The classification performance of 3D-Search is superior
for some enhancer annotations
The performance of IAS in classifying enhancer nodes appears to vary depending on the
composition of annotations. This would suggest that IAS is better at classifying particular
enhancer associated features over others. Here, we measure the AUPRC for IAS when
classifying nodes containing each of the five enhancer associated features in the mESC
DNaseI and DNaseI ChINs. In this analysis we included the RNA Pol II variants s5p and s7p.
These two variants identify RNA Pol II at the repressed (RNAPs5p) and initiating (RNAPs7p)
stages of transcription. They were included to add additional information as to whether IAS
also identifies intergenic nodes that are not being actively transcribed.

3D-SearchE performs best when classifying nodes that contain the s5p modification of RNA
Pol II (AUPRC over baseline = 0.226 (Figure 5.7)); this is closely followed by the s7p
modification (AUPRC over baseline = 0.193). Both the s5p and s7p modifications are known
to be enriched at the start of genes where transcription is initiated. This corroborates findings
that s5p and s7p tend to have a high betweenness, whereas s2p nodes tend to be more
peripheral (Pancaldi et al. 2016). Therefore, these nodes will tend to be better connected
within the networks and closer to active genes resulting in higher IAS scores relative to other
nodes. This idea is partly corroborated by the lower performance of the s2p variant of RNA
Pol II which is enriched as the polymerase molecule transits across the gene body (AUPRC
over baseline = 0.098). 3D-SearchE also performed well in classifying nodes with enhancer
chromatin states (AUPRC over baseline = 0.190) and nodes with CAGE-seq annotations
(AUPRC over baseline = 0.115). While the performance was lower when classifying nodes
with P300 (AUPRC over baseline = 0.095), and Starr-seq (AUPRC over baseline = 0.089)
annotations.

The performance of 3D-SearchE in identifying each of the features using the PCHi-C ChIN
were comparatively worse (Figure 5.8). The best AUPRC was achieved when classifying the
enhancer chromatin states (AUPRC over baseline = 0.080). The classification of the s5p
(AUPRC over baseline = 0.071)  and s2p (AUPRC over baseline = 0.047) RNA Pol II
modifications were also lower. Much of the loss in performance can be related to the
connectivity differences between the two networks as shown in chapter 3. The expression
spreads more evenly across the DNaseI ChIN than the DNaseI ChIN owing to the sparser
connectivity observed in the DNaseI ChIN compared to the DNaseI ChIN. With more nodes
sharing similar IAS values it becomes more difficult to discriminate between nodes and thus,
reducing the performance of the model.
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Figure 5.7. Precision recall curve for IAS classifying each individual annotation in the 
mESC DNaseI ChIN. The imputed activity scores produced by 3D-SearchE were 
benchmarked using a precision-recall curve  in their ability to correctly classify nodes 
containing each of the seven enhancer annotations in the mESC DNaseI ChIN. P300 
(AUPRC over baseline = 0.095),  RNAPs2p (AUPRC over baseline = 0.098), RNAPs5p  
(AUPRC over baseline = 0.226), RNAPs7p (AUPRC over baseline = 0.193), Starr-seq 
(AUPRC over baseline = 0.089), CAGE-seq (AUPRC over baseline = 0.115), Chromatin 
states (AUPRC over baseline = 0.190).
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Figure 5.8. Precision recall curve for IAS classifying each individual annotation in the 
mESC PCHi-C ChIN. The imputed activity scores produced by 3D-SearchE were 
benchmarked using a precision-recall curve  in their ability to correctly classify nodes 
containing each of the seven enhancer annotations in the mESC PCHi-C ChIN. P300 
(AUPRC over baseline = 0.095),  RNAPs2p (AUPRC over baseline = 0.047), RNAPs5p  
(AUPRC over baseline = 0.071), RNAPs7p (AUPRC over baseline = 0.064), Starr-seq 
(AUPRC over baseline = 0.016), CAGE-seq (AUPRC over baseline = 0.042), Chromatin 
states (AUPRC over baseline = 0.080).
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5.3.5 Chromatin topology and gene expression are crucial
features to classify enhancers
3D-SearchE is unique to other topological measures in that it takes into account the
proximity of intergenic nodes with all other genic nodes in the network. It is able to
successfully classify enhancer nodes because enhancer nodes both maintain distinct
connectivity patterns with genic nodes and are typically more proximal to genic nodes when
compared to non-enhancer nodes. Indeed, the distinct connectivity patterns of enhancer
nodes are demonstrated in chapter 3. For example, in the mESC DNaseI ChIN, gene nodes
maintained 11.42 connections on average, while intergenic nodes maintained an average of
6.63. Of these intergenic nodes, enhancer nodes maintained 13.54 connections compared to
2.98 of non-enhancer nodes. However, the specificity of the connections in the network is
essential to transmit information from enhancers to promoters which is accounted for by the
propagation of gene expression. To demonstrate that this is an important feature in
identifying enhancers we implemented a degree preserving randomised rewiring algorithm to
shuffle the edges in the network while maintaining the degree of each node(Figure 5.9a) .
Results showed that following the randomisation the ability of the model to classify enhancer
nodes was lost with an AUPRC = 0.501 over a baseline of 0.501 (Figure 5.9b).

Our model also leverages the global expression of genes to classify enhancers. The
classification of enhancers across the network is driven by simultaneously propagating the
expression profiles of all the genes that map to the network. To understand the effects of
multi-gene propagation on the performance of the model we implemented a single-gene
propagation methodology. Using single-gene propagation also comes with the additional
benefit of reducing the computational cost of 3D-SearchE. In this scenario, the expression
profile of a single gene of interest was propagated within the network (Figure 5.10a). This
component of our method was initially devised as it has the advantage of requiring less
computational power than the alternative, which is to propagate the RNA-seq values of all
the genes simultaneously across the network.  However, results showed that the
propagation of a single gene reduced the performance of the model to that of a random
classifier AUPRC = 0.19 (Figure 5.10b). This would suggest that the global expression of
genes and the topology of the network are interlinked and likely influence one another.
Together, these results indicate that the global properties of the network and gene
expression are important features of enhancers and can be used to classify them.
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A Real Network Degree Preserved Randomised 
Network

Figure 5.9. WG IAS vs a randomised model A) A schematic of how the degree preserving 
randomisation rewires the network while preserving the degree of each node.  
Precision-recall curve for the randomised ChIN vs the non-randomised mESC DNaseI 
derived ChIN. For the non-randomised network the area under the precision recall curve is 
0.65. The randomised ChIN AUPRC is 0.498. The baseline is 0.493. 
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A Multi-Gene Propagation Single-Gene Propagation

I6 I6

Figure 5.10. A schematic of how multi-gene and single-gene propagation differ in the 
relative imputed activity scores. Multi-gene propagation highlights I6, an enhancer 
labelled node, with a higher IAS than single-gene propagation. Precision recall curves for 
the multi-gene propagation vs the single gene propagation. The multi-gene propagation on 
the same set of nodes performs with an AUPRC of while the single gene propagation 
AUPRC is 0.19 over a baseline of 0.20. 
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5.3.6 Gene neighbourhoods can be used to link putative
enhancers and genes
After identifying enhancers the second challenge is then identifying the gene or genes they
regulate. We have outlined a top-down approach that leverages the global expression of
genes and the total structure of the network to classify enhancers. The underlying notion
being that the regulation of genes is influenced at a global level. More specifically, enhancers
are able to regulate the expression of genes as determined by the topology of the network.
To identify which enhancers directly regulate which gene(s) we developed a bottom-up
approach from the perspective of the genes. Using this approach we were also able to
normalise the differences in relative expression across the network. For example, enhancers
proximal to a low expression gene will receive a lower IAS and will therefore be ranked
lower. By isolating these enhancers in the context of their proximal genes we are also able to
reduce the effects of expression bias in the network and improve the classification of
enhancers. At a biological level enhancers of all varieties will be in close proximity to the
genes they regulate. Therefore, within the network the enhancer that regulates a particular
gene will be within a reasonable distance. We used a network distance measure to reduce
the number of enhancer candidates for a gene.

Following multi-gene propagation we tested the classification performance for a set of
genes. We identified a set of the most highly expressed genes (115) in the mESC DNase I
network. We then segmented the network around each gene to generate a local
neighbourhood with a distance of 3 (Figure 5.11). On average each neighbourhood
contained ~141 intergenic nodes. The set of intergenic nodes for the 115 genes contained
8,864 enhancer nodes, representing 55% of the total. IAS was then used to classify the
enhancer nodes. The average performance across all gene neighbourhoods resulted in an
AUPRC of 0.69 over a baseline of 0.40 (Figure 5.12a.).

To ascertain the performance in lower expression regions of the network we performed the
same analysis on two more subsets of genes with medium and low expression. The average
performance across the 100 gene neighbourhoods in the medium expression set resulted in
an AUPRC of 0.63 over a baseline of 0.36 (Figure 5.12b) while the low expression set had
an AUPRC of 0.79 over a baseline of 0.49 (Figure 5.12c). Despite the lower levels of
expression in these regions there is no performance penalty and the number of enhancer
nodes in each set also do not appear to have a significant effect on performance (Figure
5.12d).

These results also show that the performance of IAS is better than the AUPRC determined
when assessing all intergenic nodes at a global level. For example, an intergenic node A in a
low expression region of the network will receive a lower IAS following propagation than
node A in a high expression region. In the context of all intergenic nodes in the network
when calculating the AUPRC node B is considered more likely to be an enhancer node than
node A. When ranking the nodes at a local level we are able to remove this bias and
determine the nodes with the highest enhancer potential in the context of local gene
expression levels.
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Figure 5.11. Gene neighbourhoods A) i) Genes were grouped into expression sets 
based on relative expression levels and the top, middle and bottom 100 genes were 
selected. B) For each gene in each expression set, a group of intergenic nodes were 
selected based on a distance of 3 from the gene node. C) Each gene has a defined 
neighbourhood consisting of all intergenic nodes within a distance of three. Each 
neighbourhood is then aggregated into three groups defined by the expression sets. 
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Figure 5.12. AUPRC for high, medium and low expressed regions. The AUPRC for each 
of the three expression sets to identify if the predictive performance is consistent across 
high, medium and low expressed regions of the ChIN. A) Top 100 AUPRC = 0.69 over a 
baseline of 0.40, B) middle 100 AUPRC = 0.62 over a baseline of 0.36, C) bottom AUPRC = 
0.73 over a baseline of 0.49.  D) The total number of nodes in each expression set and the 
proportion of enhancer vs non-enhancer nodes in each group.
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5.4 Discussion
Our results show that 3D-SearchE can be used to classify active enhancer nodes. The
imputed activity score (IAS) calculated by 3D-SearchE was shown to be higher in nodes
annotated with active enhancer features. Most strikingly, IAS showed a significant increase
between enhancer groups with increasing numbers of independent enhancer annotations
(Figure 5.1). These results show that 3D-SearchE ranks high confidence enhancer nodes
higher on average than lower confidence and non-enhancer nodes. However, the wide range
of IAS values in each group suggest a high level of heterogeneity between the nodes in each
group in terms of their connectivity and proximity to genes. This results in many
non-enhancer nodes receiving a high IAS and many enhancer nodes receiving a low IAS,
both of which reduce the performance of the model when measured using the
precision-recall metrics. As highlighted, there are several contributing factors towards the
lower than expected performance, some of which we address and others that can be
addressed in future iterations of 3D-SearchE.

Initially, the nodes were ranked globally using IAS and the precision and recall metrics
calculated by comparing the global relative IAS. However, the expression of genes is
non-uniform meaning that there are high and low regions of expression across the network.
This results in enhancer nodes in low expression regions of the network being ranked lower
than non-enhancer nodes in high expression regions of the network. By measuring the
precision and recall of 3D-SearchE globally the relative differences in gene expression in
different regions of the network is not accounted for. This is addressed with the use of a
network segmentation approach that isolates intergenic nodes that are proximal to a gene,
or genes, of interest. This achieves two things: One is that it removes the bias introduced by
ranking nodes globally. Secondly, is that it produces a set of candidate enhancer regions that
may be regulating any given gene of interest. Linking enhancers to their cognate genes is
arguably more important and more challenging than simply classifying enhancers. The
challenge of linking enhancers and genes is due to limited functional studies that
conclusively show the effect of enhancer sequences on any given gene, thus the data
available for validation is limited. This is compounded by the limited coverage of high
resolution Hi-C in which the number of validated enhancer-promoter pairs is further reduced
simply as they are not captured in the Hi-C dataset. Although we did not validate the list of
candidate enhancers produced by the network segmentation, curating a database of
functionally relevant enhancer-promoter association would represent the next important
avenue of research to bolster our findings.

Indeed, the quantity and quality of the data used to validate our classification performance is
a limiting factor, not only for the validation of functional enhancer-promoter contacts but also
for the enhancer classification in isolation. The validation of our classifications are limited by
the enhancer labels used as they do not constitute a perfect set of enhancer annotations.
Some enhancers are likely not even identified by the annotations used as we do not include
an exhaustive set of enhancer annotations. Therefore, a proportion of the false positive
classifications made by 3D-SearchE may actually be true positives. This could be improved
by including more enhancer annotations. Encouragingly, the classifications do improve as
the number of independent annotations increase although there does remain some
ambiguity around why the performance peaks when classifying five annotations rather than
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seven. A purely speculative explanation that may be investigated further is that many nodes
only contain one of the RNA Pol II variants or multiple RNA Pol II annotations of the same
variant limiting the number of distinct enhancer annotations to 5. Further clarity of the
classification performance could be provided by testing the performance for each individual
state that includes active enhancers (H3K27ac and H3K4me1), primed enhancers
(H3K4me1) and enhancer promoter (ePromoter) hybrids (H3K27ac, H3K4me1 and
H3K4me3) (Dao et al. 2017). It would be expected that nodes annotated with the primed
enhancers would receive a lower IAS than both the active and ePromoter nodes.

Finally, we show that whole gene (WG) mapping, as opposed to TSS mapping, marginally
increases the classifying performance of 3D-SearchE. We show that for certain network
motifs, the use of WG mapping helps to resolve the topological differences between nodes.
We show that by using the coordinates of the TSS we obtain different scores than if we were
to use the whole gene coordinates. To understand why we would use either we must first
revisit the main aim of this method, which is to identify enhancers that regulate gene
expression. Given that enhancers initiate transcription at the TSS and transcriptional
machinery are localised at this location we thought that it may be more relevant to set the
TSS as the seed nodes. Alternatively, we also know that enhancers have a broader function
than just initiating transcription. In modelling both mapping procedures we were able to
better understand how the algorithm would react and capture intergenic nodes. The most
important result is seen when a gene is split across two nodes and independently interacts
with an intergenic node. In this network we can see that the TSS and WG mapping results
differ and WG mapping is later shown to be superior in the classification of genic nodes. This
is likely because the WG mapping captures the topology of the network better than TSS
mapping. This is because the TSS mapping results in a loss of a priori information that the
algorithm can use as the node that does not contain the TSS is effectively considered
non-genic by 3D-SearchE.

Because 3C can have experimental and post-processing variability it is likely that many
genes that map to more than one node each of those nodes have independent interactions
with intergenic nodes This highlights the complexity of the networks and the need to include
more information in order to account for the local patterns of connectivity. This also highlights
the need to refine the algorithm not only in the design but also in the parameterisation. In
chapter 4 we used rudimentary parameterisation to limit the propagation and enrich the
maximum value of IAS at a distance of 3 nodes from the seed node. As shown in chapter 3
the networks both between cell-type and between 3C methods can influence the architecture
of the networks, particularly in the density. This will mean that the same propagation settings
can be optimised for one network and not for another. It would therefore be beneficial to
parameterise the propagation settings for each network in order to maximise the
classification performance of 3D-SearchE. To avoid the problem of overfitting, the network
measures identified in chapter 3 could be used as a reference point to understand which
propagation settings are optimal for each type of network.

While there is scope for improving 3D-SearchE, it is demonstrably a useful feature for
classifying enhancers when representing 3C data as ChINs. It performs comparably with
other network measures that have previously been shown to be useful in the identification of
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other genomic features (Pancaldi et al. 2016; Thibodeau et al. 2017). Most importantly, IAS
is the only method that integrates gene expression data to achieve this and provides a new
perspective on the relationship between gene expression and the 3D chromatin architecture.
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Chapter 6 - Concluding Remarks and Future
Perspectives

The challenges that exist in demystifying enhancers stems from a fundamental gap in our
knowledge of their composition and mode of action. It is becoming increasingly apparent that
the chromatin architecture plays an important role in gene regulation by localising enhancers
to gene promoters in specific patterns. These effects can be obvious as shown by the loss of
interaction between the ZRS enhancer and the SHH promoter following the deletion of a key
CTCF site (Ushiki et al. 2021). Additionally, subtle changes in the chromatin architecture
may also be a contributing factor in the emergence of complex traits (Boyle, Li, and Pritchard
2017).

The research described in this thesis describes a new feature of enhancers by examining
the distinct connectivity patterns of enhancers and genes within chromatin interaction
networks. By representing 3C data as networks and utilising network theory approaches we
have shown that these distinct connectivity patterns can be used to predict enhancers. This
work provides further evidence of the role of chromatin organisation as a communication
network between genes and regulatory elements such as enhancers to regulate gene
expression. As a result of these findings we have developed a novel method that reverse
engineers the transfer of information from enhancers to genes via chromatin. This is
achieved using network propagation to transmit information from genic nodes to putative
enhancer nodes. We are not aware of any current methods that utilise 3C and gene
expression data in this manner. Here, we will discuss the implications of this work in the
context of the wider literature and provide future perspectives on the use of our method and
other network theory approaches in the investigation of gene regulation.

6.1 IAS as a predictive feature of enhancers
Results show that the chromatin architecture can be used to predict enhancers using their
distinct connectivity within the network as shown by the centrality measures in chapter 3.
IAS is able to predict enhancer nodes by measuring both the connectivity of intergenic nodes
and their proximity to all other genic nodes within the chromatin interaction networks (see
chapters 3 and 4). Importantly this is achieved independently of any typical enhancer
features such as histone marks, P300 and RNA pol II occupancy. Both IAS and the centrality
measures represent a new set of features of enhancers that describe their topological
characteristics. This work provides additional evidence of enhancer activity that can be used
as a standalone measure to assess the probability of identifying an enhancer in a given
segment of DNA. Alternatively, it could be incorporated into existing and future predictive
models as an input feature. Topological characteristics have been used previously as input
features to a SVM model to predict broad domains and super enhancers using centrality
scores and graphlets with reasonable success (Thibodeau et al. 2017). Indeed, we are
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currently in the process of using the centrality scores and IAS as input features in a random
forest classifier to further validate their use as a feature to predict enhancers as well as to
understand which measures contribute the most towards the predictive performance of the
classifier. The ability to incorporate network measures into a classifier will also be included in
the final package for 3D-SearchE.

6.1.1 Limitations and ongoing & future improvements
In order to improve the use of network measures and IAS there are several limitations that
need to be addressed. One of the major limitations of these approaches is the availability
and quality of the data. 3C experiments are expensive and therefore are only available in a
limited number of cell-types. We also show that the type of 3C experiment can affect the
number of captured enhancers and the topology of the network (see chapter 3).
Additionally, we show that there is a tradeoff between identifying more enhancers and the
resolution of the fragments to more precisely locate the enhancers. The accuracy of using
topological measures to characterise and predict enhancers will be aided by improvements
in the resolution and coverage of 3C experiments along with falling costs. Some of these
issues may be alleviated by combining multiple 3C datasets. By incorporating, for example,
the mESC PCHi-C and DNaseI ChINs the network would maintain the superior coverage
provided by the DNaseI ChIN while improving the resolution of the nodes where the two
networks overlap. This may not be limited to combining 3C data from the cell type either. We
show in chapter 4 that by combining the PIC networks of monocytes, neutrophils and T-cells
into a single consensus network we were not only able to identify cell-type specific active
nodes, but that the predictive performance of the model was actually higher. This work may
therefore have future applications in predicting enhancer nodes, or active nodes, in
cell-types in which obtaining 3C data is not possible or feasible but data for a related
cell-type is available.

As well as the 3C data, we also use gene expression data in the form of bulk RNA-seq.
Given that we are using gene activity as an input the use of GRO-seq may improve the
results obtained using our method (Lopes, Agami, and Korkmaz 2017). GRO-seq works by
quantifying the production of nascent RNA and is therefore less susceptible to the low half
life of some RNA products.GRO-seq therefore provides a more accurate and less noisy
picture of the rate of transcription of genes. Similarly, bulk RNA-seq also captures a lot of
noise by averaging the expression of genes across cell populations.

The features used to validate the enhancer predictions are also limited in terms of availability
across all cell-types. This is shown by the different validation features used between the
mouse ESC and PIC networks as well as the quality and reliability of the data in identifying
true enhancers. In chapter 3 we also show that the enhancer features do not perfectly
overlap that demonstrates the ambiguity in the processes used to identify enhancers. To
reduce the uncertainty of identifying enhancers more features can be added as more data
becomes available. For example, the transcription factor Yin Yang 1 (YY1) has been
implicated in mediating enhancer-promoter interactions (Weintraub et al. 2017). The addition
of additional enhancer datasets annotated across chromatin interaction networks for many
cell-types would be of obvious benefit to the type of analyses outlined in this thesis.
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Higher centrality scores and IAS have both been shown to indicate a higher likelihood of
finding an enhancer in any given 3C fragment. However, we did not test to see if higher
scores are indicative of more active enhancers. This could be achieved by making better use
of the features that are already in use. Histone marks, for example, can denote different
strengths of enhancers. The use of more chromatin states could be used to differentiate
between weak and strong enhancers. We could then better understand if centrality scores
and IAS tend to be higher in more active enhancers and can be used to delineate enhancers
in this way. H3K27ac, Starr-seq and CAGE-seq data also contain information about the
activity of the enhancers and could also be used in this way. Interestingly, these enhancer
activity values could theoretically be propagated in reverse, from enhancers to genes. This
would add further supporting evidence to the use of propagation to investigate the
enhancer-chromatin-promoter relationship. Finally, as well as data that supports the
identification of enhancers it would also be beneficial to include negative data in order to
identify true negative predictions and more reliably measure the predictive performance of
the centrality scores and IAS. Negative annotations such as methylation and
heterochromatin marks could be used to label nodes that are unlikely to harbour active
enhancers.

Following this work, curating a database of enhancer features within the framework of
chromatin interaction networks would be a powerful resource for the study of gene
regulation. The use of graph databases, such as Neo4j (“Graph Database Platform” 2020),
have been widely adopted in recent years due to their ability to infer indirect relationships
between data points. Importantly, the use of graph databases makes it relatively easy to
integrate additional data. This can be achieved as additional annotations on the nodes, in
this case the 3C fragments, with additional genomic information as discussed previously with
YY1. It may also be achieved by aggregating the multiple 3C networks as previously
discussed. The most interesting approach involves integrating other biological networks such
as protein-protein interaction networks as a separate network layer such as with multiplexed
networks (Didier, Brun, and Baudot 2015). Each of these integration approaches, coupled
with the rich set of network theory tools would open the door to a wide range of potential
discoveries. Done in the correct manner, these databases can also be made more
accessible to non-computational biologists through interactive user interfaces to aid in the
interpretability and discoverability of these data sets.

The ideal network would be built from a high resolution full Hi-C dataset. Bonev et al. have
published the most complete map of chromatin interactions to date in mice with the use of
ultra deep Hi-C (Bonev et al. 2017). However, a consequence of higher resolution and
coverage is the increase in the size of the network. This inevitably will require more
computational resources and should be considered for future experiments using these
networks.

6.3 Network approaches in understanding the role
of chromatin organisation in gene regulation
These findings add further evidence of the role of chromatin architecture in the regulation of
gene expression. It is well established that the hierarchical structure of chromatin is

144

https://paperpile.com/c/XWmKOJ/7Vvq
https://paperpile.com/c/XWmKOJ/WaanY
https://paperpile.com/c/XWmKOJ/9WoiO


organised in such a way that distinct regions of chromatin, such as with heterochromatin and
euchromatin, can regulate gene expression. However, the mechanisms of how this
organisation occurs and the nuances of whether chromatin organisation drives gene
expression or vice versa is poorly understood. This thesis provides evidence that the use of
chromatin interaction networks and gene expression can be used to predict enhancers. It
also provides observations that may help to explain the relationship between chromatin
organisation and gene expression.

6.3.1 Chromatin organisation and its consequences
The chromatin interaction networks contain information about the organisation of chromatin
and can be investigated in a manner that is not possible using traditional 3C analytical
methodology. Current models such as phase separation (Y. Zhang and Kutateladze 2019)
and transcription factories (Sutherland and Bickmore 2009) suggest that gene expression is
influenced by changes in the concentrations of chromatin and proteins such as TFs that form
distinct membraneless compartments. This tacitly implies that enhancers are enriched in
regions of chromatin that are proximal to expressed genes in 3D-space. Indeed, we find that
intergenic nodes that are proximal and well connected with genic nodes, as shown by a
higher IAS, are more frequently labeled with enhancer features.

We have already discussed the scale-free properties of the networks in chapter 3. The
formation of scale-free networks are proposed to arise via two main models, preferential
attachment and the fitness model. The preferential attachment model explains that nodes
which already maintain edges with other nodes are more likely to establish new connections
(Krapivsky and Krioukov 2008). The fitness model describes nodes as having an intrinsic
property that makes them more able than other nodes to establish new connections
(Caldarelli et al. 2002). Both models may be able to explain the emergence of scale-free
properties in chromatin interaction networks. For example, enhancers and promoters are
known to be able to recruit molecules that mediate enhancer-promoter contacts. This would
support the fitness model in that enhancers and promoters contain intrinsic properties that
allow them to establish more interactions than other genomic loci. Additionally, the
preferential attachment model would support data indicating that younger genes with
essential function tend to occur in TADs that contain established ancient genes(James,
Trevisan-Herraz, and Rico 2021). Indeed, we have shown that both enhancer and genic
nodes have significantly higher degree centrality scores than intergenic non-enhancer nodes
(see chapter 3). These findings suggest that enhancer and genic nodes may be central to
the scale-free properties observed in the chromatin interaction networks. This is in line with
evidence that hub nodes (those with degree higher than 60) for example are enriched with
features associated with essential cellular function (Sandhu et al. 2012). The emergence of
scale-free properties in chromatin interaction networks has several notable benefits. One is
that this specific spatial distribution of nodes within the chromatin interaction networks
affords a level of redundancy, or fault tolerance, that is beneficial for the reduction of lethal or
less-fit phenotypes (Colizza et al. 2006). This is achieved by reducing the probability of a
single nucleotide polymorphisms or a copy-number variation perturbing the network structure
at a functionally important node i.e. a gene or enhancer. This could be tested by a targeted
approach to remove nodes across the network (node deletion). By measuring the
importance of nodes through node deletion we could further characterise loci that may
contain enhancers or other elements that are important in the regulation of gene expression.

145

https://paperpile.com/c/XWmKOJ/edUe
https://paperpile.com/c/XWmKOJ/wNCC
https://paperpile.com/c/XWmKOJ/FkmPP
https://paperpile.com/c/XWmKOJ/U3873
https://paperpile.com/c/XWmKOJ/YCB9
https://paperpile.com/c/XWmKOJ/YCB9
https://paperpile.com/c/XWmKOJ/snhUy
https://paperpile.com/c/XWmKOJ/NLwTd


Another benefit is related to the small-world properties that we also observe in the chromatin
interaction networks (these two properties are often found together).

This has two benefits: one is that the networks can scale with an almost constant diameter,
the other is this facilitates the efficient transmission of information across the network. The
ability to scale the genome is tied into the presence of junk DNA and its potential to act as a
buffer against mutational load while also harbouring potential future enhancers and genes
(Graur 2017). The ability to transmit information efficiently across the network is related to
the idea that genomic regulation acts at a systems level, genome wide. Indeed, ideas such
as the omnigenic model support this theory. We also show from our findings that the entire
chromatin interaction network is required to predict enhancers which suggests that genome
wide chromatin organisation plays a role in gene regulation (see 6.3.2 Global influences on
gene expression and the omnigenic model).

The use of polymer models could be used to create full in silico modelling of disease states
to understand how SNPs and SVs result in pathogenic phenotypes. For example, SNPs and
SVs can often become pathogenic by rewiring the regulatory circuit as shown by the somatic
inversion of the GATA2 -110 super enhancer by inv(3) (q21;q26) or t(3;3)(21;q26) (Gröschel
et al. 2014; Vinh et al. 2018)) and potentially by the tandem duplication found in KERNA
(See chapter 2). Polymer model simulations have shown a remarkable ability to recapitulate
Hi-C interaction maps as well as predict the reorganisation of chromatin under various states
(Chiang et al. 2019; Chris A. Brackley et al. 2016). It may also be prudent to explore the
differences in organisation between cell and 3C capture types in greater depth. For example,
algorithms based on louvain clustering have been used to identify large scale folding of the
genome including topologically associated domains (TADs) (Norton et al. 2018; Yan, Lou,
and Gerstein 2017).

6.3.2 Global influences on gene expression
We show that using global gene expression profiles can be used to predict enhancers. The
premise of our work is based on the idea that enhancers are localised to genes by the
folding of chromatin. Typically, we model promoter-enhancer contacts at a local level
whereby gene A is regulated by enhancer B through various mechanisms, and chiefly by
chromatin loops. At a higher level it is known that TADs can insulate communities of genes
and enhancers such that the frequency of contacts between the residents of the TADs are
more frequent than those between a resident and an element outside of the TAD.
Hypothetically, propagation of gene expression could have future applications in modelling
the smaller scale organisation of chromatin such as phase separation, transcription factories
and TADs. For example clusters of nodes with high IAS values represent well connected
communities of nodes that could be validated using current TAD definitions.

Zoom out another level, and the chromatin is further organised into A and B compartments
for open and closed chromatin, respectively. This suggests either a top-down organisation in
which the larger structures such as A/B compartments and TADs influence the localisation of
enhancers to promoters. Alternatively, it could be interpreted as a bottom-up organisation of
chromatin in which the expression of genes dictates the folding of chromatin. These may not
be mutually exclusive, the folding of the genome is complex and may employ a plethora of
mechanisms and feedback loops to organise itself into a functional structure. In any case,
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this reasoning suggests that gene regulation is a global event and should be investigated as
such. If the organisation of chromatin into A/B compartments influences the localisation of an
enhancer to a gene, or if the expression of genes influences the higher order structures the
following remains true: Information about the location of enhancers is encoded within the
chromatin network and the relative expression of all the genes. In fact, we show that the
prediction of an enhancer node requires the expression of all genic nodes rather than one
suggesting that there is a link between the global structure of chromatin and enhancer
location. This idea is supported by the multi-loci nature of many complex diseases such as
alzehimers that have been uncovered by genome wide association studies (GWAS) (Jansen
et al. 2019). Furthermore, in silico polymer models of chromatin organisation supports the
idea that gene expression is influenced, at least to some degree, by the global organisation
of chromatin which has been termed the pan-genomic model (C. A. Brackley et al. 2020).
Incidentally, we find that IAS is enriched greatly at loci containing expression QTLs; variants
that are correlated with changes in gene expression. This would suggest that 3D-SearchE is
a useful tool in investigating the emerging idea of the global regulation of gene expression.
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