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Abstract

Type II diabetes is an increasingly common disease, but one in which the effects suffered

by patients, such as hyperglycaemia, can be improved through careful monitoring and

control of the factors that influence blood glucose levels. Advances in the Internet of

Things (IoT) have made monitoring a person’s glucose levels more accessible, in that

a continuous glucose monitoring (CGM) device in the form of a small sensor can be

used to regularly report glucose levels to a bluetooth device, without the need for human

intervention. Modelling the data from CGM devices online allows for short-term forecasts

to be made that can assist in making real-time decisions regarding interventions to improve

future glucose levels, such as behavioural changes. Additional data to monitor how active

a person is can easily be collected by wrist-worn accelerometer devices. As activity levels

directly impact glucose levels, bivariate models between glucose and activity data aim to

provide improved forecasts.

State space models are fitted to glucose data and activity data using a Bayesian mod-

elling framework. The posterior distributions of model parameters are learned via Markov

chain Monte Carlo (MCMC) methods. High frequency (100 Hz), tri-axial accelerometer

data are reported alongside glucose observations recorded at five minute intervals and

are transformed into univariate activity summaries. Discrete-valued state space models,

known as hidden Markov models (HMMs), are used to classify the observations from the

different activity summaries into activity intensities. Normal and skew Normal within-

state distributions are explored to better fit the observed activity summaries, as well as

fitting models to transformations of the summaries where possible to reduce the skewness

in the data.

Gaussian state space models, known as dynamic linear models (DLMs), are explored

to describe glucose levels, incorporating seasonal and autoregressive (AR) components.

The results from these models then provide the basis for bivariate models that incorporate

known activity states. This additional information is included in the DLMs as a regression

covariate, which is formed by a weighted sum of lagged activity zones. Models between

glucose levels and lagged carbohydrate intake are also considered, to better understand

the effects of activity and food on glucose levels.

A second application area is considered as an example of improved predictive per-

formance where an influential variable is known alongside the quantity of interest. The

production levels of liquid natural gas (LNG) at a gas plant are modelled by a DLM, with

a regression on atmospheric temperature. The models are fitted in a frequentist framework

for simplicity.
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Chapter 1

Introduction

1.1 Introduction and motivation for thesis

Diabetes is a set of serious, lifelong metabolic conditions that cause a person’s blood

glucose levels to become too high (hyperglycaemia). The disease is usually broken down

into two types: type I diabetes and type II diabetes, both of which are products of the

body’s misproduction of the hormone insulin. Insulin regulates the body’s use and storage

of glucose and fat; it controls blood glucose levels by signalling the body’s cells to take in

glucose from the blood, which can then be used for energy. If the body has sufficient energy,

insulin signals the liver to store glucose instead. In type I diabetes the pancreas does not

produce insulin due to the immune system attacking the cells that secrete it. As a result,

type I diabetic patients must administer insulin into the body, though this can result in

blood glucose levels becoming too low (hypoglycaemia). The symptoms of hypoglycaemia

range from sweating, fatigue and dizziness, to sufferers becoming comatose in extreme

cases. Type II diabetes stems from the pancreas not producing enough insulin or the body’s

cells not reacting to insulin and is often associated with obesity. Signs of hyperglycaemia

include an increase in urination, thirst and hunger and regular hyperglycaemia over long

periods of time can lead to longer term problems, such as organ damage that can lead to

heart failure, loss of vision and amputation. Due to the potential life-threatening effects of

diabetes, blood glucose levels must be closely monitored. Recently, Ahlqvist et al. (2018)

suggested that there are actually five distinct types of diabetes, separated by the level

of risk they present and by different patient characteristics. In future this could lead to

much earlier targeting of precise treatments for patients who are at higher risk of diabetic

complications.12

The Internet of Things (IoT) refers to the quickly expanding network of connected

devices and sensors collecting large volumes of data. Amongst these sensors are continuous

1https://www.diabetes.co.uk/
2https://www.nhs.uk/conditions/diabetes/
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glucose monitoring (CGM) devices, microchips that are are placed just beneath the skin to

measure a patient’s interstitial glucose levels, which are equivalent to blood glucose levels

with a time lag of around 15 minutes. As a result of the lag in measurement accuracy,

CGM devices must be calibrated with finger prick measurements, but this is much less

often than a patient would usually have to take finger prick measurements if they did not

have the CGM system. CGM allows patients to see a full blood glucose profile throughout

the day and night, as regular blood glucose observations are sent from the monitor to

a hand held device or pump. This gives patients the opportunity to check their blood

glucose levels in real-time and learn particular trends in their glucose profile so they can

be more proactive in managing their condition.3

Since the introduction of CGM devices, many studies have been conducted showing

how their use has improved how well patients manage their condition. For example, Bode

et al. (1999) showed a significant reduction in HbA1c (glycated haemoglobin) levels in

patients who wore a CGM device for two one-week periods across five weeks and were able

to adjust their treatment accordingly after observing their glucose profiles both times.

The artificial pancreas is a closed-loop modelling system developed for type I diabetes

patients that aims to keep blood glucose levels in the euglycaemic range (range of normal

glucose levels), reducing the risk of hypoglycaemia. A CGM device is used to monitor the

patient’s blood glucose levels, which are then transmitted to a device that calculates the

amount of insulin required to normalise the blood glucose levels. Insulin is then pumped

into the patient’s system, without the need for human interaction. The advances in this

system are particularly important for type I diabetics overnight. Patients experience an

increased risk of a hypoglycaemic episode when sleeping as the counter-regulatory reaction

to hypoglycaemia is blunted.4

So far, work using CGM devices has mainly focused on type I diabetic patients, but

there is a large amount of scope for using these devices for type II diabetics, who make up

90% of those diagnosed with diabetes. Vigersky & Shrivastav (2017) provide an overview

of several studies in which type II diabetic patients have been fitted with CGM devices.

This includes Garg et al. (2006), who conclude that those fitted with a CGM device

reduce their time spent in hypoglycaemia by 23%, nocturnal hypoglycaemia by 38% and

hyperglycaemia by 21%, showing a vast improvement to overall glucose levels compared

to those without a real-time CGM device. Time spent in the euglycaemic range was

increased by 26% overall. Vigersky & Shrivastav (2017) highlight how forecasting blood

glucose levels ahead of time would further increase these percentages of improvement.

3https://www.diabetes.org.uk/guide-to-diabetes/managing-your-diabetes/testing/continuous-glucose-
monitoring-cgm

4http://paediatrics.medschl.cam.ac.uk/research/the-artificial-pancreas-project/
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1.2 Glucose modelling

As demonstrated through work on the artificial pancreas, knowledge of a patient’s current

blood glucose levels can help in making real-time decisions. In the case of the artificial

pancreas, a decision can automatically be made on how much insulin to issue a type

I diabetic patient to correct blood glucose levels. Even more value can be added to

situations like this if blood glucose levels could be predicted ahead of time, before the

scenario of hypo- or hyperglycaemia has arisen. Fortunately, statistical inference provides

the predictive framework to do this.

Bremer & Gough (1999) posed the question of whether blood glucose levels could be

predicted from their previous values. They suggest that in order to effectively predict

future blood glucose levels from previous values, the sampling rate of the blood glucose

measurements must be frequent enough to capture detailed excursions: in particular this

occurs when there are external factors that directly affect blood glucose levels, for example

meals and exercise, and samples must be taken every two to five minutes. The data should

be collected for as long as possible, preferably several days’ worth, and there should be a

clear distinction between data that are collected during periods with external influences

and when there are none, for example when a patient is sleeping or fasting. Clearly, after

allowing for any periodic (seasonal) behaviour and the effects of external influences, it is

helpful if the differences or residuals of the remaining stochastic process can be treated as

stationary.

1.2.1 ARIMA models

The most prominent CGM models appearing throughout current literature are autoregres-

sive integrated moving average (ARIMA) models. The background on ARIMA models is

discussed in Section 3.1.4. Sparacino et al. (2007) consider a first order autoregressive

(AR(1)) model and a polynomial model and compare their predictive accuracy for blood

glucose levels 30 minutes and 45 minutes ahead. Data are collected from 28 type I diabetic

patients, each fitted with a CGM device, every three minutes. There is clear seasonality

in blood glucose profiles due to the regular pattern of meal times and sleep. To allow

for this form of non-stationarity, the parameter estimates for both models are updated at

each time step that a new observation is introduced. These estimates are produced using

weighted least squares: the data are weighted by a ‘forgetting factor’, µk (where 0 < µ < 1

and k is the lag), that determines how far back in time past blood glucose levels affect

the current and future blood glucose levels and therefore the current parameters of each

model. Higher values for µ achieve a smoother prediction profile, with the cost of a longer

delay in detecting changes, whilst lower values of µ are more sensitive to noise. Since a

noisier prediction profile leads to the bigger issue of increased false detection of hypo- and

3
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hyperglycaemic episodes, µ = 0.8 was chosen for calculating the model parameters. It was

found that having a higher signal-to-noise ratio (SNR) resulted in reliable predictions for

longer predictive horizons, however the 30 minute prediction horizon allowed enough time

for detecting a hypoglycaemic episode and for sugar to have an effect.

Sparacino et al. (2007) found that for data sampled every three minutes, higher or-

der AR models often yielded unstable predictions (predictions with high sensitivity to

noise) and a first order model was sufficient in providing clinically significant predictive

performance (predicted a hypo- or hyperglycaemic event far enough in advance for an

intervention to be made). It is, however, suggested that higher orders of AR models are

necessary for CGM data with higher sampling rates. Gani et al. (2009) chose an AR(30)

model as the optimal model for predicting blood glucose levels 30 to 60 minutes ahead,

using CGM data collected every minute. This order was chosen from a selection of optimal

values, ranging from 25 to 35, for data from nine type I diabetic patients. Since the mod-

els with orders as high as this showed little difference in predictive performance, order 30

was chosen. The model was tested in three different scenarios, varying on how the model

parameters were estimated and whether or not the data had been smoothed. Scenarios

one and two used ordinary least squares estimates for the model parameters, with the first

using the raw CGM data and the second using smoothed CGM data. The parameters for

both models yielded coefficients that correspond to unphysiological behaviour, where their

values did not gradually decrease over time, but the second model provided very accurate

predictions for blood glucose levels 30 minutes ahead (root mean square error (RMSE) =

0.02 mmol/L), though this model was unstable when white noise was added to the raw

signal. Scenario three used smoothed CGM data and regularised least squares estimates

of the model parameters. This model was stable and had viable AR coefficients. Pre-

dictions were accurate (30-minutes-ahead RMSE = 0.1 mmol/L, 60-minutes-ahead RMSE

= 0.8 mmol/L, 90-minutes-ahead RMSE = 1.6 mmol/L), with relatively short predictive

lags – the time delays in correctly predicting glucose levels (30-minutes-ahead lag = zero

minutes, 60-minutes-ahead lag = 12 minutes, 90-minutes-ahead lag = 38 minutes).

Reifman et al. (2007) propose an AR(10) model using CGM data sampled every minute

from nine type I diabetic patients. The order of the AR model is determined through the

Akaike information criterion (AIC) and, as for scenario three in Gani et al. (2009), uses

regularised least squares to determine the parameters of the model. The model is tested,

for each patient, for predictive horizons of 30-, 60- and 120 minutes ahead. As seen in

Gani et al. (2009), the lag in predictions increased with the number of time steps ahead

(figures not reported), as did the RMSE (1.23 mmol/L, 1.94 mmol/L and 2.99 mmol/L,

respectively). The lower order of the model failed to capture some of the correlations in the

blood glucose measurements, shown by a slight sinusoidal pattern in the autocorrelation

function (ACF) plot. This may explain the increased RMSE in the predictions compared
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to Gani et al. (2009). Another aspect explored by Reifman et al. (2007) is how well

each AR model trained on individual patients does at predicting the other patients’ blood

glucose levels. In all cases, the model performance is only slightly reduced, showing that

the autocorrelation variability across patients is very small.

Montaser et al. (2017) study whether using a seasonal ARIMA (SARIMA) model as

opposed to a non-seasonal version significantly improves predictive accuracy. Data from

10 type I diabetic patients collected every 15 minutes over a period of eight hours, twice

per patient, are concatenated to form one data set. The SARIMA model outperformed the

ARIMA model for all predictive horizons (30 to 300 minutes ahead). A seasonal model

with the exogenous variable insulin infusion was also considered and compared. This

added information in the model again improved predictions, improving the mean absolute

percentage error (MAPE) calculated from the SARIMA model by 61%. The data in this

study, unlike that in Reifman et al. (2007), featured high inter-individual variation.

1.2.2 Other models

Aside from ARIMA models, a number of alternative approaches to modelling blood glucose

data have been suggested.

Miller & Strange (2007) propose applying a discrete Fourier transform to the 24 hour

CGM data of diabetic patients. The model is tested on a type II diabetic patient’s glucose

profile using five harmonics (11 parameters) and using 20 harmonics (41 parameters)

to approximate the seasonality. Plotting the errors of both of these models shows that

using five harmonics results in regular oscillations not being captured, whereas using 20

harmonics results in errors that resemble white noise. More complex models, however, can

often lead to higher predictive variance and this was not assessed.

Kafali et al. (2014) build upon the existing personal health system COMMODITY56 by

proposing a hybrid diagnosis and monitoring architecture for diabetes (HYDRA). COM-

MODITY receives blood glucose level readings to a monitoring agent and sends an alert if

the observed level requires action (a reading < 3 mmol/L signals critical hypoglycaemia:

the condition being monitored). This means that a reading that only just falls within

the acceptable region would not trigger an alert, which could mean that dangerous blood

glucose levels could occur before the next observation. HYDRA improves this system

by forecasting the next blood glucose level ahead if the current observation is within the

acceptable hypoglycaemic range (3 ≤ glucose < 4), but therefore could become critical. A

general model is learned from a database of multiple patient data sets and is customised

per patient as new data from that patient are received. The model is also fine-tuned

based on ‘hidden’ patient-specific information, such as excessive alcohol use or shift work,

5http://www.bodytel.com
6http://www.medtronicdiabetes.com/products/guardiancgm
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incorporated as indicator variables that could improve predictive performance. The ca-

pability of the model is tested on synthetic data, generated from AR models, in a simple

case study. When a value in the hypoglycaemic range is detected, a 30 minute forecast

is made. The forecast accurately predicts the oncoming critical blood glucose level that

occurs 15 minutes later.

1.2.3 Assessment of performance of models

It is important when fitting time series models to be able to assess how well they perform.

Quantifying the error a model possesses is a crucial step in model development to decide

whether or not the model is reliable enough to use. This section looks at the various

features of models considered in the literature that influence how well they describe blood

glucose profiles, such as numerical accuracy, time delay in predicting hypo- or hypergly-

caemia and clinical point accuracy. The model-fits in the literature are frequentist, so the

following are measures for point forecasts. The work in this thesis will take a Bayesian

approach, allowing the predictive variance, i.e. the uncertainty in the point forecasts, to

be easily additionally captured.

Numerical point accuracy

There are an extensive number of statistics that summarise the numerical forecasting ac-

curacy of a model against the observed time series. These summaries are a straightforward

way to compare the performance of different models, or to test whether a model meets a

set of criteria.

The correlation coefficient between estimated blood glucose levels and observed blood

glucose levels can be calculated, demonstrated by Leal et al. (2010). This method does

not quantify the error in the model directly, but a strong positive value indicates that the

model estimates are close to the observed glucose levels and the model performs well.

Petris et al. (2009) list the following as common measures of forecasting accuracy to

compare time series models: the mean absolute deviation (MAD), the mean square error

(MSE) and the MAPE. Frequently seen in the literature is the RMSE (Gani et al., 2009;

Reifman et al., 2007), the square root of the MSE. The MSE is also known as the mean

square predictive error (MSPE) when the error is the difference between a predicted signal

and the observed signal, which is used by Sparacino et al. (2007). Montaser et al. (2017)

use the MAPE to compare the performance of seasonal ARIMA models with non-seasonal

ARIMA models.

Various governing bodies set criteria for the blood glucose levels reported by self-

monitoring blood glucose (SMBG) systems in terms of the amount of error they can incur

compared to reference blood glucose levels. The American Diabetes Association set the

6
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goal that the total error (system plus user error) for SMBG systems should be less than

10% (Parkes et al., 2000). The acceptable levels of error set out for SMBG and CGM

devices should be considered when investigating the performance of blood glucose models

to decide acceptable levels of error when forecasting ahead of time.

Additional to prediction point accuracy, Sparacino et al. (2007) assessed the perfor-

mance of the polynomial and AR(1) models by quantifying the lag in predicting ‘trigger’

blood glucose levels (the time difference between the forecasted values that fall in the

hypo- or hyperglycaemic ranges and their observations). Rather than quantifying the

delay between the peaks of the glucose profile and the peaks of the forecast (and con-

versely between the troughs), where the delay is largest, the time delay was measured

on the upward and downward trends of the original and predicted profiles. The point of

measurement comparison was taken to be 75% of each peak-to-trough distance in each

of the 28 time series, instead of where the original time series and where the predicted

time series cross the threshold to trigger a critical glucose level. Quantifying how much

lag a model forecast incurs is an important statistic to look at in blood glucose monitor-

ing. Ideally, forecasts must capture a change in blood glucose levels with enough time

for an intervention to take place and have a positive effect in order to prevent hypo- or

hyperglycaemia.

Clinical point accuracy

Whilst having a model that accurately estimates or predicts blood glucose levels is useful,

from a medical point of view what is more important is having a model that is clinically

accurate. Setting a standard for all estimated blood glucose levels to be within a certain

percentage of realised blood glucose levels is not always the most appropriate way to

assess accuracy, since measurement error percentages have varied clinical significance for

different blood glucose levels. Clinical accuracy consists of correctly estimating instances

of hypoglycaemia, euglycaemia and hyperglycaemia so that the right corrective treatments

can be applied. As an alternative to comparing how close estimated glucose levels are to

actual blood glucose levels, the Clarke error-grid analysis (EGA) (Clarke et al., 1987) was

developed as a way of assessing how clinically accurate SMBG systems are. The analysis

looks at the relative difference between the absolute value of the system-generated glucose

level and the absolute value of the reference blood glucose level and classifies the clinical

significance between the two observations with a letter from A to E. Observations classed

as A correctly estimate the state (hypo-, hyper- or euglycaemia) of the blood glucose levels,

whilst observations marked as E have resulted in the opposite intervention being taken

(e.g. estimating a hypoglycaemic episode when the actual blood glucose levels indicate a

hyperglycaemic episode). Leal et al. (2010) use Clarke EGA to assess the clinical accuracy

of blood glucose levels from a CGM device. An AR model is proposed as a real-time
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alternative to the CGM blood glucose estimates, with the Clarke EGA showing the much

improved performance of this model at estimating and classifying current blood glucose

levels.

The Clarke EGA has since been used to assess the clinical accuracy of models predicting

blood glucose levels ahead of time by comparing them to observed blood glucose levels

from CGM devices. Reifman et al. (2007) use Clarke EGA to compare the performance

of an AR(10) model for three predictive horizons: 30-, 60- and 120-minute-ahead blood

glucose levels. The portability of the AR(10) model is also assessed using Clarke EGA.

This looks at how effective the model is at predicting one patient’s blood glucose levels

when trained using a different patient’s blood glucose data.

A common extension of Clarke EGA is to use the continuous glucose error-grid analysis

(CG-EGA). CG-EGA consists of Clarke EGA and rate error-grid analysis (R-EGA), which

assesses how blood glucose levels change over time. Similar to the Clarke EGA, the R-

EGA grid is divided into zones A to E, with an observation in zone A representing near

perfect agreement between the rates of change of the reference blood glucose levels and

the sensor. Zanderigo et al. (2007) use CG-EGA to compare the performances of the two

models proposed by Sparacino et al. (2007) (a polynomial model and an AR(1) model).

Using CG-EGA to assess the performance of the models indicates that the two perform

very similarly, with the AR model only slightly outperforming the polynomial model in

terms of the slightly higher number of points classed into zones A and B (clinically accurate

in terms of intervention taken). To carry out R-EGA, data must be sampled at a high

enough frequency to capture the change in blood glucose over time. This was possible for

Zanderigo et al. (2007) as the blood glucose data used were sampled every three minutes,

however Leal et al. (2010) state that the data sampled every 15 minutes used in their

study were too infrequent to apply R-EGA. This coincides with the requirement Bremer

& Gough (1999) stated for blood glucose levels to be sampled every two to five minutes

in order to capture enough detail in blood glucose profiles: a higher sampling rate also

allows for a more in depth analysis of a model’s performance.

Consensus EGA was developed by Parkes et al. (2000) using the clinical judgement of

100 diabetes experts to update the Clarke EGA. The consensus EGA sets slightly altered

definitions for the error zones A to E and has different boundaries based on whether a

patient has type I or type II diabetes. The International Organization for Standardization

stipulates that at least 99% of the blood glucose levels reported by SMBG systems must

fall within zones A and B of the consensus error-grid (Freckmann et al., 2015).
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1.3 Incorporating activity data

1.3.1 Background

More recently it has become apparent that the effects of type II diabetes can be reduced,

if not reversed, through strict control of patient diet and exercise (Nelson et al., 2002).

Since these factors have a highly influential effect on blood glucose levels, collecting and

modelling these data alongside CGM measurements can provide a more informed inference

for blood glucose forecasts. Part of the appeal of CGM devices is the reduced need

for human interaction with the device to get blood glucose level readings. Recording

meal times and detailed macronutrient information would increase this interaction again,

though exercise is a factor that can be more automatically monitored, for example, through

wearable accelerometers.

Conn et al. (2007) produced a meta-analysis of studies testing the effects of exercise

interventions on metabolic control in type II diabetes patients. The analysis included

studies that target exercise alone, as well as studies that target multiple self-management

behaviours at the same time. Of the 103 reports analysed, all treatment groups that

increased the amount of exercise performed by participants showed strongly significant

improvement in metabolic control compared to control group members, who showed no

significant improvement. Overall, studies that focussed on exercise intervention alone had

twice as large an improvement in metabolic control after the intervention as studies that

focussed on multiple self-management interventions. The difficulty in changing multiple

behaviours at once is a notable factor in why the results of targeting exercise alone is

more effective than targeting several, but the results also imply that exercise is a major

component in type II diabetes management and an effective way of controlling the disease.

Tri-axial accelerometer data can be harvested from IoT activity watches and trans-

formed to quantify how much activity has been performed. Various ways of representing

these data will be discussed in Section 1.3.3. Fitting a joint statistical model to previous

blood glucose levels and activity levels will allow for more accurate predictions of future

blood glucose levels, increasing the chances of predicting abnormal blood glucose levels

ahead of time. It also allows forecasts of glucose to be made under different exercise

regimes to help patients learn the benefit of exercise interventions.

1.3.2 Physiology

Several studies have been conducted to test how different types of activity affect blood

glucose levels. Postprandial (the period of time after a meal) blood glucose levels increase

before the body produces enough insulin to bring them back down again. This spike is

more prominent in people with type II diabetes, often resulting in hyperglycaemia.
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Henson et al. (2016) proposed breaking up time spent in a sedentary position with

short bursts of standing or walking to improve postprandial metabolic responses. The

study was carried out on 22 postmenopausal women at high risk of developing type II

diabetes. Subjects were assigned to two of three groups: prolonged, unbroken sitting (7.5

hours); prolonged sitting broken up with standing for five minutes every 30 minutes; and

prolonged sitting broken up with walking for five minutes every 30 minutes. Breaking up

sitting with standing was found to reduce the postprandial rise in glucose by 34%, whilst

breaking up sitting with light-intensity walking reduced this by 28%. There were also

positive effects of the two activities on insulin levels, reducing the postprandial amount

by 20% and 37%, respectively. What is more, these positive effects carried on into the

next day. This follows on from the evidence in Dunstan et al. (2012), where breaking

up sedentary periods with two minutes of light- or moderate-intensity walking every 20

minutes also significantly reduced postprandial glucose and insulin levels.

As an alternative to breaking up sedentary time with walking, McCarthy et al. (2017)

looked at whether performing seated upper body activity at the same level of energy

expenditure as light-intensity walking would have the same effect on postprandial glucose

levels. Blood glucose measurements of 13 inactive, obese adults at risk of type II diabetes

were taken 30-, 60-, 120- and 180 minutes after breakfast and lunch. Results showed that

the incremental area under the curve (iAUC) for glucose and insulin levels when breaking

up sitting with arm ergometry every 30 minutes was lower than for breaking up sitting

with light-intensity walking. Whilst this may be due to the perceived higher intensity of

the arm ergometry, the results show that a postural change is not necessarily the only way

to alleviate postprandial blood glucose levels.

Though it is clear that breaking up sedentary time with standing or walking has a sig-

nificant, positive effect on postprandial blood glucose levels, McCarthy et al. (2017) assess

how much cardiorespiratory fitness (CRF) levels contribute to this reduction. The study

involved 34 healthy (non-obese) patients, evenly spread across three fitness levels: zero

minutes of moderate to vigorous physical activity (MVPA) per week; 75 to 150 minutes of

MVPA per week; and > 150 minutes of MVPA per week. The results show that those with

a CRF level in the 25th percentile reduce their glucose levels by almost 50% when taking

regular walking breaks, with initially high blood glucose levels prior to walking. Those

with a CRF in the 75th percentile, however, only reduce their glucose levels by around

11% when adding in walking breaks, though they had much lower initial blood glucose

levels on average. In summary, having a high CRF level or taking regular walking breaks

reduces the postprandial blood glucose levels of those in prolonged sedentary positions.

Whilst the benefits of exercising to improve the effects of diabetes are widely known,

Allen et al. (2008) state how 60% of those living with type II diabetes still do not engage

in physical activity. This study therefore instead looks at the effects of CGM counselling
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on 52 adults with type II diabetes. All patients received 90 minutes of diabetes education

prior to using the CGM devices and the intervention group (27 patients) received additional

counselling on self-efficacy. Self-efficacy was a main feature in the study, as it has a large

impact on whether an individual will start/continue doing something. After eight weeks,

the intervention group had significantly higher self-efficacy levels to continue exercising,

significantly decreased minutes spent in light-intensity and sedentary activity with an

increase in minutes spent in moderate activity and a significant decrease in HbA1c and

body-mass index (BMI). These results show that undertaking counselling to improve self-

efficacy plays a large part in increasing physical activity levels and, as a result, reducing

blood glucose levels. It also supports the other evidence to show how exercise reduces

blood glucose levels, particularly in those with type II diabetes.

1.3.3 Pre-processing

Extracting meaningful information from raw tri-axial accelerometer data is a challenging

task. As well as the movement being performed, signals are made up of noise and gravity,

which are picked up as vibrations by the sensor to measure acceleration. When the ac-

celerometer is completely at rest the total magnitude of acceleration is equal to one, which

corresponds to 1 g of purely gravitational acceleration. The data are often very big due

to the high frequencies at which they are collected. Additionally, this makes plotting the

data or summarising them computationally intensive. In the case of wanting to quantify

how much activity a person has performed, various transformations can be applied to their

accelerometer data.

Filtering raw tri-axial accelerometer data is a popular way of removing noise from

the signals before transforming them into a quantitative activity level. The type of filter

applied to data depends on the frequencies of noise that are to be removed; a high-pass

filter will attenuate (gradually lose) signals with a frequency below a specified cut-off point

(the stopband) and retain the frequencies above the cut-off (the passband), with the level

of attenuation specified by the filter itself. A low-pass filter retains frequencies below a

given cut-off point and a band-pass filter combines the low- and high-pass filters by only

retaining frequencies of a signal that are within a given range (known as a bandwidth).

An example of the use of band-pass filters is in wireless communication systems, where

signals are sent via a given band of frequencies so as to not interfere with signals sent in

other bandwidths (Shenoi, 2005).789

The ideal filter has a flat frequency response, meaning the frequencies within the

passband are represented uniformly. The Butterworth filter (Butterworth, 1930) has a

7https://en.wikipedia.org/wiki/High-pass filter
8https://en.wikipedia.org/wiki/Low-pass filter
9https://en.wikipedia.org/wiki/Band-pass filter
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maximally flat frequency response in the passband and goes to zero in the stopband,

which makes it a desirable and therefore commonly used filter.

Applying the Euclidean Norm (EN) to tri-axial data is a popular way of converting

three signals into one. Van Hees et al. (2013) suggest five metrics for separating the

gravitational component from the movement using tri-axial accelerometer data from a

robot performing ‘arm movements’, each containing the EN combined with different levels

of filtering. These metrics are also then applied to human accelerometer data to assess

daily physical activity, where the daily energy expenditure of each participant is known.

The five methods for separating the gravitational component out from the signal are: the

EN; EN minus one (ENMO); EN of the band-pass filtered signals (BFEN); EN of the high-

pass filtered signals (HFEN); and HFEN plus the EN of low-pass filtered signals minus

one (HFEN+). BFEN and EN were only applied to the human participants’ data sets:

EN to assess the relevance of removing gravity from the signal and BFEN to assess the

effects of high-frequency noise removal. ENMO consists of calculating the EN at each time

point, then subtracting 1 g from the resulting signal. Typically, negative values are then

truncated to zero. HFEN is the application of a high-pass fourth order Butterworth filter

with a cut-off frequency of 0.2 Hz, followed by calculating the EN. BFEN is the band-pass

version of HFEN: using a fourth order Butterworth filter with a cut-off frequency of 0.2

to 15 Hz. HFEN+ is where HFEN is applied to the signals followed by adding on the

EN of the low-pass fourth order Butterworth filtered raw signals (LFEN), also with a

cut-off frequency of 0.2 Hz (it is assumed that all human activity is performed above this

frequency). When there is no rotational movement, LFEN is equal to 1 g, hence the minus

one in ENMO, but when rotational movement is present, the value can be lower or higher

than 1 g. Adding this alternative value to the HFEN signal is therefore more precise. The

study concluded that the metric used has a large impact on explaining the variance in

daily physical activity, but that no one metric outperformed the others overall.

Van Hees et al. (2014) and da Silva et al. (2014) use ENMO to estimate population

activity levels. Van Hees et al. (2014) propose two autocalibration methods to reduce

the amount of error in accelerometer measurements. The impact of the new calibration

method on estimating population activity was then observed through using ENMO and

BFEN. Da Silva et al. (2014) apply ENMO to quantify the amount of activity and length

of time spent in MVPA using accelerometer data from 9,000 members of the Pelotas birth

cohorts in Brazil.

Doherty et al. (2017) trial the use of wrist-worn accelerometers in large scale studies as

a measure of how much physical activity people do. This is an alternative to the common

ways of measuring engagement in activity, which are often self-reported and therefore make

it hard to gauge total levels of activity. This makes setting minimum levels of activity

for a population to be healthy more challenging. Data were collected from over 100,000
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subjects, each providing seven days of 100 Hz tri-axial data. The data are processed using

ENMO, with the inclusion of a low-pass fourth order Butterworth filter with a cut-off

frequency of 20 Hz. The study shows that accelerometers can be worn and used on a large

scale to collect data of high quality.

Hurd et al. (2013) perform a study on different techniques used to analyse 100 Hz tri-

axial accelerometer data in evaluating the functionality of the upper extremities. One of

the methods involved measuring the amount of time spent in each activity intensity level

(inactivity, low activity or high activity). The raw accelerometer signals were processed

using a fourth order Butterworth high-pass filter at 0.1 Hz to remove the gravitational

component. The EN was then taken at each time point and the data were summed into

one minute epochs. Data were collected from 30 patients, 15 of which were control subjects.

The activity bins were decided based on the percentage of the control group maximum

activity value (CMA): inactivity < 110 min/s2/epoch; low activity 110 min/s2/epoch ≤
activity ≤ 33% of CMA; and high activity > 33% of CMA.

As an alternative to converting accelerometer data into an ‘activity level’, data can

instead be converted into a step count. Zhao (2010) describes an algorithm to do this:

data are filtered to smooth the signals and the axis with the largest acceleration change is

detected to calculate the steps; a dynamic threshold is calculated every 50 samples; when

the signal crosses this threshold and the slope is negative, a step is detected. Whilst step-

counts are a good way of quantifying activity, algorithms like this one are not as simple

to implement as those listed above.

Knowledge of when a patient is asleep can give added insight to the patterns in their

blood glucose levels. Van Hees et al. (2015) present a sleep detection method using

accelerometer data. The tri-axial data were used to estimate the arm angle of each patient.

The patient was assumed to be sleeping when there were periods of low frequency of

changes in arm angle. If there was no change of more than 5◦ over at least five minutes,

the patient was recorded as inactive. The Pearson’s correlation coefficient between total

sleep duration detected and total sleep duration logged by patients was 0.98. Moderate

performance of the algorithm in detecting sleep duration was reported.

1.4 Implications for modelling

The literature discussed throughout this chapter supports the idea that there is ample

scope and demand for monitoring and forecasting the glucose levels of type II diabetes

patients in real-time. The strong, positive impact that exercise has on glucose levels

is something that should be taken advantage of, namely by monitoring patient activity

levels alongside their glucose levels to provide more informed forecasts or forecasts under

different future activity regimes. This section discusses the implications for modelling that
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arise from the current research in this area.

The first thing that should be considered when monitoring patient glucose levels is how

frequently measurements should be taken. Bremer & Gough (1999) suggest glucose levels

should be sampled every two to five minutes to be able to capture excursions in the data.

Gani et al. (2009) and Reifman et al. (2007) fit AR models to data that are sampled at

the higher frequency of every one minute, but this results in both modelling approaches

requiring a much higher order model to get enough information from past glucose levels for

more accurate forecasting. Sparacino et al. (2007) use data that are sampled every three

minutes and found that higher order models led to unstable predictions, so these should

be avoided where possible. Blood glucose measurements for this thesis will be taken every

five minutes to account for any important changes in the data, but to reduce the need for

an overly complicated model. This is particularly important given the goal of this thesis to

generate forecasts in real-time. Also following the advice of Bremer & Gough (1999), the

data collection will be for as long as possible: at the time of collecting the initial glucose

data sets, CGM technology allowed for accurate data collection for five to seven days.

Models need to account for the periodicity of glucose levels caused by regular meal

times, sleeping and regularly performed activities and for the autocorrelation that remains

after allowing for these effects. Both can be captured using high order AR models whose

(latent) components can represent quasi-periodic behaviours of this nature, as well as high

frequency residual noise (Huerta & West, 1999). Such high order AR models were used by

Gani et al. (2009) and Reifman et al. (2007). Gani et al. (2009) suggest that knowledge

of glucose levels for the previous 30 minutes is sufficient to infer what will happen to

future glucose levels in the next 30 to 60 minutes. Montaser et al. (2017) found that

fitting a seasonal model (SARIMA) improved predictions, whilst Miller & Strange (2007)

experimented with fitting different numbers of harmonics in a discrete Fourier transform

model to glucose levels. All of the above suggest that capturing the seasonality and

autocorrelation in the data is key for being able to successfully forecast far enough ahead

that predictions are useful to making decisions for any necessary glucose interventions. In

this thesis, seasonal dynamic linear models (DLMs) and high order AR processes will be

considered. Note that allowance for time-varying parameters in a DLM is similar in spirit

to the forgetting factor estimation method used by Sparacino et al. (2007) when fitting

their (static) AR and polynomial models; see Section 1.2.1.

The incorporation of additional information about a patient’s lifestyle and/or influen-

tial factors is shown to improve predictive performance. Bremer & Gough (1999) highlight

that the distinction between when there are external factors and when there are not is

key for glucose modelling. In both Montaser et al. (2017) and Kafali et al. (2014), in-

sulin infusion as an exogenous variable and additional lifestyle factors, respectively, are

incorporated to infer glucose levels. Montaser et al. (2017) report how this greatly im-
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proved the predictive performance of their seasonal model. Van Hees et al. (2015) provide

a methodology into sleep detection in accelerometer data, which could be used to make

the distinction between when external factors are present and when they are not. In this

thesis, patient activity levels will be used to help infer glucose levels.

There is evidence to suggest that model parameters inferred from the glucose levels

of one patient can be used to make inferences about other patients. Both Reifman et al.

(2007) and Kafali et al. (2014) use this method, with model updates applied as new data are

received and additional model tuning performed through the addition of lifestyle variables

by Kafali et al. (2014). Reifman et al. (2007) found that cross-patient autocorrelation

variability is small and so fitting the model to one patient and using it on another had

very little difference in predictive performance. This is something to consider when fitting

models to the glucose and activity levels of the patients in this thesis; are the parameters

inferred for models fitted to activity data similar across patients, too? A universal model

(or informative prior) for glucose and activity that can be used across patients would be

beneficial in reducing computation time for real-time inference.

The predictive horizon needed to detect a change in glucose levels that requires in-

tervention with enough notice for an intervention to have an effect must be considered

when deciding the level of predictive accuracy models must possess. In type I diabetics,

30 minutes notice is enough time for a patient to take a food-based intervention and for

it to have an impact prior to hypoglycaemia occurring. The amount of time it takes for

a bout of activity to positively impact glucose levels must therefore be considered, too.

This will be informed through exploratory data analysis and judgement from experts in

metabolism.

The literature highlights two main ways of categorising model accuracy: numerically

and from a clinical perspective. Both of these methods will be considered in this thesis.

Quantitatively, models will be expressed as a Bayesian test quantity, their MSE, and later

by how accurately they predict a clinically significant event. Additionally, the credible

interval on forecasts will be analysed, since this needs to be within a reasonable range for

forecasts to be worthwhile and reliable.

Kafali et al. (2014) consider what cut-off points should be for critical glucose levels

for a behavioural prompt to be sent. The prompt should be sent prior to glucose levels

becoming critical for it to be useful and with enough notice. The range of acceptable

glucose levels in the literature is understood to be between 4 mmol/L and 7.8 mmol/L, so

these values are a good place to start, however this range may need to be tailored to each

patient. This is discussed further in Chapter 2. A further consideration on behavioural

prompts is how frequently they should be sent such that they still have the intended effect.

If prompts are issued too often, they could have the negative effect of being ignored by

the patient, whereas if they are issued too infrequently, dangerous excursions in glucose
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levels could occur when they could have been prevented. Allen et al. (2008) showed that

self efficacy has a big impact on how likely people are to carry on exercising without being

prompted; how behavioural prompts are issued so that they might incite consistent change

should therefore also be considered.

Research surrounding the impact of exercise on glucose levels implies that the type

of activity being performed is not important for an effect on glucose levels to be seen.

Henson et al. (2016) show both standing and walking reduce postprandial glucose lev-

els, with positive effects carrying on into the next day. Dunstan et al. (2012) show the

same thing with subjects walking at different intensities and McCarthy et al. (2017) find

that performing isolated upper body activity also reduces glucose levels, implying that a

postural change is not necessarily needed. Overall, having a higher initial cardiovascular

fitness level reduces glucose levels after eating, too, having the same effect as walking. For

the purpose of this thesis, detection of the type of activity being performed is therefore

not necessary and quantifying the activity intensity of each patient will be sufficient for

aiding the prediction of glucose levels. For issuing behavioural prompts, patients should

be encouraged to be active, but a specific activity prompt is not needed.

The method of collecting activity data should require minimal input from the patient.

Doherty et al. (2017) use accelerometer data to avoid bias from patients, which is more

likely to occur when patients are self-reporting how much activity they have done and of

what type. This form of data collection involves very little interaction from the patient and

data can be continuously recorded (as long as the patient is wearing the accelerometer),

so will be used for monitoring activity levels for this thesis. Conn et al. (2007) infer that

focussing on one glucose intervention at a time (exercise) is more effective on patients than

encouraging change in several behaviours at once. Activity is the only intervention that will

be monitored alongside glucose for the main part of this study for these reasons, however

further data are collected on some additional patients and are discussed in Chapter 6.

The literature highlights several methods for pre-processing accelerometer data into

activity data. All of the activity summaries discussed in Section 1.3.3 will be applied to

a sample of patient accelerometer data in Chapter 2 and compared to see which methods

summarise an activity profile best. This includes determining whether or not data should

be filtered before pre-processing and then applying EN and step count algorithms.

Da Silva et al. (2014) quantify the amount of activity performed and the length of

time spent in different activity zones. The length of time spent in each activity zone will

be considered when fitting models to the activity data to classify the level of activity

performed. Models should incorporate a dependency structure between observations that

reflects realistic movement between activity levels. The amount of activity performed and

the length of time spent in each activity zone on average are useful metrics to compare

activity expenditure across patients.
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The number of perceived activity zones reported in Hurd et al. (2013) is three: low-,

medium- and high levels of activity. This is the number of zones that will initially be

explored, though there will be some investigation into whether more (or fewer) lead to a

better fitting model. Hurd et al. (2013) calculate the boundaries for these zones based

on percentages of the maximum activity levels observed in a control group. The cut-off

points in this thesis will be inferred from the data to align with the Bayesian inferential

framework presented.

1.5 Objectives of the thesis

In summary of the literature presented and the implications for modelling that have been

drawn from it, this thesis presents two main objectives.

1. The primary goal is to develop a joint time series model for glucose and activity levels

of type II diabetes patients and computational methods for fitting the models in a

Bayesian framework. Also to propose a strategy for using the models for real-time

prediction.

2. The secondary goal is to investigate whether other information, such as food intake,

could lead to improvements in the model.

1.6 Outline of the thesis

The remaining chapters of this thesis are outlined as follows. Chapter 2 is an exploratory

analysis of the glucose and accelerometer data that were available at the start of this

project. This initial investigation provides some insights into the types of models that

will need to be developed, on top of the modelling implications learned from this chapter.

Some initial transformations will be applied to the accelerometer data to create potential

activity summaries that can be used in the modelling chapters of the thesis.

State space models and Bayesian inference are introduced in Chapter 3. The theory

outlined in these topics provides the background needed to understand the models fitted

in the modelling stages of the thesis and introduces the algorithms used to do so.

The remaining chapters of the thesis focus on developing and fitting models to aid in

forecasting glucose levels. Chapter 4 explores models to classify activity data, transformed

from raw accelerometer data, into activity intensity zones. Then, Chapter 5 provides some

initial univariate glucose models to provide a baseline forecast performance that can be

built upon in Chapter 6. Chapter 6 aims to combine the methods and results developed

for the univariate activity and glucose models to provide a joint model that improves upon

the glucose forecasts in Chapter 5.
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A second application area is explored in Chapter 7. This application was investigated as

part of a work placement at Woodside Energy Ltd. This chapter illustrates incorporating

weather data in models for forecasting the production levels of liquid natural gas (LNG).

Finally, Chapter 8 summarises the contributions and conclusions of the thesis and

suggests areas for further work.
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Chapter 2

Exploratory data analysis

2.1 Background

In this chapter, the time series data sets that are modelled throughout the thesis are

explored. There are two types of data set that are introduced: glucose data and ac-

celerometer data. These data sets are available across 10 distinct patients. In addition

to the raw accelerometer and glucose data, times when the CGM device collecting the

glucose data was calibrated by each patient are also available.

The data were collected prior to the start of the project by the Movement Laboratory

research group at Newcastle University. The patient data available are unlabelled, which

presented difficulties in the interpretation of patient activity levels and the identification

of sources of variation in the glucose data. Additional, annotated data were therefore

collected from three healthy (without type II diabetes and relatively active) subjects later

in the project to compare to the initial patient data sets analysed here. These data are

partially labelled with meal times and exercise and are introduced later in Chapters 4, 5

and 6.

2.2 Glucose data

The blood glucose levels of the ten patients with type II diabetes were reported by a

CGM device. These observations are recorded in millimoles per litre (mmol/L) every five

minutes across a five day period for each patient. Patients calibrated the CGM device

with finger prick measurements to maintain the accuracy of the observations.

The glucose profiles of eight out of the 10 patients are shown in Fig. 2.1. Two of the

patient data sets (from Patient 2 and Patient 6) have been discarded as they are unsuitable

for addressing the objective of jointly modelling glucose and accelerometer data; for both

patients, the periods of data collection for the glucose and accelerometer data do not align.
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Figure 2.1: Glucose profiles of eight type II diabetic patients. The euglycaemic range is indicated
by the red, dashed lines on each profile.
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The euglycaemic range of glucose levels is between 4 mmol/L and 7.8 mmol/L. Type

II diabetic patients have a tendency to record higher glucose levels than normal, as can

be seen in Fig. 2.1 where all patients frequently record glucose levels above 7.8 mmol/L.

In general the overall mean glucose level for each patient is also closer to this upper

limit (or above). The higher glucose level recordings are one of the indicators that a

person is diabetic.1 Patient 10 consistently records glucose levels above 7.8 mmol/L, with

some glucose observations above 20 mmol/L. Whilst higher glucose levels are dangerous

and indicate hyperglycaemia, what constitutes a ‘trigger’ glucose level for a behavioural

prompt must be tailored to each individual, since a reasonable threshold glucose level for

Patient 2, for example, would be far too low of a threshold for Patient 10.

There is a diurnal pattern to the glucose profiles for each patient in Fig. 2.1, but the

height of the peaks and number of peaks per day varies between patients and sometimes

between days for the same patient. This is most likely due to the range of sizes of meals

each patient eats throughout the day and throughout the week and also the range of

activities they perform. There is also a substantial amount of noise in each profile; the

glucose profile for Patient 4 is relatively smooth compared to that of Patient 5, but none

of the profiles are completely smooth. Overall, the mean glucose level (trend) is constant

across the five days for all patients, which is to be expected. These observations indicate

that the models for glucose must account for seasonality and for noisy signals, as well as

being able to adapt to the within-patient changes in seasonal pattern and levels of noise.

The density of each patient’s glucose profile is plotted in Fig. 2.2. The profiles are

multimodal with relatively short tails, indicating that each profile could be described by a

mixture of Normal densities. As in Fig. 2.1, the densities highlight the similarities between

the glucose profiles of some patients. In particular, the distribution of glucose levels for

Patients 1, 4 and 7 and Patients 8 and 9 can be grouped together: Patients 1, 4 and 7 have

a similar mode with highest density, followed by a medium sized mode at a higher glucose

level (though this is split into two modes for Patient 1); Patients 8 and 9 also share this

similar mode with highest density, but the density describing their higher glucose levels is

flatter, with multiple smaller modes. Patients 3 and 5 have similarly shaped densities, but

on average at slightly lower glucose levels and at slightly higher glucose levels than the

previously mentioned patients, respectively. Both profiles feature a main, central mode

with a smaller mode to the left and another, flatter mode to the right. The density for

the glucose levels of Patient 10 has a large variance, with a small mode at the top end of

the range of glucose levels experienced by the other patients and then two larger modes

of similar size at higher glucose levels. The modal density around 17 mmol/L is similar

to the size of the density around 13 mmol/L, indicating this patient is experiencing very

high glucose levels as often as they are mid-range levels of glucose.

1https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/diagnosis-treatment/drc-20351199
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Figure 2.2: Densities of the patient glucose profiles.

Overall, although the location of the modes for each patient’s glucose profile varies,

there is a clear similarity in the shapes of each profile. This supports the idea that a

model could be trained on one patient’s data or by pooling information across patients,

then tailored to each patient specifically as individual observations are received. This

exploratory analysis also confirms the need for a dynamic, seasonal model, in particular one

that could describe a mixture of Normal densities. Looking further ahead, the threshold

for a behavioural prompt to be sent to a patient must be tailored to each individual,

too. If glucose levels were monitored in the long term, this threshold could also be set

dynamically for each patient if their glucose levels started to show an overall decrease (or

increase) over time.

2.2.1 Missing data

To record glucose levels reported by the CGM device, each patient must be near a bluetooth

device (typically a mobile phone) that receives the readings. If a patient moves out of range

of the device when the CGM device attempts to send a reading, the observation is missed.

These missing time stamps are not reported in the data automatically, so must be added

in once the data have been imported, with the corresponding glucose level recorded as

NA. Fig. 2.1 shows that Patient 8 has many missing values, with a large gap in their

glucose profile for the majority of time points on Thursday and interspersed gaps for
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the other days in their trial. The other patients have much shorter and fewer periods of

missingness for all of the days. The modelling and inferential procedures used in this thesis

must therefore be able to accommodate missing data, which are assumed to be missing

at random. Inference is carried out in the Bayesian framework and so this essentially

involves treating the missing observations as unknowns, constructing the joint posterior

distribution of all missing data, parameters and other unknowns, and then integrating out

the missing data. In this way it is possible to average over the uncertainty in their values.

Further details of how this is performed will be discussed in Chapter 3.

2.3 Accelerometer data

The second data set available for each patient is 100 Hz tri-axial accelerometer data. The

high frequency of the data introduces challenges in terms of computational impact and

with interpretability. One week’s worth of data has over 64 million rows and a file size of

3.5 GB, so reading this into software like R causes problems if the machine the data are

being processed on has relatively low memory. This is because R reads the entire data

set into the RAM of the machine, as well as all objects stored in the environment. One

option to work around this problem is to read chunks of data into R at a time through

a connection. This allows smaller sections of data to be analysed at a time whilst not

overloading the RAM. The large file size, however, is not the only problem presented by

the raw accelerometer data; the high frequency introduces a lot of noise into the signals,

too. Fig. 2.3 shows a section of noisy signal along with some larger spikes, from which it is

difficult to interpret the parts that are noise and the parts arising from periods of activity.

Since the accelerometer data are to be used to gain insight into how active a patient has

been, it is important that they can be summarised in a way that reflects this.

2.3.1 Pre-processing accelerometer data

To convert the accelerometer data into more interpretable and parsable formats, the tech-

niques described in Section 1.3.3 are explored and evaluated. The pre-processing algo-

rithms are separated into two categories: computing the EN (Euclidean Norm) after ap-

plying different filters to the raw signals and step count algorithms. A frequency of 1 Hz

for the final activity data is considered here, with lower frequencies considered later in the

thesis; see Chapter 4. The initial exploratory analysis for pre-processing the accelerometer

data is carried out on the small segment (10,000 time points) of data from a single patient

(Patient 3) shown in Fig. 2.3. The methods in this section take advantage of aggregating

data over a one second epoch (window) to reduce the size of the transformed data set.
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Figure 2.3: Tri-axial accelerometer data (thinned by 20 for plotting).

EN and signal filtering

As seen in the literature in Section 1.3.3, methods involving the EN are popular for pre-

processing accelerometer data. The EN summarises a vector, v = (v1, . . . , vp), with a scalar

(e =
√∑p

i=1 v
2
i ) and is often referred to as the magnitude of the vector. Transforming

the tri-axial accelerometer data using the EN can therefore be thought of as taking the

magnitude of the total acceleration at each time point.

Algorithm 2.1: ENMO algorithm

1. Set n = number of observations per window;
2. for j = 1, . . . ,m, where m is the number of windows across the data set:
3. calculate

ej =

n∑
i=1

{√
x2(j−1)n+i + y2(j−1)n+i + z2(j−1)n+i − 1

}
.

4. end

The first algorithm considered here that utilises the EN is the ENMO (EN minus

one) algorithm, Algorithm 2.1. ENMO subtracts one from the EN at each time point to

account for the acceleration due to gravity, giving a value of zero when the patient is still.

It is applied to a sample of raw data from Patient 3, with the resulting signal shown in
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Figure 2.4: Accelerometer data summarised using the ENMO algorithm, Algorithm 2.1.

Fig. 2.4. The signal gives a clearer idea of the amount of activity being performed over time,

with larger and smaller spikes reflecting the amount Patient 3 is moving. Algorithm 2.1

produces some negative activity observations. In terms of quantifying activity, a method

that produces strictly positive measurements would be more interpretable, as intuitively

a recording of zero would be equivalent to no activity. Negative observations are not

necessarily a problem for monitoring activity, since the type of activity being performed

is not important for reducing glucose levels, just the intensity.

Algorithm 2.2: Truncated ENMO algorithm

1. Set n = number of observations per window;
2. for j = 1, . . . ,m, where m is the number of windows across the data set:
3. calculate

ej =
n∑
i=1

max
{

0,
√
x2(j−1)n+i + y2(j−1)n+i + z2(j−1)n+i − 1

}
.

4. end

A negative ENMO value occurs when
√
x2 + y2 + z2 < 1, meaning the magnitude

of acceleration at that time point is negligible and the negative value is the result of a

downward acceleration in the same direction of gravity. A negative activity observation
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Figure 2.5: Accelerometer data summarised using the truncated ENMO algorithm, Algorithm 2.2.

(ej < 0) should therefore be interpreted as an epoch with a low level of activity, regardless

of the magnitude of the observation. Summing over a window that contains a mix of

positive and negative values reduces the overall level of activity observed for that epoch,

which results in activity observations being under-reported.

An alternative approach to eliminate the impact small accelerometer readings (negative

ENMO observations) have on the overall activity level is to truncate negative observations

after calculating ENMO at each time point to zero, Algorithm 2.2. The resulting trun-

cated ENMO signal is shown in Fig. 2.5. Some new, large spikes in activity have appeared,

showing that the ENMO algorithm was dampening some of the activity levels being re-

ported. This could have a much bigger impact on the activity observations per epoch if

the data are downsampled to a lower frequency. Both of the activity profiles from Al-

gorithms 2.1 and 2.2 show clear spikes in activity levels where it seems activity is more

intense and flatter signals where it seems Patient 3 is at rest. In Fig. 2.5 in particular,

zones of activity appear to occur in bands of clustered activity observations: ‘low’ activity

appears to be observations less than 0.03, a ‘medium’ level of activity is observations less

than 0.1 and higher levels of activity are above 0.1.

As mentioned in Section 1.3.3, signal filtering can be carried out on the raw accelerom-

eter data to attenuate frequencies in a given range prior to applying the EN. Examples

of the band-pass, high-pass and low-pass fourth order Butterworth filters applied to the

x-axis accelerometer data are shown in Fig. 2.6. The band-pass and high-pass filters are
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Figure 2.6: Raw x-axis accelerometer data (top) filtered using a band-pass filter (second), high-pass
filter (third) and low-pass filter (bottom) (thinned by 20 for plotting).

fairly similar in how they transform the raw signal: the frequencies below 0.2 Hz are re-

moved in both examples, resulting in a signal that is centred about zero, with frequencies

above 15 Hz additionally removed in the band-pass filtered data. This is equivalent to

looking only at the size of acceleration over time (in this case in the x-axis) and remov-

ing the effect of gravity. Attenuating higher frequencies in the band-pass filtered signal

removes additional noise from the acceleration. In contrast, the low-pass filter smooths

over the signal by picking out only the low frequencies, leaving only the trend of the signal

remaining. This is equivalent to picking out the effect of gravity on each movement. Com-

paring the raw data to the filtered signals, the shape of the low-pass filtered signal has

been removed from the raw data to produce the band-pass and high-pass filtered signals

and it can be seen that superimposing the high-pass and low-pass filtered signals would

reconstruct the raw data.

The BFEN (band-pass filtered EN) algorithm, Algorithm 2.3, applies a band-pass

filter to the x-, y- and z-axis signals, computes the EN at each time point and then sums

the transformed data over a given epoch (one second). Similarly, the HFEN (high-pass

27



Chapter 2. Exploratory data analysis

Algorithm 2.3: BFEN algorithm

1. Apply band-pass filter, B, to raw accelerometer data in x, y and z directions:

B(x) = Bx; B(y) = By; B(z) = Bz;

2. Set n = number of observations per window;
3. for j = 1, . . . ,m, where m is the number of windows across the data set:
4. calculate the EN:

ej =
n∑
i=1

{√
B2
x,(j−1)n+i +B2

y,(j−1)n+i +B2
z,(j−1)n+i

}
.

5. end

Algorithm 2.4: HFEN algorithm

1. Apply high-pass filter, H, to raw accelerometer data in x, y and z directions:

H(x) = Hx; H(y) = Hy; H(z) = Hz;

2. Set n = number of observations per window;
3. for j = 1, . . . ,m, where m is the number of windows across the data set:
4. calculate the EN:

ej =
n∑
i=1

{√
H2
x,(j−1)n+i +H2

y,(j−1)n+i +H2
z,(j−1)n+i

}
.

5. end

filtered EN) algorithm, Algorithm 2.4, follows this process, too, but substitutes applying

a band-pass filter with applying a high-pass filter. Both algorithms result in activity data

sets that are positive-valued, Fig. 2.7 and Fig. 2.8. The resulting activity profiles have no

obvious differences, which suggests that, for this sample of data, there are not many higher

frequencies present that are skewing the overall activity profile. However, this might not

be the case for all patients’ accelerometer data, so use of the BFEN algorithm is preferred

over HFEN to avoid picking up extra noise when interpreting activity levels. There is

less distinction between the spikes in the activity profiles compared to the ENMO and

truncated ENMO profiles, making it harder to infer by eye different zones of activity.

The HFEN+ algorithm, Algorithm 2.5, incorporates adding together a low-pass filtered

signal and high-pass filtered signal then subtracting one at each time step. The low-pass

filtered x-, y- and z-axis signals (transformed using the EN) are shown in Fig. 2.9. This

signal is centred about one, which is equivalent to the effect of gravity when at rest, with

no rotational movement. After subtracting one from this signal, the observations are the
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Figure 2.7: Accelerometer data summarised using the BFEN algorithm, Algorithm 2.3.
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Figure 2.8: Accelerometer data summarised using the HFEN algorithm, Algorithm 2.4.
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Algorithm 2.5: HFEN+ algorithm

1. Apply low-pass filter, L, to raw accelerometer data in x, y and z directions:

L(x) = Lx; L(y) = Ly; L(z) = Lz;

2. Apply high-pass filter, H, to raw accelerometer data in x, y and z directions:

H(x) = Hx; H(y) = Hy; H(z) = Hz;

3. Set n = number of observations per window;
4. for j = 1, . . . ,m, where m is the number of windows across the data set:
5. calculate the EN for the low-pass and high-pass filtered data and minus 1:

ej =

n∑
i=1

{√
H2
x,(j−1)n+i +H2

y,(j−1)n+i +H2
z,(j−1)n+i+√

L2
x,(j−1)n+i + L2

y,(j−1)n+i + L2
z,(j−1)n+i − 1

}
.

6. end
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Figure 2.9: Accelerometer data summarised using a low-pass filter and EN.

parts of the acceleration that are caused by rotational movement, that might otherwise

have been attenuated by a pure high-pass filter. The HFEN+ algorithm can therefore be

thought of as a corrected version of the HFEN algorithm (van Hees et al., 2011).
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Figure 2.10: Accelerometer data summarised using the HFEN+ algorithm, Algorithm 2.5.

The activity profile produced by Algorithm 2.5 is shown in Fig. 2.10. This corrected

signal reintroduces negative values into the data set, which, when summarised over larger

epochs, would introduce the same concerns that are raised from Algorithm 2.1. Overall,

the activity profile is similar to the BFEN and HFEN algorithms, Fig. 2.7 and Fig. 2.8,

respectively, but the large spike in activity around 48:00 has been attenuated, suggesting

that part of this movement is rotational.

Step count algorithms

Here, two algorithms to infer a step count are considered. The second algorithm builds

on the first by adding constraints to the number of steps that can be detected.

Algorithm 2.6 outlines a simple step count. The raw accelerometer data are processed

using BFEN (Algorithm 2.3) without summing over an epoch (n = 1) and a step is counted

each time a negative slope in the signal crosses a threshold that is calculated dynamically,

every 0.5 seconds. The resulting step count profile is shown in Fig. 2.11. The profile is

very noisy and, contrary to the profiles generated from the EN algorithms discussed prior

to this, shows high levels of activity from 53:00 to 55:00. This is a side effect of using a

dynamic threshold; as the BFEN signal fluctuates slightly even when the patient is at rest

and the threshold for steps during these periods is low, the simple step count algorithm

will class each time the signal crosses the threshold as a step.
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Algorithm 2.6: Simple step count algorithm

1. Preprocess accelerometer data using BFEN (Algorithm 2.3) with n = 1 to get
e1, e2, e3, . . .;

2. for i = 1, . . . ,m, where m = number of windows across data set:
3. set counti = 0;
4. for j = 1, . . . , n′, where n′ = number of 0.5 second windows in i, let

c = (i− 1)n′ and l = number of observations in j:
5. calculate threshold

uj =
max{e(c+j−1)l+1:(c+j)l}+min{e(c+j−1)l+1:(c+j)l}

2
;

6. for k = 1, . . . , l:
7. if e(c+j−1)l+k < uj & e(c+j−1)l+k−1 > uj then counti = counti + 1;

8. end

9. end

10. end
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Figure 2.11: Accelerometer data summarised using the simple step count, Algorithm 2.6.
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Algorithm 2.7: Complete step count algorithm

1. Preprocess accelerometer data using BFEN (Algorithm 2.3) with n = 1 to get
e1, e2, e3, . . .;

2. Set q = 0;
3. for i = 1, . . . ,m, where m = number of windows across data set:
4. set counti = 0;
5. for j = 1, . . . , n′, where n′ = number of 0.5 second windows in i, let

c = (i− 1)n′ and l = number of observations in j:
6. calculate threshold

uj =
max{e(c+j−1)l+1:(c+j)l}+min{e(c+j−1)l+1:(c+j)l}

2
;

7. for k = 1, . . . , l:
8. if e(c+j−1)l+k < uj & e(c+j−1)l+k−1 > uj then q = q + 1;

pq = (c+ j − 1)l + k;

9. end

10. end

11. end
12. Calculate time difference between elements of p = (p1, . . . , pq) to get

d1, d2, . . . , dq−1;
13. Set s = 0;
14. for r = 1, . . . , q − 1:
15. if dr < 0.2 seconds | dr > 2 seconds then s = s+ 1; Ds = r;
16. end
17. for w = 2, . . . , s:

18. if Dw −Dw−1 ≥ 4 then let v = bpDw−1:Dw

n′l c and countv = countv + 1;
19. end

The complete step count algorithm, Algorithm 2.7, imposes the constraints on detect-

ing steps set out by Zhao (2010) to yield a more realistic step count profile: steps must

occur within 0.2 to two seconds of each other, as it is unrealistic for a person to run more

than five steps per second or walk less than one step every two seconds; and steps must

be part of a rhythmic pattern, so the count only begins once four steps have been taken

consecutively. The results of this more advanced algorithm are shown in Fig. 2.12. This

profile more closely resembles the activity profiles in Figs 2.7, 2.8 and 2.10, with a pro-

longed burst of activity up until 53:00, followed by more sparse bursts of lower intensity

activity. The complete step count algorithm picks up some additional steps in the parts

of the profile that appear flat in the EN and filtering algorithms, which suggests that even

with the constraints, sections of noise in the data that are periodic can still be mistaken

for activity. The output from Algorithm 2.7 still appears more plausible than the output

from Algorithm 2.6, however. In terms of number of steps, the output is also slightly more
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Figure 2.12: Accelerometer data summarised using the complete step count, Algorithm 2.7.

interpretable than the scale produced by the EN algorithms, as it is easier to visualise four

steps than it is to think of 0.8 as an amount of activity, for example.

Across all of the algorithms discussed in this section, excluding Algorithm 2.6, the

resulting activity profiles show clear periods of activity and inactivity and can be readily

interpreted. The purpose of transforming the accelerometer data is to quantify the amount

of activity patients are doing, so it can be used as a predictor of glucose levels. Each

activity summary has positive aspects: the ENMO and truncated ENMO data sets have

clear clusters of observations that suggest three clear activity zones; the BFEN, HFEN and

HFEN+ algorithms remove unwanted noise and trends from the data by including signal

filtering; and the complete step count data set is most easily interpreted. A selection of

activity summaries will therefore be assessed further in Chapter 4, to see which is best

for achieving the aims of the thesis: (i) the ENMO data are chosen as an example of a

data set that contains negative values; (ii) the BFEN data are chosen as a positive-valued,

filtered data set; (iii) the complete step count data are chosen for comparison as they are

discrete-valued.

2.4 Relationship between glucose and accelerometer data

The literature on the effect of activity on glucose levels unanimously reports that doing

some activity, in particular after meals and in regular short bouts throughout the day, has
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Figure 2.13: Correlation between glucose and lagged activity levels with 95% confidence interval
error bars (plotted at five minute intervals), described by BFEN (blue), ENMO (gold) and the
complete step count (red).

a positive impact on the time it takes for postprandial spikes in glucose levels to reduce

back to an acceptable level (Dunstan et al., 2012; Henson et al., 2016; McCarthy et al.,

2017). Observing this impact directly in patient glucose profiles is difficult. In a clinical

setting, the impact of activity on glucose levels can be measured more easily by varying

this between subjects whilst other influential factors, such as diet and meal times of each

subject, are controlled. In real life, data are unlabelled and the many other variables

affecting a person’s glucose levels are not controlled, which makes observing the impact of

activity on glucose levels challenging.

When plotting glucose levels against activity levels, a negative linear relationship is

expected: higher activity levels result in lower glucose levels. Intuitively, this relationship

is not expected to be observed immediately, since there will be a time lag between the

moment an activity is performed and the time it takes for the body to respond, resulting

in reduced glucose levels. As the glucose data and activity data sets have mismatched

frequencies, a spline is fitted to the glucose data so that a correlation can be directly

calculated, without reducing the frequency of the activity data. This is done via the

spline function in R, using the default "fmm" method.

The correlations between glucose levels and lagged activity levels for the three activity

summaries chosen to be analysed in the previous section are shown in Fig. 2.13. The
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Figure 2.14: Correlation between change in glucose levels and lagged activity levels with 95%
confidence interval error bars (plotted at five minute intervals), described by BFEN (blue), ENMO
(gold) and the complete step count (red).

number of correlations plotted has been thinned by five for clarity. The plot shows a pos-

itive relationship between glucose levels and lagged activity levels for all three summaries,

which after 1.5 hours steadily declines towards zero. There are two modes in the correla-

tion profiles for each summary, one at the five minute lag and one at the 1.5 hour lag. The

first mode is much more pronounced for the BFEN data and is where the strongest corre-

lation is, whilst the second increase in the correlation coefficient is similar across all three

data sets. The BFEN data consistently show a higher correlation with glucose levels for

all time lags than the ENMO and step count data, but none of the correlation coefficients

across the data sets are particularly strong. The positive relationship between glucose and

activity levels was also not expected and does not follow the results in the literature.

An alternative option for exploring the relationship between glucose levels and activity

levels is to instead look at the change in glucose against lagged activity, since higher activity

levels ultimately result in glucose levels declining. A negative linear relationship is again

expected. The results in Fig. 2.14 now show a negative relationship between lagged activity

levels and the change in glucose levels, but the correlations describing this are very small.

There are two main troughs in the correlation profiles across all of the activity summaries:

one around the 30 minute lag and one around two hours. This suggests that the dynamic

effect of activity on future changes in glucose levels may depend on the intensity of the
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activity being performed. A model that prescribes a linear relationship between glucose

and lagged activity, over a range of lags, is unlikely to capture this complex relationship.

Therefore, a flexible approach will be adopted, in which activity observations are first

classified into intensity zones. This is explored further in the joint modelling stages of this

thesis (Chapter 6).

2.5 Summary

In this chapter, an exploratory analysis of the glucose datasets of eight type II diabetic

patients and of a sample of accelerometer data was carried out.

The distribution of glucose observations for each patient was analysed and showed that

each profile could be described by a mixture of Normal distributions. Whilst some of the

glucose profiles suffered from missing data, it is assumed that these data are missing at

random due to the nature of the way the data are recorded: it is assumed that there is

no underlying cause for the patient being too far from the bluetooth device that would

receive the glucose observation.

Different pre-processing methods are explored for converting the raw tri-axial ac-

celerometer data into a univariate activity summary. These algorithms involved signal

filtering, the EN and computing step counts and reduced the 100 Hz data down to 1 Hz

by summing the processed signals over one second epochs. The activity summaries typi-

cally show positively skewed data with a long tail and the ENMO and HFEN+ summaries

contain negative observations. To assess how portable the models fitted in this thesis are,

three summaries are chosen for further analysis and model fitting: the ENMO, BFEN

and complete step count algorithms. ENMO provides an example of a dataset with neg-

ative observations and a very long tail, the BFEN algorithm is strictly positive, and the

complete step count algorithm is an example of a discrete data summary.

An initial investigation into the relationship between glucose and the three activity

summaries is also conducted. The correlation between glucose and each activity summary

is computed at different lags, as well as the correlation between the change in glucose

and lagged activity. These correlation profiles show that the relationship between these

two variables over time is non-linear and requires further analysis. Both figures (2.13 and

2.14, respectively) show a multimodal correlation profile for all three activity summaries,

suggesting there are different relationships between glucose and activity when activity is

performed at different intensities. The activity observations will therefore be classified

into intensity zones before further analysis is carried out.
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3.1 State space models

State space models offer a flexible framework for modelling time series. They can be

applied to data with irregular patterns and that lack stability in their underlying system,

as well as to univariate and multivariate time series. State space models also offer a natural

progression to including additional explanatory time series in the form of regression terms,

which can provide necessary knowledge to explain away non-stationarity, such as jumps

in the mean or non-constant variance. For background on state space models and their

applications to time series, see Doucet et al. (2001) and West & Harrison (2006).

Traditional time series models, such as autoregressive moving average (ARMA) models,

are fitted directly to observations, so there is no clean way to separate ‘signal’ from ‘noise’.

The models applied typically require stationarity in order to be easily fitted, which often

requires a transformation of the raw data set. This is straightforward when the data

have a regular pattern or trend, but becomes more difficult to achieve with more complex

data sets. State space models introduce a simple form of dependency structure; the

models consider an observed time series {Yt} as the output of a system of hidden states

{θt}, which form a Markov chain. Here {Yt} are considered to be univariate, though the

methods extend to multivariate time series. The Markovian dependency in the hidden

states means that θt depends only on θt−1, i.e. there is no additional information about θt

in θ1:t−2 and these states are conditionally independent given θt−1. Since the observations

θ0 θ1

Y1

θ2

Y2

. . . θt−1

Yt−1

θt

Yt

. . .

Figure 3.1: A DAG showing the dependency structure between the hidden states, {θt}, and obser-
vations, {Yt} in a state space model.
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are measurements of the states, Yt depends only on θt and is conditionally independent of

the previous observations Y1:t−1, given θt. The observations are, however, autocorrelated

marginally due to their dependence on the states.

The structure of a state space model is shown in Fig. 3.1 via a directed acyclic graph

(DAG). A DAG is a graphical representation of the relationship between variables. Each

variable is depicted as a node, and arrows between nodes indicate their conditional in-

dependence structure. The graph is said to be acyclic because there are no loops. As

a result, the conditional independence relationships defining a state space model can be

deduced from Fig. 3.1; for example, it is observed that Yt is conditionally independent of

(θ0:t−1, Y1:t−1) given θt, since to connect Yt with any Ys or θs, for some s < t, the path

must cross through θt. This results in ft(yt|θ0:t−1, y1:t−1) = ft(yt|θt). This illustration

relies on formal properties of graphical models that can be proved (Lauritzen, 1996).

A state space model can be defined more formally as consisting of a p-variate time

series {θt : t = 0, 1, . . .} and an m-variate time series {Yt : t = 1, 2, . . .}, satisfying the

assumptions:

A1 {θt} form a Markov chain.

A2 {Yt} are conditionally independent given the states {θt}.

These assumptions result in a model that is completely specified by its initial distri-

bution π(θ0) and conditional density or mass functions, gt(θt|θt−1) and ft(yt|θt), t ≥ 1. It

can therefore be written that, for any t > 0,

π(θ0:T , y1:T ) = π(θ0)
T∏
t=1

gt(θt|θt−1)ft(yt|θt). (3.1)

From Eq. (3.1) any other distribution of interest can be derived. The form of this joint

distribution means computations can be implemented by recursive algorithms, including

the problems of estimation and forecasting, presented in Section 3.2.3 (Petris et al., 2009,

Chapter 2). These algorithms are considered in the contexts of hidden Markov models

(HMMs) and DLMs in Sections 3.3.2 and 3.4.2.

3.1.1 Hidden Markov models

A HMM is a state space model in which the hidden states {Zt} are discrete-valued random

variables, i.e. Zt ∈ {z∗1 , . . . , z∗K} for K hidden states. Here θt = Zt to denote the discrete

state space. The sequence of hidden states is governed by K ×K transition matrices Πt,

analogous to the state transition kernel gt in a state space model where θt is continuous-

valued. In Πt, each element πt,i,j represents the probability of transitioning to state j

from state i at time t ≥ 1. Only time homogeneous HMMs are considered in this thesis,
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in which the transition probabilities Πt = Π and within-state (conditional) distributions

ft = f do not vary over time. The observed process {Yt} in a HMM can be discrete or

continuous-valued and can be univariate or multivariate.

HMMs facilitate conversations surrounding an observed sequence of events as well as

the hidden sequence of events associated with it. Inferring the hidden states of a time

series allows more information about the process to be gained. In essence, a HMM adds

labels to an otherwise unlabelled set of time ordered data.

As in general state space models, an initial distribution, here ν = (ν1, . . . , νK) where

νk = Pr(Z0 = k), over the states must be specified to start the chain. In the case of the

Markov chain being irreducible and aperiodic, a good selection for the initial distribution

is the stationary distribution of the chain, defined as the solution to the matrix equation

δΠ = δ, for row vector δ. The stationary distribution is also the distribution that the

Markov chain converges to, regardless of the initial state. A Markov chain is said to be

irreducible if each state can be reached from any other state in a finite number of steps,

i.e. for all i, j and finite h, Pr(Zt+h = j|Zt = i) > 0. A Markov chain is periodic if,

for any given state j, the chain returns to that state in a finite number of steps dj (or a

multiple of dj) after starting from it, i.e.

dj = gcd{h : Pr(Zt+h = j, Zt+h−1 6= j, . . . , Zt+1 6= j|Zt = j) > 1},

where gcd is the greatest common divisor. A Markov chain is then aperiodic if, for all

states, it is not periodic, i.e. for all j, dj = 1. For the purpose of this thesis, the initial

distribution is considered separately from the stationary distribution in the models. This

is justified since choosing the initial distribution to be equal to the stationary distribution

would prevent the selection of conjugate priors, thereby complicating computational in-

ference and, given a sufficiently long time series, the choice of initial distribution becomes

irrelevant.

Non-standard versions of HMMs allow for different orders of dependency in the hidden

states, where Zt depends on Zt−1:t−d and d 6= 1. A special case of this is when d = 0, so the

{Zt} are independent. This is known as a finite mixture model and is briefly considered

in Chapter 4. The discrete states of HMMs also allow for different families of within-state

distributions to be specified, i.e. a model can use different distributions for each hidden

state, as long as the within-state likelihood can be evaluated. Further information on

HMMs, including inference for and examples, see Frühwirth-Schnatter (2006) and Rabiner

(1989).
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3.1.2 Dynamic linear models

A DLM is a type of state space model in which the conditional dependence of Yt on θt

and θt on θt−1 is linear and the distributions, gt and ft, are Gaussian. Specifically, there is

a Gaussian prior distribution on the initial p-dimensional state vector, θ0, an observation

equation, Eq. (3.2), and a system (or state) equation, Eq. (3.3), for t ≥ 1:

θ0 ∼ Np(m0, C0),

Yt = Ftθt + vt, vt ∼ N(0, Vt), (3.2)

θt = Gtθt−1 + wt, wt ∼ Np(0,Wt). (3.3)

The observation and system equations show a linear relationship between the observa-

tions and the hidden states and between the hidden states themselves, via known coefficient

matrices Ft and Gt with dimensions 1 × p and p × p, respectively. The system of equa-

tions evolves at each time step with some added noise at both levels: {vt} and {wt}. The

observation noise and system noise are independent sequences of independent Gaussian

random errors, both with mean zero and known variance matrices Vt and Wt, respectively.

As the wt are independent and identically distributed (i.i.d.), the θt form a Markov chain.

Additionally, the initial state vector θ0 is independent of {vt} and {wt}. This specifies a

time-inhomogeneous model, though special time-homogeneous cases of DLMs will also be

considered, where Ft = F , Gt = G, Vt = V and Wt = W . A good introduction to DLMs

is provided by Petris et al. (2009).

Superposition of models

The Gaussian joint distribution for {(θt, Yt)} generated by a DLM results in analytical

solutions being available for the problems of estimation and forecasting via the Kalman

filter (see Section 3.4.2). The prerequisite for these problems is a completely specified

model, which can be difficult to achieve for complex data sets. The simplest approach to

take to overcome this difficulty is to combine separate DLMs into one, known as super-

position. As DLMs are, by definition, linear, models can be combined linearly, too. Each

individual model represents a different aspect of the desired time series, for example the

trend or seasonality, and are added together to construct a more complex overall model

for the time series. Given a univariate time series {Yt} decomposed into n > 1 indepen-

dent components, {Y1,t, . . . , Yn,t}, such that Yt is the sum of the individual observations,

Yt =
∑n

i=1 Yi,t, superposition of such components is as follows:

• the observation matrix, Ft and the state vector, θt, are the concatenation of the
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individual model observation matrices and distinct state vectors, respectively

Ft =
[
F1,t . . . Fn,t

]
, θt =

[
θ1,t . . . θn,t

]′
;

• the observation variance, Vt, is the sum of the individual variances

Vt =
n∑
i=1

Vi,t;

• the state matrix, Gt, and the system covariance matrix, Wt, are block diagonal

matrices, with the individual state matrices and system covariance matrices on the

diagonals

Gt =


G1,t 0 . . . 0

0 G2,t . . . 0
...

...
. . .

...

0 0 . . . Gn,t

 , Wt =


W1,t 0 . . . 0

0 W2,t . . . 0
...

...
. . .

...

0 0 . . . Wn,t

 .

3.1.3 Model specifications for DLMs

Here, the families of models used to describe different time series features are introduced.

More specifically, the structure of DLM components for modelling trend and seasonality

is outlined. The combination of such components results in the classical trend + seasonal

component + noise time series decomposition.

Trend models

The simplest and most common way of modelling the trend of a time series is by a

polynomial DLM. In practice, this model is very unstable for anything beyond locally-

linear, but is demonstrated here as it will be used within more complex DLMs. The general

form of a nth order polynomial model is represented in a n-dimensional state space with

time invariant coefficient matrices Ft = F and Gt = G and constant observation variance

Vt = V and system covariance Wt = W , of the forms

F =
[
1 0 . . . 0

]
, G =



1 1 0 . . . 0

0 1 1 . . . 0
...

...
...

. . .
...

0 . . . 0 1 1

0 0 . . . 0 1


, W =


W1 0 . . . 0

0 W2 . . . 0
...

...
. . .

...

0 0 . . . Wn

 .

Choosing a sufficiently large n for the order of a polynomial model can result in a
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model sensitive enough to forecast any reasonable trajectory. Typically though, the trend

of a model is a smoothed version of the overall time series, so smaller values for n are

usually chosen. Two examples are n = 1, known as a random walk with noise model, and

n = 2, known as a linear growth model.

The random walk with noise model, also known as a local level model, is the simplest

form of DLM and is used when data have no clear trend. In this model the states are

taken to be the mean at time t, θt = µt, and F = G = 1, with dimensions m = p = 1:

Yt = µt + vt, vt ∼ N(0, V ),

µt = µt−1 + wt, wt ∼ N(0,W ).

The observations {Yt} are modelled as noisy observations of the local mean level, whilst

the random walk for µt is also subjected to noise, resulting in a non-stationary trend.

Allowing W = 0 results in a stationary, constant mean model. Forecasts from this model

at time t are constant, equal to the mean mt = E(µt|y1:t) at time t for any k-step-ahead

forecast, i.e. ft(k) = E(Yt+k|y1:t) = mt.

The linear growth model builds on the local level model by adding a time-varying slope

βt to the random walk on θt = (µt, βt)
′:

Yt = µt + vt, vt ∼ N(0, V ),

µt = µt−1 + βt−1 + w1,t, w1,t ∼ N(0, σµ),

βt = βt−1 + w2,t, w2,t ∼ N(0, σβ).

The model assumes that µt increases linearly in time and so offers a more flexible forecast

than a random walk plus noise model alone. The forecasts at time t reflect the current

mean level m1,t = E(µt|y1:t) plus k times the current slope m2,t = E(βt|y1:t) in a k-step-

ahead forecast, i.e. ft(k) = m1,t + km2,t.

Seasonal models

Seasonal models are important in capturing the repeated, cyclical behaviour in a time

series. Two ways to do this are via a seasonal factor model or a Fourier form seasonal

model.

Consider a completely seasonal time series {Yt} with period s. Each observation can

be thought of as the mean for the corresponding time interval across each period, αi, for

i = 1, . . . , s, plus some noise. A seasonal factor model uses this idea, setting θt equal

to some permutation of the αi in a s-dimensional space. This configuration is fine for

data with few observations per period, for example quarterly data with a yearly pattern

where s = 4, however the number of parameters in the model increases quadratically with
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s and so estimation and forecasting becomes computationally intensive when s is large,

particularly when parameters are unknown.

A Fourier form seasonal model offers an alternative method of capturing seasonality,

with a reduced parameter space. Instead of using s seasonal effects, the model approxi-

mates the period of a time series with a number of harmonics, q ≤ s/2. The number of

harmonics chosen determines the smoothness of the seasonal cycle, ranging from smoothest

using just a few harmonics to roughest when q = bs/2c, where b·c denotes the floor func-

tion; choosing q = 0 recovers a constant function. This introduces the notion that a time

series with large s can be modelled with as little as 1 harmonic, offering a more parsimo-

nious solution to capturing the periodicity in a time series by vastly reducing the size of

the parameter space needed to do so.

In a Fourier form seasonal model with q harmonics, the evolution matrix for the jth

harmonic is

Hj =

[
cosωj sinωj

− sinωj cosωj

]
,

given the set of Fourier frequencies ωj = 2πj
s . The corresponding observation matrix is

Fj =
[
1 0

]
. The entire seasonal model has system and observation matrices

G = blockdiag(H1, . . . ,Hq) and F =
[
1 0 1 . . . 0

]
,

resulting in a (2 × q)-dimensional state space. In the special case where s is odd and a

saturated seasonal model is required, Hq+1 = 1 and Fq+1 = 1 are added.

3.1.4 Autoregressive models of order p

ARMA models are some of the most commonly used time series models, popularised by

Box & Jenkins (1976). A non-standard use of ARMA models is in describing the hidden

states in a state space model. In this section, ARMA models are introduced in generality

and then more specifically in relation to DLMs.

A univariate ARMA(p, q) model can be written:

Yt = µ+

p∑
j=1

φj(Yt−j − µ) +

q∑
j=1

ψjεt−j + εt, εt ∼ N(0, σ2), (3.4)

for some p, q ∈ Z∗, where Z∗ is the set of positive integers, including zero. The AR order

of the model determines the order of Markov dependence between the current observation

at time t and the observations prior to it, denoted by p. The moving average (MA) order

of the model determines the order of Markov dependence between the error at each time

step and previous observation errors, denoted by q. When using ARMA models, the
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process {Yt} is generally assumed to be stationary: having constant mean and variance.1

Differences can be applied to series that appear to be non-stationary; this yields ARIMA

models, where the order, d, of I determines the number of differences required to make

the series stationary. An ARMA model is then fitted to the differenced data. In classical

time series analysis, the order of p and q are determined by looking at the autocorrelation

and partial autocorrelation plots of the data, or via selection criterion such as the BIC or

AIC.

ARMA models are special cases of state space models and can be written in the form

of DLMs. For the purpose of the thesis, only the DLM representation of an AR(p) is

presented, which is equivalent to an ARMA(p, q = 0) model. The extension to a full

ARMA(p, q) model can be found in (Petris et al., 2009, Chapter 3).

Consider a stationary AR(p) model with zero mean: Eq. (3.4), with ψj = 0 for all

j = 1, . . . , q and µ = 0. This is a DLM with V = 0 and W = diag(σ2, 0, . . . , 0), with

observation and system matrices

F =
[
1 0 . . . 0

]
, G =


φ1 1 0 . . . 0

φ2 0 1 . . . 0
...

...
...

. . .
...

φp 0 0 . . . 0

 .

Defining the state vector θt = (θ1,t, . . . , θp,t)
′, the observation equation results in yt = θ1,t.

Recursively substituting the equations for θ2,t, . . . , θp,t recovers the equation for an AR(p)

model. A non-zero, constant mean can be incorporated into the model by adding a local

level component to the model with V = 0. This can be extended to models with non-

stationary means by allowing V to be non-zero. Choosing a non-zero V in a DLM ARMA

representation results in a DLM with an ARMA hidden layer.

One benefit of representing an ARMA model as a DLM and using this as a component

in a bigger model is that the presence of an ARMA component can be used to explain

residual autocorrelation in the data that is not explained by the seasonal or trend com-

ponent. The overall model for non-stationary data is also more interpretable, thinking in

terms of a trend plus seasonal component driving the process, as opposed to differencing

data to achieve stationarity before fitting an ARMA(p, q).

Stationary region of an AR(p) model

A time series {yt} is said to be (weakly) stationary if its mean remains constant over

time and its autocovariance function Γi = Cov(yt, yt+i) depends only on the lag i, for

i = 0, 1, . . .. Assuming stationarity of a process prevents the predictive variance from

1The stationary variance will be a complicated function of the other parameters, e.g. σ2

1−φ2 for AR(1)
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growing without bound, which is often a reasonable assumption to make and is particularly

useful when forecasting far into the future.

The characteristic polynomial of a process is defined as Φ(B) = 1−∑p
j=1 φjB

j , where

B is the backward shift operator Byt = yt−1. When the modulus of the reciprocal roots

of the characteristic polynomial is less than one, |αi| < 1, i = 1, . . . , p, the process is

stationary. For models of order p = 1 and p = 2, the stationary region is simple to define.

For models of order p ≥ 3, however, the order of the characteristic polynomial increases

and the geometry of the stationary region becomes more difficult to define. This makes it

increasingly difficult to specify suitable priors for such regions.

A simpler option for restricting the coefficients of an AR(p) model to the stationary

region is to reparametrise them in terms of the model partial autocorrelations. The lag

p partial autocorrelation is the correlation at lag p after adjusting for the intervening

values, i.e. it is the correlation between the residuals produced when fitting a linear model

between the observation at time t and the intervening values from t− 1, . . . , t− p+ 1, and

the residuals when fitting the model between the observation at lag t − p instead. The

stationary region of an AR(p) is defined when the modulus of the partial autocorrelations,

ρi for i = 1, . . . , p, is less than one. The AR coefficients can be expressed in terms of the

partial autocorrelations (Congdon, 2007):

φ
(p)
i =

{
ρi if i = p,

φ
(p−1)
i − ρpφ(p−1)p−i if i = 1, . . . , p− 1.

(3.5)

Here φ
(p)
i refers to the ith coefficient in an AR(p) model. This representation allows for

the coefficients to be easily restricted to the stationary region by imposing the simple

constraint |ρi| < 1 for i = 1, . . . , p.

3.1.5 Dynamic linear regression

State space models offer a natural progression to include explanatory variables in a model.

Specifically, incorporating regression components into a DLM is easily done and is looked

at here.

Consider the response variable Yt to a set of non-stochastic explanatory variables

x1,t, . . . , xp,t over time, where t ≥ 1. A dynamic linear regression is defined by the model

Yt = β1,t + β2,tx1,t + . . .+ βp+1,txp,t + εt, εt ∼ N(0, σ2),

for i.i.d. errors εt. Here, the temporal evolution of the regression coefficients is mod-

elled, introducing a flexible framework for the dependence of the response {Yt} on the

explanatory variables to change over time. The DLM is described by the state vec-
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tor, θt = (β1,t, . . . , βp+1,t)
′, a time dependent observation matrix Ft = (1, x1,t, . . . , xp,t),

that includes the value of the explanatory variables at time t and observation variance

V = σ2. The evolution matrix Gt can be taken as the identity matrix and Wt =

diag(w1,t, . . . , wp+1,t), where w1,t, . . . , wp+1,t are independent variances of the regression

coefficients. A standard (static) regression model is recovered by setting Wt = 0 for all t.

Working examples on the superposition of the components mentioned in this chapter

are found in Chapter 5 and Chapter 6, where such DLMs are applied to the glucose data

sets.

3.2 Bayesian inference

When drawing inferences about an event with uncertain outcome or a quantity with un-

certain value, the information available is never perfect. A data set is limited to the

number of samples collected on a subset of variables available, all of which are subject to

measurement error, meaning there is always a margin of uncertainty about a phenomenon

that cannot be controlled. Classical (frequentist) statistics draws conclusions purely from

the data available, for example via the theory of hypothesis testing, whereas Bayesian

statistics incorporates quantifying the uncertainty surrounding the event or quantity into

the conclusions drawn using probability. The models in this thesis are fitted in a Bayesian

framework, with the exception of the models in Chapter 7 that use frequentist methods.

Further references on Bayesian statistics are Berger et al. (1994) and Bernardo & Smith

(2009).

In Bayesian statistics, the probability describing the initial uncertainty attached to

an event or quantity is incorporated into the analysis through prior information. Before

collecting data, the researcher formulates beliefs about the unknown event or quantity

(these beliefs can differ between researchers and are therefore subjective) and assigns

them prior probabilities or prior probability distributions, respectively. These priors are

subsequently updated in light of the data using the likelihood, resulting in a posterior

probability for the uncertain event or a posterior distribution for the unknown quantity.

This process of learning is formulated by calculating conditional probabilities via Bayes’

Theorem. Bayes’ Theorem for uncertain events is presented in Theorem 3.1.

Theorem 3.1 (Bayes’ Theorem). Given two events, A and B, the law of conditional prob-

ability states that the joint probability is Pr(A ∩B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A).

It follows that

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
.

The research presented in this thesis uses Bayesian inference to fit parametric models,

primarily HMMs and DLMs as presented so far in this chapter. Generalising Theorem 3.1
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in the context of Bayesian parametric modelling, unknown quantities (parameters) are

in place of event A and additional experimental information (data) is in place of event

B. Formally, let ψ = (ψ1, . . . , ψp) be a set of unknown continuous parameters, with prior

distribution summarised by the density π(ψ). Information from the data y = (y1, . . . , yn) is

contained in the likelihood L(ψ|y) = p(y|ψ), which is the joint density (or mass function for

discrete y) of the data given the unknown quantities ψ. The data, y, are univariate here but

can also be multivariate (yt = y
t
). The posterior density π(ψ|y) contains the information

from the prior, updated by the likelihood, and is computed using a generalisation of Bayes’

Theorem called Bayes’ formula:

π(ψ|y) =
p(y|ψ)π(ψ)

p(y)
,

where p(y) =
∫
p(y|ψ)π(ψ)dψ is the marginal distribution of y. When ψ is discrete,

the posterior mass function is computed from the prior mass function and the marginal

distribution is described by the sum p(y) =
∑

ψ π(ψ)p(y|ψ). In both cases, the marginal

distribution is a normalising constant to ensure the posterior density integrates (or sums)

to one, so the posterior density can more simply be written

π(ψ|y) ∝ π(ψ)p(y|ψ).

To compute the posterior density, the form of the prior distribution and of the likeli-

hood must first be decided; the chosen forms are specific to the modelling scenario pre-

sented. The form of the likelihood describing the data-generating process is usually dic-

tated by the problem that is being addressed. The choice of prior distribution is often less

obvious and more than one distribution can be suitable. Where available, the prior can

be chosen so that it has the same functional form as the likelihood, known as conjugacy,

which results in a closed form posterior distribution. The use of conjugacy can make

analytical and computational inference simpler. An example of a conjugate family, and

the main group of conjugate distributions that will be used in this thesis, is the exponen-

tial family. All of the distributions within the exponential family have conjugate priors;

these distributions include, but are not limited to, the Normal and multivariate Normal,

Gamma, Beta and Binomial distributions.

The parameters that specify the prior distribution are known as hyperparameters.

Like the form of the prior, the hyperparameter values should be chosen to reflect the

researcher’s beliefs about the parameter and the level of certainty about those beliefs. As

the choice of hyperparameters is subjective, the posterior distribution can look different

depending on their values, especially when there are few data available. The posterior

is less sensitive to perturbations in the prior hyperparameters when it is paired with
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a data-rich likelihood. It is often beneficial to reparametrise the prior distribution by

specifying the hyperparameters in terms of more interpretable statistics, such as the mean

and variance or coefficient of variation. Examples of this are carried out in Chapter 6

using the Gamma density.

3.2.1 Markov chain Monte Carlo methods

Often in Bayesian inference, the posterior distribution of the parameters of interest is

analytically intractable and it is not possible to find closed form solutions for the mean

and variance of the posterior distribution or the marginal distribution of the parameters.

In such cases, simulation-based methods can be used to approximate the posterior distri-

bution, one of which is the Markov chain Monte Carlo (MCMC) method (Brooks et al.,

2011; Gamerman & Lopes, 2006).

MCMC is a widely used technique that involves generating samples from a Markov

chain, with analytically tractable transition probabilities, whose stationary distribution is

the target posterior distribution (also known as the target distribution). The nature of

MCMC means that as long as the number of iterations, N , is large enough, the draws

will eventually constitute a sample from the posterior distribution from any supporting

starting point. The chain is then said to have converged to its stationary distribution.

The period of initial iterations before convergence is achieved is often referred to as burn

in and must be discarded. As the samples are autocorrelated (by construction), the

information content of N MCMC samples is typically less than the information content of

N independent samples. Mixing refers to the rate of posterior exploration. For example,

if samples are highly autocorrelated and exploration is slow, the chain is said to be mixing

poorly. Diagnostics for convergence and mixing are considered later in this section, after

considering two widely used MCMC algorithms.

Gibbs sampling algorithm

Where conjugacy is available, the full conditional distributions for a set of parameters can

be easily derived. These are the conditional posteriors for each parameter or parameter

block given all the other unknowns. In such cases, the Gibbs sampling algorithm samples

directly from the full conditional distributions. This method is described in Algorithm 3.1;

for a multidimensional parameter, ψ = (ψ1, . . . , ψp), with target density π(ψ|y), the Gibbs

sampler sets arbitrary initial values from the parameter space ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
p ) and

then updates these values one at a time by drawing ψ(i)|ψ(i−1), for i = 1, . . . , N , from the

relevant conditional distributions. This extends to elements that are multidimensional by

drawing several values at once from the multivariate conditional distribution, known as

block updating.
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Algorithm 3.1: Gibbs sampler

1. Initialise ψ(0) = (ψ
(0)
1 , . . . , ψ

(0)
p );

2. for j = 1, . . . , N :

3. generate ψ
(j)
1 from π(ψ1|ψ2 = ψ

(j−1)
2 , . . . , ψp = ψ

(j−1)
p );

4. generate ψ
(j)
2 from π(ψ2|ψ1 = ψ

(j)
1 , ψ3 = ψ

(j−1)
3 , . . . , ψp = ψ

(j−1)
p );

5.
...

6. generate ψ
(j)
p from π(ψk|ψ1 = ψ

(j)
1 , . . . , ψp−1 = ψ

(j)
p−1)

7. end

Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a more flexible Markov chain generating

method that generates a proposal for the next state of the chain from an arbitrary proposal

distribution when the target distribution cannot be sampled from directly. There is then

a correction step in which the proposal can be rejected if it moves the chain to a region

of lower posterior density. Algorithm 3.2 describes the MH process for a parameter ψ;

a sample update ψ̃ is proposed from an arbitrary transition kernel q(ψ, ψ̃) (the proposal

distribution), that specifies the probability of moving from ψ to ψ̃. The proposed value of

the chain ψ̃ is accepted with probability

A(ψ, ψ̃) = min

{
1,
π(ψ̃|y)q(ψ̃, ψ)

π(ψ|y)q(ψ, ψ̃)

}
. (3.6)

If the value is rejected, the chain stays in the current state. This process of sampling

results in a Markov chain with stationary distribution equal to the target distribution.

Algorithm 3.2: Metropolis-Hastings algorithm

1. Initialise ψ(0);
2. for j = 1, . . . , N :

3. generate ψ̃ from q(ψ(j−1), ψ̃);

4. compute A = A(ψ(j−1), ψ̃) according to the acceptance probability in (3.6);
5. generate an independent random variable u ∼ U(0, 1);

6. if u ≤ A then set ψ(j) = ψ̃ else set ψ(j) = ψ(j−1);

7. end

The proposal distribution features tuning parameter(s) λ, the values of which are

chosen to influence the rate at which proposed parameters are accepted. A proposal with

a high rejection rate will result in a ‘sticky’ Markov chain where the state will be constant

for many iterations. A high acceptance rate means the chain will move very slowly through

the state space due to the high positive autocorrelation, meaning a very large number of
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iterations, N , is necessary to achieve convergence and a representative sample from the

posterior once convergence is achieved. When the parameter space is large, a satisfactory

acceptance rate becomes more difficult to achieve for all of the parameters simultaneously.

In the case where the proposal distribution is symmetric about the current value of

the chain, the ratio of the proposal distribution evaluated at the previous and proposed

values of the chain cancels in the acceptance probability, so Eq. (3.6) simplifies to

A(ψ, ψ̃) = min

{
1,
π(ψ̃|y)

π(ψ|y)

}
.

Whilst the normalising constant p(y) is often unknown when the posterior distribution is

intractable, the MH algorithm can still be applied since this constant also cancels in the

ratio π(ψ̃|y)/π(ψ|y).

For a multidimensional parameter space, the MH algorithm can be embedded within

Gibbs, sampling parameters one at a time from their full conditional distributions, either

directly, if a closed form is available, or indirectly using a MH step. This is known as

Metropolis within Gibbs. The Gibbs sampling algorithm can be thought of as a special

case of the Metropolis within Gibbs algorithm, where the proposal distribution is specified

by the full conditional distribution and the acceptance probability, A, is always one. In

general, the Metropolis within Gibbs algorithm is more flexible as it is not constrained

to conjugate prior distributions, but is more difficult to tune in higher dimensions. This

method, as well as the two algorithms separately, is used throughout the model fitting

stages of this thesis.

Diagnosing convergence and assessing mixing

When an MCMC algorithm runs for a sufficient number of iterations, the samples gen-

erated approximately resemble samples from the target distribution. The resulting chain

must be checked to ensure that it has converged and that it is mixing well. This can easily

be done manually, by looking at diagnostic plots.

The first problem of convergence can be diagnosed by looking at the trace plot of the

chain. As mentioned when introducing MCMC methods, the ‘burn in’ samples before the

chain has converged must be discarded. The remaining samples should appear stationary,

exploring the sample space about the mode. If a parameter is multimodal, the trace plot

may switch between the different modes. This highlights the importance of running the

algorithm for long enough that the whole parameter space is explored.

Mixing is assessed by calculating the ACF of the chain. A poorly mixing chain will have

strong correlation between samples, which means the chain will take longer to explore the

full parameter space. Sometimes, to reduce computational storage overheads, the MCMC
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output is thinned, retaining only every nth iteration. This can also make it easier to judge

whether the chain has converged. Plotting the ACF against lag, if the autocorrelations

decay to zero quickly as the lag increases, the chain can be said to be mixing well. The

output from a chain that has converged but has poor mixing can be valid so long as the

algorithm has been run for long enough.

3.2.2 Parameter inference

A state space model has three components: an observed process {Yt}, a latent process {θt}
and the model parameters, ψ. In addition to the latent process, in a Bayesian setting the

model parameters are also treated as unknown random variables. Computational inference

can easily be done using the MCMC methods described in Section 3.2.1. To implement

such sampling methods efficiently, the full conditional distributions of the unknown param-

eters must be derived, which primarily involves understanding the dependency structures

between the individual parameters and how they interact with the rest of the model they

are describing.

The assumptions of the state space model processes (A1 and A2, Section 3.1) are

assumed to hold conditionally on the model parameters. Using Eq. (3.1), the joint density

of the observations, latent process and model parameters is given by

(Y1, . . . , YT , θ0, . . . , θT , ψ) ∼ π(θ0|ψ)π(ψ)
T∏
t=1

ft(yt|θt, ψ)gt(θt|θt−1, ψ).

Here, π(ψ) is the joint prior of the parameters. The model parameters can be further

separated into two groups: the parameters associated with the latent process, ψ
hid

, and

those related to the observation layer, ψ
obs

. Taking the parameter dependencies of the

observations and the states into consideration, given the model assumptions, the joint

distribution is written:

(Y1, . . . , YT , θ0, . . . , θT , ψ) ∼ π(θ0|ψhid)π(ψ
obs

)π(ψ
hid

)
T∏
t=1

ft(yt|θt, ψobs)gt(θt|θt−1, ψhid).

(3.7)

All of the marginal posterior distributions of the quantities of interest, i.e. the latent

process and the unknown parameters, can be derived from Eq. (3.7).

The general results for the static parameter inference specific to HMMs and DLMs are

provided in Sections 3.3.1 and 3.4.1.

3.2.3 State inference

One of the main problems of interest in time series analysis is predicting future obser-

vations. The latent process of a state space model drives the observations, so learning
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about this process is key to forecasting the time series. Inferring the unobserved states

and predicting future values of the observed data are addressed through state estimation

and forecasting by calculating the relevant conditional distributions. The methods in this

section are presented for univariate, continuous-valued states and univariate observations

for simplified notation, but are easily extended for multivariate cases. There are also

analogous algorithms for HMMs where the states are categorical.

Consider the conditional distribution π(θs|y1:t) of the underlying states given the ob-

served process at some time s. Notationally, the dependence on the model parameters

ψ has been dropped in this section. Computing this conditional distribution is known

as filtering when s = t, smoothing when s < t and forecasting when s > t. The recur-

sive nature of state space models and the sequential nature of time series data can be

exploited to make writing the filtering, smoothing and forecasting recursions simple. The

following demonstrates how this is achieved by marginalising over the joint density of the

observations and hidden states in a state space model, Eq. (3.1).

Filtering

Filtering is based on data arriving sequentially, as is usually the case in time series sce-

narios. As a result, this process is also known as forward filtering, in reference to moving

forward in time. Using the data that are available up to time t − 1, the one-step-ahead

predictions for θt and yt can be calculated, then an update step is performed as a new ob-

servation arrives to get π(θt|y1:t). The online calculations take advantage of the conditional

independence properties of state space models and the steps are shown below.

1. Prediction:

(a) calculate the one-step-ahead predictive density of the states given the data up

to time t− 1:

π(θt|y1:t−1) =

∫
π(θt, θt−1|y1:t−1)dθt−1,

=

∫
gt(θt|θt−1, y1:t−1)π(θt−1|y1:t−1)dθt−1

=

∫
gt(θt|θt−1)π(θt−1|y1:t−1)dθt−1;

(b) calculate the one-step-ahead predictive density of the observations using the

predictive density calculated in step 1a:

π(yt|y1:t−1) =

∫
π(yt, θt|y1:t−1)dθt,

=

∫
ft(yt|θt, y1:t−1)π(θt|y1:t−1)dθt
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=

∫
ft(yt|θt)π(θt|y1:t−1)dθt.

2. Updating: calculation of the filtering density is carried out by combining the pre-

dictive densities in step 1 via Bayes’ Theorem:

π(θt|y1:t) =
π(θt|y1:t−1)ft(yt|θt, y1:t−1)

π(yt|y1:t−1)
,

=
π(θt|y1:t−1)ft(yt|θt)

π(yt|y1:t−1)
.

Forecasting

It follows naturally from filtering, which involves computing the one-step-ahead predictive

densities for both the states and the observations, that predictions further ahead in time

might be of interest; time series applications are often concerned with the prediction of

future values of a phenomenon. The k-step-ahead prediction of the observation or state

layer, for k > 0, can easily be computed by recursively computing the one-step-ahead

predictive densities.

The k-step-ahead forecast for the states builds on the one-step-ahead prediction in

step 1a above, taking advantage of the conditional independence properties of the states

and observations:

π(θt+k|y1:t) =

∫
π(θt+k, θt+k−1|y1:t)dθt+k−1,

=

∫
gt+k(θt+k|θt+k−1, y1:t)π(θt+k−1|y1:t)dθt+k−1,

=

∫
gt+k(θt+k|θt+k−1)π(θt+k−1|y1:t)dθt+k−1.

It follows, in the same pattern that the one-step-ahead observations follow, that the k-

step-ahead predictions for the observations are also based on the conditional independence

properties and are computed using the k-step-ahead prediction of the states:

π(yt+k|y1:t) =

∫
π(yt+k, θt+k|y1:t)dθt+k,

=

∫
ft+k(yt+k|θt+k, y1:t)π(θt+k|y1:t)dθt+k,

=

∫
ft+k(yt+k|θt+k)π(θt+k|y1:t)dθt+k.

The forecasting recursions show that all of the information about the system up to

time t is contained in the conditional density π(θt|y1:t). This density can be thought of as

the initial distribution of a state space model that specifies the joint distribution between

the current and future values of the states and the future values of the observations, with
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conditional distributions gt+k(θt+k|θt+k−1) and ft+k(yt+k|θt+k). The initial distribution

determines the future evolution of the model.

Smoothing

When a time series has been observed for some t = 1, . . . , T , it can be of interest to

retrospectively learn about the state of the underlying system that drove such observations.

This practice is known as smoothing. Like filtering and forecasting, smoothing is performed

recursively, but moving backwards from time T . The smoothing recursion can be broken

down into two steps: calculating the (backward) transition probabilities π(θt|θt+1, y1:T )

and then calculating the smoothing distribution π(θt|y1:T ).

1. The backward transition probabilities are calculated using the conditional indepen-

dence properties of state space models and Bayes’ formula:

π(θt|θt+1, y1:T ) = π(θt|θt+1, y1:t),

=
π(θt|y1:t)gt+1(θt+1|θt, y1:t)

π(θt+1|y1:t)
,

=
π(θt|y1:t)gt+1(θt+1|θt)

π(θt+1|y1:t)
.

2. The conditional distribution of θt given y1:T is computed as a marginal distribution

of π(θt, θt+1|y1:T ), substituting in the transition probabilities in step 1:

π(θt|y1:T ) =

∫
π(θt, θt+1|y1:T )dθt+1,

=

∫
π(θt+1|y1:T )π(θt|θt+1, y1:T )dθt+1,

=

∫
π(θt+1|y1:T )

π(θt|y1:t)gt+1(θt+1|θt)
π(θt+1|y1:t)

dθt+1,

= π(θt|y1:t)
∫
π(θt+1|y1:T )

gt+1(θt+1|θt)
π(θt+1|y1:t)

dθt+1.

Whilst writing the filtering, smoothing and forecasting recursions is simple, computa-

tion of the relevant conditional distributions can be very challenging. Sections 3.3.2 and

3.4.2 show how these problems simplify in the cases of HMMs and DLMs.

3.2.4 Inference for missing data

It is common for missing observations to occur in the data collection process of real-world

applications. Such missed observations can occur due to the observation not existing, such

as when a process does not occur at a particular time point, or because of a recording

error, such as when a sensor is out of range or if the battery dies and the observation
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cannot be noted. The missing observations are usually recorded in a time series as NA.

Assuming these data are missing at random, missing observations can be easily handled

by state space models.

Consider the case where the univariate observation yt = NA. In this case, the filtering

density π(θt|y1:t) = π(θt|y1:t−1), since no information is carried by the current observation.

The filtering density is therefore simply equal to the one-step-ahead predictive density at

time t − 1. This is equivalent to constructing the joint distribution between the missing

data, parameters and other unknowns and integrating out the missing observations.

As missing observations are accounted for in the filtering recursion, the smoothing

recursion remains the same. This is because the smoothing recursion only depends on the

data through the filtering and one-step-ahead predictions.

3.2.5 Data augmentation

When fitting state space models, it is often of interest to reconstruct the latent process

up to time T and to learn the model parameters. It can be difficult or impossible (for

some state space models) to sample directly from the posterior parameter distribution

π(ψ|y1:T ). Data augmentation involves expanding the state space of the MCMC sampler

to include the states θ0:T so that the resulting target density is

π(θ0:T , ψ|y1:T ) = π(θ0:T |ψ, y1:T )π(ψ|y1:T ),

which can be sampled easily using the framework of Gibbs sampling, due to the conditional

dependency assumptions of state space models (Albert & Chib, 1993; Frühwirth-Schnatter,

1994b).

The Gibbs sampler alternates drawing θ0:T from π(θ0:T |ψ, y1:T ) and drawing ψ from

π(ψ|θ0:T , y1:T ). Simulating the parameter vector from the relevant full conditional distri-

butions is specific to the problem, but general algorithms to simulate the state vector are

available. The smoothing recursion in Section 3.2.3 provides an algorithm for sampling

from the posterior of the state vectors given the data up to time T and the parameters, ψ.

The density of the states at time T , π(θT |ψ, y1:T ) is equivalent to the filtering density at

time T . The Gibbs sampler therefore requires running the filtering recursion up to time

T in a forward sweep so a value for θT can be generated, followed by implementing the

smoothing recursion to sample the states at times T−1, . . . , 0. This method of sampling is

known as forward filtering backward sampling (Carter & Kohn, 1994; Frühwirth-Schnatter,

1994a) and its implementation specific to HMMs and DLMs is described in Sections 3.3.2

and 3.4.2, respectively. Forward filtering backward sampling allows the states to be up-

dated in a single block, as opposed to one at a time which can lead to poor convergence.
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3.3 Inference for HMMs

Inference for HMMs typically involves learning about the sequence of hidden states, {Zt},
that drive an observed process, {Yt}, and learning about the model parameters, such as the

transition probabilities and the parameters of the within-state distributions. The HMMs

fitted in Chapter 4 are an example of such inference, where the most likely sequence of

underlying zones of activity that explain the activity data are learned, as well as the

distributions of the model parameters. This section details the methods used to fit such

HMMs, culminating in an algorithm to implement the methods.

3.3.1 Parameter inference

The complete data posterior for a HMM with discrete states, z, is written

π(ψ|z, y) ∝ p(y, z|ψ)π(ψ).

The joint prior over the parameter vector factorises into the product of the prior for ψ
obs

and the prior for ψ
hid

. Because of the structure of the joint density in Eq. (3.7), when the

prior can be factorised in this way, the posterior can too, so the complete data posterior

is the product of two components:

π(ψ|z, y) = π(ψ
obs
|z, y)π(ψ

hid
|z),

with

π(ψ
obs
|z, y) ∝ p(y|z, ψ

obs
)π(ψ

obs
),

π(ψ
hid
|z) ∝ p(z|ψ

hid
)π(ψ

hid
).

The parameters associated with the observed and hidden processes of a HMM with

K hidden states are ψ
obs

= (ψ
obs,1

, . . . , ψ
obs,K

) and ψ
hid

= (ν,Π), where ψ
obs,k

are the

within-state parameters for state k, ν is the initial distribution over the states and Π is

the transition matrix. When learning about the parameters in one state ψ
obs,k

would not

change the beliefs about any of the others, it is fair to assume that ψ
obs,1

, . . . , ψ
obs,K

are

independent a priori. Likewise for the hidden process parameters, for example, the rows

of the transition matrix, πk, are regarded as independent a priori. Altogether, the joint

prior factorises into:

π(ψ) = π(ψ
hid

)π(ψ
obs

),

= π(ν)
K∏
k=1

π(πk)π(ψ
obs,k

).
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The density of the complete data likelihood p(y|z, ψ
obs

) depends on the chosen within-

state distributions, but under assumption A2,

p(y|z, ψ
obs

) =

T∏
t=1

p(yt|zt, ψobs),

=

K∏
k=1

∏
t:zt=k

p(yt|ψobs,k). (3.8)

Under assumption A1, the probability mass function p(z|ψ
hid

) is simply the product

of the relevant probabilities in the initial distribution and transition matrix for each time

point:

p(z|ψ
hid

) = Pr(Z0 = z0|ν)

T∏
t=1

Pr(Zt = zt|Zt−1 = zt−1, Π),

= νz0

T∏
t=1

πzt,zt−1 .

The overall form of π(ψ
obs
|z, y) is problem specific and is therefore discussed alongside

the models in Chapter 4. The form of π(ψ
hid
|z), however, can be determined given the

choice of a prior for the hidden state parameters. A Dirichlet prior is chosen for the rows

of the transition matrix and the initial distribution.

The Dirichlet distribution is parametrised by a vector α of positive real values. Draws

from the distribution are vectors of the same length as α that sum to one. This makes the

Dirichlet distribution a suitable prior for probabilities like those in the initial distribution

and transition matrix. The Dirichlet is also a conjugate prior to the multinomial form

of the likelihood p(z|ψ
hid

), so the target distribution can be directly sampled from in the

corresponding MCMC scheme step. The prior distributions for ν and πk are written

ν = (Pr(Z0 = 1|ν), . . . , P r(Z0 = K|ν)) ∼ D(γ = (γ1, . . . , γK)),

πk = (Pr(Zt = 1|Zt−1 = k), . . . , P r(Zt = K|Zt−1 = k)) ∼ D(αk = (αk,1, . . . , αk,K)).

From the above prior specification, the full conditional distributions of the hidden process

parameters can be derived. Given the independence properties already discussed, ν and

Π can be considered separately. For the transition matrix:

π(Π|z) ∝
K∏
k=1

K∏
l=1

π
αk,l−1
k,l ×

K∏
k=1

K∏
l=1

π
nk,l(z)
k,l ,

∝
K∏
k=1

K∏
l=1

π
αk,l+nk,l(z)−1
k,l ,
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where nk(z) = (nk,1(z), . . . , nk,K(z)) is a vector of the number transitions from state k to

state l. So

πk|z ∼ D(αk + nk(z)). (3.9)

Similarly for ν|z,

ν|z ∼ D(γ +m(z)), (3.10)

where m(z) = (m1(z), . . . ,mK(z)) is a vector of the number of occurrences of each state

at time t = 0.

3.3.2 State inference for HMMs

As discussed in Section 3.2.5, the most efficient way to simulate values from the latent

process of a state space model is by implementing a forward filtering backward sampling

scheme. The computational inference for π(z|y, ψ) in a HMM requires working with the

probability mass functions of the conditional densities derived for filtering and smoothing

in Section 3.2.3 to reflect the discrete state space. The computations are easier to calculate

since the recursions no longer contain potentially computationally intractable integrals.

Sampling from the posterior π(z|y, ψ) consists of two main components: recursively

computing the filtered probabilities in a forward sweep over the hidden states and the data

and a backward sweep that computes the smoothed probabilities and samples the states

from t = T, . . . , 0.

The forward filter over a discrete state space is described in Algorithm 3.3. Taking

advantage of the assumptions for state space models, and therefore HMMs, the conditional

probabilities in Algorithm 3.3 can be written in terms of the initial probabilities and

transition probabilities:

Pr(Z0 = k|ψ) = νk,

P r(Zt = `|Zt−1 = k, y1:t−1, ψ) = Pr(Zt = `|Zt−1 = k,Π) = πk,`.

Furthermore, the conditional densities of the observations given the states are simply:

p(yt|Zt = `, ψ) = p(yt|ψobs,`),

where ψ
obs,`

are the parameters of the within-state distribution for state `.

The filtered probabilities at time T in Algorithm 3.3 provide the first step of the

backward recursion, from which ZT = z̃T is simulated. The full forward backward sampling

algorithm over a discrete state space is shown in Algorithm 3.4. As with the forward

recursion, the conditional probabilities in the backward recursion also simplify based on
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Algorithm 3.3: Forward filter over a discrete state space

1. Initialise the forward recursion at t = 1:

Pr(Z1 = `|ψ) =
K∑
k=1

Pr(Z1 = `|Z0 = k, ψ)Pr(Z0 = k|ψ)

and so

Pr(Z1 = `|y1, ψ) =
p(y1|Z1 = `, ψ)Pr(Z1 = `|ψ)

p(y1|ψ)
,

where

p(y1|ψ) =
K∑
k=1

p(y1|Z1 = k, ψ)Pr(Z1 = k|ψ);

2. for t = 2, . . . , T :
3. compute the one-step-ahead predictive probabilities for ` = 1, . . . ,K:

Pr(Zt = `|y1:t−1, ψ) =
K∑
k=1

Pr(Zt = `|Zt−1 = k, y1:t−1, ψ)Pr(Zt−1 = k|y1:t−1, ψ);

4. compute the filtered probabilities:

Pr(Zt = `|y1:t, ψ) =
p(yt|Zt = `, ψ)Pr(Zt = `|y1:t−1, ψ)

p(yt|y1:t−1, ψ)
,

where

p(yt|y1:t−1, ψ) =

K∑
k=1

p(yt|Zt = k, y1:t−1, ψ)Pr(Zt = k|y1:t−1, ψ).

5. end

assumptions A1 and A2:

Pr(Zt+1 = z̃t+1|Zt = k, y1:t, ψ) = Pr(Zt+1 = z̃t+1|Zt = k,Π) = πk,z̃t+1 .

The block Gibbs sampler for simulating values from the joint posterior distribution

π(z, ψ|y) using the method of data augmentation in Section 3.2.5 is outlined in Algo-

rithm 3.5.

3.3.3 Numerical stability in a HMM

Computational underflow occurs when a computer evaluates a non-zero result as zero,

where the precise value of the result is too small for the computer to present. This can

60



Chapter 3. Background

Algorithm 3.4: Forward backward algorithm

1. Run Algorithm 3.3 to compute the filtered probabilities Pr(Zt = k|y1:t, ψ) for

k = 1, . . . ,K and for times t = 0, . . . , T ;
2. Simulate a value for ZT , say z̃T , from Pr(ZT = k|y1:T , ψ), where k = 1, . . . ,K;

3. for t = T − 1, . . . , 0:
4. compute the backward probabilities for k = 1, . . . ,K:

Pr(Zt = k|Zt+1 =z̃t+1, y1:t, ψ) =

Pr(Zt+1 = z̃t+1|Zt = k, y1:t, ψ)Pr(Zt = k|y1:t, ψ)∑K
`=1 Pr(Zt+1 = z̃t+1|Zt = `, y1:t, ψ)Pr(Zt = `|y1:t, ψ)

,

and simulate a value for Zt from the distribution defined by these
probabilities.

5. end

Algorithm 3.5: Block Gibbs sampler for a HMM

1. Initialise ψ
(0)
obs,k, ν

(0) and π
(0)
k , for all k;

2. for i = 1, . . . , N :
3. run the forward backward algorithm (Algorithm 3.4) to sample the hidden

states z(i);

4. draw π
(i)
k from (3.9) for k = 1, . . . ,K;

5. draw ν(i) from (3.10);

6. draw ψ
(i)
obs for k = 1, . . . ,K from the relevant full conditional distributions

given z(i);

7. end

cause further issues when such a value is used later on in calculations, for example as a

denominator in a fraction, which would result in Inf. Underflow is even more likely when

taking the product of small numbers, for example probabilities. It is therefore important

to prevent underflow wherever possible.

One simple method for preventing underflow when working with probabilities is to

take the natural logarithm of the calculation (assuming that all of the probabilities are

greater than zero), then exponentiate the final result once all of the computations have

been carried out. Taking logs of a product reduces the calculation to the sum of the logged

values, which are much easier to store. A challenge arises, however, when computational

underflow is the result of taking the sum over small numbers, for example, the filtered

probabilities calculated in Algorithm 3.3. When the distributions of the hidden states

of a time series are distinct, with little support overlap, the density of each observation

given each state, p(yt|Zt = `, ψ), can evaluate to very small probabilities that can lead to

underflow. To overcome this, the log-sum-exp trick can be implemented.
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Log-sum-exp trick

The log-sum-exp trick is used to prevent computational underflow and overflow (where

the result of a calculation is too large for computer memory), when summing over the

product of very small (or large) numbers. Let p = (p1, . . . , pK) be a vector of products of

probabilities, where at least one of the elements is small enough to cause underflow, and

suppose the quantity of interest is
∑K

k=1 pk. Taking the log of the sum as it is does not

solve the problem, since the terms within the logged sum cannot be separated. Instead,

write the log of the sum as:

log
K∑
k=1

pk = log
K∑
k=1

exp(log pk).

Further, letting m = maxk{log pk}, the log of the sum can be written:

log

K∑
k=1

pk = log

K∑
k=1

exp(log pk −m+m),

= log
{

exp(m)
K∑
k=1

exp(log pk −m)
}
,

= m+ log
K∑
k=1

exp(log pk −m),

which is known as the log-sum-exp trick. Subtracting m within the exponential in the

sum allows the log probability, log pk, to be used in the calculation, preventing underflow

(or overflow) as desired. Additionally, subtracting m means the largest element being

exponentiated is zero, which prevents the sum from blowing up when dealing with very

large numbers that cause computational overflow.

3.4 Inference for DLMs

In order to successfully model a process using a DLM, data must be used to learn about

the model parameters. Ultimately this still involves learning about the latent process that

drives the observed sequence, but the Gaussian state space defined for DLMs simplifies

such inference.

3.4.1 Parameter inference

The static parameters in a DLM are ψ = (m0, C0, Vt,Wt). For the modelling scenarios

in this thesis, Vt and Wt are time-homogeneous, so the time-varying notation is therefore

dropped from here on, setting Vt = V and Wt = W . Typically, the parameters of the
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initial distribution of the states, m0 and C0, are assumed to be known; as the system of a

DLM is dynamic, the new information received at each time point informs the distribution

of the states θt and the initial distribution soon becomes unimportant. The system and

observation matrices, Gt and Ft, are determined by the components being used in the

model, for example a local level or seasonal component, so do not feature in the parameter

vector. Inference for π(ψ|θ, y) therefore only concerns the observation variance V and the

system covariance matrix W , which is assumed to be diagonal.

Specify the unknown variances in terms of the precisions, V = ψ−1y and W =

diag(ψ−11 , . . . , ψ−1p ). A simple prior to use for the parameters of the variances is a d-

inverse-Gamma prior, which assumes ψy, ψ1, . . . , ψp follow d = p+ 1 independent Gamma

distributions:

ψy ∼ Ga(ay, by),

ψi ∼ Ga(ai, bi), for i = 1, . . . , p.

The result of this prior assumption is that the posteriors for the precisions also follow

inverse-Gamma distributions.

The form of the complete data likelihood is Gaussian, since the underlying states and

errors are Gaussian:

p(y|θ, ψy) =

T∏
t=1

ft(yt|θt, ψy),

and

yt|θt, ψy ∼ N(Ftθt, ψ
−1
y ).

The posterior density for V can therefore easily be derived:

π(ψy|y, θ) ∝ π(ψy)
T∏
t=1

ft(yt|θt, ψy),

∝ ψay−1y exp(−byψy)
T∏
t=1

1√
2πψ−1y

exp

[
− ψy

2
(yt − Ftθt)2

]
,

∝ ψ
T
2
+ay−1

y exp

[
− ψy

{1

2

T∑
t=1

(yt − Ftθt)2 + by

}]
,

which is

ψ−1y |y, θ ∼ I-Ga
(
ay +

T

2
, by +

1

2

T∑
t=1

(yt − Ftθt)2
)
. (3.11)

The conditional density of π(θ|W ) is also Gaussian:

θt|θt−1,W ∼ Np(Gtθt−1,W ).
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The conjugate posterior density for the elements of W are derived in the same way. As

W is diagonal and the ψi are independent a priori, the full conditional distributions for

each can be considered separately:

π(ψi|θ) ∝ π(ψi)
T∏
t=1

gt(θt|θt−1, ψi),

∝ ψai−1i exp(−biψi)
T∏
t=1

1√
2πψ−1i

exp

[
− ψi

2
(θi,t − (Gtθt−1)i)

2

]
,

∝ ψ
T
2
+ai−1

i exp

[
− ψi

{1

2

T∑
t=1

(θi,t − (Gtθt−1)i)
2 + bi

}]
,

which is

ψ−1i |θ ∼ I-Ga
(
ai +

T

2
, bi +

1

2

T∑
t=1

(θt,i − (Gtθt−1)i)
2
)
. (3.12)

The independence of the parameters a posteriori means they can be updated in a single

block in a Gibbs sampler.

3.4.2 State inference for DLMs

The initial state-vector and the errors in the system and observation equations in a DLM

are specified by Gaussian distributions. As a result, the joint distribution of the states

and observations is also Gaussian. This means the integrals in the filtering, smoothing

and forecasting recursions described in Section 3.2.3 can be evaluated in closed form and

the algorithms reduce to the simpler task of computing the mean and variance for a series

of conditional Gaussian distributions.

The Kalman filter

The Kalman filter (Kalman, 1960) is a filtering recursion that lends itself specifically to

DLMs. If θt−1|y1:t−1 ∼ N(mt−1, Ct−1), the prediction and updating steps at time t are as

follows.

1. Prediction:

(a) the mean at and variance Rt of the one-step-ahead predictive density of the

states given the data up to time t− 1 are:

at = E(θt|y1:t−1),
= E{E(θt|θt−1, y1:t−1)},
= E(Gtθt−1|y1:t−1),
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= Gtmt−1

and

Rt = Var(θt|y1:t−1),
= E{Var(θt|θt−1, y1:t−1)}+ Var{E(θt|θt−1, y1:t−1)},
= E(W |y1:t−1) + Var(Gtθt−1|y1:t−1),
= W +GtCt−1G

′
t.

(b) the mean ft and variance Qt of the one-step-ahead forecast of the observations

are:

ft = E(Yt|y1:t−1),
= E{E(Yt|θt, y1:t−1)},
= E(Ftθt|y1:t−1),
= Ftat

and

Qt = Var(Yt|y1:t−1),
= E{Var(Yt|θt, y1:t−1)}+ Var{E(Yt|θt, y1:t−1)},
= E(V |y1:t−1) + Var(Ftθt|y1:t−1),
= V + FtRtF

′
t .

2. Updating: after observing Yt = yt, the filtering density is calculated via Bayes’

Theorem, where θt|y1:t−1 ∼ N(at, Rt) is the ‘prior’ and yt|θt ∼ N(ft, Qt) is the

‘likelihood’;

π(θt|y1:t) ∝ π(θt|y1:t−1)ft(yt|θt),

∝ exp

[
− 1

2
(yt − Ftθt)′V −1(yt − Ftθt)

]
×

exp

[
− 1

2
(θt − at)′R−1t (θt − at)

]
,

∝ exp

[
− 1

2

{
θ′t(F

′
tV
−1Ft +R−1t )θt − 2θ′t(F

′
tV
−1yt +R−1t at)

}]
,

which is a Gaussian density with parameters mt = Ct(F
′
tV
−1yt + R−1t at) and Ct =

(F ′tV
−1Ft +R−1t )−1.

The expressions for Ct and mt in the updating step involve inverting potentially large
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matrices, which is computationally expensive and can cause numerical instability. To

avoid this, Ct is rearranged using the Woodbury matrix identity (Woodbury, 1950),

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Rearranging Ct using this identity gives

Ct = Rt −RtF ′t(FtRtF ′t + V )−1FtRt,

= Rt −RtF ′tQ−1t FtRt

and substituting this into the equation for mt and simplifying gives

mt = at +RtF
′
t(FtRtF

′
t + V )−1(yt − Ftat),

= at +RtF
′
tQ
−1
t et.

These computations no longer involve matrix inversion as Qt is a scalar. The innovations

et are the forecasting errors, defined by et = yt − ft = yt − Ftat.
As explained in Section 3.2.4, in the case of a missing observation, or missing ob-

servations, a new observation is not available to perform the updating step and so

π(θt|y1:t) = π(θt|y1:t−1). This is equivalent to setting mt = at and Ct = Rt, which

demonstrates how the uncertainty about the state increases until a new observation is

available.

Forecasting

Forecasting in a state space model is an extension of the one-step-ahead predictions that

are calculated in the filtering recursion. It follows that the forecasting recursion for DLMs

is an extension of the Kalman filter, which again involves computing the means and vari-

ances of the respective Gaussian distributions.

Let at(k) = E(θt+k|y1:t), Rt(k) = Var(θt+k|y1:t), ft(k) = E(Yt+k|y1:t) and Qt(k) =

Var(Yt+k|y1:t). At time t, at(0) = mt and Rt(0) = Ct, then for k ≥ 1, the mean and

variance of the k-step-ahead state forecast given the observations up to time t are:

at(k) = E(θt+k|y1:t),
= E{E(θt+k|y1:t, θt+k−1)},
= E(Gt+kθt+k−1|y1:t),
= Gt+kat(k − 1)
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and

Rt(k) = Var(θt+k|y1:t),
= Var{(E(θt+k|y1:t, θt+k−1)}+ E{Var(θt+k|y1:t, θt+k−1)},
= Gt+kRt(k − 1)G′t+k +W.

The mean and variance of the k-step-ahead observation forecast given the observations up

to time t are:

ft(k) = E(Yt+k|y1:t),
= E{E(Yt+k|y1:t, θt+k)},
= E(Ft+kθt+k|y1:t),
= Ft+kat(k)

and

Qt(k) = Var(Yt+k|y1:t),
= Var{(E(Yt+k|y1:t, θt+k)}+ E{Var(Yt+k|y1:t, θt+k)},
= Ft+kRt(k)F ′t+k + V.

As the above equations hold for k = 1 in the prediction step of the Kalman filter, they

also hold for k > 1 by induction.

The Kalman smoother

Backward smoothing allows inference about the underlying states of a system once the

data collection process is complete. As the observations are known, smoothing incurs less

uncertainty in the state distribution than filtering. As with the Kalman filter, the Kalman

smoother requires only the computation of the mean and variance of the corresponding

Gaussian distribution of the smoothed states.

Letting θt+1|y1:T ∼ N(st+1, St+1) the Kalman smoothing recursion is as follows:

1. The backward transition probabilities are calculated using Bayes’ Theorem and the

rules of conditional independence, where the ‘prior’ is θt|y1:t ∼ N(mt, Ct) and the

‘likelihood’ is θt+1|θt ∼ N(Gt+1θt,Wt+1):

π(θt|θt+1, y1:T ) ≡ π(θt|θt+1, y1:t) ∝ π(θt|y1:t)gt+1(θt+1|θt),

∝ exp

[
− 1

2
(θt −mt)

′C−1t (θt −mt)

]
×
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exp

[
− 1

2
(θt+1 −Gt+1θt)

′W−1(θt+1 −Gt+1θt)

]
,

∝ exp

[
− 1

2

{
θ′t(C

−1
t −G′t+1W

−1Gt+1)θt

−2θ′t(C
−1
t mt +G′t+1W

−1θt+1)
}]
,

which is a Gaussian distribution with mean (C−1t − G′t+1W
−1Gt+1)

−1(C−1t mt +

G′t+1W
−1θt+1) and variance (C−1t − G′t+1W

−1Gt+1)
−1. These can be further sim-

plified to avoid large matrix inversion using the Woodbury matrix identity as before

to give:

ht = E(θt|θt+1, y1:T )

= mt + CtG
′
t+1(Gt+1CtG

′
t+1 +W )−1(θt+1 −Gt+1mt),

= mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Var(θt|θt+1, y1:T )

= Ct − CtG′t+1R
−1
t+1Gt+1Ct.

2. The mean st and variance St of the smoothed states given the data up to time T are

then calculated as:

st = E{E(θt|θt+1y1:T )},
= mt + CtG

′
t+1R

−1
t+1(st+1 − at+1)

and

St = Var{E(θt|θt+1, y1:T )}+ E{Var(θt|θt+1, y1:T )},
= Ct − CtG′t+1R

−1
t+1Gt+1Ct + CtG

′
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct,

= Ct − CtG′t+1R
−1
t+1(Rt+1 − St+1)R

−1
t+1Gt+1Ct.

The forward filtering backward sampling algorithm for computing π(θ0:T |y1:T , V,W ) is

outlined in Algorithm 3.6.

Algorithm 3.6: Forward filtering backward sampling

1. Run the Kalman filter to compute the moments of the filtering distributions;
2. Draw θT ∼ N(mT , CT );
3. for t=T-1,. . . ,0:
4. draw θt ∼ N(ht, Ht);
5. end
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The block Gibbs sampler for simulating values from the joint distribution

π(θ0:T , V,W |y1:T ) is shown in Algorithm 3.7.

Algorithm 3.7: Block Gibbs sampler for a DLM

1. Initialise ψ
(0)
y and ψ

(0)
j for j = 1, . . . , p;

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (ψ−1j )(i) from (3.12) for j = 1, . . . , p;

6. end

3.4.3 Numerical stability in a DLM

The Kalman filter iteratively updates the posterior covariance Ct on each sweep of the

algorithm. Directly updating this matrix is subject to issues of numerical instability; when

the observation variance V is small, Ct ≈ Rt−Rt, which can result in a non-symmetric or

a negative definite covariance matrix due to rounding errors. A covariance matrix must

be symmetric and positive semi-definite, so two possible methods for ensuring this and

improving stability in the Kalman filter and Kalman smoother are presented here.

Joseph form

The Joseph form update (Bucy & Joseph, 2005) of Ct is given by

Ct = (I −KtFt)Rt(I −KtFt)
′ +KtV K

′
t,

where Kt = RtF
′
tQ
−1
t is known as the Kalman gain. This way of calculating Ct ensures

the matrix is positive semi-definite by taking advantage of the properties of positive semi-

definite matrices. A matrix A is positive semi-definite if for any non-zero vector b, bAb′ ≥ 0.

The Joseph form covariance update is the sum of two positive semi-definite matrices,

of which the result is always positive semi-definite. Calculating Ct in this way ensures

stability in the filter, but requires more calculations.

Singular value decomposition

An alternative method to using the Joseph form update is to update the singular value

decomposition (SVD) of Ct instead of Ct directly (Oshman & Bar-Itzhack, 1986; Wang

et al., 1992). The SVD of any m × n real or complex matrix, A, breaks the matrix into

the product of three matrices: A = UDB′, where U is a m × m orthogonal matrix, D
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is a m × n matrix with Di,j = 0 for i 6= j and B is a n × n orthogonal matrix. The

non-zero elements of D are the square roots of the positive eigenvalues of AA′ (or A′A),

known as singular values, and U and B are made up of the eigenvectors of AA′ and A′A

respectively. As AA′ and A′A are positive semi-definite, their eigenvalues are all positive

or zero, so D is positive semi-definite. When A is a symmetric matrix, for example when

it is a covariance matrix, A = UDU ′, since AA′ = A′A = A2 in this case.

The dlm package (Petris, 2010) in R provides an extensive range of functions that

allow DLMs to be easily constructed and manipulated, including functions for filtering,

smoothing and forecasting. The Kalman filter and Kalman smoother in the dlm package,

dlmFilter and dlmSmooth, use the SVD method to improve stability. The dlm package

is used throughout this thesis when constructing DLMs.

3.5 Model checking

Statistical model checking can be divided into two categories: checking model assumptions

are met and checking model performance. Checking model assumptions is carried out

less frequently in Bayesian statistics, as it is generally acknowledged that models do not

represent the true data generating mechanisms and cannot be perfect. In a time series

context, the inferential objective is very often forecasting. Therefore, measuring how useful

a model is involves checking how well it fulfils this objective, in other words, by assessing

the model predictive performance.

At each iteration of the block Gibbs sampling schemes described in Algorithm 3.5 and

Algorithm 3.7, a realisation of the Markov chain whose stationary distribution is the joint

distribution π(θ0:T , ψ|y1:T ) is generated (specific to HMMs or DLMs). The set of param-

eters at iteration j of the chain, ψ(j), describes the state space model with latent states

θ(j). Conditional on θ
(j)
1:t and ψ(j), a sample can be simulated from a n-step ahead forecast

distribution at any time t. By repeating this exercise for an ensemble of samples from

the posterior, we obtain a sample from the associated n-step ahead posterior predictive

distribution. This accounts for both the epistemic uncertainty in the parameter values

and the aleatory uncertainty in the process. Model performance is then measured using

summaries from the ensemble of forecasts, which can include probability intervals based

on the standard deviation of the forecasts to visualise the model uncertainty.

Examples of assessing model performance in practice are found in the remaining mod-

elling chapters of this thesis.
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3.6 Summary

In this chapter, the models that are fitted in the subsequent chapters of this thesis and

the inferential procedures for fitting such models are presented. The family of models

explored are state space models, which are explained in generality and then specifically

for DLMs and HMMs. Bayesian inference is introduced, along with some of the general

algorithms and procedures that it contains.

State space models provide a flexible framework for modelling time series data, build-

ing a dependency between the observations in a series via a series of latent states that

represent an unobserved data generating process. These latent states form a Markov

chain. Furthermore, in state space models advantage of the sequential nature of time

series data can be taken to calculate the filtering, smoothing and forecasting distributions

of the states.

HMMs are explained as state space models with a finite number of discrete hidden

states. As a result of this definition, they are used to classify observations in a series into

the sequence of latent states that generated them. As a result of the discrete state space,

the often computationally intractable integral in the filtering, smoothing and forecasting

recursions of state space models is reduced to a sum over the corresponding conditional

probabilities. The forward backward algorithm can then be used to sample the series

of hidden states in an MCMC scheme with data augmentation. HMMs will be used to

classify activity observations into their underlying activity intensity zones.

DLMs are continuous, linear state space models, with a Gaussian state space. This

chapter explained how complex DLMs are easily constructed by superimposing individual

DLMs, which are then interpreted in terms of the individual components. This is how

the models for glucose will be constructed later in the thesis. Because of their Gaussian

nature, computational inference for the latent states consists of sequentially updating their

mean and variance, given the prior initial distribution of the state vector and the available

data, known as Kalman filtering and smoothing. These Kalman recursion algorithms are

used to carry out forward filtering backward sampling in an MCMC scheme with data

augmentation.

The parameter inference results presented in this chapter will also be used throughout

the subsequent modelling chapters of this thesis.
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Models to classify and identify

levels of activity

4.1 Background

The activity summaries presented in Section 2.3.1 represent an observed activity output

from each patient over time. As implied by the results discussed in the literature review,

the relationship between glucose and activity levels is not linear; walking and running have

a similar overall effect on glucose, but would have very different corresponding activity

observations. The multimodal lagged correlation plots, Fig. 2.13 and Fig. 2.14, also imply

that the relationship between glucose and activity might not be the same for each of

the activity intensities. To capture the intensity of activity, or activity ‘zone’, that each

activity observation comes from, models to classify each observation into a set of hidden

states can be fitted. Mixture models are first fitted as a baseline for comparison for the

subsequently fitted, more complex, HMMs. The number of iterations to run each of the

MCMC schemes for to fit the models is chosen by performing short pilot runs on the

data and scaling up based on the effective sample size these runs produce. This number

then dictates the thinning to use to reduce the MCMC output to approximately 10,000

iterations. The burn in is similarly chosen based on the trace plots of the pilot runs.

The literature in Section 1.3 suggests that there are three main activity states: low-,

medium- and high activity. In the context of HMMs, several configurations are considered.

Models are fitted using a known number of hidden states, namely K = 3 hidden activity

states, trialling different within-state distributions to best explain the nature of the activity

data. Initially, models are fitted to just 10,000 observations from one activity summary,

the BFEN activity data, at a frequency of 1 Hz. This is later extended to the full data

set of two other activity data summaries, ENMO data and step count data, to assess

the flexibility of the models explored. Models fitted to lower frequencies of activity data
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are explored and the number of hidden states used to capture the levels of activity being

performed is adjusted where appropriate to compare model performance.

4.2 Mixture models

A mixture model, as mentioned in Section 3.1.1, can be considered a HMM with zero-order

dependency between the hidden states. The unobserved states, where Zt ∈ 1, . . . ,K, are

modelled as i.i.d. random variables on which the observed process, {Yt}, is modelled

conditionally. As a result, the observed parameters of a mixture model are the same as

those in a HMM, ψ
obs

= (ψ
obs,1

, . . . , ψ
obs,K

), but the hidden parameters are reduced to a

single vector providing the probability of each state, ψ
hid

= π = (π1, . . . , πK), since the

transition probabilities between states are not considered.

Recall the 1 Hz BFEN activity data in Section 2.3.1. These data show a large amount

of skew: the majority of observations are clustered around zero, but there is a range of

shorter and longer spikes of higher ‘activity’. Modelling the distribution of the activity

data by breaking them into a mixture of three components seems reasonable: the low-

activity component representing the bulk of the data distributed about zero, a medium-

activity component representing the shorter spikes of activity and the third, high-activity

component representing the longer tail in the data.

4.2.1 Normal mixture model

To take advantage of the conjugacies of Gaussian distributions and keep the initial mixture

model relatively simple, a Normal distribution is chosen initially as the within-state dis-

tribution. Whilst the observed activity levels in the BFEN data are always non-negative

and could therefore be described by a within-state distribution on R+, such as the Gamma

distribution, the models should be applicable to any of the activity summaries explored.

They should therefore have the flexibility to include those summaries containing negative

values. It should be noted here that a Gaussian distribution, along with other candidates

for a continuous within-state distribution, would not be suitable for the 1 Hz step count

data summaries due to the discrete nature of these data sets. This will be considered later

in the chapter.

The hierarchical Bayesian model describing the within-state distribution and prior

distributions for the within-state parameters for the Normal mixture model is summarised

in Model 4.1.

Model 4.1

yt|Zt = k, µk, τk ∼ N(µk, τ
−1
k ),

P r(Zt = k|π) = πk,
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µk ∼ N(µ0, σ
2) with µ1 < µ2 < µ3,

τk ∼ Ga(α, β),

π = (π1, π2, π3) ∼ Dir(α = (α1, α2, α3)).

The parameters of the observation layer of Model 4.1 are ψ
obs,k

= (µk, τk), the within-

state mean and precision, for each hidden state k = 1, . . . , 3. The data {yt} are the activity

observations and the hidden states {Zt} are the corresponding activity zones. The model

prior specification is semi-conjugate (conditional on the state labels) rather than fully

conjugate, because the mean and precision of each state are independent a priori. A fully

conjugate specification would be described by:

µk|τ ∼ N(µ0, n0τ
−1) with µ1 < µ2 < µ3,

τ ∼ Ga(α, β).

A semi-conjugate model is chosen to align with models later in the chapter, where a fully

conjugate specification is unavailable. A semi-conjugate prior specification also allows

for a more flexible model to be fitted; straightforward, analytic computation of the joint

prior for the µk that respects the identifiability constraint requires each unordered µk to

be assigned the same prior (see below). This in turn for a fully conjugate specification

imposes the constraint that τ must be equal across the hidden states, too. This constraint

is explored later in the chapter.

The prior on the within-state means is subject to the constraint that µ1 < µ2 < µ3

to prevent label switching during the MCMC sampling. To understand label switching,

recall the complete data likelihood from Eq. (3.8):

p(y|z, ψ
obs

) =

K∏
k=1

∏
t:zt=k

p(yt|ψobs,k).

It is clear that relabelling the states and corresponding parameters accordingly does not

change the likelihood; it is invariant to permutations in the state labels. Coupled with a

prior for the ψ
obs,k

that is independent across k and that assigns the same distribution to

each ψ
obs,k

would therefore yield parameters that were non-identifiable in the posterior.

Consequently, the posterior samples for the corresponding mixture model, or more gen-

erally the corresponding HMM, are subject to label switching, where the hidden states

permute during the MCMC sampling process. More information on label switching can be

found in Frühwirth-Schnatter (2006). The addition of the identifiability constraint on the

within-state means forces the sampler to maintain a unique set of labels given the order

of the means. This is easy to impose given the geometry of the activity zones.

If a common Normal prior is assumed for each unordered µk independently, then
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accounting for the identifiability constraint implies that µ1 is drawn marginally from the

minimum of three Normal distributions, µ2 is drawn conditionally from the minimum of

two Normals, with a lower-truncation at µ1, and µ3 is drawn from a Normal distribution,

lower-truncated at µ2. To derive the full conditional distributions for each µk, the joint

prior π(µ1, µ2, µ3) must be computed to account for the dependency between the means.

Consider i.i.d. continuous random variables, X1, . . . , Xn. The probability of at least

one of these being less than x is

Pr(X(1) ≤ x) = 1− Pr(X(1) ≥ x) = 1− Pr(X1 ≥ x, . . . ,Xn ≥ x) = 1− {1− F (x)}n.

In what follows, let Φ(x) be the standard Normal cumulative density function (CDF) with

associated probability density function (PDF) φ(x). The PDF of each µk is the derivative

of the CDF and is calculated below.

As µ1 is drawn from the minimum of three Normal distributions, the CDF of µ1 is:

F (µ1) = 1−
{

1− Φ
(
µ1 − µ0

σ

)}3

.

The PDF of µ1 is then:

f(µ1) =
dF (µ1)

dµ1
=

3

σ
φ

(
µ1 − µ0

σ

){
1− Φ

(
µ1 − µ0

σ

)}2

.

The CDF of µ2 is a minimum of two Normal distributions with a lower truncation. The

CDF of a truncated Normal random variable, lower-truncated at a and upper-truncated

at b is:

F (x) =
Φ(x−µσ )− Φ

(a−µ
σ

)
Φ
( b−µ

σ

)
− Φ

(a−µ
σ

) .
The CDF of µ2 truncated at µ1 is therefore written:

F (µ2|µ1) = 1−
{

1− Φ
(µ2−µ0

σ

)
− Φ

(µ1−µ0
σ

)
1− Φ

(µ1−µ0
σ

) }2

,

with PDF:

f(µ2|µ1) =
2φ
(µ2−µ0

σ

)
σ
{

1− Φ
(µ1−µ0

σ

)}{1− Φ
(µ2−µ0

σ

)
− Φ

(µ1−µ0
σ

)
1− Φ

(µ1−µ0
σ

) }
.

The CDF of µ3 is simply a truncated Normal CDF:

F (µ3|µ1, µ2) = F (µ3|µ2) =
Φ
(µ3−µ0

σ

)
− Φ

(µ2−µ0
σ

)
1− Φ

(µ2−µ0
σ

) ,

75



Chapter 4. Models to classify and identify levels of activity

with PDF:

f(µ3|µ2) =
φ
(µ3−µ0

σ

)
σ
{

1− Φ
(µ2−µ0

σ

)} .
The joint prior distribution of all µk is then:

π(µ1, µ2, µ3) = f(µ1)f(µ2|µ1)f(µ3|µ2),

=
3

σ
φ

(
µ1 − µ0

σ

){
1− Φ

(
µ1 − µ0

σ

)}2

× 2φ
(µ2−µ0

σ

)
σ
{

1− Φ
(µ1−µ0

σ

)}{1− Φ
(µ2−µ0

σ

)
− Φ

(µ1−µ0
σ

)
1− Φ

(µ1−µ0
σ

) }
× φ

(µ3−µ0
σ

)
σ
{

1− Φ
(µ2−µ0

σ

)} ,
=

6

σ3
φ

(
µ1 − µ0

σ

)
φ

(
µ2 − µ0

σ

)
φ

(
µ3 − µ0

σ

)
,

∝ π(µ1)π(µ2)π(µ3), with µ1 < µ2 < µ3.

The µk can therefore be considered independently when calculating the full conditional

distributions, as long as the ordering constraint is respected in the sampler. The derivation

of the truncated Normal CDFs and the joint prior for all µk is novel.

A Gamma prior is assigned to the within-state precisions τk. This is a sensible prior

as it restricts the sampling space to the set of positive real numbers and is semi-conjugate

to the Normal distribution, used for the likelihood.

The complete data likelihood, given the Normal within-state distributions, is written

p(y|z, ψ
obs

) ∝
3∏

k=1

∏
t:zt=k

τ
1/2
k exp

[
− τk

2
(yt − µk)2

]
. (4.1)

The full conditional distributions of the observation layer parameters can therefore be

derived using Bayes’ formula to combine the prior information with Eq. (4.1) to construct

the posterior parameter distribution:

π(µ1, µ2, µ3, τ1, τ2, τ3|y, z) ∝
3∏

k=1

π(µk)π(τk)
∏
t:zt=k

τ
1/2
k exp

[
− τk

2
(yt − µk)2

]
,

∝
3∏

k=1

φ

(
µk − µ0

σ

)
τα−1k e−τkβ

∏
t:zt=k

τ
1/2
k exp

[
− τk

2
(yt − µk)2

]
,

with µ1 < µ2 < µ3. Then conditionally for each parameter:

π(µk|·) ∝ exp

[
− 1

2σ2
(µk − µ0)2 −

τk
2

∑
t:zt=k

(yt − µk)2
]
,
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∝ exp

[
− 1

2

{
1

σ2
(µ2k − 2µ0µk) + τk

∑
t:zt=k

(µ2k − 2ytµk)

}]
,

∝ exp

[
− 1

2

{
µ2k

(
1

σ2
+ τkNk(z)

)
− 2µk

(
µ0
σ2

+ τk
∑
t:zt=k

yt

)}]
,

so

µk|· ∼ N
((

1

σ2
+ τkNk(z)

)−1(µ0
σ2

+ τk
∑
t:zt=k

yt

)
,

(
1

σ2
+ τkNk(z)

)−1)
, (4.2)

subject to the constraint µ1 < µ2 < µ3. Each µk can therefore be sampled in the order of

µ1, µ2, µ3 from the Normal distribution in Eq (4.2) with a lower-truncation at µk−1 where

µ0 = −∞. Next,

π(τk|·) ∝ τα+Nk(z)/2−1k exp

[
− τk

(
β +

1

2

∑
t:zt=k

(yt − µk)2
)]
,

so

τk|· ∼ Ga
(
α+

Nk(z)

2
, β +

1

2

∑
t:zt=k

(yt − µk)2
)
. (4.3)

The full conditional distribution of the hidden parameter π is analogous to the full

conditional distributions derived for ν and πk in Eq. (3.10) and Eq. (3.9), respectively.

The Dirichlet prior on π results in a Dirichlet posterior, such that

π|z ∼ D(α+m′(z)), (4.4)

where m′(z) = (m′1(z),m
′
2(z),m

′
3(z)) is a vector of the number of observations sampled

from each of the hidden states.

As the hidden states are independent, they do not need to be sampled recursively

using Algorithm 3.4. Instead, the states are sampled from the conditional probability

mass function defined by

Pr(Zt = `|yt, π, ψobs) =
p(yt|ψobs,`)π`∑3
k=1 p(yt|ψobs,k)πk

, (4.5)

for all t.

Altogether, the block Gibbs sampler for Model 4.1 is provided in Algorithm 4.1.

Results

Algorithm 4.1 was run for N = 200, 000 iterations, plus a burn in of 1,000 and was thinned

to every 15th sample. A subset of 10,000 observations from the activity data of one patient
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Figure 4.1: Normal mixture model posterior empirical within-state densities for low (blue), medium
(gold) and high (red) activity zones fitted to 10,000 BFEN observations (grey density).
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Figure 4.2: Portion of BFEN data classified using a Normal mixture model into low (blue), medium
(gold) and high (red) activity zones (thinned by 20 for plotting).
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Algorithm 4.1: Normal mixture model MCMC scheme

1. Initialise µ
(0)
k , τ

(0)
k and π(0), for all k, by sampling from the prior distributions in

Model 4.1;
2. for i = 1, . . . , N :

3. sample the hidden states z(i) according to the probabilities (4.5);
4. for k = 1, . . . , 3:

5. draw µ
(i)
k from (4.2), truncated on (µ

(i)
k−1, µ

(i−1)
k+1 ) where µ

(i)
0 = −∞ and

µ
(i−1)
4 =∞ for all i;

6. end

7. draw τ
(i)
k from (4.3) for k = 1, . . . , 3;

8. draw π(i) from (4.4);

9. end

is used. This is sufficient to see the range of activity levels being performed by the patient

and gauge how suitable the model is. The hyperparameters in the priors specified for µk,

τk and π in Model 4.1 are chosen to be

µ0 = 0.1, σ = 0.5, α = 1, β = 1, and α = (10, 2, 1),

respectively. The priors for µk and τk are the same for all k, which reflects prior ignorance

about the within-state distributions. The value of µ0 is set at 0.1, approximately the

mean of the BFEN data and σ is set at 0.5, approximately two standard deviations of the

data. The Ga(1, 1) prior on τk has a large enough variance to cover a range of plausible

values for each of the within-state precisions. The hyperparameter α is reflective of the

number of minutes that would be expected for a person to spend in each activity zone

relative to the other zones, i.e. 10 minutes in zone one, two minutes in zone two and one

minute in zone three. Note that this prior asymmetry alone was not enough to prevent

label switching, which is why an identifiability constraint on the µk was still required.

The results from running Algorithm 4.1, and indeed the results from the models fitted

throughout this chapter, are summarised in two ways: via a plot of the posterior empirical

within-state densities, Fig. 4.1; and via a plot of the modal posterior state classifications,

Fig. 4.2. The posterior within-state density plot is produced by taking a sample of the

MCMC draws for the observation parameters and drawing a random variable for each state

on each draw. These posterior densities are then compared to the actual density of the

data. On each iteration of Algorithm 4.1, and all subsequent HMM MCMC algorithms, the

state that was sampled for each observation is recorded. The modal state that was sampled

for each observation once the algorithm has run is then used to classify the observations

in the modal state classification plot.

The MCMC process has correctly identified three distinct activity states, shown clearly

79



Chapter 4. Models to classify and identify levels of activity

by the three densities in Fig. 4.1 and bands of coloured observations in Fig. 4.2. The poste-

rior densities capture the components within the data by fitting a low activity component

with a small posterior variance to the bulk of the data at zero, a second component with

a larger variance to the density above zero and a third, flat component to capture the

long tail of low density, higher observations. The curves do not allocate much density to

negative activity levels, which shows the data provide enough information to encourage

realistic posterior parameter densities. There seem to be sensible boundaries between the

state allocations; there is very little overlap between the observations allocated to each

state in Fig. 4.2.

The lowest state, blue observations in Fig. 4.2 and blue posterior within-state density

in Fig.4.1, corresponds to periods of inactivity, i.e. the observed activity levels close to

zero. The second activity state, gold observations and gold posterior within-state density,

reflects small movements carried out by the patient. Recalling that the data are at a

frequency of one observation per second, this is a logical interpretation for the medium

activity component. Lastly, the third activity state, red observations and red within-state

density, corresponds to larger movements performed by the patient and periods of activity,

that could involve walking.

The number of transitions between states for the classified observations is 1,047 (cal-

culated as the mean of the number of transitions at each iteration of the sampler), out of

10,000 data points. The aim of the HMMs fitted in the subsequent sections is to introduce

dependency between the observations so that this figure and the most likely sequence of

states driving it are realistic. A transition matrix is constructed by taking the mean over

the number of transitions between each pair of states at each iteration of the MCMC

sampler:

P =

6643 219 5

224 1787 297

0 302 523

 .

The mean counts in this matrix support the use of a more complex structure to model

the underlying activity zones as there is a clear difference in probability of what the next

state in the process will be, depending on the current value of the state.

4.3 Hidden Markov models

The results from fitting the mixture model in the previous section support the use of a

HMM, in which the hidden states exhibit the behaviour of a first-order Markov chain.

This assumption prevents the number of transitions between states from reflecting unre-

alistic behaviours, for example regularly switching between zones one and three without

passing through state two, and has the effect of smoothing over the distribution of mixture
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components over time.

4.3.1 Normal HMM

As in the mixture model, a HMM with a semi-conjugate Normal within-state distribution

is fitted first. The Bayesian hierarchical model, described in Model 4.2, extends the

specification in Model 4.1 to include the probability of transitioning to state k from state

j, with hidden parameters ψ
hid

= (ν, πj), for j = 1, . . . , 3.

Model 4.2

yt|Zt = k, µk, τk ∼ N(µk, τ
−1
k ),

P r(Z0 = k|ν) = νk,

P r(Zt = k|Zt−1 = j) = πj,k,

µk ∼ N(µ0, σ
2) with µ1 < µ2 < µ3,

τk ∼ Ga(α, β),

ν = (ν1, ν2, ν3) ∼ Dir(γ = (γ1, γ2, γ3)),

πj = (πj,1, πj,2, πj,3) ∼ Dir(αj = (αj,1, αj,2, αj,3)).

The assumption of independence, a priori, between the observed and hidden parame-

ters, ψ
obs

and ψ
hid

, of Model 4.2 means that the full conditional distributions for µk and

τk are the same as for Model 4.1, Eq. (4.2) and (4.3), respectively. The formulation of the

complete data likelihood is also the same, Eq. (4.1), and the full conditional distributions

for πk and ν are as derived in Section 3.3.1, Eq. (3.9) and (3.10).

The block Gibbs sampler for Model 4.2 follows the structure of the block Gibbs sampler

outlined for HMMs in Algorithm 3.5, where ψ
obs,k

= (µk, τk) are drawn as in Algorithm 4.1.

Results

The block Gibbs sampler for Model 4.2 was run for N = 100, 000 iterations, plus a burn

in of 1,000 and was thinned by 10. The hyperparameters µ0 = 0.1, σ = 0.5, α = 1 and

β = 1 are the same as for the Normal mixture model. The Dirichlet prior on the transition

matrix has large values on the diagonal to discourage switching between states. As for

the prior on π in Model 4.1, these values were determined based on prior beliefs about

the amount of time (seconds) expected to stay in each state and additionally were scaled

down to reduce the prior variance:

α =

0.50 0.05 0.05

0.05 0.15 0.05

0.05 0.05 0.10

 ,
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Figure 4.3: Normal HMM posterior empirical within-state densities for low (blue), medium (gold)
and high (red) levels of activity fitted to 1 Hz BFEN data, compared to the BFEN density (grey).

so α1 = (0.5, 0.05, 0.05) and so on. A stronger prior with smaller variance was tested and

was found to have very little overlap with the posterior transition probability densities,

suggesting it could drive the posterior density to include values that are not reflective of

the behaviour in the data.

It is expected that type II diabetic patients spend most of their time in the lowest

activity zone, with short bursts of activity that fall into the second zone and some shorter

bouts of higher activity (zone three). The initial state vector prior, γ = (0.95, 0.03, 0.02),

reflects the high probability of being in activity zone one.

The posterior within-state densities in Fig. 4.3 show that the Gibbs sampling algorithm

for Model 4.2 has not detected three distinct state components based on three different

within-state means. The state corresponding to the lowest activity zone (blue density)

sufficiently captures the large density of observations about zero, however the areas of

highest density of the two other hidden states overlap. The posterior draws for µ2 and µ3

are summarised in Fig. 4.4 and show that the densities are very similar, whilst the ordering

constraint is forcing the draws for µ3 (magenta) to be marginally higher than those of µ2

(blue). Instead, the sampling algorithm has differentiated the second and third states with

different posterior variances. The posterior within-state density of state two (gold) is very

flat, capturing the higher activity observations that stretch out into the tail. The third

state has a smaller posterior within-state variance, concentrated on the observations just
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Figure 4.4: MCMC output for µ2 (blue) and µ3 (magenta) in Model 4.2.
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Figure 4.5: 1 Hz BFEN data classified using a Normal HMM into low (blue), medium (gold) and
high (red) levels of activity.
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above zero.

The effect the similar posterior within-state means and different posterior within-state

variances of states two and three has on the modal classification of the observations is

shown in Fig. 4.5. Despite the constraint on the means, the forward backward algorithm

samples the second state (gold) for the higher observations and the third state (red) for

the medium level observations, because of the wider variance on the second state. This

misclassification and the overlapping posterior densities make Model 4.2 unsuitable for

classifying the activity data.

A further example to emphasise the poor performance of Model 4.2 is in fitting the

model to the 1 Hz ENMO data, classified in Fig. 4.6. Here, the sampling algorithm has

drawn similar within-state means for all three hidden states, again with three different

posterior variances. This causes the phenomenon of the resulting activity states being

split; as in the BFEN data, the bulk of observations about zero are allocated to state one,

however the long tails of the posterior within-state densities for the other two states result

in observations either side of zero being allocated to a mixture of the other two classes.

Negative ENMO activity observations being classified as coming from higher zones of

activity is an incorrect interpretation of the data. The second state also corresponds to

the state with the largest variance, so the observations above zero are misclassified (the

red observations correspond to state three, but should be classed as the second, medium

level activity zone).

To overcome this ‘states within states’ problem caused by the unrestricted within-state

variance parameters, the states are given a shared precision, τ . This model constraint

should force the MCMC algorithm to find distinct means for each state.

4.3.2 Normal HMM with shared variance

The Normal HMM with shared within-state variance, parametrised by a shared precision

τ , is shown in Model 4.3.

Model 4.3

yt|Zt = k, µk, τk = τ ∼ N(µk, τ
−1),

P r(Z0 = k|ν) = νk,

P r(Zt = k|Zt−1 = j) = πj,k,

µk ∼ N(µ0, σ
2) with µ1 < µ2 < µ3,

τ ∼ Ga(α, β),

ν = (ν1, ν2, ν3) ∼ Dir(γ = (γ1, γ2, γ3)),

πj = (πj,1, πj,2, πj,3) ∼ Dir(αj = (αj,1, αj,2, αj,3)).

The within-state mean is subject to the same identifiability constraint as before. The
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Figure 4.6: 1 Hz ENMO data classified using a Normal HMM into low (blue), medium (gold) and
high (red) levels of activity.

subscript on τk in the likelihood, Eq. (4.1), is dropped to reflect the model updates, and,

when combined with the prior for τ , produces the following full conditional distribution:

τ |y, z ∼ Ga
(
α+

T

2
, β +

1

2

3∑
k=1

∑
t:zt=k

(yt − µk)2
)
. (4.6)

The full conditional distributions for the µk are as in Eq. (4.2) and the hidden param-

eter full conditional distributions also remain the same as in Eq. (3.9) and Eq. (3.10). The

MCMC scheme is implemented in a block Gibbs sampler.

Results

Model 4.3 was run under the same conditions as Model 4.2: using the same number of

iterations, burn in period and thin, and using the same prior hyperparameters.

Implementing the shared variance parameter in Model 4.3 has the desired effect of

improving the identifiability of the three distinct activity zones. Fig. 4.7 shows three clear

bands of activity, with reasonable boundaries between them. The lowest activity zone

now includes some non-zero activity observations, though these observations still reflect

very low levels of activity. The boundaries between the observations classified within

the subsequent activity zones have also shifted slightly higher than in Model 4.1. The
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Figure 4.7: 1 Hz BFEN data classified using a Normal HMM with shared within-state variance
into low (blue), medium (gold) and high (red) levels of activity.
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Figure 4.8: Normal HMM, with shared within-state variance, posterior empirical within-state
densities for low (blue), medium (gold) and high (red) levels of activity fitted to 1 Hz BFEN data,
compared to the actual BFEN density (grey).
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interpretation of each activity zone given the marginally different boundaries is still the

same, with zone one representing the patient being ‘at rest’, zone two representing small

movements and zone three being larger movements/activity.

Fig. 4.8 shows the three within-state densities are spread reasonably across the density

of the data, with what look like sensible within-state means. There is an area of overlapping

density between the posterior within-state densities of the two lower activity zones (gold

and blue), which has caused more of a blended boundary between these two states in the

classification plot. As a result of setting a shared variance between the states, the variance

of state one is quite large in comparison to the data it represents, but this is a trade-off

for better overall fit of the model in overcoming identifiability problems.

The mean number of transitions between states on each iteration of the sampler is 745,

which is a positive change that the first-order dependency between the states has brought

about: a reduction from the 1,047 state transitions that were seen in the mixture model.

Overall, the shared variance parameter has improved the fit of the within-state densities

to the data. It is clear, however, that whilst Model 4.2 does a good job at classifying

the activity observations into sensible activity zones, the fit of the posterior within-state

densities could be improved upon to fit closer to the actual density of the data. To

overcome this, an alternative within-state distribution that accommodates skewed data is

proposed.

4.3.3 Skew Normal HMM

To better fit the long tails in the activity data, a skew Normal within-state distribution

is explored. The skew Normal distribution has three parameters: location, ξ ∈ R; shape,

α ∈ R; and scale, ω ∈ R > 0. The location and scale parameters are analogous to the mean

and standard deviation in a Normal distribution, with the location representing the most

dense part of the distribution and the scale representing the spread of the density. The

shape parameter controls how skewed the distribution is: α < 0 represents a negatively

skewed density, α > 0 represents a positively skewed density and α = 0 recovers a Normal

distribution. As with the Normal distribution, the skew Normal distribution is specified

on the set of real numbers, so can accommodate all of the activity summaries. The

hierarchical HMM is described in Model 4.4.

Model 4.4

yt|Zt = k, ξk, ωk = ω, αk ∼ SN(ξk, ω, αk),

P r(Z0 = k|ν) = νk,

P r(Zt = k|Zt−1 = j) = πj,k,

ξk ∼ N(mξ, s
2
ξ) with ξ1 < ξ2 < ξ3,

αk ∼ N(mα, s
2
α),
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ω ∼ Ga(a, b),

ν = (ν1, ν2, ν3) ∼ Dir(γ = (γ1, γ2, γ3)),

πj = (πj,1, πj,2, πj,3) ∼ Dir(αj = (αj,1, αj,2, αj,3)).

As with the models trialled in this chapter so far, an ordering constraint is imposed

on the location parameter ξk, for k = 1, . . . , 3, such that ξ1 < ξ2 < ξ3 to prevent label

switching in the MCMC sampler. The Normal prior distribution on each ξk therefore im-

plies that ξ1 is drawn from the minimum of three Normals, ξ2 is drawn from the minimum

of two Normals, lower-truncated at ξ1, and ξ3 is drawn from a Normal distribution, lower

truncated at ξ2. This results in a joint prior that is proportional to the product of the

individual Normal prior distributions, as seen in Section 4.2.1:

π(ξ1, ξ2, ξ3) ∝ π(ξ1)π(ξ2)π(ξ3) with ξ1 < ξ2 < ξ3.

Results for the skew Normal model with separate within-state scale parameters are

not presented here, but showed the same identifiability problems as Model 4.2, where the

states appear to be split when classifying the observations, as in Fig. 4.5 and Fig. 4.6, due

to the location parameter of each state being similar and a large variation in the scale

parameter of each state. To prevent identifiability issues between the states, the scale

parameter is made common: ωk = ω for all k. The shape parameter αk has the same prior

hyperparameters for all k to reflect prior ignorance with respect to variation in skewness

across activity zones.

The complete data likelihood reflective of the new within-state distribution is:

p(y|z, ψ
obs

) =

3∏
k=1

∏
t:zt=k

p(yt|ψobs,k),

=
3∏

k=1

∏
t:zt=k

2

ω
√

2π
exp

{
− (yt − ξk)2

2ω2

}
Φ

(
αk

(
yt − ξk
ω

))
.

The novel derivations of the full conditional distributions for αk, ξk and shared ω are then:

π(ψ
obs
|y, z) ∝ π(ω)

3∏
k=1

π(ξk)π(αk)
∏
t:zt=k

p(yt|ψobs,k),

∝ ωa−1e−ωb
3∏

k=1

exp

[
− 1

2s2ξ
(ξk −mξ)

2)

]
exp

[
− 1

2s2α
(αk −mα)2)

]
∏
t:zt=k

1

ω
exp

[
− 1

2ω2
(yt − ξk)2

]
Φ

(
αk

(
yi − ξk
ω

))
,

∝ ωa−N−1e−ωb
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×
3∏

k=1

exp

[
− 1

2s2ξ
(ξk −mξ)

2 − 1

2s2α
(αk −mα)2)− 1

2ω2

∑
t:zt=k

(yt − ξk)2
]

×
∏
t:zt=k

Φ

(
αk

(
yt − ξk
ω

))
,

so

π(ω|y, z) ∝ ωa−N−1 exp

[
− ωb− 1

2ω2

3∑
k=1

∑
t:zt=k

(yt − ξk)2
] ∏
t:zt=k

Φ

(
αk

(
yt − ξk
ω

))
, (4.7)

π(αk|y, z) ∝ exp

[
− αk(αk − 2mα)

2s2α

] ∏
t:zt=k

Φ

(
αk

(
yt − ξk
ω

))
, (4.8)

π(ξk|y, z) ∝ exp

[
− 1

2ω2

∑
t:zt=k

(yt − ξk)2 −
ξk(ξk − 2mξ)

2s2ξ

] ∏
t:zt=k

Φ

(
αk

(
yt − ξk
ω

))
. (4.9)

The full conditional distributions of the within-state parameters are analytically in-

tractable and cannot be sampled from directly. MH steps are therefore necessary for

sampling from the posterior probability densities of each one. To do this, a proposal

distribution must be suggested for each parameter.

To respect the ordering constraint in ξ, ξ∗k is proposed from a truncated Normal distri-

bution (truncated between the current values of ξk−1 and ξk+1 as appropriate), with mean

ξk and standard deviation equal to tuning parameter λξ,k, i.e. ξ∗k ∼ TN(ξk, λξ,k; ξk−1, ξk+1)

where ξ0 = −∞ and ξ4 =∞. The proposal ratio for ξk is then:

q(ξ∗k, ξk)

q(ξk, ξ
∗
k)

=
φ
(
ξk−ξ∗k
λξ,k

)
λξ,k

(
Φ
(
ξk+1−ξ∗k
λξ,k

)
− Φ

(
ξk−1−ξ∗k
λξ,k

)) λξ,k
(
Φ
(
b−ξk
λξ,k

)
− Φ

(
ξk−1−ξk
λξ,k

))
φ
(
ξ∗k−ξk
λξ,k

)
=
Φ
(
ξk+1−ξk
λξ,k

)
− Φ

(
ξk−1−ξk
λξ,k

)
Φ
(
ξk+1−ξ∗k
λξ,k

)
− Φ

(
ξk−1−ξ∗k
λξ,k

) .
For ξ1 between (−∞, ξ2) this simplifies to:

q(ξ∗1 , ξ1)

q(ξ1, ξ∗1)
=
Φ
(
ξ2−ξ1
λξ,1

)
Φ
(
ξ2−ξ∗1
λξ,1

) .
For ξ2 between (ξ1, ξ3) the ratio is:

q(ξ∗2 , ξ2)

q(ξ2, ξ∗2)
=
Φ
(
ξ3−ξ2
λξ,2

)
− Φ

(
ξ1−ξ2
λξ,2

)
Φ
(
ξ3−ξ∗2
λξ,2

)
− Φ

(
ξ1−ξ∗2
λξ,2

) .
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For ξ3 between (ξ2,∞) the ratio simplifies to:

q(ξ∗3 , ξ3)

q(ξ3, ξ∗3)
=

1− Φ
(
ξ2−ξ3
λξ,3

)
1− Φ

(
ξ2−ξ∗3
λξ,3

) =
Φ
(
ξ3−ξ2
λξ,3

)
Φ
(
ξ∗3−ξ2
λξ,3

) .
A Normal proposal is used for α, centred at the previous value of αk for each k and

with standard deviation equal to a tuning parameter, i.e. α∗k ∼ N(αk, λ
2
α,k). The proposal

ratio drops out of the acceptance probability as this is symmetric. For ω, a log-Normal

proposal distribution is used, with median equal to the previous value of ω and standard

deviation equal to a tuning parameter, i.e. ω∗ ∼ LN(ω, λ2ω).

The MCMC scheme for Model 4.4 follows a Metropolis within Gibbs algorithm, to allow

the intractable within-state parameters to be sampled in the same block. This process is

detailed in Algorithm 4.2. A Gibbs step is used for ν and π as they have standard full

conditional distributions.

Results

Algorithm 4.2 was run for N = 150, 000 iterations, plus a burn in of 1,000 and was thinned

by 15. The hyperparameters were chosen to reflect similar prior assumptions about the

data as the models fitted so far: a Ga(1, 1) prior is assigned to ω; the location parameters

ξk are given a prior mean of mξ = 0.1, approximately the mean expected for BFEN data,

and standard deviation sξ = 0.5, approximately two standard deviations of the BFEN

data; the scale parameter was given a N(1, 32) prior, to reflect prior ignorance about the

skewness of the within-state distributions.

The tuning parameters for each of the proposal distributions were: λξ = (0.01, 0.1, 0.05),

resulting in acceptance rates of (0.017, 0.019, 0.068), respectively; λα = (2, 0.65, 0.4), re-

sulting in acceptance rates of (0.62, 0.043, 0.075), respectively; and λω = 0.1, resulting in

an acceptance rate of 0.090. These rates are all lower than the 10% lower bound for an

ideal MH acceptance rate, with the exception of the rate for α1 which is higher and the

rate for ω which is borderline, however because Algorithm 4.2 was run for long enough,

convergence of each of the parameters was reached and the trace plots of each of the

parameters show signs of mixing well.

The posterior within-state densities using the skew Normal distribution, Fig. 4.9, show

that the lowest activity level (blue) has a much closer fit to the density of the data with the

additional scale parameter. The posterior density for α1 has a mean of 35.58, emphasising

a strong positive skew to activity zone one, which is seen in the positively skewed data

overall. The posterior within-state densities for the other two activity zones are similar to

the Normal within-state densities in Model 4.3, with the posterior density for the shape

parameter for these states centring about zero.
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Algorithm 4.2: Skew Normal HMM MCMC scheme

1. Initialise ξ
(0)
k , α

(0)
k , ω(0), ν(0) and π

(0)
k , for all k, by sampling from prior

distributions in Model 4.4;
2. for i = 1, . . . , N :

3. run Algorithm 3.4 to sample the hidden states z(i);

4. draw π
(i)
k from (3.9) for k = 1, . . . , 3;

5. draw ν(i) from (3.10);

6. for ξ
(i)
k , k = 1, . . . , 3:

7. generate a proposal ξ∗k from q(ξ
(i−1)
k , ξ∗k), truncated on (ξ

(i)
k−1, ξ

(i−1)
k+1 ) where

ξ
(i)
0 = −∞ and ξ

(i−1)
4 =∞ for all i;

8. evaluate the acceptance probability

A(ξ∗k|ξ
(i−1)
k ) = min

(
1,
π(ξ∗k|·)q(ξ∗k, ξ

(i−1)
k )

π(ξk|·)q(ξ(i−1)k , ξ∗k)

)
;

9. generate an independent random variable u ∼ U(0, 1);

10. if u ≤ A(ξ∗k|ξ
(i−1)
k ) then set ξ

(i)
k = ξ∗k else set ξ

(i)
k = ξ

(i−1)
k ;

11. end

12. for α
(i)
k , k = 1, . . . , 3:

13. generate a proposal for α∗k from q(α
(i−1)
k , α∗k);

14. evaluate the acceptance probability

A(α∗k|α
(i−1)
k ) = min

(
1,
π(α∗k|·)
π(αk|·)

)
;

15. generate an independent random variable u ∼ U(0, 1);

16. if u ≤ A(α∗k|α
(i−1)
k ) then set α

(i)
k = α∗k else set α

(i)
k = α

(i−1)
k ;

17. end

18. generate a proposal for ω∗ from q(ω(i−1), ω∗);
19. evaluate the acceptance probability

A(ω∗|ω(i−1)) = min

(
1,
π(ω∗|·)q(ω∗, ω(i−1))

π(ω|·)q(ω(i−1), ω∗)

)
;

20. generate an independent random variable u ∼ U(0, 1);

21. if u ≤ A(ω∗|ω(i−1)) then set ω(i) = ω∗ else set ω(i) = ω(i−1);

22. end
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Figure 4.9: Skew Normal HMM, with shared within-state scale parameter, posterior empirical
within-state densities for low (blue), medium (gold) and high (red) levels of activity fitted to 1 Hz
BFEN data, compared to the actual BFEN density (grey).

Whilst the fit of the posterior within-state densities has improved with the additional

degree of freedom from the shape parameter, the resulting modal state classifications

in Fig. 4.10 are, on the whole, the same as those from Model 4.3. The mean number of

transitions between states is also very similar at 742. These results show that two candidate

models should be considered for classifying the activity observations into activity zones,

Model 4.3 and Model 4.4. How necessary the shape parameter in Model 4.4 is for correctly

identifying the activity zones will be assessed in the following sections.

The main drawback of the current way the models are being fit is how computationally

expensive the parameter estimation is. The models so far have used only 1/6th of the data

(10,000 observations) and have taken approximately one week to complete. Running the

processes with larger segments or all of the data is not realistically going to yield any

results in a time frame that would be suitable for real-time glucose prediction, which is

the main aim of the thesis. Parameters at least need to be estimated within a day to

perform model forecasts. Since the volume of 1 Hz activity data is large, using a smaller

portion of it should still be effective in estimating model parameters so long as the portion

of data used is rich enough, but faster methods are needed. One of the potential routes to

achieving this speed-up is to use a faster programming language. Alternatively, data sets

can be downsampled to lower frequencies before models are fitted.
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Figure 4.10: 1 Hz BFEN data classified using a skew Normal HMM with shared within-state scale
parameter into low (blue), medium (gold) and high (red) levels of activity.

4.4 Downsampling activity data

The HMMs fitted so far show a good initial classification of activity data summarised using

the BFEN algorithm into three distinct levels. The computationally expensive MCMC

process for a subset of data points is, however, impractical. The simplest way to overcome

this drawback is to reduce the size of the activity data sets; this can easily be done by

implementing a larger window to aggregate over the transformed data in each of the

algorithms discussed in Chapter 2. The activity summary transformations considered

are the ENMO algorithm, BFEN algorithm and step count algorithm. Further HMMs

are fitted to these activity summaries aggregated over five minute intervals: additional

to reducing the overall size of the activity data sets, this choice of window aligns the

frequency of the activity data with that of the glucose data for future joint modelling.

Normal and skew Normal within-state distributions are again considered, along with raw

and transformed activity summaries. In this section, a Normal HMM refers to Model 4.3

and a skew Normal HMM refers to Model 4.4. These labels are used interchangeably. The

prior hyperparameters of the hidden parameters for both models are

γ = (0.95, 0.03, 0.02), α =

10 1 1

1 3 1

1 1 2

 ;
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the same prior on the initial probability vector as for the models fitted to the 1 Hz activity

summaries, but less concentrated priors on the probabilities in the transition matrix. The

prior hyperparameters for the observation parameters are specified in each section. They

are chosen to represent prior ignorance about the within-state distributions.

4.4.1 ENMO HMMs

The ENMO activity data feature negative observations and are positively skewed with long

tails. The 1 Hz ENMO data alongside the same ENMO-transformed accelerometer data

aggregated over five minute intervals are shown in Fig. 4.11. Aggregating the data over a

larger window has smoothed over the activity profile and has resulted in the periods of rest

and activity becoming more prominent in comparison to the 1 Hz data. The downsampled

data still contain some negative observations, so a log or square root transform cannot be

applied to reduce the long tails. The skew Normal within-state HMM is therefore a good

candidate for capturing the long tails and classifying the activity observations into activity

zones. Both Models 4.3 and 4.4 are fitted to these data for comparison. A HMM with

three hidden components still seems suitable for these data, as there appear to be three

bands of observations in the data: an at-rest component, a medium-level component, and

a high-level component to explain the large spikes.

The hyperparameters used for the Normal HMM are: µ0 = 500, σ = 30, α = 1 and

β = 1 and for the skew Normal HMM are: mξ = 500, sξ = 30, mα = 1, sα = 4, α = 1 and

β = 1. The block Gibbs samplers were run for N = 200, 000 iterations, with additional

burn in of 1, 000 and a thin of 15 and N = 150, 000 iterations, with additional burn in of

1, 000 and a thin of 12, respectively.

The resulting posterior within-state densities from fitting Model 4.3 (solid lines) and

Model 4.4 (dashed lines) are in Fig. 4.12. The means of the two lower activity zones for

the Normal HMM are quite close together, with the second activity level centred around

the small mode at 500. The third activity zone is centred around 1,000, covering the next

highest modes in the data and most of the long tail for the higher activity observations,

but has a considerable amount of density overlapping the two lower states. As a result of

this, the second zone of activity does not dominate any clear range of activity observations

in the classification plot, Fig. 4.13 (left), with relatively few gold coloured observations

being shown.

The skew Normal model performs much better for the ENMO data set. The posterior

locations of the hidden states are more spread out, at sensible points along the range of

activity levels. The lowest activity within-state density comes down before the second

mode in the data, better differentiating between the observations relating to low and no

activity. As the zone one within-state density better captures the shape of the dominant

low activity zone with a single component, the other two components are not also trying to
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Figure 4.11: Accelerometer data summarised using the ENMO algorithm aggregated over one sec-
ond intervals (top – thinned by 20 for plotting) and aggregated over five minute intervals (bottom).

improve the fit of the first component, like in the Normal HMM. The position of the highest

activity state covers more of the low density range of high activity level observations.

Despite the better fit to the data in terms of interpretable activity zones, the posterior

skewness parameter, αk, is only different from zero for the lowest activity state, with a

mean of 0.78, which represents only a small level of positive skew. This is confirmed by the

bell-shaped curves in Fig. 4.12. This small improvement to the fit of the lowest activity

component has had a big, positive impact on the fit of the other components.

The classified observations in Fig. 4.13 (right) show three clear bands of activity, with

only the highest observations being classified as activity zone three. The classification of

each observation and the boundaries between each band of activity seem sensible. With

the downsampled frequency of the data, the three activity levels that have emerged from

fitting Model 4.4 are at rest (zone one), light activity (zone two) and higher intensity or

prolonged activity (zone three). Overall, Model 4.4 fits well to the ENMO data.
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Figure 4.12: Skew Normal HMM (dashed) and Normal HMM (solid) posterior empirical within-
state densities for low (blue), medium (gold) and high (red) levels of activity fitted to ENMO data,
compared to the actual ENMO density (grey).
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Figure 4.13: ENMO data classified using a Normal HMM (left) and a skew Normal HMM (right)
into low (blue), medium (gold) and high (red) levels of activity.
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Figure 4.14: Accelerometer data summarised using the BFEN algorithm, aggregated over one sec-
ond intervals (top – thinned by 20 for plotting) and aggregated over five minute intervals (bottom).

4.4.2 BFEN HMMs

Transforming the accelerometer data with the BFEN algorithm and a window size of five

minutes has the same impact of smoothing over the 1 Hz activity profile as is seen in the

ENMO summary, whilst accentuating the points in the data when the patient is active or

at rest. The one second and five minute aggregations are seen in Fig. 4.14.

To reduce the skewness in the BFEN density, depicted in grey in Fig. 4.15, a transfor-

mation can be applied. Since the observations in the BFEN summary are strictly positive

(> 0), a log-transform is used and this transformed density is shown in grey in Fig. 4.16.

The transformed data show three clear activity components, with what looks like a mix-

ture of three Normal densities. This is evidence to suggest the Normal HMM may be

sufficient in modelling the transformed data.

The hyperparameters used for the Normal HMM are: µ0 = 10, σ = 7, α = 1 and β = 1

and for the skew Normal HMM are: mξ = 10, sξ = 7, mα = 2, sα = 4, α = 1 and β = 1.

The block Gibbs samplers were run for N = 100, 000 iterations, plus a burn in of 1, 000

and with a thin of 10 and N = 500, 000 iterations, plus a burn in of 1, 000 and with a

thin of 30, respectively. For the log-transformed data, the hyperparameters used for the
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Normal HMM are: µ0 = 2, σ = 1.5, α = 1 and β = 1 and for the skew Normal HMM are:

mξ = 2, sξ = 1.5, mα = 0, sα = 3, α = 1 and β = 1. The block Gibbs samplers were both

run for N = 100, 000 iterations, plus a burn in of 1, 000 and with a thin of 10. The MCMC

schemes took considerably less time to run on the downsampled data, completing within

one to two days. Typically the skew Normal model took longer than the Normal model

due to the increased complexity of the model and larger number of parameters, but this

was also dependent on the number of iterations. This is the case for subsequent activity

models, too.

For the raw five minute BFEN data, Fig. 4.15 shows a slightly better fit to the density

by the skew Normal model (Model 4.4), where the within-state density of zone one shows

a positive skew and the curve comes down sharply at zero. The variance of the Normal

HMM densities is slightly smaller than the scale of the skew Normal densities, with the

posterior skew Normal curves appearing slightly wider and flatter than the Normal curves,

but overall the two models fit quite similarly. The posterior densities of the means and

locations of each state overlap. Despite the weight of the posterior within-state density for

zone one with a skew Normal distribution appearing higher than the weight of the Normal

within-state density, the stationary distributions of the two models are similar: the mean

posterior stationary distribution for Model 4.3 is (0.72, 0.15, 0.13) and for Model 4.4 is

(0.70, 0.16, 0.14). Looking in more detail at the posterior within-state densities in Fig. 4.16

for the log-transformed data, the two models again fit very similarly. The skew Normal

model shows a small negative skew for zone one (blue) and zone three (red) of −1.11 and

−1.67, respectively, which allows the posterior densities to better fit the tails of the data.

As Models 4.3 and 4.4 have identified three similar zones in the raw and transformed

BFEN data, only the classification results for one model from each data set are compared.

The skew Normal model for the raw data fits slightly better than the Normal data, whilst

the Normal model is sufficient in describing the log-transformed data. The classifications

of the raw observations according to each of these model results are shown in Fig. 4.17.

The raw BFEN classification plot, Fig. 4.17 (left), shows three clear, equal-width

bands of activity, which look similar to the results achieved by the models already fitted

in this chapter. The classification plot for the log-transformed data, however, has achieved

something different: fitting the model to the transformed data and plotting the results

on the raw data has a similar effect as if the variance between the states was allowed to

differ, without the identifiability problems. The resulting posterior zones of activity are

more reflective of the interpretable zones of activity that were detected when fitting the

mixture model, Model 4.1: complete inactivity in zone one, low activity in zone two, i.e.

the patient is awake but is not moving around much, and ‘active’ in zone three, i.e. the

patient is moving around and this may involve walking. The mean number of transitions

between the states here is 486, which, over a period of one week, seems reasonable. For the
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Figure 4.15: Skew Normal HMM (dashed) and Normal HMM (solid) posterior empirical within-
state densities for low (blue), medium (gold) and high (red) levels of activity fitted to BFEN data,
compared to the actual BFEN density (grey).
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Figure 4.16: Skew Normal HMM (dashed) and Normal HMM (solid) posterior empirical within-
state densities for low (blue), medium (gold) and high (red) levels of activity fitted to log BFEN
data, compared to the actual log BFEN density (grey).
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skew Normal model on raw data, the mean number of transitions is similar but slightly

lower at 463.

To determine which combination of fitted model and activity data summary displays

the greatest agreement, the MSEs of the one-step-ahead forecasts are compared. The MSE

here is defined for each time point as the squared deviation between the observation at

time t and a draw from its one-step-ahead forecast distribution, averaged across MCMC

iterations. As the scale of the MSEs cannot directly be compared for the raw and log-

transformed results, the MSEs are normalised by dividing by the square of the mean of

the corresponding activity summary (the raw or log-transformed data) and are shown

in Fig. 4.18. Normalising the MSEs in this way is equivalent to computing the squared

coefficient of variation of the errors, which is a standardised measure of the dispersion

of each of the model results.1 Other methods for normalising the MSEs include dividing

by the range of the MSEs or the variance. Most notable for the two summaries is the

long tails that are present in the distribution of errors for the raw data compared to the

log-transformed data. The distribution of MSEs for the log-transformed data, for both

models, is much tighter and on average the errors are lower. The Normal HMM and

the skew Normal HMM have similar MSE distributions for the log-transformed and raw

data, confirming the similarity in performance of the models for each activity summary.

Overall, Model 4.3 being fitted to the log-transformed data is the preferred model and

summary; the model produces the lowest average MSE and explains the hidden states of

the underlying activity density well, offering a classification that can be easily interpreted,

too. The simpler within-state distribution also leads to a more straightforward MCMC

scheme, which is why this model is chosen over the skew Normal model applied to the

log-transformed data, that provides similar results in all aspects of the analysis.

4.4.3 Step count HMMs

The step count data aggregated over one second intervals are discrete in their nature

and it is therefore unsuitable to describe the activity zones for these data with continuous

within-state distributions. Fig. 4.19 shows the step count data aggregated over five minute

intervals (bottom) compared to the one second data. The aggregation over a larger window

brings about a large enough range of observations for the data to be considered continuous,

which can be seen in the comparative figure. This means an attempt at describing the

step count data with the current models, Model 4.3 and Model 4.4, is possible. The shape

of the step count summary is similar to that of the BFEN five minute summary, with a

clear distinction between rest and active periods: there are flat periods in the profile that

coincide with night time when the patient is asleep.

As with the BFEN data, a transformation can be applied to the step count data to

1https://stats.idre.ucla.edu/stata/ado/analysis/
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Figure 4.17: Raw BFEN data classified using a skew Normal HMM (left) and log-transformed
BFEN data classified using a Normal HMM (right) into low (blue), medium (gold) and high (red)
levels of activity.
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Figure 4.18: Boxplots of the normalised one-step-ahead forecast MSEs for the skew Normal HMM
fitted to the raw BFEN data and the Normal HMM fitted to the log-transformed BFEN data.

101



Chapter 4. Models to classify and identify levels of activity

May 21 May 23 May 25 May 27

0
1

2
3

4
5

May 21 May 23 May 25 May 27

0
20

0
40

0

Time

S
te
p
C
ou

n
t

Figure 4.19: Accelerometer data summarised using the complete step count algorithm, aggregated
over one second intervals (top – thinned by 20 for plotting) and aggregated over five minute intervals
(bottom).

reduce their positive skew. As there are several zero-observations in these data, a square

root transformation is applied. The two models are applied to both sets of data.

The hyperparameters used for the Normal HMM are: µ0 = 100, σ = 10, α = 1 and

β = 1 and for the skew Normal HMM are: mξ = 100, sξ = 10, mα = 2, sα = 4, α = 1 and

β = 1. The block Gibbs samplers were run for N = 100, 000 iterations, with additional

burn in of 1, 000 and a thin of 10 and N = 150, 000 iterations, with additional burn in

of 1, 000 and a thin of 12, respectively. For the square-rooted data, the hyperparameters

used for the Normal HMM are: µ0 = 10, σ = 5, α = 1 and β = 1 and for the skew

Normal HMM are: mξ = 10, sξ = 5, mα = 1, sα = 3, α = 1 and β = 1. The block Gibbs

samplers were run for N = 100, 000 iterations, plus a burn in of 1, 000 and a thin of 10

and N = 500, 000 iterations, plus a burn in of 1, 000 and a thin of 50, respectively.

Fitting Model 4.3 and Model 4.4 to the raw step count data produces the posterior

within-state densities in Fig. 4.20. Once again, the models perform similarly, detecting

hidden states in the same sections of the raw data. The skew Normal model offers a tighter

fit to the lowest activity zone by adding a strong positive skew to this state. As with

the BFEN data, the posterior stationary distributions for the raw step count summary
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Figure 4.20: Skew Normal HMM (dashed) and Normal HMM (solid) posterior empirical within-
state densities for low (blue), medium (gold) and high (red) levels of activity fitted to step count
data, compared to the actual step count density (grey).

are similar for both models, despite the weights of the posterior within-state densities

appearing to be slightly different. The posterior means for the stationary distributions

are (0.40, 0.40, 0.20) for the Normal within-state HMM and (0.40, 0.43, 0.17) for the skew

Normal HMM.

The posterior within-state densities from fitting the models to the square-rooted data

are shown in Fig. 4.21. After applying the transformation to the raw step count data, the

long tail has been reduced, but there appear to be up to four underlying states, represented

by the four peaks that can be seen in the grey density. As a result of the additional mode,

there are some identifiability issues that arise when fitting a three-state model to the data:

the posterior density for the location parameter of zone two in the skew Normal HMM

results is bimodal, sampling from densities that coincide with the two central modes, and

zone one and zone three also cover the two lower and two upper modes, respectively. This

leads to a bimodal posterior stationary distribution too. The Normal HMM performs

better on this data set, but models with K = 4 hidden states should be explored to see

if this improves the fit and performance. The fourth peak in the transformed data is a

possible side effect of working with data that come from a discrete state space.

The models fitted to the raw step count data and the Normal HMM fitted to the square-

rooted step count data all produce similar classification plots, two of which are seen in
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Figure 4.21: Skew Normal HMM (dashed) and Normal HMM (solid) posterior empirical within-
state densities for low (blue), medium (gold) and high (red) levels of activity fitted to sqrt step
count data, compared to the actual sqrt step count density (grey).

Fig. 4.22 for comparison. The main difference between the results for these three models

is the boundaries between the activity zones. For the skew Normal raw data classification

(Fig. 4.22, left) and the Normal classification (not shown), the boundary between zones

one and two is more gradual, with a clearer line between the upper two activity zones.

For the Normal HMM fitted to the square-rooted data, Fig. 4.22 (right), the opposite is

true. This is based on how sharply the overlapping curves of the posterior within-state

distributions decrease to (near) zero. The skew Normal HMM fitted to the square-rooted

data is not shown, but the classification is similar to that of the Normal HMM on the

ENMO data, Fig. 4.13, left: there are very few zone two activity observations due to the

dominance of the other two states across the data.

Detecting K = 4 states

The transformed step count data, with density shown in Fig. 4.23 (grey), have up to

four modes. Consequently, the posterior within-state densities for these data could be

improved. Model 4.3 and Model 4.4 are fitted to these data with K = 4 hidden states to

see if this improves the fit and to test the flexibility of the models being tested.

The model hyperparameters, number of iterations, burn in and thin are the same as

for the three-state square-rooted data, however the priors on the initial distribution and
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Figure 4.22: Step count data classified using a skew Normal HMM (left) and square-rooted step
count data classified using a Normal HMM (right) into low (blue), medium (gold) and high (red)
levels of activity.
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Figure 4.23: Normal HMM posterior empirical within-state densities (solid) and skew Normal em-
pirical within-state densities (dashed) for low (blue) to high (red) activity, through two intermediate
activity zones (magenta and gold) fitted to the square-rooted step count data.
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transition matrix are adapted to account for the additional state. Their hyperparameters

are:

γ = (0.8, 0.15, 0.03, 0.02), α =


8 1 1 1

1 4 1 1

1 1 3 1

1 1 1 2

 .

The posterior within-state densities in Fig. 4.23 after fitting the Normal and skew

Normal HMMs show a much improved fit to the actual density of the data, compared to

the three-state models in Fig. 4.21. The four distinct modes have been identified as four

distinct hidden states by both models. The skew Normal model shows an improved fit

to the lowest hidden state (blue, dashed) by assigning a positive skew to the distribution

of this component so that the curve comes down sharply at zero where the step count

data begin. The posterior mean stationary distributions for both models are similar, at

(0.24, 0.14, 0.40, 0.22) and (0.20, 0.16, 0.41, 0.23) for the Normal and skew Normal models,

respectively.

In terms of classification performance, the two models perform very similarly, so only

the skew Normal HMM classification results are shown in Fig. 4.24. There are clear

boundaries between each activity component and the location of these boundaries seems

sensible for each of the states.

Comparing the overall performance of the three-state and four-state models, the nor-

malised one-step-ahead MSE distributions are presented in Fig. 4.25. The figure shows

that although the models fitted to the raw data (first two boxplots) visually fit well to

the data, they have a higher MSE and long tails of higher errors. The models applied

to the square-rooted data perform similarly, with the exception of the three-state skew

Normal model that classified most points into two states. Although the four-state models

provide within-state posterior densities that fit well to the data, they do not offer much

of an improvement in terms of model performance for classification or for lower errors.

Comparing Fig. 4.24 to Fig. 4.22 (right), the two lower activity zones (blue and magenta)

are equivalent to the lowest activity zone (blue). As the three-state Normal model applied

to the square-rooted data provides a good solution to classifying the step count data, this

is the model that is chosen. If, however, a three-state model is not sufficient for modelling

other patient data sets, the four-state model can be utilised.

4.4.4 Comparison of results

The models developed in Section 4.3 have provided effective methods for classifying and

identifying the underlying hidden states of the activity summaries presented. In this

section, the ‘best’ models chosen for each of the activity summaries are compared: the

ENMO data classified by fitting a skew Normal HMM, Model 4.4; the BFEN data classified

106



Chapter 4. Models to classify and identify levels of activity

May 21 May 23 May 25 May 27

0
10

0
20

0
30

0
40

0

Time

S
te
p
co
u
n
t

Figure 4.24: Step count data classified using a skew Normal HMM into four activity zones, from
low (blue) to high (red), through two intermediate activity zones (magenta and gold) based on the
square-rooted data.
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Figure 4.25: Boxplots of the normalised one-step-ahead forecast MSE for the skew Normal HMM
and Normal HMM fitted to the raw step count (SC) data and square-rooted step count data, with
three and four hidden activity states.
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by fitting a Normal HMM, Model 4.3, to the log-transformed data; and the step count

data classified by fitting a Normal HMM to the square-rooted data. How each of the

classified activity summaries describes each of the hidden activity components must be

assessed, as the activity zones will be used to model glucose levels in the joint models

fitted in Chapter 6.

The mean MSEs produced by the one-step-ahead forecasts on each iteration of the

MCMC scheme for each of the models can be compared to measure the predictive perfor-

mance of each model for each activity summary. As the scale of each summary is different,

the MSEs must be normalised for a direct comparison to be made, which is done by di-

viding by the square of the mean of the corresponding activity summary, as with the raw

and transformed data sets earlier in the section. Boxplots of the mean MSEs of each data

set are shown in Fig. 4.26. The distribution of MSEs for the BFEN data set covers the

lowest values and has the fewest of outliers. The step count data set is second best, with a

slightly higher mean and longer tail of outliers. The ENMO data set has the widest range

of MSEs and the most outliers, of which some are large. There is one outlier that has been

omitted from the plot for this summary, with a normalised mean MSE of 11.46. As there

is such a long tail in the ENMO data set, and the within-state variance is bigger, there is

more room for a more erroneous value for the one-step-ahead forecast to be sampled. As

the log BFEN within-state distributions have a smaller variance, the errors produced by

the one-step-ahead forecasts are relatively small.

The transition matrix that describes each HMM informs the probability of moving

between each of the hidden states. The posterior densities of each of the transition prob-

abilities for the models fitted to the step count, ENMO and BFEN data sets are shown in

Fig.4.27. The first row of Fig. 4.27 corresponds to the first row of the transition matrix.

For all of the activity summaries, the probability of staying in state one is very high, with

tight posterior densities around high probabilities for all three summaries. The probability

of moving from state one to state two is much smaller, and moving to state three is smaller

again. For the ENMO data, the probability of moving to one of the other states from state

one is very close to zero, whereas the probability of moving to the second activity state for

the other activity summaries is slightly higher, with a close to zero probability of moving

to the third state. In the second row of densities, the posterior densities for the ENMO

data are wider, with approximately equal probability of moving back to the first activity

zone or staying in the second zone and a higher chance of moving to zone three when the

patient is in zone two than there was if the patient was in zone one. The flatter densi-

ties reflect less certainty about the posterior probabilities, which comes from the lack of

data points in this state to inform the prior. For the step count and BFEN data sets,

the posterior densities in this state are still tight and well informed, since there are a lot

of observations to inform the prior. The densities for both of these summaries show a
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Figure 4.26: Boxplots comparing the mean MSEs of the one-step-ahead forecasts for the models
fitted to each of the activity summaries. The largest outlier for the ENMO data set (11.46) has
been omitted from the plot to make the comparison easier.

high probability of staying in state two, followed by the small probability of moving to

state three and a small probability of moving back to state one. Finally, the third row

of posterior densities shows an even flatter posterior for the ENMO data, since there are

very few observations in this state. The probability of staying in state three or moving to

one of the other states is approximately equal. For the step count and BFEN summaries,

there is a high probability of staying in zone three and increasingly small probabilities of

moving to states two or one, with the probability of moving to zone one being negligible.

The BFEN and step count transition densities are similar in structure to the prior beliefs

about the hidden process; there are strong probabilities on the diagonal and the probabil-

ity of moving between non-adjacent states is low. The classification plots for the BFEN

and step count summaries, Fig. 4.17 (right) and Fig. 4.22 (right), respectively, show that

zone one observations are mainly observed at night time, so the low probability of moving

to this zone from one of the other states should be small, and the probability of staying in

the other two states and moving between the two is more likely. For the ENMO data, the

transition probabilities generally encourage the state to regress back to the first activity

zone, which is supported by the majority of observations in Fig. 4.13 (right) falling into

this activity zone.

To further explore the posterior transition densities, Fig. 4.28 shows the proportion of
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Figure 4.27: Transition matrix element-wise posterior densities for the models fitted to each of the
activity summaries. The position of each plot corresponds to the element of the matrix it relates
to, i.e. the first row of plots corresponds to the first row of the transition matrix.

time that Patient 3 spends in each of the activity zones according to the classification of

each of the summaries. The plot shows how the BFEN and step count summaries per-

form similarly, falling in the centre of the ternary plot. The ENMO activity summary,

however, is very different. The majority of observations in the ENMO data come from

the lowest activity level, with small proportions coming from zones two and three. As

is expected, the empirical proportions shown are equal to the equilibrium weights of the

posterior mean stationary distributions for each of the summaries: for the BFEN sum-

mary this is (0.31, 0.41, 0.29), for the step count summary the stationary distribution is

(0.35, 0.42, 0.23) and for the ENMO summary this is (0.92, 0.07, 0.01). There is a more

uniform distribution of the proportion of observations in each of the activity zones using

the BFEN and step count summaries. This disparity in distribution of observations per

state raises the question over which interpretation of ‘higher level’ activity is most useful.

It is likely that the observations that fall in the high level activity state for the ENMO

data only involve high intensity activity, i.e. walking or running. As people that suffer from

type II diabetes are often quite inactive, it could be realistic for such a small proportion

of their observations to be in this zone. It could however also be an identifiability problem
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Figure 4.28: Ternary plot comparing the overall proportion of time spent in each activity zone for
each activity summary.

with this activity summary, since the majority of the observations fall between zero and

500. A benefit of the BFEN and step count summaries is that they have both identified

the lowest zones of activity as when the patient is sleeping, which is bound to have a

different effect on glucose levels as to when the patient is awake, then the other two zones

represent low activity and higher activity.

As the data for the current set of patient activity levels are unlabelled, it is difficult to

know which of the activity summaries is most useful in classifying observations. To exploit

the relationship between glucose levels and activity levels, it is important to represent the

three zones of activity accurately, since the way that activity levels affect glucose varies

between intensities. Further exploration into what activities the different zones represent

would therefore be helpful. Provisionally, based on the results discussed in this section, the

Normal HMM fitted to the log-transformed BFEN data is the best model to take forward

to use when modelling the glucose data. The underlying activity zones are interpretable

and this combination of model and activity summary has the lowest MSE across those

discussed.
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4.5 Across-patient comparison

The activity models so far have only been fitted to one patient. It is important to look

at how well the HMMs perform on different patients’ activity summaries to ensure the

models developed work consistently. Additionally, one of the issues raised with the results

from fitting the current models is that there is no way of checking how representative the

resulting classifications are of different types of activity, not least because there are large

discrepancies between the ENMO classifications and the BFEN and step count classifi-

cations. To rectify this, some extra glucose and accelerometer data have been collected

on three non-diabetic people, referred to as ND 1, ND 2 and ND 3. One of these data

sets, from ND 1, is partially labelled with the types of activity that are being performed

throughout the day, such as when they are walking or sitting. Classifying these data and

annotating the activities on top of them will help determine which activity summary is

best modelled by a HMM. The data sets of ND 2 and ND 3 are not labelled, but are known

to contain a range of activities, so modelling the additional data will aid in confirming the

intensities of activity that are observed in the current patient data and determining the

maximum activity levels expected to be observed.

In this section, the annotated accelerometer data of ND 1 are transformed using the

BFEN and ENMO algorithms and classified, then the activity annotations are compared

to the classified activity zones for each summary. The results from fitting HMMs to other

diabetic patients and the additional non-diabetic patients are then compared to those

collected so far. The hyperparameters chosen for each patient’s summary are the same

as for the corresponding model and summary for Patient 3 in the chapter so far. The

sampling algorithms were run for a sufficient number of iterations for convergence to be

achieved.

4.5.1 Comparison with annotated data

Additional data have been collected on three non-diabetic people over a ten day period. As

the data for ND 1 are labelled, they are a good source of comparison for the classification

results to see how observations are grouped together in the underlying activity zones of

each activity summary. The accelerometer data of ND 1 are processed using the BFEN

and ENMO algorithms with a five minute window. As the step count summary produces

similar classifications to the BFEN summary, only the BFEN summary is looked at in

this section. Model 4.3 is fitted to the log-transformed BFEN data and Model 4.4 is fitted

to the ENMO data. One day of the classification results for each summary is seen in

Fig. 4.29 with known activity intensity zones annotated, along with the activity labels.

The intensity of the annotated activities is coloured to reflect the predominant state at

the time.
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Figure 4.29: The five minute BFEN (top) and ENMO (bottom) summaries classified using
Model 4.3 and Model 4.4, respectively, using ND 1’s accelerometer data. Activity zones are anno-
tated as vertical lines, with width equal to the duration of the activity.

The annotated BFEN classification, Fig. 4.29 top, confirms that the underlying activity

zones should be interpreted as inactivity/sleep for zone one, sedentary/low activity for zone

two and ‘active’ for zone three. The level one, low intensity activities, such as sitting or

mindfulness sessions, therefore correspond to zone two for this classification (gold) and the

other activities, such as walking and running, correspond to zone three (red). The plot

shows how the empirical classification of the BFEN observations correctly ‘identifies’ the

annotated activities. Over the full data set, the proportion of observations that match the

annotations, given the interpretation of the model summary, is 84%. For the annotated

ENMO classification, Fig. 4.29 bottom, the underlying states do not consistently identify

the annotated activities. The summary makes no distinction between sitting and walking,

and fails to detect the running event at all. As a result, the ENMO classifications and

annotations only match 28% of the time. The ENMO activity classifications are therefore

not as reliable or useful in identifying underlying activity zones as the BFEN activity

classifications are.

In the BFEN summary, all activities that involve an increased heart rate, such as

walking and running, are classed in the same activity state (zone three). In Section 1.4,

evidence suggested that a distinction between the two intensities is not important, with

studies finding that standing and walking have a similar impact on glucose levels, as do
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Figure 4.30: Log-transformed BFEN densities for each person: Patient 3, blue, solid; Patient 5,
orange, solid; Patient 10, red, solid; ND 1, blue, dashed; ND 2, orange, dashed; and ND 3, red,
dashed.

seated and non-seated activities (Dunstan et al., 2012; Henson et al., 2016; McCarthy et al.,

2017). The use of the classifications of activity levels according to the BFEN summary

can therefore be explored further for bivariate glucose prediction. This is carried out in

Chapter 6 where joint models are explored.

4.5.2 Activity zone comparison

It is important to ensure the model chosen to classify the underlying activity zones of a

given activity summary performs well across different patients. The comparison of the

posterior within-state densities produced for a range of patients is useful for this analysis,

and is also useful for determining the extent to which a universal model can be developed

for all patients, or whether models need to be tailored to individuals.

Fig. 4.30 shows the densities of the log-transformed BFEN summaries for Patient 3,

Patient 5 and Patient 10 and ND 1, ND 2 and ND 3. Taking the log of each summary

has reduced the variation in the range between each of the patients, where the maximum

activity levels observed are vastly different. ND 1 has a longer upper tail than the other
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Figure 4.31: BFEN within-state posterior densities for each hidden state (one to three, left to
right, respectively) for each person: Patient 3, blue, solid; Patient 5, orange, solid; Patient 10, red,
solid; ND 1, blue, dashed; ND 2, orange, dashed; and ND 3, red, dashed.

patients, because of the significantly higher activity observations that were recorded when

the patient was running, but there is little density here. The log-transformation has had a

positive effect on reducing the impact of differing maximum activity across patients. The

shapes of the densities in the mid-range of activity levels vary, but in general each density

can be described by a mixture of three Normals. The similarities between the patient

summaries imply that a universal model for activity could be possible.

Fig. 4.31 shows the posterior within-state densities for each patients’ BFEN activity

summaries, where each panel represents one of the hidden states (one to three, left to

right). On the whole, the densities across the patients are the same, however the posterior

within-state density for the second and third activity zones for ND 1 and the third zone for

ND 2 are centred about slightly higher activity levels than for the other patients. For the

third activity zone, the lower tails of the densities fall around a similar value to the other

patients and the upper tails are just above the tails of the other patients, which account for

the higher values observed for these patients. If used to cross-classify the other patients’

data, these densities are unlikely to change the resulting classification. For the second

activity zone, the higher mean of the posterior within-state density for ND 1 results in a
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greater overlap with the third activity zone, which could result in the observations on the

boundaries of these states being classified differently than with the posterior densities of

the other patients. Overall, Fig. 4.31 confirms that the BFEN summary with a log-Normal

within-state distribution is a versatile way of classifying data from different patients, and

is one that produces consistent results across patients, too.

The results in this section show that the posterior within-state densities across pa-

tients are very similar, especially for the patients who have been diagnosed with diabetes.

This opens up the possibility of developing a model that can be used across all patients,

or at least that can be used to develop an informative prior for applying the model to

new patients, perhaps allowing the model to be fitted quickly to short time series. Whilst

the maximum activity observation across the diabetic and non-diabetic patients varies

dramatically, the log-transform of the data ensures that the posterior density of the third

activity zone is similar across both groups, showing that a lack of higher level observations

does not significantly affect the fitted HMM. These results, along with the high propor-

tion of matching annotations, prove that the BFEN summary works well for consistently

monitoring the activity levels of patients.

4.6 Summary

The aim of this chapter was to find an appropriate model and activity summary that

classifies the activity observations from the chosen summary into realistic and interpretable

activity intensity zones. This was mainly carried out by fitting HMMs to the data, after

briefly considering a HMM with independent hidden states (a mixture model). Use of a

HMM with first order Markovian dependency between the hidden states more accurately

captured the way the sequence of states evolved over time, with fewer transitions between

the states that better described how a person moves between activity states.

Three activity summaries were considered, the BFEN activity summary, Algorithm 2.3,

ENMO, Algorithm 2.1, and the complete step count, Algorithm 2.7. Because of the long

positive tails in these summaries, two within-state distributions were also considered: the

Normal distribution, for simplicity and conjugacy; and the skew Normal distribution, to

better fit the long tails. The skew Normal HMM successfully improved the fit of the

posterior within-state distributions for the ENMO activity summary in particular, which

could not easily be transformed to reduce the skew of the data because of the negative

observations this summary contained. A Normal HMM was sufficient after transforming

the other activity summaries, however, reducing the model complexity.

For the step count data, a higher number of hidden states was used to classify the

data, after plots of the square-root transformed data showed four modes. Fitting a four-

state HMM improved the fit of the posterior within-state distributions to the data and
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showed that the HMM can be adapted easily. A three-state model was sufficient for the

other summaries and when comparing the three- and four-state models for the square-root

transformed step count data, the three-state HMM still provided interpretable results.

An important section of this chapter was in comparing the results across the different

activity summaries. Additional partially labelled data collected from healthy patients

allowed for the interpretations of the classified observations from the ENMO and BFEN

summaries to be validated. In doing so, it was deduced that the ENMO algorithm was

not an appropriate summary for classifying observations into activity intensity zones, as

the observations from this algorithm were frequently miss-classified. This would lead

to incorrect inferences when using this information to model glucose levels. The BFEN

algorithm was therefore chosen for transforming the accelerometer observations hereafter,

with the log-Normal HMM used for classifying the observations it produces.

Additional investigation into how the Normal HMM performs on the log-transformed

BFEN data from other patients was also carried out. The posterior within-state distri-

butions across diabetic and non-diabetic patients were very similar, confirming that a

universal model for activity or an informative prior could be used across patients.
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Monitoring and forecasting

glucose levels

5.1 Background

The exploratory data analysis carried out on the glucose profiles of eight diabetic pa-

tients in Chapter 2 showed the need for a dynamic, seasonal model to capture the diurnal,

but often varied, nature of blood glucose levels over time. To model the autocorrelation

between observations, AR(p) models are first explored, to measure how well a basic de-

pendency structure explains the changes in future glucose levels for short-term (up to two

hours) forecasts. These models are fitted for different orders, p. Following this, DLMs are

fitted to glucose levels to see if a more complex model improves predictive performance.

Models are developed using Patient 3’s glucose data (the same patient whose activity data

informed the modelling decisions in Chapter 4) holding back one day, which will be used

to compare the predictive performance of the different models.

5.2 Autoregressive models

AR models have been widely implemented in modelling glucose levels in previous re-

search (Gani et al., 2009; Sparacino et al., 2007). The success of such models at forecasting

glucose levels varies depending on the order of the model and the length of the predictive

horizon. The glucose profiles for each patient, Fig. 2.1, show a seasonal pattern, with

rises in glucose levels corresponding to meal times, for example. Complex roots in the

characteristic polynomial of an AR(p) model give rise to quasi-periodic behaviour (Huerta

& West, 1999) and so the chosen order must be high enough for the model to allow for

this kind of behaviour. Stationarity is an important property to consider when fitting

AR models to time series. If the parameters of the model lie outside of the stationary
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region, the forecasts it produces become unstable, with the predictive variance increasing

without bound. Despite their seasonality, the glucose profiles are assumed to be stationary

for the purpose of this section, which is a reasonable assumption to make as the overall

mean glucose level for each patient is relatively constant and so is the variance in glucose

levels. If a high enough order is selected, an AR(p) model could therefore be sufficient in

predicting glucose levels over a short time horizon. The simple AR models fitted in this

section provide a baseline of predictive performance for the more complex models fitted

later in the chapter.

A Bayesian AR model of order p is described in Model 5.1.

Model 5.1

yt|µ, σy, φ ∼ N(µ+ (Xt − µ1′p)φ, σ
2
y),

where Xt = (yt−1, . . . , yt−p) and φi(ρ)is described by Eq. (3.5), for i = 1, . . . , p,

ρk = 2ρ∗k − 1 with ρ∗k ∼ Be(a1, b1) for k = 1, . . . , p,

µ ∼ N(f, g2),

σ−2y ∼ Ga(a2, b2).

As described in Section 3.1.4, the stationary region of an AR(p) model becomes difficult

to define in terms of the model parameters when p > 2, however the model coefficients,

φ, can be expressed in terms of the model partial autocorrelations, ρk for k = 1, . . . , p, as

seen in Eq. (3.5). The stationary region of the model is then defined when the modulus

of the model partial autocorrelations are less than one. In Model 5.1, this is implemented

by assigning ρ∗k a Beta prior, which restricts it to the (0, 1) space, then applying the

transformation ρk = 2ρ∗k − 1 to produce a prior defined on (−1, 1). The ρ∗k have shared

prior hyperparameters a1 and b1.

Updates to the coefficient vector φ in the MCMC sampler are made via updates to

each ρ∗k, to avoid introducing the Jacobian of the transformation. A closed form posterior

distribution is not available for ρ∗k, so a MH update is necessary for each one. A proposal

value, ρ̃∗k, is generated from Be(λkρ
∗
k + δ, λk(1 − ρ∗k) + δ). The parameter δ is a ‘nudge’

parameter: a small increment that is added into the proposal distribution to avoid the

chain sticking in one of the tails of the distribution, and λk is a tuning parameter chosen

to manage the acceptance rate of the chain. The acceptance probability is formed by

combining the prior for ρ∗k, the proposal distribution and the likelihood, which is computed

after transforming ρ∗k to ρk to φ.

A Normal prior distribution is assigned to the mean, µ, and a Gamma distribution is

assigned to the precision σ−2y as these choices are semi-conjugate. Combining these with

the likelihood, where given the length of the series it is reasonable to assume p(y1:p) ∝ 1,

the full conditional distributions for these parameters are derived as follows:
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π(µ, σ−2y |y, φ) ∝ π(µ)π(σ−2y )
T∏

t=p+1

p(yt|φ, µ, σ−2y ),

∝ exp

[
− 1

2g2
(µ− f)2

]
exp[−b2σ−2y ](σ−2y )a2−1

T∏
t=p+1

1√
2πσ2y

exp

[
− 1

2σ2y
(yt − µ− (Xt − µ1′p)φ)

]
,

so

µ|y, φ, σ−2y ∼ N
((

1

g2
+

1

σ2y

T∑
t=p+1

(1− φ′1p)2
)−1( f

g2
+

1

σ2y

T∑
t=p+1

(1− 1′pφ)(yt −Xtφ)

)
,

(
1

g2
+

1

σ2y

T∑
t=p+1

(1− φ′1p)2
)−1)

(5.1)

and

σ−2y |y, φ, µ ∼ Ga
(
a2 +

T − p
2

, b2 +
1

2

T∑
t=p+1

(yt − µ− (Xt − µ1′p)φ)2
)
. (5.2)

As µ|y, φ, σ−2y and σ−2y |y, φ, µ exist in a closed form, Gibbs steps are used to update µ and

σ−2y . The full Metropolis within Gibbs scheme is shown in Algorithm 5.1.

5.2.1 Results

AR models of order 1–12 have been fitted to the glucose data using Algorithm 5.1. The

highest order of 12 corresponds to glucose levels up to an hour behind. The models are

fitted to the first four days of glucose data and tested using out-of-sample validation on

the remaining day of data.

The prior hyperparameters for each of the models are the same; a Be(1, 1) prior is

assigned to the ρ∗k and a Ga(1, 1) is assigned to σ−2y to reflect prior ignorance, and µ has

a prior mean of seven and standard deviation of one, which covers a range of plausible

values for the mean glucose level. A summary of the number of iterations each model

was run for after the burn in period, the tuning parameters and the acceptance rate

for each ρ∗k for each model is shown in Table 5.1. Each model had a burn in of 1,000

iterations and was thinned to 10,000 samples. Some of the models required longer runs

to get the same effective sample size, as the draws were more autocorrelated. A nudge

of δ = 0.001 was used in each proposal to avoid the chain sticking. The MCMC runs for

these models completed within a few hours for most orders, due to the low number of
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Algorithm 5.1: AR(p) MCMC scheme

1. Initialise µ(0), σ−2y
(0)

and ρ∗k
(0), for all k, by sampling from prior distributions in

Model 5.1;
2. for i = 1, . . . , N :

3. draw µ(i) from (5.1);

4. draw σ−2y
(i)

from (5.2);

5. for k = 1, . . . , p:

6. generate a proposal ρ̃∗k from q(ρ∗k
(i−1), ρ̃∗k);

7. calculate φ̃ using Eq. (3.5), with

ρ1 = ρ
(i)
1 , . . . , ρk−1 = ρ

(i)
k−1, ρk+1 = ρ

(i−1)
k+1 , . . . , ρp = ρ

(i−1)
p ;

8. evaluate the acceptance probability

A(ρ∗k
(i−1), ρ̃∗k) = min

(
1,

p(y|·)π(ρ̃∗k)q(ρ̃
∗
k, ρ
∗
k
(i−1))

p(y|·)π(ρ∗k
(i−1))q(ρ∗k

(i−1), ρ̃∗k)

)
;

9. accept ρ̃∗k with probability A(ρ∗k
(i−1), ρ̃∗k): set ρ∗k

(i) = ρ̃∗k, otherwise set

ρ∗k
(i) = ρ∗k

(i−1);

10. end

11. end

iterations required for convergence. For the longer runs of p = 5, 11, the MCMC scheme

still completed running within a day.

Fig. 5.1 shows the posterior means and 95% credible intervals for the AR coefficients

for each model. In all models, φ1 is the largest coefficient and for the AR(1) model this

is estimated close to one, which represents a model close to a random walk. The higher

order coefficients of orders p ≥ 2 are much smaller, so there is expected to be only a small

improvement in forecasts between these models, in particular for p ≥ 5. A look at the

ACF plot in Fig. 5.2 (left) confirms the high correlation between lagged observations up to

two hours apart, but the partial autocorrelation function (PACF) plot (right) shows that

much of this is caused by propagation of the autocorrelation in the first four lags. This

supports the small posterior coefficient results obtained for the higher order AR models

with p > 4.

The trace plots for µ and σ2y are shown in Fig. 5.3, for all models. The posterior

draws for µ (right) have converged to the same value, as expected. The posterior draws

for σ2y (left) overlap for orders 2–12, but are higher for the AR(1) model. This shows

that including lag-k terms for k = 2, 3, . . . allows more of the variation in the data to be

explained, but this effect quickly plateaus.

Ensemble forecasts have been calculated for a predictive horizon of two hours for each

of the models, where each forecast in the ensemble is calculated using a posterior draw
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Table 5.1: Model information for AR(p) MCMC.

Order, p Iterations, N Tuning parameters, λ1:p Acceptance rates

1 20,000 200 0.38
2 20,000 200, 30 0.29, 0.23
3 20,000 800, 700, 700 0.46, 0.73, 0.69
4 30,000 800, 700, 800, 1,000 0.43, 0.74, 0.69, 0.73
5 500,000 500, 600, 300, 600, 1,200 0.35, 0.73, 0.56, 0.66, 0.75
6 40,000 200, 600, 500, 300, 100, 1,200 0.24, 0.73, 0.63, 0.56, 0.38,

0.75
7 40,000 200, 600, 400, 500, 300, 300,

1,300
0.23, 0.73, 0.60, 0.64, 0.57,
0.57, 0.76

8 20,000 200, 600, 400, 600, 500, 300,
900, 1,400

0.25, 0.71, 0.57, 0.68, 0.57,
0.55, 0.74, 0.77

9 30,000 200, 600, 400, 500, 300, 300,
1,100, 100, 1,400

0.21, 0.73, 0.61, 0.65, 0.56,
0.56, 0.75, 0.39, 0.77

10 20,000 200, 600, 400, 500, 500, 300,
700, 100, 600, 1,200

0.22, 0.73, 0.60, 0.65, 0.63,
0.57, 0.69, 0.39, 0.67, 0.75

11 500,000 200, 600, 400, 500, 500, 300,
700, 100, 600, 100, 1,200

0.21, 0.73, 0.60, 0.64, 0.64,
0.57, 0.68, 0.39, 0.67, 0.39,
0.75

12 20,000 200, 600, 400, 500, 500, 300,
700, 100, 600, 100, 100, 1,400

0.23, 0.73, 0.60, 0.65 0.63,
0.57, 0.69, 0.39, 0.66, 0.39,
0.39, 0.77
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Figure 5.1: AR coefficient posterior means and 95% posterior interval for orders p = 1–12.
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Figure 5.2: ACF and PACF plots for Patient 3’s glucose data.
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Figure 5.3: Trace plots for σ2 and µ for AR models of order p = 1–12. Plots are thinned by five.
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Figure 5.4: Two-hour-ahead forecasts (solid) for AR models with p = 1–12 fitted to Patient 3’s
glucose levels, with 95% credible intervals (shaded, dashed).

from Algorithm 5.1. To get a range of forecasts starting from different points in the glucose

profile, an ensemble forecast is performed every two hours over the last day of data and

then compared to the observed series. The forecasts produced at each of the selected time

stamps provide a credible interval of the forecasts that can be expected using the posterior

densities of each of the model parameters. The mean of each set of forecasts along with a

95% credible interval for the first hour of each forecast for each model is shown in Fig. 5.4.

As the posterior parameter estimates imply, as p increases the improvement in forecasts

becomes negligible, as the forecasts converge to a similar mean forecast. The credible

intervals for each model also converge to a similar size. The forecasts for the AR(1) model

are relatively flat, as expected, and the curvature in the data is predicted better as p

increases.

The performance of each model for each forecasting index is quantified in Fig. 5.5. The

plot shows a point estimate of the mean number of standard deviations the mean forecast

of each model is from the observed series. The figure shows a similar story to the forecasts

in Fig. 5.4, where the improvement in models plateaus for orders of p ≥ 4. The mean

number of standard deviations for these higher orders is very similar across the forecast

indices. The plot shows the particular forecasts that all of the models performs worse on,

for example forecasts 7 and 11. At forecast 7, the glucose profile starts to flatten, which

causes the forecast to be drawn on a similar trajectory, when in reality the curve dips
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Figure 5.5: Mean number of standard deviations of each mean forecast from the observed series
for each two hour forecast, for AR models with p = 1–12.

again. At forecast 11, the height of the peak in glucose levels is underestimated, causing

a larger error. The lower order forecasts, orders one to three, perform particularly badly

at this point as they predict a fairly flat trajectory regardless of the starting point, due to

not including much of the local glucose history.

As there is little predictive improvement to justify the added model complexity for

orders higher than 4, the ‘best’ AR model is chosen as the AR(4) model. The forecasts for

this model perform reasonably well, but there is clear room for improvement, in particular

for taking forecasts at points in the glucose profile where glucose is increasing or decreasing,

which miss the subsequent peaks and troughs in the data. For almost all of the forecasts,

the credible intervals enclose the observed glucose levels. These intervals, however, are

very large, and given that each interval encloses a range of future glucose levels, where

some forecasts would result in a hyperglycaemic behavioural prompt and others would not,

forecasts from this model would not be reliable. More complex models should therefore

be explored to try to narrow the predictive intervals and to improve upon the fit of the

AR models so that forecasts can better predict when a change in behaviour of the glucose

profile is due. In particular, the AR models do not (explicitly) account for the diurnal

pattern in glucose levels.
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5.3 Dynamic linear models

DLMs allow data to be thought of as the combination of their features, such as a trend

and seasonal component, and allow the underlying system of a time series to evolve over

time, potentially accounting for a non-constant mean or changing variance. One of the

key features of glucose levels is their periodicity, which creates some degree of structure

but is subject to variation from underlying factors. Accurately modelling this behaviour

is important for predicting future glucose levels. In this section, models are built using

superposition of the DLM components introduced in Chapter 3. Relatively high order AR

components in the form of a DLM and Fourier seasonal components are combined with

an overall level, which is mean-reverting, to develop effective predictive models.

5.3.1 AR(p) DLM

In Section 5.2, glucose levels were described by AR models of orders one to 12. In this

section, glucose is measured as a noisy realisation of an AR(p) model, rather than a

realisation without noise. Choosing the order of the AR model to be greater than one

in this case increases the order of Markovian dependency between the states. A non-zero

mean is included in the DLM via a local level component, with the corresponding element

in W equal to zero to make the mean static. A DLM representation of an AR(p) model

was introduced in Section 3.1.4, but the full model specification for an AR(p) DLM with

non-zero mean µ is shown in Model 5.2.

Model 5.2

yt|θt, V ∼ N(Fθt, V ),

θt|θt−1,W ∼ Np+1(Gθt−1,W ),

F =
[
1 1 0 . . . 0

]
, G =



1 0 0 0 . . . 0

0 φ1 1 0 . . . 0

0 φ2 0 1 . . . 0
...

...
...

...
. . .

...

0 φp 0 0 . . . 0


,

φi(ρ)is described by Eq. (3.5), for i = 1, . . . , p,

where ρk = 2ρ∗k − 1 with ρ∗k ∼ Be(a1, b1) for k = 1, . . . , p,

V = ψ−1y , W = diag(0, σ2, 0, . . . , 0),

ψy ∼ Ga(a2, b2),

σ−2 ∼ Ga(a3, b3).

As in Model 5.1, the coefficients of the AR process are restricted to the stationary
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region by exploiting the relationship between the coefficients, φ, and the model partial

autocorrelations, ρ. MH steps are used to update φ as before, by sequentially drawing ρ∗k
from a Beta proposal and transforming it to ρk and then updating φ according to Eq. (3.5).

The likelihood in the acceptance ratio is the product:

T∏
t=p+1

p(θt,2|θt−1:t−p,2, φ, σ2),

where θt,2|· ∼ N(Xtφ, σ
2) and Xt = (θt−1,2, . . . , θt−p,2). This is derived by writing out the

state equations element-wise:

θt,1 = θt−1,1 = µ,

θt,2 = φ1θt−1,2 + θt−1,3 + wt,2, (5.3)

θt,3 = φ2θt−1,2 + θt−1,4, (5.4)
...

θt,p = φp−1θt−1,2 + θt−1,p+1, (5.5)

θt,p+1 = φpθt−1,2. (5.6)

Using Eq (5.4) to replace θt−1,3 in Eq. (5.3) gives

θt,2 = φ1θt−1,2 + φ2θt−2,2 + θt−2,4 + wt,2.

Continuing in this fashion, after p− 1 replacements the equation for θt,2 becomes

θt,2 = φ1θt−1,2 + φ2θt−2,2 + . . .+ φpθt−p,2 + wt,2,

where wt,2 ∼ N(0, σ2). In other words, an AR(p) model for θt,2. The states are sampled

using forward filtering backward sampling, Algorithm 3.6. The full conditional distribu-

tions for ψy and ψ2 = σ−2 are as in Eq. (3.11) and Eq. (3.12), then the full Metropolis

within Gibbs sampler is in Algorithm 5.2.

As p increases, the zero-elements on the diagonal of the system covariance matrix

cause numerical instability in the MCMC process. To prevent computational errors, a

small increment of ε = 1 × 10−6 is added to the diagonal elements of W . This addition

makes the matrix non-singular and is small enough not to affect the overall model.

Results

Model 5.2 has been fitted to the first four days of glucose data for orders of p = 1–10.

This corresponds to incorporating the observations a maximum of 50 minutes beforehand
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Algorithm 5.2: AR(p) DLM MCMC scheme

1. Initialise ψ
(0)
y , µ(0), σ−2y

(0)
and ρ∗k

(0), for all k, by sampling from prior

distributions in Model 5.2;
2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw ψ
(i)
y from (3.11);

5. draw σ−2
(i)

from (3.12);
6. for k = 1, . . . , p:

7. generate a proposal ρ̃∗k from q(ρ∗k
(i−1), ρ̃∗k);

8. calculate φ̃ using Eq. (3.5), with

ρ1 = ρ
(i)
1 , . . . , ρk−1 = ρ

(i)
k−1, ρk+1 = ρ

(i−1)
k+1 , . . . , ρp = ρ

(i−1)
p ;

9. evaluate the acceptance probability

A(ρ∗k
(i−1), ρ̃∗k) = min

(
1,

p(θp+1:T,2|·)π(ρ̃∗k)q(ρ̃
∗
k, ρ
∗
k
(i−1))

p(θp+1:T,2|·)π(ρ∗k
(i−1))q(ρ∗k

(i−1), ρ̃∗k)

)
;

10. accept ρ̃∗k with probability A(ρ∗k
(i−1), ρ̃∗k): set ρ∗k

(i) = ρ̃∗k, otherwise set

ρ∗k
(i) = ρ∗k

(i−1);

11. end

12. end

into modelling the current glucose level. The model hyperparameters were chosen as:

a1 = b1 = 1, a2 = b2 = 1 and a3 = 1.1, b3 = 0.01. The Ga(1, 1) prior on ψy and

Ga(1.1, 0.01) prior on σ−2 encourages the posterior to support the allocation of more of

the variance to the observation layer, rather than the hidden states. As in the proposal

distribution for the AR coefficients in Algorithm 5.1, a nudge of 0.001 was added for each

model, to avoid the chain sticking. Details of the number of iterations after burn in for

each order, the tuning parameters used and the acceptance rates achieved are in Table 5.2.

Each run had a burn in of 1,000 and was thinned to 10,000 draws. Due to the added model

complexity and higher number of iterations, the MCMC schemes for these models took

slightly longer than the traditional AR(p) models, but still completed within a day.

Whilst the marginal posteriors for the model parameters of Model 5.2 were unimodal

for most of the model orders explored, for the AR(7) DLM the posterior densities for

the AR coefficients were multimodal. From the trace plots, Fig. 5.6, an increase in one

coefficient corresponds to a decrease in another, suggesting there are two modes in the

joint posterior with comparable support. However, from Fig. 5.6, the sampler seems to

jump between the two modes fairly readily and so a posterior sample of size 200,000 was

deemed adequate to estimate the mass of each mode.
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Table 5.2: Model information for AR(p) DLM MCMC.

Order, p Iterations, N Tuning parameters, λ1:p Acceptance rates

1 200,000 2,500 0.42
2 50,000 2,500, 600 0.16, 0.28
3 100,000 4,000, 1,600, 1,300 0.20, 0.32, 0.36
4 500,000 4,000, 3,000, 4,000, 4,000 0.18, 0.35, 0.41, 0.43
5 200,000 7,000, 6,000, 7,000, 6,000,

6,000
0.20, 0.40, 0.43, 0.45, 0.43

6 200,000 7,000, 6,000, 7,000, 6,000,
6,000, 5,000

0.77, 0.20, 0.38, 0.36, 0.41,
0.42

7 200,000 7,000, 6,000, 7,000, 6,000,
6,000, 5,000, 5,000

0.43, 0.23, 0.38, 0.37, 0.34,
0.37, 0.43

8 500,000 7,000, 6,000, 7,000, 6,000,
6,000, 5,000, 5,000, 5,000

0.20, 0.40, 0.44, 0.45, 0.46,
0.44, 0.44, 0.42

9 400,000 7,000, 6,000, 7,000, 6,000,
6,000, 5,000, 5,000, 5,000,
5,000

0.76, 0.20, 0.39, 0.38, 0.39,
0.39, 0.42, 0.43, 0.41

10 400,000 9,000, 15,000, 10,000, 10,000,
9,000, 10,000, 5,000, 7,000,
10,000, 15,000

0.22, 0.46, 0.45, 0.47, 0.46,
0.48, 0.44, 0.45, 0.47, 0.46

A summary of the coefficients from all of the AR(p) DLMs is seen in Fig. 5.7. This

figure shows the mean and 95% upper and lower bounds of the posterior densities for each

parameter. The main coefficients in these models are once again the first two, φ1 and φ2,

with the later coefficients falling closer to zero. The posterior variances in the coefficients

for the AR(p) DLMs are notably larger than for the traditional AR(p) model coefficients,

and the coefficients show a greater difference from zero. For the majority of the model

orders, the coefficients decrease as their index increases. For the AR(9) model however,

the coefficients are quite far from zero, and in some cases the coefficients of the higher

order lags are larger in magnitude, for example at index 7. Because the parameters for

this model also have larger posterior variances, the forecasts produced from this model

may also see an increased predictive variance.

The trace plots for ψ−1y and σ2 for all model orders are shown in Fig. 5.8. The

observation variance for each model is similar, whilst the innovation variance decreases as

p increases, up to p = 4, after which the posterior distributions are similar.

The predictive performance of the AR(p) DLMs for orders up to p = 10 has a similar

ceiling to the traditional AR(p) models of order up to p = 12. The improvement in

forecasts for the DLM representation, however, Fig. 5.9, happens at a much lower order

than for the traditional AR representation. For the models fitted in Section 5.2, the

forecasts converged to a similar trajectory for orders p ≥ 4. For the models here, there is

a large improvement between orders p = 1 and p = 2, followed by only small incremental
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Figure 5.6: Trace plots, ACF plots and histograms of the posterior draws of the AR(7) coefficients.

improvements for orders thereafter. A lower order AR(p) DLM therefore has a similar

predictive performance as a higher order AR(p) traditional model. The credible interval

on the AR(7) DLM forecast does not appear to be wider despite the bimodality of the

posterior, confirming that the two modes fit the data comparably. The credible interval

on the AR(9) model forecasts, however, is much larger than for any of the other models.

In particular, the interval on the forecasts at the final forecast index ranges between ±300

(limits not shown on plot). The reasons for this were discussed previously.

Fig. 5.10 shows the mean number of standard deviations each forecast is away from

the observed time series for each model, at each forecasting index. The plot shows how

the forecasts converge to a similar trajectory for models of order p ≥ 2, with similar sized

credible intervals resulting in forecasts being a similar number of standard deviations from
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Figure 5.9: Two-hour-ahead forecasts (solid) for AR DLMs with p = 1–10 fitted to Patient 3’s
glucose levels, with 95% credible intervals (dashed).

the observed series for each of these model. From the figure, it is clear that the AR(p) DLM

lacks in performance for forecasts taken at points in the series where glucose levels change

trajectory, for example at forecast index 7, and underestimates the peaks in the data, such

as at forecast index 11, but overall the forecasts are reasonable. Model improvements to

better capture the series in these cases are explored in the coming sections. The mean

numbers of standard deviations for the AR(9) model appear smaller than for the other

model orders, but this is a side effect of the much larger credible intervals and therefore is

a sign of a poorer fitting model. It is expected that forecasts should on average be around

one standard deviation from the observed series.

Roots of the characteristic equation

The roots of the characteristic equation of an AR model can be investigated to determine

whether the model describes pseudo-periodic behaviour (Huerta & West, 1999). Recall

the characteristic polynomial defined in Section 3.1.4:

Φ(B) = 1−
p∑
j=1

φjB
j ,
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Figure 5.10: Mean number of standard deviations of each mean forecast from the observed series
for each two hour forecast, for AR DLMs with p = 1–10.

which, when combined with a zero-mean stationary stochastic process, X1, X2, . . ., defines

an AR(p) model: Φ(B)Xt = εt. The reciprocal roots, |αj | < 1, of the characteristic

polynomial determine the stationary region of an AR(p) model. The roots, x, solve the

characteristic equation:
p∏
j=1

(1− αjx) = 0. (5.7)

Inverting Φ(B)Xt = εt and substituting in the product in Eq. (5.7) obtains

Xt =
1∏p

j=1(1− αjB)
εt,

which can be expressed in terms of partial fractions as

Xt =
C∑
j=1

Ztj +

p∑
j=2C+1

Atj ,

where the {Ztj} and {Atj} are latent processes corresponding to the complex pairs of roots

and real roots, respectively. Suppose the modulus of the j-th complex pair of roots is rj

and their argument is ωj . It can be shown that the corresponding latent process {Ztj}
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follows an ARMA(2,1) model, with AR operator

ΦZ,j(B) = 1− 2rj cos (ωj)B + r2jB
2

and moving average operator

ΘZ,j(B) = dj + ejB.

However, only the AR operator is important for determining the long run behaviour of the

process. To understand why this is, consider the induced ACF for Ztj , derived by solving

a difference equation of the same form. For k ≥ 2 the ACF at lag k, ρk, solves the linear

difference equation

{1− 2rj cos(ωj)B + r2jB
2}ρk = 0.

The behaviour of these equations is governed by the auxiliary equation

x2 − 2rj cos(ωj)x+ r2j = 0,

whose roots are x = rj cos(ωj) ± i{rj sin(ωj)}, which are complex. The general solution

to each difference equation therefore takes the form

rkj {fj cos(ωjk) + gj sin(ωjk)},

where fj and gj are constants. The values of the constants depend on the initial values

ρ0 and ρ1, which in turn are influenced by rj and ωj , as well as ej and dj in the moving

average operator. Irrespective of these values, the general solution is a periodic function,

with period 2π/ωj . The amplitude of the oscillations depends on rkj , which changes with

k. When |rj | < 1, the amplitude of the oscillations in the ACF therefore decays to zero

as k increases.

Given this property of AR models, if the roots of the characteristic equation are com-

plex, the AR process is said to have pseudo-seasonal behaviour, i.e. be describing season-

ality. The roots of the characteristic equations for the AR(p) DLM models fitted above

are therefore investigated in this section to determine from which order, if any, the models

begin to describe seasonal behaviour. The roots of the models are plotted in Fig. 5.11.

Due to the ambiguity in the labelling of roots from different MCMC draws, the roots are

computed based on the posterior mean values of the AR coefficients for this exploratory

exercise.

Fig. 5.11 shows an increasingly large imaginary component to the roots as p increases.

For p ≥ 4, the models have between one and three pairs of complex conjugate roots with

sizeable imaginary parts, suggesting these models may capture pseudo-seasonal behaviour.

This confirms what is seen in Fig. 5.9, where the models of order greater than four capture
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Figure 5.11: Roots of the characteristic equation for the AR models of order 1–10 with coefficients
specified by their posterior means.

the shape of the glucose profile much better. Note that by construction, all of the roots

in the figure fall within the unit circle.

Further exploration into the complex roots is carried out by decomposing the AR

component of the DLM, θt,2. The AR(4) DLM is used as an example. Setting each of the

model parameters at their posterior mean and smoothing over the hidden states, as before,

time series corresponding to each of the complex pairs of roots, Ztj , and each real root,

Atj , are obtained. As there are two pairs of complex roots for the AR(4) DLM and no real

roots, the two series corresponding to the complex pairs of roots are shown in Fig. 5.12.

When adding together the three series displayed, the glucose data are recovered.

The series corresponding to the first complex root, C1, in Fig. 5.12 describes some

periodicity in the noise of the glucose signal. The series corresponding to the second

complex root, C2, is the periodic component with largest amplitude, found in each of

the decomposed AR(p) DLMs. The local level component here, however, describes the

majority of the seasonality in the glucose data. The purpose of the local level component

in the models is to describe the non-zero mean of the glucose data, so these results show

that a high order AR component is not sufficient in picking up this behaviour, though it

does describe some higher frequency periodicity. Models to better describe the seasonal

behaviour should therefore be explored.
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Figure 5.12: The AR(4) DLM for Patient 3’s glucose levels decomposed into the smoothed local
level component and the series corresponding to the complex pairs of roots for the first four days
of data.

5.3.2 Fourier seasonal model with local level component

As an alternative to a high order AR DLM, a more direct and (perhaps) more parsimonious

way to capture the seasonality in the glucose profiles is to incorporate a Fourier seasonal

component in a DLM. Describing the periodicity in the glucose data using a Fourier

component requires a number of harmonics, q, to be specified. This component then

corresponds to 2q diagonal elements in the system covariance matrix, W , that need to be

learned. For series with a large number of observations, s, per period, q is typically chosen

to be much smaller than s/2 which can lead to a parsimonious representation of seasonal

behaviour. A local level component can also be paired with a Fourier component to model

the variation in the mean over time.

A DLM with a local level component plus a Fourier component, referred to as a local

Fourier DLM, is specified in Model 5.3.

Model 5.3

yt|θt, V ∼ N(Fθt, V ),

θt|θt−1,W ∼ N2q+1(Gθt−1,W ),
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F =
[
1 1 0 1 . . . 0

]
, G = blockdiag(1, H1, . . . ,Hq),

where Hj =

[
cosωj sinωj

− sinωj cosωj

]
and ωj =

2πj

s
for j = 1, . . . , q,

V = ψ−1y , W = diag(ψ−11 , . . . , ψ−12q+1),

ψy ∼ Ga(a1, b1),

ψi ∼ Ga(a2, b2), for i = 1, . . . , 2q + 1.

The prior distributions assigned to the precisions ψy and ψi, for i = 1, . . . , 2q + 1, are

the standard priors that were discussed in Section 3.4.1. The full conditional distributions

for these parameters are in Eq. (3.11) an Eq. (3.12), respectively. The block Gibbs sampler

is as described in Algorithm 3.7.

The number of observations per period in the glucose data is s = 288. A number

of q = 4 harmonics is chosen to model each period, which is discussed in more detail in

Section 5.3.3.

Results

Algorithm 3.7 was run for N = 300, 000 iterations, plus a burn in of 1,000 and thinned by

30. The prior hyperparameters were: a1 = 1, b1 = 1, a2 = 1.1, b2 = 0.01, C0 = 3, m0 = 7.

The Ga(1.1, 0.01) prior on the inverse diagonal elements of W is to encourage posterior

support for small values of the variances of the states. This is because stochastic variation

in the seasonal component is thought to likely be slow.

The posterior densities for the diagonal elements ofW , Fig.5.13, show that the elements

corresponding to the even Fourier nodes (rows three, five, seven and nine of the figure) have

a much larger value than those corresponding to the odd Fourier nodes (rows two, four,

six and eight) and than the state of the local level component (row one). In particular, the

final element of W is centred around 0.8, 400 times the size of the value for the even nodes.

This is because only the odd Fourier nodes feature in the observation equation. As a result

of this, the credible interval on the forecasts increases rapidly, shown in Fig. 5.14, making

the model unsuitable. Despite the large errors, Fig. 5.14 shows that the local Fourier

DLM uses the seasonality observed in the data up to the time of the forecast to predict

future values; it is clear in the forecasts of the AR models that the predicted values trend

towards the mean, whereas the forecasts from the local Fourier DLM, in particular the

first and penultimate forecasts that previously missed the upcoming peaks in the glucose

profile, better follow the shape of the profile, to an extent. The increase in glucose levels

for these two forecasts has been overestimated by the current model. Another problem

with the current credible intervals is that they include physiologically implausible values,

such as negative glucose levels.
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Figure 5.13: Trace plots, ACF plots and histograms of the posterior draws for the diagonal elements
of W for the local Fourier DLM.
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Figure 5.14: Two-hour-ahead forecasts (magenta) for the local Fourier DLM fitted to Patient 3’s
glucose levels (blue), with 95% credible intervals (gold).

5.3.3 A constrained variance model

The main problem with the local Fourier DLM is that the posterior parameter distributions

of the even Fourier nodes in W are centred about large values, corresponding to a large

variance in the evolution of the corresponding states. In turn this leads to a large credible

interval around the forecasts. One way to prevent this from happening is to constrain the

pairs of variances in the Fourier terms of W to be equal. This is reasonable because the

{2(j−1) + 1}-st and 2j-th components in the seasonal part of the state vector correspond

to the j-th harmonic and its conjugate. Each is composed of terms which oscillate at

the same frequency and so it seems justifiable to assume they have a common innovation

variance. In doing so, W becomes:

W = diag(ψ−11 , ψ−12 , ψ−12 , . . . , ψ−1q+1, ψ
−1
q+1).

The adapted local Fourier DLM is shown in Model 5.4.

Model 5.4

yt|θt, V ∼ N(Fθt, V ),

θt|θt−1,W ∼ N2q+1(Gθt−1,W ),

F =
[
1 1 0 1 . . . 0

]
, G = blockdiag(1, H1, . . . ,Hq),
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where Hj =

[
cosωj sinωj

− sinωj cosωj

]
and ωj =

2πj

s
for j = 1, . . . , q,

V = ψ−1y , W = diag(ψ−11 , ψ−12 , ψ−12 , . . . , ψ−1q+1),

ψy ∼ Ga(a1, b1),

ψi ∼ Ga(a2, b2), for i = 1, . . . , q + 1.

The novel calculation of the full conditional distributions of the constrained pairs

of variances is carried out by combining the prior for ψ−1i , for i = 2, . . . , q + 1 with

the likelihood for the corresponding elements of the state vector: θt,2i:2i+1|θt−1, ψ−1i ∼
N2([Gθt−1]2i:2i+1, ψ

−1
i I2):

π(ψi|θt,2i:2i+1) ∝ π(ψi)

T∏
t=1

g(θt,2i:2i+1|θt−1, ψi),

∝ ψa2−1i exp[−b2ψi]
T∏
t=1

|ψiI2|1/2

exp

[
− 1

2
(θt,2i:2i+1 − [Gθt−1]2i:2i+1)

′ψiI2(θt,2i:2i+1 − [Gθt−1]2i:2i+1)

]
,

|diag(a1, . . . , an)| =
n∏
i=1

ai, so

∝ ψa2+T−1i exp

[
− ψi

{
b2+

1

2

T∑
t=1

(θt,2i:2i+1 − [Gθt−1]2i:2i+1)
′(θt,2i:2i+1 − [Gθt−1]2i:2i+1)

}]
,

then

ψi|θt,2i:2i+1 ∼ Ga
(
a2 + T,

b2 +
1

2

T∑
t=1

(θt,2i:2i+1 − [Gθt−1]2i:2i+1)
′(θt,2i:2i+1 − [Gθt−1]2i:2i+1)

)
. (5.8)

The block Gibbs sampler in Algorithm 3.7 is updated to reflect the variance constraint

in Algorithm 5.3.

Results

Algorithm 5.3 was run for N = 200, 000 iterations, plus a burn in of 1,000 and thinned by

20 to produce a posterior sample of 10,000 per parameter. The prior hyperparameters are

the same as for the local Fourier DLM. Four harmonics were once again chosen to model

the seasonal component of the glucose data. The MCMC scheme ran in approximately
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Algorithm 5.3: Block Gibbs sampler for a local Fourier DLM

1. Initialise ψ
(0)
y and ψ

(0)
j for j = 1, . . . , q + 1;

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (ψ−11 )(i) from (3.12);

6. draw (ψ−1j )(i) from (5.8) for j = 2, . . . , q + 1;

7. end

one day.

The posterior draws for the Fourier component variances are now much smaller, Fig. 5.15,

following a similar trace to the odd nodes in Model 5.3. As a result, the credible intervals

on the first hour of the forecasts, Fig. 5.16, do not increase as rapidly as in the uncon-

strained DLM. The credible intervals also no longer include zero and negative glucose

levels in the forecasts. The forecasts produced by Model 5.4 for a predictive horizon of

one hour, the forecasting region within the shaded credible intervals, are very close to

the observed series. Looking at a shorter predictive horizon is therefore one way that the

reliability of forecasts could be improved further.

In comparison to the AR(p) DLM forecasts, Model 5.4 is better at predicting the peaks

and troughs in the glucose profile, whereas the AR(p) models tend to underestimate or

miss these.

The smoothed states (posterior means) that make up the DLM are shown in Fig. 5.18,

along with the raw glucose data. The number of harmonics chosen to model the seasonal

component must strike a balance between explaining enough of the variation in the data

and smoothing over noise. Fig. 5.18 shows the smoothed local level component, S1, picks

up the noise in the glucose data, and the smoothed harmonics (S2:5) describe the peri-

odicity. Adding additional harmonics did not noticeably change the predictive mean, but

predictive variances became larger. The smoothed state for the fourth harmonic, S5, is

similar to that of the series corresponding to the second complex root, C2 in Fig. 5.12.

The amplitude of S5, however, is larger, since the local component is no longer describing

the seasonality in the data.

5.3.4 AR(p) Fourier DLMs

The models developed so far have produced reasonable results, but have room for im-

provement. The seasonal constrained variance local Fourier DLM captures fluctuations in

glucose levels well, but has a large predictive variance, whilst the AR(p) DLM and tra-

ditional AR(p) models do not adequately capture the seasonality in the data. A possible
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Figure 5.15: Trace plots, ACF plots and histograms of the posterior draws for the diagonal elements
of W for the constrained variance local Fourier DLM.

improvement to the models is to replace the local level component, which evolves accord-

ing to a random walk, with a stationary AR process which is therefore mean-reverting.

This is more in keeping with the belief that the overall mean glucose level is constant in

time and may reduce the predictive variance of long-term forecasts. A lower order AR

component is more likely to produce a useful model here, as higher order AR models can

capture pseudo-seasonal behaviour and will therefore be attempting to describe the same

aspects of the data as the Fourier harmonics. A higher order AR component could however

reduce the need for as many harmonics.

Model 5.5

yt|θt, V ∼ N(Fθt, V ),

θt|θt−1,W ∼ N2q+p+1(Gθt−1,W ),

F =
[
1 1 0 . . . 0 1 . . . 0

]
, G = blockdiag(1, Φ,H1, . . . ,Hq),
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Figure 5.16: Two-hour-ahead forecasts (magenta) for the constrained variance local Fourier DLM
fitted to Patient 3’s glucose levels (blue), with 95% credible intervals (gold).
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where Hj =

[
cosωj sinωj

− sinωj cosωj

]
for j = 1, . . . , q, and Φ =


φ1 1 . . . 0
...

...
. . .

...

φp 0 . . . 0

 ,
V = ψ−1y , W = diag(0, σ2, 0, . . . , 0, ψ−11 , . . . , ψ−1q+1),

ψy ∼ Ga(a1, b1),

σ2 ∼ Ga(a2, b2),

ψi ∼ Ga(a3, b3), for i = 1, . . . , q + 1.

(a) Imposed stationarity, p = 1:

φ ∼ Be(a4, b4);

(b) Normal prior, p ≥ 1:

φ ∼ Np(m,Λ
−1).

Model 5.5 describes an AR(p) Fourier DLM with two prior specifications for the AR

coefficients. The first, Model 5.5 (a), is for a stationary AR(1) coefficient, φ ∼ Be(a4, b4).
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In the AR models fitted thus far, stationarity has been imposed by transforming AR coef-

ficients to partial autocorrelations and, in the DLM case, by a zero innovation variance on

the mean. In an AR(1) model, the Beta prior can be assigned directly to φ, as this is equal

to the lag one partial autocorrelation. It is assumed that the partial autocorrelation is

positive, so a transformation to the (−1, 1) range is not deemed necessary. For this model,

a MH step is needed for φ. This is a simplified version of the MH step in Algorithms 5.1

and 5.2; φ̃ is drawn from a Beta proposal distribution Be(λφ + δ, λ(1 − φ) + δ), where λ

is a tuning parameter and δ is a nudge parameter. The full conditional distribution for φ

is then combined with the proposal to evaluate the acceptance probability. The novel full

conditional is derived as:

π(φ|·) ∝ π(φ)

T∏
t=1

p(θt,2|·),

∝ φa4−1(1− φ)b4−1
T∏
t=1

exp

{
− 1

σ2
(θt,2 − φθt−1,2)2

}
,

∝ φa4−1(1− φ)b4−1 exp

{
− 1

σ2

T∑
t=1

(θt,2 − φθt−1,2)2
}
. (5.9)

The full Metropolis within Gibbs scheme is described in Algorithm 5.4.

Algorithm 5.4: Metropolis within Gibbs scheme for an AR(1) Fourier DLM

1. Initialise ψ
(0)
y , σ−2

(0)
, φ(0) and ψ

(0)
j for j = 1, . . . , q;

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (σ−2)(i) from (3.12);

6. draw (ψ−1j )(i) from (5.8) for j = 1, . . . , q;

7. generate a proposal φ̃ from q(φ(i−1), φ̃);
8. evaluate the acceptance probability

A(φ(i−1), φ̃) = min

(
1,

π(φ̃|·)q(φ̃, φ(i−1))
π(φ(i−1)|·)q(φ(i−1), φ̃)

)
;

9. accept φ̃ with probability A(φ(i−1), φ̃): set φ(i) = φ̃, otherwise set φ(i) = φ(i−1);

10. end

As the complexity of the DLM increases, replacing the AR(1) component with an

AR(p) component for p ≥ 1, Model 5.5 (b) assigns a Normal prior to the AR coefficients,

φ, to take advantage of the semi-conjugate relationships this creates, thus reducing the
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complexity of the MCMC algorithm. The cost is that the guarantee that the AR com-

ponent is mean-reverting is lost. Model 5.5 is fitted for p = 1 in scenarios (a) and (b) to

compare the effect of removing the stationarity condition from the coefficient sample space.

Higher orders are then fitted using the Normal prior. The full conditional distribution for

the AR coefficients under Model 5.5 (b) is derived as:

π(φ|·) ∝ π(φ)
T∏

t=p+1

p(θt,2|·),

∝ exp

[
− 1

2
(φ−m)′Λ(φ−m)

] T∏
t=p+1

exp

[
− 1

2σ2
(θt,2 −Xtφ)2

]
,

∝ exp

[
− 1

2

{
φ′Λφ− 2m′Λφ+

1

σ2

T∑
t=p+1

(φ′X ′tXtφ− 2θt,2Xtφ)

}]
,

∝ exp

[
− 1

2

{
φ′
(
Λ+

1

σ2

T∑
t=p+1

X ′tXt

)
φ− 2

(
m′Λ+

1

σ2

T∑
t=p+1

θt,2Xt

)
φ

}]
,

so

φ|· ∼ Np

((
Λ+

1

σ2

T∑
t=p+1

X ′tXt

)−1(
m′Λ+

1

σ2

T∑
t=p+1

θt,2Xt

)
,

(
m′Λ+

1

σ2

T∑
t=p+1

θt,2Xt

))
. (5.10)

The multivariate Normal target distribution in Eq. 5.10 means that φ can be sampled

in a single draw, rather than the one-at-a-time MH sampling employed when using the

partial autocorrelation parametrisation. The block Gibbs sampler for the Normal model

is described in Algorithm 5.5.

Algorithm 5.5: Block Gibbs sampler for a AR(p) Fourier DLM

1. Initialise ψ
(0)
y , σ−2

(0)
, φ(0) and ψ

(0)
j for j = 1, . . . , q;

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (σ−2)(i) from (3.12);

6. draw (ψ−1j )(i) from (5.8) for j = 1, . . . , q;

7. draw φ(i) from (5.10);

8. end
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Stationary AR(1) results

Algorithm 5.4 was run for N = 300, 000 iterations, with additional burn in of 1,000 and a

thin of 30. The model hyperparameters were chosen similarly to the rest of the models;

a1 = b1 = 1, a Ga(1.1, 0.01) prior was assigned to σ−2 and the ψi, for i = 1, . . . , q+ 1, and

a Be(2, 2) prior was assigned to φ. This was chosen in favour of the uniform prior (a4 =

b4 = 1) used earlier for the partial autocorrelations to make values near the boundaries at

zero and one less credible. The tuning parameter λ = 500 and a nudge of δ = 0.001 was

used. The resulting acceptance rate was 0.62.

The results from fitting Model 5.5 (a) are not drastically different from those of

Model 5.4. The posterior density for φ is bimodal, shown in Fig. 5.19. The majority

of draws are from the top end of the possible values for φ, centred about 0.9, but there

is a cluster of draws from the bottom end of the sample space, too. An AR(1) coefficient

of one is equivalent to a random walk process, which recovers the local Fourier DLM, so

it is not surprising that the two models have similar marginal posteriors for the elements

of V and W , Fig. 5.20. A random walk is a non-stationary process, so values of φ close

to one allow the mean-reverting process to wander as much as possible whilst still being

considered stationary. The small mode at zero for φ corresponds to a white noise process,

which is made up of i.i.d., zero-mean Gaussian variables. Here, the algorithm is only

identifying the Fourier harmonics, plus some noise. As this is a smaller mode, the model

can be assumed to be mostly similar to the local Fourier DLM. The benefit of having the

AR(1) component in the model is marginal, due to the large value for φ, however it can be

seen in longer term forecasts; the stationarity that the component imposes on the process

prevents forecasts for longer predictive horizons from increasing without bound. This also

benefits the credible interval on forecasts, which otherwise also increase quickly in width.

Plots of forecasts from an AR(1) Fourier DLM with a Normal prior on φ are discussed in

the next section.

Normal AR(p) results

The Normal AR(p) model is fitted for p = 1–9. The hyperparameters used for running

Algorithm 5.5 are the same as for Algorithm 5.4, but with the prior hyperparameters for

φ consistent with Model 5.5 (b): m = 0.51p and Λ−1 = 2Ip. The number of iterations

were: 300,000, 20,000, 20,000, 100,000, 200,000, 200,000, 200,000, 200,000 and 200,000

for orders 1 to 9. Each algorithm had a burn in of 1,000 and was thinned to 10,000

observations. Because of the model complexity, the MCMC schemes for these models took

approximately one to two days to run.

The posterior coefficient means and 95% posterior intervals are shown in Fig. 5.21.

The first thing to note here is the posterior density of φ in the AR(1) Fourier DLM; this
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Figure 5.19: Posterior trace, ACF and density plot of φ for Model 5.5 (a).
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(blue) and Model 5.4 (magenta).
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Figure 5.21: Model 5.5 (b) AR coefficient posterior means and 95% posterior interval for orders
p = 1–9.

is centred in the same range of posterior values that Model 5.5 (a) drew for φ, and so the

data are suggestive of a stationarity process. The higher order model coefficients follow

a similar shape to the coefficients of the traditional AR(p) models fitted in Section 5.2,

with a large value for φ1, a non-zero value for φ2 and densities centred about zero or small

values for the coefficients thereafter.

The corresponding roots to the characteristic equations described by the posterior

means of the AR coefficients in each of the AR Fourier DLMs are shown plotted in Fig. 5.22.

The AR(p) DLMs for orders p ≥ 4 showed pseudo-seasonal behaviour, i.e. had complex

roots. The same is true for the AR(p) Fourier DLMs of order p ≥ 4 here, though the

magnitude of the imaginary components is smaller than in the AR(p) DLMs, which is

likely because the Fourier harmonics are describing the seasonality, too. The forecasts

from these models therefore may be less useful. All of the roots fall within the unit circle,

which suggests that the coefficients from each model fall largely within the stationary

region.

The trace plots for the observation and non-zero system variance parameters are plot-

ted in Fig. 5.23 for each model order. The main difference seen between the results is

in moving from a first order AR process to higher orders. The observation variance for

all model orders is the same, but the variance explained by different components of the

underlying system changes. For the first order model, the variance of the AR process,
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Figure 5.22: Model 5.5 (b) AR component roots for the mean posterior coefficients for orders
p = 1–9.

σ2, is small and the variances of the Fourier harmonics have much longer tails, whereas

for orders p ≥ 2 the variance for the AR process is higher and the posterior draws for

the Fourier harmonic variances are more concentrated at small values. In particular, the

fourth harmonic has a larger variance for the AR(1) Fourier DLM, which is most similar

to the local Fourier DLM. For these DLMs, the fourth harmonic soaks up a lot of the

residual periodic variation that is not captured by the rest of the model, which is seen in

the plot of the smoothed states for the local Fourier DLM, Fig. 5.18. The higher order AR

component instead describes something akin to this periodic variation in the remaining

AR(p) Fourier DLMs, resulting in a smaller variance for the last pair of states.

The mean forecast and 95% credible interval for two-hour-ahead out of sample pre-

dictive horizons for AR(p) Fourier DLMs of order one to six are shown in Fig. 5.24. For

higher orders of p > 6, the credible intervals on forecasts rapidly increased as the fore-

casting index increased and the forecasts oscillated between large positive and negative

glucose values, making the results unreliable. This shows that such models were overfitting

the data and the problem was likely caused by the pseudo-seasonal behaviour being con-

founded with the Fourier harmonics. For the models shown, however, the forecasts look

good. The first order Fourier DLM produces forecasts similar to the local Fourier DLM, as

expected from the results discussed so far, whilst the higher order Fourier models produce

forecast more similar to the AR(p) DLMs. The AR component appears to have had the
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Figure 5.23: Trace plots for ψ−1
y , σ2 and ψ−1

1:4 for AR models of order p = 1–9. Plots are thinned
by five.

effect of dampening the seasonality in the forecasts, which at several forecast indices has

improved the predictive performance. This is seen quantitatively in Fig. 5.25, where the

mean number of standard deviations of the mean forecast from the observed time series

is plotted. Each model has a similarly sized credible interval about their mean forecasts,

whilst the higher order AR Fourier DLMs consistently produce mean forecasts that are

fewer standard deviations from the observed series.

A closer look at the smoothed states and the series corresponding to the roots of the AR

component of the AR(6) Fourier DLM, using the posterior means of the model parameters,

is shown in Fig. 5.26. The Fourier harmonics in this model are clearly describing periodic

behaviour in the series, with the local level and AR component describing the residual

perturbations in glucose levels. The three complex pairs of roots, C1, C2 and C3, do not

appear to be picking up any specific seasonality in the data, but instead represent irregular

patterns in the data. The third complex root shows a similar pattern to C2 in the AR(4)

DLM. There is still some seasonality left over in the AR component, shown by the seasonal

behaviour of the local level component (top).

The models fitted in this section have shown how an AR process can be used alongside

a Fourier seasonal component to control the predictive variance in longer term forecasts.
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Figure 5.24: Two-hour-ahead forecasts (solid) for AR(p) Fourier DLMs with p = 1–6 fitted to
Patient 3’s glucose levels, with 95% credible intervals (dashed).
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Figure 5.25: Mean number of standard deviations of each mean forecast from the observed series
for each two hour forecast, for AR(p) Fourier DLMs with p = 1–6.
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Figure 5.26: The AR(6) Fourier DLM for the first four days of Patient 3’s glucose levels decomposed
into the smoothed local level component, the smoothed harmonics and the series corresponding to
the complex pairs of roots.

Whilst there have been improvements in how close the mean forecasts are to the observed

series as the order of the AR component increases, this reaches a limit for orders greater

than six, which corresponds to glucose levels greater than a 30 minute lag. The forecast

improvements are marginal in relation to the added model complexity and still produce

large credible intervals.
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Figure 5.27: Two-hour-ahead forecasts for glucose models fitted to Patient 3’s glucose levels, with
95% credible intervals.

5.4 Comparison of models

An overall comparison between the traditional AR(4) model, the AR(4) DLM, the con-

strained variance local Fourier DLM and the AR(6) Fourier DLM results is presented

here.

Fig. 5.27 shows the mean two-hour-ahead forecasts for each of the models, with 95%

credible intervals. The figure highlights the benefit of using a Fourier component to de-

scribe the periodicity in glucose over a higher order AR component alone, as the local

Fourier DLM and the AR(6) Fourier DLM track the upcoming peaks in glucose levels

more closely, at forecast indices 1 and 11. The local Fourier DLM also accurately predicts

glucose levels at index 2, which all of the other models miss. Forecasts from the traditional

AR(4) model and AR(4) DLM tend towards the mean, so only capture glucose levels well

when they are trending in this direction. The number of standard deviations each mean

forecast is from observed glucose levels for each model is shown in Fig. 5.28. This confirms

what is seen in Fig. 5.27, that the Fourier model forecasts are, in general, closer to the

observed glucose levels than the AR models. At a glance, it seems as though the AR(6)

Fourier DLM performs better than the local Fourier DLM as the number of standard de-

viations is smaller, however the credible intervals on these forecasts is larger. The credible

intervals on the local Fourier DLM are the narrowest across all of the models.
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Figure 5.28: Mean number of standard deviations of each mean forecast from the observed series
for each two hour forecast from the glucose models presented.

The constrained variance local Fourier DLM is more likely to correctly predict an

extreme glucose level that would require human behavioural intervention across all of the

models discussed here and, overall, predicts glucose levels well. The credibility intervals

of forecasts from this model are smaller than for the other models, whilst still including

the actual glucose levels in these intervals. This model is chosen as the univariate model

for glucose levels going forward.

5.5 Across-patient comparison

As with the models to classify activity levels, it is important to assess how well the chosen

local Fourier DLM performs across patients. The models are fitted to the three non-

diabetic patients, Patient 5 and Patient 10, as before.

The posterior densities of the model variance parameters are plotted in Fig. 5.29.

It is clear from the plots that the variance parameters are different between patients,

for both diabetic and non-diabetic individuals. Unlike the within-state distributions of

the HMM describing the hidden activity zones, the parameters for the DLMs describing

patient glucose levels must therefore be learned separately. It is not surprising that these

parameters differ so much between patients, since the way glucose levels change over time

is largely dependent on factors that are likely to vary a great deal, such as diet and exercise.
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Figure 5.29: Posterior densities for ψ−1
y and ψ−1

1:5 for Model 5.4 fitted to Patient 3, Patient 5,
Patient 10, ND 1, ND 2 and ND 3’s glucose levels.

The out of sample forecasts produced for each patient are plotted in Fig. 5.30. As seen

with Patient 3 already, the model performs well, with the poorer forecasts appearing when

the forecast is taken from an apex in glucose levels, for example forecast 2 for Patient 5.

The forecasts for each patient are also more accurate for the first hour, which is to be

expected, as forecasts in general become less reliable for longer predictive horizons. The

large credible intervals that are seen in Patient 3 are also seen in the other patients.

It is worth noting here that the glucose profile for ND 2 is relatively flat, so the

forecasts for this patient perform well. This patient was (voluntarily) fasting for this part

of the glucose collection period, so has few large spikes in the corresponding part of their

glucose profile. This has essentially removed part of the seasonality in the data (arising

from regular meal times), making it easier to model. The univariate models developed so

far, and namely the local Fourier DLM presented here, present a reasonable method for

forecasting glucose levels for up to one hour ahead. For forecasts further into the future,

like the two-hour-ahead forecasts explored here, a better informed model is necessary in

order to be able to predict changes in glucose levels that otherwise do not follow the exact

pattern of more recent glucose levels. Incorporating information on outside factors like

activity levels or food intake is one way to provide this model improvement.
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Figure 5.30: Two-hour-ahead forecasts (magenta) from Model 5.4 fitted to Patient 3, Patient 5,
Patient 10, ND 1, ND 2 and ND 3’s glucose levels, with 95% credible intervals (gold).

5.6 Summary

The aim of this chapter was to fit a model to glucose levels that could capture the periodic-

ity of glucose over time and produce accurate forecasts. DLMs were explored for this aim,

using two main approaches to model the seasonal glucose behaviour: a Fourier seasonal

component and a high order AR component. Whilst the forecasts from models using an

AR component were reasonable, they failed to predict most of the extreme glucose levels

that would result in a behavioural prompt. The Fourier models were better at capturing

these events, so the local Fourier model was chosen as the best baseline model to build

upon in the subsequent joint modelling chapter.

Models combining the Fourier and higher order AR components in a DLM were also

considered, but the added model complexity from the higher order AR component did not

provide a significant enough improvement to forecasts. The pseudo-seasonal behaviour of

the AR component was also something that needed to be used carefully, since unstable

forecasts were seen for orders greater than seven.
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Bivariate glucose models

6.1 Background

The models for predicting glucose levels explored so far in this thesis have performed with

varying success. Forecasts of glucose levels that perform better are where the behaviour

of the glucose profile does not change unexpectedly, i.e. where glucose levels behave in a

similar fashion as they have before. One way to improve forecasts to capture unexpected

changes in glucose levels is to include some additional information on a variable that

could influence such changes. This is done by jointly modelling the additional information

alongside glucose levels.

It is well known that activity levels influence glucose levels, as discussed in the literature

in Section 1.3.2. The relationship between these two variables is explored further in this

chapter, then bivariate models are developed based on the results of the HMMs fitted to

activity levels in Chapter 4 and the glucose models developed in Chapter 5. Additional

to this, the relationship between glucose levels and food intake is modelled later in the

chapter to verify the results obtained from the bivariate glucose and activity models. The

MCMC schemes in this chapter typically take approximately one day to run. The models

developed in this chapter are novel.

6.2 Further glucose and activity exploratory analysis

The BFEN activity summary with a log-Normal HMM emerged as the most consistent

model-summary pairing to classify activity observations into activity zones in Chapter 4.

The premise of the models developed in this chapter is to exploit the relationship between

glucose and activity to fit a bivariate model that can provide better forecasts for glucose

levels than when modelling glucose levels alone. As the relationship between glucose levels

and activity levels is not linear, the posterior modal classification of each observation

according to the HMM is used to learn more about the relationship between glucose and
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Figure 6.1: The lagged correlations between glucose and each BFEN posterior modal activity state
(zone one in blue, zone two in gold and zone three in red) for Patient 3, Patient 5, Patient 10,
ND 1, ND 2 and ND 3.

activity at different intensities of activity, which will help inform some of the bivariate

modelling decisions.

Fig. 6.1 shows the correlation between glucose and lagged activity levels, given the

posterior modal classification of each activity observation. The relationship between the

glucose and activity data sets varies from patient to patient. One of the possible reasons

for this is the other confounding factors that are influencing glucose alongside activity, such

as food intake, which in turn will influence the correlation profiles. A difference between

diabetic and non-diabetic patients’ correlation profiles is expected, as diabetes is a disease

that affects the body’s response to controlling glucose levels. There seem to be three

different relationships observed in the patient profiles shown, where the main difference

between the profiles is in how the higher activity zone interacts with glucose levels. The

two lower activity zones have a relatively flat profile centred at a positive, but very near

zero, correlation for all patients, which is not surprising because they both represent
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Figure 6.2: The lagged correlations between glucose and each BFEN posterior modal activity state
(zone one in blue, zone two in gold and zone three in red) for ND 2’s data recorded whilst fasting,
with 95% confidence intervals.

low/inactivity. The profiles of Patient 3 and Patient 10 show a flat correlation profile for

all three activity zones, Patient 5 and ND 2 show an increasingly negative correlation for

the third zone, which troughs at a lag of around one hour and then increases towards zero

again, and ND 1 and ND 3 share a sharp dip in correlation at a lag of around 15 minutes,

which then slowly increases towards zero and to the same level of correlation as the two

lower zones. The differences in each set of profiles means that a model that learns the

relationship between the two variables in order to predict future glucose levels could look

very different from patient to patient, and in particular between diabetic and non-diabetic

people. An adaptable model is therefore necessary.

6.2.1 Glucose vs activity whilst fasting

One of the key features of ND 2’s glucose profile is that for the last six days of data

collection, the person was (voluntarily) fasting. As a result, in theory this should reveal

the (almost) exact relationship between glucose and activity, at least for this patient, since

food intake is the main factor that causes a change in glucose levels.

The correlations between ND 2’s glucose and lagged activity levels according to the

posterior modal activity zones for the data recorded whilst they were fasting are shown

in Fig. 6.2. The negative curve for zone three that was seen for this patient in Fig. 6.1 is
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shifted slightly, with a small positive correlation first observed at the lower lags before the

curve dips. There is some evidence of this shape for the third zone in the correlation profile

of Patient 5, but not in the other patients. An explanation for the lack of shape in the

profiles of Patient 3 and Patient 10 is that the upper limit on the activity levels observed

from them was the lowest out of the group of patients whose data have been modelled.

Both patients record a similar, lower level of activity, which is seen in the density plot in

Fig. 4.30. These patients also have a lower density of observations that fall into the third

activity zone than the other zones, so the lack of shape could also be attributed to the

lack of higher level observations from these patients altogether.

An expert in the application area advised that a low intensity activity, such as walking,

has the desired effect of gradually reducing glucose levels up to around 30 minutes after

the event, then the effect tapers off. When high intensity activity is performed, an initial

increase in glucose levels is observed before they decrease one to two hours later. The

latter is the effect observed in ND 2’s data, whereas the former is similar to what is seen

in ND 1 and ND 3. In the BFEN activity summary configuration, there is no distinction

between low impact activity, such as walking, and higher impact activity, such as running,

as both of these activities are likely to be classified into activity zone three, which explains

why the lagged correlation profiles differ between patients if the higher levels of activity

are not being performed as much. Observations in the two lower activity states are likely

to represent sedentary activities.

6.3 DLMs for glucose data with known activity states

The univariate DLMs developed in Chapter 5, namely the local Fourier model, provide

a good baseline in predictive performance to build upon for the bivariate models in this

chapter. Activity data are incorporated into Model 5.4 via a regression component. The

states of the activity observations are treated as known, taking the activity state at each

time point to be the posterior modal classification given by the Normal HMM on the

log-transformed BFEN data. This approach of treating the states as known is known as

‘Markov melding’, a method outlined by Goudie et al. (2019). Joining the activity and

glucose models in this way reduces the computational challenge of learning both sets of pa-

rameters in the same sweep and maintains the interpretability of the joint model. However,

the cost is that the posterior uncertainty about the state allocation is not propagated.

The activity regression component can be incorporated into the joint model via a

DLM component, where the regression coefficients can vary over time, or added onto the

observation equation with a static coefficient. McCarthy et al. (2017) show how those with

higher CRF levels reduce their postprandial glucose levels by a smaller percentage overall.

Over a timespan of around one week (the amount of data available for each patient),
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Figure 6.3: DAG showing the structure of a DLM for glucose levels, ygt , with hidden states θt, with
a regression on the hidden activity states, Zt, that describe the activity observations, yat .

the fitness levels of the diabetic patients whose glucose levels are being monitored are

considered constant, so the regression coefficients that quantify the impact of activity on

glucose levels are time-invariant. If patients were being monitored over a longer period, a

dynamic regression component might become necessary if the behavioural prompts issued

from the model improve the overall fitness levels of the patients. For the models fitted

here however, a fixed regression component is used.

Intuitively it makes sense that activity does not have an immediate effect on glucose

levels. Indeed, this is evident from the plots in Fig. 6.1. It is therefore sensible to regress

on the previous j activity levels in the model to predict glucose. Each lagged activity level

is assigned a weight according to the impact it has on the current glucose level, as there

is evidence in the lagged correlation plots, Fig. 6.1, to suggest the effect is not constant

across lags. The model dependency structure is shown in the DAG in Fig. 6.3.

6.3.1 Local Fourier weighted regression model

In light of the exploratory analysis in Fig. 6.1 and the belief that activity states one and two

represent largely sedentary behaviours, glucose is regressed only on lagged activity that is

classified as belonging to state three. The initial regression of glucose, {ygt }, on activity

data, {yat }, features a step function to assign weights to the lagged activity levels that are

classified into zone three according to the posterior mode, multiplied by a transformation

of the corresponding raw activity observations. The remaining variation is then described

by the local Fourier DLM. An indicator variable specifies whether or not the hidden state of

the activity observation at lag k is equal to zone three, I(Zt−k = 3), then this is multiplied

by the raw, log-transformed activity observation minus the posterior mean of the third

activity zone, µ3, according to the Normal HMM, to aid in parameter interpretation. The

regression coefficient of this term is equal to the weight for that lag, determined by the step

function. The activity levels up to a given lag are regressed on to sum over the effects of

all recent activity that influences glucose. The full weighted regression model is described
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in Model 6.1. Here, ns is the total number of steps in the model, with step j going from

lag bj−1 to lag bj , for j = 1, . . . , ns and where b0 = 0. Using a common coefficient, βj ,

for lags in bj−1 + 1 to bj is a parsimonious approximation to a model that has a different

coefficient for each lag.

Model 6.1

ygt = Fθt +

ns∑
j=1

βj

bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3) + vt, vt ∼ N(0, V ),

θt|θt−1,W ∼ N2q+1(Gθt−1,W ),

F =
[
1 1 0 1 . . . 0

]
, G = blockdiag(1, H1, . . . ,Hq),

where Hj =

[
cosωj sinωj

− sinωj cosωj

]
and ωj =

2πj

s
for j = 1, . . . , q,

βj ∼ N(m, s2),

V = ψ−1y , W = diag(ψ−11 , ψ−12 , ψ−12 , . . . , ψ−1q+1),

ψy ∼ Ga(a1, b1),

ψi ∼ Ga(a2, b2), for i = 1, . . . , q + 1.

The full conditional distribution of each step coefficient, βj , is derived as follows, where

ŷt = ygt − Fθt:

π(βj |·) ∝ π(βj)

T∏
t=1

p(ŷt|·),

∝ exp

[
− 1

2s2
(βj −m)2

]
T∏
t=1

exp

[
− ψy

2

{
ŷt−

ns∑
j=1

βj

bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3)

}2]
,

∝ exp

[
− 1

2

{
β2j

(
1

s2
+ ψy

T∑
t=1

{ bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3)

}2
)

−2βj

(
m

s2
+ ψy

T∑
t=1

{ bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3)

(
ŷt −

∑
l 6=j

βl

bl∑
i=bl−1+1

(log yat−i − µ3)I(Zt−i = 3)

)})}]
,

≡ exp
[
− 1

2

{
β2j v

′ − 2βjm
′}],
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so

βj |· ∼ N(v′−1m′, v′−1), (6.1)

where

v′ =
1

s2
+ ψy

T∑
t=1

{ bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3)

}2

and

m′ =
m

s2
+ ψy

T∑
t=1

{ bj∑
i=bj−1+1

(log yat−i − µ3)I(Zt−i = 3)

(
ŷt −

∑
l 6=j

βl

bl∑
i=bl−1+1

(log yat−i − µ3)I(Zt−i = 3)

)}
.

The full conditional distributions of the unknown parameters of the local Fourier DLM,

(ψy, ψ1, . . . , ψq+1) are as derived previously in Eq. 3.11 and 3.12, respectively. However,

a substitution of ygt −
∑ns

j=1 βj
∑bj

i=bj−1+1(log yat−i − µ3)I(Zt−i = 3) for yt in each equation

is necessary. As the hidden activity zones are assumed to be known, the MCMC scheme

only needs to run the forward filtering backward sampling algorithm to sample the hidden

states of the DLM, θ and draw samples from the relevant full conditional distributions of

the model parameters. The full scheme is described in Algorithm 6.1.

Algorithm 6.1: Block Gibbs sampler for Model 6.1

1. Initialise ψ
(0)
y , ψ

(0)
j for j = 1, . . . , q + 1 and β

(0)
k for k = 1, . . . , ns;

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (ψ−11 )(i) from (3.12);

6. draw (ψ−1j )(i) from (5.8) for j = 2, . . . , q + 1;

7. draw β
(i)
k from (6.1) for k = 1, . . . , ns;

8. end

Results

Model 6.1 is fitted to Patient 5’s data, since there appears to be much less information

about the impact of activity on glucose in the lagged correlation plots for the other example

diabetic patients, Fig. 6.1. Algorithm 6.1 was run for N = 200, 000 iterations, after a burn

in of 1,000 iterations and was thinned to 10,000 draws. The hyperparameters used were

a1 = b1 = 1, a2 = 1.1, b2 = 0.01, m = −2 and s = 2. The DLM components have the
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same prior hyperparameters as in the univariate models and the regression coefficients

have a common prior centred around negative values, as expected, but with a fairly large

variance. The Fourier component has q = 4 harmonics and the data have a period of

s = 288. The initial distribution on the states has mean m0 = (8, . . . , 8) and variance

C0 = diag(1, . . . , 1).

Informed by the exploratory analysis in Fig. 6.1, the activity data up to a lag of

two hours are used to model each glucose level. The step sizes are also chosen based

on Patient 5’s zone three lagged correlation profile, with boundaries at lags 30 minutes,

45 minutes, one hour, one hour and 20 minutes, one hour and 35 minutes and two hours.

The posterior means of the βj result in the step function in Fig. 6.4. The figure shows

the activity performed between one and 1.5 hours prior has the strongest effect on glucose

levels, with a large negative weight assigned to this step. This dip coincides with the dip

seen in the correlation profile for Patient 5. The step function features a positive weight

for the first step before the weight becomes negative, which is similar to what is seen

in ND 2’s fasting correlation profile and what is expected from the relationship between

glucose and activity of higher intensity. The posterior standard deviations for each of

the βj are 0.036, 0.042, 0.038, 0.047, 0.046 and 0.036, respectively. These values show

there is a relatively large posterior variance, but for the main effects on glucose, lags with

coefficients β4 and β5 (i.e. for the period one hour to one hour and 35 minutes), this does

not affect the sign of the coefficient.

The posterior densities for the DLM parameters are shown in Fig. 6.5, alongside the

corresponding densities for the local Fourier DLM fitted to the glucose levels of Patient 5

without the regression. Most notable is the slight increase in variance of the local level,

ψ1, and the decrease in variance of the fourth harmonic, ψ5. The fourth harmonic picks

up the residual seasonality not described by the first three harmonics, so a decrease in

the variance of the states corresponding to this harmonic supports the activity regression

component describing some of the seasonal variation in glucose levels, likely because high

activity is performed at a similar time each day.

Fig. 6.6 shows the mean and 95% credible intervals of an ensemble of out-of-sample

forecasts cast using the MCMC output, in comparison to the same forecasts cast using

the univariate local Fourier DLM. With the exception of the first and third forecasting

indices, there is a clear improvement in how closely the forecasts follow the observed glucose

levels, particularly for forecast indices 5, 6, 8 and 10. This confirms that a bivariate model

between glucose and activity can lead to improved forecasts for future glucose levels. It

is noted, however, that the credible intervals are slightly wider for the bivariate model

forecasts.
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Figure 6.4: Step function of Model 6.1 for Patient 5 according to the posterior means of each βj .
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Figure 6.5: Densities of V and the diagonal elements of W for Model 6.1 (blue) compared to
Model 5.4 (magenta).
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Figure 6.6: Two-hour-ahead forecasts of Patient 5’s glucose levels after fitting Model 6.1 (magenta)
compared to Model 5.4 (orange), with 95% credible intervals (purple and green, respectively).

6.3.2 A Gamma curve regression

The step function in Model 6.1 that was learned for Patient 5 looks as though it could be

modelled parametrically by a scaled Gamma density function, i.e. γf(k;α, β) where f is

the Gamma density function, evaluated at lag k, given shape and rate parameters α and

β and γ is a scale factor. If successful, this would offer a more parsimonious solution to

modelling the relationship between glucose and activity levels. The model can be simplified

further by removing dependence on the actual mean-centred activity values in state three;

the model fitted here does just this. Note that the additional scale factor, adds a degree

of freedom in describing the stretch in the y-direction of the curve. This allows for curves

where the area under the curve does not integrate to one, as well as allowing the sign of

the weights the curve describes to be negative.

The many possible combinations of shape and rate parameter for the Gamma curve

coupled with the scale factor parameter open up the possibility of identifiability issues.

To overcome this, the Gamma curve is reparametrised in terms of its mean and coefficient

of variation: for a random variable X ∼ Ga(α, β), the expected value of X is written

m = E(X) = α/β and the variance of X is V ar(X) = α/β2. The coefficient of variation is

defined as the ratio of the standard deviation to the mean: c =
√
V ar(X)/E(X) = 1/

√
α.

Rearranging c for α and substituting this into the equation for m to get β, the resulting
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reparametrisation is: α = 1/c2 and β = 1/(c2m). Some prior knowledge of where the mean

is expected to be, based on the information in the correlation profiles for other patients,

coupled with the results from Model 6.1, can therefore be incorporated to prevent problems

with identifying a suitable curve. The model is described in Model 6.2.

Model 6.2

ygt = Fθt + γ
k∑
i=0

eiI(Zt−i = 3) + vt, vt ∼ N(0, V ),

where ei =
βα

Γ (α)
(i+ 0.5)α−1e−β(i+0.5),

θt|θt−1,W ∼ N2q+1(Gθt−1,W ),

F =
[
1 1 0 1 . . . 0

]
, G = blockdiag(1, H1, . . . ,Hq),

where Hj =

[
cosωj sinωj

− sinωj cosωj

]
and ωj =

2πj

s
for j = 1, . . . , q,

V = ψ−1y , W = diag(ψ−11 , ψ−12 , ψ−12 , . . . , ψ−1q+1),

ψy ∼ Ga(a1, b1),

ψi ∼ Ga(a2, b2), for i = 1, . . . , q + 1,

γ ∼ N(a3, b
2
3),

c ∼ Ga(a4, b4) and m ∼ Ga(a5, b5).

The full conditional distribution for γ is the result of combining the Normal prior and

likelihood, which results in the Normal target distribution:

γ|· ∼ N
((

1

b23
+ ψy

T∑
t=1

(e′I)2
)−1(a3

b23
+ ψy

T∑
t=1

ŷte
′I
)
,

(
1

b23
+ ψy

T∑
t=1

(e′I)2
)−1)

, (6.2)

where e′I = e0I(Zt = 3) + . . .+ ekI(Zt−k = 3) and ŷt = ygt − Fθt.
As α and β are functions of the mean and coefficient of variation, m and c do not

have semi-conjugate full conditional distributions and so a MH step is necessary for each

of these parameters. The full conditional distribution for m is:

π(m|·) ∝ π(m)
T∏
t=1

p(ŷt|·),

∝ ma5−1e−b5m
T∏
t=1

exp

[
− ψy

2

(
ŷt − γe′I

)2
]
,

∝ ma5−1 exp

[
− b5m−

ψy
2

T∑
t=1

(
ŷt − γe′I

)2
]
,
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and similarly for c:

π(c|·) ∝ ca4−1 exp

[
− b4c−

ψy
2

T∑
t=1

(
ŷt − γe′I

)2
]
.

A log-Normal proposal distribution is used for both parameters, with median equal to

the previous value of the parameter and standard deviation equal to a tuning parameter,

λ. The Metropolis within Gibbs scheme is written in Algorithm 6.2. When drawing

(ψy, ψ1, . . . , ψq+1), the substitution of ygt −γe′I for yt in Eq. (3.11) and Eq. (3.12) is made.

Algorithm 6.2: Block Metropolis-within-Gibbs sampler for Model 6.2

1. Initialise ψ
(0)
y , ψ

(0)
j for j = 1, . . . , q + 1, γ(0), m(0) and c(0);

2. for i = 1, . . . , N :
3. run the forward filtering backward sampling algorithm (Algorithm 3.6) to

simulate θ(i);

4. draw (ψ−1y )(i) from (3.11);

5. draw (ψ−11 )(i) from (3.12);

6. draw (ψ−1j )(i) from (5.8) for j = 2, . . . , q + 1;

7. draw γ(i) from (6.2);

8. generate a proposal m̃ from q(m(i−1), m̃);
9. evaluate the acceptance probability

A(m(i−1), m̃) = min

(
1,

π(m̃|·)q(m̃,m(i−1))

π(m(i−1)|·)q(m(i−1), m̃)

)
;

10. accept m̃ with probability A(m(i−1), m̃): set m(i) = m̃, otherwise set

m(i) = m(i−1);

11. generate a proposal c̃ from q(c(i−1), c̃);
12. evaluate the acceptance probability

A(c(i−1), c̃) = min

(
1,

π(c̃|·)q(c̃, c(i−1))
π(c(i−1)|·)q(c(i−1), c̃)

)
;

13. accept c̃ with probability A(c(i−1), c̃): set c(i) = c̃, otherwise set c(i) = c(i−1);

14. end

Results

Algorithm 6.2 was run for N = 200, 000 iterations, plus a burn in of 1,000 iterations

and thinned by 20. The DLM hyperparameters were as before and the weighted curve

hyperparameters were: a3 = −5, b3 = 2, a4 = 1, b4 = 1, a5 = 10, b5 = 1. This is
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consistent with negative weights, with the peak of the effect between glucose and activity

occurring around lag 10. A lag of up to two hours was considered for the activity data.

The prior on c has a large variance, as the data should provide enough information about

this parameter given the stronger prior on m.

The MCMC output for the regression parameters produce a Gamma curve with a

mean m whose posterior mean is centred about 16, which corresponds to a peak effect of

activity on glucose levels around one hour and 20 minutes after the higher level of activity

is performed. The coefficient of variation is around 0.15, which corresponds to a fairly

small dispersion about the mean. The scale factor, centred about -1.25, confirms the

negative relationship between activity and glucose. The resulting posterior mean curve,

γf(k;α, β) for each k = 0.5, . . . , 23.5, showing the relationship between glucose levels and

the lagged third activity zone according to the posterior draws from m, c and γ is shown

in Fig. 6.7, in comparison to the step function learned in the previous section. The curve

produces a similar shape to the step function, which shows that a more parsimonious

solution to separate regression coefficients is available and suggests that including an

indicator variable without the raw activity observations contains enough information to

learn the relationship between glucose and activity for this patient. The posterior standard

deviations for γ, m and c are 0.19, 0.30 and 0.02; because these parameters are used to

produce the scaled Gamma curve, the posterior uncertainty is greatest at the peak of the

curve, as opposed to a more uniform uncertainty for the step function at all lags. A 95%

posterior credibility interval estimates the peak between -0.15 and -0.25, which is more

concentrated than the step function, which estimates the peak between -0.08 and -0.26.

The posterior densities for the DLM parameters are similar to those of Model 6.1, shown

in Fig. 6.5.

The forecasts from Model 6.2 are shown in Fig. 6.8, once again alongside the forecasts

from Model 5.4. The forecasts are calculated using the same method of taking an ensemble

of forecasts using draws from the MCMC chain and computing the mean and 95% credible

intervals from these. The mean forecasts show a further improvement in fitting the scaled

Gamma curve DLM over the step function DLM and the local Fourier DLM alone. The

forecasts track much more closely to the observed glucose levels, for example at forecast

indices 5 and 10, where there are only small deviations. Overall, the credible intervals on

the forecasts are also smaller from the scaled Gamma curve model.

The number of standard deviations that the mean forecasts for each of the bivariate

models fall from the observed glucose levels are shown in Fig. 6.9. The plot shows how

both models perform very similarly.
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Figure 6.7: Lagged effect of activity in zone three on glucose levels for Patient 5, according to
posterior means.
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Figure 6.8: Two-hour-ahead forecasts of Patient 5’s glucose levels after fitting Model 6.2 (magenta)
compared to Model 5.4 (orange), with 95% credible intervals (purple and green, respectively).

171



Chapter 6. Bivariate glucose models

2 4 6 8 10 12

-3
-2

-1
0

1
2

Forecast index

N
u
m
b
er

of
st
an

d
ar
d
d
ev
ia
ti
on

s

Figure 6.9: Mean number of standard deviations of each mean forecast from the observed series for
each two hour forecast, for the step function DLM (magenta) and the scaled Gamma curve DLM
(blue).

6.3.3 Across-patient and model comparison

Model 6.2 is fitted to the other sample patients (Patient 3, Patient 10, ND 1, ND 2

and ND 3) to assess how well it fits to and performs on glucose and activity data with

potentially different lagged relationships.

Different priors were explored for this model with each patient, with those used sum-

marised in Table 6.1. Whilst a Ga(1, 1) prior was sufficient on c for Patient 5, the MCMC

chain stuck at values near zero for most other patients and so a prior bounded away from

zero was necessary to prevent this from happening. When the coefficient of variation is

zero, the Gamma density is not properly defined and so the other parameters, the mean,

m, and scale factor, γ, cannot be learned. A smaller prior variance was also used for

this parameter, favouring values of c between zero and one. This was reasonable as the

variance of the posterior weighted curve is expected to be quite small. The prior on γ

reflects the negative relationship expected between glucose and activity and the prior on

m for each patient is based on the lagged correlation profiles. The hyperparameters for

the DLM parameters are the same as for Patient 5. Algorithm 6.2 was run for a burn in of

1,000 iterations per patient, followed by the number of iterations, N , shown in the table.

The output was thinned to 10,000 iterations. The different numbers of iterations were

chosen to achieve a similar posterior effective sample size per patient, which took longer
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Table 6.1: Model 6.2 MCMC information for Patient 3, Patient 10, ND 1, ND 2 and ND 3.

Patient Iterations Hyperparameters Tuning parameters Acceptance rates

3 200,000 a3 = −5, b3 = 2,
a4 = 5, b4 = 10,
a5 = 10, b5 = 1

λm = 0.02, λc = 0.04 0.63, 0.58

10 200,000 a3 = −2, b3 = 2,
a4 = 2, b4 = 2,
a5 = 5, b5 = 1

λm = 0.2, λc = 0.5 0.71, 0.61

ND 1 100,000 a3 = −5, b3 = 2,
a4 = 5, b4 = 5,
a5 = 4, b5 = 1

λm = 0.3, λc = 0.6 0.34, 0.40

ND 2 200,000 a3 = −5, b3 = 2,
a4 = 2, b4 = 2,
a5 = 12, b5 = 2

λm = 0.01, λc = 0.04 0.96, 0.84

ND 3 100,000 a3 = −2, b3 = 2,
a4 = 5, b4 = 5,
a5 = 4, b5 = 1

λm = 0.3, λc = 0.6 0.78, 0.54
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Figure 6.10: Posterior densities for m, c and γ in Model 6.2 for Patient 3, Patient 5, Patient 10,
ND 1, ND 2 and ND 3.

for some patients. The tuning parameters were chosen for acceptance rates between 0.1

and 0.8, which was successful for all but ND 2 where the rates are higher.

The posterior densities for the weighted curve parameters for each patient are plotted

in Fig. 6.10. Only Patient 3 and Patient 5 have scale parameters that are not consistent
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Figure 6.11: The mean weighted curve in Model 6.2 for Patient 3, Patient 5, Patient 10, ND 1,
ND 2 and ND 3, according to posterior draws of m, c and γ.

with zero, implying that only a small effect from activity is detected in the other patients’

data. The posterior densities for m and c for Patient 10, ND 2 and ND 3 mainly follow the

shape of their priors, which also implies there is a lack of information in these data sets.

The weighted curves produced by taking the mean of posterior samples from m, c and γ

are shown in Fig. 6.11. The shapes of the curves mimic what is seen in the correlation

plots for the most parts, but the very small values on the y-axes for all but Patient 3 and

Patient 5 confirm that these two patients are the only ones where a notable activity effect

is observed. The y-axis is particularly small for ND 3. The posterior variance in the curves

for each Patient falls about the peak, as with Patient 5; the peaks of Patient 3, 10 and

ND 2 have a 95% credible interval of ±0.06, whilst the peak of ND 1 has a 95% credible

interval of ±0.015 and ND 3 of ±0.04, but there is less information in these patients’ data.

Despite the small weight associated with some of the activity lags, cumulatively these

can still have an impact on glucose levels. Fig. 6.12 shows the cumulative effect of activity

on glucose compared to the raw activity observations for the last day and a half of activity

data, shown as the mean cumulative effect from 2,000 posterior draws. For higher activity

observations performed by Patient 3 and Patient 5, the cumulative effect of activity reduces
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Figure 6.12: The mean cumulative effect of activity (orange) on glucose levels compared to the
raw activity data (blue) when fitting Model 6.2 to Patient 3, Patient 5, Patient 10, ND 1, ND 2
and ND 3’s data. The left-hand-side y-axis of each plot is the raw activity of each patient and the
right-hand-side is the cumulative activity effect for each patient.

glucose levels by over 1 mmol/L, whereas the other patients see only a small cumulative

effect. The raw activity data plotted for each patient show that even though some of the

activity levels performed by the latter set of patients are much higher than the former

two, this does not mean that the relationship between glucose and activity becomes more

prominent. One reason that the model picks up less of or struggles to detect a clear

relationship between glucose and activity for some patients and not others could be that

some subjects perform activity at similar times each day, so this seasonal behaviour may

be described by the Fourier harmonics instead. This would explain why the seemingly

clear lagged correlation profile for ND 2 is not detected.

The improved model forecasts for each patient are shown in Fig. 6.13. The largest

improvements are in the first two patients, as expected, though as there is only a small

amount of variation in the glucose profile of ND 2, the small correction in forecasts from

including the activity regression has made these forecasts track even closer to the observed
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Figure 6.13: Two-hour-ahead forecasts of Patient 3, Patient 5, Patient 10, ND 1, ND 2 and ND 3’s
glucose levels after fitting Model 6.1 (magenta) compared to Model 5.4 (orange), with 95% credible
intervals (purple and green, respectively).

values than before.

For comparison, the step function DLM was also fitted to each patient. The result-

ing step functions according to the posterior means of the step coefficients are shown in

Fig. 6.14. The plots show a range of both positive and negative coefficients for all of the

patients, which could explain why the weighted curves for the scaled Gamma curve DLM

are so close to zero for most patients. The scales on the y-axes of the functions are still

small, though these values are additionally scaled by the transformed activity observa-

tions. Despite the lagged activity effects looking quite different for the two models for

each patient, particularly for Patient 10 and ND 2, the forecasts are similar. This shows

that including the raw activity observations in Model 6.2 would be unlikely to further

improve these models. For each patients’ set of step function coefficients, the standard

deviations for Patient 3 and ND 2’s coefficients are similar to those of Patient 5, however

the posterior variance for Patient 10 is larger, with standard deviations between 0.06 and

176



Chapter 6. Bivariate glucose models

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.0

3
0
.0

1

Patient 3

0.5 1.0 1.5 2.0

-0
.1

5
0
.0

0

Patient 5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.0

5
0
.1

0

Patient 10

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.0

3
0
.0

0

ND 1

0.0 0.5 1.0 1.5 2.0 2.5

-0
.0

1
0
.0

2

ND 2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0
.0

3
0.

00

ND 3

Lag (hours)

A
ct

iv
it

y
co

effi
ci

en
t

Figure 6.14: The step function coefficients in Model 6.1 for Patient 3, Patient 5, Patient 10, ND 1,
ND 2 and ND 3 according to the posterior means of each β.

0.09, and for ND 1 and ND 3 are again smaller, with standard deviations around 0.015.

This is similar to what was seen in the scaled Gamma curve, where the posterior variance

for patients with less information in their data was smaller.

6.4 Modelling eating effects

Whilst the bivariate models between glucose levels and activity data have improved fore-

casts of glucose levels for some patients, there is still room for improvement. The variable

with the largest effect on all patient glucose levels is food intake. Knowledge of patient

eating times and details on what they have eaten could therefore also aid prediction of

future glucose levels, and provide improvements to forecasts where the activity and glucose

models have not.

Data are available for ND 1 and ND 3 on the number of grams of carbohydrates

consumed throughout the data collection period. A breakdown of the number of grams

of other macronutrients consumed by ND 1 is also available, but this was not recorded

by ND 3. As carbohydrates are broken down into glucose, their consumption directly

affects blood glucose levels, so monitoring this variable against glucose levels presents the
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Figure 6.15: Lagged mean correlation between glucose levels and number of grams of carbohydrates
eaten by ND 1 (blue) and ND 3 (red), with 95% confidence intervals.

opportunity to carry out some initial modelling of eating effects on patient glucose levels.

6.4.1 The relationship between glucose and carbohydrates

Some exploratory analysis into the relationship between food intake, specifically the num-

ber of grams of carbohydrates, and glucose levels is necessary to determine the kind of

model that might be suitable between them. The lagged correlation between the two

variables for both patients is plotted in Fig. 6.15.

The correlation profiles for both patients have a clear, similar shape, with the strongest

correlation between number of carbohydrates and higher glucose levels occurring around

30 minutes after consumption. A weighted regression model therefore seems like a sensible

starting point for these variables. What is more, the correlation profiles approximately

resemble Gamma densities and a similar bivariate glucose model incorporating this shape

has already been developed (Model 6.2).

6.4.2 Local Fourier eating effects model

To model the effect of food intake on glucose levels, a curve described by a Gamma density

with an additional scale parameter, γ, is suggested. This model is the same as Model 6.2,

however now the effect at lag k, ek, is the impact of the number of grams of carbohydrates
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consumed instead of the impact of activity from activity zone three. The indicator variable,

I(Zt−k = 3), is replaced by the number of grams of carbohydrates consumed at lag k, Ck,

which is zero when no food is consumed. The observation equation becomes:

ygt = Fθt + γ

k∑
i=0

eiCi + vt, vt ∼ N(0, V ). (6.3)

The full conditional distributions for all of the model parameters are the same as for

Model 6.2, with the relevant substitution of Ck for I(Zt−k = 3). The Metropolis within

Gibbs scheme is as described in Algorithm 6.2.

Results

Results are presented for both ND 1 and ND 3, since there are only two patients’ data

available. The model information for both patients is the same: Algorithm 6.2 was run

for N = 200, 000 iterations, plus a burn in of 1,000 and a thin of 20. The model hyper-

parameters were a1 = b1 = 1, a2 = 1.1, b2 = 0.01, a3 = 2, b3 = 2, a4 = 10, b4 = 1,

a5 = .5 and b5 = 1. These choices are based on the prior information provided in the

lagged correlation plots, Fig. 6.15, which imply the mean of the curve should be between

six and 12 (30 minutes to one hour). The local Fourier DLM priors are the same as

in previous models. The initial state distribution parameters were m0 = (8, . . . , 8) and

C0 = diag(1, . . . , 1). The maximum lag considered is chosen based on how long the effect

on glucose levels of a single eating event persists. Based on the correlation plots, this was

chosen to be two hours.

The resulting posterior mean curves describing the relationship between glucose levels

and the number of grams of carbohydrates consumed are shown in Fig. 6.16 for both

patients. As is seen in Fig. 6.15, the peak effect from eating for ND 3 occurs slightly

sooner (around 30 minutes) than for ND 1, which occurs around 45 minutes after the

event. Both models have a similar coefficient of variation, with mean 0.25 and 0.26 for

ND 1 and ND 3, respectively. Most notable about the results for the patients is how much

larger the peak eating effect is for ND 3 than it is for ND 1, though the scale of both

curves is small (up to around 0.005 for ND 1 and 0.015 for ND 3). The posterior mean of

γ for ND 3 is approximately 1.75 times the size of the posterior mean of γ for ND 1 (0.061

and 0.036, respectively). The posterior densities for ψy and ψ1, . . . , ψ5 for both patients

are similar to those in the univariate DLM for these patients.

The small scale of the posterior lagged eating effects does not necessarily mean that

the effect of carbohydrates on glucose levels is small, as the weights are multiplied by

the number of grams of carbohydrates consumed, which can be large. The data recorded

by ND 1 contain values over 200 g and by ND 3 just over 100 g. The wider range of
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Figure 6.16: Lagged effect of the number of grams of carbohydrates on glucose levels for ND 1
(blue) and ND 3 (red) according to the posterior means of Model 6.2 with observation Eq. (6.3).

values recorded by ND 1 also explains why the curve for this patient has a smaller peak

than ND 3. The cumulative effect of eating carbohydrates over time according to the

corresponding weights is shown in Fig. 6.17 for both patients. The effect is computed for

a sample of 2,000 posterior draws from the chain of each model, then the mean of the

cumulative effect is plotted. The figure shows that even though the scale of the weights is

small, relative to the scale of the glucose observations there is a notable cumulative effect

from eating. This effect is, however, smaller than expected, especially in comparison to the

size of the major peaks in the glucose profiles. Given the posterior standard deviations for

the Gamma curve parameters for both patients, the peaks of these curves vary by ±0.002

and ±0.003 for ND 1 and ND 3, respectively.

The mean two-hour-ahead out-of-sample forecasts made from an ensemble of forecasts

using sample draws from the MCMC chain of Model 6.2 with observation Eq. (6.3) for

ND 1 and ND 3 are shown in Fig. 6.18. There is an improvement in the fit of the forecasts

shortly after carbohydrates are consumed, for example at forecast index 7 for ND 1 and

index 11 for ND 3, but the model forecasts have not captured the full rise in glucose levels

that appears to be associated with those meals. This suggests that there are aspects to the

glucose profile that are still not sufficiently being captured by Model 6.2 with observation

Eq. 6.3 or by Model 6.2 when activity information is being used.
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Figure 6.17: Cumulative effect of eating carbohydrates over time (orange) according to Model 6.2
with observation Eq. (6.3) on ND 1 and ND 3’s glucose levels, compared to the number of grams
of carbohydrates consumed (blue).

6.5 Summary

This chapter demonstrates the benefits of fitting bivariate models between glucose and

activity using the technique of Markov melding.

Incorporating the posterior modal activity observation classifications from fitting a

Normal HMM to the log-transformed BFEN data was first explored. The lagged corre-

lations between the observations in each activity intensity zone and glucose levels were

plotted, Fig. 6.1. Overall, there was little impact from the low- and medium- intensity

activity zones on glucose, but the figure showed a varied relationship between the glu-

cose and the high activity component from patient to patient. Patient 5’s data were then

used to develop the bivariate models, since they showed a clear relationship between the

two variables and also followed the expected pattern given information from experts in

metabolism.

A step function model was first explored, to capture the positive and negative lagged

correlations between glucose and activity zone three. This curve also allowed for capturing

the different relationships between glucose and activity between patients. The resulting
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Figure 6.18: Two-hour-ahead forecasts (magenta) on ND 1 and ND 3’s glucose levels after fitting
Model 6.2 with observation Eq. (6.3), with 95% credible intervals (orange).

forecasts from this model showed clear improvements when compared to forecasts from

the univariate local Fourier model fitted to glucose levels in Chapter 5. The step function

was then also approximated by a scaled Gamma density, parametrised by the mean and

coefficient of variation of the Gamma density to overcome identifiability problems. This

model showed further improvements to glucose forecasts.

Some exploration into the relationship between glucose and food intake was then also

performed on the additional non-diabetic patient data, where the number of grams of

carbohydrates had been collected for two of the additional patients. A scaled Gamma

curve seemed suitable for describing the relationship between these two variables, and

fitting this joint model in a similar manner to the activity and glucose model showed

small improvements in forecasting the glucose levels, compared to the univariate model.

These results did not provide as large an improvement as expected, which suggests that

the effect of carbohydrate intake on glucose was not fully being detected by the model.

Overall, the models fitted in this chapter showed how additional information can im-

prove forecasts of the primary variable glucose. These improvements were seen across

patients, where a relationship was clearly detected in the lagged correlation plots first.
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For the patients whose forecasts did not improve significantly, it is suspected that their

data were not rich enough to detect the impact of activity on their glucose levels.

183



Chapter 7

Monitoring the production of

liquid natural gas

7.1 Background

This chapter demonstrates a second application area involving a similar model where

incorporating exogenous information leads to improved forecasts. This work was carried

out as part of a work placement at Woodside Energy Ltd, Australia’s largest oil and gas

company, at the end of the second year of research, which provided the unique opportunity

to apply similar methods to those used in this thesis to an industry-based problem. Pluto

gas plant (PGP) in Karratha, Western Australia produces tens of thousands of tonnes of

LNG every day. Conditions at the plant are carefully controlled to maximise the amount

of LNG produced. As LNG is produced, it fills a tank on site. Ships are scheduled to

come and drain the tank when it is due to hit ‘tank tops’ (a full tank) so production

does not need to slow down or stop, but there needs to be the right number of ships

arriving according to the rate of production to optimise emptying the tank. It is therefore

suggested that a forecast of short-term production levels (a few days in advance) would be

beneficial to those scheduling the ships, in order to better predict when tank tops would

be met.

One of the main factors impacting production levels at PGP is the weather. The

weather in Karratha is hot all year round, but when the temperature reaches over 37◦C

the plant needs to run in a different way to compensate for the additional cooling needed

(ideal temperatures for high production are lower). This is known to those controlling the

conditions in the plant, so the approximate range of production levels expected given the

current weather forecast is known. As well as high temperatures, large gusts of wind are

often unpredictable and have a negative impact on production levels. The idea is therefore

to fit a model to past production levels at PGP whilst taking into account past and future
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Figure 7.1: Production levels of LNG over time (thinned by five for plotting).

weather conditions to give more informed forecasts.

7.2 Exploratory data analysis

The conditions at PGP are monitored by hundreds of variables known as tags. Some

of these tags are manually set in response to other conditions in the plant (known as

control tags), and some are observed, for example temperature tags. All historical data

recorded from each tag are made available in real-time and in different summaries, such

as the mean value recorded over 10 minute intervals. There is also additional information

available, such as when the plant is running in a steady state or not.

Data from 2016 to 2018 are explored for modelling. Data prior to this are not as

useful as the way the plant is run was changed in 2016. Observations for each tag every

10 minutes are used, where each observation represents the median value observed for that

period. Data from when the plant is not operating in a steady state are excluded (recorded

as NA), because the behaviour of the plant is not predictable in this state and therefore

is not accounted for in the models. Additionally, data from when the tank at the plant is

being drained are excluded; when a ship is present the plant does not operate normally,

since, for example, there are extra gases coming from the ships that affect conditions in

the plant.

There is a clear annual seasonal pattern to the production data, Fig. 7.1, with high
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Figure 7.2: An example of production levels of LNG over five days.

levels of production in the winter months (May to September) and lower production levels

in the summer when weather conditions are very hot. The summer months show an

increased variability in production levels and there is also an increasing trend in average

production levels from year to year, both of which contribute to non-stationarity. Fig. 7.2

provides an illustrative example of a closer look at production levels from day-to-day;

there is a cyclic diurnal pattern, with peaks in production levels over night and lower

levels during the day. Like the annual seasonality, this coincides with a rise and fall in

temperatures. The shape of the time series on a daily basis is the same throughout the year,

however in winter months, the variance in production levels is smaller whilst atmospheric

temperatures are more stable. The daily production quantity profiles are not dissimilar to

the glucose profiles in Fig. 2.1, but with fewer daily peaks and troughs. Similar models to

those developed for forecasting glucose levels should therefore be explored for forecasting

future production levels.

7.2.1 Production vs weather-related tags

The aim of this chapter is to forecast production levels of LNG, with additional information

about the weather included in models to improve forecasts. The main tags of interest are

therefore temperature tags, atmospheric pressure tags, wind speed and wind direction

tags. Temperature data are readily available from PGP from sensors placed around the
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Figure 7.3: Pairs plots of production quantity against weather-related tags (thinned by 50 for
plotting).

plant. These tags record temperatures that are strongly correlated with the atmospheric

temperature and so are used to develop models initially. One temperature tag recorded

at a plant inlet, where air is drawn in from outside, is selected for use.

Fig. 7.3 is a pairs plot of production levels and the weather tags, without wind direc-

tion. The plots show a strong negative correlation between temperature and production,

as expected, which is approximately linear. There is a moderate positive correlation be-

tween atmospheric pressure and production, but this variable is also negatively correlated

with temperature, suggesting collinearity. Temperature, which has a stronger causal rela-

tionship with production levels, is therefore favoured over atmospheric pressure. There is

little evidence to suggest that wind speed has an effect on production.

To visualise how wind direction might affect production levels, a windrose plot is used,

Fig. 7.4. This radial plot shows the production level according to wind direction and is

coloured by the wind speed. As wind gusts are common, this plot determines whether there

is a particular direction of the wind that impacts production levels more. The windrose

plot shows some non-uniformity in the density of wind direction, suggesting southerly

winds are not as common, however where the observations in this direction do occur, they

tend to be associated with higher levels of production. Likewise, northerly winds also have

fewer lower levels of production associated with them. The lower levels of production tend

to occur when winds are coming from the north west or north east. The plot confirms
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Figure 7.4: Radial plot of wind direction vs production quantities, coloured by wind speed.

that wind speed does not seem to affect production levels as much, since lighter coloured

observations are not clustered in one particular area of the plot.

7.3 DLMs for production data

The time-varying mean of the production data along with their seasonal pattern make

DLMs good candidate models to apply. The seasonality of production levels can be con-

sidered at two levels: annual and diurnal. The annual periodicity includes the variation

caused by the change in season and is important for long-term forecasts that focus on

the overall trend of the data, that smooths over daily fluctuations. Including the detail

of daily production levels at this level would require a large number of harmonics, for

example, to be able to forecast the production levels for the next few days. As the annual

change is gradual, for short-term forecasts of up to a few days ahead it is more important

to capture the diurnal pattern. A period of one day is easier to model since there are fewer

observations per period and a time-varying local level can be incorporated to adjust for

the annual periodicity.

A local Fourier model, with the pairs of variances of the q Fourier harmonics con-

strained to be equal as in Model 5.4, is therefore developed for these data. The period

of the data is s = 144, one observation every 10 minutes over one day, approximated by

q = 2 harmonics.
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Due to the large volume of data and time constraints when work was carried out,

the parameters of the DLM, (ψy, ψ1, . . . , ψq+1) are learned through maximum likelihood

estimation using the dlmMLE function from the dlm package. Finding the model parameters

in this way took less than 30 minutes per model. The maximum likelihood estimates of each

parameter are the values that maximise the complete data likelihood. These values are

point estimates that do not incorporate parameter uncertainty. Each model’s parameters

are learned using the training data set (first 60% of the data), followed by out-of-sample

validation on the remaining 40% of the data. Model forecasts are produced for predictive

horizons of up to 24 hours, as weather forecasts after this become less reliable. It takes

around 20 minutes for settings in the plant to change in reaction to conditions, so forecasts

must be accurate for a minimum of 30 minutes ahead of time.

7.3.1 Results

The maximum likelihood estimates of the model parameters are (ψy, ψ1, ψ2, ψ3) =

(1, 012.03, 149.88, 39.20, 135.29). The initial state hyperparameters m0 = (0, . . . , 0) and

C0 = diag(1 × 107, . . . , 1 × 107) are the default dlm function parameters; changing these

initial values has little effect on the overall model. A plot of the smoothed states in Fig. 7.5

shows that two harmonics fit well to the data, as there is no evidence of seasonality in the

local level component and the main fluctuations in production quantity are represented in

the two smoothed harmonic components.

To assess the model performance, an array of 1,000 one-day-ahead forecasts is taken

at a random sample of 2,000 out-of-sample time points in the testing data. The forecasts

ignore the epistemic uncertainty in the parameter values because they are simply condi-

tioned on the plant estimates for parameters when issuing forecasts. Production quantity

forecasts are considered accurate by industry standards if they fall within ±100 Tonnes of

the observed production levels. The mean forecast is calculated for each array of forecasts

and the proportion of forecasts within the accuracy interval is calculated. For this model,

the proportion of forecasts within ±100 Tonnes for one-day-ahead forecasts is 65%.

Examples of out-of-sample one-day-ahead forecasts are shown in Fig. 7.6. The mean

forecasts closely follow the pattern of production levels observed in the previous 24 hours,

which is effective for the parts of the series that continue in the same trajectory as before,

but for days where the behaviour in production levels changes, for example the fourth

forecast in the figure, the predicted production levels are inaccurate. As there are fewer

factors influencing production levels than there are on glucose levels, the model performs

reasonably well.

189



Chapter 7. Monitoring the production of liquid natural gas

1
42
0
0

1
45
0
0

P
ro
d
u
ct
io
n
(T

on
n
es
)

14
35
0

14
39
0

S
1

-1
50

0
1
00

S
2

-1
00

0
10
0

0 50 100 150 200 250

S
3

Index

Figure 7.5: The first two days of production data (top) with the corresponding smoothed states.
The second row is the smoothed local level component S1, then S2 and S3 are the smoothed Fourier
components θ3 and θ5.

7.4 Modelling production with temperature

To improve the forecasts for production levels, a model including the exogenous variable

temperature is fitted. Temperature is the main factor that influences the plant settings

at PGP and Fig. 7.3 shows the strong relationship between temperature and production

quantity. For low temperatures (< 27◦C) and very high temperatures (> 37◦C), operators

at the plant control LNG production slightly differently than for the mid-range tempera-

tures, which explains the change in relationship between temperature and production in

these areas of the pairs plot. For the purpose of the models in this section, the relationship

is assumed to be linear, as for the majority of temperatures it is.

A linear model that regresses production quantity, yt, on the current temperature, xt,

is fitted to the training data using least squares (Dekking et al., 2005). The fitted linear

model is:

yt = 16782.99− 74.79xt + εt, (7.1)

where εt are the residual errors between the fitted values and the observations. The model

residuals are plotted in Fig. 7.7. Comparing this plot with the production quantities in
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Figure 7.6: One-day-ahead forecasts (magenta) for production levels with 95% prediction intervals
(orange) after fitting a local Fourier model.

Fig. 7.1, regressing on temperature alone has reduced the annual seasonal trend, though

there is a prominent increasing mean. The model residuals should be a white noise process,

which is clearly not the case. Therefore a more complex model that allows for the clear

autocorrelation between the residuals is needed. The figure shows that a linear model

alone is not enough to predict production quantities based on temperature. A closer look

at the daily residuals, Fig. 7.8, shows a diurnal pattern remains.

The results from the linear model demonstrate how regressing production on temper-

ature can partially detrend the data, making production levels easier to predict. A DLM

that incorporates this information is described in Model 7.1.

Model 7.1

yt = Fθt + βxt + vt, vt ∼ N(0, V ),

θt = Gθt−1 + wt, wt ∼ N(0,W ),

where

F =
[
1 1 0 1 . . . 0 1

]
, G = blockdiag(1, H1, . . . ,Hq),

Hj =

[
cosωj sinωj

− sinωj cosωj

]
and ωj =

2πj

s
for j = 1, . . . , q,
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Figure 7.7: Adjusted production levels of LNG over time after regressing on temperature (thinned
by five for plotting).

V = ψ−1y , W = diag(ψ−11 , . . . , ψ−1q+1).

Model 7.1 is a local Fourier model with constrained harmonic variance pairs, plus

the term βxt, a regression on the temperature at time t. The DLM still contains a

Fourier term to describe the remaining diurnal pattern in the data and the local level

is described by a random walk. This is suitable since the mean is non-reverting. For

computational convenience the regression coefficient is taken as the model coefficient in

Eq. 7.1, β = −74.79, whilst the intercept term in the linear model is not needed, as this

is incorporated into the random walk component. The model was tested with q = 1 and

q = 2 harmonics and the second harmonic did not significantly improve forecasts, so results

for the q = 1 model are presented.

7.4.1 Results

The maximum likelihood estimates of the parameters for Model 7.1, with β = −74.79, are

(ψy, ψ1, ψ2) = (910.95, 57.86, 279.41). The initial state hyperparameters are the same as

for the univariate DLM.

An array of 1,000 one-day-ahead forecasts is produced for the same 2,000 random
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Figure 7.8: Adjusted production levels of LNG over five days after regressing on temperature.

out-of-sample time points in the test data. The temperatures used for the forecasts are

the observed temperatures for the forecast period (sensitivity to errors in temperature

forecasts is explored in the next section). The mean of each array is then used to calculate

the proportion of forecasts within ±100 Tonnes of the observed series, which is calculated

as 76%. This is a considerable improvement to the univariate model. For shorter term

forecasts, the proportion of observations that are considered accurate is even higher; a

plot of the mean proportion of observations within ±100 Tonnes for predictive horizons

between one and 24 hours ahead is in Fig. 7.9.

Example forecasts are shown in Fig. 7.10. The forecasts show how powerful including

an explanatory variable in a model can be, with the forecasts following the shape and

fitting very closely to the observed series.

7.4.2 Forecast sensitivity

The accurate forecasts of production from Model 7.1 are based on the known, precise

future temperatures at PGP. Here the model is tested on how sensitive the forecasts are

to less accurate temperature forecasts. How far out a temperature forecast can be before

the production level forecast becomes unreliable and whether forecasts are better in winter,

when weather is steadier, than in the summer are investigated.
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Figure 7.9: Mean proportion of observations within ±100 Tonnes for forecasts with predictive
horizons between one and 24 hours ahead from Model 7.1.

The temperatures used in forecasts are perturbed between ±4◦C by increments of

0.5◦C, allowing for a systematic additive bias for demonstrative purposes. The proportion

of forecasts within ±100 Tonnes for a range of predictive horizons are shown in Fig. 7.11.

The level of accuracy for forecasts with temperatures within ±1◦C of the true values is

reasonable for each predictive horizon, however the proportion of accurate forecasts de-

creases quickly thereafter. As forecasts are only being made a day in advance, temperature

forecasts for the following day can be assumed to be close to the actual temperatures, so

forecasts should still fall within an acceptable range of future values.

A closer look at the forecasts produced by the model on summer data compared to

winter data showed that there is no difference in forecast accuracy between the seasons.

As the model is dynamic, it adapts well to changes in the mean production levels in the

data.

7.5 Model improvements and further work

Model 7.1 is developed based on the relationship between production quantity and the

temperature observed at an inlet of the plant. In real life, if weather forecasts of the
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Figure 7.10: One-day-ahead forecasts (magenta) for production levels with 95% prediction intervals
(orange) after fitting Model 7.1.

ambient temperature local to PGP are used for predicting LNG production, these must

be adjusted in relation to the inlet temperature, or the model should be fitted based

on historical ambient temperature data instead. Plant temperatures should be strongly

correlated with the ambient temperature, but any differences could have a big impact

on the parameters, in particular the regression coefficient, that are used in the model.

The suitability of the model should then be reassessed based on the incorporation of local

weather data. If possible, Bayesian methods of parameter inference should also be explored

to allow proper incorporation of parameter uncertainty in forecast distributions, as well

as jointly fitting the model in real-time. For further model improvements, including wind

direction in the model could also be explored.

7.6 Summary

This chapter demonstrates the vast improvement that can be made by incorporating addi-

tional information in a model via an explanatory variable. By explaining a large proportion

of the variation in the production quantity of LNG caused by the ambient temperature

at the plant, better forecasts were achieved. The sensitivity of production forecasts to
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Figure 7.11: Proportion of forecasts from Model 7.1 within ±100 Tonnes for a range of temperature
errors.

perturbations in the temperature variable was also tested, demonstrating how accurate

the weather forecast would need to be for production forecasts to be reliable if the model

was to be used in practise.
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Chapter 8

Conclusions and future work

8.1 Objectives and contributions of this thesis

The primary objective of this thesis was to develop a bivariate model for glucose levels and

activity levels of type II diabetes patients and to fit the models in a Bayesian framework.

This was achieved via DLMs for glucose levels combined with a regression component to

incorporate information about activity data, which were classified into activity intensity

zones by a HMM. The secondary goal was to investigate whether other information, such

as food intake, could lead to improvements in the model. A joint model involving the

number of grams of carbohydrates and glucose levels was developed for this purpose. A

model for the secondary application of forecasting the amount of LNG produced at a gas

plant was also investigated.

The modelling chapters of this thesis (4, 5 and 6) each contribute to an improved

understanding of the complexity of jointly modelling noisy glucose and activity data.

Additional to this, the models fitted in Chapter 7 in a very different problem context

illustrate the flexibility of the types of models developed in this thesis. Both of the

applications explored are novel areas for such time series models to be applied.

Previous research has involved transforming accelerometer data using different activity

summaries and in some cases comparing methods, such as the work by van Hees et al.

(2013), or using HMMs to model these data (Huang et al., 2018), but a comprehensive

comparison of different summaries with the transformed data classified using a HMM

was not available. The HMMs fitted in Chapter 4 contribute a thorough exploration

into the most suitable activity summary and within-state distribution for representing

the perceived activity intensity zones of patient activity from accelerometer data. This

analysis gave rise to further questions regarding which activity observations could be

clustered together for monitoring their impact on glucose levels.

The univariate glucose models in Chapter 5 explored the use of dynamic models to
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better describe the irregular seasonal patterns in the data, to improve upon classic AR

models that had mainly been used in the literature on glucose prediction to date. These

models were fitted using Bayesian inference to incorporate the model parameter uncer-

tainty into the forecasts, then various models combining Fourier and AR components were

developed and compared in an effort to improve the forecasts’ accuracy and precision.

In Chapter 6, the posterior modal classification of the log-transformed BFEN activ-

ity data according to the Normal HMM from Chapter 4 was combined with the local

Fourier DLM from Chapter 5 to build a bivariate model to improve glucose forecasts.

This contributed to understanding the relationship between glucose and activity and how

this differs between individuals. The model between food intake and glucose showed the

impact this variable also has on glucose levels, though these data were only available for

two patients.

Finally, the models developed in Chapter 7 incorporating temperature and the amount

of LNG produced at a gas plant provided a novel solution to forecasting these quantities.

The forecasts provide more accurate estimates of future LNG production levels compared

to regression models that have been used in the past based on other variables in the plant.

The model also serves as a good example of how, where a clear relationship between

variables can be learned, model forecasts can be greatly improved.

8.2 Conclusions

In Chapter 1, the problems of glucose prediction and activity monitoring were introduced,

with previous research grouped into three main areas: current glucose models and meth-

ods to assess their performance; the physiological impact of activity on glucose levels;

and methods for pre-processing accelerometer data. The review of literature surrounding

these topics provided an initial understanding of what had been done already for predict-

ing glucose levels of type II diabetes patients and provided a wealth of information to be

considered for the models that were subsequently developed. Whilst there had been sev-

eral glucose-only models developed previously, work had not been done to model activity

alongside glucose levels, despite there being vast amounts of research showing that activity

influences glucose levels. The models previously developed and the literature surrounding

the physiological impact of exercise on glucose levels provided a good basis for models to

be explored and developed in this project.

Chapter 2 gave an overview of the glucose and accelerometer data available. A range

of pre-processing methods for accelerometer data discussed in Chapter 1 were applied to

a sample of patient accelerometer data to compare how their activity summaries differed

and to assess their suitability for monitoring activity levels. Three methods were then

chosen to evaluate further: an unfiltered summary (ENMO), a filtered summary (BFEN)
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and a step count algorithm. Choosing to model three summaries in Chapter 4 provided

insight into how flexible the activity models are, as well as highlighting any key differences

in how they are classified. An exploration into the glucose data for eight diabetic patients

showed that the density of the data for each patient could be described by a mixture of

Gaussian densities, however the mean and variance of the mixtures were quite different

between patients. The seasonal pattern within each profile consists of a number of peaks

and troughs per day, but this number varies between patients and sometimes within the

profile of each patient, too. This highlighted the need for a flexible model to be developed

for glucose levels. It was also found that some of the profiles suffered from missing data,

in varying levels of missingness, and so the models fitted needed to account for this. An

initial investigation into the relationship between glucose and activity levels gave some

insight into the non-homogeneous effect of activity on glucose over time.

Previous research surrounding the impact of activity on glucose levels showed that the

type of activity being performed was not important in producing an effect and that the

subject simply needed to be active. This provided the basis for the models developed

in Chapter 4, where activity levels were classified into low-, medium- and high-intensity

activity zones. The theory behind HMMs was explained in Chapter 3 along with the

computational Bayesian inferential tools needed to fit them. Initially, a HMM with zero-

order dependency, known as a mixture model, was fitted to the 1 Hz BFEN data. Whilst

the posterior within-state distributions classified the data into three distinct states, this

model saw a high number of transitions between states. This model provided a baseline

for the traditional HMMs with a first-order Markov dependency between states that were

fitted next, which saw a reduction in the number of transitions between states to a more

physiologically realistic amount. The HMMs were fitted using Normal and skew Normal

within-state distributions to the three activity summaries chosen in Chapter 2. In develop-

ing these two candidate models, an equal variance constraint was added to encourage the

a posteriori identification of distinct means for the within-state densities, which improved

the fit of the models. Adding in the skewness parameter improved the classification results

particularly for the ENMO data, which had a long right tail and could not easily be trans-

formed due to the negative observations. The BFEN and step count activity summaries

were transformed using a log-transform and square-root transform, respectively, which

reduced the skew in the data and reduced the need for a skewed within-state distribution

in the HMM. The activity summaries were downsampled to a frequency of one obser-

vation every five minutes. This reduced the amount of time needed to run the MCMC

algorithms to fit the HMMs by reducing the overall size of the data sets and also aligned

the frequency of the activity data with that of the glucose data. This transformation also

made the distinction between periods of activity and inactivity more prominent in the

data.
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The results from the activity model HMMs showed that the activity summary used to

transform the tri-axial accelerometer data has a large impact on how the activity at each

timestamp is interpreted. More specifically, there was a big difference between the step

count and BFEN classifications compared to the ENMO classified data. After collecting

labelled activity data, the ENMO activity summary was ruled out as a useful summary

for use in future glucose models, as classification of this summary failed to detect some

labelled higher intensity activities. The step count and BFEN summaries showed that

the HMMs were versatile enough to produce similar classification results for discrete (step

count) and continuous (BFEN) summaries. Comparing the Normal HMM on the log-

transformed BFEN data of a subset of diabetic and non-diabetic patients, overall the

posterior within-state distribution parameters were similar, which indicated that a HMM

could be developed on one patient and used across other patients, without losing much

accuracy in the classification of the realised activity observations.

The glucose models fitted in Chapter 5 proposed two main methods for capturing the

seasonality of the glucose profiles: using a high order AR model, or AR component in a

DLM, and using a Fourier seasonal component in a DLM. The challenges of capturing this

seasonality arose from the irregular periodicity from day-to-day, due to different external

factors, such as food and exercise. High order AR models were not sufficient in capturing

the extreme peaks and troughs in the data, often under- and overestimating these values,

respectively. For glucose prediction, accurately predicting a hyper- or hypoglycaemic

glucose level is more important than correctly predicting the euglycaemic values, as these

extremes are the glucose levels that require intervention from the subject. Improving the

glucose models was therefore necessary and this was done by adding in a Fourier seasonal

component. The DLMs with a Fourier component improved the prediction of the extreme

glucose values. The forecasts from these models most closely followed the pattern of the

glucose levels observed the previous day, so where glucose levels in the following period

were quite different, the model did not perform as well. DLMs that included both a

higher order AR component and a Fourier seasonal component were also fitted, but the

combination of both elements did not provide a much better fit than when fitting a Fourier

component with a local level component. Whilst a DLM adapts to changing variance and

allows for non-stationarity, there was still room for improvement that came in the following

chapter when additional information about some of the external factors influencing glucose

was included. This chapter also showed how model parameters differed between patients,

meaning that a universal glucose model was not a viable option. The models performed

better for patients whose glucose profiles have less variability, namely the non-diabetic

patients. Having some non-diabetic patient data was a useful comparative reference for

the models fitted to diabetic patients throughout the thesis.

The joint models fitted between glucose and activity data in Chapter 6 combined the
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results from the Normal HMM fitted to the log-transformed BFEN data with the local

Fourier model fitted to the glucose data via a regression on the posterior modal activity

level from the HMM. This method of Markov melding showed some promising results in

which the forecasts of some of the patient glucose levels improved. The results showed how

the amount of information available in each patient’s data varied, with only a small effect

from activity being detected in some cases, leading to only a small improvement in glucose

forecasts for these patients. One of the reasons that the cumulative effect of activity on

glucose levels is more difficult to detect for some patients could be because of the different

CRF levels of patients. The effect of activity on glucose levels for those with higher CRF

levels to begin with is smaller, as shown by McCarthy et al. (2017). This is consistent with

what is seen in the joint model results for Patient 3 and Patient 5; diabetic patients tend

to have lower CRF levels and therefore poorer metabolisms, so glucose levels rise more

postprandially than for non-diabetic patients and then improve by a larger percentage

when activity is performed. For Patient 3 and Patient 5, the cumulative effect of activity

reduced glucose levels by over 1 mmol/L. For the non-diabetic patients and Patient 10, the

effect from activity was much smaller, which could be because there is less of an impact

from activity on glucose levels because of higher CRF levels for these patients.

In Chapter 6, a joint model involving the number of grams of carbohydrates consumed

was fitted to two of the additional patients, where these data were available. One of

the challenges with including data on the food that patients have consumed in models

is in data quality; food data were collected for all three of the additional non-diabetic

patients, however the information failed to log for one of the patients (ND 2) and tracking

food intake for the other two patients required a lot of effort. One of the reasons for

using accelerometer data instead was that they are much easier to collect, since it involves

minimal intervention from the patient. They are also therefore less subject to human

error, since the data are collected by a wrist-worn activity watch, then transformed using

the appropriate algorithm. Nevertheless, it was useful to fit a model between glucose and

number of grams of carbohydrates consumed because food intake is known to be the main

influencing factor over glucose levels. It was surprising that the model did not therefore

produce a bigger improvement in forecasts, with only a better fit immediately after the

event at the start of where glucose levels began to increase. This implies that the model

was still not capturing some crucial information that drives glucose levels, or possibly is

not fully capturing the relationship between glucose and carbohydrate consumption.

In summary, a HMM with sensible within-state distributions that reflected realistic

underlying activity zones for the BFEN and step count data sets was developed, which was

able to provide useful activity summaries, namely the posterior modal state for each time

point, to be used in joint models with glucose data. The dynamic glucose models developed

provided a good baseline in predictive performance, which captured the periodicity in the
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glucose profiles to a good degree of accuracy. The bivariate models between glucose and

activity and glucose and the number of grams of carbohydrates consumed both showed

improvements to forecasted glucose levels when compared to the univariate glucose models.

This showed how incorporating exogenous variables in the model can lead to improved

fit. The scaled Gamma curve activity DLM showed the biggest improvements to forecasts,

when the relationship between glucose and activity was detectable, but this was very much

patient dependent.

The models for monitoring the production quantity of LNG produced in Chapter 7

showed the vast improvement that can be seen in forecasts when an explanatory variable is

included and when the relationship between the explanatory and dependent variable can

be easily learned. A local Fourier DLM was fitted to production levels alone as a baseline,

then a regression on the temperature at the plant was added to the model. As with the

univariate local Fourier glucose DLM, the forecasts of production levels for the following

day most closely followed the production levels of the previous day, which therefore had

varying success depending on how similar successive days were. Fitting a linear model

between production quantities and temperature detrended the production data a good

amount, since temperature is one of the main factors in how well the LNG plant performs

on a particular day and this relationship is approximately linear. The temperature coeffi-

cient learned from this model was then included in the production DLM, along with the

temperature covariate. The forecasts from the model that included additional information

on temperature were much more accurate, closely following the shape of the production

quantity profile.

8.3 Further work

This section highlights some possible future directions for continuing the work on moni-

toring and forecasting glucose levels of type II diabetes patients.

One of the obvious branches of the work in this thesis to follow is to fit the bivari-

ate glucose and activity model in real-time. A method for doing so is outlined here.

The joint model consists of two parts: a HMM to learn the hidden activity zones and

a DLM that incorporates past and current glucose and activity data. At time t = 0,

there are no data to condition on, so uncertainty about the parameters of the models

are summarised through their prior distributions. As data are collected, the posterior

distributions of the parameters can be updated using MCMC methods. The process of

performing these parameter updates will happen in two stages: firstly, the accelerometer

data are pre-processed using the BFEN algorithm (2.3) over five minute windows and the

HMM MCMC algorithm (3.5) is run, learning the posterior within-state distributions and

sampling the hidden states upon running the forward-backward algorithm (3.4) on each
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iteration; secondly, the scaled Gamma curve DLM MCMC algorithm (6.2) is run, incorpo-

rating the posterior modal activity states from the first stage. Ensembles of filtered values

and forecasts can then be produced from the bivariate DLM using posterior draws for the

model parameters.

At the end of the first day of data collection, the posterior densities of the model

parameters are computed overnight based on the available data, then the MCMC scheme

for updating these densities will not be run again until the following night. This is because

the block MCMC schemes described in this thesis are not amenable to sequential use in

real-time. Over the day, with parameters fixed at a value from their joint posterior, the

filtering recursions can be used to classify activity levels and to summarise uncertainty

about the DLM state using data up to time t. As each new data point becomes available,

this can be advanced one step forward. On the basis of these filtered distributions, forecasts

can be issued at any time.

The results in this thesis for activity models showed that the posterior within-state

distributions for the Normal HMM fitted to the log-transformed BFEN activity summary

were similar across all patients. Therefore because this was the chosen activity summary

and model combination for use in the bivariate glucose model, it would be interesting to

learn the parameters of the joint model on one patient and assess its performance on other

patient data. This could reduce the amount of computational inference needed across

patients. Alternatively the posterior for one patient could be used to develop an infor-

mative prior for other patients. Improvements to fitting the model in real-time could be

continued by using sequential methods for state space models, such as sequential inte-

grated nested Laplace approximation (INLA) (Martino & Riebler, 2014), for forecasting

online. Sequential INLA is a fast, deterministic approximation of posterior quantities and

so does not take long to converge or suffer from poor mixing. Another option is to use a

particle filter method, such as iterated batch importance sampling (IBIS) (Chopin, 2002).

This algorithm iteratively samples, reweights and resamples values for the parameters,

which sequentially produces a discrete approximation for the posterior distribution. This

method is more efficient than MCMC and is parallelisable (Lai et al., 2020), making it

more suitable for online inference. A faster programming language for fitting models could

also be used.

Continuing on from forecasting glucose levels in real-time, an investigation into the

glucose levels that should trigger a behavioural prompt for each patient could be con-

ducted. The glucose profiles of each patient in this project showed that the boundaries

for a hyper- or hypoglycaemic glucose recording would not be practical levels to trigger a

behavioural prompt for everyone, as this would result in almost all observations and their

forecasts producing a prompt. Adapting this per person would therefore be necessary and

an interesting area to research. The frequency of behavioural prompts could then also be
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investigated.

Methods to perform error-grid analysis, used to assess model performance based on

whether or not a glucose prediction falls in the same range as the observed glucose levels

(hyper-, hypo- or euglycaemic ranges), were introduced in Chapter 1. It would be inter-

esting for clinicians to have this information, however, as with the behavioural prompts,

it is clear from the patient data available that the actual ranges of euglycaemic glucose

levels are subjective for type II diabetes patients and would therefore need to be looked

into more carefully. This analysis is therefore left as future work.

In terms of model improvements, further improvement to the models developed in this

thesis could be made by collecting, analysing and incorporating data on other variables

that influence glucose and improving the quality of the data on food intake. One of

the factors mentioned in the conclusion is the CRF levels of patients, which is a known

influencer of glucose levels. Knowledge of patients’ CRF levels prior to data collection,

and possibly during, could be incorporated into models to see whether this coincides with

a smaller realised activity effect in some patients. The way a glucose profile develops over

time is also largely determined by the body’s insulin response, which does not respond in

the same way for diabetic people and this causes higher glucose levels. More knowledge

of insulin at an individual level could therefore improve models further. The amount of

patient intervention for the collection of data on additional variables should however be

considered, as increased interaction leads to more human error and is also more likely

to discourage subjects from collecting data for longer periods. Food intake data were

incorporated in the bivariate model as the number of grams of carbohydrates consumed;

an alternative to collecting these data directly would be to learn when a patient has eaten.

This ‘random eating process’ would then underpin the glucose model. Fitting a model

that involved glucose, carbohydrates and activity, based on the models already developed,

is also a natural next step to take.

To make the models fitted more flexible, the number of hidden states in the activity

HMM could be learned. This would not necessarily be a vital step for the log-transformed

BFEN activity summary, since there seem to be three clear hidden states for most patients,

however a HMM of unknown order might better suit the step count summary, whose

square-root transformed data were trialled with four hidden states. Likewise, the number

of harmonics in the Fourier component of the DLMs could be learned, but the added

computational complexity may mean this approach is not worthwhile.

Finally, models to ‘correct’ the glucose values reported by CGM sensors, such as those

by Facchinetti et al. (2013), are available. As the values reported are based on interstitial

glucose levels, there is some discrepancy between these observations and actual blood

glucose levels, which is why the CGM device records more accurate observations when it

is regularly calibrated by a finger-prick glucose measurement. Adding in a glucose level
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‘correction’ to models could therefore improve the inferred relationship between glucose

and activity, for example.
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Ahlqvist, E., Storm, P., Käräjämäki, A., Martinell, M., Dorkhan, M., Carls-

son, A., Vikman, P., Prasad, R. B., Aly, D. M., Almgren, P. et al. 2018 Novel

subgroups of adult-onset diabetes and their association with outcomes: a data-driven

cluster analysis of six variables. The Lancet Diabetes and Endocrinology .

Albert, J. H. & Chib, S. 1993 Bayes inference via Gibbs sampling of autoregressive

time series subject to Markov mean and variance shifts. Journal of Business & Economic

Statistics 11 (1), 1–15.

Allen, N. A., Fain, J. A., Braun, B. & Chipkin, S. R. 2008 Continuous glucose

monitoring counseling improves physical activity behaviors of individuals with type 2

diabetes: a randomized clinical trial. Diabetes research and clinical practice 80 (3),

371–379.

Berger, J. O., Moreno, E., Pericchi, L. R., Bayarri, M. J., Bernardo, J. M.,

Cano, J. A., De la Horra, J., Mart́ın, J., Ŕıos-Insúa, D., Betrò, B. et al.
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