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Abstract

Due to the rapid development of modern technology and the low cost of wearable
devices, a very large amount of accelerometer data has been recorded and used in many
different areas, particularly in medical research. However, the analysis of accelerometer
data is very challenging due to its complex structure, i.e., the large noise-signal ratio, the
very large amount of data and the heterogeneity in different data sets. In this thesis, we use
wavelet in a functional data analysis (FDA) framework to analyse the data and apply this
method to evaluate upper limb function after stroke, a difficult task in medical research. In
addition to the commonly used features (Preece et al., 2009; Sekine et al., 1998) based on
the wavelet energy preserving condition for accelerometer data under the discrete wavelet
transform (DWT), we propose two new types of scalar features. They extract different
types of information from the accelerometer data and use to predict upper limb function
for stroke patients. To further investigate the ‘details’ based on wavelet-domain, under a
Bayesian hierarchical model (NIG-MT), the wavelet coefficients with small values can be
eliminated properly and efficiently with negligible loss from the total information. We will
use the slide window approach and multivariate functional principal component analysis
(fPCA) based on the small DWT tree structure. This further reduces the size of the data
set and extracts the useful information from the pattern of small DWT tree structures in
wavelet-domains. Classification and regression models are developed based on the small
DWT tree structure. The models have been applied to distinguish between the different
activities in the designed data and refine the new features in free-living data to assess the
patients’ upper limb function respectively.
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Chapter 1

Introduction

If a set of observed objects can be described by curves, surfaces or any mathematical
structure varying over a continuum, we describe it as functional data. Functional data
analysis (FDA), as a branch of statistics, has been widely used in different areas, e.g.,
medicine, meteorology and biology. Nowadays, stroke is a common worldwide serious
disease causing disability (Donnan et al., 2008). Recently, in order to analyze this disease,
a low cost wearable device called an AX3 has been used in this area. The accelerometer
data collected from the wrist-worn sensor, AX3, is a type of functional data which can be
used in the FDA framework. However, the analysis of accelerometer data from a stroke
patient is very challenging due to its complex structure. A very large amount of the data
includes noise, and there is a heterogeneity among different patients. In this thesis, an
efficient functional data analysis, through wavelet-domain, will be applied to the analysis
of accelerometer data.

1.1 FDA based on Wavelet-domain

In our study, the accelerometer data collected at a frequency of 100Hz. This covers
the frequencies at which individual movement occurs and is observed in a one dimensional
time-domain. However, different individual movements relate to different frequency infor-
mation, e.g., running and writing respond to high and low frequency information in the
frequency-domain. Instead of giving an analysis of the raw accelerometer data directly,
a more proper way is to consider the different frequency information in the accelerome-
ter data. How to capture the certain frequency information from the accelerometer data
becomes our challenge. Regarding this problem, a powerful tool called wavelet transform
(Donald B. Percival, 2000), which has been very popular in recent decades, will be used.
Through the wavelet transform, the accelerometer data will be transformed to two types
of DWT coefficients which includes the time-domain and frequency-domain respectively.
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The movements can be described by accelerometer data only in the time-domain. If
we want to analyze the movements at a deeper level, it is better to consider the frequency
domain as well. Thus, after applying DWT from accelerometer data to the DWT coeffi-
cients, the integral characteristic in the time-domain will be separated into the particular
property in both the time-domain and the frequency-domain. In other words, an analy-
sis of the wavelet coefficients will present more valued information since it contains the
information from both the time and frequency-domains.

1.2 DWT tree structure

A significant structure called the DWT tree structure can be found within the DWT
coefficients. To be more specific: (i) The number of DWT coefficients at higher decom-
position levels is twice the number of those at lower decomposition levels; each DWT
coefficient (parent node) at the previous level can correspond to two DWT coefficients
(children nodes) at the next level. In other words, the DWT coefficients form a tree
structure which looks like a pyramid. (ii) Among adjacent decomposition levels, if the
parent node at the previous level is far away from 0, then two children nodes tend to be
far away from 0 at the next level; otherwise, two children nodes at the next level tend to
be close or equal to 0. This implies that there is a strong correlation between parent node
and children nodes in the whole DWT tree structure. This enables us to carry out an
analysis of the DWT tree structure directly through the time and frequency-domains.

1.3 Data reduction system based on the wavelet-domain

Patients were asked to wear two wrist-worn sensors, AX3 for 3 full days (including
night time); the accelerometer data are very large and contain too much “noise” and
“still” (see Section 4.1.2, Chapter 4). After data are transformed from the DWT, the
corresponding DWT coefficients will contain no or little useful information at different
decomposition scales. Thus, how to find a proper way to carry out theseDWT coefficients
becomes our first challenge. Under a Bayesian strategy, based on spike-and-slab mixture
prior (Chipman et al. (1997), CLYDE et al. (1998) and Clyde & George (2000)), the small
values of wavelet coefficients can be shrunk to zero through the wavelet-domain. Ma &
Soriano (2017) used a Bayesian hierarchical model, called Normal Inverse-Gamma Markov
Tree Model (NIG-MT), for the first step of data reduction. Wavelet coefficients are
connected to the posterior marginal probability in a hidden state which indicates the zero
or non-zero state of each coefficient. Under the posterior marginal probability, a special
threshold, which is evaluated from the energy loss rate (see Section 4.4.2, Chapter 4)
in accelerometer data, can be defined. Based on that threshold, the wavelet coefficients
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with small probability will be forced to zero. Hence the “noise” and “still” parts among
wavelet coefficients can be eliminated. Moreover, the data reduction process gives good
performance with negligible loss of the total information.

Although about three quarters of DWT coefficients can be forced to zero and re-
moved through the NIG-MT model, the number of DWT coefficients is still very large.
As we discussed previously, the DWT coefficients consist of both the time-domain and
frequency-domain data. Now we have a clear picture: the horizontal and vertical direction
of the DWT coefficients present the time-domain and frequency-domain data respectively
in the DWT tree structure. For the vertical direction, DWT coefficients at different de-
composition levels can be treated as the multi-dimensions corresponding to the different
frequencies. It also shows a strong correlation between parent node and children nodes at
different decomposition levels within the special tree structure. Hence, it is hard to give
an analysis to the large scale of DWT coefficients directly.

To further analyse the ‘details’ of the DWT coefficients from the accelerometer data,
we used the slide window approach, which divides the whole DWT tree structure into
different small DWT tree structures in the time-domain. In other words, the DWT
coefficients in the whole tree structure can be analysed by one small DWT tree structure
to another small DWT tree structure in the time-domain. However, each small DWT
tree structure is still difficult to analyse since it contains a large sample size of DWT
coefficients in both the time and frequency-domains. To address this problem, We further
use the multivariate functional principal component analysis and then find patterns in
each slide window.

Ramsay & Silverman (2005) provide the multivariate functional principal component
analysis (fPCA) which is used to further reduce the dimensionality of the small DWT
tree structure in both the time and frequency-domains. Through multivariate fPCA,
the small DWT tree structure at several decomposition levels (which contain massive
DWT coefficients) can be transformed into a lower dimensional space with minimal loss
of information. Moreover, Principal Components (PCs) are obtained in order to retain
most of the variation presented at transformed levels from the small DWT tree structure.

There are two advantages to our data reduction system (NIG-MT, slide window and
multivariate fPCA) based on the wavelet-domain: (i) the large scale of DWT coefficients
can be reduced efficiently and then based on the smallDWT tree structure. (ii) the useful
information can be obtained from the pattern of the small DWT tree structure among
the accelerometer data.
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1.4 Classification based on the DWT tree structure

A subject’s activities are described and recorded by the accelerometer data. We aim
to investigate the DWT tree structure from the accelerometer data to further classify the
subject’s activities. The whole DWT tree structure can be transformed from the entire
data and, to some extent, the small DWT tree structure will be more valued. To be more
specific, a great quantity of activities (e.g., walking and running) correspond to patterns
(see Section 5.2.1, Chapter 5) in our daily life. Instead of carrying out an analysis on
the whole DWT tree structure, we prefer to apply the classification based on the small
DWT tree structure. Through the slide window and multivariate fPCA approaches, the
large sample size of raw DWT coefficients will be reduced efficiently. Moreover, useful
information can be extracted from the pattern of small DWT tree structure from the
designed data. Then the classification of three activities will be conducted based on this
infromation.

1.5 Evaluating the upper limb function for stroke patient

The CAHAI-9 assessment is a fully validated measure (Barreca et al., 2006) of assess-
ing upper limb functional ability. It has 9 items, and each is scored by using a 7-point
quantitative scale. However, this method is subjective and also it is quite time consuming,
leading to high costs. We aim to find the relationship between clinical assessed CAHAI
scores and accelerometer data; then the predictive models will be built to measure the
recovery level of the stroke patients by using free-living data.

After DWT, the wavelet coefficients present the particular frequency information at
certain decomposition scales. Preece et al. (2009) provide some commonly used wavelet
features based on wavelet coefficients through the wavelet energy preserving condition.
However, patients after stroke have difficulties in moving one hand because of the brain
injury caused by the stroke. The data is collected from stroke patients for each hand,
but usually the data from paralysed side describes the most upper limb functional ability.
In contrast, the data from non-paralysed side will provide less information because the
patients can move their non-paralysed side normally. In addition, there is severe hetero-
geneity among patients. The direct use of those commonly used features failed to provide
good predictive results. Given this problem, our challenge is to combine the information
from both hands for each patient. Two new types of wavelet features (see Chapter 3),
which combine the information for both hands, are proposed and they show very good
performance when they are used to predict upper limb function for stroke patients. Fur-
thermore, Gaussian Mixture Models (GMM) (Bishop, 2007) can be used to cluster the
useful information from different small DWT tree structures through the NIG-MT, slide
window and multivariate fPCA. New types of clustering features will also be defined based
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on the information in different clusters (see Chapter 6).
Based on the wavelet and clustering features, the longitudinal mixed-effects model

will be investigated to address heterogeneity between patients with a Bayesian Gaussian
prior to define nonlinear random-effects. (Shi et al., 2012).

1.6 Contribution of the thesis

Two main contributions in this thesis are summarised as follows:

Stroke-rehab-driven Features We proposed two new types of compact wavelet-based
features based on wavelet-domain from the accelerometer data: (i) Scalar features
(PNP 1 and PNP 2; see Section 3.2.1); (ii)The clustering features NPP (from
small DWT tree structures by using NIG-MT, slide window, multivariate fPCA
and GMM; see Section 6.4.2). The above wavelet-based features can encode in-
formation from both paralysed and non-paralysed sides to represent upper limb
functional abilities for stroke rehabilitation assessment. They are well defined the
influences of personal behaviours or irrelevant daily activities for data collected in
the noisy free-living environment.

Data Reduction System A data reduction system has been developed which com-
bines the NIG-MT, slide window and multivariate fPCA approach in Chapter 6.
Through the data reduction system based on the wavelet-domain, the sample size of
original data can be reduced significantly and efficiently. Moreover, this also refines
the valuable information during the procedure and gives a further analysis in the
complex free-living environment. The data reduction system proposed in this thesis
has shown good potential for solving similar problems involving bigger data.

1.7 Structure of the thesis

This thesis is organized as follows. Chapter 2 is the literature review and the back-
ground of the accelerometer data. Several wavelet transforms will be introduced: con-
tinue wavelet transform (CWT), discrete wavelet transform (DWT) and discrete wavelet
packet transform (DWPT). We present the background of the accelerometer data includ-
ing the clinical assessed score (CAHAI), participants (stroke patients), data collection and
wrist-worn sensor AX3.

The next content evaluates the upper limb function by using the DWT and the
DWPT in Chapter 3. Two important wavelet features will be defined and the predictive
model will be included.
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In Chapter 4, the data reduction through the Normal Inverse-Gamma Markov Tree
(NIG-MT) model will be carried out. After data reduction, the large scale of no or little
useful DWT coefficients will be shrunk with negligible loss from the total information.

Chapter 5 discusses the problem of classification based on slide window and multi-
variate fPCA from the design data. We investigate the problem with specific DWT tree
structures by using slide window approach. Dealing with the covariance structure through
the extension of multivariate fPCA, we then classify the different activities based on the
designed accelerometer data.

Chapter 6 continues to focus on the specific DWT tree structure. Instead of the
designed data, a branch of new clustering features is defined through GMM model from
the stroke patients’ free-living data. Afterwards, the predictive model will be used based
on the new features.

In Chapter 7, we highlight the main contribution, give a conclusion and close the
thesis by suggesting ideas for further research.
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Chapter 2

Literature review and the
background of the data

The overview of related and existing work in the area of accelerometer data is given
in this chapter. Also, the background of the accelerometer data will be introduced. Since
the following chapters will be mainly based on the wavelet transforms, we will introduce
how wavelet transforms work properly. Based on the definition of a wavelet, we introduce
the continuous wavelet transform (CWT), and extend this concept to the discrete wavelet
transform (DWT) and the discrete wavelet packet transform (DWPT). We begin with
the accelerometer data from wrist-worn sensor AX3 and the related and existing work will
be introduced in Section 2.1. Section 2.2 provides the background of the accelerometer
data, which includes the clinical assessed score (CAHAI), participants (stroke patients),
data collection and wrist-worn sensor AX3. Finally, Section 2.3.1 introduces the basic
idea of the wavelet and its properties. We will discuss the CWT’s in Section 2.3.2. Based
on CWT, we move on to DWT, which is the specific tool used in this thesis, in Section
2.3.3. Instead of defining the DWT by using the filter notation, we mainly use matrix
notation which is a much easier and more direct way. After that, we introduce DWPT
which is a more complicated method based on DWT in Section 2.3.4.

2.1 Overview on evaluating upper limb function after stroke

It is widely known that stroke is a worldwide health problem causing disability and
death (Donnan et al., 2008). It occurs when a blood clot cuts off oxygen supplied to a
region of the brain. Hemiparesis is a very common symptom of post-stroke and is the
fractional or intact paralysis of one side of the body, i.e., the opposite side to where the
blood clot occurred, and it results in difficulties in performing activities, e.g., reduced arm
movement. Patients can recover some of their capabilities with intense therapeutic input,
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so it is important to assess their recovery levels over time.
Brain imaging techniques, which are considered the most reliable approach, can pro-

vide information regarding brain haemodynamics (Wintermark et al., 2005). However,
this approach requires special equipment and is very expensive. Questionnaire-based ap-
proaches investigate the functional ability during a period, and can be categorised into
two types: patient-completed and caregiver-completed (Ferrari et al., 2007). Although it is
much cheaper than brain imaging, it may contain a high-level of bias. For instance, patients
may not remember their daily activities (i.e.,recall bias) and the caregivers may not be able
to observe the patients all the time. These biases make questionnaire-based approaches
less precise. Lab-based clinical assessment approaches (Barreca et al., 2005b)(Barreca et
al., 2005a), on the other hand, provide an alternative solution. The patients’ upper limb
functionality will be assessed by clinicians, e.g., by observing patients’ capabilities of fin-
ishing certain pre-defined activities (Barreca et al., 2005b). Compared with brain imaging
or questionnaire-based approaches, the cost of lab-based clinical assessment approaches is
reasonable and has high accuracy. However, this assessment is normally taken in clinic-
s/hospitals, which is not convenient for the patients, making continuous monitoring less
feasible.

2.1.1 Automated Behaviour Assessment using Wearables

Recently, wearable sensing and machine learning (ML) techniques were comprehen-
sively studied for automated health assessment. Compared with the traditional assessment
approaches (e.g., via self-reporting, clinical assessment, etc.) which are normally subjec-
tive and expensive, the automated systems may provide an objective, low-cost alternative,
which can also be used for continuous monitoring/assessment. Some automated systems
were developed to assess the behaviours of diseases such as Parkinson’s disease (Rehman
et al., 2019) (Hammerla et al., 2015), autism (Plötz et al., 2012), depression (Little et
al., 2020); or to monitor the health status such as sleep (Zhai et al., 2020) (Supratak et
al., 2017), fatigue (Bai et al., 2020), (Ibrahim et al., 2020) or recovery-level from surgery
(Ratcliffe et al., 2020) (Gurchiek et al., 2019), etc.

After collecting behavioural or physiological signals (e.g., accelerometers, ECG, au-
dio, etc.), assessment/monitoring models can be developed. For applications with a high
interpretability requirement, feature engineering can be a crucial step. For example, with
gait parameters extracted from IMU sensors (such as stride, velocity, etc.), one can build
simple ML models (e.g., random forest) for Parkinson’s disease classification (Rehman et
al., 2019) or fatigue score regression (Ibrahim et al., 2020). Compared with the redun-
dant IMU data, gait parameters are more compact and interpretable, making it suitable
for clinical applications. However, designing interpretable/clinically-relevant features can
be a time-consuming process, which may also require domain knowledge (Zhai et al.,
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2020)(Ibrahim et al., 2020) (Rehman et al., 2019)(Ratcliffe et al., 2020) (Gurchiek et al.,
2019).

On the other hand, when interpretability is less important, deep learning can be an
alternative approach, and can be directly applied to the raw signal (Supratak et al., 2017)
or engineered features (Hammerla et al., 2015) (Zhai et al., 2020) (Bai et al., 2020) (Little
et al., 2020) for (high-level) representation learning and classification/regression tasks.
However, it normally requires adequate data annotation for better model generalisation.

2.1.2 Sensing Techniques for Automated Stroke Rehabilitation Moni-
toring

With the rapid development of sensing/ML techniques, researchers also started to
use various sensors for stroke rehabilitation monitoring. In Dolatabadi et al. (2017), a
Kinect sensor was used in home-like environments to monitor the key joints such that
stroke patients’ behaviour can be assessed. In Ganesh et al. (2018), a wireless surface
Electromyography (sEMG) device was used to monitor the muscle recruitment of the
post-stroke patients to see the effect of orthotic intervention. In clinical environments, five
wearable sensors were placed on the trunk, upper and forearm of the two upper limbs to
measure the reaching behaviours of stroke survivors (Jung et al., 2018). To monitor motor
functions of stroke patients during rehabilitation sessions at clinics, an ecosystem including
a jack and a cube for hand grasping monitoring, as well as a smart watch for arm dynamic
monitoring was designed (Bobin et al., 2019). In this way, it is possible to objectively
assess/measure the behaviours of the stroke patients, yet they are either limited to clinical
environments (Bobin et al., 2019)(Jung et al., 2018) (Ganesh et al., 2018) or constrained
environments (e.g., in front of a camera (Dolatabadi et al., 2017)).

2.2 Background of the accelerometer data

In this section, we begin by providing information about the clinical assessment known
as CAHAI. Then some details of the stroke patients and a description of the data collection
method will be given. Finally, we introduce the procedure used for data pre-processing in
this thesis.

2.2.1 Chedoke Arm and Hand Activity Inventory (CAHAI)

As described in Section 2.1, lab-based clinical assessment was one of the most ef-
fective stroke rehabilitation assessment methods. We introduce the lab-based approach
named Chedoke Arm and Hand Activity Inventory (CAHAI) scoring, which corresponds
to the accelerometer data from AX3 device.

9
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Figure 2.1: The clinical behaviour assessment for CAHAI scoring.

CAHAI scoring is a clinical assessment method for stroke rehabilitation, and it is a
fully validated measure (Barreca et al., 2006) of upper limb functional ability with 9 tasks
which are scored by using a 7-point quantitative scale. In the assessment, the patient
will be asked to perform 9 tasks, including opening a jar of coffee, drawing a line with a
ruler, calling 911, etc. Then the clinician will score these behaviours based on patient’s
performance at a scale from 1 (total assist weak) to 7 (complete independence i.e., timely,
safely) (Barreca et al., 2006). A task example "call 911" is shown in Figure 2.1. Thus
the minimum and maximum summation scores are 7 and 63 respectively. A CAHAI score
form can be found in Figure 2.2 as follows:

10
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Figure 2.2: The CAHAI score form Barreca et al. (2006).

2.2.2 Participants and data collection

Data was collected as part of a larger research study, the aim of which was to use
a bespoke, professionally-written video game as a therapeutic tool for stroke rehabilita-
tion (Shi et al., 2013). Ethical approval was obtained from the National Research Ethics
Committee and all work undertaken was in accordance with the Declaration of Helsinki.
Written, informed consent from all the subjects was obtained. A cohort of 59 stroke sur-
vivors, without significant cognitive or visual impairment, were recruited for the study.
Patients were divided into two groups, i.e.,

• Group 1: the acute patient group, consisting of 26 participants who enrolled into
the study within 6 months after stroke;

• Group 2: the chronic patient group, was formed by 33 participants who were 6
months or more post onset of stroke.

11
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The distributions of acute/chronic condition, gender, dominant/non-dominant hand, paralysed/non-
paralysed side with respect to age are shown in Figure 2.3.
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Figure 2.3: The distributions of acute/chronic condition, gender, dominant/non-dominant hand,
paralysed/non-paralysed side with respect to age among the 59 subjects

These 59 patients visited the clinic for the CAHAI scoring every week (a random
weekday) for a duration of 8 weeks. Over the course of the eight weeks, they were asked to
wear two wrist-worn sensors for 3 full days (including night time) a week. They were also
advised to remove the device during shower or swimming. Since some patients needed time
to get used to this data collection procedure, we did not use the first week’s accelerometer
data. This was done in order to obtain better data. The first week’s CAHAI scores were
used as medical history information.

In contrast to other afore-mentioned sensing techniques (Jung et al., 2018)(Bobin et
al., 2019)(Ganesh et al., 2018)(Dolatabadi et al., 2017), in this study we collected the
accelerometer data from wrist-worn sensors in free-living environments. The sensor used
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for this study, i.e., AX3 (Axivity Ltd, 2013), is a triaxial accelerometer logger that was
designed for physical activity/behaviour monitoring, and it has been widely used in the
medical community (e.g., for the UK Biobank physical activity study (Doherty et al.,
2017)). The wrist bands were also designed such that the users can comfortably wear them
without affecting their behaviours. The accelerometers used to collect data are wrist-worn
sensor AX3 (Axivity Ltd, 2013); the devices are small (39 mm × 36 mm × 12.5 mm),
lightweight (19 g) and waterproof. Their dynamic range is ±2 g to ± 16 g and sampling
rates up to 100 Hz are possible. The data was collected at 100Hz sampling rate, which
can well preserve the daily activities of a human being (Bouten et al., 1997). The devices
are tri-axial and hence sensitive to movement along the three coordinate axes. Different
from human activity recognition, which requires sample-wise or frame-wise annotation
(Guan & Plötz, 2017) (Plotz & Guan, 2018), the data collection in this study is relatively
straight-forward. The patients put on both wrist-worn sensors 3 full days a week, before
visiting clinicians for CAHAI scoring (i.e., week-wise annotation).

In other words, we aim to use accelerometer data captured in free-living environments
to represent the stroke survivors’ upper limb activities to measure the degree of paresis
(Hen, 1999) (i.e., CAHAI score).

One problem with most commercial sensors is that only summary data (e.g., step
count from, say, a fitbit), instead of raw data, are available. The algorithms of producing
summary data are normally non-open source, and may vary from vendor to vendor –
making the data collection and analysis device-dependent, and thus less practical in terms
of generalisation and scalability.

Figure 2.4: The accelerometer data (ACC) collected from the AX3 devices, including the acceler-
ation along the x-, y- and z-axis over time. The data is collected at 100Hz from both wrists of a
subject from 8am to 5pm.

13
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The AX3 device used in this study, on the other hand, outputs the raw acceleration
information in the x, y, z directions. In Figure 2.4, we present the raw acceleration
data (measured in g units 1g = 9.8m/s2) collected from both wrists. It is simple and
transparent, making the collected data re-usable, which is crucial for research communities.

2.2.3 Data pre-processing

For accelerometer data, signal vector magnitude (VM) (Karantonis et al., 2006) is
a popular representation, which is simply the magnitude of the triaxial acceleration data
defined as followed:

a(t) =
√
a2x(t) + a2y(t) + a2z(t),

where ax(t),ay(t),az(t) are the acceleration along the x, y, z axes at timestamp t. The
gravity effect can be removed by:

VM(t) = |a(t)− 1| .

Because of its simplicity and effectiveness, VM has been widely used in health mon-
itoring tasks, such as fall detection (Karantonis et al., 2006), physical activity monitoring
(Doherty et al., 2017), perinatal stroke assessment (Gao et al., 2019), etc.

Moreover, after we combine the 3 coordinate axes (x,y,z) and transform it to VM,
the accelerometer data’s sampling frequency is 100HZ (100 points in each second). Since
the patients wear the wrist-worn sensor AX3 for 3 full days, which means the size of the
data is large and we need to reduce the sample size at first, the data for each second
consists of 100 observations. To further reduce the data volume, we take the mean of
these 100 observations at each second and transform the data as 1 second-wise VM data.
The 1 second-wise VM will be used with notation “VM data” in the Chapters 3, 4 and
6. Some second-wise VM examples can be found in Figure 3.5, Chapter 3.

2.3 Wavelet theory

2.3.1 The essence of wavelet

A wavelet is a mathematical tool which deals with time series and images powerfully,
especially in signal processing applications. So what is wavelet? A wavelet is a very “small
wave”, which grows and decays dramatically in a very short time period. Comparing with
the “big wave”, for example, the sine function, it has a swinging up and down in the plot of
sin(µ) or cos(µ) where µ ∈ (−∞,∞). Figure 2.5 gives examples of four types of wavelet.
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Figure 2.5: Different types of “small wave” (see Baker (2007)). (a) Haar wavelet, (b) Gaussian
wavelet of order 1, (c) Daubechies wavelet of order 4, and (d) Morlet wavelet.

A wavelet function ψ(·) satisfies two basic properties:
(i): The integral of ψ(·) is zero:∫ +∞

−∞
ψ(µ)dµ = 0. (2.1)

(ii): The integral of squared ψ(·) to unity:∫ +∞

−∞
ψ2(µ)dµ = 1. (2.2)

Any function can be defined as wavelet if it satisfies Equations (2.1) and (2.2).
There is another important and common additional condition, which is admissibility

condition. A wavelet ψ(·) is admissible if ψ(t) ∈ L2 and satisfies:

Cψ =

∫ +∞

−∞

∣∣∣ψ̂(ω)∣∣∣2
|ω|

dω <∞, (2.3)

where ψ(µ) is the wavelet function, the ψ̂(ω) is the Fourier transform of ψ(µ). For example,
the first, (a) in Figure 2.5, is called the Haar wavelet function:

ψ(Haar)(u) ≡


−1/
√
2, −1 < u ≤ 0

1/
√
2, 0 < u ≤ 1

0, otherwise
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The second, (b) in Figure 2.5, is a Gaussian wavelet function, with the Gaussian (normal)
probability density function for a random variable with zero mean and variance σ2 as
follows:

φ(Gaussian)(u) ≡ e−u
2/2σ2

√
2πσ2

, −∞ < u <∞.

the details can be found in Donald B. Percival (2000).
Why are wavelets so useful? It is because they measure the weighted average of a time

series (signal) varying from one average period to the next. This will be discussed in the
next subsection. In wavelet analysis, there are typically two types of wavelet transform,
CWT and DWT. In this project, we mainly focus on DWT.

2.3.2 Continuous wavelet transform (CWT)

From Figure 2.5, we see that the wavelet function is a wave-like oscillation with an
amplitude that begins from zero, increases and then decreases back to zero. In CWT, we
mainly focus on the wavelet function.

The main purpose of the wavelet function is to provide a source function to generate
the daughter wavelet which is simply a translated and scaled versions of the wavelet
function:

ψa,b(t) = |a|−
1
2 ψ(

t− b
a

),

where ψ(t) is a continuous function called the wavelet function in both the time domain
and the frequency domain. The wavelet function is scaled by a factor of a and translated
by a factor of b. We do the scaling and shifting in the wavelet function by changing the
parameters a and b. If we change the parameter a (scaling), we will get the functions
shown in Figure 2.6:

Figure 2.6: Scaling the wavelet function

Similarly, we can also shift the wavelet function through the parameter b (translating);
see examples in Figure 2.7.
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Figure 2.7: Shifting the wavelet function

CWT is used to divide a continuous-time function into wavelets. The continuous
wavelet transform of a function (or signal) x(t) at a scale (a>0, a ∈ R+) and translational
value b (b ∈ R) is expressed by the following integral:

Wc(a, b) = |a|−
1
2

∫ +∞

−∞
x(t)ψ(

t− b
a

)dt. (2.4)

where ψ(t) is the wavelet function and ψ(t) is the conjugate calculator of ψ(t), based on
the Figures 2.6 and 2.7, the wavelet function is like a ‘rule’ which can map (through
the scaling and shifting) to different part of the signal. CWT is the sum over all the
time of the signal multiplied by scaled and shifted versions of the wavelet which can be
found in Figure 2.8. This process produces wavelet coefficients, which are a function of
scale and position. We calculate the coefficients using different scales in different sections
of the signal. The coefficients constitute the results of a regression of the original signal
performed on the wavelets.

For example: consider a piece of signal by applying CWT from a scale of 1 to 64, ψ
is the wavelet function (choosing Haar wavelet function). The coefficient is obtained using
scale a and position b from Equation (2.4). Since the signal x(t) is a discrete signal, we
use a function x(k) to represent it, where k = 1, 2, ..., length(x). For each scale parameter
a, the value of b is from b0 = 1 to b = length(x), calculating the corresponding coefficients
with a from 1 to 64. The output of the CWT is a image shown in Figure 2.8.
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Figure 2.8: The scalogram of CWT for each wavelet coefficient by using Haar wavelet.

It is clear that from the above CWT plot, that the large magnitudes correspond to
the bright spots, which means that the signal changes or “jumps” dramatically in these
time periods. In contrast, the dark area represents the small magnitudes at which the
signal does not change fast but keeps smooth status.

2.3.3 Discrete wavelet transform (DWT)

Following on from CWT, the discrete wavelet transform (DWT) is a more efficient
way of analysing the signal. From CWT, we can find that we transform the 1 dimensional
signal into the 2 dimensional CWT image plot. CWT processes the magnitudes of
coefficients in each scale, and it is easy to find that there is usually a small variation in
the adjacent scale. For example, the images in scales 61 and 62 are very similar and there
are only slight differences between them (see Figure 2.8). It is obvious that the result of
the CWT process contains a lot of redundancy. The idea of DWT is to deal with the
“dyadic” scale, in other words, to give a discrete scale of 2j based on the continuous scale
of CWT. It is easy to find that the DWT coefficients reflect long term variations, which
are “proportional to the differences of weighted averages” (see Figure 2.9).
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Figure 2.9: Comparing with the scalogram of DWT and CWT.

To be more specific, the process of CWT will compute the wavelet coefficients at
different scales in different sections of the signal, so it will be computationally demanding.
In such cases, discrete analysis is sufficient and continuous analysis is redundant. So
we need the discrete wavelet transform, based on the wavelet function of the continuous
wavelet transform:

ψa,b(t) = |a|−
1
2 ψ(

t− b
a

).

If we choose a part of the scaled factor of a and the translated factor of b, it will minimize
the process of computing. Assuming a = aj0, b = kb0a

j
0, j, k ∈ Z, the wavelet function

becomes:
ψj,k(t) = |a0|−

j
2 ψ(a−j0 t− kb0), j, k ∈ Z.

We then have the discrete wavelet transform, which is expressed by the following integral
of a function, x(t), at a scale value a and translational value b,

Wd(j, k) = |a0|−
j
2

∫ +∞

−∞
x(t)ψ(a−j0 t− kb0)dt. (2.5)

Specifically, if we assume a0 = 2, b0 = 1, we get the dyadic wavelet:

ψj,k(t) = 2−
j
2ψ(2−jt− k), j, k ∈ Z.
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Here, we usually see the discrete wavelet transforms the stretch and shift parameters
by powers of 2; stretching or shifting by powers of 2 is often referred to as “dyadic" (see
Donald B. Percival (2000)). For example, dyadic dilation means stretching (or shrinking)
by factors of 2 (e.g., 2, 4, 8, 16).

The essence of the DWT procedure and the pyramid Algorithm

The DWT procedure includes two parts: decomposition and reconstruction, this
project mainly focuses on the decomposition part. When X is the raw signal with length
N = 2J , we can describe details of the DWT using matrix algebra:

W =WX, (2.6)

where W is the output of matrix of DWT coefficients in different scales. It consists of
all the Wd(j, k) from a different scale j and location k in Equation (2.5). The orthonor-
mal matrix W is designed by the DWT pyramid algorithm, and more discussion of this
algorithm will be given later in this section. W is the orthonormal matrix containing
different orthonormal wavelet bases (W depends on which wavelet function is used, the
formulas can be found in Daubechies (2006) and Donald B. Percival (2000)). It satisfies
WTW = IN . The orthonormal matrix W with dimension N × N can be separated into
J + 1 submatrices W = [W1,W2, ...,WJ ,VJ ]T , each of Wj can produce a partitioning of
the vector W of DWT coefficients in each scale j, j = 1, 2, ..., J .

If we rewrite Equation (2.6) in the following form, the raw signal X can be ex-
pressed at the decomposition scale J based on Mallat’s pyramid algorithm (Mallat, 1989)
as follows:

WX =



W1

W2

...
WJ

VJ


X =



W1X

W2X
...

WJX

VJX


=



W1

W2

...
WJ

VJ


= W, (2.7)

where Wj is a column vector of length N/2j representing the differences in adjacent
weighted averages from scale 1 to scale J , VJ is the last column contained in W which
has the same length with WJ . Wj is defined as detailed (wavelet) coefficients at scale
j. VJ contains the approximated (scaling) coefficients at the J-th scale. Note that the
approximated coefficients at j scale are used to generate the detailed coefficients at j + 1

scale; we will discuss this in the pyramid algorithm later. Wj has dimension N/2j × N ,
where j = 1, 2, ..., J and VJ has the same dimension with WJ . Note that the rows of
design orthonormal matrixW depend on the decomposition level j-th. In other words, the
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value of J depends on the DWT decomposition scale of the raw signal. The maximum
decomposition level j equals J since our signal X has length N = 2J .

The pyramid algorithm in DWT

We now discuss the pyramid algorithm which describes how to calculate DWT re-
cursively for j = 1, 2, ..., J . Previously, we introduced the overall picture of the DWT
process; we continue to explore it in depth. As we mentioned before, the rows of design
orthonormal matrix W depend on the number and scale of J when dealing with a raw
signal. Given the decomposition level J = 1, the Equation (2.7) becomes:

WX =

[
W1

V1

]
X =

[
W1X

V1X

]
=

[
W1

V1

]
, (2.8)

where W1 is a matrix of dimension N/2×N which satisfies W1W1
T = IN/2, and contains

the first N/2 rows in our design orthonormal matrix W, the length of detailed coefficients
in vector W1 = W1X is N/2. Similarly, the matrix V1 of dimension N/2 × N satisfies
V1V1T = IN/2 and contains the last N/2 rows in our design orthonormal matrix W, the
length of the approximated coefficients in vector V1 = V1X is N/2. Note that W1V1T =

V1W1
T = 0N/2.
Now, we consider the decomposition level J = 2, the Equation (2.7) becomes:

WX =

W1

W2

V2

X =

W1X

W2X

V2X

 =

W1

W2

V2

 , (2.9)

where W1 and W1 are the same as the first step of pyramid Algorithm DWT. W2 is a
matrix of dimension N/4×N which satisfiesW2W2

T = IN/4, and contains the N/4 rows in
our design orthonormal matrixW, the length of detailed coefficients in vector W2 =W2X

is N/4. Similarly, the matrix V2 of dimension N/4×N satisfies V2V2T = IN/4 and contains
the last N/4 rows in our design orthonormal matrix W, the length of the approximated
coefficients in vector V2 = V2X is N/4. Note that, W2V2T = V2W2

T = 0N/4.
Let A2 and B2 to be the matrices with dimension N

4 ×
N
2 , which satisfies W2 = B2V1

and V2 = A2V1. Note that, A2A2
T = B2B2T = IN/4 and B2A2

T = A2B2T = 0N/4. Now
Equation (2.9) can be re-written to:

WX =

 W1

B2V1
A2V1

X =

 W1X

B2V1X
A2V1X

 =

W1

W2

V2

 . (2.10)

From Equation (2.8) in the first step of the pyramid Algorithm in DWT, we have V1 =
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V1X, so the Equation (2.10) can be re-written to:

WX =

 W1

B2V1
A2V1

X =

W1X
B2V1

A2V1

 =

W1

W2

V2

 . (2.11)

Let P2 =

[
B2
A2

]
. After simplifying Equation (2.11), we get the following in the

second step of pyramid Algorithm in DWT:

P2V1 =

[
B2
A2

]
V1 =

[
B2V1

A2V1

]
=

[
W2

V2

]
. (2.12)

Finally, considering the decomposition level J, recalling the design matrix in Jth level
of decomposition:

W =



W1

W2

W3

...
Wj

...
WJ

VJ


,

where Wj is a matrix of dimension N/2j × N which satisfies WjWj
T = IN/2j , and

contains the N/2j rows in our design orthonormal matrix W. Similarly, the matrix VJ of
dimension N/2J × N satisfies VJVJT = IN/2J and contains the N/2J rows in our design
orthonormal matrix W.

For each j ≥ 2, let Wj = BjVj−1 and Vj = AjVj−1, Aj and Bj are the matrices with
dimension N

2j
× N

2j−1 . Note that AjAjT = BjBjT = IN/2j and BjAjT = AjBjT = 0N/2j .
We now extend our design orthonormal matrix W to the j-th level:

W =



W1

W2

W3

...
Wj

...
WJ

VJ


=



W1

B2V1
B3A2V1

...
BjAj−1 . . .A2V1

...
BJAJ−1 . . .A2V1
AJAJ−1 . . .A2V1


. (2.13)
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Now rewriting B1 =W1 and A1 = V1. The Equation (2.13) becomes:

W =



W1

W2

W3

...
Wj

...
WJ

VJ


=



B1
B2A1

B3A2A1

...
BjAj−1 . . .A2A1

...
BJAJ−1 . . .A2A1

AJAJ−1 . . .A2A1


. (2.14)

If we recall W1 =W1X and V1 = V1X, then the j-th level is followed:

Wj = BjAj−1 . . .A1X =WjX,

Vj = AjAj−1 . . .A1X = VjX.

Let Pj =

[
Bj
Aj

]
, we get the formation of the j-th step of pyramid Algorithm in DWT:

PjVj−1 =

[
Bj
Aj

]
Vj−1 =

[
BjVj−1

AjVj−1

]
=

[
BjAj−1 . . .A1X

AjAj−1 . . .A1X

]
=

[
Wj

Vj

]
. (2.15)

In practice, the terms Aj and Bj , contained in W, are low-pass and high-pass filters
which relate to the different frequency domains. The discrete wavelet transform pro-
duces two types of coefficients from DWT: detailed coefficients Wj in the j-th scale,
j = 1, 2, ..., J and approximated coefficients VJ in scale J . The two types of coefficients
represent the differences in adjacent weighted averages from scale 1 to scale J .

2.3.4 The discrete wavelet packet transform (DWPT)

We now further consider DWPT. The discrete wavelet packet transform is an expan-
sion of the discrete wavelet transform.

Recalling the pyramid Algorithm in DWT at the jth decomposition, j = 1, 2, ..., J ,
the length of signal is N = 2J , where J is an integer. Aj and Bj are the matrices with
dimension N

2j
× N

2j−1 , which satisfies AjAjT = BjBjT = IN/2j and BjAjT = AjBjT = 0N/2j .
Let W1 = W1.1, V1 = W1.0. The first stage of pyramid Algorithm in DWT is followed:[

B1
A1

]
X =

[
B1X
A1X

]
=

[
W1

V1

]
=

[
W1.1

W1.0

]
= W1∗. (2.16)
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Let W2 = W2.1, V2 = W2.0, then, for the second stage of pyramid Algorithm in
DWT, the transform can be rewritten as followed: B1B2A1

A2A1

X =

 B1XB2A1X
A2A1X

 =

W1

W2

V2

 =

W1.1

W2.1

W2.0

 . (2.17)

From the Equations (2.16) and (2.17), it is easy to find the previous transform for
A1 by using B2 and A2. At the same time, we set the term B1 aside, which means that we
don’t use B1 in the second step of pyramid Algorithm in DWT. Now we do the transform
again by leaving A1 alone and dealing with B1 by using B2 and A2 as followed: A1

B2B1
A2B1

X =

 A1X

B2B1X
A2B1X

 =

V1

W∗
2

V∗2

 =

W1.0

W2.3

W2.2

 . (2.18)

Now, by combining the Equations (2.17) and (2.18), the whole second level transform
deals with the terms A1 and B1 together by using B2 and A2 as follows:

A2A1

B2A1

A2B1
B2B1

X =


A2A1X
B2A1X

A2B1X
B2B1X

 =


V2

W2

V∗2
W∗

2

 =


W2.0

W2.1

W2.2

W2.3

 = W2∗, (2.19)

where W2∗ is the result of the second stage of DWPT. Each coefficient vector W2.i with
length N/22, i = 0, 1, 2, 3, has the same dimension as the coefficients at the second level
of DWT decomposition. Similarly, the third level discrete wavelet packet transform as
follows: 

A3A2A1

B3A2A1

A3B2A1

B3B2A1

A3B2A1

B3B2A1

A3A2B1
B3A2B1


X =



A3A2A1X

B3A2A1X

A3B2A1X

B3B2A1X

A3B2A1X

B3B2A1X

A3A2B1X
B3A2B1X


=



W3.0

W3.1

W3.2

W3.3

W3.4

W3.5

W3.6

W3.7


= W3∗, (2.20)

where W3∗ is the result of the second stage of discrete wavelet packet transform. Each
coefficient vector W3.i, with length N/23, i = 0, 1, 2, ..., 7, has the same dimension as the
coefficients at the third level of DWT decomposition.
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Generally, the discrete wavelet packet transform has the following formation:

Wj.0

Wj.1

...
Wj.2j−2

Wj.2j−1


= Wj∗, (2.21)

where Wj∗ is the result of the jth stage of discrete wavelet packet transform. Each
coefficient vector in Wj∗ with length N/2j , has the same dimension with the coefficients
in the third level of DWT decomposition. More details can be found in Donald B. Percival
(2000).

Finally, at 3 scales of decomposition as example, a very striking plot will be given in
Figure 2.10, where the difference between DWT and DWPT will be seen very clearly.
The DWT divides the signal with the approximated coefficients and the detailed coeffi-
cients at scale 1. Then, we keep the detailed coefficients at scale 1 and the approximated
coefficients are divided into the detailed coefficients and approximated coefficients at scale
2, and so on. However, through the DWPT, the signal is divided into the detailed co-
efficients and approximated coefficients at scale 1 firstly. Instead of dividing only the
approximated coefficients into 2 parts at scale 2 in DWT, we also divide the detailed co-
efficients into two parts as well. In summary, theDWT just decomposes the approximated
coefficients but keeps the detailed coefficients at each decomposition level; the DWPT
decomposes both detailed coefficients and approximated coefficients at each decomposition
level and it also gives more frequency information in the coefficients of DWT at scale 1.
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Discrete Wavelet Transform (DWT) at 3 scales of decomposition. 

Discrete Wavelet Packet Transform (DWT) at 3 scales of decomposition.

Figure 2.10: Comparing with the DWT and DWPT at three scales decomposition. The DWT
just decomposes the approximated coefficients but keeps the detailed coefficients at each decom-
position level, the DWPT decomposes both detailed coefficients and approximated coefficients at
each decomposition level. Moreover, applying the DWPT will get more frequency information at
the coefficients of DWT at scale 1 (see Section 3.2.1, Chapter 3).
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Chapter 3

Evaluating the upper limb
function based on DWT

In this work, we aim to build an automated stroke rehabilitation assessment system
using wearable sensing and machine learning techniques. Our system is different from
previously mentioned approaches that it can measure the patients objectively and contin-
uously in free-living environments.

We collected accelerometer data using wrist-worn accelerometer sensors, and designed
compact features that can capture rehabilitation-related movements, before mapping these
features to clinical assessment scores (i.e., the model training process). The trained model
can be used to infer recovery-level for other unknown patients. In free living environments,
there are different types of movements which may be related to different frequencies. For
example, activities such as running or jumping may correspond to high-frequency sig-
nal, while sedentary or eating may be low-frequency signal. In this study, instead of
recognising the daily activities, which is hard to achieve given limited annotation (i.e.,
no frame/sample-wise annotation), we transformed the raw accelerometer data to the
frequency domain, where we design features that can encode the rehabilitation-related
movements. Specifically, wavelet transform (Donald B. Percival, 2000) was used, and
the wavelet coefficients can represent the particular frequency information at certain de-
composition scales. Preece et al. (2009) provided some commonly used wavelet features
extracted from accelerometer data. However, to capture stroke rehabilitation-related ac-
tivities, some domain knowledge should be taken into account to design better features.
After stroke, patients have difficulties in moving one side (i.e., paralysed side) due to
the brain injury, and data from paralysed side tends to describe more about the upper
limb functional ability, than the non-paralysed side (i.e., normal side). However, such
signals can be significantly affected by personal behaviours or irrelevant daily activities,
and such "noises" should be dealt with before developing the predictive models. Various
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wavelet features were studied, and we proposed two new types of feature that can encode
information from both paralysed and non-paralysed sides, before developing predictive
models for stroke rehabilitation assessment. We further propose to use the longitudinal
mixed-effects model with Gaussian process prior (LMGP), which can model the random
effects caused by different subjects and time slots (during the 8 weeks). Comprehensive
experiments were conducted to evaluate our system on both acute and chronic patients,
and the results suggested its effectiveness.

3.1 Background

The basic idea of wavelet transform is given in Section 2.3, Chapter 2. The
background of clinical assessed CAHAI score, participants, data collection and data pre-
processing were introduced in Section 2.2, Chapter 2. In this chapter, based on the
wavelet approaches, a predictive model between the accelerometer data and CAHAI score
will be built using accelerometer data, collected over a 3 day period, (the physical move-
ments are unknown behind the data) to predict the clinical summation CAHAI score (from
7 to 63). Instead of doing the 9-tasks to evaluate the clinical CAHAI score in hospital,
the ultimate aim is that the stroke patients just need to wear the wrist-worn sensor AX3
and upload the accelerometer data to the server. Once the server finishes analyzing the
data, the stroke patients will get their current summation CAHAI scores conveniently at
home. Finally, once the CAHAI scores can be predicted from accelerometer data without
the 9-tasks, the doctor’s resources can be saved in hospital which means that government
spending in this area will be reduced.

3.2 Methodology

Most recently, wrist-worn sensors have been used for stroke rehabilitation monitoring
of patients in free-living environment (Tang et al., 2020). In the trial, 3-day accelerometer
data were collected from both wrists (with a trial-wise annotation, i.e., CAHAI score),
and for case (Tang et al., 2020) data analysis was performed using the sliding window
approach. To reduce the data redundancy of the raw data, PCs score were extracted from
each window (Tang et al., 2020). Then, a Gaussian Mixture Models (GMM) clustering
approach was employed to learn the holistic trial-wise representation before developing the
regression model. The method (Tang et al., 2020) suffered from the lack of annotation.
The application of GMM clustering made it less feasible to use large data, and in (Tang
et al., 2020) only 1% of training data were used due to high computational cost.

In our work, by analysing the nature of the paralysed/non-paralysed sides, we design
stroke-rehab-driven features which can directly encode the long accelerometer sequence
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(e.g., a trial with 3-day accelerometer data) into a very compact representation. The
features are expected to emphasis the stroke-related behaviours while dealing with the
irrelevant activities. Based on the proposed features, a predictive model that is adaptive
to different subjects/time-slots can be developed using LMGP (Shi et al., 2012) for CAHAI
score prediction. The Figure 3.1 shows a graphical representation of process in this
chapter. It shows progress in stroke rehabilitation by using wearable sensor AX3 to predict
the clinical CAHAI score.

Figure 3.1: The pipeline of our automated stroke rehabilitation assessment system

3.2.1 The Proposed Stroke-Rehab-Driven Features

We aim to build a model that can map the 3-day time-series data to the CAHAI
score. Different from other wearable-based behaviour analysis tasks (e.g., (Plötz et al.,
2012)(Guan & Plötz, 2017)), the annotation here is inadequate. Even if we used the
second-wise VM data, each trial still included roughly 3 days × 24h/day × 3600s/h
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= 259200 samples (a.k.a. timestamps) with one annotation (i.e., CAHAI score). In
contrast to the popular deep learning based human activity recognition approaches, which
can be trained when with rich annotations (in frame-wise or sample-wise level), the lack
of annotation makes it hard to learn effective representation directly (using machine/deep
learning) from the raw data. Moreover, since the data were collected in free-living envi-
ronments, and the 3 full days (per week) can be taken in weekdays or weekends, which
may increase the intra-subject variability significantly, making it hard to model. To ad-
dress these issues, domain knowledge driven feature engineering may play a major role in
extracting compact and discriminant signatures.

For time-series analysis, wavelet analysis is a powerful tool to represent various aspects
of non-stationary signals such as trends, discontinuities, and repeated patterns (Ayachi et
al., 2016) (Donald B. Percival, 2000) (Preece et al., 2009), which is especially useful in signal
compression or noise reduction. Given their properties, wavelet features were widely used
in accelerometer-based daily living activity analytics (Ayachi et al., 2016). In this work, we
used discrete wavelet transform (DWT) and discrete wavelet packet transform (DWPT)
as feature extractors, based on which new features were designed to preserve the stroke
rehabilitation-related information.

Commonly used wavelet features

In the discrete wavelet transform, as we discussed in Section 2.3.3, Wj represents
DWT coefficients in the j-th decomposition scale. DWT can be written as W = WX,
where W is a column vector with length 2j and W = [W1,W2, ...,WJ ,VJ ]

T, W is the
orthonormal matrix which satisfies WTW = IN and contains different filters. Due to the
orthonormality of DWT, which means that X = WTW and ‖X‖ 2 = ‖W‖ 2, ‖Wj‖ 2

shows energy in the DWT coefficients with decomposition level j.
Now the energy preserving condition can be written as:

‖X‖ 2 = ‖W‖ 2 =
J∑
j=1

‖Wj‖ 2 + ‖VJ‖ 2, (3.1)

where X is our VM data (the signal vector magnitude of accelerometer data; see Section
2.2.3) with length N , j = 1, 2, ..., J is the discrete wavelet transform decomposition level.
Wj denotes the detailed coefficient in scale j, and is a vector of length N/2j representing
the differences in adjacent weighted averages from scale 1 to scale J . VJ denotes the
approximated coefficients in the Jth level and has the same length as WJ . Based on the
decomposition, each ‖Wj‖ 2 represents a special part of the energy in our VM data which
relates to the certain frequency domain (Preece et al., 2009) (Donald B. Percival, 2000).

In Donald B. Percival (2000), the sample variance through the DWT is defined, the
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sample variance can be decomposed as:

σ̂2X =
1

N
‖W‖ 2 −X2

=
J∑
j=1

‖Wj‖ 2

N
. (3.2)

Where X is the mean of X, the term ‖Wj‖2
N represents the sample variance in our VM

data X at different levels of DWT decomposition.
There are many wavelet features (e.g., Preece et al. (2009)) for the classification of

dynamic activities from accelerometer data using DWT. On this basis, we extract the
features from the energy preserving condition and sample variance mentioned previously.

We aim to look for the features which imply the recovery level among the stroke
patients (see Section 3.2.1). Now, we define the features in the j-th level discrete wavelet
transform and discrete wavelet packet transform :

SSDj =
‖Wj‖2

N/2j
= 2j

‖Wj‖2

N
.

For the detailed coefficients Wj at decomposition level j, ‖Wj‖2 presents its energy and
the raw data with length N . Hence the physical explanation of SSDj is that it stands for
the point energy at the decomposition level j. Moreover, from the Equation (3.2), ‖Wj‖2

N

represents the sample variance at the decomposition level j, SSDj also has properties of
both the energy preserving condition and the sample variance in wavelet analysis with
constant 2j .

Comparing with SSDj (sums of the square values divided by the constant N/2j at
scales j), we define other features called SADj , which is calculated by evaluating the sums
of the absolute values divided by the constant N/2j at scale j:

SADj =
‖Wj‖1
N/2j

= 2j
‖Wj‖1
N

.

After we check the correlation between the important wavelet feature PNP ( Section
3.2.1) and CAHAI score, the branch of features PNP using SAD based perform better
than those using SSD based in Table 3.1. Hence we consider the commonly used feature
SADj in this paper.
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- Acute Patients Chronic Patients

Scale (k)
PNP 1

k

(SSD)

PNP 2
k

(SSD)

PNP 1
k

(SAD)

PNP 2
k

(SAD)

PNP 1
k

(SSD)

PNP 2
k

(SSD)

PNP 1
k

(SAD)

PNP 1
k

(SAD)

k=1.1 0.60 -0.65 0.68 -0.70 0.45 -0.45 0.56 -0.56
k=1.2 0.60 -0.66 0.69 -0.71 0.46 -0.45 0.57 -0.56
k=1.3 0.63 -0.69 0.70 -0.72 0.49 -0.48 0.58 -0.57
k=1.4 0.62 -0.68 0.69 -0.71 0.47 -0.47 0.57 -0.57
k=2 0.65 -0.69 0.69 -0.71 0.45 -0.45 0.56 -0.55
k=3 0.63 -0.67 0.67 -0.68 0.39 -0.38 0.53 -0.52
k=4 0.59 -0.63 0.60 -0.63 0.31 -0.30 0.48 -0.47
k=5 0.46 -0.50 0.49 -0.52 0.29 -0.27 0.43 -0.42
k=6 0.32 -0.38 0.35 -0.38 0.20 -0.16 0.35 -0.34
k=7 0.16 -0.19 0.19 -0.20 0.13 -0.10 0.25 -0.24

Table 3.1: The correlation between SAD and SSD based wavelet features and CAHAI score for
acute and chronic patients .

In our analysis, we assume the discrete wavelet decomposition level J = 7 which is
the same level as in Sekine et al. (1998) and contains enough low-frequency component
as the stroke patients’ movement. The frequency domain with seven scales is shown in
Table 3.2:

Scale 7 Scale 6 Scale 5
Frequency 0.0078hz-0.0156hz 0.0156hz - 0.0312hz 0.0312hz - 0.0625hz

Scale 4 Scale 3 Scale 2
Frequency 0.0625hz - 0.125hz 0.125hz - 0.25hz 0.25hz - 0.50h

Scale 1
Frequency 0.50hz - 1hz

Table 3.2: The frequency domain from scale 1 to scale 7 by using DWT.

So far, we have decomposed the VM data X to get W1, W2, ... , W7 using DWT.
Since the frequency domain at scale 1 is so wide (0.50hz - 1hz), it is better to divide it
into smaller one, then using DWPT in Section 2.3.4, we can further decompose W1

into W3.4, W3.5, W3.6 and W3.7 which are the results of the 3-rd stage of DWPT, each
coefficient vector with length N/23 has the same dimension as the coefficients in the third
level of DWT decomposition, that is

‖X‖ 2 = ‖W‖ 2 = ‖W3.4‖ 2 + ‖W3.5‖ 2 + ‖W3.6‖ 2 + ‖W3.7‖ 2 +
J∑
j=2

‖Wj‖ 2 + ‖VJ‖ 2.
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Now we have coefficients at 10 decomposition scales by using DWT and DWPT:
W3.4, W3.5, W3.6, W3.7, W2, W3, W4, W5, W6 and W7. Based on these detailed
coefficients, we define the commonly used wavelet features again:

Scale 1.1 : SAD1.1 =
‖W3.4‖1
N/23

= 23
‖W3.4‖1

N
,

Scale 1.2 : SAD1.2 =
‖W3.5‖1
N/23

= 23
‖W3.5‖1

N
,

Scale 1.3 : SAD1.3 =
‖W3.6‖1
N/23

= 23
‖W3.6‖1

N
,

Scale 1.4 : SAD1.4 =
‖W3.7‖1
N/23

= 23
‖W3.7‖1

N
,

Scale j : SADj =
‖Wj‖1
N/2j

= 2j
‖Wj‖1
N

, j = 2, 3, 4, 5, 6, 7.

There are 10 features which provide reliable and valid information (corresponding
to more frequency domains) from different frequency domains. The frequency domain of
these features, among 10 scales, is listed in Table 3.3:

Scale 1.1 Scale 1.2 Scale 1.3
Frequency 0.5hz - 0.625hz 0.625hz - 0.75hz 0.75hz - 0.875hz

Scale 1.4 Scale 2 Scale 3
Frequency 0.875hz - 1hz 0.25-0.50hz 0.125hz - 0.25hz

Scale 4 Scale 5 Scale 6
Frequency 0.0625hz - 0.125hz 0.0312hz - 0.0625hz 0.0156hz - 0.0312hz

Scale 7
Frequency 0.0078hz - 0.0156hz

Table 3.3: The frequency domain from scale 1.1 to scale 7 by using DWPT and DWT.

We now have 10 SADj from DWT and DWPT at 10 scales, where each scale
correlates to different frequency information (See Table 3.3). Comparing with SADj , the
features in Preece et al. (2009) are extracted from accelerometer data by using DWT,
defined as data power measurements and calculated as the sum of the squared (absolute)
detailed coefficients at different DWT scales. Those features calculate the total energy
of the accelerometer data in specific DWT decomposition scales. SADj follow the same
principle with data power measurements and calculate the sum of the absolute detailed
coefficients at 7 scales by using DWT at first. Moreover, DWPT will be used in scale
1 to separate it into 4 scales. On this basis, a constraint is already added to it. To be
more specific, the sum of the absolute detailed coefficients in certain scales will be divided
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by the number of detailed coefficients. Instead of calculating the total energy of detailed
coefficients in certainDWT decomposition scales, the point energy will be calculated with
the constraint.

New proposed Features

From commonly used wavelet features in Section 3.2.1, according to the accelerom-
eter data in stroke patients, SADj is a type of point energy in decomposition scale j. In
our first naive hypothesis, the larger value of SADj indicates more activities, meaning
those stroke patients tend to have a better recovery level. However, when we investigate
those features against clinical assessed CAHAI scores, we find that this is not true. This
is mainly due to the large variation in patients’ life style.

Patients have different habits in their daily life, so the first problem is that some
patients have a good recovery level, but tend to be inactive and have a somewhat sedentary
lifestyle. We call this type of patients as “can do but doesn’t want to". There is another
type of patients called “couldn’t do but wants to" who are very active but have a low
recovery level. For example, Patients la027 and la038 visit the hospital 8 times totally,
Patient la027 has a significant recovery during the treatment, the clinical assessed CAHAI
score rises from 13 to 57 within 8 visits. However, Patient la038 shows a low recovery
level, who visits the hospital 8 times as well, with clinical assessed CAHAI score only from
11 to 22. It can be seen that from Figure 3.2 (the VM data between Patient la012 and
Patient la038 of paralysed side in last visit), Patient la027 (CAHAI 57) spends the half
time staying still even with good recovery level, while Patient la038 (CAHAI 22) keeps
moving frequently but has a low recovery level. Our objective is to eliminate the influence
of “can do but doesn’t want to" (e.g. Patient la027) and “couldn’t do but wants to" (e.g.
Patient la038) among patients.

Figure 3.2: The VM data between two types of patients in the paralysed side. Left panel: "can
do but doesn’t want to"(la027), Right panel: "couldn’t do but wants to"(la038).
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We now check the value of SADj from 10 scales between Patient la027 and Patient
la038 of paralysed side in the 8-th visit (from Figure 3.3,also see Table 3.12 inAppendix
3.5). The value of SADj in different scales is very similar for these two patients. In other
words, features SADj are hard to remove from the effect of “can do but doesn’t want
to" and “couldn’t do but wants to". Therefore, it is not suitable to apply our previous
hypothesis that patients with good recovery usually have big values of SADj and patients
with bad recovery have small value of SADj .

Figure 3.3: The SADj between two types of patients in the paralysed side. 10-dimensional SAD
features were extracted from the paralysed side between two types of patients (with different CA-
HAI scores); They exhibit similar patterns, indicating the necessity of developing more informative
stroke-related features.

It is known that a very important property of stroke patients is that their hands can
be allocated to either the paralysed side or the non-paralysed side. The second problem we
encounter when using SADj is that, on the paralysed side, it only provides the information
about the degree of disability. This means that SADj when used only on the non-paralysed
side, gives us no information about disability level and is, threrfore, not useful when used
in this way.

So far, due to the complexity of all patients’ data, the commonly used feature SADj

has great limitations, which are reflected mainly the above two problems. In summary, it
is hard to build a good connection with the recovery levels (clinical assessed CAHAI score)
in paralysed side since it is very difficult to distinguish. Also SADj is of very limited use
in the non-paralysed side. We now have a problem of finding a way to remove the effect
from the two kinds of patients above and to use SADj properly in the non-paralysed side.

The key point is to find new features. Figure 3.4 presents the plots of CAHAI
scores against SAD2 (high frequency domain) and SAD6 (low frequency domain) for both
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paralysed and non-paralysed hands (the plots for other scales are rather similar). See
also Figures 3.16, 3.17, 3.18 and 3.19 in Appendix 3.5. They show poor correlation
between CAHAI scores and SADj , meaning the latter provides little information in terms
of predicting CAHAI scores, i.e., the recovery level.

Figure 3.4: The typical SADj at scale 2 and scale 6 against CAHAI in both sides. Left panel:
paralysed side. Right panel: non-paralysed side.

We continue to use Patient la027 and Patient la038 as examples to illustrate the
different usage rate on the paralysed side and the non-paralysed side. As we discussed
before, Patient la027 has a good recovery level and Patient la038 has a low recovery level.
Figures 3.5 (VM data between Patient la027 and Patient la038 in last visit) show that
Patient la027 uses both hands equally and Patient la038 tends to use the non-paralysed
side more.
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Figure 3.5: The VM data between both hands in Patient la027 (Top) and Patient la038 (Bottom).
Left panel: paralysed side, Right panel: non-paralysed side.

We now check the values of SADj from 10 scales of these two patients in the 8-th visit
from Figure 3.6, (see also Table 3.13 in Appendix 3.5). On the one hand, the values
of SADj between the paralysed side and the non-paralysed side are extremely similar for
Patient la027. But, on the other hand, the values of SADj with the non-paralysed side are
obviously bigger than those with the paralysed side for Patient la038. This indicates that
patients with low recovery level (eg. Patient la038) may be more likely to use their non-
paralysed side in daily life, but patients who have good recovery will use their both hands
equally. This motivates us to investigate the connection between recovery level (clinical
assessed CAHAI score) and the ratio of SADj ’s between two hands. Consequently, we
find some new features which are well associated with the recovery levels.
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Figure 3.6: The SADj between two types of patients in both sides. Left panel: Patient la027,
Right panel: Patient la038. SAD features from the non-paralysed side may contain discriminant
information for stroke-rehab modelling.

Specifically, we find two types of new features, which are defined by

PNP 1
k =

SADp
k

SADnp
k

PNP 2
k =

SADnp
k − SAD

p
k

SADnp
k + SADp

k

,

where k = 1.1, 1.2, 1.3, 1.4, 2, 3, 4, 5, 6, 7 corresponds to the 10 scales, while p and np refer to
the paralysed side and non-paralysed side respectively. where k = 1.1, 1.2, 1.3, 1.4, 2, 3, 4, 5, 6, 7

corresponds to the scale 1.1, scale 1.2, scale 1.3, scale 1.4, scale 2, scale 3, scale 4, scale
5, scale 6 and scale 7 in our previous features. The term SADp

k and SADnp
k refer to the

features at the k-th scale of decomposition in the paralysed side and non-paralysed side,
respectively.

BothPNP1
k andPNP2

k are the energy rates between paralysed side and non-paralysed
side. If PNP1

k gets smaller and PNP2
k becomes bigger, the patient will use the paralysed

side less frequently. In other words, comparing with the usage rate of non-paralysed side,
if patients use more paralysed side, they will have a good recovery level. From SADj

of paralysed side in Figure 3.3, it is hard to distinguish Patient la038 to la027 although
their recovery levels are very different. However, from Figure 3.7 (see also Table 3.14
in Appendix 3.5) PNP1

k of Patient la027 with a good recovery level, who uses both
paralysed side and non-paralysed side equally, is bigger than that of Patient la038 who
has a bad recovery level, and tends to use the non-paralysed side because the paralysed
side is hard to move due to the bad recovery level. In contrast, PNP2

k of Patient la038
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is bigger than that of Patient la027 since Patient la027 has a good recovery level than
Patient la038. Hence, these two new features, PNP1

k and PNP2
k, will provide sufficient

information to predict the recovery levels after stroke and will make up the shortage of
SADj which is commonly used in practice.

Figure 3.7: Two proposed PNP representations for two types of patients in both sides. This
can provide discriminant information in distinguishing the patients with different recovery levels
(clinical CAHAI score).

Note that, because the two new features (PNP1
k and PNP2

k) combine the previous
commonly used features SADj in both the paralysed and non-paralysed sides, where the
decomposition scale j = k, they share the same frequency domain at 10 scales with SADj

in Table 3.3. Therefore, based on previous features SADj, we have 10 SADj for each
paralysed side and non-paralysed side, i.e., 20 SADj . After obtaining these two kinds of
new features PNP1

k and PNP2
k, 20 new features have been created. These will be used

to build our predictive model. Although SADj are better at describing a single hand in
different frequency domains, they do not correlate well with recovery level as measured
in the clinical assessed CAHAI score. However, they do have some merit and we will use
them as candidate covariates which will be discussed in the next step.

Now we have totally 40 different features which are listed in Table 3.4:

Feature type Dimension feature entries for each type
SADp 10 SADp

1.1, SAD
p
1.2, SAD

p
1.3, SAD

p
1.4, SAD

p
2, SAD

p
3, ... , SAD

p
7

SADnp 10 SADnp
1.1, SAD

np
1.2, SAD

np
1.3, SAD

np
1.4, SAD

np
2 , SADnp

3 , ... , SADnp
7

PNP1 10 PNP 1
1.1, PNP

1
1.2, PNP

1
1.3 ,PNP 1

1.4, PNP
1
2 , PNP

1
3 , ... , PNP

1
7

PNP2 10 PNP 2
1.1, PNP

2
1.2, PNP

2
1.3 ,PNP 2

1.4, PNP
2
2 , PNP

2
3 , ... , PNP

2
7

Table 3.4: The wavelet features at 10 scales.
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3.2.2 Predictive models

Based on the proposed wavelet features, we aim to develop predictive models that can
map features to the CAHAI score. Although we reduce data redundancy significantly via
feature design, there still exist data noises, which may encode irrelevant information. It is
crucial to develop robust a mechanism to select the most relevant features, and here we use
a popular feature selection linear model (LASSO) to model the nonlinear random effects
in the longitudinal study. We also propose to use a Gaussian Process (GP) regression
model.

It is worth noting that our model will also take advantage of the medical history
information (i.e., CAHAI score during the first visit) to predict CAHAI scores for the
remaining 7 weeks (i.e., week 2 - week 8). From the perspective of practical application,
the CAHAI score from the initial week (referred to as ini) may be used as an important
normalisation factor for different individuals.

The linear fixed-effects model

Since there may exist some redundant or irrelevant features for the prediction task,
we first propose to use the simple linear model LASSO (i.e., Least Absolute Shrinkage and
Selection Operator) with a feature selection mechanism. A brief description of LASSO
can be found in Appendix 3.5.

Given the 41-dimensional data (40 wavelet features and 1 CAHAI score from the
initial week), we first standardise the data using z-norm, and each feature entry xk will
be normalised as:

xnewk =
xk − x
sk

,

where x and sk are the mean, and standard deviation of the kth feature. Based on the
aforementioned model, namely LASSO, useful features can be selected, based on which
prediction model can be developed. For simplicity, we first use linear model to predict the
target CAHAI score yi:

yi = x
T
i β + εi, εi ∼ N(0, σ2), (3.3)

where i stands for the ith trial from patients (out of all patients during week 2 - week
8), xi represents the selected feature vector, and β is the model parameter vector to be
estimated, and εi is the random noise term.

Longitudinal mixed-effects model with Gaussian process prior(LMGP)

It is simple to use the linear model for CAHAI score prediction. However, it ignores
the heterogeneity among subjects in this longitudinal study. To model this, we proposed
to use a nonlinear mixed-effects model (Shi et al., 2012), which consists of fixed-effects

40



Chapter 3. Evaluating the upper limb function based on DWT

part and random-effects part. Specifically, the random-effects part contributes mainly
to modelling the heterogeneity, making the prediction process subject/time-adaptive for
longitudinal studies. The longitudinal mixed-effects model with Gaussian Process prior
(LMGP) is defined as follows:

yi,j = x
T
i,jβ + g(φi,j) + εi,j , εi,j ∼ N(0, σ2), (3.4)

where i,j stand for the ith patient at the jth visit (from week 2 to week 8); εi,j refers
to the independent random error and σ2 is its variance; In Equation (3.4), xTi,jβ is the
fixed-effects part and g(φi,j) represents the nonlinear random-effects part; the latter can
be modelled using a non-parametric Bayesian approach with a GP prior (Shi et al., 2012).

It is worth noting that in LMGP the fixed-effects part xT
i,jβ explains a linear rela-

tionship between input features and CAHAI, while the random-effects part g(φi,j) is used
to explain the variability caused by differences among individuals or time slots during
different weeks. By considering both parts, LMGP provides a solution of personalised
modelling for this longitudinal data analysis. In LMGP, it is important to select input
features to model both parts, and we refer them to as fixed-effects features and random-
effects features, respectively. The effect of the fixed-effects features will be studied in
Section 3.3.2.

For LMGP training, we first ignore the random-effects part, and only optimise the
parameters β̂ of the fixed-effects part (via ordinary least squares, OLS);

With estimated parameters β̂, the residual rij = yij − xT
i,jβ̂ = g(φi,j) + εi,j can be

calculated, from which we can model the random-effects

g(φi,j) ∼ GP (0,K(·, ·;θ)).

In this paper we choose K(·, ·;θ) as the following three different kernels (linear, squared
exponential and rational quadratic), and here we take the squared exponential as an ex-
ample. The squared exponential (covariance) kernel function is defined as : K

(
φ,φ′;θ

)
=

v0 exp
{
−d(φ,φ′)/2

}
where d(φ,φ′) =

∑Q
q=1wq

(
φi,j,q − φ′i,j,q

)2
is an extended distance

between φ and φ′. It involves the hyper-parameters θ = (v0, w1, ..., wQ). In a Bayesian
approach, we may choose the value of those parameters based on prior knowledge. It is,
however, a difficult task due to the large dimension of θ. We used, therefore, an empirical
Bayesian method.

The training procedure includes two steps. (I) Estimate β and σ in Equation (3.3);
(II) Estimate the values of the hyper-parameters θ by an empirical Bayesian method,
i.e. maximise the marginal likelihood from ri ∼ N(0,Ci + σ2I) for i = 1, . . . , n, where
Ci ∈ RJ×J is the covariance matrix of g(·), and its element is defined by K(φi,j , φi,j′ ;θ).
To obtain a more accurate results, an iterative method may be used, except in the initial
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step, the error item in (3.3) used in step I is replaced by

εi = (ε1, . . . , εJ) ∼ N(0,Ci + σ2I))

where all the parameters are evaluated by using the values obtained in the previous iter-
ation.

Calculation of the prediction is relatively easy. The posterior distribution of g(φi) is
a multivariate normal with mean C

(
C+ σ2I

)−1
ri and the variance σ2C

(
C+ σ2I

)−1.
The fitted value can therefore be calculated by the sum of xTi,jβ̂ and the above pos-

terior mean. The variance can be calculated accordingly. A detailed description can be
found in Shi & Choi (2011).

3.3 Experimental Evaluation

In this section, several experiments were designed to evaluate the proposed features as
well as the proposed prediction system. The patients were split into two groups according
to the nature of the disease, i.e., the acute patient group (26 subjects) and the chronic
patient group (33 subjects), and experiments were conducted on both groups separately.

Specifically for each group, leave-one-patient-out cross validation(LOPO-CV) was ap-
plied. That is, for a certain group (acute or chronic) with n subjects, in each iteration 1

subject was used as test set while the rest n− 1 subjects were used for training. This pro-
cedure was repeated n times to test all the n subjects and average prediction performance
(i.e., the mean predicted CAHAI) was reported.

Since CAHAI score prediction is a typical regression problem, we used the root mean
square error (RMSE) from the test dataset based on the leavel-one-patient-out cross vali-
dation as the evaluation metric, and lower mean RMSE values indicate better performance.

3.3.1 Evaluation of commonly used wavelet features and new proposed
features

Firstly, we treat 40 wavelet features and the initial CAHAI score as candidate covari-
ates and check the correlation between these covariates and the CAHAI score in both acute
and chronic patients. It can be seen, from the correlation heat map in Figures 3.9 and
3.11, that many features are highly correlated to the CAHAI score. We also calculate the
numerical value of the correlation between SADj (both paralysed side and non-paralysed
side), PNP1

k, PNP2
k and clinical assessed CAHAI score at 10 decomposition scales re-

spectively. Two partial scatter plots show the typical plots of PNP1
k and PNP2

k against
CAHAI score as examples in Figures 3.8 and 3.10 (See also other scatter plots at differ-
ent scales from Figures 3.20, 3.21, 3.22 and 3.23 in Appendix 3.5.). Tables 3.5 and 3.6
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show that the correlation between new features PNP1
k, PNP2

k and CAHAI score is much
bigger than that between SADj in paralysed side, non-paralysed side and CAHAI score
respectively. It means that new features PNP1

k and PNP2
k are more informative when

we want to use the AX3 data to predict the CAHAI scores. The use of SADj alone is not
enough. Another finding is that features from scale 1.1 to scale 5 have high correlation
with the CAHAI score, but those from scale 6 and scale 7 show that they are not very
important when linking to the CAHAI score.

Acute patients

Acute patients SADp
j SADnp

j PNP 1
j PNP 2

j

Scale 1.1 -0.4130161 0.3199404 0.6806053 -0.7029202
Scale 1.2 -0.4191479 0.326648 0.6863952 -0.708192
Scale 1.3 -0.4270149 0.3221009 0.6967945 -0.7153064
Scale 1.4 -0.423402 0.3255395 0.6918816 -0.7113375
Scale 2 -0.4198529 0.3092206 0.691824 -0.7075939
Scale 3 -0.4202473 0.273319 0.6660961 -0.6816724
Scale 4 -0.4273795 0.2028392 0.6047307 -0.6252109
Scale 5 -0.4155057 0.09576458 0.4893035 -0.5159011
Scale 6 -0.3718157 -0.01252754 0.3494943 -0.3754041
Scale 7 -0.2998513 -0.1002001 0.1896564 -0.198969

Table 3.5: The correlation between wavelet features and CAHAI score for acute patients .

Figure 3.8: The typical proposed feature against CAHAI with acute patients’ data.
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Figure 3.9: The correlation test among the variables for the acute patients.

Chronic patients

Chronic patients SADp
j SADnp

j PNP 1
j PNP 1

j

Scale 1.1 0.22420 0.49368 0.56465 -0.55679
Scale 1.2 0.23819 0.50334 0.56783 -0.56168
Scale 1.3 0.22528 0.51023 0.57542 -0.57023
Scale 1.4 0.23637 0.51025 0.5731 -0.56856
Scale 2 0.23314 0.49950 0.55887 -0.55104
Scale 3 0.24846 0.49505 0.52619 -0.51872
Scale 4 0.26193 0.49521 0.47624 -0.46743
Scale 5 0.26867 0.50344 0.42633 -0.41690
Scale 6 0.26879 0.48327 0.34837 -0.33641
Scale 7 0.27582 0.45062 0.25380 -0.24060

Table 3.6: The correlation between wavelet features and CAHAI score for chronic patients .
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Figure 3.10: The typical proposed feature against CAHAI with chronic patients’ data.

Figure 3.11: The correlation test among the variables in chronic patients.

45



Chapter 3. Evaluating the upper limb function based on DWT

According to the observations, it is obvious that within each feature types, there may
exist a high-level of feature redundancy, and it is necessary to select the most relevant
feature subsets. For acute and chronic patient groups, the optimal feature subset may
vary due to the different movement patterns (e.g., on paralysed/non-paralysed sides).
Although the proposed PNP features can alleviate this problem to some extent, it is
beneficial to combine the less correlated features (i.e.,PNP, SAD, and ini) and, due to
the feature redundancy, it is crucial to extract a compact representation for the prediction
model development. Note that the ini is the first week’s CAHAI scores which were used
as medical history information.

3.3.2 Evaluation of the Predictive Models

Feature Selection

Based on the feature correlation analysis in Section 3.3.1, it is important that we
select the most relevant features from various sources (i.e., PNP, SAD, and ini). Dif-
ferent from the correlation-based approach which can select each feature independently
(by the correlation coefficient), LASSO can select the feature by solving a linear optimisa-
tion problem with a sparsity constraint, and it takes the relationship of the features into
consideration. Various hyperparameters of the LASSO regression methods were applied
in the R package, “lars” in this chapter. To be more specific, it provides the entire path,
each path contains the different tuning parameter λ. Based on the criteria of minimum
Mallows Cp, we find the “best path” and find out what the tuning parameter λ is. Based
on LASSO we selected the most important features for both acute/chronic patients, as
shown in Table 3.7.

Acute Patients Chronic Patients

PNP 2
3 , PNP

1
6 , SAD

np
2 , SADp

1.2

SADnp
6 , ini

PNP 1
1.4, SAD

p
4, SAD

np
2 , PNP 2

1.3

PNP 1
4 , PNP

2
1.1, ini, PNP

1
6

SADnp
1.4, SAD

np
6

Table 3.7: Selected features using LASSO.

Wavelet-based features have a clear physical explanation. SADj represents the point
energy in the raw signal at the decomposition level j based on the energy preserving
condition (see Section 3.2.1 for more details). Specifically, it relates to the degree of
energy among the different activity levels (in different frequency domains based on the
decomposition scale j). The activities such as jumping or lifting an object may correspond
to high-frequency signal, while sedentary or eating may be low-frequency signal. Based
on these, we can interpret the key features in Table 3.7. For example, for acute patients
key features (which is highly-related to stroke-rehab modelling) correspond to asymmetric
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activities in low/medium-frequency level (i.e., with PNP 2
3 , PNP

1
6 ), non-paralysed-based

activities in low/medium-frequency level (i.e., with SADnp
2 , SADnp

6 ), and paralysed-side
based activities in high-frequency level (i.e.,with SADp

1.2).

Performance of linear fixed-effects model

Based on the selected features, we perform further leave-one-patient-out cross vali-
dation on these two patient groups respectively using the linear fixed-effects model. The
prediction results of the chronic patient group tend to be much better than the ones of
the acute group irrespective of the feature selection approach, as shown in Figure. 3.12.
One main reason is due to the nature of the patient group. In Figure 3.13, we illustrated
the clinical CAHAI distribution (i.e., the ground truth CAHAI) from week 2 to week 8,
and we can see that the clinical CAHAI scores are very stable for chronic patients. On the
other hand, for acute patients who suffered from stroke in the past 6 months, their health
statuses are less stable and affected significantly by various factors, and in this case the
simple linear fixed-effected model yields less promising results.

Figure 3.12: Linear model prediction vs clinical CAHAI by using leave-one-patient-out cross-
validation; Left: Acute patients (RMSE 7.24); Right: Chronic patients (RMSE 3.29). Note that
different colours represent different patients.
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Figure 3.13: Clinical assessed CAHAI distribution with respect to visit; Stroke rehabilitation
levels may be stable for chronic patients while may vary substantially for acute patients. Note that
different colours represent different patients.

Performance of Longitudinal mixed-effects Model with Gaussian Process prior

Based on the selected features in Table 3.7, we also propose to use a Longitudinal
mixed-effects Model with Gaussian Process prior (LMGP) for both patient groups. We
applied different covariance kernels in LMGP models and found that the one with powered
exponential kernel achieves the best results. The following discussion will therefore focus
on the model which uses this kernel. Three kernels were used in LMGP, and they are linear
kernel, powered exponential kernel and rational quadratic kernel. We used the selected
features (from Table 3.7) as the fixed-effects features and random-effects features, and the
results were reported in Table 3.15, Appendix 3.5.

Here, we set features from the fixed-effects part and random-effects part the same,
such that xi,j = φi,j in Equation ((3.4)). Similar to the linear fixed-effects model, we
evaluated the performance based on leave-one-patient-out cross validation, and the mean
RMSE values were reported in Table 3.8, as also shown in Figure 3.14.
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Figure 3.14: Prediction vs clinical assessed CAHAI by using leave-one-patient-out cross-validation.
Left panel: RMSE is 5.75 in acute patients. Right panel: RMSE is 3.12 in chronic patients. Note
that different colours represent different patients.

- RMSE Selected features (xi,j) Selected features (φi,j)

Acute 5.75 6 features selected by LASSO 6 features selected by LASSO
Chronic 3.12 10 features selected by LASSO 10 features selected by LASSO

Table 3.8: The leave-one-patient-out corss validation using features selected by LASSO in longitu-
dinal mixed-effects with GP prior model. Note that: the 6 and 10 selected features for acute and
chronic patients by LASSO can be found in Table 3.7.

Figure 3.14 shows the results of leave-one-patient-out prediction against the clinical
assessed CAHAI scores for both acute and chronic patients. Comparing with the results
using leave one-patient-out cross validation in the fixed-effects model, Figure 3.12 shows
poor performance for the patients with low CAHAI scores in acute patients; while the use of
the nonlinear random-effects with GP prior improves the results considerably, particularly
for the patients with low scores. The overall RMSE of 5.75 (7.24 for the fixed-effects model)
confirms this. For comparison, we also applied the nonlinear mixed-effects model to the
chronic patients’ data. The difference between the mixed-effects model and the fixed-
effects model is negligible as expected. Based on LMGP, we also performed "continuous
monitoring" on 4 patients (two for each patient group) from week 2 to week 8 by predicting
the week-wise CAHAI scores (with mean and 95% confidence interval) in Figure 3.15,
which is extremely helpful when uncertainty measurement is required.
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Figure 3.15: The plots of prediction for two acute patients (Top and two chronic patients (Bottom)
by using longitudinal mixed-effects model with GP prior.

On the fixed-effects part of LMGP

LMGP includes two key parts, i.e., the linear fixed-effects and the non-linear random-
effects part, and it is important to choose the key features for modelling. Since the fixed-
effects part measures the main (linear) relationship between the input features and the
predicted CAHAI score, we studied the corresponding feature subsets. For the random-
effects part, we used the full LASSO features (as shown in Table 3.7).

To select the most important feature subset for the fixed-effects part modelling, we
ranked the features (from Table 3.7) based on two criteria: LASSO coefficients, and cor-
relation coefficients (between features and CAHAI, as described in Section 3.3.1). Table
3.9 demonstrates ranked features, and here only the top 50% of features were used (i.e.,
top 3 features for acute patients and top 5 features for chronic patients). The fixed-effects
part and the settings, together with the results, were reported in Table 3.10.
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Feature Ranking Criterion Acute Patients Chronic Patients

LASSO Coefficients
(absolute value)

PNP 2
3 , PNP

1
6 , SAD

np
2 , SADp

1.2

SADnp
6 , ini

PNP 1
1.4, SAD

p
4, SAD

np
2 , PNP 2

1.3

PNP 1
4 , PNP

2
1.1, ini, PNP

1
6

SADnp
1.4, SAD

np
6

Correlation Coefficients
(absolute value)

PNP 2
3 , ini, SAD

p
1.2, PNP

1
6

SADnp
2 , SADnp

6

ini, PNP 1
1.4, PNP

2
1.3, PNP

2
1.1

SADnp
1.4, SAD

np
2 , PNP 1

4 , SAD
np
6

PNP 1
6 , SAD

p
4

Table 3.9: Feature importance ranking for acute/chronic patients.

Acute Patients Selected features (xi,j) Selected features (φi,j)

RMSE: 5.75 full 6 features in Table 3.7 full 6 features in Table 3.7

RMSE: 5.37
top 3 features (Corr criterion in Table 3.9):
PNP 2

3 , ini, SAD
p
1.2

full 6 features in Table 3.7

RMSE: 5.51
top 3 features (LASSO criterion in Table 3.9):
PNP 2

3 , PNP
1
6 , SAD

np
2

full 6 features in Table 3.7

Chronic Patients Selected features (xi,j) Selected features (φi,j)

RMSE: 3.12 full 10 features in Table 3.7 full 10 features in Table 3.7

RMSE: 3.20
top 5 features (Corr criterion in Table 3.9):
ini, PNP 1

1.4, PNP
2
1.3 PNP

2
1.1, SAD

np
1.4

full 10 features in Table 3.7

RMSE: 5.12
top 5 features (LASSO criterion in Table 3.9):
PNP 1

1.4, SAD
p
4, SAD

np
2 PNP 2

1.3, PNP
1
4

full 10 features in Table 3.7

Table 3.10: LMGP’s fixed-effects part modelling results (RMSE) based on different feature subsets

It is interesting to observe that the performance may change substantially depending
on different settings. Specifically, with the top feature subsets, modelling the LMGP’s
fixed-effects part can further reduce the errors for acute patients, in contrast to chronic
patients with increased errors. The top 5 features selected via the LASSO criterion yields
the worst performance for chronic patients, and one possible explanation could be that it
missed the ini feature, which reflects the initial health condition (see Figure 3.13), and
this may play a major role in chronic patient modelling.
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Model comparison

Models RMSE (Acute) RMSE (Chronic)

PCA + GMM + LMGP Tang et al. (2020) 15.98 12.76
stroke-rehab-driven + DNN (3-layer MLP) 10.50 4.93

stroke-rehab-driven + SVR (linear) 7.47 3.25
stroke-rehab-driven + SVR (rbf) 9.67 4.92

stroke-rehab-driven + RF 8.19 3.93
stroke-rehab-driven + LM 7.24 3.29

stroke-rehab-driven + LMGP 5.75 3.12

Table 3.11: Model comparison, note that: DNN (3-layer MLP) stands for deep neural network
regression by using 3-layer multi-layer perceptron; SVR (linear) and SVR (rbf) stand for support
vector regression by using linear kernel and radial basis respectively; RF stands for the random
forest regression; LM and LMGP stand for linear fixed-effects model and Longitudinal mixed-effects
Model with Gaussian Process prior respectively.

For model comparison, we implemented the state-of-the-art method, found in Tang et
al. (2020), which extracted features from the raw signal. Specifically, PCs score were ex-
tracted from sliding windows, before a Gaussian Mixture Model was applied for high-level
representation learning (for each trial). The learned trial-wise features were fed to LMGP
for CAHAI score prediction. Following our settings, we used LOPO-CV and reported the
mean RMSE values (in Table 3.11) for acute group and chronic group, respectively.

Based on our proposed (41-dimensional) stroke-rehab-driven features, we also com-
pared LMGP with a number of other ML models, such as deep neural network (DNN),
support vector regression (SVR) and random forest regression(RF) for acute/chronic pa-
tient groups. It is worth noting that we cannot use the popular deep learning structures
such as convolutional neural network(CNN) or recurrent neural network(RNN), due to
the lack of frame-wise or sample-wise annotation. Yet with the stroke-rehab-driven fea-
tures and trial-wise annotation, simple multi-layer perceptron(MLP) can be applied, and
here we implemented our DNN using a 3-layer MLP for the CAHAI score regression tasks.
Similarly, LOPO-CV was applied and the mean RMSE values were reported in Table 3.11.

From Table 3.11, we can see generally that systems based on the proposed stroke-
rehab-driven features have a much lower RMSE than the state-of-the-art data-driven ap-
proach (Tang et al., 2020), which indicates the necessity of (domain-knowledge driven)
feature engineering when adequate annotations are not available. Due to inadequate la-
bels, unsupervised clustering (i.e., GMM (Tang et al., 2020)) was performed for trial-wise
representation learning, which is computationally expensive. Due to the computational
cost, only 1% of the training data was used (Tang et al., 2020), yielding unsatisfactory
results in the LOPO-CV settings.
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Based on the proposed stroke-rehab-driven features, we observed that linear models
yielded reasonable results (linear SVR and linear fixed-effects model), while the non-linear
baselines (DNN, SVR(rbf), and RF) had the worst performance. One explanation is that
the over-fitting effect, where the trained non-linear models do not generalise well to the
unseen patients/environments in this longitudinal study setting. RF’s performance may
also suffer significantly from the low-dimensionality of the selected features (6 features
for acute patients and 10 features for chronic patients). Given the simplicity of the linear
models and the designed low-dimensional features, linear models tend to suffer less from the
over-fitting effect, giving reasonable results in these challenging environments. Compared
with the baselines, our LMGP can further model the longitudinal mixed-effects (i.e., with
linear fixed-effect part and non-linear random-effects part), making the system adaptive
to different subjects/time-slots, with the lowest errors.

3.4 Conclusion

This chapter mainly evaluated and predicted the recovery level after stroke based on
the accelerometer data from wrist-worn sensor AX3. To map the long time-series (i.e.,
3-day accelerometer data) to the CAHAI score, we proposed a pipeline which performed
data cleaning, feature design, to predictive model development. Specifically, we proposed
two compact features which can well capture the rehabilitation characteristics while sup-
pressing the irrelevant daily activities, which is crucial in analysing the data collected in
free-living environments. We further employed LMGP, which can make the model adap-
tive to different subjects and different time slots (across different weeks). Comprehensive
experiments were conducted on both acute/chronic patients, and very promising results
were achieved, especially on the chronic patient group. We also studied different feature
subsets on modelling the fixed-effects part in LMGP, and experiments suggested the errors
can be further reduced for the challenging acute patient population.

Due to irrelevant daily activities and strong heterogeneity among subjects, it is very
challenging for researchers in statistics, computing sciences and other areas to deal with
free-living data. It is also crucial to develop models which have good mathematical prop-
erties and have physical explanation particularly in medical research. We hope that the
ideas of the new features and the models discussed in this chapter can provide some hints
on addressing similar problems in health research.

For further analysis in the accelerometer data from wrist-worn sensor AX3, we need to
analyze the DWT coefficients directly rather than using the scalar features only. We will
start the research by investigating DWT tree structure and apply it to the data reduction
through the Bayesian wavelet regression in the next chapter.
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3.5 Appendix

SADj against CAHAI score in acute patients

Figure 3.16: The SADj (acute patients) from scale 1.1 to scale 2 against CAHAI in both sides.
Left panel: paralysed side. Right panel: non-paralysed side.
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SADj against CAHAI score in acute patients

Figure 3.17: The SADj (acute patients) from scale 3 to scale 7 against CAHAI in both sides. Left
panel: paralysed side. Right panel: non-paralysed side.
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SADj against CAHAI score in chronic patients

Figure 3.18: The SADj (chronic patients) from scale 1.1 to scale 2 against CAHAI in both sides.
Left panel: paralysed side. Right panel: non-paralysed side.
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SADj against CAHAI score in chronic patients

Figure 3.19: The SADj (chronic patients) from scale 3 to scale 7 against CAHAI in both sides.
Left panel: paralysed side. Right panel: non-paralysed side.

57



Chapter 3. Evaluating the upper limb function based on DWT

PNP1
k against CAHAI score in acute patients

Figure 3.20: The PNP 1
k from scale 1.1 to scale 7 against CAHAI in acute patients.
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PNP2
k against CAHAI score in acute patients

Figure 3.21: The PNP 2
k from scale 1.1 to scale 7 against CAHAI in acute patients.
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PNP1
k against CAHAI score in chronic patients

Figure 3.22: The PNP 1
k from scale 1.1 to scale 7 against CAHAI in chronic patients.
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PNP2
k against CAHAI score in chronic patients

Figure 3.23: The PNP 2
k from scale 1.1 to scale 7 against CAHAI in chronic patients.
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CAHAI SAD1.1 SAD1.2 SAD1.3 SAD1.4 SAD2

la027 57 0.0087442 0.0096013 0.0106240 0.0102000 0.0121560
la038 22 0.0082301 0.0086263 0.0097689 0.0092717 0.0111490

CAHAI SAD3 SAD4 SAD5 SAD6 SAD7

la027 57 0.017742 0.025349 0.039887 0.061012 0.097131
la038 22 0.017008 0.026047 0.041279 0.063810 0.088992

Table 3.12: The SADj between Patient la012 and Patient la038 in 8-th visit (paralysed side).

CAHAI SAD1.1 SAD1.2 SAD1.3 SAD1.4 SAD2

la027 (P-side) 57 0.0087442 0.0096013 0.0106240 0.0102000 0.0121560
la027 (NP-side) 57 0.0098804 0.0103430 0.0113060 0.0107470 0.0123570
la038 (P-side) 22 0.0082301 0.0086263 0.0097689 0.0092717 0.0111490
la038 (NP-side) 22 0.0202720 0.0208610 0.0230570 0.0220820 0.0252900

CAHAI SAD3 SAD4 SAD5 SAD6 SAD7

la027 (P-side) 57 0.017742 0.025349 0.039887 0.061012 0.097131
la027 (NP-side) 57 0.017344 0.024992 0.034701 0.051006 0.077759
la038 (P-side) 22 0.017008 0.026047 0.041279 0.063810 0.088992
la038 (NP-side) 22 0.034370 0.046431 0.065878 0.092356 0.119280

Table 3.13: SADj of Patient la012 and Patient la038 in the 8-th visit. Note that P-side means
paralysed side and NP-side means non-paralysed side.

CAHAI PNP 1
1.1 PNP 1

1.2 PNP 1
1.3 PNP 1

1.4 PNP 1
2

la027 57 0.8850047 0.9282897 0.9396780 0.9491021 0.9837339
la038 22 0.4059836 0.4135133 0.4236848 0.4198759 0.4408462

CAHAI PNP 1
3 PNP 1

4 PNP 1
5 PNP 1

6 PNP 1
7

la027 57 1.0229474 1.0904289 1.1551252 1.1735678 1.2414130
la038 22 0.4948502 0.5609830 0.6265977 0.6909134 0.7460765

CAHAI PNP 2
1.1 PNP 2

1.2 PNP 2
1.3 PNP 2

1.4 PNP 2
2

la027 57 0.0610053 0.0371886 0.0310990 0.0261135 0.0081997
la038 22 0.4224917 0.4149142 0.4048054 0.4085738 0.3880732

CAHAI PNP 2
3 PNP 2

4 PNP 2
5 PNP 2

6 PNP 2
7

la027 57 -0.0113436 -0.043259 -0.071980 -0.079854 -0.1077056
la038 22 0.33792670 0.2812440 0.2295604 0.1827927 0.14542521

Table 3.14: New features PNP 1
k and PNP 2

k between Patient la027 and Patient la038 in 8-th visit.
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Chapter 3. Evaluating the upper limb function based on DWT

Selected kernels in LMGP RMSE (Acute) RMSE (Chronic)

linear kernel 5.89 3.13
powered exponential kernel 5.75 3.12
rational quadratic kernel 7.58 3.24

Table 3.15: Kernels comparison through LMGP

LASSO

LASSO is a regression method that involves penalizing the absolute size of the regres-
sion coefficients. It may, however, give rise to a situation where some of the parameter
estimates may be exactly zero. The larger the penalty applies, the further estimates are
shrunk towards zero. When

p∑
j=1

|βj | ≤ s,

then

β̂
lasso

= argmin
β∈Rp

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj | .

where λ is the regularisation coefficient. Moreover, the threshold s is one-to-one
parallel with the constrain ‖β‖1 ≤ s. It is a “path” from the solutions indexed by s. It
may, however, based on the λ and s, give rise to a situation where some of the parameter
estimates may be exactly zero. The larger the penalty applies, the further estimates are
shrunk towards zero. More details of LASSO can be found in Tibshirani (1996). In this
chapter, we used the R package, lars, for features selection using Mallows Cp. To be
more specific, lars produces the entire path, with each path corresponding to a series of
coefficients and a value of λ. Then we choose the path which has the minimum Mallows
Cp. Afterwards, the coefficients and λ will be given automatically, and the LASSO variable
selection will be finished based on the minimum Mallows Cp.
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Data reduction using Bayesian
Normal Inverse-Gamma Markov
tree

Since DWT coefficients are another form of the original process data in different
frequency domains, we will apply DWT coefficients directly instead of scalar features in
this chapter. Our first task is to remove the “noise” from the DWT coefficients in different
scales and this must be done using an apropriate method. This part of DWT coefficients
includes no or little useful information except “noise”. In addition, when patients wear the
wrist-worn sensor AX3 for 3 full days, there are numerous “still” periods (e.g., sleeping,
sitting), and data collected in those periods also provides little information. So our second
task is to look for an appropriate way to shrink down the “ ‘still” periods, so that the
DWT coefficients with little information will be removed but the others will remain. In
order to get rid of the “noise” and the “still” part, the key is to find a proper threshold
which depends on the scale and the structure of the DWT coefficients. In this chapter,
an efficient way, through wavelet regression with Normal Inverse-Gamma Markov tree
(NIG-MT) model (Ma & Soriano, 2017), is to be used to remove the “noise” and “still”
parts automatically. After applying (NIG-MT) to our data, more than three quarters of
the DWT coefficients can be removed with losing negligible information.

Moreover, as we discussed in Section 1.1, Chapter 1 that the movements are usually
described by accelerometer data only in the time-domain, it is better to consider also the
frequency domain. After applying the DWT, the acclerometer data will transfer to the
DWT coefficients. Hence, instead of giving an analysis to the accelerometer data directly,
an analysis of the DWT coefficients will provide more valued information since it contains
the information from both time and frequency-domains. Then, aDWT tree structure with
a certain pattern can be found within theDWT coefficients, based on the special property
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of the DWT tree structure (see Section 4.1.1). The usual data reduction is hard to apply
it directly; theNIG-MT will provide a special data reduction method (especially the free-
living data for the stroke patients) based on the DWT tree structure which contains the
information from both time and frequency-domains.

4.1 Essence of DWT coefficients

Instead of applying both DWT and DWPT in the original process data, we only
focus onDWT and obtain 6 decomposition levels on patients’ data. After applying DWT
in Section 2.3.3 with patients’ VM data (the signal vector magnitude of accelerometer
data; see Section 2.2.3), DWT coefficients W1,W2, ...,W6 are obtained at 6 scales.
Supposing the data has length N . The length of DWT coefficients in each scale and their
frequency domain will be presented in Table 4.1. From this chapter, in order to describe
the tree structure of detailed coefficients through the DWT easily, we use the notation
DWT coefficients as detailed coefficients. Notations of decomposition scale 1, scale 2,
scale 3, scale 4, scale 5 and scale 6 are replaced as level 5, level 4, level 3, level 2, level 1
and level 0 respectively in this chapter.

W1 W2 W3

Scale Scale 1 (Level 5) Scale 2 (Level 4) Scale 3 (Level 3)
Frequency 0.50Hz - 1Hz 0.25Hz - 0.50Hz 0.125Hz - 0.25Hz
Length N

2
N
4

N
8

W4 W5 W6

Scale Scale 4 (Level 2) Scale 5 (Level 1) Scale 6 (Level 0)
Frequency 0.0625Hz - 0.125Hz 0.0312Hz - 0.0625Hz 0.0156Hz - 0.0312Hz
Length N

16
N
32

N
64

Table 4.1: The length and frequency domain of DWT coefficients in each scale.

4.1.1 Tree structures of DWT coefficients

From Table 4.1, a very interesting characteristic can be found: DWT coefficients
at higher levels are twice the number of those at lower levels (e.g., the number of W6

with length N
64 at level 0 and the number of W5 with length N

32 at level 1). What is the
inner relationship with the length of DWT coefficients between two adjacent levels? The
answer is to treat DWT coefficients as the tree structure (see Figure 4.1): every node at
previous level corresponds to two nodes at the next level. To be more specific, a parent
node at level j has two children nodes at level j + 1. Here is a simple example by using
the bumps function (which is the test function from Donoho & Johnstone (1994)) and its
DWT coefficients in Figure 4.2. From DWT coefficients in the bumps test function,
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there is another interesting phenomenon can be found in that if the parent node at level
j is far away from 0, then the two children nodes tend to be far away from 0 as well at
the next level j + 1 (Ma & Soriano, 2017). This is an important property among DWT
coefficients in the tree structure and this is the foundation of NIG-MT.

 

                                    Scale 6       Scale 5         Scale 4         Scale 3        Scale 2       Scale 1 

                                                   (Level 0)         (Level 1)          (Level 2)           (Level 3)         (Level 4)         (Level 5)  

W6.1 

W5.2 

W4.4 
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W2.16 

W1.32 

W1.31 

W2.15 

W1.30 
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W1.26 

W1.25 

W4.3 

W3.6 

W2.12 

W1.24 

W1.23 

W2.11 

W1.22 

W1.21 
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W1.20 
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W1.16 

W1.15 

W2.7 

W1.14 
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W3.3 

W2.6 

W1.12 

W1.11 

W2.5 

W1.10 

W1.9 
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W3.2 

W2.4 

W1.8 

W1.7 

W2.3 

W1.6 

W1.5 

W3.1 

W2.2 

W1.4 

W1.3 

W2.1 

W1.2 

W1.1 

Figure 4.1: A small DWT coefficients tree structure when DWT decomposition level j = 6. The
node with index by (j, k), where j is the DWT decomposition level and k is the location of the
DWT coefficients at decomposition level j.
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Figure 4.2: DWT coefficients from bumps function (the test function from Donoho & Johnstone
(1994))

4.1.2 The DWT tree structure of one patient’s data

Previously, we introduced the tree structure in DWT coefficients. However, after
applying DWT in one patient’s data, the DWT tree structure will be more complicated
than that in the bumps signal. At the beginning of this chapter, the “noise” part and
the “still” part are introduced. Now we will extract a slice of the patient’s data (with
length 1024) as an example to illustrate the “noise” and the “still” part in the DWT tree
structure.

Figure 4.3: The slice of VM data from one patient.
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Figure 4.4: DWT coefficients from level 0 to level 5 among the slice of the patient’s VM data.

Firstly, the VM data in Figure 4.3 shows the patient’s different situation during a
short period (about 17 min). The patient’s activities can be separated into two parts,

68



Chapter 4. Data reduction using Bayesian Normal Inverse-Gamma Markov tree

“still” part and “active” part. If the patient has little activity, i.e. displays less movement
from time 0 to 600, this is defined as “still” time. After time 600, the patient becomes
active and moves frequently. This is referred to as “active” time. Now let us look at
DWT coefficients in Figure 4.4 which transformed from the VM data through DWT.
The “still” part in VM data corresponds to small DWT coefficients (close to 0) from level
0 to level 5. When referring to DWT coefficients related to the “active” part in the VM
data, most of them are large (far away from 0), but there are still lots of DWT coefficients
close to 0 especially at level 5 and level 4 in the “active” part. These are the “noise”, which
also provide little information and can be removed.

4.2 Bayesian wavelet regression

Let y(t) be a process, e.g., accelerometer data, and y = (y(t0), y(t1), ..., y(tT−1)) are
observation at t = ti, i = 0, ..., T − 1, then assume

y = f + ε, ε ∼ N(0, Σε),

where f = (f(t0), f(t1), ..., f(tT−1)) is a vector of f(t) evaluated at t = ti, i = 0, ..., T − 1

which corresponds to y , the T is an integer power of 2, and Σε = diag(σ20, σ
2
1, ..., σ

2
T−1, ).

Assuming ψj,k(x) = 2−
j
2ψ(2−jx− k), j, k ∈ Z∗ is the orthonormal wavelet basis where Z∗

stands for all positive integer and 0. The corresponding DWT coefficient for an unknown
function f and noise part ε can be written as z = Wf and u = Wε respectively, where
W is the orthonormal matrix which contains the orthonormal wavelet basis ψj,k(x) (see
Section 2.3.3). After applying DWT with orthonormal matrix W to accelerometer data
y, we obtain:

d =Wy =Wf+Wε

= z + u.
(4.1)

then Equaction (4.1) can be re-written as follows:

djk = zj,k + uj,k,

where zj,k is the DWT coefficient from the f (unknown), and uj,k ∼ N(0, σ2j,k), σj,k is
unknown. Bayesian inference on Equaction (4.1) is proceeded by placing priors on zj,k

and σ2j,k which are introduced in Section 4.2.1.
In our wrist-worn sensor AX3 data (see Figure 4.3), y is the accelerometer data.

After applying DWT, terms djk, zj,k and uj,k can be expressed as index of j and k, which
means the j-th DWT decomposition level and the k-th node. Note that, djk are DWT
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coefficients from the accelerometer data, zj,k areDWT coefficients of f and uj,k areDWT
coefficients from the noise.

It is very common thatDWT coefficients zj,k can be separated to two types. The first
type is the one in which its DWT coefficient is zero or close to zero. These DWT coeffi-
cients can be treated as “noise” which contain very little information and can be removed.
Moreover, if DWT coefficients zj,k that are zero or near zero in our accelerometer data,
this means that patients may be “still”, and they don’t move or even fall asleep. Another
type includes the cases where their DWT coefficients are non-zero, indicating patients
are doing activities, and these “large” DWT coefficients provide the main information for
the upper limb movement, and thus provide information on modelling the recovery level
of upper limb function after stroke. In the following section we use Bayesian inference on
the above model, adding the prior on the zj,k and the parameter σ2j,k in uj,k to remove
those zero or near zero DWT coefficients.

4.2.1 The spike-and-slab mixture prior on zj,k

Due to the energy concentration, it is very important that shrinking smaller coeffi-
cients (corresponding to noise) towards zero in order to keep large coefficients containing
more information in the model (Chipman et al., 1996). The next step is to use a popu-
lar Bayesian strategy to deal with it, which is derived from imposing a particular prior
structure to the model, and so-called spike-and-slab mixture prior (Chipman et al. (1997),
CLYDE et al. (1998) and Clyde & George (2000)) on DWT coefficients zj,k.

With the mixture prior probability πj,k, DWT coefficients zj,k are separated into two
groups which is called a spike-and-slab mixture model and defined as follows:

zj,k ∼ (1− πj,k)δ(0) + πj,kN(0, τjσ
2
j,k).

DWT coefficients zj,k contain a few large DWT coefficients and many small DWT
coefficients. The term N(0, τjσ

2
j,k) describes the large DWT coefficients and the term

δ(0) describes small DWT coefficients. Also the spike part in spike-and-slab mixture
model does not have to be exactly at 0 but can be a Gaussian with zero mean and a
much smaller variance. The term τj = 2−αjτ , which is a level-specific parameter, can
be presented as the entire level of variability in DWT coefficients at the level j, where
α, τ > 0. Note that the terms α and τ can be obtained from an empirical Bayes approach
by maximizing the marginal likelihood (see Section 4.3).

For convenience, we define a latent variable Sj,k to indicate the hidden state of zj,k
depends on the prior probability πj,k, such that Sj,k = 0 if zj,k is zero (or close to zero)
and Sj,k = 1 otherwise. Thus, Pr(Sj,k = 0) = πj,k and Pr(Sj,k = 1) = 1 − πj,k. The
previous spike-and-slab prior can be written as follows:
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zj,k|Sj,k ∼ N(0, Sj,k · τjσ2j,k), Sj,k ∈ {0, 1}. (4.2)

In other words, when Sj,k = 1, DWT coefficient dj,k (from accelerometer data) is far away
from 0. When Sj,k = 0, DWT coefficient dj,k (from accelerometer data) is close to 0. The
error variance σ2j,k is unknown and inferred from the data. Since the Inverse-Gamma
distribution is a conjugate of the Gaussian distribution, we allow σ2j,k to be heterogeneous
and with a hyperprior on it:

σ2j,k
i.i.d∼ Inv −Gamma(v + 1, vσ20). (4.3)

where the terms v and σ0 are the hyperparameters in NIG-MT, which we can use with
the maximum marginal likelihood estimators (MMLE) in Section 4.3 to estimate it from
the accelerometer data.

4.2.2 Essence of hidden state Sj,k in DWT coefficients tree structure

Some properties of DWT coefficients have been discussed in Section 4.1. DWT
coefficients are represented as a tree structure (see Figure 4.1), the tree structure shows
that if the value of parent node is non-zero, the corresponding value of two children nodes
may also be away from zero, otherwise, that will be close or equal to zero. This property
of DWT coefficients in tree structure shows that there is a very strong Markov property
between the parent node and its two children nodes, in other words, the value of two
children nodes have been only related and determined by the value of their parent node
at previous level.

Given the hidden state Sj,k ∈ {0, 1}, after applyingDWT in the accelerometer data y,
we get a tree structure of DWT coefficients. Recall that the pair of indices (j,k) represent
the j-th level discrete wavelet transform and the k-th node, and use T to represent indices
(j,k) corresponding to all nodes of DWT coefficients. Note that, two children nodes of
location (j, k) are indexed by (j + 1, 2k) and (j + 1, 2k + 1). Generally, when j > 1, the
parent of (j, k) is indexed by (j − 1, k2 ).

Since the Markov property is represented between the parent node (j, k) and two
children nodes (j + 1, 2k), (j + 1, 2k + 1), the latent state Sj,k ∈ {0, 1}, which can be
applied with Markov process. The previous model can be expressed by a hidden Markov
model evolving into a Markov tree. Under the Markov tree, S = {Sj,k : (j, k) ∈ T }, each
node (j,k) depends on its parent, which is expressed by a Markov transition as followed:

Pr(Sj,k = s′|Sj−1,[k/2] = s) = ρj,k(s, s
′). (4.4)

In other words, the transition probabilities ρj,k(s, s′), s, s′ ∈ {0, 1}, which are written as a
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transition matrix for each node (j, k) ∈ T in the Markov tree as follows:

ρj,k =

[
ρj,k(0, 0) ρj,k(0, 1)

ρj,k(1, 0) ρj,k(1, 1)

]
=

[
max{1− η2−j , 0} min{η2−j , 1}

1− γ γ

]
.

Parameters η and γ satisfy η > 0 and 0 < γ < 1 respectively. The larger the η,
the larger the DWT coefficients will be contained at the j-th level in tree structure. In
contrast, the smaller η means DWT coefficients at the j-th level containing more zero (or
close to zero) coefficients. The large γ implies that there is a strong correlation in large
coefficients.

Since root nodes (0, k) in scale 0 do not have parents, it is better to set a specified
initial state probability ρ0,k = (ρ0,k(0), ρ0,k(1)). The probability of Sj,k for all location k
in scale j = 0 can be defined as:

Pr(S0,k = s) = ρ0,k(s), s ∈ {0, 1}. (4.5)

Combining Equations (4.4) and (4.5), the marginal probabilities of Sj,k for location k in
scale j = 1, 2, ..., J follows:

Pr(Sj,k = s′) =
∑

s∈{0,1}

Pr(Sj−1,[k/2] = s)Pr(Sj,k = s′|Sj−1,[k/2] = s).

To be more specific, each node of state probabilities ρj,k = (ρj,k(0), ρj,k(1)) in scale j =

1, 2, ..., J is expressed as:

ρj,k(0) = ρj−1,[k/2](0)ρj,k(0, 0) + ρj−1,[k/2](1)ρj,k(1, 0),

ρj,k(1) = ρj−1,[k/2](0)ρj,k(0, 1) + ρj−1,[k/2](1)ρj,k(1, 1).

Until now, we have obtained the probability of each latent state Sjk in the Markov
tree (S = {Sj,k : (j, k) ∈ T }) by given the specified initial state probability ρ0,k and the
transition probability ρj,k(s, s′).

Combining Equations (4.2) (4.3) (4.4) and (4.5), the new hierarchical model for the
DWT coefficients is obtained. It is called the Normal Inverse-Gamma Markov tree model
(NIG-MT) and is specified by the hyperparameters θ = (α, τ, v, σ20, η, γ, ρ0,k(1)) (See Ma
& Soriano (2017)).

4.2.3 Inference under the NIG-MT model

In particular, the Markov tree structure and the Normal Inverse-Gamma setup are
completely conjugate to the NIG-MT: the joint posterior on {Sjk, zj,k, σ2j,k : (j, k) ∈ T }
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is still an NIG-MT.
Let us consider the n-th functional observations y(1),y(2), ...y(n) (different sets of

accelerometer data among different patients) from Equation (4.1). In the general case,
for the i-th observation, the dj,k

(i) is the DWT coefficient at scale j and location k of y(i).
After applying DWT with the accelerometer data, the model resulting at each specified
node is:

d
(i)
jk = zj,k + u

(i)
j,k where u

(i)
j,k ∼ N(0, σ2j,k). (4.6)

The aim is to find the posterior distribution on {Sj,k, zj,k, σ2j,k : (j, k) ∈ T } given the
observed DWT coefficients djk. Let mj,k(s) to be the marginal likelihood for the node-
specific model on (j,k), given Sj,k = s ∈ {0, 1}:

mj,k(s) =

∫
p(d(1),d(2), ...,d(n)|Sj,k = s, zj,k, σ

2
j,k)π(zj,k, σ

2
j,k)dzj,kdσ

2
j,k. (4.7)

From the normal-inverse-Gamma conjugacy, the marginal likelihood is in closed form:

mj,k(s) =
(vσ20)

v+1Γ (v + n/2 + 1)

(2π)n/2Γ (v + 1)
·

[
τ−1j

n+ τ−1j

]s/2
·

[
vσ20 +

1

2

(∑
i

(d
(i)
jk )

2

)
− s ·

(ndjk)
2

n+ τ−1j

]−v−n/2−1
,

(4.8)

where djk =
∑

i d
(i)
jk /n. Note that, the term D = (d

(1)
jk , d

(2)
jk , ..., d

(n)
jk ) should be used to

represent the total accelerometer data among different patients in the following content.
Since the NIG-MT model is completely conjugated to the Markov tree (MT) struc-

ture and Normal Inverse-Gamma, the posterior of the hidden states Sjk is still a MT.
Referring to the definition of φj,k and ξj,k, which can be found in Equation (4.9), the
posterior state transition probabilities of Sj,k are:

Pr(Sj,k = s′|Sj−1,[k/2] = s,D) = ρj,k(s, s
′)
φj,k(s

′)

ξj,k(s)
, s, s′ ∈ {0, 1}, j ≥ 1.

Using matrix notation, the posterior state transition matrix of Sj,k in order j =

1, 2, ..., J can be expressed as:

[ρj,k|D] =

 ρj,k(0, 0)
φj,k(0)
ξj,k(0)

ρj,k(0, 1)
φj,k(1)
ξj,k(0)

ρj,k(1, 0)
φj,k(0)
ξj,k(1)

ρj,k(1, 1)
φj,k(1)
ξj,k(1)

.
The posterior initial state probabilities of Sj,k are:

Pr(S0,k = s|D) = ρ0,k(s)
φ0,k(s)

ξ0,k(0)
, s ∈ {0, 1}.
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Using vector notation, the posterior initial state probabilities of Sj,k in order j = 0 are
given by:

[ρ0,k|D] =
(
ρ0,k(0)

φ0,k(0)

ξ0,k(0)
, ρ0,k(1)

φ0,k(1)

ξ0,k(0)

)
.

Note that the terms of φj,k(s) and ξj,k(s) can be calculated by using a bottom-up pyramid
algorithm, that is very similar to the Mallat’s pyramid algorithm (Mallat, 1989) for running
DWT. The bottom-up pyramid can be written as followed:

φj,k(s) =

{
mjk(s) for j = J,

mjk(s) · ξj+1,2k(s) · ξj+1,2k+1(s) for j = 0, 1, 2, ..., J − 1,

ξj,k(s) =


∑

s′∈{0,1}

ρj,k(s, s
′) · φj,k(s′) for j = 1, 2, ..., J,

∑
s′∈{0,1}

ρ0,k(s
′) · φj,k(s′) for j = 0.

(4.9)

So far, we achieve the posterior state transition probabilities and initial state probabilities
in Sjk through the φj,k(s)’s and the ξj,k(s)’s by using the bottom-up pyramid, and use the
following top-down pyramid algorithm to compute the posterior marginal probability of
Sj,k. Then the posterior marginal probabilities of Sj,k will be obtained:

Pr(Sj,k = s′) =
∑

s∈{0,1}

Pr(Sj−1,[k/2] = s|D)Pr(Sj,k = s′|Sj−1,[k/2] = s,D), j ≥ 1.

The posterior of σjk, zjk and the mean of z will also be achieved. The posterior of variances
σ2jk given Sjk is:

[σjk|Sjk,D] ∼ Inv −Gamma

(
v + 1 + n/2, vσ20 +

1

2

(∑
i

(d
(i)
jk )

2

)
− ·

Sjk · (ndjk)2

n+ τ−1j

)
.

The posterior of variances zjk given Sjk, σjk is:

[zjk|σ2jk, Sjk,D] ∼ N

(
Sjk · ndjk
n+ τ−1j

)
·

(
Sjk · σ2jk
n+ τ−1j

)
.

Then the posterior mean of z is given by:

z̃jk| = E (zj,k|D) = Pr(Sjk = 1|D) ·
ndjk

n+ τ−1j
.

The average of the observed wavelet coefficients djk is shrunk toward the prior mean
0 with the amount of shrinkage being averaged over the different shrinkage states. By

74



Chapter 4. Data reduction using Bayesian Normal Inverse-Gamma Markov tree

applying an inverse DWT to z̃jk we can get the posterior mean of f .

4.3 Prior specification

The Normal Inverse-Gamma Markov tree model (NIG-MT) is specified by the fol-
lowing hyperparameters θ = (α, τ, v, σ0, η, γ, ρ0,k(1)). In order to force smaller coefficients
(corresponding to the noise) to zero and to ensure that large coefficients remain unaf-
fected by using proper priors in the NIG-MT, it is important to discuss the specification
of hyper-parameters θ in turn.

The hyperparameters α and τ

The term τj = 2−αjτ implies that DWT coefficients tend to be smaller as the level j
increases. The hyperparameter α controls the smoothness of the functional observation,
that is, the larger the hyperparameter α, the smoother the functional observation. As
recommended in Abramovich et al. (1998), α = 0.5. Alternatively, a more flexible way to
choose both α and τ is, suggested by Ma & Soriano (2017), using the maximum marginal
likelihood estimation (MMLE), since the functional observation tends to be rough in our
real word, especially in the free living data (containing too much noise) from AX3.

The hyperparameters v and σ0

From the equation (4.2) and (4.3), DWT coefficients from f for each node (j,k)
in the DWT markov tree structure follow a normal distribution N(0, Sj,k · τjσ2j,k) and

σ2j,k
i.i.d∼ Inv − Gamma(v + 1, vσ20). The term vσ20 mainly corresponds to the noise from

dj,k at the lowest decomposition level, especially in the high frequency domain. The
hyperparameter σ0 is very similar to the hyperparameter τ . The large parameter σ20 means
that our functional observation tends to be smooth. Regarding the difference between
σ0 and τ , τ is more related to the overall trends of functional observation smoothness.
However, σ0 relies more on the total energy of detailed coefficients in the high frequency
domain.

The hyperparameters η, γ and ρ0,k(1)

The hyperparameter γ determines the spatial-scale dependency of the wavelet sig-
nal. Larger γ values correspond to stronger correlation or clusters in the large wavelet
coefficients. On the other hand, the hyperparameter η controls how likely it is to have a
non-zero wavelet coefficient at each level. The exponential decaying factor 2−j counters
exactly the exponential increase in the expected number of wavelet coefficients at higher
resolution, and keeps the prior expected number of “de novo signals” (in the sense that a
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node contains a signal but its parents do not) at each resolution fixed at η. To this end,
the hyperparameters ρ0,k(1) represent how likely the root nodes d0k at level 0 are to be
big or not.

Maximum marginal likelihood

The overall marginal likelihood P (D|θ) =
∑
k

ξ0,k(0), in location k and level 0, is cal-

culated using the bottom-up pyramid algorithm from Equation (4.9). Hence, the max-
imum marginal likelihood estimators (MMLE), with unconstrained and box-constrained
optimization using PORT routines for the hyperparameters, will be:

θ̂ = argmax
θ

P (D|θ).

Note that the MMLE is implemented by the R function nlminb, and the detail for carrying
out the optimization can be found in Section 4.4.1).

4.4 Identifying non-zero DWT coefficients

The general case of the NIG-MT model has been discussed in the previous section.
Equation (4.6) gives a general case when we have i functional observations corresponding
to i sets of accelerometer data in the i-th stroke patients. When we input the accelerometer
data for all stroke patients in the NIG-MT model, a problem will appear due to different
habits among different stroke patients. To be more specific, if patients wear the wrist-
worn sensor AX3 for 3 full days, they have a different routine of daily life during this time.
For example, returning to Figure 3.2 and Figure 3.5 in Chapter 3, in a certain period,
Patient la038 is very “active” while Patient la027 stays “still”. If we input all accelerometer
data together, the output of the posterior will be very unstable in the NIG-MT model.
Such “undesirable” posteriors will be shown in Figure 4.6.

Due to the complexity of patients’ data mentioned above, rather than inputting the
entire data set y(1),y(2), ...y(n) of total patients into Equation (4.6), we consider a single
set of accelerometer data y for each patient in the NIG-MT model and repeat it until
we obtain the posterior for each single patient from Equation (4.1). After applying
DWT with accelerometer data, the model at each specified node, for each patient, from
Equations (4.6) (4.7) and (4.8) becomes:

djk = zj,k + uj,k where uj,k ∼ N(0, σ2j,k). (4.10)

Let mj,k(s) be the marginal likelihood for the node-specific model on (j,k), given
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Sj,k = s ∈ {0, 1}:

mj,k(s) =

∫
p(d|Sj,k = s, zj,k, σ

2
j,k)π(zj,k, σ

2
j,k)dzj,kdσ

2
j,k. (4.11)

From the normal Inverse-Gamma conjugacy, the marginal likelihood is in closed form:

mjk(s) =
(vσ20)

v+1Γ (v + 3/2)

(2π)1/2Γ (v + 1)
·

[
τ−1j

1 + τ−1j

]s/2
·

[
vσ20 +

1

2

(
(djk)

2 − s ·
(djk)

2

1 + τ−1j

)]−v−3/2
.

(4.12)

We aim to find the posterior distribution of {Sj,k : (j, k) ∈ T } for each single
patient given the observed DWT coefficients djk from accelerometer data. The pos-
terior distribution of {Sj,k : (j, k) ∈ T } consists of two parts; the posterior marginal
probabilities Pr(Sj,k = 1|D) and the posterior marginal probabilities Pr(Sj,k = 0|D).
We just consider Pr(Sj,k = 1|D) in our model since posterior marginal probabilities
Pr(Sj,k = 1|D) = 1− Pr(Sj,k = 0|D).

After applying the NIG-MT model, the posterior marginal probabilities Pr(Sj,k =

1|D) deliver the valued information about each DWT coefficient djk with location (j,k)
in the whole DWT coefficients tree structure. We then know each DWT coefficient djk
with location (j,k) will be zero or non-zero. The zero coefficients provide little information
on modelling upper limb function and can be removed. This results in a data reduction.

To be more specific, we analyze the posterior marginal probabilities of Sj,k for the
node-specific model on (j,k). The posterior marginal probabilities Pr(Sj,k = 1|D) plays a
very important role in the NIG-MT model, since the value of Pr(Sj,k = 1|D) is between
0 and 1. If the DWT coefficients are very small (corresponding to “noise” or “still”), the
value of Pr(Sj,k = 1|D) will be close to 0 at all DWT decomposition levels. Otherwise,
the value of Pr(Sj,k = 1|D) will be close to 1.

The overall objective is to do the data reduction through the posterior marginal
probabilities Pr(Sj,k = 1|D) in the NIG-MT model. For the whole DWT coefficient
tree structure, we keep the DWT coefficient djk in location (j,k) if its Pr(Sj,k = 1|D) is
close to one, otherwise, it will be forced to be zero. In other words, the process shrinks
smaller coefficients (corresponding to “noise” or “still”) to zero and keeps large coefficients
(non-zero DWT coefficients).

As long as the posterior marginal probabilities Pr(Sj,k = 1|D) which are given from
the data obtained, we will obtain an acceptable outcome with the accelerometer data.
More specifically, based on the Pr(Sj,k = 1|D) among all the dj,k from acclelerometer
data, we can distinguish which is close to zero, the details will be discussed in the next
step.

The next step is to decide how to find the appropriate Pr(Sj,k = 1|D), which depends
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on the hyperparameters θ = (α, τ, v, σ0, η, γ, ρ0,k(1)) as discussed in Section 4.3. The
proper posterior marginal probabilities Pr(Sj,k = 1|D) will distinguish non-zero DWT
coefficients directly shown in Figure 4.5, which is a sort of “acceptable” posterior marginal
probabilities Pr(Sj,k = 1|D). Big DWT coefficients correspond to the Pr(Sj,k = 1|D)
close to 1, whereas small DWT coefficients will be close to 0 with Pr(Sj,k = 1|D). How-
ever, Figure 4.6 shows the Pr(Sj,k = 1|D) is about 0.1 irrespective of the value of the
corresponding DWT coefficients. We therefore need to choose the hyperparameters care-
fully.

Figure 4.5: “Acceptable” posterior marginal probabilities Pr(Sj,k = 1|D). More specifically, the
large DWT coefficients correspond to the Pr(Sj,k = 1|D) close to 1, whereas small DWT coeffi-
cients will be close to 0.

Figure 4.6: “Unacceptable” posterior marginal probabilities Pr(Sj,k = 1|D). More specifically,
the value of Pr(Sj,k = 1|D) is about 0.1 irrespective of the value of the corresponding DWT
coefficients
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4.4.1 Sensitivity of initial value of hyperparameters in the posterior of
Pr(Sj,k = 1|D)

We choose a slide window from one of the free-living data, apply the DWT and focus
on DWT coefficients at level 5. Through the maximum marginal likelihood estimators
(MMLE) and, based on the specification of hyperparameters θ (see Section 4.3), we set a
vector of seven hyperparameters from θ with a wide range of lower and upper bounds. Here
we choose the lower bound and upper bound with θlower = (0.1, 0.001, 0.05, 0.1, 0.05, 0.1, 0.1)

and θupper = (10, 0.2, 5, 20, 20, 0.9, 0.9) respectively. We now need the initial values for the
hyperparameters θ to be optimized. Here, we should notice that if the posterior is sen-
sitive to the initial values of the hyperparameters, it means that the numerical routine
for global optimisation is not working as well as hoped in our MMLE. The next step
is to change one of initial values of hyperparameters and fix the remaining six initial
hyperparameters from θ, and then check the sensitivity of different initial hyperparame-
ters in the posterior of Sjk at the DWT decomposition level 5 around the initial value:
θ(ini) = (v(ini), σ0(ini), α(ini), τ(ini), η(ini), γ(ini), ρ0,k(1)(ini)).

It has been found that, from the Figures 4.11 to 4.17 in Appendix 4.7, the posterior
is defined mathematically and are not sensitive to the initial values of the hyperparameters
in MMLE by using R package nlminb. However, the final posterior marginal probabil-
ities Pr(Sj,k = 1|D) is consistent when we input the different initial values in all the
hyperparameters: v, σ0 α, τ , η, γ and ρ0,k(1).

4.4.2 The threshold P in Pr(Sj,k = 1|D)

As shown in Figures 4.5 and 4.6 , the “acceptable” posterior value of Pr(Sj,k = 1|D) is
close to either 0 or 1, and so theDWT coefficients with a near zero value of Pr(Sj,k = 1|D)
can be forced to be zero from the whole data set. However, the values of some DWT
coefficients are neither near 0 nor near 1. We therefore need to set a threshold P such
that the dj,k will be treated as zero, if Pr(Sj,k = 1|D) ≤ P , i.e., the corresponding DWT
coefficients can be forced to be zero. We will investigate the potential values of P at
0.2, 0.3,... or 0.9. To evaluate those thresholds through the energy concentration in the
accelerometer data, we let LEj be the losing energy at each DWT decomposition level:

LEj =

∥∥∥(Wj −W∗
j )
∥∥∥2

N/2j
= 2j

∥∥∥(Wj −W∗
j )
∥∥∥2

N
,

where Wj represents the detailed coefficients in the j-th DWT scale decomposition from
accelerometer data and W∗

j represents detailed the coefficients after shrinking. It should
be noted that LEj is the point energy loss after shrinking the small DWT to zero at
DWT decomposition level j.
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In our study, ELRj , the energy losing rate, is defined as follows,

ELRj =
LEj
SSDj

,

where SSDj is the point energy at each DWT decomposition level (see the details in
Section 3.2.1). ELRj is a ratio with its value between 0 and 1, the bigger the value is,
the more energy will be lost through data reduction. To this end, a different threshold,
P , will be evaluated through ELRj from the energy concentration. Specific results will
be reported in the next section.

4.5 Data-reduction for AX3 data

Based on the analysis from the posterior state probabilities of Sj,k by using NIG-
MT model, as we discussed before, non-zero DWT coefficients are found through a real
case as follows. Now, one set of AX3 data, in the group of acute patients as an example,
were collected from the 8-th week of Patient la215 (non-paralysed side) and are presented
in Figure 4.7, through the information obtained from posterior marginal probabilities
Pr(Sj,k = 1|D), shrinking DWT coefficients adaptively and efficiently at 6 decomposition
levels.

Figure 4.7: The VM data of Patient la215 in week 8.

As we discussed before, data in some periods include “noise” only (or corresponding
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to the “still” state). Those data provide little information and can be forced to be zero.
We apply NIG-MT model to fulfill this task.

We first calculate DWT for the data set (Patient la215, week 8), and then apply the
NIG-MT model to this data and calculate the posterior marginal probabilities Pr(Sj,k =
1|D) at 6 DWT decomposition levels corresponding to the threshold P = 0.2, 0.3, ..., 0.9.
When we deal with the accelerometer data, the value of P should be based on the energy
loss rate. The smaller value of ELRj is the better, basically the sum of ELRj at different
decomposition levels needs to be smaller than 0.1, which means that we at least keep 90%

of the energy after shrinking from the raw data. Similarly, we can deal with the other
different types of data (e.g., not the accelerometer data) in the same way. In practice,
we recommend a selected value of P as 0.5 at first, then check the value of ELRj ; if the
sum of ELRj at different decomposition j is small (e.g., less than 0.1), we can increase
the value of threshold P . Here we choose the threshold P to be 0.5 at first, calculating
the value of ELRj and the percentage of shrinking. After NIG-MT, the percentage of
shrinking is the ratio between non-zero DWT coefficients and raw DWT coefficients at
different decomposition levels. For example, the length of the raw DWT coefficients and
non-zero DWT coefficients (after NIG-MT) are m and m∗ at level j respectively; the
percentage of shrinking at level j is defined as m−m∗

m . In other words, it means that the
number of raw DWT coefficients shrink proportionately at decomposition level j after
NIG-MT. The ELRj and percentage of shrinking based on threshold P = 0.5 are given
as follows:

DWT level Pr(Sj,k = 1) < P ELRj Percentage of shrinking
0 0.5 0.0001048405 0.371582
1 0.5 0.0002745973 0.4554443
2 0.5 0.001009772 0.5601807
3 0.5 0.001742959 0.6507263
4 0.5 0.002722701 0.7135925
5 0.5 0.003815816 0.7331772

Table 4.2: The threshold P = 0.5 with ELRj and Percentage of shrinking.

From Table 4.2, we find that energy loss rate ELRj is smaller than 0.01 at each
decomposition level. Moreover, comparing with the raw DWT coefficients, there are about
37%, 45%, 56%, 65%, 71% and 73% of DWT coefficients shrinking through the data
reduction procedure at decomposition level 0, 1, 2, 3, 4 and 5 respectively. Since the
ELRj are very small when we choose the threshold P = 0.5, based on our previous
discussion of how to select the threshold P in practice, if the sum of energy loss rate
ELRj at different decomposition level j is smaller than 0.1 with threshold P = 0.5, then
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the value of threshold P should be increased.
Now we choose the threshold P to be 0.9 as an example, which means that DWT

coefficients will shrink most of the “noise” and remove the “still” period. In other words,
if Pr(Sj,k = 1|D) > 0.9, the corresponding dj,k will be kept while the others will be forced
to be zero. The posterior marginal probabilities Pr(Sj,k = 1|D) and DWT coefficients,
from level 0 to level 5, are shown in Figures 4.8 and 4.9 respectively.

Figure 4.8: The posterior marginal probabilities Pr(Sj,k = 1|D) from level 0 to level 5.

82



Chapter 4. Data reduction using Bayesian Normal Inverse-Gamma Markov tree

Figure 4.9: DWT coefficients and non-zero DWT coefficients after shrinking from levels 0 to 5.
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Figure 4.8, which shows posterior marginal probabilities Pr(Sj,k = 1|D), gives us a
clear picture about which DWT coefficients are more useful in the DWT tree structure.
Upon inspection of the diagram, we see two features. Firstly, for each level (or horizontal
band), we see that the band is composed of two sections. One of which consisting of an
area where the “density" of the vertical blue lines is noticeably higher than in the area
following, that presents “active” period, and vice versa. Secondly, we also note that as
the level increases (i.e., from top to bottom) the overall density of these lines generally
decreases and that their colour changes to a paler shade, indicating a lower value of
Pr(Sj,k = 1|D).

Our first observation shows us that Pr(Sj,k = 1|D) is a good indicator of the “still pe-
riod” shown on the DWT tree structure. Our second shows us that higher decomposition
levels contain more “noise” than lower ones. This is because DWT coefficients, at higher
levels of DWT decomposition, correlate more closely to the high frequency domain and
so more noise is generated.

From Figure 4.9, after shrinking the small DWT coefficients to zero through the
NIG-MT model, the ones with values of zero (or close to zero) will be deleted and the rest
will be retained. These latter values are shown in the right hand column. Comparing with
the length of rawDWT coefficients before shrinking in the left column, it is surprising that
raw DWT coefficients will be shrunk dramatically through the data reduction procedure.

Then, we check ELRj and percentage of shrinking at each DWT decomposition level
as follows:

DWT level Pr(Sj,k = 1) < P ELRj Percentage of shrinking
0 0.9 0.0003363439 0.425293
1 0.9 0.000811384 0.5076904
2 0.9 0.002385129 0.6119385
3 0.9 0.003885711 0.6961365
4 0.9 0.00496814 0.7557831
5 0.9 0.007925812 0.8287735

Table 4.3: The threshold P = 0.9 with ELRj and Percentage of shrinking.

From Table 4.3, we can see the excellent performance of NIG-MT models. First of
all, the very small sum of values ELRj when j = 0, 1, ..., 5 indicate the loss of information
is negligible, even if we use the threshold of P = 0.9. Hence we can therefore use a
relatively large value for the threshold. Secondly, at level 5, 4, 3, more than 70% of
the DWT coefficients can be forced to be zero. Bear in mind, the number of DWT
coefficients corresponds to those three levels are n

2 ,
n
4 and n

8 respectively (n is the length
of the accelerometer data). The overall percentage of zero DWT coefficients is 76.3%.

84



Chapter 4. Data reduction using Bayesian Normal Inverse-Gamma Markov tree

Comparing Tables 4.2 and 4.3, the energy loss rate shows that the energy loss is no
more than 1% at each decomposition level in both threshold P = 0.5 and P = 0.9.
The percentage of shrinking shows that the number of remaining non-zero coefficients for
P = 0.5 will also be small when comparing the number with choosing P = 0.9. Hence,
the approache is not sensitive to the selection of thresholds.

The data reduction method based on theNIG-MT model has been applied the whole
of the data of all patients. The data with reduced size will be used for further analysis.
The approach has at least two advantages: (i) it results in more efficient computing
due to the small size of the data after shrinking, (ii) if the noise and ‘still period’ are
removed, the data (after data reduction) can be analysed directly based on the remaining
non-zero DWT coefficents with a special tree structure (see Section 4.1.1). Firstly, since
the DWT coefficients in different decomposition levels present the information among the
different frequency domain, the non-zero DWT coefficients are easier to analyse than the
DWT coefficients with noise and ‘still periods’. Secondly, instead of using the summary
statistics features in Chapter 3, we analyse the remaining non-zero DWT coefficients in
the DWT tree structure directly, as this may provide more information and to further
analyse the ‘details’ of the DWT coefficients.

Compared to the raw data, this reduces the size of 3/4 of the raw DWT coefficients.
If the remaining 1/4 non-zero DWT coefficients give the same performance through the
LMGP model as the raw DWT coefficients in Chapter 3, it means that the capability
of the data reduction is resultful. We will reanalyse the accelerometer data by using these
new features and the model discussed in Chapter 3 with the reduced data set.

4.5.1 Feature re-extraction based on non-zero DWT coefficients

Non-zero DWT coefficients are detected through the data reduction by using NIG-
MT model for all patients’ data. Non-zero DWT coefficients, from all patients, will be
analysed using the methods discussed in Chapter 3. We calculate the ratios again by
using non-zeroDWT coefficients after data reduction. The definition of the 2 new features
is as follows:

SAD∗j =

∥∥∥W∗
j

∥∥∥
1

N/2j
= 2j

∥∥∥W∗
j

∥∥∥
1

N
,

SAD∗∗j =

∥∥∥W∗∗
j

∥∥∥
1

N∗∗j
=

∥∥∥W∗∗
j

∥∥∥
1

N∗∗j
.

The term W∗
j represents the DWT coefficients in the j-th scale after giving the small

coefficients a value of zero. In this case, though, the zero values are not deleted and so
W∗

j has the same length as Wj (see also Section 3.2.1 of Chapter 3). In contrast, W∗∗
j

represents the DWT coefficients in the j-th scale after forcing small coefficients to 0 and
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deleting them. In other words, the length of W∗∗
j in different DWT decomposition scales

only contains non-zero DWT coefficients, which are denoted by N∗∗j . More specifically,

we aim to find the different features from data reduction. Despite
∥∥∥W∗

j

∥∥∥
1
=
∥∥∥W∗∗

j

∥∥∥
1
, the

terms of N∗j and N∗∗j are quite different. Hence, the value of SAD∗j and SAD∗∗j will be
different since SAD∗∗j only contains non-zero DWT coefficients.

Similar to the definition of wavelet features, the definition of four types of new features
is given as follows:

PNP1
k(SAD

∗) =
SAD∗pk
SAD∗npk

,

PNP2
k(SAD

∗) =
SAD∗npk − SAD∗pk
SAD∗npk + SAD∗pk

;

and

PNP1
k(SAD

∗∗) =
SAD∗∗pk

SAD∗∗npk

,

PNP2
k(SAD

∗∗) =
SAD∗∗npk − SAD∗∗pk

SAD∗∗npk + SAD∗∗pk

.

For the different threshold values of P from 0.2 to 0.9, we calculate those features
using the reduced data set of non-zero DWT coefficients. The correlation between those
features and the response variable, the CAHAI scores, based on the threshold values P is
reported in Tables 4.4 to 4.7 (see Appendix 4.7).

Comparing with the correlation between the PNP and clinical assessed CAHAI score
after data reduction (by using all acute patients), NIG-MT does not reduce the corre-
lation with the response variable compared to the ones calculated from the full data set.
It implies, again, that despite shrinking the 3/4 DWT coefficients with ‘noise’ and ‘still’
period, the new features from the remaining 1/4 non-zero DWT coefficients have the
almost same correlation with the clinical assessed CAHAI score. Hence, the capability of
data reduction is resultful.

We use the longitudinal data analysis model discussed in Chapter 3 to predict the
clinical assessed CAHAI score with the features calculated from the reduced data. We
also calculated the RMSEs using leave-one-patient-out cross validation for acute patients.
The results are shown in Figure 4.10.
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Figure 4.10: Prediction vs clinical assessed CAHAI by using leave-one-patient-out cross-validation
(acute patients) based on the non-zero features. Left panel: RMSE without GP is 7.028202. Right
panel with GP is 5.473805. Note that the different colours represent the different patients. It
shows that the errors based on features from non-zero DWT coefficients are very similar to those
from raw DWT coefficients. In other words, only the 1/4 non-zero DWT coefficients have the
same performance as the features in Chapter 3. This implies that the procedure of NIG-MT is
useful for data reduction.

By comparison with the RMSE from acute patients in Chapter 3, we see that the
results of RMSE from the reduced data are almost identical with that from the whole
data. This means that the re-extraction of features after data reduction keeps the same
level of information as the previous features. Recall that the size of the reduced data is
only about a quarter of the full data (of DWT coefficients), resulting after removing the
“noise” and “still period”. It will be easier to look for the “details” from the non-zeroDWT
coefficients on the special tree structure without ‘noise’ and ‘still’ period with the small
data set.

4.6 Conclusion

The wavelet method is a very valuable tool for dealing with the signal (e.g., accelerom-
eter data). DWT coefficients are another form of the original process data from different
frequency domain. However, much useless information, corresponding to the “noise” part
and “still” part with the original process data, are present in DWT coefficients. We there-
fore propose to use NIG-MT to DWT coefficients to do the data reduction, based on
the energy loss rate ELRj and the recommendation (see Section 4.5) of how to choose
the threshold P in practice for other types of data. The large raw DWT coefficient tree
structure will be shrunk and transferred to ‘clean’ one, making it easier to focus on the
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specific part in the whole tree strucutre. For our data, about three quarters of DWT co-
efficients can be removed with less than 1% information loss at each decomposition level.
This is a good data pre-processing approach, after removing the ‘noise’ and ‘still’ period.
It is beneficial for us to carry out an analysis on the small size data in both the time and
frequency-domains which gives the same performance with the raw processing data. In ad-
dition, the covariance tree structure of DWT coefficients is estimated in Chapter 5. This
will be used to conduct multivariate functional principal component analysis fPCA in the
next chapter. Then two approaches in this Chapter and Chapter 5 will be combined
and give final delicate analysis in Chapter 6.

4.7 Appendix

Sensitivity of the posterior for the initial values of the hyperparameters
in MMLE by using R package nlminb
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Figure 4.11: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial v = 0.1, 1, 5 at level 5.
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Figure 4.12: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial σ0 = 0.001, 0.01, 0.1 at
level 5.
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Figure 4.13: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial α = 0.05, 0.5, 5 at level
5.
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Figure 4.14: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial τ = 1, 5, 10 at level 5.
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Figure 4.15: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial η = 0.05, 5, 10 at level 5.
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Figure 4.16: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial γ = 0.3, 0.6, 0.9 at level
5.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pr(S=1|D) when rho = 0.3 

Index

P
r(

S
=

1
|D

)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pr(S=1|D) when rho = 0.6 

Index

P
r(

S
=

1
|D

)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pr(S=1|D) when rho = 0.9 

Index

P
r(

S
=

1
|D

)

Figure 4.17: Posterior marginal probabilities Pr(Sj,k = 1|D) when initial ρ0,k(1) = 0.3, 0.6, 0.9 at
level 5.

The correlation between the 4 new features with CAHAI based on the
threshold values P

From Tables 4.4 to 4.7, the last column named “Raw" is the correlation between
CAHAI score and features calculated from the full data set of DWT coefficients. The
remaining columns are the correlation between clinical assessed CAHAI score and the
features through the data reduction based on the threshold P = 0.2, 0.3, ..., 0.9.
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Threshold 20% 30% 40% 50% 60% 70% 80% 90% Raw
Level 5 (Scale 1) 0.681 0.679 0.669 0.653 0.637 0.649 0.634 0.601 0.696
Level 4 (Scale 2) 0.69 0.686 0.683 0.681 0.678 0.672 0.663 0.644 0.694
Level 3 (Scale 3) 0.68 0.68 0.678 0.676 0.674 0.669 0.664 0.655 0.667
Level 2 (Scale 4) 0.629 0.628 0.627 0.625 0.624 0.622 0.619 0.615 0.605
Level 1 (Scale 5) 0.509 0.511 0.512 0.509 0.509 0.508 0.508 0.507 0.489
Level 0 (Scale 6) 0.395 0.391 0.394 0.397 0.4 0.402 0.408 0.415 0.349

Table 4.4: The correlation between PNP1
k(SAD

∗) with CAHAI.

Threshold 20% 30% 40% 50% 60% 70% 80% 90% Raw
Level 5 (Scale 1) 0.693 0.694 0.695 0.696 0.697 0.698 0.698 0.691 0.696
Level 4 (Scale 2) 0.687 0.688 0.689 0.689 0.69 0.691 0.692 0.694 0.694
Level 3 (Scale 3) 0.663 0.663 0.664 0.664 0.665 0.665 0.666 0.667 0.667
Level 2 (Scale 4) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.605
Level 1 (Scale 5) 0.483 0.483 0.482 0.482 0.482 0.481 0.481 0.48 0.489
Level 0 (Scale 6) 0.344 0.343 0.342 0.341 0.34 0.339 0.338 0.334 0.349

Table 4.5: The correlation between PNP1
k(SAD

∗∗) with CAHAI.

Threshold 20% 30% 40% 50% 60% 70% 80% 90% Raw
Level 5 (Scale 1) -0.71 -0.706 -0.694 -0.676 -0.659 -0.67 -0.652 -0.611 -0.715
Level 4 (Scale 2) -0.712 -0.707 -0.704 -0.702 -0.697 -0.69 -0.68 -0.659 -0.709
Level 3 (Scale 3) -0.699 -0.698 -0.697 -0.694 -0.692 -0.687 -0.683 -0.673 -0.683
Level 2 (Scale 4) -0.647 -0.647 -0.647 -0.646 -0.645 -0.644 -0.641 -0.637 -0.626
Level 1 (Scale 5) -0.537 -0.539 -0.541 -0.538 -0.539 -0.538 -0.538 -0.536 -0.516
Level 0 (Scale 6) -0.43 -0.426 -0.427 -0.43 -0.431 -0.433 -0.438 -0.444 -0.375

Table 4.6: The correlation between PNP2
k(SAD

∗) with CAHAI.

Threshold 20% 30% 40% 50% 60% 70% 80% 90% Raw
level 5(Scale 1) -0.712 -0.714 -0.715 -0.716 -0.717 -0.718 -0.72 -0.717 -0.715
level 4(Scale 2) -0.702 -0.703 -0.703 -0.704 -0.705 -0.706 -0.707 -0.709 -0.709
level 3(Scale 3) -0.678 -0.679 -0.679 -0.679 -0.68 -0.68 -0.681 -0.683 -0.683
level 2(Scale 4) -0.621 -0.621 -0.621 -0.621 -0.621 -0.621 -0.621 -0.622 -0.626
level 1(Scale 5) -0.511 -0.51 -0.51 -0.51 -0.509 -0.509 -0.509 -0.508 -0.516
level 0(Scale 6) -0.37 -0.369 -0.368 -0.367 -0.366 -0.365 -0.363 -0.36 -0.375

Table 4.7: The correlation between PNP2
k(SAD

∗∗) with CAHAI.

91



Chapter 5

Classification based on a slide
window approach and multivariate
fPCA

In this chapter, from the data reduction discussed in Chapter 4, we will investigate
the tree structure through all the DWT coefficients. Although about three quarters of
the DWT coefficients can be forced to 0 and removed, the size of the data set is still
very large. We will use the slide window approach and multivariate functional principal
component analysis (fPCA)(Ramsay & Silverman (2005)) to further extract the useful
information from the pattern of small DWT tree structures and also reduce the data size.
In this chapter we use the methods of slide window and multivariate fPCA with designed
data at first by using the refined information from small DWT tree structures. We will
then apply, in the next chapter, these techniques together with NIG-MT to extract the
useful pattern’s information from free-living data for stroke rehabilitation assessment. As
we discussed before, there is a tree structure in the DWT coefficients; the parent node at
level j has two children nodes at level j + 1 and the value of two children nodes depends
on the value of parent node, which means each node at the top decomposition level 0,
and its children nodes at the following decomposition levels, can be treated as a tree
structure. The correlation in those DWT coefficients depends on the tree structure. We
will first calculate the covariance matrix based on the tree structure before we conduct a
multivariate fPCA.

The designed data (walking, running and opening a jar) is collected from the wrist-
worn sensor AX3 (see Section 5.1). In this chapter, we investigate the small DWT
coefficients tree structure, from the designed data, in order to extract the pattern’s in-
formation from three movements through the multivariate fPCA. This is then used to
classify the three movements through different classifcation methods (Section 5.4).
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5.1 About the design data

For three different individuals, the design data were collected for both left and right
hands with acceleration being measured along each axis. The data were collected for three
activities: walking, running and opening jars. The duration of the data collection was one
minute and the sampling frequency was 100 Hz, i.e., 100 observations were recorded per
second. The data includes ax,ay,az and a time-stamp, where ax,ay,az are the accelerations
along each axis measured in g units (1g = 9.8m/s2). We then combine 3 coordinate axes
(X,Y,Z) to get the signal vector magnitude (raw VM data, not the 1 second-wise VM
data) (Section 2.2.3). From the design data (left and right hand from 1 person) for the
three activities are shown in Figures 5.1, 5.2 and 5.3 as follows:
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Figure 5.1: The data for running activity. Left panel: Left hand. Right panel: Right hand. Note
that the Index refers to the observations within the designed data in 1 minute.
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Figure 5.2: The data for walking activity. Left panel: Left hand. Right panel: Right hand. Note
that the Index refers to the observations within the designed data in 1 minute.
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Figure 5.3: The data for opening jar activity. Left panel: Left hand. Right panel: Right hand.
Note that the Index refers to the observations within the designed data in 1 minute.

If we look very carefully at the bottom of each figure, all three movements contain
small values (close to 0), especially in the activities of walking and opening jars. This
implies that these three movements include similar properties of low frequency information.
Moreover, it is also difficult to find the pattern through the raw data. To be more specific,
despite the fact that we collect the data for 1 min, these three movements consist of their
patterns. If we take “running” as an example, both hands will keep a regular pattern,
it will be repeated again and again through the entire data. To capture the patterns
efficiently and remove the negative impact from low frequency information properly, we
transform the raw data into the wavelet domain and analyze it with aDWT tree structure
in Section 5.2.

5.2 Identifying the DWT coefficient tree structure

Before we determine the small DWT tree structure, we recall the DWT coefficients
based on the Section 2.3.3, then we apply DWT with total of 6 levels, the DWT coeffi-
cients W is a column vector, and W = [W1,W2, ...,WJ ,VJ ]

T, which are decided by the
decomposition level J . In our study, we mainly focus on the detailed coefficients Wj at
decomposition level j which represents the differences in adjacent weighted averages from
scale 1 to scale J , J = 6.

After applying theDWT to data with lengthN , the detailed coefficientsW1,W2, ...,WJ

will be of length N
2j

at each decomposition level j. In other words, the N length data trans-
forms to a total of J sets detailed coefficients with length of N

21
, N
22
, ..., N

2J
after applying

DWT. N is usually very large in the patients’ data, so the total number of DWT coef-
ficients is also very large. However, most of DWT coefficients are of no use and can be
removed through the data reduction based on the discussion given in Chapter 4. Note
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that in this chapter we do not need to consider the data reduction (through theNIG-MT)
since the designed data is not too large size in the time-domain and is only designed for
certain movements. We will find the special tree structure in the next subsection and cal-
culate the covariance matrix. The dimension of DWT coefficients will further be reduced
by using multivariate fPCA in each slide window (Section 5.3.3).

5.2.1 Patterns within the three movements

Reconsidering the designed data with the three movements (walking, running and
opening jars), as we discussed in Section 5.1, and based on the DWT coefficients from
the designed data, we recall that each of them has its own pattern through the time
and frequency-domains. We aim to look for the special pattern from the whole DWT
coefficients with these three movements. To obtain the pattern properly, we first separate
the designed data into different slide windows, each of which includes 128 points covering
a period of 1.28 seconds. Here, we take left hand’s designed data for three movements in
one individual as an example and, after separating the data into slide windows, the slide
windows’ data can be shown in Figure 5.4.
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Figure 5.4: The raw data of left hand in one slide window. Left panel: Walking, Middle panel:
Running, Right panel: Opening jars. Note that the Index refers to the observations within the
designed data in slide window with 1.28 second.

Instead of obtaining the whole tree structure of DWT coefficients from the entire
designed data, the DWT coefficients from each slide window can be treated as a “small”
tree, which corresponds to specific patterns in whole DWT coefficients. To obtain the
small DWT tree structure properly, we first select 128 points in each slide window, then
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the results of using the length of 64 and 192 points in each slide window will be analyzed at
the end of this chapter (see Section 5.4.2) for comparision. Bear in mind, through, that
our final goal is to give an analysis for the stroke patients’ accelerometer data (free-living
data). If the information extracted from patterns in the slide window from designed data
can distinguish these three movements and it performs well, this means that we may apply
it to the stroke patients’ data as well.

We assume that the DWT decomposition level J = 6 contains enough low-frequency
component for the three movements of the designed data. After applying the DWT in
each slide window with decomposition level J = 6, the data can be transferred to the
detailed coefficients Wj , which has a DWT tree structure; the DWT tree structure in
one slide window is given in Figure 5.5. The special frequency domain and the length of
each level of tree are given in Table 5.1.
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Figure 5.5: DWT tree structure in one slide window. Note that this plot uses the function
plot.dwt from the R package wavelets.
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W1 W2 W3

Scale Scale 1 (Level 5) Scale 2 (Level 4) Scale 3 (Level 3)
Frequency 50hz - 100hz 25hz - 50hz 12.5hz - 25hz
Length 64 32 16

W4 W5 W6

Scale Scale 4 (Level 2) Scale 5 (Level 1) Scale 6 (Level 0)
Frequency 6.25hz - 12.5hz 3.125hz - 6.25hz 1.5625hz - 3.125hz
Length 8 4 2

Table 5.1: The details of DWT tree structure in one slide window.

The detailed coefficients W4,W3, and W2 are from DWT decomposition levels 2 to
4, which contains the frequency information at 6.25hz - 12.5hz, 12.5hz - 25hz and 25hz
- 50hz respectively (See Table: 5.1). As we know, we transform the designed data to
the DWT coefficients in the wavelet domain by using DWT at 6 levels, based on our
designed data, i.e., the detailed coefficients at level 5 is 50-100Hz. We can treat it as
“noise”, especially for the movements of walking and opening jars. The remaining 5 levels,
W6,W5,W4,W3, and W2, present the most information for those three activities.

5.3 Extracting the information from the pattern of small
DWT tree structure in each slide window

As we discussed before, after we obtain the tree structure of DWT coefficients in slide
window, (see Table 5.1 and Figure 5.5), the raw designed data can be separated into
different slide windows and we need to find the different patterns in these slide windows.
However, if we select 128 points from the designed data as the length of each slide window,
the pattern in it for three movements contains in total 62 DWT coefficients. There are
2, 4, 8, 16 and 32 DWT coefficients at level 0, 1, 2, 3 and 4 respectively. From the tree
structure in the slide window (Figure 5.5), we see that W6 and W5 have 2 and 4 points
at level 0 and level 1 respectively. This will make analysis much easier and we will use W6

and W5 as potential candidate covariates in the models we will discuss later in Section
5.3.4. However, W4 W3 and W2 have 8, 16 and 32 points (totally 56 points) at the level
2, level 3 and level 4, and this makes direct analysis more difficult. An effective way is
to transform these detailed coefficients (level 2, level 3 and level 4) to lower-dimensional
data by using the fPCA via the special covariance structure in Section 5.3.1.

5.3.1 Covariance matrix in small DWT tree structure at decomposition
level 2, 3 and 4
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Our first challenge involves combining the DWT coefficients in the DWT structures
from level 2 to level 4. Recalling the designed data, walking, running and opening jars,
three DWT tree structures can be obtained for each activity. The relationship from point
by point at each level of DWT tree structure should be measured by the covariance
matrix. To be more specific, for each movement, the DWT coefficients in the small tree
structure at level 2 can be expressed as:

Dj
2 = (Dj

21
, Dj

22
, ..., Dj

28
), (5.1)

where Dj
2i

is the i-th DWT coefficient at decomposition level 2 for i = 1, 2, ..., 8. j stands
for the j-th individual for j = 1, 2, ...,m.

Similarly, DWT coefficients in the tree structure at level 3 and 4 can be expressed
as:

Dj
3 = (Dj

31
, Dj

32
, ..., Dj

316
), (5.2)

and
Dj

4 = (Dj
41
, Dj

42
, ..., Dj

432
). (5.3)

Using the vector and matrix notations, Equations (5.1), (5.2) and (5.3) can be
rewritten as: [

D21 D22 · · · D28

]
, (5.4)

[
D31 D32 · · · D316

]
, (5.5)

[
D41 D42 · · · D432

]
, (5.6)

where each element in Equations (5.4), (5.5) and (5.6) is m-dimension vector, including
the related DWT coefficients for m-th individual in a slide window.

We can therefore calculate the covariance matrix of DWT coefficients at each level.
At level 2, the 8× 8 covariance matrix can be calculated by:

C2 =


cov (D21 ,D21) cov (D21 ,D22) · · · cov (D21 ,D28)

cov (D22 ,D21) cov (D22 ,D22) · · · cov (D22 ,D28)
...

...
...

...
cov (D28 ,D21) cov (D28 ,D22) · · · cov (D28 ,D28)

 , (5.7)

where cov (D2i
,D2k

) is the sample covariance between D2i
and D2k

for (i, k) = 1, 2, ..., n,
n = 8 at level 2; D2i

and D2k
includes the data from m subjects.

Figure 5.6 presents the heat maps of the covariance matrix using the data collected
from three subjects, and we can see the clear difference between those three activities.
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Opening jar (level 2)

Visualization of covariance matrix C_2

Walking (level 2)

Visualization of covariance matrix C_2

Running (level 2)

Visualization of covariance matrix C_2

Figure 5.6: The visualization of covariance matrix C2 with three movements at level 2. Left to
Right: Opening jars, Walking and Running.

Similarly, we can calculate the covariance matrix at level 3 and 4 with dimensions
16× 16 and 32× 32 respectively:

C3 =


cov (D31 ,D31) cov (D31 ,D32) · · · cov (D31 ,D316)

cov (D32 ,D31) cov (D32 ,D32) · · · cov (D32 ,D316)
...

...
...

...
cov (D316 ,D31) cov (D316 ,D32) · · · cov (D316 ,D316)

 , (5.8)

and

C4 =


cov (D41 ,D41) cov (D41 ,D42) · · · cov (D41 ,D432)

cov (D42 ,D41) cov (D42 ,D42) · · · cov (D42 ,D432)
...

...
...

...
cov (D432 ,D41) cov (D432 ,D42) · · · cov (D432 ,D432)

 . (5.9)

The heat maps are shown in Figures 5.7 and 5.8 respectively.
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Figure 5.7: The visualization of covariance matrix C3 with three movements at level 3. Left to
Right: Opening jars, Walking and Running.
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Opening jar (level 4)

Visualization of covariance matrix C_4

Walking (level 4)

Visualization of covariance matrix C_4

Running (level 4)
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Figure 5.8: The visualization of covariance matrix C4 with three movements at level 4. Left to
Right: Opening jars, Walking and Running.

5.3.2 Combining levels 2, 3 and 4

Until now, for each movement, the covariance matrix is obtained at each individual
level, the next step is to combine the DWT coefficients in the DWT tree structure from
level 2 to level 4 together. An easy way to understand this is to start by combining level
2 and level 3. After combining the DWT coefficients at level 2 and level 3, Equations
5.1 and 5.2 can be written as:

(Dj
2,D

j
3) = (Dj

21
, Dj

22
, ..., Dj

28
, Dj

31
, Dj

32
, ..., Dj

216
), (5.10)

where j means j-th individual. Also using vector and matrix notations, Equations (5.10)
can be rewritten as:[

D21 D22 · · · D28 D31 D32 · · · D316

]
, (5.11)

where each element in Equations (5.11) is m-dimension vector, including the related
DWT coefficients for m-th individual in a slide window. The covariance matrix is calcu-
lated by:

C2,3 =


cov (D21 ,D21) · · · cov (D21 ,D28) cov (D21 ,D31) · · · cov (D21 ,D316)

cov (D22 ,D21) · · · cov (D22 ,D28) cov (D22 ,D31) · · · cov (D22 ,D316)
...

...
...

...
...

...
cov (D316 ,D21) · · · cov (D316 ,D28) cov (D316 ,D31) · · · cov (D316 ,D316)

 .
(5.12)

The heat map of the covariance matrix is presented in Figure 5.9. It also shows the
different patterns clearly for three different activities.
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Opening jar (level 2+3)

Visualization of covariance matrix C_2,3

Walking (level 2+3)

Visualization of covariance matrix C_2,3

Running (level 2+3)

Visualization of covariance matrix C_2,3

Figure 5.9: The visualization of covariance matrix C2,3 with three movements at combining levels
2 and 3. Left to Right: Opening jars, Walking and Running.

Similarly, from Equations (5.4), (5.5) and (5.6), we can combine all the 3 levels by:

[
D21 · · · D28 D31 · · · D316 D41 · · · D432

]
. (5.13)

The covariance matrix is given by:

C2,3,4 =


cov (D21 ,D21) · · · cov (D21 ,D31) · · · cov (D21 ,D41) · · · cov (D21 ,D432)

cov (D22 ,D21) · · · cov (D22 ,D31) · · · cov (D22 ,D41) · · · cov (D22 ,D432)
...

...
...

...
...

...
...

cov (D432 ,D21) · · · cov (D432 ,D31) · · · cov (D432 ,D41) · · · cov (D432 ,D432)

 .
(5.14)

The heat map is shown in Figure 5.10, we have the similar finding to Figure 5.9

Opening jar (level 2+3+4)

Visualization of covariance matrix C_2,3,4

Walking (level 2+3+4)

Visualization of covariance matrix C_2,3,4

Running (level 2+3+4)

Visualization of covariance matrix C_2,3,4

Figure 5.10: The visualization of covariance matrix C2,3,4 with three movements at combining
levels 2, 3 and 4. Left to Right: Opening jars, Walking and Running.

5.3.3 Calculating PC score through multivariate fPCA

So far, the special covariance structure from combining levels 2, 3 and 4 is obtained
through the DWT tree structure (see Table 5.1). Figure 5.10 presents the correlation of
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each activity. The next step is to apply multivariate fPCA (Ramsay & Silverman (2005))
and find the PCs score through the covariance structure. Multivariate fPCA is used to
reduce the dimensionality of the data by transforming the DWT coefficients at combining
levels 2, 3 and 4 into a lower dimensional space with minimal loss of information. Moreover,
Principal Components (PCs) are obtained to retain most of the variation presented at
combining levels 2, 3 and 4 from the small DWT tree structure.

For these three movements, the PC scores from multivariate fPCA can be obtained
from the covariance matrix (see Equation (5.14)); 6 PC scores (3 for first principal
component and 3 for second principal component) are calculated with three movements.
To be more specific, instead of analysing the DWT coefficients from level 2 to level 4
separately, the DWT coefficients at combining levels 2, 3 and 4 can be transformed to
2 PC scores. The DWT tree structure in each slide window in Section 5.2.1 Table 5.1
becomes:

W6 W5 Combining levels 2, 3 and 4
Scale Level 0 (Scale 6) Level 1 (Scale 5) Level 2+3+4 (Scale 4,3,2)

Frequency 1.5625hz - 3.125hz 3.125hz - 6.25hz 6.25hz - 50hz
Length 2 DWT coefficients 4 DWT coefficients 2 PC scores

Table 5.2: The special tree structure after multivariate fPCA.

We therefore use the 8 candidate variables in our classification model instead of using
the original 62 variables. The idea can be used as a general method. When the sample
size in each slide window is larger, the method is more efficient.

Until now, the most important entires in Table 5.2 are the PC1 score and PC2 score
in combining levels 2, 3 and 4. After applying multivariate fPCA, in each slide window,
W4 W3 and W2 (totally 56 points) at level 2, level 3 and level 4 are transformed to the
first 2 PC scores, which account for around 99.9% of the information. PC1 accounts for
about 90% of the total variance.

The PC scores (PC1 and PC2) through multivariate fPCA and the other variables
listed in Table 5.2, provide enough information to distinguish between these three move-
ments in each slide window. Figure 5.11 shows the PC scores of the first PC calculated for
36 slide windows for one subject, it shows clear differences with three movements. Figure
5.12 presents the scores of the second PC; it provides further information to classify those
three movements. The results calculated from the other hand and the other two subjects
are presented in Appendix 5.6; the results are similar.
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PC scores from left hand for three individuals
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Figure 5.11: The first PC absolute score with three movements in the first person’s data (left
hand).
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Figure 5.12: The second PC absolute score with three movements in the first person’s data (left
hand).

5.3.4 The potential candidate in small DWT tree structures at decom-
position level 0 and 1

It can be seen from Table 5.2 that the labels “opening jars”, “walking” and “running”
correspond to the pattern of each slide window, and there are 8 covariates extracted from
the pattern of each slide window. The 8 covariates in the classification model for each
slide window based on the small DWT tree structure are given in Table 5.3.

Level 0 (Scale 6) Level 1 (Scale 5) Level 2+3+4 (Scale 4,3 and 2)
Covariates x01, x02 x11, x12, x13 and x14 PC1 score and PC2 score

Table 5.3: The 8 covariates in each slide window

Since the value of wavelet coefficients will be both positive and negative, analysis is
not particularly convenient. One method is to carry out the absolute transform of each
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point at levels 0 and 1 (this idea is similar to the scalar featrues SAD in Section 3.2.1,
Chapter 3), the details of absolute transform at levels 0 and 1 can be found in Appendix
5.6. After above procedure, the number of covariates reduces from 8 (see Table 5.3) to 4
(see Table 5.4) which can save computing resources in the final model. x0 and x1 have
a similar meaning to the features discussed in Section 3.2.1, Chapter 3, providing a
summary information at level 0 and level 1. The new covariates in each slide window from
Table 5.3 become:

Level 0 (Scale 6) Level 1 (Scale 5) Level 2+3+4 (Scale 4,3 and 2)
Covariates x0 x1 PC1 score and PC2 score

Table 5.4: The 4 covariates in each slide window

Previously, the covariates PC1 score and PC2 score were shown in Section 5.3.3.
The covariates x0 and x1 for both hands are given in Figures 5.28 and 5.29 (left hand),
Figures 5.30 and 5.31 (right hand), which can be found in Appendix 5.6. They may
provide further information for the classification of those three activities. More specifically,
the x0 and x1 have 3 different curves which may present the properties of 3 activities in
different slide windows.

5.4 Classification based on the small DWT tree structure
from slide window

Preece et al. (2009) extract the scalar features through the DWT for classification of
dynamic activities from the designed accelerometer data. However, the scalar features are
a kind of summary statistics information, which ignore the detailed information from the
coefficients of whole DWT tree structures. We now focus on the pattern of small DWT
tree structure in each slide window. Four covariates (Table 5.4) can be extracted from
them through the methods which are discussed in Sections 5.3.3 and 5.3.4. Using this
more detailed information to evaluate the performance of these 4 covariates in the slide
windows, we employed three classification models by using these 4 covariates. In other
words, if the three classification models distinguish the three designed movements well, it
means that we refine the “appropriate” information from the small DWT tree structure.

The three classification models are as follows: (i) Gaussian process classifier (GPC)
(Ramsay & Silverman, 2005) by using function gausspr with Radial Basis kernel function
and logit link function in R package kernlab; (ii) Support Vector Machine (SVM) through
the function svm in R package e1071 with Radial Basis kernel function; (iii) Random
forest (RF) with R package randomForest.

Now we have 3 classes of movements: opening jars, walking and running, which
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correspond to labels z=1, z=2 and z=3 for each slide window; a total of 4 covariates x0,
x1, PC1 score and PC2 score. The confusion matrix, shown in Table 5.5, is used to
measure the performance of the classification model. It contains the predicted class in
each row and each column represents the actual class. So the confusion matrix with 3
classes is as follows:

Predict = Walking Predict =Opening Predict = Running
Label = Walking a b c
Label = Opening d e f
Label = Jumping g h i

Table 5.5: The confusion matrix with 3 movements.

We use 3 main indices of 3 classes, opening jars, walking and running, as followed:

RecallW =
a

a+ b+ c
,

PrecisionW =
a

a+ d+ g
,

F-scoreW =
2 ∗ RecallOPrecisionW

RecallW + PrecisionW
,

(5.15)

where W represents the activity of walking. Similarly, we can define the measures for
opening jars:

RecallO =
e

d+ e+ f
,

PrecisionO =
e

b+ e+ h
,

F-scoreO =
2 ∗ RecallOPrecisionO

RecallO + PrecisionO
,

(5.16)

and for running:

RecallR =
i

g + h+ i
,

PrecisionR =
i

c+ f + i
,

F-scoreR =
2 ∗ RecallRPrecisionR

RecallR + PrecisionR
.

(5.17)

5.4.1 The performance of the three classification models by using 4 co-
variates from small DWT tree structure

The results of this classification are given for the left hand and right hand separately,
and the performance is investigated by using leave-one-patient-out cross validation in three
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classification models. The comparison of recall, precision and F-score for different methods
is given in Table 5.6. Other details are shown from Figure 5.32 to Figure 5.37 and from
Table 5.7 to Table 5.18, which can be found in Appendix 5.6.

GPC
Left hand Right hand

Recall Precision F-score Recall Precision F-score

Label = Walking 0.960 0.992 0.976 0.959 0.983 0.971
Label = Opening 0.992 0.962 0.977 0.984 0.960 0.972
Label = Running 1 1 1 1 1 1

SVM
Left hand Right hand

Recall Precision F-score Recall Precision F-score

Label = Walking 0.937 0.992 0.963 0.911 1 0.953
Label = Opening 0.992 0.940 0.965 1 0.918 0.957
Label = Running 1 1 1 1 1 1

RF
Left hand Right hand

Recall Precision F-score Recall Precision F-score

Label = Walking 1 0.992 0.996 1 1 1
Label = Opening 0.992 1 0.996 1 1 1
Label = Running 1 1 1 1 1 1

Table 5.6: The Recall, Precision and F-score for the 3 movements in both hands by using Gaussian
process classifier (GPC), Support Vector Machine (SVM) and Random forest (RF); each slide
window has length 128 and uses the designed data.

The Random forest model has the best performance with these three classification
methods, followed by the Gaussian process classifier and Support Vector Machine models.
The classification indices (Recall, Precision and F-score), given in Table 5.6, are all over
90% for both hands, which means the three classification models show the good perfor-
mance when dealing with the classification of the three movements. In other words, the
useful information is extracted from the pattern of small DWT tree structure in slide
window based on the time and frequency-domains.

5.4.2 The sensitiveness of selecting the length of slide window

The results shown in Section 5.4.1 are based on the slide window with a length
128 points with the designed data (totally 62 DWT coefficients from level 0 to level 4).
The sensitivity of the number of DWT coefficients are used in each slide window needs
to be investigated. Besides selecting the slide window with length 128 (correspond to
about 2 seconds’ data), the comparison for classification indices (Recall, Precision and F-
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score), from three classification models based on the length of 64 (corresponding to about
1 second’s data) to 192 (corresponding to about 3 seconds’ data), are given as follows:

Figure 5.13: The recalls, precisions and F-scores for three classification methods in three move-
ments. Note that the left and right stand for the left hand and the right hand.

In summary, Figure 5.13 shows that the classification indices (Recall, Precision and
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F-score) are not sensitive for the number of wavelet coefficients are used in each slide
window. The details of confusion matrix and the classification indices (Recall, Precision
and F-score), based on the length of 64 (corresponding to about 1 second’s data) and
192 (corresponding to about 3 seconds’ data), are given from Table 5.19 to Table 5.22
in Appendix 5.6. In other words, the method in this chapter can be used as a general
method. Despite the large sample size in the slide window gives relative good classification
results based on the designed data, but we still recommend choosing the proper sample
size since we need to deal with the relatively complex free-living data. To be more specific,
unlike the designed data, the large sample size in the slide window corresponds to a pattern
with relative long period in the free-living data may contain too much movements, this
may reduce the efficiency of the algorithm.

5.5 Conclusion

Using design data from a wrist-worn sensor, AX3, the slide window and multivariate
fPCA approaches are investigated and the useful information from the pattern of small
DWT tree structure are analysed. We use them to carry out the classification by using
three classification models to distinguish three movements, opening jars, walking and
running. The three classification model, based on the extracted new covariates (PC1
score, PC2 score, x1 and x0) from each small DWT tree structure, all present good
results. However, the comparison of different options for choosing the sample size in slide
window are not sensitive.

Although the useful information is extracted with small sizes for both hand, and it
performs well by investigating three classification models for three movements, we build
the classification model for each hand separately. We may also use the data from both
hands. This method is different to scalar features in Chapter 3, focusing on the pattern
from each small DWT tree structure. This is an alternative approach in looking for the
new features, which will be used for the stroke rehabilitation assessment in free-living
environments. This problem will be discussed in the next chapter.

Related studies involving for classification or clustering based on the accelerometer
data (collected by cheap wearable device) has attracted a lot of researchers’ interest in
both statistics and computer science. Siirtola et al. (2009) present a method for classify-
ing sport activities. The simple features (e.g., variance and mean) from clustering data
which imply that the data after clustering can provide some valuable information for the
different movments. Yin & Huang (2015) focus on fault detection and isolation for vehicle
suspension systems through confirming the number of clusters based on principal compo-
nent analysis; Van Kuppevelt et al. (2018) present a data-driven approach for clustering
the accelerometer data also using principal component analysis. Both of them present
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that the principal components may play an enssential role to reduce the data set in ac-
celerometer data. Preece et al. (2009) present a method to extract the features based on
wavelet-domain to classify activities. Instead of applying the accelerometer in time-domain
only, it is an alternative approach that gives an analysis of DWT coefficients in both time
and frequency-domains from the accelerometer data. Nguyen et al. (2007) investigate un-
supervised pattern recognition approaches to cluster free-living activities, which suggests
that clustering the pattern’s information from accelerometer data is a potential approach
in the free-living environment. Tang et al. (2020) propose a method for clustering and
extracting new features to build the predictive model for stroke rehabilitation. Combining
it with previous methods, could be useful in clustering and extracting the features from
the pattern based on the wavelet domain through the principal component analysis, then
using these clustering features to measure the recovery level for the stroke patients. The
methods proposed in this chapter have shown good potential for solving similar problems
involving bigger data.

Here is the supplementary instruction that why not use the NIG-MT in this chapter.
The data reduction (NIG-MT) aims to remove the noise and ‘quiet period’ from the
accelerometer data at the computation level. After the data reduction, we can obtain
a smaller size of the data (comparing with the raw data, it reduces the size by three
quarters). The small size of the data (after removing the noise and ‘quiet period’) will
make it easier to do further analysis in Chapter 6. We should notice that the designed
data in this chapter is just 1 min (See Section 5.1). To be more specific, compared to the
free-living data, the designed data has relatively small data size and designs for the certain
movements; so we don’t need to apply the data reduction. However, the free-living data
for Chapter 6 (the real free-living data) records for 3 full days which contains too many
unknown actions, so it is complex and it is necessary to apply the data reduction. After
we remove the ‘noise’ and ‘still periods’, the DWT tree structure is easier to analyze.
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5.6 Appendix

PC score from left hand in three individuals
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Figure 5.14: The first PC absolute score for the three movements in the first person’s data (left
hand).
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Figure 5.15: The first PC absolute score for the three movements in the second person’s data (left
hand).
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Figure 5.16: The first PC absolute score for the three movements in the third person’s data (left
hand).
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Figure 5.17: The second PC absolute score for the three movements in the first person’s data (left
hand).
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Figure 5.18: The second PC absolute score for the three movements in the second person’s data
(left hand).
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Figure 5.19: The second PC absolute score for the three movements in the third person’s data (left
hand).
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PC score from right hand for three individuals
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Figure 5.20: The first PC absolute score for the three movements in the first person’s data (right
hand).
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Figure 5.21: The first PC absolute score for the three movements in the second person’s data (right
hand).
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Figure 5.22: The first PC absolute score for the three movements in the third person’s data (right
hand).
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Figure 5.23: The second PC absolute score for the three movements in the first person’s data (right
hand).
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Figure 5.24: The second PC absolute score for the three movements in the second person’s data
(right hand).
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Figure 5.25: The second PC absolute score for the three movements in the third person’s data
(right hand).
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Chapter 5. Classification based on a slide window approach and multivariate fPCA

The absolute transform at levels 0 and 1

Now we take the covariates at level 0 as an example and the absolute transform of
covariates x01 for three movements in different slide windows is shown in Figure 5.26.
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Figure 5.26: The absolute transform of covariate x01 at level 0.

Similarly, we can perform the absolute transform for covariates x02, x11, x12, x13
and x14. Now the slide window at the level 0 and level 1 contains 2 and 4 covariates
respectively. However, from Figure 5.26, the covariate x01 for three movements is so
similar, that it is hard to distinguish between the three movements.

Now let x0 = (x01 + x02)/2 and x1 = (x10 + x12 + x13 + x14)/4 be new covariates at
level 0 and level 1. After combining x01, x02 at level 0 and x11, x12, x13, x14 at level 1
respectively, Figure 5.27 shows the three movements which can be distinguished efficiently
by new covariates x0 and x1 for each individual.
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Figure 5.27: The absolute value of covariates x0 and x1 at level 0 and level 1.
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The x0 and x1 from three movements in three people’s data
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Figure 5.28: x0 of three person’s data with three movements (left hand).
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Figure 5.29: x1 of three person’s data with three movements (left hand).
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Figure 5.30: x0 of three person’s data with three movements (right hand).
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Figure 5.31: x1 of three person’s data with three movements (right hand).
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Chapter 5. Classification based on a slide window approach and multivariate fPCA

Gaussian process classifier for the left hand
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Figure 5.32: Prediction against real value by using leave-one-patient-out cross validation in the
left hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Gaussian process classifier.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 121 5 0
Label = Opening 1 125 0
Label = Running 0 0 126

Table 5.7: The confusion matrix for 3 movements in the left hand by using Gaussian process
classifier.

Recall Precision F-score
Label = Walking 0.9603175 0.9918033 0.9758065
Label = Opening 0.9920635 0.9615385 0.9765625
Label = Running 1 1 1

Table 5.8: The Recall, Precision and F-score for the 3 movements in the left hand by using Gaussian
process classifier.
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Gaussian process classifier for the right hand
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Figure 5.33: Prediction against real value by using leave-one-patient-out cross validation in the
right hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Gaussian process classifier.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 118 5 0
Label = Opening 2 121 0
Label = Running 0 0 123

Table 5.9: The confusion matrix for 3 movements in the right hand by using Gaussian process
classifier.

Recall Precision F-score
Label = Walking 0.9593496 0.9833333 0.9711934
Label = Opening 0.9837398 0.9603175 0.9718876
Label = Running 1 1 1

Table 5.10: The Recall, Precision and F-score for the 3 movements in the right hand by using
Gaussian process classifier.
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Support Vector Machine for the left hand
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Figure 5.34: Prediction against real value by using leave-one-patient-out cross validation in the
left hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Support Vector Machine.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 118 8 0
Label = Opening 1 125 0
Label = Running 0 0 126

Table 5.11: The confusion matrix for 3 movements in the left hand by using Support Vector
Machine.

Recall Precision F-score
Label = Walking 0.9365079 0.9915966 0.9632653
Label = Opening 0.9920635 0.9398496 0.965251
Label = Running 1 1 1

Table 5.12: The Recall, Precision and F-score for the 3 movements in the left hand by using
Support Vector Machine.
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Support Vector Machine for the right hand
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Figure 5.35: Prediction against real value by using leave-one-patient-out cross validation in the
right hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Support Vector Machine.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 112 11 0
Label = Opening 0 123 0
Label = Running 0 0 123

Table 5.13: The confusion matrix for 3 movements in the right hand by using Support Vector
Machine.

Recall Precision F-score
Label = Walking 0.9105691 1 0.9531915
Label = Opening 1 0.9179104 0.9571984
Label = Running 1 1 1

Table 5.14: The Recall, Precision and F-score for the 3 movements in the right hand by using
Support Vector Machine.
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Random forest for the left hand
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Figure 5.36: Prediction against real value by using leave-one-patient-out cross validation in the
left hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Random forest.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 126 0 0
Label = Opening 1 125 0
Label = Running 0 0 126

Table 5.15: The confusion matrix for 3 movements in the left hand by using Random forest.

Recall Precision F-score
Label = Walking 1 0.992126 0.9960474
Label = Opening 0.9920635 1 0.9960159
Label = Running 1 1 1

Table 5.16: The Recall, Precision and F-score for the 3 movements in the left hand by using
Random forest.
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Random forest for the right hand
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Figure 5.37: Prediction against real value by using leave-one-patient-out cross validation in the
right hand. Note that z=1 is the movement of walking, z=2 is the movement of opening jars and
z=3 is the movement of running by using Random forest.

Predict = Walking Predict = Opening Predict = Running
Label = Walking 123 0 0
Label = Opening 0 123 0
Label = Running 0 0 123

Table 5.17: The confusion matrix for 3 movements in the right hand by using Random forest.

Recall Precision F-score
Label = Walking 1 1 1
Label = Opening 1 1 1
Label = Running 1 1 1

Table 5.18: The Recall, Precision and F-score for the 3 movements in the right hand by using
Random forest.
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Length selection of 64 in each slide window from the desinged data

The confusion matrix

Left hand (GPC) Predict = Walking Predict = Opening Predict = Running
Label = Walking 232 20 0
Label = Opening 5 247 0
Label = Running 2 0 250

Right hand (GPC) Predict = Walking Predict = Opening Predict = Running
Label = Walking 226 20 0
Label = Opening 6 240 0
Label = Running 5 0 241

Left hand (SVM) Predict = Walking Predict = Opening Predict = Running
Label = Walking 225 27 0
Label = Opening 4 248 0
Label = Running 4 0 248

Right hand (SVM) Predict = Walking Predict = Opening Predict = Running
Label = Walking 212 34 0
Label = Opening 5 241 0
Label = Running 4 0 242

Left hand (RF) Predict = Walking Predict = Opening Predict = Running
Label = Walking 244 6 2
Label = Opening 5 247 0
Label = Running 1 0 251

Right hand (RF) Predict = Walking Predict = Opening Predict = Running
Label = Walking 241 4 1
Label = Opening 3 243 0
Label = Running 1 0 245

Table 5.19: The confusion matrix for 3 movements in both hands by using Gaussian process
classifier (GPC), Support Vector Machine (SVM) and Random forest (RF); each slide window has
length 64 and uses the designed data.
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The classification indices (Recall, Precision and F-score)

Left hand (GPC) Recall Precision F-score
Label = Walking 0.921 0.971 0.945
Label = Opening 0.980 0.925 0.952
Label = Running 0.992 1 0.996

Right hand (GPC) Recall Precision F-score
Label = Walking 0.919 0.954 0.936
Label = Opening 0.976 0.923 0.949
Label = Running 0.980 1 0.990

Left hand (SVM) Recall Precision F-score
Label = Walking 0.893 0.966 0.928
Label = Opening 0.984 0.902 0.941
Label = Running 0.984 1 0.992

Right hand (SVM) Recall Precision F-score
Label = Walking 0.862 0.959 0.9080
Label = Opening 0.980 0.876 0.925
Label = Running 0.984 1 0.992

Left hand (RF) Recall Precision F-score
Label = Walking 0.968 0.976 0.972
Label = Opening 0.980 0.976 0.978
Label = Running 0.996 0.992 0.994

Right hand (RF) Recall Precision F-score
Label = Walking 0.980 0.984 0.982
Label = Opening 0.988 0.984 0.986
Label = Running 0.996 0.996 0.996

Table 5.20: The Recall, Precision and F-score for the 3 movements in both hands by using Gaussian
process classifier (GPC), Support Vector Machine (SVM) and Random forest (RF); each slide
window has length 64 and uses the designed data.
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Length selection of 192 in each slide window from the desinged data

The confusion matrix

Left hand (GPC) Predict = Walking Predict = Opening Predict = Running
Label = Walking 83 1 0
Label = Opening 4 80 0
Label = Running 0 0 84

Right hand (GPC) Predict = Walking Predict = Opening Predict = Running
Label = Walking 79 2 0
Label = Opening 3 78 0
Label = Running 0 0 81

Left hand (SVM) Predict = Walking Predict = Opening Predict = Running
Label = Walking 83 1 0
Label = Opening 2 82 0
Label = Running 0 0 84

Right hand (SVM) Predict = Walking Predict = Opening Predict = Running
Label = Walking 73 8 0
Label = Opening 2 79 0
Label = Running 0 0 81

Left hand (RF) Predict = Walking Predict = Opening Predict = Running
Label = Walking 83 1 0
Label = Opening 1 83 0
Label = Running 0 0 84

Right hand (RF) Predict = Walking Predict = Opening Predict = Running
Label = Walking 81 0 0
Label = Opening 0 81 0
Label = Running 0 0 81

Table 5.21: The confusion matrix for 3 movements in both hands by using Gaussian process
classifier (GPC), Support Vector Machine (SVM) and Random forest (RF); each slide window has
length 192 and uses the designed data.
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The classification indices (Recall, Precision and F-score)

Left hand (GPC) Recall Precision F-score
Label = Walking 0.9880952 0.954023 0.9707602
Label = Opening 0.952381 0.9876543 0.969697
Label = Running 1 1 1

Right hand (GPC) Recall Precision F-score
Label = Walking 0.9753086 0.9634146 0.9693252
Label = Opening 0.962963 0.975 0.9689441
Label = Running 1 1 1

Left hand (SVM) Recall Precision F-score
Label = Walking 0.9880952 0.9764706 0.9822485
Label = Opening 0.9761905 0.9879518 0.9820359
Label = Running 1 1 1

Right hand (SVM) Recall Precision F-score
Label = Walking 0.9012346 0.9733333 0.9358974
Label = Opening 0.9753086 0.908046 0.9404762
Label = Running 1 1 1

Left hand (RF) Recall Precision F-score
Label = Walking 0.9880952 0.9880952 0.9880952
Label = Opening 0.9880952 0.9880952 0.9880952
Label = Running 1 1 1

Right hand (RF) Recall Precision F-score
Label = Walking 1 1 1
Label = Opening 1 1 1
Label = Running 1 1 1

Table 5.22: The Recall, Precision and F-score for the 3 movements in both hands by using Gaussian
process classifier (GPC), Support Vector Machine (SVM) and Random forest (RF); each slide
window has length 192 and uses the designed data.
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Chapter 6

Stroke rehabilitation assessment
through the clustering features

In Chapters 4 and 5, the DWT tree structure was used in the crucial task of data
reduction and dimension reduction. In other words, the posterior marginal probabilities
Pr(Sj,k = 1|D) can be applied to remove the “noise” and “still period” data through the
whole DWT tree structures. The whole DWT tree structure can be divided into smaller
tree structures through the slide window approach and the multivariate fPCA can also be
used to transform the DWT coefficients to the PC scores from decomposition level 2 to
level 4 through the small DWT tree structures. In this chapter, we investigate the stroke
patients’ accelerometer data, the free-living data, for the stroke rehabilitation assessment.
This combines the ideas from Chapters 4 and 5, based on the small DWT coefficients
tree structure from free living environments.

To be more specific, we focus on the DWT coefficients which contain the information
in both time and frequency-domains. It is better to analyze the patterns within the whole
DWT coefficients tree structure if we want to give a more precise analysis in both time
and frequency-domains. However, it is hard to analyze the DWT coefficients directly
due to the special tree structure and large sample size from the free-living data. To solve
this problem, we first keep DWT coefficients without ‘noise’ and ‘still period’ through
the NIG-MT in Chapter 4. To further reduce the remaining DWT coefficients, the
useful information (new covariates) is extracted via slide window and multivariate fPCA
approaches discussed in Chapter 5.

In Section 3.2.1, Chapter 3, we discussed the idea that there are two types of
patient, i.e., “can do but doesn’t want to” and “couldn’t do but wants to”. Unfortunately,
if we analyze the data from one hand only, using the new covariates from slide window and
multivariate fPCA approaches set out in Chapter 5 for clinical assessed CAHAI scores
prediction, the results are not satisfactory. Similar to Chapter 3, the task of combining
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both hands information becomes a critical part. In this chapter, Gaussian Mixture Models
(GMM), will be applied to define the new features based on the extracted information
(new covariates) from the patterns of smallDWT tree structures. Also we further develop
a new stroke rehabilitation assessment system with these new features.

Overall, when looking for patterns within the whole DWT coefficients from the free-
living data, a new data reduction system for the DWT coefficients can be developed
via the NIG-MT, slide window and multivariate fPCA in Chapters 4 and 5. After
this, the large scale of DWT coefficients from free-living data will be transferred to a
smaller data set, which is easy to give a further more precise analysis in both time and
frequency-domains.

6.1 Background of the stroke patient’s free-living data

In this chapter, we use the same data set as Chapter 3 and describe the background
of clinical assessed CAHAI score, participants, data collection and data preprocessing were
introduced in Section 2.2, Chapter 2.

6.2 Data reduction through the NIG-MT model

Based on Section 4.4 in Chapter 4, let y(t) be a process which represents the VM
data (the signal vector magnitude of accelerometer data; see Section 2.2.3):

y(j,k,p) = (y(j,k,p)(t0), y
(j,k,p)(t1), ..., y

(j,k,p)(tT−1)),

y(j,k,np) = (y(j,k,np)(t0), y
(j,k,np)(t1), ..., y

(j,k,np)(tT−1)),

where y(j,k,p) and y(j,k,np) are observations at t = ti, i = 0, ..., T−1 among the j-th patient
at the k-th visit, j = 1, ..., n, k = 1, ..., kj , n is the total number of the patients and kj

is varied for each patient and can be up to 8, p and np denote the paralysed side and
non-paralysed side respectively for different patients.

After applying the DWT and transforming the accelerometer data to the DWT
coefficients at the 6 decomposition levels. Based on the energy loss rate ELR in Tables
4.2 and 4.3 of Section 4.5, Chapter 4 also gives an introduction of how to select the
threshold P in practice. We still select the threshold P = 0.9 in the Pr(Sj,k = 1|D)
via the NIG-MT model for the free-living data. For the j-th patient at the k-th visit,
the small DWT coefficients will be forced to be zero and a total of 2 DWT coefficient
tree structures (1 for paralysed side and 1 for non-paralysed side) will be obtained after
shrinking:
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DWTs(j,k,p) = [W
(j,k,p)
1 ,W

(j,k,p)
2 , ...,W

(j,k,p)
6 ]T,

DWTs(j,k,np) = [W
(j,k,np)
1 ,W

(j,k,np)
2 , ...,W

(j,k,np)
6 ]T.

(6.1)

where DWTs(j,k,p) and DWTs(j,k,np) are two column vectors for paralysed side and non-
paralysed side, W(j,k,p)

1 to W
(j,k,p)
6 are the DWT coefficients at 6 decomposition levels

for the j-th patient at the k-th visit in paralysed side (present) and W
(j,k,np)
1 to W

(j,k,np)
6

are the corresponding DWT coefficients in non-paralysed side.

6.2.1 Obtain the proper non-zero DWT tree structure

After obtaining the DWT tree structure in Equation (6.1), we can remove the
zero values from the DWT tree structure through data reduction. There is, however,
particular phenomenon that needs to be dealt with carefully. From Table 4.3 in Section
4.5, Chapter 4, about 80% and 40% of DWT coefficients at levels 0 and 5 respectively
are forced to be zero through the NIG-MT model, which means that the DWT tree
structure in Equation (6.1) contains more zero at the level 5 than at the level 0. If we
just remove all the zero DWT coefficients, they will not form a real tree structure (since
every node at the previous level corresponds to two nodes at the next level). Recall the
property of theDWT tree structure from Section 4.1, Chapter 4, that if the parent node
at level j is close to zero (or equal to zero), then the two children nodes will tend to be close
to zero (or equal to zero) as well at the next level j +1. Why more DWT coefficients are
shrunk to zero at the bottom DWT decomposition level by using the NIG-MT model?
To explain this particular phenomenon, the DWT coefficients, at higher levels of DWT
decomposition, correlate more closely to the high frequency domain and so more noise is
generated. Then we go back to the hyperparameters η, γ in Section 4.3, Chapter 4.
Due to the fact that the exponential decaying factor 2−j counters exactly the exponential
increase in the expected number of wavelet coefficients in higher resolution, the posterior
marginal probability Pr(Sj,k = 1|D) will be smaller at the bottom decomposition level
than it at the top and, therefore, the DWT decomposition will be shrunk more at the
bottom decomposition level.

To obtain the DWT tree structure properly, after shrinking the smaller coefficients
to be zero, instead of removing all of zero DWT coefficients from all decomposition levels,
we just remove those at the level 0 and their children nodes at following levels (from level
1 to level 5). To be more specific, if we remove the zero DWT coefficients with length n
at level 0 , the following children nodes will be removed with length 2n, 4n, 8n, 16n and
32n from level 1 to level 5 respectively. This means that we can get the proper DWT
tree structure (every node at the previous level can be corresponded to two nodes at the
next level). The proper DWT tree structure will be applied effectively and efficiently in
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the next section.

6.3 Identification of the useful information from the pattern
of small DWT tree structure

After the data reduction and the correct DWT tree structure is assembled (see Sec-
tion 6.2.1), each proper DWT tree structure will delete zero of the DWT coefficients at
the level 0 and its children nodes at the following levels (from level 1 to level 5) will also
be removed.

6.3.1 Calculate PC score through multivariate fPCA

Each proper DWT tree structure will be separated into different smaller DWT tree
structures. The information in each small DWT tree structure is given in Table 6.1.
Based on the VM data (the signal vector magnitude of accelerometer data; see Section
2.2.3), the small DWT tree structure (2 DWT coefficients at level 0) corresponds to the
accelerometer data with length 128. Note that we will try the different small DWT tree
structures (1, 3, 5 and 9 DWT coefficients at level 0) corresponding to the accelerometer
data with length 64, 192, 320 and 576; the results with different smallDWT tree structure
will be reported in Section 6.6. To be specific, we separate the accelerometer data into
different slide windows with length 128, each slide window corresponding to a small DWT
tree structure as shown in Table 6.1. Hence, each small DWT tree structure contains
the information of slide window for about two minutes.

W1 W2 W3

Scale Scale 1 (Level 5) Scale 2 (Level 4) Scale 3 (Level 3)
Length 64 32 16

W4 W5 W6

Scale Scale 4 (Level 2) Scale 5 (Level 1) Scale 6 (Level 0)
Length 8 4 2

Table 6.1: The details in small DWT tree structure.

As we discussed in Chapter 5, the 4 new covariates PC1, PC2, xo and x1 will be
obtained for each small DWT tree structure through the multivariate fPCA. Recalling
the procedure of obtaining the small DWT tree structure in Chapter 5, we separate the
VM data to slide windows in the first step, then apply the DWT and get the small tree
structure through these slide windows. In contrast, in this chapter, the whole data set from
each patient is applied by the DWT to obtain the whole DWT tree structure at first,
then reduce the whole DWT tree structure into different small DWT tree structures.
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In other words, the small DWT tree structures correspond to the slide windows in the
entire accelerometer data. In this chapter, the length of small DWT tree structures at
different decomposition levels is designed to be consistent with that of Chapter 5. The
difference is that the small DWT tree structure corresponds to the information of 1.28
seconds and 128 seconds from designed data in Chapter 5 and the free-living data in this
chapter respectively.

To be more specific, we transform the designed data to different slide windows based
on small DWT tree structure in Chapter 5. For each slide window, it contains 4 covari-
ates, x = [PC1,PC2, x0, x1], the 2 PC scores combines DWT coefficients at level 2, 3 and
4 which accounts for 99.9% of the total variance. For more details please refer to Sections
5.2, 5.3 and 5.3.4 in Chapter 5. In this chapter, after obtaining the proper DWT tree
structure from free-living data for the j-th patient at the k-th visit in Equation (6.1),
we separate it into different slide windows with 2 DWT coefficients at level 0. Then we
transform it to 16 covariates x = [PC1,PC2, ...,PC14, x0, x1]; the 14 PC scores combines
DWT coefficients at level 2, 3, 4 and 5 and this accounts for about 85% total variance.
Note that the free-living data is more complex than the designed data, despite the fact
that DWT coefficients at level 5 can be treated as ‘noise’ which is mentioned in Section
5.2.1, Chapter 5. When we deal with the free-living data in practice, it is better to also
consider the DWT coefficients at level 5. Moreover, the number of PCs extracted from
each slide window depends on the data, and we recommend that the number of PCs from
multivariate fPCA should accout for at least 80% information in practice.

As we discussed at the beginning of the chapter, since the special tree strcutre and
large sample size in the DWT coefficients, it is hard to analyze the DWT coefficients
directly. After applying the data reduction system with NIG-MT, slide windows and
multivariate fPCA for the free-living data, the total 126 DWT coefficients from each
small DWT tree structure in Table 6.1 transfrom to the 16 covariates in Table 6.2
among the free-living data.

Level 0 (Scale 6) Level 1 (Scale 5) Level 2+3+4+5 (Scale 5, 4, 3 and 2)
Covarites x0 x1 PC1, ... , PC14 scores

Table 6.2: The 16 covariates extract from free-living data in each slide window through the data
reduction system (NIG-MT + slide window + multivariate fPCA).

Bear in mind, however, that our data reduction system forces about three quarters of
DWT coefficients to zero through the NIG-MT at first. Then, based on the discussion
in Section 6.2.1, after the proper DWT tree structure is obtained, we keep about 60%

DWT coefficients in Equation (6.1) (see Table 4.3 in Section 4.5, Chapter 4). To be
more specific, about 40% of DWT coefficients are forced to zero at level 0, we therefore
remove the zero coefficients at the level 0 and their children nodes at the following levels.
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Comparing with the raw DWT coefficients from free-living data, we keep about 60%

sample size for it. Using the slide window and multivariate fPCA approches, we extract
the 16 covariates from each slide window which has in total 126 DWT coefficients. In
other words, we just keep the samples size with 16/126 (12.6%) of the remaining 60%

approximately (after obtaining the proper DWT tree structure) of the original DWT
coefficients. Hence, our data reduction system keeps about 60% × 12.6% = 7.6% of the
original size of DWT coefficients from free-living data.

For the j-th patient at the k-th visit, based on our data reduction system, the useful
information is extraced from the smallDWT tree strucutre, and the rawDWT coefficients
from free living data is transformed to:

x(w,j,k,p) = [PC1(w,j,k,p),PC2(w,j,k,p), ...,PC14(w,j,k,p), x0(w,j,k,p), x1(w,j,k,p)],

x(w,j,k,np) = [PC1(w,j,k,np),PC2(w,j,k,np), ...,PC14(w,j,k,np), x0(w,j,k,np), x1(w,j,k,np)],
(6.2)

where p and np denote the paralysed side and non-paralysed side respectively, w, j and k
represent the labels of slide windows, patients and visits.

6.4 Identify new features through Gaussian Mixture Models

Our primary goal is to build a predictive model for stroke rehabilitation assessment.
As discussed at the beginning of the chapter, since two types of stroke patients (“can do but
doesn’t want to” and “couldn’t do but wants to”) show very different habits in their daily
life (see the detailed discussion in Section 3.2.1 in Chapter 3). The task of combining
both hands information properly becomes crucial. The application of Gaussian Mixture
Models will be a tool for clustering the new data set in Equation (6.2).

6.4.1 Gaussian Mixture Models (GMM)

GMM (Bishop, 2007) is a popular clustering strategy which has been widely used due
to both theoretical and computational considerations. Using the GMM, the transformed
data from Equation (6.2) can be separated into homogeneous groups, which can capture
the information contained in the accelerometer data. After applying multivariate fPCA in
a DWT tree structure, the accelerometer data is transformed to the new data set contains
14 covariates for the patients. For convenience, Equation (6.2) can be re-written as:

x(w,j,k,l) = [PC1(w,j,k,l),PC2(w,j,k,l), ...,PC14(w,j,k,l), x0(w,j,k,l), x1(w,j,k,l)], (6.3)
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where w is the label for slide window, j and k are the labels for patients and visits, l = p, np

which corresponds to the paralysed side and non-paralysed side. Since we have, in total,
26 acute patients and 33 chronic patients and each patient has data from two hands, the
new dataset includes all the patients’ information.

GMM includes several Gaussian distribution, each is identified by Z ∈ (1, ..., N),
where N is the number of clusters of our dataset. Each component is Gaussian with: (i) a
mean µ defines its centre, (ii) a covariance Σ defines its width, (iii) a mixing probability
π which defines how big or small the component will be. In this section, we set 3 clusters
in our dataset x(i,j,k), and the GMM will be:

x(w,j,k,l) ∼ π1N(µ1, Σ1) + π2N(µ2, Σ2) + π3N(µ3, Σ3). (6.4)

Each x(w,j,k,l) will have an indicator γ(w,j,k,l) corresponding to the cluster Z ∈ (1, 2, 3).
To this end, the optimal model will be obtained based on BIC for EM (Expectation-
Maximization) initialized by hierarchical clustering for parameterized GMM (using the
function Mclust in R package mclust). The details can be checked in Fraley & Raftery
(2002), Fraley et al. (2012) and Fraley & Raftery (2007). Each component corresponds to
a type of “activeness” in the slide window.

6.4.2 New clustering features

Through the GMM, x(w,j,k,l) are allocated to 3 mixture components based on the
indicator γ(w,j,k,l) = 1, 2, 3. The information, which is merged into a single cluster, in differ-
ent slide windows is considered to be potentially from the same pattern. From Equation
(6.3), each x(w,j,k,l) contains 16 elements, 3 clusters using GMM is given in Table 6.3.

Cluster 1 Cluster 2 Cluster 3
PC1(wc1,j,k,l), PC2(wc1,j,k,l) PC1(wc2,j,k,l), PC2(wc2,j,k,l) PC1(wc3,j,k,l), PC2(wc3,j,k,l)

PC3(wc1,j,k,l), PC4(wc1,j,k,l) PC3(wc2,j,k,l), PC4(wc2,j,k,l) PC3(wc3,j,k,l), PC4(wc3,j,k,l)

PC5(wc1,j,k,l), PC6(wc1,j,k,l) PC5(wc2,j,k,l), PC6(wc2,j,k,l) PC5(wc3,j,k,l), PC6(wc3,j,k,l)

PC7(wc1,j,k,l), PC8(wc1,j,k,l) PC7(wc2,j,k,l), PC8(wc2,j,k,l) PC7(wc3,j,k,l), PC8(wc3,j,k,l)

PC9(wc1,j,k,l), PC10(wc1,j,k,l) PC9(wc2,j,k,l), PC10(wc2,j,k,l) PC9(wc3,j,k,l), PC10(wc3,j,k,l)

PC11(wc1,j,k,l), PC12(wc1,j,k,l) PC11(wc2,j,k,l), PC12(wc2,j,k,l) PC11(wc3,j,k,l), PC12(wc3,j,k,l)

PC13(wc1,j,k,l), PC14(wc1,j,k,l) PC13(wc2,j,k,l), PC14(wc2,j,k,l) PC13(wc3,j,k,l), PC14(wc3,j,k,l)

x0(wc1,j,k,l), x1(wc1,j,k,l) x0(wc2,j,k,l), x1(wc2,j,k,l) x0(wc3,j,k,l), x1(wc3,j,k,l)

Table 6.3: Three clusters by using GMM.

Similar to looking for ratios in Section 3.2.1, Chapter 3, the information of both
hands is taken into consideration. Firstly, we separate the slide window x(w,j,k,l) with
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labels of clusters c1 c2 and c3 for each patient. After that, the slide window x(w,j,k,l) of
the j-th patient at k-th visit can also be divided into paralysed side and non-paralysed
side:

PC1c1p =
∥∥PC1(wc1p)

∥∥
1
, PC1c1np =

∥∥PC1(wc1np)
∥∥
1
,

PC2c1p =
∥∥PC2(wc1p)

∥∥
1
, PC2c1np =

∥∥PC2(wc1np)
∥∥
1
,

...

PC14c1p =
∥∥PC14(wc1p)

∥∥
1
, PC14c1np =

∥∥PC14(wc1np)
∥∥
1
,

L0c1p =
∥∥x0(wc1p)

∥∥
1
, L0c1np =

∥∥x0(wc1np)
∥∥
1
,

L1c1p =
∥∥x1(wc1p)

∥∥
1
, L1c1np =

∥∥x1(wc1np)
∥∥
1
;

and

PC1c2p =
∥∥PC1(wc2p)

∥∥
1
, PC1c2np =

∥∥PC1(wc2np)
∥∥
1
,

PC2c2p =
∥∥PC2(wc2p)

∥∥
1
, PC2c2np =

∥∥PC2(wc2np)
∥∥
1
,

...

PC14c2p =
∥∥PC14(wc2p)

∥∥
1
, PC14c2np =

∥∥PC14(wc2np)
∥∥
1
,

L0c2p =
∥∥x0(wc2p)

∥∥
1
, L0c2np =

∥∥x0(wc2np)
∥∥
1
,

L1c2p =
∥∥x1(wc2p)

∥∥
1
, L1c2np =

∥∥x1(wc2np)
∥∥
1
;

and

PC1c3p =
∥∥PC1(wc3p)

∥∥
1
, PC1c3np =

∥∥PC1(wc3np)
∥∥
1
,

PC2c3p =
∥∥PC2(wc3p)

∥∥
1
, PC2c3np =

∥∥PC2(wc3np)
∥∥
1
,

...

PC14c3p =
∥∥PC14(wc3p)

∥∥
1
, PC14c3np =

∥∥PC14(wc3np)
∥∥
1
,

L0c3p =
∥∥x0(wc3p)

∥∥
1
, L0c3np =

∥∥x0(wc3np)
∥∥
1
,

L1c3p =
∥∥x1(wc3p)

∥∥
1
, L1c3np =

∥∥x1(wc3np)
∥∥
1
,

(6.5)

where wc1p, wc2p and wc3p represent the number of slide windows allocated to the clusters
c1 c2 and c3 respectively in the paralysed side of the j-th patient at k-th visit. Similarly,
wc1np, wc2np and wc3np represent the number of slide windows allocated to the clusters
c1 c2 and c3 respectively in the non-paralysed side of the j-th patient at the k-th visit.

Based on Equation (6.5), the new feature NPP in cluster 1 of the j-th patient at
the k-th visit is defined as follows:
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NPPc1
PC1 = (PC1c1np−PC1c1p )/(wc1np+ wc1p),

NPPc1
PC2 = (PC2c1np−PC2c1p )/(wc1np+ wc1p),

...

NPPc1
PC14 = (PC14c1np−PC14c1p )/(wc1np+ wc1p),

NPPc1
L0 = (L0c1np−L0c1p )/(wc1np+ wc1p),

NPPc1
L1 = (L1c1np−L1c1p )/(wc1np+ wc1p).

(6.6)

Similarly, the new feature NPP in the clusters 2 and 3 of the j-th patient at the k-th
visit can also be defined:

NPPc2
PC1 = (PC1c2np−PC1c2p )/(wc2np+ wc2p),

NPPc2
PC2 = (PC2c2np−PC2c2p )/(wc2np+ wc2p),

...

NPPc2
PC14 = (PC14c2np−PC14c2p )/(wc2np+ wc2p),

NPPc2
L0 = (L0c2np−L0c2p )/(wc2np+ wc2p),

NPPc2
L1 = (L1c2np−L1c2p )/(wc2np+ wc2p).

(6.7)

and

NPPc3
PC1 = (PC1c3np−PC1c3p )/(wc3np+ wc3p),

NPPc3
PC2 = (PC2c3np−PC2c3p )/(wc3np+ wc3p),

...

NPPc3
PC14 = (PC14c3np−PC14c3p )/(wc3np+ wc3p),

NPPc3
L0 = (L0c3np−L0c3p )/(wc3np+ wc3p),

NPPc3
L1 = (L1c3np−L1c3p )/(wc3np+ wc3p).

(6.8)

As we have discussed before, if the slide windows are clustered into the same cluster,
they will have the same pattern; the 48 new features represent the difference between the
paralysed side and non-paralysed sides of each patient. To be more specific, for the same
cluster, usually, if a patient uses his/her paralysed side frequently, the number of slide
windows of paralysed side will be close to that of non-paralysed side, it implies that the
patient has a good recovery level (i.e., a high CAHAI score). In contrast, if the number
of slide windows of paralysed side is smaller than that of non-paralysed side, which means
that the patient will have a low recovery level (i.e., a low CAHAI score).
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6.4.3 The physical explanation among the clustering features

Until now, we have 48 new features in Equations (6.6), (6.7) and (6.8), based on the
3 clusters through the GMM, all the clustering feature sets are very similar. Now we take
one set of the clustering feature (NPPz

PC7, z = 1, 2, 3 which represents the cluster label)
for example, the new features in cluster 1 are the most distinct ones and those features
in cluster 1 also correspond to the “big” movements in the slide windows (see also Figure
6.1). Thus, the features defined in Equation (6.6) indicate the ratio of performing those
“big” movements between the paralysed and non-paralysed hands. For Figure 6.2, the
value of cluster 2 is quite small, representing a “moderate” movement or activity pattern.
Finally, Figure 6.3 shows cluster 3 mainly corresponding to the “still” or carrying out
“mild” activities since the value is very close to zero. The corresponding features defined
in Equations (6.7) and (6.8) are the ratios between two hands doing “moderate” or “mild”
activities.
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Figure 6.1: The example of clustering feature NPPPC7 in cluster 1.
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Figure 6.2: The example of clustering feature NPPPC7 in cluster 2.
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Figure 6.3: The example of clustering feature NPPPC7 in cluster 3.

6.5 Predictive model

After we obtain the 48 clustering features in Section 6.4.2, these features and the
CAHAI scores from the initial visit (the medical history information) are treated as the
covariates to predict the CAHAI score for the rest visits (i.e., visit 2 - visit 8). Similar to
Chapter 3, there may exist some redundant or irrelevant features, and we use the popular
strategy LASSO (see Appendix 3.5, Chapter 3) to select the useful candidate features
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in our predictive model. In this chapter, we use the longitudinal mixed-effects model with
Gaussian process prior (LMGP) as the predictive model which was discussed in Section
3.2.2, Chapter 3.

6.5.1 Evaluation of the predictive model

As we discussed in Section 2.2, Chapter 2, the patients were split into two groups:
the acute group (26 subjects) and the chronic group (33 subjects). The two groups’
information is also shown in Figure 2.3, Chapter 2 and Figure 3.13, Chapter 3. The
LMGP with squared exponential kernel was used for conducted by both groups separately.
Note that after the candidate features are selected by LASSO, we use all the candidate
features selected by LASSO in the fixed-effects part and random-effects part consistently
(xi,j = φi,j in Equation (3.4), Section 3.2.2, Chapter 3) in the LMGP. Specifically for
each group, leave-one-patient-out cross validation(LOPO-CV) (see Section 3.3, Chapter
3) was applied. The mean RMSE values were reported in Figure 6.4 for actue and
chronic groups respectively. The mean RMSE’s with leave-one-patient-out cross validation
prediction are 5.25 and 2.96 for acute and chronic groups respectively.
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Figure 6.4: Prediction vs clinical assessed CAHAI by using leave-one-patient-out cross-validation.
Left panel: RMSE is 5.25 in acute patients. Right panel: RMSE is 2.96 in chronic patients. Note
that: the differnet colours present the different patients.

6.5.2 Model comparision

The model comparison is reported in Table 6.4 which evaluate by using leave-one-
patient-out cross validation. Similar to Chapter 3, we treat the method of Tang et
al. (2020) as the baseline for the stroke rehabilitation assessment as well. Moreover, we
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also compare the results from the proposed stroke-rehab-driven features in Chapter 3.
Furthermore, we go on to compare LMGP with support vector regression (SVR) and ran-
dom forest regression(RF) for acute/chronic patients groups based on the new clustering
features.

Models RMSE (Acute) RMSE (Chronic)

PCA + GMM + LMGP (Tang et al., 2020) 15.98 12.76
Stroke-rehab-driven + LMGP (Chapter 3) 5.75 3.12

Data reduction system + GMM + SVR (linear) 6.79 3.05
Data reduction system + GMM + SVR (rbf) 7.98 3.80

Data reduction system + GMM + RF 7.55 4.42
Data reduction system + GMM + LMGP 5.25 2.96

Table 6.4: Model comparison, note that: SVR (linear) and SVR (rbf) stands for support vector
regression by using linear kernel and radial basis respectively; RF stands for the random forest
regression.

From Table 6.4, we see that the new stroke rehabilitation assessment system (the
data reduction system + GMM + LMGP) in this chapter gave the best performance. As
we discussed in Section 3.3.2, the method of Tang et al. (2020) suffers from the inadequate
annotations (unknown movements behind the data) and just use 1% of the training data,
which leads to the unsatisfactory results in the LOPO-CV settings. For our new stroke
rehabilitation assessment system, based on the wavelet-domain, the useful information is
extracted from the pattern of each small DWT tree structure through our data reduction
system. In other words, the raw signal is transformed to other types of format (14PCs, x0
and x1) which contains the information from both time and frequency-domains. Hence,
we can see new stroke rehabilitation assessment system based on the clustering features
with a much lower RMSE than the state-of-the-art data-driven approach (Tang et al.,
2020). Compared to the stroke rehabilitation assessment system in Chapter 3, the error
present in this chapter is about 0.5 lower than that before especially in the acute group.
Bear in mind, we just apply 7.6% of the original size of DWT coefficients from free-
living data, and the errors still drop by about 0.5 than when we apply the original size
of DWT coefficients in Chapter 3. Based on the data reduction system and GMM,
comparing with the performance of LMGP and other methods (linear SVR, non-linear
baselines for SVR(rbf) and RF), it also shows that the LMGP can further model the
longitudinal mixed-effects, making the system adaptive to different subjects/time-slots,
with the lowest errors.

Moreover, this chapter provides a proper way to analyse the details within the whole
DWT tree struture. After the data reduction system, instead of giving an analysis from
coefficient to coefficient through both time and frequency-domains, we therefore give an
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analysis for the information extracted from pattern to pattern in different small DWT
tree structures. Most importantly, based on the small DWT tree structure which can be
found in Table 6.1, we only keep no more than 10% of the orignial DWT coefficients
after data reduction system. Since the patterns were designed by the size of small DWT
tree structure (how many DWT coefficients are included), we will investigate the results
in LMGP with the different sizes of small DWT tree structures in the next section.

6.6 The sensitivity of selecting different sizes of small DWT
tree strucutres

From the previous sections in this chapter, based on the whole DWT tree structure
from the free-living data, we first try to select the small DWT tree structure with 2
DWT coefficients at level 0 which can be found in Table 6.1. Using the approaches of
slide window and multivariate fPCA, we aim to refine the useful information from the
pattern of each slide window. In other words, the pattern can be designed by the length
of slide window, if the ‘proper’ pattern is obtained, it will play an essential role in our
final LMGP model. Hence, we investigate the sensitivity of the choice of how many DWT
coefficients should be included in each small DWT tree structure. The five types of small
tree structures which contain different numbers of DWT coefficients can be found in
Table 6.5.

W1 W2 W3

Scale Scale 1 (Level 5) Scale 2 (Level 4) Scale 3 (Level 3)
Length type 1 32 16 8
Length type 2 64 32 16
Length type 3 96 48 24
Length type 4 160 80 40
Length type 5 288 144 72

W4 W5 W6

Scale Scale 4 (Level 2) Scale 5 (Level 1) Scale 6 (Level 0)
Length type 1 4 2 1
Length type 2 8 4 2
Length type 3 12 6 3
Length type 4 20 10 5
Length type 5 36 18 9

Table 6.5: The five types of small DWT tree structure.

From the Table 6.5, the smallDWT tree structure from type 1 to type 5 corresponds
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to the original length from 64, 128, 192, 320 and 576 respectively for free-living data
(about 1 minute, 2 minutes, 3 minutes, 5 minutes and 9 miniutes for the free-living data).
Moreover, each smallDWT tree structure from type 1 to type 5 contains a total of 63, 126,
189, 315 and 567 DWT coefficients respectively from level 0 to level 5. As we discussed in
Section 6.3.1, after the proper DWT tree structure is obtained through the NIG-MT,
we keep about 60% sample size from the original DWT coefficients from free-living data.
Then the slide window and multivariate fPCA approches are applied by using different
types of small DWT tree structure. The small DWT tree structure from type 1 to type
5 transfroms to 16 variables (14 PCs, x0 and x1) in each slide window, which means that
we just keep about 16/63, 16/126, 16/189, 16/315 and 16/567 of the sample size in the
remaining 60% sample size of the orignalDWT coefficients. Hence, for our data reduction
system (NIG-MT, slide window and multivariate fPCA) through the 5 types of small
DWT tree structure, we keep about 15.238%, 7.619%, 5.079%, 3.048% and 1.693% of
original DWT coefficients from the free-living data. The errors among 5 types of small
DWT tree structure in LMGP by using LOPO-CV are reported in Table 6.6.

RMSE type 1 type 2 type 3 type 4 type 5
Acute group 5.19 5.25 6.09 5.12 5.63
Chronic group 2.83 2.96 3.04 3.05 3.03

Table 6.6: The RMSEs correspond to the 5 types of small DWT tree structures in both acute and
chronic groups.

From Table 6.6, the variation of errors among these 5 different small DWT tree
structures are not sensitive in both acute and chronic groups. Although the type 4 and
type 1 of small DWT tree structures have the lowest error in acute and chronic group
respectively, the difference is ignorable.

6.7 Limitation

In this chapter, the acceptable and ‘relatively good’ results with very small sample size
are obtained via the data reduction system, GMM and LMGP. However, the limitation
is to use the 1-second wise VM data (after transformation, see Section 2.2.3, Chapter
2 ). Even though the sample size can be reduced when using 1-second wise VM data,
it results in the loss of detailed information to some extent for the original accelerometer
data. Hence, even when we choose the smallest smallDWT tree structure (the level 0 just
contains 1 DWT coefficient), the pattern still corresponds to 64 seconds (about 1 minute)
in each slide window. In other words, the stroke patients can finish multiple movements
during this 1 minute’s period, so we just simply set the 3 clusters in the GMM; this is the
reason why the physical explanation of clustering features just roughly allocating to “big
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movements”, “moderate activity” and “still or mild activites” in Section 6.4.3. Instead of
using the VM data (after transfrom), we will investigate the raw VM data (100 points for
each second) in future; it will provide the patterns with more narrow slide window (e.g., 1
second or 2 seconds) based on small DWT tree structure, then the setting of clusters can
be large, e.g., more than 10, so that more explanation of specific activities (e.g., running,
walking and so on) can be given. Similarly, going back to the variation of RMSEs among
different small DWT tree structure in Section 6.6, if applying the VM data (not the
1-second wise format) in future, we may find more powerful and stable patterns from the
narrow slide window in the time-domain, and we suppose that it will reduce the RMSEs
further.

6.8 Conclusion

Unlike the designed data, the free-living accelerometer data from stroke patients has a
much more complex structure. It is a challenging problem for statisticians and researchers
in other areas. This chapter starts from the data reduction and, after applying DWT,
the accelerometer data is transformed to the DWT coefficients. Instead of focusing on
the scalar features (summary statistics information) for the wavlet-domain, we develop
a data reduction system (NIG-MT, slide window and multivariate fPCA) based on the
patterns within DWT coefficients in the time and frequency-domains. In other words,
through the NIG-MT based on the DWT tree structure, the zero DWT coefficients and
their children nodes have been shrunk at the level 0. Then the DWT coefficients can be
separated into different proper small DWT tree structures which correspond to the slide
windows in the accelerometer data. After applying the multivariate fPCA, the useful
information from the pattern of small DWT tree structure can be extracted and further
transformed to the smaller data set and, after applying the GMM, 48 new features in
3 clusters have been obtained. Then, we use the new features to measure the recovery
levels among acute and chronic patients and the results are encouraging. We also find
that the data reduction system has a good performance when reducing the sample size
and extracting the useful information from the DWT coefficients in the wavelet domain.
In our further study, the limitation as we discussed in Section 6.7, is based on the rawVM
data, we will investigate whether we need to use a mixture model with more components
and also investigate how each mixture component is associated with different types of
“activity”. The details will be discussed in the next chapter.
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Conclusion and further work

In this chapter, the overall conclusion will be given in Section 7.1 , and further work
will be outlined in Section 7.2.

7.1 Conclusions and contributions

Using the discrete wavelet transform (DWT), the one-dimensional data was trans-
formed to the two-dimensional DWT coefficients, which enables a more refined data
analysis based on the wavelet-domain. Once the data was transformed to the DWT co-
efficients, a DWT tree structure could be found. It presented two properties: (i) The
adjacent coefficients from the horizontal direction corresponded to time-domain, while the
adjacent coefficients from vertical direction related to the frequency-domain. Especially for
the data which contains human’s movement, given an analysis in DWT tree structure, we
not only investigated the data’s nature with changing time, but also captured the detailed
features with the changing frequency of the data. (ii) The value of two children DWT
coefficients relate to its parent DWT coefficient at the previous decomposition level. If
the parent node was far from zero, its two children nodes were tend to non-zero as well.
It implied that the DWT tree structure in the adjacent decomposition level represented
a strong correlation from the top to the bottom.

Based on the DWT tree structure, the Normal Inverse-Gamma Markov tree (NIG-
MT) model provided a special posterior marginal probability Pr(Sj,k = 1|D) in a hidden
state. It gave an indication as to how to decide which DWT coefficients tended to be
“noise” or “still” and could be shrunk them to zero. After the shrinking process, DWT
coefficients were shrunk efficiently and properly in both the time and frequency-domains.
Furthermore, the whole DWT tree structure from the entire data could be separated
into different small DWT tree structures. From the aspect of time-domain, the small
DWT tree structure corresponded to specific pattern in the accelerometer data. When
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used in the analysis of the patterns within the accelerometer data, it provided more in-
formation concernning the movement data, especially with the challenging analysis of the
free-living accelerometer data. In addition, for each small DWT tree structure, the multi-
variate functional principal component analysis (fPCA) could be applied to both time and
frequency-domains as well. As we discussed previously, the DWT coefficients displayed
a speical tree structure with the large data size, this makes direct analysis more difficult.
The multivariate fPCA combined the DWT coefficients at several decomposition levels
and extracting the useful information. In practice, the DWT tree structure at bottom
decomposition levels was transformed to PCs since it contains a large number of DWT
coefficients.

Through the Gaussian Mixture Models (GMM), the information from each small
DWT tree structure was allocated to several clusters which presented more special cluster
information. Finally, three classification models (GPC, SVM and RF) were applied in
small DWT tree structure’s information, to classify the different activities based on the
designed data; it also shows that the methods of slide window and multivariate fPCA can
be used to extract the useful information for the pattern based on the DWT coefficients
in the acclerometer data.

In this thesis, there are two main features (wavelet features and clustering features)
tailored for stroke patients: (i) Compared to the previous commonly used wavelet features,
we define two kinds of new scalar features (PNP 1 and PNP 2; see Section 3.2.1) from
DWT coefficients, both of which show good performance in both the linear fixed-effected
model and the longitudinal mixed-effects model with a GP prior. (ii) The clustering
features NPP (from small DWT tree structures by using NIG-MT, slide window,
multivariate fPCA and GMM; see Section 6.4.2) show good performance as well in our
longitudinal mixed-effects model for CAHAI prediction.

A data reduction sysytem with NIG-MT, slide window and multivariate fPCA has
been developed, extracts the useful information for the DWT tree structure from the
accelerometer data; it also reduces the sample size of DWT coefficients dramatically
through the wavelet-domain. After applying the data reduction system, the extraction of
useful information from wavelet-domain plays an essential role for the stroke rehabilitation
assessment in Chapter 6.

The discussion in this thesis is limited to use the 1 second-wise VM data in Chapter
6, but there should be no significant difficulty in extending the methods to raw VM data
and to address other related problems. The methods, based on the DWT tree structure,
theNIG-MT model, the slide window, and the multivariate fPCA together withGMM,
provide an approach for data reduction and regression modelling for big data with complex
structure.
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7.2 Further work

The extension of further work in this thesis can be separated into four parts:
(i) Chapter 5, instead of using fPCA, could develop goal-oriented data reduction

method, e.g., functional partial least squares regression.
(ii) As we discussed in Chapter 6, the mixture model (Bishop, 2007) will be further

investigated; this includes more than 10 mixture components based on a large data set
including more patients. Afterwards, instead of giving an explanation of mixture com-
ponents with “big movements”, “moderate activity” and “still or mild activites”, we will
pay more attention to the number of specific types of “activeness” related to each mixture
component. This may be used to identify most of the activities in daily life, a “hot” topic
in data science.

(iii) Clustering model. This is a more challenging problem but is much more useful in
practice. We can then assign the patients automatically to different clusters. The method
can be extended to address many similar but difficult problems.

(iv) Going back to the 2-dimensional DWT tree structure, it is very similar to the
2-D image in some ways. Chan et al. (2008) present a multiscale algorithm to estimate
the disparity between a pair of images; we can further investigate the slices of DWT tree
structure in an “image” way to seek new features for patients’ data.
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R codes

The R codes presented in this part relate to the NIG-MT in Chapter 4. Note that
the codes are not being optimised.

The R codes for NIG-MT (source code)

#function for DWTbayesian
## function for posteroir transition matrix
transMatrix_jk <- function(j,k){
transM <- rep()
jj <- j
if(jj==1){
transM <- matrix(c(rho_00_jlevel (1)*( phi_1k_s0[k]/ ksai_1k_s0[k]),

rho_10_jlevel (1)*( phi_1k_s0[k]/ ksai_1k_s1[k]),rho_01_jlevel (1)*(
phi_1k_s1[k]/ ksai_1k_s0[k]),rho_11_jlevel (1)*( phi_1k_s1[k]/
ksai_1k_s1[k])) ,2)

}else{if(jj==2){
transM <- matrix(c(rho_00_jlevel (2)*( phi_2k_s0[k]/ ksai_2k_s0[k]),

rho_10_jlevel (2)*( phi_2k_s0[k]/ ksai_2k_s1[k]),rho_01_jlevel (2)*(
phi_2k_s1[k]/ ksai_2k_s0[k]),rho_11_jlevel (2)*( phi_2k_s1[k]/
ksai_2k_s1[k])) ,2)

}else{if(jj==3){transM <- matrix(c(rho_00_jlevel (3)*( phi_3k_s0[k]/
ksai_3k_s0[k]),rho_10_jlevel (3)*( phi_3k_s0[k]/ ksai_3k_s1[k]),
rho_01_jlevel (3)*( phi_3k_s1[k]/ ksai_3k_s0[k]),rho_11_jlevel (3)*(
phi_3k_s1[k]/ ksai_3k_s1[k])) ,2)}

else{if(jj==4){transM <- matrix(c(rho_00_jlevel (4)*( phi_4k_s0[k]/
ksai_4k_s0[k]),rho_10_jlevel (4)*( phi_4k_s0[k]/ ksai_4k_s1[k]),
rho_01_jlevel (4)*( phi_4k_s1[k]/ ksai_4k_s0[k]),rho_11_jlevel (4)*(
phi_4k_s1[k]/ ksai_4k_s1[k])) ,2)}

else{transM <- matrix(c(rho_00_jlevel (5)*( phi_5k_s0[k]/ ksai_5k_s0[k
]),rho_10_jlevel (5)*( phi_5k_s0[k]/ ksai_5k_s1[k]),rho_01_jlevel
(5)*( phi_5k_s1[k]/ ksai_5k_s0[k]),rho_11_jlevel (5)*( phi_5k_s1[k]/
ksai_5k_s1[k])) ,2)

}
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}
}
}
return(transM)
}

#log -likelihood function
log_likelihood <- function(hyper_7){
v<-hyper_7 [1]
sigma_0 <-hyper_7 [2]
alpha <-hyper_7 [3]
tau <- hyper_7 [4]
eta <-hyper_7 [5]
gamma_h <-hyper_7 [6]
rho_00_1 <-hyper_7 [7]

m_0k_0 <- rep(0,nrow(D_0k_ALL))
m_0k_1 <- rep(0,nrow(D_0k_ALL))
for( i in 1:nrow(D_0k_ALL)){
tau_1 <- (2^(( - alpha)*0))*tau
m_0k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_0k_ALL[i,]^2))^(-v-0.5 -1)
m_0k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_0k_ALL[i,]^2 -1*( D_0k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

m_1k_0 <- rep(0,nrow(D_1k_ALL))
m_1k_1 <- rep(0,nrow(D_1k_ALL))
for( i in 1:nrow(D_1k_ALL)){
tau_1 <- (2^(( - alpha)*1))*tau
m_1k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_1k_ALL[i,]^2))^(-v-0.5 -1)
m_1k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_1k_ALL[i,]^2 -1*( D_1k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

m_2k_0 <- rep(0,nrow(D_2k_ALL))

147



Chapter 7. Conclusion and further work

m_2k_1 <- rep(0,nrow(D_2k_ALL))
for( i in 1:nrow(D_2k_ALL)){
tau_1 <- (2^(( - alpha)*2))*tau
m_2k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_2k_ALL[i,]^2))^(-v-0.5 -1)
m_2k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_2k_ALL[i,]^2 -1*( D_2k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

m_3k_0 <- rep(0,nrow(D_3k_ALL))
m_3k_1 <- rep(0,nrow(D_3k_ALL))
for( i in 1:nrow(D_3k_ALL)){
tau_1 <- (2^(( - alpha)*3))*tau
m_3k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_3k_ALL[i,]^2))^(-v-0.5 -1)
m_3k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_3k_ALL[i,]^2 -1*( D_3k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

m_4k_0 <- rep(0,nrow(D_4k_ALL))
m_4k_1 <- rep(0,nrow(D_4k_ALL))
for( i in 1:nrow(D_4k_ALL)){
tau_1 <- (2^(( - alpha)*4))*tau
m_4k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_4k_ALL[i,]^2))^(-v-0.5 -1)
m_4k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_4k_ALL[i,]^2 -1*( D_4k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

m_5k_0 <- rep(0,nrow(D_5k_ALL))
m_5k_1 <- rep(0,nrow(D_5k_ALL))
for( i in 1:nrow(D_5k_ALL)){
tau_1 <- (2^(( - alpha)*5))*tau
m_5k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_5k_ALL[i,]^2))^(-v-0.5 -1)
m_5k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
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^2+0.5*( D_5k_ALL[i,]^2 -1*( D_5k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}

################
phi_5k_s0 <- m_5k_0
phi_5k_s1 <- m_5k_1

ksai_5k_s0 <- rep(0,nrow(D_5k_ALL))
ksai_5k_s1 <- rep(0,nrow(D_5k_ALL))
for (i in 1:nrow(D_5k_ALL)){
ksai_5k_s0[i] <- max(1-eta *(2^( -5)) ,0)*phi_5k_s0[i] + min(eta

*(2^( -5)) ,1)*phi_5k_s1[i]
ksai_5k_s1[i] <- (1-gamma_h)*phi_5k_s0[i] + gamma_h*phi_5k_s1[i]
}
##################
phi_4k_s0 <- rep(0,nrow(D_4k_ALL))
phi_4k_s1 <- rep(0,nrow(D_4k_ALL))
for (i in 1:nrow(D_4k_ALL) ){
phi_4k_s0[i] <- m_4k_0[i]* ksai_5k_s0 [2*i-1]* ksai_5k_s0 [2*i]
phi_4k_s1[i] <- m_4k_1[i]* ksai_5k_s1 [2*i-1]* ksai_5k_s1 [2*i]
}
###################
ksai_4k_s0 <- rep(0,nrow(D_4k_ALL))
ksai_4k_s1 <- rep(0,nrow(D_4k_ALL))
for (i in 1:nrow(D_4k_ALL)){
ksai_4k_s0[i] <- max(1-eta *(2^( -4)) ,0)*phi_4k_s0[i] + min(eta

*(2^( -4)) ,1)*phi_4k_s1[i]
ksai_4k_s1[i] <- (1-gamma_h)*phi_4k_s0[i] + gamma_h*phi_4k_s1[i]
}
################
phi_3k_s0 <- rep(0,nrow(D_3k_ALL))
phi_3k_s1 <- rep(0,nrow(D_3k_ALL))
for (i in 1:nrow(D_3k_ALL) ){
phi_3k_s0[i] <- m_3k_0[i]* ksai_4k_s0 [2*i-1]* ksai_4k_s0 [2*i]
phi_3k_s1[i] <- m_3k_1[i]* ksai_4k_s1 [2*i-1]* ksai_4k_s1 [2*i]
}
##############
ksai_3k_s0 <- rep(0,nrow(D_3k_ALL))
ksai_3k_s1 <- rep(0,nrow(D_3k_ALL))
for (i in 1:nrow(D_3k_ALL)){
ksai_3k_s0[i] <- max(1-eta *(2^( -3)) ,0)*phi_3k_s0[i] + min(eta

*(2^( -3)) ,1)*phi_3k_s1[i]
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ksai_3k_s1[i] <- (1-gamma_h)*phi_3k_s0[i] + gamma_h*phi_3k_s1[i]
}
#############
phi_2k_s0 <- rep(0,nrow(D_2k_ALL))
phi_2k_s1 <- rep(0,nrow(D_2k_ALL))
for (i in 1:nrow(D_2k_ALL) ){
phi_2k_s0[i] <- m_2k_0[i]* ksai_3k_s0 [2*i-1]* ksai_3k_s0 [2*i]
phi_2k_s1[i] <- m_2k_1[i]* ksai_3k_s1 [2*i-1]* ksai_3k_s1 [2*i]
}
############
ksai_2k_s0 <- rep(0,nrow(D_2k_ALL))
ksai_2k_s1 <- rep(0,nrow(D_2k_ALL))
for (i in 1:nrow(D_2k_ALL)){
ksai_2k_s0[i] <- max(1-eta *(2^( -2)) ,0)*phi_2k_s0[i] + min(eta

*(2^( -2)) ,1)*phi_2k_s1[i]
ksai_2k_s1[i] <- (1-gamma_h)*phi_2k_s0[i] + gamma_h*phi_2k_s1[i]
}
################
phi_1k_s0 <- rep(0,nrow(D_1k_ALL))
phi_1k_s1 <- rep(0,nrow(D_1k_ALL))
for (i in 1:nrow(D_1k_ALL) ){
phi_1k_s0[i] <- m_1k_0[i]* ksai_2k_s0 [2*i-1]* ksai_2k_s0 [2*i]
phi_1k_s1[i] <- m_1k_1[i]* ksai_2k_s1 [2*i-1]* ksai_2k_s1 [2*i]
}
###############
ksai_1k_s0 <- rep(0,nrow(D_1k_ALL))
ksai_1k_s1 <- rep(0,nrow(D_1k_ALL))
for (i in 1:nrow(D_1k_ALL)){
ksai_1k_s0[i] <- max(1-eta *(2^( -1)) ,0)*phi_1k_s0[i] + min(eta

*(2^( -1)) ,1)*phi_1k_s1[i]
ksai_1k_s1[i] <- (1-gamma_h)*phi_1k_s0[i] + gamma_h*phi_1k_s1[i]
}
##################
phi_0k_s0 <- rep(0,nrow(D_0k_ALL))
phi_0k_s1 <- rep(0,nrow(D_0k_ALL))
for (i in 1:nrow(D_0k_ALL) ){
phi_0k_s0[i] <- m_0k_0[i]* ksai_1k_s0 [2*i-1]* ksai_1k_s0 [2*i]
phi_0k_s1[i] <- m_0k_1[i]* ksai_1k_s1 [2*i-1]* ksai_1k_s1 [2*i]
}
############
ksai_0k_s0 <- rep(0,nrow(D_0k_ALL))
for (i in 1:nrow(D_0k_ALL)){
ksai_0k_s0[i] <- (1-rho_00_1)*phi_0k_s0[i] + rho_00_1*phi_0k_s1[i]
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}

LogLikeli <- -sum(log(ksai_0k_s0))
return(LogLikeli)
}

rho_00_jlevel <- function(j){
rho_00 <- max(1-eta *(2^(-j)) ,0)
return(rho_00)
}
rho_01_jlevel <- function(j){
rho_01 <- min(eta *(2^( -j)) ,1)
return(rho_01)
}
rho_10_jlevel <- function(j){
rho_10 <- 1-gamma_h
return(rho_10)
}
rho_11_jlevel <- function(j){
rho_11 <- gamma_h
return(rho_11)
}

The R codes for NIG-MT

rm(list=ls())
source(file ="C:\\R\\ function_DWTbayesian20181009.R")
cd1 <-read.csv(file ="c:\\ dwtcoefficients \\ Pside \\acute \\

la012_wk1_L.csvPcd1.csv",header = F)
cd2 <-read.csv(file = "c:\\ dwtcoefficients \\Pside \\acute\\

la012_wk1_L.csvPcd2.csv",header = F)
cd3 <-read.csv(file = "c:\\ dwtcoefficients \\Pside \\acute\\

la012_wk1_L.csvPcd3.csv",header = F)
cd4 <-read.csv(file = "c:\\ dwtcoefficients \\Pside \\acute\\

la012_wk1_L.csvPcd4.csv",header = F)
cd5 <-read.csv(file = "c:\\ dwtcoefficients \\Pside \\acute\\

la012_wk1_L.csvPcd5.csv",header = F)
cd6 <-read.csv(file = "c:\\ dwtcoefficients \\Pside \\acute\\

la012_wk1_L.csvPcd6.csv",header = F)

signal_raw <- read.csv(file = "c:\\ all1s\\ Pside\\ la012_wk1_L.csv",
header = F)
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signal_raw <- signal_raw$V4
signal_raw <- append(signal_raw ,rep(0,2^18- length(signal_raw)))
cd1 <- cd1$V1
2^17- length(cd1)
D_5k <- append(cd1 ,rep(0,2^17- length(cd1)))
cd2 <- cd2$V1
D_4k <- append(cd2 ,rep(0,2^16- length(cd2)))
cd3 <- cd3$V1
D_3k <- append(cd3 ,rep(0,2^15- length(cd3)))
cd4 <- cd4$V1
D_2k <- append(cd4 ,rep(0,2^14- length(cd4)))
cd5 <- cd5$V1
D_1k <- append(cd5 ,rep(0,2^13- length(cd5)))
cd6 <- cd6$V1
D_0k <- append(cd6 ,rep(0,2^12- length(cd6)))

JJ <- 18
ped <- length(signal_raw)/2^JJ
for (ii in 1:1){
signal_ped <- signal_raw [((ii -1) *2^JJ+1):(ii*2^JJ)]
D_5k_ped <- D_5k [((ii -1) *2^(JJ -1) +1):(ii*2^(JJ -1))]
D_4k_ped <- D_4k [((ii -1) *2^(JJ -2) +1):(ii*2^(JJ -2))]
D_3k_ped <- D_3k [((ii -1) *2^(JJ -3) +1):(ii*2^(JJ -3))]
D_2k_ped <- D_2k [((ii -1) *2^(JJ -4) +1):(ii*2^(JJ -4))]
D_1k_ped <- D_1k [((ii -1) *2^(JJ -5) +1):(ii*2^(JJ -5))]
D_0k_ped <- D_0k [((ii -1) *2^(JJ -6) +1):(ii*2^(JJ -6))]
}

D_5k_ALL <- data.frame(D_5k_ped)
D_4k_ALL <- data.frame(D_4k_ped)
D_3k_ALL <- data.frame(D_3k_ped)
D_2k_ALL <- data.frame(D_2k_ped)
D_1k_ALL <- data.frame(D_1k_ped)
D_0k_ALL <- data.frame(D_0k_ped)

system.time({ opt_hyper1 <-nlminb(c(1, 0.01, 0.5, 10, 1, 0.8, 0.5),
log_likelihood ,lower=c(0.1 ,0.001 ,0.05 ,0.1 ,0.05 ,0.1 ,0.1),upper=c
(10 ,0.2 ,5 ,20 ,20 ,0.9 ,0.9))})

hyper_theta <- opt_hyper1$par
v=hyper_theta [1] #hyper for inv -gamma distribution
sigma_0=hyper_theta [2] # hyper for inv -gamma distribution
alpha <- hyper_theta [3] #
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tau <- hyper_theta [4] # control the total big or small in
posterior of Z_jk

eta=hyper_theta [5] #hyper for transition matrix
gamma_h= hyper_theta [6] # hyper for transition matrix
######## initial stale prob (rho_0k_0 , rho_0k_1)
rho_00_1 = hyper_theta [7]
rho_00_0 = 1- rho_00_1
#################################
##### bottom -up pyramid algorithem
#################################
########
m_0k_0 <- rep(0,nrow(D_0k_ALL))
m_0k_1 <- rep(0,nrow(D_0k_ALL))
for( i in 1:nrow(D_0k_ALL)){
tau_1 <- (2^(( - alpha)*0))*tau
m_0k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_0k_ALL[i,]^2))^(-v-0.5 -1)
m_0k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_0k_ALL[i,]^2 -1*( D_0k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
#########
m_1k_0 <- rep(0,nrow(D_1k_ALL))
m_1k_1 <- rep(0,nrow(D_1k_ALL))
for( i in 1:nrow(D_1k_ALL)){
tau_1 <- (2^(( - alpha)*1))*tau
m_1k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_1k_ALL[i,]^2))^(-v-0.5 -1)
m_1k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_1k_ALL[i,]^2 -1*( D_1k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
##########
m_2k_0 <- rep(0,nrow(D_2k_ALL))
m_2k_1 <- rep(0,nrow(D_2k_ALL))
for( i in 1:nrow(D_2k_ALL)){
tau_1 <- (2^(( - alpha)*2))*tau
m_2k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_2k_ALL[i,]^2))^(-v-0.5 -1)
m_2k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
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^2+0.5*( D_2k_ALL[i,]^2 -1*( D_2k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
##########
m_3k_0 <- rep(0,nrow(D_3k_ALL))
m_3k_1 <- rep(0,nrow(D_3k_ALL))
for( i in 1:nrow(D_3k_ALL)){
tau_1 <- (2^(( - alpha)*3))*tau
m_3k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_3k_ALL[i,]^2))^(-v-0.5 -1)
m_3k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_3k_ALL[i,]^2 -1*( D_3k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
###########
m_4k_0 <- rep(0,nrow(D_4k_ALL))
m_4k_1 <- rep(0,nrow(D_4k_ALL))
for( i in 1:nrow(D_4k_ALL)){
tau_1 <- (2^(( - alpha)*4))*tau
m_4k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_4k_ALL[i,]^2))^(-v-0.5 -1)
m_4k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_4k_ALL[i,]^2 -1*( D_4k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
###########
m_5k_0 <- rep(0,nrow(D_5k_ALL))
m_5k_1 <- rep(0,nrow(D_5k_ALL))
for( i in 1:nrow(D_5k_ALL)){
tau_1 <- (2^(( - alpha)*5))*tau
m_5k_0[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(v*sigma_0 ^2+0.5*( D_5k_ALL[i,]^2))^(-v-0.5 -1)
m_5k_1[i] <- (((v*sigma_0 ^2)^(v+1)*gamma(v+1/2+1))/((2*pi)^0.5*

gamma(v+1)))*(tau_1 ^(-1) /(1+ tau_1 ^(-1)))^(0.5) *(v*sigma_0
^2+0.5*( D_5k_ALL[i,]^2 -1*( D_5k_ALL[i ,]^2/(1+ tau_1 ^(-1)))))^(-v
-0.5 -1)

}
################
phi_5k_s0 <- m_5k_0
phi_5k_s1 <- m_5k_1
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ksai_5k_s0 <- rep(0,nrow(D_5k_ALL))
ksai_5k_s1 <- rep(0,nrow(D_5k_ALL))
for (i in 1:nrow(D_5k_ALL)){
ksai_5k_s0[i] <- max(1-eta *(2^( -5)) ,0)*phi_5k_s0[i] + min(eta

*(2^( -5)) ,1)*phi_5k_s1[i]
ksai_5k_s1[i] <- (1-gamma_h)*phi_5k_s0[i] + gamma_h*phi_5k_s1[i]
}
##################
phi_4k_s0 <- rep(0,nrow(D_4k_ALL))
phi_4k_s1 <- rep(0,nrow(D_4k_ALL))
for (i in 1:nrow(D_4k_ALL) ){
phi_4k_s0[i] <- m_4k_0[i]* ksai_5k_s0 [2*i-1]* ksai_5k_s0 [2*i]
phi_4k_s1[i] <- m_4k_1[i]* ksai_5k_s1 [2*i-1]* ksai_5k_s1 [2*i]
}
###################
ksai_4k_s0 <- rep(0,nrow(D_4k_ALL))
ksai_4k_s1 <- rep(0,nrow(D_4k_ALL))
for (i in 1:nrow(D_4k_ALL)){
ksai_4k_s0[i] <- max(1-eta *(2^( -4)) ,0)*phi_4k_s0[i] + min(eta

*(2^( -4)) ,1)*phi_4k_s1[i]
ksai_4k_s1[i] <- (1-gamma_h)*phi_4k_s0[i] + gamma_h*phi_4k_s1[i]
}
################
phi_3k_s0 <- rep(0,nrow(D_3k_ALL))
phi_3k_s1 <- rep(0,nrow(D_3k_ALL))
for (i in 1:nrow(D_3k_ALL) ){
phi_3k_s0[i] <- m_3k_0[i]* ksai_4k_s0 [2*i-1]* ksai_4k_s0 [2*i]
phi_3k_s1[i] <- m_3k_1[i]* ksai_4k_s1 [2*i-1]* ksai_4k_s1 [2*i]
}
##############
ksai_3k_s0 <- rep(0,nrow(D_3k_ALL))
ksai_3k_s1 <- rep(0,nrow(D_3k_ALL))
for (i in 1:nrow(D_3k_ALL)){
ksai_3k_s0[i] <- max(1-eta *(2^( -3)) ,0)*phi_3k_s0[i] + min(eta

*(2^( -3)) ,1)*phi_3k_s1[i]
ksai_3k_s1[i] <- (1-gamma_h)*phi_3k_s0[i] + gamma_h*phi_3k_s1[i]
}
#############
phi_2k_s0 <- rep(0,nrow(D_2k_ALL))
phi_2k_s1 <- rep(0,nrow(D_2k_ALL))
for (i in 1:nrow(D_2k_ALL) ){
phi_2k_s0[i] <- m_2k_0[i]* ksai_3k_s0 [2*i-1]* ksai_3k_s0 [2*i]
phi_2k_s1[i] <- m_2k_1[i]* ksai_3k_s1 [2*i-1]* ksai_3k_s1 [2*i]
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}
############
ksai_2k_s0 <- rep(0,nrow(D_2k_ALL))
ksai_2k_s1 <- rep(0,nrow(D_2k_ALL))
for (i in 1:nrow(D_2k_ALL)){
ksai_2k_s0[i] <- max(1-eta *(2^( -2)) ,0)*phi_2k_s0[i] + min(eta

*(2^( -2)) ,1)*phi_2k_s1[i]
ksai_2k_s1[i] <- (1-gamma_h)*phi_2k_s0[i] + gamma_h*phi_2k_s1[i]
}
################
phi_1k_s0 <- rep(0,nrow(D_1k_ALL))
phi_1k_s1 <- rep(0,nrow(D_1k_ALL))
for (i in 1:nrow(D_1k_ALL) ){
phi_1k_s0[i] <- m_1k_0[i]* ksai_2k_s0 [2*i-1]* ksai_2k_s0 [2*i]
phi_1k_s1[i] <- m_1k_1[i]* ksai_2k_s1 [2*i-1]* ksai_2k_s1 [2*i]
}
###############
ksai_1k_s0 <- rep(0,nrow(D_1k_ALL))
ksai_1k_s1 <- rep(0,nrow(D_1k_ALL))
for (i in 1:nrow(D_1k_ALL)){
ksai_1k_s0[i] <- max(1-eta *(2^( -1)) ,0)*phi_1k_s0[i] + min(eta

*(2^( -1)) ,1)*phi_1k_s1[i]
ksai_1k_s1[i] <- (1-gamma_h)*phi_1k_s0[i] + gamma_h*phi_1k_s1[i]
}
##################
phi_0k_s0 <- rep(0,nrow(D_0k_ALL))
phi_0k_s1 <- rep(0,nrow(D_0k_ALL))
for (i in 1:nrow(D_0k_ALL) ){
phi_0k_s0[i] <- m_0k_0[i]* ksai_1k_s0 [2*i-1]* ksai_1k_s0 [2*i]
phi_0k_s1[i] <- m_0k_1[i]* ksai_1k_s1 [2*i-1]* ksai_1k_s1 [2*i]
}
############
ksai_0k_s0 <- rep(0,nrow(D_0k_ALL))
for (i in 1:nrow(D_0k_ALL)){
ksai_0k_s0[i] <- (1-rho_00_1)*phi_0k_s0[i] + rho_00_1*phi_0k_s1[i]
}

############################################
###### posterior of marginal prob s_jk=1
############################################
#level 0
s_0k_0 <- rep(0,nrow(D_0k_ALL))
s_1k_1 <- rep(0,nrow(D_0k_ALL))
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for (i in 1:nrow(D_0k_ALL)){
s_0k_0[i] <- rho_00_0 *( phi_0k_s0[i]/ ksai_0k_s0[i])
s_1k_1[i] <- rho_00_1 *( phi_0k_s1[i]/ ksai_0k_s0[i])
}
inistate_Pos_1 <- s_1k_1
inistate_Pos <- as.matrix(cbind(s_0k_0 ,s_1k_1))
#level 1
stateProb_l1 <- NULL
for (i in 1:nrow(inistate_Pos)){
TEMPstateProb_l1 <- rbind(inistate_Pos[i ,]%*% transMatrix_jk (1,2*i

-1),inistate_Pos[i,]%*% transMatrix_jk (1,2*i))
stateProb_l1 <- rbind(stateProb_l1 , TEMPstateProb_l1)
}
stateProb_level1_1 <- stateProb_l1 [,2]
#level 2
stateProb_l2 <- NULL
for (i in 1:nrow(stateProb_l1)){
TEMPstateProb_l2 <- rbind(stateProb_l1[i ,]%*% transMatrix_jk (2,2*i

-1),stateProb_l1[i,]%*% transMatrix_jk (2,2*i))
stateProb_l2 <- rbind(stateProb_l2 , TEMPstateProb_l2)
}
stateProb_level2_1 <- stateProb_l2 [,2]
#level 3
stateProb_l3 <- NULL
for (i in 1:nrow(stateProb_l2)){
TEMPstateProb_l3 <- rbind(stateProb_l2[i ,]%*% transMatrix_jk (3,2*i

-1),stateProb_l2[i,]%*% transMatrix_jk (3,2*i))
stateProb_l3 <- rbind(stateProb_l3 , TEMPstateProb_l3)
}
stateProb_level3_1 <- stateProb_l3 [,2]
#level 4
stateProb_l4 <- NULL
for (i in 1:nrow(stateProb_l3)){
TEMPstateProb_l4 <- rbind(stateProb_l3[i ,]%*% transMatrix_jk (4,2*i

-1),stateProb_l3[i,]%*% transMatrix_jk (4,2*i))
stateProb_l4 <- rbind(stateProb_l4 , TEMPstateProb_l4)
}
stateProb_level4_1 <- stateProb_l4 [,2]
#level 5
stateProb_l5 <- NULL
for (i in 1:nrow(stateProb_l4)){
TEMPstateProb_l5 <- rbind(stateProb_l4[i ,]%*% transMatrix_jk (5,2*i

-1),stateProb_l4[i,]%*% transMatrix_jk (5,2*i))
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stateProb_l5 <- rbind(stateProb_l5 , TEMPstateProb_l5)
}
stateProb_level5_1 <- stateProb_l5 [,2]

#level 0
D_0k_sharking09 <- D_0k_ped
D_0k_sharking08 <- D_0k_ped
D_0k_sharking07 <- D_0k_ped
D_0k_sharking06 <- D_0k_ped
D_0k_sharking05 <- D_0k_ped
D_0k_sharking04 <- D_0k_ped
D_0k_sharking03 <- D_0k_ped
D_0k_sharking02 <- D_0k_ped
for (i in 1: length(D_0k_ped)){
if(inistate_Pos_1[i]< 0.9 ){
D_0k_sharking09[i] <- 0
}
if(inistate_Pos_1[i]< 0.8 ){
D_0k_sharking08[i] <- 0
}
if(inistate_Pos_1[i]< 0.7 ){
D_0k_sharking07[i] <- 0
}
if(inistate_Pos_1[i]< 0.6 ){
D_0k_sharking06[i] <- 0
}
if(inistate_Pos_1[i]< 0.5 ){
D_0k_sharking05[i] <- 0
}
if(inistate_Pos_1[i]< 0.4 ){
D_0k_sharking04[i] <- 0
}
if(inistate_Pos_1[i]< 0.3 ){
D_0k_sharking03[i] <- 0
}
if(inistate_Pos_1[i]< 0.2 ){
D_0k_sharking02[i] <- 0
}
}
#level1
D_1k_sharking09 <- D_1k_ped
D_1k_sharking08 <- D_1k_ped
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D_1k_sharking07 <- D_1k_ped
D_1k_sharking06 <- D_1k_ped
D_1k_sharking05 <- D_1k_ped
D_1k_sharking04 <- D_1k_ped
D_1k_sharking03 <- D_1k_ped
D_1k_sharking02 <- D_1k_ped
for (i in 1: length(D_1k_ped)){
if(stateProb_level1_1[i]< 0.9 ){
D_1k_sharking09[i] <- 0
}
if(stateProb_level1_1[i]< 0.8 ){
D_1k_sharking08[i] <- 0
}
if(stateProb_level1_1[i]< 0.7 ){
D_1k_sharking07[i] <- 0
}
if(stateProb_level1_1[i]< 0.6 ){
D_1k_sharking06[i] <- 0
}
if(stateProb_level1_1[i]< 0.5 ){
D_1k_sharking05[i] <- 0
}
if(stateProb_level1_1[i]< 0.4 ){
D_1k_sharking04[i] <- 0
}
if(stateProb_level1_1[i]< 0.3 ){
D_1k_sharking03[i] <- 0
}
if(stateProb_level1_1[i]< 0.2 ){
D_1k_sharking02[i] <- 0
}
}
#level 2
D_2k_sharking09 <- D_2k_ped
D_2k_sharking08 <- D_2k_ped
D_2k_sharking07 <- D_2k_ped
D_2k_sharking06 <- D_2k_ped
D_2k_sharking05 <- D_2k_ped
D_2k_sharking04 <- D_2k_ped
D_2k_sharking03 <- D_2k_ped
D_2k_sharking02 <- D_2k_ped
for (i in 1: length(D_2k_ped)){
if(stateProb_level2_1[i]< 0.9 ){
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D_2k_sharking09[i] <- 0
}
if(stateProb_level2_1[i]< 0.8 ){
D_2k_sharking08[i] <- 0
}
if(stateProb_level2_1[i]< 0.7 ){
D_2k_sharking07[i] <- 0
}
if(stateProb_level2_1[i]< 0.6 ){
D_2k_sharking06[i] <- 0
}
if(stateProb_level2_1[i]< 0.5 ){
D_2k_sharking05[i] <- 0
}
if(stateProb_level2_1[i]< 0.4 ){
D_2k_sharking04[i] <- 0
}
if(stateProb_level2_1[i]< 0.3 ){
D_2k_sharking03[i] <- 0
}
if(stateProb_level2_1[i]< 0.2 ){
D_2k_sharking02[i] <- 0
}
}
#level 3
D_3k_sharking09 <- D_3k_ped
D_3k_sharking08 <- D_3k_ped
D_3k_sharking07 <- D_3k_ped
D_3k_sharking06 <- D_3k_ped
D_3k_sharking05 <- D_3k_ped
D_3k_sharking04 <- D_3k_ped
D_3k_sharking03 <- D_3k_ped
D_3k_sharking02 <- D_3k_ped
for (i in 1: length(D_3k_ped)){
if(stateProb_level3_1[i]< 0.9 ){
D_3k_sharking09[i] <- 0
}
if(stateProb_level3_1[i]< 0.8 ){
D_3k_sharking08[i] <- 0
}
if(stateProb_level3_1[i]< 0.7 ){
D_3k_sharking07[i] <- 0
}
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if(stateProb_level3_1[i]< 0.6 ){
D_3k_sharking06[i] <- 0
}
if(stateProb_level3_1[i]< 0.5 ){
D_3k_sharking05[i] <- 0
}
if(stateProb_level3_1[i]< 0.4 ){
D_3k_sharking04[i] <- 0
}
if(stateProb_level3_1[i]< 0.3 ){
D_3k_sharking03[i] <- 0
}
if(stateProb_level3_1[i]< 0.2 ){
D_3k_sharking02[i] <- 0
}
}
#level 4
D_4k_sharking09 <- D_4k_ped
D_4k_sharking08 <- D_4k_ped
D_4k_sharking07 <- D_4k_ped
D_4k_sharking06 <- D_4k_ped
D_4k_sharking05 <- D_4k_ped
D_4k_sharking04 <- D_4k_ped
D_4k_sharking03 <- D_4k_ped
D_4k_sharking02 <- D_4k_ped
for (i in 1: length(D_4k_ped)){
if(stateProb_level4_1[i]< 0.9 ){
D_4k_sharking09[i] <- 0
}
if(stateProb_level4_1[i]< 0.8 ){
D_4k_sharking08[i] <- 0
}
if(stateProb_level4_1[i]< 0.7 ){
D_4k_sharking07[i] <- 0
}
if(stateProb_level4_1[i]< 0.6 ){
D_4k_sharking06[i] <- 0
}
if(stateProb_level4_1[i]< 0.5 ){
D_4k_sharking05[i] <- 0
}
if(stateProb_level4_1[i]< 0.4 ){
D_4k_sharking04[i] <- 0
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}
if(stateProb_level4_1[i]< 0.3 ){
D_4k_sharking03[i] <- 0
}
if(stateProb_level4_1[i]< 0.2 ){
D_4k_sharking02[i] <- 0
}
}
#level 5
D_5k_sharking09 <- D_5k_ped
D_5k_sharking08 <- D_5k_ped
D_5k_sharking07 <- D_5k_ped
D_5k_sharking06 <- D_5k_ped
D_5k_sharking05 <- D_5k_ped
D_5k_sharking04 <- D_5k_ped
D_5k_sharking03 <- D_5k_ped
D_5k_sharking02 <- D_5k_ped
for (i in 1: length(D_5k_ped)){
if(stateProb_level5_1[i]< 0.9 ){
D_5k_sharking09[i] <- 0
}
if(stateProb_level5_1[i]< 0.8 ){
D_5k_sharking08[i] <- 0
}
if(stateProb_level5_1[i]< 0.7 ){
D_5k_sharking07[i] <- 0
}
if(stateProb_level5_1[i]< 0.6 ){
D_5k_sharking06[i] <- 0
}
if(stateProb_level5_1[i]< 0.5 ){
D_5k_sharking05[i] <- 0
}
if(stateProb_level5_1[i]< 0.4 ){
D_5k_sharking04[i] <- 0
}
if(stateProb_level5_1[i]< 0.3 ){
D_5k_sharking03[i] <- 0
}
if(stateProb_level5_1[i]< 0.2 ){
D_5k_sharking02[i] <- 0
}}
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