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Abstract 

The concept of dry port has attracted the attention of many researchers in the field of containerised 

transport industry over the past few decades. Previous research on dry port container network 

design has dealt with decision-making at different levels in an isolated manner. The purpose of 

this research is to develop a decision-making tool based on mathematical programming models to 

integrate strategic level decisions with operational level decisions. In this context, the strategic 

level decision making comprises the number and location of dry ports, the allocation of customers 

demand, and the provision of arcs between dry ports and customers within the network. On the 

other hand, the operational level decision making consists of containers flow, the selection of 

transportation modes, empty container repositioning, and empty containers inventory control. The 

containers flow decision involves the forward and backward flow of both laden and empty 

containers. Several mathematical models are developed for the optimal design of dry port networks 

while integrating all these decisions. 

One of the key aspects that has been incorporated in this study is the inherent uncertainty of 

container demands from end customers. Besides, a dynamic setting has to be adopted to consider 

the inevitable periodic fluctuation of demands. In order to incorporate the abovementioned 

decision-making integration with uncertain demands, several models are developed based on two-

stage stochastic programming approach. In the developed models, the strategic decisions are made 

in the first stage while the second-stage deals with operational decisions. The models are then 

solved through a robust sample average approximation approach, which is improved with the 

Benders Decomposition method. Moreover, several acceleration algorithms including multi-cut 

framework, knapsack inequalities, and Pareto-optimal cut scheme are applied to enhance the 

solution computational time.         

The proposed models are applied to a hypothetical case of dry port container network design in 

North Carolina, USA. Extensive numerical experiments are conducted to validate the dry port 

network design models. A large number of problem instances are employed in the numerical 

experiments to certify the capability of models. The quality of generated solutions is examined via 

a statistical validation procedure. The results reveal that the proposed approach can produce a 

reliable dry port container network under uncertain environment. Moreover, the experimental 

results underline the sensitivity of the configuration of the network to the inventory holding costs 
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and the value of coefficients relating to model robustness and solution robustness. In addition, a 

number of managerial insights are provided that may be widely used in container shipping 

industry: that the optimal number of dry ports is inversely proportional to the empty container 

holding costs; that multiple sourcing is preferable when there are high levels of uncertainty; that 

rail tends to be better for transporting laden containers directly from seaports to customers with 

road being used for empty container repositioning; service level and fill rate improve when the 

design targets more robust solutions; and inventory turnover increases with high levels of holding 

cost; and inventory turnover decreases with increasing robustness. 
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Chapter 1. Introduction 

1.1. Background 

International transport plays a substantial role for the supply chain globalisation. Global trade is 

mainly facilitated by seaborn transportation as 75% of cargo by volume and 60% of cargo by value 

are moved by sea (Lee and Song, 2017). Within the seaborne transport, container shipping 

contributes to 52% of cargo by value. Containerisation started in the 1960s, and volumes increased 

moderately in the first three decades and significantly over the last two decades (Lee and Song, 

2017). With an annual growth rate of 9.3% from 1990 to 2013, the volume of container transport 

has grown from 85 million twenty-foot equivalent unit (TEUs) to 651 million TEUs. The 

containerised transport industry has enabled the globalisation of supply chains by providing cost-

effective transport, where the transport cost accounts for only 1% of shelf price of consumer goods 

(Lee and Song, 2017). Container shipping is a substantial component of globalised trade (Crist, 

2003), which makes an important contribution to maintaining and improving the quality of life 

since the majority of consumer goods including clothing, consumer electronics, appliances, 

furniture, automobile parts are carried in containers (Rodrigue et al., 2013). Improving the 

efficiency of the container shipping supply chain can reduce the shipping industry’s operational 

costs and increase its sustainability by reducing energy consumption and greenhouse gas emission. 

It can also help end customers acquire their ordered products in a more cost-effective and timely 

way in predetermined due time (Crainic and Kim, 2007).  

A typical container shipping supply chain consists of a consignor, a consignee, an ocean carrier, a 

freight forwarder and a terminal operator (Lee and Song, 2017). Such a supply chain does not 

necessarily originate or terminate at seaports. In practice, the origin and destination (O/D) points 

are mostly inland points. Therefore, the transportation of goods cannot be solely carried out by 

ships. In other words, different transportation modes are needed to transport cargo through both 

seaborne and inland networks. In the inland network, cargos are mainly transported from an inland 

origin to a seaport using rail or road. Then the mode of transportation is changed to maritime 

transport at the seaport. Provided the ultimate destination is an inland point, further transfer in 

transportation mode will be required at the destination seaport, that is the containers will be 

delivered through rail or road. Thus, a multimodal transportation is an essential need for such a 

global transport chain. Multimodal transportation is defined as the “transport of goods by at least 
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two different modes of transport (Commission, 2010, p. 157)”. “The unit of transportation can be 

a box, a container, a swap body, a road/rail vehicle, or a vessel. As such, the regular and express 

delivery system on a regional or national scale, and long-distance pickup and delivery services 

are also examples of multimodal transportation (SteadieSeifi et al., 2014, p. 2)”. Multimodal 

transport can establish a containerised transport network with higher efficiency, reliability and 

flexibility to deliver goods (SteadieSeifi et al., 2014). Since containers have standard dimensions, 

they can be easily transported from the origin to the destination using different transportation 

modes (air, road, sea) without being opened. Hence, containerised transport services are an 

essential element of intermodal transportation and international trade (Crainic and Kim, 2007). 

Intermodal transportation is a particular type of multimodal transport (Commission, 2010), which 

is  defined as “Multimodal transport of goods, in one and the same intermodal transport unit by 

successive modes of transport without handling of the goods themselves when changing modes 

(van Riessen, 2013, p. 4)”.  

Even though the standardisation achieved by the containerisation can facilitate the integration of 

global supply chains, containerised transport chains are fragmented in practice. In comparison to 

other transport sectors like air transport, the container shipping industry has barely benefited from 

operations management tools and techniques due to sea transport’s special features (Lee and Song, 

2017). These special characteristics can differentiate the container shipping industry from the air 

industry. According to Lee and Song (2017), there are several differences between air transport 

and sea transport settings. Firstly, the air industry includes passenger networks which enables 

scholars and practitioners to adopt revenue management techniques broadly compared with the 

container shipping industry. Secondly, competition in the sea transport industry is generally based 

on costs due to the fact that service differentiation is less important compared to the air industry. 

This cost-based competition brings about establishing alliances and integrations in container 

shipping context. Thirdly, the consolidation and dominance of companies in container shipping 

industry is quite higher than the air industry due to the air traffic rights. The shipping liners have 

expanded their operations to include hinterland networks by consolidating with inland transport 

operators. Finally, slow steaming, which is the practice that a vessel is planned to sail at a speed 

significantly less than its designed speeds to reduce fuel consumption, may be applied in maritime 

container shipping operations, while it cannot be adopted in the air transport since there is a lower 

limit for the speed of aircrafts (Lee and Song, 2017). 
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Figure 1.1 provides a projection of the global market for shipping containers by value. The 

worldwide container shipping market has been increased steadily from 2016 to 2020 and this 

growth is predicted to continue until 2025. More specifically, the global shipping containers 

market was worth about 4.6 billion U.S. dollars in 2016, and its size is expected to reach 11 billion 

U.S. dollars by 2025 (Statista, 2020). 

 

Figure 1.1. Projected size of the global market for shipping containers 2016-2025 (Statista, 2020). 

1.1.1. Empty container repositioning 

It is clear that the predicted ever-increasing market size shown in Figure 1.1 will lead to increased 

volume of container movements if it occurs. Accordingly, various problems are likely to be faced 

by shipping liners and other transport operators in container shipping industry. One of the main 

challenges in this context is the Empty Container Repositioning (ECR) problem. “The empty 

container repositioning problem concerns arranging the storage and movements of empty 

containers in the shipping networks in order to better position the movable resources to better 

satisfy customer demands (Song and Dong, 2015a, p. 5)”. Containerised transport networks 

normally consist of two directions including the forward flow of laden containers and the backward 

flow of empty containers (Song and Dong, 2012b). The transportation-related operations 

associated with laden and empty containers are carried out in the same shipping network using the 

same resources, which indicates that the laden container flow and empty container movements are 

interconnected and should be addressed jointly (Song and Dong, 2012b). The most noticeable 
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element that causes the empty container repositioning problem within containerised transport 

chains is the imbalance in global trade. More precisely, in the Trans-Pacific and Europe-Asia trade 

routes, there is surplus number of empty containers at American and European ports, whereas 

Asian ports are suffering from lack in empty containers (Song and Dong, 2015a). It is estimated 

that 20% of ocean container flows is related to the movement of empty containers (Drewry, 2006). 

It is also reported by Asariotis et al. (2010) that the flow of containers from Asia to Europe is at 

least twice as much as that from Europe to Asia. It implies that at least half of the accumulated 

containers at western ports should be sent back empty.  

The quantity of empty container transported in inland networks is considerable as empty containers 

are normally stored at seaports or depots which are located far from demand zones (Song and 

Dong, 2015a). This has been verified by various scholars and research (see Crainic et al., 1993; 

Konings, 2005; Braekers et al., 2011)  . The repositioning of empty containers comprises various 

costs, including the inland and seaborn transportation, storage and maintenance of containers at 

depots, handling and transhipment of containers at different network facilities (Song and Dong, 

2015a). These cost components can cause huge expenditures due to empty container repositioning. 

In 2001, the cost incurred due to container management inefficiencies reached to US$17 billion 

(Boilé and Aboobaker, 2006; Theofanis and Boile, 2009). Furthermore, Veenstra (2005) reported 

US$20 billion of total costs was associated with the ECR problem. These figures suggest that the 

costs relating to ECR problem in container shipping industry is extremely high and this problem 

greatly affects the effectiveness and feasibility of shipping lines’ business operations. Additionally, 

ECR can have environmental and sustainability impact as optimal repositioning of empty 

containers can reduce container flows percentage, which leads to reduction in emissions 

throughout the container shipping network (Song and Carter, 2009).  

1.1.2. Container shipping uncertainty 

The container shipping industry is highly impacted by the uncertain environment. In this business 

context, the uncertainty originates from various sources. The first and most important element of 

uncertainty in container shipping is fluctuations in container demand. Container demand varies on 

a seasonal basis, which stems from both long-term contractual demand and short-term spot-market 

demand (Lee and Song, 2017). In practice, container demand has a periodic impact. More 

specifically, the demand for containers in one period can affect the demand in other periods. In 
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other words, the current container demand is reliant on the demand in previous periods (Meng et 

al., 2015). 

The uncertainty of customers’ demand for containers can have further impact. The quantity of 

empty container requests fluctuates with uncertainty in the timing which can cause unpredictability 

leading to the rescheduling or abandonment of orders (Francesco et al., 2013). The optimal number 

of empty containers that should be repositioned is influenced by these uncertainties. Furthermore, 

empty containers might be accumulated in some unnecessary locations due to the uncertainty in 

container demand as well as container request times (Francesco et al., 2013). Moreover, there are 

other uncertainties that are related to the transportation of containers. In reality, the distance 

between different locations (e.g. ports, depots, and customer zones) in a containerised transport 

network is considerable. This creates uncertainties for container transportation throughout the 

network due to various factors, including weather conditions and vehicle failures (Xie and Song, 

2018). Hence, the dynamic and uncertain nature of container demand is an indispensable aspect of 

container shipping industry that requires to be embedded in research studies. 

1.1.3. Dry port development in container shipping 

The increasing trend of containerised transport is predicted to continue in the future. Figure 1.2 

illustrates the global container over the recent decades and provides a projection for the years to 

come. It indicates that containerised transport has increased steadily since 2012 and is expected to 

increase in future. The worldwide container flow rate reached 802 million TEUs in 2019 which 

was a 2.3% increase with regard to the previous year (Drewry, 2020).  
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Figure 1.2. Container throughput worldwide with a forecast for 2020 and 2021(Drewry, 2020). 

To handle the significant increase in flow of containerised transport chains, larger ships are used 
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feasible solution to combat issues relating to capacity expansion, congestion, environmental 

concerns and hinterland accessibility. The Dry Port (DP) concept is an emerging solution from 

both seaport and hinterland perspective (Roso et al., 2009). A Dry Port can be defined as an 

intermodal terminal which connects seaports directly to the inland shippers through rail networks 

(Roso, 2007). The dry port concept can be traced back to 1982. Beresford and Dubey (1990) 

considered dry ports to be inland terminals that could issue bills of loading for shipping lines. More 

recently, a dry port has been considered to be an inland facility that is able to offer the fundamental 

functions of a seaport (Cullinane and Wilmsmeier, 2011). The dry port notion and its regional 

coverage role in seaport hinterland operations has been investigated over the time by various 

scholars (including Heaver et al., 2000; Heaver et al., 2001; Notteboom and Winkelmans, 2001; 

Notteboom, 2002; Robinson, 2002). A more specific definition of dry port was provided by Roso 

et al. (2009): “an inland intermodal terminal directly connected to seaport(s) with high capacity 

transport mean(s), where customers can leave/pick up their standardised units as if directly to a 

seaport (Roso et al., 2009, p. 341)”. It is argued that the establishment of the dry port can improve 

seaports’ efficiency and goods handling, resolve seaports’ hinterland congestion, and decrease 

environmental impact by facilitating transport mode shifting to more energy efficient shipping 

modes (Roso et al., 2009). Furthermore, dry port utilisation can smooth out seaports’ storage space 

burden and provide more cost-effective transportation services to shippers (Padilha and Ng, 2012). 

1.2. Statement of problem 

As discussed in the above section, despite the benefits that are achieved through containerised 

transportation, various issues and challenges arise in the container shipping industry. More 

precisely, the hinterland part of seaports in containerised supply chains requires more attention 

and investigation so that it can respond to the fast-paced growth of seaborne network capacity. In 

this regard, container transportation companies, including shipping lines and inland transport 

operators need to address a multitude decision-making problems. This has been become even more 

complicated with the development of dry ports in the inland part of the container shipping supply 

chains. In the following, these decision-making problems and their significance are considered. 

One of the main issues in this business context is the design of the container shipping network and 

tactical/operational level decision making (Lee and Song, 2017). The network includes different 

nodes (e.g. seaports, inland terminals, and customer zones) which are linked to each other by arcs 
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(i.e. transport service routes). Containerised transport operators should identify the quantity of 

containers that are shipped throughout these service routes. More specifically, the optimal number 

of containers from an origin node to a destination node should be identified in order to efficiently 

meet customers’ container demand. This also requires the decision to select the best route to deliver 

containers. This problem, which is known as the “container cargo routing”, has been elaborated 

in the maritime shipping industry literature (Wang et al., 2013; Brouer et al., 2014b; Wang, 2014). 

There is a large body of literature that has considered container network design and routing in the 

seaborne shipping context. This problem needs to be investigated in the hinterland part. 

The other crucial challenge that should be studied is related to the empty container repositioning 

problem. As discussed earlier, inefficient empty container management generates huge cost 

burdens for shipping lines and transport companies. Therefore, ECR decisions are needed to be 

made in an optimal manner. Similar to laden containers, the optimal quantity of empty containers 

that are transported throughout the network should be optimally identified. This problem contains 

various decisions that should be made to ensure the appropriate number of empty containers at the 

location that is required at the right time. The allocation of empty containers can be made through 

three different alternatives: allocating empty containers from overseas seaports; allocating empty 

containers from other inland nodes (e.g. terminals and depots); or leasing empty containers from 

other companies and lessors (Dang et al., 2012). Accordingly, the optimal number of empty 

containers that are imported from other seaports, transported from other inland locations, and 

leased from lessors should be identified. It should be noted that the imported and leased empty 

containers should be sent back to the seaports and lessors in the future periods as appropriate. 

Furthermore, the availability of empty containers throughout the network requires effective 

inventory management. Hence, the inventory planning of empty containers is another problem 

which needs to be addressed in this study.    

The next problem that needs to be taken into consideration is related to the dry port employment 

in the hinterland network. All the above-mentioned decisions regarding container network design 

and ECR problem are impacted by the dry port development. The key decision that reinforces this 

impact is the location of dry port in the hinterland network. Dry ports can be classified according 

to their location and the distance from the seaport as distant, midrange, and close (Roso et al., 

2009). Figure 1.3 illustrates a seaport hinterland with the utilisation of dry ports. Distant dry ports 
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(see Figure 1.3.a) enable the hinterland network to benefit from rail mode’s economies of scale for 

faraway customers requiring high volume container flow (Roso et al., 2009). The midrange dry 

ports are normally set up at a distance from the seaport that can be served by road mode as shown 

in Figure 1.3.b. This type of dry ports is mainly used as a consolidation point for various rail 

services (Roso et al., 2009). Finally, close dry ports (see Figure 1.3.c) are used to deal with the 

congestion problems in the local area of the seaport. 

 

(a) A distant dry port network. 

 

(b) A midrange dry port network. 

 

(c) A close dry port network. 
Figure 1.3. A seaport hinterland with three types of dry ports (Roso et al., 2009). 

This shows that the location of dry port is a crucial decision that can define its role as well as the 

topology of the network. Furthermore, the number and location of dry ports in the hinterland of 
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the seaport can affect other decisions in the container shipping network including both laden and 

empty container flow, empty container inventory level, and ECR problem. Therefore, the optimal 

number and location of dry ports should be integrated with container shipping network design and 

ECR problems. 

It is worth mentioning that dry ports provide intermodal transport services for the inland movement 

of containers (Roso and Lumsden, 2009). The inland transport network can utilise rail, road, and 

waterway transportation modes for delivering containers depending upon geographical and 

infrastructural conditions. Different transportation modes provide different levels of flexibility 

with different levels of cost. Transport modality decisions should therefore be considered in the 

design of dry port container networks. Moreover, the uncertain and dynamic nature of the container 

shipping context impacts the previously mentioned decisions. It implies that the study should 

consider uncertain environments in the optimisation of decisions. This thesis, therefore, aims to 

study decision-making problems associated with hinterland container network design and dry port 

establishment under uncertainty. In the following sections, the proposed approach and research 

objectives are discussed further. 

1.3. Proposed approach 

The decision problems related to dry port container network design has been studied widely in a 

disjoint manner. More specifically, container network design (Shintani et al., 2007; Tran, 2011; 

Mulder and Dekker, 2014; Wang and Meng, 2014), container cargo routing (Brouer et al., 2014b; 

Plum et al., 2014b; Wang, 2014; Wang et al., 2015), empty container flow (Erera et al., 2005; 

Brouer et al., 2011; Epstein et al., 2012; Chao and Chen, 2015), empty container inventory (Song, 

2007; Dang et al., 2012; Dang et al., 2013; Zhang et al., 2014; Xie and Song, 2018) and dry port 

location (Ka, 2011; Feng et al., 2013; Ambrosino and Sciomachen, 2014; Wang et al., 2018b) 

problems have been analysed separately. The strategies and methods that were proposed in these 

studies have dealt with different decisions in an isolated manner. The effects of dry port location 

on hinterland container flow, ECR, and inventory decisions have not been taken into consideration 

in the relevant literature. Furthermore, the majority of studies have assumed a deterministic 

environment, in which uncertainties of container shipping were neglected. These issues were 

investigated in this research. 
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In order to provide decision-making tools, as well as managerial insights for decision makers and 

practitioners in the container shipping industry, this thesis develops relevant mathematical 

programming models to address the outlined problems. More precisely, a stochastic programming 

approach is proposed to optimise the described decisions with uncertain container demands. It 

should be pointed out dry port is a strategic level decision since the dry port will operate over many 

years after being established. This decision is made before uncertain container demand occurs. On 

the other hand, decisions related to both laden and empty container intermodal transportation, 

empty container repositioning, empty container leasing, and empty container inventory planning 

are made at operational level. These operational level decisions should be made and reviewed over 

the planning horizon, when container demand is realised. It implies that the dry port container 

network design problem that this thesis aims to study possess a temporal hierarchical decision-

making structure. To cope with this problem, a mathematical model based on two-stage stochastic 

programming was developed. The first-stage of the model focuses on optimising the number and 

location of dry ports as well as customers allocation to established dry ports. Then in the second 

stage, the periodic and operational decisions related to containers intermodal transportation and 

ECR problem are optimised according to the uncertain container demand realisation.  

It should be noted that both container network design and facility location are NP-hard problems 

as proved by Brouer et al. (2014a) and Kariv and Hakimi (1979), respectively. The proposed two-

stage stochastic programming model integrates these problems which leads to even higher 

complexity. Therefore, more advanced solution algorithms than standard solution methods were 

needed to be developed to solve the model efficiently. To handle this challenge, a Sample Average 

Approximation (Kleywegt et al., 2002; Santoso et al., 2005) method was employed to cope with 

uncertainty of the model. Then, a Robust Optimisation (Mulvey et al., 1995) approach was adopted 

in order to improve the quality of solutions. Finally, a Benders Decomposition approach was 

utilised to enrich the solution procedure in terms of computational time for large scale instances. 

The Benders Decomposition method was further enhanced by proposing three different 

acceleration methods including multi-cut framework, knapsack inequalities, and Pareto-optimal 

cut scheme. This solution framework was then used to solve large instances of the developed robust 

dry port container network design. 
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A comprehensive computational study based on a hypothetical case study was developed to 

demonstrate the applicability of the proposed two-stage stochastic model and the efficiency of the 

proposed solution strategy. The model was validated by providing various analyses on obtained 

solutions to test network configuration, container flow decisions, ECR, and transportation 

modality. Additionally, different performance indicators including service level, fill rate, and 

inventory turnover were tested to provide further managerial insights into hinterland dry port 

container network design problem. 

1.4. Research objectives 

The aim of this research was to formulate mathematical models to integrate strategic and 

operational decisions for dry port container networks under an uncertain environment. More 

specifically, the strategic decision of dry port location-allocation was optimised jointly with 

operational decisions relating to the intermodal transportation of containers, empty container 

repositioning, and empty container inventory level. Therefore, the research objectives were: 

1. To comprehensively review and obtain knowledge about container network design, empty 

container repositioning, dry port development and location decision-making; 

2. To formulate mathematical models to identify the optimal number and location of dry ports 

in the seaport hinterland container network and the allocation of customers to established dry 

ports under periodic and uncertain container demand; 

3. To determine the optimal decisions related to laden container flow, empty container flow, 

empty container leasing, and empty container inventory throughout the dry port container 

network; 

4. To develop efficient solution methods in order to handle the complexity of the proposed 

models and to obtain high quality and robust solutions for the integrated dry port container 

network design problem; 

5. To provide key performance indicators for shipping lines to improve their service level, fill 

rate, and inventory turnover in dry port container networks. 
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1.5.Thesis structure 

This thesis is made up of seven different chapters. This thesis is organised as follows: 

• Chapter 1: Introduction. The first chapter introduces the research. It involves a background 

of the related topics including containerised transport industry, empty container repositioning 

problem, container shipping uncertainty, and dry port description in container shipping.  The 

statement of the problem, the proposed approach, and the research objectives are described in 

the chapter. 

• Chapter 2: Literature Review. This chapter reviews relevant studies related to dry port 

container network design. The review contains previous research in container network design 

and container routing problems, empty container repositioning, dry port development, and 

facility location problem. Moreover, the identified research gaps based on the literature review 

are provided in the chapter. 

• Chapter 3: Research Methodology. The third chapter describes the research methodology 

which is employed to accomplish research objectives. Firstly, an overview of modelling and 

solution methods in the relevant literature is presented. Then, the two-stage stochastic 

programming, which is the basis of this research modelling approach, is discussed in detail. 

Furthermore, the sample average approximation, robust optimisation, and Benders 

Decomposition concepts are clarified, which are used to design the solution strategy of this 

research. 

• Chapter 4: Mathematical Model. This chapter is dedicated to the development of the 

mathematical model which integrates strategic and operational decisions associated with dry 

port container network design. The problem description related to the hinterland dry port 

network is outlined. A two-stage stochastic programming model is proposed to formulate the 

described problem under the uncertainty of container demand, in which the firs stage optimises 

strategic decisions while the second stage deals with the operational decisions. 

• Chapter 5. Solution Procedure. This chapter aims to present a solution procedure for solving 

the proposed model and handling its complexity. A Sample Average Approximation is 

described and applied to the model to deal with the difficulty in obtaining the expected 

objective value. This solution method is then evaluated with a comprehensive statistical 

validation analysis. Moreover, a robust counterpart model is developed to increase the quality 

of solutions and to validate their accuracy with regard to uncertain input data. Finally, a 
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Benders Decomposition algorithm, accelerated with three different acceleration methods, is 

adopted to improve the solution procedure efficiency especially for large size problems. 

• Chapter 6. Computational Study. In this chapter the proposed model and solution procedure 

are applied to a hypothetical case study. Various key performance indicators as well as 

sensitivity analyses are discussed to present managerial insights to container shipping 

companies. Considering 80 different problem instances, solutions related to the network 

configuration, container flow decisions, and key performance indicators are assessed. Finally, 

the performance of the robust optimisation approach and the computational efficiency of 

proposed accelerated Benders Decomposition are evaluated. 

• Chapter 7. Conclusions and Future Research Directions. Finally, in the last chapter, the 

conclusions obtained associated with the research objectives are stated. Additionally, some 

recommendations and possible directions for further studies in this area is provided. 
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Chapter 2. Literature Review 

2.1. Introduction 

In this chapter, previous research relating to dry port container network design is reviewed. In 

Section 2.2 container network design and container routing problems are presented. This involves 

the mathematical models that have been designed to address container network design problems 

including port selection, transport routes, fleet management, customer demand allocation, and 

container cargo routing. Section 2.3 reviews empty container repositioning, which is one of the 

most important sub-problems associated with container network design. The research that has 

considered the empty container repositioning problem is further divided into two broad modelling 

approaches network flow models and inventory control models. Section 2.4 presents previous 

work related to dry port development and its role in the inland container network design. Finally, 

2.5 considers the literature relating to the facility location problem, including the classic versions 

of the facility location problem as well as more recent advanced extensions.     

2.2. Container network design and routing  

2.2.1. Container network design 

“The container network design problem aims to select ports, construct service routes and deploy 

a fleet of vessels so that service requests/customer demands can be served effectively (Lee and 

Song, 2017, p. 453)”. There are many studies in the literature that have investigated the container 

network design problem. Agarwal and Ergun (2008) developed a mixed-integer linear 

programming model to design service routes among a set of ports. Álvarez (2009) proposed a 

model for the joint optimisation of container routing and fleet deployment for a global liner 

company. Reinhardt and Pisinger (2012) addressed the network design and fleet assignment in a 

liner shipping to minimise the total cost. Furthermore, Mulder and Dekker (2014) integrated 

container routing, ship scheduling and fleet design problems considering limited availability of 

ships in liner shipping. A profit-maximisation model based on service flows was formulated by 

Plum et al. (2014b) to handle the liner shipping network design problem. Wang and Meng (2014) 

considered delivery deadlines in container shipping network design problems. They utilised a 

column generation technique (Desaulniers et al., 2006) to solve the proposed NP-hard non-linear 

model. These studies reveal that container network design contains various sub-problems 
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including container fleet management, vessel assignment, service route design, and container 

cargo routing. These sub-problems have been mainly studied disjointly or integrated by 

simplifying the service network design problem (Lee and Song, 2017).  

One of the main decisions in the container network design is the definition of service route 

structures for meeting customer demands. Some studies have optimised and generated service 

routes from a given set of ports (e.g. Plum et al., 2014). Shintani et al. (2007) used a dynamic 

stochastic model for a network design problem with a two-ports two-voyages structure. Tran 

(2011) dealt with the port selection problem in liner shipping to minimise the total cost, including 

inventory cost and inland transport cost. Song and Dong (2013) studied a route design problem, in 

which route structure design, ship deployment and empty container repositioning were addressed 

to minimise the total cost. They developed a three-stage optimisation model for a simplified route 

structure design problem. Brouer et al. (2014b) developed an integer programming model to decide 

container shipping routes for a capacitated cargo transport network. The objective was to maximise 

profit taking into consideration the revenue obtained from cargo transport and the cost incurred by 

network operations.  

Another set of studies defined the service route structures by generating service routes from a set 

of pre-specified service routes (e.g. Mulder and Dekker, 2014; Wang and Meng, 2014). Brouer et 

al. (2014a) proved that the shipping network design is an NP-hard problem. They presented an 

integer programming mathematical model with the objective of maximising the liner shipping 

profit. In addition, Liu et al. (2014) examined the network design problem for a global liner 

shipping network. In this study, they incorporated the inland origin-destination pairs utilising an 

intermodal shipping system. Furthermore, a two-stage stochastic programming model was 

presented by Dong et al. (2015) to cope with the joint problem of service capacity planning as well 

as dynamic container routing. In the first stage, the optimal service capacity was decided. The 

second stage was dedicated to the stochastic optimisation of container routing using the service 

capacity identified by the first stage. Table 2.1 summarises the literature relating to the container 

network design which demonstrates: problem; considered network, problem environment, 

decisions, modelling approach; and solution method
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Table 2.1. A summary of literature relating to container network design. 

References Problem 
Network Environment Decision-making level 

Decisions 
Modelling 

approach 
Solution method 

Seaborn Inland Deterministic Uncertain Strategic Operational 

Agarwal and Ergun 

(2008) 
Cargo routing ✓ - ✓ - - ✓ Route assignment, container flow 

Mixed integer 

linear program 
Column generation 

Álvarez (2009) Routing and fleet deployment ✓ - ✓ - - ✓ Container flow, fleet assignment 
Mixed integer 

linear program 
Tabu search 

Reinhardt and 

Pisinger (2012) 
Container network design  ✓ - ✓ - - ✓ Route assignment, transhipment 

Mixed integer 

linear program 
Branch and cut 

Mulder and Dekker 

(2014) 
Fleet design, cargo routing ✓ - ✓ - - ✓ Cargo flow, transhipment Linear programming Heuristic 

Plum et al. (2014b) 
Liner shipping network 

design 
✓ - ✓ - - ✓ Container flow, service assignment 

Mixed integer 

linear program 
Heuristic algorithm 

Wang and Meng 

(2014) 

Liner shipping network 

design 
✓ - ✓ - - ✓ Route assignment, transit time 

Mixed integer 

nonlinear 

programming 

Column generation 

Plum et al. (2014a) Liner shipping service design ✓ - ✓ - - ✓ Container flow, service assignment Linear programming Branch and cut 

Shintani et al. 

(2007) 

Container network design, 

empty container repositioning  
✓ - ✓ - - ✓ Container routing, cruising speed Knapsack problem Genetic Algorithm 

Tran (2011) Port selection ✓ - ✓ - - ✓ Container routing and inventory 
Nonlinear 

programming 

Brute-force 

algorithm 

Song and Dong 

(2013) 

Service route design, empty 

container repositioning 
✓ - ✓ - - ✓ Route structure design, ECR Linear programming Heuristic algorithm 

Brouer et al. 

(2014b) 

Liner shipping network 

design 
✓ - ✓ - - ✓ Port assignment, vessel assignment Integer programming Matheuristic 

Brouer et al. 

(2014a) 

Liner shipping network 

design 
✓ - ✓ - - ✓ Container flow, vessel assignment Integer programming Metaheuristic 

Liu et al. (2014) 
Global intermodal liner 

shipping network design 
✓ ✓ ✓ - - ✓ Port allocation, container flow 

Integer linear 

programming 
Heuristic 

Dong et al. (2015) 
Service capacity planning, 

container routing 
✓ - - ✓ - ✓ 

Shipping service capacity,  

container routing 

Two stage stochastic 

programming 
SAA, PHA, APHA* 

* SAA: Sample Average Approximation; PHA: Progressive Hedging Algorithm; APHA: Adapted Progressive Hedging Algorithm 
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In the container shipping industry, a customer’s demand is satisfied when the laden containers are 

transported from a specified origin to a specified destination. The feasibility of the designed service 

network is interconnected with the decisions of choosing routes on which containers are delivered. 

In the following section, a review of previous studies relating to the container routing decision is 

provided. 

2.2.2. Container cargo routing 

Container cargo routing aims to allocate customer demands over a shipping network with 

minimum operational costs. This problem deals with the selection of routes for transporting 

containers. Therefore, it can be considered as a sub-problem of service network design (Lee and 

Song, 2017).  

There are many studies in the literature that have considered the container cargo routing problem. 

Song et al. (2005) presented a model for the cost-efficient allocation of containers in global 

shipping networks to generate total costs, incomes, and container shipping patterns. Wang (2014) 

employed link-based multi-commodity network flow models to deal with the container routing 

problem in a shipping network. Additionally, Wang et al. (2013) included origin-destination transit 

time in the multi-commodity network flow for the container routing problem. Also, some scholars 

have considered the container routing problem together with empty container repositioning. 

Brouer et al. (2011) employed a multi-commodity flow model to integrate container routing and 

ECR problems. Bell et al. (2011) developed a frequency-based model for the container routing 

problem that minimised container shipment and dwell times. Song and Dong (2012a) also, studied 

the joint problem of cargo routing and ECR in multiple shipping service routes. Bell et al. (2013) 

used a cost-based linear programming model to optimise both laden and empty container 

assignments in a shipping system to minimise total cost of handling, inventory, and leasing. Huang 

et al. (2015) applied a mixed integer linear program model to formulate the cargo routing and ECR 

problems with the objective of minimising total cost. Wang et al. (2015) presented a profit-based 

model for maritime container assignment that considered elastic demand which depended on the 

freight rate. In the following section, a broader review of the empty container repositioning 

problem is presented.   

The container shipping network design and container routing problem is complex. Agarwal and 

Ergun (2008) reduced the container shipping network design problem to a Knapsack problem to 
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demonstrate the NP-hardness of the problem. With NP-hard problems the computational time 

required to solve problems increases exponentially with problem size (Van Leeuwen and Leeuwen, 

1990). In addition, it was proved by that the container shipping network design problem is NP-

hard by reducing it to a travelling salesman problem by Plum et al. (2014a). When the set of service 

routes is pre-specified, then the network design problem aims to select service routes to serve 

demands. Brouer et al. (2014a) stated that the container shipping network design problem can be 

proved to be NP-hard by reducing the problem into a set-covering problem. Table 2.2 summarises 

the literature relating to container cargo routing which specifies various features. 
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Table 2.2. A summary of literature relating to container cargo routing. 

References Problem 
Network Environment Decision-making level 

Decisions Modelling approach Solution method 
Seaborn Inland Deterministic Uncertain Strategic Operational 

Song et al. (2005) 
Container shipping network 

design 
✓ - ✓ - - ✓ Container routing, transhipment Nonlinear programming Heuristic 

Wang (2014) Container routing ✓ - ✓ - - ✓ Container flow, transhipment Linear programming Cplex LP* solver 

Wang et al. (2013) Container routing ✓ - ✓ - - ✓ Container flow, transhipment Integer linear programming Cplex ILP* solver 

Brouer et al. (2011) Cargo allocation ✓ - ✓ - - ✓ 
Container flow, empty container 

repositioning 
Linear programming Column generation 

Bell et al. (2011) 
Maritime container 

assignment 
✓ - ✓ - - ✓ Empty container repositioning Linear programming Excel LP solver 

Song and Dong 

(2012a) 

Cargo routing and empty 

container repositioning 
✓ - ✓ - - ✓ 

Container routing, transhipment, 

inventory 
Integer programming Heuristics 

Bell et al. (2013) Container assignment ✓ - ✓ - - ✓ 
Container flow, empty container 

repositioning 
Linear programming 

MATLAB LP 

solver 

Huang et al. (2015) Liner service network design ✓ - ✓ - - ✓ 
Fleet deployment, empty 

container repositioning 

Mixed integer linear 

program 
Cplex MILP* solver 

Wang et al. (2015) Container assignment ✓ - ✓ - - ✓ Container flow Nonlinear programming Trial-and-error 

Agarwal and Ergun 

(2008) 
Cargo routing ✓ - ✓ - - ✓ 

Route assignment, container 

flow 

Mixed integer 

linear program 
Column generation 

Plum et al. (2014a) 
Liner shipping service 

design 
✓ - ✓ - - ✓ 

Container flow, service 

assignment 
Linear programming Branch and cut  

Brouer et al. 

(2014a) 

Liner shipping network 

design 
✓ - ✓ - - ✓ 

Container flow, vessel 

assignment 
Integer programming Metaheuristic 

* LP: Linear Programming; ILP: Integer linear programming; MILP: Mixed Integer Programming 
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2.3.Empty container repositioning 

The empty container repositioning problem can be considered as a sub-problem of the container 

service network design problem since both laden and empty containers are transported through the 

same shipping network. With the fast-paced growth of container shipping and the noticeable 

imbalance of trade demands over the last two decades, the ECR problem has been a critical issue 

for the shipping industry (Lee and Song, 2017). The economic burden of empty container 

transportation has been investigated by a number of researchers. For instance, Rodrigue (2016) 

reported that the cost of repositioning empty containers for shipping companies was US$16 billion 

per year which was 15% of the total cost. Furthermore, the problem could give rise to 

environmental and social issues including extra emissions and congestion in the inland network. 

Nevertheless, shipping companies hardly focus on utilising operational models or tools to deal 

with ECR decisions (Lee and Song, 2017). In the following, we review the research that has been 

dedicated to empty repositioning problem modelling. 

2.3.1. ECR problem classification 

According to Lee and Song (2017), the ECR problem can be classified into two general types 

according to the objective relating to quantity decisions or cost estimation. In the former, carriers 

should determine the quantity of empty containers that are stored at each port, and the time and 

quantity that should be transported from one port to another. The latter suggests that the movement 

of empty containers would be economically justified only if the containers were loaded with 

shippers’ goods. Thus, the objective is to determine the additional cost which is incurred for 

repositioning of empty containers so that they would be ready for the subsequent delivery.         

The quantity-based ECR models can be categorised into two broad groups with regards to the 

modelling approach and solution strategy (Song and Dong, 2015a). The first group utilises network 

flow models adopting arc-based mathematical programming which identifies the number of empty 

containers to be transported on the arcs of the network. These models are built based on the concept 

of flow balancing which guarantees the flow conservation of empty containers through a node. 

The second group utilises inventory control models in order to find the number of empty containers 

that should be dynamically repositioned at a node by developing decision-making rules. It should 

be noted that quantity decision models attempt to cope with uncontrollable demands, while cost 
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estimation models try to actively associate flow balancing with shipping contracts as described by 

Zhou and Lee (2009).     

2.3.2. ECR network flow models 

Trade imbalances are the major reason that causes the empty container repositioning problem. 

Accordingly, network flow models are used to balance the container flows in shipping networks 

which could produce tactical decision plans (Lee and Song, 2017). Shipping companies may not 

be able to apply these tactical plans at the operational level due to the dynamic and uncertain nature 

of the problem. However, simplified operational rules can be designed to enable shipping 

companies to adopt generated tactical plans in their operations.  

“Major shipping lines operate global service networks consisting of multiple shipping service 

routes (Lee and Song, 2017, p. 464)”. Researchers have proposed network flow models to deal 

with the ECR problem for these multiple service routes. Erera et al. (2005) formulated a multi-

commodity flow problem using a time-discretized network to address the ECR problems for tank 

container operators in the chemical industry. They aimed to minimise the total operating costs by 

combining container routing and ECR decisions in the model. Brouer et al. (2011) adopted a multi-

commodity flow problem to address the cargo allocation problem. “A cargo allocation model is a 

strategic tool that, given a schedule and a fleet over time, evaluates network profitability 

concerned with routing profitable cargo in a fixed network incorporating the overall empty 

repositioning cost (Brouer et al., 2011, p. 109)”. They incorporated the repositioning and leasing 

of empty containers into the model’s constraints to tackle the empty container repositioning 

problem. A decomposition approach was applied to the arc-flow model which led to a path-flow 

formulation. They used a delayed column generation algorithm to solve the resultant model. Song 

and Dong (2012a) integrated empty container repositioning problem with laden containers routing 

at the operational level. The objective was to minimise total operational costs over the planning 

horizon. Epstein et al. (2012) proposed a multi-commodity, multi-period model for empty 

containers repositioning decisions for one of the world’s largest shipping companies. An inventory 

model was used to compute the safety stock required at each location in order to maintain high 

service levels for an uncertain environment. Chao and Yu (2012) developed a multi-commodity 

network model for the ECR problem for East and North China ports. Chao and Chen (2015) also 

formulated a time-space model to deal with the repositioning of reefer containers.  
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The ECR problem has also been studied under uncertain conditions. Cheung and Chen (1998) 

adopted a two-stage stochastic programming to formulate the ECR problem under an uncertain 

environment. They argued that the considered uncertainty came from randomness in supplies, 

demands and ship capacities. These parameters were considered deterministically in the first stage, 

with random variables used in the second stage. The ECR problem was optimised to minimise the 

total cost of the first stage plus the expected total cost of second stage. Furthermore, a robust 

optimisation model was proposed by Erera et al. (2009) using time-space networks for the ECR 

problem with uncertain supply and demand. Di Francesco et al. (2009) built a scenario-based 

optimisation model to tackle the maritime ECR problem with uncertainties. Di Francesco et al. 

(2013a) extended the previous work by considering possible port disruption in their stochastic 

programming procedure. A profit-based container assignment model was adopted by Wang et al. 

(2015) to optimise the empty container routing problem in liner shipping networks. Zheng et al. 

(2015) analysed the ECR problem with coordination amongst liner carriers using a two-stage 

programming model. In the first stage, a centralised strategy was proposed, while in the second-

stage empty containers exchange costs were determined. These costs were allocated to liner 

carriers as an incentive for following the obtained centralise solution. 

The mentioned ECR studies were mainly conducted at a global level. There is literature dedicated 

to the repositioning of empty containers at the regional level, i.e. the movement of containers 

between port terminals and inland facilities. Braekers et al. (2013) examined drayage operations 

including empty containers movements by developing a vehicle routing mathematical program. 

Furió et al. (2013b) defined two different mathematical models for two different container patterns 

to optimise the ECR problem amongst shippers, consignees, terminals, and depots in the hinterland 

of Valencia. Moreover, Olivo et al. (2015) proposed a time-extended optimization model for the 

inland ECR problem considering container leasing decisions. Sterzik et al. (2015) stated that 

container sharing among transportation companies could reduce costs significantly based on the 

analysis of a scenario-based model for both laden and empty container movements at the regional 

level. Furthermore, Shintani et al. (2007) dealt with the ECR problem and container shipping 

service design jointly by developing a two-stage model which was solved using a Genetic 

Algorithm approach. Meng and Wang (2011) also worked on the joint optimisation of container 

shipping network design and ECR using a mixed-integer linear programming model.
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Table 2.3. A summary of literature relating to ECR network flows. 

References Problem 
Network Environment Decision-making level 

Decisions Modelling approach Solution method 
Seaborn Inland Deterministic Uncertain Strategic Operational 

Erera et al. (2005) Asset management ✓ ✓ ✓ - - ✓ Container flow, inventory Integer programming Cplex ILP* solver 

Brouer et al. 

(2011) 
Cargo allocation ✓ - ✓ - - ✓ 

Container flow, empty container 

repositioning 
Linear programming Column generation 

Song and Dong 

(2012a) 

Cargo routing and empty 

container repositioning 
✓ - ✓ - - ✓ 

Container routing, transhipment, 

inventory 
Integer programming Heuristics 

Epstein et al. 

(2012) 

Empty container repositioning 

and stocking 
✓ - - ✓ - ✓ Container flow, inventory Linear programming Cplex LP* solver 

Chao and Chen 

(2015) 
Empty container repositioning ✓ - - ✓ - ✓ Container flow, inventory Linear programming Cplex LP solver 

Cheung and Chen 

(1998) 

Dynamic empty container 

allocation 
✓ - - ✓ - ✓ Container flow, leasing 

Two-stage stochastic 

programming 

Stochastic hybrid 

approximation 

Erera et al. (2009) 
Dynamic empty container 

repositioning 
- ✓ - ✓ - ✓ Container flow, inventory Integer programming Cplex ILP solver 

Di Francesco et al. 

(2009) 

Container repositioning 

problem 
✓ - - ✓ - ✓ Container flow, inventory Integer programming ILP standard solver 

Di Francesco et al. 

(2013a) 

Container repositioning 

problem 
✓ - - ✓ - ✓ Container flow, inventory Stochastic programming Cplex MILP* solver 

Wang et al. (2015) Container assignment ✓ - ✓ - - ✓ Container flow Nonlinear programming Trial-and-error 

Zheng et al. 

(2015) 
Empty container repositioning ✓ - ✓ - - ✓ 

Empty container flow and 

exchange cost 

Two-stage optimization 

method 
Cplex LP solver 

(Braekers et al., 

2013) 
Drayage operations - ✓ ✓ - - ✓ Container routing 

Travelling salesman 

problem 

Deterministic 

annealing algorithm 

Furió et al. 

(2013b) 
Container assignment ✓ - ✓ - - ✓ Container flow Integer programming LP solver 

Sterzik et al. 

(2015) 
Container exchange  - ✓ ✓ - - ✓ 

Empty container repositioning, 

vehicle routing 

Mixed integer 

programming 
Heuristic 

Shintani et al. 

(2007) 

Container network design, 

empty container repositioning  
✓ - ✓ - - ✓ 

Container routing, cruising 

speed 
Knapsack problem Genetic Algorithm 

Meng and Wang 

(2011) 

Liner shipping service 

network design 
✓ - ✓ - - ✓ 

Empty container repositioning, 

transhipment 

Mixed integer 

programming 
Cplex MILP solver 

* LP: Linear Programming; ILP: Integer Linear Programming; MILP: Mixed Integer Linear Programming 

 



25 
 

Table 2.3 summarises the ECR network flow models in the relevant literature according to specific 

features including the problem, network, environment, decisions level, modelling approach and 

solution method.  

As can be seen, there is a large number of studies that have dealt with container shipping service 

design and empty container repositioning. However, the majority of work has considered the 

seaborne part (see Tables 2.1−2.3). The hinterland network plays a key role in the container 

shipping industry. Therefore, considering inland networks, including road and rail transportation 

should be further investigated. 

2.3.3. ECR inventory control models 

In this section, we review studies that cope with the ECR problem from the inventory control point 

of view. Du and Hall (1997) suggested a decentralised inventory control policy to reposition empty 

equipment in a hub-and-spoke logistics network. Li et al. (2004) proposed a two-threshold 

inventory control policy for the ECR problem in a port with uncertain demand. Song and Zhang 

(2010) presented an optimal control policy to reposition empty containers in a port subject to 

uncertain demand using dynamic programming. Young Yun et al. (2011) proposed a simulation-

based approach to find a near-optimal (s, S)-type inventory control policy for ECR decisions 

between customers and terminals under uncertain demand at the regional level. The (s, S)-type 

inventory policy was further extended by Dang et al. (2012) and Dang et al. (2013) and applied to 

the hinterland of a port to optimise three types of ECR decisions including positioning from other 

overseas ports, inland positioning between depots, and leasing. The threshold parameters were 

optimised through a simulation-based Genetic Algorithm.  

At the global level, Song (2007) considered a periodic-review system to obtain an optimal 

stationary policy for ECR by minimizing the total cost including container leasing, inventory, and 

reposition. Lam et al. (2007) developed an approximate dynamic programming method to identify 

the optimum control policies for ECR in a two-ports two-voyages. Shi and Xu (2011) studied the 

optimisation of empty containers through a control policy in a two-port system. Song and Dong 

(2008) applied a three-phase threshold control policy to the ECR problem in order to minimise the 

system’s total expected cost in a dynamic and stochastic environment. Li et al. (2007) optimised 

the inventory control policy for empty containers in a multi-port system. Zhang et al. (2014) 

addressed the multi-port ECR over multi-periods as an inventory control problem considering 
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uncertain demand. Dong and Song (2009) studied the joint optimisation of ECR and container fleet 

sizing utilising a simulation-based approach to evaluate inventory control policies. Lee et al. 

(2012) employed a single-threshold policy to tackle ECR problem and optimise the flow and 

inventory of empty containers in a multi-depot system. Chou et al. (2010) studied the ECR problem 

for a single service route using a two-stage formulation. In the first stage, the model identified the 

optimal number of empty containers at a port by employing an inventory model with a fuzzy 

backorder quantity. Using the result obtained from stage one, the optimum number of empty 

containers that should be transported between two ports was determined via a network flow 

mathematical model. The proposed model was applied to a real-life case of a trans-Pacific liner 

route. Table 2.4 presents a summary of studies relating to ECR inventory control models.
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Table 2.4. A summary of literature relating to ECR inventory control models. 

References Problem 
Network Environment Decision-making level 

Decisions Modelling approach Solution method 
Seaborn Inland Deterministic Uncertain Strategic Operational 

Du and Hall 

(1997) 

Fleet sizing and empty 

equipment redistribution 
- ✓ ✓ - - ✓ Inventory control policy 

Decentralised inventory 

policy 

Decomposition 

technique 

Li et al. (2004) Empty container allocation - ✓ - ✓ - ✓ 
Inventory control policy, 

containers import/export 
Markov decision process Heuristic 

Song and Zhang 

(2010) 
Empty container reposition ✓ - - ✓ - ✓ 

Inventory control policy, 

containers import/export 
Two-state Markov chain 

Dynamic 

programming 

Young Yun et al. 

(2011) 
Empty container reposition ✓ - ✓ - - ✓ Inventory control policy Simulation - 

Dang et al. (2012) Empty container reposition - ✓ - ✓ - ✓ Inventory control policy, leasing Genetic-based optimization Heuristics 

Song (2007) Empty container reposition - ✓ - ✓ - ✓ Inventory control policy, leasing Markov decision process - 

Lam et al. (2007) 
Relocation of empty 

containers 
- ✓ - ✓ - ✓ Inventory control policy, leasing Dynamic programming Heuristic 

Shi and Xu (2011) Empty container reposition ✓ - - ✓ - ✓ Optimal controlling policies Markov decision process 
Dynamic 

programming 

Song and Dong 

(2008) 
Empty container management ✓ - - ✓ - ✓ Inventory control policy Simulation Heuristics 

Li et al. (2007) Empty container allocation ✓ - - ✓ - ✓ 
Inventory control policy, 

containers import/export 
Markov decision process Heuristic 

Zhang et al. 

(2014) 
Empty container allocation ✓ - - ✓ - ✓ Optimal controlling policies Simulation Heuristic 

Dong and Song 

(2009) 

Container fleet sizing, empty 

container repositioning 
✓ - - ✓ - ✓ 

Inventory control policy, 

container fleet 

Simulation-based 

optimization 
Genetic Algorithm 

Lee et al. (2012) 

Empty container 

repositioning, 

container fleet sizing 

✓ - ✓ - - ✓ Inventory control policy 
Non-linear 

programming 
Gradient search 

Chou et al. (2010) Empty container allocation ✓ - - ✓ - ✓ Inventory control policy 
Fuzzy decision making, 

optimisation programming 

Graded mean 

Integration 

Representation 
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The literature reviewed in this section is mostly dedicated to the maritime container network design 

problems. The inland network is of focal significance to this thesis. In the following section, we 

will present a review of research that has focused on the inland container network design that has 

considered the dry port concept. 

2.4. Dry port development 

As discussed in previous sections, there is a substantial body of research relating to the 

development of seaport and maritime networks. However, inland networks are increasingly 

changing due to transport development (Notteboom and Rodrigue, 2009). This requires further 

attention. There is a substantial literature which focus on multimodal transportation (Ambrosino 

and Sciomachen, 2014). This type of transportation delivers goods from origins to destinations 

through two or more different transportation modes (Hayuth, 1987). The aim of multimodal 

transportation is to move cargo through the entire transport chain from the shipper to the consignee 

in a cost-effective and timely manner. 

Inland transportation has become more important to maritime shipping because of increasing 

volumes driven by the economic growth. Dry ports were introduced in many areas around the 

globe, particularly where cargo transportation increases in inland distribution networks (Bentaleb 

et al., 2015). Congestion is a restricting factor for economic growth and a cause of pollution 

(Mussone et al., 2015). The significant increase of container flows and the growth of international 

multimodal transport (Mabrouki et al., 2014), has created problems related to limited space and 

accessibility for seaports. As a result, dry ports have been developed to cope with the rising 

congestion in the hinterland of seaports. There is growing interest in the dry port concept in the 

literature that has focused on improving seaport operations and inland transport networks. Parola 

and Sciomachen (2005) simulated the worldwide augmentation of container flow and found that 

congestion increases proportionally with the container flow growth. Notteboom and Rodrigue 

(2005) emphasised that a port regionalisation phase should be introduced to port system 

development. They classified existing dry ports from geographical and decision-making points of 

view. In the following we present an overview of studies on the concept of dry port in the container 

shipping industry. 
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2.4.1. Inland container network design using dry port 

Inland transport systems play a key role in the future of containerisation. It has been shown that 

the efficiency of seaport transport networks could be boosted by the development of dry port 

facilities (Notteboom and Rodrigue, 2008). Concurrently, seaport development and management 

has become more complicated (Mabrouki et al., 2014). As mentioned before, the congestion level 

in seaports increases as the flow of containers grows. For the majority of seaports, the storage 

capacity is the weakest link in the multimodal transport network. Besides, congested roads and 

insufficient rail links leads to higher transportation costs and delivery delays (Parola and 

Sciomachen, 2005). There has been increasing attention and work to tackle the seaport space 

problem through the provision of new ports and terminals (Rytköonen, 1999). Dry ports have been 

introduced to lessen the containerised transport network costs and capitalise on added value 

(Paixão Ana and Bernard Marlow, 2003). Moreover, Bichou and Gray (2004) stated that the 

underlying aim of dry port development is to reduce seaport congestion. Cullinane and 

Wilmsmeier (2011) suggested that the incorporation of dry ports can assist seaports growth and 

maturity. They also believed that dry ports could expand and reinforce the hinterland of a container 

seaport. Jaržemskis and Vasiliauskas (2007) defined the concept of the dry port as an approach to 

deal with seaport space shortage by pushing intermodal terminals more towards the hinterland 

from the seaport. 

Slack (1990) firstly analysed inland load centres to show their role in enhancing intermodal 

transportation networks. Later, Slack (1999) emphasised the impact that the inland part can have 

in reducing the environmental impact of transport networks. Notteboom and Rodrigue (2009) 

looked at the role of dry ports in addressing global supply chain capacity and efficiency issues. 

They considered the complexity of modern freight distribution, the increased focus on intermodal 

transport solutions and capacity issues to be the main drivers of dry port development.   

Rodrigue et al. (2010) stated that there is no absolute agreement on how inland facilities should be 

referred to. In their view, “inland port” was more suitable term as important logistic activities could 

be conducted in the vicinity of inland terminals. The study by Beresford and Dubey (1990) was 

one of the first to focus on the dry port concept. Their definition was mainly related to inland 

clearance depots. This definition could reflect the properties and specific services, such as customs 

provided by dry ports. However, their definition neglected the important characteristic of having 
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a direct link to the seaport. Leveque and Roso (2002) defined a dry port as an interior multimodal 

terminal directly linked to the seaport with different transport capacity, where clients are able to 

pick up their containers and leave as if it was in a seaport. Roso (2007) analysed the 

implementation of dry port from an environmental perspective. They used simulation to confirm 

that incorporating dry ports in a transport network could reduce CO2 emissions, congestion, and 

waiting time. Roso and Lumsden (2009) analysed two different scenarios for a transport system at 

a seaport terminal. They compared physical flows in the system with and without a dry port. They 

concluded that incorporating a dry port in the hinterland of a seaport can resolve the problem 

caused by limited space.    

According to Roso et al. (2009), dry ports provide additional services compared to traditional 

inland terminals. These additional services include maintenance and repair of containers, storage 

of empty containers, consolidation and customs clearance. They also indicated that dry port 

development can move cargo from road to more energy efficient transportation modes which have 

lower environmental impact. Cullinane et al. (2012), furthermore, proposed a dry port concept 

based on the “extended gate” concept as a solution for combating containerised transport 

congestion, capacity, and environmental issues.  

Dry ports are classified depending on their location in the hinterland relative to the seaport. Roso 

et al. (2009) defined three different types of dry port as distant, mid-range and close dry ports, 

based on their services and location relative to the seaport. Distant dry ports are located at least 

500 kilometres from the seaport (Henttu et al., 2010). The main plus point of a distant dry port is 

providing long distance transportation for service users with reduced cost due to the utilisation of 

the cheaper rail transportation mode. This can also facilitate the reduction of congestion and 

environmental impact through the modal shift from road to rail. Mid-range dry ports are normally 

established between close and distant dry ports, i.e. 100−500 kilometres from the seaport (Henttu 

et al., 2010). This type of dry port provides a depot storage facility for customers. Finally, close 

dry ports are situated within 100 kilometres distance of the seaport (Henttu et al., 2010). Close dry 

ports provide a depot facility, increased terminal capacity and consolidation for the road mode to 

and from the seaport (Roso et al., 2009).  
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2.4.2. Decision-making in dry port development 

The container shipping decision-making problems can be categorised into three different levels 

relating to strategic, tactical, and operational decisions. Strategic level decisions are made for a 

long period of time, typically more than 10 years. This level includes decisions related to the 

location and capacity of facilities (e.g. dry ports) (Ivanov, 2019). Tactical level decisions are 

associated with the medium term horizon (5 to 10 years) containing transportation and inventory 

planning which defines the role of the dry port (Bentaleb et al., 2015). Operational level decisions 

are made over short-term periods that aim to obtain the most efficient operations and services for 

a dry port. This level includes the empty container repositioning and inventory control decisions 

for dry port networks. 

It should be noted that all decision-making levels are interconnected and have a significant impact 

on each other (Chopra and Meindl, 2007). However, in the dry port development context, most 

researchers have focused on the strategic level and have neglected the tactical and operational 

levels of the problem (Bentaleb et al., 2015). The determination of the number and location of dry 

ports is a strategic decision that has been studied by various researchers in the literature (e.g. Ka, 

2011; Feng et al., 2013; Ambrosino and Sciomachen, 2014; Wang et al., 2018). However, these 

studies ignored the impact of dry port location on tactical and operational decisions. In other words, 

dry ports location can define the context of transportation, empty container repositioning, and 

inventory decisions within the hinterland network (Lee and Song, 2017).  

Although the impact of location decisions on other levels has not been studied in the context of 

dry port development, there are various researchers that have considered this interconnection in 

other contexts including production (Bhutta et al., 2003), distribution (Liao et al., 2011) and the 

parcel service (Wasner and Zäpfel, 2004). The approaches and techniques that have been 

developed in other industries can be adopted in the dry port context to integrate different decision 

levels. In the following we further discuss and review the facility location problem and its possible 

extensions that have been developed in the literature. 
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2.5. Facility location problem 

This section reviews facility location models in the network and supply chain design context. The 

most-commonly used location problems in the literature are discrete models which are formulated 

as integer linear programs. Discrete models of small size can be solved using available commercial 

solvers. 

2.5.1. Discrete models 

Classic discrete location models were developed by Daskin (1997) and Salhi and Drezner (1996) 

for deterministic problems. These problems involve covering problems, centre and median 

problems, and fixed-charge location problems. The covering location problems, which are 

originally devised by Church and ReVelle (1974) and Christofides (1975), seek to determine the 

number and location of facilities to ensure no demand point will be farther than a distance limit 

(known as the maximal service distance). The centre and median problems utilise the concepts of 

‘absolute centre’ and ‘absolute median’, respectively, to find the optimal location of facilities 

within a weighted graph (Hakimi, 1964). Fixed-charge location problems are developed in 

different contexts to optimise the number and location of facilities by considering a fixed cost for 

setting up these facilities (Gerard et al., 1977; Mirzaian, 1985). In the following, these classic 

models are reviewed according to Daskin (1997). 

Let the set of candidate locations for establishing facilities be denoted by ℐ. In all covering, centre, 

median, and fixed-charge location problems, customer demand is distributed in a set of nodes 

denoted by 𝒥, where each customer 𝑗 ∈ 𝒥 generates 𝐷𝑗  unit of demand.  

The set covering problem attempts to minimise the number of facilities, while satisfying all 

customers’ demand by optimising the location of facilities. This problem aims to meet (cover) a 

portion of demand (ReVelle et al., 1976). Let 𝑎𝑖𝑗 represents the coverage relationship, where 𝑎𝑖𝑗 =

1 if the demand of customer 𝑗 ∈ 𝒥 can be served by facility 𝑖 ∈ ℐ and 𝑎𝑖𝑗 = 0, otherwise. The 

binary variable 𝑥𝑖 is associated with the location decision of facility 𝑖 ∈ ℐ; i.e. a facility is set up 

at potential location 𝑖 if 𝑥𝑖 = 1 and 𝑥𝑖 = 0, otherwise. The objective of this problem is to minimise 

the total number of facilities, while ensuring a complete coverage in the network (Beasley and 

Chu, 1996). The set covering problem can be formulated as the following mathematical model: 
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Set covering problem   

min
𝑥

∑ 𝑥𝑖

𝑖∈ℐ

  (2.1) 

subject to: 

∑ 𝑎𝑖𝑗𝑥𝑖

𝑖∈ℐ

≥ 1 ∀𝑗 ∈ 𝒥  (2.2) 

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ ℐ (2.3) 

The objective function (2.1) minimises the total number of facilities, while each customer’s 

demand should be met by the facilities as shown in constraint (2.2). Constraint (2.3) shows the 

standard binary decision variable. The model (2.1)−(2.3) would be transformed to the maximum 

covering problem if the total coverage constraint was relaxed and a budget restriction was imposed. 

In this case, the total number of established facilities are restricted as |ℐ| ≤ 𝑁 due to the budgetary 

limit. In this problem, the binary variable 𝑦𝑗 represents the demand coverage decision, where it 

equals to 1 if the demand of customer 𝑗 ∈ 𝒥 is met and it equals to 0, otherwise. Thus, the objective 

is the maximisation of the covered demand. This problem is formulated as follows: 

Maximum covering problem   

max
𝑥,𝑦

∑ 𝐷𝑗

𝑗∈𝒥

𝑦𝑗  (2.4) 

subject to: 

∑ 𝑥𝑖

𝑖∈ℐ

≤ 𝑁  (2.5) 

∑ 𝑎𝑖𝑗𝑥𝑖

𝑖∈ℐ

≥ 𝑦𝑗 ∀𝑗 ∈ 𝒥  (2.6) 

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ ℐ (2.7) 

𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ 𝒥 (2.8) 

 

The objective function (2.4) maximises the total satisfied demand over all customers. Constraint 

(2.5) indicates that the total number of opened facilities should not exceed the predetermined 

number of 𝑁. Constraint (2.6) ensures the demand coverage of customer 𝑗. Constraints (2.7)−(2.8) 
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represent the binary decision variables. The model (2.4)−(2.8) can be adapted to various problems 

by considering the travel distance and cost. 

The centre problem aims to identify the location of facilities in a manner that leads to the 

minimisation of a customer maximum travel distance, denoted by 𝑊. This problem is mainly 

appropriate to address location problems relating to the provision of public service facilities 

including hospitals and schools since their priorities service level and equity (Hakimi, 1964). The 

travel distance from facility 𝑖 ∈ ℐ to customer 𝑗 ∈ 𝒥 is denoted by 𝑑𝑖𝑗. Accordingly, the binary 

variable 𝑦𝑖𝑗 equals to 1 if customer 𝑗 is satisfied by facility 𝑖. Considering this notation, the centre 

problem is presented as follows: 

Centre problem   

min
𝑥,𝑦

∑ 𝑊  (2.9) 

subject to:  

∑ 𝑥𝑖

𝑖∈ℐ

≤ 𝑁  (2.10) 

∑ 𝑦𝑖𝑗

𝑖∈ℐ

= 1 ∀𝑗 ∈ 𝒥 (2.11) 

𝑦𝑖𝑗 ≤ 𝑥𝑖 ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.12) 

𝑊 ≥ ∑ 𝑑𝑖𝑗𝑦𝑖𝑗

𝑖∈ℐ

 ∀𝑗 ∈ 𝒥 (2.13) 

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ ℐ (2.14) 

𝑦𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.15) 

 

In this model, the objective function (2.9) minimises the customers’ maximum travel distance. 

Constraint (2.10) restricts the total number of opened facilities to 𝑁. Constraint (2.11) implies that 

each customer should be allocated to a single facility. Constraint (2.12) specifies that a customer 

can be served by a facility only if that facility is established. Constraint (2.13) calculates the 

maximum travel distance of customers. Finally, constraints (2.14)−(2.15) are standard binary 

variables.    

In contrast to the centre problem which is applied to public services with social benefit and equity 

goals, the median problem is more suitable for private firms which provide transport and delivery 

services to generate profit. Therefore, the objective of the median problem is to minimise the total 
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operating cost due to travelling between facilities and customers (Daskin and Maass, 2015) as 

shown in the objective function (2.16) below. The median problem can be formulated as follows: 

Median problem   

min
𝑥,𝑦

∑ ∑ 𝐷𝑗

∀𝑗∈𝒥𝑖∈ℐ

𝑑𝑖𝑗𝑦𝑖𝑗  (2.16) 

subject to:    

∑ 𝑥𝑖

𝑖∈ℐ

≤ 𝑁  (2.17) 

∑ 𝑦𝑖𝑗

𝑖∈ℐ

= 1 ∀𝑗 ∈ 𝒥 (2.18) 

𝑦𝑖𝑗 ≤ 𝑥𝑖 ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.19) 

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ ℐ (2.20) 

𝑦𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.21) 

 

In addition to the operating cost, the fixed cost of opening the facilities should be considered as a 

major cost component when evaluating a location problem. In order to unify fixed opening costs 

and operating costs, the facility fixed opening cost can be distributed over the planning horizon or 

the operating cost can be aggregated at the strategic level. It should be noted that opening more 

facilities leads to a reduction in operating cost as the customers’ accessibility would be improved. 

This implies the existence of a trade-off between facilities’ fixed opening cost and the operating 

cost of deliveries. The fixed charge facility location problem focuses on determining the number 

and location of facilities to minimise the total cost of the system by balancing the mentioned trade-

off (Daskin et al., 2005). The one-time fixed opening cost of facility 𝑖 ∈ ℐ is denoted by 𝑓𝑖. The 

uncapacitated fixed charge facility location model can be formulated by considering the fixed 

opening cost to the objective function (2.16) and obtain the following objective function: 

Uncapacitated fixed charge facility location problem   

min
𝑥,𝑦

∑ 𝑓𝑖𝑥𝑖

𝑖∈ℐ

+ ∑ ∑ 𝐷𝑗

∀𝑗∈𝒥𝑖∈ℐ

𝑑𝑖𝑗𝑦𝑖𝑗  (2.22) 

subject to: 

(2.17)−( 2.21). 

In the above model, we can relax constraint (2.17) if the budget allocation is considered in the 

minimisation objective function. In some contexts, the capacity of facilities limit the location 
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design problem (Melkote and Daskin, 2001). This fact can be incorporated by adding the following 

constraint into the mathematical model: 

Capacitated fixed charge facility location problem 

∑ 𝐷𝑗𝑦𝑖𝑗

∀𝑗∈𝒥

≤ 𝐶𝑎𝑝𝑖𝑥𝑖 ∀𝑖 ∈ ℐ (2.23) 

where 𝐶𝑎𝑝𝑖 shows the capacity of facility 𝑖 ∈ ℐ. The model with constraint (2.23) is referred to as 

capacitated fixed charge location problem.  

The above models form the basis of many facility location models within various public and 

private sector contexts. They can be further extended to cope with more realistic applications in 

different settings. One of the main factors that can help the location models to reflect real-world 

problems is the consideration of uncertainty within mathematical models (Snyder, 2006). In 

different applications relating to logistics and supply chain systems including containerised 

transport networks, taking the inventory of goods (e.g. containers) within the facilities is inevitable 

(Daskin et al., 2002a). The following subsections review the related studies of facility location 

under uncertainty and location inventory problem. 

2.5.2. Facility location under uncertainty 

The decision associated with facility location has a long-lasting impact and it is difficult and costly 

to change after it has been made. After the design decisions relating to facility location have been 

made, each of the parameters in the problem including operating costs, customer demand and travel 

distances may fluctuate considerably over the operating horizon (Snyder, 2006). These parameters 

can be estimated using different methods; however, these estimations can lead to inaccuracies and 

poor measurements. The parameter fluctuations can be incorporated in the modelling development 

procedure using various approaches such as aggregating customers demand and using a distance 

norm (Snyder, 2006). Furthermore, the facility location problem maintains a two-stage nature, i.e. 

determining the locations first, before the future parameters’ uncertainty is revealed for the 

decision maker (Klose, 2000). These problem characteristics have led to many scholars applying 

and developing approaches for decision making that take into account uncertainty when solving 

the facility location problem (Gao, 2012). In the following we review research that has addressed 

the facility location problem under uncertainty. 
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Research that has applied stochastic models for solving the facility location problem are presented 

in this section. These models have mostly used an objective function that aims to minimise the 

expected total cost or maximise the expected profits of the network or supply chain (Snyder, 2006). 

Depending on the nature of the problem and the structure of the model, the developed stochastic 

location models can be solved using general stochastic programming methods or specific 

customised algorithms designed by researchers (Ruszczyński, 1997). In developing stochastic 

programming models, a set of decisions should be made before the uncertain parameters are 

resolved, while other decisions are dealt with after the uncertainty has been realised. The former 

decisions are referred to as first-stage decisions and the latter are known as second-stage decisions. 

In the context of stochastic location problem, facility locations are first-stage decisions and 

operational tasks of customers travel and demand allocation are second-stage (recourse) decisions 

(Snyder, 2006).   

• Minisum location problems 

In stochastic programming models, optimising the mean outcome of the system is the most-widely 

used objective by minimising the expected total cost or maximising the expected profit (Snyder, 

2006). Cooper (1974) studied the location problem under the uncertainty of the demand points. In 

that study the demand locations were assumed to follow a bivariate normal distribution. The 

objective of their study was to find the optimal location of a single facility whilst minimising the 

expected demand weighted distance to demand zones. The convexity of the objective function was 

proved with regard to the chosen location. A scenario approach was applied to the facility location 

problem by Sheppard (1974). Mirchandani and Oudjit (1980) were among the first researchers to 

address the uncertain scenario-based location problem with the objective of minimising expected 

cost. This was done by proposing a tree-based model with discrete scenarios of stochastic edge 

lengths which minimise the expected demand-weighted distance. Weaver and Church (1983) used 

a Lagrangian relaxation algorithm to solve the stochastic median problem. They treated the 

scenario-based stochastic problem as a larger deterministic problem. More specifically, a problem 

with 𝑛 customers and 𝑠 scenarios was treated as a determinist problem with the overall number of 

𝑛𝑠 customers. They solved the model via the standard Lagrangian relaxation method for the 

median problem proposed by Cornuejols et al. (1977).  

Mirchandani et al. (1985) formulated the uncertain median problem as a deterministic model, 

where customer-scenario pairs were considered as a total of 𝑛𝑠 customers. They relaxed the 
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constraint related to the required number of opened facilities and reduced the original problem to 

the uncapacitated fixed charge location problem. This enabled them to apply a Lagrangian 

relaxation, where the Lagrange multiplier was equivalent to the fixed cost of opening facilities. 

Louveaux (1986) studied the capacitated median problem as well as the capacitated fixed charge 

location problem under uncertain environment. In these problems, the uncertain parameters were 

related to customer demand, production costs, and selling prices. The objective of the model was 

to maximise the system profit by optimising the location of facilities, their capacities and their 

allocation to customers. The facilities locations and capacities were decided by the first stage 

which might be insufficient to meet all customers’ demand in the second stage. Therefore, a 

penalty cost for unsatisfied customer demand was incorporated in the modelling procedure. Also, 

a budget restriction was included in the objective function to limit the maximum number of 

facilities. Later, Louveaux and Peeters (1992) proposed a dual-based procedure for the scenario-

based capacitated fixed charge location problem, and Laporte et al. (1994) applied an exact 

solution strategy based on the L-shaped method (see Laporte and Louveaux, 1993) for the location 

problem with uncertain demands.    

Ravi and Sinha (2006) designed an approximation algorithm for the two-stage stochastic location 

problem based on the Shmoys et al. (1997) rounding algorithm. The algorithm procedure 

developed by Ravi and Sinha (2006) allows the model to open facilities in either the first-stage or 

the second-stage with a different opening fixed costs in each.    

Listeş and Dekker (2005) attempted to address the facility location problem in the context of a 

reverse logistics network of using sand from demolition sites in the Netherlands. The uncertainty 

modelled was due to the random sand supply and demand. Listeş and Dekker (2005) proposed a 

three-stage mixed-integer stochastic programming model which maximises the expected profit of 

the network. The decisions regarding initial facilities location, additional facilities location, and 

product flow are made in the first stage, second stage, and third stage, respectively.  

Chan et al. (2001) developed a stochastic location-routing model for stochastically processed 

demands derived from a queuing system. In this study, a queuing process was used within an 

optimisation framework to estimate the demand probabilities. The objective of the model was to 

minimise the expected total cost. They applied a heuristic algorithm based on an extension of 

Benders decomposition to solve the model for a wartime medical evacuation problem. Ricciardi 

et al. (2002) considered the facility location problem with uncertain throughput costs at 
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distribution centres. The objective was to minimise the total costs comprising determinist 

transportation cost among plants, distribution centres and customers, coupled with the expected 

throughput cost at distribution centres. The resultant model was a nonlinear integer program which 

was solved using a Lagrangian-based heuristic.   

Daskin et al. (2002b) built a stochastic model to formulate the location as well as the inventory of 

facilities to minimise the expected total cost of location, transportation, and inventory under 

uncertain demand. They utilised a (𝑄, 𝑅) inventory policy for each facility which uses an 

Economic Order Quantity (EOQ) policy to approximate the inventory cost. The model was 

transformed to a deterministic problem by including the means and variances of the uncertain 

parameters in the objective function. Then the model was solved using the Lagrangian relaxation 

approach by Daskin et al. (2002b) and used column generation proposed by Shen et al. (2003). 

Furthermore, Snyder et al. (2007) extended the Daskin et al. (2002b) location-inventory model to 

consider stochastic costs, lead time and demand means and variances. They coped with the 

nonlinearity of the objective function by employing a Lagrangian relaxation–based exact 

algorithm.             

• Multi-echelon facility location problems 

Multi-echelon location models, which are mostly known as supply chain network design models 

(Snyder, 2006), can be regarded as stochastic extensions of the original work of Geoffrion and 

Graves (1974). A two-stage stochastic programming model was formulated by MirHassani et al. 

(2000) to design a supply chain network with binary design variables in the first-stage and 

continuous variables in the second-stage. The uncertainties represented by the model were mainly 

related to customer demand and facilities capacity. They solved the stochastic model using a 

parallel implementation of Benders decomposition algorithm.   

Tsiakis et al. (2001) developed a scenario-based stochastic model for multiproduct, multi-echelon 

supply chain networks. The decisions considered were the location and capacity of middle-echelon 

facilities, transportation arcs, and flows, in which transportation costs were piecewise linear 

concave. Alonso-Ayuso et al. (2003) proposed a two-stage stochastic model to optimise plant 

capacities, product mix, and sourcing decisions in the first-stage, and production, inventory, and 

transportation in the second-stage. The uncertainty arose from product demand and price, and the 

cost of raw materials and production. 
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Santoso et al. (2005) formulated a supply chain network design model at a global scale using two-

stage stochastic programming. The model included uncertain costs, demands, and capacities with 

an a large number of scenarios. The objective of the model was to optimise the location of facilities 

and the machines within facilities in order to minimise the expected total cost. The first-stage of 

the model was associated with binary design variables, while the second-stage included continuous 

recourse variables. This structure enabled Santoso et al. (2005) to utilise a sample average 

approximation framework together with an accelerated Benders decomposition to solve the 

stochastic model. Moreover, Butler et al. (2003) developed a model for the strategic production 

and distribution planning for a new product taking uncertain costs, demands, and capacities into 

consideration. The objective was to maximise the profit of a large consumer electronics company. 

2.5.3. Facility location-inventory problem 

The facility location and capacity problems are the strategic decisions of supply chain network 

design which are normally made for a period of two to five years (Zokaee et al., 2017). The 

different levels of decision-making in supply chain network design relating to strategic, tactical, 

and operational decisions have different nature, scope, and time horizons. This is the main reason 

that these decisions are made in a hierarchical sequence by researchers (Fahimnia et al., 2013b). 

This modelling approach may give rises to contradictory and infeasible decisions which 

necessitates the need for designing integrated models (Fahimnia et al., 2013a). Furthermore, in a 

business environment with high volatility, the strategic level decisions should be revisited at the 

tactical and operational levels to improve supply chain efficiency (Fahimnia et al., 2012).        

The literature reviewed in the previous subsection shows that cost is the main performance 

measure considered by location problems (Farahani and Hekmatfar, 2009). This cost component 

includes the trade-off between location, transportation and inventory costs (Farahani et al., 2015). 

To cope with the complexity of facility location-inventory problems, the developed models are 

normally simplified by breaking a large problem into smaller sub-problems (Stadtler, 2008). Yet 

this method might lead to two optimal solutions that minimise location and inventory costs 

separately rather than identifying a global optimum. In contrast, joint location-inventory problems 

that can produce global optimal solutions are mainly large problems with high complexity which 

requires more advanced solution strategies.     
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Figure 2.1 shows a location-inventory problem that represents a three-layer supply chain network. 

The network is made up of a set of suppliers who provide products to distribution centres, which 

ultimately meet the customers’ product demands. In the location-inventory problem the location 

of suppliers and customers is predetermined and known. The model decisions are then focused on 

identifying the optimal number and location of distribution centres, the allocation of customers to 

distribution centres and optimising the inventory service level at each distribution centre (Daskin 

et al., 2002b). This model can be extended to be more realistic by integrating transportation and 

routing decisions into the location inventory problem. The work of Perl and Sirisoponsilp (1988) 

was one of the first examples of research that integrated location, inventory, and transportation 

decisions. In addition, Jayaraman (1998) attempted to design a distribution network that optimised 

location, inventory, and transportation decisions.  

 

 
Figure 2.1. A three-layer location-inventory problem (Farahani et al., 2015). 

In the following, we present a review of location-inventory problem modelling, mainly in the 

context of strategic and operational decision-making in supply chain network design.  

2.5.3.1. Location-inventory problem modelling 

Location-inventory problem models can be categorised into four types: the basic location-

inventory problem, the dynamic location-inventory problem, the location-inventory routing 
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problem, and the inventory-transportation problem (Farahani et al., 2015). The basic location-

inventory problem is the underlying model of all four mentioned problem types. Therefore, a 

mathematical model of the location-inventory problem is discussed in this section. This model was 

proposed by (Tanonkou et al., 2005) for a three-echelon single commodity network which 

considered a single supplier, a set of decision centres, and multiple retailer. The problem involves 

determining the optimal location of distribution centres to serve the retailers in order to minimise 

the operational costs related to inventory and transportation as well as fixed opening cost of 

distribution centres. In addition, demand and delivery lead times are assumed as uncertain 

parameters that follow the normal distribution. Table 2.5 presents the parameters and decision 

variables used in the model formulation.  
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Table 2.5. Notation of sets, parameters, and variables used in location-inventory model 

Sets 

ℐ Set of retailers indexed by 𝑖. 

𝒥 Set of distribution centres indexed by 𝑗. 

Parameters 

𝐴𝑗 The ordering cost at distribution centre 𝑗 ∈ 𝒥. 

𝐻𝑗  The unit holding cost at distribution centre 𝑗 ∈ 𝒥. 

𝑇𝑗  Total available product at distribution centre 𝑗 ∈ 𝒥. 

𝑄𝑗  The order size at distribution centre 𝑗 ∈ 𝒥. 

𝐷𝑗  The annual demand at distribution centre 𝑗 ∈ 𝒥. 

𝐹𝑗 The fixed cost of locating distribution centre 𝑗 ∈ 𝒥. 

𝑙𝑗 The mean of delivery lead time from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝛿𝑗
2 The variance of delivery lead time from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝜇𝑖  The mean of demand at retailer 𝑖 ∈ ℐ. 

𝜎𝑖
2 The variance of demand at retailer 𝑖 ∈ ℐ. 

𝑡𝑗 The unit transportation cost from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝑡𝑖𝑗 The unit transportation cost from retailer 𝑖 ∈ ℐ to distribution centre 𝑗 ∈ 𝒥. 

𝑧𝛼 The standard normal deviate such that 𝑃(𝑍 ≤ 𝑧𝛼) = 𝛼. 

𝛼 The service level at distribution centre 𝑗 ∈ 𝒥. 

𝜓 Number of working days per year. 

ℎ𝑖
+ Cost of carrying inventory at retailer 𝑖 ∈ ℐ. 

ℎ𝑖
− Inventory shortage cost at retailer 𝑖 ∈ ℐ. 

𝛽𝑖 Initial inventory level at retailer 𝑖 ∈ ℐ. 

𝑤𝑖  Quantity delivered to retailer 𝑖 ∈ ℐ. 

𝑞𝑖(0) Inventory cost function at retailer 𝑖 ∈ ℐ. 

𝐶𝑖(0) Cumulative demand distribution function at retailer 𝑖 ∈ ℐ. 

Decision Variables 

𝑋𝑗  Binary variable, equals 1 if retailer 𝑗 ∈ ℐ is considered as a distribution centre; 0 otherwise. 

𝑌𝑖𝑗  Binary variable associated with allocation decision of retailer 𝑖 to distribution centre 𝑗. 
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Using the notation presented in Table 2.5, the basic location-inventory problem was presented as 

the following model: 

Location-inventory problem 

𝑀𝑖𝑛 ∑ 𝐹𝑗𝑋𝑗

𝑗

+ 𝜓 ∑ ∑ 𝑡𝑗𝜇𝑖𝑌𝑖𝑗

𝑗𝑖

+ 𝜓 ∑ ∑ 𝑡𝑖𝑗𝜇𝑖𝑌𝑖𝑗

𝑗𝑖

+ ∑ (𝐴𝑗

𝐷𝑗

𝑄𝑗
+ 𝐻𝑗

𝑄𝑗

2
)

𝑗

+ 𝑧𝛼 ∑ 𝐻𝑗√∑ 𝑙𝑗
𝑖

𝜎𝑖
2𝑌𝑖𝑗

𝑗

 

+𝑧𝛼 ∑ 𝐻𝑗√∑ 𝛿𝑗
2(𝜇

𝑖
𝑌𝑖𝑗)

2

𝑖𝑗

 (2.24) 

subject to  

𝜓 ∑ 𝜇𝑖𝑌𝑖𝑗

𝑖

= 𝐷𝑗 ∀𝑗 ∈ 𝒥 (2.25) 

∑ 𝑌𝑖𝑗

𝑗

= 1 ∀𝑖 ∈ ℐ (2.26) 

𝑌𝑖𝑗 ≤ 𝑋𝑗 ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.27) 

𝑋𝑗, 𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ ℐ, ∀𝑗 ∈ 𝒥 (2.28) 

Equation (2.24) represents the objective function which calculates the total cost of the network. 

The firs term is the fixed cost of establishing distribution centres. The transportation costs from 

the supplier to distribution centres and from distribution centres to retailers are computed by the 

second and third terms, respectively. The fourth, fifth, and sixth terms calculate the holding 

inventory cost, safety stock cost, and inventory shortage cost, respectively. Constraint (2.25) 

computes the annual demand for each distribution centre. Constraints (2.26)−( 2.27) guarantee 

that each retailer is allocated to an open distribution centre. Constraint (2.28) represents standard 

binary variables.  

The basic location-inventory model (2.24)−( 2.28) has been extended from different aspects to be 

used in different contexts and conditions. Eppen (1979) was one of the first researchers to compare 

centralised and decentralised inventory systems  for a multilocation newsboy problem with normal 

demand at each location. Nozick and Turnquist (1998) evaluated the impact of inventory safety 

stock on location decision of distribution centres for designing an automobile logistic network. For 

this purpose, they developed a one-to-one inventory replacement model. A two-stage supply chain 

network was proposed by Sourirajan et al. (2007) to find the optimal location of distribution 

centres while making trade-off between safety stocks and lead times. They developed a 
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Lagrangian-based heuristic to obtain near-optimal solutions in a reasonable computational time. 

Ozsen et al. (2008) analysed the capacitated warehouse location model with risk pooling to model 

the interrelationship between the inventory and capacity issue within warehouses. The problem 

included one single plant that delivers products to multiple retailers with uncertain demands, in 

which warehouse locations, shipment size, safety stock levels, and retailers’ allocation were 

optimised. The problem was modelled as a nonlinear integer program which was solved using a 

Lagrangian relaxation approach. Yang et al. (2010) examined the effect of distribution centre 

locations on the performance and profit of a supply chain with a single manufacturer, a single 

distribution centre, and multiple retailers. Schmitt (2011) worked on multiple strategies to protect 

the customer service-level when disruption occurs. Ağralı et al. (2012) studied the location-

inventory problem for the supply chain network design with uncapacitated facilities that served a 

set of customers for a single product. They formulated the problem as a mixed-integer nonlinear 

programming model, which was solved utilising a Benders decomposition algorithm.   

Various constraints and variables have been included in the location-inventory problem literature. 

Jayaraman (1998) explored the interconnection between facility location, inventory management, 

and transportation within a distribution network design problem. They incorporated the 

transhipment mode decision into the basic location-inventory model. Barahona and Jensen (1998) 

formulated an integer programming model for location-inventory problem. This model considered 

the distribution network for computer spare parts, which was solved through a decomposition 

framework. 

Halvorsen-Weare and Fagerholt (2013), modelled a facility location-inventory problem for the 

Liquefied natural gas distribution network. Miranda and Garrido (2008) presented a location-

inventory model for a three-echelon supply chain that considered stochastic demand. Also, a 

Lagrangian relaxation strategy improved with validity constraints was designed to solve the model. 

A four-echelon supply chain including a supplier, a central warehouse, several stores and demand 

nodes was designed by Mahar et al. (2009) to determine the optimal location of stores to fulfil 

customers stochastic demand considering. The costs considered in the objective function were 

associated with the location, transhipment (i.e. transfer of goods among facilities at the same 

echelon level), inventory holding and backordering. Firoozi et al. (2013) extended the location-

inventory problem to consider both EOQ and quantity discount policies for distribution centre 

inventory control within the supply chain network. The model was solved by developing a two-
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stage heuristic algorithm. Silva and Gao (2013) investigated the location-inventory model by 

integrating the locational costs with inventory replenishment costs. van Wijk et al. (2012) 

described a multi-location inventory model that considered Poisson demands. Furthermore, 

Shavandi and Bozorgi (2012) introduced a nonlinear mixed integer programming model to 

formulate the location-inventory problem with Fuzzy demand and solved it using a Genetic 

Algorithm. 

2.5.3.2. Dynamic location-inventory models 

Dynamic location-inventory models have been developed to address the problem with fluctuations 

of allocation costs over the planning horizon (Khumawala and Clay Whybark, 1976). Erlenkotter 

(1981) investigated seven approximation strategies for a location problem in a dynamic setting to 

minimise total costs while serving customers increasing demands. Viswanadham and Srinivasa 

Raghavan (2000) evaluated procurement and delivery logistics in order to minimise the total cost 

of location, inventory carrying, and delays in a dynamic supply chain model. 

Melo et al. (2006) presented a model to formulate the network design problem under a dynamic 

planning horizon that considered network configuration decisions and the relocation of facilities. 

Hinojosa et al. (2008) studied the location-inventory problem considering dynamic order size over 

the planning horizon. The decisions relating to opening new facilities and closing down old ones 

were incorporated in the model which was solved using a Lagrangian relaxation approach. 

Gebennini et al. (2009) built a cost-based and mixed-integer programming model for the dynamic 

location-allocation problem which aimed to optimise the number and location of facilities, the 

allocation of customer demand to facilities, inventory control, production rates and the service 

level.    

2.5.3.3. Location-inventory transportation models 

One of the initial studies that integrated vehicle routing and inventory control problems was carried 

out by Federgruen and Zipkin (1984). Liu and Lee (2003) formulated a model for the multi-depot 

location-routing problem together with inventory decisions. A two-stage heuristic method was 

developed to solve the model. Furthermore, Liu and Lin (2005) presented a heuristic strategy to 

solve the location-inventory routing model. Since this problem is a nonpolynomial (NP) problem. 

Ambrosino and Grazia Scutellà (2005) presented mathematical models to design distribution 

networks considering locational, transportation and inventory decisions as an extension to the work 
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by Perl and Daskin (1985). Moreover, Ma and Davidrajuh (2005) designed a distribution network 

for an agile virtual environment as a location-inventory model. Max Shen and Qi (2007) presented 

a nonlinear integer programming model for a supply chain network design under uncertain 

demand, in which they incorporated routing and inventory costs in the strategic location problem. 

Ahmadi Javid and Azad (2010) formulated a mixed integer convex program to optimise location, 

allocation, capacity, inventory, and routing decisions jointly, where customers’ stochastic demand 

follows the normal distribution. Mete and Zabinsky (2010) considered distribution network design 

with risk management. They proposed a stochastic programming model to optimise the storage 

locations of medical supplies and required inventory levels. Lieckens et al. (2013) studied the 

remanufacturing network design by optimising location, capacity, and inventory decisions to 

maintain a high service level for the supply of repairable service parts.     

Rudi et al. (2001) proposed a joint-profit maximization model to determine the optimal inventory 

orders at each facility for a network with two locations considering transhipment decisions 

between them. Additionally, Gen and Syarif (2005) presented an optimisation model to identify 

the best facility location, distribution and inventory for a production/distribution problem. The 

impact of transhipment decisions related to ordering policies was analysed by Hu et al. (2005) to 

approximate the optimum (𝑠, 𝑆) policies for multi-location inventory systems. Moreover, Özdemir 

et al. (2006) introduced a stochastic optimisation model to deal with stocking locations, inventory 

and transhipment among them under transportation capacity constraints. Wang et al. (2007), 

proposed a bi-level programming model to enable electronic markets in China to address the 

location-inventory problem. Decisions associated with location, production, inventory, and 

transportation was integrated using the continuous approximation approach proposed by Pujari et 

al. (2008). Additionally, a two-echelon logistics network consisting of a single central warehouse 

and multiple local warehouses were modelled as an integer non-linear program by Kutanoglu and 

Mahajan (2009). The aim of the study was to find the optimal location of warehouses and their 

inventory levels. Çapar et al. (2011) considered a location-inventory problem within a supply chain 

constructed from two distribution centres and two retailers under a periodic-review inventory 

policy. A simulation-based model was proposed by Hochmuth and Köchel (2012) to solve a multi-

location-inventory system with lateral transhipment. 
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2.6. Research gaps 

The literature discussed above illustrates a number of research gaps in the containerised transport 

concept. Firstly, the majority of studies in container shipping network design have related to the 

seaborn part of the transport chain. However, inland container movements have a significant effect 

on seaborne container movements (Dong and Song, 2012). Secondly, most of previous literature 

has treated model parameters as known and deterministic values. In the context of container 

shipping, there is high variability and fluctuations in the problem parameters such as the supply 

and demand of containers (Lee and Song, 2017). Thirdly, as discussed in the literature review, the 

strategic decisions relating to dry port location, and the operational decisions relating to 

transportation, ECR, and inventory have been examined separately. This overlooks the 

interdependency of different decision levels in the inland container network design which leads to 

non-optimal solutions.  
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Chapter 3. Research Methodology 

3.1. Introduction 

This chapter outlines the research methodology that was used to achieve the research objectives. 

In order to explain the appropriate approach to address the dry port network design problem, an 

overview of modelling and solution methods adopted in the existing literature is provided in 

Section 3.2. The structure and properties of the research problem under study and the two-stage 

stochastic programming procedure is elaborated in Section 3.3. Furthermore, Section 3.4 is 

dedicated to the sample average approximation technique which was used to handle the complexity 

of stochastic programming models. As mentioned earlier, uncertainties are an important 

characteristic of the container shipping industry which was thoroughly considered by this research. 

The robust optimisation concept which ensures the reliability of solutions obtained from two-stage 

stochastic programming is outlined in Section 3.5. Finally, the Benders decomposition strategy 

that was used to enhance the computational efficiency of the solution procedures is explained in 

Section 3.6.  

3.2. Overview 

In the transport network design uncertainty stems from both the supply and demand sides (Chen 

et al., 2011). The sources of supply side uncertainty are due to factors such as weather conditions, 

traffic flow, congestion and construction activities. The uncertainty of demand side, on the other 

hand, is driven by seasonal effects, special occasions, and customers attributes (Chen et al., 2011). 

These uncertainties and variations bring about supply and demand fluctuations. In the 

containerised transport networks, the uncertainty could be driven by seasonal variation in container 

flows. For instance, the quantity of container flow from Asia to Europe faces a noticeable rise in 

the last quarter of each year because of Christmas (Meng et al., 2012b). The uncertainties inherent 

in the number of containers and their availability over time creates further complicates container 

planning and the ECR problem (Crainic et al., 1993). Furthermore, when network design decisions 

are made, complete and accurate information is normally unavailable, which can cause inefficient 

operational planning and a significant increase in container transport costs. In other words, 

decision makers are not able to predetermine some of the parameters prior to the design stage 

(Hosseini and Sahlin, 2019). Hence, it is more realistic and important to consider the uncertainty 
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associated with dry port container networks to achieve cost-effective designs with high 

performance. In the following section, decision making techniques and modelling procedures that 

have been applied to uncertain transport network design problems are discussed. 

3.2.1. Network Design under Uncertainty 

• Expected value models 

The expected value model has been widely applied to transport network design in uncertain 

environments. The underlying objective is to minimise/maximise the expected value of total 

costs/profits subject to constrained decision variables (Chen et al., 2011). A bilevel programming 

model was developed by Yin and Ieda (2002) to cope with uncertainty in transport network design 

that optimised the capacity and travel time within arcs of the network. Chen and Yang (2004) 

developed a stochastic model to minimise the expected total travel cost for network designs with 

uncertain demand. Ukkusuri and Patil (2009) proposed a bilevel stochastic mathematical 

programming model to formulate a multi-period network design problem under demand 

uncertainty. They dealt with the uncertainty by staging the investment decision over multiple 

periods. Furthermore, Chow and Regan (2011) studied the uncertain network design problem by 

developing network-based models to maximise the expected value of the investment in terms of 

net present value. Coslovich et al. (2006) applied a stochastic programming model to formulate 

the fleet management problem in a container transportation company. The model attempted to 

minimise the expected total cost, which comprised the routing costs, the resource assignment costs, 

and the container repositioning costs. Moreover, to tackle the empty container repositioning 

problem under uncertain parameters associated with supply, demand, and ship capacity, Long et 

al. (2012) adopted a two-stage stochastic programming approach. The objective of the model was 

to minimise the expected operational cost of ECR. They used a sample average approximation to 

estimate the expected objective value.   

• Mean-variance model 

The mean variance modelling approach was devised by Markowitz and Todd (2000) in the finance 

setting. The main idea of the model is to measure the risk through variance while 

maximising/minimising the return’s expected value/variance. This modelling technique has been 

employed in the transportation context for designing robust networks under uncertainty. Chen et 
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al. (2003) applied a stochastic bilevel programming model to deal with transportation network 

design with uncertain demands. The model aimed to maximise the mean of profit and minimise 

the risk (i.e. the variance profit). Karoonsoontawong and Waller (2007) formulated the network 

design problem with origin-destination demand uncertainty via a robust optimisation model. The 

model focused on minimising the expected total network travel time as well as the expected risk 

due to uncertain travel demand. Ng and Waller (2009) proposed a mean-variance model for the 

transportation network design in order to optimise the capacity expansion decisions. Yin et al. 

(2009) attempted to develop robust optimisation models for transport network design in a way that 

the system performance became less sensitive to the variation of demand. Shu and Song (2014) 

utilised a two-stage robust optimisation model to address laden container routing and ECR 

problems under supply and demand uncertainties. Zeng et al. (2010) adopted a robust optimisation 

model in the container shipping context to incorporate demand uncertainty in container resource 

allocation problems taking into account the risk preference of decision makers.  

3.2.2. Decision making under uncertainty 

According to the early work of Rosenhead et al. (1972), decision-making environments can be 

classified in terms of certainty, risk, and uncertainty. Under certain environment all parameters 

are known and deterministic, whilst some or all of the parameters are subject to randomness in risk 

and uncertain environments. More specifically, in risk environments the uncertain parameters are 

characterised by known probability distributions. However, in an uncertain environment, there is 

no information about probabilities of uncertain parameters. Problems associated with risk 

environments are known as stochastic optimisation problems with the objective of optimising the 

expected values. Problems within uncertain environments are known as robust optimisation 

problems with the main goal of optimising the worst-case scenario (Snyder, 2006). 

In the modelling process, a performance measure based on the problem context is used to 

determine the performance quality of solutions. If the probability distribution of random 

parameters is known, the problem uncertainty is characterised by appropriate distribution 

parameters. However, in most of the cases this information is unavailable or incomplete; some 

prespecified intervals may be used to restrict continuous variables (Snyder, 2006).    

The dry port container network design problems considered in this study were subject to uncertain 

environments. As described in this section, stochastic programming and robust optimisation 
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modelling procedures can be employed to formulate the problem. For the purpose of this research, 

the two-stage stochastic programming method together with robust optimisation were applied. The 

estimation of the probabilities of uncertainties were addressed by using the sample average 

approximation method. Furthermore, the computational challenges inherent in the developed 

models were resolved by adopting the Benders decomposition technique. The mentioned 

modelling and solution methods are discussed further in the following sections. 

3.3. Stochastic programming  

In this thesis, the planning of dry port container network design is investigated at both the strategic 

and operational levels. The other crucial aspect of containerised transportation that has been 

incorporated in this study is the inherent uncertainty of this industry. The containers’ supply and 

demand are subject to high uncertainty and periodicity which necessitates an approach to model 

the non-stationary and randomness of parameters. Therefore, deterministic modelling approaches 

that are employed in the majority of studies in the container shipping literature are unable to 

capture the uncertainty and periodicity of the problem, where the value of stochastic solutions is 

high (Birge and Louveaux, 2011). Furthermore, the simultaneous consideration of the strategic 

and operational levels leads to a temporal hierarchal structure which implies that a single-stage 

modelling approach cannot cope with the hierarchical decision-making structure of the problem. 

As a result, a two-stage stochastic programming approach was utilised to model hierarchical 

decision-making associated with the dry port container network design problem under a non-

stationary and uncertain settings. The two-stage stochastic programming was initially introduced 

by Beale (1955) and Dantzig (1955). This modelling approach has been studied in detail by various 

scholars (see for example, Kall and Mayer, 1976; Birge and Louveaux, 2011; Prékopa, 2013). 

Below, the basic stochastic programming problem is explained based on the work of Shapiro 

(2008).  

• Single-stage stochastic programming 

As discussed earlier, in some business contexts such as container shipping, decisions should take 

into account uncertain conditions to obtain optimal solutions. Uncertainties can be modelled in 

various ways depending on the source of uncertainty. With mathematical modelling methods, an 

objective function 𝑓 should be optimised (i.e. minimised or maximised) subject to a set of 

constraints associated with the problem. Let 𝑥 denote the decision variables vector. The 
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mathematical programming problem (say minimisation problem) can be formulated in terms of an 

objective function (3.1) and constraint (3.2): 

𝑀𝑖𝑛
𝑥∈X

𝑓(𝑥)  (3.1) 

subject to 

𝑔𝑖(𝑥) ≤ 0 ∀𝑖 ∈ 𝐼 (3.2) 

where, 𝐼 refers to the set of constraints indexed by 𝑖, and 𝑔𝑖(𝑥) denotes the constraints function. 

Clearly, the objective and constraint functions are dependent on problem parameters. For instance, 

in the container shipping context, customers’ demand affects the total cost of system in the 

objective function and the flow of containers in the constraint function. 

Let 𝜉 denote the vector of parameters. Hence, the objective and constraint functions shown as 

𝑓(𝑥, 𝜉) and 𝑔𝑖(𝑥, 𝜉) associated with the decision vector 𝑥 and the parameter vector 𝜉. In almost all 

business contexts, the parameter vector 𝜉 is uncertain and cannot hold a single value throughout 

time. One can fix parameters to a prespecified value such as 𝜉 = 𝜉∗ and solve the resultant 

programming model. However, this could lead to a low-quality solution which cannot hold 

optimality over the entire planning horizon. The other option to model such a problem is stochastic 

optimisation. In this view, the uncertain parameter vector 𝜉 is treated as a random vector with a 

probability distribution of 𝜋. The stochastic programming problem can the be formulated as 

follows: 

𝑀𝑖𝑛
𝑥∈X

 𝐸[𝑓(𝑥, 𝜉)]  (3.3) 

subject to 

𝑔𝑖(𝑥, 𝜉) ≤ 0 ∀𝑖, 𝜉 (3.4) 

where, 𝐸[𝑓(𝑥, 𝜉)] is the expected value of the objective function according to the probability 

distribution 𝜋. The presented model is a single-stage stochastic programming model. Below, the 

two-stage stochastic programming is discussed. 

• Two-stage stochastic programming 

In a two-stage stochastic programming problem, there are two sets of decision variables. For a set 

of decisions corresponding to vector 𝑥, one should make the decision before the realisation of the 

random parameter 𝜉 becomes available. This decision vector is referred to as “here-and-now” 
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which should be made in the first stage as explained. For instance, the decision corresponding to 

the number and location of dry ports has to be made before the unknown container demands 

becomes known. The other set of decisions denoted by 𝑦, are made in the second stage after a 

realisation of uncertain parameters 𝜉 becomes known. In the dry port container network design, 

the second stage decisions include container transportation, ECR, and container inventory control. 

The second-stage decisions 𝑦 can be optimised by solving the following mathematical model: 

𝑀𝑖𝑛
𝑦∈𝑌

 𝐹(𝑥, 𝑦, 𝜉)  (3.5) 

subject to:  

𝑇𝑥 + 𝑊𝑦 ≤ ℎ  (3.6) 

As can be seen, the second-stage problem (3.5)−(3.6) depends on the firs-stage decisions 𝑥 and 

the uncertain parameters 𝜉. Let 𝑄(𝑥, 𝜉) denote the optimal objective solution of the above second-

stage problem. The expected value of the second-stage problem is optimised at the firs-stage as 

the following optimisation problem: 

𝑀𝑖𝑛 𝐸[𝑄(𝑥, 𝜉)]  (3.7) 

Considering the problem (3.5)−(3.7), the two-stage stochastic linear programming with recourse 

can be formulated as follows: 

𝑀𝑖𝑛 𝑓(𝑥) = 𝑐𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜉)]  (3.8) 

subject to:  

𝐴𝑥 + 𝑏 ≤ 0  (3.9) 

𝑇𝑥 + 𝑊𝑦 ≤ ℎ  (3.10) 

where 𝑐, 𝐴, and 𝑏 are the first-stage vectors and matrices.  

Solving this two-stage stochastic programming problem requires precise information about the 

probability of uncertain parameters 𝜉 to compute the expected value 𝐸[𝑄(𝑥, 𝜉)]. In situations with 

no information about the uncertain probability, the two-stage stochastic model (3.8)−(3.10) can 

be solved with a scenario-based approach by creating scenarios. More specifically, a set of 
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scenarios 𝜔 = 1, … , Ω is generated, where each scenario corresponds to a realisation of the 

uncertain parameter, which is denoted by 𝜉𝜔. Furthermore, a positive weight of 𝜋𝜔 is allocated to 

each 𝜉𝜔 such that ∑ 𝜋𝜔
Ω
𝜔=1 = 1. The generated set {𝜉1, … , 𝜉𝜔} of scenarios with the corresponding 

probabilities 𝜋1, … , 𝜋𝜔 are regarded as a representation of the underlying probability distribution. 

In this context, the expected value function 𝐸[𝑄(𝑥, 𝜉)] in (3.8) can be computed as the finite 

summation 𝐸[𝑄(𝑥, 𝜉)] = ∑ 𝜋𝜔
Ω
𝜔=1 𝑄(𝑥, 𝜉𝜔). Using the scenario-based approach, the two-stage 

stochastic programming may be re-formulated as: 

𝑀𝑖𝑛 𝑓(𝑥) = 𝑐𝑇𝑥 + ∑ 𝜋𝜔

Ω

𝜔=1

𝑄(𝑥, 𝜉𝜔)  (3.11) 

subject to:  

𝐴𝑥 + 𝑏 ≤ 0  (3.12) 

𝑇𝜔𝑥 + 𝑊𝜔𝑦𝜔 ≤ ℎ𝜔 𝜔 = 1, … , Ω (3.13) 

where 𝜉𝜔 = (𝑇𝜔, 𝑊𝜔 , ℎ𝜔), 𝜔 = 1, … , Ω are the corresponding scenarios. 

Solving the two-stage stochastic programming presented above is quite challenging. In order to 

solve the problem, a Sample Average Approximation (SAA) can be employed (Ahmed et al., 

2002). The solution difficulty as well as the SAA approach are clarified in the following section. 

3.4. Sample Average Approximation  

The two-stage stochastic programming problem specified by (3.11)−(3.13) is difficult to solve for 

two main reasons. Firstly, the computation of objective function (3.11) for a given first-stage 

solution 𝑥, requires evaluating the expectation of the linear programming value function 𝑄(𝑥, 𝜉𝜔). 

The calculation of this expected value for continuous distributions requires taking multiple 

integrals which is computationally impractical. For discrete distributions, furthermore, evaluating 

the expected value involves solving a great number of linear programs (3.7) associated with 

uncertain parameters’ scenarios. Secondly, even if the expected value (3.7) can be calculated, the 

optimisation of the problem is difficult since 𝐸[𝑄(𝑥, 𝜉)] is a non-linear function of 𝑥 (Birge and 

Louveaux, 2011). Therefore, solving problem (3.11)−(3.13) with the implicit non-linearity is 
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difficult. In order to deal with these difficulties, a Sample Average Approximation method (Mak 

et al., 1999; Ahmed et al., 2002; Kleywegt et al., 2002) was developed as discussed below. 

For adopting the SAA approach, a random sample of 𝑁 scenarios are generated for the random 

parameter 𝜉. In other words, for the realisation of container demand a set of scenarios of size 𝑁 is 

generated as Ω𝑁 = {𝜉1, 𝜉2, … , 𝜉𝑁}. In this approach, the scenarios are produced with equal 

probability, i.e., 𝜋𝜔 =
1

𝑁
. Then, the expected value 𝐸[𝑄(𝑥, 𝜉𝜔)] is approximated by the sample 

average function 
1

𝑁
∑ 𝑄(𝑥, 𝜉𝜔)𝑁

𝜔=1 . Accordingly, the “true” problem (3.8)−(3.10) is approximated 

as the following problem: 

𝑀𝑖𝑛 𝑓𝑁(𝑥) = 𝑐𝑇𝑥 +
1

𝑁
∑ 𝑄(𝑥, 𝜉𝜔)

𝑁

𝜔=1

  (3.14) 

 

The optimal objective value and the optimal solution vector of SAA problem (3.14) are denoted 

by 𝑣𝑁 and X̂𝑁, respectively. It should be emphasised that both 𝑣𝑁 and X̂𝑁 are random as they are 

functions of the randomly generated sample. However, for a given realisation of the random 

sample 𝜉1, 𝜉2, … , 𝜉𝑁, the SAA problem (3.14) can be solved deterministically using a suitable 

deterministic optimisation method.     

It was shown by Kleywegt et al. (2002) that if the sample size 𝑁 grows, the values of 𝑣𝑁 and X̂𝑁 

converges to the values of the true problem with a probability of one. In addition, as the sample 

size 𝑁 increases, the X̂𝑁 converges to an optimal solution of the true problem. This implies that 

the SAA problem (3.14) with a moderate sample size generates a good approximation for the 

optimal solution of true problem (3.11)−(3.13). The quality of approximated solutions can be 

analysed in terms of statistical confidence intervals. In order to conduct such an analysis, the 

problem (3.14) should be solved repeatedly with independent samples. The procedure for 

providing statistical intervals is described in Section 5.  

The statistical validation of the SAA approach was stated by (Norkin et al., 1998a; Norkin et al., 

1998b). Then, Mak et al. (1999) developed the statistical evaluation further by proposing a 

sampling procedure. The SAA method was also utilised to deal with stochastic linear programs 

and stochastic routing problem by Linderoth et al. (2006) and Verweij et al. (2003), respectively. 
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In addition, the application of the SAA method in two-stage stochastic programming problems 

was studied in the work of Kleywegt et al. (2002).     

3.5. Robust Optimisation 

The development of a model for dry port container network design, similar to any other real-world 

problem, involves uncertain parameters including noisy, incomplete, or erroneous data (Mulvey et 

al., 1995). The data uncertainty associated with optimisation problems can be driven by the 

following main reasons (Ben-Tal et al., 2009).  

Some data is subject to prediction errors. This mainly occurs when one uses forecasts within 

modelling procedure due to unavailability of data. Future demand and returns are the typical 

examples. 

Some data is subject to measurement errors since they cannot be measured exactly. Some decision 

variables are subject to implementation errors as they cannot be applied to practice exactly as 

computed.    

Data uncertainties can be found in different settings including business applications (e.g. returns 

of financial instruments, customers demand), social sciences (e.g. partial census surveys), physical 

sciences and engineering. In the mathematical programming context, models are mainly 

formulated based on “worst-case” or “mean-value” uncertain values (Mulvey et al., 1995). 

However, Birge (1982) showed that mean value problems lead to large error bounds and worst-

case models generate very conservative and expensive solutions.  

One way to overcome the gap between real-life problems and the mathematical programming 

models is the use of sensitivity analysis. This post-optimality approach evaluates the effect of data 

variations on the obtained solutions of model. This implies that sensitivity analysis is a reactive 

approach as it only demonstrates the effect of uncertainties on generated solutions (Mulvey et al., 

1995). Hence, a proactive method is required to formulate the real-world problem that would be 

able to generate solutions, which are less sensitive to the input data. One approach that can be used 

is stochastic linear programming as described in the previous section. This approach heavily 

depends on the availability of historical data for the uncertain parameters to estimate their 

probability distribution. The scenario-based strategy explained in the previous section can relax 
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the historical data challenge. Yet, uncertain parameters may not have the same or known 

distributions. This imperfect information as well as the need for the large number of scenarios, 

could lead to infeasible solutions to the stochastic programming (Neyshabouri and Berg, 2017). 

The robust optimisation scheme is the other approach that is introduced to tackle the uncertainty 

of real-life problems in mathematical programming models which can proactively generate 

solutions which are optimal and feasible for all realisation scenarios (Ben-Tal et al., 2009). This 

approach has been adopted for various applications. Paraskevopoulos et al. (1991) developed a 

capacity planning model in the plastic industry that employed a robust approach to address the 

problem’s uncertainties. Sengupta (1991) studied the robustness concept for a stochastic linear 

programming problem. Escudero et al. (1993) adopted a robust optimisation model for outsourcing 

decisions in a manufacturing context and considered demand uncertainty by generating scenarios. 

Gutierrez and Kouvelis (1995) used a robust optimisation approach to formulate international 

production scheduling problems with uncertain exchange rates. In general, robust optimisation 

schemes can be divided into three approaches: robust scenario-based stochastic programming 

(Mulvey et al., 1995), robust convex programming (Ben-Tal and Nemirovski, 1998; Ben-Tal and 

Nemirovski, 2000), and robust fuzzy programming (Pishvaee et al., 2012; Pishvaee and Fazli 

Khalaf, 2016). The scenario-based robust optimisation approach proposed by Mulvey et al. (1995) 

is detailed in this section, which was adopted by this research.  

The main aim of robust optimisation is to produce solutions which are less influenced by the 

model’s uncertain data. This approach is obtained by combining the goal programming concept 

with a scenario-based description of model’s data. The robust optimisation approach may be 

applied to models with two sets of variables: design variables and control variables. The former is 

associated with the structural component of the model with fixed input data. The latter, on the 

other hand, deals with the control component of the model which is subject to uncertain input data. 

Let 𝑥 denote the vector of design decision variables whose optimal value is not restricted to the 

uncertain parameters’ realisation. More specifically, when these decisions are made, their value 

cannot be changed once the data realisation is revealed. In addition, let 𝑦 denote the vector of 

control decision variables which are modified once the uncertain parameters are realised. The 

optimal value of control variables depends on the uncertain parameters’ realisation as well as the 

optimal value of design variables. In the current study, the design variables are related to the 

number and location of dry ports, which are fixed even when the uncertain containers’ supply and 



59 
 

demand are realised. Then, the control variables of the research problem are operational decisions 

associated with containers transportation, ECR and inventory control as their values depend on 

uncertain demand realisations. Considering the introduced notation, the model with two sets of 

variables is formulated as: 

𝑀𝑖𝑛 𝑐𝑇𝑥 + 𝑑𝑇𝑦  (3.15) 

subject to:  

𝐴𝑥 = 𝑏  (3.16) 

𝐵𝑥 + 𝐶𝑦 = 𝑒  (3.17) 

𝑥, 𝑦 ≥ 0  (3.18) 

 
Equation (3.16) represents the structural constraints, in which coefficients are fixed and known. 

Equation (3.17) represents the control constraints, where the coefficients are uncertain and 

dependant on input data.  

In the robust optimisation problem, each scenario 𝜔 ∈ Ω is associated with a realisation of control 

constraints’ coefficients as the set of {𝑑𝜔, 𝐵𝜔 , 𝐶𝜔 , 𝑒𝜔}, where ∑ 𝜋𝜔
Ω
𝜔=1 = 1. The mathematical 

programming model (3.15)−(3.18) “will be robust with respect to optimality if it remains "close" 

to optimal for any realisation of the scenario 𝜔 ∈ 𝛺. It is then termed solution robust (Mulvey et 

al., 1995, p. 265)”. In other words, solution robustness concentrates on finding solutions which are 

optimal for all possible scenarios. Furthermore, the solution obtained from this model is “robust 

with respect to feasibility if it remains "almost" feasible for any realisation of 𝜔. It is then termed 

model robust (Mulvey et al., 1995, p. 265)”. More precisely, model robustness ensures the 

feasibility of generated solutions over all scenario realisations. Finding a solution for the above 

problem that can be both feasible and optimal for all scenarios of the set 𝜔 is impossible. Similarly, 

it is unlikely that a solution to the dry port network design problem can remain both feasible and 

optimal for all scenario realisations of container demand. Hence, a trade-off between the 

robustness of the solution and model robustness is required. In the following section, a robust 

optimisation model that can measure the trade-off is outlined.  
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Let {𝑦1, 𝑦2, … , 𝑦𝜔} be the set of control variables for each scenario 𝜔 ∈ 𝛺. Furthermore, the set 

{𝑧1, 𝑧2, … , 𝑧𝜔} was introduced to measure the control constraints’ violation for each scenario. 

Then, a robust optimisation model is formulated as: 

𝑀𝑖𝑛 𝜎(𝑥, 𝑦1, … , 𝑦𝜔) + 𝜗 𝜌(𝑧1, … , 𝑧𝜔)  (3.19) 

subject to:  

𝐴𝑥 = 𝑏  (3.20) 

𝐵𝜔𝑥 + 𝐶𝜔𝑦𝜔 + 𝑧𝜔 = 𝑒𝜔 ∀𝜔 ∈ Ω (3.21) 

𝑥, 𝑦𝜔 ≥ 0 ∀𝜔 ∈ Ω (3.22) 

The first term of the objective function (3.19) is the solution robustness, and the second term 

represents the model robustness weighted by 𝜗. More specifically, the term 𝜌(𝑧1, … , 𝑧𝜔) in the 

objective function is a feasibility penalty function which penalises violations of the control 

constraints over the scenario set. By considering the set of scenarios in the robust model above, 

the objective function 𝑓 = 𝑐𝑇𝑥 + 𝑑𝑇𝑦 becomes a random variable taking the value of 𝑓𝜔 = 𝑐𝑇𝑥 +

𝑑𝜔
𝑇𝑦𝜔 with occurrence probability 𝜋𝜔. The solution robustness 𝜎(𝑥, 𝑦1, … , 𝑦𝜔) in the objective 

function (3.19) was defined by Mulvey et al. (1995) as follows: 

𝜎(𝑧) = ∑ 𝜋𝜔𝑓𝜔

𝜔∈Ω

+ 𝜆 ∑ 𝜋𝜔 (𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′

𝜔′∈Ω

)

2

𝜔∈Ω

  (3.23) 

where 𝜆 determines the weight of the solution variance. However, the quadratic term in (3.23) 

creates a computational burden as it involves a large number of cross-products among variables 

(Yu and Li, 2000). This quadratic term is then replaced by an absolute deviation term as suggested 

by Yu and Li (2000) as follows: 

𝜎(𝑧) = ∑ 𝜋𝜔𝑓𝜔

𝜔∈Ω

+ 𝜆 ∑ 𝜋𝜔 |𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′

𝜔′∈Ω

|

𝜔∈Ω

  (3.24) 

The absolute value in the above expression is linearised by the proposed procedure of Leung et al. 

(2007) as the following reformulation: 
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𝑀𝑖𝑛 𝜙(𝑧) = ∑ 𝜋𝜔𝑓𝜔

𝜔∈Ω

+ 𝜆 ∑ 𝜋𝜔 [(𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′

𝜔′∈Ω

) + 2𝜃𝜔]

𝜔∈Ω

 (3.25) 

subject to:  

𝑓𝜔 − ∑ 𝜋𝜔′𝑓𝜔′

𝜔′∈Ω

+ 𝜃𝜔 ≥ 0 
∀𝜔 ∈ Ω (3.26) 

𝜃𝜔 ≥ 0 ∀𝜔 ∈ Ω (3.27) 

The linearisation method (3.25)−(3.27) can be proved considering two cases. In the first case, 

𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′
𝜔′∈Ω ≥ 0. Then, the minimisation of (3.25) leads to 𝜃𝜔 = 0. In this case, 𝜙(𝑧) =

∑ 𝜋𝜔𝑓𝜔𝜔∈Ω + 𝜆 ∑ 𝜋𝜔[(𝑓𝜔 − ∑ 𝜋𝜔′𝑓𝜔′𝜔′∈Ω )]𝜔∈Ω = 𝜎(𝑧). In the second case, 𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′
𝜔′∈Ω <

0. Then, the minimisation of (3.25) brings about 𝜃𝜔 = ∑ 𝜋𝜔
′ 𝑓𝜔

′
𝜔′∈Ω − 𝑓𝜔. Therefore, 𝜙(𝑧) =

∑ 𝜋𝜔𝑓𝜔𝜔∈Ω + 𝜆 ∑ 𝜋𝜔[(∑ 𝜋𝜔
′ 𝑓𝜔

′
𝜔′∈Ω − 𝑓𝜔)]𝜔∈Ω = 𝜎(𝑧). The details of this linearisation approach 

can be found in Yu and Li (2000).  

To guarantee the feasibility of the model over all scenarios (i.e., model robustness), any violation 

of control constraint (3.17) is penalised with a big penalty cost 𝜗. Consequently, the objective 

function of the robust optimisation model given by (3.19) can be stated as: 

𝑀𝑖𝑛 ∑ 𝜋𝜔𝑓𝜔

𝜔∈Ω

+ 𝜆 ∑ 𝜋𝜔 [(𝑓𝜔 − ∑ 𝜋𝜔
′ 𝑓𝜔

′

𝜔′∈Ω

) + 2𝜃𝜔]

𝜔∈Ω

+ 𝜗 ∑ 𝜋𝜔𝑧𝜔

𝜔∈Ω

 (3.28) 

The presented scenario-based robust model can be solved using the SAA method described above. 

In the following section, the Benders Decomposition method is outlined which improves the 

solution procedure in terms of computational time.  

3.6. Benders Decomposition 

The Benders Decomposition (BD) algorithm was proposed by Benders (1962) as an exact solution 

method to deal with mathematical models which contain complicating variables. The main goal of 

this approach is to cope with complex models through fixing complicating variables and solving 

the resulting simplified model. The Benders decomposition algorithm, which is also known as 

variable partitioning (Zaourar and Malick, 2014) and outer linearisation (Trukhanov et al., 2010), 

is broadly applied to solve mathematical programming models by distributing the overall 
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computational burden based on the models’ structure. This approach has been employed 

successfully in various contexts including planning and scheduling (Hooker, 2007; Canto, 2008), 

energy and resource management (Cai et al., 2001; Zhang and Ponnambalam, 2006), 

transportation and telecommunication (Costa, 2005), healthcare (Luong, 2015), and chemical 

process design (Zhu and Kuno, 2003).  

The Benders decomposition technique includes a series of estimation, outer linearization, and 

relaxation (Geoffrion, 1970b; Geoffrion, 1970a). First, the complicating variables are fixed at a 

given value to generate a subspace of the model. Then, the dual problem of the resulted formulation 

is utilised to obtain extreme rays and extreme points. The former is used to ensure the feasibility 

of the model (feasibility cuts) and the latter is employed to guarantee the optimality of the model 

(optimality cuts). Thus, a corresponding formulation is generated by enumerating all the extreme 

points and extreme rays. Yet, this enumeration procedure and solving the resulting formulation is 

computationally impossible. To cope with this difficulty, the corresponding formulation is relaxed 

in the BD algorithm which results in a master problem and a subproblem. These problems are 

solved iteratively to generate feasibility and optimality cuts for directing the search process.       

The BD algorithm is mainly applied to mixed integer linear programming (MILP) problems. The 

integer variables are the complicating variables in MILP models. By fixing the integer variables, 

the model would be transformed to a continuous linear program (LP) which can be dealt with 

through standard duality theory (Rahmaniani et al., 2017). Two-stage stochastic programming 

models are mainly formulated as MILP problems. In the dry port network design model, the first 

stage location decisions are defined by binary variables, while second stage operational decisions 

are characterised by continuous variables. Based on this structure the Benders decomposition can 

be utilised to solve this research using the proposed two-stage stochastic programming approach. 

It is worth mentioning that this algorithm is referred to as the L-shaped decomposition method in 

the stochastic programming setting (Van Slyke and Wets, 1969). Furthermore, The SAA algorithm 

presented in Section 3.3 requires a repeated solution of the two-stage stochastic programming 

problem (3.14). Hence, Benders decomposition can be embedded with the SAA method to improve 

the solution efficiency (Santoso et al., 2005). In the following, the Benders decomposition 

algorithm is outlined which will be later applied to solve the dry port network design problem.  

The classic version of the BD algorithm proposed by Benders (1962) is presented. 
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Let 𝑥 denote the vector of complicating (integer) variables, and 𝑦 be the vector of continuous 

variables. The MILP model is given as: 

 

𝑀𝑖𝑛 𝑓𝑇𝑥 + 𝑐𝑇𝑦  (3.29) 

subject to: 

𝐴𝑥 = 𝑏  (3.30) 

𝐵𝑥 + 𝐷𝑦 = 𝑑  (3.31) 

𝑥 ≥ 0 and integer  (3.32) 

𝑦 ≥ 0   (3.33) 

where positive integer variables 𝑥 should meet constraint (3.30). Moreover, constraint (3.31) 

should be satisfied with both sets of variables 𝑥 and 𝑦.  

Let �̅� be a given value of integer variables. Employing the value of �̅�, the model (3.29)−(3.33) can 

be rewritten as:   

𝑀𝑖𝑛
�̅�∈𝑌

{𝑓𝑇�̅� + min
�̅�≥0

{𝑐𝑇𝑦 ∶ 𝐷𝑦 = 𝑑 − 𝐵�̅�}}  (3.34) 

The inner minimisation in (3.34) is a continuous linear problem. Let 𝜓 denote the dual variable 

associated with 𝐷𝑦 = 𝑑 − 𝐵�̅�. The dual formulation of the inner continuous problem is: 

𝑀𝑎𝑥
𝜓

{𝜓𝑇(𝑑 − 𝐵�̅�) ∶  𝜓𝑇𝐷 ≤ 𝑐}  (3.35) 

The primal and dual problems can be interchanged as stated by the duality theory, which leads to 

the following equivalent formulation: 

𝑀𝑖𝑛
�̅�∈𝑋

{𝑓𝑇�̅� + max
𝜓

{𝜓𝑇(𝑑 − 𝐵�̅�) ∶  𝜓𝑇𝐷 ≤ 𝑐}}  (3.36) 

The inner maximisation problem’s feasible space, i.e., 𝐹 = {𝜓 | 𝜓𝑇𝐷 ≤ 𝑐}, is independent of the 

value of �̅�. Accordingly, for any given value of �̅�, the inner problem generates either a feasible 

solution or unbounded solution. If the problem produces an unbounded solution, there is a direction 

of unboundedness 𝑟𝑞, 𝑞 ∈ 𝑄 for which 𝑟𝑞
𝑇(𝑑 − 𝐵�̅�) > 0, where 𝑄 is the set of extreme rays of 
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space 𝐹. In order to avoid the infeasibility driven by the unboundedness, the following cut should 

be added to the model: 

𝑟𝑞
𝑇(𝑑 − 𝐵�̅�) ≤ 0 ∀𝑞 ∈ 𝑄 (3.37) 

The inclusion of this cut restricts the movement in the unboundedness direction and therefore 

prevents the production of infeasible solutions. On the other hand, if the inner maximisation 

problem in (3.36) generates a feasible solution, it would be one of the extreme points 𝜓𝑒, 𝑒 ∈ 𝐸, 

where 𝐸 denotes the set of extreme point of space 𝐹. Hence, by adding the feasibility cuts (3.37), 

the inner problem generates one of its extreme points as the feasible solution. It implies that 

problem (3.36) can be restated as: 

𝑀𝑖𝑛
�̅�∈𝑋

𝑓𝑇�̅� + max
𝑒∈𝐸

{𝜓𝑒
𝑇(𝑑 − 𝐵�̅�)}  (3.38) 

 subject to: 

(3.37). 

The maximisation function in the objective (3.38) leads to non-linearity in the problem. The 

problem can be linearised by introducing a continuous variable 𝜂. Then, the original problem 

(3.29)−(3.33) can be given as the following equivalent formulation, which is known as the 

Benders Master Problem (MP): 

𝑀𝑖𝑛
𝑥,𝜂

𝑓𝑇𝑥 + 𝜂  (3.39) 

subject to:  

(3.37),   

𝐴𝑥 = 𝑏  (3.40) 

𝜂 ≥ 𝜓𝑒
𝑇(𝑑 − 𝐵𝑥) ∀𝑒 ∈ 𝐸 (3.41) 

𝑥 ≥ 0 and integer  (3.42) 

Constraints (3.37) and (3.41) are called feasibility cuts and optimality cuts, respectively. Since the 

complete enumeration of these cuts is computationally impractical, Benders (1962) introduced an 

iterative algorithm through a relaxation of the feasibility and optimality cuts. The BD algorithm 
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solves the above MP problem with only a subset of cuts (3.37) and (3.41) to generate a value for 

�̅�. The obtained �̅� is then used to solve subproblem (3.35). If the subproblem solution is feasible 

and bounded, an optimality cut (3.41) is generated. However, if the obtained solution from 

subproblem is unbounded (infeasible), a feasibility cut (3.37) would be generated. Then the current 

solution is tested through these cuts. If the current solution violates the cuts, they are included into 

the current MP and the procedure repeats until a stopping criterion is reached. 

The algorithm repeats the interaction between the master problem and subproblem until an 

obtained solution converges to the optimal solution. This convergence is evaluated by calculating 

the optimality gap at each iteration. The optimality gap is computed using the lower bound and 

upper bound on the optimal objective solution. The lower bound is obtained from the objective 

value of the MP as it is a relaxation of the Benders reformulation. The upper bound is gained by 

solving the subproblem with the �̅� obtained from the MP. The Benders decomposition procedure 

is illustrated in Figure 3.1. 

 
Figure 3.1. Benders decomposition procedure (Rahmaniani et al., 2017). 

For the purpose of this research, the two-stage stochastic programming procedure was employed 

to formulate the dry port network design in the container shipping industry. The reliability of the 

solutions under the uncertain environment was then ensured by developing the robust counter part 

of the proposed models based on the concept of robust optimisation. The complexity of the models 

was handled by adopting the SAA method together with the Benders decomposition. The full 

problem description, modelling development, and solution strategies are detailed in the following 

chapters.
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Chapter 4. Mathematical model 

4.1. Introduction 

In this chapter, a comprehensive mathematical model is presented that integrates the strategic and 

operational decisions associated with the design of a dry port network. The uncertainty in container 

demand is taken into consideration and has been addressed using a stochastic programming 

approach. In the following section the detailed research motivation and problem description are 

discussed. 

Globalisation has led to increases in trade volume, cargo size and the number of ships (Yang, 

2018). The shipping industry is subject to many short, medium and long-term risks and 

uncertainties arising from a range of factors including: technical faults, operational problems, 

finance, market conditions, competition and regulation (Thanopoulou and Strandenes, 2017). The 

customers of shipping lines typically need door-to-door transportation, which requires intermodal 

transportation. For them to be successful, it is necessary to achieve a high level performance in the 

management of their assets within the context of inland networks (Olivo et al., 2013). The inland 

parts of container shipping networks involve complex distribution in a stochastic environment. 

The adoption of appropriate hinterland operations leads to higher efficiency and responsiveness 

which improves competitiveness (Yu et al., 2018). 

In this research, carrier haulage operations are incorporated, where the containers are under the 

responsibility of shipping line throughout the whole process (Yu et al., 2018), which includes 

hinterland transportation and the storage of containers. Increasing container flows, driven by 

economic globalisation has given rise to the dry port concept as a joint seaport and hinterland 

approach (Crainic et al., 2015). The shipping line invests in establishing dry ports in the hinterland 

network in order to enhance the mentioned container operations. A dry port differs from traditional 

inland depots by providing more services including: the storage and consolidation of laden 

containers; depot-storage of empty containers; maintenance and the repair of containers; and 

customs clearance. The significant advantage of a dry port is the provision of high capacity for 

different transportation modes with direct connection to seaports, which enables customers to drop 

off/pick up their containers using dry ports rather than directly using seaports (Roso et al., 2009).  
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In order for a dry port to be competitive it needs to have enough volume and the operating costs 

need to be no more than a direct connection to the port (Lättilä et al., 2013). The economic 

feasibility of an intermodal system may be evaluated in terms of the breakeven distance, which is 

the distance at which intermodal transport costs equal truck transport costs (Kim and Van Wee, 

2011). Therefore, the shipping line should identify the location of dry ports optimally in a container 

shipping network taking into account the trade-offs between the costs and savings. In this context, 

it is important to optimise networks by making appropriate strategic and tactical decisions 

including: the number and location of new dry ports, the allocation of customers to dry ports, the 

transportation modes for moving containers, as well as empty container inventory and leasing 

decisions. 

Several studies have considered the dry port location problem (e.g., Roso et al., 2009; Ambrosino 

and Sciomachen, 2014; Wang et al., 2018a) as discussed in Section 2.4. However, these studies 

neglected the effect of operational decisions and uncertainties associated with the location 

problem. Also, despite studies such as Wang et al. (2018b) applied a sensitivity analysis of model 

parameters, yet this post-optimality approach was a reactive way to investigate uncertainties and 

it could not yield robust solutions proactively. As mentioned earlier, in addition to providing 

transhipment services, dry ports offer a range of other services including: consolidation; the 

storage of laden and empty containers; maintenance and repair of containers; and customs 

clearance (Roso et al., 2009 p.341). The provision of storage helps shipping line companies handle 

the empty container repositioning problem. In the literature the ECR problem has been considered 

independently from the dry port location problem. As discussed in Section 2.3, since the ECR 

problem is mainly due to international trade imbalances, most studies have applied network flow 

optimisation models (see for example, Brouer et al., 2011; Song and Dong, 2012b)  to address the 

problem. Jula et al. (2006), Deidda et al. (2008), and Furió et al. (2013a) analysed different policies 

for hinterland empty container repositioning within a deterministic environment. Erera et al. 

(2009) developed a robust optimisation framework for dynamic ECR that was modelled by time-

space networks. Nonetheless, their approach was limited to the repositioning of empty containers 

without considering the strategic location decisions of ports or dry ports.  

In reality, in a containerised cargo transport chain the demand for empty containers is driven by 

laden container flows. In addition, both laden and empty containers flows should occur in the same 
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network (Song and Dong, 2015b). This implies that the flow of laden and empty containers should 

be integrated into the network design problem to capture real-life practice. Xie et al. (2017) and 

Vojdani et al. (2013) studied the repositioning of empty containers in hinterland intermodal 

networks. Although the collaboration of different carriers was studied by Vojdani et al. (2013), 

their model was restricted to a deterministic environment. The flows of laden containers were 

assumed to be fixed parameters rather than decision variables. This ignored the necessity to 

simultaneously consider decisions relating to the flow of the laden and empty containers in the 

optimisation model.  

Strategic dry port location decisions should consider the impact of strategic and operational 

decisions since the deployment of dry ports, intermodal transportation planning and ECR are 

interdependent decisions (Lee and Song, 2017). For instance, empty container repositioning 

decisions involve empty containers’ waiting time, the amount of movement, as well as destinations 

(e.g. a manufacturer or a seaport). However, ECR decisions depend on the number and location of 

dry ports which determines the inbound and outbound transportation times and storage capacity 

utilisation. There is a temporal hierarchical structure and periodicity between strategic and 

tactical/operational decisions  (Amiri-Aref et al., 2018). It is therefore important to integrate 

strategic level decisions with the tactical and operational level decisions in containerised transport 

chain and distribution network models. This research aims to address this problem. 

Table 4.1. summarises the literature related to container shipping, which is classified according to: 

the modelling approach; the structure and periodicity; mode of transport; decision level; and model 

decisions. The mathematical modelling approach (second column) are mainly including linear 

programming, mixed integer linear programming, and game theory method. The parameters 

feature (third column) is relating to the structure and periodicity nature of the problem. The 

structure of the parameters shows the uncertainty of the research, and the periodicity of the 

parameters indicate the periodic fluctuations in the studied problem. The fourth column, i.e., mode 

of transport, specifies the modality of the previous works in container shipping. Next, the decision-

making level is presented in fifth column which is divided into strategic, tactical, and operational 

levels. The tactical and operational levels are shown together as they are quite close to each other 

and cannot be separated in some applications. The last column is presented to illustrated decisions 

which have been taken into account in the relevant literature. These decisions involve the facility 
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location, containers flow or transportation, container inventory, and empty containers 

repositioning.  

This research is positioned relative to the gap in the academic literature in the last row. In contrast 

to earlier studies on container shipping network design, this thesis considers dry port location, 

which is a strategic decision, together with the operational decisions relating to the intermodal 

container flow management in a dynamic and stochastic environment. 

The rest of this chapter is organised as follows. Section 4.2 defines the problem and presents the 

proposed mathematical model in detail. In Section 4.2.1 the hinterland container network and its 

related decision making problem is presented. Section 4.2.2 provides a detailed two-stage 

stochastic programming model to address the described dry port container network design problem 

by integrating strategic and operational uncertain decisions.
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Table 4.1. A classification of relevant articles in the literature. 

References 

Modelling 

approach 

Parameters features Mode of 

transport 

Decisions Level Model Decisions 

Structure Periodicity Strategic Tactical/Operational Location Transportation Inventory ECR 

Jula et al. (2006) LP Deterministic Multiple Single modal - ✓ - ✓ - ✓ 

Shintani et al. (2007) LP Deterministic Single Single modal ✓ ✓ - ✓ - ✓ 

Deidda et al. (2008) IP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Erera et al. (2009) IP Stochastic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Zhang et al. (2009) MILP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Brouer et al. (2011) LP Deterministic Single Single modal ✓ - - ✓ - ✓ 

Song and Dong (2012b) IP Deterministic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Meng et al. (2012a) MIP Deterministic Single Intermodal - ✓ - ✓ - ✓ 

Furió et al. (2013a) IP Deterministic Multiple Single modal - ✓ - ✓ ✓ ✓ 

Vojdani et al. (2013) IP Deterministic Single Intermodal ✓ - - - ✓ ✓ 

Bell et al. (2013) LP Deterministic Single Single modal - ✓ - ✓ - ✓ 

Di Francesco et al. (2013b) SP Stochastic Single Single modal - ✓ - ✓ - ✓ 

Ambrosino and 

Sciomachen (2014) 
MILP Deterministic Single Intermodal ✓ - ✓ ✓ - - 

Chang et al. (2015) LP Deterministic Single Intermodal ✓ - ✓ - ✓ - 

Xie et al. (2017) GM Stochastic Multiple Intermodal ✓ - - - ✓ ✓ 

Wang et al. (2018a) IP Deterministic Single Intermodal ✓ - ✓ ✓ - - 

Yu et al. (2018) GM Deterministic Single Intermodal - ✓ - - ✓ ✓ 

Current Study SP Stochastic Multiple Intermodal ✓ ✓ ✓ ✓ ✓ ✓ 

LP: Linear Programming; MILP: Mixed-integer Linear Programming; IP: Integer Programming; MIP: Mixed Integer Programming; SP: Stochastic programming; GM: Game 

model
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4.2. Problem definition and formulation 

4.2.1. Problem description 

A model is proposed for designing a container shipping network that includes the hierarchical 

decisions relating to dry port location and allocation and creation of arcs (links) between nodes in 

the network at the strategic level. The allocation of customers to facilities is considered as a 

strategic decision in previous research including the work by Amiri-Aref et al. (2018). At the 

operational level the model considers the intermodal transportation (flow) of laden and empty 

containers, as well as empty container repositioning and inventory planning. The model considers 

the uncertainties associated with containers’ demand. It also establishes a hierarchy between 

different decision levels that uses a robust two-stage stochastic programming model in a multi-

period setting. The purpose of the proposed model is to: optimise the location and allocation 

decisions relating to dry ports at the strategic level; and to minimise the costs associated with the 

container flow and empty container inventory at the operational level. This integrated approach 

will enhance the quality of the design and operation of hinterland container shipping networks. 

Figure 4.1 illustrates a typical hinterland container transport network. Figure 4.1a represents a 

traditional road and rail network that transports imported and exported raw materials, goods and 

empty containers between seaports and customers. A customer could be a producer of raw 

materials, a manufacturer, a distribution centre, freight forwarder, warehouse or retailer. An 

alternative is to add dry ports to the network as shown in Figure 4.1b. With this configuration there 

can still be direct flows to the seaport. The dry port can also be used to store empty containers. 

Hinterland empty container repositioning aims to satisfy the demand for empty containers whilst 

preventing unnecessary movements (Yu et al., 2018).  
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a. Traditional inland container network b. Inland container network using dry ports 

Intermodal flow of laden containers from customers 

Intermodal flow of laden containers from seaports 

Intermodal flow of empty containers 

 

Figure 4.1. Hinterland container transport network 

 

This thesis considers decisions associated with the transportation of empty containers throughout 

the network. The intermodal transportation of empty containers between the seaports, dry ports 

and customers are integrated with decisions related to the movement of laden containers 

throughout the network over the planning periods. The approach determines the optimal inventory 

levels of empty containers at the storage facilities located at the seaport, dry ports and customers 

for multiple periods. At the strategic level the model aims to determine the optimal location of dry 

ports from a given set of possible sites and decide the allocation of customers to dry ports. At the 

operational level it optimises: the intermodal transportation of laden and empty containers; and the 

inventory level of empty containers throughout the network. The model takes into account the 

uncertainties associated with the demand of containers.  

4.2.2. Modelling approach 

In this section, a robust two-stage stochastic programming model is proposed to cope with the 

hierarchal decision-making structure. Let ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁 denote the complete set of nodes in the 

network, where 𝕆 represents the set of seaports, 𝕀 represents the set of candidate dry ports, and 𝕁 

represents the set of customers. The available capacity for storing empty containers at each node 
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is given by 𝐶𝑎𝑝𝓃, where 𝓃 ∈ ℕ. 𝒜 = {(𝓅, 𝓆): 𝓅, 𝓆 ∈ ℕ} represents the set of all arcs (links) in 

the network, where 𝓅, 𝓆 represent a pair of nodes.  

The model includes the abovementioned strategic decisions in the first stage and considers 

uncertainties in the second stage. The associated decision for the location of dry ports is denoted 

by the binary variable 𝑋𝓅 with a fixed opening cost of 𝑓𝓅, where 𝓅 ∈ 𝕀. The binary variable 𝑌𝓅𝓆 is 

defined as the decision associated with the allocation of node 𝓅 to node 𝓆 in the considered 

network with a cost of 𝑑𝓅𝓆, where (𝓅, 𝓆) ∈ 𝒜. Similarly, 𝑌𝓆𝓅 is the binary variable related to the 

allocation of node 𝓆 to node 𝓅. It should be noted that 𝓅 and 𝓆 are used as indices to denote the 

nodes throughout the network (𝑖. 𝑒. 𝓃 ∈ ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁). 

Uncertainty involves various causes. One of the main reasons of uncertainty is the lack of 

coordination between demand and supply, which are subject to high variability and volatility over 

the planning horizon. The uncertainty in the model is characterised by a set of plausible scenarios, 

denoted by 𝜔, where each scenario 𝜔 ∈ 𝛺 can occur with a probability of 𝜋(𝜔). 

Let 𝐗 = (𝑋𝓅, 𝑌𝓅𝓆) be the vector of all first-stage binary design variables relating to the network 

structure. The first-stage model optimises the strategic location-allocation decisions. The second-

stage model optimises the expected operational planning costs. The first-stage objective function 

and constraints can be formulated as follows: 

min
𝐗

{ ∑ 𝜋(𝜔)

𝜔∈Ω

q(𝐗, 𝜔) + ∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

} (4.1) 

𝑌𝓅𝓆 ≤ 𝑋𝓅,                                  ∀𝓅 ∈ 𝕀, ∀𝓆 ∈ 𝕁    (4.2) 

∑ 𝑌𝓆𝓅

𝓆∈𝕆

≥ 𝑋𝓅,                            ∀𝓅 ∈ 𝕀  (4.3) 

∑ 𝑌𝓅𝓆

𝓅∈𝕆

+ ∑ 𝑌𝓅𝓆

𝓅∈𝕀

≥ 1,           ∀𝓆 ∈ 𝕁  (4.4) 

𝑋𝓅, 𝑌𝓅𝓆  ∈ {0,1},                         ∀𝓅, 𝓆 ∈  ℕ = 𝕆 ∪ 𝕀 ∪ 𝕁    (4.5) 

The objective function (4.1) includes three terms. The first term is the total expected operational 

costs of 𝑞(𝑿, 𝜔) which are optimized at the second stage. The second term is the fixed cost of 

opening a dry port at a candidate location ∀𝓅 ∈ 𝕀. The third term indicates the relevant 
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transportation cost relating to the allocation of node 𝓅 to node 𝓆 in the network, where (𝓅, 𝓆) ∈

𝒜. Constraint (4.2) ensures that the customers are allocated to opened dry ports. Constraint (4.3) 

ensures that when a dry port location is chosen, it should be allocated to at least one seaport. 

Constraint (4.4) ensures that each customer is connected to at least one seaport or one dry port. 

This constraint also ensures that a given customer can be supplied by both seaports and dry ports. 

Constraint (4.5) represent first-stage binary variables.  

It should be noted that the location and allocation strategic decisions that determine the 

configuration of the container shipping network, have a significant impact on the second-stage 

operational decisions. In this study, the operational decisions relating to the flow of empty and 

laden containers and the inventory levels of empty containers throughout the network are 

made/revisited on a periodic basis 𝑡 ∈ 𝑇. The set of containers are denoted by 𝐾 = {ℓ, ℯ}, where 

ℓ and ℯ are associated with laden and empty containers of Twenty Equivalent Unit (TEU) size, 

respectively. A FEU is considered as two TEUs (Song & Dong, 2012). All links which connect 

node 𝓅 to node 𝓆 can utilise transportation mode 𝑚 ∈ 𝑀, where 𝑀 is the set of available 

transportation modes.  

Let 𝑐𝓅𝓆𝑚
𝑘  be the unit cost for transporting container type 𝑘 ∈ 𝐾 on arc (𝓅, 𝓆) ∈ 𝒜 when 

transportation mode 𝑚 is used. Note that the loading, unloading and operational costs of containers 

at each node are also included in 𝑐𝓅𝓆𝑚
𝑘 . The unit cost of holding an empty container at each node 

is denoted by ℎ𝓃, for all 𝓃 ∈ ℕ. Decisions relating to the leasing of empty containers is also 

considered as a part of inventory planning. If the inventory level of empty containers at a dry-port 

is not enough to satisfy the demand in a specific period, the shipping line can lease empty 

containers from lessors or other companies with the cost of 𝑔𝓃
+, where 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, per unit 

of container. The shipping line returns the leased containers with a returning cost of 𝑔𝓃
−, where 

𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, per unit of container. In addition, if the shipping line has a deficiency of empty 

containers at a given seaport, it could import its own empty containers from overseas seaports with 

the unit cost of 𝑣𝓃
+, where 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}.  Accordingly, 𝑣𝓃

− shows the unit cost of returning 

(exporting) imported containers, where 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}. A unit backorder cost per container 𝑏𝓆 is 

applied for backordered incoming or outgoing demand at a given customer 𝓆 ∈ 𝕁. In addition, 𝜈 

denotes the unit cost per container for rejected incoming or outgoing demand from customers. The 

transportation lead-time is denoted by 𝜏𝓅𝓆𝑚, where (𝓅, 𝓆) ∈ 𝒜 and 𝑚 ∈ 𝑀. Moreover, 𝜃 denotes 
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the container processing time associated with loading and unloading of finished goods/raw 

materials at customers sites. 

Let 𝐷𝓆𝑡
ℓ (𝜔) and 𝑆𝓆𝑡

ℓ (𝜔) represent the realisation of the demand for incoming and outgoing laden 

containers at customer 𝓆 in period 𝑡 under scenario 𝜔. Hereafter, we refer to the demand for 

outgoing laden containers (i.e. 𝑆𝓆𝑡
ℓ (𝜔)) as “supply” for convenience. Let 𝐹𝓅𝓆𝑡𝑚

𝑘 (𝜔) be the decision 

variable denoting the flow of container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 in period 𝑡 using transportation 

mode 𝑚 under scenario 𝜔. Let 𝐼𝓃𝑡
ℯ (𝜔) denote the inventory level of empty containers at a given 

node 𝓃 in period 𝑡 under scenario 𝜔. Furthermore, let 𝐿𝓃𝑡
ℯ+(𝜔) and 𝐿𝓃𝑡

ℯ−(𝜔) be the number of leased 

and returned empty containers, respectively, at 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁} in period 𝑡 under scenario 𝜔. Due 

to the periodicity of decisions related to empty container leasing, it is important to consider the 

cost relating to the net number of leased containers at each period. Let us denote the net stock of 

leased empty containers by 𝐿𝓃𝑡
ℯ (𝜔) = 𝐿𝓃,𝑡−1

ℯ (𝜔) + 𝐿𝓃𝑡
ℯ+(𝜔) − 𝐿𝓃𝑡

ℯ−(𝜔),  with the corresponding 

cost of 𝑔𝓃, where 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}. Note that 𝑔𝓃
+ denotes the fixed leasing cost per container, 

which is incurred only once when containers are leased, while 𝑔𝓃 is the variable leasing cost per 

container per period for the net stock of leased empty containers remain in the network. Let 

𝐻𝓃𝑡
ℯ+(𝜔) and 𝐻𝓃𝑡

ℯ−(𝜔) denote the number of empty containers of the shipping line which are 

imported and exported, respectively, at the seaport 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁} in period 𝑡 under scenario 𝜔. 

The backordered incoming and outgoing demand at a customer 𝓆 ∈ 𝕁 in period 𝑡 under scenario 

𝜔 is denoted by 𝑈𝓆𝑡
ℓ (𝜔) and 𝐵𝓆𝑡

ℓ (𝜔), respectively. Finally, γ𝓆𝑡
ℓ (𝜔) and δ𝓆𝑡

ℓ (𝜔) represent the 

rejected incoming and outgoing demand at a customer 𝓆 ∈ 𝕁 in period 𝑡 under scenario 𝜔, 

respectively. The sets, parameters, and decision variables used in the proposed model are 

summarized in Table 4.2. 
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Table 4.2. Notation of sets, parameters, and decision variables 

Sets 

ℕ Set of nodes indexed by 𝓃. 

𝕆 Set of seaports indexed by 𝓅, 𝓆. 

𝕀 Set of candidate dry port locations indexed by 𝓅, 𝓆. 

𝕁 Set of customers indexed by 𝓅, 𝓆. 

𝒜 Set of arcs. 

Ω Set of scenarios indexed by 𝜔. 

𝑇 Set of periods indexed by 𝑡. 

𝐾 Set of containers indexed by 𝑘, ℓ, ℯ. 

𝑀 Set of available transportation modes indexed by 𝑚. 

Parameters 

𝐶𝑎𝑝𝓃  The storage capacity of node 𝓃 ∈ ℕ 

 𝑓𝓅 The fixed cost for opening a dry port at node 𝓅 ∈ 𝕀. 

𝑑𝓅𝓆 The fixed cost for allocating node 𝓅 to node 𝓆. 

𝑐𝓅𝓆𝑚
𝑘  The unit cost of transporting container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 . 

ℎ𝓃 The unit cost of holding an empty container at node 𝓃 ∈ ℕ. 

𝑔𝓃
+/𝑔𝓃

− The unit cost of leasing/returning an empty container at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑔𝓃 The unit cost of leased empty containers’ net stock per container per period at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑣𝓃
+/𝑣𝓃

− The unit importing/exporting cost of an empty container at node 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}. 

𝑏𝓆  The unit backorder cost per container at customer 𝓆 ∈ 𝕁. 

𝜈𝓆 The unit cost of rejected demand per container at customer 𝓆 ∈ 𝕁. 

𝜏𝓅𝓆𝑚  The transportation lead-time on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 ∈ 𝑀. 

𝜃𝓆 
The containers processing time associate with the loading and unloading of finished goods/raw materials 

at customers 𝓆 ∈ 𝕁. 

𝜋(𝜔) The occurrence probability of scenario 𝜔. 

𝐷𝓆𝑡
ℓ (𝜔) The demand for incoming laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝑆𝓆𝑡
ℓ (𝜔) The demand for outgoing laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

First-stage Decision Variables 

 𝑋𝓅  Binary variable associated with location of dry port 𝓅. 

 𝑌𝓅𝓆  Binary variable associated with the demand allocation of an arc from node 𝓅 to 𝓆. 

Second Stage Decision Variables 

𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔) The flow of container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 in period 𝑡 using mode 𝑚 under scenario 𝜔. 

𝐼𝓃𝑡
ℯ (𝜔) The inventory level of empty containers at node 𝓃 ∈ ℕ in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ (𝜔) The net stock of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ+(𝜔) The number of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 
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𝐿𝓃𝑡
ℯ−(𝜔) The number of returned empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ+(𝜔) The number of imported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ−(𝜔) The number of exported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝑈𝓆𝑡
ℓ (𝜔) The backordered incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝐵𝓆𝑡
ℓ (𝜔) The backordered outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

γ𝓆𝑡
ℓ (𝜔)  The rejected incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

δ𝓆𝑡
ℓ (𝜔) The rejected outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝐂(𝜔) The vector of all continuous variables for each scenario 

Below the second-stage model is presented in which 𝐂(𝜔) = {𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔), 𝐼𝓃𝑡

ℯ (𝜔),

𝐿𝓃𝑡
ℯ (𝜔), 𝐿𝓃𝑡

ℯ+(𝜔), 𝐿𝓃𝑡
ℯ−(𝜔), 𝐻𝓃𝑡

ℯ+(𝜔), 𝐻𝓃𝑡
ℯ−(𝜔), 𝑈𝓆𝑡

ℓ (𝜔), 𝐵𝓆𝑡
ℓ (𝜔), γ𝓆𝑡

ℓ (𝜔), δ𝓆𝑡
ℓ (𝜔)} denotes the vector 

of all continuous variables for each scenario 𝜔. This model is applied after the strategic decisions 

from the first-stage model have been made and the uncertainty in demand is revealed. Therefore, 

the second-stage model is a collection of deterministic programming models over all possible 

scenarios. The objective function of the second-stage model for a single scenario 𝜔 ∈ Ω  is 

associated with all incurred operational costs, and can be formulated as (4.6.a) – (4.6.e): 

min
𝐂(𝜔)

q(𝐗, 𝜔) =  ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚
𝑘 𝐹𝓅𝓆𝑡𝑚

𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

 
(4.6.a) 

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇

 
(4.6.b) 

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

 
(4.6.c) 

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

 
(4.6.d)  

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔))

𝑡∈𝑇

+ ∑ ∑ 𝜈𝓆 (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

 
(4.6.e) 

Expression (4.6.a) evaluates the total cost of intermodal transportation of laden and empty 

containers over all arcs involved in the considered network. This expression includes the 

transportation cost between dry ports and customers, between seaports and dry ports, and between 

seaports and customers, over all periods. Expression (4.6.b) represents the total holding cost of 
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empty containers throughout all nodes in the network over all periods. Expression (4.6.c) evaluates 

the total cost associated with empty containers leasing operations, which include the cost of leases, 

returned containers, and net stock of leased empty containers over the planning periods within the 

network. Expression (4.6.d) refers to the total cost of importing/exporting empty containers at 

seaports over all periods. Finally, expression (4.6.e) indicates the total cost of backordered as well 

as rejected demand of incoming and outgoing containers at customers over the planning horizon. 

In the second stage of the model, the following constraints need to be followed. 

• Containers demand constraints 

Constraint (4.7) represents the flow of incoming laden containers from all possible dry ports and 

the set of seaports to a given customer during each period to fulfil its current uncertain demand. 

The possible backordered demand accumulated from previous periods as well as rejected demand 

are considered by this constraint. Note that 𝑡 − 𝜏𝓅𝓆𝑚 represents the time when the containers are 

dispatched using transportation mode 𝑚 to be delivered to a given customer in period 𝑡. 

∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

+ γ𝓆𝑡
ℓ (𝜔) = 𝐷𝓆𝑡

ℓ (𝜔) + 𝑈𝓆,𝑡−1
ℓ (𝜔) − 𝑈𝓆𝑡

ℓ (𝜔) 

∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω          (4.7) 

Constraint (4.8) refers to the flow of outgoing laden containers, which should be dispatched from 

a given customer to all possible dry ports and seaports. This constraint aims to meet the current 

uncertain demand of outgoing (supply) containers from customer 𝓆 and their accumulated 

backordered units from previous periods. The possible rejected demand of outgoing containers is 

also included here. It should be noted that the customer’s outgoing demand in period 𝑡 would be 

satisfied, as soon as laden containers are dispatched from the customer in period 𝑡. That is why the 

lead time is excluded from this constraint.     

∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

+ δ𝓆𝑡
ℓ (𝜔) = 𝑆𝓆𝑡

ℓ (𝜔) + 𝐵𝓆,𝑡−1
ℓ (𝜔) − 𝐵𝓆𝑡

ℓ (𝜔) 

∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω              (4.8) 

• Container flow conservation constraints 

The flow conservation of laden containers at any possible dry port for raw materials and finished 

goods are ensured by constraints (4.9) and (4.10), respectively. More specifically, constraint (4.9) 

specifies that the inward containers from all seaports to a given dry port should be equal to the 
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outflow of those containers from the given dry port to all customers. It should be noted that this 

constraint corresponds to the forward flow of containers. Constraint (4.10) relates to the outgoing 

flow from customers to a given dry port, which is equal to the flow of those containers from the 

given dry port to all seaports. This constraint reflects the backward flow of containers in the 

network considered here. Constraints (4.9) and (4.10) consider the time lag between the decisions 

to deploy the containers, i.e., 𝜏𝓅𝓆𝑚. 

∑ ∑  𝐹𝓆𝓅,𝑡−𝜏𝓆𝓅𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕆

= ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕁

,           ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω           (4.9) 

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕆

= ∑ ∑  𝐹𝓆𝓅,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓆∈𝕁

,            ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (4.10) 

 

• Container handling constraints 

Container handling constraints determine the inventory level of empty containers which are held 

in each period. This constraint is applied for each node of the network, including all seaports, dry 

ports, and customers, in (4.11), (4.12), and (4.13), respectively.  

Constraint (4.11) quantifies the inventory level of available empty containers at a given customer 

at the end of each period. This is calculated by considering the accumulated inventory of empty 

containers from the previous periods as well as the inflow and outflow of laden and empty 

containers in the network. More specifically, the second (third) term of the right-hand side of this 

constraint includes: i) the inflow of laden and empty containers which are transported from all 

seaports (dry ports) to a given customer in periods 𝑡 − 𝜏𝓅𝓆𝑚 − 𝜃 and 𝑡 − 𝜏𝓅𝓆𝑚, respectively; as 

well as ii) the outflow of laden and empty containers which are transported from a given customer 

to all seaports (dry ports) in periods 𝑡 + 𝜃 and 𝑡, respectively. The arriving laden containers are 

emptied within a specific processing time 𝜃 at the given customer and then counted as empty 

containers for period 𝑡. Moreover, the inventory level of empty containers at a given customer is 

reduced when they are loaded with goods with a specific processing time of 𝜃 in order to be sent-

out to the dry ports and seaports. 
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𝐼𝓆𝑡
ℯ (𝜔) = 𝐼𝓆,𝑡−1

ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚−𝜃𝓆 ,𝑚
ℓ (𝜔) + 𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℯ (𝜔) − 𝐹𝓆𝓅,𝑡+𝜃𝓆 ,𝑚
ℓ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕆

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚−𝜃𝓆 ,𝑚
ℓ (𝜔) + 𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℯ (𝜔) − 𝐹𝓆𝓅,𝑡+𝜃𝓆 ,𝑚
ℓ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕀

 

∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (4.11) 

Constraint (4.12) represents the inventory level of available empty containers at each dry port in 

each period.  This is equal to the accumulated inventories from previous periods as well as the 

inflow and outflow of empty containers in the network. The second (third) term of the right-hand 

side of this constraint considers the inflow of empty containers which are transported from the 

seaports (customers) to dry ports and the outflow of empty containers which are transported from 

the dry ports to the seaports. Note that, the number of leased and returned empty containers are 

taken into consideration at each dry port in each period. 

𝐼𝓆𝑡
ℯ (𝜔) = 𝐼𝓆,𝑡−1

ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕆

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕁

+ 𝐿𝓆𝑡
ℯ+(𝜔) − 𝐿𝓆𝑡

ℯ−(𝜔) 

∀𝓆 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (4.12) 

Constraint (4.13) specifies the inventory level of available empty containers at the seaport. It takes 

into account the accumulated inventories from the previous periods as well as the inflow and 

outflow of empty containers. The second (third) term of the right-hand side of this constraint is 

associated with the inflow of empty containers which are transported from the dry ports 

(customers) to the seaports and the outflow of empty containers which are transported from the 

seaports to the dry ports (customers). At each seaport, if the inventory level of empty containers is 

insufficient to meet the demand, empty containers can be imported from other seaports. The 

returned and exported empty containers are also considered in this constraint.  

𝐼𝓆𝑡
ℯ (𝜔) = 𝐼𝓆,𝑡−1

ℯ (𝜔) + ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑ (𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℯ (𝜔) − 𝐹𝓆𝓅𝑡𝑚

ℯ (𝜔))

𝑚∈𝑀𝓅∈𝕁

+ 𝐻𝓆𝑡
𝑒+(𝜔) − 𝐻𝓆𝑡

𝑒−(𝜔) 

   ∀𝓆 ∈ 𝕆, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω         (4.13) 

 

• Container inter-balancing constraints 
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Container inter-balancing constraints imply that the total outflow of containers at each node of the 

network, including all seaports, dry ports, and customers, should not exceed the available inventory 

level of empty containers, which are represented by (4.14), (4.15), and (4.16), respectively.  

Constraint (4.14) ensures that the total outflow of containers from each customer cannot exceed 

its in-stock empty containers in period 𝑡. More specifically, the first term of the left-hand side 

refers to the total outflow of empty containers in period 𝑡 and the number of empty containers 

which will be laden in 𝑡 + 1 from a given customer to all possible dry ports. Similarly, the total 

outflow of empty containers in period 𝑡 and the number of empty containers which will be laden 

in 𝑡 + 1 from the customers to seaports is shown in the second term of the left-hand side of 

constraint (14). The inter-balancing constraints give a derived demand for empty containers. The 

flow of empty containers is driven by the flow of laden containers and determined internally by 

the shipping lines themselves rather than by external demand. 

∑ ∑ ( 𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔) +  𝐹𝓅𝓆,𝑡+1,𝑚

ℓ (𝜔))𝑚∈𝑀𝓆∈𝕀 + ∑ ∑ ( 𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔) +  𝐹𝓅𝓆,𝑡+1,𝑚

ℓ (𝜔))𝑚∈𝑀𝓆∈𝕆 ≤ 𝐼𝓅𝑡
ℯ (𝜔)   

∀𝓅 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω               (4.14) 

Constraint (4.15) ensures that the net outflow of empty containers from a given dry port to all 

seaports and customers in each period cannot exceed the available inventory level of empty 

containers at the given dry port. Correspondingly, constraint (4.16) represents that the net outflow 

of empty containers from a given seaport to all dry ports and customers should be equal or less 

than the available inventory level of empty containers at the given seaport.  

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕆

+ ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕁

≤ 𝐼𝓅𝑡
ℯ (𝜔),                  ∀𝓅 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω            (4.15) 

∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕀

+ ∑ ∑  𝐹𝓅𝓆𝑡𝑚
ℯ (𝜔)

𝑚∈𝑀𝓆∈𝕁

≤ 𝐼𝓅𝑡
ℯ (𝜔),                  ∀𝓅 ∈ 𝕆, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω           (4.16) 

• Empty containers exchange constraints 

The empty containers exchange constraints guarantee equilibrium between the surplus and deficit 

of empty containers at the nodes of the network. More specifically, the net empty containers 

associated with the leased and returned decisions at each seaport and each dry port is given by 

(4.17). In addition, constraint (4.18) verifies that the total number of returned empty containers at 

each corresponding node (i.e. each seaport and each dry port) is equal or less than the total number 
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of leased empty containers over the planning horizon. Constraint (4.19) ensures that at a given 

seaport, the total number of exported empty containers is equal or less than the total number of 

imported empty containers over the planning horizon.  

𝐿𝓃𝑡
ℯ (𝜔) = 𝐿𝓃,𝑡−1

ℯ (𝜔) + 𝐿𝓃𝑡
ℯ+(𝜔) − 𝐿𝓃𝑡

ℯ−(𝜔)                     ∀𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω        (4.17) 

∑ 𝐿𝓃𝑡
ℯ−(𝜔)

𝑡∈𝑇

≤ ∑ 𝐿𝓃𝑡
ℯ+(𝜔)

𝑡∈𝑇

                                                             ∀𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}, 𝜔 ∈ Ω         (4.18) 

∑ 𝐻𝓃𝑡
ℯ−(𝜔)

𝑡∈𝑇

≤ ∑ 𝐻𝓃𝑡
ℯ+(𝜔)

𝑡∈𝑇

                                                          ∀𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}, 𝜔 ∈ Ω           (4.19) 

 

• Capacity constraints 

Constraints (4.20) and (4.21) represent the limited capacity for storing empty containers at each 

node involved in the network in each period. 

𝐼𝓆𝑡
ℯ (𝜔) ≤  𝐶𝑎𝑝𝓆𝑋𝓆                                                             ∀𝓆 ∈ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω                               (4.20) 

 

𝐼𝓃𝑡
ℯ (𝜔) ≤  𝐶𝑎𝑝𝓃                                                         ∀𝓃 ∈ ℕ ∖ 𝕀, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω                               (4.21) 

 

• Standard constraints 

The flow of containers throughout the whole network is planned based on the allocation decisions 

which are made by the first-stage model. This is shown by constraint (4.22), where ℳ is a 

sufficiently big number. 

 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔) ≤ ℳ. 𝑌𝓅𝓆                                    (𝓅, 𝓆) ∈ 𝒜, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω              (4.22)  

Constraint (4.23) indicates the standard nonnegative continuous variables of the model. 

 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔), 𝐼𝓅𝑡

ℯ (𝜔), 𝐿𝓅𝑡
ℯ (𝜔), 𝐿𝓅𝑡

ℯ+(𝜔), 𝐿𝓅𝑡
ℯ−(𝜔), 𝐻𝓅𝑡

ℯ+(𝜔), 𝐻𝓅𝑡
ℯ−(𝜔), 𝑈𝓅𝑡

ℓ (𝜔), 𝐵𝓅𝑡
ℓ (𝜔), γ𝓆𝑡

ℓ (𝜔), δ𝓆𝑡
ℓ (𝜔) ≥ 0 

∀𝓅, 𝓆 ∈ ℕ, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝜔 ∈ Ω               (4.23)   

In order to obtain the optimal solution for decision variables, the proposed two-stage stochastic 

programming model (4.1)−(4.23) should be solved. The uncertainty as well as the hierarchical 

decision making structure considered in the developed model leads to high complexity which 

makes the solution procedure quite challenging. To cope with this complexity, a sample average 

approximation together with a Benders decomposition are applied to solve the model. The 
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complexity, the sample average approximation, and an accelerated Benders decomposition are 

discussed in the following chapter.
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Chapter 5. Solution Procedure 

5.1. Introduction 

Solving the proposed two-stage stochastic programming model is difficult. The main reason for 

this difficulty is evaluating the expected value of the objective function for the ‘true’ model. For 

discrete distributions, the evaluation of expectation involves solving a large number of linear 

programming models for each scenario that corresponds to an uncertain parameter realisation. This 

thesis copes with this difficulty using the Sample Average Approximation approach (Kleywegt et 

al., 2002; Santoso et al., 2005). The solutions from the SAA approach converge to the optimal 

‘true’ objective function value as the scenario sample size increases (Shapiro et al., 2009). The set 

of sample scenarios are generated outside of the optimisation procedure using the Monte-Carlo 

sampling method (Shapiro, 2003). The quality of the solutions obtained by SAA was evaluated 

through a validation analysis with respect to the sample size and the number of samples. This was 

achieved by calculating the optimality gap between the optimal ‘true’ solution for the problem and 

the SAA model solution from a given sample of scenarios. Moreover, Benders decomposition 

(Benders, 1962) was applied to enhance the computational performance of the developed SAA 

model. Also, several acceleration methods were applied within the Benders decomposition method 

to improve the computational time.  

5.2. Robust SAA model 

The Monte-Carlo sampling method is employed to generate plausible future scenarios during the 

planning horizon. This approach uses statistical information on uncertain parameters to generate 

the sample. In this research, the uncertain containers demand over the planning horizon is 

characterised by a random variable. For dry port 𝓆 in period 𝑡, the random variable of the demand 

size process follows Normal distribution function 𝑁𝑟(. ). The inverse of this distribution function, 

𝑁𝑟−1(. ), is used to obtain a realisation of the demand for incoming laden containers at customer 

𝓆 in period 𝑡 under scenario 𝜔. More specifically, for all 𝓆 ∈ 𝕀 and 𝑡 ∈ 𝑇: 1) a uniformly 

pseudorandom number 𝒶 on the interval [0,1] is generated, 2) the inverse of the distribution 

𝑁𝑟−1(𝒶) is computed as the demand value. The values of parameters used in this procedure will 

be presented in Section 6.1.  
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In the SAA approach, we run the abovementioned Monte-Carlo sampling procedure for 𝑁 time to 

generate a sample of independent container demand scenarios denoted by 𝛺𝑁 = {𝜔1, 𝜔2, … , 𝜔𝑁}. 

The expected value of the ‘true’ objective function is estimated by the average over objective 

values q(𝑿, 𝜔), where 𝜔 ∈ 𝛺𝑁 and 𝑁 is the number of scenarios randomly generated in an 

equiprobable manner. Therefore, the expected value of the ‘true’ objective function can be 

represented by ∑ 𝜋(𝜔)𝜔∈Ω𝑁 q(𝐗, 𝜔), with 𝜋(𝜔) = 1
𝑁⁄ . Given the original two-stage stochastic 

problem (4.1) – (4.23), the equivalent deterministic linear programming model is constructed as 

follows:  

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ 1
𝑁⁄ ∑ ( ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇𝜔∈Ω𝑁

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔))

+ ∑ ∑ 𝜈𝓆 (γ
𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

)},                                                                (5.1) 

subject to: 

(4.2) – (4.5),  

(4.7) – (4.23), 

where the first two terms in (5.1) represent the first-stage objective function and the third term 

represents the expected objective function of the second-stage problem. Please note that the latter 

can be achieved by 𝜋(𝜔) q(𝑿, 𝜔), where we set 𝜋(𝜔) = 1
𝑁⁄  as explained above and q(𝑿, 𝜔) is 

set to Equations (4.6.a) – (4.6.e). 

The SAA method is applicable when a feasible solution exists and the problem has a finite 

objective value (Shapiro, 2003). However, in the context considered here, the customers’ uncertain 

incoming and outgoing demand may not have an identical distribution function or known 
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distribution parameters. This, in addition to the large number of scenarios, will most likely generate 

infeasible solutions to the stochastic programming (Neyshabouri and Berg, 2017). To tackle this 

challenge, a robust counterpart problem was identified  for the mentioned SAA method to address 

solution robustness using an approach proposed by Mulvey et al. (1995). 

In order to present the robust counterpart problem, the modelling approach proposed by Yu and Li 

(2000) was applied which is an extension to the work of Mulvey et al. (1995). This approach aims 

to achieve solution and model robustness. The former aims to find solutions which are optimal for 

all possible scenario realisations of the uncertain parameters; the latter aims to guarantee the 

feasibility of the obtained solutions over scenario realisations by considering a penalty function 

(see Mulvey et al. 1995). More specifically, an efficient robust programming model can generate 

a series of solutions that are progressively less sensitive to realisations of the data in a scenario set. 

The robust scenario-based stochastic formulation proposed by Mulvey et al. (1995) is briefly 

described as follows: 

Consider a linear optimization model as follows: 

min 𝑓(𝑥, 𝑦) =  𝑐𝑇𝑥 + 𝑑𝑇𝑦                                         (5.2) 

𝑠. 𝑡. 𝐴𝑥 = 𝑏,                                                                (5.3)  

𝐵𝑥 + 𝐶𝑦 = 𝑒,                                                             (5.4) 

𝑥, 𝑦 ≥ 0.                                                                     (5.5)  

where 𝑥 ∈ 𝑅𝑛1 and 𝑦 ∈ 𝑅𝑛2 denote the vector of the design variables and the vector of the control 

variables, respectively. The design variables are the variables whose optimal value is not 

dependent on the realisation of uncertain parameters, and the control variables are those that are 

conditioned on the realization of uncertain parameters. Note that the coefficients of constraint (5.3) 

are fixed and “free of noise”, while those for constraint (5.4) are subject to noise. The model may 

lead to infeasibility under some scenarios due to the parameter uncertainty. Thus, the control 

variable 𝔘(𝜔), which illustrates the infeasibility of the model under scenario 𝜔 should be 

introduced. A robust optimization model can be defined as follows: 

min 𝜎(𝑥, 𝑦(𝜔)) + 𝓋𝜌( 𝑢1, 𝔘(𝜔))                                                        (5.6) 
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𝑠. 𝑡.  𝐴𝑥 = 𝑏,                                                                                        (5.7) 

𝐵(𝜔)𝑥 + 𝐶(𝜔)𝑦(𝜔) + 𝔘(𝜔) = 𝑒(𝜔),      ∀𝜔 ∈ 𝛺𝑁 ,                           (5.8) 

𝑥, 𝑦(𝜔) ≥ 0,     ∀𝜔 ∈ 𝛺𝑁.                                                                    (5.9) 

The first part of the objective function (5.6) is the solution robustness, and the second part 

represents the model robustness weighted by 𝓋.  

Considering the robust formulation of (5.6)−(5.9) and recalling q(𝐗, 𝜔) as: 

q(𝐗, 𝜔) =  ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚
𝑘 𝐹𝓅𝓆𝑡𝑚

𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

 
 

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇

 
 

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

 
 

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

 
 

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)) + ∑ ∑ 𝜈𝓆 (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

 
 

 

The model can be reformulated as the following robust optimisation problem:  

Min
𝐗,𝐂

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝜋(𝜔) q(𝐗, 𝜔)

𝜔∈𝛺𝑁

+ λ ∑ 𝜋(𝜔)

𝜔∈Ω

|q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈𝛺𝑁\{𝜔}

| 

+ ∑ 𝜋(𝜔)

𝜔∈𝛺𝑁

∑ ∑ 𝓋 (|∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝐷𝓆𝑡
ℓ (𝜔)|

∀𝓆∈𝕁𝑡∈𝑇

+ |∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝑆𝓆𝑡
ℓ (𝜔)|) 

(5.10) 
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subject to (4.7)−(4.23). 

In the model (5.10), |𝑎| is an absolute term of 𝑎, λ denotes the determined weight of solution 

variance which measures the tradeoff between optimality and cost, and 𝓋 is the weighting penalty 

for the lost sale or the overflow of containers at each customer 𝓆 ∈ 𝕁 at period 𝑡 ∈ 𝑇.  

The term ∑ 𝜋(𝜔) q(𝐗, 𝜔)𝜔∈𝛺𝑁 + λ ∑ 𝜋(𝜔)𝜔∈𝛺𝑁 |q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)𝜔′∈𝛺𝑁\{𝜔} | in (5.10) 

corresponds to the solution robustness of 𝜎(𝑜) where the first term is the cumulative expected cost 

and the second term is the variance of the cost. The two terms of ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 +

∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 − 𝐷𝓆𝑡

ℓ (𝜔) and ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 + ∑ ∑  𝐹𝓆𝓅𝑡𝑚

ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 −

𝑆𝓆𝑡
ℓ (𝜔) in (5.10) denote the model robustness of 𝜌(𝑜), which was used for penalizing the violations 

of the control constraints of (4.7) and (4.8), capable of adjusting the model in responding to 

changes in container demand realisations.  

There are different approaches to derive the above models proposed by Mulvey et al. (1995) and 

Mulvey and Ruszczyński (1995). These approaches and their limitations are briefly described in 

the following subsection. 

Two different techniques are discussed here to deal with the absolute value term in robust model 

(5.10): mean variance method and mean absolute deviation method. 

• Mean variance program 

This approach converts the model (5.10) to the following form: 

Min
𝐗,𝐂

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝜋(𝜔) q(𝐗, 𝜔)

𝜔∈Ω

+ λ ∑ 𝜋(𝜔)

𝜔∈Ω

[q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω\{𝜔}

]

2

 

+ ∑ 𝜋(𝜔)

𝜔∈Ω

∑ ∑ 𝓋 ([∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝐷𝓆𝑡
ℓ (𝜔)]

2

∀𝓆∈𝕁𝑡∈𝑇

+ [∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝑆𝓆𝑡
ℓ (𝜔)]

2

) 

(5.11) 

 

subject to (4.7)−(4.23). 
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The model formulation derived from this approach has two limitations: 

The quadratic terms in (5.11) involve many cross-products among variables and parameters within 

𝜎(𝑜) and 𝜌(𝑜). This leads to a computational burden for solving this model. Also, estimating the 

coefficients of these products is quite difficult.  

The penalty cost of infeasibility , 𝓋, is forced to be the same values for both positive and negative 

deviations for violations of the control constraints (4.7) and (4.8). The positive deviation for 

constraint (4.7) and (4.8) is  𝔘𝓆𝑡
+ (𝜔) =  ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 + ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 −

𝐷𝓆𝑡
ℓ (𝜔) ≥ 0 and 𝒦𝓆𝑡

+(𝜔) =  ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 + ∑ ∑  𝐹𝓆𝓅𝑡𝑚

ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 − 𝑆𝓆𝑡
ℓ (𝜔) ≥ 0 respectively. 

Similarly the negative deviation for constraints (4.7) and (4.8) is 𝔘𝓆𝑡
− (𝜔) =

 ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 + ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚

ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 − 𝐷𝓆𝑡
ℓ (𝜔) ≤ 0 and 𝒦𝓆𝑡

−(𝜔) =

 ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)𝑚∈𝑀𝓅∈𝕀 + ∑ ∑  𝐹𝓆𝓅𝑡𝑚

ℓ (𝜔)𝑚∈𝑀𝓅∈𝕆 − 𝑆𝓆𝑡
ℓ (𝜔) ≤ 0, respectively. This limitation implies that 

this approach cannot specify different 𝓋 values for 𝔘𝓆𝑡
+ (𝜔) and 𝔘𝓆𝑡

− (𝜔)(or 𝒦𝓆𝑡
+(𝜔) and 𝒦𝓆𝑡

−(𝜔)). 

• Mean absolute deviation program  

By using this approach, the robust optimization model is transformed as follows:  

Min
𝐗,𝐂

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝜋(𝜔) q(𝐗, 𝜔)

𝜔∈Ω

+ λ ∑ 𝜋(𝜔)

𝜔∈Ω

(𝜃+(𝜔) + 𝜃−(𝜔)) 

+ ∑ ∑ ∑ 𝓋+ (𝔘𝓆𝑡
+ (𝜔) + 𝒦𝓆𝑡

+ (𝜔)) + 𝓋− (𝔘𝓆𝑡
− (𝜔) + 𝒦𝓆𝑡

− (𝜔))

𝑡∈𝑇∀𝓆∈𝕁𝜔∈Ω

 

(5.12) 

subject to: 

q(𝐗, 𝜔) − ∑ 𝜋(𝜔′) q(𝐗, 𝜔′)

𝜔′∈Ω

= 𝜃+(𝜔) − 𝜃−(𝜔) 𝜔 ∈ Ω                                      (5.13) 

∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

= 𝐷𝓆𝑡
ℓ (𝜔) + 𝔘𝓆𝑡

+ (𝜔) − 𝔘𝓆𝑡
− (𝜔) 

∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω      (5.14)  

∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

= 𝑆𝓆𝑡
ℓ (𝜔) + 𝒦𝓆𝑡

+ (𝜔) − 𝒦𝓆𝑡
− (𝜔) 

        ∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω          (5.15) 
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(4.7)−(4.23). 

In this model, 𝜃+(𝜔) and 𝜃−(𝜔) denote the deviations for violations of the mean and 𝔘𝓆𝑡(𝜔) and 

𝒦𝓆𝑡(𝜔) represent the deviations for violations of the control constraints.  

Note that constraints (5.13)−(5.15) are equity expressions, where all 𝜃+(𝜔), 𝜃−(𝜔), 𝔘𝓆𝑡(𝜔), and 

𝒦𝓆𝑡(𝜔) appear in both the objective function and the constraint set. Equations (5.12)−(5.15) 

should be solved through introducing artificial variables into (5.13), (5.14) and (5.15) and using 

the “two phase” or “big M” method. The big M method change the model to the following program 

which is equivalent to (5.12)−(5.15): 

Min
𝐗,𝐂

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝜋(𝜔) q(𝐗, 𝜔)

𝜔∈Ω

+ λ ∑ 𝜋(𝜔)

𝜔∈Ω

(𝜃+(𝜔) + 𝜃−(𝜔)) 

+ ∑ ∑ ∑ 𝓋+ (𝔘𝓆𝑡
+ (𝜔) + 𝒦𝓆𝑡

+ (𝜔)) + 𝓋− (𝔘𝓆𝑡
− (𝜔) + 𝒦𝓆𝑡

− (𝜔))

𝑡∈𝑇∀𝓆∈𝕁𝜔∈Ω

+ 𝑀 ∑ (𝛼(𝜔)

𝜔∈Ω

+ ∑ ∑ 𝛽𝓆𝑡(𝜔)

𝑡∈𝑇𝓆∈𝕁

) 

(5.16) 

subject to: 

q(𝐗, 𝜔) − ∑ 𝜋(𝜔′) q(𝐗, 𝜔′)

𝜔′∈Ω

= 𝜃+(𝜔) − 𝜃−(𝜔) + 𝛼(𝜔) 𝜔 ∈ Ω                                      (5.17) 

∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓅𝓆,𝑡−𝜏𝓅𝓆𝑚,𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝐷𝓆𝑡
ℓ (𝜔) − 𝔘𝓆𝑡

+ (𝜔) + 𝔘𝓆𝑡
− (𝜔) + 𝛽𝓆𝑡(𝜔) = 0 

∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω      (5.18) 

∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕀

+ ∑ ∑  𝐹𝓆𝓅𝑡𝑚
ℓ (𝜔)

𝑚∈𝑀𝓅∈𝕆

− 𝑆𝓆𝑡
ℓ (𝜔) − 𝒦𝓆𝑡

+ (𝜔) + 𝒦𝓆𝑡
− (𝜔) + 𝛽𝓆𝑡(𝜔) = 0 

        ∀𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω     (5.19) 

(4.7)−(4.23). 

The 𝑀 in the objective function (5.16) is a big positive number, and 𝛼(𝜔) and 𝛽𝓆𝑡(𝜔) are artificial 

variables. The restriction related to this approach is the large number of new non-negative variables 
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added to the model. More specifically, the cumulative number of these new variables (i.e., 𝜃+(𝜔), 

𝜃−(𝜔), 𝔘𝓆𝑡
+ (𝜔), 𝔘𝓆𝑡

− (𝜔), 𝒦𝓆𝑡
+ (𝜔), 𝒦𝓆𝑡

− (𝜔), 𝛼(𝜔), 𝛽𝓆𝑡(𝜔)) would be: 

𝑁 = 3 (Ω + ∑ 𝐽𝜔

Ω

𝜔=1

), 

where Ω denotes the number of scenarios and 𝐽𝜔 represents the number of the control constraints 

under scenario 𝜔. 

Accordingly, the total number of constraints would be: 

𝐿 = 𝐺 + Ω + ∑ 𝐽𝜔

Ω

𝜔=1

, 

where 𝐺 denotes the number of constraints in (4.7)−(4.23). 

These approaches, as discussed above, are highly restrictive. Hence, in order to deal with the non-

linearity in (5.10), the following procedure is proposed. 

The solution robustness of the SAA model, denoted by Φ(𝐗, 𝜔), is built using the absolute 

deviation of the second-stage objective values over the number of scenarios, as follows: 

Φ(𝐗, 𝜔) = |q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω\{𝜔}

|.                ∀𝜔 ∈ Ω                                                             (5.20) 

Expression (5.20), which computes the solution robustness, should be included in the objective 

function of the SAA model. However, this makes the SAA model non-linear due to the presence 

of absolute function. Hence, a linearisation method is applied to ensure the solution space 

convexity. 

Proposition 1. As the minimisation objective function of the proposed robust SAA model contains 

the expression (5.20), this can be substituted by the following expressions: 

Υ(𝐗, 𝜔) = q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω−{𝜔}

+ 2𝜌(𝜔),              ∀𝜔 ∈ Ω𝑁                                                (5.21) 

where, 
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q(𝐗, 𝜔) − ∑ 𝜋(𝜔′)q(𝐗, 𝜔′)

𝜔′∈Ω−{𝜔}

+ 𝜌(𝜔) ≥ 0,                                ∀𝜔 ∈ Ω𝑁                                            (5.22) 

𝜌(𝜔) ≥ 0.                       ∀𝜔 ∈ Ω𝑁                                                                                                                          (5.23)                                                                                                              

 

Proof. Below, two possible cases of the proposition are verified.  

Case 1 is where q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω\{ω} ≥ 0, then it is clear that 𝜌(𝜔) = 0, when 

minimizing expression (5.21). In this case, Υ(𝐗, 𝜔) = q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} =

Φ(𝐗, 𝜔).  

Case 2 is where q(𝐗, ω) − ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} < 0. Considering the minimisation of 

Υ(𝐗, 𝜔), we then have 𝜌(𝜔) = ∑ π(ω′)q(𝐗, ω′)ω′∈Ω−{ω} − q(𝐗, ω) which results in Υ(𝐗, 𝜔) =

∑ π(ω′)q(𝐗, ω′) − q(𝐗, ω)ω′∈Ω−{ω} = Φ(𝐗, 𝜔). For more information regarding this linearisation 

method, refer to Yu and Li (2000).  

The stochastic programming model is very likely to return infeasible solutions due to high 

variability of scenario realisations (Birge and Louveaux, 2011). However, there is no constraint 

violation in the proposed model as it possesses complete recourse. 

Lemma 1. The proposed two-stage stochastic programming model (4.6)−(4.23) is feasible for any 

possible scenario realisation. 

Proof. The term (4.6.e) in objective function (4.6), i.e., ∑ ∑ 𝑏𝓆𝓆∈𝕁 (𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔))𝑡∈𝑇 +

∑ ∑ 𝜈𝓆 (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))𝓆∈𝕁𝑡∈𝑇 , is a feasibility penalty function, which is deployed to penalise the 

violations of the control constraints of (4.7) and (4.8). In other words, any possible violation related 

to containers demand constraints is minimised using the relevant penalty costs, i.e., 𝑏𝓆, 𝜈𝓆, in the 

objective function. The other set of control constraints that can cause infeasibility in the proposed 

model is containers handling constraints (4.11)−(4.13). The violation of these constraints is also 

avoided by introducing leasing and importing variables 𝐿𝓃𝑡
ℯ+(𝜔), 𝐿𝓃𝑡

ℯ−(𝜔), 𝐻𝓃𝑡
ℯ+(𝜔), 𝐻𝓃𝑡

ℯ−(𝜔). Any 

possible violation of these constraints can be avoided by incorporating container leasing variables 

and including them into objective function using the relevant penalty costs in (4.6.c) and (4.6.d), 

i.e., ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇  and ∑ ∑ (𝑣𝓃

+𝐻𝓃𝑡
ℯ+(𝜔) +𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔)). Therefore, the proposed problem is feasible for any possible scenario realisation, 
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where no feasibility cut is needed in MP when applying the Benders Decomposition algorithm to 

solve the model. 

The problem formulation considering solution robustness is addressed by the following equations: 

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ 1
𝑁⁄ ∑ ( ∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)

𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜

+ ∑ ∑ ℎ𝓃𝐼𝓃𝑡
ℯ (𝜔)

𝓃∈ℕ𝑡∈𝑇𝜔∈Ω𝑁

+ ∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))

𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇

+ ∑ ∑ (𝑣𝓃
+𝐻𝓃𝑡

ℯ+(𝜔) + 𝑣𝓃
−𝐻𝓃𝑡

ℯ−(𝜔))

𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇

+ ∑ ∑ 𝑏𝓆

𝓆∈𝕁𝑡∈𝑇

(𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔))

+ ∑ ∑ 𝜈𝓆 (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))

𝓆∈𝕁𝑡∈𝑇

+ 𝜆Υ(𝜔))},                                           (5.24) 

subject to constraints (4.2) – (4.5), (4.7) – (4.23), and (5.21) – (5.23), where 𝜆 is the cost of solution 

robustness. More precisely, 𝜆 refers to the weighting scale to measure the trade-off between the 

cost and dispersion minimization of second-stage objective values over all scenarios. 

5.2. The SAA algorithm 

In the previous subsection, the robust counterpart problem formulation for the SAA model was 

obtained. Hereafter we refer to this model as the “robust SAA problem”. In this section, a 

validation analysis is presented that estimates the optimality gap between the objective value 

associated with the robust SAA problem, and the expected value of the ‘true’ problem (4.1) – 

(4.23). 

Let 𝒵𝑁
∗ (𝐗𝑁

∗ , 𝐂𝑁
∗ ) be the optimal objective value of the robust SAA model with scenario sample size 

N, where 𝐗𝑁
∗  and 𝐂𝑁

∗  denote the optimal solution vector of the first-stage and the second-stage 

model, respectively. When the sample size N increases towards infinity, it leads 𝒵𝑁
∗ (𝐗𝑁

∗ , 𝐂𝑁
∗ ) to 

converge to the optimal value for the ‘true’ solution. However, obtaining the optimal value of the 
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true problem, 𝒵∗(𝐗∗, 𝐂∗), involves solving the problem for an enormously large number of 

scenarios. Therefore, statistical confidence intervals are provided that estimate lower and upper 

bounds on the quality of the approximate solutions based on the work of Shapiro et al. (2009). The 

statistical lower bound and the statistical upper bound for the true optimal objective are estimated 

by averaging and sampling procedures, respectively. Finally, the optimality gap of the objective 

values is calculated. These procedures are presented below. 

• Averaging procedure 

In this procedure, a valid lower bound for the optimal value 𝒵∗(𝐗∗, 𝐂∗) for the ‘true’ problem is 

estimated. In order to do that, R independent samples with the size of 𝑁 scenarios are generated. 

Let 𝒵𝑁
𝑟 (𝐗𝑁

𝑟  , 𝐂𝑁
𝑟 ) be the optimal objective value of sample 𝑟 = 1, … , 𝑅, of the robust SAA model 

with 𝑁 scenarios, and (𝐗𝑁
𝑟 , 𝐂𝑁

𝑟 ) be the corresponding solution vectors. The average of the 𝑅 

replications of the robust SAA model is computed as follows: 

�̅�𝑁
𝑅(𝐗𝑁

𝑅  , 𝐂𝑁
𝑅 ) =

1

𝑅
∑ 𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 )𝑅
𝑟=1                                                                                                   (5.25)                                        

which is an unbiased estimator of the lower bound for the expectation of optimal value 𝒵∗(𝐗∗, 𝐂∗). 

Since the generated samples are independent and have identical distribution, the standard deviation 

of this estimator can be computed as follows: 

�̂�𝑁
𝑅 =  √

1

(𝑅−1)𝑅
∑ (𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 ) − �̅�𝑁
𝑅(𝐗𝑁

𝑅  , 𝐂𝑁
𝑅 ))

2𝑅
𝑟=1                                                                      (5.26)             

An approximate 100(1-α) % confidence lower bound for the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) 

can be applied using the average and standard deviation of 𝑅 SAA programs as follows: 

ℒ𝑁,1−𝛼
𝑅 =  �̅�𝑁

𝑅(𝐗𝑁
𝑅  , 𝐂𝑁

𝑅 ) − 𝐭𝛼,𝑅−1�̂�𝑁
𝑅                                                                                                   (5.27)  

Here 𝐭𝛼,𝑅−1 is the 𝛼-critical value of the t-distribution with 𝑅 − 1 degrees of freedom. 

• Sampling Procedure  

The valid estimate of an upper bound on the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) can be computed 

by sampling. This can be obtained by solving the second-stage of the robust SAA model for a large 

enough sample of 𝑁′ scenarios (𝜔 ∈ Ω𝑁′
⊂ Ω) generated independently, where 𝑁′ ≫ 𝑁. Let �̅�𝑁 

denote the first-stage solution of the initial robust SAA model with sample size 𝑁. In this case, we 
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use the best computed �̅�𝑁 among R replications as an input. Let �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) denote the optimal 

objective value of the robust SAA model with sample size 𝑁′. As a result, we have 

�̂�𝑁′(�̅�𝑁 , �̂�𝑁′)  > 𝒵∗(𝐗∗, 𝐂∗) since �̅�𝑁 is a feasible solution of the true problem. Therefore, 

�̂�𝑁′(�̅�𝑁 , �̂�𝑁′)  is an estimation of an upper bound of 𝒵∗(𝐗∗, 𝐂∗). It should be clear that 

�̂�𝑁′(�̅�𝑁 , �̂�𝑁′) involves solving 𝑁′ second-stage models which produces an optimal objective 

value per scenario denoted by �̂�𝜔(�̅�𝑁 , �̂�𝜔), where �̂�𝜔 is the solution of the robust SAA second-

stage model of scenario 𝜔 ∈ Ω𝑁′
⊂ Ω.  Obtaining �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) involves solving the second-stage 

model per scenario at a time, 𝜔 ∈ Ω𝑁′
⊂ Ω. This is much easier to solve these problems for one 

scenario at a time. Additionally, since an independent and identical distribution is used to generate 

the sample 𝑁′, the variance of this upper bound can be estimated as given in (5.28): 

𝜎𝑁′
2 (�̅�) =

1

(𝑁′−1)𝑁′
∑ (�̂�𝜔(�̅�𝑁 , �̂�𝜔) − �̂�𝑁′(�̅�𝑁, �̂�𝑁′))2𝑁′

𝜔=1                                                             (5.28)     

Using the above mean and variance, an approximate 100 (1-α) % confidence upper bound for the 

expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) is given as: 

𝒰𝑁′,1−𝛼 = �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) + 𝐳𝛼  𝜎𝑁′(�̅�)                                                                                              (5.29) 

where 𝐳𝛼 is the standard normal critical value with a 100(1-α)% confidence level. Consequently, 

an approximate 100(1-α)% confidence interval for the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) is 

obtained by (ℒ𝑁,1−𝛼
𝑅  , 𝒰𝑁′,1−𝛼). Then, the statistical optimality gap and the statistical optimality 

gap percentage can be calculated by (5.30) and (5.31), respectively: 

 𝑔𝑎𝑝𝑁,𝑅,𝑁′ = 𝒰𝑁′,1−𝛼 − ℒ𝑁,1−𝛼
𝑅                                                                                                            (5.30) 

𝑔𝑎𝑝𝑁,𝑅,𝑁′% =
𝑔𝑎𝑝𝑁,𝑅,𝑁′

𝒰𝑁′,1−𝛼
× 100%                                                                                                      (5.31) 

The calculated optimality gap is then used to set up a stopping criterion for the algorithm. 

The SAA algorithm corresponding to the objective function (5.24) subject to constraints (4.2) – 

(4.5), (4.7) – (4.23), and (5.21) – (5.23) is summarized in Procedure 5.1. 

 

Inputs: 𝑁, 𝑁′, 𝑅 ∈ 𝒩, 𝛼 ∈ [0,1], where 𝒩 represents the set of Natural numbers. 

Pre-processing  

For sample 𝑟 = 1 … 𝑅 
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Run the Monte-Carlo sampling method to generate random numbers for demand of raw materials’ 

containers with the given distribution function. 

Averaging procedure (𝑁, 𝑅, 𝛼) 

For sample 𝑟 = 1 … 𝑅 

Solve the robust SAA model (5.24) s.t. (4.2) – (4.5), (4.7) – (4.23), and (5.21) – (5.23), and obtain the 

objective value 𝒵𝑁
𝑟 (𝐗𝑁

𝑟  , 𝐂𝑁
𝑟 ) and solution (𝐗𝑁

𝑟 ,𝐂𝑁
𝑟 ). 

Calculate the average and variance of the objective functions of 𝑅 robust SAA models using (5.25) and (5.26), 

respectively. 

Compute an approximate 100(1-α) % confidence lower bound using (5.27). 

Calculate 𝒵𝑁
𝑅 = min

𝑟
{𝒵𝑁

𝑟 (𝐗𝑁
𝑟  , 𝐂𝑁

𝑟 )} and 𝐗𝑁 = argmin{𝒵𝑁
𝑅}, which the latter corresponds to the best first-stage 

design solution found among 𝑅 samples of the robust SAA model with size 𝑁. 

Sampling procedure (𝐗𝑁, 𝑁′, 𝛼) 

For scenario 𝜔 = 1 to 𝑁′ 

Solve the robust SAA model (5.24) s.t. (4.2) – (4.5), (4.7) – (4.23), and (5.21) – (5.23) for 𝜔 with the 

obtained first-stage design solution 𝐗𝑁 and get the optimal objective value �̂�𝜔(�̅�𝑁 , �̂�𝜔). 

Compute the average of optimal objective values as �̂�𝑁′(�̅�𝑁 , �̂�𝑁′) and its variance using (5.28). 

Compute an approximate 100(1-α) % confidence upper bound using (5.29). 

Optimality gap 

Calculate the statistical optimality gap percentage using (5.31). If this gap is acceptable, stop. Otherwise, increase 

𝑁 and 𝑅 by 10 and 1, respectively, and return to step 1. 

Output: An approximate 100(1-α) % confidence interval for the expectation of optimal 𝒵∗(𝐗∗, 𝐂∗) and the 

associated robust solution (𝐗∗, 𝐂∗). 

Procedure 5.1. The SAA algorithm corresponding to the robust model. 

5.3. Benders Decomposition Algorithm 

In this section, the abovementioned SAA algorithm is improved by employing the Benders 

decomposition method as well as several acceleration schemes. Step 2a. of the outlined SAA 

algorithm in procedure 5.1 requests to solve the robust SAA model repetitively. Although this 

model contains much fewer scenarios than the true problem (4.1)–(4.23), this two-stage stochastic 
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model is an NP-hard problem which has the same NP-hardness property as a classical capacitated 

facility location problem (Balinski, 1965). Therefore, a solution approach is proposed inspired by 

a method introduced by Van Slyke and Wets (1969), which is the stochastic version of classical 

Benders decomposition applied to two-stage stochastic programming problems. The effectiveness 

of the method for solving various large optimisation problems including SAA two-stage stochastic 

programming has been demonstrated in the previous studies, e.g., Santoso et al. (2005). In the 

following, the Benders decomposition method is described to enhance the SAA algorithm 

corresponding to the robust model. 

In order to implement the Benders decomposition method, one need to separate the robust SAA 

problem into a master problem (MP) that involves first-stage decision variables, and Benders sub 

problems (BSP) to optimize the second stage decision variables. The BSP of the proposed model 

can be formulated by fixing the first-stage variables to the given values at iteration 𝑖𝑡. The objective 

function of the BSP is: 

 min {1
𝑁⁄ ∑ (∑ ∑ ∑ ∑ 𝑐𝓅𝓆𝑚

𝑘 𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔)𝑘∈𝐾𝑚∈𝑀𝑡∈𝑇(𝓅,𝓆)∈𝒜 + ∑ ∑ ℎ𝓃𝐼𝓃𝑡

ℯ (𝜔)𝓃∈ℕ𝑡∈𝑇 +𝜔∈Ω𝑁

∑ ∑ (𝑔𝓃
+𝐿𝓃𝑡

ℯ+(𝜔) + 𝑔𝓃
−𝐿𝓃𝑡

ℯ−(𝜔) + 𝑔𝓃𝐿𝓃𝑡
ℯ (𝜔))𝓃∈ℕ∖{𝕆∪𝕁}𝑡∈𝑇 + ∑ ∑ (𝑣𝓃

+𝐻𝓃𝑡
ℯ+(𝜔) + 𝑣𝓃

−𝐻𝓃𝑡
ℯ−(𝜔))𝓃∈ℕ∖{𝕀∪𝕁}𝑡∈𝑇 +

∑ ∑ 𝑏𝓆𝓆∈𝕁𝑡∈𝑇 (𝑈𝓆𝑡
ℓ (𝜔) + 𝐵𝓆𝑡

ℓ (𝜔)) + ∑ ∑ 𝜈𝓆 (γ𝓆𝑡
ℓ (𝜔) + δ𝓆𝑡

ℓ (𝜔))𝓆∈𝕁𝑡∈𝑇 + 𝜆Υ(𝜔))}                            (5.32) 

The objective function (5.32) is constructed from objective function (5.24) by excluding the binary 

terms, i.e. ∑ 𝑓𝓅𝑋𝓅𝓅∈𝕀 + ∑ 𝑑𝓅𝓆𝑌𝓅𝓆(𝓅,𝓆)∈𝒜 . The constraints for the BSP are equations (4.7) – (4.23), 

and (5.21) – (5.23) in which the first-stage variables have been fixed to given values. The given 

values are updated at each iteration from solving the following MP. Before presenting the MP, it 

should be pointed out since the modelling approach used in this research possesses complete 

recourse, the BSP is feasible for the given values of first-stage variables, and an optimality cut can 

be deducted from an optimal solution to the dual of the sub-problem (DSP). 

Let 𝝌 be the vector of the DSP’s variables corresponding to constraints (4.7) – (4.23), and (5.21) 

– (5.23).   �̂� denotes an element in 𝝌 , and also the extreme points of the dual polyhedron obtained 

from solving the dual sub-problem (DSP). The superscripts associated with �̂�  indicate the 

corresponding constraint. For example, �̂�𝓆𝑡
4.20(𝜔) denotes the dual variable relating to constraint 

4.20 for 𝓆 ∈ 𝕀, 𝑡 ∈  𝑇. The MP, which produces a lower bound (𝐿𝐵) for the objective function of 
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original robust SAA model at each iteration 𝑖𝑡, can be formulated based on the defined DSP 

variables as follows: 

MP: min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ 𝛾} 

s.t. (4.2) – (4.5), 

(5.33) 

𝛾 ≥  ∑ 1
𝑁⁄ (∑ [∑ ∑ ∑ 𝐷𝓆𝑡

ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚
4.7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

+ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

4.8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇𝜔∈Ω𝑁

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
4.20(𝜔) − ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
4.21(𝜔)

− ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚
4.22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

]) 

(5.34) 

𝛾 ≥ 0 (5.35) 

Constraint (5.34) determines the optimality cut. This optimality cut is derived based on constraint 

(3.41) and the procedure outlined in Section 3.6. More specifically, the first two-terms of the right-

hand side of (5.34) are related to the dual formulation associated with constraint (4.7) and 

constraint (4.8), where �̂�𝑘𝓅𝓆𝑡𝑚
4.7 (𝜔) and �̂�𝑘𝓅𝓆𝑡𝑚

4.8 (𝜔) denote dual variables relating to these 

constraints, respectively. Likewise, the third, fourth and fifth terms of the right-hand side of 

optimality cut (5.34) are dual formulations related to constraints (4.20), (4.21), and (4.22), 

respectively, where �̂�𝓆𝑡
4.20(𝜔), �̂�𝓆𝑡

4.21(𝜔), and �̂�𝑘𝓅𝓆𝑡𝑚
4.22 (𝜔) denote dual variables of constraints 

(4.20), (4.21), and (4.22), respectively. It should be noted that for deriving the optimality cut (5.34), 

the dual variables related to each of constraints in the primal subproblem have been taken into 

account. However, the right-hand side of most of constraints (i.e., all constraints except (4.7), (4.8), 

(4.20), (4.21) and (4.22)) in the primal sub-problem is equal to 0. Therefore, they would be 

excluded from the optimality cut (5.34) as they would not appear in the dual problem’s value 

function. Furthermore, the signs of terms in (5.34) are selected based on the type of constraints 

(e.g., equality, less than equal, and greater than equal) in the primal sub-problem.  

At each iteration of BD, one first solves the MP to obtain the values of first-stage decisions. Then, 

these values are used to solve DSP to obtain an extreme point and a new optimality cut (5.34) is 
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included in the MP. This procedure is conducted iteratively until the stopping criterion is met. The 

stopping criterion is established as a small percentage gap between the best upper and lower 

bounds. Although the described Benders decomposition method is a finite scheme, this algorithm 

may require a large number of iterations to converge for large optimization models (Santoso et al. 

2005). In order to improve the slow convergence of outlined Benders decomposition method, a 

number of accelerating methods are used in the following subsections. 

5.3.1. Multi-cut framework 

The number of iterations within Benders decomposition algorithm can be reduced significantly 

using the multi-cut framework since more dual information is provided for the MP as shown by 

(Birge and Louveaux, 1988). In the abovementioned BD method, only one cut is added at each 

iteration, which approximates the sample average of the second-stage objective value function at 

the current solution. Instead, we add 𝑁 cuts to the MP by decomposing the BSP into several 

independent BSPs in each iteration. These cuts approximate the independent second-stage 

objective functions corresponding to each of individual 𝑁 scenarios. Thus, we determine the cuts 

for each scenario and define the new MP as follows: 

min {∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

+ ∑ 𝛾(𝜔)

𝜔∈Ω𝑁

} 

s.t. (4.2) – (4.5), 

(5.36) 

 𝛾(𝜔) ≥  ∑ [∑ ∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

4.7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

+ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

4.8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
4.20(𝜔) − ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
4.21(𝜔)

− ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚
4.22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

] 

(5.37) 

 𝛾(𝜔) ≥ 0,     𝜔 ∈ Ω𝑁 (5.38) 

Note that the cut (5.37) should be added to the MP only if the lower bound, given by the master 

problem for a specific scenario, is smaller than the objective function of the subproblem for that 



100 
 

scenario. This can help avoiding redundant cuts, and thus improves the algorithm’s computational 

time. Applying this multi-cut framework can provide a better approximation of the sample average 

of the second-stage objective value functions due to the disaggregation of the optimality cut. This 

accelerated method results in fewer number of BD iterations at the expense of a larger MP. 

5.3.2. Knapsack Inequalities 

Santoso et al. (2005) showed that including knapsack inequalities together with optimality cut 

leads to an improved solution from the MP. They indicated that state-of-the-art solvers such as 

CPLEX can derive a variety of valid inequalities from the knapsack inequality, which accelerates 

the convergence of the Benders decomposition method. Let 𝑈𝐵∗ be the current best known upper 

bound. Since 𝑈𝐵∗ > ∑ 𝑓𝓅𝑋𝓅𝓅∈𝕀 + ∑ 𝑑𝓅𝓆𝑌𝓅𝓆(𝓅,𝓆)∈𝒜 + ∑ 𝛾𝜔𝜔∈Ω𝑁 , one can add the following valid 

knapsack inequality to the master problem in iteration 𝑖𝑡 + 1: 

∑ 𝑓𝓅𝑋𝓅

𝓅∈𝕀

+ ∑ 𝑑𝓅𝓆𝑌𝓅𝓆

(𝓅,𝓆)∈𝒜

− ∑ 𝐶𝑎𝑝𝓆𝑋𝓆,𝑖𝑡

𝓆∈𝕀 

�̂�𝓆𝑡
4.20(𝜔) − ∑ ∑ ∑ ℳ. 𝑌𝓅𝓆,𝑖𝑡  �̂�𝑘𝓅𝓆𝑡𝑚

4.22 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾

 

≤ 𝑈𝐵∗ − ∑ ∑ ∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

4.7 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

− ∑ ∑ ∑ ∑ 𝑆𝓆𝑡
ℓ (𝜔) �̂�𝑘𝓅𝓆𝑡𝑚

4.8 (𝜔)

𝑚∈𝑀𝓅,𝓆∈ℕ𝑘∈𝐾𝑡∈𝑇

+ ∑ ∑ 𝐶𝑎𝑝𝓆

𝓆∈ ∀𝓃∈ℕ∖𝕀 

�̂�𝓆𝑡
4.21(𝜔)

𝑡∈𝑇

 

(5.39) 

 

The adoption of above Knapsack Inequalities leads to a restricted master problem at each iteration 

which can accelerate the convergence. More specifically, such a valid inequality could eliminate 

infeasible space of the master problem, thus improve the quality of generated lower bounds. 

Accordingly, the gap between the upper bound and the lower bound will be tightened and the 

algorithm will converge to the optimal solution faster (Saharidis et al., 2011). 

5.3.3. Pareto-optimal cuts generation scheme 

In this section, an acceleration procedure proposed by Magnanti and Wong (1981) is used to 

strengthen the optimality cuts of Benders decomposition method by generating Pareto-optimal 

cuts. An optimality cut is called pareto-optimal if there is no other cut to make it redundant. 

Likewise, the optimal dual solution corresponding to the Pareto-optimal cut is referred to as Pareto-

optimal. In BSPs with network structure as in this thesis, the DSP normally has multiple optimal 

solutions, among which the Pareto-optimal generates the strongest cut. To generate a Pareto-
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optimal cut, consider the robust two-stage stochastic model as the general problem 𝑀𝑖𝑛 𝑐1
𝑇𝑪 +

𝑐2
𝑇𝐗, s.t. 𝐴𝑪 + 𝐵𝐗 ≥ 𝑏, 𝑪 ≥ 0, 𝐗 ∈ {0,1}. Fixing integer variables 𝐗 = �̃�, one can write the general 

form of SP as 𝑀𝑖𝑛 𝑐1
𝑇𝑪, s.t.𝐴𝑪 ≥ 𝑏 − 𝐵 �̃�,𝑪 ≥ 0 and then its DSP is 𝑀𝑎𝑥 (𝑏 − 𝐵 �̃�)

𝑇
𝝌, s.t. 

𝐴𝑇𝝌 ≤ 𝑐1
𝑇, 𝝌 ≥ 0. Let 𝐗𝑐 be a core point of the solution space of MP, and 𝝌∗ be the optimal 

solution of the DSP. A Pareto-optimal cut can be obtained by solving the following problem, which 

is referred to as Magnati-Wong problem:  

𝑀𝑎𝑥 (𝑏 − 𝐵 𝐗𝑐 )𝑇𝝌, s.t. 𝐴𝑇𝝌 ≤ 𝑐1
𝑇, (𝑏 − 𝐵 �̃�)

𝑇
𝝌 ≤ (𝑏 − 𝐵 �̃�)

𝑇
𝝌∗, 𝝌 ≥ 0 (5.40) 

At each iteration, the challenge is to identify and update a core point which should lie inside the 

relative interior of the convex hull of the sub-region defined by the MP variables. To combat this 

problem, Papadakos (2008) proved that instead of a core point 𝐗𝑐, one can use a convex 

combination of the current MP solution and the previously used core point to obtain a new core 

point at each iteration as 𝐗𝑖𝑡
𝑐 ← 𝜑𝐗𝑖𝑡−1

𝑐 + (1 − 𝜑)𝐗𝑖𝑡
𝑀𝑃 , 0 < 𝜑 < 1. It should be noted that for the 

first iteration, 𝐗0
𝑐  is set to the solution of MP. 

In the following the proposed accelerated Benders decomposition algorithm is summarised. In the 

first step, we generate initial feasible solutions for DSP and MP. In step 2, the MP with multi-cut 

framework and knapsack inequalities is generated and then solved to obtain a lower bound and the 

first-stage solutions. In the next step, we solve the DSP, generate the Pareto-optimal cut from the 

corresponding Magnati-Wong problem’s solutions, and update the upper bound. Finally, we add 

the Pareto-optimal cut to the MP and update the core point. The pseudo-code of the proposed 

accelerated Benders decomposition algorithm is illustrated in Procedure 5.2. 
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Inputs: 𝑈𝐵0 = +∞,  𝐿𝐵0 = −∞, �̃�0, 𝜑, 𝜖 

Initialisation 

Solve the DSP corresponding to arbitrary feasible solutions of 𝐗0 to obtain an initial dual feasible solution �̃�0   

Solve MP and set the core point equal to its solution 

𝑖𝑡 = 0 

While (𝑈𝐵𝑖𝑡 − 𝐿𝐵𝑖𝑡) > 𝜖 

Master problem (�̃�𝑖𝑡) 

Solve MP with multi-cut and knapsack inequalities, i.e. (5.36)– (5.39), using �̃�𝑖𝑡  

Update  𝐿𝐵𝑖𝑡 

Update 𝐗𝑖𝑡 

Dual sub-problem (𝐗𝑖𝑡 , 𝜔 ∈ Ω𝑁) 

For each scenario 𝜔 ∈ Ω𝑁 solve DSPs using �̃�𝑖𝑡  

If solved to optimality 

Generate a Pareto-optimal cut 

Update �̃�𝑖𝑡 

Update 𝑈𝐵𝑖𝑡 

End if 

Update 

Add generated cuts to the MP 

𝑖𝑡 = 𝑖𝑡 + 1 

Update the core point (𝐗𝑖𝑡
𝑐 ← 𝜑𝐗𝑖𝑡−1

𝑐 + (1 − 𝜑)𝐗𝑖𝑡
𝑀𝑃 , 0 < 𝜑 < 1) 

End while 

Output: Return �̃�𝑖𝑡  as the optimal solution, and 𝑈𝐵𝑖𝑡  as the optimal objective value. 

Procedure 5.2. The accelerated Benders decomposition algorithm 

The presented solution strategy in this chapter is applied to solve the proposed model in Chapter 

4. A comprehensive numerical experiment is employed to demonstrate the applicability of network 

design model and the efficiency of the solution strategy techniques. These are discussed in the 

following chapter. 
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Chapter 6. Computational Study 

6.1. Context for study 

In this chapter, a hypothetical case of designing a hinterland container shipping network is 

described and the results obtained by the proposed solution procedure is presented. The 

performance indicators and a sensitivity analysis are discussed to provide further managerial 

insights of interest to shipping line companies. The provided managerial insights are based on the 

choices of parameters in this study. Finally, the performance experiments of proposed accelerated 

Benders decomposition algorithm are provided. The solution procedure was coded in CPLEX 

12.8.0 and tested on a personal computer with a 3.2 gigahertz Intel Core 5 processor and 16 

gigabytes of RAM. 

The hypothetical case study was based in North Carolina State which includes a seaport at 

Wilmington and fifty manufacturers. A set of eight predesignated locations were selected as the 

candidate points for establishing dry ports in the state. These points were chosen from sites in cities 

with more than 70,000 inhabitants. A one-year planning horizon (𝑇 = 12) was considered as the 

temporal scope of this study. Below the input data used in this study is presented. 

An average fixed cost of $120 per TEU was considered for opening a dry port at each candidate 

location (Ambrosino and Sciomachen, 2014). The available storage capacity at dry port candidate 

location 𝓅 ∈ 𝕀 was randomly generated within [2.0, 5.0]×104  TEUs. A storage capacity of 2000 

TEUs was taken for each manufacturer and 10,000 TEUs for the seaport. According to Ballou 

(2004), the unit cost for transporting container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 follows a flat rate for 

each transportation mode, which is calculated as 𝑐𝓅𝓆𝑚
𝑘 = 𝔱𝓅𝓆𝑚𝛽𝑚, where 𝔱𝓅𝓆𝑚 denotes the 

transportation time on arc (𝓅, 𝓆) ∈ 𝒜 using transportation mode 𝑚, and 𝛽𝑚 denotes the 

transportation cost parameter of transportation mode 𝑚. The transportation time for mode 𝑚 on 

arc (𝓅, 𝓆) ∈ 𝒜 is estimated by 𝔱𝓅𝓆𝑚 =
∆𝓅𝓆

𝑉𝑚
, where ∆𝓅𝓆 denotes the travel distance from node 𝓅 to 

node 𝓆, and 𝑉𝑚 represents the average speed of transportation mode 𝑚. The set of transportation 

modes include road and rail,  𝑀 = {1,2}. Let set 𝛽1 = $3.88 and 𝑉1 = 60 mph for the road mode, 

and 𝛽2 = $0.05 and 𝑉2 = 24 mph for the rail mode according to FAF3 dataset used in Ballou 

(2004). The unit cost of holding an empty container at the seaport, a dry port, and a manufacturer 

are set to $2, $4, and $8, respectively which are adopted from (Dang et al., 2012).  
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The Normal distribution is good for modelling economic variables such as demand (Kamath and 

Pakkala, 2002). Therefore, incoming demand follows 𝐷𝓆𝑡
ℓ (𝜔) ~ 𝑁𝑟 (𝜇𝐷𝓆𝑡

ℓ , 𝜎𝐷𝓆𝑡
ℓ ), where 𝜇𝐷𝓆𝑡

ℓ  and 

𝜎𝐷𝓆𝑡
ℓ  refer to the mean and standard deviation of Normal probability distribution function, 

respectively. The supply of outgoing goods 𝑆𝓆𝑡
ℓ (𝜔) could be calculated accordingly since a linear 

proportional relationship between incoming and outgoing goods is considered. With regards to the 

Normal distribution, the random value of incoming goods demand for a given customer 𝓆 ∈ 𝕁 over 

period 𝑡 ∈ 𝑇 are given as 𝜇𝐷𝓆𝑡
ℓ ∈ [6000,7000], where the mean-standard deviation ratio is set to 

𝜇𝐷𝓆𝑡
ℓ 𝜎𝐷𝓆𝑡

ℓ⁄ = 10 . To avoid generating negative values for containers demand, Lognormal 

distribution is used to generate random demands. Hence, Normal distribution parameters (i.e., 𝜇𝐷𝓆𝑡
ℓ  

and 𝜎𝐷𝓆𝑡
ℓ ) should be scaled in order to generate the data with Lognormal distribution. The mean 

and standard deviation of Lognormal distribution are denoted by 𝜇′𝐷𝓆𝑡
ℓ  and 𝜎′𝐷𝓆𝑡

ℓ , respectively. The 

computation of Lognormal scaled parameters from normal parameters are given as: 

𝜇′𝐷𝓆𝑡
ℓ = 𝑒

(𝜇
𝐷𝓆𝑡

ℓ +

𝜎
𝐷𝓆𝑡

ℓ

2
)
, 

𝜎′𝐷𝓆𝑡
ℓ =

√
𝑒

(2 𝜇
𝐷𝓆𝑡

ℓ +𝜎
𝐷𝓆𝑡

ℓ
2)

(𝑒
𝜎

𝐷𝓆𝑡
ℓ

2

− 1) 

Following the work of Ambrosino and Sciomachen (2014), different cost structures were taken 

into account, with two levels of fixed cost for opening a dry port and two levels of empty container 

holding costs, as shown in Table 6.1. 

Table 6.1. Cost structure. 
Cost structures fixed cost for opening a dry port ($) cost of holding an empty container ($)* 

(a) [1.8,4.0]×106 [2, 4, 8]×10-1 

(b) [1.8,4.0]×106 [2, 4, 8]×10 

(c) [4.0;7.5]×106 [2, 4, 8]×10-1 

(d) [4.0;7.5]×106 [2, 4, 8]×10 

*  [ℎℴ , ℎ𝒾 , ℎ𝒿],   ∀ℴ ∈ 𝕆, 𝒾 ∈ 𝕀, 𝒿 ∈ 𝕁. 

As mentioned before, the quality of solutions in the SAA method is related to the sample size. We 

calibrated, tested and validated the SAA model. For this validation, three different samples of size 
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𝑁 = 20, 𝑁 = 40, and 𝑁 = 50 and the four cost structures as shown in Table 6.1 were considered. 

This design gave rise to 12 instances which were used to estimate the statistical optimality gap. 

Table 6.2 shows the results obtained from the SAA model, where 𝑅 = 4 and 𝑁′ = 150 were used 

to calculate the statistical optimality gap percentage with a 95% confidence interval using equation 

(5.31). The number of samples and their size are adopted from (Amiri-Aref et al., 2018).   

Table 6.3. Statistical optimality gap. 
 Sample size 
 𝑁 = 20 𝑁 = 40 𝑁 = 50 
Cost structure (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) 

Solution time 

(seconds) 
242.4 156.9 261.4 217.7 93.2 614.5 603.6 2621.0 973.8 799.8 1056.4 3506.3 

𝑔𝑎𝑝𝑁,𝑅,𝑁′% 1.08 1.07 1.08 1.08 1.03 1.02 1.03 1.02 1.01 1.00 1.01 1.00 

When 𝑁 scenarios were used in the proposed SAA model with a planning horizon of 12 periods; 

a combination of 12×𝑁 sample scenarios were included for solving each instance. The results show 

that the quality of the SAA model solutions increased; the percentage optimality gap decreased as 

the sample size 𝑁 increased. This validation analysis demonstrates that with the maximum 

considered sample size, the SAA method generated satisfactory optimality gaps of approximately 

1%. Accordingly, the sample size 𝑁 = 50 is used for numerical experiments.  

In order to attain comprehensive results, the problem was tested across different values of the 

solution robustness and rejected demand coefficients. Accordingly, a wide range of values of 𝜆 

and 𝜈  were used for each problem instance which were 𝜆 = {10−3, 10−2, 10−1, 1}  and 𝜈 =

{1000, 2000, 3000, 4000, 5000}. The range of these values are adopted from various studies 

(Mulvey et al., 1995; Zarrinpoor et al., 2018). The combination of different values of these 

coefficients as well as the four cost structure levels shown in Table 6.1 yielded 80 problem 

instances.  

6.2. Key performance indicators 

In the robust SAA model presented in this thesis, a cost-based objective function was used for 

designing dry port container networks. In this section three further key performance indicators 

(KPIs) are defined: service level, fill rate, and inventory turnover, to provide further insights into 

the performance of network designs. The three KPIs are supplements to the cost-based objective 

function and can be calculated based on the optimal solution of the robust SAA model. 
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Let denote �̂�𝓆𝑡
ℓ (𝜔) and �̂�𝓆𝑡

ℓ (𝜔) as the solution value of variables 𝑈𝓆𝑡
ℓ (𝜔) and 𝐵𝓆𝑡

ℓ (𝜔), respectively. 

Also, the service level, which corresponds to the demand of raw materials and the supply of 

finished goods for each scenario is denoted by 𝜂𝑟(𝜔) and 𝜂𝑠(𝜔), respectively. Let 𝜉𝑟(𝜔) and 

𝜉𝑠(𝜔) be the fill rate corresponding to the demand of raw materials and the supply of finished 

goods for each scenario, respectively. The service level is defined as the fraction of customer 

demand that is met through available stock. The service level for the demand of raw materials (in 

TEUs) for each scenario over all periods and all customers (manufacturers) is calculated as 

𝜂𝑟(𝜔) = 1 −
∑ ∑ 𝑈𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

× 100%. Then the expected value of 𝜂𝑟(𝜔) over all scenarios is 

estimated by: 

 �̅�𝑟 =
1

|Ω𝑁|
∑ 𝜂𝑟(𝜔)𝜔∈Ω𝑁                                                            (6.1) 

Likewise, the service level corresponding to the supply of finished goods for each scenario over 

all periods and all customers (manufacturers) is calculated by 𝜂𝑠(𝜔) = 1 −
∑ ∑ �̂�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

∑ ∑ 𝐷𝓆𝑡
ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

×

100%, and its expected value over all scenarios by: 

�̅�𝑠 =
1

|Ω𝑁|
∑ 𝜂𝑠(𝜔)𝜔∈Ω𝑁                                                           (6.2) 

The fill rate is defined as the percentage of demand orders which are satisfied on time and in full. 

The fill rate corresponding to the demand orders of raw materials for each scenario over all periods 

and all customers (manufacturers) is calculated by: 

 𝜉𝑟(𝜔) =
∑ ∑ �̃�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

|𝕁||𝑇|
× 100%                                                  (6.3)  

where �̃�𝓆𝑡
ℓ (𝜔) = 1 if �̂�𝓆𝑡

ℓ (𝜔) = 0 and zero, otherwise. Then the expected value of 𝜉𝑟(𝜔) over all 

scenarios is computed by 𝜉�̅� =
1

|Ω𝑁|
∑ 𝜉𝑟(𝜔)𝜔∈Ω𝑁 . Likewise, the fill rate corresponding to the 

supply orders of finished goods is calculated by 𝜉𝑠(𝜔) =
∑ ∑ �̃�𝓆𝑡

ℓ (𝜔) 𝑡∈𝑇𝓆∈𝕁

|𝕁||𝑇|
× 100%, where 

�̃�𝓆𝑡
ℓ (𝜔) = 1 if �̂�𝓆𝑡

ℓ (𝜔) = 0 and zero, otherwise, and its expected value by: 

𝜉�̅� =
1

|Ω𝑁|
∑ 𝜉𝑠(𝜔)𝜔∈Ω𝑁                                                                                (6.4) 

The inventory turnover of empty containers reflects the number of times that empty containers 

were replenished at all dry ports over the planning horizon. The total throughput of empty 

containers from all dry ports for each scenario 𝜔 ∈ Ω𝑁 is denoted by 𝜓(𝜔) =
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∑ ∑ ∑ (∑ �̂�𝓅𝓆𝑡𝑚
ℯ (𝜔)𝓆∈𝕆 + ∑ �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔)𝓆∈𝕁 )𝑚∈𝑀𝑡∈𝑇𝓅∈𝕀 , where �̂�𝓅𝓆𝑡𝑚
ℯ (𝜔) represents the solution of 

the flow of empty containers from dry port 𝓅 ∈ 𝕀 to the seaport 𝓆 ∈ 𝕆 and manufacturer 𝓆 ∈ 𝕁.  

Let also denote the average inventory level of empty containers in each period by 𝜄(𝜔) =

1

|𝑇|
(∑ ∑ 𝐼𝓅𝑡

ℯ (𝜔) 𝑡∈𝑇𝓅∈𝕀 ), where 𝐼𝓅𝑡
ℯ (𝜔) represents the solution corresponding to the decision 

variable 𝐼𝓅𝑡
ℯ (𝜔). Therefore, the inventory turnover of empty containers for each scenario can be 

indicated by 𝜀(𝜔) =
𝜓(𝜔)

𝜄(𝜔)
 and its expected value by: 

𝜀̅ =
1

|Ω𝑁|
∑ 𝜀(𝜔)𝜔∈Ω𝑁                                                                      (6.5) 

6.3. Numerical results and discussion 

In this section the solutions generated by the proposed two-stage stochastic model is discussed. In 

Section 6.3.1, the solutions obtained from the 80 explained instances are analysed regarding to the 

network configuration, container flow decisions, and key performance indicators. In Section 6.3.2, 

the performance of the robustness approach is discussed. Finally, 6.3.3, is dedicated to the 

computational efficiency of applied solution procedure employing the proposed accelerated 

Benders decomposition algorithm. 

6.3.1. Solution analysis 

• Network configuration   

Dry ports location decisions are presented for all the instances based on various cost structures and 

different values of 𝜆 shown in Figure 6.1. This illustrates the significant impact of operational costs 

on shipping network design. The horizontal axis represents the cost structures, and the vertical axis 

shows the average number of dry ports to be opened over all instances. With low holding costs for 

keeping empty containers, i.e. cost structures (a) and (c), the shipping network tends to open more 

facilities (approximately 7 dry ports) in order to achieve more robust solutions. This outcome 

indicates that under these cost structures it is more cost-effective to decentralise the storage of 

empty containers by opening more dry ports across the region to cope with the existing uncertainty. 

On the other hand, centralisation of empty containers storage is recommended under cost structures 

(b) and (d) which aims to obtain more robust solutions with minimal cost.  
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Figure 6.1. Location decisions on the number of opened dry ports. 

To have a better view of the network configuration, one of the instances described above is chosen 

and the corresponding solution is plotted. Figure 6.2 shows the location of dry ports and their 

allocation to manufacturers. The location of the seaport, dry ports, and manufacturers are shown 

as orange, red, and blue icons, respectively. For this instance, the developed model proposes two 

dry ports which are located fairly close to the seaport with a sufficient distance from/to all 

manufacturers. The distant manufacturers, located far away from the seaport, are mainly multiple-

sourced by dry ports.  

 

Figure 6.2. Geographical presentation of the network in North Carolina. 
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Figure 6.3 provides a comparison to illustrate the effectiveness of the obtained solutions from the 

models developed in this study. In this figure, different cost components related to the above 

optimal network and a given feasible, but not optimal, solution are provided. Also, the total cost 

which involves containers transportation cost, holding cost, leasing cost, and dry port locating cost 

is shown in the figure. 

 

Figure 6.3. Cost components results. 

 It can be seen that the transportation cost of achieved optimal solution is higher than the given 

solution. However, the given non-optimal solution suggests utilising three DPs. Accordingly, the 

locating cost of non-optimal design is higher than the optimal container network solution. Most 

importantly, one can observe that the total cost related to the optimal dry port container network 

configuration is lower than the given solution for the network. This indicates that the proposed 

models can minimise the total costs related to the network design by making a trade-off among 

different cost components. The detailed network configuration results related to the location-

allocation are provided in Tables 6.3-6.6. 
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Table 6.4. Network configuration decisions results of cost structure (a) 

λ ν Nb Dry Ports 
Allocation decision 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 67% 33% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 68% 32% 

2000 2 70% 30% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 3 100% 0% 

2000 3 100% 0% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2.4 81% 19% 

1 

1000 5 88% 12% 

2000 8 0% 100% 

3000 8 0% 100% 

4000 8 0% 100% 

5000 8 0% 100% 

Average 7.4 18% 82% 
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Table 6.5. Network configuration decisions results of cost structure (b). 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 1 100% 0% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 1.8 74% 26% 

1 

1000 1 100% 0% 

2000 1 100% 0% 

3000 1 100% 0% 

4000 1 100% 0% 

5000 1 100% 0% 

Average 1 100% 0% 
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Table 6.6. Network configuration decisions results of cost structure (c). 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 34% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 67% 33% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 2 88% 12% 

2000 2 88% 12% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 76% 24% 

1 

1000 2 100% 0% 

2000 8 0% 100% 

3000 8 0% 100% 

4000 8 0% 100% 

5000 8 0% 100% 

Average 6.8 20% 80% 
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Table 6.7. Network configuration decisions results of cost structure (d) 

λ ν Nb Dry Ports 
Allocation/Sourcing rule 

Single-sourcing Multiple-sourcing 

0.001 

1000 2 68% 32% 

2000 2 70% 30% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.01 

1000 2 68% 32% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 2 68% 32% 

0.1 

1000 1 100% 0% 

2000 2 68% 32% 

3000 2 68% 32% 

4000 2 68% 32% 

5000 2 68% 32% 

Average 1.8 74% 26% 

1 

1000 1 100% 0% 

2000 1 100% 0% 

3000 1 100% 0% 

4000 1 100% 0% 

5000 1 100% 0% 

Average 1 100% 0% 
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The results regarding to the number of opened dry ports and allocation decisions obtained from all 

described problem instances are presented in Tables 6.3-6.6. It should be noted that Tables 6.3, 

6.4, 6.5, and 6.6 are related to the cost structures (a), (b), (c), and (d) respectively. The allocation 

decisions are shown according to the sourcing strategies of single-sourcing and multiple-sourcing, 

where the former shows the percentage of manufacturers allocated to only one opened dry port, 

while the latter denotes the percentage of manufacturers allocated to more than one established dry 

ports. Furthermore, the average of mentioned results over different values of ν for a given λ are 

provided for further transparency. 

• Containers flow decisions  

Figure 6.4 summarises the flow of empty and laden containers in the network and the mode of 

transport applied. Figure 6.4(a) shows that the laden containers were mostly transported directly 

between the seaport and manufacturers, whilst the empty containers were mainly transported 

between these nodes through dry ports. Moreover, the results suggest that the backward flow of 

laden containers from manufacturers to the seaport contributed to a higher percentage of direct 

flow than the forward flow from the seaport to manufacturers. Figure 6.4(a) also shows that the 

usage of dry ports is more practical for empty container repositioning especially in the backward 

flow, i.e., from manufacturers to the seaport. This confirms the importance of deploying dry ports 

in the container shipping networks for the repositioning of empty containers. Figure 6.4(b) shows 

that a higher percentage of laden containers were transported by rail, whilst road was the main 

transportation mode for the flow of empty containers. Each transportation mode was used almost 

equally in the forward and backward laden containers flow. The results were similar for empty 

containers. The percentage flow using rail for laden containers was higher for empty containers, 

since the transportation costs were reduced by taking the advantage of the economies of scale for 

direct flows which involved longer distances than the indirect flows through dry ports.  
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(a) Containers flow.  (b) Transportation modality. 

Figure 6.4. Transportation in the container shipping network. 

Overall, rail was used more for the direct movement of laden containers, whilst road was employed 

more for the indirect flow of empty containers. The detailed results obtained for the flow of empty 

and laden containers using considered transportation modes for different cost structures are 

presented in Tables 6.7-6.10. 

The details of numerical results associated with the solution of the intermodal transportation 

problem for both laden and empty containers are provided in Tables 6.7-6.10 corresponding to 

cost structures (a)−(d). More specifically, the percentage of laden containers flow (LCF) and 

empty containers flow (ECF) throughout the network using both available transportation modes of 

road and rail are presented. Also, the flow solutions are categorised according to the dry-ports 

deployment, where “Direct” flows refer to the flows of containers which are transported between 

nodes without using dry ports, while “Indirect” flows denote the flows of containers which are 

moved via established dry ports. Moreover, the average of flow percentages over different values 

of ν for a given λ, as well as the total average of flow percentages over all different values of ν and 

λ, are provided for each cost structure. 
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Table 6.8. Flow decisions results for cost structure (a) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.67% 84.36% 4.59% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.68% 84.35% 4.59% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.68% 84.34% 4.61% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.68% 84.35% 4.59% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.62% 84.36% 4.65% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.67% 84.35% 4.61% 1.38% 

0.01 

1000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.66% 84.37% 4.59% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.59% 84.36% 4.67% 1.38% 

4000 6.24% 56.13% 18.82% 18.82% 9.60% 84.35% 4.67% 1.38% 

5000 6.21% 55.93% 18.93% 18.93% 9.58% 84.37% 4.67% 1.38% 

Average 6.27% 56.46% 18.63% 18.63% 9.61% 84.36% 4.65% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 9.59% 84.34% 6.07% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 9.68% 84.32% 6.00% 0.00% 

3000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

Average 7.81% 70.31% 10.94% 10.94% 9.63% 84.33% 5.22% 0.83% 

1 

1000 10.00% 90.00% 0.00% 0.00% 10.16% 83.60% 6.24% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 9.72% 83.86% 6.41% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

Average 7.81% 70.31% 10.94% 10.94% 9.63% 84.33% 5.22% 0.83% 

Total Average 7.60% 68.39% 12.00% 12.00% 9.64% 84.29% 5.18% 0.90% 
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Table 6.7. Flow decisions results for cost structure (a) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 10.07% 0.00% 62.95% 26.98% 3.31% 0.00% 74.66% 22.03% 

2000 0.00% 0.00% 70.00% 30.00% 1.65% 0.00% 74.26% 24.08% 

3000 0.00% 0.00% 70.00% 30.00% 1.95% 0.00% 74.03% 24.01% 

4000 28.21% 0.00% 50.25% 21.54% 3.53% 0.00% 74.46% 22.02% 

5000 0.00% 0.00% 70.00% 30.00% 0.20% 0.00% 77.80% 22.00% 

Average 7.66% 0.00% 64.64% 27.70% 2.13% 0.00% 75.04% 22.83% 

0.01 

1000 0.00% 0.00% 70.00% 30.00% 0.93% 0.00% 77.04% 22.02% 

2000 0.00% 0.00% 70.00% 30.00% 0.20% 0.00% 75.84% 23.96% 

3000 0.00% 0.00% 70.00% 30.00% 0.10% 0.00% 77.91% 21.99% 

4000 0.00% 0.00% 70.00% 30.00% 0.07% 0.00% 77.94% 21.99% 

5000 0.00% 0.00% 70.00% 30.00% 0.09% 0.00% 77.92% 21.99% 

Average 0.00% 0.00% 70.00% 30.00% 0.28% 0.00% 77.33% 22.39% 

0.1 

1000 0.00% 0.00% 100.0% 0.00% 0.00% 0.00% 100.0% 0.00% 

2000 0.00% 0.00% 100.0% 0.00% 0.00% 0.00% 96.67% 3.33% 

3000 0.00% 0.00% 70.00% 30.00% 0.90% 0.00% 77.07% 22.02% 

4000 0.00% 0.00% 70.00% 30.00% 1.25% 0.00% 76.72% 22.03% 

5000 0.00% 0.00% 70.00% 30.00% 0.71% 0.00% 77.26% 22.03% 

Average 0.00% 0.00% 82.00% 18.00% 0.57% 0.00% 85.54% 13.88% 

1 

1000 0.00% 0.00% 97.59% 2.41% 0.00% 0.00% 90.09% 9.91% 

2000 0.00% 0.00% 99.57% 0.43% 0.00% 0.00% 100.0% 0.00% 

3000 0.00% 0.00% 98.42% 1.58% 0.00% 0.00% 100.0% 0.00% 

4000 0.00% 0.00% 98.37% 1.63% 0.00% 0.00% 100.0% 0.00% 

5000 0.00% 0.00% 98.45% 1.55% 0.00% 0.00% 100.0% 0.00% 

Average 0.00% 0.00% 82.00% 18.00% 0.57% 0.00% 85.54% 13.88% 

Total Average 1.91% 0.00% 78.78% 19.31% 0.74% 0.00% 83.98% 15.27% 
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Table 6.9. Flow decisions results for cost structure (b) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.56% 84.41% 4.65% 1.38% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 6.28% 56.53% 18.59% 18.59% 9.61% 84.39% 4.63% 1.38% 

0.01 

1000 6.30% 56.70% 18.50% 18.50% 9.72% 84.36% 4.54% 1.38% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 6.28% 56.53% 18.59% 18.59% 9.64% 84.38% 4.61% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 11.92% 83.64% 3.29% 1.15% 

2000 6.24% 56.13% 18.82% 18.82% 9.62% 84.39% 4.62% 1.38% 

3000 6.20% 55.76% 19.02% 19.02% 9.63% 84.38% 4.62% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.67% 84.37% 4.59% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.58% 84.38% 4.66% 1.38% 

Average 7.02% 63.19% 14.89% 14.89% 10.08% 84.23% 4.36% 1.33% 

1 

1000 10.71% 89.29% 0.00% 0.00% 24.59% 75.41% 0.00% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 25.81% 74.19% 0.00% 0.00% 

3000 10.0% 90.0% 0.00% 0.00% 27.0% 73.0% 0.00% 0.00% 

4000 10.0% 90.0% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

5000 10.0% 90.0% 0.00% 0.00% 12.24% 83.32% 3.29% 1.15% 

Average 10.14% 89.86% 0.00% 0.00% 23.32% 75.79% 0.66% 0.23% 

Total Average 7.43% 66.53% 13.02% 13.02% 13.17% 82.20% 3.56% 1.08% 
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Table 6.8. Flow decisions results for cost structure (b) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 5.88% 0.00% 65.88% 28.24% 0.24% 0.00% 77.81% 21.95% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 5.88% 0.00% 65.88% 28.24% 0.74% 0.00% 76.87% 22.39% 

0.01 

1000 12.09% 0.00% 61.54% 26.37% 3.27% 0.00% 72.77% 23.96% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 7.12% 0.00% 65.01% 27.87% 1.35% 0.00% 75.86% 22.79% 

0.1 

1000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

2000 5.88% 0.00% 65.88% 28.24% 1.23% 0.00% 76.78% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.59% 0.00% 77.43% 21.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.81% 0.00% 75.19% 24.01% 

5000 5.88% 0.00% 65.88% 28.24% 0.85% 0.00% 77.14% 22.01% 

Average 11.37% 0.00% 66.04% 22.59% 0.70% 0.00% 74.21% 25.09% 

1 

1000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 69.99% 30.00% 

2000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 65.62% 34.37% 

3000 33.33% 0.0% 66.7% 0.0% 0.0% 0.0% 65.6% 34.4% 

4000 33.34% 0.00% 66.66% 0.00% 0.0% 0.0% 64.52% 35.48% 

5000 33.34% 0.00% 66.66% 0.00% 0.0% 0.0% 64.52% 35.48% 

Average 33.34% 0.00% 66.67% 0.00% 0.00% 0.00% 66.05% 33.95% 

Total Average 14.43% 0.00% 65.90% 19.67% 0.70% 0.00% 73.25% 26.05% 
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Table 6.10. Flow decisions results for cost structure (c) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.59% 84.36% 4.67% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.61% 84.36% 4.66% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.61% 84.36% 4.65% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.60% 84.35% 4.68% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.63% 84.35% 4.65% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.61% 84.36% 4.66% 1.38% 

0.01 

1000 6.30% 56.70% 18.50% 18.50% 9.70% 84.36% 4.56% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.59% 84.36% 4.68% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.59% 84.35% 4.68% 1.38% 

4000 6.36% 57.26% 18.19% 18.19% 9.59% 84.39% 4.64% 1.38% 

5000 6.31% 56.81% 18.44% 18.44% 9.63% 84.35% 4.64% 1.38% 

Average 6.31% 56.77% 18.46% 18.46% 9.62% 84.36% 4.64% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 9.59% 84.46% 4.70% 1.25% 

2000 10.00% 90.00% 0.00% 0.00% 9.61% 84.33% 4.68% 1.38% 

3000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.62% 84.33% 4.67% 1.38% 

Average 7.81% 70.31% 10.94% 10.94% 9.61% 84.36% 4.68% 1.35% 

1 

1000 10.00% 90.00% 0.00% 0.00% 10.52% 83.00% 5.32% 1.17% 

2000 10.00% 90.00% 0.00% 0.00% 9.72% 83.86% 6.41% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 9.49% 84.35% 6.16% 0.00% 

Average 10.00% 90.00% 0.00% 0.00% 9.74% 83.98% 6.04% 0.23% 

Total Average 7.61% 68.47% 11.96% 11.96% 9.65% 84.26% 5.01% 1.09% 
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Table 6.9. Flow decisions results for cost structure (c) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 0.00% 0.0% 70.00% 30.00% 1.97% 0.00% 76.03% 22.01% 

2000 0.00% 0.0% 70.00% 30.00% 0.21% 0.00% 77.79% 22.00% 

3000 0.00% 0.0% 70.00% 30.00% 1.97% 0.00% 76.02% 22.01% 

4000 0.00% 0.0% 70.00% 30.00% 0.01% 0.00% 77.99% 22.00% 

5000 0.00% 0.0% 70.00% 30.00% 1.82% 0.00% 76.14% 22.04% 

Average 0.00% 0.00% 70.00% 30.00% 1.20% 0.00% 76.79% 22.01% 

0.01 

1000 0.00% 0.0% 70.00% 30.00% 0.18% 0.00% 75.87% 23.96% 

2000 0.00% 0.0% 70.00% 30.00% 0.07% 0.00% 77.94% 21.98% 

3000 0.00% 0.0% 70.00% 30.00% 0.12% 0.00% 77.89% 21.99% 

4000 0.00% 0.0% 70.00% 30.00% 0.20% 0.00% 77.81% 21.99% 

5000 0.00% 0.0% 70.00% 30.00% 0.23% 0.00% 77.77% 22.00% 

Average 0.00% 0.00% 70.00% 30.00% 0.16% 0.00% 77.46% 22.38% 

0.1 

1000 0.00% 0.0% 70.00% 30.00% 0.00% 0.00% 76.67% 23.33% 

2000 0.00% 0.0% 70.00% 30.00% 0.00% 0.00% 76.93% 23.07% 

3000 0.00% 0.00% 70.00% 30.00% 0.03% 0.00% 77.97% 22.00% 

4000 0.00% 0.00% 70.00% 30.00% 0.85% 0.00% 77.12% 22.02% 

5000 0.00% 0.00% 70.00% 30.00% 0.98% 0.00% 76.99% 22.03% 

Average 0.00% 0.00% 70.00% 30.00% 0.37% 0.00% 77.14% 22.49% 

1 

1000 0.00% 0.00% 100% 0.00% 0.00% 0.00% 81.63% 18.37% 

2000 0.00% 0.00% 99.57% 0.43% 0.00% 0.00% 100% 0.00% 

3000 0.00% 0.00% 98.42% 1.58% 0.00% 0.00% 100% 0.00% 

4000 0.00% 0.00% 98.37% 1.63% 0.00% 0.00% 100% 0.00% 

5000 0.00% 0.00% 98.45% 1.55% 0.00% 0.00% 100% 0.00% 

Average 0.00% 0.00% 98.96% 1.04% 0.00% 0.00% 96.33% 3.67% 

Total Average 0.00% 0.00% 77.24% 22.76% 0.43% 0.00% 81.93% 17.64% 
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Table 6.11. Flow decisions results for cost structure (d) 

λ ν 

LCF (forward) LCF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 6.30% 56.70% 18.50% 18.50% 9.54% 84.41% 4.68% 1.38% 

2000 6.53% 58.75% 17.36% 17.36% 9.56% 84.40% 4.67% 1.38% 

3000 6.21% 55.93% 18.93% 18.93% 9.73% 84.36% 4.54% 1.38% 

4000 6.18% 55.62% 19.10% 19.10% 9.54% 84.40% 4.68% 1.38% 

5000 6.34% 57.03% 18.32% 18.32% 9.55% 84.40% 4.68% 1.38% 

Average 6.31% 56.81% 18.44% 18.44% 9.58% 84.39% 4.65% 1.38% 

0.01 

1000 6.35% 57.18% 18.23% 18.23% 9.57% 84.34% 4.72% 1.38% 

2000 6.30% 56.70% 18.50% 18.50% 9.42% 84.41% 4.80% 1.38% 

3000 6.26% 56.38% 18.68% 18.68% 9.55% 84.39% 4.68% 1.38% 

4000 6.24% 56.13% 18.82% 18.82% 9.55% 84.39% 4.69% 1.38% 

5000 6.21% 55.93% 18.93% 18.93% 9.64% 84.36% 4.63% 1.38% 

Average 6.27% 56.46% 18.63% 18.63% 9.55% 84.38% 4.70% 1.38% 

0.1 

1000 10.00% 90.00% 0.00% 0.00% 11.92% 83.64% 3.29% 1.15% 

2000 7.04% 63.33% 14.82% 14.82% 9.60% 84.33% 4.69% 1.38% 

3000 6.35% 57.18% 18.23% 18.23% 9.60% 84.33% 4.69% 1.38% 

4000 6.35% 57.18% 18.23% 18.23% 9.60% 84.33% 4.69% 1.38% 

5000 6.35% 57.18% 18.23% 18.23% 9.57% 84.34% 6.09% 0.00% 

Average 7.22% 64.97% 13.90% 13.90% 10.06% 84.19% 4.69% 1.06% 

1 

1000 10.71% 89.29% 0.00% 0.00% 24.59% 75.41% 0.00% 0.00% 

2000 10.00% 90.00% 0.00% 0.00% 25.81% 74.19% 0.00% 0.00% 

3000 10.00% 90.00% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

4000 10.00% 90.00% 0.00% 0.00% 26.98% 73.02% 0.00% 0.00% 

5000 10.00% 90.00% 0.00% 0.00% 12.24% 83.32% 3.29% 1.15% 

Average 10.14% 89.86% 0.00% 0.00% 23.32% 75.79% 0.66% 0.23% 

Total Average 7.49% 67.03% 12.74% 12.74% 13.13% 82.19% 3.68% 1.01% 
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Table 6.10. Flow decisions results for cost structure (d) (cont.). 

λ ν 

ECF (forward) ECF (backward) 

Direct Indirect Direct Indirect 

Road Rail Road Rail Road Rail Road Rail 

0.001 

1000 5.88% 0.00% 65.88% 28.24% 2.18% 0.00% 75.88% 21.94% 

2000 5.88% 0.00% 65.88% 28.24% 0.14% 0.00% 77.88% 21.98% 

3000 5.88% 0.00% 65.88% 28.24% 0.32% 0.00% 73.70% 25.98% 

4000 5.88% 0.00% 65.88% 28.24% 0.43% 0.00% 77.59% 21.98% 

5000 5.88% 0.00% 65.88% 28.24% 0.09% 0.00% 77.92% 21.99% 

Average 5.88% 0.00% 65.88% 28.24% 0.63% 0.00% 76.59% 22.77% 

0.01 

1000 5.88% 0.00% 65.88% 28.24% 2.06% 0.00% 75.97% 21.98% 

2000 5.88% 0.00% 65.88% 28.24% 1.59% 0.00% 76.46% 21.96% 

3000 5.88% 0.00% 65.88% 28.24% 0.16% 0.00% 77.87% 21.97% 

4000 5.88% 0.00% 65.88% 28.24% 0.15% 0.00% 77.86% 21.98% 

5000 5.88% 0.00% 65.88% 28.24% 1.97% 0.00% 74.04% 23.99% 

Average 5.88% 0.00% 65.88% 28.24% 1.19% 0.00% 76.44% 22.38% 

0.1 

1000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 63.89% 36.11% 

2000 5.88% 0.00% 65.88% 28.24% 0.00% 0.00% 76.67% 23.33% 

3000 5.88% 0.00% 65.88% 28.24% 0.87% 0.00% 77.14% 21.99% 

4000 5.88% 0.00% 65.88% 28.24% 1.16% 0.00% 76.85% 21.99% 

5000 5.88% 0.00% 94.12% 0.00% 0.12% 0.00% 99.88% 0.00% 

Average 11.37% 0.00% 71.68% 16.94% 0.43% 0.00% 78.89% 20.68% 

1 

1000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 69.99% 30.00% 

2000 33.34% 0.00% 66.66% 0.00% 0.01% 0.00% 65.62% 34.37% 

3000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 65.62% 34.37% 

4000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

5000 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 64.52% 35.48% 

Average 33.34% 0.00% 66.66% 0.00% 0.00% 0.00% 66.05% 33.94% 

Total Average 14.12% 0.00% 67.53% 18.36% 0.56% 0.00% 74.49% 24.94% 
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• Key performance Indicators 

The results obtained from computing the KPIs are summarised in Figure 6.5, in order to underline 

the impact of different cost structures and solution robustness coefficient. In the first glance, one 

can observe that in Figures 6.5(a) and 6.5(b) both �̅�𝑟 and �̅�𝑠, obtained from (6.1) and (6.2) 

respectively, were improved significantly as the solution robustness coefficient increased. Overall, 

the results show that increasing robustness led to higher service levels for the supply of finished 

goods compared to the one for the demand of raw materials. One also may argue that both 𝜉�̅� and 

𝜉�̅�, obtained from (6.3) and (6.4) respectively, had almost equal growth with respect to increase in 

the value of 𝜆, as shown in Figures 6.5(c) and 6.5(d). This similarity in the value of fill rate is due 

to the linear proportional relationship between the demand and supply of containers at the 

manufacturers’ locations. In general, this result confirms the importance of the incorporation of 

robustness considerations into container shipping network design in order to achieve the maximal 

desired service level and fill rate.    

Moreover, Figures 6.5(a) and 6.5(b) show that when the fixed opening cost is relatively low, by 

increasing the holding cost of empty containers, both service levels �̅�𝑟 and �̅�𝑠 may decrease. This 

is because satisfying the demand and supply of laden containers is closely interrelated to the 

inventory level of empty containers across the shipping network. Figures 6.5(c) and 6.5(d) 

demonstrate a similar behaviour with regards to the cost structure.  

  

(a) Service level for the demand of raw materials. (b) Service level for the supply of finished goods. 
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(c) Fill rate for the demand of raw materials. (d) Fill rate for the supply of finished goods. 

Figure 6.5. Service level and fill rate in considered shipping network. 

The values of 𝜀 ̅obtained from (6.5) with regards to different cost structures and solution robustness 

coefficients is summarised in Figure 6.6.  

 

Figure 6.6. Average inventory turnover of empty containers. 

Overall, it can be seen that the expected value of inventory turnover 𝜀 ̅increased as the inventory 

holding cost of empty containers increased. This is due to the fact that when the inventory holding 

cost was high, a lower inventory level of empty containers was preferred at dry ports, increasing 

the number of replenishments. Moreover, Figure 6.6 shows that lower inventory turnover occurred 

when seeking to achieve higher solution robustness, which implies that higher inventory levels 

were needed in order to avoid the effect of uncertainty which lowers the inventory turnover 

indicator. It is worthwhile to mention that the inventory turnover for instances with high holding 

costs suggests a monthly replenishment policy with the case study data, since a twelve-month 

planning horizon was considered. Detailed outputs regarding KPIs over all instances are provided 

in Tables 6.11-6.14. 
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The obtained numerical results regarding to described KPIs of service level, fill rate, and inventory 

turnover are reported for different values of rejected demand and solution robustness coefficients, 

and different cost structures in Tables 6.11-6.14. Also, the average of these KPIs over different 

values of ν is presented for each given λ. 

 

Table 6.12. KPIs results for cost structure (a) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 100% 100% 100% 100% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 77% 77% 84% 91% 12 

5000 69% 69% 79% 88% 12 

Average 85% 85% 89% 94% 12 

0.1 

1000 100% 100% 100% 100% 10.08 

2000 100% 100% 100% 100% 10.08 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 11.232 

1 

1000 100% 100% 100% 100% 5.76 

2000 100% 100% 100% 100% 8.64 

3000 100% 100% 100% 100% 10.32 

4000 100% 100% 100% 100% 10.32 

5000 100% 100% 100% 100% 10.32 

Average 100% 100% 100% 100% 9.072 
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Table 6.13. KPIs results for cost structure (b) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 63% 62% 74% 85% 12 

0.01 

1000 92% 92% 95% 97% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 63% 62% 74% 85% 12 

0.1 

1000 100% 100% 100% 100% 12 

2000 77% 77% 84% 91% 12 

3000 62% 62% 73% 85% 12 

4000 49% 46% 65% 79% 12 

5000 34% 31% 54% 73% 12 

Average 64% 63% 75% 86% 12 

1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 
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Table 6.14. KPIs results for cost structure (c) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 92% 92% 95% 97% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 80% 77% 65% 79% 12 

5000 69% 69% 54% 73% 12 

Average 70% 69% 80% 88% 12 

0.1 

1000 100% 100% 100% 100% 10.08 

2000 100% 100% 100% 100% 11.04 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 11.42 

1 

1000 100% 100% 100% 100% 7.2 

2000 100% 100% 100% 100% 8.64 

3000 100% 100% 100% 100% 10.32 

4000 100% 100% 100% 100% 10.32 

5000 100% 100% 100% 100% 10.32 

Average 100% 100% 100% 100% 9.36 
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Table 6.15. KPIs results for cost structure (d) 

λ ν 

Service Level Fill Rate 
Inventory Turnover 

(𝜀)̅ 
Raw materials 

(�̅�𝑟) 

Finished goods 

(�̅�𝑠) 

Raw materials 

(𝜉�̅�) 

Finished Goods 

(𝜉�̅�) 

0.001 

1000 92% 92% 95% 97% 12 

2000 80% 77% 86% 91% 12 

3000 69% 69% 79% 88% 12 

4000 54% 54% 68% 82% 12 

5000 42% 38% 60% 76% 12 

Average 67% 66% 78% 87% 12 

0.01 

1000 100% 100% 100% 100% 12 

2000 92% 92% 95% 97% 12 

3000 85% 85% 89% 94% 12 

4000 77% 77% 84% 91% 12 

5000 69% 69% 79% 88% 12 

Average 85% 85% 89% 94% 12 

0.1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 

1 

1000 100% 100% 100% 100% 12 

2000 100% 100% 100% 100% 12 

3000 100% 100% 100% 100% 12 

4000 100% 100% 100% 100% 12 

5000 100% 100% 100% 100% 12 

Average 100% 100% 100% 100% 12 

 

6.3.2. Performance of robustness 

The proposed modelling approach provides decision-makers with reliable and robust solutions 

related to target inventory levels, empty container repositioning and intermodal transportation of 

laden containers. In relation to robust optimisation, the performance and reliability of solutions is 

measured by computing the standard deviation-to-mean ratio, which is referred to as the coefficient 

of variation (Birge, 1982). Table 6.15 shows the minimum, mean, and maximum values over all 

instances. The results demonstrate that the minimum coefficient of variation (CV) for all of the 

operational decisions was less than 1%. However, the mean values of CV relating to the decision 

of empty containers inventory level at dry ports and direct flow of empty containers from seaports 
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are 4.29% and 3.54% respectively. The former relatively high CV was due to the risk pooling 

effect relating to uncertain demand for empty containers at the dry ports. It implies that the 

uncertainty in laden container demand created high variability in decisions related to empty 

container repositioning, which emphasises the fact that the demand of empty and laden containers 

in the shipping network design were highly interrelated. The latter can be explained by the impact 

of network configuration on the variability of operational decisions. The repositioning of empty 

containers at the seaport which was coupled with importing and leasing operational decisions was 

another reason for this issue. 

Table 6.16. Coefficient of variation values (%). 
 𝐼𝓆𝑡

ℯ (𝜔) 𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔) 𝐹𝓅𝓆𝑡𝑚

ℯ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

𝓅 ∈ 𝕆, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕆 

𝓅 ∈ 𝕀, 
𝓆 ∈ 𝕁 

𝓅 ∈ 𝕁, 
𝓆 ∈ 𝕀 

Min 0.77 0.15 0.10 0.00 0.00 0.00 0.00 0.06 0.10 

Mean 4.29 0.24 0.14 0.08 0.15 1.42 3.54 0.17 0.15 

Max 5.58 0.52 0.38 0.16 0.98 2.80 19.61 0.38 0.19 

In addition, the average value of CVs over 𝜈 associated with each cost structure and different 

values of 𝜆 is analysed. The corresponding value for the solution of variable 𝐹𝓅𝓆𝑡𝑚
ℓ (𝜔), 𝓅 ∈ 𝕀, 𝓆 ∈

𝕁  is illustrated in Figure 6.7, where the horizontal axis represents the four cost structures 

considered and the vertical axis shows the average of CVs as a percentage. This shows that the 

value of CVs had a decreasing trend with regards to the incremental weight assigned to the solution 

robustness for all cost structures. This reduction of CVs was more significant when the cost of 

holding empty containers was relatively low, i.e., cost structures (a) and (c).  

 

Figure 6.7. Coefficient of variations of flow for different cost structures. 
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The standard deviation-to-mean ratio for all decision variables for all instances is analysed (see 

Tables 6.16−6.19). Overall, it can be concluded that the proposed robust modelling approach 

returned solutions with low variability. 
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The numerical results related to the CV of the solution of second-stage decision variables, represented by  

𝐼𝓆𝑡
ℯ (𝜔), �̂�𝓅𝓆𝑡𝑚

ℓ (𝜔), �̂�𝓆𝑡
ℓ (𝜔), and �̂�𝓆𝑡

ℓ (𝜔) are provided in Tables 6.16−6.19 for all 80 described instances.  

Table 6.17. Coefficient of variation for cost structure (a) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.808% 0.182% 0.112% 0.094% 0.142% 1.596% 2.035% 0.155% 0.142% 0.540% 0.558% 

2000 4.808% 0.243% 0.112% 0.109% 0.142% 0.000% 2.693% 0.155% 0.141% 0.341% 0.316% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 2.750% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 1.370% 2.050% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 0.000% 7.680% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.900% 0.150% 0.140% 0.000% 0.000% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 4.630% 0.150% 0.140% 0.540% 0.560% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 0.000% 7.000% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.240% 0.110% 0.120% 0.140% 0.000% 10.360% 0.150% 0.140% 0.310% 0.320% 

5000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 8.150% 0.150% 0.140% 0.260% 0.270% 

0.1 

1000 1.370% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

2000 1.330% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.980% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.370% 0.150% 0.140% 0.000% 0.000% 

5000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 4.380% 0.150% 0.140% 0.000% 0.000% 

1 

1000 1.720% 0.150% 0.140% 0.000% 0.160% 0.000% 0.000% 0.120% 0.150% 0.000% 0.000% 

2000 0.770% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.160% 0.000% 0.000% 

3000 0.850% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

4000 0.830% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

5000 0.840% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 
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Table 6.18. Coefficient of variation for cost structure (b) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 3.410% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

0.01 

1000 4.810% 0.180% 0.110% 0.000% 0.140% 2.520% 2.130% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

0.1 

1000 5.580% 0.150% 0.150% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

2000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 3.350% 0.150% 0.140% 0.310% 0.320% 

3000 4.810% 0.290% 0.110% 0.140% 0.140% 2.770% 4.880% 0.150% 0.140% 0.230% 0.230% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 2.770% 4.050% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 2.770% 4.010% 0.150% 0.140% 0.150% 0.140% 

1 

1000 5.580% 0.520% 0.380% 0.000% 0.000% 2.770% 1.610% 0.380% 0.190% 0.000% 0.000% 

2000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 1.960% 0.380% 0.180% 0.000% 0.000% 

3000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 2.770% 0.380% 0.180% 0.000% 0.000% 

4000 5.580% 0.500% 0.380% 0.000% 0.980% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

5000 5.580% 0.150% 0.180% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 
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Table 6.19. Coefficient of variation for cost structure (c) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 2.660% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.110% 0.140% 0.000% 6.820% 0.150% 0.140% 0.340% 0.320% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 0.000% 2.720% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 0.000% 8.010% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 0.000% 2.750% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 4.180% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 0.000% 6.540% 0.150% 0.140% 0.540% 0.550% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 0.000% 9.180% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.320% 0.110% 0.140% 0.140% 0.000% 6.890% 0.150% 0.140% 0.190% 0.180% 

5000 4.810% 0.340% 0.110% 0.160% 0.140% 0.000% 7.350% 0.150% 0.140% 0.150% 0.140% 

0.1 

1000 1.670% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.180% 0.000% 0.000% 

2000 1.700% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.190% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 19.610% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 4.070% 0.150% 0.140% 0.000% 0.000% 

5000 4.810% 0.150% 0.110% 0.080% 0.140% 0.000% 3.750% 0.150% 0.140% 0.000% 0.000% 

1 

1000 2.520% 0.150% 0.140% 0.000% 0.160% 0.000% 0.000% 0.150% 0.160% 0.000% 0.000% 

2000 0.770% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.070% 0.160% 0.000% 0.000% 

3000 0.850% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

4000 0.830% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 

5000 0.840% 0.150% 0.110% 0.000% 0.140% 0.000% 0.000% 0.060% 0.180% 0.000% 0.000% 
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Table 6.20. Coefficient of variation for cost structure (d) 

λ ν 
𝐼𝓆𝑡

ℯ (𝜔) �̂�𝓅𝓆𝑡𝑚
ℓ (𝜔) �̂�𝓅𝓆𝑡𝑚

ℯ (𝜔) �̂�𝓆𝑡
ℓ (𝜔) �̂�𝓆𝑡

ℓ (𝜔) 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓅 ∈ 𝕆, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕆 
𝓅 ∈ 𝕀, 

𝓆 ∈ 𝕁 
𝓅 ∈ 𝕁, 

𝓆 ∈ 𝕀 
𝓆 ∈ 𝕁 𝓆 ∈ 𝕁 

0.001 

1000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 2.580% 0.150% 0.140% 0.540% 0.560% 

2000 4.810% 0.240% 0.110% 0.110% 0.140% 2.770% 5.010% 0.150% 0.140% 0.340% 0.320% 

3000 4.810% 0.270% 0.110% 0.130% 0.140% 2.770% 6.300% 0.150% 0.140% 0.260% 0.270% 

4000 4.810% 0.300% 0.110% 0.140% 0.140% 2.770% 5.630% 0.150% 0.140% 0.200% 0.200% 

5000 4.810% 0.330% 0.110% 0.150% 0.140% 2.770% 8.500% 0.150% 0.140% 0.170% 0.160% 

0.01 

1000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 2.820% 0.150% 0.140% 0.000% 0.000% 

2000 4.810% 0.180% 0.110% 0.090% 0.140% 2.770% 3.050% 0.150% 0.140% 0.540% 0.560% 

3000 4.810% 0.210% 0.110% 0.110% 0.140% 2.770% 5.260% 0.150% 0.140% 0.390% 0.390% 

4000 4.810% 0.240% 0.110% 0.120% 0.140% 2.770% 7.000% 0.150% 0.140% 0.310% 0.320% 

5000 4.800% 0.300% 0.100% 0.100% 0.100% 2.800% 2.800% 0.200% 0.100% 0.300% 0.300% 

0.1 

1000 5.580% 0.150% 0.150% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

2000 4.810% 0.150% 0.110% 0.070% 0.140% 2.770% 0.000% 0.150% 0.180% 0.000% 0.000% 

3000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 4.320% 0.150% 0.140% 0.000% 0.000% 

4000 4.810% 0.150% 0.110% 0.080% 0.140% 2.770% 3.730% 0.150% 0.140% 0.000% 0.000% 

5000 4.160% 0.150% 0.110% 0.080% 0.140% 2.770% 11.420% 0.150% 0.140% 0.000% 0.000% 

1 

1000 5.580% 0.520% 0.380% 0.000% 0.000% 2.770% 1.610% 0.380% 0.190% 0.000% 0.000% 

2000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 1.960% 0.380% 0.180% 0.000% 0.000% 

3000 5.580% 0.500% 0.380% 0.000% 0.000% 2.770% 2.770% 0.380% 0.180% 0.000% 0.000% 

4000 5.580% 0.500% 0.380% 0.000% 0.980% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 

5000 5.580% 0.150% 0.180% 0.000% 0.190% 2.770% 0.000% 0.380% 0.180% 0.000% 0.000% 
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6.3.3. Computational efficiency of the accelerated Benders decomposition algorithm 

The computational efficiencies of the enhanced SAA procedure which was achieved by adding 

knapsack inequalities and utilizing Pareto-optimal cuts were measured in terms of computational 

time. The accelerated BD algorithm was coded in CPLEX 12.8.0 and tested on a personal computer 

with a 3.2 gigahertz Intel Core 5 processor and 16 gigabytes of RAM. We set a maximum 

computational time of 2 hours for these tests. Two sorts of experiment were conducted in order to 

assess the efficiency of proposed accelerated BD method. The first set of experiments focused on 

the impact of network size on the computational efficiency. Table 6.20 provides the characteristics 

of test sets for this experiment, and the effect of acceleration methods on the computational times 

of Cplex (i.e., extensive formulation), standard BD, and accelerated BD algorithm. These 

experiments were conducted for 𝑁 = 50 sampled scenarios. The results indicate that the model 

for smaller networks such as tests 1 can be solved directly by Cplex with smaller computational 

time compared to the BD method and its accelerated version. However, as the network size grew 

by increasing the number of nodes, both standard BD and the proposed accelerated BD strategy 

outperformed Cplex in terms of computational time. The computational times in Table 6.20 show 

that the proposed BD algorithm together with multi-cut scheme, knapsack inequalities, and Pareto-

cut strategy outperformed Cplex and standard BD for larger networks. 

It worth mentioning that in the computational experiments, a core point approximation �̅�𝑖𝑡
𝑐  was 

initialised with a feasible solution to the MP and then the approximation was updated at each 

iteration by 𝐗𝑖𝑡
𝑐 ← 𝜑𝐗𝑖𝑡−1

𝑐 + (1 − 𝜑)𝐗𝑖𝑡
𝑀𝑃. According to emprical observations of Papadakos 

(2008) and Oliveira et al. (2014), 𝜑 was set to 0.5. Also, the stopping criterion was set to when the 

objective value gap was below a threshold value 0.01. 

 

Table 6.21. Computational results of the first experiment set. 

Test 

set 
|𝕀| |𝕁| 

Number of 

variables 

Number of 

constraints 

Computational time (seconds) 

Cplex 
Bender 

decomposition 

Accelerated Bender 

decomposition 

1 2 10 82742 58550 110.43 243.54 245.76 

2 3 20 202463 156020 410.4 289.08 326.17 

3 5 30 429315 359160 2089 398.09 377.96 

4 6 40 653086 560680 5349 518 492.03 

5 8 50 1025608 909490 7200 7200 7200 
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The second experiment was designed to investigate the effect of the number of scenarios on the 

performance of the algorithm. Table 6.21 shows the characteristics of second group of test sets and 

compares the effect of acceleration methods on the computational times for different number of 

scenarios. A network instance with the size of |𝕀| = 5 and |𝕁| = 20 was selected for this 

experiment and implement both standard and accelerated BD algorithms. Results suggest that both 

standard and the proposed accelerated Bender decomposition method outperformed Cplex, 

specially for instances with a higher number of scenarios. Yet, it was observed that the 

computational time for the accelerated BD algorithm in comparison with the standard BD was 

slightly higher within instances with a larger number of scenarios. The reason lies in the fact that 

despite employing Pareto-optimal cuts which helped to reduce the number of iterations, the 

computational time needed to solve the Magnati-Wong problem increased, when a larger number 

of scenarios were involved. Overall, the results confirm the advantage of using several accelerating 

frameworks in the proposed solution strategy, since the accelerated BD algorithm was more time-

efficient compared to Cplex and the standard BD. 

 

6.4. Summary 

Previous research on inland container shipping network design has dealt with decision-making at 

different levels in an isolated manner. This research has designed, developed and implemented a 

novel integrated dry port network design model that integrates strategic decision making (dry port 

location, allocation and the provision of arcs between nodes in the network) with operational 

decision making (selection of transportation modes, empty container repositioning and inventory 

planning) that takes into account the stochastic nature of demand. The incoming and outgoing 

demand of laden containers were considered as uncertain parameters in this problem and were 

Table 6.22. Computational results of the second experiment set. 

Test 

set 

Number of 

scenarios 

Number of 

variables 

Number of 

constraints 

Computational time (seconds) 

Cplex 
Bender 

decomposition 

Accelerated Benders 

decomposition   

6 10 145985 121310 10.86 24.72 22.90 

7 20 291865 242500 31.63 30.01 28.38 

8 30 437745 363690 70.77 54.23 55.12 

9 40 583625 484880 233.12 88.30 96.85 

10 50 729505 606070 412.49 285.6 298.3 
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generated using Monte-Carlo sampling. This procedure resulted in a number of demand and supply 

realisations with high variability, which alongside with the hierarchical decision-making structure 

involved in this problem, led to us proposing a robust two-stage stochastic programming model 

that adopted the SAA method.  

The experimental results revealed that the network configuration obtained from the proposed 

modelling approach varied according to the cost structure and the solution robustness coefficient. 

More specifically, in order to achieve more robust solutions, the number of opened dry ports 

declined when the holding cost of empty containers grew (and vice versa). The results, also, show 

that the direct transportation of laden containers between the seaport and manufacturers was mostly 

performed by rail, whereas road was mainly employed for the movement of empty containers 

between the seaport and manufacturers through dry ports, confirming the pivotal significance of 

dry ports relevant to ECR in the container shipping networks. Furthermore, service level, fill rate, 

and inventory turnover were evaluated. The results imply that both service level and fill rate 

improve when aiming for higher solution robustness by increasing the value of λ, whilst these KPIs 

may decrease with high holding costs. It was also observed that the inventory turnover of empty 

containers declined with high empty container holding costs, and also with high values of λ. 

A validation procedure was adopted to investigate the performance of the enhanced SAA approach 

by approximating an optimality gap of 95%. The results from 80 instances based on a hypothetical 

case study, disclosed some practical and managerial insights confirming the significance of 

hinterland container shipping network design and its operational decisions under uncertainty. The 

findings showed that the applied robust modelling approach produced solutions with low 

variability with the average CV of less than 1% under an uncertain environment. This was 

confirmed by the fact that this metric decreased for all operational decisions when the value of 

solution robustness coefficient rose.  

Finally, two sets of experiments were used for testing. They were analysed to validate the 

effectiveness and efficiency of the proposed solution algorithm. The computational times of Cplex, 

the standard Benders decomposition method, and the accelerated Benders decomposition 

algorithm were compared. The results confirmed that applying the acceleration methods to the 

Benders decomposition algorithm can improve the computational performance for various 

problems with different network sizes and different number of scenarios.  
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Overall, it is believed the proposed model and solution procedure can be applied to address 

practical cases efficiently to achieve more reliable hinterland container shipping networks in terms 

of cost and operational performance. As future research directions, incorporating the inventory 

policies within the modelling process would be appealing. It also would be interesting to 

investigate the uncertainty in other parameters such as capacities, transportation and operational 

costs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
 

Chapter 7. Conclusions and Future Research Directions 

This chapter outlines the outcomes and highlights the contributions of this research and provides 

recommendations for possible further studies in this area. 

This research studied the main issues and problems associated with container shipping network 

design with a focus on the inland part of the networks. It was explained in Chapter 1 that these 

challenges have arisen due to the rapid growth of containerisation use. Further development of the 

seaports’ hinterland infrastructure and operations is required to address problems associated with 

limited physical capacity and resultant congestion at seaports. Furthermore, the container shipping 

industry confronts additional difficulties due to the uncertainties. More precisely, the decisions 

related to container shipments including container flow and container inventory management 

should take the uncertain environment into consideration. The empty container repositioning 

problem aspect of inland container network design was reviewed as well. The role and 

development of dry ports in the seaports’ hinterland container networks were presented as a 

combined seaport-hinterland solution to address the previously mentioned challenges. In light of 

these challenges, the aim of this thesis was to study decision-making problems in the design of 

hinterland container networks including dry port establishment taking into account uncertainties. 

More specifically, the research purpose was to develop mathematical models to integrate strategic 

and operational level decisions relating to dry port container network design and operations taking 

into account uncertainties. 

In Chapter 2, a review of relevant studies was presented to further elaborate the research objectives 

and to identify research gaps. The review included studies of container network design, empty 

container repositioning, dry port development, and facility location problems. The detailed review 

of these topics revealed a number of research gaps that requires more study: inland container 

network design optimisation with dry port employment; taking practical container uncertainties 

and periodic fluctuations into consideration in the optimisation process; and the integration of 

different decision-making levels in the considered network design problem. Then, Chapter 3 

presented the research methodology that was employed to contribute to the research gaps. The 

research was conducted through developing mathematical models. The models were built using 

the two-stage stochastic programming approach. The developed models were then solved 
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efficiently by combining various solution methods including sample average approximation, 

robust optimisation, and an accelerated Benders Decomposition algorithm. 

A two-stage stochastic programming model, as presented in Chapter 4, was proposed to formulate 

the stated decision-making problems. The first-stage problem was dealt with the strategic location-

allocation decisions of dry ports in the network. The second-stage problem was concentrated on 

optimising operational decisions including container intermodal transportation, empty container 

repositioning, leasing, and inventory planning. The model involved a detailed set of operational 

constraints including containers demand, container flow conservation, container handling, 

container inter-balancing, empty containers exchange, and storage capacity. Then, Chapter 5 

presented a robust SAA procedure to provide a scenario-based stochastic model and optimise both 

model robustness and solution robustness. Although the quality of solutions was supported through 

a statistical validation procedure, a Benders decomposition algorithm was adopted to enhance the 

computational efficiency and reliability of solution methods. The solution strategy was further 

improved by proposing three different acceleration schemes: multi-cut framework, Knapsack 

inequalities, and pareto-optimal cuts generation scheme.  

Finally, the proposed mathematical models and solution methods were applied to a hypothetical 

case study in Chapter 6. The solution results were tested and calibrated by conducting thorough 

numerical experiments. For the analysis of these experiments, a large number of problem instances 

were used and examined. The obtained solutions were verified according to the network 

configuration, container flow decisions, and robustness performance. Furthermore, three different 

key performance indicators (i.e., service level, fill rate, and inventory turnover) were analysed to 

demonstrate the applicability of developed network design models and provide possible relevant 

insights. Finally, the efficiency and computational performance of enhanced SAA method using 

accelerated Benders decomposition were confirmed by two different sets of experiment.  

7.1. Research contributions highlights  

This thesis involves various contributions to theory, practice, and solution method.  

The literature review identified several research gaps that required further studies. In the context 

of container network design, almost all previous studies disregarded the strategic decisions impact 

on the network design (see Table 2.1). Furthermore, the container network design research was 
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mainly studied the seaborne part without taking the inland network into consideration. Moreover, 

the uncertainty involved in designing container networks were overlooked by previous research. 

The developed research in this thesis, took all these features into consideration simultaneously. 

The strategic decisions of location-allocation and their impact on the operations of the designed 

container network were taken into consideration by developing a two-stage mathematical model. 

Additionally, the model focused on the inland network design to assist the seaports hinterland to 

overcome capacity, accessibility, and congestion problems. The uncertainty nature of the container 

shipping industry was also considered in the modelling process. 

The literature review relating to the empty container repositioning problem demonstrated the need 

for more studies. The main gap highlighted in this context was the absence of research that could 

examine the effect of strategic-level decision making on ECR problem (Tables 2.3−2.4). Although 

the ECR problem is considered as an operational level decision, it can be influenced by the 

strategic level decisions of facility location significantly. The dry ports number and location can 

determine the quantity and timing of empty containers delivery and inventory. This research 

attempted to incorporate this into the modelling procedure. In addition, this thesis contributed to 

the literature by optimising the ECR problem together with the laden containers flow through 

designing an intermodal network under uncertain and periodic environment. 

This work also reviewed the literature associated with the dry port concept and its development as 

a solution for improving the seaports’ hinterland operations. The review from decision-making 

perspective (see Section 2.4), indicated that previous research in designing dry port networks were 

solely focused on the strategic level. However, the dry port strategic level decisions should be 

taken jointly with the operational level decisions including container transportation, ECR, and 

empty container inventory planning in order to achieve a global optimum solution. This study 

formulated all these optimisation problems simultaneously. Furthermore, the main solution 

method in dry port network design literature was the direct use of standard solvers. This research 

developed several advanced solution methods to improve the computational efficiency and solve 

large scale instances. 
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7.2. Research results   

The research proposed a novel mathematical model to formulate the dry port container network 

design. It is believed that this is the first research effort which integrates strategic and operational 

planning of such a network in an uncertain environment. In other words, the strategic dry port 

locational decisions were optimised jointly with operational decisions relating to container 

intermodal transportation, empty container repositioning, leasing, and inventory planning. 

Based on the identified research gaps in the literature and the motivation of the research in the 

introduction chapter, this research attempted to achieve the following research aims: 

1. To comprehensively review and obtain knowledge about container network design, empty 

container repositioning, dry port development and location decision-making. 

This study provided a comprehensive literature review including container network design, ECR 

network flow models, ECR inventory control models, inland container network design using dry 

port, decision-making in dry port development, and facility location problem. The review of 

studies associated with facility location problem focused on discrete models, facility location under 

uncertainty, location-inventory problem modelling, dynamic location-inventory models, and 

location-inventory transportation models. 

2. To formulate mathematical models to identify the optimal number and location of dry ports 

in the seaport hinterland container network and the allocation of customers to established 

dry ports under periodic and uncertain container demand. 

A two-stage stochastic programming model was formulated to discover the optimal number and 

location of dry ports within the hinterland container network. Concurrently, the allocation of 

customers to opened dry ports was identified at the strategic level. Figure 6.2 illustrates the optimal 

number and location of DPs and their optimal allocation to customers for a specific problem 

instance. Furthermore, findings obtained from the formulated mathematical model revealed that 

the number of DPs should be increased when the inventory holding cost is low. The results also 

suggested that in order to achieve optimal allocation decisions at the strategic level, customers 

located far from the seaport should be allocated to more than one dry port. These findings confirm 

the optimality location-allocation solutions derived from the mathematical model. 

3. To determine the optimal decisions related to laden container flow, empty container flow, 

empty container leasing, and empty container inventory throughout the dry port container 

network. 
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The second-stage of the developed stochastic programming model formulated the operational level 

decisions to find the optimal values for both laden and empty containers flow, empty container 

leasing, and empty container inventory level. The dynamic and stochastic nature of customers’ 

container demand was incorporated by introducing a robust SAA procedure which ensured the 

reliability of solutions in the stochastic environment. The research findings verified that the 

employment of a robust optimisation approach could provide high quality solutions for container 

network design, which are less sensitive to the uncertainty of customers’ container demand. 

Additionally, the robustness incorporation led to container networks with high performance from 

practical implementation. The optimal values of these operational decisions were validated 

through 80 different problem instances applied to a hypothetical container network design case 

study.  

4. To develop efficient solution methods in order to handle the complexity of the proposed models 

and to obtain high quality and robust solutions for the integrated dry port container network 

design problem. 

The research proposed an accelerated Benders Decomposition algorithm for solving the developed 

model. The combination of three different acceleration techniques (i.e., multi-cut framework, 

Knapsack inequalities, and pareto-optimal cuts generation scheme) performed better than Cplex 

solvers and standard BD, particularly for large scale networks. Furthermore, it was shown that the 

proposed acceleration scheme outperformed Cplex solvers and standard BD for large number of 

scenarios by generating optimal solutions with lower computational time. 

5. To provide key performance indicators for shipping lines to improve their service level, fill 

rate, and inventory turnover in dry port container networks. 

From the practical contribution point of view, this thesis presented a comprehensive analysis on 

important performance indicators of container networks. It was shown that the container network 

designer could enhance the service level of the network by assigning a higher weight to the solution 

robustness. The dependency of networks’ service level to critical parameters including empty 

container’s holding cost was shown by this research. Furthermore, the sensitivity of empty 

containers’ inventory turnover to the weight of solution robustness was discovered by this 

research. More specifically, this research found that aiming for higher solution robustness could 

improve both fill rate and service level. Additionally, findings of the research suggests that high 
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inventory holding costs and high levels of solution robustness could lower the inventory turnover 

of empty containers in the network.  

7.3. Future research directions 

There are a number of ways that this work can be further extended in the future. In this study the 

uncertainty of the industry was focused on container demand. One possible future study could be 

the consideration of uncertainty in other parameters including travel times, transportation 

capacities, and operational costs. Furthermore, the inventory control policy for the storage of 

empty containers at dry ports can be taken into consideration within the optimisation model. Dry 

ports can also be considered as the inland hub locations for consolidation, storage and intermodal 

transportation of containers. Accordingly, decisions related to the allocation of dry ports to each 

other as well as the optimal containers flow between dry ports (i.e., lateral transhipment decisions) 

should be studied further to examine possible lower costs through economies of scale. 

Additionally, the capacity of dry ports can be considered as a first-stage decision variable since 

the fixed costs of opening dry ports highly depend on their capacity. Finally, the described problem 

can be extended by developing models for global scale container network design. This requires the 

integration of decisions in both maritime and inland networks which may lead to extremely 

complex models. 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 
 

References 

Agarwal, R. and Ergun, Ö. (2008) 'Ship Scheduling and Network Design for Cargo Routing in Liner 
Shipping', Transportation Science, 42(2), pp. 175-196. 
Ağralı, S., Geunes, J. and Taşkın, Z.C. (2012) 'A facility location model with safety stock costs: analysis of 
the cost of single-sourcing requirements', Journal of Global Optimization, 54(3), pp. 551-581. 
Ahmadi Javid, A. and Azad, N. (2010) 'Incorporating location, routing and inventory decisions in supply 
chain network design', Transportation Research Part E: Logistics and Transportation Review, 46(5), pp. 
582-597. 
Ahmed, S., Shapiro, A. and Shapiro, E. (2002) 'The sample average approximation method for stochastic 
programs with integer recourse', Submitted for publication, pp. 1-24. 
Alonso-Ayuso, A., Escudero, L.F., Garín, A., Ortuño, M.T. and Pérez, G. (2003) 'An Approach for Strategic 
Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming', Journal of Global 
Optimization, 26(1), pp. 97-124. 
Álvarez, J.F. (2009) 'Joint Routing and Deployment of a Fleet of Container Vessels', Maritime Economics 
& Logistics, 11(2), pp. 186-208. 
Ambrosino, D. and Grazia Scutellà, M. (2005) 'Distribution network design: New problems and related 
models', European Journal of Operational Research, 165(3), pp. 610-624. 
Ambrosino, D. and Sciomachen, A. (2014) 'Location of Mid-range Dry Ports in Multimodal Logistic 
Networks', Procedia - Social and Behavioral Sciences, 108, pp. 118-128. 
Amiri-Aref, M., Klibi, W. and Babai, M.Z. (2018) 'The multi-sourcing location inventory problem with 
stochastic demand', European Journal of Operational Research, 266(1), pp. 72-87. 
Asariotis, R., Benamara, H., Hoffmann, J., Misovicova, M., Nunez, E., Premti, A., Sitorus, B., Valentine, V. 
and Viohl, B. (2010) Review of Maritime Transport, 2010 (9211128102). 
Balinski, M.L. (1965) 'Integer programming: methods, uses, computations', Management science, 12(3), 
pp. 253-313. 
Ballis, A., Golias, J. and Abarkoumkin, C. (1997) 'A comparison between conventional and advanced 
handling systems for low volume container maritime terminals', Maritime Policy & Management, 24(1), 
pp. 73-92. 
Ballou, R.H. (2004) Business Logistics/Supply Chain Management: Planning, Organizing, and Controlling 
the Supply Chain Pearson. 
Barahona, F. and Jensen, D. (1998) 'Plant location with minimum inventory', Mathematical 
Programming, 83(1), pp. 101-111. 
Beale, E.M.L. (1955) 'On Minimizing A Convex Function Subject to Linear Inequalities', Journal of the 
Royal Statistical Society. Series B (Methodological), 17(2), pp. 173-184. 
Beasley, J.E. and Chu, P.C. (1996) 'A genetic algorithm for the set covering problem', European Journal of 
Operational Research, 94(2), pp. 392-404. 
Bell, M.G.H., Liu, X., Angeloudis, P., Fonzone, A. and Hosseinloo, S.H. (2011) 'A frequency-based 
maritime container assignment model', Transportation Research Part B: Methodological, 45(8), pp. 
1152-1161. 
Bell, M.G.H., Liu, X., Rioult, J. and Angeloudis, P. (2013) 'A cost-based maritime container assignment 
model', Transportation Research Part B: Methodological, 58, pp. 58-70. 
Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009) Robust optimization. Princeton University Press. 
Ben-Tal, A. and Nemirovski, A. (1998) 'Robust Convex Optimization', Mathematics of Operations 
Research, 23(4), pp. 769-805. 
Ben-Tal, A. and Nemirovski, A. (2000) 'Robust solutions of Linear Programming problems contaminated 
with uncertain data', Mathematical Programming, 88(3), pp. 411-424. 



147 
 

Benders, J.F. (1962) 'Partitioning procedures for solving mixed-variables programming problems', 
Numerische Mathematik, 4(1), pp. 238-252. 
Bentaleb, F., Mabrouki, C. and Semma, A. (2015) 'Dry port development: a systematic review', Journal of 
ETA Maritime Science, 3(2), pp. 75-96. 
Beresford, A.K. and Dubey, R. (1990) Handbook on the management and operation of dry ports. 
UNCTAD. 
Bhutta, K.S., Huq, F., Frazier, G. and Mohamed, Z. (2003) 'An integrated location, production, 
distribution and investment model for a multinational corporation', International Journal of Production 
Economics, 86(3), pp. 201-216. 
Bichou, K. and Gray, R. (2004) 'A logistics and supply chain management approach to port performance 
measurement', Maritime Policy & Management, 31(1), pp. 47-67. 
Birge, J.R. (1982) 'The value of the stochastic solution in stochastic linear programs with fixed recourse', 
Mathematical Programming, 24(1), pp. 314-325. 
Birge, J.R. and Louveaux, F. (2011) Introduction to stochastic programming. Springer Science & Business 
Media. 
Birge, J.R. and Louveaux, F.V. (1988) 'A multicut algorithm for two-stage stochastic linear programs', 
European Journal of Operational Research, 34(3), pp. 384-392. 
Boilé, M. and Aboobaker, N. (2006) Empty intermodal container management. New Jersey Department 
of Transportation. 
Braekers, K., Caris, A. and Janssens, G.K. (2013) 'Integrated planning of loaded and empty container 
movements', OR Spectrum, 35(2), pp. 457-478. 
Braekers, K., Janssens, G.K. and Caris, A. (2011) 'Challenges in Managing Empty Container Movements at 
Multiple Planning Levels', Transport Reviews, 31(6), pp. 681-708. 
Brouer, B.D., Alvarez, J.F., Plum, C.E.M., Pisinger, D. and Sigurd, M.M. (2014a) 'A Base Integer 
Programming Model and Benchmark Suite for Liner-Shipping Network Design', Transportation Science, 
48(2), pp. 281-312. 
Brouer, B.D., Desaulniers, G. and Pisinger, D. (2014b) 'A matheuristic for the liner shipping network 
design problem', Transportation Research Part E: Logistics and Transportation Review, 72, pp. 42-59. 
Brouer, B.D., Pisinger, D. and Spoorendonk, S. (2011) 'Liner Shipping Cargo Allocation with Repositioning 
of Empty Containers', INFOR: Information Systems and Operational Research, 49(2), pp. 109-124. 
Butler, R., Ammons, J. and Sokol, J. (2003) 'A robust optimization model for strategic production and 
distribution planning for a new product'. ed: Working Paper, University of Central Florida. 
Cai, X., McKinney, D.C., Lasdon, L.S. and David W. Watkins, J. (2001) 'Solving Large Nonconvex Water 
Resources Management Models Using Generalized Benders Decomposition', Operations Research, 49(2), 
pp. 235-245. 
Canto, S.P. (2008) 'Application of Benders’ decomposition to power plant preventive maintenance 
scheduling', European Journal of Operational Research, 184(2), pp. 759-777. 
Çapar, İ., Ekşioğlu, B. and Geunes, J. (2011) 'A decision rule for coordination of inventory and 
transportation in a two-stage supply chain with alternative supply sources', Computers & Operations 
Research, 38(12), pp. 1696-1704. 
Chan, Y., Carter, W.B. and Burnes, M.D. (2001) 'A multiple-depot, multiple-vehicle, location-routing 
problem with stochastically processed demands', Computers & Operations Research, 28(8), pp. 803-826. 
Chang, Z., Notteboom, T. and Lu, J. (2015) 'A two-phase model for dry port location with an application 
to the port of Dalian in China', Transportation Planning and Technology, 38(4), pp. 442-464. 
Chao, S.-L. and Chen, C.-C. (2015) 'Applying a time–space network to reposition reefer containers among 
major Asian ports', Research in Transportation Business & Management, 17, pp. 65-72. 
Chao, S.-L. and Yu, H.-C. (2012) 'Repositioning empty containers in East and North China ports', Maritime 
Economics & Logistics, 14(4), pp. 435-454. 



148 
 

Chen, A., Subprasom, K. and Ji, Z. (2003) 'Mean-Variance Model for the Build-Operate-Transfer Scheme 
Under Demand Uncertainty', Transportation Research Record, 1857(1), pp. 93-101. 
Chen, A. and Yang, C. (2004) 'Stochastic Transportation Network Design Problem with Spatial Equity 
Constraint', Transportation Research Record, 1882(1), pp. 97-104. 
Chen, A., Zhou, Z., Chootinan, P., Ryu, S., Yang, C. and Wong, S. (2011) 'Transport network design 
problem under uncertainty: a review and new developments', Transport Reviews, 31(6), pp. 743-768. 
Cheung, R.K. and Chen, C.-Y. (1998) 'A Two-Stage Stochastic Network Model and Solution Methods for 
the Dynamic Empty Container Allocation Problem', Transportation Science, 32(2), pp. 142-162. 
Chopra, S. and Meindl, P. (2007) 'Supply chain management. Strategy, planning & operation', in  Das 
summa summarum des management. Springer, pp. 265-275. 
Chou, C.-C., Gou, R.-H., Tsai, C.-L., Tsou, M.-C., Wong, C.-P. and Yu, H.-L. (2010) 'Application of a mixed 
fuzzy decision making and optimization programming model to the empty container allocation', Applied 
Soft Computing, 10(4), pp. 1071-1079. 
Chow, J.Y.J. and Regan, A.C. (2011) 'Network-based real option models', Transportation Research Part B: 
Methodological, 45(4), pp. 682-695. 
Christofides, N. (1975) Graph Theory: An Algorithmic Approach. Academic Press. 
Church, R. and ReVelle, C. (1974) Papers of the Regional Science Association. Springer-Verlag. 
Commission, E.E.U.N.E. (2010) 'Illustrated Glossary for Transport Statistics'. OECD Publishing, Paris. 
Cooper, L. (1974) 'A random locational equilibrium problem', Journal of Regional Science, 14(1), pp. 47-
54. 
Cornuejols, G., L. Fisher, M. and L. Nemhauser, G. (1977) 'Location of Bank Accounts to Optimize Float: 
An Analytic Study of Exact and Approximate Algorithms', Management science, 23(8), pp. 789-810. 
Coslovich, L., Pesenti, R. and Ukovich, W. (2006) 'Minimizing fleet operating costs for a container 
transportation company', European Journal of Operational Research, 171(3), pp. 776-786. 
Costa, A.M. (2005) 'A survey on benders decomposition applied to fixed-charge network design 
problems', Computers & Operations Research, 32(6), pp. 1429-1450. 
Crainic, T.G., Dell'Olmo, P., Ricciardi, N. and Sgalambro, A. (2015) 'Modeling dry-port-based freight 
distribution planning', Transportation Research Part C: Emerging Technologies, 55, pp. 518-534. 
Crainic, T.G., Gendreau, M. and Dejax, P. (1993) 'Dynamic and Stochastic Models for the Allocation of 
Empty Containers', Operations Research, 41(1), pp. 102-126. 
Crainic, T.G. and Kim, K.H. (2007) 'Chapter 8 Intermodal Transportation', in Barnhart, C. and Laporte, G. 
(eds.) Handbooks in Operations Research and Management Science. Elsevier, pp. 467-537. 
Crist, P. (2003) Security in maritime transport: risk factors and economic impact. Organisation for 
Economic Co-operation and Development. 
Cullinane, K., Bergqvist, R. and Wilmsmeier, G. (2012) 'The dry port concept – Theory and practice', 
Maritime Economics & Logistics, 14(1), pp. 1-13. 
Cullinane, K. and Khanna, M. (2000) 'Economies of scale in large containerships: optimal size and 
geographical implications', Journal of Transport Geography, 8(3), pp. 181-195. 
Cullinane, K. and Wilmsmeier, G. (2011) 'The Contribution of the Dry Port Concept to the Extension of 
Port Life Cycles', in Böse, J.W. (ed.) Handbook of Terminal Planning. New York, NY: Springer New York, 
pp. 359-379. 
Dang, Q.-V., Nielsen, I.E. and Yun, W.-Y. (2013) 'Replenishment policies for empty containers in an inland 
multi-depot system', Maritime Economics & Logistics, 15(1), pp. 120-149. 
Dang, Q.-V., Yun, W.-Y. and Kopfer, H. (2012) 'Positioning empty containers under dependent demand 
process', Computers & Industrial Engineering, 62(3), pp. 708-715. 
Dantzig, G.B. (1955) 'Linear Programming under Uncertainty', Management Science, 1(3/4), pp. 197-206. 
Daskin, M.S. (1997) Network and Discrete Location: Models, Algorithms and Applications. John Wiley & 
Sons. 



149 
 

Daskin, M.S., Coullard, C.R. and Shen, Z.-J.M. (2002a) 'An inventory-location model: Formulation, 
solution algorithm and computational results', Annals of operations research, 110(1-4), pp. 83-106. 
Daskin, M.S., Coullard, C.R. and Shen, Z.-J.M. (2002b) 'An Inventory-Location Model: Formulation, 
Solution Algorithm and Computational Results', Annals of Operations Research, 110(1), pp. 83-106. 
Daskin, M.S. and Maass, K.L. (2015) 'The p-median problem', in  Location science. Springer, pp. 21-45. 
Daskin, M.S., Snyder, L.V. and Berger, R.T. (2005) 'Facility location in supply chain design', in  Logistics 
systems: Design and optimization. Springer, pp. 39-65. 
Deidda, L., Di Francesco, M., Olivo, A. and Zuddas, P. (2008) 'Implementing the street-turn strategy by an 
optimization model', Maritime Policy and Management, 35(5), pp. 503-516. 
Desaulniers, G., Desrosiers, J. and Solomon, M.M. (2006) Column generation. Springer Science & 
Business Media. 
Di Francesco, M., Crainic, T.G. and Zuddas, P. (2009) 'The effect of multi-scenario policies on empty 
container repositioning', Transportation Research Part E: Logistics and Transportation Review, 45(5), pp. 
758-770. 
Di Francesco, M., Lai, M. and Zuddas, P. (2013a) 'Maritime repositioning of empty containers under 
uncertain port disruptions', Computers & Industrial Engineering, 64(3), pp. 827-837. 
Di Francesco, M., Lai, M. and Zuddas, P. (2013b) 'Maritime repositioning of empty containers under 
uncertain port disruptions', Computers and Industrial Engineering, 64(3), pp. 827-837. 
Dong, J.-X., Lee, C.-Y. and Song, D.-P. (2015) 'Joint service capacity planning and dynamic container 
routing in shipping network with uncertain demands', Transportation Research Part B: Methodological, 
78, pp. 404-421. 
Dong, J.-X. and Song, D.-P. (2009) 'Container fleet sizing and empty repositioning in liner shipping 
systems', Transportation Research Part E: Logistics and Transportation Review, 45(6), pp. 860-877. 
Dong, J.-X. and Song, D.-P. (2012) 'Quantifying the impact of inland transport times on container fleet 
sizing in liner shipping services with uncertainties', OR spectrum, 34(1), pp. 155-180. 
Drewry (2006) 'Annual Container Market Review & Forecast 2006/07', Drewry Shipping Consultants Ltd: 
London. 
Drewry (2020) Container throughput worldwide from 2012 to 2019 with a forecast for 2020 and 2021. 
Cargotec Oyj. Available at: https://www.statista.com/statistics/913398/container-throughput-
worldwide/. 
Du, Y. and Hall, R. (1997) 'Fleet Sizing and Empty Equipment Redistribution for Center-Terminal 
Transportation Networks', Management Science, 43(2), pp. 145-157. 
Eppen, G.D. (1979) 'Note—Effects of Centralization on Expected Costs in a Multi-Location Newsboy 
Problem', Management Science, 25(5), pp. 498-501. 
Epstein, R., Neely, A., Weintraub, A., Valenzuela, F., Hurtado, S., Gonzalez, G., Beiza, A., Naveas, M., 
Infante, F., Alarcon, F., Angulo, G., Berner, C., Catalan, J., Gonzalez, C. and Yung, D. (2012) 'A Strategic 
Empty Container Logistics Optimization in a Major Shipping Company', INFORMS Journal on Applied 
Analytics, 42(1), pp. 5-16. 
Erera, A.L., Morales, J.C. and Savelsbergh, M. (2005) 'Global intermodal tank container management for 
the chemical industry', Transportation Research Part E: Logistics and Transportation Review, 41(6), pp. 
551-566. 
Erera, A.L., Morales, J.C. and Savelsbergh, M. (2009) 'Robust Optimization for Empty Repositioning 
Problems', Operations Research, 57(2), pp. 468-483. 
Erlenkotter, D. (1981) 'A comparative study of approaches to dynamic location problems', European 
Journal of Operational Research, 6(2), pp. 133-143. 
Escudero, L.F., Kamesam, P.V., King, A.J. and Wets, R.J.B. (1993) 'Production planning via scenario 
modelling', Annals of Operations Research, 43(6), pp. 309-335. 



150 
 

Fahimnia, B., Farahani, R.Z., Marian, R. and Luong, L. (2013a) 'A review and critique on integrated 
production–distribution planning models and techniques', Journal of Manufacturing Systems, 32(1), pp. 
1-19. 
Fahimnia, B., Luong, L. and Marian, R. (2012) 'Genetic algorithm optimisation of an integrated aggregate 
production–distribution plan in supply chains', International Journal of Production Research, 50(1), pp. 
81-96. 
Fahimnia, B., Parkinson, E., Rachaniotis, N.P., Mohamed, Z. and Goh, a. (2013b) 'Supply chain planning 
for a multinational enterprise: a performance analysis case study', International Journal of Logistics 
Research and Applications, 16(5), pp. 349-366. 
Farahani, R.Z. and Hekmatfar, M. (2009) Facility location: concepts, models, algorithms and case studies. 
Springer. 
Farahani, R.Z., Rashidi Bajgan, H., Fahimnia, B. and Kaviani, M. (2015) 'Location-inventory problem in 
supply chains: a modelling review', International Journal of Production Research, 53(12), pp. 3769-3788. 
Federgruen, A. and Zipkin, P. (1984) 'A Combined Vehicle Routing and Inventory Allocation Problem', 
Operations Research, 32(5), pp. 1019-1037. 
Feng, X., Zhang, Y., Li, Y. and Wang, W. (2013) 'A Location-Allocation Model for Seaport-Dry Port System 
Optimization', Discrete Dynamics in Nature and Society, 2013, p. 309585. 
Firoozi, Z., Tang, S.H., Ariafar, S. and Ariffin, M.K.A.M. (2013) 'An Optimization Approach for A Joint 
Location Inventory Model Considering Quantity Discount Policy', Arabian Journal for Science and 
Engineering, 38(4), pp. 983-991. 
Francesco, M.D., Lai, M. and Zuddas, P. (2013) 2013 International Conference on Advanced Logistics and 
Transport. 29-31 May 2013. 
Furió, S., Andrés, C., Adenso-Díaz, B. and Lozano, S. (2013a) 'Optimization of empty container 
movements using street-turn: Application to Valencia hinterland', Computers and Industrial Engineering, 
66(4), pp. 909-917. 
Furió, S., Andrés, C., Adenso-Díaz, B. and Lozano, S. (2013b) 'Optimization of empty container 
movements using street-turn: Application to Valencia hinterland', Computers & Industrial Engineering, 
66(4), pp. 909-917. 
Gao, Y. (2012) 'Uncertain models for single facility location problems on networks', Applied 
Mathematical Modelling, 36(6), pp. 2592-2599. 
Gebennini, E., Gamberini, R. and Manzini, R. (2009) 'An integrated production–distribution model for the 
dynamic location and allocation problem with safety stock optimization', International Journal of 
Production Economics, 122(1), pp. 286-304. 
Gen, M. and Syarif, A. (2005) 'Hybrid genetic algorithm for multi-time period production/distribution 
planning', Computers & Industrial Engineering, 48(4), pp. 799-809. 
Geoffrion, A.M. (1970a) 'Elements of Large-Scale Mathematical Programming Part I: Concepts', 
Management Science, 16(11), pp. 652-675. 
Geoffrion, A.M. (1970b) 'Elements of Large Scale Mathematical Programming Part II: Synthesis of 
Algorithms and Bibliography', Management Science, 16(11), pp. 676-691. 
Geoffrion, A.M. and Graves, G.W. (1974) 'Multicommodity Distribution System Design by Benders 
Decomposition', Management Science, 20(5), pp. 822-844. 
Gutierrez, G.J. and Kouvelis, P. (1995) 'A robustness approach to international sourcing', Annals of 
Operations Research, 59(1), pp. 165-193. 
Hakimi, S.L. (1964) 'Optimum locations of switching centers and the absolute centers and medians of a 
graph', Operations research, 12(3), pp. 450-459. 
Halvorsen-Weare, E.E. and Fagerholt, K. (2013) 'Routing and scheduling in a liquefied natural gas 
shipping problem with inventory and berth constraints', Annals of Operations Research, 203(1), pp. 167-
186. 



151 
 

Hayuth, Y. (1987) Intermodality: Concept and Practice : Structural Changes in the Ocean Freight 
Transport Industry. Lloyd's of London. 
Heaver, T., Meersman, H., Moglia, F. and Van De Voorde, E. (2000) 'Do mergers and alliances influence 
European shipping and port competition?', Maritime Policy & Management, 27(4), pp. 363-373. 
Heaver, T., Meersman, H. and Van de Voorde, E. (2001) 'Co-operation and competition in international 
container transport: strategies for ports', Maritime Policy & Management, 28(3), pp. 293-305. 
Henttu, V., Lättilä, L. and Hilmola, O.-P. (2010) 'Financial and environmental impacts of a dry port to 
support two major Finnish seaports', Lappeenranta University of Technology, Department of Industrial 
Management, Research Report, 224, p. 141. 
Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J. and Velten, S. (2008) 'Dynamic supply chain design with 
inventory', Computers & Operations Research, 35(2), pp. 373-391. 
Hochmuth, C.A. and Köchel, P. (2012) 'How to order and transship in multi-location inventory systems: 
The simulation optimization approach', International Journal of Production Economics, 140(2), pp. 646-
654. 
Hooker, J.N. (2007) 'Planning and scheduling by logic-based benders decomposition', Operations 
research, 55(3), pp. 588-602. 
Hosseini, A. and Sahlin, T. (2019) 'An optimization model for management of empty containers in 
distribution network of a logistics company under uncertainty', Journal of Industrial Engineering 
International, 15(4), pp. 585-602. 
Hu, J., Watson, E. and Schneider, H. (2005) 'Approximate solutions for multi-location inventory systems 
with transshipments', International Journal of Production Economics, 97(1), pp. 31-43. 
Huang, Y.-F., Hu, J.-K. and Yang, B. (2015) 'Liner services network design and fleet deployment with 
empty container repositioning', Computers & Industrial Engineering, 89, pp. 116-124. 
Ivanov, D. (2019) Global Supply Chain and Operations Management A Decision-Oriented Introduction to 
the Creation of Value. 2nd ed. 2019.. edn. Cham : Springer International Publishing : Imprint: Springer. 
Jaržemskis, A. and Vasiliauskas, A.V. (2007) 'Research on dry port concept as intermodal node', 
Transport, 22(3), pp. 207-213. 
Jayaraman, V. (1998) 'Transportation, facility location and inventory issues in distribution network 
design: An investigation', International Journal of Operations & Production Management, 18(5), pp. 471-
494. 
Jula, H., Chassiakos, A. and Ioannou, P. (2006) 'Port dynamic empty container reuse', Transportation 
Research Part E: Logistics and Transportation Review, 42(1), pp. 43-60. 
Ka, B. (2011) 'Application of Fuzzy AHP and ELECTRE to China Dry Port Location Selection', The Asian 
Journal of Shipping and Logistics, 27(2), pp. 331-353. 
Kall, P. and Mayer, J. (1976) Stochastic linear programming. Springer. 
Kamath, K.R. and Pakkala, T.P.M. (2002) 'A Bayesian approach to a dynamic inventory model under an 
unknown demand distribution', Computers and Operations Research, 29(4), pp. 403-422. 
Kariv, O. and Hakimi, S.L. (1979) 'An algorithmic approach to network location problems. I: The p-
centers', SIAM Journal on Applied Mathematics, 37(3), pp. 513-538. 
Karoonsoontawong, A. and Waller, S.T. (2007) 'Robust Dynamic Continuous Network Design Problem', 
Transportation Research Record, 2029(1), pp. 58-71. 
Khumawala, B.M. and Clay Whybark, D. (1976) 'Solving the Dynamic Warehouse Location Problem', 
International Journal of Physical Distribution, 6(5), pp. 238-251. 
Kim, N.S. and Van Wee, B. (2011) 'The relative importance of factors that influence the break-even 
distance of intermodal freight transport systems', Journal of Transport Geography, 19(4), pp. 859-875. 
Kleywegt, A.J., Shapiro, A. and Homem-de-Mello, T. (2002) 'The sample average approximation method 
for stochastic discrete optimization', SIAM Journal on Optimization, 12(2), pp. 479-502. 



152 
 

Klose, A. (2000) 'A Lagrangean relax-and-cut approach for the two-stage capacitated facility location 
problem', European journal of operational research, 126(2), pp. 408-421. 
Konings, R. (2005) 'Foldable Containers to Reduce the Costs of Empty Transport? A Cost–Benefit Analysis 
from a Chain and Multi-Actor Perspective', Maritime Economics & Logistics, 7(3), pp. 223-249. 
Kutanoglu, E. and Mahajan, M. (2009) 'An inventory sharing and allocation method for a multi-location 
service parts logistics network with time-based service levels', European Journal of Operational 
Research, 194(3), pp. 728-742. 
Lam, S.-W., Lee, L.-H. and Tang, L.-C. (2007) 'An approximate dynamic programming approach for the 
empty container allocation problem', Transportation Research Part C: Emerging Technologies, 15(4), pp. 
265-277. 
Laporte, G. and Louveaux, F.V. (1993) 'The integer L-shaped method for stochastic integer programs 
with complete recourse', Operations research letters, 13(3), pp. 133-142. 
Laporte, G., Louveaux, F.V. and Hamme, L.v. (1994) 'Exact Solution to a Location Problem with Stochastic 
Demands', Transportation Science, 28(2), pp. 95-103. 
Lättilä, L., Henttu, V. and Hilmola, O.P. (2013) 'Hinterland operations of sea ports do matter: Dry port 
usage effects on transportation costs and CO2 emissions', Transportation Research Part E: Logistics and 
Transportation Review, 55, pp. 23-42. 
Lee, C.-Y. and Song, D.-P. (2017) 'Ocean container transport in global supply chains: Overview and 
research opportunities', Transportation Research Part B: Methodological, 95, pp. 442-474. 
Lee, L.H., Chew, E.P. and Luo, Y. (2012) 'Empty container management in multi-port system with 
inventory-based control', International Journal on Advances in Systems and Measurements, 5(3-4), pp. 
164-177. 
Leung, S.C.H., Tsang, S.O.S., Ng, W.L. and Wu, Y. (2007) 'A robust optimization model for multi-site 
production planning problem in an uncertain environment', European Journal of Operational Research, 
181(1), pp. 224-238. 
Leveque, P. and Roso, V. (2002) 'Dry Port concept for seaport inland access with intermodal solutions', 
Gothenburg: Chalmers University of Technology. 
Li, J.-A., Leung, S.C.H., Wu, Y. and Liu, K. (2007) 'Allocation of empty containers between multi-ports', 
European Journal of Operational Research, 182(1), pp. 400-412. 
Li, J.-A., Liu, K., Leung, S.C.H. and Lai, K.K. (2004) 'Empty container management in a port with long-run 
average criterion', Mathematical and Computer Modelling, 40(1), pp. 85-100. 
Liao, S.-H., Hsieh, C.-L. and Lai, P.-J. (2011) 'An evolutionary approach for multi-objective optimization of 
the integrated location–inventory distribution network problem in vendor-managed inventory', Expert 
Systems with Applications, 38(6), pp. 6768-6776. 
Lieckens, K.T., Colen, P.J. and Lambrecht, M.R. (2013) 'Optimization of a stochastic remanufacturing 
network with an exchange option', Decision Support Systems, 54(4), pp. 1548-1557. 
Linderoth, J., Shapiro, A. and Wright, S. (2006) 'The empirical behavior of sampling methods for 
stochastic programming', Annals of Operations Research, 142(1), pp. 215-241. 
Listeş, O. and Dekker, R. (2005) 'A stochastic approach to a case study for product recovery network 
design', European Journal of Operational Research, 160(1), pp. 268-287. 
Liu, S.C. and Lee, S.B. (2003) 'A two-phase heuristic method for the multi-depot location routing problem 
taking inventory control decisions into consideration', The International Journal of Advanced 
Manufacturing Technology, 22(11), pp. 941-950. 
Liu, S.C. and Lin, C.C. (2005) 'A heuristic method for the combined location routing and inventory 
problem', The International Journal of Advanced Manufacturing Technology, 26(4), pp. 372-381. 
Liu, Z., Meng, Q., Wang, S. and Sun, Z. (2014) 'Global intermodal liner shipping network design', 
Transportation Research Part E: Logistics and Transportation Review, 61, pp. 28-39. 



153 
 

Long, Y., Lee, L.H. and Chew, E.P. (2012) 'The sample average approximation method for empty 
container repositioning with uncertainties', European Journal of Operational Research, 222(1), pp. 65-75. 
Louveaux, F.V. (1986) 'Discrete stochastic location models', Annals of Operations Research, 6(2), pp. 21-
34. 
Louveaux, F.V. and Peeters, D. (1992) 'A Dual-Based Procedure for Stochastic Facility Location', 
Operations Research, 40(3), pp. 564-573. 
Luong, C. (2015) 'An Examination of Benders' Decomposition Approaches in Large-scale Healthcare 
Optimization Problems', MSc thesis, Graduate Department of Mechanical and Industrial Engineering, 
University of Toronto. 
Ma, H. and Davidrajuh, R. (2005) 'An iterative approach for distribution chain design in agile virtual 
environment', Industrial Management & Data Systems, 105(6), pp. 815-834. 
Mabrouki, C., Bentaleb, F. and Mousrij, A. (2014) 'A decision support methodology for risk management 
within a port terminal', Safety Science, 63, pp. 124-132. 
Magnanti, T.L. and Wong, R.T. (1981) 'Accelerating Benders decomposition: Algorithmic enhancement 
and model selection criteria', Operations research, 29(3), pp. 464-484. 
Mahar, S., Bretthauer, K.M. and Venkataramanan, M.A. (2009) 'The value of virtual pooling in dual sales 
channel supply chains', European Journal of Operational Research, 192(2), pp. 561-575. 
Mak, W.-K., Morton, D.P. and Wood, R.K. (1999) 'Monte Carlo bounding techniques for determining 
solution quality in stochastic programs', Operations Research Letters, 24(1), pp. 47-56. 
Markowitz, H.M. and Todd, G.P. (2000) Mean-variance analysis in portfolio choice and capital markets. 
John Wiley & Sons. 
Max Shen, Z.-J. and Qi, L. (2007) 'Incorporating inventory and routing costs in strategic location models', 
European Journal of Operational Research, 179(2), pp. 372-389. 
McCalla, R.J. (1999) 'Global change, local pain: intermodal seaport terminals and their service areas', 
Journal of Transport Geography, 7(4), pp. 247-254. 
McCalla, R.J. (2007) International Workshop on Ports, Cities and Global Supply Chains (2005: Hong Kong, 
China). 
Melkote, S. and Daskin, M.S. (2001) 'Capacitated facility location/network design problems', European 
journal of operational research, 129(3), pp. 481-495. 
Melo, M.T., Nickel, S. and Saldanha da Gama, F. (2006) 'Dynamic multi-commodity capacitated facility 
location: a mathematical modeling framework for strategic supply chain planning', Computers & 
Operations Research, 33(1), pp. 181-208. 
Meng, Q. and Wang, S. (2011) 'Liner shipping service network design with empty container 
repositioning', Transportation Research Part E: Logistics and Transportation Review, 47(5), pp. 695-708. 
Meng, Q., Wang, S. and Liu, Z. (2012a) 'Network design for shipping service of large-scale intermodal 
liners' Transportation Research Record [Article]. pp. 42-50. Available at: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874576443&doi=10.3141%2f2269-
05&partnerID=40&md5=3df595c990e396ebac6637d0c5eefd47. 
Meng, Q., Wang, T. and Wang, S. (2012b) 'Short-term liner ship fleet planning with container 
transshipment and uncertain container shipment demand', European Journal of Operational Research, 
223(1), pp. 96-105. 
Meng, Q., Wang, T. and Wang, S. (2015) 'Multi-period liner ship fleet planning with dependent uncertain 
container shipment demand', Maritime Policy & Management, 42(1), pp. 43-67. 
Mete, H.O. and Zabinsky, Z.B. (2010) 'Stochastic optimization of medical supply location and distribution 
in disaster management', International Journal of Production Economics, 126(1), pp. 76-84. 
Miranda, P.A. and Garrido, R.A. (2008) 'Valid inequalities for Lagrangian relaxation in an inventory 
location problem with stochastic capacity', Transportation Research Part E: Logistics and Transportation 
Review, 44(1), pp. 47-65. 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874576443&doi=10.3141%2f2269-05&partnerID=40&md5=3df595c990e396ebac6637d0c5eefd47
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874576443&doi=10.3141%2f2269-05&partnerID=40&md5=3df595c990e396ebac6637d0c5eefd47


154 
 

Mirchandani, P.B. and Oudjit, A. (1980) 'Localizing 2-medians on probabilistic and deterministic tree 
networks', Networks, 10(4), pp. 329-350. 
Mirchandani, P.B., Oudjit, A. and Wong, R.T. (1985) '‘Multidimensional’ extensions and a nested dual 
approach for the m-median problem', European Journal of Operational Research, 21(1), pp. 121-137. 
MirHassani, S.A., Lucas, C., Mitra, G., Messina, E. and Poojari, C.A. (2000) 'Computational solution of 
capacity planning models under uncertainty', Parallel Computing, 26(5), pp. 511-538. 
Mourão, M., Pato, M. and Paixão, A. (2002) 'Ship assignment with hub and spoke constraints', Maritime 
Policy & Management, 29(2), pp. 135-150. 
Mulder, J. and Dekker, R. (2014) 'Methods for strategic liner shipping network design', European Journal 
of Operational Research, 235(2), pp. 367-377. 
Mulvey, J.M. and Ruszczyński, A. (1995) 'A new scenario decomposition method for large-scale 
stochastic optimization', Operations research, 43(3), pp. 477-490. 
Mulvey, J.M., Vanderbei, R.J. and Zenios, S.A. (1995) 'Robust optimization of large-scale systems', 
Operations research, 43(2), pp. 264-281. 
Mussone, L., Grant-Muller, S. and Laird, J. (2015) 'Sensitivity analysis of traffic congestion costs in a 
network under a charging policy', Case Studies on Transport Policy, 3(1), pp. 44-54. 
Neyshabouri, S. and Berg, B.P. (2017) 'Two-stage robust optimization approach to elective surgery and 
downstream capacity planning', European Journal of Operational Research, 260(1), pp. 21-40. 
Ng, M. and Waller, S.T. (2009) 'Reliable System-Optimal Network Design: Convex Mean-Variance Model 
with Implicit Chance Constraints', Transportation Research Record, 2090(1), pp. 68-74. 
Norkin, V.I., Ermoliev, Y.M. and Ruszczyński, A. (1998a) 'On Optimal Allocation of Indivisibles Under 
Uncertainty', Operations Research, 46(3), pp. 381-395. 
Norkin, V.I., Pflug, G.C. and Ruszczyński, A. (1998b) 'A branch and bound method for stochastic global 
optimization', Mathematical Programming, 83(1), pp. 425-450. 
Notteboom, T. and Rodrigue, J.-P. (2008) 'The future of containerization: perspectives from maritime 
and inland freight distribution', GeoJournal, 74(1), p. 7. 
Notteboom, T. and Rodrigue, J.-P. (2009) 'Inland terminals within North American and European supply 
chains', Transport and communications bulletin for Asia and the Pacific, 78(1), pp. 1-39. 
Notteboom, T.E. (2002) 'Consolidation and contestability in the European container handling industry', 
Maritime Policy & Management, 29(3), pp. 257-269. 
Notteboom, T.E. and Rodrigue, J.-P. (2005) 'Port regionalization: towards a new phase in port 
development', Maritime Policy & Management, 32(3), pp. 297-313. 
Notteboom, T.E. and Winkelmans, W. (2001) 'Structural changes in logistics: how will port authorities 
face the challenge?', Maritime Policy & Management, 28(1), pp. 71-89. 
Nozick, L.K. and Turnquist, M.A. (1998) 'Integrating inventory impacts into a fixed-charge model for 
locating distribution centers', Transportation Research Part E: Logistics and Transportation Review, 
34(3), pp. 173-186. 
Oliveira, F., Grossmann, I.E. and Hamacher, S. (2014) 'Accelerating Benders stochastic decomposition for 
the optimization under uncertainty of the petroleum product supply chain', Computers & Operations 
Research, 49, pp. 47-58. 
Olivo, A., Di Francesco, M. and Zuddas, P. (2013) 'An optimization model for the inland repositioning of 
empty containers', Maritime Economics and Logistics, 15(3), pp. 309-331. 
Olivo, A., Francesco, M.D. and Zuddas, P. (2015) 'An Optimization Model for the Inland Repositioning of 
Empty Containers', in Haralambides, H.E. (ed.) Port Management. London: Palgrave Macmillan UK, pp. 
84-108. 
Özdemir, D., Yücesan, E. and Herer, Y.T. (2006) 'Multi-location transshipment problem with capacitated 
transportation', European Journal of Operational Research, 175(1), pp. 602-621. 



155 
 

Ozsen, L., Coullard, C.R. and Daskin, M.S. (2008) 'Capacitated warehouse location model with risk 
pooling', Naval Research Logistics (NRL), 55(4), pp. 295-312. 
Padilha, F. and Ng, A.K. (2012) 'The spatial evolution of dry ports in developing economies: The Brazilian 
experience', Maritime Economics & Logistics, 14(1), pp. 99-121. 
Paixão Ana, C. and Bernard Marlow, P. (2003) 'Fourth generation ports – a question of agility?', 
International Journal of Physical Distribution & Logistics Management, 33(4), pp. 355-376. 
Papadakos, N. (2008) 'Practical enhancements to the Magnanti–Wong method', Operations Research 
Letters, 36(4), pp. 444-449. 
Paraskevopoulos, D., Karakitsos, E. and Rustem, B. (1991) 'Robust Capacity Planning under Uncertainty', 
Management Science, 37(7), pp. 787-800. 
Parola, F. and Sciomachen, A. (2005) 'Intermodal container flows in a port system network:: Analysis of 
possible growths via simulation models', International Journal of Production Economics, 97(1), pp. 75-88. 
Pellegram, A. (2001) 'Strategic land use planning for freight: the experience of the Port of London 
Authority, 1994–1999', Transport Policy, 8(1), pp. 11-18. 
Perl, J. and Daskin, M.S. (1985) 'A warehouse location-routing problem', Transportation Research Part B: 
Methodological, 19(5), pp. 381-396. 
Perl, J. and Sirisoponsilp, S. (1988) 'Distribution Networks: Facility Location, Transportation and 
Inventory', International Journal of Physical Distribution & Materials Management, 18(6), pp. 18-26. 
Pishvaee, M.S. and Fazli Khalaf, M. (2016) 'Novel robust fuzzy mathematical programming methods', 
Applied Mathematical Modelling, 40(1), pp. 407-418. 
Pishvaee, M.S., Razmi, J. and Torabi, S.A. (2012) 'Robust possibilistic programming for socially 
responsible supply chain network design: A new approach', Fuzzy Sets and Systems, 206, pp. 1-20. 
Plum, C.E.M., Pisinger, D., Salazar-González, J.-J. and Sigurd, M.M. (2014a) 'Single liner shipping service 
design', Computers & Operations Research, 45, pp. 1-6. 
Plum, C.E.M., Pisinger, D. and Sigurd, M.M. (2014b) 'A service flow model for the liner shipping network 
design problem', European Journal of Operational Research, 235(2), pp. 378-386. 
Prékopa, A. (2013) Stochastic programming. Springer Science & Business Media. 
Pujari, N.A., Hale, T.S. and Huq, F. (2008) 'A continuous approximation procedure for determining 
inventory distribution schemas within supply chains', European Journal of Operational Research, 186(1), 
pp. 405-422. 
Rahmaniani, R., Crainic, T.G., Gendreau, M. and Rei, W. (2017) 'The Benders decomposition algorithm: A 
literature review', European Journal of Operational Research, 259(3), pp. 801-817. 
Ravi, R. and Sinha, A. (2006) 'Hedging Uncertainty: Approximation Algorithms for Stochastic 
Optimization Problems', Mathematical Programming, 108(1), pp. 97-114. 
Reinhardt, L.B. and Pisinger, D. (2012) 'A branch and cut algorithm for the container shipping network 
design problem', Flexible Services and Manufacturing Journal, 24(3), pp. 349-374. 

ReVelle, C., Toregas, C. and Falkson, L. (1976) 'Applications of the location set‐covering problem', 
Geographical analysis, 8(1), pp. 65-76. 
Ricciardi, N., Tadei, R. and Grosso, A. (2002) 'Optimal facility location with random throughput costs', 
Computers & Operations Research, 29(6), pp. 593-607. 
Robinson, R. (2002) 'Ports as elements in value-driven chain systems: the new paradigm', Maritime 
Policy & Management, 29(3), pp. 241-255. 
Rodrigue, J.-P. (2016) The geography of transport systems. Taylor & Francis. 
Rodrigue, J.-P., Comtois, C. and Slack, B. (2013) The geography of transport systems. Routledge. 
Rodrigue, J.-P., Debrie, J., Fremont, A. and Gouvernal, E. (2010) 'Functions and actors of inland ports: 
European and North American dynamics', Journal of Transport Geography, 18(4), pp. 519-529. 
Rosenhead, J., Elton, M. and Gupta, S.K. (1972) 'Robustness and Optimality as Criteria for Strategic 
Decisions', Operational Research Quarterly (1970-1977), 23(4), pp. 413-431. 



156 
 

Roso, V. (2007) 'Evaluation of the dry port concept from an environmental perspective: A note', 
Transportation Research Part D: Transport and Environment, 12(7), pp. 523-527. 
Roso, V. and Lumsden, K. (2009) 'The dry port concept: moving seaport activities inland', Transport and 
communications Bulletin for Asia and the Pacific, 78(1), pp. 87-101. 
Roso, V., Woxenius, J. and Lumsden, K. (2009) 'The dry port concept: connecting container seaports with 
the hinterland', Journal of Transport Geography, 17(5), pp. 338-345. 
Rudi, N., Kapur, S. and Pyke, D.F. (2001) 'A Two-Location Inventory Model with Transshipment and Local 
Decision Making', Management Science, 47(12), pp. 1668-1680. 
Ruszczyński, A. (1997) 'Decomposition methods in stochastic programming', Mathematical 
programming, 79(1-3), pp. 333-353. 
Rytköonen, J. (1999) 'The Risk of Maritime Traffic and Terminal Constructions in the Future', 
Presentation at the Joint Seminar on Ports and Maritime Environment in the Gulf of Finland (Espoo, 
Finland). 
Saharidis, G.K.D., Boile, M. and Theofanis, S. (2011) 'Initialization of the Benders master problem using 
valid inequalities applied to fixed-charge network problems', Expert Systems with Applications, 38(6), pp. 
6627-6636. 
Salhi, S. and Drezner, E. (1996) 'Facility Location: A Survey of Applications and Methods', The Journal of 
the Operational Research Society, 47(11), p. 1421. 
Santoso, T., Ahmed, S., Goetschalckx, M. and Shapiro, A. (2005) 'A stochastic programming approach for 
supply chain network design under uncertainty', European Journal of Operational Research, 167(1), pp. 
96-115. 
Schmitt, A.J. (2011) 'Strategies for customer service level protection under multi-echelon supply chain 
disruption risk', Transportation Research Part B: Methodological, 45(8), pp. 1266-1283. 
Sengupta, J.K. (1991) 'Robust Solutions in Stochastic Linear Programming', Journal of the Operational 
Research Society, 42(10), pp. 857-870. 
Shapiro, A. (2003) 'Monte Carlo Sampling Methods', in  Handbooks in Operations Research and 
Management Science. Elsevier, pp. 353-425. 
Shapiro, A. (2008) 'Stochastic programming approach to optimization under uncertainty', Mathematical 
Programming, 112(1), pp. 183-220. 
Shapiro, A., Dentcheva, D. and Ruszczynski, A. (2009) Lectures on Stochastic Programming: Modeling 
and Theory. Society for Industrial and Applied Mathematics. 
Shavandi, H. and Bozorgi, B. (2012) 'Developing a location–inventory model under fuzzy environment', 
The International Journal of Advanced Manufacturing Technology, 63(1), pp. 191-200. 
Shen, Z.-J.M., Coullard, C. and Daskin, M.S. (2003) 'A Joint Location-Inventory Model', Transportation 
Science, 37(1), pp. 40-55. 
Sheppard, E.S. (1974) 'A Conceptual Framework for Dynamic Location—Allocation Analysis', 
Environment and Planning A: Economy and Space, 6(5), pp. 547-564. 
Shi, N. and Xu, D. (2011) 'A Markov decision process model for an online empty container repositioning 
problem in a two-port fixed route', International Journal of Operations Research, 8(2), pp. 8-17. 
Shintani, K., Imai, A., Nishimura, E. and Papadimitriou, S. (2007) 'The container shipping network design 
problem with empty container repositioning', Transportation Research Part E: Logistics and 
Transportation Review, 43(1), pp. 39-59. 
Shmoys, D.B., Tardos, É. and Aardal, K. (1997) 'Approximation algorithms for facility location problems', 
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp. 265-274. 
Shu, J. and Song, M. (2014) 'Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and 
Computational Results', INFORMS Journal on Computing, 26(1), pp. 135-149. 
Silva, F. and Gao, L. (2013) 'A Joint Replenishment Inventory-Location Model', Networks and Spatial 
Economics, 13(1), pp. 107-122. 



157 
 

Slack, B. (1990) 'Intermodal transportation in north America and the development of inland load 
centers', The Professional Geographer, 42(1), pp. 72-83. 
Slack, B. (1999) 'Satellite terminals: a local solution to hub congestion?', Journal of Transport Geography, 
7(4), pp. 241-246. 
Snyder, L.V. (2006) 'Facility location under uncertainty: a review', IIE Transactions, 38(7), pp. 547-564. 
Snyder, L.V., Daskin, M.S. and Teo, C.-P. (2007) 'The stochastic location model with risk pooling', 
European Journal of Operational Research, 179(3), pp. 1221-1238. 
Song, D.-P. and Carter, J. (2009) 'Empty container repositioning in liner shipping', Maritime Policy & 
Management, 36(4), pp. 291-307. 
Song, D.-P. and Dong, J.-X. (2008) 'Empty Container Management in Cyclic Shipping Routes', Maritime 
Economics & Logistics, 10(4), pp. 335-361. 
Song, D.-P. and Dong, J.-X. (2012a) 'Cargo routing and empty container repositioning in multiple shipping 
service routes', Transportation Research Part B: Methodological, 46(10), pp. 1556-1575. 
Song, D.-P. and Dong, J.-X. (2013) 'Long-haul liner service route design with ship deployment and empty 
container repositioning', Transportation Research Part B: Methodological, 55, pp. 188-211. 
Song, D.-P. and Dong, J.-X. (2015a) 'Empty container repositioning', Handbook of ocean container 
transport logistics, pp. 163-208. 
Song, D.-P. and Zhang, Q. (2010) 'A Fluid Flow Model for Empty Container Repositioning Policy with a 
Single Port and Stochastic Demand', SIAM Journal on Control and Optimization, 48(5), pp. 3623-3642. 
Song, D., Zhang, J., Carter, J., Field, T., Marshall, J., Polak, J., Schumacher, K., Sinha-Ray, P. and Woods, J. 
(2005) 'On cost-efficiency of the global container shipping network', Maritime Policy & Management, 
32(1), pp. 15-30. 
Song, D.P. (2007) 'Characterizing optimal empty container reposition policy in periodic-review shuttle 
service systems', Journal of the Operational Research Society, 58(1), pp. 122-133. 
Song, D.P. and Dong, J.X. (2012b) 'Cargo routing and empty container repositioning in multiple shipping 
service routes', Transportation Research Part B: Methodological, 46(10), pp. 1556-1575. 
Song, D.P. and Dong, J.X. 220 (2015b) 'Empty container repositioning' International Series in Operations 
Research and Management Science [Book Chapter]. pp. 163-208. Available at: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955124025&doi=10.1007%2f978-3-319-
11891-8_6&partnerID=40&md5=399af0449476c1db2e27aa366d9fdca4. 
Sourirajan, K., Ozsen, L. and Uzsoy, R. (2007) 'A single-product network design model with lead time and 
safety stock considerations', IIE Transactions, 39(5), pp. 411-424. 
Stadtler, H. (2008) 'Supply Chain Management — An Overview', in Stadtler, H. and Kilger, C. (eds.) Supply 
Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies. Berlin, 
Heidelberg: Springer Berlin Heidelberg, pp. 9-36. 
Statista (2020) Size of the global shipping containers market between 2016 and 2025. Statista Research 
Department. Available at: https://www.statista.com/statistics/1097059/global-shipping-containers-
market-size/. 
SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T. and Raoufi, R. (2014) 'Multimodal freight 
transportation planning: A literature review', European Journal of Operational Research, 233(1), pp. 1-
15. 
Sterzik, S., Kopfer, H. and Yun, W.-Y. (2015) 'Reducing hinterland transportation costs through container 
sharing', Flexible Services and Manufacturing Journal, 27(2), pp. 382-402. 
Tanonkou, G.A., Benyoucef, L., Bisdorff, R. and Xiaolan, X. (2005) IEEE International Conference on 
Automation Science and Engineering, 2005., 1-2 Aug. 2005. 
Thanopoulou, H. and Strandenes, S.P. (2017) 'A theoretical framework for analysing long-term 
uncertainty in shipping', Case Studies on Transport Policy, 5(2), pp. 325-331. 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955124025&doi=10.1007%2f978-3-319-11891-8_6&partnerID=40&md5=399af0449476c1db2e27aa366d9fdca4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955124025&doi=10.1007%2f978-3-319-11891-8_6&partnerID=40&md5=399af0449476c1db2e27aa366d9fdca4
https://www.statista.com/statistics/1097059/global-shipping-containers-market-size/
https://www.statista.com/statistics/1097059/global-shipping-containers-market-size/


158 
 

Theofanis, S. and Boile, M. (2009) 'Empty marine container logistics: facts, issues and management 
strategies', GeoJournal, 74(1), pp. 51-65. 
Tran, N.K. (2011) 'Studying port selection on liner routes: An approach from logistics perspective', 
Research in Transportation Economics, 32(1), pp. 39-53. 
Trukhanov, S., Ntaimo, L. and Schaefer, A. (2010) 'Adaptive multicut aggregation for two-stage 
stochastic linear programs with recourse', European Journal of Operational Research, 206(2), pp. 395-
406. 
Tsiakis, P., Shah, N. and Pantelides, C.C. (2001) 'Design of Multi-echelon Supply Chain Networks under 
Demand Uncertainty', Industrial & Engineering Chemistry Research, 40(16), pp. 3585-3604. 
Ukkusuri, S.V. and Patil, G. (2009) 'Multi-period transportation network design under demand 
uncertainty', Transportation Research Part B: Methodological, 43(6), pp. 625-642. 
Van Klink, H.A. and van Den Berg, G.C. (1998) 'Gateways and intermodalism', Journal of transport 
geography, 6(1), pp. 1-9. 
Van Leeuwen, J. and Leeuwen, J. (1990) Handbook of theoretical computer science: Algorithms and 
complexity. Elsevier. 
van Riessen, B. (2013) Service network design for an intermodal container network with flexible due 
dates/times and the possibility of using subcontracted transport. Citeseer. 
Van Slyke, R.M. and Wets, R. (1969) 'L-Shaped Linear Programs with Applications to Optimal Control and 
Stochastic Programming', SIAM Journal on Applied Mathematics, 17(4), pp. 638-663. 
van Wijk, A.C.C., Adan, I.J.B.F. and van Houtum, G.J. (2012) 'Approximate evaluation of multi-location 
inventory models with lateral transshipments and hold back levels', European Journal of Operational 
Research, 218(3), pp. 624-635. 
Veenstra, A. (2005) 'Empty container reposition: the port of Rotterdam case', Managing closed-loop 
supply chains, pp. 65-76. 
Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G. and Shapiro, A. (2003) 'The Sample Average 
Approximation Method Applied to Stochastic Routing Problems: A Computational Study', Computational 
Optimization and Applications, 24(2), pp. 289-333. 
Viswanadham, N. and Srinivasa Raghavan, N.R. (2000) 'Performance analysis and design of supply 
chains: a Petri net approach', Journal of the Operational Research Society, 51(10), pp. 1158-1169. 
Vojdani, N., Lootz, F. and Rösner, R. (2013) 'Optimizing empty container logistics based on a 
collaborative network approach', Maritime Economics and Logistics, 15(4), pp. 467-493. 
Wang, C., Chen, Q. and Huang, R. (2018a) 'Locating dry ports on a network: a case study on Tianjin Port', 
Maritime Policy and Management, 45(1), pp. 71-88. 
Wang, C., Chen, Q. and Huang, R. (2018b) 'Locating dry ports on a network: a case study on Tianjin Port', 
Maritime Policy & Management, 45(1), pp. 71-88. 
Wang, S. (2014) 'A novel hybrid-link-based container routing model', Transportation Research Part E: 
Logistics and Transportation Review, 61, pp. 165-175. 
Wang, S., Liu, Z. and Bell, M.G.H. (2015) 'Profit-based maritime container assignment models for liner 
shipping networks', Transportation Research Part B: Methodological, 72, pp. 59-76. 
Wang, S. and Meng, Q. (2014) 'Liner shipping network design with deadlines', Computers & Operations 
Research, 41, pp. 140-149. 
Wang, S., Meng, Q. and Sun, Z. (2013) 'Container routing in liner shipping', Transportation Research Part 
E: Logistics and Transportation Review, 49(1), pp. 1-7. 
Wang, Z., Yao, D.-Q. and Huang, P. (2007) 'A new location-inventory policy with reverse logistics applied 
to B2C e-markets of China', International Journal of Production Economics, 107(2), pp. 350-363. 
Wasner, M. and Zäpfel, G. (2004) 'An integrated multi-depot hub-location vehicle routing model for 
network planning of parcel service', International Journal of Production Economics, 90(3), pp. 403-419. 



159 
 

Weaver, J.R. and Church, R.L. (1983) 'Computational Procedures for Location Problems on Stochastic 
Networks', Transportation Science, 17(2), pp. 168-180. 
World Cargo News (2020) 23,000 TEU LNG vessel joins the fleet. Editorial, W. [Online]. Available at: 
https://www.worldcargonews.com/news/23000-teu-lng-vessel-joins-the-fleet-65034. 
Xie, Y., Liang, X., Ma, L. and Yan, H. (2017) 'Empty container management and coordination in 
intermodal transport', European Journal of Operational Research, 257(1), pp. 223-232. 
Xie, Y. and Song, D.-P. (2018) 'Optimal planning for container prestaging, discharging, and loading 
processes at seaport rail terminals with uncertainty', Transportation Research Part E: Logistics and 
Transportation Review, 119, pp. 88-109. 
Yang, C.S. (2018) 'An analysis of institutional pressures, green supply chain management, and green 
performance in the container shipping context', Transportation Research Part D: Transport and 
Environment, 61, pp. 246-260. 
Yang, L., Ng, C.T. and Cheng, T.C.E. (2010) 'Evaluating the effects of distribution centres on the 
performance of vendor-managed inventory systems', European Journal of Operational Research, 201(1), 
pp. 112-122. 
Yin, Y. and Ieda, H. (2002) 'Optimal Improvement Scheme for Network Reliability', Transportation 
Research Record, 1783(1), pp. 1-6. 
Yin, Y., Madanat, S.M. and Lu, X.-Y. (2009) 'Robust improvement schemes for road networks under 
demand uncertainty', European Journal of Operational Research, 198(2), pp. 470-479. 
Young Yun, W., Mi Lee, Y. and Seok Choi, Y. (2011) 'Optimal inventory control of empty containers in 
inland transportation system', International Journal of Production Economics, 133(1), pp. 451-457. 
Yu, C.-S. and Li, H.-L. (2000) 'A robust optimization model for stochastic logistic problems', International 
Journal of Production Economics, 64(1), pp. 385-397. 
Yu, M., Fransoo, J.C. and Lee, C.Y. (2018) 'Detention decisions for empty containers in the hinterland 
transportation system', Transportation Research Part B: Methodological, 110, pp. 188-208. 
Zaourar, S. and Malick, J. (2014) 'Quadratic stabilization of Benders decomposition', hal-01181273. 
Zarrinpoor, N., Fallahnezhad, M.S. and Pishvaee, M.S. (2018) 'The design of a reliable and robust 
hierarchical health service network using an accelerated Benders decomposition algorithm', European 
Journal of Operational Research, 265(3), pp. 1013-1032. 
Zeng, Q., Ang, Z. and Chen, C. (2010) 'Robust optimization model for resource allocation of container 
shipping lines', Tsinghua Science and Technology, 15(5), pp. 586-594. 
Zhang, B., Ng, C.T. and Cheng, T.C.E. (2014) 'Multi-period empty container repositioning with stochastic 
demand and lost sales', Journal of the Operational Research Society, 65(2), pp. 302-319. 
Zhang, J.L. and Ponnambalam, K. (2006) 'Hydro energy management optimization in a deregulated 
electricity market', Optimization and Engineering, 7(1), pp. 47-61. 
Zhang, R., Yun, W.Y. and Moon, I. (2009) 'A reactive tabu search algorithm for the multi-depot container 
truck transportation problem', Transportation Research Part E: Logistics and Transportation Review, 
45(6), pp. 904-914. 
Zheng, J., Sun, Z. and Gao, Z. (2015) 'Empty container exchange among liner carriers', Transportation 
Research Part E: Logistics and Transportation Review, 83, pp. 158-169. 
Zhou, W.-H. and Lee, C.-Y. (2009) 'Pricing and competition in a transportation market with empty 
equipment repositioning', Transportation Research Part B: Methodological, 43(6), pp. 677-691. 
Zhu, Y. and Kuno, T. (2003) 'Global Optimization of Nonconvex MINLP by a Hybrid Branch-and-Bound 
and Revised General Benders Decomposition Approach', Industrial & Engineering Chemistry Research, 
42(3), pp. 528-539. 
Zokaee, S., Jabbarzadeh, A., Fahimnia, B. and Sadjadi, S.J. (2017) 'Robust supply chain network design: 
an optimization model with real world application', Annals of Operations Research, 257(1), pp. 15-44. 

https://www.worldcargonews.com/news/23000-teu-lng-vessel-joins-the-fleet-65034


160 
 

Appendix A. 

 
Table 23. Notation of sets, parameters, and decision variables. 
Sets 

ℐ Set of retailers indexed by 𝑖. 

𝒥 Set of distribution centres indexed by 𝑗. 

ℕ Set of nodes indexed by 𝓃. 

𝕆 Set of seaports indexed by 𝓅, 𝓆. 

𝕀 Set of candidate dry port locations indexed by 𝓅, 𝓆. 

𝕁 Set of customers indexed by 𝓅, 𝓆. 

𝒜 Set of arcs. 

Ω Set of scenarios indexed by 𝜔. 

𝑇 Set of periods indexed by 𝑡. 

𝐾 Set of containers indexed by 𝑘, ℓ, ℯ. 

𝑀 Set of available transportation modes indexed by 𝑚. 

R Set of independent samples indexed by 𝑟. 

Parameters 

𝐴𝑗 The ordering cost at distribution centre 𝑗 ∈ 𝒥. 

𝐻𝑗  The unit holding cost at distribution centre 𝑗 ∈ 𝒥. 

𝑇𝑗  Total available product at distribution centre 𝑗 ∈ 𝒥. 

𝑄𝑗  The order size at distribution centre 𝑗 ∈ 𝒥. 

𝐷𝑗  The annual demand at distribution centre 𝑗 ∈ 𝒥. 

𝐹𝑗 The fixed cost of locating distribution centre 𝑗 ∈ 𝒥. 

𝑙𝑗  The mean of delivery lead time from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝛿𝑗
2 The variance of delivery lead time from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝜇𝑖  The mean of demand at retailer 𝑖 ∈ ℐ. 

𝜎𝑖
2 The variance of demand at retailer 𝑖 ∈ ℐ. 

𝑡𝑗 The unit transportation cost from the supplier to distribution centre 𝑗 ∈ 𝒥. 

𝑡𝑖𝑗  The unit transportation cost from retailer 𝑖 ∈ ℐ to distribution centre 𝑗 ∈ 𝒥. 

𝑧𝛼 The standard normal deviate such that 𝑃(𝑍 ≤ 𝑧𝛼) = 𝛼. 

𝛼 The service level at distribution centre 𝑗 ∈ 𝒥. 

𝜓 Number of working days per year. 

𝑤𝑖  Quantity delivered to retailer 𝑖 ∈ ℐ. 

𝑞𝑖(0) Inventory cost function at retailer 𝑖 ∈ ℐ. 

𝐶𝑖(0) Cumulative demand distribution function at retailer 𝑖 ∈ ℐ. 

𝐶𝑎𝑝𝓃  The storage capacity of node 𝓃 ∈ ℕ 
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 𝑓𝓅 The fixed cost for opening a dry port at node 𝓅 ∈ 𝕀. 

𝑑𝓅𝓆 The fixed cost for allocating node 𝓅 to node 𝓆. 

𝑐𝓅𝓆𝑚
𝑘  The unit cost of transporting container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 . 

ℎ𝓃 The unit cost of holding an empty container at node 𝓃 ∈ ℕ. 

𝑔𝓃
+/𝑔𝓃

− The unit cost of leasing/returning an empty container at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑔𝓃 The unit cost of leased empty containers’ net stock per container per period at node 𝓃 ∈ ℕ ∖ {𝕆 ∪ 𝕁}.  

𝑣𝓃
+/𝑣𝓃

− The unit importing/exporting cost of an empty container at node 𝓃 ∈ ℕ ∖ {𝕀 ∪ 𝕁}. 

𝑏𝓆  The unit backorder cost per container at customer 𝓆 ∈ 𝕁. 

𝜈𝓆 The unit cost of rejected demand per container at customer 𝓆 ∈ 𝕁. 

𝜏𝓅𝓆𝑚  The transportation lead-time on arc (𝓅, 𝓆) ∈ 𝒜 using mode 𝑚 ∈ 𝑀. 

𝜃𝓆 
The containers processing time associate with the loading and unloading of finished goods/raw materials 

at customers 𝓆 ∈ 𝕁. 

𝜋(𝜔) The occurrence probability of scenario 𝜔. 

𝐷𝓆𝑡
ℓ (𝜔) The demand for incoming laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝑆𝓆𝑡
ℓ (𝜔) The demand for outgoing laden containers at customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝓋 The cost of model robustness.  

𝜆 The cost of solution robustness.  

𝔱𝓅𝓆𝑚  The transportation time on arc (𝓅, 𝓆) ∈ 𝒜 using transportation mode 𝑚. 

𝛽𝑚 The transportation cost parameter of transportation mode 𝑚. 

∆𝓅𝓆  The travel distance from node 𝓅 to node 𝓆. 

𝑉𝑚  The average speed of transportation mode 𝑚. 

𝜇𝐷𝓆𝑡
ℓ  The mean of lognormal distribution function related to demand at customer 𝓆 in period 𝑡. 

𝜎𝐷𝓆𝑡
ℓ  The standard deviation of lognormal distribution function related to demand at customer 𝓆 in period 𝑡. 

𝜇′𝐷𝓆𝑡
ℓ  The mean of Normal distribution function related to demand at customer 𝓆 in period 𝑡. 

𝜎′𝐷𝓆𝑡
ℓ  The standard deviation of Normal distribution function related to demand at customer 𝓆 in period 𝑡. 

Decision Variables 

𝑋𝑗  Binary variable associated with location of retailer.  

𝑌𝑖𝑗  Binary variable associated with the demand allocation of an arc from node 𝑖 to node 𝑗. 

𝑋𝓅 Binary variable associated with location of dry port 𝓅. 

𝑌𝓅𝓆  Binary variable associated with the demand allocation of an arc from node 𝓅 to 𝓆. 

𝐹𝓅𝓆𝑡𝑚
𝑘 (𝜔) The flow of container type 𝑘 on arc (𝓅, 𝓆) ∈ 𝒜 in period 𝑡 using mode 𝑚 under scenario 𝜔. 

𝐼𝓃𝑡
ℯ (𝜔) The inventory level of empty containers at node 𝓃 ∈ ℕ in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ (𝜔) The net stock of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐿𝓃𝑡
ℯ+(𝜔) The number of leased empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 
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𝐿𝓃𝑡
ℯ−(𝜔) The number of returned empty containers at node 𝓃 ∈ 𝕀 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ+(𝜔) The number of imported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝐻𝓃𝑡
ℯ−(𝜔) The number of exported empty containers at node 𝓃 ∈ 𝕆 in period 𝑡 under scenario 𝜔. 

𝑈𝓆𝑡
ℓ (𝜔) The backordered incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝐵𝓆𝑡
ℓ (𝜔) The backordered outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

γ𝓆𝑡
ℓ (𝜔)  The rejected incoming demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

δ𝓆𝑡
ℓ (𝜔) The rejected outgoing demand at a customer 𝓆 in period 𝑡 under scenario 𝜔. 

𝐂(𝜔) The vector of all continuous variables for each scenario 

𝔘(𝜔)/𝒦(𝜔) The infeasibility control variables under scenario 𝜔. 

Φ(𝐗, 𝜔) The solution robustness associate with first stage decisions 𝐗 under scenario 𝜔. 

𝝌 The vector of the dual sub-problem’s variables. 

�̂� The extreme points of the dual polyhedron obtained from solving the dual sub-problem. 

𝛾 The optimality cut variable in Benders decomposition algorithm. 

𝜂𝑟(𝜔) The service level related to the demand of raw materials under scenario 𝜔. 

𝜂𝑠(𝜔) The service level related to the supply of finished goods under scenario 𝜔. 

𝜉𝑟(𝜔) The fill rate related to the demand of raw materials under scenario 𝜔. 

𝜉𝑠(𝜔) The fill rate related to the supply of finished goods under scenario 𝜔. 

𝜓(𝜔) The total throughput of empty containers from all dry ports under scenario 𝜔. 

𝜄(𝜔) The average inventory level of empty containers in each period under scenario 𝜔. 

𝜀(𝜔) The inventory turnover of empty containers under scenario 𝜔. 
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Appendix B. 

 

Table 24. Parameters’ value. 

Parameter  Value/Distribution 

𝐶𝑎𝑝𝓅 𝓅 ∈ 𝕆 10,000 TEUs 

𝐶𝑎𝑝𝓅 𝓅 ∈ 𝕀 [2.0, 5.0]×104   TEUs 

𝐶𝑎𝑝𝓅 𝓅 ∈ 𝕁 2000 TEUs 

𝛽1  $3.88 

𝛽2  $0.05 

𝑉1  60 mph 

𝑉2  24 mph 

𝜇𝐷𝓆𝑡
ℓ  𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇 [6000,7000] TEUs 

𝜎𝐷𝓆𝑡
ℓ  𝓆 ∈ 𝕁, 𝑡 ∈ 𝑇 0.1𝜇𝐷𝓆𝑡

ℓ  

 𝑓𝓅 𝓅 ∈ 𝕀 [1.8,4.0]×106 for low opening costs 

 𝑓𝓅 𝓅 ∈ 𝕀 [4.0;7.5]×106 for high opening costs 

[ℎℴ , ℎ𝒾 , ℎ𝒿] ∀ℴ ∈ 𝕆, 𝒾 ∈ 𝕀, 𝒿 ∈ 𝕁 [2, 4, 8]×10-1 for low holding costs 

[ℎℴ , ℎ𝒾 , ℎ𝒿] ∀ℴ ∈ 𝕆, 𝒾 ∈ 𝕀, 𝒿 ∈ 𝕁 [2, 4, 8]×10 for high holding costs 

𝜆  {10−3, 10−2, 10−1, 1} 

𝜈  {1000, 2000, 3000, 4000, 5000} 
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Appendix C.  

The Cplex OPL code relating to the robust two-stage stochastic programming 

model 

 

 int nbport = 1; 
 int nbdepots = ...; 

 int nbcustomers = ...; 

 int nbperiods = 13; 

 int nbmodes = 2; 

 int nbscenarios = ...; 

 float Lambda = 1; 

 float Nu = 5000; 

 

  

 range port = 1..nbport; 

 range depots = 1..nbdepots; 

 range customers = 1..nbcustomers; 

 range periods = 1..nbperiods; 

 range modes = 1..nbmodes; 

 range scenarios = 1..nbscenarios; 

  

 float Prob = 1/nbscenarios; 

 

  

  

 //Parameters for laden containers 

  

 // Travelling time 

 int Tij[1..nbdepots, 1..nbcustomers*nbmodes]= ... ; 

 int Tijm[i in 1..nbdepots, j in 1..nbcustomers, m in 

1..nbmodes]= Tij[i,    m+nbmodes*(j-1)]; 

  

 int Toj[1..nbport, 1..nbcustomers*nbmodes]= ...;  

 int Tojm[o in port, j in customers, m in modes]=Toj[o, 

m+nbmodes*(j-1)]; 

  

 int Toi[1..nbport, 1..nbdepots*nbmodes]= ...;  

 int Toim[o in port, i in depots, m in modes]=Toi[o, 

m+nbmodes*(i-1)]; 

  

 int Wjm[customers][modes]=...; // processing time 

(loading/unloading) at manufacturer j 

 // Transportation costs 
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 float TCij[1..nbdepots, 1..nbcustomers*nbmodes]= ... ; 

 float TCijm[i in depots, j in customers, m in modes]=TCij[i, 

m+nbmodes*(j-1)]; 

  

 float TCoj[1..nbport, 1..nbcustomers*nbmodes]= ...;  

 float TCojm[o in port, j in customers, m in modes]=TCoj[o, 

m+nbmodes*(j-1)]; 

  

 float TCoi[1..nbport, 1..nbdepots*nbmodes]= ...;  

 float TCoim[o in port, i in depots, m in modes]=TCoi[o, 

m+nbmodes*(i-1)]; 

  

 float CONSij[1..nbdepots, 1..nbcustomers*nbmodes]= ... ; 

 float CONSijm[i in depots, j in customers, m in 

modes]=CONSij[i, m+nbmodes*(j-1)]; 

  

 float CONSoj[1..nbport, 1..nbcustomers*nbmodes]= ...;  

 float CONSojm[o in port, j in customers, m in modes]=CONSoj[o, 

m+nbmodes*(j-1)]; 

  

 float CONSoi[1..nbport, 1..nbdepots*nbmodes]= ...;  

 float CONSoim[o in port, i in depots, m in modes]=CONSoi[o, 

m+nbmodes*(i-1)]; 

  

 // Operatioal costs 

  

 float OCij [1..nbdepots, 1..nbcustomers*nbmodes] = ...; 

 float OCijm [i in depots, j in customers, m in modes]= OCij[i, 

m+nbmodes*(j-1)]; 

  

 float OCoi [1..nbport, 1..nbdepots*nbmodes] = ...; 

 float OCoim [o in port, i in depots, m in modes]= OCoi[o, 

m+nbmodes*(i-1)]; 

  

 float OCoj [1..nbport, 1..nbcustomers*nbmodes] = ...; 

 float OCojm [o in port, j in customers, m in modes]= OCoj[o, 

m+nbmodes*(j-1)]; 

 //Demand and supply 

  

float Djts[1..nbcustomers, 1..nbperiods*nbscenarios] = ...; 

float Djtss[j in customers, t in periods, s in scenarios] = 

Djts[j,s+nbscenarios*(t-1)]; 

  

float Sjts[1..nbcustomers, 1..nbperiods*nbscenarios] = ...; 

float Sjtss[j in customers, t in periods, s in scenarios] = 

Sjts[j,s+nbscenarios*(t-1)]; 
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 //Penalty cost 

 float CUj [customers]=...; 

 float CKj [customers]=...; 

 //Parameters for empty containers 

  

 // Transportation costs 

 float TCEij[1..nbdepots, 1..nbcustomers*nbmodes]= ... ; 

 float TCEijm[i in depots, j in customers, m in modes]=TCEij[i, 

m+nbmodes*(j-1)]; 

  

 float TCEoi[1..nbport, 1..nbdepots*nbmodes]= ...;  

 float TCEoim[o in port, i in depots, m in modes]=TCEoi[o, 

m+nbmodes*(i-1)]; 

  

 float TCEoj[1..nbport, 1..nbcustomers*nbmodes]= ...;  

 float TCEojm[o in port, j in customers, m in modes]=TCEoj[o, 

m+nbmodes*(j-1)]; 

 

 // Operatioal costs 

 float OCEij [1..nbdepots, 1..nbcustomers*nbmodes] = ...; 

 float OCEijm [i in depots, j in customers, m in modes]= 

OCEij[i, m+nbmodes*(j-1)]; 

  

 float OCEoi [1..nbport, 1..nbdepots*nbmodes] = ...; 

 float OCEoim [o in port, i in depots, m in modes]= OCEoi[o, 

m+nbmodes*(i-1)]; 

  

 float OCEoj [1..nbport, 1..nbcustomers*nbmodes] = ...; 

 float OCEojm [o in port, j in customers, m in modes]= OCEoj[o, 

m+nbmodes*(j-1)]; 

 

 // Holding costs 

 float Ho[port]=...; 

 float Hi[depots]=...; 

 float Hj[customers]=...; 

  

 // Borrowing/returning Importing/exporting costs 

 float CBo [port]=...; 

 float CRo [port]=...; 

 float CBi [depots]=...; 

 float CRi [depots]=...; 

 float CIMo [port]=...; 

 float CEXo [port]=...; 

  

 float CBNo [port]=...; 

 float CBNi [depots]=...; 

 //float CIMNo [port]=...; 
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 //Capacities 

 float CAPi [depots]=...; 

 float CAPo [port]=...; 

 float CAPj [customers]=...; 

  

 //Fixed opening cost 

 float Fi[depots]=...; 

  

  

 // Decision Variables 

  

 //First stage decision variables 

 dvar boolean X[depots]; 

 dvar boolean Y[depots][customers]; 

  

 //Second stage decision variables 

 

 //Direct shipment between port and customers 

 dvar float+ Wojtsm 

[port][customers][periods][scenarios][modes]; 

 dvar float+ Wjotsm 

[customers][port][periods][scenarios][modes]; 

  

 dvar float+ WEojtsm 

[port][customers][periods][scenarios][modes]; 

 dvar float+ WEjotsm 

[customers][port][periods][scenarios][modes]; 

  

 //shipment between depots and customers 

 dvar float+ Fijtsm 

[depots][customers][periods][scenarios][modes]; 

 dvar float+ Fjitsm 

[customers][depots][periods][scenarios][modes]; 

  

 dvar float+ FEijtsm 

[depots][customers][periods][scenarios][modes]; 

 dvar float+ FEjitsm 

[customers][depots][periods][scenarios][modes]; 

  

 //Indirect shipment between port and customers where depots are 

intermediate nodes 

 dvar float+ Goitsm [port][depots][periods][scenarios][modes]; 

 dvar float+ Giotsm [depots][port][periods][scenarios][modes]; 

  

 dvar float+ GEoitsm [port][depots][periods][scenarios][modes]; 

 dvar float+ GEiotsm [depots][port][periods][scenarios][modes]; 
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 //total 

 dexpr float Cshipment = sum(o in port, i in depots, j in 

customers, t in periods, s in scenarios, m in modes) 

 (Wojtsm[o][j][t][s][m]+ Wjotsm[j][o][t][s][m]+ 

Fijtsm[i][j][t][s][m]+ Fjitsm[j][i][t][s][m]+ 

Goitsm[o][i][t][s][m]+ Giotsm[i][o][t][s][m]); 

  

 dexpr float CEshipment = sum(o in port, i in depots, j in 

customers, t in periods, s in scenarios, m in modes) 

 (WEojtsm[o][j][t][s][m]+ WEjotsm[j][o][t][s][m]+ 

FEijtsm[i][j][t][s][m]+ FEjitsm[j][i][t][s][m]+ 

GEoitsm[o][i][t][s][m]+ GEiotsm[i][o][t][s][m]);  

  

 // Stock volume of empty containers 

 dvar float+ SEots [port][periods][scenarios]; 

 dvar float+ SEits [depots][periods][scenarios]; 

 dvar float+ SEjts [customers][periods][scenarios]; 

  

 dvar float+ INITSEis[depots][scenarios]; 

 dvar float+ INITSEjs[customers][scenarios]; 

 dvar float+ INITSEos[port][scenarios]; 

  

  

 //total 

 dexpr float Cinventory = sum(o in port, i in depots, j in 

customers, t in periods, s in scenarios) 

(SEots[o][t][s]+SEits[i][t][s]+SEjts[j][t][s]) ; 

  

 //Borrowing/returning Importing/exporting Volumes 

 dvar float+ Bots [port][periods][scenarios]; 

 dvar float+ Rots [port][periods][scenarios]; 

 dvar float+ Bits [depots][periods][scenarios]; 

 dvar float+ Rits [depots][periods][scenarios]; 

 dvar float+ IMots [port][periods][scenarios]; 

 dvar float+ EXots [port][periods][scenarios]; 

  

 //total 

 dexpr float Cborrowing = sum(o in port, i in depots, t in 

periods, s in scenarios) (Bots[o][t][s]+ Bits[i][t][s]+ 

IMots[o][t][s]); 

 dexpr float Creturning = sum(o in port, i in depots, t in 

periods, s in scenarios) (Rots[o][t][s]+ Rits[i][t][s]+ 

EXots[o][t][s]); 

  

 //Net Borrowing/returning volumes  

 dvar float+ BNots [port][periods][scenarios]; 
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 dvar float+ BNits [depots][periods][scenarios]; 

 //dvar float+ IMNots [port][periods][scenarios]; 

  

 //backorder volume 

 dvar float+ Ujts [customers][periods][scenarios]; 

 dvar float+ Kjts [customers][periods][scenarios]; 

  

 //total 

 dexpr float Cbackorder = sum(j in customers, t in periods, s in 

scenarios) (Ujts[j][t][s] + Kjts[j][t][s]); 

  

  dexpr float RawBackorderCost = (sum(s in scenarios, t in 

periods, j in customers) CUj[j]*Ujts[j][t][s])/nbscenarios; 

  dexpr float FinishBackorderCost = (sum(s in scenarios, t in 

periods, j in customers) CKj[j]*Kjts[j][t][s])/nbscenarios; 

   

 // robust making terms 

  

// dvar float+ ZS[scenarios];  

 dvar float+ Tet[scenarios]; // tetta  

 dvar float+ Infeas1[customers][periods][scenarios]; 

 dvar float+ Infeas2[customers][periods][scenarios];  

 

 

constraint Location; //constraint allocation;  

 

//Second Stage Objective Function Components 

 

// Transport Cost 

dexpr float Transport[s in scenarios]=  

sum(i in depots, j in customers, t in periods, m in modes) 

((CONSijm[i][j][m]+TCijm[i][j][m]+OCijm[i][j][m])*(Fijtsm[i][j][

t][s][m]+Fjitsm[j][i][t][s][m]) 

+(CONSijm[i][j][m]+TCEijm[i][j][m]+OCEijm[i][j][m])*(FEijtsm[i][

j][t][s][m]+FEjitsm[j][i][t][s][m])) 

+sum(o in port,i in depots, j in customers, t in periods, m in 

modes)((CONSoim[o][i][m]+TCoim[o][i][m]+OCoim[o][i][m])*(Goitsm[

o][i][t][s][m]+Giotsm[i][o][t][s][m]) 

+(CONSoim[o][i][m]+TCEoim[o][i][m]+OCEoim[o][i][m])*(GEoitsm[o][

i][t][s][m]+GEiotsm[i][o][t][s][m])) 

+sum (o in port, j in customers, t in periods, m in modes) 

((CONSojm[o][j][m]+TCojm[o][j][m]+OCojm[o][j][m])*(Wojtsm[o][j][

t][s][m]+Wjotsm[j][o][t][s][m]) 

+(CONSojm[o][j][m]+TCEojm[o][j][m]+OCEojm[o][j][m])*(WEojtsm[o][

j][t][s][m]+WEjotsm[j][o][t][s][m])); 

 

// Holding Cost 
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dexpr float Holding[s in scenarios]= 

sum (t in periods)(sum (o in port)Ho[o]*SEots[o][t][s]+sum (i in 

depots)Hi[i]*SEits[i][t][s]+ sum(j in 

customers)Hj[j]*SEjts[j][t][s]); 

 

//Borrowing Cost 

dexpr float Borrowing[s in scenarios]= 

sum (t in periods)(sum (o in 

port)(CBo[o]*Bots[o][t][s]+CRo[o]*Rots[o][t][s]+CBNo[o]*BNots[o]

[t][s]) 

+sum(i in 

depots)(CBi[i]*Bits[i][t][s]+CRi[i]*Rits[i][t][s]+CBNi[i]*BNits[

i][t][s]) 

+sum (o in port) 

(CIMo[o]*IMots[o][t][s]+CEXo[o]*EXots[o][t][s])); 

 

//Backorder Cost 

dexpr float RawBackorder [s in scenarios]= 

sum(t in periods, j in customers) (CUj[j]*Ujts[j][t][s]); 

 

dexpr float FinishedBackorder [s in scenarios]= 

sum(t in periods, j in customers) (CKj[j]*Kjts[j][t][s]); 

 

dexpr float ZS[s in scenarios] = Transport[s] + Holding[s] + 

Borrowing[s] + RawBackorder[s] + FinishedBackorder[s]; 

//First Stage Objective Function 

 

dexpr float Locating =sum (i in depots)Fi[i]*X[i] + sum (i in 

depots, j in customers) Y[i][j] ; 

 

//RO Objective Function 

 

dexpr float Mean= sum (s in scenarios) Prob*ZS[s]; 

dexpr float SD= sum(s in scenarios) Prob*(ZS[s] - (sum(c in 

scenarios:c!=s)Prob*ZS[c]) + 2*Tet[s]); 

dexpr float SolutionRobust= Mean + (Lambda*SD); 

dexpr float ModelRobust= Prob* sum(s in scenarios, t in periods, 

j in customers) (Infeas1[j][t][s] +Infeas2[j][t][s]); 

 

dexpr float SD1 = sum(s in scenarios) Prob*(ZS[s]-(sum(c in 

scenarios:c!=s)Prob*ZS[c])); 

dexpr float TotalZS1 = sum(s in scenarios) Prob*ZS[s]; 

dexpr float TotalZS2 = (sum(s in scenarios) ZS[s])/nbscenarios; 

dexpr float TotalCost2 = Locating + Mean; 
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//Model Formulation 

dexpr float obj = Locating + Mean + (Nu*ModelRobust); 

 

float temp; 

execute{ 

var before = new Date(); 

temp = before.getTime(); 

} 

 

minimize obj; 

 

subject to{ 

 

Location =  

forall (i in depots, j in customers) 

 Y[i][j]<=X[i]; 

   

forall (j in customers) 

 sum(i in depots)Y[i][j] >= 1 ;   

 

SupplyDemandFLow: 

 

forall (j in customers, t in periods: t-1 in periods, s in 

scenarios) 

cons7: 

sum (i in depots, m in modes: t-Tijm[i][j][m] in periods) 

Fijtsm[i][j][t- Tijm[i][j][m]][s][m]+sum(o in port,m in modes: 

t- Tojm[o][j][m] in periods) Wojtsm[o][j][t- 

Tojm[o][j][m]][s][m] == Djtss[j][t][s] + Ujts[j][t-1][s]-

Ujts[j][t][s] -Infeas1[j][t][s]; 

 

forall (j in customers, t in periods: t-1 in periods, s in 

scenarios) 

cons8: 

sum (i in depots, m in modes) Fjitsm[j][i][t][s][m]+sum(o in 

port, m in modes) Wjotsm[j][o][t][s][m] == Sjtss[j][t][s] + 

Kjts[j][t-1][s]-Kjts[j][t][s] -Infeas2[j][t][s]; 

 

//**************************************************************

****************************************************** 

 

EmptyContainersAvailability: 

 

cons9: 
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forall (j in customers, t in periods: t-1 in periods, s in 

scenarios) 

sum(i in depots, m in modes) Fjitsm[j][i][t][s][m] + sum (o in 

port, m in modes) Wjotsm[j][o][t][s][m] +  

sum(i in depots, m in modes) FEjitsm[j][i][t-1][s][m] + sum (o 

in port, m in modes) WEjotsm[j][o][t-1][s][m]<= SEjts[j][t-

1][s];  

 

//**************************************************************

***************************************************** 

cons10: 

forall (j in customers, t in periods: t==1, s in scenarios) 

sum(i in depots, m in modes) FEjitsm[j][i][t][s][m] + sum (o in 

port, m in modes) WEjotsm[j][o][t][s][m] <= SEjts[j][t][s]; 

  

//**************************************************************

***************************************************** 

cons11: 

forall (i in depots, t in periods, s in scenarios) 

sum(j in customers, m in modes) FEijtsm[i][j][t][s][m] + sum (o 

in port, m in modes) GEiotsm[i][o][t][s][m] <= SEits[i][t][s]; 

 

cons12: 

forall (o in port, t in periods, s in scenarios) 

sum(i in depots, m in modes) GEoitsm[o][i][t][s][m] + sum (j in 

customers, m in modes) WEojtsm[o][j][t][s][m] <= SEots[o][t][s]; 

 

InventoryLevel: 

 

cons13: 

forall (j in customers, t in periods: t-1 in periods, s in 

scenarios) 

SEjts[j][t][s] == SEjts[j][t-1][s]+ sum(o in port, m in modes: 

t-Tojm[o][j][m]-Wjm[j][m] in periods) Wojtsm[o][j][t-

Tojm[o][j][m]-Wjm[j][m]][s][m] 

+sum (i in depots, m in modes :t-Tijm[i][j][m]-Wjm[j][m] in 

periods) Fijtsm[i][j][t-Tijm[i][j][m]-Wjm[j][m]][s][m] 

+sum(o in port, m in modes :t-Tojm[o][j][m] in 

periods)WEojtsm[o][j][t-Tojm[o][j][m]][s][m] 

+sum(i in depots, m in modes :t-Tijm[i][j][m] in 

periods)FEijtsm[i][j][t-Tijm[i][j][m]][s][m] 

-sum(o in port, m in modes :t+Wjm[j][m]in 

periods)Wjotsm[j][o][t+Wjm[j][m]][s][m] 

-sum(i in depots, m in modes :t+Wjm[j][m]in 

periods)Fjitsm[j][i][t+Wjm[j][m]][s][m] 

-sum(o in port, m in modes)WEjotsm[j][o][t][s][m] 

-sum(i in depots, m in modes)FEjitsm[j][i][t][s][m]; 
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cons14: 

forall (j in customers, t in periods: t==1, s in scenarios) 

SEjts[j][t][s] == 0 

-sum(o in port, m in modes :t+Wjm[j][m]in 

periods)Wjotsm[j][o][t+Wjm[j][m]][s][m] 

-sum(i in depots, m in modes :t+Wjm[j][m]in 

periods)Fjitsm[j][i][t+Wjm[j][m]][s][m] 

-sum(o in port, m in modes)WEjotsm[j][o][t][s][m] 

-sum(i in depots, m in modes)FEjitsm[j][i][t][s][m]; 

 

//**************************************************************

******************************************************* 

 

cons15: 

forall (i in depots, t in periods: t-1 in periods, s in 

scenarios) 

SEits[i][t][s] == SEits[i][t-1][s]  

+ sum(j in customers, m in modes: t-Tijm[i][j][m] in 

periods)FEjitsm[j][i][t-Tijm[i][j][m]][s][m] 

+ sum(o in port, m in modes:t-Toim[o][i][m] in periods) 

GEoitsm[o][i][t-Toim[o][i][m]][s][m] 

- sum(j in customers, m in modes)FEijtsm[i][j][t][s][m]  

- sum (o in port, m in modes) GEiotsm[i][o][t][s][m] 

+ Bits[i][t][s] - Rits[i][t][s]; 

 

cons16: 

forall (i in depots, s in scenarios, t in periods:t==1) 

SEits[i][t][s] == 0 

- sum(j in customers, m in modes)FEijtsm[i][j][t][s][m]  

- sum (o in port, m in modes) GEiotsm[i][o][t][s][m] 

+ Bits[i][t][s] - Rits[i][t][s];  

 

//**************************************************************

******************************************************** 

cons17: 

forall (o in port, t in periods: t-1 in periods, s in scenarios) 

SEots [o][t][s] == SEots[o][t-1][s]  

- sum(i in depots, o in port, m in modes) GEoitsm[o][i][t][s][m]  

+ sum(i in depots, m in modes: t-Toim[o][i][m] in 

periods)GEiotsm[i][o][t-Toim[o][i][m]][s][m]  

+ sum (j in customers, m in modes: t-Tojm[o][j][m] in periods) 

WEjotsm[j][o][t-Tojm[o][j][m]][s][m] 

- sum(j in customers, m in modes) WEojtsm[o][j][t][s][m]  

+ Bots[o][t][s] - Rots[o][t][s] + IMots[o][t][s] - 

EXots[o][t][s]; 
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cons18: 

forall (o in port, t in periods: t==1, s in scenarios) 

SEots [o][t][s] == 0  

- sum(i in depots, o in port, m in modes) GEoitsm[o][i][t][s][m]  

- sum(j in customers, m in modes) WEojtsm[o][j][t][s][m]  

+ Bots[o][t][s] - Rots[o][t][s] + IMots[o][t][s] - 

EXots[o][t][s]; 

 

//**************************************************************

******************************************************** 

BorrowReturn: 

 

cons19: 

forall (i in depots, s in scenarios) 

sum(t in periods)Bits[i][t][s] >= sum(t in 

periods)Rits[i][t][s]; 

 

cons20: 

forall (o in port, s in scenarios) 

sum(t in periods) Bots[o][t][s] >= sum(t in periods) 

Rots[o][t][s]; 

 

cons21: 

forall (o in port, s in scenarios) 

sum(t in periods) IMots[o][t][s] >= sum(t in periods) 

EXots[o][t][s];  

 

CapacityNodes: 

 

forall(i in depots, t in periods, s in scenarios) 

cons22: 

SEits[i][t][s] <= CAPi[i]*X[i]; 

 

forall (o in port, t in periods, s in scenarios) 

cons23: 

SEots[o][t][s] <= CAPo[o]; 

 

forall(j in customers, t in periods, s in scenarios) 

cons24: 

SEjts[j][t][s] <= CAPj[j]; 

 

IntermediateFlowConservation: 

 

cons25: 

forall (i in depots, t in periods, s in scenarios)   
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sum(m in modes, j in customers) Fijtsm[i][j][t][s][m] == sum (o 

in port, m in modes:t-Toim[o][i][m] in periods) Goitsm[o][i][t-

Toim[o][i][m]][s][m]; 

 

cons26: 

forall (i in depots, t in periods, s in scenarios)  

sum(j in customers, m in modes: t-Tijm[i][j][m] in periods) 

Fjitsm[j][i][t-Tijm[i][j][m]][s][m] == sum(o in port, m in 

modes) Giotsm[i][o][t][s][m]; 

 

//**************************************************************

******************* 

cons27: 

forall (i in depots, t in periods: t<2, s in scenarios) 

sum (o in port, m in modes) Goitsm[o][i][t][s][m] == sum (m in 

modes, j in customers) Fijtsm[i][j][t][s][m]; 

 

cons28: 

forall (i in depots, t in periods: t<2, s in scenarios)  

sum (j in customers,m in modes) Fjitsm[j][i][t][s][m] == sum(o 

in port, m in modes) Giotsm[i][o][t][s][m]; 

 

//**************************************************************

******************** 

NetBorrowing: 

 

cons29: 

forall (o in port, t in periods: t-1 in periods, s in scenarios) 

 BNots[o][t][s] == BNots[o][t-1][s] + Bots[o][t][s] - Rots 

[o][t][s]; 

 

cons30:   

forall (i in depots, t in periods: t-1 in periods, s in 

scenarios) 

 BNits[i][t][s] == BNits[i][t-1][s] + Bits[i][t][s] - Rits 

[i][t][s];   

 

cons31:   

forall (o in port, t in periods: t==1, s in scenarios) 

 BNots[o][t][s] == Bots[o][t][s] - Rots [o][t][s]; 

 

cons32:   

forall (i in depots, t in periods: t==1, s in scenarios) 

 BNits[i][t][s] == Bits[i][t][s] - Rits [i][t][s];   

   

//**************************************************************

****************** 
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forall ( i in depots, j in customers, t in periods, s in 

scenarios, m in modes) 

cons37: 

Fijtsm[i][j][t][s][m] <= 100000000*Y[i][j]; 

 

forall ( j in customers, i in depots, t in periods, s in 

scenarios, m in modes) 

cons38: 

Fjitsm[j][i][t][s][m] <= 100000000*Y[i][j]; 

 

forall ( i in depots, j in customers, t in periods, s in 

scenarios, m in modes) 

cons39: 

FEijtsm[i][j][t][s][m] <= 100000000*Y[i][j]; 

 

forall ( j in customers, i in depots, t in periods, s in 

scenarios, m in modes) 

cons40: 

FEjitsm[j][i][t][s][m] <= 100000000*Y[i][j]; 

 

} 

 

   execute 

     { 

     writeln("x=",X, " Y=",Y); 

     writeln("  Obj=",obj); 

     var after = new Date(); 

  writeln("solving time ~= ",(after.getTime()-temp)/1000, " 

seconds") 

     } 
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Appendix D.  

The Cplex script code relating to standard Benders Decomposition Algorithm 

 

int ar[i in 1..1]=520000; 

 

main { 

 

 thisOplModel.settings.mainEndEnabled = true; 

  

var xb = new Array(); 

var yb = new Array(10); 

    for(var i=1;i<=8;i++){ 

    yb[i]=new Array(10); 

    for(var j=1;j<=50;j++){ 

    yb[i][j]=new Array(10);}} 

var zb =0; 

var gammb = 0; 

  

 var du7 = new Array(10); 

 for(var k=1;k<=10;k++){ 

  du7[k]= new Array(10); 

 for(var j=1;j<=50;j++){ 

  du7[k][j]= new Array(10); 

 for(var t=2;t<=13;t++){ 

  du7[k][j][t]= new Array(10); 

 for(var s=1;s<=5;s++){  

  du7[k][j][t][s] = 1;}}}} 

   

 var du8 = new Array(10);  

 for(var k=1;k<=10;k++){ 

  du8[k]= new Array(10); 

 for(var j=1;j<=50;j++){ 

  du8[k][j]= new Array(10); 

 for(var t=2;t<=13;t++){ 

  du8[k][j][t]= new Array(10); 

 for(var s=1;s<=5;s++){  

  du8[k][j][t][s] = 1;}}}} 

   

 var du22 = new Array(5200);  

 for(var k=1;k<=10;k++){ 

  du22[k]= new Array(10); 

 for(var i=1;i<=8;i++){ 

  du22[k][i]= new Array(80); 

 for(var t=1;t<=13;t++){ 
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  du22[k][i][t]= new Array(1040); 

 for(var s=1;s<=5;s++){  

  du22[k][i][t][s] = 1;}}}}  

   

 var du23 = new Array(650);  

 for(var k=1;k<=10;k++){ 

  du23[k]= new Array(10); 

 for(var o=1;o<=1;o++){ 

  du23[k][o]= new Array(10); 

 for(var t=1;t<=13;t++){ 

  du23[k][o][t]= new Array(130); 

 for(var s=1;s<=5;s++){  

  du23[k][o][t][s] = 1;}}}} 

   

 var du24 = new Array(2500); 

 for(var k=1;k<=10;k++){ 

  du24[k]= new Array(10); 

 for(var j=1;j<=50;j++){ 

  du24[k][j]= new Array(500); 

 for(var t=1;t<=13;t++){ 

  du24[k][j][t]= new Array(2500); 

 for(var s=1;s<=5;s++){  

  du24[k][j][t][s] = 1;}}}}   

   

 var du37 = new Array(520000); 

 for(var k=1;k<=10;k++){ 

  du37[k]= new Array(10); 

 for(var i=1;i<=8;i++){ 

  du37[k][i]= new Array(80); 

 for(var j=1;j<=50;j++){ 

  du37[k][i][j]= new Array(4000); 

 for(var t=1;t<=13;t++){  

  du37[k][i][j][t] = new Array(52000); 

 for(var s=1;s<=5;s++){  

  du37[k][i][j][t][s] = new Array(260000); 

 for(var m=1;m<=2;m++){  

  du37[k][i][j][t][s][m] = 1; }}}}}} 

   

 var du38 = new Array(520000); 

 for(var k=1;k<=10;k++){ 

  du38[k]= new Array(10); 

 for(var j=1;j<=50;j++){ 

  du38[k][j]= new Array(500); 

 for(var i=1;i<=8;i++){ 

  du38[k][j][i]= new Array(4000); 

 for(var t=1;t<=13;t++){  

  du38[k][j][i][t] = new Array(52000); 
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 for(var s=1;s<=5;s++){  

  du38[k][j][i][t][s] = new Array(260000); 

 for(var m=1;m<=2;m++){  

  du38[k][j][i][t][s][m] = 1; }}}}}} 

   

 var du39 = new Array(520000); 

 for(var k=1;k<=10;k++){ 

  du39[k]= new Array(10); 

 for(var i=1;i<=8;i++){ 

  du39[k][i]= new Array(80); 

 for(var j=1;j<=50;j++){ 

  du39[k][i][j]= new Array(4000); 

 for(var t=1;t<=13;t++){  

  du39[k][i][j][t] = new Array(52000); 

 for(var s=1;s<=5;s++){  

  du39[k][i][j][t][s] = new Array(260000); 

 for(var m=1;m<=2;m++){  

  du39[k][i][j][t][s][m] = 1; }}}}}} 

   

    var du40 = new Array(520000); 

 for(var k=1;k<=10;k++){ 

  du40[k]= new Array(10); 

 for(var j=1;j<=50;j++){ 

  du40[k][j]= new Array(500); 

 for(var i=1;i<=8;i++){ 

  du40[k][j][i]= new Array(4000); 

 for(var t=1;t<=13;t++){  

  du40[k][j][i][t] = new Array(52000); 

 for(var s=1;s<=5;s++){  

  du40[k][j][i][t][s] = new Array(260000); 

 for(var m=1;m<=2;m++){  

  du40[k][j][i][t][s][m] = 1; }}}}}}  

   

var LB = -Infinity; 

var UB = +Infinity; 

var counter=1; 

//uk[counter]=new Array(); 

var ofile = new IloOplOutputFile("modelRun.txt"); 

var modelSource = new IloOplModelSource("SubProblem0.mod"); 

var modelDef = new IloOplModelDefinition(modelSource); 

var model = new IloOplModel(modelDef, cplex); 

var Data = new IloOplDataSource("SubProblem0.dat"); 

var f=new IloOplOutputFile("export.csv"); 

  

    model.addDataSource(Data); 

    model.settings.mainEndEnabled = true; 

    model.generate(); 
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  if (cplex.solve()) {  for(var s=1;s<=5;s++) 

         for(var t=2;t<=13;t++) 

          for(var j=1;j<=50;j++)   

          

 {du7[counter][j][t][s]= model.cons7[j][t][s].dual;} 

         for(var s=1;s<=5;s++) 

         for(var t=2;t<=13;t++) 

          for(var j=1;j<=50;j++)   

          

 {du8[counter][j][t][s]= model.cons8[j][t][s].dual;} 

        for(var s=1;s<=5;s++) 

         for(var t=2;t<=13;t++) 

          for(var i=1;i<=8;i++)   

          

 {du22[counter][i][t][s]= model.cons22[i][t][s].dual;}  

        for(var s=1;s<=5;s++) 

         for(var t=1;t<=13;t++) 

          for(var o=1;o<=1;o++)   

          

 {du23[counter][o][t][s]= model.cons23[o][t][s].dual;}  

        for(var s=1;s<=5;s++) 

         for(var t=1;t<=13;t++) 

          for(var j=1;j<=50;j++)   

          

 {du24[counter][j][t][s]= model.cons24[j][t][s].dual;} 

       for(var m=1;m<=2;m++) 

            for(var s=1;s<=5;s++) 

             for(var t=1;t<=13;t++) 

              for(var 

j=1;j<=50;j++)   

               for(var 

i=1;i<=8;i++) 

          

 {du37[counter][i][j][t][s][m]= 

model.cons37[i][j][t][s][m].dual;}    

        for(var m=1;m<=2;m++) 

            for(var s=1;s<=5;s++) 

             for(var t=1;t<=13;t++) 

              for(var 

i=1;i<=8;i++) 

                  for(var 

j=1;j<=50;j++)       

              

{du38[counter][j][i][t][s][m]= 

model.cons38[j][i][t][s][m].dual;}  

        for(var m=1;m<=2;m++) 

            for(var s=1;s<=5;s++) 
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             for(var t=1;t<=13;t++) 

              for(var 

j=1;j<=50;j++)   

               for(var 

i=1;i<=8;i++) 

          

 {du39[counter][i][j][t][s][m]= 

model.cons39[i][j][t][s][m].dual;} 

        for(var m=1;m<=2;m++) 

            for(var s=1;s<=5;s++) 

             for(var t=1;t<=13;t++) 

              for(var 

i=1;i<=8;i++) 

                  for(var 

j=1;j<=50;j++)       

              

{du40[counter][j][i][t][s][m]= 

model.cons40[j][i][t][s][m].dual;}           

        

              } 

                                 

       

  else {writeln("No solution Found")} 

   model.end();  

 while (UB-LB >= 10){writeln(counter); 

 var masterSource = new 

IloOplModelSource("MasterProblem.mod"); 

  var masterDef = new IloOplModelDefinition(masterSource); 

 var master = new IloOplModel(masterDef, cplex); 

    var masterData = new IloOplDataSource("MasterProblem.dat"); 

     

    master.settings.mainEndEnabled = true; 

    var data2= new IloOplDataElements(); 

 data2.counters=thisOplModel.ar; 

    data2.counters[1]=counter; 

    master.addDataSource(data2); 

    master.addDataSource(masterData); 

    masterData = master.dataElements; 

     

    for(var s=1;s<=5;s++) for(var t=2;t<=13;t++) for(var 

j=1;j<=50;j++) for(var k=1;k<=counter;k++) 

master.dualcons7[k][j][t][s]=du7[k][j][t][s]; 

    for(var s=1;s<=5;s++) for(var t=2;t<=13;t++) for(var 

j=1;j<=50;j++) for(var k=1;k<=counter;k++) 

master.dualcons8[k][j][t][s]=du8[k][j][t][s]; 
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    for(var s=1;s<=5;s++) for(var t=1;t<=13;t++) for(var 

i=1;i<=8;i++) for(var k=1;k<=counter;k++) 

master.dualcons22[k][i][t][s]=du22[k][i][t][s]; 

    for(var s=1;s<=5;s++) for(var t=1;t<=13;t++) for(var 

o=1;o<=1;o++)  for(var k=1;k<=counter;k++) 

master.dualcons23[k][o][t][s]=du23[k][o][t][s]; 

    for(var s=1;s<=5;s++) for(var t=1;t<=13;t++) for(var 

j=1;j<=50;j++) for(var k=1;k<=counter;k++) 

master.dualcons24[k][j][t][s]=du24[k][j][t][s]; 

    for(var m=1;m<=2;m++) for(var s=1;s<=5;s++)  for(var 

t=1;t<=13;t++) for(var j=1;j<=50;j++) for(var i=1;i<=8;i++) 

for(var k=1;k<=counter;k++) 

master.dualcons37[k][i][j][t][s][m]=du37[k][i][j][t][s][m]; 

    for(var m=1;m<=2;m++) for(var s=1;s<=5;s++)  for(var 

t=1;t<=13;t++) for(var i=1;i<=8;i++)  for(var j=1;j<=50;j++)  

for(var k=1;k<=counter;k++) 

master.dualcons38[k][j][i][t][s][m]=du38[k][j][i][t][s][m]; 

    for(var m=1;m<=2;m++) for(var s=1;s<=5;s++)  for(var 

t=1;t<=13;t++) for(var j=1;j<=50;j++) for(var i=1;i<=8;i++) 

for(var k=1;k<=counter;k++) 

master.dualcons39[k][i][j][t][s][m]=du39[k][i][j][t][s][m]; 

    for(var m=1;m<=2;m++) for(var s=1;s<=5;s++)  for(var 

t=1;t<=13;t++) for(var i=1;i<=8;i++)  for(var j=1;j<=50;j++)  

for(var k=1;k<=counter;k++) 

master.dualcons40[k][j][i][t][s][m]=du40[k][j][i][t][s][m]; 

     

    master.generate(); 

    if (cplex.solve()) {master.postProcess(); 

    zb=master.Z.solutionValue; 

    LB=zb; 

    for(var i=1; i<=8; i++)xb[i] = master.X[i].solutionValue; 

    for(var j=1; j<=50; j++) for(var i=1; i<=8; i++)yb[i][j] = 

master.Y[i][j].solutionValue; 

    var Zfirst=master.FirstStage.solutionValue; 

 

} 

 else {writeln("No solution Found")} 

  master.end(); 

 counter++; 

  

 var DualSource = new IloOplModelSource("SubProblem.mod"); 

 var DualDef = new IloOplModelDefinition(DualSource); 

 var Dualmodel = new IloOplModel(DualDef, cplex); 

 var DualData = new IloOplDataSource("SubProblem.dat"); 

    Dualmodel.addDataSource(DualData); 

 Dualmodel.settings.mainEndEnabled = true; 

    DualData = Dualmodel.dataElements; 
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    for(var i=1; i<=8; i++) {xb[i]=DualData.X[i];} 

    for(var j=1; j<=50; j++) for(var i=1; i<=8; i++) 

{yb[i][j]=DualData.Y[i][j];}  

    Dualmodel.generate(); 

    if (cplex.solve()) { 

  Dualmodel.postProcess(); 

      for(var s=1;s<=5;s++) 

      for(var t=2;t<=13;t++) 

       for(var j=1;j<=50;j++) 

       

 {du7[counter][j][t][s]=Dualmodel.cons7[j][t][s].dual;} 

        for(var s=1;s<=5;s++) 

      for(var t=2;t<=13;t++) 

       for(var j=1;j<=50;j++) 

       

 {du8[counter][j][t][s]=Dualmodel.cons8[j][t][s].dual;} 

     for(var s=1;s<=5;s++) 

         for(var t=1;t<=13;t++) 

       for(var i=1;i<=8;i++) 

       

 {du22[counter][i][t][s]=Dualmodel.cons22[i][t][s].dual;} 

     for(var s=1;s<=5;s++) 

         for(var t=1;t<=13;t++) 

       for(var o=1;o<=1;o++) 

       

 {du23[counter][o][t][s]=Dualmodel.cons23[o][t][s].dual;} 

  

     for(var s=1;s<=5;s++) 

         for(var t=1;t<=13;t++) 

       for(var j=1;j<=50;j++) 

       

 {du24[counter][j][t][s]=Dualmodel.cons24[j][t][s].dual;} 

     for(var m=1;m<=2;m++) 

         for(var s=1;s<=5;s++) 

          for(var t=1;t<=13;t++) 

           for(var j=1;j<=50;j++) 

            for(var i=1;i<=8;i++) 

       

 {du37[counter][i][j][t][s][m]=Dualmodel.cons37[i][j][t][s][

m].dual;} 

     for(var m=1;m<=2;m++) 

         for(var s=1;s<=5;s++) 

          for(var t=1;t<=13;t++) 

           for(var i=1;i<=8;i++) 

               for(var j=1;j<=50;j++)      
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{du38[counter][j][i][t][s][m]=Dualmodel.cons38[j][i][t][s][m].du

al;}  

     for(var m=1;m<=2;m++) 

         for(var s=1;s<=5;s++) 

          for(var t=1;t<=13;t++) 

           for(var j=1;j<=50;j++) 

            for(var i=1;i<=8;i++)      

            

{du39[counter][i][j][t][s][m]=Dualmodel.cons39[i][j][t][s][m].du

al;}   

          for(var m=1;m<=2;m++) 

         for(var s=1;s<=5;s++) 

          for(var t=1;t<=13;t++) 

           for(var i=1;i<=8;i++) 

               for(var j=1;j<=50;j++)      

            

{du40[counter][j][i][t][s][m]=Dualmodel.cons40[j][i][t][s][m].du

al;}               

      

   gammb=cplex.getObjValue(); 

   UB=Zfirst+ (0.2*gammb); 

   }   

    else {writeln("No solution found");} 

 Dualmodel.end(); 

   

 writeln ("UB: ", UB," ,LB: ", LB); 

} 

 writeln ("objective value: ", UB); 

 f.writeln("X: ", xb); 

 f.writeln("Y: ", yb); 

} 


