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Electron density is the principle determinant of the characteristic proper-
ties of molecules, their structure and dynamics. For this reason it is vital
to ascertain accurate densities. One method of predicting electron densities
is density functional theory (DFT). It is derived from the Hohenburg-Kohn
theorem which states that an exact ground-state energy should yield an ex-
act electron density and vice versa. In reality the exact solution is not fully
known as exchange and correlation have to be estimated. Were it known,
accurate densities and energies could be calculated at a fraction of ab initio
computational cost. However, it is noted that functional methods have devi-
ated from the path to the exact functional due to energetic overfitting. This
study used the electric field gradient (EFG) as an electron-density probe to
facilitate comparison both to ab initio calculation (CCSD(T)) and microwave
spectroscopy for simple transition metal complexes and halogenated aro-
matic compounds. EFGs improved with increased Hartree-Fock (HF) ex-
change fraction encountered for higher rungs of Jacob’s Ladder due to self-
interaction error (SIE) reduction. SIE cancellation was uneven between tran-
sition metals, halogens and aromatic rings, causing functional-dependent
electronegativity. Electron density can also be inferred from X-ray scatter-
ing. X-ray free-electron lasers (XFELs) are used to probe molecular struc-
ture and dynamics on ultrafast time scales. Solutions contains additional
scattering signals other than the desired solute from the solvent and solute-
solvent. The solvent term can be extracted experimentally or via molecular
dynamics (MD) trajectories. Theory is also the only method of predicting the
solute-solvent term independently. The solvent force-field parameters can
be derived from experiment or theoretically from DFT calculation. The im-
pact of the chosen force field on the the predicted scattering profiles was
evaluated herein, Quantum Bespoke Kit (QUBE) and all-atom Optimised
Potentials for Liquid Simulations (OPLS-AA) force-fields were used to as-
sess theoretically- and experimentally-derived parameters respectively for
common solvents for the same test solute (I2). Force-field dependence is elu-
cidated for both terms due to differences in non-bonded parameters.There
also remains further investigation to better approximate experimental sol-
vent terms. Solute-solvent scattering occurs on comparable scales to the so-
lute scattering. XFELs have also been applied recently to improve under-
standing metal-to-ligand charge transfer (MLCT) in transition metal com-
plexes and the influence of polar solvents in their structures. QUBE was
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used to investigate the ground and excited states of [Cu(phen)2]+ and com-
pared to recent classical MD and quantum-mechanical/molecular mechani-
cal (QM/MM) simulations. It performed particularly well in regards to iden-
tifying Cu-N bond asymmetry and solvent influence in the ligand-ligand
dihedral in the triplet state which were not identified in previous theoreti-
cal investigation but in agreement with recent experimental understanding.
This improvement was attributed to its use of high-rung DFT in parameteri-
sation (ωB97X-D). Overall this investigation evaluate thoroughly the current
state of theory in reproducing accurate electron densities, highlighting the
importance of reducing DFT SIE to improve density accuracy, which in turn
impacts force-field parameter quality, indicating that DFT improvement im-
pacts all branches of theoretical chemistry.





ix

Acknowledgements
I’d like to take this opportunity to thank the many people who have helped
me through the last four years and three months. I would like to extend my
thanks to my supervisor, Dr Tom Penfold, for giving me the opportunity to
pursue this PhD, to have an experience of life as an academic and providing
immeasurable support at every step. I would also like to acknowledge my
secondary supervisor, Dr Daniel Cole, for his great help when I have called
upon him, particularly in all things regarding force fields. I am grateful for
the support and friendship of many within the Penfold group and through-
out the students and staff of the Bedson Building, who have made this expe-
rience unforgettable. I would especially like to thank Dr Stuart Thompson,
Emanuele Falbo and Yang Cao for their friendship and support during these
years. And finally, I would like to thank my family, for supporting me every
step of the way in my PhD journey.





xi

Contents

Declaration of Authorship iii

Acknowledgements ix

1 Introduction 1

2 Theory and Methodology 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Born-Oppenheimer Approximation . . . . . . . . . . . . . 11
2.4 Hartree-Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Coupled-Cluster Theory . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . 19
2.7 Electric Field Gradient . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 X-ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Force-Field Methods . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Assessing Functional Errors using Atomisation Energies and Elec-
tric Field Gradients 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Theory and Computational Details . . . . . . . . . . . . . . . . 43
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 CuCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Ar· · ·CuCl . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 OC· · ·CuCl . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 52

4 Extending the Understanding of Density and Energetic Error for
Silver Complexes and Halogenated Aromatic Compounds 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Theory and Computational Details . . . . . . . . . . . . . . . . 58
4.3 Silver Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xii

4.4 Halogenated Aromatic Compounds . . . . . . . . . . . . . . . 66
4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 73

5 Analysis of Forcefield Methods to Predict Solvent-Term Ultrafast
X-ray Scattering Relative to Experimental Metrics 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Theory and Computational Details . . . . . . . . . . . . . . . . 79
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 86

6 Analysis of Forcefield Methods to Predict Solute-Solvent Ultrafast
X-ray Scattering 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Theory and Computational Details . . . . . . . . . . . . . . . . 90
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 101

7 Analysis of Cu(I)-Phenanthroline Excited-State Properties using QM-
Derived Forcefield Parameters 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Theoretical and Computational Details . . . . . . . . . . . . . . 107
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . 113

8 Conclusion 115

A Assessing Functional Errors using Atomisation Energies and Elec-
tric Field Gradients 121
A.1 Atomisation - EFG Characteristic by Functional Group . . . . 121
A.2 ωB97X Tuning via Koopmans’ Theorem . . . . . . . . . . . . . 123
A.3 Core Polarisation Contribution to Cu Electric Field Gradient . 124

B Extending the Understanding of Density and Energetic Error for
Silver Complexes and Halogenated Aromatic Compounds 135
B.1 Silver Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.1 Atomisation - EFG Characteristic by Functional Group 136
B.1.2 ωB97X Tuning via Koopmans’ Theorem . . . . . . . . . 141

B.2 Halogenated Aromatic Compounds . . . . . . . . . . . . . . . 146
B.2.1 Atomisation - EFG Characteristic by Functional Group 146
B.2.2 ωB97X Tuning via Koopmans’ Theorem . . . . . . . . . 151



xiii

B.3 Core Polarisation Contribution to Ag Electric Field Gradient . 155

C Analysis of Forcefield Methods to Predict Solvent-Term Ultrafast
X-ray Scattering Relative to Experimental Metrics 161
C.1 Temperature-Dependent and Density-Dependent Solvent Scat-

tering Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.2 Comparison of Temperature-Dependent Solvent Scattering Terms164
C.3 Radial Distribution Functions of Atom Combinations with Large

Contributions to scattering . . . . . . . . . . . . . . . . . . . . . 167

D Analysis of Forcefield Methods to Predict Solute-Solvent Ultrafast
X-ray Scattering 169
D.1 Temperature-Dependent Solute-Solvent Scattering Term . . . 170
D.2 Comparison of Temperature-Dependent Solute-Solvent Scat-

tering Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
D.3 Radial Distribution Functions with Large Contributions toSolute-

Solvent Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.4 Temperature-Dependent Solute Scattering Terms . . . . . . . . 177
D.5 Comparison of Temperature-Dependent Solute Scattering Terms178
D.6 I-I Radial Distribution Functions for Solute Scattering . . . . . 182





xv

List of Figures

3.3.1 Plot of the CuCl atomisation energy as a function of Cu (a)
and Cl (b) electric field gradient in the complex by functional
group. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG and atomisation. . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Plot of the change in atomisation and a) Cu b) Cl EFG of ωB97X
for CuCl as the value of ω is adjusted from 0.05 to 0.8. Optimal
ω (green) and CCSD(T) (blue) are also indicated . . . . . . . . 48

3.3.3 Plot of the Ar· · ·CuCl atomisation energy as a function of a)
Cu b) Cl electric field gradient in the complex by functional
group. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Plot of the change in atomisation and copper EFG of ωB97X for
CuCl as the value of ω is adjusted from 0.05 to 0.8. Optimal ω
(green) and CCSD(T) (blue) are also indicated . . . . . . . . . . 50

3.3.5 Plot of the OC· · ·CuCl atomisation energy as a function of a)
Cu b) Cl electric field gradient in the complex by functional
group. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.6 Plot of the change in atomisation and copper EFG of ωB97X for
CuCl as the value of ω is adjusted from 0.05 to 0.8. Optimal ω
(green) and CCSD(T) (blue) are also indicated . . . . . . . . . . 53



xvi

4.3.1 AgCl Atomisation-EFG characteristic for a) silver and b) chlo-
rine. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 AgI Atomisation-EFG characteristic for a) silver and b) iodine.
GGA, hGGA, dhGGA and rshGGA are represented in blue,
grey, red and light purple respectively. CCSD(T) is denoted in
green, while the dashed line represents experimental EFG. . . 61
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 AgCl ωB97X change in atomisation and EFG for a) silver and
b) chlorine for ω=0.05-1. Optimal ω=0.45 is denoted in green,
with CCSD(T) in cyan. Step-wise atomisation energies for
high-ω functionals is on account of rounding to the maximum
number of significant figures possible in this system. . . . . . 64
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 AgI ωB97X change in atomisation and EFG for a) silver and
b) chlorine for ω=0.05-1. Optimal ωis not contained within the
given range. CCSD(T) denoted in cyan. Experimental EFG is
denoted by the dashed line. Step-wise atomisation energies
for high-ω functionals is on account of rounding to the maxi-
mum number of significant figures possible in this system. . . 65
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Halogenated aromatic compounds used in this investigation
with halogen atom position denoted in red, the position of
bromine or iodine. Carbon (grey), hydrogen (white), sulfur
(yellow) and nitrogen (blue) are also show in the diagrams
of a) 2-halothiophene b) 3-halothiophene c) 2-halopyrimidine
and d) 2-halopyridine e) 3-halopyridine f) 4-halopyridine g)
p-halotoluene h) 4-halopyrazole i) halobenzene. Images from
PubChem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xvii

(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Atomisation-halogen EFG characteristic for a) 2-bromothiophene
b) 3-bromothiophene c) 2-iodothiophene and d) 3-iodothiophene.
GGA, hGGA, dhGGA and rshGGA are represented in blue,
grey, red and light purple respectively. CCSD(T) is denoted in
green, while the dashed line represents experimental EFG. . . 68
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 ωB97X change in atomisation and EFG for a) 2-bromothiophene
b) 3-bromothiophene c) 2-iodothiophene and d) 3-iodothiophene
over range ω=0.05-1. Optimal ω=0.25 for all halothiophene
isomers and is denoted in green, with CCSD(T) in cyan. Ex-
perimental EFG is denoted by the dashed line . . . . . . . . . 72
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Solvents used in this investigation for a) acetonitrile b) chloro-
form c) dichloromethane and d) ethanol . . . . . . . . . . . . . 80
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 ∂S
∂T

per solvent molecule characteristic calculated from 1K sol-
vent differences from OPLS-AA (blue) and QUBE (red), com-
pared with experimental calculations (black) [1] for a) acetoni-
trile b) chloroform c) dichloromethane and d) ethanol . . . . . 80
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xviii

(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 ∂S
∂T

per solvent molecule characteristic of acetonitrile calcu-
lated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA, compared with experimental calcu-
lations (black) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 82
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 ∆g(r) contributions of dominant scattering atom combinations
calculated from 1K solvent differences from OPLS-AA (blue)
and QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-Cl)
c) dichloromethane (Cl-Cl) and d) ethanol (O-O). Constituent
atoms are labelled by colour, including carbon (grey), hydro-
gen (white), nitrogen (blue), chlorine (green) and oxygen (red).
Image from PubChem . . . . . . . . . . . . . . . . . . . . . . . . 84
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.4 g(r) contributions of dominant scattering atom combinations
at ground temperature (298.15K) from OPLS-AA (blue) and
QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-Cl) c) dichloromethane
(Cl-Cl) and d) ethanol (O-O) . . . . . . . . . . . . . . . . . . . . 85
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 ∂S
∂T

per solvent molecule characteristic of the I2 solute calcu-
lated from 1K solution differences from OPLS-AA (blue) and
QUBE (red) for a) acetonitrile b) chloroform c) dichloromethane
and d) ethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xix

6.3.2 ∂S
∂T

per solvent molecule characteristic for the cross-term con-
tribution of acetonitrile calculated from 1K (red) and 5K (green)
solvent differences for a) QUBE and b) OPLS-AA . . . . . . . . 93
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.3 ∆g(r) contributions of dominant scattering atom combinations
calculated from 1K solvent differences from OPLS-AA (blue)
and QUBE (red), a) acetonitrile (I-N) b) chloroform (I-Cl) c)
dichloromethane (I-Cl) and d) ethanol (I-O) . . . . . . . . . . . 95
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.4 g(r) contributions of dominant scattering atom combinations
at ground temperature (298.15K) from OPLS-AA (blue) and
QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-Cl) c) dichloromethane
(Cl-Cl) and d) ethanol (O-O) . . . . . . . . . . . . . . . . . . . 96
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.5 ∂S
∂T

per solvent molecule characteristic calculated from 1K so-
lution differences from OPLS-AA (blue) and QUBE (red)for a)
acetonitrile b) chloroform c) dichloromethane and d) ethanol 97
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.6 ∂S
∂T

per solvent molecule characteristic for the solute-term con-
tribution of molecular iodine solvated in acetonitrile calcu-
lated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA . . . . . . . . . . . . . . . . . . . . . . 98
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.7 ∆g(r) contributions of the I-I solute atoms calculated from 1K
solvent differences from OPLS-AA (blue) and QUBE (red), a)
acetonitrile b) chloroform c) dichloromethane and d) ethanol 100
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xx

(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.8 g(r) contributions of the I-I solute atoms at ground tempera-
ture (298.15K) from OPLS-AA (blue) and QUBE (red), a) ace-
tonitrile b) chloroform c) dichloromethane and d) ethanol . . 101
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 [Cu(phen)2]+ structure in a) ground S0 and b) excited T1 states.
This illustrates the change in dihedral angle (DHA) between
the planes of the phenanthroline ligands due to the pseudo
Jahn-Teller effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.1 Radial distribution function g(r) of Cu-solvent atom combi-
nations of solvated [Cu(phen)2]+ in ground and excited states
(GS and ES respectively). Combinations illustrated are a) GS
Cu-NMeCN b) GS Cu-ClDCM c) ES Cu-NMeCN d) ES Cu-ClDCM .
QUBE and AMBER denoted in red and blue respectively. . . . 111
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1Plot of the H2O· · ·CuCl atomisation energy as a function of Cu
(a) and Cl (b) electric field gradient in the complex by func-
tional group. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-
mental EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1.2Plot of the H2S· · ·CuCl atomisation energy as a function of Cu
(a) and Cl (b) electric field gradient in the complex by func-
tional group. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-
mental EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



xxi

A.2.1Plot of the change in atomisation and Cu (a) and Cl (b) EFG
of ωB97X for H2O· · ·CuCl as ω is adjusted from 0.05 to 0.8.
Optimal ω (green) and CCSD(T) (blue) are also indicated . . . 123

A.2.2Plot of the change in atomisation and Cu (a) and Cl (b) EFG
of ωB97X for H2S· · ·CuCl as ω is adjusted from 0.05 to 0.8.
Optimal ω (green) and CCSD(T) (blue) are also indicated . . . 124

B.1.1 H2O· · ·AgCl Atomisation-EFG characteristic for a) silver and
b) chlorine. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-
mental EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.1.2 H2S· · ·AgCl Atomisation-EFG characteristic for a) silver and
b) chlorine. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-
mental EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1.3 H2O· · ·AgI Atomisation-EFG characteristic for a) silver and b)
iodine. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.1.4 H2S· · ·AgI Atomisation-EFG characteristic for a) silver and b)
iodine. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



xxii

B.1.5 H3N· · ·AgI Atomisation-EFG characteristic for a) silver and b)
iodine. GGA, hGGA, dhGGA and rshGGA are represented in
blue, grey, red and light purple respectively. CCSD(T) is de-
noted in green, while the dashed line represents experimental
EFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1.6 H2O· · ·AgCl ωB97X change in atomisation and EFG for a) sil-
ver and b) chlorine for ω=0.05-1. Optimal ω=0.4 is denoted in
green, with CCSD(T) in cyan . . . . . . . . . . . . . . . . . . . 141
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1.7 H2S· · ·AgCl ωB97X change in atomisation and EFG for a) sil-
ver and b) chlorine for ω=0.05-1. Optimal ω=0.3 is denoted in
green, with CCSD(T) in cyan . . . . . . . . . . . . . . . . . . . 142
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1.8 H2O· · ·AgI ωB97X change in atomisation and EFG for a) sil-
ver and b) iodine for ω=0.05-1. Optimal ω >1 and therefore
beyond the current range, with CCSD(T) in cyan . . . . . . . . 143
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1.9 H2S· · ·AgI ωB97X change in atomisation and EFG for a) silver
and b) iodine for ω=0.05-1. Optimal ω=0.3 is denoted in green,
with CCSD(T) in cyan . . . . . . . . . . . . . . . . . . . . . . . 144
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.1.10H3N· · ·AgI ωB97X change in atomisation and EFG for a) silver
and b) iodine for ω=0.05-1. Optimal ω=0.3 is denoted in green,
with CCSD(T) in cyan . . . . . . . . . . . . . . . . . . . . . . . 145
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2.1 Atomisation-halogen EFG characteristic for a) bromopyrazole
and b) iodopyrazole. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents
experimental EFG. . . . . . . . . . . . . . . . . . . . . . . . . . 146
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



xxiii

(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.2.2 Atomisation-halogen EFG characteristic for a) bromobenzene

and b) iodobenzene. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
The dashed line denotes experimental EFG. . . . . . . . . . . . 147
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2.3 Atomisation-halogen EFG characteristic for a) 2-bromopyrimidine
and b) 2-iodopyrimidine. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green (2-bromopyrimidine only), while
the dashed line represents experimental EFG (2-bromopyrimidine
only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.4 Atomisation-halogen EFG characteristic for a) p-bromotoluene
and b) p-iodotoluene. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
The dashed line denotes experimental EFG. . . . . . . . . . . . 149
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.2.5 Atomisation-halogen EFG characteristic for a) 2-bromopyridine
b) 2-iodopyridine c) 3-bromopyridine d) 3-iodopyridine e) 4-
bromopyridine f) 4-iodopyridine . GGA, hGGA, dhGGA and
rshGGA are represented in blue, grey, red and light purple re-
spectively. The dashed line denotes experimental EFG.. . . . . 150
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.2.6 ωB97X change in atomisation and EFG for a) bromopyrazole
and b) iodopyrazole over range ω=0.05-1. Optimal ω=0.25 and
is denoted in green, with CCSD(T) in cyan. Experimental EFG
is denoted by the dashed line . . . . . . . . . . . . . . . . . . . 151
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



xxiv

B.2.7 ωB97X change in atomisation and EFG for a) bromobenzene
and b) iodobenzene over range ω=0.05-1. Optimal ω=0.25 and
is denoted in green. Experimental EFG is denoted by the dashed
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.2.8 ωB97X change in atomisation and EFG for a) 2-bromopyrimidine
and b) 2-iodopyrimidine over range ω=0.05-1. Optimal ω=0.3
and 0.35 respectively and is denoted in green, with CCSD(T)
in cyan (2-bromopyrimidine only). Experimental EFG is de-
noted by the dashed line (2-bromopyridine only) . . . . . . . . 153
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2.9 ωB97X change in atomisation and EFG for a) p-bromotoluene
and b) p-iodotoluene over range ω=0.05-1. Optimal ω=0.25
and is denoted in green. Experimental EFG is denoted by the
dashed line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.2.10ωB97X change in atomisation and EFG for a) 2-bromopyridine
b) 2-iodopyridine c) 3-bromopyridine d) 3-iodopyridine e) 4-
bromopyridine f) 4-iodopyridine over range ω=0.05-1. Opti-
mal ω=0.25 and is denoted in green. Experimental EFG is de-
noted by the dashed line . . . . . . . . . . . . . . . . . . . . . . 155
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.1.1 ∂S
∂T

per solvent molecule characteristic calculated from 5K sol-
vent differences from OPLS-AA (blue) and QUBE (red), com-
pared with experimental calculations (black) [1] for a) acetoni-
trile b) chloroform c) dichloromethane and d) ethanol . . . . . 162
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xxv

(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.1.2 ∂S

∂ρ
per solvent molecule characteristic calculated from 0.05 bar

and 0.20bar solvent pressure differences from OPLS-AA (blue)
and QUBE (red), compared with experimental calculations (black)
[1] for acetonitrile. Density change for this change in pressure
is simply too low to yield meaningful accurate results, hence
the predicted scattering change is simply too large. This eaxt
rationale for this erroneous prediction requires further inves-
tigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2.1 ∂S
∂T

per solvent molecule characteristic of chloroform calculated
from 1K (red) and 5K (green) solvent differences for a) QUBE
and b) OPLS-AA, compared with experimental calculations
(black) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.2.2 ∂S
∂T

per solvent molecule characteristic of dichloromethane cal-
culated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA, compared with experimental calcu-
lations (black) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 165
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.2.3 ∂S
∂T

per solvent molecule characteristic of ethanol calculated
from 1K (red) and 5K (green) solvent differences for a) QUBE
and b) OPLS-AA, compared with experimental calculations
(black) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.3.1g(r) contributions of dominant scattering atom combinations
at 299.15K (1K above ground temperature) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-
Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O) . . . . . . 167
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



xxvi

C.3.2g(r) contributions of dominant scattering atom combinations
at 303.15K (5K above ground temperature) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-
Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O) . . . . . . 168
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.1.1 ∂S
∂T

per solvent molecule characteristic calculated from 5K so-
lution differences from OPLS-AA (blue) and QUBE (red) for a)
acetonitrile b) chloroform c) dichloromethane and d) ethanol 170
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.2.1 ∂S
∂T

per solvent molecule characteristic for the cross-term con-
tribution of chlorine calculated from 1K (red) and 5K (green)
solvent differences for a) QUBE and b) OPLS-AA . . . . . . . . 171
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

D.2.2 ∂S
∂T

per solvent molecule characteristic for the cross-term con-
tribution of dichloromethane calculated from 1K (red) and 5K
(green) solvent differences for a) QUBE and b) OPLS-AA . . . 172
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

D.2.3 ∂S
∂T

per solvent molecule characteristic for the cross-term con-
tribution of ethanol calculated from 1K (red) and 5K (green)
solvent differences for a) QUBE and b) OPLS-AA . . . . . . . . 173
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.3.1∆g(r) contributions of dominant scattering atom combinations
calculated from 5K solvent differences from OPLS-AA (blue)
and QUBE (red), a) acetonitrile (I-N) b) chloroform (I-Cl) c)
dichloromethane (I-Cl) and d) ethanol (I-O) . . . . . . . . . . . 174
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



xxvii

(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.3.2g(r) contributions of dominant scattering atom combinations

at 299.15K (1K above ground temperature) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (I-N) b) chloroform (I-
Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O) . . . . . . . 175
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.3.3g(r) contributions of dominant scattering atom combinations
at 303.15K (5K above ground temperature) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (I-N) b) chloroform (I-
Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O) . . . . . . . 176
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.4.1 ∂S
∂T

per solvent molecule characteristic if the I2 solute calcu-
lated from 5K solution differences from OPLS-AA (blue) and
QUBE (red) for a) acetonitrile b) chloroform c) dichloromethane
and d) ethanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

D.5.1 ∂S
∂T

per solvent molecule characteristic for the solute-term con-
tribution of molecular iodine solvated in acetonitrile calcu-
lated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA . . . . . . . . . . . . . . . . . . . . . . 178
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

D.5.2 ∂S
∂T

per solvent molecule characteristic for the solute-term con-
tribution of molecular iodine solvated in chloroform calcu-
lated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA . . . . . . . . . . . . . . . . . . . . . . 179
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xxviii

D.5.3 ∂S
∂T

per solvent molecule characteristic for the solute-term con-
tribution of molecular iodine solvated in dichloromethane cal-
culated from 1K (red) and 5K (green) solvent differences for a)
QUBE and b) OPLS-AA . . . . . . . . . . . . . . . . . . . . . . 180
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.5.4 ∂S
∂T

per solvent molecule characteristic for the solute-term con-
tribution of molecular iodine solvated in ethanol calculated
from 1K (red) and 5K (green) solvent differences for a) QUBE
and b) OPLS-AA . . . . . . . . . . . . . . . . . . . . . . . . . . 181
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.6.1∆g(r) contributions of the I-I solute atoms calculated from 5K
solvent differences from OPLS-AA (blue) and QUBE (red), a)
acetonitrile b) chloroform c) dichloromethane and d) ethanol 182
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

D.6.2g(r) contributions of the I-I solute atoms at 1K above ground
temperature (299.15K) from OPLS-AA (blue) and QUBE (red),
a) acetonitrile b) chloroform c) dichloromethane and d) ethanol

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D.6.3g(r) contributions of the I-I solute atoms at 5K above ground
temperature (303.15K) from OPLS-AA (blue) and QUBE (red),
a) acetonitrile b) chloroform c) dichloromethane and d) ethanol

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



xxix

List of Tables

2.9.1 Table of assorted constants associated with the parameterisa-
tion of a force field . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 The functionals, including type and reference used within this
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.1 Non-bonded parameters of the Cu and N atoms, partial charge
(q) and the Lenndard-Jones (L-J) parameters (ε and σ). See sec-
tion 7.3 for data concerning the internal structure of the Cu-N
bonds. *L-J parameters taken from previous model of Jahn-
Teller effect [2]. ** There is an asymmetry in the triplet state
partial charge of the nitrogen atoms between the two ligands,
with corresponding adjustments made in QUBE for the L-J pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Mean Cu-N bond length, NCuNintra angle formed between
copper and nitrogens of the same phenanthroline ligand and
dihedral angle (DHA) formed by the two ligand planes (fig-
ure 7.2.1), along with standard deviations (σ) for ground and
3MLCT states. Classical MD (CMD)-simulation-derived ge-
ometries utilising the QUBE parameters herein are compared
with CMD and QM/MM AMBER calculations from Capano
et al [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.1Core polarisation contribution to copper electric field gradient
of CuCl of default functionals and CCSD(T) . . . . . . . . . . . 125

A.3.2Core polarisation contribution to copper electric field gradient
of CuCl of ωB97X functionals with ω altered from 0.05 through
1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3.3Core polarisation contribution to copper electric field gradient
of Ar· · ·CuCl of default functionals and CCSD(T) . . . . . . . 127



xxx

A.3.4Core polarisation contribution to copper electric field gradient
of Ar· · ·CuCl of ωB97X functionals with ω altered from 0.05
through 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3.5Core polarisation contribution to copper electric field gradient
of OC· · ·CuCl of default functionals and CCSD(T) . . . . . . . 129

A.3.6Core polarisation contribution to copper electric field gradient
of OC· · ·CuCl of ωB97X functionals with ω altered from 0.05
through 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3.7Core polarisation contribution to copper electric field gradient
of H2O· · ·CuCl of default functionals and CCSD(T) . . . . . . 131

A.3.8Core polarisation contribution to copper electric field gradient
of H2O· · ·CuCl of ωB97X functionals with ω altered from 0.05
through 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3.9Core polarisation contribution to copper electric field gradient
of H2S· · ·CuCl of default functionals and CCSD(T) . . . . . . . 133

A.3.10Core polarisation contribution to copper electric field gradient
of H2S· · ·CuCl of ωB97X functionals with ω altered from 0.05
through 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.3.1 Core polarisation contribution to silver electric field gradient
of AgCl of default functionals and CCSD(T) . . . . . . . . . . . 156

B.3.2 Core polarisation contribution to silver electric field gradient
of AgCl of ωB97X functionals with ω altered from 0.05 through
1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.3.3 Core polarisation contribution to silver electric field gradient
of AgI of default functionals and CCSD(T) . . . . . . . . . . . . 158

B.3.4 Core polarisation contribution to silver electric field gradient
of AgI of ωB97X functionals with ω altered from 0.05 through
1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



1

Chapter 1

Introduction

Theoretical chemistry spans a large range of modern scientific research, from
prediction of X-ray scattering, study of biological systems, organic light-
emitting diode (OLED) emission properties and force-field parameterisation
[1–5]. Much of this work is directly or indirectly assisted by density func-
tional calculations. Density functional theory (DFT) represents a cornerstone
of modern science, its versatility shown through the use of DFT calculations
in over >30,000 journal papers every year [6]. Its advantage over ab ini-
tio theory is found in its premise, as set out in the Hohenburg-Kohn theo-
rems [7], that the total energy of electrons moving under the influence of an
external potential is a unique functional of the electron density. Thus the
density that minimises total energy is the ground-state density. This accel-
erates electronic structure calculations significantly relative to orbital-based
gold-standard post-Hartree-Fock methods such as CCSD(T) (Coupled Clus-
ter theory with Singlet, Doublet and pertubatively-corrected Triplet correc-
tion) [8, 9]. This permits calculation on systems simply too large for ab initio
calculation within reasonable time frames [10]. The Hohenburg-Kohn theo-
rems predict the existence of an exact ground-state functional which would
yield an exact density [7,11]. This exact density could then be cast into theo-
retical non-interacting Kohn-Sham (KS) orbitals which exactly reproduce it,
which would be an accurate reproduction of the real ab initio Hamiltonian,
without the computational expense of the latter. The success of DFT rests
on creating an exact effective external potential, which includes the effect
of electron-electron repulsion, such that the non-interacting system success-
fully replicates the real system [11]. This is entirely feasible for mean-field
Coulomb repulsion, but this still neglects exchange (Fermi repulsion) and
Coulomb correlation, cobined into an exchange-correlation (XC) potential
(Vxc), which comprises 1% of the total repulsion. Exchange comprises the
electron-electron repulsion that occurs between electrons of parallel spin and
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in of itself is a form of correlation. Coulomb correlation deals with electron-
electron repulsions which are not resultant from the mean-field Coulomb in-
teraction between an electron and the surrounding electron cloud. Both are
seen visibly as a probability hole, where electron probability density is lower
than that expected via mean-field interaction alone. Earlier approaches to ac-
counting for the XC term involved adapting the exact exchange of the orbital-
free Thomas-Fermi model [12, 13], a precursor to modern DFT, to KS DFT.
These approaches assume a homogeneous electron gas, and are collectively
referred to as the Local Density Approximation (LDA) and Local Spin Den-
sity Approximation (LDSA) where densities are individualised in terms of
their respective spin [14]. The assumption of uniform electron gas has been
observed to underestimate exchange and overestimate correlation, which of-
ten offset each other to some degree [15]. Thereon correction for first- and
second-order electron density change have formed the Generalised Gradient
Approximation (GGA) [16–18] and meta-Generalised Gradient Approxima-
tion (mGGA) [16] respectively. Collectively LDA, LSDA, GGA and mGGA
constitute "pure" DFT functionals, without XC correction contribution from
other methods. From observation of pure DFT XC functionals, it is seen that
XC often undergoes sudden drop-offs as distance increases, such that long-
range exchange is poorly described [19, 20]. For this reason, Becke intro-
duced the hybrid approach (hGGA) [21]. Therein a fraction of total exchange
is calculated using Hartree-Fock exchange applied to the KS orbitals. Such
an approach improves long-range exchange, however the use of KS orbitals
in such an ab initio approach means that full cancellation of self-interaction
error is unlikely to be achieved. Double hybrid functionals (dhGGA) incor-
porate HF exchange fractions and second-order Møller-Plesset perturbation
theory (MP2) fractions to describe correlation [22–24]. Like HF exchange,
applying MP2’s ability to exactly describe correlation is limited by the use
of KS orbitals. Recently, approaches have been made to apply DFT and HF
exchange in the short- and long-range domains where they are most use-
ful, with factors included to increase HF exchange as inter-electron distance
increases up to a given fraction or all exchange, termed collectively range-
separated functionals (rshGGA) [25, 26]. Together these methods are organ-
ised into rungs of Jacob’s Ladder, with each higher rung a step closer to the
"heaven of chemical accuracy" [10, 27].

It was originally assumed that given the premise of the Hohenburg-Kohn
theorems, improving DFT agreement with known energetic data would in
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turn improve electron density accuracy and help ascertain a universal func-
tional, however recent papers have called for reconsideration of this ap-
proach, highlighting large density errors relative to those predicted by ab
initio calculation [19, 27, 28]. Dipole studies also highlight limitations to suc-
cess in replicating experimental metrics linked to electron density [29]. There
are therefore growing concerns that density functional theory is "straying
from the path to the exact functional" [27], though other studies contest that
assessment of the current state of functional development [30–32]. How-
ever, it is clear that there needs to be closer integration of electron density
accuracy in the development and assessment of density functional meth-
ods. Furthermore, there remain "difficult cases" that DFT struggles to repli-
cate, in particular transition metal diatomics and complexes, which has been
associated with incomplete cancellation of self-interaction error (SIE) [33].
Self-interaction error cancellation has been shown to be functional depen-
dent and particularly sensitive to the fraction of Hartree-Fock exchange, as
illustrated in dipole studies [34]. Srebro et al have demonstrated promis-
ing results with one well-known challenging case, CuCl [33]. Tuning range-
separated hybrid functionals’ ionisation potentials via Koopmans’ theorem,
it illustrated agreement with ab initio and experimental copper electric field
gradients (EFGs). The EFG is a direct probe of the polarisation of the va-
lence electron density of an atom as measured from its nucleus, and can be
calculated from nuclear quadrupole coupling constants (NQCCs) obtained
from microwave spectroscopy [35]. Therewith one has a versatile metric with
which comparisons with ab initio theory and experiment can be made, while
equally allowing direct insight into the arrangement of valence density. Us-
ing Srebro’s study as a starting point, an initial study was set up to assess the
performance of 26 functionals taken from across Jacob’s Ladder [21,22,25,36–
56], and the performance of a default range-separated functional (ωB97X)
tuned via Koopman’s theorem for CuCl and CuCl complexed with simple
ligands (Ar, CO, H2O, H2S) which have available experimentally-derived
EFGs [57–59]. CCSD(T) provides benchmark ab initio EFGs. Atomisation
energy was provided as an energetic metric to compare to EFG and anal-
yse whether there is a breakdown in energetic vs. electron density accu-
racy. Thereon in chapter 4 the investigation was expanded to include other
molecules of interest to microwave spectroscopy: silver diatomics (AgCl,
AgI) with simple complexing molecules (H2O, H2S and H3N (for AgI only))



4 Chapter 1. Introduction

[58–62], and included brominated and iodinated aromatic compounds (4-
halopyrazoles [63]; 2- and 3-halothiophenes; 2- [64, 65], 3- [66, 67] and 4-
halopyridines [64, 65]; 2-halopyrimidine (bromine only) [68]; halobenzene
[69, 70] and p-halotoluene [71]) .

X-ray scattering presents another experimental method of inferring elec-
tron density [72]. It has widespread application from solid-state physics [73]
to biology [74–76] as an experimental way of elucidating molecular struc-
ture and dynamics. The recent development of X-ray Free-Electron Lasers
(XFELs) has expanded the application of scattering to observation of chem-
ical reactions and dynamics on ultrafast time scales [72, 77–83]. Successful
imaging of the solute depends on the ability to extract solvent and solvent-
solute scattering signals [1] from the total signal. Solvent terms can be ex-
tracted experimentally [84–87] or theoretically using radial distribution func-
tions (RDFs) from molecular dynamics (MD) trajectories [86–91]. However,
independent determination of the cross term is only possible theoretically
[92, 93]. Despite the potential utility of MD, particularly with its potential to
extract the cross term independently, there has been little investigation of the
relative impact of force-field choice on theoretical scattering or assessment
of relative accuracy. Recently, the Cole group have developed Quantum Be-
spoke Kit (QUBE) [4, 5], which utilises DFT calculation to derive force-field
parameters, such that a bespoke force field could be created for any desired
molecule without the need for experimental data. Moreover, QUBE is de-
signed to use ωB97X-D [25] functionals Four common solvents are studied
(MeCN, DCM, EtOH, CHCl3) to ascertain the solvent term (chapter 5) and
cross term with a molecular iodine (I2) solute (chapter 6) (I2 parameterisation
is kept the same for QUBE and all-atom Optimised Potentials for Liquid Sim-
ulations (OPLS-AA) solvents). MD trajectories were used to create the con-
ditions before and after the hydrodynamic rearrangement of a pump-event.
Solvent terms were also assessed relative to experimental solvent terms [1].

Recently many XFEL scattering studies have exploited the ultrafast visu-
alisation provided to observe the excited-state dynamics of transition metal
complexes undergoing metal-to-ligand change transfer (MLCT) [82, 83, 94].
They have been subject of extensive research interest due to their lumines-
cence following photonic or electronic excitation, which raises the possibility
of using such compounds as OLEDs [3]. Of particular interest has been Cu(I)
ions complexed with phenanthroline ligands, [Cu(phen)2]+ [95–97], due to
the relative abundance and lower cost of Cu relative to other transition met-
als. Experimental [98–104] and theoretical [3, 101, 104–109] approaches have
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been taken to better understand the photophysics of copper phenanthro-
line. Excitation of the [Cu(phen)2]+ leads to metal-to-ligand charge trans-
fer to the S1 state. The d9 configuration of Cu(II) disfavours the tetrahe-
dral ground-state geometry, and undergoes intersystem crossing (ISC) to
the lowest-energy triplet excited state (T1) via the pseudo Jahn-Teller effect,
adopting near square-planar geometry. Emission lifetime is reduced by do-
nating solvents such as MeCN [3,110], illustrated visually by greater flatten-
ing of the dihedral angle between the phenanthroline ligands, indicating a
smaller excited-ground energy gap. The Cu(II) is stabilised by the donating
solvent, favouring non-radiative decay to the ground state. It is proposed
that the solvent forms an exciplex with the Cu(II) ion [110] to stabilise it but
there is currently insufficient consensus to explain the exact nature of the
solute [3].
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Chapter 2

Theory and Methodology

2.1 Introduction

This chapter introduces the key theoretical concepts underpinning the four
investigations carried out in this work. Firstly it will focus on key quantum
concepts, beginning with the Schrödinger equation [111] upon which funda-
mental quantum concepts are founded. This allows treatment of solving the
Schrödinger equation in molecular systems, and the transition from Hartree-
Fock (HF) to post-Hartree-Fock methods. Hartree-Fock will be treated first,
with a logical progression into post-Hartree-Fock methods, in particular fo-
cusing upon the coupled-cluster (CC) method that forms the theoretical gold
standard [8,9] in investigations pertaining to the electric field gradient (EFG)
carried out in this work. However, the CC method is computationally ex-
pensive and unviable for large systems [14]. Then the alternative approach
of calculation of ground-state energy via functionals of the electron density
will be expanded upon. In particular the development of density functional
theory (DFT). Furthermore theoretical scattering calculation from radial dis-
tributions is outlined, along with the methods of force-field derivation and
molecular dynamics theory wherefrom they are calculated.

2.2 The Schrödinger Equation

The most fundamental equation in quantum mechanics is the equation of
motion, the Schrödinger equation. It is analogous to the Newtonian equation
of motion in classical mechanics [112]

~F = m~a =
∂~V

∂~r
(2.2.1)



8 Chapter 2. Theory and Methodology

Here ~V is the potential; ~r the displacement; m represents mass with ~a as ac-
celeration and ~F the resultant force. The theory was reformulated by Hamil-
ton into a form purely considering the energetic contributions to the system:

H = T + V (2.2.2)

With H representing the total energy of the system. T is the kinetic energy,
as is often written as [112, 113]

T =
~p2

2m
(2.2.3)

And V is the potential energy contained within the system. However, un-
like classical systems, the particle in a quantum system is considered to be a
wave, with its wave function Ψ written as:

Ψ(r, t) = A expi(kr−ωt) (2.2.4)

Here the A is a constant of wave amplitude, while ω and k are the wave an-
gular frequency and wavenumber respectively. Ψ is a function of r and time,
t. ω represents the increase in wave energy, E as governed by the Planck
rule:

E = ~ω (2.2.5)

The Planck reduced constant for angular frequency, ~ is the constant of pro-
portionality. The wavenumber is defined as in terms of the inverse of the
wavelength, λ:

k =
2π

λ
(2.2.6)

It can be related to the momentum of any object with a wavelength via the
de Broglie relation :

p = ~k (2.2.7)

It is now possible to rewrite the term for T as:

T =
~2k2

2m
(2.2.8)

Utilising the Hamiltonian, and multiplying through with the wavefunction
yields:

HΨ = TΨ + VΨ (2.2.9)
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Using the de Broglie equation and the wave equation:

TΨ =
~2k2

2m
Ψ =

−~2

2m

∂2Ψ(r, t)

∂r2
(2.2.10)

And in the same manner, combining the wave equation and Plack’s equa-
tion one can write the general time-dependent Schrödinger equation (TDSE)
[111–113]

HΨ = ~ωΨ = i~
∂Ψ(r, t)

∂t
(2.2.11)

Thus combining to create an expression for the Schrödinger equation in po-
sition basis:

i~
∂Ψ(r, t)

∂t
=
−~2

2m

∂2Ψ(r, t)

∂r2
+ V (r, t)Ψ(r, t) (2.2.12)

The probability P (~r, t) of an electron’s being in a specific region of space or
time is yielded as the square of the wave function Ψ(~r, t):

P (~r, t) = Ψ∗Ψ = Ψ2(~r, t) (2.2.13)

Where Ψ∗ is the complex conjugate of the wavefunction. This can be consid-
ered analogous to the intensity of a wave at a given point. In the quantum
realm, this lack of certainty about the exact state will lead to fundamental
reformulation of how properties are calculated. The discretised states are re-
formulated into a n-dimensional vector in Hilbert space [113], represented
as a ket in Dirac notation [14], |Ψ〉:

|Ψ〉 =


Ψ1

Ψ2

...
Ψn

 (2.2.14)

With each component of the vector corresponding to a distinct state across
the system. Each nth-state of Ψ corresponds to:

|Ψn〉 = cn |φn〉 (2.2.15)

Here cn forms the probability density and φn the corresponding eigenstate.
It is written such that |cn|2 corresponds to the probability of observing state
φn. A bra serves as the complex conjugate in Dirac notation such that:

〈Ψ| =
[
Ψ∗1 Ψ∗2 · · · Ψ∗n

]
(2.2.16)



10 Chapter 2. Theory and Methodology

It is now that the notation for particular molecular properties, such as the
energy must change. Instead of linear functions, operators must now be
introduced. Operators are matrices which serve to transform the vector of
discretised states such that normalisation yield an expectation value for the
quantity that the operator represents, i.e. for a hypothetical quantity, A:

〈Ψ| Â |Ψ〉 = 〈A〉 (2.2.17)

The operator Â transforms the ket |Ψ〉 and then undergoes normalisation
across all space, thus yielding the expectation value 〈A〉. Operators are the
analogue of classical properties and it is therefore possible to rewrite the
Hamiltonian as:

Ĥ = T̂ + V̂ (2.2.18)

As stated above the operators are matrices, they can only act in conjunction
with the vector of discretised states. It is therefore useful to multiply through
the equation using a ket of the wave function:

Ĥ |Ψ〉 = T̂ |Ψ〉+ V̂ |Ψ〉 (2.2.19)

One can combine the Hamiltonian written in Dirac notation with the TDSE
written in position basis to give:

i~
∂

∂t
|Ψ〉 =

−~2

2m

∂2

∂r2
|Ψ〉+ V (r, t) |Ψ〉 (2.2.20)

The operator for kinetic energy is therby extracted as:

T̂ =
−~2

2m

∂2

∂r2
(2.2.21)

And in turn the momentum operator is:

p̂ = −i~ ∂
∂r

(2.2.22)

Standing waves that have no time-dependent component of the wave func-
tion can also be considered, the crucial change being in the time-independent
formulation of the Schrödinger equation (TISE):

Ĥ |Ψ〉 = E |Ψ〉 (2.2.23)
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With E remaining constant with time. In turn:

−~2

2m

∂2

∂r2
|Ψ〉+ V (r) |Ψ〉 = E |Ψ〉 (2.2.24)

Indeed, the time-independent equation is useful for solving time-dependent
systems, where the potential of a bound system remains constant, such that
the TDSE can be rewritten:

Ĥ(r)Ψ(r, t) = E(r)Ψ(r, t) = i
∂Ψ(r, t)

∂t
(2.2.25)

And therefore the time-dependent element of Ψ is resolved as:

Ψ(r, t) = Ψ(r) exp−iEt (2.2.26)

2.3 The Born-Oppenheimer Approximation

Now the focus shifts to account for the different contributions to the poten-
tial. The total Hamiltonian in a typical atom or molecule is composed as:

H = Te + Tn + Vne + Vee + Vnn (2.3.1)

Where Vne is the nuclear-electronic interaction, Vee the electron-electron inter-
action and Vnn the nuclear-nuclear interaction, and Te and Tn the electronic
and nuclear kinetic energies. The TDSE can now be recast to include the
contribution of the nucleus:

Ĥ(r, R)Ψ(r, R, t) = i~
∂Ψ(r, R, t)

∂t
(2.3.2)

Where R is the position vector of the nuclei. Note that the Hamiltonian
assumes time-independent energy. The molecular Hamiltonian can be ex-
pressed as:

Ĥ(r, R) = −
N∑
i

~2

2Mtot

∇i + Ĥe(r, R) (2.3.3)

Mtot is the total mass of the nuclei, andN the number of nuclei in the molecule.
Indeed∇ is simply:

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) =

∂

∂r
(2.3.4)
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In cartesian coordinates. Note that Ĥe is the electronic Hamiltonian, given
as:

Ĥe = Te+Vee+Vne+Vnn = −
∑
k

~2

2
∇k+

∑
k<l

1

|rk − rl|
−
∑
i,k

Zi
|Ri − rk|

+
∑
i<j

ZiZj
|Ri −Rj|
(2.3.5)

The electronic Hamiltonian shows a parametric dependence on the nuclear
coordinates but not nuclear momentum. The Born-Huang ansatz recasts the
total wavefunction as [114, 115]

Ψtot(r, R, t) =
∞∑
k

Ωk(R, t)Φk(r, R) (2.3.6)

Here the total wavefunction of the atom/molecule is expanded in the com-
plete set of electronic eigenfunctions, Ĥe [115]. The expansion coefficients,
Ωi(R, t) are functions of the nuclear coordinates and time-dependent [115].
This is an exact solution for the total wave function. Reintroducing the Born-
Huang ansatz into the TDSE and multiplying by the complex conjugate, Φ∗

and integrating over over r:

i~
∂

∂t
Ωk(R, t) = [−

∑
i

~2

2Mi

∇i2 + Eel
k (R)]Ωk(R, t) +

∞∑
i

Fkl(R)Ωk(R, t) (2.3.7)

The "off-diagonal" function F comprises the elements of the non-adiabatic
coupling matrix [115,116]. The terms contained within it induce non-adiabatic
coupling between different electronic states due to nuclear motion [115,116].
It is usually smaller thanEel

k by a factor comparable with the nuclear-electronic
mass ratio [14]. It is this fact that allows the Born-Oppenheimer approxima-
tion to neglect all F terms [117,118], leaving the electronic energy to play the
role of the potential energy [14]:

i~
∂

∂t
Ωk(R, t) = [−

∑
i

~2

2Mi

∇2
i + Eel

k (R)]Ωk(R, t) (2.3.8)

In the Born-Oppenheimer model, the nuclei move on a potential energy sur-
face (PES) which is a solution to the electronic SE [115, 116]. Solving for
the nuclear wave function leads to discretised energy levels for molecular
vibration and rotation, which have many uses, particularly in spectroscopy
[14, 119].
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2.4 Hartree-Fock Theory

Having reduced the problem to consider the electronic potential only via the
Born-Oppenheimer approximation, methods must be encountered to solve
the electronic SE. Clearly, the SE can only be solved exactly for one-electron
systems, so approximate methods will have to be introduced as a means to
obtain physically-accurate answers [14]. Furthermore, spin will now have to
be included as a quantum effect for many-electron systems [120]. Electron
spins can take two states, 1

2
and −1

2
corresponding to "spin-up" and "spin-

down". They are respectively denoted as α and β, and follow the orthonor-
mality associated with quantum states such that [113]

〈α| |α〉 = 〈β| |β〉 = 1 (2.4.1)

〈α| |β〉 = 〈β| |α〉 = 0 (2.4.2)

The variational principle states that any approximate wave function has en-
ergy above or equal to the exact energy. Clearly, the equality only holds if
the wave function it is compared to is the exact function. By constructing a
trial wave function using certain parameters, one can minimise the energy
to generate a best-approximation of the actual wave function, following the
variational principle’s equality. The energy of an approximate wave function
can be calculated as [14]

Ee =
〈Ψ|He |Ψ〉
〈Ψ| |Ψ〉

(2.4.3)

Where the numerator is the expectation value. For normalised wave func-
tions, the expression simply becomes [121]

Ee = 〈Ψ|He |Ψ〉 (2.4.4)

The total electron wave function must be antisymmetric with respect to the
interchange of any two electron coordinates such that for the total wave func-
tion of two particles x1 and x2 to reflect the Pauli exclusion principle for
spin [120]:

Ψ(x1, x2) = −Ψ(x2, x1) (2.4.5)

Simply multiplying the wave functions, otherwise known as the Hartree
ansatz [121, 122], for the two wave functions does not satisfy this condi-
tion [123, 124]. This is overcome by taking a linear combination of Hartree
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products [121]:

Ψ(x1, x2) =
1√
2

[x1(x1)x2(x2)− x1(x2)x2(x1)] (2.4.6)

which can be rewritten as a Slater determinant [123]

Ψ(x1, x2) =
1√
2

∣∣∣∣∣x1(x1) x2(x1)

x1(x2) x2(x2)

∣∣∣∣∣ (2.4.7)

Generalising the Slater determinant for a N-particle system [121]

Ψ(x1, x2, · · · , xN) =
1√
N

∣∣∣∣∣∣∣∣∣∣
x1(x1) x2(x1) · · · xN(x1)

x1(x2) x2(x2) · · · xN(x2)
...

... . . . ...
x1(xN) x2(xN) · · · xN(xN)

∣∣∣∣∣∣∣∣∣∣
(2.4.8)

The Slater determinant thereby provides a candidate formalism to represent
a many-particle wave function representing an atom or molecule. Now at-
tention turns to writing and expression for the energy for such a system and
determine its energy, in terms of the Slater determinant. The Hamiltonian
can now be written as the following [14]:

Ĥel =
∑
i

ĥi +
∑
i<j

v̂(i, j) + ˆVnn (2.4.9)

The one-electron Hamiltonian is only dependent on one electron coordinate,
i, and is defined as [121]:

ĥi = −1

2
∇2
i −

Nnuclei∑
A

ZA
|RA − ri|

(2.4.10)

Representing the electron kinetic energy and the potential from the nucleus.
ZA and RA represent nuclear charge and position respectively. The two-
electron potential is dependent on two electron coordinates and represents
the electron-electron repulsion [121]

v̂ij =
1

|ri − rj|
(2.4.11)
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The nuclear repulsion operator, Vnn, is a constant [14,121] owing to the Born-
Oppenheimer approximation i.e.:

〈Ψ|Vnn |Ψ〉 = Vnn 〈Ψ| |Ψ〉 = Vnn (2.4.12)

That is, it can change the magnitude of the eigenvalues but plays no role
in the eigenfunctions calculated. For the one-electron operator there is no
electron-electron coupling so the operator is successfully diagonalised [14]
such that:

〈x1(x1)| ĥi |x1(x1)〉 = hi (2.4.13)

Only the identity operator therefore contributes. However, the two-electron
potential has two contributions, the first being from the identity operator:

〈xi(xi)xj(xj)| vij |xi(xi)xj(xj)〉 = Jij (2.4.14)

Here the matrix element Jij represents the Coulomb repulsion created by
the charge distributions described by the wave functions xi(xi) and xj(xj).
However, the off-diagonal term must also be considered, written as:

〈xi(xi)xj(xj)| vij |xj(xi)xi(xj)〉 = Kij (2.4.15)

The term Kij is the exchange term and falls out of the Pauli exclusion princi-
ple and is non-zero where two spin-orbitals have like spin, i.e. both spin-up
(+1

2
) or spin-down (−1

2
). The total energy for a system can therefore be writ-

ten:

E =

Nelec∑
i

hi +
1

2

Nelec∑
i

Nelec∑
j

(Jij −Kij) + Vnn (2.4.16)

It is multiplied by a factor 1
2

to allow a double sum to run over all the elec-
trons (clearly, electrons of unlike spin do not feel the exchange effect) as the
self-interaction error of the Coulomb term, Jii is cancelled out exactly by the
corresponding exchange term,Kii [125]. Under the variational principle, one
must seek a minimum point in the energy of the theoretical system in order
to approximate better the real system [112] however under the strict condi-
tion that all the orbitals remain orthogonal [14]. The variation of the energy,
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δE, is given as [14, 121]

δE =

Nelec∑
i

〈δxi| ĥi |xi〉+ 〈xi| ĥi |δxi〉

+
1

2

Nelec∑
ij

〈δxi| Ĵj − K̂j |xi〉+ 〈xi| Ĵj − K̂j |δxi〉+ 〈δxj| Ĵi − K̂i |xj〉+ 〈xj| Ĵi − K̂i |δxj〉

(2.4.17)

Collecting terms, it is seen that the summations over i and j are the same
such that identical terms can be collected and the problem reformulated in
terms of ith orbitals and jth orbitals, with the factor of 1

2
simply doubled to

account for the replaced terms [14]

δE =

Nelec∑
i

〈δxi| ĥi |xi〉+ 〈xi| ĥi |δxi〉+

Nelec∑
ij

〈δxi| Ĵj − K̂j |xi〉+ 〈xi| Ĵj − K̂j |δxi〉

(2.4.18)
Defining the variation in terms of the Fock operator, F̂i:

δE =

Nelec∑
i

〈δxi| F̂i |xi〉+ 〈xi| F̂i |δxi〉 (2.4.19)

One can extract an expression for the Fock operator as:

F̂i = ĥi +

Nelec∑
j

(Ĵj − K̂j) (2.4.20)

Thereby the operator represents the electron’s kinetic energy and nuclear at-
traction, and the repulsion caused by all other electrons on that particular
electron [14]. Lagrangian multipliers, λij , can be used to minimise the varia-
tion such that the Lagrangian [121], L is written:

δL = δE −
Nelec∑
ij

λij(〈δxi| |xj〉 − 〈xi| |δxj〉) = 0 (2.4.21)

Combining this relation with the definition for the Fock matrix yields:

δL =

Nelec∑
i

〈δxi| F̂i |xi〉+ 〈xi| F̂i |δxi〉 −
Nelec∑
ij

λij(〈δxi| |xj〉 − 〈xi| |δxj〉) (2.4.22)
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Using complex conjugates of the orbitals, this can be reformulated as [14,121]

δL =

Nelec∑
i

〈δxi| F̂i |xi〉−
Nelec∑
ij

λij(〈δxi| |xj〉+
Nelec∑
i

〈δxi| F̂i |xi〉∗−
Nelec∑
ij

λij(〈δxi| |xj〉∗ = 0

(2.4.23)
Both the original terms and the complex conjugates should cancel to leave
zero [14]. Using the complex conjugate of the last two terms:

Nelec∑
ij

(λij − λ∗ji) 〈δxi| |xj〉 = 0 (2.4.24)

The Lagrangian multipliers can therefore be used to calculate elements of the
Fock matrix:

F̂ixi =

Nelec∑
j

λijxj (2.4.25)

Which is the formalism of the Hartree-Fock equation. The molecular orbitals
can be written as a linear combination of atomic orbitals (LCAO) [126–128]

xi =

Nbasis∑
α

cαiχa (2.4.26)

The coefficients cαi represent the relative contributions of the atomic orbitals
χa to the molecular orbital. In terms of the Fock matrix:

Fi

Nbasis∑
α

cαiχa = εi

Nbasis∑
α

cαiχa (2.4.27)

Where εi is the energy contribution of orbital i. The coefficients can be found
by diagonalising the Fock matrix however the Fock matrix can only be known
if all the molecular orbitals are known [14]. An initial ansatz of the coeffi-
cients is therefore taken, and used to calculate the elements of the Fock ma-
trix, which is in turn diagonalised to calculate a new set of coefficients for the
molecular orbitals. This is repeated until the coefficients entering the system
equal those calculated by the system (to a given degree of accuracy) and this
point of convergence is called a self-consistent field [14].
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2.5 Coupled-Cluster Theory

Hartree-Fock captures around 99 percent of all the contributions to the en-
ergy of a molecular system but fails to capture the contribution of the electron-
electron correlation to the electron-electron repulsion. Given that HF is so
close to the full wave function, it is often taken as a starting point for elec-
tron correlation methods such that the wave function is written as:

Ψ = a0x0 +
∑
i=1

aixi (2.5.1)

Here a0Ψ0 is the weighted contribution from the HF method and the sum
represents a correlation correction to Hartree-Fock to capture the entire elec-
tron energy [14]. The correction takes into account all the possible excitations
(relative to the ground-state HF system) present in the molecular system ad
infinitum. Indeed, such a series, for an infinite basis set, would yield an exact
result [14]. This, of course, would be extremely computationally expensive
and beyond the capacity of the memory of most computers,. Approxima-
tions to the exact solution have to be made, a compromise between accuracy
and computational cost, to give the correlation method utility in everyday
computational science. Coupled-cluster theory is written such that an excita-
tion operator T generate the excitation contributions out of the HF reference
wave function, where the operator is written:

T = T1 + T2 + T3 + · · ·+ Tall (2.5.2)

T1 is a singlet excitation operator, T2 a doublet and so on such that the fi-
nal term represents the excitation operator for a fully excited wave function,
with no electrons remaining in the ground state. The singlet and doublet
cluster operators correspond to:

T1x0 =
No∑
i

Nvir∑
a

tai x[i
a (2.5.3)

No is a sum across all occupied molecular orbitals and Nvir across all virtual
orbitals, tai is the annihilation operator to excite an electron from the ith occu-
pied orbital to the ath unoccupied orbital. A coupled-cluster wave function
utilises an exponential function of the cluster operator:

ΨCC = eTx0 (2.5.4)



2.6. Density Functional Theory 19

The exponential function can be expanded following the Taylor expansion
[14]:

eT = 1 + T +
1

2
T 2 +

1

6
T 3 + · · ·+

inf∑
k=0

1

k!
T k (2.5.5)

Expanding in terms of component excitations of the T operator [14]:

eT = 1 + T1 + (T2 +
1

2
T 2
1 ) + (T3 + T2T1 +

1

6
T 3
1 ) + · · · (2.5.6)

All the singlet, doublet, triplet excitations and so on have been grouped to-
gether for clarity. They fall into the category of "connected" or "true" excita-
tions which are caused by the simultaneously interacting electrons [14] and
those with are unconnected, that are produced from a combination of non-
interacting excitations (i.e. a triplet created from three singlet excitations or
a singlet and a doublet). The Schrödinger equation for Coupled-Cluster is
written:

ĤeTx0 = ECCe
Tx0 (2.5.7)

In reality the coupled-cluster formalism must be limited or truncated for the
sake of computationally efficiency. In the case of CCSD(T), the T operator is
defined as:

T = T1 + T2 (2.5.8)

It explicitly includes the singlet and doublet contributions. The triplet excita-
tions are calculated as a perturbation added to the CCSD wave function from
fourth-order Møller-Plesset (MP4) perturbation theory [129] and a singlet-
triplet coupling term from MP5 .

2.6 Density Functional Theory

The only issue with methods that add Slater determinants is the computa-
tional expense of obtaining meaningful results in realistic timescales. The
computational expense of CCSD(T) scales with the number of molecular or-
bitals in the system to the power of seven. It is therefore necessary to seek
other methods of obtaining meaningful information for chemical systems
without such expense. The Hohenburg-Kohn (HK) theorems state that the
electron energy can be elucidated solely by the electron density of a system,
ρ. Wilson reasoned that the HK theorem was true owing to the integral of
the density representing the number of electrons, the cusps in that density
defining nuclear position, and the height of the cusps defining the nuclear
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charge [14]. Such a simplification reduces the number of variables in the sys-
tem studied from 4 variables per electon (three spatial coordinates and a spin
coordinate) to simply four variables for an overall electron density. While the
number of coordinates for a wave-function based system increases exponen-
tially with the increase in occupied orbitals, the electron density remains de-
pendent on four-coordinates, representing a huge computational advantage
as system size increases [14]. The mathematics of Density Functional The-
ory (DFT) based on the HK theorems were then formalised by Kohn-Sham
theory.

All density functional theories, as stated above, rest on the assumption
that the ground-state energy can be calculated as functionals of the density,
which in turn is a function of the position vector ~r. It is formalised as:

E[ρ] = 〈Ψ[ρ]| Ĥ |Ψ[ρ]〉 (2.6.1)

The total energy E can be written in terms of its respective contributions:

E[ρ] = T [ρ] + Vee[ρ] +

∫
Vne(~r)ρ(~r)d~r3 (2.6.2)

The kinetic energy functional, T , and electron-electron potential, Vee, are uni-
versal, such that they can be applied to the density of any system. The only
potential that changes is the electro-nuclear potential, Vne which is system-
specific (as it depends on the nuclear charge). The electron-electron poten-
tial is composed of contributions from the Coulomb potential, and exchange
and correlation, which is conventionally written as a collective exchange-
correlation term :

Vee[ρ] =

∫ ∫
d~r3

ρ(~r)

|~r − ~r′|
+ Vxc[ρ] (2.6.3)

The exchange-correlation term is unknown, but if this term is found cor-
rectly, it could be applied universally. Kohn and Sham conjectured a theoret-
ical system of non-interacting electrons, that could utilise the density func-
tionals and mimic the properties of a "real" system of interacting electrons,
by creating an effective potential, Vs:

(−1

2

~2

2m
∇2 + Vs(~r))φi = Eiφi (2.6.4)

Here the non-interacting Kohn-Sham orbitals, φi mimic the behaviour of the
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original multi-electron system but are treated as individual one-electron po-
tentials acting under the influence of Vs :

Vs(~r) =

∫
Vne(~r)ρ(~r)d~r3 +

∫ ∫
d~r3

ρ(~r)

|~r − ~r′|
+ Vxc[ρ] (2.6.5)

The KS orbitals allow for better representation of the kinetic energy and
bonding in the molecule under study, which is why orbitals are reintroduced.
Again the electron density is related to the KS orbitals [14]:

ρ =

Nelec∑
i=1

|φi|2 (2.6.6)

Of course, bringing in orbitals does create a computational expense of three
dimensional coordinates per electron, thus adding in some computational
expense [14]. It is now paramount that a suitable approximation for the
exchange-correlation functional be made such that density functional the-
ory be brought within a comparable accuracy to post-Hartree-Fock methods.
The exchange and correlation both reduce the probability of finding an elec-
tron close to another, leading to a probability hole. That is that the probabilities
are not independent [14]:

ρj(~ri, ~rj) = ρi(~ri)ρj(~rj) + ρi(~ri)hxc(~ri, ~rj) (2.6.7)

Where h is a conditional probability factor, making h the subject of the equa-
tion gives:

hxc(~ri, ~rj) =
ρj(~ri, ~rj)

ρi( ~ri)
− ρi(~rj) (2.6.8)

This illustrates the nature of the density dependence of the exchange-correlation
effects. The exchange and correlation functionals are generalised across the
electron density as:

Exc[ρ] =

∫
ρ(~r)εx[ρ(~r)]d~r +

∫
ρ(~r)εc[ρ(~r)]d~r (2.6.9)

εx and εc are the exchange and correlation energy densities respectively. The
local density approximation (LDA) is the first attempt at approximating the
Exc functional and assumes a slowly-varying density that can be considered
locally uniform [14]. The exchange is given by the Dirac formula for uniform
electron gases :

ELDA
x [ρ] = −Cx

∫
ρ

4
3 (~r)d~r (2.6.10)
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The correlation energy for uniform electron gases can be expressed explicitly
in the high- and low-density regimes [14]. The formulations can take interpo-
lation factors to express correlation in intermediate-density spaces, with dif-
ferent formulations proposed, such as Vosko-Wilk-Nusair (εVWN

C ) [130] and
Perdew-Wang (εPWC ) [131].

Indeed, most systems will not have completely invariant density. It is
therefore beneficial for for the exchange-correlation to include terms that de-
pend on the change in density. This brings about the next rung of Jacob’s
Ladder, the Generalised Gradient Approximation (GGA) [16–18]. The most
widespread exchange GGA functional is Becke’s 1988 exchange correction.
Its formalism is expressed as [132]:

εB88
x = εLDAx + ∆εB88

x (2.6.11)

The ∆εB88
x correction is defined as:

∆εB88
x = βρ

1
3

x2

1 + 6βxsinh−1x
(2.6.12)

The factor, x, is an enhancement factor:

x =
∇ρ
ρ

4
3

(2.6.13)

This is characteristic of GGA functionals to include enhancement factors and
other terms dependent on the spatial derivative of the density. Correlation
terms also include enhancement factors, such as the Lee-Yang-Parr (LYP) cor-
rection [41]. All GGA exchange-correlation functionals can be surmised as:

εGGAxc = εxc[ρ,∇ρ] (2.6.14)

The next logical step is to create functionals with enhancement factors de-
pending on higher-order derivatives of the density. The second-order deriva-
tive is included in the third rung of Jacob’s Ladder, meta-GGA (mGGA) [16].
An alternative approach is to indirectly depend on the second-order density
derivatives via the KS-orbital kinetic energy [16]. Both methods carry the
same information, and are related via the relation for kinetic energy density
τ [14]:

τ(~r) =
1

2

∑
i

εi|Ψi(~r)|2 − Veff (~r)ρ(~r) +
1

2
∇2ρ(~r) (2.6.15)
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This allows flexibility with the applied variable. Indeed it is often more nu-
merically stable to calculate the orbital kinetic energy density as opposed as
the second-order density derivative, such that the kinetic energy density is
often the chosen variable [14]. Meta-GGA functionals can be surmised as:

εmGGAxc = εxc[ρ,∇2ρ] (2.6.16)

εmGGAxc = εxc[ρ, τ ] (2.6.17)

Examples of well-known meta-GGA functionals include the Tao-Perdew-
Staroverov-Scuseria (TPSS) family [55] and Minnesota 2006 family [47–49].

In order to further the accuracy of the density functionals, attention turns
to taking advantage of other methods to determine improved exchange-
correlation functionals, in combination with GGA or mGGA methods. The
fourth rung of Jacob’s Ladder incorporates HF exchange with that of DFT
methodology, creating hybrid functionals (hGGA). Indeed, if it were HF or-
bitals that were used, the exchange would be exact [14]. With respect to KS
orbitals, this cannot be guaranteed. The approach is to weight the respective
exchange contributions calculated from HF and DFT methods. A popular
example of hGGA functionals is B3LYP [21, 39]:

EB3LY P
xc = (1− a)ELDSA

x + aEHF
x + ∆EB88

x + (1− c)ELSDA
c + cELY P

c (2.6.18)

Which includes Becke’s 1988 exchange correction and LYP correlation. The
constants a, b and c are calculated via fitting to established experimental
data. Indeed, both exchange and correlation are balanced between two dif-
ferent methods. Other hybrid methods add further contributions from other
DFT methods and weight them accordingly, such as B97 [40]. These are cal-
culated across the occupied KS orbitals.

The next logical step is to include calculation across the non-occupied KS
orbitals, and bring in a orbital-based method for the correlation energy, in
this case second-order Møller-Plesset perturbation theory (MP2) as Hartree-
Fock cannot calculate correlation. As both exchange and correlation are tak-
ing meaningful contributions from the wave-function-based methods, this
method is named double hybrids (dhGGA). A typical formulation is given
as [22–24]:

EdhGGA
xc = (1− a)EDFT

x + aEHF
x + (1− b)EDFT

c + bEMP2
c (2.6.19)

The MP2 term would predict correlation for "real" systems [14] but like HF,
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cannot be guaranteed to do so in theoretical KS orbitals. However, MP2 en-
tails computational cost that scales with the number of KS orbitals to the
power of 5. Indeed, more expensive computational methods (MP3, MP4,
CCSD(T)) have yielded little improvement, making MP2 the established sta-
ple [24].

The next rung, considered highest in Jacob’s Ladder, is range-separated
hybrids (rshGGA). This interpolates between the DFT-derived and Hartree-
Fock-derived exchange in the short- and long-range ~r [25, 26]:

1

|~r1 − ~r2|
=

1− erf(ωr12)

r12
+
erf(ωr12)

r12
(2.6.20)

ω determines the rate of interpolation between DFT-defined and HF-defined
exchange regions [26]. The advantage of such a bespoke control over the
fraction of HF exchange is that it can be used to minimise the self-interaction
error that arises from incomplete cancellation of exchange and Coulomb in-
teraction from the density of a single electron that plagues DFT-derived ex-
change terms, which adversely affects loosely-bound, valent electrons that
undergo interaction with other electrons in the long-range domain [133].
In the worst case this can lead to the valence electron’s self-interaction er-
ror exceeding the binding energy within the atom/molecule, thus incor-
rectly predicting an unbound electron [133]. Using HF in the long-range
domain reduces DFT overdelocalization of charge and thus improves the
excitation energies for charge-transfer states [134]. This makes it useful for
time-dependent DFT (TDDFT) as well. This thereby completes the rungs of
Jacob’s Ladder as of current research.

2.7 Electric Field Gradient

The theoretical methods, be they ab initio or DFT, are aimed at capturing the
electron density present around an atom or molecule. However, the theoret-
ical densities can only be compared to each other. Indeed, the electron den-
sity is usually measured against computationally-expensive methods such
as CCSD or CCSD(T) [27, 28, 30]. Other metrics such as bond lengths [135]
and energetic properties such as ionisation or atomisation [30] also compare
predominantly with CCSD(T). A means to compare the density with exper-
imental results is via the electric field gradient (EFG) [35]. It is defined as
the rate of change of electric field strength relative to the nucleus. The field
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gradient q of field E can be defined as [136]:

q = ∇E = ∇2V (2.7.1)

Such that the EFG is the Laplacian of the electrostatic potential, V . The EFG
can be observed if it interacts with a nuclear quadrupole that has formed [35].
Such disparities in the charge distribution can only be the result of combina-
tions of atomic orbitals with orbital angular momentum components that
do not possess spherical symmetry, such as p-orbitals and d-orbitals. Fur-
thermore, the uneven charge distribution can only occur if a p- or d-shell is
incomplete, such that the charge imbalance caused by the occupied orbitals
is not offset by imbalances in other directions to make a net field change of
zero. Given that such phenomena in the ground state only occur for valence
electron shells, this makes the EFG an excellent probe of chemically-relevant
electron density. The electric field gradient can be measured using a vari-
ety of experimental spectroscopic methods, including nuclear magnetic res-
onance (NMR), electron paramagnetic resonance (EPR), nuclear quadrupole
resonance (NQR), Mössbauer spectroscopy and rotational microwave spec-
troscopy. Such a variety of techniques provides a basis to compare the rel-
ative success of theoretical methods in capturing the chemically-relevant
electron density relative to experimental metrics, which forms the basis of
chapters 3 and 4. The experimental technique used in this investigation is
microwave spectroscopy. This technique is used to elucidate the nuclear
quadrupole moment (NQM), Q. [35]. Its advantage over NQR and Möss-
bauer spectroscopy is its ability to be used in the gas phase instead of re-
striction to the solid state, and requires less energy to perform than EPR. In
rotational microwave spectroscopy, the nuclear spin couples with rotational
angular momentum, which is observed as hyperfine splitting of the rota-
tional energy levels on the microwave spectra. The energies of the resultant
sub-levels are proportional to the magnitude of the NQM. The NQM can in
turn be converted to the EFG via the nuclear quadrupole coupling constant
(NQCC) Cq:

q =
Cq~
e2Q

(2.7.2)

It is possible to use established nuclear quadrupole moments [137] and nu-
clear quadrupole coupling constants calculated from microwave spectroscopy
[57–59, 63, 138–140] to calculate experimental EFGs to compare to those cal-
culated theoretically from the electron density distribution via DFT or wave-
function-based methods.
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2.8 X-ray Scattering

The EFG is one way of experimentally elucidating the electron density exper-
imentally, such that theoretical comparison can be made. Another method
that can be used to infer electron density is X-ray scattering. Indeed, the pre-
dominant usage of X-ray scattering in to determine the structure of molecules
and observe chemical dynamics [72,141]. The scattering intensity, S, is a func-
tion of the scattering vector, ~q, which is defined as:

~q = ~k − ~k0 (2.8.1)

That is, the difference between the incident wave vector ~k0 and the scattered
wave vector, ~k. It is particularly useful in defining the momentum transfer
resulting from the scattering event, i.e.:

∆~p = ~~k − ~~k0 = ~~q (2.8.2)

The magnitude of the scattering vector in an idealised elastic scattering sys-
tem (no energy transfer, no change in momentum magnitude) is given as
[72, 142]

q =
4π

λ
sinθ (2.8.3)

θ is half the scattering angle and λ the wavelength of the x-rays. Indeed, in a
system with no change in wavelength, ~q is simply proportional to the sin of
the angle of deflection. The wave, ψ, scattered in the direction of ~r, is defined
as [142]

ψ = ψ0F (λ, θ)
eikr

r
(2.8.4)

Here f is the scattering factor [72,142,143] that determines the probability of
deflection through angle 2θ at wavelength λ. This is an effective dependency
on q. The molecular form factor is determined as a Fourier transform of the
electron density ρe [143] about:

F (~r, ~q) =

∫
V

ρe(~r; ~R)ei~q·~rd~r (2.8.5)

Here R is the nuclear coordinates that the electron density is centered upon.
Recent studies have indicated that the electron density in the chemical bond-
ing plays little role in scattering [77]. This allows the molecular form factor to
be decomposed into individual atomic contributions (fj), otherwise known
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as the independent atom model (IAM):

F (~R, ~q) = FIAM(~R, ~q) =
N∑
j

fj(q)e
i~q·~r (2.8.6)

The scattered wave amplitude A can be expressed as [72]

A(~q) =

∫
ρe(r;R)e−i~q·~rd~r (2.8.7)

However, only the scattered intensity S is detectable experimentally [72,143].
where:

S(~q) = |A(~q)|2 = |
∫
ρe(r;R)e−i~q·~rd~r|2 (2.8.8)

It is more convenient to parameterise in terms of atomic coordinates, creating
a superposition of electron densities localised about the atomic centres [72]

ρe(~r) =
∑
j

pj(~r − ~Rj) (2.8.9)

Such that the scattering amplitude can be rewritten [72]:

A(~q) =
∑

jfj(~q)e
−i~q· ~Rj (2.8.10)

In turn, S is written for an N-atom system as [72, 143]:

S(~q) =

∫
V N

ρN(~R)
∑
j

∑
k

fj(q)fk(q)e
−i~q·( ~Rj− ~Rj)dN ~R (2.8.11)

Where ρN is the average nuclear probability distribution. Taking the cases
where j=k and j6=k [143]

S(~q) =

∫
V N

ρN(~R)(
∑
j

fj(q)
2 +

∑
j

∑
k 6=j

fj(q)fk(q)e
−i~q·( ~Rj− ~Rj))dN ~R (2.8.12)
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Integrating out all other dependencies other ~Rj and ~Rk and defining new
variables ~Rjk = ~Rj− ~Rk and ~R′jk =

~Rj+ ~Rk

2
[143], and also noting that integrat-

ing the first part
∑

j fj(q)
2 is simply equal to

∑
j fj(q)

2:

S(~q) =
∑
j

fj(q)
2 +

∑
j

∑
k 6=j

fj(q)fk(q)

∫
V 2

ρjk( ~Rjk, ~R′jk)e
−i~q· ~Rjkd ~Rjkd ~R′jk

=
∑
j

fj(q)
2 +

∑
j

∑
k 6=j

fj(q)fk(q)

∫
V

ρjk( ~Rjk)e
−i~q· ~Rjkd ~Rjk

(2.8.13)

To further the calculation, it is now assumed that:

ρjk( ~Rjk) = ρjk(Rjk) (2.8.14)

This is the isotropic assumption, such that there is equal probability of find-
ing the molecule in any orientation [143]. Applying the isotropic assumption
to the exponential [72] such that S(~q) is averaged into S(q) [72, 143]:

S(q) =
∑
j

fj(q)
2 +

∑
j

∑
k 6=j

fj(q)fk(q)4π ×
∫ Rmax

0

ρjk(Rjk)
sin(qRjk)

qRjk

R2
jkdRjk

(2.8.15)
Here j and k run across all atom pairs in the system. However, this leaves
a risk of double-counting atom pairs [143]. Furthermore, it is useful to dis-
tinguish atoms into respective types, as they will share the same form factor
in the IAM. Taking hypothetical atom types l and m, with N atoms of each
respective type, they are related via [143]:

ρlm(Rjk) =
1

Nl(Nm − δlm)

Nl∑
j∈l

Nm∑
k∈m

ρjk(Rjk) (2.8.16)

Rearranging and substituting back into the equation for S [143]:

S(q) =
∑
l

Nlfl(q)+
∑
l,m

fl(q)fm(q)Nl(Nm − δl,m)4π×
∫ Rmax

0

ρlm(Rjk)
sin(qRjk)

qRjk

R2
jkdRjk

(2.8.17)
In order to make use of theory, it is useful to bring in the pairwise radial
distribution function, glm that can be extracted from MM simulation boxes
[72, 143]. Defining gl,m via the probability density ratio:

glm(Rjk) =
ρlm(Rjk)

ρ0,lm
(2.8.18)
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With the ρ0,lm serving as the isotropic probability density:

ρ0,lm =
1

V
(2.8.19)

Hence for RDFs containing solvent atom types, as Rjk → ∞, glm(Rjk) → 1.
That is, the distribution tends towards isotropy as Rjk increases. The only
exceptions are RDFs involving exclusively solute molecules, in such case as
Rjk → ∞, glm(Rjk) → 0. Rearranging the above relations and rewriting S in
terms of glm(Rjk):

S(q) =
∑
l

Nlfl(q)
2+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jkglm(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.20)
For mathematical convenience, the RDF is redefined as:

glm(Rjk) = glm(Rjk)− g0,lm + g0,lm (2.8.21)

Here, g0,lm is the long-distance, constant radial distribution [143]. Inserting
into the equation for S:

S(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π × (

∫ Rmax

0

R2
jk(glm − g0,lm)(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

+ g0,lm

∫ Rmax

0

R2
jk

sin(qRjk)

qRjk

R2
jkdRjk)

(2.8.22)

The last integral is assumed to only contribute as q → 0 [143] and is therefore
excluded in most instances. This leaves:

S(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jk(glm − g0,lm)(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.23)
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As stated above, for for RDFs containing solvent atom types, as Rjk → ∞,
glm(Rjk)→ 1 such that g0,lm can be rewritten as 1 [72, 143]:

Ssolvent(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jk(glm − 1)(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.24)

Scross(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jk(glm − 1)(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.25)

Here Ssolvent(q) and Scross(q) are the contributions from solvent scattering and
solvent-solute interface to the scattering signal respectively. Likewise for
solute-exclusive atom pairs, glm(Rjk)→ 0 so this term simply vanishes [143]:

Ssolute(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jkglm(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.26)

Ssolute(q) is the contribution from the solute to the scattering signal. Of course,
most experimental X-ray scattering involves a pump laser pulse which pro-
vides the initial energy to initiate the dynamics of a solution, in particular
with regard to photoinduction of chemical reactions [1, 72, 143]. The scatter-
ing change between the ’pumped’ sample and the initial ’unpumped’ sample
is taken to identify the change in moelcular structure observed in the solu-
tion [1, 72, 143], defined as:

∆S(q) = Son(q)− Soff (q) (2.8.27)

Here "on" and "off" correspond to the pumped and unpumped sample [143].
Likewise, the change in the RDF due to the solution rearrangement is written
[143]:

∆glm(Rjk) = glm,on(Rjk)− glm,off (Rjk) (2.8.28)



2.9. Force-Field Methods 31

Such that the change in signal can be signal can be rewritten [143]:

∆S(q) =
∑
l

Nlfl(q)
2

+
∑
l,m

fl(q)fm(q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jk∆glm(Rjk)

sin(qRjk)

qRjk

R2
jkdRjk

(2.8.29)

Which can apply individually to all three contributions to the scattering. This
allows the use of simulation boxes to capture the change in scattering via the
change in rdf due to a change in hydrodynamic parameters i.e. temperature
or pressure increase [1, 143]. Such simulation boxes can be created and their
dynamics simulated via molecular mechanics (MM) software, in this case
using ultrafast timescales to simulate ultrafast X-ray scattering events.

2.9 Force-Field Methods

In order to create realistic simulations of the molecular mechanics of solu-
tions on ultrafast timescales, it is crucial to have accurate force-field param-
eterisation. Indeed, it it the impact of different force-field parameterisation
methods on predicting X-ray scattering that is at the centre of the scattering-
centric chapters of this work. All force fields seek to describe the intramolec-
ular and intermolecular potentials a molecule possesses, to explain its con-
formation and intermolecular interactions respectively. The force-field en-
ergy, EFF , can be written as composed of the following components [14]:

EFF = Estr + Ebend + Etors + Ecross + Eel + Evdw (2.9.1)

Estr is the energy to stretch a bond, Ebend is energy to bend a bond angle
formed by three atoms, Etors the torsional energy to rotate around a bond,
and Ecross the coupling between the stretch, bending and torsional energies
[14]. The other two represent the non-bonded parameters, Eel represents the
electrostatic potential caused by the uneven distribution of charge around
the molecule (forming a dipole moment or areas of partial charge) [14]. Evdw
represents the Van der Waals forces, which takes into account all other in-
termolecular forces, such as polarisation (from the induction of dipoles from
permanent dipoles) and dispersion (interaction of instantaneous dipoles) [144].
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The stretch energy is approximated as a simple harmonic motion (SHM)
about an equilibrium length R0 [14]:

EStr(R−R0) = kstr(R−R0)
2 = kstr(∆R)2 (2.9.2)

kstr is the constant analogous to a spring constant. Similarly the bending
energy can be defined about an equilibrium angle Θ0:

Ebend(Θ−Θ0) = kbend(Θ−Θ0)
2 = kbend(∆Θ)2 (2.9.3)

However, torsion does not mimic the SHM-like form of the other terms. It is
formed by a combination of four atoms A-B-C-D. The angle is defined by that
subtended by the planes A-B-C and B-C-D [14]. Torison terms are written in
a Fourier series of weighted contributions [14]:

Etors(ω) =
∑
n

Vncos(nω) (2.9.4)

Which encompasses potential barriers Vn associated with varying period-
icity [14]. The torsion is further distinguished from the stretch and bend
energy as the potential barrier to rotation is influenced by the non-bonded
contributions to the force field.

Cross terms illustrate the interrelated nature of the bonded terms. For
example, compression or widening of the equilibrium angle in turn changes
the equilibrium length of the bonds. Indeed the stretch/bend term tends
to be the most significant cross term, which for atom combination A-B-C is
written:

Estr/bend = kABCstr/bend(Θ
ABC −ΘABC

0 )[(RAB −RAB
0 )− (RBC −RBC

0 )] (2.9.5)

kstr/bend is the coupling constant between the stretch and bend parame-
ters. Likewise similar coupling constants can be used to express the relation-
ship between stretch/torsion and bend/torsion:

Estr/tors = kABCDstr/tors(R
AB −RAB

0 )cos(nωABCD)

Ebend/tors = kABCDstr/tors(Θ
ABC −ΘABC

0 )cos(nωABCD)
(2.9.6)

Coupling constants can also be used to express the influence of a bond stretch
on another, i.e. the influence of bond A-B on the bond B-C and in the same
manner the influence of one bond angle bend or torsion on another. An
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example of a stretch/stretch coupling is written:

Estr/str = kABCstr/str(R
AB −RAB

0 )(RBC −RBC
0 ) (2.9.7)

With bend/bend and torsion/torsion couplings following analogous forms.
It is also possible to have three-way couplings, for example stretch/torsion/bend
or bend/torsion/bend.

The Van der Waals interaction takes into account multiple forms of inter-
action between charge distributions. It is repulsive at short distance owing
to electron cloud overlap, leading to both classical and Fermi repulsion [14],
which has a proportionality of R−12. However, at intermediate distances it is
(slightly) attractive owing to instantaneous formation of dipoles as the elec-
trons move around the nucleus, which in turn can polarise other molecules,
leading to interaction [14]. The induced interaction is proportional to R−6,
where R is the interatomic/intermolecular distance [14]. Dispersion takes
into account multipole interactions, which can be proportional to increased
negative powers of R, such as R−8, R−10 etc. [14]. The Lennard-Jones poten-
tial is often used to model the Van der Waals forces [4, 14, 145]:

ELJ(R) = 4ε[(
σ

R
)12 − (

σ

R
)6] (2.9.8)

σ and ε are constants to be determined for the elements involved in the sim-
ulation, and are specified as non-bonded parameters.

Now attention turns to Eel. This encompasses the interaction of dipoles
in the system under consideration [4, 14]. The permanent dipoles are caused
by an uneven distribution of electronic charge across the molecule and are
called "partial charges" q [4]. Their behaviour is governed by electrostatics:

Eel(R) =
q1q2
εR

(2.9.9)

Here ε represents the dielectric constant in the space between the two par-
tial charges. After collecting the bonded and non-bonded terms, it is seen
that there are several constants that need to be determined. One of the most
long-standing force fields is the Optimised Potentials for Liquid Simulations
(OPLS) force field developed by the Jorgensen group [146]. Its bonded pa-
rameters largely follow those laid out for a standard force field. The only
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Force-Field Term Constants
Estr kstr, R0

Ebend kbend,Θ0

Etors Vn
Ecross kstr/bend, kstr/tors, kbend/tors + various coupling constants
Evdw ε, σ
Eel q

Table 2.9.1: Table of assorted constants associated with the pa-
rameterisation of a force field

slight exception being the torsional energy, which is written:

Etors =
∑

(
V1
2

[1 + cos(φ− φ1] +
V2
2

[1− cos(2φ− φ2]

+
V3
2

[1 + cos(3φ− φ3] +
V4
2

[1− cos(4φ− φ4])

(2.9.10)

The other distinct quality is the consideration of the nonbonded parameters
[147]. For atoms i and j, it combines Eel and Evdw into:

Enon−bonded =
∑
i>j

fij(4ε[(
σij
Rij

)12 − (
σij
Rij

)6] +
qiqj
εRij

) (2.9.11)

The factor fij is the "fudge factor", which only plays a role for atoms three or
more bonds apart, where is changes from a nominal value of 1 to 0.5 [147].
The version of OPLS used here is OPLS-AA, denoting that all atoms are ex-
plicitly parameterised, as opposed to the OPLS-UA (united atom) force field,
where hydrogen atoms are included implicitly as corrections to the carbon
parameters [148]. OPLS is distinguished as a system that utilises liquid ex-
perimental data, such as densities and heat of vapourisation, for parameter-
isation [148].

However, other parameterisation methods seek to utilise theoretical method-
ology to parameterise. The Quantum Mechanical Bespoke force field, better
known as QUBE, is oriented at calculating parameters (via QUBEKit) from
a theoretical standpoint and reducing dependency on finding experimental
parameters [5]. It ties together multiple forms of theoretical software to de-
rive parameters. With respect to the bonded parameters, they are derived
from the Seminario method [5, 149]. It maps the forces felt by an atom due
to the displacement of a neighboring one onto their mutual bond vector to
calculate bonded constants [5, 149]. The method is vulnerable to double-
counting of angle parameter in larger molecules [5, 150]. This is due to the
angle formed by one particular set of atoms changing the angle for another
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set with atoms in common. This can be modified to compensate for the chem-
ical environment and rescale the angle spring constant to make sure it isn’t
artificially too stiff [150].

QUBE also has theoretical treatment for non-bonded parameters. It utilises
atoms-in-molecule (AIM) analysis to calculate partial charge for the con-
stituent atoms of a molecule [4,5]. The total electron density from QM calcu-
lation, n(~r), is partitioned into atomic densities, ni(~r) [4, 5]:

ni(~r) =
wi(~r)∑
k wk(~r)

n(~r) (2.9.12)

wi(~r) functions as a weighting factor determines density allocation and is de-
pendent on the partitioning method used [5]. QUBE utilises density-derived
electrostatic and chemical partitioning (DDEC) [151,152]. Its weighing factor
is optimised iteratively to create a spherical average of ni(~r) and an ion of the
same atomic species [5,151,152]. It uses a mixture of iterative Hirschfeld and
iterative Stockholder atoms to construct the charge distribution [4, 5]. The
partial charge q on atom i is then calculated as:

qi = zi −
∫
ni(~r)d

3~r (2.9.13)

zi is the nuclear charge associated with atom i and the integration of the
electron density across all space is subtracted from it. What is left is the
partial charge.

QUBE also has treatment for the Lennard-Jones parameters to encapsu-
late the VdW forces. Again, atom-in-molecule partitioning methods are used
to capture the LJ characteristic of the atom within the molecule. The electron
density of a free atom can be scaled to fit the AIM atom, and likewise the LJ
parameters can be calculated in this way [153]. Defining the LJ parameters
in terms of A and B, where:

A = 4εσ12;B = 4εσ6 (2.9.14)

Such that the LJ potential be rewritten:

ELJ(R) =
Aij
R12
ij

− Bij

R6
ij

(2.9.15)



36 Chapter 2. Theory and Methodology

The dispersion coefficient Bij is scaled up as [5]

Bij = (
V AIM
i

V free
i

)2Bfree
ij (2.9.16)

Here Vi is the atomic volume for an atom-in-molecule partitioned atom and
a free atom. The AIM atomic volume is calculated as:

V AIM
i =

∫
r3ni(~r)d

3~r (2.9.17)

TheBfree
ij constant is calculated using time-dependent DFT (TDDFT)and V free

i

using MP4 [5, 154]. To ensure that the LJ potential reach a minimum at the
Van der Waals radius, Aij is taken:

Aij =
1

2
Bij(2R

AIM
i,vdw)6 (2.9.18)

Again, the Van der Waals radii are scaled via reference free atoms [5, 153]:

RAIM
i,vdw =

V AIM
i

V free
i

Rfree
i,vdw (2.9.19)

The AIM approach has provided competitive heats of vapourisation, free
energies of hydration and liquid densities to force fields designed to align
with experimental data. The advantage of of applying AIM partitioning to LJ
parameters has been best demonstrated in the calculation of the binding free
energies of proteins and free energies of hydration, which AIM electrostatic
charges with unadjusted LJ parameters cannot reproduce well [4].

2.10 Molecular Dynamics

In order to compare the relative performance of force-field methods, and
to generate the RDFs for theoretical X-ray scattering, the solution must be
allowed interact on ultrafast timescales. The motion is governed by Newto-
nian mechanics. Written in terms of the potential of the system, V :

− dV

d~r
= m

d2~r

dt2
(2.10.1)

~r represents the atomic positions in the simulation box. To propagate the
simulation box forwards in time by an incremental time step ∆t, such that
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atomic positions ~ri progress to ~ri+1 [14]:

~ri+1 = ~ri + ~vi(∆t) +
1

2
~ai(∆t)

2 + ... (2.10.2)

~vi and ~ai are the velocity and acceleration of the particles at point ~ri. To
regress back in time by a time step ∆t to atomic positions ~ri−1:

~ri−1 = ~ri − ~vi(∆t) +
1

2
~ai(∆t)

2 + ... (2.10.3)

Adding together the terms for the anterior and subsequent time steps, an
equation can be derived for the subsequent time step in terms of the previous
and current time steps [155]:

~ri+1 = (2~ri − ~ri−1) + ~ai(∆t)
2 (2.10.4)

This is the Verlet algorithm [14, 155]. This can be used to solved Newtonian
motion numerically. Recalling the equation for potential V , the acceleration
is defined as [14, 155]

~ai =
~Fi
mi

= − 1

mi

dV

d~ri
(2.10.5)

Indeed, the initial positions ~r0 have no previous time step, which is estimated
via [14]:

~r−1 = ~r0 − ~v0(∆t) (2.10.6)

The acceleration is evaluated from the net force at each time step, in turn
allowing the atomic positions to be propagated in time and generating a tra-
jectory [14, 155]. The smaller the time step, the more accurate the trajectory
is to a real-life trajectory for the given initial atomic positions, though the
computational expense is increased for the total trajectory time. There is a
limit to the numerical accuracy of the calculation (as time steps cannot be
infinitesimally small) so there will be inevitably some cumulative error. The
only issue with the Verlet algorithm is that the velocity is not explicitly writ-
ten into the equation, such that it is difficult to maintain a consistent velocity
distribution, which in turn makes it hard to maintain an ensemble of constant
temperature [14]. In order to facilitate maintaining a constant temperature,
the velocity can be explicitly written in the velocity Verlet algorithm [14,156]:

~vi+1 = ~vi +
1

2
(~ai + ~ai+1)∆t (2.10.7)

In the particular case of the systems under study here, they are designed
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to mimic the rearrangement caused by an X-ray pulse event on ultrafast
timescales. It assesses the impact on scattering of temperature change and
pressure change, taking the impact of each parameter individually. With this
in mind the ensemble is an NPT ensemble, that is, the number of molecules,
the pressure and the temperature are to be maintained as closely as possi-
ble for each solution box, with the change in RDF between solution boxes
representing the scattering change. The volume is allowed to vary in order
to maintain constant temperature and pressure. The MD simulation would
automatically be set for a NVE (number of particles, volume, energy) simu-
lation box and the temperature would fluctuate. In order to correct for this
and maintain a steady temperature, the velocity distribution must be scaled
down to reflect the average kinetic energy corresponding to the desired tem-
perature. Given that the average kinetic energy of a system is given as [14]

Ekin =
3

2
NkT =

1

2

N∑
i

mi~vi
2 (2.10.8)

The proportionality between the temperature and average velocity is there-
fore given as:

v ∝ T
1
2 (2.10.9)

In order to stabilise the temperature around that which be desired in the sys-
tem, the velocity distribution ~vi must be scaled accordingly at each time step
by (Tdesired

Tactual
)
1
2 [14]. However, such "instantaneous correction" can vastly al-

ter the dynamics and introduce periodicity into the system over time, both
highly unrealistic and undesirable [14]. In order to alleviate these prob-
lems, a less instantaneous method can be employed, in which the temper-
ature would be scaled towards the desired value over a time interval τ such
that [14, 157]:

dT

dt
=
Tdesired − Tactual

τ
(2.10.10)

This makes the heat transfer gradual and is the theoretical analogue to cou-
pling the system to a heat bath. With the gradual approach to temperature
consistency factored in, the velocity scale factor is recalculated as [157]:

(
Tactual + δtdT

dt

Tactual
)
1
2 =

√
1 +

δt

τ
(
Tdesired
Tactual

− 1) (2.10.11)

This method of regulating temperature is called a thermostat. It must be
noted that this improves considerably the average temperatures but the fluc-
tuations in temperature are still not statistically canonical. This is improved
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by assigning the heat bath fictitious dynamic variables that are allowed to
play out and interact with the system, creating more realistic fluctuations,
and thereby produce more accurate ensembles that can be proven statis-
tically canonical [14, 158, 159]. Such methods are collectively called Nosé-
Hoover methods. Similarly, the pressure can be controlled via a pressure bath.
Here the influence is not upon scaling the velocity but the coordinates of the
constituent molecules, allowing the volume to change in order to maintain
constant pressure. Again, correction to the desired pressure is staged across
a time interval τ :

dP

dt
=
Pdesired − Pactual

τ
(2.10.12)

In turn the coordinate scale factor is written:

3

√
1 + κ

δt

τ
(Pdesired − Pactual) (2.10.13)

κ is the compressability of the system. This method, analogous to the ther-
mostat, is called the barostat. Again, to make the system canonical with
statistically acceptable pressure fluctuation, the Nosé-Hoover methods are ap-
plied to the system, with the pressure bath given dynamic variables permit-
ted to evolve and interact with the system [14, 158, 159].





41

Chapter 3

Assessing Functional Errors using
Atomisation Energies and Electric
Field Gradients

3.1 Introduction

Density Functional Theory (DFT) is by far the most popular quantum chem-
istry methods with over >30,000 papers containing DFT calculations pub-
lished each year [6]. It can be applied in a broad range of scenarios includ-
ing both fundamental as well as applied research fields and consequently
has become critical in contemporary research fields such as high-throughput
material design and accelerated drug development.

At the heart of DFT are the Hohenberg-Kohn theorems [7], which demon-
strate that for any system consisting of electrons moving under the influence
of an external potential vext(r) (e.g. attractions to the nuclei) that the this
external potential and consequently, the total energy, is a unique functional,
F [n], of the electron density n(r). In addition, they demonstrated that the
ground state energy of this density can be obtained variationally. The den-
sity which minimises the total energy is the exact ground state density:

E = min
n

{
F [n] +

∫
d3rn(r)vext(r)

}
(3.1.1)

Here vext(r) is the one-body potential of the systems, F [n] is the functional
of the one electron density, n(r). The most common approach of density
functional calculations is the Kohn-Sham scheme [11]. This casts the system
into a fictitious set of noninteracting electrons with the same ground-state
density as the real Hamiltonian. This is solved self-consistently as:

[
−∇2/2 + veff (r)

]
φi(r) = εiφi(r) (3.1.2)



42
Chapter 3. Assessing Functional Errors using Atomisation Energies and

Electric Field Gradients

where φi(r) is KS orbital i with eigenvalue εi. Here the density of the orbitals
is defined to match the true density and the energy can be found from:

F [n] = Ts[n] + U [n] + Exc[n] (3.1.3)

where Ts is the Kohn-Sham kinetic energy , U is the orbitals Hartree energy
and the effective potential is defined as:

vs(r) = vext(r) +

∫
dr3

n(r)

|r− r′|
+ vxc(r) (3.1.4)

and
vxc(r) =

δExc
δn(r)

(3.1.5)

In all practical calculations, F [n] is approximated F̃ [n]. In turn, mimimising
the approximate functional will yield an approximate density, ñ(r). The use
of approximate energy functionals means that errors appear in the density
via the exchange-correlation potential. The exchange-correlation potential
decays too rapidly with inter-electron distance in many standard approxi-
mations such as the local density approximation (LDA) and the generalised
gradient approximation (GGA) [19, 20]. This causes a upward shift of εi by
several eV. Although, as the effect on vxc is usually a uniform upshift of the
potential, it often has a limited effect on the occupied orbital shapes and on
the bulk electron density. [20, 160]

In this regime, the total energetic error of any self-consistent KS DFT cal-
culation may be split into a functional and density errors [19]:

∆E = ∆EF + ∆ED (3.1.6)

The functional error, ∆EF = F̃ [n]-F [n], is the energetic error arising from the
approximate exchange-correlation functional for any given density, even if
it is the exact density. The density error, corresponds to the energetic error
arising from the use of an approximate density, ñ(r). As mentioned above,
in many cases KS-DFT calculations calculate excellent densities, and conse-
quently it is the functional error which dominates [19, 31, 32]. Importantly,
the two errors are interrelated in the standard KS scheme: A poor exchange-
correlation functional leads to a poor energy, while its functional deriva-
tive yields to a poor potential which yields a poor density. Hence, energy
and density are related by virtue of the KS potential: (equation 3.1.5). The
dominance of functional errors means that, with the notable exception of
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the HCTH (Hemprecht-Cohen-Tozer-Handy) series of functionals [161–163],
the development of new functionals have focused upon improving energy,
and not the density the calculations produce. The accuracy of a functional
is typically assessed by the errors in energies derived from transformations
of the type, ∆E = E2[ρ2] - E1[ρ1] where ∆E represents a chemical conver-
sion. However, in this case errors will contain both density and functional
errors and therefore modifying functionals to improve energetic results may
result in improve energies arising from the cancellation of errors, especially
for highly parameterised functionals. Indeed, Medevdev et al. [27] recently
proposed that modern density functionals are contravening the Hohenberg-
Kohn theorems because although energy is improving the proposed density
is actually getting worse following their study of the energy and density of
ions, suggesting that this was due to a over parametrisation of modern den-
sity functionals. However, there has been significant discussion about the
relevance of these results, much of which has focused upon the significance
and/or chemical relevance of density errors arising from the model systems
chosen [19,28,31,32]. Using a two different approaches for characterising the
density and functionals errors, Kepp [31] and Sim et al. [32] have both con-
cluded that the density error of such cations used by Medevdev et al. [27] is
energy-wise insignificant and therefore does not provide proof of contraven-
tion of the Hohenberg-Kohn theorems.

Given these discussions, it is clearly timely to consider approaches that
are able to simultaneously assess the accuracy of the density alongside func-
tional errors. While density differences calculated from the accurate ab initio
approach and a more approximate density functional is conceptually appeal-
ing, the values obtained are very sensitive to the exact details of the calcu-
lations, e.g. sampling points. [19, 28, 32]. An alternative way of assessing
the accuracy of density is through electric field gradients (EFG), for which
highly accurate values can be derived from microwave spectroscopy [63].
Consequently, in the present work, we use EFG’s as a probe of the electron
density and probe the correlation between energy and density for a range of
density functionals approximations for 5 molecular complexes.

3.2 Theory and Computational Details

We calculate the atomisation energy, the energy required to disassociate a
molecule into its constituent atoms, and electric field gradients (EFG) for;
CuCl, H2O· · ·CuCl [58], Ar· · ·CuCl [57], OC· · ·CuCl and H2S· · ·CuCl [58,
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59]. The EFG’s for these complexes have been determined from experimen-
tally determined nuclear quadrupole coupling constants(NQCCs) from mi-
crowave spectroscopy:

Q(x) =
vQ(x)

234.9647q(x)
=⇒ q(x) =

vQ(x)

234.9647Q(x)
(3.2.1)

in whichQ(x), vQ(x),and q(x) are the nuclear quadrupole moment (NQM) (in
barns), the NQCC (in MHz), and the EFG (in a.u.) of a nucleus x respectively.
The EFG measures the change in electric field strength from the nucleus as a
result of the distribution of charge [35]. Localised increases in charge density
yield positive gradients (the electric field strength increases) while localised
decreases in charge density (decreasing electric field strength) lead to nega-
tive gradients. Gradients taken in three dimensions therefore provide indi-
cators of the electron density mapping across the atom. Changes in density
ditribution caused by covalent bonding are therefore captured by the EFG.

All density functionals (see Table 3.2.1) and CCSD(T) calculations were
performed using the ORCA quantum chemistry package [164] at the CCSD(T)
optimised geometries. All calculations were performed using an aug-cc-
pVQZ-DK [165–169] and a fine integration grid (Grid 7). Relativistic ef-
fects were included using a Douglas-Kroll-Hess Hamiltonian up to second
order. For the range-separated functionals, the interpolation between the
short-range DFT and long-range Hartree Fock is determined by the ω pa-
rameter:

1

r1,2
=

1− erf(ωr)

r1,2
+
erf(ωr)

r1,2
(3.2.2)

where r1,2 is the inter-electron separation. The optimal tuning approach ap-
plied was achieved by minimising the objective [170]:

J(ω) = |εHOMO + εIP | (3.2.3)

Here εHOMO is the energy of the highest occupied molecular orbital (HOMO)
of a neutral system and εIP is the first ionisation potential of the system, as
determined by the difference in ground state energies between a neutral and
positively-charged system. The optimal value of ω is achieved when J is
minimised.
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Functional Type Ref.
B2GP-PLYP dhGGA [36]
B2PLYP-D3 dhGGA [37]
B2PLYP dhGGA [38]
B3LYP hGGA [21, 39]
B97-D3 GGA [37]
B97 hGGA [40]
BLYP GGA [41]
BP86 GGA [42]
CAM-B3LYP rshGGA [43]
DSD-BLYP-D3 dhGGA [44, 45]
LC-BLYP rshGGA [171]
M062X hmGGA [48]
M06L mGGA [47, 49]
M06 hmGGA [47, 48]
mPW2PLYP dhGGA [50]
O3LYP hGGA [51]
PBE0 hGGA [52]
PBE GGA [53]
PW6B95 hGGA [54]
PWPB95 dhGGA [22]
TPSS0 hmGGA [55]
TPSSh hmGGA [55]
TPSS mGGA [55]
ωB97 rshGGA [25]
ωB97X rshGGA [25]
ωB97X-D3 rshGGA [56]

Table 3.2.1: The functionals, including type and reference used
within this work.
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3.3 Results

3.3.1 CuCl

Figure 3.3.1 shows a plot of the CuCl atomisation energy against electric field
gradient for Cu (a) and Cl (b). In both cases there is no trend between the
energy and EFG for the functionals studied herein. All of the atomisation
energy falling within a range of 13 kcal mol−1, with the majority functional
achieving an atomisation energy between 0.135-0.140 a.u. On the EFG axis,
the values begin to approach both the coupled cluster and experimental re-
sults as Jacob’s ladder is climbed, with pure (GGA or mGGA), followed by
hybrid functionals, range separated functionals and finally double hybrid
functionals.
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Figure 3.3.1: Plot of the CuCl atomisation energy as a func-
tion of Cu (a) and Cl (b) electric field gradient in the complex
by functional group. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG and atomisation.

This reflects the importance of Hartree-Fock exchange for describing the
EFG. Indeed, while the double hybrid functionals provide excellent agree-
ment this is not a result of the inclusion MP2 correlation, but that these
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functionals contain a large fraction of Hartree-Fock exchange. Increasing
Hartree-Fock exchange fraction corresponds to an increase in electronega-
tivity of chlorine relative to copper leading to increased charge transfer into
Cl 3pz, making the EFG less positive as the imbalance of charge favouring
polarisation in the x-y plane reduces. The Cu EFG becomes more negative
as more charge that remains on the Cu transfers from Cu 4s into Cu 4pz
and d-orbitals with alignment with the bond, in particular 4dz2 , increasing
polarisation in the bond even as the total charge on Cu actually decreases.
The role of Hartree-Fock exchange in describing transition metal systems
in DFT was highlighted by Yanagisawa et al. [172] for the first-row tran-
sition metal dimers and has been observed throughout d-block transtion
metals [172–175]. They demonstrated that pure DFT tends to favour con-
figurations containing a higher fraction of higher angular momentum or-
bitals, while HF exchange strongly favours orbitals with low angular mo-
menta. They cast this in terms of the 3d-4s inter-configurational energy (i.e.
4s23dn−2 to 4s13dn−1) and the ionisation potentials of the 4s and 3d orbitals,
which were found to be closely related. The Cu ionisation potentials there-
fore increase with Jacob’s Ladder with a preferred 4s occupation. This indi-
cates an increased Mulliken electronegativity of Cu with increased HF ex-
change. However, the increase in Cl electronegativity is greater, such its
electron density increase at the expense of the Cu density. The remaining
valence Cu 4s becomes degenerate with the previously-unoccupied 4pz or-
bitals aligned with the bond. This is however not the only driver of EFG
change across Jacob’s Ladder on the Cu atom. As evidenced in table A.3.1,
the core polarisation contribution is very significant and of comparable mag-
nitude to the valence contribution. This is unsurprising given the proximity
of the core and valence electrons. The higher HF-exchange functionals are
more z-polarised in the valence region. The long-range nature of the HF ex-
change then mediates the increased repulsion, both Coulomb and Fermi, to
z-polarised core orbitals, increasing the negativity of the core contribution to
the EFG. When the breakdown of the EFG contributions are considered with
respect to CCSD(T) it is noteworthy that many of the dhGGA functionals
that align with the CCSD(T) Cu EFG have a more z-polarised valence contri-
bution but less polarised core contribution. That is that their valence region
polarisation overcompensates for the lack of core polarisation. The purely
HF exchange contribution of CCSD(T) allows for more long-range Fermi re-
pulsion to induce polarity in the core region, which DFT functionals cannot
do without eliminating important local effects of pure-DFT exchange.
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Figure 3.3.2: Plot of the change in atomisation and a) Cu b) Cl
EFG of ωB97X for CuCl as the value of ω is adjusted from 0.05
to 0.8. Optimal ω (green) and CCSD(T) (blue) are also indicated

Figure 3.3.2 shows a plot of the CuCl atomisation energy against elec-
tric field gradient for Cu (a) and Cl (b) for the long-range corrected func-
tional ωB97X for which the range separation parameters ω (equation 3.2.2)
has been tuned between 0.05-0.8. This shows improvement in energy and
density (through the EFG) which are largely independent. An initial increase
in the accuracy of the atomisation energy energy compared to experiment
is observed until ω=0.45 a−10 , in close agreement with the default value of
ω=0.30 a−10 for ωB97X. This is followed by an decrease in the EFG for larger ω
consistent with the importance of Hartree-Fock exchange. However, in this
region, the change in the atomisation energy is minimal. The green filled
circle in figure 3.3.2 shows the point in which the value of ω minimises the
objective shown in equation 3.2.3, and therefore corresponds to the optimal
tuned value of ω [170]. While, previous work by Srebro et al. [33] showed that
the optimal tuning approach was able to improve the description of the EFG
for CuCl, this shows that this improvement is not achieved at the sacrifice of
energy.

The lack of apparent correlation between energy and density shown in
figure 3.3.1 arises due to their respective sources of error. Indeed, the error
in the EFG derives solely from the error in the approximate density obtained
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from the KS optimisation. In contrast, the energetic error originates from
combination of the the functional and density error (Equation 6). In many
cases the functional error is expected to dominate [176], but this is not always
the case.

3.3.2 Ar· · ·CuCl

Figure 3.3.3 shows the atomisation energy plotted against the EFG for copper
(a) and chlorine (b) for the Ar· · ·CuCl complex. This is chosen because the
Ar binds very weakly to the CuCl, as demonstrated by the small difference in
the calculated atomisation energy compared to CuCl. Consequently it could
be expected to provide minimal perturbation from the results obtained for
CuCl.

0.170

0.165

0.160

0.155

0.150

0.145

0.140

At
om

isa
tio

n 
En

er
gy

 (
a.

u.
)

-0.8 -0.6 -0.4 -0.2 0.0
EFG (a.u.)

 (a)

0.170

0.165

0.160

0.155

0.150

0.145

0.140

At
om

isa
tio

n 
En

er
gy

 (
a.

u.
)

1.81.71.61.51.41.31.2
EFG (a.u.)

 (b)

Figure 3.3.3: Plot of the Ar· · ·CuCl atomisation energy as a
function of a) Cu b) Cl electric field gradient in the complex
by functional group. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.

Despite this, a sizeable shift in the EFGs are observed and the principal-
axis EFGs of both the copper and the chlorine are shifted to lower values,
with the bulk of calculated copper EFGs now negative and chlorine EFGs
now slightly less positive. This shift occurs due to an an increase in Cu 4pzσ
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and 4dz2σ, and Cl 4pzσ orbital populations at the expense of the Ar 3sσ popu-
lation. Increased Cu electronegativity relative to Ar at higher rungs of Jacob’s
Ladder, and increased shift of charge from Cu 4sσ to 4pzσ and 4dz2σ further
contributes to the EFG negativity, along with a small drop in π-bonding in
the x-y plane..

As observed for CuCl, their is no clear trend involving both atomisation
energy and EFG which as previously identified is due to dual contribution
of density and functional error in the atomisation energy with only the den-
sity error contributing to EFG. The best agreement between the experimental
and CCSD(T) for the Cu EFG is again achieved for functionals containing a
large fraction of Hartree-Fock exchange, such as double hybrids and M06-
2X. Again, the importance of core polarisation contributing to the Cu EFG
is highlighted (table A.3.3), with overall alignment of CCSD(T) EFG with
large-fraction HF functionals the result of overcompensation of valence EFG
polarisation for lack of core polarisation relative to CCSD(T). However, in
contrast to CuCl, the agreement with the EFG of Cl is described equally well
with long-range corrected functionals.
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Figure 3.3.4: Plot of the change in atomisation and copper EFG
of ωB97X for CuCl as the value of ω is adjusted from 0.05 to 0.8.

Optimal ω (green) and CCSD(T) (blue) are also indicated

Figure 3.3.4 shows the results of tuning the range-separation parameters



3.3. Results 51

in ωB97X. A similar trend is observed with a sizeable increase in the atom-
isation energy for small values of ω and a subsequent increase in the EFG
towards the experimental value, for which the change in the atomisation en-
ergy is minimal. This again highlights the almost independent improvement
in energy and EFG as a function of ω. Interestingly, while the optimal value
of ω provides a very good agreement for the EFG of chlorine, it provides
much poorer agreement for Cu. This is because for CuCl, the 3d-4s inter-
configurational energy which was important for achieving the correct de-
scription of the EFG is closely linked to the ionisation potential of the Cu 3d
orbitals [172]. This is tuned during the optimal tuning approach. However,
for Ar· · ·CuCl this is not true because the highest occupied orbitals contain
orbital overlap between the Cu 3dσ and the Ar 3pσ orbitals, such that the
HOMO-IP agreement shifts away from a value suitable for transition met-
als and towards a lower value ideal for halogens and noble gases, in effect
reverting to the default ω.

3.3.3 OC· · ·CuCl

In the previous section we studied the effect of a weak interaction between
Ar on CuCl. Here we study the effect of the strong interaction which arises
between CuCl· · ·CO [177]. Previous calculations have shown that the Cu-C
interaction is formed by σ-bonding from the carbon to copper with only a
small contribution to dπ∗-back-donation from Cu to C [177]. This strong in-
teraction further distorts the electron density of CuCl and results in a further
negative shift of both the Cu and Cl EFGs.

Figure 3.3.5 shows the atomisation energy plotted against the EFG for
copper (a) and chlorine (b) for OC· · ·CuCl. The results are consistent with
observations for the other systems, with no particular trend between the ac-
curacy of the energy and the EFG. However, while the accuracy of the EFG
for Cu is still strongly modulated by the fraction of Hartree-Fock exchange,
this effect is significantly weaker for Cl, for which only the EFG of double hy-
brid functionals being significantly separated along the x-axis than the other
functionals.

Figure 3.3.6 shows the atomisation energy and EFG for the ωB97X. In-
terestingly, as observed for CuCl, the optimal value of ω yields very good
agreement for the Cu EFG, although the agreement is not as good as for
chlorine. Indeed for the 5 systems studied, the results show that there is no
guarantee that a good EFG on one atom will translate to an equally good one
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Figure 3.3.5: Plot of the OC· · ·CuCl atomisation energy as a
function of a) Cu b) Cl electric field gradient in the complex
by functional group. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG

on the other atom. This is due to the amount of the HOMO that is concen-
trated on the transition metal and the amount of the Cl and added ligand.
The more on the transition metal, the greater the importance of a larger pure
HF-exchange region over inter-electron distance in HOMO-IP agreement. If
it reduces, however, the default ω becomes more favourable as this describes
better the ionisation in the Cl and the ligands.

3.4 Discussion and Conclusions

Herein we have calculated and analysed the EFG and atomisation energies
of CuCl, Ar· · ·CuCl and OC· · ·CuCl. Calculations of two additional com-
plexes, H2O· · ·CuCl and H2S· · ·CuCl are shown in the supporting informa-
tion (see appendix A) and their results are consistent with those presented
in the main text. As previously reported, the copper EFG in CuCl molecule
represents a particularly challenging case for density functional theory and
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Figure 3.3.6: Plot of the change in atomisation and copper EFG
of ωB97X for CuCl as the value of ω is adjusted from 0.05 to 0.8.

Optimal ω (green) and CCSD(T) (blue) are also indicated

most popular functionals even fail reproduce the its sign, let alone its mag-
nitude. This failure has been linked to the exchange part of the functional
[33, 178, 179].

Ar, CO, H2O and H2S were chosen because they provide varying bond-
ing strengths to the CuCl, resulting in distorted binding energies and EFGs.
For Ar a weak interaction is formed by overlap between Cu 3dσ and the
Ar 3pσ orbitals, for CO a much strong interaction is formed arising from
σ-bonding from the carbon to copper with only a small contribution to dπ∗-
back-donation from Cu to C. For both H2O· · ·CuCl and H2S· · ·CuCl, bond-
ing occurs through the non-bonding pairs on sulphur and oxygen which
align to the CuCl axis [58, 59] similar to that expected for hydrogen-and
halogen-bonded complexes. Although as noted in ref [59] . It is further sig-
nificant to note that the metal-containing complexes are significantly more
strongly bound than their hydrogen- and halogen-bonded analogues.

Importantly, despite the EFG having an r−3 dependency [35] and the large
number of core-orbitals relative to valence orbitals, it provides a excellent
measure of the valence electron density. This is because the EFG is only
non-zero for orbitals which exhibit a deviation from cubic symmetry. Its
ability to provide a measure of valence electron density makes it appropriate
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to provide insight into the chemically relevant density accuracy, which has
recently received significant attention [19,27,28,31,32]. However, it is impor-
tant to note the role of core polarisation in the Cu EFG. Here it is of similar
magnitude to the valence EFG. Furthermore, the alignment of CCSD(T) and
dhGGA functionals supports recent theoretical dipole studies into DFT ac-
curacy [29, 180]. This agreement is the result of the latter’s higher valence
EFG compensating its lower core polarisation relative to the former. This
highlights the importance of HF exchange in mediating the valence polari-
sation effect to the core orbitals, which gives CCSD(T), which contains pure
HF exchange, a distinct advantage.

Across the 26 functionals and 5 systems studied in the present work, our
results show that the accuracy of the EFG is a reflection of the amount of
HF exchange included in the functional. This is because pure DFT tends
to favour configurations containing a higher fraction of higher angular mo-
mentum orbitals, i.e. the 3d orbitals. However in contrast the inclusion of
HF exchange favours orbitals with low angular momenta. This as a result
of the 3d-4s interchange energy [172]. In turn with this shift in arrangement
of the valence orbitals, the relative electronegativity of Cu to Cl decreases as
one ascends Jacob’s Ladder, leading to an increase in charge polarised in the
principal axis on the Cl and therefore a less negative EFG. As the Cl exerts
more attraction on the electron density in the bond, more charge that is re-
tained on Cu shifts from Cu 4s into orbitals aligned with the principal axis,
in particular Cu 4pz and Cu 3dz2 . This drives increased Cu EFG negativity
at higher rungs of Jacob’s Ladder as more charge polarises in the principal
axis, as opposed to remaining in the non-contributing 4s orbital.

In agreement with previous work of Srebro et al. [33], we observe that
optimally tuned range separated functionals can provide a route to provide
a simultaneously good agreement with the electron density and the energy
in the case of CuCl, as well as attributing the challenging nature of capturing
its EFG to the self-interaction error. However, this is not general and breaks
down for complexes with Ar, H2O and H2S, which while providing good
EFGs are not as good as in the case of CuCl. This is as a result of these added
ligands shifting the HOMO such that less is located on the Cu, such that the
tuning favours an ω that suits better Cl and the ligand atoms, which tends it
towards its default ω.

Finally, identifying the accuracy of approximate functionals in terms of
energy and density is going challenging for real molecule systems. The
present case is limited to CuCl containing systems, for the reason that as
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previously demonstrated this provides a challenging case for EFG. The next
chapter will be focused upon establishing how broadly this applies, both for
challenging transition metals but also in unrelated systems.
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Chapter 4

Extending the Understanding of
Density and Energetic Error for
Silver Complexes and Halogenated
Aromatic Compounds

4.1 Introduction

The previous chapter explored the notion of evaluating the relationship be-
tween energy and electron density performance of DFT functionals via the
atomisation and EFG respectively. Utilising theoretical benchmarking via
CCSD(T) and experimental benchmarking from spectroscopic data, the per-
formance of CuCl and its associated complexes, known for providing a no-
toriously difficult transition-metal EFG to capture theoretically, was evalu-
ated under this method. This established the potential of EFG as a metric for
functional assessment, indicating dhGGA to perform best relative to both ex-
periment and CCSD(T). Furthermore, the breakdown of the EFG by core and
valence contribution indicated that the struggle to capture the EFG of cop-
per was the result of the functional difficulty in reproducing the core polari-
sation, with functionals often aligning with the CCSD(T) EFG through over-
compensation in the valence contribution. This highlighted issues in electron
exchange in particular, with increased HF exchange of dhGGA functionals
being responsible for improved core polarisation, while suffering limitations
as to the improvements that can be made through the use of HF-exchange
for Kohn-Sham orbitals.

However, it is imperative that the conclusions of the previous study, as
well as the EFG metric as a measure of density performance, be tested with
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an increasing number of systems, both transition-metal systems and oth-
erwise for which there be available data. To this end, this study presents
25 relevant candidate molecular systems which have sufficient experimen-
tal data as an expansion of the initial study with 5 candidates in the pre-
vious chapter. In order to determine the validity of the previous chapter
for transition metals, AgCl and AgI are included, along with their mono-
hydrated metal-aquo complexes, hydrogen sulfide complexes and ammo-
nia complex (AgI only), utilising the nuclear quadrupole coupling constants
(NQCCs) from rotational spectroscopic investigations of these molecules to
calculate experimental EFGs [58–62]. These studies provide the EFGs for the
halogens, comprising chlorine and iodine within these systems. These are
supplemented with experimental NQCCs for bromine and iodine from halo-
genated aromatic compounds used extensively within medicinal chemistry
as precursors: 4-halopyrazoles [63]; 2- and 3-halothiophenes; 2- [64, 65], 3-
[66, 67] and 4-halopyridines [64, 65]; 2-halopyrimidine (bromine only) [68];
halobenzene [69,70] and p-halotoluene [71]. Halogenation of drug candidate
molecules is a common method for improving their effectiveness [181]. This
provides sufficient variety of system type to assess the conclusions of the
previous study while maintaining a useful point of comparison through the
use of halogens in both systems.

4.2 Theory and Computational Details

Here the methodology is very similar to that established in chapter 3, with
the experimental electric-field gradients calculated from the rotational spec-
troscopic data via:

Q(x) =
vQ(x)

234.9647q(x)
=⇒ q(x) =

vQ(x)

234.9647Q(x)
(4.2.1)

in which Q(x), vQ(x),and q(x) are the nuclear quadrupole moment (NQM)
(in barns), the NQCC (in MHz), and the EFG (in a.u.) of a nucleus x. respec-
tively. The same density functionals are used as those in the previous study,
and along with CCSD(T), all calculations are performed using the Neese
group’s ORCA quantum chemistry software [164]. However, due to the high
computational cost, some halogenated aromatic compounds’ CCSD(T) were
still ongoing at time of writing (all halopyridine isomers, halobenzenes, p-
halotoluenes and 2-iodopyrimidine), such that only experimental compari-
son is currently possible (2-iodopyrimidine is compared with its brominated
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analogue). Geometry optimisation was done with the B3LYP functional. All
the calculations used aug-cc-pVQZ-DK [165–169] though due to the incom-
patability of this basis set with larger atoms, TZVP [182] was assigned to
silver, iodine and bromine. Bromine was treated the same way as iodine to
facilitate comparison for the halogenated aromatic compounds. All calcula-
tions used a fine integration grid. Relativistic correction was utilised via 2nd-
order Douglas-Kroll-Hess Hamiltonians, and a finite nucleus was used [183].
Optimal tuning of the ω parameter was again achieved through minimisa-
tion of the J-parameter [170].

4.3 Silver Complexes

This section focuses upon the relationship between atomisation and electric
field gradient for silver complexes AgCl and AgI, both isolated as diatomic
heteronuclear compounds and with added complexing agents H2O (to form
a metal-aquo complex), H2S and H3N (for AgI only). AgCl and its associ-
ated complexes allow for comparison of atomisation to Ag and Cl EFG, with
the same analysis possible with AgI, albeit with I EFG in place of Cl EFG.
This allows for observation of how atomisation and EFG change with added
complexing agents, as well as differences caused by the choice of halogen in
the diatomic for the same added ligand.

From figures 4.3.1 and 4.3.2, atomisation energy is greater for AgCl than
AgI, reflecting the relative strength of the two bonds, with AgCl the more sta-
ble structure by∼0.03 a.u. This is carried forward as the bulk of the atomisa-
tion energy difference between AgCl and AgI complexes for the same added
ligand (see B.1.1). The atomisation energy increases as atoms are added to
the complex (figures B.1.1-B.1.5), and H2O complexes exhibit greater atomi-
sation energy than H2S complexes, due to the increased bond stability with
the addition of the O atom due to its increased electronegativity relative to
sulfur. H3N is even more stable, owing to its strong polar covalent bonds .
Studying the relative performance of functionals of various rungs of Jacob’s
Ladder, it is apparent that there is no discernible correlation between atomi-
sation energy and Jacob’s Ladder, and that in virtually all cases they lie close
to the theoretical-gold-standard-predicted atomisation energy. The only no-
table outlying behaviour was the Minnesota hmGGA functional M06-2X,
which predicted extremely-high atomisation energies for hydrogen-containing
complexes, due to predicting a lower potential for the ground state of atom-
ised hydrogen.
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Figure 4.3.1: AgCl Atomisation-EFG characteristic for a) silver
and b) chlorine. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-

mental EFG.
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Figure 4.3.2: AgI Atomisation-EFG characteristic for a) silver
and b) iodine. GGA, hGGA, dhGGA and rshGGA are repre-
sented in blue, grey, red and light purple respectively. CCSD(T)
is denoted in green, while the dashed line represents experi-

mental EFG.

Electric-field-gradient variation is observed between AgCl and AgI when
taken in isolation, and between different added ligands. Ag reports a more
negative EFG in the AgCl diatomic over the AgI. Both are negative and ori-
ented in the z-direction because of charge transfer from the halogens’ valence
s-orbitals (Cl 3s and I 5s) into the previously-unoccupied Ag 5pz orbital via
σsp-bonding exceeding that transferred into the Ag 5px and 5py orbitals via
π-bonding with the halogens’ xy-polarised valence p-orbitals. However, the
relative difference between z-polarised and xy-polarised charge is greater for
Ag in AgCl than AgI, despite more charge transferring overall to Ag in the
AgI system. Hence AgCl reports a more negative EFG. Both Cl and I report
positive EFGs in their respective diatomics, however, the magnitude of their
positive EFG somewhat differs, with I being around three times larger. This
is predominantly due to the iodine’s increased nuclear charge, which ex-
ceeds the impact of the radial distance change of its valence electrons, such
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that field gradient increases relative to chlorine. There is also increased dif-
ference in charge between polarisations contributing to and offsetting the
EFG. This occurs on the iodine to increased transfer of z-polarised charge to
the Ag atom. Shifting attention to the impact of ligand addition, it is perhaps
unsurprising that the Ag atom, which is in close proximity to the added lig-
and, experiences a larger change in EFG than the halogen EFGs. The metal-
aquo-complexes lead to an increased charge transfer from the O 2s and 2pz
into the Ag 5pz orbital, with some Ag 4dz2 charge transferred back into O
2pz. There is also small amount of π-bonding reducing the charge in the x-y
plane in Ag into the O 2px and 2py on AgCl, while the charge transfer occurs
in reverse for AgI. The overall impact is an increase in the magnitude of the
negative Ag EFG polarised in the z-direction. H2S complexes result in in-
creased charge transfer to the Ag, due to sulfur’s reduced electronegativity
relative to oxygen. There is actually some additional transfer via π-bonding
into the S 3px and 3py orbitals from Ag 4dxy and 4dx2y2, which further in-
creases the z-polarisation of the Ag EFG. H3N results in a reorientation of
the principal axis of the EFG from the z-direction into the xz plane. There
is charge transfer between that observed of H2O and H2S, with σ-bonding
through N 2px and 2py bonds, with some charge transfer back through Ag
4dxz.

Once these influences on the EFG have been accounted for, attention
turns to the influence of Jacob’s Ladder. It is quickly apparent, across all
rungs of Jacob’s Ladder, that dhGGA functionals are the group that ascer-
tains the most accurate EFGs of Ag, Cl and I across all systems relative to the-
oretical gold standards, followed by rshGGA, hGGA and GGA. The exper-
imental halogen benchmarks are more positive than the theoretical bench-
marks, but still strongly align with dhGGA and rshGGA for AgCl and its
associated ligands, while rshGGA and hGGA align better for systems con-
taining AgI. Differences between experimental and theoretical benchmarks
can either be resultant of experimental error in ascertaining NQCCs or limi-
tations on theory, such as not having an unlimited basis set. Across all sys-
tems, the most important driver of Cl and I EFG is the polarisation of the
valence density due to its bond with the Ag atom. As one descends Jacob’s
Ladder, the relative electronegativity of chlorine and iodine relative to sil-
ver falls, such that less charge is transferred to them in the σsp bond with
Ag 5s, resulting in a more positive EFG in the z-direction. Likewise, more
charge is transferred from their valence orbitals to the Ag 5p orbitals. How-
ever, much of this transfer to Ag is manifested as π-bonding to xy-oriented
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orbitals, which increases positivity of the Ag EFG. The Ag 5s orbital is more
hybridised with the 5pz and 4dz2 orbitals as Jacob’s Ladder is ascended, such
that z-polarised EFG increases, even while more charge is lost to the halo-
gens overall. The combination of these effects leads to the Ag EFG becoming
more negative higher up Jacob’s Ladder. Increased Ag electronegativity rel-
ative to sulfur and oxygen as one descends Jacob’s Ladder negates this effect
somewhat as one considers the added H2O and H2S ligands, such that the
concentration of Ag 5pz at the highest and lowest rungs of Jacob’s Ladder are
very similar. However, valence density alone cannot explain the big dispar-
ity in Ag EFG. If valence density solely determined the Ag EFG, all the EFGs
would be negative, and those with added ligands would be more or less
identical across Jacob’s Ladder. Indeed, many would be more z-polarised
than CCSD(T). However, lower rungs report positive Ag EFGs in the di-
atomic AgCl and AgI systems, and despite similar valence EFGs, there is
still a big disparity between lower-rung EFGs and higher-rung EFGs in the
ligand systems. Referring to tables B.3.1-B.3.4, this is due to the core polari-
sation, which is z-polarised for higher-rung functionals, making the overall
EFG more negative, while lower-rung EFGs are xy-polarised, negating the z-
polarised valence EFG. The orbitals responsible are in the Ag 4p shell, where
the 4pz EFG outweighs those of 4py and 4px for higher-rung functionals. This
owes to the bigger energy difference between the orbitals corresponding to
a relative increase in x- and y-polarised contributions relative to z-polarised,
such that they outweigh the latter. Less energetic change for higher-rung or-
bitals yields that the z-polarised orbital yields the largest EFG of the three. It
also underscores an important point; that often the agreement with CCSD(T)
Ag EFG benchmarks are not due to valence EFG agreement, but rather an
overestimate of valence EFG which offsets a less z-polarised core polarisa-
tion relative to CCSD(T).

Figures 4.3.3 and 4.3.4 show the outcome of ωB97X tuning for AgCl and
AgI respectively. Silver complex tuning is shown in B.1.2. The ωB97X tuning
was carried out for ω=0.05-1.0 in steps of 0.05 for all systems. The functional
was optimally tuned via Koopmans’ theorem, where the difference between
the highest-occupied molecular orbital (HOMO) potential and the first ion-
isation potential (IP), the J-parameter, was minimised. It is found that the
atomisation initially increases rapidly before plateauing above ω=0.2, reflect-
ing that the bond has reached a peak stability. These peak atomisation ener-
gies are overall comparable to the CCSD(T) atomisation benchmarks. In all
cases this plateau occurs before the optimal HOMO-IP agreement. Indeed,
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relative to the default ω=0.3 for a standard ωB97X functional, the results for
HOMO-IP agreement between the silver diatomics and silver complexes dif-
fers significantly. Comparing the diatomics, AgCl favours ω=0.45 while AgI
has no distinct point of agreement, though it is clear that optimal ω >1.0
and lies outside of our scale, with the closest functional ω=1.0. The monohy-
drated metal-aquo complexes exhibit similar behaviour for HOMO-IP agree-
ment, with ω=0.4 and ω >1.0 for H2O· · ·AgCl and H2O· · ·AgI respectively.
However, they fall into agreement for the H2S and H3N ligands respectively,
with ω=0.3 for both silver diatomics, in line with the default ω for the ωB97X
functional. This corresponds to the diatomics and metal-aquo complexes
having similar quantities of Ag and I contributing to the first ionisation po-
tential, while H2O and H3N ligands favour a first ionisation potential more
concentrated on the halogen, such that ω converges to a lower value.
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Figure 4.3.3: AgCl ωB97X change in atomisation and EFG for
a) silver and b) chlorine for ω=0.05-1. Optimal ω=0.45 is de-
noted in green, with CCSD(T) in cyan. Step-wise atomisation
energies for high-ω functionals is on account of rounding to the
maximum number of significant figures possible in this system.
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Figure 4.3.4: AgI ωB97X change in atomisation and EFG for a)
silver and b) chlorine for ω=0.05-1. Optimal ωis not contained
within the given range. CCSD(T) denoted in cyan. Experimen-
tal EFG is denoted by the dashed line. Step-wise atomisation
energies for high-ω functionals is on account of rounding to the
maximum number of significant figures possible in this system.

This is similar optimal-ω to those calculated for halogens for the halo-
genated aromatic complexes in the subsequent section. The overall trend
is that there is an initial rapid negative change in EFG for both Ag and the
halogens across all systems, which then slows beyond ω=0.3-0.4. This mir-
rors relative electronegativity increase, of the halogens relative to silver, as
mirrored by the respective atomic valence orbital potentials. This leads to
halogen EFG rapidly becoming less positive, and increased degeneracy of
the Ag 5s orbital with the Ag 5pz orbital through the σ-bond with the respec-
tive halogens, leading to increased negativity of the Ag EFG. After this initial
rapid increase, silver atomic valence orbital potential ceases to increase and
plateaus, while the halogen atomic valence orbital potential continues to in-
crease, but at a slower rate, such that the rate of charge transfer to the halo-
gen decreases. The plateauing of the Ag atomic valence orbital also prevents
further polarisation of the Ag 5s with Ag 5pz, such that any further increase



66
Chapter 4. Extending the Understanding of Density and Energetic Error for

Silver Complexes and Halogenated Aromatic Compounds

in EFG corresponds to a fall in 5px and 5py occupancy as more charge is
transferred via π-bonding to the halogen. This slowdown in charge transfer
results in a slowdown in EFG change on both the Ag and the halogens. When
the ligands are added, there are two competing effects which effect the Ag
5pz occupancy, the hybridisation that increases 5pz occupancy as ω increases
up to the previously-observed, and the increase in oxygen, sulfur and ni-
trogen electronegativity as ω increases relative to silver, which reduces the
charge transfer via the σsp-bond to the silver atom as ω increases. This leads
to peak increase in Ag EFG negativity with intermediate ω, while the halo-
gen EFG change with increased ω retains the ever-slowing negative change
in EFG with increased ω as seen for the isolated diatomics. When compared
with theoretical and experimental benchmarks, it is observed that best theo-
retical EFG alignment for silver is achieved at ω=0.55-0.6 while the halogens
favour ω=0.65-0.75 and ω=0.7-0.8 for chlorine and iodine respectively. Exper-
imental alignment for the halogens would favour ω=0.25-0.3 and ω=0.05-0.2
for chlorine and iodine respectively. Given CCSD(T)’s tendency to predict
more charge transfer to the halogens and favour a higher charge in Ag 5pz, it
is within what is expected that intermediate ω aligns better with Ag and high
ω with the halogens. The experimental halogen EFGs are very positive, sug-
gesting a smaller z-polarised halogen charge, such that less charge is drawn
from Ag, favouring the very low ω.

4.4 Halogenated Aromatic Compounds

This section focuses upon the relationship between the atomisation and the
electric field gradient of the halogens bromine and iodine when added to
aromatic compounds (figure 4.4.1). Those considered here are the bromi-
nated and iodinated versions of the following organic compounds: haloben-
zene, 2-halopyrimidine, 2-halopyridine, 3-halopyridine, 4-halopyridine, 2-
halothiophine, 3-halothiophene, halopyrazole and p-halotoluene. The broad
range of aromatic organic compounds yields ample opportunity to contrast
the EFGs of brominated and iodinated compounds, as well as variation caused
by the composition of the compounds themselves and structural isomers
thereof.
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(g) (h) (i)

Figure 4.4.1: Halogenated aromatic compounds used in this
investigation with halogen atom position denoted in red, the
position of bromine or iodine. Carbon (grey), hydrogen
(white), sulfur (yellow) and nitrogen (blue) are also show in
the diagrams of a) 2-halothiophene b) 3-halothiophene c) 2-
halopyrimidine and d) 2-halopyridine e) 3-halopyridine f) 4-
halopyridine g) p-halotoluene h) 4-halopyrazole i) haloben-

zene. Images from PubChem

Figure 4.4.2 shows the atomisation-EFG characteristic for both isomers of
halothiophene considered here, with the rest in B.2.1. Atomisations between
brominated and iodinated compounds are relatively comparable, with the
brominated compounds consistently displaying a slightly higher atomisa-
tion, reflecting that its bond with the aromatic compounds is slightly stronger,
unsurprising given that bromine is a more reactive, electronegative halo-
gen compared with iodine. Furthermore, there is variation in the atomisa-
tion of each compound. The halothiophenes possess the lowest atomisa-
tion, followed by halopyrazoles, 2-halopyrimidines, halopyridines, haloben-
zenes and p-halotoluenes. Indeed, it is quickly apparent that the structures
with more double bonds (in particular between carbons) are the most sta-
ble structures, such as the halobenzenes, p-halotoluenes and halopyridines,
and therefore they have the highest atomisations. The double bonds consist
of hybridised sp2 σ bond in the x-y plane, and a π bond between parallel
pz orbitals perpendicular to the x-y plane. The increased electronegativity
of nitrogen relative to sulfur provides stronger bonding for halopyridines
and halopyrazoles relative to halothiophenes. Within pyridine isomers, 2-
halopyridine proves to be the most stable, with the nitrogen closer to the
halogen, while thiophene is more stable with the sulfur further away from
the halogen. Overall, Jacob’s Ladder does not show any distinct relationship
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between rung and atomisation energy for the halogenated aromatic com-
pounds, in a similar manner to the transition metal complexes previously
explored.
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Figure 4.4.2: Atomisation-halogen EFG characteristic for a) 2-
bromothiophene b) 3-bromothiophene c) 2-iodothiophene and
d) 3-iodothiophene. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.

With regards to the electric field gradient, the field gradient of iodine is
consistently more positive than that of bromine on all tested compounds.
This is on account of its reduced electronegativity, such that more charge
transfer to the aromatic ring occur for the iodine, disproportionately through
the 5px orbital, such that the EFG through the x-direction increase signifi-
cantly, which is the direction that aligns most with the bond the halogen has
with the carbon that attaches it to the aromatic ring. Comparing the com-
pounds, all of them are positive, due to the valent px orbitals on the halogen
possessing less charge than py and pz orbitals. The most-positive EFG is 2-
halothiophene, followed by halopyrazole, 3-halothiophene, 2-halopyrimidine,
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3-halopyridine, 4-halopyridine, halobenzene, 2-halopyridine and p-halotoluene
is the least positive. From the Löwdin analysis, it is clear that the main driver
is the concentration of px on the halogen, the more that is retained with this
polarisation and not transferred to bonded atoms on the aromatic ring, the
lower the EFG. Other important drivers are the changes in the py and pz
concentrations relative to 4px. If these contributions increase relative to px,
then the EFG becomes more positive as the polarisation increases in the z-y
plane. In most cases, the pz, which undergoes π-bonding with the carbon 2pz
orbitals, in particular with the carbon directly bonded to the halogen, stays
relatively consistent regardless of the aromatic system considered. The con-
centration of py influences the x-direction EFG. A good example of the im-
portance of this effect is the EFGs of 3-halothiophenes and 3-halopyridines.
The concentration of halogen px actually falls relative to 3-halothiophene on
the 3-halopyridine, however, the 3-halothiophene has a higher concentration
of py localised on the halogen, increasing the polarisation in y relative to that
in x, such that the EFG be higher on the 3-halothiophene. Considering the
bonding in isomers, it is quickly apparent that the stability of the isomer
(with increased atomisation) increases the less positive the EFG becomes.
The halothiophenes become more stable as the number of bonds between
the sulfur and the halogen increases. The sulfur in 2-halothiophene pos-
sesses a larger bond length with the halogen than that the equivalent carbon
has in the 3-halothiophene, with the sulfur in 3-halothiophene also giving
up more charge in the sp2 bonds to the rest of the aromatic ring, and via the
delocalised nature of aromatic bonding, increases the amount of charge in
the carbon-carbon and halogen-carbon bonds overall, including a small in-
crease in the px concentration in the halogen itself.thus a slightly less positive
EFG. For the halopyridine isomers, a similar pattern between atomisation
and lower positive EFG is reported. In this case however, 2-halopyridine
is the most stable isomer, with the nitrogen closer to the halogen and in a
double bond with the carbon directly bonded to the halogen. Here the ni-
trogen bond with the halogen is shorter than the equivalent carbon bonds
reported in the 3- and 4-halopyridine isomers. The nitrogen reduces the in-
fluence of the proximal carbons to withdraw charge x-y polarised charge
from the halogen, as it is moved away, this influence is weakened. Indeed,
the small reduction in positivity of halogen EFG in 4-halopyridine relative to
3-halopyridine is actually due to a relative decrease in pz charge concentra-
tion to the conjugated π-bond on the ring, due to the increased symmetry in
the molecule.
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Having established the driving forces behind changes in electric field
gradient for the different halogenated aromatic compounds, attention now
turns to the relationship between Jacob’s Ladder and EFG. Indeed, it is note-
worthy that in virtually all cases, the theoretically-predicted CCSD(T) EFG
contains a larger positive core polarisation than all rungs of Jacob’s Lad-
der, while the valence contribution is more positive on the DFT methods
than the theoretical gold-standard. Furthermore, this trend continues as the
HF fraction decreases down the rungs of Jacob’s Ladder, with a reduction
in the core polarisation for pure-DFT orbitals, while valence polarisation in
the z-y plane increases. What is most interesting is that further study of
the valence density reveals that pure-DFT methods contain a higher occu-
pancy of valent px orbitals on the halogen, and lower quantities of pz and
py relative to higher-rung methods. By this measure alone, the halogen va-
lence polarisation should be lower than that of methods containing a higher
HF fraction, but in practice is not the case. Closer inspection of the orbital
contributions to the halogen EFG reveals that the individualised contribu-
tions to the EFG are larger than those for B2GP-PLYP, even where the oc-
cupation is identical. This signifies that for smaller occupancy disparities
between polarised orbitals, a larger EFG will result, as the field gradient
generated per unit polarised charge is greater than for higher-level rungs
of Jacob’s Ladder. By inspection of atomic first ionisation potentials, it is
clear that the halogens are predicted to be slightly more electronegative rel-
ative to carbon for lower rungs of Jacob’s Ladder, and sp2-hybridised car-
bon in the aromatic ring is known to have electronegativity comparable, if
slightly higher, to a generic non-hybridised carbon [184]. This explains why
less xy-polarised charge is lost to the aromatic ring from the halogen, with
the losses occuring more through the conjugated π-bond instead. The larger
electric field gradients on lower rungs Jacob’s Ladder are proportional to a
larger virial ratio than those of hybrid functionals - a higher potential rel-
ative to kinetic energy. This ensures that the molecular orbitals are more
concentrated closer to the nucleus, hence the larger EFG contributions per
unit polarised charge. The larger core polarisation on the higher-rung func-
tionals corresponds to a slightly higher angular momentum of polarised or-
bitals relative to lower-rung methods. This yields a larger relative increase in
polarisation between core orbitals aligned with the EFG and those perpen-
dicular thereto. The two counteracting drivers of halogen polarisation yield
interesting results less clear than the silver complexes for DFT performance
relative to theoretical and experimental benchmarks. For iodine, the valence
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polarisation effect dominates more than on bromine, such that GGA func-
tionals go from the least polarised functionals to the most, exhibiting large
positive EFGs. hGGA and dhGGA groups are more stable and exhibit con-
sistently less and more positive EFGs respectively, irrespective of the halo-
gen concerned. rshGGA tends to be largely in line with dhGGA, or slightly
more positive. Following experimental benchmarks, GGA tends to follow
the experimental EFG, with experimental iodine EFGs largely in line with
GGA, and to a lesser degree with dhGGA and rshGGA. For bromine, the ex-
perimental EFGs are usually less positive than those predicted theoretically,
with GGA and hGGA representing the closest theoretical methods. When
theoretical benchmarks are considered, it is observed that hGGA performs
best for iodine EFGs, while GGA and hGGA perform best for bromine EFGs,
though there are exceptions when dhGGA and rshGGA perform better, such
as 2-bromopyrimidine. These results contrast greatly with those of silver
complexes and indeed those observed in the CuCl complexes in the previ-
ous chapter, where dhGGA was the undisputed best-performing functional
group, and favour pure-DFT functionals or those with a smaller HF-fraction.
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Figure 4.4.3: ωB97X change in atomisation and EFG for a) 2-
bromothiophene b) 3-bromothiophene c) 2-iodothiophene and
d) 3-iodothiophene over range ω=0.05-1. Optimal ω=0.25 for all
halothiophene isomers and is denoted in green, with CCSD(T)

in cyan. Experimental EFG is denoted by the dashed line

Figure 4.4.3 demonstrates ωB97X tuning for halothiophene isomers, the
rest are shown in appendix section B.2.2. The ωB97X tuning study offers
further evidence for the importance of the role of the HF-fraction in halo-
genated aromatic compounds. Save 2-halopyrimidines, that favour ω=0.3,
the default ω-fraction of ωB97X, the vast majority of aromatic compounds
favour ω=0.25 for best HOMO-IP agreement, a slightly more gradual rate of
HF-fraction increase over inter-electron distance. For both halogens, increase
in ω initially leads to very small increase in EFG positivity, with the rate of
EFG increase with ω increasing just after the optimal-ω functional. When this
is broken down into EFG contributions, it is apparent that the predominant
driver of the EFG change is the valence density contribution. The valence
density positive EFG increase at high-ω is driven by the halogens’ becoming
less electronegative relative to the sp2-hybridised carbon, such that more x-
polarised charge be lost to the aromatic ring, with the concentration of charge



4.5. Discussion and Conclusions 73

increasing in the conjugated π-bond, increasing z-polarised charge, with the
overall effect of increasing the x-oriented positive EFG.

4.5 Discussion and Conclusions

Overall, this study has elucidated some key points of interest in regards to
the performance of DFT functionals relative to theoretical and experimental
benchmarks, and been further confirmed through the tuning of ωB97X func-
tionals, in particular with regard to the impact of HF fraction in all of these
systems. There is a key impact of increasing HF fraction consistently through
all these systems, namely an increase in the HOMO potential. This is seen
as HF fraction is increased as Jacob’s Ladder is ascended, and also observed
as the domain of high-fraction HF is increased in the tuning tests. This in-
creased HOMO potential is indicative of increased electronegativity of all
atoms studied, silver and the three halogens Cl, Br and I. This fits with the
improvements HF exchange makes in cancelling self-interaction error and
balancing the abrupt exponential dropoff of DFT exchange as inter-electronic
distance increases, increasing the potential in which the occupied electron
orbitals are held, including valence orbitals, thus increasing ionisation po-
tential, and in turn electronegativity. However, it is the relative difference in
electronegativities that is important for determining the polar covalent bond-
ing that dominates the different systems studied herein. Crucially, the elec-
tronegativities do not increase by the same amount as one rises through Ja-
cob’s Ladder. Silver’s electronegativity plateaus as HF-fraction is increased,
seen both in Jacob’s Ladder and in the Koopmans’ tuning investigation of
ωB97X, while electronegativity of halogens continues to increase, albeit at a
slower rate. This relative increase favours increased polarity in the bonds
with the halogens, with the halogen’s negative charge increasing. This is
offset by increased occupancy of Ag 5pz which aligns with the σ-bond with
the halogen at the expense of the Ag 5s orbital and the increased z-polarised
core polarisation, which leads to Ag following a similar EFG change to the
halogens despite charge loss. The core polarisation is a direct consequence
of valence-electron rearrangement, and relies on long-range exchange me-
diate its effect to core electrons. Increasing polarisation of valence charge
leads to increased repulsion of core charge in the line of valence polarisa-
tion, via Coulomb repulsion but also crucially via Fermi repulsion, which
concentrates z-polarised core charge closer to the nucleus relative to that po-
larised in the x-y plane. This increases the principal-axis polarisation and in
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turn the EFG in the line of the valence polarisation. However, the less the
HF-fraction in the exchange, the less polarisation can be mediated back to
the core electrons. Likewise these functionals have less z-polarised valence
charge, such that there is less charge to mediate core polarisation. This be-
haviour is largely comparable to the characteristics observed of copper in the
previous chapter and indicates the sensitivity of transition metal core polar-
isation to small perturbations in the valence density, and the favouring of a
larger HF-exchange fraction over a larger inter-electron separation domain
in the ωB97X tuning investigation for both transition metals relative to the
halogens to which they are bonded. The ω-parameter only falls in systems
where the HOMO becomes more localised on the halogen.

Likewise in the aromatic systems, higher HF-fraction leads to halogens
becoming less electronegative relative to sp2-hybridised carbon, so that more
charge is localised in the ring in the polar-covalent bonds formed with the
halogen, leading to halogen EFG increase. However, it is crucial not to over-
look all contributing factors to the EFG. Iodine EFG actually increases with-
out any HF-fraction, with the GGA functionals obtaining the largest pos-
itive EFGs. This is explained by a quick glance at the GGA virial ratio,
the high potential relative to kinetic energy yields higher EFG contributions
from polarised orbitals due to the slightly shorter radii of electrons from the
nucleus, such that in imbalance in polarised valence orbitals smaller than
that of dhGGA actually yields a larger net EFG. However, it is clear that
the functional groups with HF-fraction follow largely the same pattern be
they bromine or iodine. ωB97X tuning further confirms this pattern, with
increased HF-exchange over more of the inter-electron separation domain
favouring a more electronegative ring relative to the halogen.

It is noteworthy that in all systems studied herein, the CCSD(T) valence
EFG is often lower than the corresponding DFT functionals, but core po-
larisation is higher. This is especially prevalent for the silver EFGs in the
silver complexes, and halogens in the aromatic systems (halogen EFG is also
lower in the silver complexes, owing to their electronegativity in these sys-
tems being higher than silver for CCSD(T), leading to more principal-axis-
polarised charge on the halogen thereby reducing the overall x-y polarisa-
tion and making the EFG less positive). In these systems, the atoms are less
electronegative relative to those around them (though electronegativity in-
creases overall due to exact self-interaction cancellation for non-Kohn-Sham
orbitals) and therefore lose charge to the atom/ring with which they are
bonded, though compensating with more of the remaining valence charge
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occupying previously-unoccupied z-polarised orbitals in a similar manner
to high HF-fraction DFT functionals. However, the valence polarisation is
more able to polarise the core orbitals, due to pure HF exchange.

What is seen in the overall investigation throughout chapters 3 and 4 is
the direct impact of HF-exchange in the systems studied. Firstly, the impact
of HF-exchange in reducing the electron self-interaction error. The reported
link between electronegativity error and self-interaction error has been re-
ported in previous dipole and ionisation potential studies [29, 34, 185–187].
However, the extent to which this can correct self-interaction, while also los-
ing some of the more local DFT exchange, leads to disparities in electroneg-
ativity change between different atomic species. Halogens become more
electronegative relative to transition metals, but less relative to carbon or
oxygen. This accounts for the change in EFG of the halogens in both the
silver-complex and aromatic environments. The ability to polarise the core
electron density is contingent on the ability to execute non-local exchange,
hence the dramatic change in core polarisation on the silver atom, in paricu-
lar in the diatomics AgCl and AgI without the added ligands as HF-exchange
fraction increases. However, the disparities between the DFT and CCSD(T)
valence and core contributions are striking, particularin the silver EFG. Even
where there is alignment, it is often that the DFT functional has predicted a
higher valence polarisation relative to CCSD(T) to compensate for its lower
core polarisation. It is indicative of a flaw still inherant to DFT - it is lim-
ited in its ability to capture core polarisation by the amount of HF exchange
present. However, HF exchange is no silver bullet in DFT. Its effect to limit
self-interaction of Kohn-Sham orbitals cannot match the ab initio-derived or-
bitals of CCSD(T), limited further by the loss of local DFT exchange, and the
extent to which it is effective varies from atom to atom. Hence, relative to
experimental and CCSD(T) benchmarks, the functionals sometimes predict
a larger bond polarity than CCSD(T) predicts. The range-separated func-
tional group is designed to effectively capture the advantages of both DFT
and HF exchange, but from investigation of ωB97X tuning, it is clear that
the transition metals perform better at different ω relative to the halogens,
and that HOMO-IP agreement moves around depending on which atom the
HOMO is majoritarily concentrated for the silver complexes. Indeed, many
of the hGGA, rshGGA and dhGGA functionals are parameterised to per-
form well for properties dependent on valence properties - ionisation po-
tentials, electron affinity, atomisations. Hence, despite the disparities with
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the EFGs, there was no notable change in atomisation relative to theoreti-
cal benchmarks. This, however, fails to probe sufficiently the core density,
which as it is proven here, does have a role to play in capturing the EFG of
transition metals in particular.

This reflects the actuality of DFT research, some hybrid functionals here
are guilty of obtaining the right answer for the EFGs but for the wrong rea-
sons - predicting greater valence density polarisation which offsets errors
in core density. In order to yield further improvement in the future in par-
ticularly difficult systems such as transition metal complexes, it is perhaps
prudent to study further properties associated with the core to improve fu-
ture functionals, such as photon-induced ionisation from core electrons, or
photo-absorption spectra for transition metals. The utility of the EFG is that
it is an indicator of density rearrangement that can be compared to experi-
ment as well as theoretical benchmarks. Indeed, as shown by the iodine EFG
in the aromatic compounds, theoretical and experimental benchmarks are
not always in perfect agreement, and both have their sources of error. But
both provide essential indicators of DFT performance, with the additional
advantage of CCSD(T) of being able to probe the electron density further, to
see how well Kohn-Sham orbitals approximate those obtained via ab initio
method. The performance of dhGGA functionals for transition metal com-
plexes in both the previous chapter and this one stresses the utility of HF
exchange, while the performance of GGA and hGGA for halogens in aro-
matic compounds relative to the two benchmarks chosen suggests the need
to balance this with DFT exchange. It is with this in mind that the utility
of the rshGGA functionals - extracting the best of both exchange contribu-
tions - could be further explored, but as suggested here, more will be re-
quired than simple tuning to valence properties. The high computational
cost of CCSD(T), as outlaid in section 4.2, illustrates the need for accurate
DFT calculation. The EFG provides a useful mechanism to further study
DFT performance both theoretically and with regard to experimental reality,
and provide deeper understanding of the roles of HF and DFT exchange in
future such that more useful and resilient functionals can be developed in
future to the advancement of theoretical chemistry.
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Chapter 5

Analysis of Forcefield Methods to
Predict Solvent-Term Ultrafast
X-ray Scattering Relative to
Experimental Metrics

5.1 Introduction

X-ray scattering is one of the most common and versatile techniques used to
image molecular structure throughout physical science, utilised in all fields
from structural biology [72, 74–76] to solid-state physics [73]. Recently, the
development of X-ray free-electron lasers (XFELs) has allowed for the obser-
vation of chemical reaction dynamics and solvent-solute interaction on ultra-
fast time scales [72, 77–83], further expanding the utility of this technique in
physical science. Pump-probe techniques utilised in scattering experiments
lead to scattering signal change under hydrodynamic rearrangement [1,143].
In order to discern the change in solute structure under such conditions,
terms associated with the solvent and the solute-solvent interface must be
extracted from the total received signal. Solute-solvent terms are only possi-
ble to extract directly via theoretical calculation, and are dealt with in chap-
ter 6. Solvent terms have the option of extraction experimentally [84–87]
or through approximation theoretically from molecular dynamics (MD) tra-
jectories [86–91]. Theoretical prediction utilises radial distribution functions
(RDFs) from the MD trajectories and utilises the independent-atom-model
(IAM) to predict scattering profiles, whereby atomic scattering factors f(Q)

are used to predict scattering, without consideration of the influence of bond-
ing in the molecule [72, 143]. Recent studies indicate that the IAM is suf-
ficient, with bonding not significantly changing the predicted profiles [77].
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Theoretical IAM scattering change under hydrodynamic rearrangement is
directly attributable to the change in radial distribution ∆glm(Rjk) [143]. Re-
calling from chapter 2:

∆S(Q) =
∑
l

Nlfl(Q)2

+
∑
l,m

fl(Q)fm(Q)
Nl(Nm − δlm)

V
4π ×

∫ Rmax

0

R2
jk∆glm(Rjk)

sin(QRjk)

QRjk

R2
jkdRjk

(5.1.1)

Indeed, theoretical scattering has the potential to tailor solvent-term extrac-
tion to any solvent molecule for any form or hydrodynamic rearrangement
to mimic the change in conditions incurred by a pump-probe event. MD tra-
jectories can be configured to ultrafast time scales comparable to XFEL pulses
to obtain radial distribution functions reflecting femtosecond time scales.
However, there has been little investigation into the significance of force-
field selection in determining the solvent scattering or evaluation of over-
all accuracy. Herein, two force fields utilising different methods of param-
eterisation are utilised and evaluated relative to experimentally-extracted
solvent terms and to each other. OPLS-AA (Optimised Potential for Liq-
uid Simulations-All Atom) is a popular force-field used throughout com-
putational chemistry. It is parameterised to ensure agreement with exper-
imental data of liquid properties, such as heat of vapourisation and den-
sity [146, 148] and compares well with other force fields [188]. Recently,
the Cole group has developed QUBE, derived from QUBEKit (Quantum Be-
spoke Kit) software, utilises theory to determine bonded and non-bonded
parameters [4, 5] via DFT calculation, thereby having more transferability
and versatility than experimentally-derived force fields, which often strug-
gle outside the experimental data for which they were designed [5]. QUBE is
designed to use ωB97X-D [25] functionals, part of the rshGGA group which
proved the most versatile functional group across all systems studied in min-
imising self-interaction error through use of large fractions of Hartree-Fock
exchange, particularly in long-range Fermi repulsion. This places it ideally to
provide high-quality electron densities from which to derive bonded param-
eters and partial charges. Here both are evaluated as candidate force fields
to determine the scattering change of common solvents per unit temperature
and pressure change, relative to experimental benchmarks for pump-probe
events [1], whereby areas of divergence between force fields are related to
their parameterisations.
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5.2 Theory and Computational Details

Molecular dynamics simulations were used to calculate radial distribution
functions for common organic solvents: acetonitrile (MeCN), chloroform
(CHCl3), dichloromethane (DCM) and ethanol (EtOH). The simulations
utilised OpenMM software [189] with femtosecond time intervals. Data was
reported every 500fs and the total trajectory was 20ns. The first 100ps was ex-
cluded to ensure equilibrium box conditions. The solvent scattering term is
designed to mimic the change in conditions caused by a pump-probe event,
i.e.:

∆S(Q) = Son(Q)− Soff (Q) (5.2.1)

Whereby two simulations are carried out, one corresponding to an
unpumped/ground sample (Soff ), taking as room temperature under stan-
dard atmospheric pressure (298.15K, 1.0bar) and another to represent change
incurred by a pump event. Son is simulated through the second box, with a
perturbation in hydrodynamic conditions. Scattering change per unit tem-
perature is calculated using simulations 1K and 5K above the unpumped
sample to recreate initial temperature increase from the sample to the sol-
vent. Pressure changes (0.05bar and 0.20bar) were used to recreate subse-
quent density rearrangement. Total scattering from a pump-probe event is a
summation of these two rearrangments [1]:

∆S(Q) = ∆T
∂S(Q)

∂T
+ ∆ρ

∂S(Q)

∂ρ
(5.2.2)

∆glm between the two simulations allows for calculation of scattering change.
It is important to note that experimental hydrodynamic rearrangement is a
non-equilibrium effect. ∆S(q) is ascertained from the time-averaged ∆glm

via in-house scattering software.
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(a) (b)

(c) (d)

Figure 5.2.1: Solvents used in this investigation for a) acetoni-
trile b) chloroform c) dichloromethane and d) ethanol

5.3 Results

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

Q
∆

 S
/a

.u
.

Q/Å−1

(a)

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7

Q
∆

 S
/a

.u
.

Q/Å−1

(b)

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7

Q
∆

 S
/a

.u
.

Q/Å−1

(c)

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7

Q
∆

 S
/a

.u
.

Q/Å−1

(d)

Figure 5.3.1: ∂S
∂T per solvent molecule characteristic calculated

from 1K solvent differences from OPLS-AA (blue) and QUBE
(red), compared with experimental calculations (black) [1] for
a) acetonitrile b) chloroform c) dichloromethane and d) ethanol
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Figure 5.3.1 illustrates the difference between the temperature-dependent
solvent scattering characteristic derived theoretically and compared with ex-
periment. Density-dependent solvent scattering was also investigated but
density change from pressure increase was too low and therefore predicted
incorrect results (see figure C.1.2 as an example for MeCN) so has been dis-
counted from this investigation pending future work. Figure 5.3.2 also shows
near concordant results derived from 5K results, with the scalability of the 1K
and 5K illustrated for both theoretical methods, the example of acetonitrile
is shown therein, with similar results for the other solvents (figures C.2.1-
C.2.3). The majority of the scattering change per unit temperature occurs in
the low-Q region. Indeed, MeCN and EtOH report virtually no change for
Q > 3. CHCl3 and DCM have less drop-off in the high-Q region, though
the profiles are still dominated by change in lower scattering magnitudes.
Scattering per molecule is also higher for these solvents, with peaks around
4x those of MeCN and EtOH. This is accounted for by the presence of Cl
atoms with high scattering amplitude (relative to the other atoms contain
within the solvents). The dominance of the Cl atoms is further shown by the
near-concordance of the scattering magnitudes for which peaks are observed
between these solvents. There is strong agreement between OPLS-AA and
QUBE (particularly for MeCN) with concordance between scattering peaks
increasing with Q. However there remains small differences in S(Q) for Q
< 2, particularly in DCM and CHCl3, affecting the relative amounts of scat-
tering and scattering magnitudes for which they occur between the QUBE
and OPLS-AA profiles. The increase of low scattering magnitudes at the ex-
pense of higher magnitudes and relative agreement of ∂S

∂T
regardless of tem-

perature change attests to increase in equilibrium distance between solvent
molecules driven by solvent heating. Change in scattering peak heights are
associated with changes in the magnitude of g(r) for dominant atom combi-
nations, while shifts in Q at which they occur are driven by change in r at
which the RDF peaks (i.e. change in the equilibrium . Differences between
QUBE and OPLS-AA solvents are therefore associated with the non-bonded
parameters that govern intermolecular interactions. Interestingly, there is
some theoretical-experimental agreement for Q but not the scattered inten-
sity, with theoretical scattering change around 5x that found experimentally.
This appears to suggest that changes in the ordering of real solvents are less
dramatic than theoretical prediction. Indeed the theoretical solvents repre-
sent ideal conditions at equilibrium temperatures, while solvent heating in
experiment is a non-equilibrium event [72, 84–87], with heating localised on
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the solute and transferring to the solvent over time.
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Figure 5.3.2: ∂S
∂T per solvent molecule characteristic of acetoni-

trile calculated from 1K (red) and 5K (green) solvent differences
for a) QUBE and b) OPLS-AA, compared with experimental

calculations (black) [1]

However, it is visible in figures C.2.1-C.2.3 that as the temperature change
upon which the scattering change is based reduces down from 5K to 1K,
there is some increased fluctuation in the scattering relative to experiment,
and indeed between the force fields. This is particularly observable in the
case of chlorinated solvents. Within this low temperature change, natural
fluctuation in the distribution in the solution comprises a larger part of the
radial distribution function, which is then carried forward when via Fourier
transform when one converts from the RDFs into scattering magnitudes as a
function of the deflected wave vector, leading to a less smooth profile. How-
ever, the aformentioned overall success in linear scaling in figure 5.3.2 rep-
resents a strongly desired quality if one is to generalise the findings of the
force fields to predict scattering change on account of a heating event caused
by the X-ray pulse in scattering events.
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Having identified the sources of deviation from the experimental results,
attention now turns towards the source of deviation between the scatter-
ing profiles of the OPLS-AA and QUBE methods. The independent-atom
model (IAM) has been assumed throughout this investigation, so the con-
tributing factors to the scattering change observed are the atomic scattering
factors for the various constituent atom species themselves and the degree of
difference between the radial distribution functions predicted by OPLS-AA
and QUBE for pairwise combinations of atomic species. Across the solvents
studied herein, atomic scattering factor plays a crucial role in amplifying
smaller OPLS-AA-QUBE RDF differences between larger scatterers in the
scattering profile, underscored in particular by the dominance of the chlo-
rine scattering amplitudes in figure 5.3.1 for DCM and CHCl3. The con-
tributions of the combinations of atomic species with the largest scattering
factors is demonstrated in figure 5.3.3 (5K differences are in C.3). Key exam-
ples are the chlorine-containing solvents, chloroform and dichloromethane.
The differences between OPLS-AA and QUBE Cl-Cl RDFs are amongst the
smallest in both solvents, with the Cl-Cl radial distribution function yield-
ing the smallest difference of all atomic species combinations. Indeed, figure
5.3.3 shows this difference to be smaller than those of the dominant com-
binations in EtOH (O-O). However, the Cl-Cl combination has a combined
scattering factor that amplifies its influence in the scattering signal. Small
changes in chlorine-containing RDFs lead to strong localised changes in the
scattering profile when converted into wave vector space. Indeed, the dom-
inant atomic species combinations responsible for the difference in the chlo-
roform and dichloromethane scattering profiles are Cl-Cl and C-Cl, with a
much smaller contribution from C-C (despite its having a similar RDF dif-
ference). Similarly, the dominant atomic combinations in acetonitrile contain
the atom with the largest scattering factor, nitrogen and oxygen respectively..
Indeed, ethanol’s O-O combination also corresponds to the largest RDF dif-
ference between the two force fields, ensuring its precedence in influencing
the scattering profile. The N-N term is also dominant in acetonitrile, though
C-N and C-C also make significant contributions. Overall, the larger the scat-
tering factor of the atom, the more significant any divergence between force
fields or between the force-field predictions and experiment will be in all of
the systems considered here. To the reverse, large differences in hydrogen-
containing distributions are effectively masked, due to the low contribution
of the hydrogen atoms to the scattering profile.
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Figure 5.3.3: ∆g(r) contributions of dominant scattering atom
combinations calculated from 1K solvent differences from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (N-N) b) chlo-
roform (Cl-Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-
O). Constituent atoms are labelled by colour, including carbon
(grey), hydrogen (white), nitrogen (blue), chlorine (green) and

oxygen (red). Image from PubChem
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Figure 5.3.4: g(r) contributions of dominant scattering atom
combinations at ground temperature (298.15K) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-

Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O)

The source of the OPLS-AA-QUBE RDF divergences are sourced pre-
dominantly from the non-bonded parameters due to the crucial role of in-
termolecular interaction change in the solvents at different temperatures.
The non-bonded term is composed of the partial charge and the Lennard-
Jones (LJ) parameters, representing permanent and instantaneously induced
dipoles respectively. Given that LJ parameters are often derived from free
atom LJ data scaled to the partial charge via the Tkatchenko-Scheffler (TS)
method [153], the partial charge difference is primarily responsible for the
non-bonded parameter difference. This difference arises as a result of the dif-
ferent methodologies utilised by OPLS-AA and QUBE to determine partial
charge, with OPLS-AA basing partial charges on agreement with experimen-
tal values for free energy of hydration and QUBE utilising atom-in-molecule
(AIM) partitioning. Furthermore, the chloroform and dichloromethane sol-
vents have virtual sites to account for local electron charge asymmetries in
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QUBE, but not in OPLS-AA. These differences change the level of inter-
molecular repulsion and attraction via dipole-dipole interaction, which in
turn change the reported inter-molecular distances. This contributes into all
RDFs once beyond the bonded radius. A clear example of this is ethanol
- the larger QUBE partial charges indicate larger dipoles, and therefore a
smaller intermolecular distance, due to dipole-dipole attraction. It also re-
duces the effect of external potentials i.e. temperature increase. Hence the
RDF change is greatest for OPLS-AA with a larger accompanying shift in r,
which leads to a larger reported increase in temperature-dependent increase
in low-Q scattering intensity. Figure 5.3.4 illustrates the ground radial dis-
tribution functions of all four solvents, which facilitates understanding of
the temperature-dependent perturbations in figure 5.3.3 (299.15 and 303.15K
radial distribution are provided in figures C.3.1 and C.3.2 respectively). It
illustrates the differences in equilibrium distances given by the different pa-
rameterisation methods, particularly for the O-O separation in the EtOH.
The Cl-Cl RDFs show the presence of Cls on the solvent molecule, which
cause the initial high gdrs at 2.9-3.0Å. Here differences arise due to the re-
spective bond angles and force constants of Cl-C-Cl angles, and the C-Cl
bond lengths that determine the resultant separation. Small changes in equi-
librium conditions due to interaction with the solvent or minority contribu-
tions in this range from surrounding chlorine atoms at close range will have
the effect of increasing broadening. The small range over which this occurs
also leaves it especially sensitive to the RDF integrator step. Beyond 3.2Å the
Cl-Cl distributions are governed exclusively by the non-bonded interaction.

5.4 Discussion and Conclusions

This investigation has provided a good overview on the performance of force
fields and MD simulation as an alternative to experimental extraction of the
solvent scattering, and accounted for difference in scattering prediction be-
tween the force fields as a result of RDF differences, arising from differences
within the parameterisations of QUBE and OPLS-AA. Furthermore, it has es-
tablished the relative importance of accurate RDFs, with the sensitivity of the
profiles to small perturbations in RDFs containing large scatterers very high,
while low scatterers’ perturbations are effectively masked from the scatter-
ing profile.

From the analysed profiles, the force field profiles are indeed more sim-
ilar to each other than to experiment, however, it is clear that particularly
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in the ranges where most scattering change is observed (Q < 3Å) that there
is a difference in the OPLS-AA and QUBE profiles. The scattering change
is driven solely by differences in their radial distributions [143], and can
therefore be related to the temperature-dependent increase in intermolecu-
lar distance. Though the significance of the difference is also proportional
to the magnitude of the atomic scattering factors pertaining to the radial
distribution function in question [72, 143]. This leads to the important re-
alisation that the significance of the differences in RDF between OPLS-AA
and QUBE are proportional to the magnitude of the scattering of the con-
stituent atoms. Thus very small differences in chlorine-containing RDFs are
highly significant in shaping the scattering profile, while large differences in
hydrogen-containing RDFs are invisible when the scattering profile is gen-
erated. The accuracy of the scattering profile is therefore more important as
more electron-rich larger atoms with large scattering profiles are included
as the size of the solvent scattered intensity increases relative to observed
solute(s). Therefore RDF accuracy becomes increasingly important to pre-
diction of accurate solvent terms as the atomic scattering factor of its con-
stituent atoms increases. The difference with experiment require further in-
vestigation. It is unclear whether the differences arise from the limitations
of MD trajectories to recreate an event which is in essence non-equilibrium
and therefore time dependent, whereby the local atomic ordering suggested
by theory would be less pronounced, or whether this results from force-field
limitations, which would lead to cumulative error in the resultant trajectories
and and radial distributions obtained therefrom.

The differences in the RDFs for combinations of these most significant
scattering species are sourced predominantly from differences in non-bonded
parameters. The non-bonded parameters determine the intermolecular po-
tentials, which in turn govern the equilibrium average distributions and in-
termolecular distances. These potentials also determine the influence of ex-
ternal potentials (temperature increase as a result of an external heat bath)
in changing the radial distributions and their respective equilibrium dis-
tances. This is significant in driving the difference in scattering, particularly
at smaller Q. As outlined in the results section, determining accurate in-
termolecular interaction is contingent on accurate determination of the par-
tial charge, which differs between our candidate force fields. From the pre-
vious two chapters, the partial charge is directly connected with the rela-
tive electronegativities between atomic species, which differs between den-
sity functionals due to different rates of self-interaction error cancellation
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[29, 34, 185–187]. Given QUBE’s use of rshGGA, its accuracy is fully depen-
dent on reduction of DFT error in predicting electron density as a result of
HF exchange, particularly for long-range exchange. In essence it represents
the most accurate theory possible within realistic time frames for theoreti-
cal research, as ab initio parameterisation would highly restrict its versatility
and utility, particularly when parameterising larger molecules/complexes
(see chapters 4 and 7 for limitations of ab initio theory in aromatic compound
QM calculations and QUBE’s parameterisation of transition metal complexes
respectively). QUBE utilises the partition of charge throughout molecules to
adjust the Lennard-Jones parameters, such that all non-bonded parameters
depend on accurate electron density distribution. Its strong performance
against a popular force field with charge distribution determined through
free-energies of hydration of high chemical accuracy [190] vindicates the va-
lidity of theoretical parameterisation methods, and indicates future potential
as theory improves.

This investigation provides a clear pathway forwards in developing force-
field methods to better approximate theoretical X-ray scattering. Force-field
differences indicate the importance of accurate force-field parameters, in par-
ticular non-bonded parameters, when simulating hydrodynamic rearrange-
ment as a result of pump-probe events. The non-bonded parameters are all
derived from the partial charge, and therefore depend on accurate descrip-
tion of molecular dipole moments. QUBE outlines the possibility of being
able to parameterise any molecule without dependency on existent experi-
mental free hydration data. For this method to maximise its parameter ac-
curacy, it is important that the DFT calculations upon which it is based yield
greater chemical accuracy than those possible through free energy of hydra-
tion data, and that this translates into accurate RDFs in molecular dynamical
trajectories. The differences between experimental scattering and theory still
remain, and there needs to be further investigation of the origins of such lim-
itations such that theoretical extraction of solvent data continue to improve.



89

Chapter 6

Analysis of Forcefield Methods to
Predict Solute-Solvent Ultrafast
X-ray Scattering

6.1 Introduction

In chapter 5, the significance of force-field choice was established and eval-
uated with respect to experimental benchmarks. It also established that the
scattering difference between OPLS-AA and QUBE could be attributed to
differences in the radial distribution functions of combinations of elements
with large atomic scattering factors. RDF differences arise due to differ-
ences in the non-bonded parameters of the solvents, particularly the par-
tial charge. The partial charge alters the molecules’ dipoles, and therefore
the intermolecular potentials, changing the equilibrium intermolecular dis-
tances and thus the effect of solvent heating. This effect is less pronounced
in solvents containing atoms with smaller scattering amplitudes, particu-
larly MeCN, where there was virtually no difference between the scattering
predicted by QUBE and OPLS-AA radial distributions. Theoretical scatter-
ing profiles’ distinct advantage is in predicting solute-solvent interface, or
"cross" scattering terms, that result from the interaction of the solute and sol-
vent, something which cannot be done experimentally without convolution
with either the solvent or solute term [1, 72, 92, 93]. Having now established
that differences in parameterisation lead to divergences in scattering profile,
it is now paramount to ascertain to what degree the cross-term is affected
and the significance of this effect on ascertaining solute structure. This is
particularly important given the role of non-bonded terms in driving diver-
gence in the previous chapter, which determine the interaction between the
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solute and the solvent. Any resultant change in the radial distribution func-
tion leads to in the resultant scattering [143].

In this investigation, the same solvents as those in chapter 5 are used,
with solvated molecular iodine (I2) as the candidate solute, which has re-
ceived considerable experimental investigation via x-ray scattering meth-
ods [79, 191, 192]. Indeed, experimental observation of chemical dynamics
of I2, in particular recombination from photodissociated I atoms, is noted
as challenging due to the solute-solvent scattering, which changes with hy-
drodynamic rearrangement during pump-probe events [79, 192]. The solute
dependence of the bond length of molecular iodine in polar solvents has re-
ceived considerable investigation [193–197], characterised as undergoing a
solvatochromatic shift [198,199]. Kim et al recently studied molecular iodine
solvatochromism in MeOH and via QM calculation elucidated the influence
of the solvent in polarising the molecular iodine, leading to partial occupa-
tion of antibonding σ molecular orbitals and a resultant increase in I-I bond
length [192]. The solute-solvent interaction of molecular iodine places it ide-
ally for cross-term study of the force-field dependence of cross-terms, with
the cross-scattering and iodine bond length serving as indicators of the inter-
action of the iodine with the solvent shell. Herein, cross terms are theoreti-
cally calculated using OPLS-AA and QUBE, with differences in performance
related to change in radial distribution terms between solute and solvent
atom species. These differences are evaluated with respect to non-bonded
force-field parameter differences, and compared with the performance for
solvent terms in chapter 5. The significance of the solvent and cross con-
tributions can then be evaluated for their significance relative to the solute
term.

6.2 Theory and Computational Details

This investigation follows the same method as that in section 5.2. The radial
distribution terms are restricted to only those containing solute-solvent com-
binations in order to calculate scattering, with the according alteration made
to the in-house scattering software to calculate cross-terms only. The density-
dependent scattering problems in chapter 5 oblige that this study be also re-
stricted to temperature-dependent scattering effects to facilitate direct com-
parison. I2 required a bespoke parameterisation, DFT (B3LYP [21, 39]) was
used to calculate bond length and force constants, Lennard-Jones parame-
ters follow those used by OPLS-AA. It is used for both OPLS-AA and QUBE
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solvents. Thus, differences between cross-terms could be directly linked to
the solvent parameters. Solvents are those from chapter 5, and represent a
scale of polarities. DCM is least polar, followed by CHCl3, EtOH and MeCN,
the latter is considered a highly-polar solvent.

6.3 Results
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Figure 6.3.1: ∂S
∂T per solvent molecule characteristic of the

I2 solute calculated from 1K solution differences from OPLS-
AA (blue) and QUBE (red) for a) acetonitrile b) chloroform c)

dichloromethane and d) ethanol

Figure 6.3.1 illustrates the change in temperature-dependent solute-solvent
scattering between the solvated I2 molecule and the solvents considered herein
(for 5K differences see D.1). It is noted that the resultant scattered inten-
sity is considerably smaller than that of the solvent scattering, around 25x
smaller than the solvent-term scattering for all four solvents. This is un-
surprising, as this contribution is resultant from only the solute-solvent in-
terface. The scattering change occurs predominantly for Q < 3, reflecting
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that this change is predominantly driven by the intermolecular interaction
between solute and solvent. Again, there is increased cross-scattering with
the solvents containing Cl atoms, CHCl3 and DCM, illustrating that atoms
with large scattering factors report larger cross terms. The notable differ-
ence is in ethanol, with comparable scattering change to that of the chlorine-
containing solvents. This is suggestive of a larger change in RDF relative
to the larger scatterers. However, the reduction in scattered intensity of all
solvents relative to solvent terms does leave the scattering profiles vulner-
able to small changes in the radial distribution functions. There is poorer
agreement for scaling of the scattering change per unit temperature between
1K and 5K temperature differences, as illustrated for MeCN in figure 6.3.2
(other solvents shown in D.2), with 1K differences accounting for larger re-
ported change per molecule when adjusted for comparison. Importantly, it
is observed that within these graphics there is noted divergence between the
OPLS-AA- and QUBE-predicted scattering profiles. Given that there are no
direct means of experimental cross-term extraction, difference between force
fields is therefore significant and requires explanation in order to ascertain
the utility of the predicted profiles.
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Figure 6.3.2: ∂S
∂T per solvent molecule characteristic for the

cross-term contribution of acetonitrile calculated from 1K (red)
and 5K (green) solvent differences for a) QUBE and b) OPLS-

AA

As identified in the previous solvent-term investigation and above, the
application of the independent-atom model in this investigation allows for
the identification of the most significant atomic species combinations, such
that the significance of RDF divergences between force-field methods can be
identified. The solute I2 possesses a high atomic scattering factor, and there-
fore the most significant contributing RDFs to the cross scattering profile will
be those that also possess large scattering profiles. In particular I-Cl combi-
nations in chloroform and dichloromethane, and I-N and I-O combinations
in acetronitrile and ethanol respectively. Cross-factors with small scattering
atoms such as hydrogen are so low that they are in effect masked from the
cross-scattering profiles, regardless of the size of the contributing RDF. Fig-
ure 6.3.3 illustrates these RDF changes. The I-Cl RDF changes are smaller
than MeCN, but their larger scattering factors amplify this difference in fig-
ure 6.3.1. The larger difference in EtOH is noted, with a region (between
3-4Å) of significant divergence. The other RDFs are characteristic of small
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overall increases in distance from the solute with temperature increase, with
different initial solvent shell distances from the solute due to the differences
of OPLS-AA and QUBE non-bonded parameters reported in chapter 5 and
seen visually in the ground-temperature radial distribution functions of the
same dominant atom contributions in figure 6.3.4 (for radial distributions
1K and 5K above ground temperature, see figures D.3.2 and D.3.3). Here
there are large differences between I-O distributions derived from the respec-
tive methods, with OPLS-AA reporting a larger initial g(r) increase relative
to QUBE, before entering closer agreement just around 4.9Å. It is therefore
readily seen that the non-bonded parameters differences in partial charge
interacting with the Lennard-Jones forces of the I2 will be most significant
in divergences between the profiles of the two force fields. In the case of
EtOH, a possible explanation is that the dipole-dipole attractions between
solvent molecules are stronger in the QUBE-parameterised EtOH, such that
there be less interaction with the solute than for OPLS-AA-parameterised
EtOH, while both methods predicting a larger solute-solvent intermolecu-
lar distance than the other systems studied herein. Temperature increase
appears to more interaction with the solute, increasing probability of inter-
action with its L-J potential, which may be a potential explanation for the
reporting of increased scattering in figure 6.3.1 for 1Å−1 <Q<2Å−1 at the ex-
pense of scattering aroundQ=0.5Å−1, which would be associated with larger
solute-solvent separation. This effect is offset overall for 5K as the tempera-
ture increase causes intermolecular separation to increase again. However,
more research is required of EtOH to ascertain whether this accounts for its
scattering change.
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Figure 6.3.3: ∆g(r) contributions of dominant scattering atom
combinations calculated from 1K solvent differences from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (I-N) b) chlo-

roform (I-Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O)



96
Chapter 6. Analysis of Forcefield Methods to Predict Solute-Solvent

Ultrafast X-ray Scattering

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(d)

Figure 6.3.4: g(r) contributions of dominant scattering atom
combinations at ground temperature (298.15K) from OPLS-AA
(blue) and QUBE (red), a) acetonitrile (N-N) b) chloroform (Cl-

Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O)

Having established the most significant RDFs and localised the solvent
non-bonded parameters as the main driver of that difference, it is observed
that a key difference between I-Cl RDFs for chloroform and dichloromethane
is the inclusion of virtual sites in the QUBE parameterisation of the solvent,
along with increased negative partial charge localised upon the Cl overall
relative its OPLS-AA homologue. The virtual sites are included in order to
better reflect the distribution of charge around an atom, a characteristic lost
when the partial charge across an atom is reduced to a point charge. The in-
creased overall negative charge on the chlorine is reflective of increased elec-
tronegativity of the chlorine atoms within the bonds. This is reflective of the
underlying methodology. OPLS-AA utilises scaled 1.14*CM1 charges within
this investigation [190, 200, 201], which scale Mulliken charges calculated
from semi-empirical AM1 quantum-mechanical calculations such that the-
oretical and experimental free energies of hydration align [202–205]. Other
methods of charge derivation are possible, such as Localised Bond-Charge
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Corrected (LBCC) CM1A and 1.20*CM5 [206], the latter being an example of
advanced restrained electrostatic potential charges (RESP2). QUBE forms an
example of the RESP2 approach, and utilises atoms-in-molecule (AIM) par-
titioning [4, 5] to map partial charges on to theoretical charge distributions
from DFT, with virtual sites used to simulate more accurate charge distri-
butions where necessary. QUBE’s increased electronegativity of halogens
aligns well with the results of the previous chapters within this work that
measured EFG performance with regard to Jacob’s Ladder, and concluded
that higher rungs with increased HF exchange fractions led to increased rel-
ative electronegativities of halogens through cancellation of self-interaction,
with QUBE’s parameters themselves ascertained from ωB97X-D calculations.
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Figure 6.3.5: ∂S
∂T per solvent molecule characteristic calculated

from 1K solution differences from OPLS-AA (blue) and QUBE
(red)for a) acetonitrile b) chloroform c) dichloromethane and d)

ethanol
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Figure 6.3.6: ∂S
∂T per solvent molecule characteristic for the

solute-term contribution of molecular iodine solvated in ace-
tonitrile calculated from 1K (red) and 5K (green) solvent differ-

ences for a) QUBE and b) OPLS-AA

Figures 6.3.5 and 6.3.6 allow for assessment of the significance of the
cross-terms, and evaluate the impact of solute-solvent interaction on the
temperature-dependent scattering change of I2, given its solvatochromism
(5K differences shown in D.4, scaling for other solvents in D.5). It is illus-
trated that the temperature-dependent solute scattering change is reported
on scales comparable to that of cross scattering. The cross-scattering could
therefore distort significantly the solute data if not correctly extracted. This
is important as the cross-term extraction is fully dependent on the accuracy
of the theoretical methods with no experimental alternative. This illustrates
the importance of accurate theoretical prediction of the solute-solvent in-
teraction. The figures show in addition that the choice of force field does
influence the solute scattering term. Given that the I2 parameters are the
same regardless of the parameterisation of the solvent, this is directly related
to the solvent environment with which the molecular iodine interacts. Fig-
ures 6.3.7 and 6.3.8 directly relate this to the change in radial distribution
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iodine atoms, and compare it with the ground-state iodine-atom separation
in solvent respectively (all other solute RDFs section D.6). In this context
the change in radial distribution represents a small broadening or contrac-
tion of the I-I bond length. The tendency observed for MeCN and CHCl3
is a small decrease in the iodine bond length, while the reverse occurs in
EtOH. DCM illustrates a dependency on solvent parameters - QUBE pre-
dicts a small decrease in average I-I bond length, while OPLS-AA predicts
a more general broadening, with increase in both shorter and longer bond
lengths. Though these changes are small in the context of perturbation from
the ground temperature distributions of the I-I bond length, but become sig-
nificant due to amplification by the strength of the iodine form factors. The
EtOH I-I bond length increase is of particular interest as it suggests a small
increase in bond weakening as temperature increases, reflecting the bond
weakening observed for MeOH in Kim’s paper [192]. However, this broad-
ening is not reflected in the ground state or for the other significant polar
solvent herein, MeCN. The limitation of the fixed force-field parameters is
that they cannot fully reflect the dynamical nature of the solute-solvent in-
teraction and the induction of the partial charge in anti-bonding σ orbitals in-
duced in molecular iodine by polar solvents. The non-polar solvents suggest
an overall contraction in I-I bondlength relative to the ground temperature.
This suggests less solute-solvent interaction as distance increases - reflecting
the changes in solute-solvent observed in figures 6.3.1 and 6.3.3 - such that
external potentials affect less the molecular iodine bond length. However
this also needs further elucidation.



100
Chapter 6. Analysis of Forcefield Methods to Predict Solute-Solvent

Ultrafast X-ray Scattering

−60

−40

−20

 0

 20

 40

 60

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(a)

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(b)

−30

−20

−10

 0

 10

 20

 30

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(c)

−10

−5

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7

 g
(r

)/
a.

u.

r/Å

(d)

Figure 6.3.7: ∆g(r) contributions of the I-I solute atoms cal-
culated from 1K solvent differences from OPLS-AA (blue) and
QUBE (red), a) acetonitrile b) chloroform c) dichloromethane

and d) ethanol
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Figure 6.3.8: g(r) contributions of the I-I solute atoms at ground
temperature (298.15K) from OPLS-AA (blue) and QUBE (red),
a) acetonitrile b) chloroform c) dichloromethane and d) ethanol

6.4 Discussion and Conclusions

The solute-solvent scattering intensity is considerably smaller than that de-
rived from solvent RDFs, and therefore are reflective of small changes in
radial distribution function. Given the large scattering amplitude of the so-
lute, and of some solvent atom species (particularly Cl), small RDF variation
between large scatterers can have profound impact on the obtained solute-
solvent profile. Again the impact of atoms with low-amplitude scatterers
(i.e. hydrogen) are effectively masked throughout all the systems consid-
ered. The importance of accurate RDFs for larger scatterers, along with the
sensitivity of the cross scattering to small changes, reinforces the conclusion
from the previous chapter. Indeed, the relative size of the cross term and the
lack of experimental reference compared with the ready comparisons pos-
sible for solvent terms [1, 72, 92, 93] signifies the importance of minimising
all sources of error in the force-field parameterisations. It is observed that
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there are disparities in the scattering profiles of OPLS-AA and QUBE ob-
served in all of the solutions considered herein. This indicates that the force-
field choice is significant when scattering change is calculated, and is directly
linked to the change in radial distribution functions predicted by the chosen
force fields [72, 143]. Without an experimental alternative for cross-term ex-
traction, the established force-field dependence of of the resultant profiles
is even more significant than for solvent-term extraction. Here the profile
difference is driven by RDF divergence incurred for atom species combina-
tions with large scattering factors. These RDF differences are attributable to
the non-bonded characteristic of the solvent atoms, which alters the inter-
action with the solute. The analysis of the solute term illustrates that the
temperature-dependent change in solute and solute-solvent scattering have
similar intensities. This significance means that the observed force-field de-
pendence of the scattering has the ability to distort observed solute changes
if not extracted accurately, placing increased importance on cross-term accu-
racy. It is also illustrated that the solute-solvent interaction has the ability to
change solute terms, and that there is a force-field dependence to these terms
also. This ties not only the cross-term extraction to the solvent non-bonded
parameters, but also that of the solute itself, irrespective of the method used
for the solute parameterisation. This is particularly visible in the case of sol-
vatochromatic solutes such as I2, wherein polar solvents can influence equi-
librium bond length. Albeit the classical force field methods herein are not
able to demonstrate the polarisation effect created by the solvents within sol-
vatochromatic solvents which drives this influence.

Overall, chapters 5 and 6 illustrate that force-field choice matters in de-
termining solvent and cross-scattering terms, and provides a clear direction
for seeking improvements in theoretical prediction. Solvent terms differ-
ences are small between force-field methods, but are limited compared with
the predicted scattered intensities of experiment. Given the use of force-
field methods that show strong agreement with other experimental met-
rics [5,188,207], it casts concern on the limitations of the molecular dynamics
trajectories in predicting non-equilibrium experimental events, which will
possess a greater degree of disorder and noise. Indeed, recent studies have
cast concern on the utilisation of MD radial distributions for cross terms
in favour of the "hard-sphere" simulations [208]. Solute-solvent terms also
have a force-field dependency, and do not have an experimental benchmark
with which to compare. It is also clear in this particular case of a solva-
tochromatic solute, that the solute-solvent interaction also alters the solute
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structure, such that solute scattering change is also dependent on the choice
force-field method for solvent, irrespective of the solute parameterisation.
Given the comparable temperature-dependent scattering for cross and so-
lute terms, cross-term extraction is necessary for quality solute data. Experi-
mental benchmarks provide a means of further investigation of the accuracy
of solvent force fields, and an ability to assess the accuracy of MD trajec-
tories relative to alternative theoretical techniques. In turn this would as-
sist in improving non-bonded interaction of solvents and solutes. However,
the induction of partial charges [192] cannot be recreated using fixed force-
field parameters alone. Given the success of time-dependent DFT (TDDFT)
in elucidating the interaction of I2 and polar solvents, QM/MM simulation
would provide a logical future route to improve the accuracy of solvent-
solute terms, with the QM centered on the solute or alternatively solute and
first solvation shell. From chapters 3 and 4, providing a high-rung DFT func-
tional for QM regions should be able to recreate accurately the valence elec-
tron density. Comparison with other techniques, such as hard-sphere cal-
culations, would assist further in ascertaining more accurate solvent-solute
interaction, in particular those with solvatochromatic solutes.
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Chapter 7

Analysis of Cu(I)-Phenanthroline
Excited-State Properties using
QM-Derived Forcefield Parameters

7.1 Introduction

Recently many XFEL scattering studies have exploited the ultrafast visual-
isation provided to observe the excited-state dynamics of transition metal
complexes undergoing metal-to-ligand change transfer (MLCT) [82, 83, 94].
Transition metal complexes have been subject of great research interest for
the potential yielded by their luminescence properties, not least in the de-
velopment of organic light-emitting diodes (OLEDs) [3]. Such complexes
provide excellent emission through the presence of low-lying excited states,
which can be reached via photonic or electronic excitation. In many of these
metal-organic complexes, excitation leads to the formation of MLCT states
which often exhibit a rich photochemistry. While many of the pathways, e.g.
internal conversion and fluorescence are similar to organic complexes, other
pathways such as intersystem crossing (ISC) [3, 102, 209–211] are more com-
mon in transition metal complexes. The triplet states in these complexes can
be populated on the ultrafast timescales. Several candidate complexes have
been proposed, utilising various combinations of d-block transition metal
ions and organic ligands, attempting to balance the abundance and cost of
the former with the properties of the candidate complex. Originally research
focused on second-/third-row transition metals with bipyridine ligands, in-
cluding Ru(II) [212–214], Re(I) [215–218], Os(II) [219, 220], Ir(III) [221–223]
and Pt(II) [224, 225], though high cost of such elements makes them unvi-
able as options, despite strong performance as emitters. Thereon research
has centered around d10 transition metal ions, with a particular focus upon
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Cu(I) ions complexed with phenanthroline ligands, [Cu(phen)2]+ [95–97].
Elucidating the photophysics of copper phenanthroline complexes has

led to significant experimental [98–104] and theoretical investigation [3, 101,
104–109] of the complex. For [Cu(phen)2]+, the simplest copper phenan-
throline, excitation to the lowest singlet excited states (S1) leads to ISC into
the T1 spin state, accompanied by a significant structural distortion. This
distortion is associated with the pseudo Jahn-Teller Effect [99], whereby the
charge transfer to the ligand leads to a d9 configuration (Cu(II)) in the metal
centre [102, 105, 106]. This electron degeneracy begets distortion to reduce
resultant internal electrostatic potentials, resulting in ligands aligning along
a principal axis to maximise interaction between the charge depletion on the
copper and charge concentrations [226]. Ergo the ligand-ligand dihedral an-
gle reduces significantly. The relaxation of the excited triplet state back to
the ground state is dependent not only on the internal structural distortion
but also the surrounding solvent [110]. Emission lifetime is reduced in do-
nating solvents, as opposed to non-donating solvents [227]. The mechanism
for emission lifetime reduction has been hypothesised to be an exciplex sta-
bilising the Cu(II) ion triplet state, however there are conflicting results in
this regard [228]. The interaction with the solvent therefore requires further
investigation [3].

Theoretical chemistry presents an opportunity to further elucidate the in-
ternal and external drivers of the structural distortion undergone by copper
phenanthroline in its excited state and emission lifetimes. An extensive the-
oretical study was carried out by Capano et al [3], utilising QM/MM (Car-
Parinello method [229]) [230, 231] and purely classical molecular dynamics
trajectories. Assisted Model Building with Energy Refinement (AMBER)
force field parameters were used, but were supplemented for the Cu us-
ing parameterisations calculated from DFT. These DFT-enhanced force fields
were then compared with the QM/MM trajectories, which utilised DFT in
the region defined by the copper phenanthroline complex with a surround-
ing classical solvent region. The study confirmed that exciplex formation
was unlikely to account for the influence of the solvent on emission lifetime.
It also indicated the ligand-ligand dihedral angle (figure 7.2.1) as indicative
of the length of the duration of the excited state, with larger flattening effects
associated with shorted emission lifetimes. The success of the AMBER force
fields in improving the understanding the internal dynamics of the copper
phenanthroline in ground and excited state is noteworthy, particularly one
enhanced with DFT-derived parameters.
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The QUantum BEspoke kit (QUBE) force-field offers software that utilises
higher-rung DFT (ωB97X-D [25]) derivations of force-field parameters, both
the internal bonded parameters and external non-bonded parameters [5].
Previous work herein has indicated the success of high Hartree-Fock ex-
change fractions in improving the accuracy of electronic structure calcula-
tions, particularly with regard to transition metals complexes with organic
ligands (chapters 3 and 4). Donating and non-donating solvents have also
been parameterised using QUBE in chapter 5. Herein QUBE-derived MD
simulations present an opportunity to build on the current theoretical un-
derstanding of [Cu(phen)2]+ in ground and triplet state, and further assess
QUBE as a parameterisation method relative to classical AMBER force field
and QM/MM simulation data. It represents a starting point for understand-
ing longer time dynamics of excited transition metal complexes using high
accuracy quantum chemically derived force-fields.

7.2 Theoretical and Computational Details

(a) (b)

Figure 7.2.1: [Cu(phen)2]+ structure in a) ground S0 and b) ex-
cited T1 states. This illustrates the change in dihedral angle
(DHA) between the planes of the phenanthroline ligands due

to the pseudo Jahn-Teller effect
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[Cu(phen)2]+ optimised structures for ground and triplet state (as shown
in figure 7.2.1) are calculated using ground-state ORCA quantum calcula-
tions [164] utilising DFT (B3LYP). Force-field parameters are extracted using
QUBEKit (Quantum BEspoke Kit) software [5], which utilises DFT (ωB97X-
D) to assign parameters, a summary of which is outlined below in table
7.2.1. Included therein are Cu non-bonded parameters that were supple-
mented with Lennard-Jones parameters used in recent Cu(II) models which
account for the Jahn-Teller effect [2]. MeCN and DCM parameters use the
same QUBE parameters used in chapters 5 and 6. Molecular dynamical tra-
jectories are calculated using OpenMM software [189], with an identical re-
porting regime to that used in section 5.2, at room temperature and atmo-
spheric pressure (298.15K and 1.0bar respectively). Due to [Cu(phen)2]+’s
positive charge, it was important to take steps to ensure box neutrality and
thereby avoid unrealistic electrostatic potentials within the system, particu-
larly given the use of periodic boundary conditions. To that end, a negative
ion (Cl−) was included to neutralise the box and placed at distance from the
solute to to avoid interference with studying the solute-solvent interaction.

Atom
Ground State 3MLCT

q (e.c.)
ε (KJ
mol−1)

σ (KJ
mol−1)

q (e.c.)
ε (KJ
mol−1)

σ KJ
mol−1)

Cu 0.22 17.51* 0.20* 0.70 17.51* 0.20*

N -0.26 0.42 0.32
-0.38/-

0.31**
0.42 0.33/0.32**

Table 7.2.1: Non-bonded parameters of the Cu and N atoms,
partial charge (q) and the Lenndard-Jones (L-J) parameters (ε
and σ). See section 7.3 for data concerning the internal struc-
ture of the Cu-N bonds. *L-J parameters taken from previous
model of Jahn-Teller effect [2]. ** There is an asymmetry in the
triplet state partial charge of the nitrogen atoms between the
two ligands, with corresponding adjustments made in QUBE

for the L-J parameters
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7.3 Results

Method
Ground State 3MLCT

Cu-N
(Å)

∠NCuNintra

(deg)

∠DHA
(deg)

Cu-N (Å)
∠NCuNintra

(deg)

∠DHA
(deg)

QUBE
(CMD)

2.00
(0.077)

86 (3.0) 80 (7)
2.04

(0.063)/1.96

(0.054)

81 (2.4)/85

(2.2)

47
(7) [in
MeCN]
49 (6)
[in
DCM]

AMBER
(CMD)

2.00
(0.066)

83 (2.6) 90 (9)
1.98
(0.035)

85 (1.4) 48 (7)

AMBER
(QM/MM)

2.03
(0.075)

83 (2.5)
82
(20)

2.01
(0.073)

83 (3.4) 41 (9)

Table 7.3.1: Mean Cu-N bond length, NCuNintra angle formed
between copper and nitrogens of the same phenanthroline
ligand and dihedral angle (DHA) formed by the two ligand
planes (figure 7.2.1), along with standard deviations (σ) for
ground and 3MLCT states. Classical MD (CMD)-simulation-
derived geometries utilising the QUBE parameters herein are
compared with CMD and QM/MM AMBER calculations from

Capano et al [3]

Table 7.3.1 shows the structural parameters of [Cu(phen)2]+ in both the ground
and lowest 3MLCT state. In the ground state the structural parameters ob-
tained from QUBE are in close agreement with previous classical AMBER
force field, QM/MM MD [3] and compare well to structural fits obtained
from EXAFS analysis [228]. The standard deviation is slightly larger than
that of the classical AMBER trajectory and in line with that of the QM/MM
trajectory, indicative of a a slightly lower bond spring constant suggesting
QUBE describes the bond strenghts slightly better than the AMBER classical
force fields. The ∠NCuN is slightly larger than that from previous simula-
tions but within the standard deviation. It is, as expected, equal for both
ligands.

Importantly, the largest different between previous classical AMBER force
field and QUBE is observed for the average dihedral angle of 80◦ which
is clearly far closer to the QM-derived angle than the classical analogue.
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This dihedral shift reprents an important structural parameter in the pho-
tophysics of these complexes and therefore the good agreement between
QUBE and the computationally more expensive QM/MM MD is very attrac-
tive. The ground-state geometry alignment between QUBE and QM/MM
appears to vindicate both the findings of the latter and the use of the former
to give QM-accurate data without the computational expense in this specific
state, while suggesting an advantage over the classical AMBER field.

While all methods are in agreement for the ground state, in the 3MLCT
state, we begin to observe significant divergence between previous theory
and QUBE parameterisation, particularly on Cu-N bonds and NCuN an-
gles. Firsly, QUBE predicts a distinct asymmetry emerging between the Cu-
N bond lengths between the two phenanthroline ligands. This is expected
as although initially equivalent, structural changes and interactions with the
environment lead to symmetry breaking and a localisation of the MLCT state
onto one of the ligands [108] . This also causes a divergence in the ∠NCuN
bond angles. This asymmetry is not present in the other theoretical systems,
which predict a continuation of bond equidistance [104].

QUBE predicts Cu-N bond distances of 2.04 and 1.96 Å. The latter, for
which a contraction is observed, is the ligand upon which the MLCT localises
and is associated with the attractive Coulomb interaction between the posi-
tive charge on the Cu and the electron density localised on the ligand. This
contraction of 0.04 Å is in good agreement with previous experimental obser-
vations [228]. The other ligand slightly expands and this is associated with
the occupation of anti-bonding orbitals in the excited state. The change in
the Cu-N bond lengths changes the ∠NCuN bond angles and these changes
are also consistent with previous experiments [228].

The original flattening of the ligand dihedral angle to form the pseudo
Jan-Teller geometry is derived from the components of the positive polarisa-
tion caused by the metal-to-ligand charge transfer. The ground state struc-
ture utilises degenerate valence Cu 3dyz and 3dxz orbitals to form near per-
pendicular bonds with the two ligands, in particular with the N 2p orbitals
most closely aligned with these respective orientations, particularly N 2pz.
The original S0 to S1 transition induces charge transfer into degenerate anti-
bonding orbitals on the ligands [108] and leaves Cu with a positive polar-
isation in the principal axis with degenerate components. However these
orbitals are in the π-conjugated aromatic ring, oriented in y or x respectively.
Therefore intersystem crossing to the triplet geometry, whereby the negative
polarisation on the ligand reorients towards the principal axis to compensate
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for this positive polarisation on the Cu [226]. This also breaks the electron
degeneracy and increased localisation of charge on one ligand, leading to the
aforementioned imbalance in occupancy of anti-bonding orbitals, such that
equilibrium bond lengths change [108]. The closer the ground and excited
state energies, the greater the MLCT, and the larger distortion required to
offset the potential increase. In turn this shortens emission lifetime. Hence
dihedral angle is inextricably linked to emission, and is a product of the
charge transfer. The difference between HOMO contributions from Cu 3dyz
and 3dxz orbitals predicted by high-rung DFT leads to imbalanced charge
transfer to the ligands depending on their orientation. The average dihedral
angle across both solvents is comparable to classical AMBER force fields,
whereas that with QM/MM predicts a smaller energy gap as predicted by
the dihedral angle change.
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Figure 7.3.1: Radial distribution function g(r) of Cu-solvent
atom combinations of solvated [Cu(phen)2]+ in ground and ex-
cited states (GS and ES respectively). Combinations illustrated
are a) GS Cu-NMeCN b) GS Cu-ClDCM c) ES Cu-NMeCN d) ES
Cu-ClDCM . QUBE and AMBER denoted in red and blue re-

spectively.
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The average dihedral angle solvated in MeCN is lower than that in DCM,
with a slightly lower dihedral angle, associated with a reduced viscosity
of the solvent and with a lowering of the ground-excited energy gap and
shorter emission lifetime, which corresponds to previous experimental stud-
ies involving donating solvents such as MeCN, relative to DCM. This effect
is associated with stabilising the Cu(II) ion while in the triplet state through
electron donation. Previous studies [3] attempted to study the effect of the
solvent through using MD simulation and understanding of structure of the
solvent shell immediately solvent surrounding the copper ion, utilising a
radial distribution function to give a representation of the solute-solvent in-
terface. These plots can also be used to understand the possibility of the
formation of the exciplex which has been debated in the literature [3]. This
work, which used both classical and QM/MM MD, found that RDFs calcu-
lated from both simulations exhibited little difference, suggesting that the
classical force fields are sufficiently accurate.

Figure 7.3.1 shows the Cu-N and Cu-Cl RDFs for both the ground and
excited 3MLCT state extracted from the classical MD simulations using the
QUBE force-field (red). For comparison the RDF extracted from previous
classical MD simulations [3] are shown in blue. For both solvents in the elec-
tronic ground state, the first solvation shell of the QUBE simulations is more
disordered, as the height of the peak in the first solvation shell is decreased.
This effect is smaller for DCM, and reduces in both cases as long range (r>6
Å). Importantly, while differences are observed, the general trends remain
the same.

However, in contrast there is a definitive shift between QUBE and AM-
BER force fields in the excited state. For QUBE, the first solvation shell be-
come stronger and moves to short distances from the Cu in both cases. The
peak of the first solvation shell occurs just below 3 Å and is similar for both
MeCN and DCM. The shifts in relative position of the solvation shells in the
excited state after ground state agreement is indicative of the difference be-
tween their respective Cu(II) partial charge. QUBE’s high positive charge
yields stronger attraction with negative partial charges present in the sol-
vent, leading to a reduction in radius of the first solvent shell relative to the
AMBER field. This reduction in distance in combination with the small re-
duction of angle yields suggests a strong interaction between the solvent and
the Cu(II) ion consistent with the exciplex, but the distance is still to large to
be considered an actual bond.
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7.4 Discussion and Conclusions

This investigation provides strong evidence for the utility of QUBE as a
parameterisation method, particularly in regard to transition metal com-
plexes. Herein its ground-state internal geometries compare favourably with
QM/MM-established benchmarks and represent an improvement on the pre-
vious AMBER force field. It also identifies an asymmetry in the bond lengths
and angles between the copper ion and the phenanthroline ligands within
the 3MLCT state that is not identified by both the AMBER field and the
QM/MM study and is in strong agreement with recent work [104,226]. Taken
in combination with the previous investigations in this work, QUBE’s ad-
vantages over other parameterisation methods are more pronounced than
those observed in chapters 5 and 6. This is perhaps unsurprising when the
nature of the molecule considered in this study. It was established in pre-
vious chapters (see chapters 3 and 4) that the fraction of Hartree-Fock ex-
change is significant in simple transition metal complexes and in the relative
electronegativity of aromatic systems with extensive conjugated π-bonding
with heavily delocalised valence electrons. HF exchange reduces the self-
interaction error (SIE), though cannot completely remove it due to the theo-
retical nature of Kohn-Sham orbitals. The rate of SIE reduction was found to
be different for transition metals, halogens and ligands, leading to changes
in relative electronegativity and thereby bond polarity as one ascends Ja-
cob’s Ladder. QUBE utilises ωB97X-D range-separated hybrid orbitals to
generate its bonded and non-bonded parameters in a system centered on
a transition metal with organic ligands comprised of aromatic compounds.
Hence its generated parameters predict significantly more charge transfer
to the phenanthroline ligands than AMBER (augmented using B3LYP), and
gives a more complete description of the valence degeneracy breakdown of
the triplet state, leading to the aforementioned asymmetry. This illustrates
that more complex metal-organic complexes represent a domain in which
QUBE has potential to be a useful tool for future MD studies, owing to its
use of high-rung DFT in the parameterisation process.

QUBE also provides a potential means of elucidating more information
around the mechanisms of the solute-solvent interaction. It records a small
decrease in triplet state dihedral angle when in the donating solvent MeCN,
relative to DCM. The parameterisation of Cu also supports the formation of
the first solvation cell closer to Cu than that of the AMBER force field. How-
ever, there is also a shift of solvation cell present in non-donating DCM, and
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the dihedral angle change is within a standard deviation of the averaged
values, so these results providing any form of support of proposed solute-
solvent exciplex formation [96, 104, 232] must be met with skepticism, es-
pecially given the lack of contradictory evidence in previous studies into the
solvent role [3] and the solvation cell radius still exceeding the proximity nec-
essary for meaningful bonding events. However it is clear that there is some
solvent influence in the internal structure of the [Cu(phen)2]+, particularly
in the excited state, and this solvent shell shift is reported in other theoretical
studies [107, 233], though these theories solely focused on the S1 state prior
to ISC. QUBE’s elucidation of such an effect suggests it offers a useful means
not only of providing accurate force fields for the internal structure of the
copper phenanthroline complex, but also of studying further the dynamics
of its interaction with donating solvents, which are of great research interest
into the emission lifetimes of potential OLED candidate metal-organic com-
plexes.

There remains for further study the behaviour of other OLED candidate
molecules, particularly other copper phenanthroline complexes, to ascertain
the general utility of QUBE in studying such complexes. Also, it must be
noted that QUBE excited-state dihedral angle is still higher than that of the
QM/MM simulation, which suggests the parameterisation may still strug-
gle to recreate the dynamical processes required to exact the triplet-ground
energy gap elucidated by the inclusion of QM TDDFT regions, in particular
spin-orbit coupling. Such future investigation will establish the current via-
bility of QUBE as a method of studying OLEDs and direct the future direc-
tion for development of QUBEKit software to account for any limitations in
accounting for the internal structures or interaction with solvent molecules.
The potential shown so far by QUBE suggests that it be a strong tool in future
investigation of systems upon which QM-level accuracy of internal struc-
ture and solvent interaction is required, without the computational expense
of QM/MM, and therefore represents a tool worthy of extensive future re-
search.
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Conclusion

This investigation has underscored the value of DFT, both in providing de-
tailed QM calculations for molecules that require further research and for
improving the accuracy of MD trajectories via improved force-field accu-
racy, and therefore how imperative improvements in DFT are to all branches
of theoretical chemistry. Utilising the EFG as a direct measure of valence
electron density that could be directly related to both ab initio theory and
experimental [58–62] results, it was illustrated that DFT can provide exten-
sive insight into the bonding of molecules, even "challenging cases" [33] in
regard to transition metal complexes and diatomics, even for ab initio the-
ory [234, 235]. Furthermore, DFT can provide calculations with valuable in-
sight into compounds simply beyond the scope of ab initio theory within
the feasible time frames of most theoretical research [10]. Many of the halo-
genated aromatic compounds’ CCSD(T) calculations remain unfinished at
time of writing, owing to the extensive computational expense their calcu-
lations require. DFT is able to produce readily available research on the
same systems, even high-rung functional groups such as rshGGA, within
hours of starting calculations. In order to facilitate improved understand-
ing of molecules of particular research interest within realistic time frames,
it is imperative that DFT accuracy be improved for all systems. The EFG
is useful for providing a versatile metric of electronic structure accuracy
across a variety of different environments, and is shown to reveal significant
differences between functional groups in performance relative to theoreti-
cal and experimental benchmarks. Improvements in DFT EFG agreement
with benchmarks are correlated to the Hartree-Fock exchange fraction used
in the respective functionals, which is used to reduce self-interaction error
(SIE). This dependence on exchange is in agreement with previous work
into DFT accuracy [33, 34, 178, 179]. From study of these systems, it is ap-
parent that the relative electronegativities of transition metals, halogens and
aromatic rings change as one ascends Jacob’s Ladder, which in turn change
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bond polarities and partial charge distribution across the molecule. This re-
flects recent work attributing error in heteronuclear molecule charge distri-
butions and subsequent dipoles to the self-interaction error [29, 34] which
has been related to errors in electronegativity and the first ionisation po-
tential [185–187]. Attempts at tuning ωB97X functionals also confirm this
change in relative electronegativity. Using inspection of atomic first ionisa-
tion potential as a measure of Mulliken electronegativity, this levelling off of
ionisation potential increase is seen most obviously in the transition metals.
The logical extrapolation is that the threshold HF exchange fraction at which
the maximum amount of SIE possible is cancelled is lower for transition met-
als than halogens, or that crucial aspects of more local DFT exchange are lost
as HF fraction increases, such that increased long-range exchange error re-
duction comes at the expense of increasing local short-range exchange error.
Indeed, Medvedev et al’s recent paper analysing normalised electron density
error suggested that pure HF exchange had higher error than quarter to half
fractions [27]. Imperfect SIE cancellation is a consequence of using theoret-
ical non-interacting Kohn-Sham orbitals, and the work herein suggests that
larger atoms with a greater number of orbitals are those which become less
electronegative relative to others as HF fraction increases. Such large atoms
would have a greater amount of cumulative SIE. Likewise, the amount of
Fermi repulsion in these atoms is very high, such that loss of local exchange
would have implications on the overall potential associated with the orbitals.
Overall, SIE is associated with decreasing the ionisation potential of valence
orbitals through excessive electron self-repulsion [33]. This aligns with the
findings in this investigation, but requires further investigation.

The impact of such changes in electronegativity as observed in chap-
ters 3 and 4 extend beyond the domain of DFT and have consequences for
the accuracy of force-fields, and in turn the accuracy of the MD trajectories
calculated therefrom. QUBE utilises DFT to ascertain its bonded parame-
ters and partial charge [4, 5]. The changes in relative electronegativity re-
ported in chapters 3 and 4 lead to changes in the polarity in bonds, thus
changing the strength of the bonds and their consequent equilibrium lengths
and force constants. Furthermore, it changes the electron density distribu-
tion within the molecule, thus affecting all non-bonded parameters as per
QUBE’s method of atom-in-molecule charge partitioning [151,152], which in
turn is used to scale Lennard-Jones parameters [153]. This influences both
internal dynamics of simulated molecules and their interaction with other
molecules in the MD trajectory. Chapters 5 and 6 investigated the use of
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QUBE relative to experimentally-derived force-field parameterisations from
OPLS-AA in order to predict temperature-dependent solvent and solute-
solvent scattering in a range of commonly-used solvents, and found that
there were small differences in the low Q scattering range, associated with
larger distances between atom species driven by non-bonded interaction.
The radial distribution functions (RDFs) generated by the time-averaged MD
trajectory were used to calculate scattering change per unit temperature us-
ing the independent-atom model (IAM) [143]. The significance of the RDF’s
contribution to the scattering was contingent on the scattering amplitude
of the atomic species involved. Hence small differences in the QUBE and
OPLS-AA radial distributions for pairings of atomic species with large scat-
tering amplitudes yielded larger changes in the subsequent scattering pro-
files, while larger changes associated with atoms barely visible to scattering
(i.e. hydrogen) were insignificant. Hence the largest visible differences in
the scattering profiles of the two force-field methods were those for solvents
containing chlorine atoms (DCM and chloroform), the atom species with the
largest scattering cross section of all solvent atom species considered. Evalu-
ation of the significance of the cross and solute terms revealed that the force-
field dependence was significant enough to change the solute profiles. The
non-bonded interaction between solvent species and the solute-solvent was
dominated by the solvent partial charge. The ability of QUBE to theoret-
ically predict solvent and solute-solvent scattering terms and represent an
advantage over experimental force-field derivations is therefore dependent
on high accuracy of its partial charge, particularly in systems with large scat-
terers. The accuracy of QUBE MD trajectories and its predicted solvent and
cross-term scattering therefore depends on the ability of ωB97X-D function-
als to produce accurate partial charges. Therefore the accuracy of QUBE MD
trajectories and theoretical scattering is intrinsically linked with DFT accu-
racy and reduction of SIE. Given the divergence between both force fields’
solvent terms and experimental equivalents, there are further questions to
explore about the use of MD trajectories to predict non-equilibrium events.
Given the recent studies by Kim et al (2015) [192], it is worth evaluating the
predicted solvent-solute interactions relative to QM/MM calculation to as-
certain whether theoretical prediction can be further improved via TDDFT
elucidating the exact nature of its interaction.

The potential of QUBE’s use of high-rung DFT to improve MD simulation
is best illustrated through study of copper phenanthroline. Here the complex
contains a transition metal and π-conjugated aromatic ligands, reflecting the
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systems with Jacob’s Ladder electronegativity dependence from chapters 3
and 4. QUBE compared favourably relative to QM/MM [Cu(phen)2]+ in
the ground state pseudo tetrahedral geometry, and in triplet state captured
the Cu-N bond length asymmetry between the two phenanthroline ligands,
which was not picked up by the AMBER classical force field or QM/MM.
It also provided evidence supporting the possibility of exciplex formation
in donating solvents (MeCN) [96, 232], placing it in strong alignment with
the latest research into its ground- and excited-state structures and interac-
tion with solvents [104, 226]. Its use of high-rung DFT relative to that used
for the AMBER force field parameters (B3LYP) and the QM/MM simulation
(BLYP) [3] illustrates the vital use of high-rung range-separated hybrid DFT
functionals for molecules similar to those of chapters 3 and 4 that cannot be
reproduced with mid-rung hybrid functional, providing potential evidence
of an area in which QUBE could provide QM-derived parameters for study
of such systems without the computational cost of QM/MM, as well as pro-
viding further evidence to support the functional-dependence of transition-
metal-complex electronic structure found in the aforementioned previous
chapters. Establishing QUBE’s accuracy in parameterising metal organic
complexes will require an expansion of the current work to consider other
complexes, but its agreement with the findings of previous work herein, and
the clear improvement relative to previous theoretical study merits further
study.

This study provides evidence of the current challenges facing DFT func-
tional development in capturing the electronic structure of challenging case
systems, but also of the potential to improving functional accuracy, not only
within quantum chemistry but in molecular dynamics and theoretical scat-
tering via the QUBE force field. It has also provided the electric field gra-
dient as a versatile metric that can be used to compare the DFT electron
density directly with both ab initio theory and experiment, and supports
the recent calls [27–29, 34] that consideration of electron density be a larger
component of functional development. Using this metric further investiga-
tion can be made of the role of HF exchange fraction and self-interaction er-
ror cancellation in performance disparities between lower and higher rungs
of DFT. The elucidation of potentially different relative electronegativities
between transition metals, halogens and organic ligands at different frac-
tions of HF exchange represents a finding of significant interest for future
work. Understanding the origins of such disparities, whether it be related
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to self-interaction error cancellation limitations alone or possibly the com-
peting nature of SIE cancellation with retaining the useful short-range DFT
exchange, has the potential to assist in the development of more versatile,
accurate DFT functionals in future that can better capture these molecules
and other challenging environments. QUBE’s performance in reproducing
accurate [Cu(phen)2]+ structures indicates the potential such future devel-
opments could have in other branches of theoretical chemistry. Theoretical
scattering suggests that QUBE has potential in the longer term, but further
investigation is required to assess whether the report rate from the trajec-
tory is sufficient to obtain the converged RDF, or if the RDF-sensitivity of
combinations of atoms with large scattering cross sections outweigh what
it is possible with trajectory error and parameterisation. Though it is clear
that the parameters upon which the RDFs depend are also tied to improve-
ments in DFT accuracy, particularly partial charge. Overall, given direction
of science to study increasing complex and large molecules beyond the fea-
sible means of ab initio methods, both in quantum chemistry and molecu-
lar dynamical simulations, it is imperative that DFT continue to improve to
improve theoretical chemical study of such systems in order to facilitate ad-
vances in medicine, OLEDs and other future technologies, which represent
many of the uses and potential uses of the molecules studied herein. This
study has provided a method of assessing DFT and identifying underlying
potential causes of DFT error, in the hope that future study can take forward
the work started here, to improve DFT electronic structure calculations and
thereby potentially improve all areas of theoretical chemistry as it faces in-
creasing challenges in the future.
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Appendix A

Assessing Functional Errors using
Atomisation Energies and Electric
Field Gradients

A.1 Atomisation - EFG Characteristic by Functional

Group
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Figure A.1.1: Plot of the H2O· · ·CuCl atomisation energy as a
function of Cu (a) and Cl (b) electric field gradient in the com-
plex by functional group. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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Figure A.1.2: Plot of the H2S· · ·CuCl atomisation energy as a
function of Cu (a) and Cl (b) electric field gradient in the com-
plex by functional group. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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A.2 ωB97X Tuning via Koopmans’ Theorem
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Figure A.2.1: Plot of the change in atomisation and Cu (a) and
Cl (b) EFG of ωB97X for H2O· · ·CuCl as ω is adjusted from 0.05
to 0.8. Optimal ω (green) and CCSD(T) (blue) are also indicated
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Figure A.2.2: Plot of the change in atomisation and Cu (a) and
Cl (b) EFG of ωB97X for H2S· · ·CuCl as ω is adjusted from 0.05
to 0.8. Optimal ω (green) and CCSD(T) (blue) are also indicated

A.3 Core Polarisation Contribution to Cu Electric

Field Gradient
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Method Cu Core Pol. EFG/a.u.
CCSD(T) -0.374
B2GP-PLYP -0.170
B2PLYP-D3 -0.090
B2PLYP -0.090
B3LYP 0.157
B97-D3 0.287
B97 0.129
BLYP 0.317
BP86 0.306
CAM-B3LYP 0.135
DSD-BLYP-D3 -0.201
LC-BLYP 0.272
M062X -0.022
M06L 0.028
M06 0.133
mPW2PLYP -0.102
O3LYP 0.189
PBE0 0.087
PBE 0.285
PWPB95 -0.081
PW6B95 0.068
TPSS0 0.011
TPSSh 0.114
TPSS 0.186
ωB97 0.186
ωB97X-D3 0.117
ωB97X 0.121

Table A.3.1: Core polarisation contribution to copper electric
field gradient of CuCl of default functionals and CCSD(T)
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ω Cu Core Pol. EFG/a.u.
0.05 0.166
0.10 0.166
0.15 0.162
0.20 0.153
0.25 0.139
0.30 0.121
0.35 0.100
0.40 0.077
0.45 0.054
0.50 0.030
0.55 0.007
0.60 -0.016
0.65 -0.037
0.70 -0.056
0.75 -0.075
0.80 -0.091
0.85 -0.106
0.90 -0.120
0.95 -0.133
1.00 -0.145
1.05 -0.155
1.10 -0.165
1.15 -0.174
1.20 -0.182
1.25 -0.190
1.30 -0.197
1.35 -0.204
1.40 -0.210
1.45 -0.216
1.50 -0.222

Table A.3.2: Core polarisation contribution to copper electric
field gradient of CuCl of ωB97X functionals with ω altered from

0.05 through 1.5
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Method Cu Core Pol. EFG/a.u.
CCSD(T) -0.488
B2GP-PLYP -0.210
B2PLYP-D3 -0.109
B2PLYP -0.109
B3LYP 0.188
B97-D3 0.323
B97 0.153
BLYP 0.367
BP86 0.345
CAM-B3LYP 0.171
DSD-BLYP-D3 -0.257
LC-BLYP 0.340
M062X -0.058
M06L 0.025
M06 0.139
mPW2PLYP -0.124
O3LYP 0.223
PBE0 0.100
PBE 0.323
PWPB95 -0.112
PW6B95 0.065
TPSS0 0.006
TPSSh 0.122
TPSS 0.202
ωB97 0.230
ωB97X-D3 0.138
ωB97X 0.147

Table A.3.3: Core polarisation contribution to copper electric
field gradient of Ar· · ·CuCl of default functionals and CCSD(T)
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ω Cu Core Pol. EFG/a.u.
0.05 0.167
0.10 0.174
0.15 0.176
0.20 0.172
0.25 0.162
0.30 0.147
0.35 0.128
0.40 0.106
0.45 0.081
0.50 0.055
0.60 0.002
0.65 -0.024
0.70 -0.048
0.75 -0.071
0.80 -0.092
0.85 -0.112
0.90 -0.130
0.95 -0.147
1.00 -0.163
1.05 -0.177
1.10 -0.190
1.15 -0.202
1.20 -0.213
1.25 -0.224
1.30 -0.234
1.35 -0.243
1.40 -0.251
1.45 -0.259
1.50 -0.267

Table A.3.4: Core polarisation contribution to copper electric
field gradient of Ar· · ·CuCl of ωB97X functionals with ω al-

tered from 0.05 through 1.5
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Method Cu Core Pol. EFG/a.u.
CCSD(T) -0.585
B2GP-PLYP -0.250
B2PLYP-D3 -0.135
B2PLYP -0.135
B3LYP 0.189
B97-D3 0.347
B97 0.149
BLYP 0.376
BP86 0.358
CAM-B3LYP 0.185
DSD-BLYP-D3 -0.340
LC-BLYP 0.384
M062X -0.063
M06L -0.026
M06 0.087
mPW2PLYP -0.151
O3LYP 0.236
PBE0 0.097
PBE 0.332
PWPB95 -0.144
PW6B95 0.043
TPSS0 -0.021
TPSSh 0.100
TPSS 0.182
ωB97 0.266
ωB97X-D3 0.146
ωB97X 0.160

Table A.3.5: Core polarisation contribution to copper elec-
tric field gradient of OC· · ·CuCl of default functionals and

CCSD(T)
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ω Cu Core Pol. EFG/a.u.
0.05 0.154
0.10 0.166
0.15 0.173
0.20 0.174
0.25 0.170
0.30 0.160
0.35 0.144
0.40 0.124
0.45 0.102
0.50 0.077
0.55 0.050
0.60 0.023
0.65 -0.004
0.70 -0.030
0.75 -0.055
0.80 -0.080
0.85 -0.102
0.90 -0.124
0.95 -0.144
1.00 -0.162
1.05 -0.180
1.10 -0.196
1.15 -0.211
1.20 -0.225
1.25 -0.238
1.30 -0.251
1.35 -0.262
1.40 -0.273
1.45 -0.284
1.50 -0.294

Table A.3.6: Core polarisation contribution to copper electric
field gradient of OC· · ·CuCl of ωB97X functionals with ω al-

tered from 0.05 through 1.5
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Method Cu Core Pol. EFG/a.u.
CCSD(T) -0.731
B2GP-PLYP -0.387
B2PLYP-D3 -0.263
B2PLYP -0.263
B3LYP 0.094
B97-D3 -0.126
B97 0.057
BLYP -0.145
BP86 -0.137
CAM-B3LYP 0.076
DSD-BLYP-D3 -0.448
LC-BLYP 0.275
M062X -0.208
M06L -0.093
M06 0.043
mPW2PLYP -0.281
O3LYP 0.147
PBE0 -0.002
PBE -0.126
PWPB95 -0.260
PW6B95 -0.046
TPSS0 -0.110
TPSSh 0.030
TPSS -0.054
ωB97 0.149
ωB97X-D3 0.041
ωB97X 0.051

Table A.3.7: Core polarisation contribution to copper elec-
tric field gradient of H2O· · ·CuCl of default functionals and

CCSD(T)
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ω Cu Core Pol. EFG/a.u.
0.05 0.076
0.10 0.083
0.15 0.085
0.20 0.080
0.25 0.069
0.30 0.051
0.35 0.028
0.40 0.001
0.45 -0.029
0.50 -0.061
0.55 -0.093
0.60 -0.126
0.65 -0.157
0.70 -0.188
0.75 -0.216
0.80 -0.243
0.85 -0.268
0.90 -0.291
0.95 -0.312
1.00 -0.332
1.05 -0.350
1.10 -0.367
1.15 -0.382
1.20 -0.397
1.25 -0.410
1.30 -0.422
1.35 -0.434
1.40 -0.445
1.45 -0.455
1.50 -0.465

Table A.3.8: Core polarisation contribution to copper electric
field gradient of H2O· · ·CuCl of ωB97X functionals with ω al-

tered from 0.05 through 1.5
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Method Cu Core Pol. EFG/a.u.
CCSD(T) -0.549
B2GP-PLYP -0.260
B2PLYP-D3 -0.157
B2PLYP -0.157
B3LYP 0.135
B97-D3 0.267
B97 0.099
BLYP 0.299
BP86 0.280
CAM-B3LYP 0.121
DSD-BLYP-D3 -0.314
LC-BLYP 0.289
M062X -0.122
M06L -0.036
M06 0.072
mPW2PLYP -0.172
O3LYP 0.166
PBE0 0.047
PBE 0.256
PWPB95 -0.164
PW6B95 0.008
TPSS0 -0.043
TPSSh 0.070
TPSS 0.144
ωB97 0.177
ωB97X-D3 0.086
ωB97X 0.094

Table A.3.9: Core polarisation contribution to copper elec-
tric field gradient of H2S· · ·CuCl of default functionals and

CCSD(T)
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Electric Field Gradients

ω Cu Core Pol. EFG/a.u.
0.05 0.111
0.10 0.117
0.15 0.119
0.20 0.116
0.25 0.107
0.30 0.094
0.35 0.077
0.40 0.056
0.45 0.033
0.50 0.008
0.55 -0.018
0.60 -0.043
0.65 -0.068
0.70 -0.092
0.75 -0.115
0.80 -0.137
0.85 -0.157
0.90 -0.175
0.95 -0.193
1.00 -0.209
1.05 -0.224
1.10 -0.237
1.15 -0.250
1.20 -0.262
1.25 -0.273
1.30 -0.283
1.35 -0.293
1.40 -0.302
1.45 -0.311
1.50 -0.319

Table A.3.10: Core polarisation contribution to copper electric
field gradient of H2S· · ·CuCl of ωB97X functionals with ω al-

tered from 0.05 through 1.5



135



136
Appendix B. Extending the Understanding of Density and Energetic Error

for Silver Complexes and Halogenated Aromatic Compounds

Appendix B

Extending the Understanding of
Density and Energetic Error for
Silver Complexes and Halogenated
Aromatic Compounds

B.1 Silver Complexes

B.1.1 Atomisation - EFG Characteristic by Functional Group
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Figure B.1.1: H2O· · ·AgCl Atomisation-EFG characteristic for
a) silver and b) chlorine. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.



B.1. Silver Complexes 137

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

A
to

m
is

a
ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(a)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1.3  1.4  1.5  1.6  1.7  1.8  1.9  2  2.1

A
to

m
is

a
ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(b)

Figure B.1.2: H2S· · ·AgCl Atomisation-EFG characteristic for
a) silver and b) chlorine. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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Figure B.1.3: H2O· · ·AgI Atomisation-EFG characteristic for a)
silver and b) iodine. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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Figure B.1.4: H2S· · ·AgI Atomisation-EFG characteristic for a)
silver and b) iodine. GGA, hGGA, dhGGA and rshGGA are
represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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Figure B.1.5: H3N· · ·AgI Atomisation-EFG characteristic for
a) silver and b) iodine. GGA, hGGA, dhGGA and rshGGA
are represented in blue, grey, red and light purple respectively.
CCSD(T) is denoted in green, while the dashed line represents

experimental EFG.
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B.1.2 ωB97X Tuning via Koopmans’ Theorem

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

A
to

m
is

a
ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(a)

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 1.3  1.4  1.5  1.6  1.7  1.8  1.9

A
to

m
is

a
ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(b)

Figure B.1.6: H2O· · ·AgCl ωB97X change in atomisation and
EFG for a) silver and b) chlorine for ω=0.05-1. Optimal ω=0.4 is

denoted in green, with CCSD(T) in cyan
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Figure B.1.7: H2S· · ·AgCl ωB97X change in atomisation and
EFG for a) silver and b) chlorine for ω=0.05-1. Optimal ω=0.3 is

denoted in green, with CCSD(T) in cyan
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Figure B.1.8: H2O· · ·AgI ωB97X change in atomisation and
EFG for a) silver and b) iodine for ω=0.05-1. Optimal ω >1 and

therefore beyond the current range, with CCSD(T) in cyan
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Figure B.1.9: H2S· · ·AgI ωB97X change in atomisation and EFG
for a) silver and b) iodine for ω=0.05-1. Optimal ω=0.3 is de-

noted in green, with CCSD(T) in cyan
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Figure B.1.10: H3N· · ·AgI ωB97X change in atomisation and
EFG for a) silver and b) iodine for ω=0.05-1. Optimal ω=0.3 is

denoted in green, with CCSD(T) in cyan
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B.2 Halogenated Aromatic Compounds

B.2.1 Atomisation - EFG Characteristic by Functional Group
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Figure B.2.1: Atomisation-halogen EFG characteristic for a)
bromopyrazole and b) iodopyrazole. GGA, hGGA, dhGGA
and rshGGA are represented in blue, grey, red and light purple
respectively. CCSD(T) is denoted in green, while the dashed

line represents experimental EFG.
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Figure B.2.2: Atomisation-halogen EFG characteristic for a)
bromobenzene and b) iodobenzene. GGA, hGGA, dhGGA and
rshGGA are represented in blue, grey, red and light purple re-

spectively. The dashed line denotes experimental EFG.
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Figure B.2.3: Atomisation-halogen EFG characteristic for a)
2-bromopyrimidine and b) 2-iodopyrimidine. GGA, hGGA,
dhGGA and rshGGA are represented in blue, grey, red and
light purple respectively. CCSD(T) is denoted in green (2-
bromopyrimidine only), while the dashed line represents ex-

perimental EFG (2-bromopyrimidine only).
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Figure B.2.4: Atomisation-halogen EFG characteristic for a) p-
bromotoluene and b) p-iodotoluene. GGA, hGGA, dhGGA and
rshGGA are represented in blue, grey, red and light purple re-

spectively. The dashed line denotes experimental EFG.
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Figure B.2.5: Atomisation-halogen EFG characteristic for a)
2-bromopyridine b) 2-iodopyridine c) 3-bromopyridine d) 3-
iodopyridine e) 4-bromopyridine f) 4-iodopyridine . GGA,
hGGA, dhGGA and rshGGA are represented in blue, grey, red
and light purple respectively. The dashed line denotes experi-

mental EFG..
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B.2.2 ωB97X Tuning via Koopmans’ Theorem
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Figure B.2.6: ωB97X change in atomisation and EFG for a) bro-
mopyrazole and b) iodopyrazole over range ω=0.05-1. Optimal
ω=0.25 and is denoted in green, with CCSD(T) in cyan. Experi-

mental EFG is denoted by the dashed line



152
Appendix B. Extending the Understanding of Density and Energetic Error

for Silver Complexes and Halogenated Aromatic Compounds

 2.34

 2.36

 2.38

 2.4

 2.42

 2.44

 2.46

 2.48

 2.5

 2.52

 7.6  7.8  8  8.2  8.4  8.6
A

to
m

is
a

ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(a)

 2.32

 2.34

 2.36

 2.38

 2.4

 2.42

 2.44

 2.46

 2.48

 2.5

 11  11.2  11.4  11.6  11.8  12  12.2  12.4  12.6

A
to

m
is

a
ti
o

n
 E

n
e

rg
y
 (

a
.u

.)

EFG (a.u.)

(b)

Figure B.2.7: ωB97X change in atomisation and EFG for a) bro-
mobenzene and b) iodobenzene over range ω=0.05-1. Optimal
ω=0.25 and is denoted in green. Experimental EFG is denoted

by the dashed line
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Figure B.2.8: ωB97X change in atomisation and EFG for a) 2-
bromopyrimidine and b) 2-iodopyrimidine over range ω=0.05-
1. Optimal ω=0.3 and 0.35 respectively and is denoted in green,
with CCSD(T) in cyan (2-bromopyrimidine only). Experimen-
tal EFG is denoted by the dashed line (2-bromopyridine only)
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Figure B.2.9: ωB97X change in atomisation and EFG for a) p-
bromotoluene and b) p-iodotoluene over range ω=0.05-1. Op-
timal ω=0.25 and is denoted in green. Experimental EFG is de-

noted by the dashed line
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Figure B.2.10: ωB97X change in atomisation and EFG for a)
2-bromopyridine b) 2-iodopyridine c) 3-bromopyridine d) 3-
iodopyridine e) 4-bromopyridine f) 4-iodopyridine over range
ω=0.05-1. Optimal ω=0.25 and is denoted in green. Experimen-

tal EFG is denoted by the dashed line

B.3 Core Polarisation Contribution to Ag Electric

Field Gradient
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Appendix B. Extending the Understanding of Density and Energetic Error

for Silver Complexes and Halogenated Aromatic Compounds

Method Ag Core Pol. EFG/a.u.
CCSD(T) -0.683
B2GP-PLYP -0.333
B2PLYP-D3 -0.203
B2PLYP -0.203
B3LYP 0.181
B97-D3 0.471
B97 0.144
BLYP 0.546
BP86 0.506
CAM-B3LYP 0.117
DSD-BLYP-D3 -0.391
LC-BLYP 0.288
M062X -0.116
M06L 0.012
M06 0.065
mPW2PLYP -0.221
O3LYP 0.223
PBE0 0.063
PBE 0.474
PWPB95 -0.194
PW6B95 0.040
TPSS0 -0.052
TPSSh 0.104
TPSS 0.300
wB97 0.109
wB97X-D3 0.065
wB97X 0.059

Table B.3.1: Core polarisation contribution to silver electric
field gradient of AgCl of default functionals and CCSD(T)
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ω Ag Core Pol. EFG/a.u.
0.05 0.137
0.10 0.146
0.15 0.143
0.20 0.125
0.25 0.096
0.30 0.059
0.35 0.018
0.40 -0.025
0.45 -0.068
0.50 -0.110
0.55 -0.150
0.60 -0.188
0.65 -0.222
0.70 -0.254
0.75 -0.283
0.80 -0.309
0.85 -0.333
0.90 -0.355
0.95 -0.375
1.00 -0.392

Table B.3.2: Core polarisation contribution to silver electric
field gradient of AgCl of ωB97X functionals with ω altered from

0.05 through 1.00
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Appendix B. Extending the Understanding of Density and Energetic Error

for Silver Complexes and Halogenated Aromatic Compounds

Method Ag Core Pol. EFG/a.u.
CCSD(T) -0.350
B2GP-PLYP -0.052
B2PLYP-D3 0.057
B2PLYP 0.057
B3LYP 0.392
B97-D3 0.613
B97 0.351
BLYP 0.679
BP86 0.639
CAM-B3LYP 0.335
DSD-BLYP-D3 -0.102
LC-BLYP 0.471
M062X 0.147
M06L 0.272
M06 0.297
mPW2PLYP 0.043
O3LYP 0.414
PBE0 0.286
PBE 0.612
PWPB95 0.059
PW6B95 0.270
TPSS0 0.192
TPSSh 0.321
TPSS 0.470
wB97 0.332
wB97X-D3 0.290
wB97X 0.287

Table B.3.3: Core polarisation contribution to silver electric
field gradient of AgI of default functionals and CCSD(T)
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ω Ag Core Pol. EFG/a.u.
0.05 0.137
0.10 0.146
0.15 0.143
0.20 0.125
0.25 0.096
0.30 0.059
0.35 0.018
0.40 -0.025
0.45 -0.068
0.50 -0.110
0.55 -0.150
0.60 -0.188
0.65 -0.222
0.70 -0.254
0.75 -0.283
0.80 -0.309
0.85 -0.333
0.90 -0.355
0.95 -0.375
1.00 -0.392

Table B.3.4: Core polarisation contribution to silver electric
field gradient of AgI of ωB97X functionals with ω altered from

0.05 through 1.00
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Appendix C. Analysis of Forcefield Methods to Predict Solvent-Term

Ultrafast X-ray Scattering Relative to Experimental Metrics

Appendix C

Analysis of Forcefield Methods to
Predict Solvent-Term Ultrafast
X-ray Scattering Relative to
Experimental Metrics

C.1 Temperature-Dependent and Density-Dependent

Solvent Scattering Term
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Figure C.1.1: ∂S
∂T per solvent molecule characteristic calculated

from 5K solvent differences from OPLS-AA (blue) and QUBE
(red), compared with experimental calculations (black) [1] for
a) acetonitrile b) chloroform c) dichloromethane and d) ethanol
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Figure C.1.2: ∂S
∂ρ per solvent molecule characteristic calculated

from 0.05 bar and 0.20bar solvent pressure differences from
OPLS-AA (blue) and QUBE (red), compared with experimental
calculations (black) [1] for acetonitrile. Density change for this
change in pressure is simply too low to yield meaningful accu-
rate results, hence the predicted scattering change is simply too
large. This eaxt rationale for this erroneous prediction requires

further investigation.
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Ultrafast X-ray Scattering Relative to Experimental Metrics

C.2 Comparison of Temperature-Dependent Sol-

vent Scattering Terms
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Figure C.2.1: ∂S
∂T per solvent molecule characteristic of chloro-

form calculated from 1K (red) and 5K (green) solvent differ-
ences for a) QUBE and b) OPLS-AA, compared with experi-

mental calculations (black) [1]
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Figure C.2.2: ∂S
∂T per solvent molecule characteristic of

dichloromethane calculated from 1K (red) and 5K (green) sol-
vent differences for a) QUBE and b) OPLS-AA, compared with

experimental calculations (black) [1]



166
Appendix C. Analysis of Forcefield Methods to Predict Solvent-Term

Ultrafast X-ray Scattering Relative to Experimental Metrics
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Figure C.2.3: ∂S
∂T per solvent molecule characteristic of ethanol

calculated from 1K (red) and 5K (green) solvent differences for
a) QUBE and b) OPLS-AA, compared with experimental calcu-

lations (black) [1]
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Figure C.3.1: g(r) contributions of dominant scattering atom
combinations at 299.15K (1K above ground temperature) from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (N-N) b) chlo-
roform (Cl-Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O)
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Ultrafast X-ray Scattering Relative to Experimental Metrics
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Figure C.3.2: g(r) contributions of dominant scattering atom
combinations at 303.15K (5K above ground temperature) from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (N-N) b) chlo-
roform (Cl-Cl) c) dichloromethane (Cl-Cl) and d) ethanol (O-O)
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Ultrafast X-ray Scattering

Appendix D

Analysis of Forcefield Methods to
Predict Solute-Solvent Ultrafast
X-ray Scattering

D.1 Temperature-Dependent Solute-Solvent Scat-

tering Term
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Figure D.1.1: ∂S∂T per solvent molecule characteristic calculated
from 5K solution differences from OPLS-AA (blue) and QUBE
(red) for a) acetonitrile b) chloroform c) dichloromethane and

d) ethanol
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D.2 Comparison of Temperature-Dependent Solute-

Solvent Scattering Terms
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Figure D.2.1: ∂S
∂T per solvent molecule characteristic for the

cross-term contribution of chlorine calculated from 1K (red)
and 5K (green) solvent differences for a) QUBE and b) OPLS-

AA
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Appendix D. Analysis of Forcefield Methods to Predict Solute-Solvent

Ultrafast X-ray Scattering

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  1  2  3  4  5  6  7
Q

∆
 S

/a
.u

.
Q/Å−1

(a)

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  1  2  3  4  5  6  7

Q
∆

 S
/a

.u
.

Q/Å−1

(b)

Figure D.2.2: ∂S
∂T per solvent molecule characteristic for the

cross-term contribution of dichloromethane calculated from 1K
(red) and 5K (green) solvent differences for a) QUBE and b)

OPLS-AA
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Figure D.2.3: ∂S
∂T per solvent molecule characteristic for the

cross-term contribution of ethanol calculated from 1K (red) and
5K (green) solvent differences for a) QUBE and b) OPLS-AA
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Appendix D. Analysis of Forcefield Methods to Predict Solute-Solvent

Ultrafast X-ray Scattering

D.3 Radial Distribution Functions with Large Con-

tributions toSolute-Solvent Scattering
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Figure D.3.1: ∆g(r) contributions of dominant scattering atom
combinations calculated from 5K solvent differences from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (I-N) b) chlo-

roform (I-Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O)
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Figure D.3.2: g(r) contributions of dominant scattering atom
combinations at 299.15K (1K above ground temperature) from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (I-N) b) chlo-

roform (I-Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O)
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Ultrafast X-ray Scattering
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Figure D.3.3: g(r) contributions of dominant scattering atom
combinations at 303.15K (5K above ground temperature) from
OPLS-AA (blue) and QUBE (red), a) acetonitrile (I-N) b) chlo-

roform (I-Cl) c) dichloromethane (I-Cl) and d) ethanol (I-O)
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D.4 Temperature-Dependent Solute Scattering Terms
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Figure D.4.1: ∂S
∂T per solvent molecule characteristic if the

I2 solute calculated from 5K solution differences from OPLS-
AA (blue) and QUBE (red) for a) acetonitrile b) chloroform c)

dichloromethane and d) ethanol
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Ultrafast X-ray Scattering

D.5 Comparison of Temperature-Dependent Solute

Scattering Terms
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Figure D.5.1: ∂S
∂T per solvent molecule characteristic for the

solute-term contribution of molecular iodine solvated in ace-
tonitrile calculated from 1K (red) and 5K (green) solvent differ-

ences for a) QUBE and b) OPLS-AA
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Figure D.5.2: ∂S
∂T per solvent molecule characteristic for the

solute-term contribution of molecular iodine solvated in chlo-
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D.6 I-I Radial Distribution Functions for Solute
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