
Knowledge Representation in Synthetic Biology

James Alastair McLaughlin

Submitted for the degree of Doctor of Philosophy in the School of
Computing, Newcastle University

September 2019

Supervised by Professor Anil Wipat & Dr Dana Ofiteru

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis
has previously been submitted for a degree or other qualification at Newcastle
University or any other institution.

James Alastair McLaughlin

September 2019

1

Publications arising from this thesis

• McLaughlin, J. A., Myers, C. J., Zundel, Z., Wilkinson, N., Atallah, C., and Wipat,
A. “sboljs: Bringing the Synthetic Biology Open Language to the Web browser”.
In: ACS synthetic biology 8.1 (2018), pp. 191–193.

• McLaughlin, J. A., Myers, C. J., Zundel, Z., Mısırlı, G., Zhang, M., Ofiteru, I. D.,
Goñi Moreno, A., and Wipat, A. “SynBioHub: A Standards-Enabled Design
Repository for Synthetic Biology”. In: ACS synthetic biology 7.2 (2018),
pp. 682–688.

• McLaughlin, J. A., Pocock, M., Mısırlı, G., Madsen, C., and Wipat, A. “VisBOL:
web-based tools for synthetic biology design visualization”. In: ACS synthetic
biology 5.8 (2016), pp. 874–876.

• Madsen, C., McLaughlin, J. A., Mısırlı, G., Pocock, M., Flanagan, K., Hallinan, J.,
and Wipat, A. “The SBOL Stack: a platform for storing, publishing, and sharing
synthetic biology designs”. In: ACS synthetic biology 5.6 (2016), pp. 487–497.

• Cox III, R. S., McLaughlin, J. A., Grünberg, R., Beal, J., Wipat, A., and Sauro,
H. M. “A Visual Language for Protein Design”. In: ACS synthetic biology 6.7 (2017),
pp. 1120–1123.

• Zhang, M., McLaughlin, J. A., Wipat, A., and Myers, C. J. “SBOLDesigner 2: an
intuitive tool for structural genetic design”. In: ACS synthetic biology 6.7 (2017),
pp. 1150–1160.

• Cox, R. S., Madsen, C., McLaughlin, J. A., Nguyen, T., Roehner, N., Bartley, B.,
Bhatia, S., Bissell, M., Clancy, K., Gorochowski, T., Grünberg, R., Luna, A.,
Le Novere, N., Pocock, M., Sauro, H., Sexton, J. T., Stan, G.-B., Tabor, J. J.,
Voigt, C. A., Zundel, Z., Myers, C., Beal, J., and Wipat, A. “Synthetic biology open
language visual (SBOL visual) version 2.0”. In: Journal of Integrative
Bioinformatics 15.1 (2018).

• Brown, B., Atallah, C., McLaughlin, J. A., Misirli, G., Goñi-Moreno, Á., Roehner,
N., Skelton, D. J., Bartley, B., Beal, J., Poh, C. L., et al. “Capturing Multicellular
System Designs Using the Synthetic Biology Open Language (SBOL)”. in: bioRxiv
(2018), p. 463844.

• Quinn, J. Y., Cox III, R. S., Adler, A., Beal, J., Bhatia, S., Cai, Y., Chen, J., Clancy, K.,
Galdzicki, M., Hillson, N. J., Novere, N. L., Maheshwari, A. J., McLaughlin, J. A.,
Myers, C. J., Umesh, P., Pocock, M., Rodriguez, C., Soldatova, L., Stan, G.-B. V.,

2

Swainston, N., Wipat, A., and Sauro, H. M. “SBOL visual: a graphical language for
genetic designs”. In: PLoS biology 13.12 (2015), e1002310.

• Cox III, R. S., Madsen, C., McLaughlin, J. A., Nguyen, T., Roehner, N.,
Bartley, B., Beal, J., Bissell, M., Choi, K., Clancy, K., Grünberg, R., Macklin, C.,
Mısırlı, G., Oberortner, E., Pocock, M., Samineni, M., Zhang, M., Zhang, Z.,
Zundel, Z., Gennari, J. H., Myers, C., Sauro, H., and Wipat, A. “Synthetic biology
open language (SBOL) version 2.2. 0”. In: Journal of Integrative Bioinformatics
15.1 (2018).

• Mısırlı, G., Nguyen, T., McLaughlin, J. A., Vaidyanathan, P., Jones, T.,
Densmore, D., Myers, C. J., and Wipat, A. “A computational workflow for the
automated generation of models of genetic designs”. In: ACS synthetic biology 7.2
(2018), pp. 682–688.

• Mısırlı, G., Nguyen, T., McLaughlin, J. A., Myers, C., and Wipat, A. “Standard
Enabled Model Generator for Genetic Circuit Design”. In: 9th International
Workshop on Bio-Design Automation. 2017, p. 42. url: http : / / www .
iwbdaconf.org/2017/docs/IWBDA_2017_Proceedings.pdf.

• Beal, J., Cox, R. S., Grünberg, R.,McLaughlin, J. A., Nguyen, T., Bartley, B., Bissell,
M., Choi, K., Clancy, K., Macklin, C., Madsen, C., Mısırlı, G., Oberortner, E., Pocock,
M., Roehner, N., Samineni, M., Zhang, M., Zhang, Z., Zundel, Z., Gennari, J. H.,
Myers, C., Sauro, H., and Wipat, A. “Synthetic Biology Open Language (SBOL)
Version 2.1. 0”. In: Journal of Integrative Bioinformatics 13.3 (2017), pp. 30–132.

• Misirli, G., Taylor, R., Goñi-Moreno, A., Mclaughlin, J. A., Myers, C. J.,
Gennari, J., Lord, P., and Wipat, A. “SBOL-OWL: An ontological approach for
formal and semantic representation of synthetic biology information”. In: ACS
synthetic biology (2019).

• Roehner, N., Bartley, B., Beal, J., McLaughlin, J., Pocock, M., Zhang, M., Zundel,
Z., and Myers, C. J. “Specifying Combinatorial Designs with the Synthetic Biology
Open Language (SBOL)”. in: ACS Synthetic Biology (2019).

• Mısırlı, G., Hallinan, J., Pocock, M., Lord, P., McLaughlin, J. A., Sauro, H., and
Wipat, A. “Data integration and mining for synthetic biology design”. In: ACS
synthetic biology 5.10 (2016), pp. 1086–1097.

• Myers, C. J., Beal, J., Gorochowski, T. E., Kuwahara, H., Madsen, C.,
McLaughlin, J. A., Mısırlı, G., Nguyen, T., Oberortner, E., Samineni, M.,
Wipat, A., Zhang, M., and Zundel, Z. “A standard-enabled workflow for synthetic
biology”. In: Biochemical Society Transactions 45.3 (2017), pp. 793–803.

• Mısırlı, G., Madsen, C., Murieta, I. S. de, Bultelle, M., Flanagan, K., Pocock, M.,
Hallinan, J.,McLaughlin, J. A., Clark-Casey, J., Lyne, M., Micklem, G., Stan, G.-B.,
Kitney, R., andWipat, A. “Constructing synthetic biology workflows in the cloud”.
In: Engineering Biology 1.1 (2017), pp. 61–65.

3

http://www.iwbdaconf.org/2017/docs/IWBDA_2017_Proceedings.pdf
http://www.iwbdaconf.org/2017/docs/IWBDA_2017_Proceedings.pdf

• Beal, J., Nguyen, T., Gorochowski, T. E., Goñi-Moreno, A., Scott-Brown, J.,
McLaughlin, J. A., Madsen, C., Aleritsch, B., Bartley, B., Bhakta, S., et al.
“Communicating Structure and Function in Synthetic Biology Diagrams”. In:
ACS synthetic biology (2019).

4

Abstract

Synthetic biology, or SynBio, is a relatively new and exciting field concerning the
formalisation of genetic engineering into a design, build, test, learn lifecycle common
to other engineering disciplines. This lifecycle can be used to systematically develop
biological systems, such as synthetic genetic circuits — where transcriptional
machinery is repurposed to construct familiar electronic circuit concepts such as logic
gates — and other engineered devices such as biosensors or drug production factories.

Synthetic biological systems are typically designed by repurposing existing natural
and synthetic biological parts. This design process is made possible by knowledge about
part structure and function, which can be experimentally derived or predicted using
bioinformatics methodologies. However, the process of gathering such knowledge is
arduous, as it is often computationally intractable, distributed across multiple disparate
databases with semantic and syntactic heterogeneity, or even not recorded at all.

The research question motivating this work is how the machine-tractability of
knowledge can be improved in order to make the synthetic biology design process
more efficient. There are both short-term and long-term approaches. The short-term
approach is to improve the ease of access and machine-tractability of existing
knowledge relevant to SynBio design. The long-term approach is to establish the
software and data infrastructure necessary to enable knowledge about future designs
to be documented in a standardized manner.

This work investigates both approaches with research into data standards,
significantly furthering the development of the Synthetic Biology Open Language
(SBOL) to improve the machine-tractability of design knowledge; the research and
development of novel technology for data integration to make existing information
easier to access; conversion of an existing dataset, the iGEM Registry, into an enriched
SBOL representation; the development of SynBioHub, a repository for the sharing and
dissemination of future SynBio designs; and SynBioCAD, a visual tool enabling
synthetic biologists to capture their designs using data standards.

5

Acknowledgements

In no particular order, I would like to thank FUJIFILM DioSynth Biotechnologies and
the SAgE faculty for funding this project; my supervisors Anil Wipat and Dana Ofiteru;
the SBOL community, especially Chris Myers; and everyone in our team at Newcastle
University past and present, especially Göksel Mısırlı and Ángel Goñi Moreno.

This work is dedicated to my family, without whom it would not have been possible. I
would especially like to thank my parents Andy & Tricia McLaughlin for putting up
with me all of this time; my wife Heather McLaughlin for her patience during my
late-night writing sessions; and my brother Nick Smith for all of his encouragement
over the years.

I would also like to thank my friends Joseph Mullen, Keith Flanagan, James Skelton,
and Christian Atallah for all of the helpful discussions, advice, and support.

6

Attribution

The work produced as part of this thesis is open source, and has been developed as
such in collaboration with the synthetic biology community. Therefore, much of the
research presented has additional contributors beside myself. While co-authorship is
made explicit in publications, it is not as clear in thesis format. To avoid any ambiguity,
a list of projects with a description of my own contribution and external contributions
follows. The involvement of my supervisors, Anil Wipat and Irina Dana Ofiteru, is
implicit.

• SBOL is a community standard, and was established long before I began my
research. I have contributed significantly to the standard by serving as an elected
editor for two years, attending numerous workshops, participating in discussions
both online and offline, contributing to publications, and submitting SBOL
enhancement proposals (SEPs). The SEPs to which I have contributed are
included in Appendix A, each including their respective authorship information.

• sboljs: The first version was developed by myself. Later versions have code
contributions from Chris Myers, Zach Zundel, Dany Fu, and Nathan Wilkinson
(University of Utah).

• sbolgraph: The first version was developed by myself. Later versions have code
contributions from Christian Atallah (Newcastle University).

• pysbolgraph: Originally ported from sbolgraph as a joint effort with James
Scott-Brown (University of Oxford). Later versions have code contributions from
Christian Atallah, Bradley Brown, and Lewis Grozinger (Newcastle University).

• iGEM to SBOL conversion: The first version was developed by myself, then
furthered to be a complete conversion with help from Chris Myers (University of
Utah) during his sabbatical at Newcastle University.

• SBOL Stack: Based on an idea by Matthew Pocock. Developed in collaboration
with Curtis Madsen, with contributions from Goksel Misirli, Matthew Pocock,
Keith Flanagan, and Jennifer Hallinan. The code for its server API and client
libraries were written by myself.

• SynBioHub: Original version developed by myself in collaboration with the
SBOL Stack authors, and based on a user interface design by Antarctic Design.
Later versions have contributions from Chris Myers, Zach Zundel, Oliver Flatt,
and Michael Zhang (University of Utah); and Christian Atallah (Newcastle

7

University). The Java client code was developed by myself, and later integrated
into libSBOLj. The Web of Registries service was developed by Zach Zundel at
the University of Utah. SynBioHub Lab is being developed in collaboration with
Christian Atallah.

• VisBOL: First version developed by myself, originally as my dissertation project
for my undergraduate degree. Development continued into my Ph.D., and it now
has contributions from Chris Myers, Zach Zundel, Dany Fu, Nathan Wilkinson,
and James Scholz (University of Utah); and Arezoo Sadeghi (Boston University).

• ldf-facade, dnarichment, and SynBioCAD were developed by myself and had no
external contributors at the time this thesis was written.

8

Source code

Chapter 3: Machine-tractability in the design process
sboljs — https://github.com/SynBioDex/sboljs
sbolgraph — https://github.com/udp/sbolgraph
pysbolgraph — https://github.com/udp/pysbolgraph
SBOL Stack — https://github.com/ICO2S/sbolstack

Chapter 4: Data harmonization using Linked Data Fragments
(LDF)
ldf-facade — https://github.com/BioEnrichment/ldf-facade
distrowatch-ldf — https://github.com/udp/distrowatch-ldf
jbei-ice-js — https://github.com/udp/jbei-ice-js jbei-ice-ldf —
https://github.com/udp/jbei-ice-ldf

Chapter 5: Conversion and Enrichment of the iGEM Registry
igem2sbol — https://github.com/udp/igem2sbol
dnarichment — https://github.com/udp/dnarichment
enrichment2 — https://github.com/udp/enrichment2

Chapter 6: SynBioHub: a standards-enabled design repository for
synthetic biology
SynBioHub — https://github.com/synbiohub/synbiohub
SynBioHub Lab — https://github.com/synbiohub/synbiohub-lab

Chapter 7: SynBioCAD: a standards-enabled design tool for
synthetic biology
SynBioCAD – https://github.com/SynBioCAD/synbiocad

Other code developed for this work
bioterms — https://github.com/udp/bioterms
sequence-formatter — https://github.com/udp/sequence-formatter

9

https://github.com/SynBioDex/sboljs
https://github.com/udp/sbolgraph
https://github.com/udp/pysbolgraph
https://github.com/ICO2S/sbolstack
https://github.com/BioEnrichment/ldf-facade
https://github.com/udp/distrowatch-ldf
https://github.com/udp/jbei-ice-js
https://github.com/udp/jbei-ice-ldf
https://github.com/udp/igem2sbol
https://github.com/udp/dnarichment
https://github.com/udp/enrichment2
https://github.com/synbiohub/synbiohub
https://github.com/synbiohub/synbiohub-lab
https://github.com/SynBioCAD/synbiocad
https://github.com/udp/bioterms
https://github.com/udp/sequence-formatter

fmaprefix — https://github.com/udp/fmaprefix
sbolmeta — https://github.com/udp/sbolmeta
rdf-serializer-xml — https://github.com/ICO2S/rdf-serializer-xml
jfw — https://github.com/SynBioCAD/jfw

10

https://github.com/udp/fmaprefix
https://github.com/udp/sbolmeta
https://github.com/ICO2S/rdf-serializer-xml
https://github.com/SynBioCAD/jfw

Contents

1 Introduction 17
1.1 Motivation for this work . 17
1.2 Aims & Objectives . 18
1.3 Contribution of this thesis . 19
1.4 Thesis structure . 20

2 Background 22
2.1 Synthetic biology . 22

2.1.1 Genetic circuits . 23
2.1.2 An engineering lifecycle . 24

2.2 Data standards . 28
2.2.1 The Resource Description Framework (RDF) 29
2.2.2 The Synthetic Biology Open Language (SBOL) 32

2.3 Data integration . 42
2.3.1 Relational databases and their limitations 43
2.3.2 RDF triplestores . 44
2.3.3 Linked Data . 45
2.3.4 Query federation . 46
2.3.5 Linked data fragments . 46

2.4 Sharing and dissemination . 48
2.4.1 iGEM Parts Registry . 49
2.4.2 Addgene . 51
2.4.3 JBEI-ICE . 53

2.5 Standards-enabled tooling . 56
2.5.1 SBOL Visual . 56
2.5.2 Tooling for SBOL Visual . 57

2.6 Conclusion . 60

I Knowledge representation 61

3 Machine-tractability in the design process 62
3.1 Introduction . 62
3.2 Challenges for adoption of SBOL . 63

3.2.1 Limitation in scope . 63
3.2.2 Lack of data . 63
3.2.3 Lack of tooling . 65

11

3.2.4 Portability . 65
3.2.5 Complexity . 65

3.3 Improving portability of SBOL . 66
3.3.1 sboljs: SBOL on the Web . 67
3.3.2 sbolgraph . 69

3.4 SBOL Stack . 76
3.5 Enhancement proposals for SBOL . 77

3.5.1 Integration of provenance . 77
3.5.2 Alignment with external ontologies 78
3.5.3 Removal of unnecessary specification of serialization 79
3.5.4 Addressing structural/functional dichotomy 79
3.5.5 More intuitive nomenclature . 82

3.6 Discussion & Conclusion . 82
3.6.1 Libraries for SBOL . 84
3.6.2 SBOL Stack . 85
3.6.3 SBOL3 proposals . 85
3.6.4 Future work . 86

II Data Integration 90

4 Data harmonization using Linked Data Fragments (LDF) 91
4.1 Introduction . 91
4.2 Linked Data Fragments for non-RDF data sources 92
4.3 Modelling non-RDF services using triple patterns 93

4.3.1 Time complexity . 95
4.4 ldf-facade: An intelligent server for LDF 95

4.4.1 Tracking state . 98
4.5 Example usage: RDFizing DistroWatch 99
4.6 SynBio applications . 100

4.6.1 JBEI-ICE RDF using ldf-facade . 100
4.7 Discussion & Conclusion . 107

4.7.1 ldf-facade . 110
4.7.2 Federated design knowledge using SBOL Stack and LDF 110
4.7.3 Future work . 111

5 Conversion and Enrichment of the iGEM Registry 117
5.1 Introduction . 117
5.2 Modelling the iGEM database as SBOL 118

5.2.1 Categories . 123
5.2.2 De-flattening . 123

5.3 iGEM-SBOL graph queries . 124
5.3.1 Use of transcription factor binding sites in the iGEM Registry . . 124
5.3.2 Re-use of parts in the iGEM Registry 125

5.4 Enrichment . 128
5.4.1 Building a knowledge base . 129
5.4.2 RDF representation . 132

12

5.4.3 Enrichment tool . 132
5.5 Discussion & Conclusion . 139

5.5.1 Future work . 139

III Sharing and Dissemination 143

6 SynBioHub: a standards-enabled design repository for synthetic biology144
6.1 Introduction . 144
6.2 Architecture of SynBioHub . 145

6.2.1 SynBioHub vocabulary . 147
6.2.2 Users and graphs . 149

6.3 Interfaces . 149
6.3.1 Web interface . 150
6.3.2 Programmatic API . 150

6.4 Web of Registries . 150
6.5 SynBioHub Lab . 151

6.5.1 Whole-lifecycle knowledge management 151
6.5.2 Nomenclature . 152
6.5.3 Architectural changes . 152

6.6 Discussion & Conclusion . 153
6.6.1 The FAIRdom principles . 154
6.6.2 Dereferenceable URIs . 155
6.6.3 Future work . 155

7 SynBioCAD: a standards-enabled design tool for synthetic biology 167
7.1 Introduction . 167
7.2 Layouts for genetic circuits . 170

7.2.1 Specifying layouts . 170
7.2.2 Layout to SBOL references . 171
7.2.3 Creating layouts for SBOL data 173
7.2.4 Configurating layouts . 175
7.2.5 JSON representation . 177

7.3 Interactive genetic circuit visualizations for the Web 177
7.3.1 Rendering layouts with Scalable Vector Graphics (SVG) 177
7.3.2 Interactivity . 178

7.4 The SynBioCAD application . 182
7.5 Discussion & Conclusion . 187

7.5.1 Future work . 187
7.5.2 Conclusion . 188

Conclusions 190

8 Discussion & Conclusion 190
8.1 The groundwork: Machine-tractable design 190
8.2 Aim 1: Access to existing knowledge . 192

13

8.3 Aim 2: Accessibility of future knowledge 194
8.3.1 Conclusion . 195

Appendix A SEPs 207

Appendix B Examples of valid RDF/XML incompatible with libSBOLj 243

14

Abbreviations

API — Application Programming Interface

CAD — Computer Aided Design

CDS — Coding Sequence

FAIR, FAIRdom — Findability, Accessibility, Interoperability, and Reproducibility

GO, GO term — Gene Ontology, Gene Ontology term.

HMM — Hidden Markov Model

HTTP — Hypertext Transport Protocol

JSON — JavaScript Object Notation

LDF — Linked Data Fragments

ORF — Open Reading Frame

PWM — Position Weight Matrix

RDF — The Resource Description Framework

RDF/XML — A serialization of the Resource Description Framework (RDF) using the
eXtended Markup Language (XML)

SBO, SBO term — Systems Biology Ontology, Systems Biology Ontology term

SBOL — The Synthetic Biology Open Language

SBOL Visual, SBOLv — The Synthetic Biology Open Language Visual

SEP — SBOL Enhancement Proposal

SO, SO term — Sequence Ontology, Sequence Ontology term

15

SPARQL — SPARQL Protocol and RDF Query Language

TF — Transcription Factor

TFBS — Transcription Factor Binding Site

Turtle — Terse RDF Triple Language

URI — Uniform Resource Identifier

URL — Uniform Resource Locator

XML — eXtended Markup Language

iGEM — The Internationally Genetically Engineered Machine

16

1. Introduction

Synthetic biology (SynBio) is to genetic engineering what software engineering is to
computer programming, applying principles such as modularisation, standardisation,
and a design-build-test-learn lifecycle to the design of biological systems just as software
engineering does to the design of computer programs [1]. The ultimate objective of
SynBio is also the same as software engineering: to turn a largely ad-hoc, unpredictable
process into a rigorous engineering pipeline.

Quantifiable and reproducible development of novel biological systems has the
potential to revolutionise everything from pharmaceuticals [2] to space exploration [3].
SynBio is expected to become a £62bn market by 2020 [4], and is also a highly active
area of academic research. In the UK, synthetic biology has been made a BBSRC
priority due to its potential to “solve a number of major global challenges in fields
including health and wellbeing, energy, food security and the environment” [5].

Clearly, the potential of synthetic biology is widely acknowledged. However, there
is still much work to be done in order to accomplish the end-goal of a truly
reproducible, deterministic pipeline for the development of biological sytems. Every
stage of the engineering lifecycle must be meticulously optimised. Recent innovations
in targeted gene editing technologies such as CRISPR-Cas9 and fast, affordable
sequencing have dramatically improved efficiency in the build stage [6]. However, the
design stage is still predominantly a manual process, requiring the designer to gather
knowledge by trawling through multiple disparate sources of information, many of
which are computationally intractable and therefore cannot be queried systematically.

1.1 Motivation for this work
The research question motivating this work is how the machine-tractability of
knowledge can be improved in order to make the synthetic biology design process
more efficient.

While there have been significant optimizations in many stages of the synthetic
biology lifecycle, the design stage has comparably been neglected. Designing a
synthetic biological system requires gathering large amounts of domain-specific
information about what kind of parts to use and how those parts might behave.
Sometimes such information is available in databases, but often with many differing
representations. Sometimes the information is hidden away in forms that are not easily
computationally tractable, such as free text in publications. Worst of all, often the
necessary information has never been recorded and only exists as the domain
knowledge or intuition of human experts.

17

CHAPTER 1. INTRODUCTION

The issue of improving access to existing knowledge can be addressed using a range
of computational techniques collectively known as data integration [7]. Many of these
techniques, such as data harmonization, where the semantics of heterogeneous datasets
are adapted to enable them to complement each other; data warehousing, where data
from multiple disparate datasources are combined into one larger dataset; and query
federation, where multiple disparate datasets are queried dynamically at the time of
access; are already established in bioinformatics. However, knowledge about engineered
parts is different from knowledge about naturally occurring genomes, and requires its
own repositories and data representations.

Accessing existing knowledge is only a short-term solution to amuchwider problem:
that data about synthetic biological parts is routinely not recorded, or is recorded in a
form that is not easily computationally tractable. Solving this problem for the long-term
requires a paradigm shift in the tooling that people use to design synthetic biological
systems. Instead of using bespoke data formats and private databases, software must be
built on open standards and public repositories, so that the design information is made
readily accessible both to the software and users today, and those in the future.

Therefore, this work has two major research themes. The first theme, with the
motivation of making SynBio design easier in the short-term, is to explore how access
to existing knowledge useful for SynBio design can be improved using data
standardization and integration methodologies. The second theme, with the motivation
of making design easier for future synthetic biologists, is to explore how software and
data infrastructure can be adapted to ensure that future synthetic biological parts can
be documented in a well-defined and computationally tractable form.

1.2 Aims & Objectives
The two main research aims of this work are:

1. To explore how access to existing knowledge can be improved for the synthetic
biology design process

2. To propose data standards and software infrastructure to make future
knowledge about designs more accessible

These aims were broken down into the following objectives:

• Research and develop technologies to capture SynBio design in a
machine-tractable representation

• Research and develop strategies for data integration applicable to synthetic
biology datasets

• Investigate approaches to the enrichment of existing knowledge about biological
parts

• Research and develop tooling for the sharing and dissemination of synthetic
biological designs

18

CHAPTER 1. INTRODUCTION

1.3 Contribution of this thesis

Development of data standards
Much of this work concerns contributions to the synthetic biology community data
standard, the Synthetic Biology Open Language (SBOL), which is shown to serve as a
foundation both for short-term data harmonization and as a standardized,
machine-tractable data model upon which future SynBio tooling can be built.

This work provides numerous significant contributions to the SBOL standard,
including sbolgraph (section 3.3), a design pattern for creating SBOL-enabled tooling
with complete demonstrative implementations in multiple programming languages1,2;
and a series of SBOL Enhancement Proposals (SEPs) suggesting improvements to the
core standard (attached in Appendix A). The SEPs culminate in a proposed specification
for the next major iteration of the standard (SBOL 3.0) described in chapter 3.

Data integration methodology and applications
Biodesign is typically dependent on a huge amount of data. Unfortunately, these data
are often spread across hundreds of different databases with differing syntax and
semantics. The process of discovering information about parts to use in a SynBio
design can therefore be extremely tedious and error-prone, requiring significant
manual effort.

One of the benefits of the adoption of data standards such as SBOL is that it is now
possible to apply data integration techniques to improve access to synthetic biology
knowledge bases. The research in chapter 4 explores how recent innovations in data
integration can be applied to SynBio, and also how their fundamentals can be extended
with the development of ldf-facade3, a novel data integration framework for the
dynamic conversion of legacy datasets.

Also on the theme of data integration, this work explores the application of data
standards to existing datasets to facilitate improved tractability and interoperability
with a complete conversion of the iGEM Registry of Standard Biological Parts to
SBOL2, described in chapter 5.

Finally, the SBOL2 data standard can represent much more about a biological part
than just DNA, such as information about gene products and their interactions.
However, existing datasets, including the iGEM Registry, do not provide such
information. The Enrichment4 system proposed in chapter 5 shows how it may be
possible to systematically apply bioinformatics tooling to “fill in the blanks” by
augmenting designs with additional data.

A publishing workflow
A crucial concept in engineering — particularly software engineering — is the re-use
of smaller components to build larger designs. This process is still difficult in synthetic

1https://github.com/udp/sbolgraph
2https://github.com/udp/pysbolgraph
3https://github.com/BioEnrichment/ldf-facade
4https://github.com/udp/dnarichment

19

https://github.com/udp/sbolgraph
https://github.com/udp/pysbolgraph
https://github.com/BioEnrichment/ldf-facade
https://github.com/udp/dnarichment

CHAPTER 1. INTRODUCTION

biology for various reasons, not least of which is the unpredictable nature of biological
components. Another reason is that designs are not being communicated effectively.
Publications often omit crucial information necessary to reproduce designs [8], and the
large part repositories that do exist, such as the iGEM Registry, suffer from issues arising
from their lack of a standardised, machine-tractable data model (section 2.4.1).

SynBioHub5 (chapter 6) is an open-source repository developed primarily as part of
this work to facilitate the dissemination of synthetic biological designs. Just as
software engineering has code repositories such as GitHub and Bitbucket, SynBioHub
aims to help synthetic biologists work together more effectively by making it easy to
share design information in a standardised manner. Since its publication, SynBioHub
has been adopted by projects such as the NSF Living Computing Project (LCP) [9] and
the DARPA Synergistic Discovery & Design Project (SD2) [10].

In addition to providing a repository, this work also includes the development of
SynBioCAD6 (chapter 7), a user-facing computer aided design (CAD) tool which
enables users to communicate their designs with both a standardised SBOL Visual
representation and an SBOL data backend. Together, SynBioCAD and SynBioHub
provide the groundwork to enable users to document their designs using data
standards and publish them for sharing and dissemination.

1.4 Thesis structure
This thesis consists of a background chapter (pp. 22-61), followed by five research
chapters (pp. 62-189) and discussion and conclusions (pp. 190-195). The research
chapters are as follows:

I Knowledge representation (pp. 62-90)

• Chapter 3 Machine-tractability in the design process (pp. 62-90) concerns
furtherance of the development of the Synthetic Biology Open Language (SBOL),
a standard for machine-tractable synthetic biology design representation.

II Data Integration (pp. 91-143)

• Chapter 4 Data harmonization using Linked Data Fragments (LDF) (pp. 91-116)
explores how the recent innovation in the RDF community of Linked Data
Fragments (LDF) can be repurposed for the harmonization of non-RDF resources
to RDF, and how it can be applied to SBOL data.

• Chapter 5 Conversion and Enrichment of the iGEM Registry (pp. 117–1) explores
how the SBOL standard can be applied to an existing dataset, the iGEM Registry
of Standard Biological Parts, and how the wider scope of the SBOL2 data model
can be used to enrich existing parts with additional knowledge.

5https://wiki.synbiohub.org
6https://biocad.io

20

https://wiki.synbiohub.org
https://biocad.io

CHAPTER 1. INTRODUCTION

III Sharing and Dissemination (pp. 144-189)

• Chapter 6 SynBioHub: a standards-enabled design repository for synthetic biology
(pp. 144-166) concerns the development of SynBioHub, a repository for the
sharing and dissemination of synthetic biology designs built on the SBOL
standard/

• Chapter 7 SynBioCAD: a standards-enabled design tool for synthetic biology (pp.
167-189) concerns the development of SynBioCAD, a Web-based CAD tool for
visualizing and editing SBOL designs.

21

2. Background

Humans have been engineering biology for thousands of years. Early techniques such
as selective breeding and plant crossing are responsible for many of the species with
which we are familiar today, such as nearly all livestock and agricultural plant species
[11] [12].

Today, techniques based on molecular cloning allow us to be much more specific
about the features that we do or do not change. Instead of making millions of
unpredictable changes across a genome as with selective breeding, we can make just
one or several specific targeted changes — a process known as genetic engineering.

Genetic engineering has become much more powerful in recent years. With
technologies such as CRISPR-Cas9 and fast, affordable sequencing, we can now
develop engineered biological systems of unprecedented scale and complexity [6]. This
rapid increase in capability has parallels with innovations in computing in the late 20th
century. Primitive, single-tasking computers became gigahertz microcomputers in a
matter of decades, and electronics hobbyists gave rise to the brand new discipline of
software engineering [13]. It is thought that genetic engineering is on the cusp of a
similar revolution, and its answer to software engineering is synthetic biology (SynBio).

2.1 Synthetic biology
In the same way that software development had to adopt engineering principles to
transition from small-scale applications to critical worldwide infrastructure, it is
generally accepted that the development of biological systems must adopt a similar
approach to “scaling up” to unlock its full potential [14]. This approach, termed
synthetic biology, includes principles [15] such as:

1. Modularisation: the decomposition of a large system into distinct modules
which can be composed in different ways to build different systems.
Modularisation is a common task in software engineering, where large codebases
can be decomposed into smaller, re-usable libraries [16]. In a synthetic biology
context, an example of modularisation would be the isolation of a promoter from
a natural system so that it can be re-purposed to drive transcription in an
engineered system.

2. Standardization: agreement on a common way of performing operations to
enable interoperability [17]. In software engineering, examples of standards
include file formats, so that if one software package saves a file, another can load
it; and the use of standard protocols so that one piece of software can

22

CHAPTER 2. BACKGROUND

communicate with another. An example of a synthetic biology application of
standardisation is the BioBrick standard, which allows DNA to be easily digested
and re-assembled in a well-defined manner.

3. An engineering lifecycle: the application of a pipeline of specify, design, build,
test, learn. In other engineering disciplines, the development process is split into a
progression of clearly defined stages [18]. Together, these stages create a lifecycle,
where information learnt from one iteration can feed into the design process of
the next.

2.1.1 Genetic circuits
The building blocks of a biological system— organic molecules — are also their currency,
in the same way that electrons are the currency of electronic circuits. Biological systems
can detect, modify, and produce molecules such as antibiotics [19], therapeutic proteins
[20], and functional DNA.

One of the definitive tools in the synthetic biology arsenal is the genetic circuit: a
logical system built from organic molecules. The implementation of genetic circuits
depends on a set of natural biological processes [21]:

• Promoters are regions of DNA which initiate the transcription of downstream
coding sequences (CDSs) to molecules of messenger RNA (mRNA), when
recognised by an enzyme known as RNA polymerase

• mRNA molecules are translated into amino acid sequences by ribosomes. In
prokaryotic systems, ribosomes are recruited by a ribosome binding site (RBS), a
region of the mRNA between the promoter and the CDS.

• A string of amino acids (primary structure) may then fold into further structures
to form a protein.

• Some proteins, known as transcription factors (TFs), have specific domains that
enable binding to a region of DNA. Sometimes, this binding happens in the region
of a promoter, and can either activate or inhibit transcription.

• Sites around a promoter where such binding can happen are known as operators
or, more specifically, transcription factor binding sites (TFBSs).

Genetic circuits can be either natural, e.g. the lac operon for conditional activation
of lactose metabolism found in many bacteria; or synthetic, e.g. engineered biological
designs such as the repressilator [22] and the genetic toggle switch [23].

The lac operon

The lac operon, first documented in E. coli by Jacob & Monod in 1961 [24], is a widely
studied example of a natural genetic circuit. The lac operon encodes β-galactosidase,
an enzyme which can metabolise lactose. β-galactosidase is normally expressed at low
levels, unless specific conditions are met: glucose must be absent AND lactose must be
present.

23

CHAPTER 2. BACKGROUND

A synthetic biologist might describe the lac operon as a genetic circuit device
comprising several sub-systems (Fig. 2.1):

• A glucose sensor: the catabolite activator protein (CAP) binds to cyclic AMP
(cAMP), a small molecule synthesized in the absence of glucose. CAP only binds
to its target DNA site when in a complex with cAMP. Therefore, the transcription
factor binding site for CAP-cAMP can be used as an operator to detect glucose.

• A lactose sensor: lacI is constitutively expressed, and binds to an operator site of
the promoter pLac to inhibit transcription. When allolactose binds to lacI, it can
no longer bind to the lacI binding site. Therefore, the transcription factor binding
site for lacI can be used as an operator to detect lactose.

• A glucose and lactose sensitive promoter: pLac contains the aforementioned
glucose sensor and the lactose sensor operator sites, and therefore is controlled
by both the presence of lactose and the absence of glucose.

The Elowitz repressilator

Synthetic genetic circuits are typically constructed by repurposing components from
natural systems. For example, lacI and pLac from the lac operon are well-documented
as a transcription factor-promoter pair where the transcription factor represses the
promoter. It is possible to extract the DNA sequence for pLac and the lacI CDS and
engineer them into a different system.

Elowitz et al. (2000) pioneered the genetic “repressilator” circuit using three such
pairs of transcription factors and promoters: lacI and pLac, tetR and pTet, and λ cI. In
the repressilator, each transcription factor represses the promoter driving expression of
the next in order to create an oscillating negative feedback loop (Fig. 2.2) [22].

The lacI/tetR toggle switch

The lacI/tetR toggle switch published by Gardner et al. in 2000 [23] is another
well-known example of a synthetic genetic circuit, using lacI/pLac and tetR/pTet to
create a “switch” that can be flipped on or off, therefore effectively storing 1 bit of
information biologically. The switch can be toggled from an “on” state to an “off” state
by adding aTc, which prevents the inhibition of pTet and allows tetR to be expressed,
which represses pLac to maintain an “off” state until IPTG is added to flip the switch
back to “on” (Fig. 2.3).

2.1.2 An engineering lifecycle
One of the core principles of synthetic biology is the application of a design, build, test,
learn lifecycle (Fig. 2.4) common to other engineering disciplines [18]. While there are
varying definitions of this lifecycle, it is generally described as comprising four stages:

• The design stage takes a specification - for example, “I want a system to detect the
presence of IPTG” - and produces a design, for example, “I will use pLac to drive
GFP expression and clone it into E. coli”

24

CHAPTER 2. BACKGROUND

lacI

lactose sensor

CAP

glucose sensor

CAP
cAMP

cAMP glucose

β-Galactosidase

lacZ lacY lacA

pLacpLac

pLac

β-Galactosidase

lactose

allolactose

lac operon

Figure 2.1: The lac operon depicted as a device comprising a glucose sensor and a lactose sensor.
Dashed lines indicate equivalence, arrows indicate production or induction, and flat-headed arrows
indicate repression. The green “bent arrow” glyph is the SBOL Visual symbol for a promoter, and the
blue pentagon glyph is the SBOL Visual symbol for a coding site (CDS).

25

CHAPTER 2. BACKGROUND

pLac

Repressilator

tetR pTet λ cI λ pR lacI

pTet GFP

Figure 2.2: The Elowitz repressilator circuit depicted using SBOL Visual. Each transcription factor
(tetR, λ cI, and lacI) represses the promoter driving expression of the next in order to create an
oscillating negative feedback loop.

• The implementation stage or build stage takes a design and produces an
implementation. In this case, we could construct the DNA and use a cloning
vector to insert it into competent cells.

• The testing stage takes an implementation and produces test results. For example,
using a plate reader to measure GFP fluorescence.

• The learn stage interprets test results to inform the design stage. Did the design
work? If not, why not? How can test results be used to improve the design?

Optimisation of any stage of this lifecycle can improve turnaround for synthetic
biologists. In the testing stage, for example, we now have fast and affordable
sequencing technology which allows rapid validation of constructs. In the
implementation stage, we now have cutting edge targeted gene editing technologies
such as CRISPR-Cas9 [25]. However, the design stage — the focus of this work — has
arguably been neglected in comparison to other stages of the lifecycle. SynBio design
is still largely a cumbersome, manual process which requires significant domain
knowledge and human intervention.

One of the problems with SynBio design is that unlike, for example, electronic circuit
engineering, there is no consistently accurateway to predict the behaviour of a biological
system. Modelling and simulation in SynBio are continually advancing, but they cannot
yet provide the same reliability for testing designs prior to construction that is possible in
other engineering disciplines [26]; while the designer of an electronic circuit can rapidly
build and test prototypes using CAD software before committing to building anything
physical, the designer of a biological system is still bound by the turnaround time of lab
experiments. Improving the accuracy of computational models to the point where they
can be used in place of experiments would make biodesign less time-consuming, and as
such has been the focus of many recent efforts to improve the efficiency of the design
stage, such as the SBML modelling language [27] and the BioModels repository [28].

26

CHAPTER 2. BACKGROUND

pT
et

pL
ac

la
cI

te
tR

G
FP

IP
TG

aT
c

5’
3’

3’
5’

Fi
gu

re
2.
3:

A
gr

ap
hi
ca

ld
ep

ic
tio

n
of

th
e
la
cI
/te

tR
ge

ne
tic

to
gg

le
sw

itc
h

de
sc
ri
be

d
by

G
ar

dn
er

et
al
.,
20

00
[2
3]
.Th

e
la
cI

tr
an

sc
ri
pt
io
n
fa
ct
or

in
hi
bi
ts

pT
et

in
th

e
ab

se
nc

e
of

aT
c,

an
d
th

e
te
tR

tr
an

sc
ri
pt
io
n
fa
ct
or

re
pr

es
se
s
pL

ac
in

th
e
ab

se
nc

e
of

IP
TG

.Th
e
sw

itc
h
ca

n
be

to
gg

le
d
fr
om

an
“o
n”

st
at
e
to

an
“o
ff
”
st
at
e
by

ad
di
ng

aT
c,

w
hi
ch

pr
ev

en
ts

th
e
in
hi
bi
tio

n
of

pT
et

an
d
al
lo
w
s
te
tR

to
be

ex
pr

es
se
d,

w
hi
ch

re
pr

es
se
s
pL

ac
to

m
ai
nt

ai
n
an

“o
ff
”
st
at
e
un

til
IP
TG

is
ad

de
d
to

fli
p

th
e
sw

itc
h
ba

ck
to

“o
n”

.

27

CHAPTER 2. BACKGROUND

Specification

Design stage

Design

Implementation

Build stage

Test stage

Test results

Learn stage
In the learn stage, test results are

interpreted to inform the design
stage. Did the design work? If

not, why not? How can test
results be used to improve the

design?

The synthetic biology lifecycle
begins with a specification. What

do I want to build?

In the design stage, a potential
design is created to fulfil the
specification.

In the build stage, the design
is realised e.g. by constructing
it in the wet lab.

The test stage assesses how
successful the implementation

was, e.g. by conducting an assay

Figure 2.4: The Synthetic Biology lifecycle consists of four stages: design, build, test, and learn. The
design stage produces a design from a specification; the build stage produces an implementation from
a design; the test stage produces test results from an implementation; and the learn stage completes
the lifecycle by using the test results to inform the design stage.

Another active area of research in design optimisation is biodesign automation
(BDA): the process of automatically producing designs given a specification. The
annual International Workshop on Bio-Design Automation (IWBDA) [29] has been
running since 2009, and regularly brings together researchers worldwide to work on
BDA challenges. A notable recent BDA innovation is Cello [30], a tool which allows
system descriptions written in the hardware description language Verilog (IEEE
standard 1364) to be translated into genetic circuits when given a library of parts and
constraints.

2.2 Data standards
There are many attributes that can be used to describe a biological design. For example,
the Gardner et al. toggle switch paper [23] contains all of the following in the form of
free-text and diagrams:

• Structure — What features does the design have, and in what order?

• Hierarchy — Is the design made up of smaller parts? If so, what are they?

• Intended function — What is the design for and how is it expected to work?

• Sequence data — What are the sequences (e.g. DNA or protein) that make up the
design, if any?

28

CHAPTER 2. BACKGROUND

>BBa_I13522 Part-only sequence (937 bp)
tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcactactagagaaagaggagaaatactagat
gcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttct
gtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttc
catggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactt
tttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgct
gaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttg
gacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaactt
caaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccct
gtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtcc
ttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataatactagagccaggcatcaaa
taaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacac
tggctcaccttcgggtgggcctttctgcgtttata

Figure 2.5: FASTA files consist of a header, beginning with a > character and followed by a free-text
description; and a sequence which spans the subsequent line or lines. Multiple FASTA entries can be
combined into the same file by simple concatenation, though tool support for multiple sequences is
not universal.

• Characterisation data - How does the design function in a particular host?

• Metadata — What is the design called? Does it have a description?

• Provenance — Who made the design, why did they make it, what did they make it
from, and when did they make it?

Unfortunately, the computational representation of a design usually consists of a
very small subset of these attributes [8]. For example, a design could be represented
in FASTA [31] format, containing only sequence data and minimal metadata (Fig. 2.5).
GenBank [32][33] format is a slight improvement, as it has sequence annotations which
capture structure (Fig. 2.6), but crucial information such as provenance is still omitted.
Furthermore, neither FASTA or GenBank allow for the specification of an abstract design
without sequences, which is necessary in synthetic biology to represent the conception
of a design (e.g. “a genetic toggle switch”) prior to its realisation for a specific host (e.g.
“a LacI/TetR genetic toggle switch optimised for E. coli”).

The reason for these limitations is a common theme in this work. Standards such as
FASTA and GenBank were created for the annotation of naturally occurring systems,
not engineered ones. While some of the information — such as sequence information
— is common to both natural and engineered parts, it is clear that a different data
standard is required to truly capture the attributes of a synthetic design. The
replacement of these archaic, impenetrable text-based file formats with modern,
machine-tractable data standards could make the design process amenable to
modelling and automation, and make knowledge about existing and future designs
more discoverable and easier to document in a standardized manner.

2.2.1 The Resource Description Framework (RDF)
Though biology still makes extensive use of text-based file formats such as FASTA and
GenBank, the rest of computing has largely moved on. Text-based formats are often both
syntactically and semantically ambiguous, and the implementation of bespoke parsers
and formatters for such formats is error-prone.

29

CHAPTER 2. BACKGROUND

LOCUS BBa_I13522 937 bp DNA linear UNK 29-May-2019
DEFINITION pTet GFP
ACCESSION BBa_I13522
VERSION BBa_I13522.1
FEATURES Location/Qualifiers
 promoter 1..54
 RBS 63..74
 CDS 81..800
 terminator 809..888
 terminator 897..937
ORIGIN
 1 tccctatcag tgatagagat tgacatccct atcagtgata gagatactga gcactactag
 61 agaaagagga gaaatactag atgcgtaaag gagaagaact tttcactgga gttgtcccaa
 121 ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg
 181 aaggtgatgc aacatacgga aaacttaccc ttaaatttat ttgcactact ggaaaactac
 241 ctgttccatg gccaacactt gtcactactt tcggttatgg tgttcaatgc tttgcgagat
 301 acccagatca tatgaaacag catgactttt tcaagagtgc catgcccgaa ggttatgtac
 361 aggaaagaac tatatttttc aaagatgacg ggaactacaa gacacgtgct gaagtcaagt
 421 ttgaaggtga tacccttgtt aatagaatcg agttaaaagg tattgatttt aaagaagatg
 481 gaaacattct tggacacaaa ttggaataca actataactc acacaatgta tacatcatgg
 541 cagacaaaca aaagaatgga atcaaagtta acttcaaaat tagacacaac attgaagatg
 601 gaagcgttca actagcagac cattatcaac aaaatactcc aattggcgat ggccctgtcc
 661 ttttaccaga caaccattac ctgtccacac aatctgccct ttcgaaagat cccaacgaaa
 721 agagagacca catggtcctt cttgagtttg taacagctgc tgggattaca catggcatgg
 781 atgaactata caaataataa tactagagcc aggcatcaaa taaaacgaaa ggctcagtcg
 841 aaagactggg cctttcgttt tatctgttgt ttgtcggtga acgctctcta ctagagtcac
 901 actggctcac cttcgggtgg gcctttctgc gtttata
//

Figure 2.6: Unlike FASTA, the GenBank format allows the promoter, RBS, CDS, and terminator
regions of the DNA to be annotated as features.

There are a range of modern solutions for general data representation, with varying
degrees of semantic expressiveness and machine-tractability. On a basic level, the issue
of ambiguous syntax can be solved by using a format such as JSON [34] or XML [35],
and various standards such as JSON Schema [36] and XML Schema [37] exist to add
semantics to such formats while retaining the traditional “tree-based” model of a
document containing data fields. An example of the application of such an approach to
a biological dataset is the UniProt XML API [38]: a record for a protein can be retrieved
as an XML document which can be interpreted by any XML parser, and its semantics
validated using the UniProt XML schema. While this approach is more formalised than
the ad-hoc text-based formats that came before, it is still a reductive knowledge
representation. A UniProt protein is not just a document; it is a grouping of knowledge
about a particular resource which is part of a much larger web of information.

The Resource Description Framework (RDF) [39] (Fig. Fig. 2.7) is a simple model
formalized by the World Wide Web Consortium (W3C) to describe named properties
and their values. The core principles of RDF are straightforward:

• In order to describe a resource — which could be anything from a book to a
bacterium — it first needs to be assigned an identifier. The Web already has a
system for identifiers called URIs, which are a superset of URLs used by
browsers.

• To assign a property to a resource, the property is also given an identifier URI.
There are many published collections of properties, known as vocabularies.

• Finally, the property also needs a value object. This object could be a string (i.e.

30

CHAPTER 2. BACKGROUND

<http://example/promoter>

sbol:ComponentDefinition
“pLac”

a
dcterms:title

<http://example/promoter/lacI_binding_site>

sbol:component

sbol:Component

a

“lacI TF binding site”

dcterms:title

Figure 2.7: An example of an RDF graph capturing knowledge about the pLac promoter. Each edge
in the graph is an RDF predicate connecting a subject to an object. The subject, predicate, and object
together forms a triple, for example <http://example/promoter> dcterms:title
"pLac".

some text), a number, or even the identifier of another resource. This triad of
subject, predicate, object is known as a triple.

• As the subject and the object of a triple may both themselves be the URIs of
resources, it is possible to link two resources together. This networking of
resources by triples forms a directed graph.

One of the key features of an RDF graph-based knowledge representation is that
both the nodes and the edges have an identity. As these identities can be any valid URI,
it is helpful if providers of RDF data agree on common vocabularies so that knowledge
from different datasets is semantically compatible. For example, the Dublin Core
Metadata Initiative specifies that the URI
http://purl.org/dc/terms/title (usually abbreviated to the prefixed
from dcterms:title) can be used to specify “a name given to the resource” [40].
Regardless of whether the resource is a book in a library, a film, or a biological part, if
it has an edge with the URI dcterms:title, one navigating the graph knows that
the edge points to its name.

The ability to use any URI as the identity of an edge also allows for highly complex
and specific vocabularies, known as ontologies [41]. Such vocabularies are particularly
useful in a biological dataset, where in addition to having typical properties such as a title
and description, a resource might also have properties such as “molecular structure” or
“melting point”. The use of ontologies is well-established in biology with projects such
as the Gene Ontology (GO) [42] and the Sequence Ontology (SO) [43].

The suitability of ontology-backed RDF graph representations for biological data is
widely acknowledged in the bioinformatics community, with some of the oldest and
largest biological datasets such as UniProt and PubChempublishing official RDF versions
[44] [45]. The European Bioinformatics Institute (EBI) recently launched a unified RDF
platform integrating datasets such as BioModels, ChEMBL, and Ensembl, citing the need
to “better serve complex research questions across resources” [46].

31

CHAPTER 2. BACKGROUND

Figure 2.8: Cartoon by Randall Monroe of XKCD fame, common to every set of
slides at any conference concerning standards development. CC-BY-NC 2.5 https://
creativecommons.org/licenses/by-nc/2.5/

2.2.2 The Synthetic Biology Open Language (SBOL)
The Synthetic Biology Open Language (SBOL) is an RDF vocabulary specifically for the
for the representation of synthetic biology designs [47]. Like FASTA and GenBank, it
can be used to describe sequences and their features. However, SBOL can also capture
essential design information, including compositional hierarchy, intended function,
provenance, and experimental data.

In order to avoid the situation captured brilliantly by cartoonist Randall Monroe
(Fig. 2.8), SBOL does not attempt to re-invent the wheel, instead re-using existing
standards where possible. SBOL uses existing ontologies such as dcterms for metadata,
the sequence ontology for functional assignments, and Prov-O for provenance (Fig.
2.9).

The first version of SBOL (“SBOL1”) was described in its 2011 BBF RFC as enabling
“the electronic exchange of information describing DNA components used in synthetic
biology” [52]. SBOL1 provides a straightforward progression from non-standardized,
text-based formats such as GenBank, with the notable addition of compositional
hierarchy. SBOL1 has a simple set of four data objects (or “classes”) that can be used to
capture data about a part:

• The DnaComponent object is used to represent a biological part. It has a
name, description, a type taken from the Sequence Ontology (for example,
SO:0000167 for “promoter”), an optional associated DnaSequence object,
zero or more associated SequenceAnnotation objects.

• The DnaSequence object is used to specify a DNA sequence. It has a
nucleotides property which stores the sequence as a string, much as a
FASTA file would.

• The SequenceAnnotation object is used to annotate a region of a
DnaSequence. It specifies the start and end position of the region in base
pairs; whether the annotation is on the forward or reverse strand; and,
optionally, links to another DnaComponent to specify that the annotation is
composition of another part.

32

https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/

CHAPTER 2. BACKGROUND

Figure 2.9: Examples of ontologies that can be used to describe biological parts. The part is
represented by a URI (center). SBOL can be used to describe the structure and sequence of a part. The
Sequence Ontology (SO) [43], and Systems Biology Ontology (SBO) [48], can be used to annotate the
part with functional assignments. The Provenance Ontology (Prov-O) [49] can be used to describe
”who, what, how, when” the part description was produced. Dublin Core [50] annotations are used to
add metadata, such as a name and description. Finally, the SyBiOnt ontology [51] enables enriched
annotations of biochemical activity, pathways, and further information about interactions.

33

CHAPTER 2. BACKGROUND

Figure 2.10: A UML diagram of the SBOL1 data model, showing the relationship between its four
classes: DnaComponent, DnaSequence, SequenceAnnotation, and Collection.
Source: BBF RFC 84: Synthetic Biology Open Language (SBOL) Version 1.0.0 (Galdziki et al.)

34

CHAPTER 2. BACKGROUND

FASTA GenBank SBOL1 SBOL2
Structure 7 3 3 3

Hierarchy 7 7 3 3

Intended function 7 7 7 3

Sequence data 3 3 3 3

Characterisation data 7 7 7 3

Metadata 3 3 3 3

Provenance 7 7 7 3

Table 2.1: Assessment of the ability of different data standards to represent the list of design
attributes described in section 2.2.

• The Collection object allows multiple DnaComponent objects to be
grouped together. For example, a library of promoters could have a
corresponding Collection.

The use of SBOL1 has a number of advantages over text-based formats. SBOL1 has a
well-specified RDF/XML representation, which can be interpreted by any RDF or XML
software library — solving the potential ambiguities of parsing tabulated formats such
as GenBank. SBOL1 also mandates the use of well-defined terms from the Sequence
Ontology to specify the type of components instead of ambiguous free text labels. Most
importantly, SBOL1 allows a DnaComponent to be composed of multiple, smaller
DnaComponent definitions, enabling the fundamental synthetic biology concept of
composition.

Version 2.0 of SBOL (”SBOL2”) was released in 2015. In SBOL2, the concept of a
DnaComponentwas replaced with a more generalised ComponentDefinition,
which means that in addition to DNA, SBOL2 can represent any possible component of
a biological system including proteins, RNAs, and small molecules (Fig. 2.12).

SBOL2 also introduced ModuleDefinition, an object intended to represent
more abstract, “functional” relationships. While, like ComponentDefinition, a
ModuleDefinition can contain instantiations of components, it cannot have a
sequence. A ModuleDefinition can specify interactions between its component
instances, such as a CDS encoding a protein or two proteins forming a complex 1.

Because the SBOL specification is built on RDF, all SBOL data is implicitly also an
RDF graph. This fact that SBOL can be viewed as a knowledge graph is not immediately
obvious from either the SBOL specification or from the software implementation of SBOL
in libSBOLj. This is likely because the recommended serialization of SBOL is a specific
subset of RDF/XML, a method of serializing RDF triples using XML syntax [53]. While
SBOL can be deserialized relatively trivially using an RDF/XML parser, its serialization
is slightly more complicated; RDF/XML has both a nested and flat form, and the SBOL

1The issue of when to use a ComponentDefinition and when to use a ModuleDefinition
remains a point of contention within the SBOL community. Proposals to resolve this by merging the two
into a unified object are detailed later in chapter 3

35

CHAPTER 2. BACKGROUND

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix igem: <http://parts.igem.org/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix sbol: <http://sbols.org/v2#> .
@base <http://parts.igem.org/Part:BBa_I13522> .

<http://parts.igem.org/Part:BBa_I13522> a <http://sbols.org/v2#ComponentDefinition> ;
 dcterms:title "BBa_I13522" ;
 dcterms:description "pTet GFP" ;
 dcterms:created "2005-06-30T11:00:00Z" ;
 dcterms:modified "2015-08-31T04:07:35Z" ;
 igem:partStatus "Released HQ 2013" ;
 igem:discontinued "false" ;
 igem:dominant "true" ;
 igem:sampleStatus "In stock" ;
 dc:creator "jkm" ;
 sbol:type <http://www.biopax.org/release/biopax-level3.owl#DnaRegion> ;
 sbol:role <http://identifiers.org/so/SO:0000804> ;
 sbol:sequence <#sequence> ;
 sbol:sequenceAnnotation <#promoterRegion>, <#rbsRegion>, <#cdsRegion>, <#terminator1Region>, <#terminator2Region> ;
 sbol:component <#promoter>, <#rbs>, <#cds>, <#terminator1>, <#terminator2> .

<#promoter> a sbol:Component; sbol:definition <http://parts.igem.org/Part:BBa_R0040>; sbol:access sbol:public .
<#rbs> a sbol:Component; sbol:definition <http://parts.igem.org/Part:BBa_E0040>; sbol:access sbol:public .
<#cds> a sbol:Component; sbol:definition <http://parts.igem.org/Part:BBa_B0034>; sbol:access sbol:public .
<#terminator1> a sbol:Component; sbol:definition <http://parts.igem.org/Part:BBa_B0012>; sbol:access sbol:public .
<#terminator2> a sbol:Component; sbol:definition <http://parts.igem.org/Part:BBa_B0010>; sbol:access sbol:public .

<#promoterRegion> a sbol:SequenceAnnotation; sbol:location <#promoterLocation>; sbol:component <#promoter> .
<#rbsRegion> a sbol:SequenceAnnotation; sbol:location <#rbsLocation>; sbol:component <#rbs> .
<#cdsRegion> a sbol:SequenceAnnotation; sbol:location <#cdsLocation>; sbol:component <#cds> .
<#terminator1Region> a sbol:SequenceAnnotation; sbol:location <#terminator1Location>; sbol:component <#terminator1> .
<#terminator2Region> a sbol:SequenceAnnotation; sbol:location <#terminator2Location>; sbol:component <#terminator2> .

<#promoterLocation> a sbol:Range; sbol:start "1"; sbol:end "54"; sbol:orientation sbol:inline .
<#rbsLocation> a sbol:Range; sbol:start "63"; sbol:end "74"; sbol:orientation sbol:inline .
<#cdsLocation> a sbol:Range; sbol:start "81"; sbol:end "800"; sbol:orientation sbol:inline .
<#terminator1Location> a sbol:Range; sbol:start "809"; sbol:end "888"; sbol:orientation sbol:inline .
<#terminator2Location> a sbol:Range; sbol:start "897"; sbol:end "937"; sbol:orientation sbol:inline .

<#sequence> a sbol:Sequence ;
 sbol:encoding <http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html> ;
 sbol:elements """tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcactactagagaaagaggagaaatactagatgcgtaaaggagaagaactttt
cactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgca
ctactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgccc
gaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattt
taaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaaca
ttgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatccc
aacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataatactagagccaggcatcaaataaaacgaaaggctc
agtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata""" .

Figure 2.11: The iGEM part BBa_I13522 represented in SBOL2 using Turtle serialization. The
features are not only annotated but linked to other parts using sbol:definition, which
enables composition. Additional namespaces (in this case, igem:) can be used to add information
which is not part of the core SBOL data model. Features introduced in SBOL2 such as the ability
to represent proteins and interactions are not used in this example because the iGEM part does not
provide such information, but it would be possible to add them to provide a richer view of the part.

36

CHAPTER 2. BACKGROUND

C
om

po
ne

nt
D
efi

ni
tio

n

C
om

po
ne

nt

Se
qu

en
ce

An
no

ta
tio

n
Se

qu
en

ce
C
on

st
ra
in
t

Lo
ca

tio
n

Se
qu

en
ce

M
od

el

In
te
ra
ct
io
n

Pa
rt
ic
ip
at
io
n

Ex
pe

rim
en

t

Ex
pe

rim
en

ta
lD
at
a

C
ol
le
ct
io
n

M
od

ul
eD

efi
ni
tio

n
M
od

ul
e

Fu
nc

tio
na

lC
om

po
ne

nt

Fi
gu

re
2.
12

:
Th

e
Sy

nt
he

tic
Bi

ol
og

y
O
pe

n
La

ng
ua

ge
(S
BO

L)
ve

rs
io
n

2
da

ta
m
od

el
.

To
p-

le
ve

l
ob

je
ct
s

ar
e

sh
ow

n
in

gr
ee
n.

C
om

pa
re
d

to
ve

rs
io
n

1,
D
n
a
C
o
m
p
o
n
e
n
t

ha
s

be
en

ge
ne

ra
liz

ed
in
to

C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

to
al
lo
w

th
e

re
pr

es
en

ta
tio

n
of

no
n-

D
N
A

m
ol
ec
ul
es
;

th
e

pa
ra

lle
l

M
o
d
u
l
e
D
e
f
i
n
i
t
i
o
n

da
ta

m
od

el
ha

s
be

en
ad

de
d

to
in
tr
od

uc
ed

to
al
lo
w

th
e

re
pr

es
en

ta
tio

n
of

fu
nc

tio
na

l
re
la
tio

ns
hi
ps

;
an

d,
re
ce
nt

ly
,
su

pp
or
t
fo
r

ex
pe

ri
m
en

ta
ld

at
a
ha

s
be

en
ad

de
d.

37

CHAPTER 2. BACKGROUND

Figure 2.13: A comparison of FASTA, GenBank, SBOL1, and SBOL2. FASTA represents only a
sequence. GenBank represents a sequence with annotations. SBOL version 1 adds hierarchy and the
functional assignment using ontology terms. SBOL version 2 adds interactions. Figure credit: The
SBOL community

38

CHAPTER 2. BACKGROUND

specification requires a specific hybrid of the two despite their equivalence as specified
by the RDF/XML specification (Fig. 2.15).

SBOL is slowly gaining traction in the synthetic biology community. It is now
recommended by the ACS Synthetic Biology journal [54], and supported as a data
exchange format by some existing tools such as Benchling [55]. However, there remain
few examples of SBOL “in the wild”, likely due to a number of issues discussed later in
this work.

39

CHAPTER 2. BACKGROUND

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
p
L
a
c
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

T
F

b
i
n
d
i
n
g

s
i
t
e
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
>

a

s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
>

d
c
t
e
r
m
s
:
t
i
t
l
e

"
p
L
a
c
"

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
>

s
b
o
l
:
c
o
m
p
o
n
e
n
t

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
>

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
>

a

s
b
o
l
:
C
o
m
p
o
n
e
n
t

<
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
>

d
c
t
e
r
m
s
:
t
i
t
l
e

"
l
a
c
I

T
F

b
i
n
d
i
n
g

s
i
t
e
"

su
bj

ec
t:

 <
ht

tp
://

ex
am

pl
e/

pr
om

ot
er

>
pr

ed
ic

at
e:

sb

ol
:c

om
po

ne
nt

ob
je

ct
:

 <
ht

tp
://

ex
am

pl
e/

pr
om

ot
er

/la
cI

_b
in

di
ng

_s
ite

>

s
p

o

su
bj

ec
t:

 <
ht

tp
://

ex
am

pl
e/

pr
om

ot
er

/la
cI

_b
in

di
ng

_s
ite

>
pr

ed
ic

at
e:

dc

te
rm

s:
tit

le
ob

je
ct

:
 “l

ac
I T

F
bi

nd
in

g
si

te
”

s
p,

 o

= = = = =

<h
ttp

://
ex

am
pl

e/
pr

om
ot

er
>

sb
ol

:C
om

po
ne

nt
De

fin
iti

on
“p

La
c”

a
dc

te
rm

s:
tit

le

<h
ttp

://
ex

am
pl

e/
pr

om
ot

er
/la

cI
_b

in
di

ng
_s

ite
>

sb
ol

:c
om

po
ne

nt

sb
ol

:C
om

po
ne

nta

“la
cI

 T
F

bi
nd

in
g

si
te

”

dc
te

rm
s:

tit
le

Fi
gu

re
2.
14

:Th
e
sa

m
e
fr
ag

m
en

to
fS

BO
L
da

ta
re
pr

es
en

te
d
in

RD
F/
X
M
L,

RD
F
tr
ip
le
s,
an

d
as

a
gr

ap
h.

Th
e
fa
ct

th
at

th
e
RD

F/
X
M
L
co

rr
es
po

nd
st

o
an

RD
F
gr

ap
h

is
no

ti
m
m
ed

ia
te
ly

ob
vi
ou

s
if

un
fa
m
ili

ar
w
ith

RD
F
co

nc
ep

ts
,s

o
it

is
un

su
rp

ri
si
ng

th
at

ex
is
tin

g
im

pl
em

en
ta
tio

ns
in
te
rp

re
tS

BO
L
as

st
ru

ct
ur

ed
da

ta
us

in
g
an

X
M
L
pa

rs
er

ra
th

er
th

an
ta
ki
ng

ad
va

nt
ag

e
of

its
gr

ap
h
re
pr

es
en

ta
tio

n.

40

CHAPTER 2. BACKGROUND

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
p
L
a
c
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
s
b
o
l
:
c
o
m
p
o
n
e
n
t

r
d
f
:
r
e
s
o
u
r
c
e
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
/
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
s
b
o
l
:
d
e
f
i
n
i
t
i
o
n

r
d
f
:
r
e
s
o
u
r
c
e
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
/
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e

s
u
b
c
o
m
p
o
n
e
n
t
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
p
L
a
c
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
s
b
o
l
:
d
e
f
i
n
i
t
i
o
n

r
d
f
:
r
e
s
o
u
r
c
e
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
/
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e

s
u
b
c
o
m
p
o
n
e
n
t
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
p
L
a
c
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
s
b
o
l
:
d
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
/
s
b
o
l
:
d
e
f
i
n
i
t
i
o
n
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e

s
u
b
c
o
m
p
o
n
e
n
t
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
p
L
a
c
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
p
r
o
m
o
t
e
r
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
s
b
o
l
:
d
e
f
i
n
i
t
i
o
n

r
d
f
:
r
e
s
o
u
r
c
e
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"

/
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e

s
u
b
c
o
m
p
o
n
e
n
t
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
c
o
m
p
o
n
e
n
t
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

<
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

r
d
f
:
a
b
o
u
t
=
"
h
t
t
p
:
/
/
e
x
a
m
p
l
e
/
l
a
c
I
_
b
i
n
d
i
n
g
_
s
i
t
e
"
>

<
d
c
t
e
r
m
s
:
t
i
t
l
e
>
l
a
c
I

b
i
n
d
i
n
g

s
i
t
e
<
/
d
c
t
e
r
m
s
:
t
i
t
l
e
>

<
/
s
b
o
l
:
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

R
D

F+
XM

L
as

 re
qu

ire
d

by
 S

BO
L

sp
ec

ifi
ca

tio
n

Eq
ui

va
le

nt
 R

D
F+

XM
L

re
je

ct
ed

 b
y

SB
O

L
sp

ec
ifi

ca
tio

n

Fi
gu

re
2.
15

:
W

hi
le

SB
O
L

is
se
ri
al
iz
ed

us
in
g
sy

nt
ax

de
fin

ed
by

th
e
RD

F/
X
M
L

sp
ec
ifi

ca
tio

n,
it

re
qu

ir
es

a
hi
gh

ly
sp

ec
ifi

c
su

bs
et

w
he

re
de

fin
iti

on
s
of

ce
rt
ai
n

cl
as

se
sa

re
ne

st
ed

w
hi
le

ot
he

rs
ar

en
ot
.I

n
RD

F/
X
M
L,

al
lf
ou

ro
ft

he
se

ex
am

pl
es

ar
ed

iff
er
en

tr
ep

re
se
nt

at
io
ns

of
id
en

tic
al

da
ta
;b

ut
in

SB
O
L,

on
ly

th
el

eft
ex

am
pl
e

is
co

ns
id
er
ed

va
lid

.

41

CHAPTER 2. BACKGROUND

2.3 Data integration

“ There are very few molecular operations that you understand
in the way that you understand a wrench or a screwdriver or a
transistor

— Rob Carlson, Biodesic [56] ”
One of the challenges in optimising the design stage is that the necessary information

to design a biological system is often not easily accessible. This issue of access to existing
knowledge is an established problem in computer science. The field of data integration
is defined as a “set of techniques that enable building systems geared for flexible sharing
and integration of data across multiple autonomous data providers” [7, p. 1]. Essentially,
how can value be extracted from a set of datasources that are not necessarily aligned in
location, syntax, or semantics?

In synthetic biology, these datasources can be divided into two categories: those that
provide traditional bioinformatics knowledge (i.e. information about natural organisms),
and those that provide synthetic biology knowledge (i.e. information about engineered
parts). While there have been numerous efforts to integrate bioinformatics knowledge
[57], data integration efforts for knowledge about synthetic biology parts have been few
and far between.

SynBioMine [58] is an instance of the InterMine [59] data warehousing software
specifically for synthetic biology, but mostly integrates data from a number of
prokaryotic genomes in the Bacillus and Escherichia families, rather than integrating
information about engineered parts. While it does contain information about parts,
this comes exclusively from the SynBIS database [60].

SynBIS, or “the Synthetic Biology Information System”, was developed at the
Centre for Synthetic Biology and Innovation (CSynBI) at Imperial College to “support
its multistage characterisation pipeline of biological parts and disseminate its results”
[61]. SynBIS indeed provides access to a database of parts available in SBOL format,
each of which is associated with extensive characterisation data. The data themselves
are useful, but it is not clear that SynBIS can provide a general solution for integrating
data in the synthetic biology community. While the data provided by SynBIS are open,
they appear to come exclusively from the CSynBI characterisation pipeline described
in the SynBIS paper: there are no means for a user outside of the project to submit new
information. Furthermore, the code behind the SynBIS software has not been released,
which means that it would not be possible for a user to start an independent instance.

More generally, data integration encompasses a broad range of techniques.
Harmonization using data standards, as described in section 2.2, is one such technique,
used to overcome the challenge of semantic and syntactic heterogeneity. Another
challenge in data integration is the aggregation of data from distributed datasources, a
problem linked to the fundamentals of how data is stored and made available for
querying.

42

CHAPTER 2. BACKGROUND

2.3.1 Relational databases and their limitations
In 1970, Edgar F. Codd published the classic paper A Relational Model of Data for Large
Shared Data Banks [62]. At the time, data was typically formatted as structured files,
which meant that the application had to be aware of the internal representation of the
data in order to process it. To address this problem, Codd defined a relational view of
data derived from mathematical relation theory.

Most of the popular databases — such as MySQL and PostgreSQL — are derived from
Codd’s work, and are termed relational databases. In relational databases, data are stored
in tables with rows and columns, where each row represents a record, and each column
represents a property of that record. A simple biological example could be a table of
proteins, with each row representing a protein, and columns for its identifier, name, and
amino acid sequence.

In relational databases, multiple tables are often linked together. For example, a
table of protein domains could also be defined, with columns for the identifier of the
protein, an identifier for the domain, and a link to a term from the gene ontology. The
occurrence of the same protein identifiers across both tables creates a one-to-many
relationship between proteins and domains, allowing questions such as “which
domains does protein X have” to be answered with a simple SQL query such as:

SELECT domain.term
 WHERE protein.name = "X"
 AND protein.id = domain.protein_id

In this example, it may also be useful to link a domain to multiple proteins in order to
answer questions such as “which proteins have domain Y” — creating a many-to-many
relationship, rather than a one-to-many. This is also achievable in a relational database
by removing the protein identifier from the domain table (so that each domain is no
longer linked directly to a protein), and creating a third “protein has domain”
association table with two columns: one for the identifier of the protein, and one for
the identifier of the domain. We can still answer “which domains does protein X have”
by retrieving the rows corresponding to the protein from the “protein has domain”
table and looking up the resulting domain identifiers in the domains table, or:

SELECT domain.term
 WHERE protein.name = "X"
 AND protein_has_domain.protein_id = protein.id
 AND protein_has_domain.domain_id = domain.id

Additionally, we can also now answer “which proteins have domain Y” using the same
approach with domain identifiers and the protein table, or:

SELECT protein.name
 WHERE protein_has_domain.protein_id = protein.id
 AND domain.name = "Y"
 AND protein_has_domain.domain = domain.id

43

CHAPTER 2. BACKGROUND

DomainProtein has domain

GO termIdentifier Sequence

has identifier has sequence has GO term

Identifier

has identifier

Figure 2.16: An example data model for a set of proteins and their domains, modelled as a graph.
Unlike with a relational database representation, no additional work beyond creating the edges is
necessary to enable queryability in any direction.

Using a relational database in this manner is adequate providing the requirements do not
frequently change. Adding further columns would be considered a change in the
database schema, which may require updating queries, and creating procedures for
database migration. Adding relationships between tables potentially requires creating
entire new association tables just to represent the relationship. While a relational
database is perfect to store, for example, customer names and addresses, there are
entire vocabularies such as the Sequence Ontology [43] containing thousands of
attributes one might use to describe a biological entity, each of which would require a
linker table.

2.3.2 RDF triplestores
The aforementioned example was a set of proteins, each of which has some attributes;
a set of domains, each of which has some attributes; and a relationship between the
proteins and their domains. Using the Resource Description Framework (RDF)
previously described in section 2.2.1, this problem can be modelled trivially as a graph
with nodes and edges (Fig. 2.16).

As described in section 2.2.1, the RDF concept of named properties makes it
particularly well suited to biology. The same resource can be described with both
simple properties such as “name” and “description”, and highly domain-specific
properties such as “molecular structure” and “melting point”. These properties form
edges in the graph, and thus can be trivially navigated in either direction without the
need to create linker tables or join queries as one would in a relational database. Also
unlike a relational database, the specific properties to be used in the graph need not be
defined at the time when the database is created. Properties from any vocabulary can
be inserted, removed, and queried dynamically.

The SPARQL Protocol and RDF Query Language (SPARQL) was standardised in 2008
[63] to provide a syntax to express queries over an RDF graph. At first glance, SPARQL
queries look similar to SQL queries for relational databases. However, an RDF dataset
has no tables or columns to select over. Instead, a SPARQL query is composed of triple
patterns in which any or none of the subject, predicate, and object of a triple can be
specified. Evaluating the SPARQL query returns triples from the database that match
the pattern. Multiple triple patterns can be combined to create a query that navigates
the graph on multiple layers. The example queries of “which domains does protein X

44

CHAPTER 2. BACKGROUND

have” and “which proteins have domain Y” in SPARQL would be:

SELECT ?domain WHERE {
 <protein> has_domain ?domain
}

and:

SELECT ?domain WHERE {
 <X> has_domain ?domain
}

No special linker tables are necessary to perform either of these queries, as all RDF
relations can be queried in either direction. Databases built for storing and querying
RDF are known as triplestores. Just as there exist many different relational database
systems, there are a variety of different triplestores available, such as RDF4J (formerly
Sesame [64]), Virtuoso [65], Apache Jena [66], and BlazeGraph [67].

2.3.3 Linked Data
In 2001, Berners-Lee et al. published an article in the Scientific American describing
“a new form of Web content that is meaningful to computers” [68]. The article begins
with a short section of speculative fiction describing a highly connected future where
machine agents can communicate directly with each other to automate tasks through a
global data sharing system termed the Semantic Web. It then details how the Semantic
Web might be implemented: through the use of RDF backed by ontologies.

Berners-Lee later published a design note describing “Linked Data”, a set of
recommendations for how to publish data on the Web [69]: essentially, to identify and
describe things with HTTP URIs, and to make links to other resources. The difference
between the three related concepts of RDF, the Semantic Web, and Linked Data can be
confusing, but can be summarised as:

• The Resource Description Framework (RDF) is a simple model for describing
resources using triples consisting of a subject, predicate, and object. RDF can be
used without any obligation to also adopt Linked Data or the Semantic Web.

• Linked Data is a set of principles encouraging the availability,
machine-tractability, standardization, and integration of data. Linked Data
encourages, but does not require, the use of RDF.

• The Semantic Web is the end goal of the original Berners-Lee publication in 2001:
an integrated, machine-tractable Web of Linked Data.

Whether or not the Semantic Web has been, or can be, globally successful as
described in its initial paper is a contentious issue. However, its success is largely
irrelevant to the use of RDF and Linked Data technology for specific domains such as
biology. With or without a true Semantic Web, RDF can be used as a powerful tool for
data representation and integration.

45

CHAPTER 2. BACKGROUND

2.3.4 Query federation
While the use of RDF can address the intractability of data by making its relationships
and properties easier to navigate, there is still a logistical problem. Biological data is
large, and relevant knowledge is likely to be spread across multiple databases in different
locations.

There simplest approach to address this problem is data warehousing, where the
data are physically copied to create one larger dataset in a single location. There are a
number of problems with this approach. The most obvious is scalability: without
seriously limiting scope, there is simply too much biological data to gather it all into
one place, even with modern computing hardware. Other problems include
synchronisation — in that once the data has been copied, if they are updated at source
the changes will not be mirrored in the copy — and that it may not be possible to
download entire datasets for warehousing due to technical or licensing restrictions.

An alternative approach is query federation, also known as virtual integration. In a
federated approach, the data remain in their original location and are accessed as needed
at query time [7, p. 9]. Query federation is both scalable, as a query can be federated
to many different datasets without the need for extensive computational resources to
warehouse their data at a single location; and can access the current, live version of
each dataset rather than relying on an ahead-of-time copy as with data warehousing.
However, these advantages come at the cost of significantly increased complexity, as the
query client must have the ability to access multiple resources and collate the results.

Query federation is supported in SPARQL by manually specifying which endpoint to
use for each section of the query through the SERVICE clause. For example, a SPARQL
query to retrieve the chemical reactions from ChEBI associated with the ribC enzyme
P54575 from UniProt would be:

PREFIX up: <http://purl.uniprot.org/core/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rhea: <http://rdf.rhea-db.org/>

SELECT ?equation WHERE {

 SERVICE <https://sparql.uniprot.org/sparql> {
 <http://purl.uniprot.org/uniprot/P54575> up:annotation ?anno .
 ?anno up:catalyticActivity ?activity .
 ?activity up:catalyzedReaction ?reaction .
 }

 SERVICE <https://sparql.rhea-db.org/sparql> {
 ?reaction rhea:equation ?equation .
 }
}

2.3.5 Linked data fragments
The standard method for RDF triplestores to provide querying capability is through the
SPARQL protocol [70]. The triplestore accepts HTTP requests containing SPARQL
queries and responds with the results. This approach makes querying triplestores very
easy for clients: even highly complex SPARQL queries which require significant
server-side computation to evaluate require nothing from the client but submitting the
query and waiting for a response. For servers, the demands are much higher, as they
are responsible for all of the complexity of query processing.

46

CHAPTER 2. BACKGROUND

Linked Data Fragments (LDF) are an emerging publishing method for sources of
RDF [71] where the complexity is moved from the server to the client. Instead of
providing access to a server-side querying engine as with a SPARQL endpoint, an LDF
server provides a much simpler API by which partial triples (triple patterns) can be
matched. For example, given a partial triple consisting only of a bound subject, an LDF
server can respond with a set of triples where the missing predicate and object are
“filled in” from the source dataset.

Complex queries can still be performed using LDF servers, but the responsibility of
processing the SPARQL query and breaking it down into triple patterns is shifted from
the server to the client. This approach provides true query federation, as the SPARQL
query can be digested into a series of pattern matches over multiple LDF servers.
Explicit federation by use of SERVICE clauses is no longer necessary; instead, queries
can implicitly use multiple datasources as each triple pattern can be evaluated by
multiple servers in parallel. For example, with LDF, the query from section 2.3.4 could
become simply:

PREFIX up: <http://purl.uniprot.org/core/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rhea: <http://rdf.rhea-db.org/>

SELECT ?equation WHERE {
 <http://purl.uniprot.org/uniprot/P54575> up:annotation ?anno .
 ?anno up:catalyticActivity ?activity .
 ?activity up:catalyzedReaction ?reaction .
 ?reaction rhea:equation ?equation .
}

The LDF client then:

1. Slices up the query into the four triple patterns, and requests the number of
expected results for each pattern from each server. For example, a UniProt LDF
server might respond that it would have millions of results for ?anno
up:catalyticActivity ?activity, but only eight results for
<http://purl.uniprot.org/uniprot/P54575>
up:annotation ?anno.

2. Re-orders the patterns so that the pattern with the least triples (i.e. the most
selective) is requested first.

3. Uses the results from the first pattern to fill in the blanks in other patterns,
therefore making them more selective before querying again. For example,
?anno up:catalyticActivity ?activity could become
<http://purl.uniprot.org/uniprot/P54575#SIPCAD628AC67FF287E>
up:catalyticActivity ?activity for each annotation if
<http://purl.uniprot.org/uniprot/P54575>
up:annotation ?anno has already been evaluated.

This movement of complexity from the server to the client not only enables federation,
but also has advantages server-side. LDF servers are, by nature, simple to implement,
and do not require the extensive server resources that server-side SPARQL processing

47

CHAPTER 2. BACKGROUND

typically demands. Reducing server-side complexity by providing only LDF has been
shown to have the potential to improve availability of datasets [72].

2.4 Sharing and dissemination
The application of data standards and data integration technology has the potential to
address the first aim of this work by improving access to existing knowledge about
biological parts. However, there remains the problem of how to deal with future
knowledge. How can information about newly engineered biological parts be stored in
a form which is easily accessible by the designers and design tools of tomorrow?

Repositories of biological sequences have existed ever since computers powerful
enough to build them were developed. One of the oldest, GenBank, contains around
200 million mostly DNA sequences as of 2019 [73]. Other repositories contain data
about proteins, such as UniProt, which maintains access to around 150 million amino
acid sequences [74]. There are also numerous bespoke repositories for specific
organisms, such as SubtiWiki [75] for Bacillus subtilis and ECMDB [76] for Escherichia
coli.

However, like the data representations discussed in section 2.2, these repositories
were developed to catalogue naturally occurring sequences, rather than engineered
biological “parts” intended for re-use [32] [77]. While there are clearly similarities, in
that an engineered part still usually has annotated sequence information, there are
many details such as compositional hierarchy and provenance that do not exist for
natural parts and are therefore not possible to store in such databases.

Recently, various repositories have been created specifically to address the problem
of storing information about engineered designs, such as the iGEM Parts Registry [78],
JBEI-ICE [79], and the Virtual Parts Repository [80]. There are also repositories for
specific engineering purposes, such as the Addgene [81] repository for storing
plasmids. The ability of these repositories to provide a general solution to the problem
of publishing engineered designs in SynBio was assessed using the following criteria
(Table 2.2):

• Public read-write — can any user both browse the repository and upload new
designs?

• Standardization — is the data representation used by the repository a
standardized format with a clearly defined specification?

• Whole-design representation — does the repository have the facility to
represent an entire design, including, for example, gene products and their
interactions, or is it limited to a subset of the biology such as a DNA sequences?

• Machine-tractability — are the constituent parts of a design available to
computational queries?

• Reproducibility — can an independent instance of the repository be created by
other users?

48

CHAPTER 2. BACKGROUND

iGEM Addgene JBEI-ICE VPR
Public read-write 7 7 3 7

Standardization 7 7 3 7

Whole-design representation 7 7 7 3

Programmatic access 7 7 3 3

Machine-tractability 7 7 7 3

Reproducibility 7 7 3 7

Table 2.2: An assessment of the abilities of different design repositores

2.4.1 iGEM Parts Registry
The Internationally Genetically Engineered Machine (iGEM) competition is an annual
event in which teams of students worldwide compete to create novel, engineered
biological systems [82]. Teams participating in the iGEM competition receive
distribution plates containing DNA samples of a wide variety of different parts or
“BioBricks” which can be repurposed to create new parts, providing an excellent
example of how the engineering concepts of modularity and re-use can be applied in
practice to synthetic biology. Parts created by teams are submitted both as in vitro
samples to iGEM Headquarters, and in silico as DNA sequences to the iGEM Registry of
Standard Biological Parts (Fig. 2.17). The Registry, established alongside iGEM in 2003,
currently provides access to over 20,000 documented parts specifically for the purpose
of composing engineered biological systems, with their corresponding annotated DNA
sequences and a wealth of experience information from iGEM participants [78].

Public read-write: It is necessary to have an iGEM account to submit to or edit the
registry, which currently requires either participating in iGEM or explicitly requesting
an account.

Standardization: The internal representation used by the repository is not
standardized or documented. Although iGEM parts can be downloaded in FASTA or
GenBank format, much of the information contained in the database is lost in
conversion. While a conversion of the iGEM dataset to SBOL format was developed as
part of this work (chapter 5), the SBOL version remains derivative of the original data
representation, and therefore the registry itself does not benefit from the wider scope
provided by SBOL. The Knowledgebase of Standard Biological Parts (SBPkb) attempted
to address this issue in 2011 by converting the iGEM Registry to SBOL, therefore
enabling the application of SPARQL queries [83]. However, this was at the time of
SBOL1, and no server software was provided.

Whole-design representation: The Registry is strongly linked to its in vitro
counterpart (physical BioBricks), and therefore is DNA-centric, and does not include
the other layers of biology that can be represented by SBOL2. For example, even when
a part is explicitly marked as coding for a protein, the sequence of the protein is not

49

CHAPTER 2. BACKGROUND

Figure 2.17: Homepage of the iGEM Registry, a repository providing access to over 20,000
documented parts specifically for the purpose of composing engineered biological systems.

50

CHAPTER 2. BACKGROUND

provided, making it difficult to cross-reference iGEM parts with databases of protein
information or use protein-oriented bioinformatics tools. This is essentially the same
problem with reductive file formats such as GenBank and FASTA. While nearly all
BioBricks were originally derived from naturally occurring DNA, they are often
heavily modified, and have associated provenance information along with
characterisation data for many different organisms. iGEM has much of this
information in free-text in its wiki, but not yet in a machine-tractable data format.

Programmatic access: The iGEM registry has only a limited API 2. Parts can be
retrieved as XML, but there is no facility to perform search queries.

Machine-tractability: Without standardized data format or an API to query the
Registry, it is difficult to access knowledge about parts in anything other than free-text.

Reproducibility: While the data provided by the Registry is publicly accessible, its
source code is not. It is not possible to setup an independent instance of the Registry.

2.4.2 Addgene
Addgene provides a repository for archiving and distributing plasmids [81], containing
information about over 31,000 plasmids in 2014 [84]. Like iGEM, the Addgene curators
store physical samples in vitro to match the in silico data records.

Public read-write: Anyone can deposit plasmids to Addgene. Submission is a
physical process for an actual quantity of in vitro plasmid DNA. Though Addgene does
also store annotated sequences, it is not a repository for conceptual designs without a
corresponding physical representation. The question of public database access is
therefore not clearly applicable: while Addgene is an open repository, writing to its
database depends on the submission of a physical sample.

Standardization: Addgene provides sequence data in FASTA format, and many
plasmids also have an associated supplemental GenBank file. Any other information
about the plasmid is only visible through its Web page and is not captured in any
downloadable format.

Whole-design representation: As with iGEM, the data representation of Addgene is
strongly linked to physical DNA samples and comes with all of the associated
problems. It is not possible to document anything other than an annotated plasmid.

Programmatic access: Addgene does not appear to have any kind of API.

Machine-tractability: The lack of API and the representation of parts only as Web
pages makes Addgene highly computationally intractable.

2http://parts.igem.org/Registry_API

51

http://parts.igem.org/Registry_API

CHAPTER 2. BACKGROUND

Figure 2.18: A plasmid in Addgene, a repository for archiving and distributing plasmids. Addgene
contained information about over 31,000 plasmids in 2014 [84].

52

CHAPTER 2. BACKGROUND

Figure 2.19: Part view in JBEI-ICE, a repository for storing information about biological parts.

Reproducibility: It is not possible to setup an independent instance of Addgene.

2.4.3 JBEI-ICE
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICE; referred to
henceforth as simply “ICE”) was published in 2012, described as an “open source registry
platform for managing information about biological parts” [79]. The motivation given
in the ICE paper is reminiscent of the overarching research aims of this work: “there is a
noticeable lack of a coherent suite of synthetic biology software tools that work together,
which means that a biological engineer has sequence information and other information
scattered in different documents and software packages”.

The ICE software is both open-source and permissively (BSD) licensed, enabling it
to be used by both academia and industry. ICE also introduces the concept of a Web of
Registries, whereby multiple instances can be connected together to share data. In
addition to a user-friendly Web interface, ICE also provides an API to enable
programmatic access, making it suitable for integration into a wider ecosystem of
tooling.

Public read-write: Anyone can register an ICE account in order to both browse and

53

CHAPTER 2. BACKGROUND

submit parts.

Standardization: ICE supports the submission of parts in various file formats,
including SBOL1 and, recently, SBOL2.

Whole-design representation: As ICE supports the submission of SBOL2 files, it
technically provides support for storing whole-design knowledge. However, it lacks
one of the key benefits of SBOL: computational tractability. Once SBOL has been
uploaded to ICE, it can be queried based only on the fields duplicated into the ICE data
model, which are a small subset of the richness provided by SBOL, as described in
chapter 3. Any SBOL features developed in the future will be opaque to ICE unless ICE
extends its own classes, which effectively means ICE operates two data models which
are not synchronised.

Programmatic access: While ICE does provide an API, the API described in the
documentation does not match the currently accessible version as of July 20193.

Machine-tractability: The underlying data model of ICE is a Java Hibernate interface.
While this data model is not standardised, ICE has code to convert SBOL to the data
objects used by the Hibernate interface and vice-versa.

Reproducibility: ICE is open-source, and anyone can start their own ICE instance.

Virtual Parts Repository

There are many repositories such as BioModels [28] which catalogue models for
predicting the behaviour of biological parts. Since structural and sequence information
about a part is very different from a predictive model, these repositories are not
described here. The exception is the Virtual Parts Repository (VPR), a Newcastle
University effort to host a set of composable, modular models for synthetic biology
[85] (Fig. 2.20). Unlike other model repositories, the VPR also provides SBOL files
providing the structural information associated with its models.

The VPR currently provides access to several thousand B. subtilis parts, each
including both sequence information in SBOL1 and models available to download in
various modelling languages.

Public read-write: While the VPR is an open repository, it is manually curated [80]
and does not allow user submission of parts.

Standardization: The VPR provides multiple export options for each part: a
VPR-specific XML format, SBOL1, and SBML [27] or Kappa [86] for models. SBOL1,
SBML, and Kappa are all standardized formats.

Whole-design representation: The VPR provides a broad view of parts by
combining a structural description with functional models. While upgrading its SBOL

3https://github.com/JBEI/ice/issues/91

54

https://github.com/JBEI/ice/issues/91

CHAPTER 2. BACKGROUND

Figure 2.20: Part list in the Virtual Parts Repository (VPR), a repository for both sequence
information and models for biological parts.

55

CHAPTER 2. BACKGROUND

version to SBOL2 would enable both structure and function to be captured in the same
data model, the VPR already provides whole-design representation with the use of
multiple standards.

Programmatic access: The VPR has both a Web service interface and a Java API.

Machine-tractability: The API has endpoints such as
/parts/FunctionalPart/has_function/GO_0000155 which are akin
to querying using RDF triple patterns. While not a complete SPARQL endpoint, the
provision of this functionality is a significant improvement over the free-text searches
provided by other repositories.

Reproducibility: Hosting an independent instance of the VPR is not currently
supported.

2.5 Standards-enabled tooling
The Microsoft Word docx file format might be one of the most popular data standards
in the world, but there are very few authors of Word documents who know how it is
specified. Microsoft Word is the tooling: the software that provides an abstraction layer
for the user to access the data standard without knowledge of its internals.

If SBOL is the equivalent of the docx format for synthetic biology, it does not yet
have its corresponding equivalent to Microsoft Word. SBOL has a powerful and well-
specified data model, but in order to actually create SBOL it it is usually necessary to
write programs using an SBOL software library such as libSBOLj. Essentially, biologists
are expected, in addition to their biology domain knowledge, to have programming skills
in order to document a biological design.

The SBOL community has a complementary standard termed SBOL Visual [87],
which is a separate effort to formalise the way that designs are already communicated
in biology: through visual depictions. The SBOL data and SBOL Visual standards can
be connected in two directions: visualisation tools such as dnaplotlib [88] allow a
visual depiction to be created from SBOL data, and CAD tools such as SBOLDesigner
[89] allow SBOL data to be created using SBOL Visual. Connecting the two standards
in this manner creates a visual abstraction layer to enable the use of SBOL without
interacting with the underlying data.

2.5.1 SBOL Visual
Using SBOL as a standard for design information enables knowledge that was previously
heterogeneous to share a uniform representation. However, SBOL is a standard to make
design information tractable to machines, rather than humans.

In publications about engineered biological systems, visual depictions are often used
to convey structure and/or function. Many different kinds of visual depictions are used,
depending on what properties about a design are important to convey (Fig. 2.21). At
the lowest structural level, for example, a 3D rendering of a protein might be a useful

56

CHAPTER 2. BACKGROUND

depiction. At the highest functional level, a graph describing how a system works might
be more appropriate.

SBOL Visual

Systems modelling, e.g. SBGN

Function

Structure

Annotated sequence, e.g. a plasmid map

Structural renderings, e.g. 3D protein structure

Figure 2.21: An overview of how different types of visual depiction compare with regards to
structural and functional coverage.

In synthetic biology, the necessary visual concepts to express e.g. the design of a
genetic circuit often include both structure and function. Consequently, a graphical
notation has evolved over time to convey the features of genetic circuit designs. This
notation typically consists of glyphs to represent the function of regions such as
promoters, ribosome binding sites, coding sequences, and terminators, alongside arcs
to denote processes such as genetic production and protein-DNA binding.

The notation has typically been informally specified and varies widely among
synthetic biologists; for example, while some use a “hairpin loop” symbol to represent
a terminator [90], others might instead draw a “T” shape [21] or a circle [91].

Although variation among visual representation is less of a problem for human
communication, the continued focus of synthetic biology on developing a well-defined,
standardised, engineering approach requires that designs must be unambiguous at
every stage of the design-build-test lifecycle. This formalisation is particularly
important as designs grow in scale and complexity, where modules may become part of
a larger system and consistency across visual representation is expected.

The SBOL Visual standard [87] was published in 2015 to address this need. SBOL
Visual defines a set of glyphs to represent common features such as promoters, CDSs,
and terminators (Fig. 2.22) along with a set of recommendations about how they are
drawn.

2.5.2 Tooling for SBOL Visual
SBOL provides a data standard for the representation of biological designs, and SBOL
Visual provides a visual standard. In order to make the two standards work together
— i.e., produce an SBOL Visual diagram from SBOL data — visualisation software is
required.

There are many tools available that can produce SBOL Visual diagrams, such as
Pigeoncad [92] and TinkerCell [93]. However, very few of these tools can actually
produce SBOL Visual from SBOL data. Pigeoncad, for example, has its own text-based

57

CHAPTER 2. BACKGROUND

gfp tetR

Nucleic	Acid	Backbone

Sequence	Feature	Glyphs

Reverse	Complement	Nucleic	
Acid	Component	Glyphs

pTet

Labels Interactions

GFP

Molecular	Species	Glyph

Figure 2.22: An example of an SBOL Visual depiction. Image source: The SBOL Visual specification
https://github.com/SynBioDex/SBOL-visual

“Pigeon” syntax to specify what to draw (Fig. 2.23). TinkerCell predates SBOL and has
its own internal representation of designs.

Figure 2.23: A screenshot of the Pigeoncad design visualizer for SBOL Visual. While Pigeon can
produce SBOL Visual diagrams, it does so using its own notation (top) rather than from the SBOL
data model.

There are currently three tools that support both the SBOL Visual and SBOL Data
standards: VisBOL [94], partly developed as part of this work; SBOLDesigner [89]; and
dnaplotlib [88]. Unfortunately, all of these tools are restricted predominantly to the
features of SBOL1. Neither SBOLDesigner nor dnaplotlib yet have support for
rendering the functional aspects of SBOL such as ModuleDefinition and
Interaction, and VisBOL has only recently added very primitive support.
SBOLDesigner is also currently the only tool with both SBOL Visual and SBOL Data
support to provide editing capability, i.e. the ability to interact with SBOL Visual
glyphs in order to create or modify underlying SBOL data (Fig. 2.24).

58

https://github.com/SynBioDex/SBOL-visual

CHAPTER 2. BACKGROUND

Figure 2.24: A screenshot of SBOLDesigner, the only tool with both SBOL Visual and SBOL Data
support that provides editing capabilities. While SBOLDesigner technically has support for SBOL2, it
ignores the concepts of modules and interactions, essentially limiting its functionality to the features
of SBOL1.

59

CHAPTER 2. BACKGROUND

2.6 Conclusion
This chapter provided an introduction to the synthetic biology lifecycle, and how the
Synthetic Biology Open Language (SBOL) can be used to capture synthetic biology
designs using the Resource Description Framework (RDF). RDF and SBOL are the
fundamental underpinning technologies of this work. The related concept of data
integration was also described, first in terms of existing work in the context of
synthetic biology, then more generally as as a computing concept with an overview of
established work and recent innovations from the Semantic Web community which
provide the context for chapter 4. Section 2.4 presented a review of data repositories
for sharing engineered biological parts. Finally, section 2.5 provided an overview of the
SBOL Visual standard as a tool to bridge the gap between the data standard and its
potential users.

60

Part I

Knowledge representation

61

3. Machine-tractability in the design
process

3.1 Introduction

“ As the complexity of synthetic biology projects grow, it will be
critical to standardize the exchange of designs and data

— Christopher Voigt, Editor-in-Chief, ACS Synthetic Biology [54] ”
One of the fundamental problems in optimising the synthetic biology design

process is that the designs themselves are not captured in a computationally tractable
form. Much of the design process is often performed on a whiteboard, in proprietary
software, or in a word processor.

The lack of a standardised, machine-tractable representation for designs causes two
major problems. First, the issue of knowledge discoverability: information about
existing parts is difficult to find, making the design process more time-consuming; and
any new parts created by the design process will, in turn, be difficult to find for use in
future designs. Second, without a machine-tractable standard it is not possible to
model the design process in software to provide design automation or the automated
enrichment of design knowledge.

As described in section 2.2, the Synthetic Biology Open Language (SBOL) is a data
standard specifically for the representation of designs in SynBio. When this work
began, version 2.0 of the SBOL specification had just been released, adding the ability
to describe molecule types other than DNA — for instance, proteins and RNAs — along
with functional information such as molecular interactions. The most recent version,
SBOL 2.3, is capable of capturing an even richer set of design information including
aspects such as provenance and experimental data.

However, SBOL is not yet commonly used as part of the synthetic biology design
process. This research chapter explores some of the issues with SBOL which may be
responsible for inhibiting its adoption, and proposes new software libraries to make
SBOL easier for developers to use along with a set of proposals to simplify the
standard.

The research goals of this chapter are to investigate (a) to how SBOL can be made
more accessible to potential users, and (b) how complexity in the SBOL data model can
be reduced while preserving expressiveness.

62

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

Attribution: sboljs and sbolgraph were originally developed as part of this work. The
current version of sboljs now has code contributions from Chris Myers, Zach Zundel,
Dany Fu, and Nathan Wilkinson (University of Utah). The current version of sbolgraph
has code contributions from Christian Atallah (Newcastle University). The SBOL Stack
was developed in collaborationwith CurtisMadsen based on an idea byMatthewPocock,
with contributions from Goksel Misirli, Matthew Pocock, Keith Flanagan (Newcastle
University) and Jennifer Hallinan (Macquarie University). The code for its server API
and client libraries was written as part of this work.

3.2 Challenges for adoption of SBOL
Capturing the design process using SBOL could significantly improve its
computational tractability. With SBOL, an entire design can be captured using a
standardized, fully navigable RDF data model, including many aspects which would
previously only have been captured in free-text if they were documented at all.
However, despite the continually increasing power of SBOL, its adoption by the
community has been slow. It can be suggested that this is caused by several
interconnected issues (Fig. 3.1). First, the bootstrapping problem, or lack of data:
without existing data being available in SBOL, there is little motivation to use SBOL as
there is no knowledge ecosystem with which to integrate. This problem is likely
exacerbated by two other problems: first, the limited scope of SBOL means that it can
not necessarily be used to represent all real-world use cases. Secondly, the lack of
tooling for SBOL means it is difficult to get data into the SBOL format because there is
insufficient software support. In turn, the lack of tooling is likely caused by the fact
that SBOL is not always easily accessible to software developers due to the limitations
of SBOL software libraries (limited portability), which is likely a result of the fact that
the SBOL data model is difficult to implement (complexity).

3.2.1 Limitation in scope
As discussed in section 2.2, the universe of possible designs that can be captured using
SBOL has grown from only DNA components in SBOL 1.0 to a much broader set of
biological entities and relationships. However, the scope of the data model is still not
sufficient to capture all of the information used in the design process previously
described in section 2.2, such as characterisation data and provenance. This limitation
in scope limits the modelling power of SBOL, restricting the ability for data to be
captured.

In particular, the lack of a means to describe the provenance of designs makes the
standardized description of iterations of the synthetic biology lifecycle impossible.
Section 3.5 includes proposals to address this need by expanding the SBOL data model
to recommend terms from the provenance ontology, PROV-O [49].

3.2.2 Lack of data
One of the most important reasons to adopt a standard is to fall in line with existing use
of the same standard to enable interoperability. The majority of mobile phones charge

63

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

Without existing data in SBOL,
there is no existing knowledge

ecosystem with which to
integrate - so why use SBOL?

Lack of tooling

Without software that supports SBOL,
SBOL data cannot be created.

Limited portability

If SBOL does not have
implementations for different

programming languages, many tool
developers will not be able to use it.

Complexity

If the SBOL data model is difficult to
understand, developers will be
discouraged from implementing it.

inhibits

causes

Lack of data
causes

Limited scope

Limitation in scope restricts the ability of
SBOL to model real-world use cases.

causes

Figure 3.1: While the Synthetic BiologyOpen Language (SBOL) greatly facilitates the representation
of designs, its adoption has been slow. It can be suggested that this is caused by several interconnected
issues: the inability of SBOL to model real-world use cases, or its limited scope; the bootstrapping
problem, or lack of data; insufficient software support, or lack of tooling, limitations of SBOL
software libraries, or limited portability; and implementation difficulty, or complexity.

64

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

withMicro-USB not necessarily because it is the best type of USB connector, but because
the majority of mobile phones charge with Micro-USB. Using the same standard is not
only the path of least resistance, but means that chargers are largely interchangeable
between different handsets.

To apply this analogy to the problem at hand, using SBOL as a design representation
would be an obvious choice if the majority of existing parts were already represented in
SBOL and could be used directly in new designs. A bootstrapping approach to solving
this problem by converting existing datasets to SBOL to create an initial knowledge base
of parts is explored in chapter 5 of this work.

3.2.3 Lack of tooling
If SBOL is to be adopted by the synthetic biology community, it has to be easy for the
community to create SBOL data. As synthetic biology is fundamentally an
interdisciplinary field, knowledge of computer science cannot be a prerequisite. While
there have been numerous attempts to create graphical tools for creating SBOL, many
of the features of the SBOL2 data model — such as the definition of modules and
interactions — remain inaccessible without writing code.

Chapter 7 of this work is dedicated to this problem, describing the SBOL Visual
standard for graphical communication of designs, and the development of a new CAD
tool for SBOL with support for the SBOL2 data model.

3.2.4 Portability
To encourage developers of tools to adopt SBOL and thus make SBOL accessible to
users, it has to be as easy as possible to build SBOL into tools. SBOL is implemented in
the form of software libraries, which can then be used to add SBOL support to both
new and existing software tools. When SBOL 2.0 was released, the only complete
implementation was libSBOLj [95], which is exclusively for the Java programming
language. In the 2019 Stack Overflow Developer survey, only 41.1% of users reported
using Java, behind both Python at 41.7% and JavaScript at 67.8% [96]. Restricting the
use of SBOL to Java, therefore, excludes the majority of developers and impedes the
adoption of SBOL by software.

Chapter 3 provides solutions to this problem in the form of new SBOL libraries for
JavaScript and Python, and a new, RDF graph-based design pattern for the development
of such libraries to make it easier to add SBOL support to other languages in the future.

3.2.5 Complexity
Potential users of SBOL have often complained that the standard is overcomplicated
and difficult to understand. While some degree of complexity is understandable given
the intricacies of biological systems, it can be argued that SBOL compounds this
problem by making its data model more complicated than necessary. Engineering
biology is challenging enough without also having to learn the highly technical rules
of a data standard which is equally as concerned about syntax and semantics as it is
about representing biological concepts.

65

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

Reducing complexity in the SBOL standard wherever possible is essential to lower
the barrier to entry and to encourage adoption by developers. Section 3.5 includes
proposals for the next iteration of SBOL with the goal of making SBOL version 3 easier
to understand, while retaining its ability to represent complex biological systems.

3.3 Improving portability of SBOL
SBOL is not a “tool” that can be used directly by users, but a specification that describes
a particular data representation for design information. Any software that follows the
specification by using this representation is deemed “SBOL-compliant”, and can benefit
from interoperability with all other SBOL-compliant software.

In order to make use of the specification from software, it is first necessary to
implement a programmatic realisation of the SBOL data model. Typically, this takes
the form of an object-oriented class hierarchy which mirrors the concepts described by
the specification, coupled with the functionality to read and write SBOL from its
RDF/XML serialization format. As it would be unreasonable to expect every software
developer intending to add SBOL support to a tool to interpret the specification and
develop a new implementation of SBOL, this functionality is encapsulated by
open-source SBOL software libraries which can be used instead of working directly
with the data model.

Prior to this work, the only complete implementation of SBOL2 was libSBOLj,
restricting access to the SBOL standard to software written in Java. Developers using
the two most popular programming languages, JavaScript and Python [96], were
unable to add SBOL support to tooling. Making SBOL more portable by creating new
libraries was therefore a logical step towards encouraging the adoption of SBOL by
developers, and ultimately users of the tools they create. Today, there are five complete
implementations of SBOL:

• libSBOLj1 (Java)

• libSBOL [97] (C++ and Python)

• sboljs2 (JavaScript)

• sbolgraph3,4 (TypeScript, JavaScript, and Python)

Two of these libraries were developed as part of this work: sboljs, which enables
SBOL to be used by JavaScript applications both server-side and in the context of a Web
browser; and sbolgraph, a new design pattern for SBOL libraries where SBOL data is
navigated as an RDF knowledge graph, with implementations in TypeScript and Python.

1https://github.com/SynBioDex/libSBOLj
2https://github.com/SynBioDex/sboljs
3https://github.com/udp/sbolgraph
4https://github.com/udp/pysbolgraph

66

https://github.com/SynBioDex/libSBOLj
https://github.com/SynBioDex/sboljs
https://github.com/udp/sbolgraph
https://github.com/udp/pysbolgraph

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

3.3.1 sboljs: SBOL on the Web
The first target for improving portability of SBOL was to implement an SBOL library in
JavaScript, enabling SBOL to be used from the context of a Web browser. There were
several motivating factors for this choice:

• JavaScript has consistently been identified as the most commonly used
programming language for the last seven years [96]

• The BioJS project [98] maintains a registry of over 200 libraries for working with
biological data in JavaScript. Adding SBOL support to this software ecosystem
could encourage developers already using JavaScript for biological applications to
adopt the SBOL standard.

• There are already Web applications that support SBOL (such as VisBOL [94] and
the SBOL Validator [99]), but do so using libSBOLj via additional server-side
software. Native support for SBOL in the browser would mean these applications
could run entirely in the browser, meaning server resources and Internet
connectivity of the client would not be necessary.

The development of a new library for SBOL also presented an opportunity to
explore a new design pattern. Despite the fact that SBOL is an RDF standard, none of
the SBOL libraries have taken advantage of the fact that libraries for RDF are already
well-established, tested, and standardised in all common programming languages.
libSBOLj, for example, parses the RDF/XML serialization of SBOL using an XML parser
in order to populate a hierarchy of Java classes, rather than using an RDF library. This
method is both unnecessary, in that there already many libraries available to parse
RDF/XML, and error-prone: for anything other than the specific subset of RDF/XML
described in the serialization examples of the SBOL specification, the behaviour of
libSBOLj is unpredictable (Appendix B).

It seems obvious that given SBOL is built on RDF, using an RDF library would be an
easy way to implement an SBOL library. However, the RDF nature of SBOL is very
unclear from the specification, which confusingly (and incorrectly, possibly by
conflating RDF with RDF/XML) describes RDF as a serialization format [100, p. 16]
rather than as an abstract model for capturing information. The specification is
punctuated by examples of XML source which create the false impression that in order
to implement an SBOL library, one must be able to read a specialized XML format. In
reality, RDF/XML serialization already has a W3C specification [53] with many
existing implementations, such as RDFLib [101] for Python and Apache Commons RDF
[102] for Java — any of which could be used to read and write SBOL.

sboljs (lowercase as is convention among JavaScript libraries) is a complete
implementation of SBOL2 for JavaScript, developed as part of this work. Unlike
existing SBOL libraries, sboljs makes use of the fact that SBOL is an RDF data model,
building on the rdf-ext [103] RDF library for deserialization.

Loading SBOL (deserialization)

As in libSBOLj, sboljs defines a set of classes with member variables mirroring the
specification of classes in the data model. The difference is how these classes are

67

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

populated. Rather than the libSBOLj approach of navigating an SBOL document as an
XML tree, sboljs loads SBOL as an RDF graph, then queries the graph using triple
patterns. For example, the process of loading ComponentDefinition objects is:

• Query the graph using the triple pattern ? a
sbol:ComponentDefinition. For each resulting triple, create an
instance of the sboljs ComponentDefinition class with the subject URI.

• For each sboljs ComponentDefinition instance, match each of its
properties using triple patterns and add the values to the class instance. For
example, if the URI of the ComponentDefinition is
http://sbolstandard.org/lacI, a triple pattern to retrieve its
dcterms:title property would be
<http://sbolstandard.org/lac> dcterms:title ?.

• If the instance references another instance by URI (e.g. a
ComponentDefinition referencing a Sequence via the
sbol:sequence property, store the URI in the instance and add it to a list of
unresolved URIs

At the end of the loading stage, sboljs iterates through all loaded class instances and
calls their link method, which replaces URI references to actual references to other
class instances and removes them from the list of unresolved URIs. The separation of
the link stage from the load stage means that the order of loading does not affect the
ability of one class to reference another, and the list of unresolved URIs can be used to
determine which resources are referenced by the SBOL but not immediately available
(i.e. may need to be retrieved).

Saving SBOL (serialization)

While SBOL can be deserialized relatively trivially using an RDF/XML parser, its
serialization is slightly more complicated. RDF/XML has both a nested and flat form,
and as described in section 2.2, the SBOL specification requires a specific hybrid of the
two despite their equivalence as specified by the RDF/XML specification. It is
impossible to format data in this hybrid manner unless the code is aware of which
objects SBOL deems as “top-level” and therefore should not be nested.

This is a significant problem, as it means that the output of established RDF tooling
may not be loadable by SBOL libraries such as libSBOLj that treat SBOL as a specific
XML data model instead of a serialization of RDF/XML. It would be much simpler and
more interoperable if SBOL libraries considered any equivalent RDF/XML to be
equivalent SBOL. However, due to the requirements imposed in the SBOL specification
and their enforcement through implementations such as the manual XML-based parser
in libSBOLj, it is still necessary to implement SBOL-specific serialization when
developing an SBOL library.

This requirement is addressed in sboljs in the same manner as libSBOLj: by
serializing SBOL manually using an XML serialization library, with specific
serialization functions for each type of SBOL object. For example, the process of
serializing ComponentDefinition objects is:

68

• For each sboljs ComponentDefinition instance, create an XML
sbol:ComponentDefinition node

• For each property in the ComponentDefinition, add a child node with the
property value

• For each property in the ComponentDefinition that references another
object, add a child node with the URI of the object if the object is a top-level, or
nest the node of the object otherwise

While this approach produces a serialization that is compliant with the SBOL
specification, it means that each SBOL property exists in three places in sboljs: in the
class definition, in the deserialization code, and in the serialization code. A more
elegant and generally applicable approach to generating a specific hybrid of
nested/flattened RDF/XML was later implemented in the sbolgraph library (section
3.3.2).

Usage

sboljs provides a straightforward JavaScript API which closely follows the SBOL data
model (Fig. 3.2), with some notable structural differences from libSBOLj:

• sboljs allows oobjects which are not defined by the specification to be “top-levels”
to be constructed and then later added to the document, whereas libSBOLj only
allows top-levels to be constructed in the context of their parent.

• There is no concept of a “default URI prefix” in sboljs. The construction of URIs is
entirely up to the user.

sboljs is available as a module on the npm package manager5, and can be used both
in the Web browser and via the node.js runtime (Fig. 3.3).

3.3.2 sbolgraph
As SBOL is built on RDF, it follows that standard graph operations should be applicable
to navigate the data model. However, none of the current implementations of SBOL
take advantage of this. All of the existing SBOL libraries — libSBOLj, and even sboljs
and libSBOL which deserialize SBOL using RDF libraries — eventually store SBOL in a
rigid in-memory object model, making the application of graph queries impossible. The
existence of such an object model is evident in their APIs, in that most properties can
only be followed in one direction. For example, in libSBOLj:

• It is possible to retrieve the definition of a component, but not all components with
a specific definition (e.g. list all instances of pLac)

• It is possible to retrieve the roles of a component, but not all components with a
specific role (e.g. list all promoters)

5https://www.npmjs.com/package/sboljs

https://www.npmjs.com/package/sboljs

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

/* prefix string for example purposes
 */
const prefix = 'http://sbolstandard.org/example/'

/* create a new empty SBOL document
 */
const doc = new SBOLDocument()

/* create component definitions for our promoter, rbs, coding site, and terminator
 */
const promoterDef = doc.componentDefinition(prefix + 'promoter')
const rbsDef = doc.componentDefinition(prefix + 'rbs')
const cdsDef = doc.componentDefinition(prefix + 'cds')
const terminatorDef = doc.componentDefinition(prefix + 'terminator')

/* add relevant role URIs to the component definitions
 */
promoterDef.addRole(SBOLDocument.terms.promoter)
rbsDef.addRole(SBOLDocument.terms.ribosomeBindingSite)
cdsDef.addRole(SBOLDocument.terms.cds)
terminatorDef.addRole(SBOLDocument.terms.terminator)

/* create an example component definition that will contain all of the components
 * we just created.
 */
const componentDefinition = doc.componentDefinition(prefix + 'exampleComponentDefinition')

/* we have component definitions for the various components. now we need to
 * create components to instantiate them.
 */
const promoter = doc.component(componentDefinition.uri + '/promoter')
const rbs = doc.component(componentDefinition.uri + '/rbs')
const cds = doc.component(componentDefinition.uri + '/cds')
const terminator = doc.component(componentDefinition.uri + '/terminator')

/* hook up our new component instances with their definitions
 */
promoter.definition = promoterDef
rbs.definition = rbsDef
cds.definition = cdsDef
terminator.definition = terminatorDef

/* add them to the example component definition
 */
componentDefinition.addComponent(promoter)
componentDefinition.addComponent(rbs)
componentDefinition.addComponent(cds)
componentDefinition.addComponent(terminator)

/* serialize the newly created document as RDF/XML and print it to the console
 */
console.log(doc.serializeXML())

Figure 3.2: Example code for sboljs that creates a transcriptional unit in SBOL2. Unlike
libSBOLj, sboljs does not have the concept of a “default URI prefix”, so the URI for each object
is constructed manually. First, four ComponentDefinition objects are created using the
componentDefinition function of SBOLDocument, and assigned the roles of promoter,
RBS, CDS, and terminator. They are then added to a parent ComponentDefinition using
Component objects created using the component function of SBOLDocument. Finally, the
document is serialized as XML and printed to the console.

70

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

$ npm install sboljs
+ sboljs@2.2.2
added 171 packages from 376 contributors and audited 131
packages in 5.423s

$ node
> let SBOLDocument = require('sboljs')
undefined
> let doc = new SBOLDocument()
undefined
> let sequence = doc.sequence()
undefined
> sequence.elements = 'aattggcc'
'aattggcc'
> doc.serializeXML()
'<?xml version="1.0" encoding="UTF-8"?>\n<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/" xmlns:prov="http://
www.w3.org/ns/prov#" xmlns:sbol="http://sbols.org/v2#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#dateTime/"
xmlns:om="http://www.ontology-of-units-of-measure.org/
resource/om-2/">\n <sbol:Sequence rdf:about="">\n
<sbol:elements>aattggcc</sbol:elements>\n <sbol:encoding
rdf:resource=""/>\n </sbol:Sequence>\n</rdf:RDF>'
>

Figure 3.3: Example of the installation and usage of sboljs outside of the browser via the node.js
REPL. A sequence is added to a document, and then the document is serialized as XML.

71

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

• It is possible to retrieve the participants of an interaction, but not all interactions
with a specific participant (e.g. list all interactions which reference IPTG)

It is possible that taking advantage of the RDF nature of SBOL could improve the
tractability of existing SBOL knowledge by making SBOL software libraries more
powerful. This was explored in this work with the development of sbolgraph6, a new
design pattern for SBOL libraries where the SBOL API is simply a view over an
underlying RDF graph. Libraries developed in the style of sbolgraph have some
significant advantages over their predecessors:

• Dramatically reduced code size, as there is no serialization or deserialization logic
and each SBOL property only exists in one place in the library.

• Bi-directional properties. All properties are automatically navigable in both
directions without any additional work to maintain references.

sbolgraph provides an API very similar to existing SBOL libraries, even though the
underlying implementation is very different. There is no class structure to populate; all
of the SBOL data remains in the graph, and every property access in sbolgraph results
in the evaluation of a triple pattern (Fig. 3.4). Abstraction is achieved by using getter
and setter functions, where the getter performs one or more triple pattern matches and
the setter performs pattern deletions and/or triple insertions. For example, the
following code fragment:

for(let sequence of componentDefinition.sequences) {
 console.log(sequence.elements)
}

is valid in both sboljs and sbolgraph. In sboljs, there is nothing happening behind the
scenes: sequences is an array property of the ComponentDefinition class,
and elements is a string property of the Sequence class. In sbolgraph, however:

• TheComponentDefinition class has nomember variables other than a URI,
and a reference to an RDF graph

• The sequences property of ComponentDefinition is actually a getter
function which uses the RDF graph to match the triple pattern <uri>
sbol:sequence ?, where the URI is the URI of the
ComponentDefinition

• Each resulting triple contains a URI, which is used to instantiate a Sequence
object. Like ComponentDefinition, Sequence only has two member
variables: the URI, and a reference to the RDF graph. The list of newly
instantiated Sequence objects is returned from the sequences getter
function.

• The elements property of Sequence is actually a getter function which uses
the RDF graph to match the triple pattern <uri> sbol:elements ?. The
object of the resulting triple is returned as a string from the elements getter.

72

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

class ComponentDefinition {

 Graph graph; // Reference to the graph
 URI uri; // The URI of this object to use for lookups

 getter name() {
 return this.graph.match(this.uri, dcterms:title, ?).object
 }

 getter instances() {
 return this.graph.match(?, sbol:component, this.uri).subjects
 }
}

Figure 3.4: Pseudo-code showing how classes for SBOL types are created in sbolgraph, using
the ComponentDefinition to sub-component relation (sbol:component) as an example. In
other libraries such as libSBOLj and sboljs, the ComponentDefinition class stores an array of
sub-components. In sbolgraph, the ComponentDefinition class stores nothing, instead simply
retrieving the set of sub-components from the RDF graph on demand. This approach also means
the relation can trivially be followed in the other direction, retrieving the list of instances of a
given ComponentDefinition. In libSBOLj, implementing such functionality would require either
maintaining an additional array, or iterating through the entire document.

This implementation means that sbolgraph effectively has no serialization or
deserialization step. SBOL is simply loaded as an RDF graph using existing RDF
libraries, and classes are defined to provide views over the graph by evaluating triple
patterns of the form sp? (retrieve a specific property for a subject), or ?po (retrieve the
subject with a specific value for a property). The SBOL data remain in their RDF
representation, and are never copied to a separate class structure as with other SBOL
libraries.

The RDF graph used by sbolgraph was modified to maintain hash table indexes both
for subject to predicate to object, and for object to predicate to subject7. Therefore, the
time complexity for a triple pattern evaluation is the time complexity of at most three
hash table lookups, with an average time complexity of O(1) — no worse than the time
complexity of accessing a member variable, but with the added advantage of navigation
in both directions without maintaining duplicate state.

Serialization

As described in section 2.2, SBOL serialization requires a specific, nested form of
RDF/XML. sboljs addressed this problem by manually serializing SBOL with an XML
serialization library and functions defined specifically for each type in the data model.
This manual approach is both error-prone, and requires updating the serialization code
whenever the SBOL data model changes. In sbolgraph, a more generalised approach
was taken:

6https://github.com/udp/sbolgraph
7https://github.com/udp/rdf-graph-array

73

https://github.com/udp/sbolgraph
https://github.com/udp/rdf-graph-array

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

• Define the set of predicates which cause nesting. For example, the
sbol:component predicate causes nesting of a sub-component and should
be in the set, but the sbol:definition predicate does not nest the
referenced ComponentDefinition and therefore should not.

• For each distinct subject s in the graph, create an XML node: either an
rdf:Description if there is no triple matching <subject> a ?, or a
node of type o where <subject> a <o>.

• Iterate through all the triples ?s ?p ?o in the graph. If p is an ownership
relation, add the XML node corresponding to o and as a child of the XML node
corresponding to s. Otherwise, add the XML node representing p o to the XML
node corresponding to s.

Minimal knowledge of the SBOL data model — a set of ownership predicates — is
required for this approach, which is a significant improvement over both libSBOLj and
sboljs where the serialization logic had to manually specify every property in the data
model. The lack of SBOL-specific code for both serialization and deserialization means
that each SBOL property occurs in only one place in the library source code, meaning
that it is trivial to add and remove properties to sbolgraph as the standard evolves.

Usage

The usage of sbolgraph is mostly the same as that of sboljs. However, sbolgraph takes
advantage of the underlying graph representation to trivially implement functionswhich
are not easy to implement in other SBOL libraries without having to maintain additional
state or traverse the entire document tree. For example:

• The getConstraintsWithThisSubject and
getConstraintsWithThisObject functions use the triple patterns ?
sbol:subject <uri> and ? sbol:object <uri> to find any
sequence constraints that refer to a sub-component

• The getInstancesOfComponent function uses the triple pattern ?
sbol:definition <uri> to retrieve any instances anywhere in the
graph of a given component

Unlike sboljs, the JavaScript version of sbolgraph is implemented in TypeScript
[104], an extension to JavaScript which adds strict type annotations. As TypeScript
compiles to JavaScript, it is still fully compatible with JavaScript code. Alternatively,
code to interoperate with sbolgraph can be written in TypeScript to enable
compile-time type-checking when working with SBOL objects.

In addition to the JavaScript implementation, sbolgraph also has an implementation
in Python8. The Python implementation is a direct port (Fig. 3.5), using the rdflib [101]
library in place of rdf-ext.

8https://github.com/udp/pysbolgraph

74

https://github.com/udp/pysbolgraph

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

e
x
p
o
r
t

d
e
f
a
u
l
t

c
l
a
s
s

S
2
S
e
q
u
e
n
c
e

e
x
t
e
n
d
s

S
2
I
d
e
n
t
i
f
i
e
d

{

 c
o
n
s
t
r
u
c
t
o
r
(
g
r
a
p
h
:
S
B
O
L
2
G
r
a
p
h
,

u
r
i:
s
t
r
i
n
g
)

{

 s
u
p
e
r
(
g
r
a
p
h
,

u
r
i)

 }

 g
e
t
e
n
c
o
d
i
n
g(
)
:
s
t
r
i
n
g
|
u
n
d
e
f
i
n
e
d

{

 r
e
t
u
r
n

t
h
i
s.

g
e
t
U
r
i
P
r
o
p
e
r
t
y
(
P
r
e
d
i
c
a
t
e
s
.
S
B
O
L
2
.
e
n
c
o
d
i
n
g)

 }

 s
e
t
e
n
c
o
d
i
n
g(
e
n
c
o
d
i
n
g:
s
t
r
i
n
g
|
u
n
d
e
f
i
n
e
d)

{

 t
h
i
s.

s
e
t
U
r
i
P
r
o
p
e
r
t
y
(
P
r
e
d
i
c
a
t
e
s
.
S
B
O
L
2
.
e
n
c
o
d
i
n
g,

e
n
c
o
d
i
n
g)

 }

 g
e
t
e
l
e
m
e
n
t
s(
)
:
s
t
r
i
n
g
|
u
n
d
e
f
i
n
e
d

{

 r
e
t
u
r
n

t
h
i
s.

g
e
t
S
t
r
i
n
g
P
r
o
p
e
r
t
y
(
P
r
e
d
i
c
a
t
e
s
.
S
B
O
L
2
.
e
l
e
m
e
n
t
s)

 }

 s
e
t
e
l
e
m
e
n
t
s(
e
l
e
m
e
n
t
s:
s
t
r
i
n
g
|
u
n
d
e
f
i
n
e
d)

{

 t
h
i
s.

s
e
t
S
t
r
i
n
g
P
r
o
p
e
r
t
y
(
P
r
e
d
i
c
a
t
e
s
.
S
B
O
L
2
.
e
l
e
m
e
n
t
s,

e
l
e
m
e
n
t
s)

 }

}

c
l
a
s
s

S
2
S
e
q
u
e
n
c
e
(
S
2
I
d
e
n
t
i
f
i
e
d
)
:

 d
e
f
_
_
i
n
i
t
_
_(
s
e
l
f,

g
,

u
r
i)
:

 s
u
p
e
r
(
S
2
S
e
q
u
e
n
c
e
,

s
e
l
f)

.
_
_
i
n
i
t
_
_(
g
,

u
r
i)

 @
p
r
o
p
e
r
t
y

 d
e
f
e
n
c
o
d
i
n
g(
s
e
l
f)
:

 r
e
t
u
r
n

s
e
l
f.

g
e
t
_
u
r
i
_
p
r
o
p
e
r
t
y
(
S
B
O
L
2
.
e
n
c
o
d
i
n
g)

 @
e
n
c
o
d
i
n
g
.
s
e
t
t
e
r

 d
e
f
e
n
c
o
d
i
n
g(
s
e
l
f,

e
n
c
o
d
i
n
g)
:

 s
e
l
f.

s
e
t
_
u
r
i
_
p
r
o
p
e
r
t
y
(
S
B
O
L
2
.
e
n
c
o
d
i
n
g,

e
n
c
o
d
i
n
g)

 @
p
r
o
p
e
r
t
y

 d
e
f
e
l
e
m
e
n
t
s(
s
e
l
f)
:

 r
e
t
u
r
n

s
e
l
f.

g
e
t
_
s
t
r
i
n
g
_
p
r
o
p
e
r
t
y
(
S
B
O
L
2
.
e
l
e
m
e
n
t
s)

 @
e
l
e
m
e
n
t
s
.
s
e
t
t
e
r

 d
e
f
e
l
e
m
e
n
t
s(
s
e
l
f,

e
l
e
m
e
n
t
s)
:

 s
e
l
f.

s
e
t
_
s
t
r
i
n
g
_
p
r
o
p
e
r
t
y
(
S
B
O
L
2
.
e
l
e
m
e
n
t
s,

e
l
e
m
e
n
t
s)

Fi
gu

re
3.
5:

Ex
am

pl
e
co

de
fr
om

sb
ol
gr

ap
h
(le

ft
)a

nd
py

sb
ol
gr

ap
h
(r
ig
ht

).
A
pa

rt
fr
om

sy
nt

ac
tic

al
di
ffe

re
nc

es
,t
he

co
de

is
es
se
nt

ia
lly

th
e
sa

m
e.

75

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

3.4 SBOL Stack
SBOL provides a standardized, machine-tractable data standard for synthetic biology
interchangeable between software written in multiple programming languages with
the aid of software libraries. What remains unspecified is where SBOL data should be
stored. A rich RDF description of a design is of little benefit if it is stored as a file on a
harddisk without any connection to other resources or means for the application of
queries. Linked Data that is not “linked” is simply “data”.

In the RDF world, the standard approach for making data available is to store it in a
triplestore and provide access via a SPARQL [63] endpoint. The use of triplestores and
SPARQL queries with SBOL has been explored once before by Galdzicki et al. in 2011
[83]. However, their attempt was with SBOL1 and has not been further developed. It
also stopped short of providing a general solution for deploying an SBOL-RDF database,
instead only suggesting how existing triplestores could be used directly with the SBOL1
data model.

In order to revive this concept and update it for the SBOL2 data model, the SBOL
Stack9 repository was developed, partly as a result of this work. The SBOL Stack is a
database for SBOL2 using an RDF triplestore as the backend, which later became the
database component of SynBioHub (chapter 6). Its software components comprise:

• A node.js server developed as part of this work which abstracts over the RDF
triplestore providing an SBOL-specific API using sboljs. The API can be used to
perform tasks such as uploading, downloading, and searching for SBOL data. Each
instance of the API can also be connected to other instances, enabling queries to
be automatically federated across multiple SBOL-RDF datasets.

• Client libraries for Java and JavaScript developed as part of this work which can
be used to programatically connect to the API from software. These libraries are
intended to be used in conjunction with an SBOL library such as libSBOLj, sboljs,
or sbolgraph.

As demonstrated by the implementation of sbolgraph in section 3.3.2, viewing SBOL
as an RDF graph rather than as a “document” has significant advantages in making the
data model easier to navigate. The SBOL Stack applies the same principle, but on a
much larger scale. When uploaded to the triplestore, the entire concept of an SBOL
“document” is dissolved: the triples in the XML file become triples in the triplestore in
the same space as any other triples, and can be queried using the powerful mechanism
of SPARQL queries.

The API endpoints provided by the SBOL Stack server are implemented as
wrappers over federated SPARQL queries with a collation step. For example, the
endpoint /component/count to count all of the ComponentDefinition
objects executes the query SELECT count(?component) WHERE {
?component a sbol:ComponentDefinition } for its local triplestore,
and also executes the same endpoint on any other SBOL Stack instances listed as
federation endpoints. The results are then collated by adding together the counts.

9https://github.com/ICO2S/sbolstack

76

https://github.com/ICO2S/sbolstack

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

One of the most important functions of the SBOL Stack compared to using a
triplestore directly is the ability to automatically download SBOL documents. As SBOL
documents, when uploaded, become nothing but additional triples in the triplestore,
retrieving documents back again is a more involved process than simply
re-downloading a file. As SBOL has unlimited potential recursion depth, it is not
possible to retrieve a complete “document” in a single SPARQL query. The SBOL Stack
accomplishes this using a succession of CONSTRUCT queries:

1. Initialize an empty RDF graph, and a set for unresolved URIs initially containing
the URI of the SBOL object that has been requested to download

2. For each unresolved URI, retrieve all properties using the SPARQL query
CONSTRUCT { <uri> ?p ?o } WHERE { <uri> ?p ?o } and
add them to the RDF graph

3. Add any objects referenced by SBOL predicates to the set of unresolved URIs, then
repeat

The resulting RDF is then loaded using sboljs and re-serialized to produce the specific
nested form of RDF/XML required by the SBOL specification, as described in section 2.2.

3.5 Enhancement proposals for SBOL
One of the advantages of SBOL being an open standard is that it is always subject to
change. Anyone can write a proposal to improve SBOL, which is then put to the
community for a vote. This section describes a number of such proposals, most of
which have a corresponding SBOL Enhancement Proposal (SEP) included in Appendix
A.

With the exception of section 3.5.1 Integration of provenance, the overarching
motivation for all of these proposals is to reduce complexity in the SBOL data model.
While addressing portability as discussed previously is critical to make it possible for
developers to add SBOL support to tooling, it is equally important to ensure that the
complexity of the standard is at a functional minimum to make the standard as
accessible as possible to potential users.

3.5.1 Integration of provenance
One of the fundamental principles of synthetic biology is the application of a
“design-build-test-learn” lifecycle. However, the scope of SBOL historically has been
narrowly focused on the specification of designs, with little consideration for the
description of provenance (i.e. the “who, what, why, and when” of the design process),
which is essential to place the design within the broader context of a lifecycle iteration.

The provenance ontology, PROV-O [49], provides a set of terms for formally
describing provenance information in RDF such as prov:Activity,
prov:Agent, and predicates such as prov:wasInformedBy and
prov:endedAtTime. These terms map naturally to the synthetic biology domain.

77

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

For example, a prov:Activity could be used to describe an assembly method in
the build stage, or an in silico activity such as codon optimisation in the design stage.

While it has always theoretically been possible to use PROV-O with SBOL because
of the inherent interoperability of RDF data models, the specification has so far lacked
any formal recommendation, thus restricting the ability of SBOL to capture standardised
provenance information. A proposal to integrate a recommendation for the use of PROV-
O into the SBOL data model is described in SEP 009, SBOL Provenance (Appendix A).

3.5.2 Alignment with external ontologies
Despite the fact that SBOL is built on RDF, it is described in the specification in terms
of classes with properties as one might implement in an object-oriented programming
language. For example, page 18 of the SBOL 2.3 specification [105, p. 18] states:

the Identified class includes the following properties: identity,
persistentIdentity, version, wasDerivedFroms, name,
description, and annotations

For a prospective implementer of SBOL, this is an extremely confusing statement for
several reasons:

• What the specification refers to as an “identity” property is actually simply the
URI of an object; there is nothing called “identity” in SBOL RDF/XML.

• What the specification refers to as “wasDerivedFroms” is actually the
prov:wasDerivedFrom predicate defined by the PROV-O ontology [49].
Nowhere in the PROV-O specification or SBOL RDF/XML is it referred to using
the plural “wasDerivedFroms”; only in the SBOL specification document.

• What the specification refers to as a “name” property is actually the
dcterms:title predicate from the Dublin Core ontology [40]. Nowhere in
the Dublin Core ontology specification or SBOL RDF/XML is it referred to as
“name”.

• What the specification refers to as “annotations” simply does not exist at all. It
actually refers to the existence of any other RDF triples associated with the URI
of an SBOL object.

The specification later clarifies [105, p. 20]:

Note that several of the properties are not in the sbol namespace, but are
mapped to standardized terms defined elsewhere:

• identity is serialized as rdf:about

• wasDerivedFroms are serialized as
prov:wasDerivedFrom

• name is serialized as dcterms:title

78

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

• description is serialized as dcterms:description

This re-definition and subsequent re-mapping of the names of properties adds a
layer of confusion, and is unnecessary. RDF is specifically designed for data modelling,
and the terms used by SBOL are already defined as part of well-established RDF
vocabularies and ontologies. If SBOL simply stated that it “uses the wasDerivedFrom
property from the PROV-O ontology”, it would not need to define a new name or a
mapping for “serialization”.

The way the specification currently describes properties implies that SBOL is not
an abstract data model, but an object-oriented class hierarchy to be implemented in
programming languages. This may be true if SBOL is used only as a file format and
exclusively loaded and saved using a library such as libSBOLj, which does use the
renamed property names such as “wasDerivedFroms” in its classes. However, those
who wish to implement new SBOL libraries or use SBOL directly as an RDF data model
— either through RDF libraries as in this chapter, or using RDF technology such as
SPARQL queries as will be discussed in depth in chapter 4 — will quickly discover that
there is a disparity between what properties are called by the specification, and what
they actually look like in the data.

A recommendation to reword the specification to use the correct name for all
properties is formalised in SEP 032, Do not rename ontologicially defined predicates
(Appendix A).

3.5.3 Removal of unnecessary specification of serialization
The serialization examples throughout the specification are redundant, as RDF/XML
serialization is thoroughly explained by the RDF/XML specification [53] and has been
widely implemented by many software libraries, many of which significantly predate
SBOL. By including examples of XML in the description of each SBOL class, the SBOL
specification creates the false impression that in order to implement an SBOL library,
one must be able to read and write a specialized XML format, which is likely
discouraging to developers interested in working with the SBOL data model.

While some examples of what RDF/XML serialization looks like might be helpful,
the specification should make it absolutely clear that it is not defining a bespoke XML
serialization format for SBOL, and that there are many existing RDF libraries which can
work with the data model. This would encourage the use of standard RDF tooling and
therefore make it easier for developers to adopt SBOL in tooling.

3.5.4 Addressing structural/functional dichotomy
When SBOL2 introduced interactions, they were added as part of a parallel data model
that, despite being part of the same specification, largely sits separately from the core
model shared with SBOL1.x. This dichotomy between structure and function in SBOL
can cause additional hierarchy to be imposed on the specification of a design where they
would naturally exist in the same scope.

Consider a simple example of modelling an auto-regulatory transcriptional unit. It
is first necessary to create a ComponentDefinition to represent the unit as a
whole, and a ComponentDefinition for each of the constituent promoter, RBS,

79

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

CDS, and terminator parts. These parts can then be added to the parent
ComponentDefinition using Component instantiations. Sequences can be
added to each of the parts using Sequence objects (Fig. 3.6 A)

However, the auto-regulatory interaction cannot simply be added to the unit. First,
it is necessary to create a ModuleDefinition which, like the
ComponentDefinition, describes the unit — but this time, from a “functional”
perspective. The unit must then be instantiated into the ModuleDefinition using
a FunctionalComponent. However, it is still not possible to document the
interaction, as the promoter and the CDS are contained within the
ComponentDefinition and are not “exposed” to the level of the
ModuleDefinition. Therefore, it is necessary to create two
FunctionalComponent objects at the level of the ModuleDefinition —
one for the promoter, and one for the CDS — and then two corresponding MapsTo
relations. Finally, an Interaction can be created in the ModuleDefinition to
indicate that the CDS has an indirect regulatory effect on the promoter.

The modelled part now has two simultaneous descriptions (Fig. 3.6 B). One uses the
component data model to describe the composition of the part, its sequence, and its
rudimentary function (via SO terms), and the other uses themodule hierarchy to describe
how the parts functionally relate to each other. This situation is problematic for a number
of reasons:

1. The separation of concerns is a data model detail, and is not scientifically relevant
from the perspective of a synthetic biologist modelling a system. The composition
of sequences and specification of functional relationships are part of the same
design. Therefore, a user should not be expected to be aware of the split in the
data model, and consequently every tool with SBOL support will have to hide it
through abstraction.

2. Such abstraction is extremely difficult, because the two data models both require
hierarchical composition that does not have to be synchronised. For example, from
a visual perspective, the obviousway to draw the above part is as a single backbone
with four glyphs and an arc connecting the CDS to the promoter. However, the
information about the interaction is in module-space, while the composition is
in component-space. Rendering these as a single depiction would require a non-
trivial “merge” operation to compose the two hierarchies into one.

3. By definition, the result of such a merge operation cannot be represented in SBOL,
as the SBOL data model forbids it. Therefore, tooling will have to define a new data
model in which the merged design can be represented, along with conversions
from SBOL to and from this data model.

This problem can be addressed by unifying the two data models to provide a single,
highly descriptive view of a design that can incorporate representations of both structure
and function (Fig. 3.6 C, Fig. 3.7). A recommendation for this unification is included in
SEP 025, Merge ComponentDefinition and ModuleDefinition (Appendix A).

80

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

Au
to

re
gu

la
to

ry
 d

ev
ic

e

Co
m
po

ne
nt
D
e�

ni
ti
on

Co
m
po

ne
nt
s

Fu
nc

ti
on

al
Co

m
po

ne
nt
s

M
ap

sT
o

M
ap

sT
o

Au
to

re
gu

la
to

ry
 d

ev
ic

e

Au
to

re
gu

la
to

ry
 d

ev
ic

e

In
te
ra
ct
io
nFu
nc

ti
on

al
Co

m
po

ne
nt

M
od

ul
eD

e�
ni
ti
on

Au
to

re
gu

la
to

ry
 d

ev
ic

e
D
na

Co
m
po

ne
nt

Su
bC

om
po

ne
nt
s

B

Au
to

re
gu

la
to

ry
 d

ev
ic

e

In
te
ra
ct
io
n

Co
m
po

ne
nt

Su
bC

om
po

ne
nt
s

A C

Su
bC

om
po

ne
nt
s

Fi
gu

re
3.
6:

A
n
au

to
-r
eg

ul
at
or

y
tr
an

sc
ri
pt
io
na

lu
ni
tr

ep
re
se
nt

ed
in

SB
O
L1

(A
),
SB

O
L2

(B
),
an

d
in

a
hy

po
th

et
ic
al

SB
O
L3

w
ith

th
e
ac

ce
pt
ed

pr
op

os
al

of
m
er
gi
ng

C
om

po
ne

nt
D
efi

ni
tio

n
an

d
M
od

ul
eD

efi
ni
tio

n
(C

).

81

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

3.5.5 More intuitive nomenclature
In SBOL1, the composition relationship between a DnaComponent and its
sub-components was represented using the subComponent predicate. In SBOL2,
this predicate was replaced with a “pointer” object in order to allow additional
information about the composition to be included, such as the access and mapsTo
properties which determine how the sub-component can be referred to by other
components.

While with the SBOL1 convention the name for such a pointer object would have
been SubComponent, the decision made for SBOL2 was to instead rename
DnaComponent to ComponentDefinition, and call the sub-component
pointer object Component. This nomenclature has proven to be problematic for
several reasons:

• The nomenclature does not match its usage. The Component class does not
describe a component; it describes the composition relationship between a
component and a sub-component.

• In SBOL discussions, what is referred to verbally as a “component” is actually the
ComponentDefinition object, and what is referred to verbally as a “sub-
component” is actually the Component object.

• It does not match the convention used in programming languages. For example,
the Java class for a file is called File, not FileDefinition.

SEP 015 describes a proposal to return to the SBOL1 format:
ComponentDefinition becomes simply Component, and Component
becomes SubComponent. Coupled with the removal of ModuleDefinition
and Module in SEP 025, Component, and SubComponent become the two
central classes to the SBOL 3 data model (Fig. 3.7).

3.6 Discussion & Conclusion
A standard computational representation for synthetic biology designs is essential to
ensure machine-tractability of past, present, and future design knowledge. It is clear
that existing biological file formats such as FASTA and GenBank — while ubiquitous —
do not transfer well to synthetic biology, as important information such as the
specification of non-DNA parts, hierarchical composition, interactions, and
provenance are not captured. SBOL provides a comprehensive solution to this problem.
However, the adoption of SBOL has been slow, likely because of some of the issues
identified in section 2.2 with a lack of data; lack of tooling; lack of portability; and an
over-complicated data model.

The work described in this chapter focused on the issues of portability and
over-complication, with the research goals of investigating (a) to how SBOL can be
made more accessible to potential users, and (b) how complexity in the SBOL data
model can be reduced while preserving expressiveness. Goal (a) was realised through
the development of new libraries to allow SBOL to be used from different

82

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

C
om

po
ne

nt

Su
bC

om
po

ne
nt

Se
qu

en
ce

An
no

ta
tio

n
Se

qu
en

ce
C
on

st
ra
in
t

Lo
ca

tio
n

Se
qu

en
ce

M
od

el

In
te
ra
ct
io
n

Pa
rt
ic
ip
at
io
n

Ex
pe

rim
en

t
Ex

pe
rim

en
ta
lD
at
a

C
ol
le
ct
io
n

Fi
gu

re
3.
7:

Th
e

pr
op

os
ed

da
ta

m
od

el
fo
r

SB
O
L3

.
In

co
nt

ra
st

to
th

e
SB

O
L2

da
ta

m
od

el
sh

ow
n

ea
rl
ie
r

in
Fi
g.

2.
12

,
M
o
d
u
l
e
D
e
f
i
n
i
t
i
o
n

an
d

C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

ha
ve

be
en

m
er
ge

d
in
to

on
e
cl
as

s
(S
EP

02
5)

an
d
re
na

m
ed

to
C
om

po
ne

nt
(S
EP

01
5)
.

83

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

programming languages, and a database for storing SBOL in a form amenable to
existing RDF tooling and SPARQL queries. Goal (b) was realised through a set of
proposals to radically simplify the specification in SBOL version 3.

3.6.1 Libraries for SBOL
To encourage developers to use SBOL, it is critical that the portability issue is solved by
implementing comprehensive library support. Prior to this work, the only viable option
was libSBOLj. Even aside from being restricted to use in Java software, libSBOLj has
many issues:

• Its implementation is unnecessarily complex, using manual XML parsing and
serialization where the use of existing RDF libraries would be much simpler and
less error-prone

• It has inconsistent support for RDF/XML standard; there are many examples of
RDF/XML that are not correctly parsed by libSBOLj (Appendix B)

• Its representation of SBOL as an object-oriented class hierarchy is reductive and
ignores the potential of SBOL as a graph-based data format. One of the main
benefits of SBOL adoption is improvedmachine-tractability of design information,
but — as demonstrated by sbolgraph — the tractability of the data model when
accessed via libSBOLj is far more limited than necessary.

The alternative approach proposed in this chapter of using RDF libraries to work
with SBOL has clear advantages in simplicity and consistency when compared to
manually parsing XML as with libSBOLj. The libSBOL [97] library for C++ and Python,
the development of which was contemporary with sboljs and sbolgraph, also uses an
RDF-based approach. libSBOLj is intended to make it easier for developers to use
SBOL. However, with the aforementioned issues — and the fact that an SBOL library
can demonstratably be much smaller while implementing equivalent functionality — it
could be argued that libSBOLj can now be replaced, either by either creating a Java
SWIG [106] wrapper for libSBOL (as has already been done for Python), or by
implementing a new library using the sbolgraph design pattern and an existing Java
RDF library. If the proposals for SBOL3 are accepted, they could serve as the catalyst
for this change; implementing major changes in libSBOLj with its extensive and
complex serialization code would be much more complicated than changing, for
example, the structure of facade classes in sbolgraph.

Nevertheless, there are potential caveats to the graph-based approach. For example,
memory efficiency: while the memory usage of an RDF graph is highly dependent on
the runtime environment and implementation of the RDF library, the data structures
necessary for graph lookups are more complex than simple object properties. This is
unlikely to be a problem for SBOL designs on the scale of those described herein; for
example, the Gardner et al. toggle switch example from the SBOL2 specification weighs
in at only 507 triples. However, future synthetic biology designs such as those at the
genome scale may require a different approach, e.g. using an external triplestore as the
data store rather than an in-memory graph.

84

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

In general, the fact that new libraries can be created and can work with the exact
same data even when they have differing implementations is one of the strengths of
SBOL being a well-defined standard. The situation today, with five complete
implementations of SBOL across four different languages, is a significant improvement
and will enable SBOL to be integrated into software where it previously would not
have been possible.

3.6.2 SBOL Stack
If the sbolgraph library enables navigating SBOL as a graph on a small-scale design
level, the SBOL Stack enables the same approach for large SBOL datasets. What the
SBOL Stack actually provides is minimal: an API to facilitate querying the SBOL data
model, and the functionality to download SBOL documents. The true value comes from
the underlying triplestore, which is directly applicable to SBOL as a result of the RDF
foundation of the data model.

When SBOL is stored in a triplestore, there is no longer the concept of a “document”.
Rather than a file format, SBOL becomes a vocabulary for LinkedData design knowledge.
This representation is highly machine-tractable. SPARQL queries can be used to both
navigate and integrate information about parts and designs, a concept which is explored
in-depth in chapter 4.

The SBOL Stack contributes to the goal of making SBOL more accessible by
demonstrating how SBOL can be used on a large scale with existing Semantic Web
tooling, rather than as a file format using bespoke SBOL libraries. This concept is taken
further in chapter 6 with the development of SynBioHub, a complete user-facing
design repository for synthetic biology built on the same underlying triplestore
technology as the SBOL Stack.

3.6.3 SBOL3 proposals
It is unsurprising that a standard developed by an international community has
accumulated peculiarities and overcomplexity over time. It is important that the
curators of the specification consistently ensure that it remains as concise and intuitive
as possible. Fortunately, SBOL is still in its infancy. There is not yet a large existing
user base to consider, or vast SBOL datasets with which backwards compatibility is
essential. Any significant changes to the data model need to take place now, as it can
only become more difficult in the future if the standard becomes successful.

The proposals made in this chapter for SBOL3 address the research goal of reducing
the complexity of SBOL without reducing its expressiveness. In particular, addressing
the structural/functional dichotomy in the data model by merging
ComponentDefinition and ModuleDefinition is a significant simplification. For
example, the toggle switch example from section 2.1 can be reduced from a complex
hierarchy of FunctionalComponent and MapsTo relations (Fig. 3.8) to a simple
component object containing sub-components and interactions (Fig. 3.9). If accepted,
this proposal will both simplify the description of simple parts, and make it easier to
scale SBOL to larger designs by reducing the necessity of MapsTo relations.
Additionally, because MapsTo relations are still permitted, the SBOL2 approach is still

85

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

equally valid, affected only by a change in nomenclature from modules to components.

3.6.4 Future work
Validation

While both sboljs and sbolgraph allow the serialization, deseralization, and
programmatic access of the SBOL data model, they do not enforce the validation rules
from the specification. Many of these validation rules are essentially validation rules
for RDF/XML syntax which are already performed by the RDF library, such as
sbol-10201 which mandates that the “identity property of an Identified object is
REQUIRED and must contain a URI”. Others are unenforceable, for example
sbol-10202 “The identity property of an Identified object MUST be globally
unique”, which is presumably based on the assumption that SBOL only ever exists in
an XML file and not in an RDF graph or triplestore where it is impossible to have
multiple nodes with the same URI.

Considering all of the SBOL libraries apart from libSBOLj are now built on RDF
libraries rather than XML parsing, it will likely be necessary to rethink many of these
validation rules and work out which would still be applicable when the majority of
SBOL does not ever pass through an XML parser. Validation can then be
re-implemented in the new RDF-based SBOL libraries.

One possible way to implement validation rules would be as SPARQL queries. For
example, noncompliance with sbol-10512 “The sequences property of a
ComponentDefinition is OPTIONAL and MAY contain a set of URIs” — which would
be re-worded on acceptance of SEP 032 as “The sequence property of
ComponentDefinition is OPTIONAL and MAY be used to refer to one or more
Sequence objects” — could be detected using the SPARQL query:

SELECT ?cd WHERE {
 ?cd a sbol:ComponentDefinition ;
 sbol:sequence ?sequence .

 FILTER NOT EXISTS {
 ?sequence a sbol:Sequence
 }
}

Using SPARQL queries to implement validation rules would enable entire triplestores of
SBOL data to be validated at once, which could be particularly useful considering the
recent rise of triplestore-backed repositories for large SBOL datasets driven by adoption
of SynBioHub (chapter 6).

Library generation

Porting sbolgraph from TypeScript to Python was not a difficult task, and could easily
be repeated for any language with an RDF library. However, each new library for SBOL

86

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

la
cI

/t
et

R
to

gg
le

 s
w

itc
h

pL
ac

te
tR

aT
c

Se
qu

en
ce
Co

ns
tr
ai
nt
s

Co
m
po

ne
nt
D
e�

ni
ti
on

Co
m
po

ne
nt
D
e�

ni
ti
on

Co
m
po

ne
nt
s

la
cI

 u
ni

t

pL
ac

te
tR

Se
qu

en
ce
Co

ns
tr
ai
nt
s

Co
m
po

ne
nt
s

te
tR

 u
ni

t

pT
et

la
cI

Fu
nc

ti
on

al
Co

m
po

ne
nt

M
ap

sT
o

la
cI

 u
ni

t

pT
et

la
cI

te
tR

M
ap

sT
o

Fu
nc

ti
on

al
Co

m
po

ne
nt

M
ap

sT
o

te
tR

 u
ni

t

M
ap

sT
o

la
cIM

od
ul
eD

e�
ni
ti
on

G
FP

M
ap

sT
o

G
FP G

FP

Fi
gu

re
3.
8:

Th
e
G
ar

dn
er

et
al
.t

og
gl
e
sw

itc
h
fr
om

se
ct
io
n
2.
1
re
pr

es
en

te
d
us

in
g
SB

O
L2

cl
as

se
s.

In
SB

O
L2

,i
nt

er
ac

tio
ns

ca
n
on

ly
ex

is
ti

n
m
od

ul
es
,w

hi
ch

ar
e

a
se
pa

ra
te

hi
er
ar

ch
y
fr
om

co
m
po

ne
nt

s.
D
es
cr
ib
in
g
th

e
to
gg

le
sw

itc
h
th

er
ef
or
e
re
qu

ir
es

th
e
in
st
an

tia
tio

n
of

bo
th

a
M
od

ul
eD

efi
ni
tio

n
fo
r
th

e
in
te
ra

ct
io
ns

an
d

C
om

po
ne

nt
D
efi

ni
tio

ns
fo
r
th

e
tr
an

sc
ri
pt
io
na

lu
ni
ts
,c

on
ne

ct
ed

us
in
g
M
ap

sT
o
re
la
tio

ns
in

th
e
Fu

nc
tio

na
lC

om
po

ne
nt

in
st
an

tia
tio

ns
.

87

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

lacI/tetR toggle switch

tetRpLac

tetR

lacIpTet

IPTG

lacI

aTc

SequenceConstraints

Interaction

Interaction

SubComponent

SubComponent

SubComponent

Component

SubComponents

GFP

GFP

Figure 3.9: The Gardner et al. toggle switch from section 2.1 represented using a hypothetical
SBOL3 data model in which SEP 015 “Simplification of SBOL class names” and SEP 025 “Merge
ComponentDefinition and ModuleDefinition” are accepted. In contrast to the SBOL2 example in
Fig. 3.8, both the interactions and the structural components are located within a single Component.

brings a new codebase which must be maintained to ensure synchronisation with the
specification.

SBOL-OWL [107] is a recent effort to develop an ontology for SBOL, describing the
data model in a machine-tractable format rather than a free-text specification. It may
be possible to combine the minimalistic approach for library implementation pioneered
by sbolgraph with the formal specification of SBOL-OWL by iterating the SBOL-OWL
specification of the data model model and automatically generating libraries for different
languages.

Abstraction

One of the major areas for future work in making SBOL more accessible is abstraction.
While the software libraries described in this chapter bring the possibility of
implementing SBOL to developers using different programming languages, they are
directly exposing the underlying data model. The recent work of Bartley et al. [97] in
the development of libSBOL demonstrates the alternative approach of hiding the
underlying data model from developers, allowing SBOL to retain its complexity while
becoming easier for developers to implement.

Having said this, it is important that abstraction is not seen as an alternative to
addressing the underlying complexity of the data model. Any such complexity must be
either justifiable or removed, as even with abstraction a complex data model
complicates the development of libraries and discourages involvement with the
standard. For example, abstracting over the split between the structural and functional
hierarchies by providing a unified view would be pointless if there is no clear
advantage to having the split in the data model. The standard and its software

88

CHAPTER 3. MACHINE-TRACTABILITY IN THE DESIGN PROCESS

infrastructure are developed together, and future developers should never be resigned
to the assumption that the data model cannot be changed.

SBOL is already itself an abstraction over the highly complex knowledge associated
with bio-engineering. If it becomes necessary to build further abstraction layers to
make SBOL usable, SBOL has introduced further complexity into an already
challenging domain.

Conclusion
Theneed for amachine-tractable representation of design information, and its realisation
in the form of the SBOL standard, were established prior to this work. However, SBOL
is not yet commonly used as part of the design process. This chapter explored some
of the interconnected reasons why this might be the case: lack of data, lack of tooling,
non-portability, and complexity.

Solutions to the issue of non-portability were proposed in the form of three new
software libraries for SBOL: sboljs, sbolgraph, and pysbolgraph. These libraries will
make it easier for tool developers to implement SBOL support, which in turn may
result in more SBOL data becoming available. Additionally, the greatly simplified
RDF-centred model for building an SBOL library pioneered by sbolgraph may make it
easier to implement SBOL support in further programming languages.

Finally, the issue of complexity was addressed with a series of proposals aimed at
simplifying the SBOL data model for its version 3. Hopefully, the contributions to the
SBOL standard and its associated software infrastructure described in this chapter will
help to accelerate the adoption of SBOL by the wider community.

89

Part II

Data Integration

90

4. Data harmonization using Linked
Data Fragments (LDF)

4.1 Introduction
Just as one developing an electronic circuit uses datasheets describing the properties of
each electronic component, a synthetic biologist uses a combination of many different
datasets that describe the predicted or previously observed behaviour of biological
parts. As described in section 2.3, the machine-tractability of this existing knowledge is
essential to optimizing the synthetic biology design stage. However, APIs for
programmatic access are often missing or have low availability, and non-standardized
data representations are often used which hinders interoperability.

Despite these issues, the value of the data themselves — and of the databases for
preserving them — cannot be understated. This disparity of valuable data contained by
less-than-perfect software is captured in a Hacker News comment1 by a developer from
the Internet Archive:

“ Archive.org itself had tons of kluges and several crude bits of
code to keep it going but the aim was the keep the data secure
and it did that. Someone . . . likened it to a ship traveling
through time. Several repairs with limited resources have
permanently scarred the ship but the cargo is safe and
pristine. When it finally arrives, the ship itself will be
dismantled or might just crumble but the cargo will be there
for the future.

— Noufal Ibrahim, Developer, Internet Archive ”
The concept of Linked Data described in section 2.3 seems an ideal solution to

provide a unified view of existing design knowledge. A distributed, ontology-backed
RDF graph of knowledge about parts for synthetic biology would both significantly
optimise information gathering in the design stage, and make it easier to
computationally mine data for design automation. The SBOL standard for the
representation of design knowledge is built using RDF, and RDF already has tooling for

1https://news.ycombinator.com/item?id=18116365

91

https://news.ycombinator.com/item?id=18116365

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

data integration such as federated SPARQL queries [63] and Linked Data Fragments
[71].

Unfortunately, the application of Linked Data to SynBio is limited by a problem as
old as the Semantic Web itself: much data is not yet represented in RDF. Converting
design knowledge to RDF ahead of time to enable data integration would negate both
of the significant benefits of query federation compared to data warehousing: that
federation accesses the current, live version of a dataset, and does not require extensive
computational resources.

The hypothesis of this research chapter is that it may be possible to provide an RDF
view over a non-RDF dataset at the time of query execution by coupling the recent
innovation of client-side querying pioneered by Linked Data Fragments with a custom
server providing dynamic RDF conversion.

Attribution: It is important to clarify that Linked Data Fragments (LDF) and the LDF
client which allows the execution of SPARQL queries over LDF servers were not
developed as part of this work. The results of this work are (a) a novel method for
modelling non-RDF datasets as RDF, and (b) ldf-facade, a new server compatible with
the existing ldf-client which implements this method.

4.2 Linked Data Fragments for non-RDF data sources
As described in section 2.3, Linked Data Fragments (LDF) are a recent innovation where
the complexity of executing a SPARQL graph query is moved from the server-side to
the client-side [72]. In order to achieve this, the LDF client breaks down the SPARQL
query into a series of triple patterns, where each pattern consists of an optional subject,
predicate, and object. Unlike a SPARQL endpoint which must respond to any possible
SPARQL query and process the query on the server-side, an LDF server only has one
job: given a triple pattern, it must return the set of all triples which match that pattern.

Processing SPARQL queries can be highly computationally expensive. LDF is
designed to reduce the load on servers by moving complexity to the client, giving the
server less to do and therefore allowing it to respond to more requests. To this end,
there are several implementations of LDF servers available, all of which are designed to
enable exposing an existing RDF datasource (such as a SPARQL endpoint or data
dump) as LDF.

The hypothesis of this chapter is that LDF can be repurposed to provide RDF views
over non-RDF datasources at the time of query execution. Although performing a
SPARQL query over a dataset that is not currently represented in RDF would be a
daunting task, matching a triple pattern — the only task of an LDF server — is less so.
For example, evaluating the triple pattern <subject> ?p ?o, or ?po, simply
means “retrieve all properties of <subject>”, a capability which any database or
Web service should be capable of.

Testing this hypothesis requires research in two areas. The first is theoretical: given
a non-RDF service such as an API, how can it be modelled in terms of the triples it could
potentially provide? The second is more practical: though LDF servers are simpler than
SPARQL endpoints, they are still expected to handle tasks which could reasonably be
expected of a provider of a large dataset, such as the pagination of results. Implementing

92

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

such functionality over a dynamic conversion from another datasource will require a
layer of abstraction to ensure that upstream and downstream state remain consistent.

4.3 Modelling non-RDF services using triple patterns
While the majority of Web services and APIs do not use an RDF representation, it may
still be possible to model them in terms of the subject-predicate-object model required by
RDF. For example, if a Web service has the functionality to return all of the properties
for a given resource identifier, it can be thought of in RDF terminology as having the
ability to return all of the properties associated with a given subject, or, more formally,
to evaluate the triple pattern s??.

Web services are usually much more restrictive than an indexing RDF triplestore,
because triplestores are typically optimised for all possible triple pattern permutations.
Given the option of the subject, predicate, and object of the pattern being either bound or
unbound, there are 23 = 8 possible patterns. While some of these patterns are commonly
supported by APIs, such as s?? (list all properties given a subject), others such as ?po (list
all subjects with a given value for a property) are less so. Thus, the method for evaluating
a service for potential wrapping into LDF consists of answering two questions:

1. Which triple patterns can an API evaluate? For example, if all properties of a
subject can be retrieved (as with most APIs), s?? can be evaluated. If the API
provides “advanced search” functionality, it can often be used to implement
complex triple patterns such as ?po by adding criteria to the search.

2. For the triple patterns that the service API is not able to respond to, how can we
generalise or specialize results from other API calls to achieve the desired patterns?

Even with a restricted set of possible patterns, it is possible to derive an evaluator
for one pattern from an evaluator for another using two operations:

1. Generalization: Make a bound part of the pattern s, p, or owork as an unbound ?
by iterating all of its possible values. For example, the pattern ??? can be answered
when only s?? is available by iterating all possible subjects and filling in the s.

2. Specialization: Make an unbound part of the pattern ?work as a bound s, p, or o
by filtering the results. For example, the pattern sp? can be evaluated when only
s?? is available by filtering the results to match only the specified predicate.

For example, consider a service that provides the functionality to retrieve the
properties of a record given its identifier. This functionality can satisfy a s?? pattern,
because given a subject (the identifier), it can return all of the triples with that subject
(the properties of the record). However, it is too general to satisfy a sp? pattern,
because it does not select for a specific property. The specialization operation would
solve this by first evaluating s?? to retrieve all of the properties, and then filtering out
any properties where the predicate does not match the triple pattern.

Generalization works in the opposite direction, by generalising a bound part of the
triple pattern to unbound. If the service only satisfies s?? by allowing all properties of a

93

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

???

sp? s?o s??spo ?po ?p? ??o

specialization

Figure 4.1: If the pattern ??? can be evaluated, all of the other pattern permutations can be
evaluated by iterating and filtering the resulting triples in O(|T |) where T is the set of all iterable
triples.

s

sp? s?ospo

?po ?p? ??o

s??

???

specialization generalisation

specialization

Figure 4.2: If the pattern s?? can be evaluated and it is also possible to retrieve a list of subjects
(represented here as s), it is possible to derive an evaluator for ??? by iterating each subject to bind
as the subject of successive s?? queries.

94

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

specific object to be retrieved, it is not possible to retrieve all properties of all objects, or
???. However, if it is possible to list all of the available subjects (e.g. a list of all record
identifiers), s?? can be generalized to ??? by using each identifier in the list, in turn, to
fill in the subject of the triple pattern.

4.3.1 Time complexity
Where T is the set of all iterable triples, the result set R of a “match” — i.e. a filtered set
of triples based on a subject/predicate/object pattern — will always be a subset R ⊆ T .

In practice, results are not directly accessible as a complete set, but instead iterable
through an iterate function that returns at least one triple t where t ∈ R. The time
complexity of retrieving the entire result set is therefore O(O(iterate) · |R|). Where
iterate is O(1), this becomes O(O(1) · |R|) = O(|R|), i.e. linear time depending on the
size of the result set.

In the case of specialization, the iterate function is called repeatedly until a matching
triple is found. This makes specialization a linear time operation: while the process of
checking whether a triple matches is a simple O(1) equality test, a matching triple may
not be found until the end of the result set, making the worst case for specialization of
a result set R O(|R|).

Fig. 4.1 shows specialization of a ??? iterator to findmatches for any possible pattern.
This is equivalent to traversing and comparing unsorted triples one at a time. While this
approach allows any triple pattern to bematched, in the case of the ??? pattern |R| = |T |,
so the complexity to find a single matching triple in a set T is a linear O(|T |).

If a constant time s?? (get all properties for a subject) iterator is provided as in Fig.
4.2, it can be specialized to evaluate spo, sp?, and s?o. This reduces their time complexity
to O(|R|), where R is the result set for s?? (i.e., |R| is the number of triples with the
specified subject). As R ⊆ T , |R| ≤ |T |, so specializing s?? performs equal to or better
than specializing ???.

Unlike specialization, generalization is usually a constant time operation. For
example, if a constant time s?? (get all properties for a subject) iterator is provided and
it is also possible to enumerate all subjects in constant time, s?? can be generalized to
provide a constant time iterator for ???.

4.4 ldf-facade: An intelligent server for LDF
In order to test the idea of modelling non-RDF services as RDF, the aforementioned
concepts are implemented in ldf-facade 2, an “intelligent” LDF server which allows logic
to be used to dynamically respond to triple patterns. While existing LDF servers are
typically used to expose a datasource with less restrictive querying capabilities (e.g. a
SPARQL endpoint) as a service with more restrictive querying capabilities (triple pattern
fragments), ldf-facade is designed to expose a datasource with more restrictive querying
capabilities — such as a HTTP API — as triple pattern fragments, which are often less
restrictive than the API.

2https://github.com/udp/ldf-facade

95

https://github.com/udp/ldf-facade

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

generator

nextState
offset=5results 0..5

generator

results 5..10 nextState
offset=10

generator

results 10..15 nextState
null

initial state
null

Figure 4.3: An example of how a generator works in ldf-facade. The first time the generator runs,
there is no initial state. It then emits the initial set of results (for example, the first 5), and the state
parameter that can be used to retrieve the next set (for example, the next results from offset 5). The
next time the generator runs, it receives offset 5, emits the results from 5 to 10, then returns the next
state as the next results from offset 10. A consumer of the generator can “rewind” the result set at
any time by passing a previous state.

In response to a triple pattern, an LDF server must respond with an initial set of
result triples; the total number of expected results; and the “controls”: URLs which can
be used to retrieve the previous or next page in the result set. In the case of a SPARQL
query, the existing LDF client uses this functionality by first retrieving the first pages for
each triple pattern in order to assess the total number of expected results. The pattern
with the lowest number of expected results (i.e., highest selectivity) is retrieved first to
make the query is cheap as possible.

The ldf-facade server implements this functionality using a system of composable
generators, where a generator has the form state? -> { results,
nextState? }. To iterate the entire result set of a generator, the consumer first
calls the generator with no state to retrieve any initial results. If the generator returns
a “next state”, it can be called again with that state to retrieve the next results, until no
next state is returned. The actual value of the state is opaque and entirely up to the
generator; in the case of a generator that retrieves data from an upstream API it might
be a database-specific offset or identifier.

Generators are expected to be deterministic, in that if called multiple times with the
same state, the callback should return the same results each time. This allows the caller to
“rewind” the result set by calling the generator with a previous state (Fig. 4.3). The ability
to navigate result sets in both directions is necessary to comply with the specification of
LDF, which expects servers to provide hydra:prev and hydra:next properties
along with each page of results to supply URLs for the previous and next page.

96

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

Outer has

triple?
DoneN

Inner has

triple?

Y

Emit

triple

Y

N

Figure 4.4: The join operation defined for ldf-facade can compose two generators. For each
triple emitted by the outer generator, the inner generator is called and its results, if any, are
emitted. Join operations are used for both generalization — where the outer is the enumerator for
subject/predicate/object and the inner is the generator to be generalized — and for specialization,
where the outer is the generator to be specialized and the inner is the filter function.

97

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

generator ???() {
 while(subject = s.iterate()):
 while(predicate, object = s??.iterate(subject)):
 yield triple(subject, predicate, object)
}

generator ?po(predicate, object) {
 while(triple = ???.iterate()):
 if triple.predicate == predicate and triple.object == object:
 yield triple
}

Figure 4.5: Pseudo-code implementation of the model depicted in 4.2. The ??? generator calls the s
generator to retrieve the next subject, and then uses the subject as the parameter to the s?? generator
to retrieve any matching triples. The ?po generator is then implemented using the ??? generator.
Note that the implementation of the ?po generator is inefficient here, as in the worst case it will make
many comparisons against triples that do not match.

Composition of generators is achieved using a join operation. Joining two
generators returns a new composite generator which passes its input to a first
generator (the “outer”); the output of the outer to another generator (the “inner”); then
emits triples only if emitted by the inner (Fig. 4.4). Composite generators maintain a
composite state containing both the outer and inner state to retain the same
deterministic attributes as their composed generators.

The server allows generators to be registered to respond to certain available triple
patterns. For example, if a non-RDF API was formalised as capable of responding to a
s?? pattern (retrieve all details about a subject), a generator for s?? can be registered in
the server with a generator that uses the subject URI to identify a resource, makes a call
to the API, translates the result to RDF triples, and returns the triple result set.

In response to a request by the LDF client for a specific pattern, the library selects the
closest generator and matches it to the query using generalisation and/or specialisation
techniques. Both generalisation and specification are implemented as generators using
join for composition. For example, when the closest available generator is s?? but the
requested triple pattern is ???, a generator which enumerates all subjects can be joined
upstream of the generator for s?? to generalise it to ???. Likewise, if the closest available
generator is ??? but the requested triple pattern is s??, a specializing generator which
filters based on s can be added downstream of the ??? generator to specialize it to s??.

4.4.1 Tracking state
One of the most important abstractions provided by ldf-facade is the mapping between
upstream state and downstream state. As an analogy, imagine the facade service as the
reader of a book in an unknown language. A translation service is attempting to a fool
a third party — the client — into believing that they instead have an English copy of the
book. The client can ask the facade service to read a page from the book, to turn to the
next page, or to turn to any of the pages previously read.

If the client asks for the facade service to read a page of the book, the translation
service translates a page into English and reads it back to the client. Sometimes the

98

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

Current URL

Lookup URL in URL -> state mapping
to retrieve state object

Generator

Generate URL and store state
in URL -> state mapping

New URLResults

current state next state

Figure 4.6: Process of performing an iteration. Each URI pointed to by hydra:next or
hydra:previous predicates maps to a token known by the service. The service can then resolve
the token to an opaque state object to pass to the iterator, which produces a) zero or more result triples
and b) a new state object, which is then mapped to a newly generated token used as part of the next
URI. Crucially, all iterators are deterministic: if the same state object is later passed again, the same
results will be returned.

English translation of the page might be longer than the original version, in which case
the facade service stops early and tells the client that they have finished the page.
Sometimes the English translation might be shorter than the original version, in which
case the facade service turns over to the next page and reads part of it without telling
the client. This results in the client having a different set of page numbers than the
facade server. In order to satisfy the requirement that the client can ask for any of the
previous pages and maintain the illusion, the facade service needs to remember the
mapping between page numbers used by the client and page numbers in the original
text.

In the case of ldf-facade, the original book could be the answer to a query from an
upstream datasource. Where specialization is applied to the query results — i.e.,
upstream returned results other than those the client requested — the pages of the
resulting triples may no longer map directly to the pages of the source result set. Page
numbers are a simple example of the kind of state that may need to be maintained by
the facade service. In practice, the information needed to retrieve part of a result set
may be far more complicated, particularly where multiple sources of data are being
combined e.g. in pattern generalization. ldf-facade is responsible for keeping track of
which generator requires which state to function, and mapping states to unique URLs
to provide the illusion of a contiguous paginated dataset to the client.

4.5 Example usage: RDFizing DistroWatch
As an initial proof-of-concept for the application of ldf-facade as a general tool for RDF
in the computer science domain rather than specifically for biology, the DistroWatch
[108] database of details about open-source operating systems was converted to an RDF
datasource. DistroWatch serves as a good example as it is a large, continually updated
database that is not represented as RDF.

As described at the beginning of this section, the method for producing an LDF
view over a non-RDF datasource requires answering two questions: what kind of triple
patterns the service is able to respond to, and how those triple patterns can be

99

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

generalized or specialized to achieve others that are unavailable.
The DistroWatch website has an advanced search form (Fig. 4.7) which allows ?po

to be evaluated (i.e. when a predicate and object have been specified and we want to
list all subjects that match). The search form can also be submitted without any criteria,
enabling a list of all subjects to be obtained. Given a distribution, we can retrieve its
details by visiting its detail page (Fig. 4.8), which allows s?? to be evaluated. One
possible way to accomplish the eight triple patterns, therefore, would be:

• s??: provided by the distribution detail page

• ?po: provided by the Advanced Search form

• spo: evaluate s??, and specialize to filter by p and o

• sp?: evaluate s??, and specialize to filter by p

• s?o: evaluate s??, and specialize to filter by o

• ?p?: use list of subjects to generalize s?? to ???, then specialize to filter by p

• ??o: use list of subjects to generalize s?? to ???, then specialize to filter by o

• ???: use list of subjects to generalize s??

In ldf-facade, implementing this functionality is as simple as registering the two
patterns s?? and ?po with functions that query DistroWatch and return a set of triples.
The generalisation and specialization operations then happen automatically, meaning
that SPARQL queries can be executed using an LDF client (Figs. 4.9, 4.10).

4.6 SynBio applications
As discussed in depth in chapter 3, one of the most useful attributes of SBOL is that it
is an RDF data model, composed of RDF triples. Consequently, it is possible to store
SBOL RDF in an RDF triplestore, allowing SBOL knowledge to be navigated using graph
queries. The ldf-facade server described in this chapter provides the means to provide
RDF views over non-RDF datasources. Would it be possible to leverage ldf-facade to
create a virtual SBOL repository by creating an SBOL-RDF view over a non-RDF dataset?

4.6.1 JBEI-ICE RDF using ldf-facade
The JBEI-ICE repository reviewed in section 2.4 is a good test case for the possibility
of dynamic conversion to SBOL-RDF. While it both has an API and provides access to
parts as SBOL, it does not function as an RDF triplestore. The SBOL representation in
ICE is limited to the description of parts using ComponentDefinition. Other data
which could be represented in SBOL instead has a bespoke data representation, e.g. ICE
defines the concept of “folders” instead of using the SBOL concept of collections.

The ICEAPI is a typical HTTPAPI using JSON to encode response data. For example,
calling the endpoint /rest/collections/FEATURED/folders on the ACS
Synthetic Biology ICE repository returns a JSON array of folders of the form:

100

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

search by property
?s <p> <o>

list of predicates
<s> ?p <o>

Everything set to All =
 list all subjects

?s a Distribution

or

Figure 4.7: A screenshot of the “Advanced Search” form of the DistroWatch website, annotated to
show how it can be used to implement the evaluation of RDF triple patterns. The search criteria
names form the list of predicates, and each criteria item that can be specified effectively allows
binding a predicate and an object in a search, satisfying the case where p and o are bound but s is
not. Searching without specifying any criteria acts as a list for all subjects.

101

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

subject detail
<s> ?p ?o

map to RDF triples

Figure 4.8: A screenshot of the distribution detail page of the DistroWatch website, annotated to
show how it can be used to implement the evaluation of RDF triple patterns. The distribution detail
page of DistroWatch effectively lists all properties of a given subject, satisfying the case where s is
bound but p and o are not.

102

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

SELECT * WHERE {
 <http://distrowatch.com/ubuntu> ?p ?o .
}

(a)

[
 {"?p":"http://distrowatch.com/ostype","?o":"\"Linux\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Beginners\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Desktop\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Server\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Live Medium\""},
 {"?p":"http://distrowatch.com/origin","?o":"\"Isle of Man\""},
 {"?p":"http://distrowatch.com/basedon","?o":"\"Debian\""},
 {"?p":"http://distrowatch.com/desktop","?o":"\"GNOME\""},
 {"?p":"http://distrowatch.com/desktop","?o":"\"Unity\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"armhf\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"i686\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"powerpc\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"ppc64el\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"s390x\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"x86_64\""},
 {"?p":"http://distrowatch.com/package","?o":"\"DEB\""},
 {"?p":"http://distrowatch.com/rolling","?o":"\"Rolling\""},
 {"?p":"http://distrowatch.com/isosize","?o":"\" \""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"A\""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"l\""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"l\""},
 {"?p":"http://distrowatch.com/language","?o":"\"Yes\""},
 {"?p":"http://distrowatch.com/defaultinit","?o":"\"systemd\""},
 {"?p":"http://distrowatch.com/status","?o":"\"Active\""}
]

(b)

Figure 4.9: A simple SPARQL query (4.9a) with the pattern s?? applied to the non-RDF DistroWatch
dataset using ldf-facade, and its results (4.9b).

103

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

SELECT * WHERE {
 <http://distrowatch.com/ubuntu> ?p ?o .
}

(a)

[
 {"?p":"http://distrowatch.com/ostype","?o":"\"Linux\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Beginners\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Desktop\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Server\""},
 {"?p":"http://distrowatch.com/category","?o":"\"Live Medium\""},
 {"?p":"http://distrowatch.com/origin","?o":"\"Isle of Man\""},
 {"?p":"http://distrowatch.com/basedon","?o":"\"Debian\""},
 {"?p":"http://distrowatch.com/desktop","?o":"\"GNOME\""},
 {"?p":"http://distrowatch.com/desktop","?o":"\"Unity\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"armhf\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"i686\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"powerpc\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"ppc64el\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"s390x\""},
 {"?p":"http://distrowatch.com/architecture","?o":"\"x86_64\""},
 {"?p":"http://distrowatch.com/package","?o":"\"DEB\""},
 {"?p":"http://distrowatch.com/rolling","?o":"\"Rolling\""},
 {"?p":"http://distrowatch.com/isosize","?o":"\" \""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"A\""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"l\""},
 {"?p":"http://distrowatch.com/netinstall","?o":"\"l\""},
 {"?p":"http://distrowatch.com/language","?o":"\"Yes\""},
 {"?p":"http://distrowatch.com/defaultinit","?o":"\"systemd\""},
 {"?p":"http://distrowatch.com/status","?o":"\"Active\""}
]

(b)

Figure 4.10: A SPARQL query (a) requesting the intersection of two ?po patterns applied to the
non-RDF dataset using ldf-facade, and its results (b).

104

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

{
 "folderName": "Hillson et al. 2012",
 "count": 27,
 "propagatePermission": true,
 "type": "PUBLIC",
 "publicReadAccess": false,
 "canEdit": false,
 "id": 1,
 "creationTime": 1453777111302,
 "entries": []
}

Confusingly, the entries array is empty even if the folder has entries. The entries
of a folder can be retrieved separately using the entries endpoint. For example,
the endpoint /rest/folders/4/entries returns a JSON array of entries of the
form:

{
 "ice": { ... },
 "id": 139,
 "type": "PLASMID",
 "parentIDs": [138],
 "linkedPartIDs": [],
 "index": 0,
 "ownerId": 0,
 "creatorId": 0,
 "status": "Complete",
 "shortDescription": "Promoter1 with BCD21-gfp",
 "creationTime": 1416293126696,
 "modificationTime": 0,
 "bioSafetyLevel": 1,
 "principalInvestigatorId": 0,
 "basePairCount": 0,
 "featureCount": 0,
 "viewCount": 742,
 "hasAttachment": false,
 "hasSample": false,
 "hasSequence": true,
 "hasOriginalSequence": true,
 "canEdit": false,
 "accessPermissions": [],
 "publicRead": false,
 "partId": "ACS_000139",
 "recordId": "f34a697b-724a-44e6-9112-d1c580f31dcd",
 "name": "pProm1_BCD21_Yeast"
}

It is possible to retrieve SBOL2 for a given entry by passing its identifier to
sequence endpoints. For example, the URL
/rest/file/139/sequence/sbol2 returns SBOL2 RDF+XML corresponding
to the part with identifier 139 (Fig. 4.11).

While a complete effort to expose specifically JBEI-ICE as a virtual RDF resource
would be outside of the scope of this chapter, the hierarchy of folders containing SBOL
parts was exposed as RDF using ldf-facade as a proof of concept 3. The three relevant
services were modelled as such:

• /rest/collections/FEATURED/folders satisfies both enumeration
of possible values of s and of triples matching s??, where s is a virtual
sbol:Collection corresponding to an ICE folder.

3https://github.com/udp/jbei-ice-ldf

105

https://github.com/udp/jbei-ice-ldf

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

<http://acs-registry.jbei.org/entry/ACS_000139/1> a sbol:ComponentDefinition ;
 dcterms:description "Promoter1 with BCD21-gfp" ;
 dcterms:title "pProm1_BCD21_Yeast" ;
 sbol:displayId "ACS_000139" ;
 sbol:persistentIdentity <http://acs-registry.jbei.org/entry/ACS_000139> ;
 sbol:sequence <...> ;
 sbol:type <http://www.biopax.org/release/biopax-level3.owl#DnaRegion> ;
 sbol:version "1" ;
 ice:bioSafetyLevel "1" ;
 ice:creationTime "2014-11-17 22:45:26.696" ;
 ice:creator "Chao Shih" ;
 ice:creatorEmail "ccshih@lbl.gov" ;
 ice:id "139.0" ;
 ice:longDescriptionType "text" ;
 ice:modificationTime "2016-05-12 11:01:36.291" ;
 ice:owner "Chao Shih" ;
 ice:ownerEmail "ccshih@lbl.gov" ;
 ice:principalInvestigator "Nathan Hillson" ;
 ice:recordId "f34a697b-724a-44e6-9112-d1c580f31dcd" ;
 ice:recordType "plasmid" ;
 ice:references "Shih, S. C., Goyal, G., Kim, P. W., ..." ;
 ice:selectionMarker "AMP and TRP" ;
 ice:shortDescription "Promoter1 with BCD21-gfp" ;
 ice:status "Complete" ;
 ice:versionId "f34a697b-724a-44e6-9112-d1c580f31dcd" ;
 ice:visibility "9" .

<...> a sbol:Sequence ;
 sbol:displayId "sequence_bff82c7554b50ed1450c11c178309dcd846d9110" ;
 sbol:elements "tgtctgt..." ;
 sbol:encoding <http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html> ;
 sbol:version "1" .

Figure 4.11: A part in SBOL representation retrieved from JBEI-ICE, converted to Turtle syntax and
abbreviated for readability.

106

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

• /rest/folders/<id>/entries satisfies evaluation of sp? where s is a
virtual sbol:Collection corresponding to an ICE folder and p is
sbol:member

• /rest/file/<id>/sequence/sbol2 satisfies evaluation of s?? where
s is an sbol:ComponentDefinition

For simplicity, the virtual RDF objects are assigned the URLs
<iceURL>/collections/<collectionID> for ICE collections (e.g.
“FEATURED”); <iceURL>/folders/<folderID> for folders; and
<iceURL>/parts/<partID> for parts. As in this case the API does not provide
any obvious URLs for any of the above, the mapping of ICE identifiers to URIs is up to
the facade server. Functions are defined to provide conversion (by simple string
manipulation) from URIs contained by incoming triple patterns to JBEI-ICE identifiers
and vice versa. The logic of the s?? generator, therefore, becomes:

• Identify whether the URI refers to a collection, folder, or part and extract the
substring which contains its JBEI-ICE identifier

• If the URI refers to a collection or folder, retrieve its JSON description from the ICE
HTTP endpoint and generate a set of triples describing an sbol:Collection

• If the URI refers to a part, retrieve the SBOL2 from ICE, update its URI to point to
the URI of the virtual RDF object, and relay it to the client as a set of triples

This minimal functionality immediately enables the application of simple SPARQL
queries using the LDF client (Figs. 4.12, 4.13).

4.7 Discussion & Conclusion
While it would be much easier for the Semantic Web community if everything was RDF,
making “RDFizers” and harmonization techniques such as those described in this chapter
unnecessary, it is a reality that there are many different databases, APIs, and paradigms
for data representation. It would be unrealistic to expect all data infrastructure to agree
on RDF and SPARQL as a final solution.

The hypothesis of this chapter was that Linked Data Fragments (LDF) can be
repurposed to dynamically convert non-RDF data to RDF at query-time. This
possibility was both explored theoretically, and implemented in a new server for LDF
termed ldf-facade. ldf-facade was shown to be applicable as a general tool outside of
any specific domain with the successful execution of SPARQL queries over
DistroWatch, a non-RDF database of open-source operating systems. Its application to
SynBio was then explored by demonstrating how SPARQL queries can be executed
over the JBEI-ICE design repository.

107

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

S
E
L
E
C
T

*

W
H
E
R
E

{

 <
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
f
o
l
d
e
r
s
/
4
>

?
p

?
o

.

}

(a
)

[

 {

"
?
p
":

"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
0
2
/
2
2
-
r
d
f
-
s
y
n
t
a
x
-
n
s
#
t
y
p
e
"
,
"
?
o
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
C
o
l
l
e
c
t
i
o
n
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
p
u
r
l
.
o
r
g
/
d
c
/
t
e
r
m
s
/
t
i
t
l
e
"
,
"
?
o
":

"
\
"
S
h
i
h

e
t

a
l
.

2
0
1
5
\
"
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
i
c
e
.
j
b
e
i
.
o
r
g
#
i
d
"
,
"
?
o
":

"
\
"
4
\
"
^
^
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
i
n
t
e
g
e
r
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
i
c
e
.
j
b
e
i
.
o
r
g
#
e
n
t
r
y
C
o
u
n
t
"
,
"
?
o
":

"
\
"
0
\
"
^
^
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
i
n
t
e
g
e
r
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
9
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
8
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
7
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
6
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
5
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
4
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
3
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
2
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
1
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
0
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
9
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
8
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
7
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
6
"
}
,

 {

"
?
p
":

"
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
m
e
m
b
e
r
",
"
?
o
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
5
"
}

]

(b
)

Fi
gu

re
4.
12

:
A

si
m
pl
e
SP

A
RQ

L
qu

er
y
(a
)e

xe
cu

te
d
ov

er
JB

EI
-I
C
E

us
in
g
th

e
ld
f-
fa
ca

de
SB

O
L
co

nv
er
si
on

la
ye

r,
an

d
th

e
co

rr
es
po

nd
in
g
re
su

lts
(b
).

Th
e
qu

er
y

re
tr
ie
ve

sa
ll
pr

op
er
tie

s
as

so
ci
at
ed

w
ith

th
e
fo
ld
er

ID
4,

w
hi
ch

ar
e
re
tu

rn
ed

in
th

e
fo
rm

of
an

SB
O
L
C
o
l
l
e
c
t
i
o
n
.

108

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

P
R
E
F
I
X

s
b
o
l:

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
>

S
E
L
E
C
T

?
m
e
m
b
e
r

?
n
a
W
H
E
R
E

{

 <
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
f
o
l
d
e
r
s
/
4
>

s
b
o
l:

m
e
m
b
e
r

?
m
e
m
b
e
r

.

 ?
m
e
m
b
e
r

s
b
o
l:

s
e
q
u
e
n
c
e
?
s
e
q
u
e
n
c
e

.

 ?
s
e
q
u
e
n
c
e

s
b
o
l:

e
l
e
m
e
n
t
s
?
n
a
.

}

L
I
M
I
T

1
0

(a
)

[

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
9
"
,
"
?
n
a
"
:
"
\
"
t
g
t
c
t
g
t
a
a
g
c
g
g
a
t
g
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
7
"
,
"
?
n
a
"
:
"
\
"
t
g
t
c
t
g
t
a
a
g
c
g
g
a
t
g
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
5
"
,
"
?
n
a
"
:
"
\
"
t
g
t
c
t
g
t
a
a
g
c
g
g
a
t
g
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
3
"
,
"
?
n
a
"
:
"
\
"
t
g
t
c
t
g
t
a
a
g
c
g
g
a
t
g
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
3
1
"
,
"
?
n
a
"
:
"
\
"
t
c
a
g
a
t
a
a
a
a
t
a
t
t
t
c
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
9
"
,
"
?
n
a
"
:
"
\
"
t
c
a
g
a
t
a
a
a
a
t
a
t
t
t
c
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
7
"
,
"
?
n
a
"
:
"
\
"
t
c
a
g
a
t
a
a
a
a
t
a
t
t
t
c
.
.
.
\
"
"
}
,

 {

"
?
m
e
m
b
e
r
":

"
h
t
t
p
s
:
/
/
a
c
s
-
r
e
g
i
s
t
r
y
.
j
b
e
i
.
o
r
g
/
p
a
r
t
s
/
1
2
5
"
,
"
?
n
a
"
:
"
\
"
t
c
a
g
a
t
a
a
a
a
t
a
t
t
t
c
t
.
.
.
\
"
"
}

]

(b
)

Fi
gu

re
4.
13

:
A

SP
A
RQ

L
qu

er
y

(a
)
to

se
le
ct

th
e
se
qu

en
ce
s
of

en
tr
ie
s
in

a
JB

EI
-I
C
E

fo
ld
er

us
in
g
th

e
ld
f-
fa
ca

de
SB

O
L

co
nv

er
si
on

la
ye

r,
an

d
th

e
ab

br
ev

ia
te
d

co
rr
es
po

nd
in
g
re
su

lts
(b
).

Th
is

qu
er
y
fo
llo

w
s
tw

o
la
ye

rs
of

in
di
re
ct
io
n
us

in
g
a
vi
rt
ua

lS
BO

L
da

ta
m
od

el
:o

ne
fr
om

th
e
co

lle
ct
io
n
to

th
e
m
em

be
r,
an

d
an

ot
he

r
fr
om

th
e
m
em

be
r
to

its
el
em

en
ts
.

109

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

4.7.1 ldf-facade
By simplifying server-side logic, the prior work of LDF has provided a unique
opportunity to reconsider where and when RDF data is generated. The ldf-facade
server described in this chapter takes advantage of this opportunity by enabling RDF
triples to be generated dynamically in response to a query, which allows “intelligent”
functionality such as retrieving data from an upstream dataset, such as JBEI-ICE, and
converting it to an RDF representation, such as SBOL.

ldf-facade serves as a proof of concept for the ability to use LDF to develop RDF
abstractions over non-RDF datasets. However, the suitability of this approach as a
general mediator layer to RDFize existing datasets remains limited. The examples
described in this work required significant database-specific “glue” code to be written,
which is time-consuming and potentially brittle if the upstream API changes.
Additionally, they are dependent on the ability of the upstream API to respond to
RDF-like patterns. If a pattern cannot be satisfied by an API call, it may result in a
prohibitively expensive linear specialization of a much larger result set, or it may even
not be possible to provide an answer at all.

While these considerations may make ldf-facade difficult to apply in practice today,
the concept of dynamic RDFization using triple pattern generalisation and
specialisation may be applicable to different systems in the future, particularly if
RDFization is a two-way conversation in which the upstream API intentionally
facilitates RDF interoperability.

4.7.2 Federated design knowledge using SBOL Stack and LDF
There are two approaches to capturing a design in SBOL. One is to effectively perform a
mini-warehousing operation and copy information about all of the consistuent parts into
the same place, creating a “monolithic” SBOL resource that describes everything about
the design. An alternative “modular” approach is to only include immediately relevant
design information, providing references to any composed parts rather than including
their details.

The monolithic approach of attempting to capture all possible knowledge about a
design in one place is a difficult because the scope is unlimited. If the sequence of an
existing protein is to be included in the SBOL description of a design that incorporates
that protein, should all of the information about its domains also be included? It also
results in redundant copying of data. If the protein informationwas taken from aUniProt
record, what if that record is later updated?

The alternative, modular approach has been difficult for practical reasons. Software
and libraries for SBOL are only concerned with SBOL, so a link to, for example,
UniProt is not dereferenceable to anything meaningful. While the examples of SBOL in
the SBOL2 specification use URIs such as
http://www.partsregistry.org/BBa_J61101 to refer to parts from the
iGEM Registry and http://identifiers.org/uniprot/P42212 for
UniProt [109, B.2.2], these URIs cannot be dereferenced to obtain actual knowledge
about parts by any of the SBOL libraries.

An RDF view of SBOL, whether obtained natively by using the SBOL Stack or
through conversions using technology such as ldf-facade as described in this chapter,

110

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

can solve these problems by making SBOL knowledge part of a wider ecosystem of
Linked Data. Viewed as a single “file”, a design described in SBOL without
documenting all of its constituent parts may appear to be missing data. Viewed as
Linked Data, the SBOL can be seen as an RDF resource which references other existing
resources. The federated querying enabled by LDF then allows the design to be
navigated seamlessly, despite its composition from parts which are not located in the
same place.

Consider the toggle switch example from the SBOL specification [109, B.2.2]
(Fig. 4.14). Currently, its references to iGEM and UniProt are effectively intractable: its
iGEM references are not resolveable URLs, and its UniProt references are
identifiers.org URIs which cannot be interpreted by the SBOL libraries. However, by
storing the example in the SBOL Stack and using the LDF client, it is possible to
aggregate more comprehensive knowledge by executing integrative SPARQL queries
across multiple datasets (Fig. 4.14)4 With ldf-facade, the scope of data integration for
design knowledge potentially grows to include any dataset, not just those already
represented in RDF such as UniProt.

4.7.3 Future work
RDFizing more datasets

The obvious future work from this chapter is to make more datasets available as RDF.
The two examples using DistroWatch and JBEI-ICE prove that the concepts behind ldf-
facade can be realised to provide RDF access to non-RDF datasets, but are by no means
comprehensive implementations intended for real-world usage.

Not all services will be amenable to the modelling in terms of triple patterns.
However, considering each service as a “black box” which must be modelled as-is
without any potential for modification may not be the only approach. Could
RDFization become a two-way process in which the implementors of APIs, even
without directly implementing RDF, can accommodate RDFization by making their
APIs more “graph-friendly”?

Such an initiative could take the form of a set of best-practice recommendations
derived from the formalism described in this chapter. For example, a recommendation
to provide both sp? and ?po could be “if a property of a resource can be retrieved, it
should also be possible to retrieve a list of all resources with that property”.

Intelligent LDF servers

The APIs shown here were intentionally chosen as they are HTTP Web APIs, and
therefore distant from RDF representation. They serve as an extreme example of what
might be possible to implement as part of LDF server logic, but there are many other
possible applications for “intelligent” LDF servers. For example:

4In theory, this should be possible without any modification of the SBOL data. Unfortunately,
the URIs used for UniProt are provided by identifiers.org, and the identifiers.org SPARQL endpoint
[110] was unavailable at the time of writing; and RDF URIs for the iGEM Registry were only recently
established as part of this work (chapter 5). Consequently, the UniProt URIs were manually changed to
purl.uniprot.org equivalents and the iGEM URIs to synbiohub.org for example purposes.

111

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

<sbol:ModuleDefinition rdf:about="http://sbolstandard.org/example/tetr_inverter">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter"/>
 <sbol:displayId>tetr_inverter</sbol:displayId>
 <sbol:role rdf:resource="http://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=inverter"/>
 <sbol:functionalComponent>
 <sbol:FunctionalComponent rdf:about="http://sbolstandard.org/example/tetr_inverter/promoter">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter/promoter"/>
 <sbol:displayId>promoter</sbol:displayId>
 <sbol:definition rdf:resource="http://www.partsregistry.org/BBa_R0040"/>
 <sbol:access rdf:resource="http://sbols.org/v2#public"/>
 <sbol:direction rdf:resource="http://sbols.org/v2#inout"/>
 </sbol:FunctionalComponent>
 </sbol:functionalComponent>
 <sbol:functionalComponent>
 <sbol:FunctionalComponent rdf:about="http://sbolstandard.org/example/tetr_inverter/TF">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter/TF"/>
 <sbol:displayId>TF</sbol:displayId>
 <sbol:definition rdf:resource="http://identifiers.org/uniprot/Q6QR72"/>
 <sbol:access rdf:resource="http://sbols.org/v2#public"/>
 <sbol:direction rdf:resource="http://sbols.org/v2#inout"/>
 </sbol:FunctionalComponent>
 </sbol:functionalComponent>
 <sbol:interaction>
 <sbol:Interaction rdf:about="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI"/>
 <sbol:displayId>LacI_pLacI</sbol:displayId>
 <sbol:type rdf:resource="http://identifiers.org/biomodels.sbo/SBO:0000169"/>
 <sbol:participation>
 <sbol:Participation rdf:about="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI/Q6QR72">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI/Q6QR72"/>
 <sbol:displayId>Q6QR72</sbol:displayId>
 <sbol:role rdf:resource="http://identifiers.org/biomodels.sbo/SBO:0000020"/>
 <sbol:participant rdf:resource="http://sbolstandard.org/example/tetr_inverter/TF"/>
 </sbol:Participation>
 </sbol:participation>
 <sbol:participation>
 <sbol:Participation rdf:about="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI/BBa_R0040">
 <sbol:persistentIdentity rdf:resource="http://sbolstandard.org/example/tetr_inverter/LacI_pLacI/BBa_R0040"/>
 <sbol:displayId>BBa_R0040</sbol:displayId>
 <sbol:role rdf:resource="http://identifiers.org/biomodels.sbo/SBO:0000598"/>
 <sbol:participant rdf:resource="http://sbolstandard.org/example/tetr_inverter/promoter"/>
 </sbol:Participation>
 </sbol:participation>
 </sbol:Interaction>
 </sbol:interaction>
</sbol:ModuleDefinition>

Figure 4.14: An excerpt from the toggle switch example in the SBOL specification [109, B.2.2]
showing references to UniProt and the iGEM Registry. While these references are not navigable by
SBOL libraries, they provide useful connections to an integrative SPARQL query.

112

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

C
O
N
S
T
R
U
C
T

{

 ?
c
d
a

s
b
o
l:

C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

;

 s
b
o
l:

t
y
p
e

<
h
t
t
p
:
/
/
w
w
w
.
b
i
o
p
a
x
.
o
r
g
/
r
e
l
e
a
s
e
/
b
i
o
p
a
x
-
l
e
v
e
l
3
.
o
w
l
#
P
r
o
t
e
i
n
>
;

 s
b
o
l:

r
o
l
e

?
r
o
l
e

;

 s
b
o
l:

s
e
q
u
e
n
c
e
?
s
e
q

.

 ?
s
e
q

a

s
b
o
l:

S
e
q
u
e
n
c
e
;

 s
b
o
l:

e
l
e
m
e
n
t
s
?
e
l
e
m
e
n
t
s

.
}

W
H
E
R
E

{

 <
h
t
t
p
:
/
/
s
b
o
l
s
t
a
n
d
a
r
d
.
o
r
g
/
e
x
a
m
p
l
e
/
t
e
t
r
_
i
n
v
e
r
t
e
r
>
s
b
o
l:

f
u
n
c
t
i
o
n
a
l
C
o
m
p
o
n
e
n
t

?
f
c
.

 ?
f
c
s
b
o
l:

d
e
f
i
n
i
t
i
o
n

?
c
d
.

 ?
c
d
a

u
p
:
P
r
o
t
e
i
n

;

 u
p
:
s
e
q
u
e
n
c
e
?
s
e
q

;

 u
p
:
c
l
a
s
s
i
f
i
e
d
W
i
t
h

?
r
o
l
e

.

 ?
s
e
q

r
d
f:
v
a
l
u
e

?
e
l
e
m
e
n
t
s

.
}

(a
)

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
0
2
/
2
2
-
r
d
f
-
s
y
n
t
a
x
-
n
s
#
t
y
p
e
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
>

.

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
t
y
p
e
>

<
h
t
t
p
:
/
/
w
w
w
.
b
i
o
p
a
x
.
o
r
g
/
r
e
l
e
a
s
e
/
b
i
o
p
a
x
-
l
e
v
e
l
3
.
o
w
l
#
P
r
o
t
e
i
n
>
.

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
o
b
o
l
i
b
r
a
r
y
.
o
r
g
/
o
b
o
/
G
O
_
0
0
0
3
6
7
7
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
o
b
o
l
i
b
r
a
r
y
.
o
r
g
/
o
b
o
/
G
O
_
0
0
4
5
8
9
2
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
o
b
o
l
i
b
r
a
r
y
.
o
r
g
/
o
b
o
/
G
O
_
0
0
4
6
6
7
7
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
k
e
y
w
o
r
d
s
/
1
9
5
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
k
e
y
w
o
r
d
s
/
2
3
8
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
r
o
l
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
k
e
y
w
o
r
d
s
/
8
0
5
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
u
n
i
p
r
o
t
/
Q
6
Q
R
7
2
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
s
e
q
u
e
n
c
e
>

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
i
s
o
f
o
r
m
s
/
Q
6
Q
R
7
2
-
1
>

.
<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
i
s
o
f
o
r
m
s
/
Q
6
Q
R
7
2
-
1
>

<
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
1
9
9
9
/
0
2
/
2
2
-
r
d
f
-
s
y
n
t
a
x
-
n
s
#
t
y
p
e
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
S
e
q
u
e
n
c
e
>

.

<
h
t
t
p
:
/
/
p
u
r
l
.
u
n
i
p
r
o
t
.
o
r
g
/
i
s
o
f
o
r
m
s
/
Q
6
Q
R
7
2
-
1
>

<
h
t
t
p
:
/
/
s
b
o
l
s
.
o
r
g
/
v
2
#
e
l
e
m
e
n
t
s
>

"
M
M
S
R
L
D
K
S
K
V
I
N
S
A
L
E
L
L
N
E
V
G
I
E
G
L
K
T
R
K
L
A
Q
K
L
G
V
E
Q
P
T
L
Y
W
H
V
.
.
.
"

.

(b
)

Fi
gu

re
4.
15

:A
fe
de

ra
te
d
SP

A
RQ

L
C
O
N
S
T
R
U
C
T

qu
er
y
(4
.1
5a

)t
o
dy

na
m
ic
al
ly

co
ns

tr
uc

ta
n
SB

O
L
C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n

us
in
g
in
fo
rm

at
io
n
ob

ta
in
ed

by
cr
os
s-
re
fe
re
nc

in
g
an

SB
O
L
de

si
gn

w
ith

U
ni
Pr

ot
,a

nd
its

ab
br

ev
ia
te
d
re
su

lti
ng

SB
O
L
da

ta
in

N
-T
ri
pl
es

fo
rm

at
(4
.1
5b

).

113

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

• Mapping one set of ontology terms to another. An LDF server could expose an
existing RDF dataset, but filter specific terms and return an alternative set.

• Providing functions instead of data. For example, the Virtuoso [65] triplestore
defines built-in functions in the form of special predicates, such as ?string
bif:contains ?substring. An LDF server could provide functionality
in the same manner by matching ?p? patterns.

The idea of providing functions through triple patterns could be particularly useful
in bioinformatics, where there are already large RDF datasets available. For example, a
server could conceivably respond to a ?protein inFamily ?family triple
pattern using Pfam [111] and encoding results as RDF, all at query time. Entire
workflows which combine both RDF data resources and the execution of tooling could
potentially be represented using SPARQL queries.

Caching of upstream data

The main caveat of using ldf-facade is that every request to the server concerns only
one triple pattern, which means that every triple in the response must match that
pattern. This means that even if the server has more information, it cannot be delivered
if it concerns a different subject until the next request arrives. For example, retrieving
the following SBOL object:

<sbol:interaction>
 <sbol:Interaction rdf:about="http://example/degradation">
 <sbol:type rdf:resource="http://identifiers.org/biomodels.sbo/SBO:0000179"/>
 <sbol:participation>
 <sbol:Participation rdf:about="http://example/degradation/TetR">
 <sbol:role rdf:resource="http://identifiers.org/biomodels.sbo/SBO:0000010"/>
 <sbol:participant rdf:resource="http://example/TetR"/>
 </sbol:Participation>
 </sbol:participation>
 </sbol:Interaction>
</sbol:interaction>

would require the evaluation of two triple patterns, because of the intermediate
Participation object. If the server responds to the pattern
http://example/degradation ? ? by retrieving the entire interaction
object, it cannot send information about the participants unless it later receives a
request for the triple pattern http://example/degradation/TetR ? ?,
even if that information is already available when responding to the first request. If the
server does not maintain any state between requests, in the worst case this could mean
retrieving the interaction object twice — once to match the triple pattern for the
interaction, and then again for the participation.

The second JBEI-ICE example (Fig. 4.13) suffers from this problem. The query has
to follow two layers of indirection to reach the sequence elements: first by evaluating
<part> sbol:sequence ?sequence, and then <sequence>
sbol:elements ?na. Both of these queries result in the part being retrieved
from the ICE API.

One possible solution would be to implement a layer of caching for upstream results,
meaning even if the same upstream resource is requested multiple times, it only has to

114

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

be retrieved once. As the same resource is likely to be referenced multiple times in the
same SPARQL query, such caching could be very short-lived and still likely result in
fewer upstream requests.

Client-side optimisation

While the LDF client was not developed as part of this work, it is the central
component for enabling SPARQL queries over LDF servers. The client functions by
reordering SPARQL queries into an order that results in the most efficient set of
pattern matches. For example, the following DistroWatch query:

SELECT ?s WHERE {
 ?s distrowatch:ostype "BSD" ;
 ?s distrowatch:status "Active" .
} LIMIT 5

is evaluated by the LDF client by evaluating ? ostype "BSD" and then evaluating,
for each subject in turn, <s> status "Active" , or:

• Evaluate ?s distrowatch:ostype "BSD" and ?s
distrowatch:status "Active" (2 queries)

• Select the smallest result set (set of possible subjects) from the two triple patterns
— in this case, ?s distrowatch:ostype "BSD"

• For each possible subject, evaluate the other triple pattern by binding s: <s>
distrowatch:status "Active" (20 queries)

It would be far more efficient (in terms of number of pattern evaluations) to
evaluate both ? ostype "BSD" and ? status "Active" and then take the
intersection of the two result sets, i.e.:

• Evaluate ?s distrowatch:ostype "BSD" and ?s
distrowatch:status "Active" (2 queries)

• Select ?s where ?s is common to both result sets (0 queries)

Conclusion
This chapter described how the recent prior work of Linked Data Fragments can be
leveraged to develop novel data integration strategies for RDF. A method was defined
for formalising an existing, non-RDFWeb service in terms of RDF triple patterns, and for
deriving missing patterns from those that are available. This method was implemented
in the ldf-facade server software, which allows LDF servers to have intelligent logic for
specific triple patterns rather than relaying RDF data from an existing datasource.

While this chapter only demonstrated a proof-of-concept, ldf-facade could
potentially enable many legacy datasources to be exposed for use as part of federated
graph queries with dynamically harmonized semantics. This notion is particularly

115

CHAPTER 4. DATA HARMONIZATION USING LINKED DATA FRAGMENTS

relevant to synthetic biology, where there are many datasets with varying,
incompatible representations which could be relevant to the design process. It may
also have wider implications for Linked Data and the Semantic Web in general; if the
method defined here can be proven to work at scale, it may contribute to a solution for
the lack of availability of existing data as RDF.

116

5. Conversion and Enrichment of
the iGEM Registry

5.1 Introduction
The iGEM Registry of Standard Biological Parts currently provides access to knowledge
regarding over 20,000 BioBricks [78]. However, as described in section 2.4.1, while
BioBricks have a well-defined physical standard, their data standard is still not
formalised. The representation of parts used by the Registry does not yet have a
standardized data model or computational API.

The need for a standardized representation of biological parts is exactly what SBOL
is designed to address. Furthermore, as previously discussed in section 3.2, one of the
challenges of encouraging the adoption of SBOL is “bootstrapping”: there is no
advantage to standardization unless there are data with which to integrate. This
presents an opportunity to solve two problems at once. The development of an SBOL
representation could bring standardization and machine-tractability to the iGEM
Registry, and also help to seed the SBOL standard with a large dataset of knowledge
about engineered parts.

Additionally, an SBOL representation of the iGEM Registry would potentially enable
parts to be described with a broader scope of computationally tractable information. The
data representation of the iGEM Registry is DNA-centric in the same manner as FASTA,
GenBank, and SBOL version 1. Since the release of version 2.0 in 2015, SBOL has had the
ability to represent not just DNA sequences and their features, but also more complex
engineered biological systems comprising proteins, RNAs, and biochemical interactions.
Expanding the SBOL version of the iGEM Registry to include such information could
make it possible to perform queries such as searching for BioBricks which code for a
specific protein, or producing visualizations which contain depictions of interactions.

Manually re-annotating the entire iGEM Registry would be extremely laborious.
However, given a DNA sequence, it should be possible to retroactively add annotation
of predicted transcription, translation, and regulation using existing established
bioinformatics tools. For example, promoters and CDSs can be identified using gene
finding tools; gene product proteins can be inferred from the template sequence; and
proteins can be automatically annotated using Hidden Markov Model (HMM)
techniques and datasets such as Pfam [111]. The iGEM Registry presents a perfect test
case to explore the viability of such an “enrichment” process.

The research goals of this chapter are to investigate (a) how the iGEM Registry can
be mapped to the SBOL data model, and (b) how SBOL data, such as these converted

117

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

parts, can be enriched using automated sequence annotation.

Attribution: The initial conversion of iGEM to SBOL was developed as part of this
work, and was later further developed with help from Chris Myers. Enrichment was
developed as part of this work.

5.2 Modelling the iGEM database as SBOL
The iGEM Registry has a basic keyword search and an “API” with which specific parts
can be retrieved as XML, but it lacks querying capabilities which could be modelled as
RDF triples to produce an RDF view using ldf-facade. Converting the registry to SBOL
therefore requires the more traditional approach of performing the conversion ahead of
time and warehousing the results.

The iGEM Registry provides the entire dataset for download as a snapshot of a
MySQL database. Setting up a local instance of the database from the snapshot is
complicated by the snapshot being serialized using the MySQL “XML dump” format,
which is not intended to be used to restore a live database. Fortunately, a modified
version of the XMLDumpRestore script1 can be used when combined with
pre-processing to remove invalid bytes from the input file. A Docker image which
automates this approach is available on GitHub2.

In order to convert the Registry to SBOL, an igem2sbol3 script was written. This
script connects to the iGEM MySQL database, traverses the tables, and uses the sboljs
library described in section 3.3 to generate SBOL.

There are two relevant tables in the iGEM Registry SQL database: parts, where
each row corresponds to a BioBrick; and parts_seq_features, where each row
corresponds to the annotation of a sequence feature. Composition between of parts is
accomplished using a special type of sequence feature labelled “BioBrick”, which
contains the identifier of the nested part.

The columns of the parts table are mapped to the properties of SBOL
ComponentDefinition (Table 5.1), and the columns of the
parts_seq_features table is mapped to the properties of SBOL
SequenceAnnotation (Table 5.2).

MySQL Column Description SBOL Mapping

part_id Numeric database identifier
for the part

ok Unknown
part_name Part name (i.e. BBa_*) dcterms:title

short_desc Short description dcterms:description

description Long description synbiohub:mutableDescription

1http://github.com/n8maninger/XMLDumpRestore
2https://github.com/udp/igemparts-mysql-docker
3http://github.com/udp/igem2sbol

118

http://github.com/n8maninger/XMLDumpRestore
https://github.com/udp/igemparts-mysql-docker
http://github.com/udp/igem2sbol

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

part_type Role, e.g. Terminator sbol:role

author Free-text authorship dc:creator

owning_group_id N/A igem:owning_group_id

status Unknown igem:status

dominant 1 if this is the preferred part
in relation to its duplicates, if
any.

igem:dominant

informational Unknown igem:informational

discontinued 1 if the part is discontinued igem:discontinued

part_status Unknown igem:part_status

sample_status “In stock” if iGEM has
a physical sample of the
BioBrick

igem:sample_status

p_status_cache Unknown Not mapped
s_status_cache Unknown Not mapped
creation_date Created timestamp dcterms:created

m_datetime Modified timestamp dcterms:modified

m_user_id N/A igem:m_user_id

uses Number of times the part is
used as a sub-part

igem:uses

doc_size Unknown igem:doc_size

works Unknown igem:works

favorite Unknown igem:favorite

specified_u_list Unknown igem:specified_u_list

deep_u_list Unknown igem:deep_u_list

deep_count Unknown igem:deep_count

ps_string Unknown igem:ps_string

scars Unknown igem:scars

default_scars Unknown igem:default_scars

owner_id Unknown igem:owner_id

group_u_list Unknown igem:group_u_list

has_barcode Unknown igem:has_barcode

notes Unknown igem:notes

119

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

source Unknown synbiohub:mutableProvenance

nickname Unknown igem:nickname

categories Unknown See section 5.2.1
sequence DNA sequence sbol:sequence

sequence_update Unknown igem:sequence_update

review_result Unknown igem:review_result

review_count Unknown igem:review_count

review_total Unknown igem:review_total

flag Unknown igem:flag

sequence_length Length of the sequence —
redundant?

Not mapped

temp_1 Unknown Not mapped
temp_2 Unknown Not mapped
temp_3 Unknown Not mapped
temp4 Unknown Not mapped
rating Unknown igem:rating

Table 5.1: Mapping of the iGEM database parts schema to the SBOL data model. Columns with
no SBOL counterpart are represented as custom terms in an igem namespace. Columns listed as
“Unknown” had no obvious mapping and therefore cannot be mapped without documentation.

MySQL Column Description SBOL Mapping

feature_id Numeric database identifier
for the feature

Not mapped

feature_type Type, e.g. promoter See table 5.4
start_pos Start sequence offset (1-

based)
sbol:start

end_pos End sequence offset (1-based) sbol:end

label Feature title dcterms:title

part_id Identifier of the part that has
the feature

N/A

type Another type specifier,
usually (but not always) the
same as feature_type

See table 5.4

120

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

label2 The same as label if
present, empty otherwise

Not mapped

mark Unknown Not mapped
old Unknown Not mapped
reverse 1 if the annotation is reverse

complement
sbol:orientation

Table 5.2: Mapping of the iGEM database parts_seq_features schema to the SBOL data
model. This mapping was jointly developed with Chris Myers (University of Utah).

iGEM Type SO Mapping SO Description

Basic Not mapped
Cell Not mapped
Coding SO:0000316 CDS

Composite Not mapped
Conjugation SO:0000724 oriT

Device Not mapped
DNA SO:0000110 DNA

Generator Not mapped
Intermediate Not mapped
Inverter Not mapped
Measurement Not mapped
Other SO:0000110 DNA

Plasmid SO:0000155 plasmid

Plasmid_Backbone SO:0000755 plasmid_vector

Primer SO:0000112 primer

Project Not mapped
Protein_Domain SO:0000417 polypeptide_domain

RBS SO:0000139 ribosome_entry_site

Regulatory SO:0000167 promoter

Reporter Not mapped
RNA SO:0000834 mature_transcript_region

Scar SO:0001953 restriction_enzyme_assembly_scar

121

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

Signalling Not mapped
T7 SO:0001207 T7_RNA_Polymerase_Promoter

Tag SO:0000324 tag

Temporary Not mapped
Terminator SO:0000141 terminator

Translational_Unit Not mapped

Table 5.3: Mapping of iGEM part types to Sequence Ontology (SO) terms to populate the
sbol:role property. Part types without a corresponding SO term are mapped to URIs in a custom
iGEM namespace. This mapping was jointly developed with Chris Myers (University of Utah).

iGEM Type SO Mapping SO Description

barcode SO:0000807 engineered_tag

binding SO:0001091 non_covalent_binding_site

BioBrick SO:0000804 engineered_region

dna SO:0000110 sequence_feature

misc SO:0000110 sequence_feature

mutation SO:0001059 sequence_alteration

polya SO:0000553 polyA_site

primer_binding SO:0005850 primer_binding_site

protein SO:0000316 CDS

s_mutation SO:1000008 point_mutation

start SO:0000318 start_codon

stop SO:0000319 stop_codon

tag SO:0000324 tag

promoter SO:0000167 promoter

cds SO:0000316 CDS

operator SO:0000057 operator

terminator SO:0000141 terminator

conserved SO:0000330 conserved_region

rbs SO:0000139 ribosome_entry_site

stem_loop SO:0000313 stem_loop

122

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

Table 5.4: Mapping of iGEM feature types to Sequence Ontology (SO) terms to populate the
sbol:role property. Feature types without a corresponding SO term are mapped to URIs in
a custom iGEM namespace. This mapping was jointly developed with Chris Myers (University of
Utah).

5.2.1 Categories
When parts are submitted to the iGEM Registry, they can be placed into categories. For
example, the part BBa_B0015 (double terminator) has the categories
//direction/forward and //terminator/double. The categories can
have multiple levels of nesting, e.g. //function/metalsensing/iron and
//rnap/prokaryote/ecoli/sigma70.
In the SBOL conversion, the category specifier for each part is split into individual
categories, and a nested hierarchy of collections is created. For example, a part with the
category //function/metalsensing/iron would result in the creation of:

• An SBOL Collection for “function”

• An SBOL Collection for “metalsensing”, contained as an sbol:member of
the “function” collection

• An SBOL Collection for “iron”, contained as an sbol:member of the
“metalsensing” collection

• An SBOL ComponentDefinition for the part, created as an
sbol:member of the “iron” collection

Breaking down iGEM categories into SBOL collections creates a tree which can be
browsed at any node (e.g. retrieve all of the parts in any sub-category of
//function/metalsensing).

5.2.2 De-flattening
The parts_seq_features table maintains a large amount of redundant data
because of how composition is represented. The “transitive” model of annotation, as
used by SBOL, is that if part A incorporates part B via composition and part B has an
annotation, the annotation implicitly also applies to part A and does not need to be
specified twice. iGEM does not follow this approach, instead duplicating annotations
from composed parts to each part composing them so that each part has a “flattened”
set of annotations. For example:

• BBa_B0010 (part ID 603) has a stem loop feature from 12..55 (feature ID 4184)

• BBa_B0015 (part ID 202) incorporates BBa_B0010 as a sub-part (feature ID
1916610)

• BBa_B0010 also has a stem loop feature (feature ID 1916611), which is actually a
copy of feature ID 4184 from BBa_B0010

123

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

While this is a small-scale example, there are parts with hundreds of feature
annotations in the Registry. Each time they — or a part incorporating them — is used
in composition, all of these feature annotations are duplicated. It is possible that the
maintainers of the iGEM Registry have a method to update all occurrences of a
sequence annotation if it is found to be mis-annotated, and to propagate the addition or
deletion of annotations from composed parts to the parts into which they are
incorporated. However, in order to avoid this entire class of problem and create an
intuitive SBOL representation, these duplicate annotations were flattened so that each
sequence annotation would only be specified once.

Additionally, there are many cases of composition in the iGEM dataset where the
composed part is represented in the parts_seq_features table as a feature
annotation rather than explicitly as the composition of another BioBrick. In order to
preserve a faithful representation and avoid changing the data by creating new
relations, these were not altered in the current SBOL conversion. The prevelance of
such mislabeled composition is explored in section 5.3.2.

5.3 iGEM-SBOL graph queries
The iGEM Registry provides basic search functionality based on the name or description
of parts, but not the ability to search using criteria based on other information contained
in the database, such as the type and location of features within parts. Converting the
iGEM Registry to SBOL means that it can now be used in conjunction with the SBOL
Stack graph database described in chapter 3, enabling the execution of powerful graph
queries. This capability was tested with a number of example queries.

5.3.1 Use of transcription factor binding sites in the iGEM
Registry

One of the central components of genetic circuit design are DNA-binding proteins which
function as transcriptional activators or repressors [21]. Many of the parts in the iGEM
Registry depend on such regulatory interactions, with the regulated promoters pTet and
pLac both in the top 10 most used parts [112].

In the iGEM Registry, features in the parts_seq_features table can be
labelled with a feature_type of binding, which is typically used to indicate
that the sequence is a transcription factor binding site. Such features are mapped in the
iGEM-SBOL conversion to the standardised Sequence Ontology term of
SO:0001091 non_covalent_binding_site. Extracting such annotations
is trivial with a SPARQL query over SBOL-RDF (Fig. 5.1).

There are 2282 annotations with the role SO:0001091
non_covalent_binding_site in the iGEM-SBOL dataset derived from the 6
October 2017 iGEM Registry dump (Fig. 5.1). Of these annotations, 495 are under 10
nucleotides in length making them unlikely to be annotations of actual TFBSs [113]. 75
are over 100 nucleotides in length, including instances of the entire part being
annotated as binding. Excluding these leaves 1712 annotated potential binding sites.
Sub-graphs from a network generated by global sequence alignment of these sequences

124

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

SELECT (COUNT(?sequenceAnnotation) as ?count) WHERE {
 ?sequenceAnnotation a sbol:SequenceAnnotation .
 ?sequenceAnnotation sbol:role <http://identifiers.org/so/SO:0001091> .
 ?sequenceAnnotation sbh:topLevel ?topLevel .
 <https://synbiohub.org/public/igem/igem_collection/1> sbol:member ?topLevel .
}

Figure 5.1: SPARQL query to count all of the sequence annotations with the role SO:0001091
(binding) that are part of the iGEM parts collection, made possible by the conversion of the Registry
to SBOL-RDF.

using EMBOSS [114] needleall (Fig. 5.2) can be used to identify the most
commonly used sites:

• LacI ≥ 76 occurrences

• TetR ≥ 61 occurrences

• lambda cI 46 occurrences (OR1 + OR2)

• LuxR/HSL ≥ 41 occurrences

• EsaR ≥ 24 occurrences

• AraC ≥ 19 occurrences

• NorR ≥ 12 occurrences

5.3.2 Re-use of parts in the iGEM Registry
During the conversion, it was observed that there are many instances of composition,
where a part includes another part, that are not marked as such in the database. For
example, BBa_I1041 incorporates pTet (BBa_R0040), but because the annotation of pTet
is marked as “operator” in the parts_seq_features table rather than as
“BioBrick” with a link to BBa_R0040, there is no link between BBa_I1041 and
BBa_R0040.

The scale of re-use of existing parts within iGEM has recently been a contentious
issue, following an observation in a 2014 letter to Nature Biotechnology that the level
of part re-use was low among finalist iGEM teams [115]. Unfortunately, iGEM-SBOL
does not contain information about teams and whether they were finalists and therefore
cannot be used to reproduce these results. However, the lack of explicit indication of
composition in the database may be relevant to future analyses.

With the SBOL representation of iGEM, the prevelance of this mislabeled
composition can be quantified using a SPARQL query (Fig. 5.3). Application of this
query to the 6 October 2017 iGEM Registry dump reveals 8463 instances of
composition where the dataset does not contain a link from the parent part to the
composed part, filtered for parts greater than 10 bases in length to exclude the
identification of “parts” such BBa_J58006 (a stop codon). Note that this query does not
account for entirely undocumented reuse, where a part contains another part without
any sequence annotation at all.

125

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

BBa_K1481005 RhaS binding site

BBa_K1741005 RhaS binding site

BBa_K1407016 OP1 BBa_R0080 c-amp2BBa_K2014001 CRP binding site BBa_K851002 pBad recognition
region 1

BBa_K783042 OP1

BBa_M31111 C2 OmpR
BBa_K1481001 RhaS binding site

BBa_K1741005 CRP binding site

BBa_K1481001 CRP binding site

BBa_R0079 OP1

BBa_K1407015 OP1

BBa_K1067007 araO1L

BBa_K1104203 OxyR binding
site4

BBa_K1067008 araO1L

BBa_K1481005 CRP binding site

BBa_K2145101 gRNA_268

BBa_I761001 C2 OmpR

BBa_K227008 C2 OmpR

BBa_K1132003 FimE IRR
BBa_K137008

BBa_K2014001 RhaS binding site

BBa_K1741006 RhaS binding site
BBa_R0082 C2 OmpR

BBa_J29020 C2 OmpR BBa_K1132036 FimE IRR
BBa_K137008 BBa_K1132004 FimE IRR

BBa_K137008

BBa_K2145100 gRNA_268

BBa_K1132034 FimE IRR
BBa_K137008

BBa_K1400000 Gal4 Binding site

BBa_K778003 Binding site 4
(argIp)

BBa_K557001 aptamer

BBa_K1850005 MBD
BBa_J202004 araI1

BBa_J100173 aptamer and
actuator of riboswitch

BBa_K778003 Binding site 4
(argIp)

BBa_J202014 araI1

BBa_I714925 LexA

BBa_K1850007 MBD

BBa_I714926 LexA

BBa_J202002 araI1

BBa_J202009 araI1

BBa_K1926012 Vox

BBa_K1682012 phospho-phoB

BBa_K778000 FhlA-binding site-1

BBa_K778000 FhlA-binding site-2

BBa_K1323005 YFP Target
Binding Region

BBa_K1323007 YFP Binding
Region

BBa_K091117 LasR Binding Site

BBa_K1652000 Gal4 site

BBa_K1682002
	phospho-KdpE binding site

BBa_K1652000 Gal4 site

BBa_K1682004 phospho-KdpE
binding site

BBa_I20251 TetR 1

BBa_I20249 TetR 1

BBa_I20248 TetR 1

BBa_I20250 TetR 1

BBa_K2041018 the binding site 3
of miR-155

BBa_K2041018 the binding site 2
of miR-155

BBa_K1682003 phospho-KdpE
binding site BBa_M39014 LasR Binding Site

BBa_K1706000 HxlR protein
binding site 2

BBa_K1334001 HxlR protein
binding site 2

BBa_K1334000 HxlR protein
binding site 2

BBa_K1334002 HxlR protein
binding site 2

BBa_K1334002 HxlR protein
binding site 1

BBa_K1334000 HxlR protein
binding site 1

BBa_K1334001 HxlR protein
binding site 1

BBa_J05209 OR2

BBa_I714935 LacO2

BBa_K1850006 SpyTagBBa_K2116004 sigma54 binding
site BBa_K1850007 SpyTagBBa_K2116005 sigma54 binding

site
BBa_K1850011 SpyTagBBa_K2116007 sigma54

BBa_I714931 LacO2

BBa_K119009 OR2

BBa_I714929 LacO3

BBa_I741017 CRP-cAMP dual
regulator binding site

BBa_I714936 lacO3

BBa_I714936 lacO3

BBa_I12034 OR1 lambda

BBa_K2116069 NorR binding 2
(low affinity)

BBa_K2116011 NorR binding site
2 (low affinity)

BBa_K2116014 NorR binding 2
(low affinity)

BBa_K1741007 CRP binding site

BBa_K2014009 CRP binding site

BBa_I12005 OR1

BBa_I714939 lacO3

BBa_I714926 LacO3

BBa_I714932 lacO3

BBa_I714932 lacO3

BBa_K2116027 NorR binding 2
(low affinity)BBa_K2116008 NorR binding 2

low affinity

BBa_K1741009 CRP binding site

BBa_I714929 LacO3

BBa_K2116007 norR binding 2
low affinity

BBa_K2116015 NorR binding 2
(low affinity)

BBa_K2014011 CRP binding site

BBa_K1311007 CAP

BBa_K2116005 NorR bindin 2 low
affinity

BBa_I714939 lacO3
BBa_K2014004 CRP binding site

BBa_K2116004 NorR binding 2
low affinity

BBa_K2014010 CRP binding site

BBa_I714926 LacO3

BBa_K2116012 NorR binding 2
(low affinity)

BBa_K2116006 NorR binding 2
low affinity

BBa_K2116013 NorR binding 2
(low affinity)

BBa_K2014002 CRP binding site

BBa_K778012 LacZp-2

BBa_K2116012 sigma54 binding
site

BBa_K2116015 sigma 54 binding
site

BBa_K1850004 SpyTag

BBa_K1850002 SpyTag

BBa_K1850003 SpyTagBBa_K2116069 sigma 54 binding
site

BBa_I714928 LacO2

BBa_I714931 LacO2

BBa_K2116006 sigma54
BBa_K1850008 SpyTag

BBa_K1850009 SpyTag

BBa_K845001 CRP activator
BBa_K1481000 AraC binding site

BBa_K2014000 I1, I2 binding site

BBa_J202000 araI1

BBa_R0080 ara1 and ara2

BBa_K1067009 araI1

BBa_K2014006 i1-i2 region

BBa_K1481002 AraC binding site
BBa_K2014007 i1-i2 region

BBa_K1067008 araI1

BBa_K1179078 TetO Site 1

BBa_I1063 TetR 1

BBa_K2145000 TetR 2

BBa_K283024 TetR 1

BBa_I1030 TetR 2
BBa_R0040 TetR 1

BBa_I724005 TetR 1

BBa_K2145002 TetR 1

BBa_K315018 TetR 1

BBa_K119011 TetR 2

BBa_K611049 TetR 1BBa_I724005 TetR 1

BBa_K2145002 TetR 2

BBa_K315019 TetR 1

BBa_I724005 TetR 2

BBa_K934024 Otet

BBa_K1468004 TetR 2

BBa_I1030 TetR 1

BBa_K1194000 TetR 1BBa_I714072 TetR 1

BBa_I724005 TetR 2

BBa_R0040 TetR 1
BBa_I1010 TetR 2

BBa_K283024 TetR 2BBa_K091101 tetR binding site 1

BBa_K2116069 esabox

BBa_K2116006 esabox

BBa_K2116067 esabox

BBa_K2116015 esabox

BBa_K2116996 esabox

BBa_K2116014 esabox

BBa_K2116015 esabox

BBa_K2116996 esabox

BBa_K2116013 esabox

BBa_I1023 TetR 2

BBa_K119011 TetR 1

BBa_K625001 TetR 1

BBa_K1311004 TetR2BBa_I1023 TetR 1

BBa_K863122 TetR 2

BBa_K611008 TetR 1

BBa_K2116014 esabox

BBa_K2116066 esabox

BBa_K2116011 esabox

BBa_K2116069 esabox

BBa_K2116007 esabox

BBa_K2116067 esabox

BBa_K2116008 esabox

BBa_K2116095 esabox

BBa_K2116037 esaboxBBa_K2116006 esabox

BBa_K2116005 esabox

BBa_I1063 TetR 2

BBa_K2145000 TetR 1

BBa_K625001 TetR 2
BBa_K315023 TetR 1

BBa_K831006 TetR 1

BBa_K1311004 TetR1

BBa_K1400000 Tet Binding site

BBa_K1194000 TetR 2

BBa_K188027 TetR 1

BBa_J29020 TetR 1 BBa_K1179078 TetO Site 6

BBa_K315025 TetR 1

BBa_K1400000 Tet Binding site

BBa_K1014998 TetR 1

BBa_K1468004 TetR 1

BBa_K1400000 Tet Binding Site
BBa_J64981 TetR Consensus

BBa_K863122 TetR 1BBa_I1010 TetR 1

BBa_J29020 TetR 2

BBa_K091101 tetR binding site 2

BBa_K1100085 TetR 1
BBa_K415506 TetO Site5

BBa_K119010 TetR 1

BBa_K2116008 esabox

BBa_K1777016 miR-21 binding
site

BBa_K1777016 miR-21 binding
site

BBa_K1104204 OxyR binding
site3

BBa_K1777000 miR21 binding
site

BBa_K1067009 CRP binding site

BBa_J100110 Junction B

BBa_J100112 Junction B

BBa_J100116 Junction B

BBa_K1104203 OxyR binding
site3

BBa_K1104208 OxyR binding
site3

BBa_K1777016 miR-21 binding
site

BBa_J100113 Junction B BBa_J100120 Junction B

BBa_K1104206 OxyR binding
site3

BBa_K1104207 OxyR binding
site3

BBa_K1777016 miR-21 binding
site

BBa_K1067008 CRP binding site

BBa_I761001 C1 OmpR

BBa_K1485004 GSGSGSGSGS
linker

BBa_M31111 C1 OmpR

BBa_K1485003 GSGSGSGSGS
linker

BBa_K227008 C1 OmpR

BBa_R0080 c-amp1

BBa_K1067007 CRP binding site

BBa_K1850005 SpyTag
BBa_K1850010 SpyTagBBa_K2116008 sigma54

BBa_K2116011 sigma 54 binding
site

BBa_I714938 lacO2

BBa_K608351 OR2

BBa_I714935 LacO2

BBa_I714928 LacO2

BBa_K2116013 sigma54 binding
site

BBa_I714925 LacO2

BBa_I714925 LacO2

BBa_R0051 OR2

BBa_R0065 OR2 cI

BBa_I724005 OR2

BBa_I12003 OR2

BBa_I714938 lacO2

BBa_K2100055 k-turn

BBa_K1485005 GSGSGSGSGS
linker

BBa_K1485002 GSGSGSGSGS
linker

BBa_K1485001 GSGSGSGSGS
linkerBBa_K845001 AraC inhibitor

BBa_K1485005 GSGSGSGSGS
linker

BBa_I714890 OR2_lambda

BBa_R0082 C1 OmpR

BBa_R0083 C1 OmpRBBa_I738010 ara1 and ara2

BBa_K315035 TetR 1

BBa_J176017 TetO x2BBa_K1179078 TetO Site 2

BBa_K1400000 Tet Binding site

BBa_K1179078 TetO Site 5

BBa_K1179078 TetO Site 4
BBa_K1341022 tetRO1

BBa_K415506 TetO Site1

BBa_J70004 LacI (Lac repressor)

BBa_K415506 TetO Site4

BBa_K415506 TetO Site6

BBa_K1100085 TetR 2

BBa_K119010 TetR 2
BBa_K1100009 TetR 1

BBa_K316000 LacI binding

BBa_J31013 LacI binding site

BBa_K781005 LacI binding siteBBa_K1189001 LacI
BBa_K1399011 LacI binding siteBBa_K1189021 LacI

BBa_K1189031 LacI
BBa_K781007 LacI binding site

BBa_K1132003 attB PhiC31
recombinase sites

BBa_K1132034 attB PhiC31
recombinase sites

BBa_K1132004 attB PhiC31
recombinase sites

BBa_K1139153 lacO

BBa_K1132036 attB PhiC31
recombinase sites

BBa_K1412888 C2 OmpR

BBa_K1189000 LacI

BBa_K103022 LacI binding site
BBa_K781002 LacI binding site

BBa_J202001 araI1

BBa_K1067007 araI1

BBa_K415506 TetO Site2

BBa_K1179078 TetO Site 3

BBa_C2002 DNA recognition site

BBa_J05108 ZF-GGG

BBa_J05109 ZF-GGG

BBa_J05101 ZF-GGG

BBa_J05112 ZF-GGG

BBa_J05111 ZF-GGG

BBa_K2116013 NorR binding 1
(high affinity)BBa_K2116005 NorR binding 1

high affinity

BBa_K2116027 NorR binding 1
(high affinity)

BBa_K2116004 NorR binding 1
high affinity

BBa_K2116006 NorR binding 1
high affinity

BBa_K2116015 NorR binding 1
(high affinity)

BBa_K2116014 NorR binding 1
(high affinity)

BBa_K2116007 NorR binding 1
high affinity

BBa_C2002 DNA recognition site

BBa_C2001 Recognition site

BBa_C2003 Zif268 zinc finger 3BBa_S03428 Recognition site

BBa_C2004 Finger 3 of Zif268BBa_C2005 finger 3 of Zif268
BBa_C2002 Zif268 finger 3

BBa_C2002 Zif268 finger 2BBa_C2005 finger 2 of Zif268BBa_C2004 Finger 2 of Zif268

BBa_C2003 Zif268 zinc finger 2

BBa_J202002 araI2

BBa_K1741002 I1, I2 binding siteBBa_K1481004 AraC binding site

BBa_K2014005 i1-i2 region

BBa_K1670001 esa-boxBBa_K2116095 esabox
BBa_K1670001 esa-box

BBa_K2014008 i1-i2 region

BBa_K354000 AraC Binding Site

BBa_C2000 Finger 3 Recognition

BBa_K2116012 NorR binding 1
(high affinity)

BBa_K2116008 NorR binding 1
high affinityBBa_K2116011 NorR binding site

1 (high affinity)

BBa_K2116069 NorR binding 1
(low affinity)

BBa_I1040 LacO-1 region

BBa_I1020 LacO-1 region

BBa_I1060 LacO-1

BBa_K1139155 lacO

BBa_I1060 LacO-1 region

BBa_K559001 lac repressor
BBa_K778012 LacZp-1

BBa_I714933 LacO1

BBa_K778012 LacZp-1

BBa_I714927 LacO1

BBa_K1341022 LACO1

BBa_I714937 LacO1

BBa_I1020 LacO-1
BBa_K245005 lacO regulatory site

BBa_I714930 LacO1
BBa_I714937 LacO1

BBa_I714933 LacO1BBa_I714924 LacO1

BBa_I714927 LacO1

BBa_K245004 lacO regulatory site

BBa_I714924 LacO1

BBa_K1919500 lac operator
BBa_K1139157 lacO

BBa_I1040 LacO-1

BBa_K1139151 lacO

BBa_K592008 lacO1 site

BBa_I714930 LacO1

BBa_K747097 LacO

BBa_K245006 lacO regulatory site

BBa_K1041003 LacI binding site

BBa_K245008 lacO regulatory site

BBa_K2145000 LacI
BBa_K781003 LacI binding siteBBa_K781000 LacI binding site

BBa_K1399013 LacI binding site
BBa_K1365301 LacI binding siteBBa_K1629000 LacI binding site

BBa_K541546 LacI binding siteBBa_K781004 LacI binding site
BBa_K1399010 LacI binding site

BBa_K541504 LacI binding siteBBa_K1399012 LacI binding site
BBa_K727700 LacI

BBa_K1041000 LacI binding site

BBa_K1189019 LacI
BBa_J70037 LacI binding site

BBa_S05036 LacI
BBa_K781001 LacI

BBa_K1189014 LacI
BBa_K541003 LacI binding site

BBa_K782003 1x[Nic]+1x[D]
binding sites

BBa_K592008 lacO1 site

BBa_J04805 LacI binding site

BBa_K395600 LacI binding siteBBa_K1830000 LacO

BBa_K781006 LacI binding site

BBa_K109200 TetR

BBa_K2145002 LacI
BBa_K1189016 LacI

BBa_K1189018 LacI
BBa_K1189015 LacI

BBa_K1189017 LacIBBa_K1189020 LacIBBa_K1904008 LacI

BBa_K1111012 CAP binding site

BBa_K1189019 CAP

BBa_K1399012 CAP binding site

BBa_K783046 CAP binding site

BBa_K541504 CAP binding site
BBa_K1041000 CAP binding site

BBa_K103022 CAP binding siteBBa_K1189018 CAP

BBa_K611021 CAP binding site
BBa_K781004 CAP binding site

BBa_K1041003 CAP binding siteBBa_R0010 CAP binding site
BBa_K611024 CAP binding site
BBa_K1904008 CAP

BBa_K1088054 CAP binding
BBa_K1111013 CAP binding site

BBa_K781003 CAP binding site
BBa_K1365301 CAP binding site

BBa_K1111015 CAP binding site

BBa_K1172916 CAP-binding site
BBa_K1399013 CAP binding site

BBa_K781002 CAP binding site

BBa_K1189021 CAP

BBa_J70037 CAP binding site

BBa_K1189031 CAPBBa_K611022 CAP binding site

BBa_K781007 CAP binding site
BBa_K781001 CAP

BBa_K781000 CAP binding site

BBa_K1111014 CAP binding site
BBa_K1399010 CAP binding site

BBa_K1172917 CAP-binding site

BBa_K727700 CAP

BBa_K611023 CAP binding site

BBa_K1189000 CAP
BBa_K611027 CAP binding site

BBa_K1189020 CAP
BBa_K2145000 CAPBBa_S05036 CAP

BBa_K611025 CAP binding siteBBa_K781006 CAP binding site

BBa_K1399011 CAP binding site

BBa_K121011 CAP binding site
BBa_K1189017 CAP

BBa_K1189014 CAPBBa_K1189015 CAPBBa_K252002 CAP binding site
BBa_K1189016 CAP

BBa_R0010 CAP binding site

BBa_R0010 CAP binding site

BBa_K1111016 CAP binding site

BBa_K2145002 CAP

BBa_K781005 CAP binding site

BBa_K345667 CAP binding site

BBa_K1189001 CAP

BBa_K541546 CAP binding siteBBa_J04805 CAP binding siteBBa_K1629000 CAP binding siteBBa_I7154 CAP binding site
BBa_K1919500 CAP

BBa_K611026 CAP binding siteBBa_I714076 CAP binding site
BBa_K541003 CAP binding site

BBa_J05110 ZF-GGC

BBa_J05108 ZF-GAC

BBa_J05114 binding

BBa_J05101 ZF-GGC

BBa_J05109 ZF-GGC

BBa_J05112 ZF-GGC

BBa_J05115 binding

BBa_K180004 LuxR/HSL

BBa_K1479019 Lux-box

BBa_I1051 LuxR/HSL

BBa_J69509 LuxR/HSL
BBa_K145150 Lux-box

BBa_K1194000 LuxR/HSL

BBa_R0065 Lux Box

BBa_R0062 LuxR/HSL

BBa_R1062 LuxR/HSL

BBa_K419003 LuxR/HSL

BBa_K1479019 Lux-box

BBa_K091157 LuxR+AI-1

BBa_K396002 Lux BoxBBa_K332024 LuxR/HSL

BBa_K1479020 Lux-box

BBa_K387012 CRE enhancer

BBa_K364307 Zinc Finger
(cys2/his2)

BBa_J202000 araI2

BBa_K364305 Zinc
finger(Cys2/His2) BBa_J202005 araI2

BBa_K364001 Zinc Finger
(cys2/his2)

BBa_K364201 Zinc
Finger(Cys2/His2)

BBa_K387011 MEF2 enhancer

BBa_K658008 LuxR/HSL
BBa_K658006 LuxR/HSL

BBa_K396006 LuxR/HSL

BBa_K1479020 Lux-box

BBa_K1216007 LuxR/HSL binding
site

BBa_I751502 luxR binding site

BBa_K1481003 AraC binding site

BBa_K1741000 I1, I2 binding site

BBa_K627010 Ara1|2

BBa_K1067008 araI2

BBa_J202010 araI2

BBa_K1067009 araI2

BBa_K2014003 i1-i2

BBa_K1067007 araI2

BBa_K627009 Ara1|2

BBa_K627011 Ara1|2
BBa_K627008 Ara1|2

BBa_J05115 binding

BBa_J05114 binding

BBa_J05115 binding

BBa_J05115 binding

BBa_J05101 ZF-GAG

BBa_J05114 binding

BBa_J05115 binding

BBa_J05115 binding

BBa_J05112 ZF-GAG

BBa_J05109 ZF-GAG

BBa_J05110 ZF-GGG

BBa_K119011 LuxR/HSL
BBa_K119010 LuxR/HSL

BBa_K396007 Lux Box

BBa_J100074 LuxR binding site

BBa_K1479019 Lux-box

BBa_K1513000 LuxR/HSL

BBa_K934024 LuxR

BBa_K658007 LuxR/HSL

BBa_K1024001 pLux

BBa_J202007 araI2

BBa_J202004 araI2

BBa_J202014 araI2

BBa_J202001 araI2

BBa_J202012 araI2

BBa_J202006 araI2

BBa_J202011 araI2

BBa_J202008 araI2

BBa_J202013 araI2

BBa_R0063 LuxR/HSL

BBa_K396006 Lux Box

BBa_K396007 Lux Box

BBa_K176000 luxR/HSL

BBa_I751501 luxR binding
BBa_K783024 LuxR/HSL

BBa_K091100 lux box

BBa_K1100087 LuxR/HSL

BBa_K091156 LuxRBBa_K1479021 Lux-box

BBa_K1479020 Lux-box

BBa_K1104207 OxyR binding
site4

BBa_K1067009 araO1L

BBa_K1407015 RhlR

BBa_K1407016 RhlR

BBa_K1706000 HxlR protein
binding site 1

BBa_J64800 RHLR/RHLI

BBa_K812000 Downstream
polylinker (from pVZ1)

BBa_R0071 RhlR

BBa_K1641015 FRT

BBa_K733007 RPMrel peptide

BBa_K821005 FRT

BBa_K1850010 RPMrelBBa_K812200 Downstream
polylinker (from pVZ1)

BBa_K821006 FRT

BBa_K2041018 the binding site 1
of miR-155

BBa_K1850011 RPMrel

BBa_K1104205 OxyR binding
site1

BBa_K1104203 OxyR binding
site1BBa_J05110 ZF-GGA

BBa_J05111 ZF-GGA

BBa_K1132001 attB Bxb1
(recombinase site)

BBa_K1132002 attB Bxb1
(recombinase site)

BBa_K729015 cAMP receptor
protein binding site

BBa_K118011 cAMP receptor
protein binding site

BBa_K091146 LasR

BBa_I741018 xylR activator
binding site

BBa_K1104204 OxyR binding
site1

BBa_J05108 ZF-GGA

BBa_K1323006 YFP Target
Binding Sequence

BBa_K778003 Binding site 2
(argRp1)

BBa_J70004 CAP

BBa_R0084 F1 OmpR

BBa_K778003 Binding site 2
(argRp1)

BBa_J31013 CAP binding site

BBa_I14017 RhlRBBa_K1915002 HRV 3C siteBBa_K1139200
phoB-Phosphorylated binding

site

BBa_K1915000 HRV protease
recognition site

BBa_K239006 Fis

BBa_K239005 Fis

BBa_J100071 Cad2 binding site

BBa_K1926013 vox

BBa_J100081 Cad2 binding siteBBa_K1510007 sRNA targets G
protein

BBa_K1510105 sRNA targets
histidine kinase 11

BBa_K2014001 CRP binding site

BBa_K1741005 CRP binding site

BBa_K625002 PprA binding site

BBa_I12219 TetR O2

BBa_K109200 AraC

BBa_K524003 sigma 70

BBa_K625003 PprA binding site

BBa_K625003 XylR binding site

BBa_K404003 A20-2

BBa_K404163 A20-2 binding site

BBa_K404003 A20-1

BBa_K404163 A20-1 binding siteBBa_I714924 LexABBa_K1189006 [B]

BBa_K1741006 RhaS binding site

BBa_S05036 sigma 70

BBa_K1741003 MelR binding site
1

BBa_K1741003 MelR binding site
1

BBa_K404003 A20-4

BBa_K1741004 MelR binding site
1

BBa_K1741004 MelR binding site
1

BBa_J176019 Gal4

BBa_J176019 Gal4

BBa_I20248 TetR 2

BBa_K1407015 OP2

BBa_I20251 TetR 2

BBa_I20250 TetR 2

BBa_J176019 Gal4

BBa_J176019 Gal4

BBa_I714939 lexO

BBa_K1104203 OxyR binding
site2

BBa_I714938 lexO

BBa_I714937 LexO_sulA

BBa_I714930 LexO

BBa_I714931 LexO

BBa_K1104204 OxyR binding
site2

BBa_K2100055 k-turn

BBa_I741109 Cro, Cl binding
region (Or2) BBa_R0053 OR2

BBa_K1479020 OR2

BBa_K1479019 OR2
BBa_K145150 OR2

BBa_K1479019 OR2

BBa_K1479019 OR1

BBa_K1479020 OR2
BBa_K119007 OR2

BBa_K1479020 OR1 BBa_K1479020 OR1

BBa_J100071 Cad1 binding site

BBa_K1479019 OR1

BBa_J100076 arcA binding site

BBa_J100075 arcA binding site

BBa_K2097000 Cpx-R Binding
Site

BBa_K212004 secretion signal
peptide

BBa_K242301 poly LER binding
site

BBa_J100120 Junction C

BBa_K1067009 araO1R

BBa_K1067008 araO1R

BBa_J100110 Junction C

BBa_J100116 Junction C

BBa_J100081 Cad1 binding site

BBa_J100112 Junction C

BBa_J100120 Junction A

BBa_J100110 Junction A

BBa_I12035 OR1 lambda

BBa_I12006 OR1 lambda

BBa_I12040 OR2 lambda

BBa_I12007 OR1

BBa_K2082299 OR1 of phage
lambda

BBa_K1479021 OR2

BBa_K1479019 OR1

BBa_I12007 OR2

BBa_I12035 OR2 lambda
BBa_I12036 OR2 lambda

BBa_I12210 cI OR2 (lambda)

BBa_K1479020 OR1

BBa_I12010 OR2

BBa_I12040 OR1 lambda

BBa_I12036 OR1 lambda

BBa_C2001 Recognition site

BBa_K1479020 OR2

BBa_K1479019 OR2

BBa_K1479021 OR1

BBa_S03428 Recognition site

BBa_C2000 Finger2 Recognition

BBa_J05210 OR1
BBa_K1741008 CRP binding site

BBa_K2014012 CRP binding site

BBa_I12034 OR2 lambda

BBa_I12010 OR1

BBa_I12005 OR2

BBa_I12006 OR2 lambda

BBa_J05210 OR2

BBa_K119009 OR1

BBa_K1639016 miR223 Binding
Site

BBa_I741020 XylR-Xylose
transcriptional activator activates

transcription

BBa_K1639015 miR373 Binding
Site

BBa_M39018 Integration Host
Factor

BBa_I724005 OR1

BBa_I751500 OR3

BBa_K1639011 miR-223 binding
site

BBa_K1639010 miR-373 binding
site

BBa_I12212 TetR O2

BBa_K119007 OR1

BBa_I741018 xylR activator
binding site BBa_J202005 araI1

BBa_K404163 A20-4 binding site

BBa_K1741005 RhaS binding site

BBa_K629001 LexA

BBa_K1189005 [B]

BBa_K625002 XylR binding site

BBa_K625002 IHF binding site

BBa_K625003 IHF binding site

BBa_J06403 RhlR

BBa_J64981 Strong OmpR

BBa_I741109 Cro, Cl binding
region (Or3)

BBa_K1132001 attB TP901
(recombinase site)BBa_I741020 XylR-Xylose

transcriptional activator activates
transcription

BBa_K1132002 attB TP901
(recombinase site)

BBa_I12003 OR3

BBa_M39018 Integration Host
Factor

BBa_K783042 OP2

BBa_I738010 c-amp1

BBa_K1067007 araO1R

BBa_K1407016 OP2

BBa_K227008 C3 OmpR

BBa_K1067007 araO2

BBa_K1850011 HisTag

BBa_K2145101 gRNA_355

BBa_K1850009 HisTag

BBa_K1850008 HisTag

BBa_K845001 AraC inhibitor

BBa_K2145100 gRNA_355

BBa_K1104206 OxyR binding
site4

BBa_K2145102 gRNA_268BBa_K2145102 gRNA_355

BBa_K1104204 OxyR binding
site4

BBa_R0082 C3 OmpR

BBa_K812300 downstream
polylinker (from pVZ1)

BBa_M31111 C3 OmpR

BBa_K395302 Binding site 1

BBa_K1067009 araO2

BBa_K1067008 araO2

BBa_K1132004 FimE IRL
BBa_K137010

BBa_K1132003 FimE IRL
BBa_K137010

BBa_K1132034 FimE IRL
BBa_K137010

BBa_K1926011 loxP

BBa_K1641014 LoxP

BBa_K1132004 attP PhiC31
recombinase sites

BBa_K1132036 FimE IRL
BBa_K137010

BBa_K740000 loxP

BBa_J100116 Junction A

BBa_J100112 Junction A

BBa_K2100050 k-turn

BBa_K2100050 k-turn

BBa_K2100055 k-turn
BBa_J100113 Junction A

BBa_J100113 Junction C

BBa_K2100055 k-turn

BBa_K2145100 gRNA_525

BBa_K2145103 gRNA_355

BBa_K2145101 gRNA_525

BBa_K1132003 attP PhiC31
recombinase sites

BBa_K1132034 attP PhiC31
recombinase sites

BBa_K1132036 attP PhiC31
recombinase sites

BBa_K2145102 gRNA_525

BBa_R0079 OP2

BBa_K2145103 gRNA_525

BBa_J29020 C1 OmpR

BBa_K1850003 HisTag

BBa_K1850010 HisTag

BBa_K2145103 gRNA_268

BBa_I714932 lexOBBa_K1104205 OxyR binding
site2

BBa_K2026000 LoxP

BBa_K395301 Binding site 1

BBa_K395303 Binding site1

BBa_I20249 TetR 2

BBa_J29020 C3 OmpR

BBa_K845001 CRP activator
BBa_K1481000 AraC binding site

BBa_K2014000 I1, I2 binding site

BBa_J202000 araI1

BBa_R0080 ara1 and ara2

BBa_K1067009 araI1

BBa_K2014006 i1-i2 region

BBa_K1481002 AraC binding site
BBa_K2014007 i1-i2 region

BBa_J202001 araI1

BBa_K1067007 araI1

BBa_J202002 araI2

BBa_K1741002 I1, I2 binding siteBBa_K1481004 AraC binding site

BBa_K2014005 i1-i2 regionBBa_K2014008 i1-i2 region

BBa_K354000 AraC Binding Site

BBa_J202000 araI2

BBa_J202005 araI2

BBa_K1481003 AraC binding site

BBa_K1741000 I1, I2 binding site

BBa_K627010 Ara1|2

BBa_K1067008 araI2

BBa_J202010 araI2

BBa_K1067009 araI2

BBa_K2014003 i1-i2

BBa_K1067007 araI2

BBa_K627009 Ara1|2

BBa_K627011 Ara1|2
BBa_K627008 Ara1|2

BBa_J202007 araI2

BBa_J202004 araI2

BBa_J202014 araI2

BBa_J202001 araI2

BBa_J202012 araI2

BBa_J202006 araI2

BBa_J202011 araI2

BBa_J202008 araI2

BBa_J202013 araI2

BBa_I714935 LacO2
BBa_I714931 LacO2

BBa_I714929 LacO3

BBa_I714936 lacO3

BBa_I714936 lacO3

BBa_I714939 lacO3

BBa_I714926 LacO3

BBa_I714932 lacO3

BBa_I714932 lacO3

BBa_I714929 LacO3

BBa_K1311007 CAP
BBa_I714939 lacO3

BBa_I714926 LacO3

BBa_K778012 LacZp-2

BBa_I714928 LacO2

BBa_I714931 LacO2

BBa_I714938 lacO2

BBa_I714935 LacO2

BBa_I714928 LacO2

BBa_I714925 LacO2

BBa_I714925 LacO2
BBa_I714938 lacO2

Figure 5.2: A global sequence alignment of 1712 sub-sequences annotated as “binding” in the iGEM
Registry using EMBOSS needleall, then used to generate a network of sequence similarity.
Subgraphs for regions with distinct sequences are clearly visible. Extraction of the sub-sequences
was made possible by the conversion of the Registry to SBOL-RDF.

126

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

SELECT count(DISTINCT ?sa) WHERE {

 ?cd1 a sbol:ComponentDefinition .
 <https://synbiohub.org/public/igem/igem_collection/1> sbol:member ?cd1 .

 ?cd1 sbol:sequenceAnnotation ?sa .
 FILTER NOT EXISTS { ?sa sbol:component ?c . }

 ?sa sbol:location ?loc .
 ?loc sbol:start ?start .
 ?loc sbol:end ?end .

 ?cd1 sbol:sequence ?seq .
 ?seq sbol:elements ?na .

 bind (strlen(?na) as ?seqlen)
 filter(xsd:integer(?end) <= ?seqlen)
 filter(xsd:integer(?end) > xsd:integer(?start))

 bind (xsd:integer(?end) - xsd:integer(?start) + 1 as ?len)
 filter(?len > 10)
 bind (substr(?na, xsd:integer(?start), ?len) as ?nasub)

 ?seq2 a sbol:Sequence .
 ?seq2 sbol:elements ?na2 .
 <https://synbiohub.org/public/igem/igem_collection/1> sbol:member ?seq2 .

 FILTER(?na2 = ?nasub)

 ?cd2 sbol:sequence ?seq2 .

 FILTER(?cd2 != ?cd1)
}

Figure 5.3: SPARQL query to count the number of sequence annotations which annotate a
subsequence which is identical to another part, but where the composition is not made explicit using
an sbol:component relation. The application of this SPARQL query was made possible by the
conversion of the Registry to SBOL-RDF.

127

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

5.4 Enrichment
SBOL2 provides a much richer data model than the original iGEM Registry
representation. However, the process of converting the Registry data directly to their
corresponding SBOL objects does not immediately add any additional information. The
SBOL2 data model is used by the converted dataset, but only to represent the subset of
knowledge that was originally represented by the Registry.

There are various approaches which could be used to add more information about
parts to populate the richer SBOL2 data model. One time-consuming approach would
be to simply read the part description and to manually create SBOL objects to document
the function. A machine-learning approach may also be possible; in the Registry, gene
products and interactions are often described in free-text using the wiki, so in theory
it would be possible to mine the text and use it to populate the SBOL2 data model. An
alternative approach which was explored as part of this work is to treat the annotation
of iGEM parts as a bioinformatics problem, akin to the annotation of features in a natural
genome.

The majority of the parts in the iGEM Registry are designed to be used as parts of
transcriptional genetic circuits of the kind described in section 2.1. Annotating missing
functional layers of a transcriptional genetic circuit design in the context of SBOL2
would require predicting these processes to fill in missing parts of the data model, such
as creating components for gene products, transcription interactions, and binding
interactions. Given just a DNA sequence for an iGEM part, an initial attempt to
annotate its function would be to:

1. Locate and annotate possible CDSs in the DNA sequence

2. Translate these CDSs to protein sequences

3. Identify TF domains in the protein sequences

4. Locate any TFBSs in the DNA sequence

5. Create interactions to link the TF domains to TFBSs

While there are bioinformatics tools which can accomplish many of these tasks, no
single tool is generally applicable to everything. For example, in prokaryotic DNA, CDSs
are typically composed of a single open reading frame (ORF) beginning at a start codon
such asAUG and ending at a stop codon such asUAG,UAA, orUGA [116, p. 334]. Finding
a CDS in prokaryotic DNA can be as simple as searching for substrings in the nucleotide
sequence. For eukaryotic DNA, the situation is often much more complicated: each ORF
is composed of introns and exons, and the introns are spliced to give rise to the CDS [116,
p. 317]. ORF finders for eukaryotes are highly complex, often using machine-learning
algorithms trained for specific organisms [117]. Even just the initial step of “locate any
CDSs in the DNA sequence”, therefore, may require the results of a variety of software
to be integrated.

This problem was addressed in this work with the development of Enrichment, a
tool for automatic SBOL2 sequence annotation with the ability to “mix and match” the
output of various existing bioinformatics tools. Enrichment is provided with an initial

128

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

set of integrations chosen specifically for the annotation of iGEM parts, but is designed
to provide an extensible foundation for automatic annotation of any SBOL data.

5.4.1 Building a knowledge base
The simplest way to accomplish a data workflow for automatic annotation is to develop
a script to “glue” multiple tools together, where the output of each tool becomes the
input of the next (Fig. 5.4). While this approach solves the immediate problem, it is not
modular: removing or adding tools from the workflowwould require changing the code.
It is also highly dependent on the ordering of the tools; e.g., a tool that annotates protein
domains would have to run after the tool that determined the protein sequences.

Tool 1 Tool 2a Tool 3b c d

Figure 5.4: The structure of a linear data workflow where the output of each tool is used as the input
of the next. Tool 1 receives input a and produces output b; tool 2 receives input b and produces output
c; and tool 3 receives input c and produces output d.

Knowledge Base

Tool 1

Tool 2

Tool 3

a

a b
a,b

c
a,b,cd

Figure 5.5: The structure of the data workflow used by Enrichment, where each tool has access to
the data generated by all other tools. Tool 1 receives input a and produces output b. Unlike the linear
workflow described in Fig. 5.4, tool 2 now receives both a and b. As the knowledge base grows, each
tool has the oppotunity to build upon any previous output.

An alternative approach is to build a knowledge base, where each tool has access to
the entire knowledge base, and therefore can both use the output of and become the
input of any other tool (Fig. 5.5). Instead of writing a script with a specific order, each
tool is implemented as an integration, which receives the knowledge base in its current
state and can extend it with additional knowledge. For example, a CDS finder integration
might look for any nodes in the knowledge base of type “Sequence”, and use them to emit
nodes of type “CDS”. Subsequently, these nodes might be used by another integration

129

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

to create “Protein” nodes for nodes of type “CDS”. The relationship between the two
specific integrations is never defined: they simply work over the same knowledge base,
and it happens that the knowledge generated by one integration is useful for another.

The Enrichment knowledge base

The Enrichment knowledge base loosely follows the layout of a graph, where nodes,
such as “a CDS” or “a protein”, have relations such as “this CDS encodes this protein”.
The relations in Enrichment are not strictly graph edges, but fragments of knowledge
which Enrichment internally refers to as “nuggets”. The initial set of nodes defined for
Enrichment to automatically annotate iGEM parts are:

• DNASequence — A nucleic acid sequence, equivalent to an SBOL2 Sequence
object with the encoding property set to
http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html.
Described by the na string property which contains the sequence string.

• SequenceFeature — a feature of a DNASequence. Described by a set of
sequence ranges.

• ORF (derived from SequenceFeature) — A potential open reading frame.
Described by the startCodon and stopCodon sequence range properties
and the introns, exons, and CDSes properties, each an array of sequence
ranges.

• Promoter (derived from SequenceFeature) — A potential transcriptional
promoter. Described by the minus10, minus35, and tss sequence range
properties.

• TFBS (derived from SequenceFeature) — a potential binding site for a
transcription factor, described by the tf property.

• Terminator (derived from SequenceFeature) — a potential transcriptional
terminator.

• Protein — a conceptual protein. Described by the aa string property which
contains the amino acid sequence.

These nodes are related using the following nuggets:

• NORFMakesProtein — indicates that an ORF node possibly codes for a
Protein node

• NProteinHasDegradationTag — indicates that a Protein node has an SSRA
degradation tag [118]

• NProteinHasPfamHits — indicates that a Protein node has hits in the Pfam
[111] database

• NProteinHasUniprotMatch — indicates that a Protein node matches a
protein found in UniProt

130

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

• NProteinIsTF — indicates that a protein is likely to be a specific transcription
factor

• NSequenceHasORF — links Sequence nodes to ORF nodes

• NSequenceHasPromoter — links Sequence nodes to Promoter nodes

• NSequenceHasTFBS — links Sequence nodes to TFBS nodes

• NTFBindsToTFBS — indicates that a Protein node may bind to a TFBS node

The knowledge base is populated using a series of integrations, where each
integration receives the entire knowledge base in its current state and has the
opportunity to add additional information. For example, a gene finder uses
DNASequence nodes to create ORF nodes. Another integration that performs
translation can then extend the knowledge base containing ORF nodes by creating
their corresponding Protein nodes, regardless of where the ORF nodes came from
(Fig. 5.6). As an initial set of integrations designed for use with the regulatory circuit
elements contained in the iGEM Registry, Enrichment provides:

• IGFindORFs — Search for open reading frames in DNASequence nodes, using
either ve-sequence-utils [119] for prokaryota or Augustus [117] for eukaryota.

• IGCreateProteinsForORFs — Translate ORF nodes to create Protein nodes

• IGSearchPfam — Search Pfam [111] HMMs using Protein nodes to create
NProteinHasPfamHits nuggets

• IGCreateTFsFromPfamHits — Create TF nodes for any Protein nodes with
an associated NProteinHasPfamHitswhere the family refers to a TF family

• IGFindDegradationTags — Create NProteinHasDegradationTag
nodes for Protein nodes with a sequence that have an ssRA degradation tag
[118]

• IGTransTerm — Identify possible terminator regions in DNASequence nodes
using TransTerm [120] and create Terminator nodes

• IGPromoterHunter — Identify possible promoter regions in DNASequence
nodes using Promoter Hunter [121] and create Promoter nodes

• IGFindTFBSsBlast — Identify possible TFBS regions in DNASequence nodes
using BLAST and create TFBS nodes

• IGFindTFBSPWM — Identify possible TFBS regions in DNASequence nodes
using Position Weight Matrices (PWMs) and creates TFBS nodes

In addition to integrations, Enrichment also provides refinements. While
integrations add to the knowledge base, refinements remove from it. For example, the
IGFindORFs integration may add many potential shorter ORFs which are
subsequences of a longer ORF. The RLongestORF refinement can be used to refine
its contribution to the knowledge base by pruning any ORFs which overlap other
ORFs. The initial set of refinements provided by Enrichment are:

131

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

• RLongestORF — Where there are overlapping ORF nodes, prunes all but the
longest

• RReverseOnly — Prunes all sequence-related nodes that are not on the reverse
strand

• RCompleteTUsOnly — Prunes any ORF nodes that are not surrounded by an
identified Promoter and Terminator node

• RForwardOnly — Prunes all sequence-related nodes that are not on the forward
strand

• RMergeAdjacentTerminators — Merges any overlapping Terminator
nodes into one node

5.4.2 RDF representation
Once populated, the knowledge base can be used to generate a new SBOL2 document
(Fig. 5.7). In order to allow the specification of interactions, the results are encapsulated
by an SBOL ModuleDefinition. FunctionalComponent objects are created
for nodes such as TFBS and Protein, andInteraction objects are created for nuggets
such as NTFBindsToTFBS.

An important consideration for the RDF representation of Enrichment output was
how to capture metadata concerning the provenance of added information.

As described in section 2.2.1, RDF is a simple data model consisting of
subject-predicate-object triples. Unlike in graph databases such as Neo4j, it is not
possible to annotate the edge between the subject and object with any additional
information other than the predicate URI.

This problem is often addressed in RDF using reification, whereby the triple is
“reified” as four triples using the rdf:Statement class and its rdf:subject,
rdf:predicate, and rdf:object properties. The rdf:Statement can
then be annotated with futher triples to provide metadata about the triple. However,
this approach is highly verbose and cumbersome to query due to the additional layer of
indirection.

Enrichment sidesteps this issue by using a simple, lightweight model for metadata
based on PROV-O. In this model, resources are treated as immutable objects, where any
addition of new properties to a resource A results in the generation of a copy of the
resource A′ with a new URI. The set of newly added triples can be inferred as the
difference B A, and the two resources A and B are connected using a
prov:Activity which can be annotated to capture metadata about the
enrichment step (Fig. 5.8).

5.4.3 Enrichment tool
The front-end of the Enrichment tool is a command-line utility. As input, it can take an
SBOL1, SBOL2, FASTA, or GenBank file, which is used to create an initial knowledge
base. An integration pipeline can then be constructed by specifying a list of steps to

132

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

enable, which can be either integrations or refinements. As output, Enrichment
produces SBOL files which can be used with any SBOL2 compliant software, including
visualization tools — effectively providing a “FASTA to SVG” conversion.

Enrichment was tested with a number of parts from the SBOL-RDF conversion of
the iGEM Registry. It was possible to produce and visualize SBOL2 from parts such
as the Elowitz repressilator BBa_I5610 (Fig. 5.9), the araC-pBad system BBa_K808000
(Fig. 5.10), and the RFP transcriptional unit BBa_J04450 (Fig. 5.11b).

133

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

sbol:Sequence

DNASequence

IGFindORFs

ORF

IGFindTFBSs

TFBS

IGLinkTFsToTFBSs

IGCreateProteinsForORFs

Protein

IGSearchPfam

NTFBindsToTFBS

NORFEncodesProtein

NSequenceHasPossibleORF

NSequenceHasPossibleTFBS

NProteinIsTF

SBOL object

Enrichment node

Enrichment integration

Enrichment nugget

Figure 5.6: An example of how a sequence leads to the creation of a knowledge base. From the
sequence represented in SBOL, a DNASequence node is created. The DNASequence is then available
to be used by two integrations: IGFindORFs, and IGFindTFBSs. IGFindORFs creates ORF nodes, along
with NSequenceHasPossibleORF nuggets to link them to their respective DNASequence. Similarly,
IGFindTFBSs creates TFBS nodes and NSequenceHasPossibleTFBS nuggets. The ORFs created by
IGFindORFs are used by the IGCreateProteinsForORFs integration which performs translation,
resulting in a Protein node and an NORFEncodesProtein node. The Protein node is then used by
the IGSearchPfam node which identifies that it is part of a transcription factor family, resulting in
an NProteinIsTF node. Finally, the IGLinkTFsToTFBSs integration maps the transcription factor to
its corresponding binding site, resulting in the NTFBindsToTFBS nugget, which can later be used to
generate an SBOL interaction.

134

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

NTFBindsToTFBS

sbol:Interaction

TFBS

sbol:FunctionalComponent sbol:FunctionalComponent

Protein ORF NORFEncodesProtein

sbol:FunctionalComponent

sbol:Interaction

SBOL object Enrichment node Enrichment nugget

Figure 5.7: Parts of the resulting knowledge base are mapped back to SBOL using the
FunctionalComponent and Interaction classes. Nodes such as TFBS, Protein, and ORF map to
FunctionalComponents, and nuggets such as NTFBindsToTFBS and NORFEncodesProtein map to
Interactions.

sbol:Component <a> {
 <prop1> <val1>
 <prop2> <val2>
}

sbol:Component {
 prov:wasDerivedFrom <a>
 <prop1> <val1>
 <prop2> <val2>
 <prop3> <val3>
}

prov:Activity

prov:wasGeneratedByprov:used

Figure 5.8: Instead of using reification to provide metadata about added triples, Enrichment treats
objects as immutable, creating a new copy when the object changes and connecting it to the original
with a prov:Activity. The set of newly added triples can be inferred as the difference between
the two objects.

135

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

(a
)

 p
ro
m
o
te
r

 p
ro
m
o
te
r2

 p
ro
m
o
te
r3

 p
ro
m
o
te
r4

 te
rm
in
a
to
r1
2

 te
rm
in
a
to
r1
3

 te
rm
in
a
to
r1
4

 te
rm
in
a
to
r1
5

 H
e
li
x
-t
u
rn
-h
e
lix

 d
o
m
a
in

 o
rf
5
3

 te
tR

 G
re
e
n

 fl
u
o
re
s
c
e
n
t
p
ro
te
in

 te
tR

 te
tR

 H
e
li
x
-t
u
rn
-h
e
lix

 d
o
m
a
in

 M
V
A
T
R

 te
tR

 G
re
e
n

 f
lu
o
re
s
c
e
n
t p
ro
te
in

 e
n
ri
c
h
m
e
n
tR
e
s
u
lts

(b
)

Fi
gu

re
5.
9:

Th
e

Bi
oB

ri
ck

BB
a_

I5
61

0
as

vi
su

al
iz
ed

by
th

e
iG

EM
re
gi
st
ry

(a
),

th
en

st
ri
pp

ed
of

its
an

no
ta
tio

ns
an

d
re
-a

nn
ot
at
ed

as
SB

O
L2

us
in
g

En
ri
ch

m
en

t,
an

d
vi
su

al
iz
ed

us
in
g

Sy
nB

io
C
A
D

(b
).

Th
e

in
te
gr

at
io
ns

us
ed

w
er
e

I
G
F
i
n
d
O
R
F
s
,
I
G
P
r
o
m
o
t
e
r
H
u
n
t
e
r
,
I
G
T
r
a
n
s
T
e
r
m
,

R
F
o
r
w
a
r
d
O
n
l
y
,

R
M
e
r
g
e
A
d
j
a
c
e
n
t
T
e
r
m
i
n
a
t
o
r
s
,

R
L
o
n
g
e
s
t
O
R
F
,

I
G
C
r
e
a
t
e
P
r
o
t
e
i
n
s
F
o
r
O
R
F
s
,

I
G
S
e
a
r
c
h
P
f
a
m
,

I
G
C
r
e
a
t
e
T
F
s
F
r
o
m
P
f
a
m
H
i
t
s
,
I
G
F
i
n
d
T
F
B
S
s
B
l
a
s
t
,
an

d
I
G
L
i
n
k
T
F
s
T
o
T
F
B
S
s
.

Th
e

fo
ur

tr
an

sc
ri
pt
io
na

l
un

its
ha

ve
be

en
id
en

tifi
ed

,
al
on

g
w
ith

th
e
te
tR

bi
nd

in
g
in
te
ra

ct
io
ns

.

136

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

(a
)

 p
ro
m
o
te
r

 p
ro
m
o
te
r2

 te
rm
in
a
to
r

 o
rf
1
7

 a
ra
C

 o
rf
1
9

 o
rf
2
0

 o
rf
2
1

 a
ra
C

 M
IC
P
N

 a
ra
C

 M
L
C
D
A

 M
G
IK
R

 M
T
K
T
R

 e
n
ri
c
h
m
e
n
tR
e
s
u
lts

(b
)

Fi
gu

re
5.
10

:
Th

e
Bi

oB
ri
ck

BB
a_

K
80

80
00

as
vi
su

al
iz
ed

by
th

e
iG

EM
re
gi
st
ry

(a
),

th
en

st
ri
pp

ed
of

its
an

no
ta
tio

ns
an

d
re
-a

nn
ot
at
ed

as
SB

O
L2

us
in
g

ar
ac

pb
ad

ig
em

,
an

d
vi
su

al
iz
ed

us
in
g

Sy
nB

io
C
A
D

(b
).

Th
e

in
te
gr

at
io
ns

us
ed

w
er
e

I
G
F
i
n
d
O
R
F
s
,

I
G
P
r
o
m
o
t
e
r
H
u
n
t
e
r
,

I
G
T
r
a
n
s
T
e
r
m
,

R
M
e
r
g
e
A
d
j
a
c
e
n
t
T
e
r
m
i
n
a
t
o
r
s
,

R
L
o
n
g
e
s
t
O
R
F
,

I
G
C
r
e
a
t
e
P
r
o
t
e
i
n
s
F
o
r
O
R
F
s
,

I
G
S
e
a
r
c
h
P
f
a
m
,

I
G
C
r
e
a
t
e
T
F
s
F
r
o
m
P
f
a
m
H
i
t
s
,
I
G
F
i
n
d
T
F
B
S
s
B
l
a
s
t
,
an

d
I
G
L
i
n
k
T
F
s
T
o
T
F
B
S
s
.

Th
e

ar
aC

pr
om

ot
er
,
its

bi
nd

in
g

si
te
,
an

d
th

e
ar

aC
pr

om
ot
er

an
d
C
D
S
in

th
e
re
ve

rs
e
di
re
ct
io
n
ha

ve
be

en
id
en

tifi
ed

.A
sp

ur
io
us

se
to

fc
od

in
g
si
te
sh

av
e
be

en
la
be

lle
d
on

th
e
fo
rw

ar
d
st
ra

nd
,w

hi
ch

re
su

lte
d
in

th
e

cr
ea

tio
n
of

un
id
en

tifi
ed

“p
ro
te
in
s”

by
I
G
C
e
a
t
e
P
r
o
t
e
i
n
s
F
o
r
O
R
F
s
.

137

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

(a
)

 p
ro
m
o
te
r p
ro
m
o
te
r2

 p
ro
m
o
te
r3

 te
rm
in
a
to
r3

 G
re
e
n

 f
lu
o
re
s
c
e
n
t p
ro
te
in

 C
A
P C
B
P

 l
a
c
I

 G
re
e
n

 f
lu
o
re
s
c
e
n
t p
ro
te
in

 e
n
ri
c
h
m
e
n
tR
e
s
u
lts

(b
)

Fi
gu

re
5.
11

:
Th

e
Bi

oB
ri
ck

BB
a_

J0
44

50
as

vi
su

al
iz
ed

by
th

e
iG

EM
re
gi
st
ry

(a
),

th
en

st
ri
pp

ed
of

its
an

no
ta
tio

ns
an

d
re
-a

nn
ot
at
ed

as
SB

O
L2

us
in
g

En
ri
ch

m
en

t,
an

d
vi
su

al
iz
ed

us
in
g

Sy
nB

io
C
A
D

(b
).

Th
e

in
te
gr

at
io
ns

us
ed

w
er
e

I
G
F
i
n
d
O
R
F
s
,
I
G
P
r
o
m
o
t
e
r
H
u
n
t
e
r
,
I
G
T
r
a
n
s
T
e
r
m
,

R
F
o
r
w
a
r
d
O
n
l
y
,

R
M
e
r
g
e
A
d
j
a
c
e
n
t
T
e
r
m
i
n
a
t
o
r
s
,

R
L
o
n
g
e
s
t
O
R
F
,

I
G
C
r
e
a
t
e
P
r
o
t
e
i
n
s
F
o
r
O
R
F
s
,

I
G
S
e
a
r
c
h
P
f
a
m
,

I
G
C
r
e
a
t
e
T
F
s
F
r
o
m
P
f
a
m
H
i
t
s
,I

G
F
i
n
d
T
F
B
S
s
B
l
a
s
t
,a

nd
I
G
L
i
n
k
T
F
s
T
o
T
F
B
S
s
.
RF

P
ha

s
be

en
m
is
-i
de

nt
ifi

ed
as

G
FP

du
e
to

ho
m
ol
og

y,
an

d
a
sp

ur
io
us

pr
om

ot
er

ha
s
be

en
la
be

lle
d
at

th
e
en

d
of

th
e
pa

rt
.

138

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

5.5 Discussion & Conclusion
The research goals of this chapter were to investigate (a) how the iGEM Registry can be
mapped to the SBOL data model, and (b) how SBOL data, such as these converted parts,
can be enriched using automated sequence annotation. Goal (a) was realised by
developing a conversion of the iGEM Registry to SBOL, by mapping its database
representation to the Registry data model and its semantics to standardized ontology
terms. Goal (b) was realised through the development of Enrichment4, a tool for the
automatic annotation of sequences using SBOL2; and its application to the SBOL
version of the iGEM dataset.

There are several immediate advantages of converting a dataset to SBOL. SBOL can
serve as a mediator to make data from different sources work together. For example,
an iGEM part converted to SBOL could be used in a design alongside a part
downloaded from JBEI-ICE, and benefit from compatibility with any SBOL-compliant
tooling. Furthermore, SBOL is highly machine-tractable even where the source may
not have been. For example, while the iGEM Registry has a basic search facility
allowing questions such as “which parts contain a specific keyword” to be answered,
the rich power of graph queries demonstrated earlier in this chapter make it possible to
answer more complex questions about the dataset once in an SBOL representation.

Using the increased scope of the SBOL2 data model to enrich designs with additional
knowledge is a logical next step following a direct conversion. The automated approach
used by Enrichment has been shown to produce some convincing results, though it is
dependent on the accuracy of tools to correctly predict sequence features and protein
domains. There is much room for improvement in this area. However, the existence of
a data standard capable of the representation of whole designs is a recent development,
and there are large datasets of existing parts stored with reductive data representations.
Finding ways to “fill in the blanks” will likely become an active area of research for the
SBOL community, and Enrichment is an initial effort to explore what can be done by
integrating tooling from the bioinformatics domain into an SBOL data workflow.

The SBOL version of the iGEM Registry is now available as a link from the page for
each part in the official Registry (Fig. 5.12).

5.5.1 Future work
Upstream adoption of SBOL

The Registry database schema is undocumented, making some of the work in this
chapter essentially a reverse engineering effort. The iGEM competition has contributed
significantly to the in vitro standardization of BioBricks, but does not yet have a
corresponding in silico standard. The Registry is in need of a formalised data model,
whether a formalisation of the current database representation or an adoption of an
existing standard. CORRECTION: what do you mean by in vitro

Ideally, the Registry would use SBOL as its data model and store it in a
machine-tractable database such as an RDF triplestore, instead of using its own
bespoke data representation and database schema. This would be beneficial to both the

4https://github.com/udp/dnarichment

139

https://github.com/udp/dnarichment

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

Figure 5.12: The “SBOL Format” link in the official iGEM Registry now navigates to the iGEM-SBOL
version of the part created as part of this work, hosted in the SynBioHub repository, also developed
as part of this work and described in chapter 6.

140

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

SBOL community and to iGEM: the Registry would benefit from more powerful
querying capabilities, automatic integration with any tooling with SBOL support, and
the machine-tractable representation of all aspects of a design; and the SBOL
community would benefit from both having a vast repository of original SBOL data
and the endorsement of iGEM.

Integration of further datasets

The iGEM Registry is only one of many potential datasets of parts that would be useful
to have in an SBOL representation. Although as demonstrated in chapter 4 it is now
possible to perform federated queries across SBOL and different data standards such as
UniProt RDF, the integration could be even simpler if every dataset was already
harmonized to use SBOL.

The script used for the conversion of the Registry to SBOL used was highly specific
to the iGEM dataset. However, the work described in this chapter could potentially be
generalised to become a well-defined pipeline for the standardization and enrichment of
design knowledge. Rather than being justified only as “standardization”, the conversion
of a dataset to SBOL would have a clear purpose: to learn more about parts and designs
by canonicalizing their representation using a data model with the ability to capture a
rich set of design information, and then populating that data model using automated
knowledge gathering.

Extending Enrichment

Boinformatics tools are traditionally used for the predicting features in naturally
occurring sequences. The idea of applying them to engineered parts at first seems
illogical: why would it be necessary to automatically annotate something that has been
designed? The fact that this can be justified by the existence of large repositories of
engineered sequences which can benefit from further analysis suggests that we are at a
turning point in the history of synthetic biology. We are now engineering biology to
an extent that natural sequences are no longer the only kind of sequences which can
benefit from automatic annotation.

The ideas behind Enrichment are a proposed solution to a practical problem: SBOL2
has a wider scope than SBOL1, but the data does not. Filling in the remaining parts of
the data model using bioinformatics tooling can mitigate this. The predictions made by
bioinformatics tools such as promoter finders and HMM scanners are not completely
accurate, but for applications such as visualisation they may be accurate enough.

While the first version of Enrichment provides a core set of integrations and
refinements, the specific choice of tools and data sources used are for the purpose of
proof-of-concept. There are countless relevant sources of data which could be used to
build relevant integrations, with Enrichment serving as a modular open-source
platform to connect them together.

SBOL integration

While Enrichment both reads and writes SBOL, it could have much more comprehensive
support. Currently, existing sequence annotations in the input data are ignored, and

141

CHAPTER 5. CONVERSION AND ENRICHMENT OF THE IGEM REGISTRY

the sequence is re-annotated from the ground up. Combining the existing annotations
with predicted annotations would potentially result in the creation of a more accurate
knowledge base in the event that annotations made by the user are present and accurate.

Enrichment also does not yet merge its output SBOL back into the source file; the
output of Enrichment is essentially a separate collection of SBOL data from the original
sequence. The process of merging two sets of SBOL data that describe the same resource
in different levels of detail with possibly conflicting annotations has not yet been defined.

The ability to enrich existing design information in place, if developed, would also
create the possibility of analysing designs during the design process. For example, a
CAD tool such as SynBioCAD described in chapter 7 would have the ability to suggest
design elements such as interactions dynamically, in a manner similar to code
completion provided by programming environments.

Conclusion
This chapter described the conversion of an existing repository of design information,
the iGEMRegistry, to SBOL format; and explored how once in SBOL format, it is possible
to automatically enrich design information by populating the SBOL data model using an
integrated pipeline of bioinformatics tooling.

The SBOL conversion of the iGEM Registry is now publicly available on the
SynBioHub repository 5, enabling iGEM Registry parts to be used with any
SBOL-compliant tool such as SBOLDesigner [89] and the SynBioCAD tool described in
chapter 7.

5https://synbiohub.org/public/igem/igem_collection/1

142

https://synbiohub.org/public/igem/igem_collection/1

Part III

Sharing and Dissemination

143

6. SynBioHub: a standards-enabled
design repository for synthetic
biology

6.1 Introduction
Ever since the early days of computer science, one of the most pervasive problems has
been the lack of reuse of existing software. In 1969, Richard Hamming famously said the
following during his Turing Award lecture:

Indeed, one of my major complaints about the computer field is that whereas
Newton could say, “If I have seen a little farther than others, it is because I
have stood on the shoulders of giants,” I am forced to say, “Today we stand
on each other’s feet.” Perhaps the central problem we face in all of computer
science is how we are to get to the situation where we build on top of the work
of others rather than redoing so much of it in a trivially different way. Science
is supposed to be cumulative, not almost endless duplication of the same kind
of things. [122]

While this problem has not been entirely solved in the nearly 50 years since, the
situation has improved significantly. There are now vast repositories of open-source
code such as GitHub [123], GitLab [124], and Bitbucket [125]. Most programming
languages have package managers such as pip [126] and npm [127], which allow useful
code libraries to be downloaded and made available to the developer in seconds.

It is easy to draw parallels between what Hamming complained of in 1969 and the
situation more recently in synthetic biology. Publications about engineered biological
systems have often omitted crucial information necessary for reproducibility —
sometimes failing to include even sequences [8], which is equivalent to releasing a
computer program without the source code. As highlighted in chapter 3, designs also
often include a range of non-sequence information, such as compositional hierarchy,
the relation between distinct parts, and computational models. Such information is
important both to understand the motivation behind the design, and how to reproduce,
modify, and — crucially — reuse it as part of larger systems.

One of the challenges to addressing this problem is that it has been technically
impossible to comprehensively capture a design in a data file that can be distributed
alongside a publication. Chapter 3 detailed how SBOL can help in this regard. But
capturing the design data is only one part of the puzzle. Revisiting the software

144

CHAPTER 6. SYNBIOHUB

engineering analogy, SBOL provides the source code language for designs. It does not
provide the means for the source code to be published and shared with others.
Synthetic biology is essentially lacking an equivalent to GitHub.

While it is certainly possible to use existing software to share some information about
designs, all of the existing solutions define their own data model, supporting SBOL only
as an export or import option. Ideally, a community repository should be built directly
upon a community standard, enabling the information captured by the repository to
grow along with the information captured by the standard.

The research goal of this chapter is to investigate how SBOL can be used as a
standard to create a user-facing platform for sharing designs. Specifically, this chapter
describes the design and implementation of SynBioHub, a design repository for
synthetic biology.

Attribution: While SynBioHub is now an active open-source project with many
contributors worldwide, the initial version of SynBioHub was developed entirely as
part of this work, based on a user interface design by Antarctic Design. The
SynBioHub Lab project is being developed in collaboration with Christian Atallah.

6.2 Architecture of SynBioHub
In chapter 3, the application of RDF triplestores to SBOL was explored, resulting in the
development of the SBOL Stack: a database for SBOL using an RDF triplestore as the
backend. While a database alone does not satisfy the need for a user-facing repository,
the SBOL Stack solves the first problem of “where to put the data”. SynBioHub builds
upon the SBOL Stack by providing a frontend user interface built using Web
technology, much in the same way that a traditional Web application can be built atop
a database such as MySQL. SynBioHub is implemented as a JavaScript application
using node.js, the sboljs library described in chapter 3, and VisBOL [94] for design
visualization. SynBioHub has three methods of communicating with the underlying
SBOL Stack triplestore:

• Using SPARQL queries over SBOL/RDF to retrieve specific properties

• Fetching SBOL non-recursively using sboljs

• Fetching SBOL recursively using sboljs

The first approach, using SPARQL queries, is the most efficient. It takes advantage of
the fact that SBOL is stored in an RDF triplestore, which enables SPARQL queries to be
used to retrieve a specific subset of SBOL data. For example, the SynBioHub page which
shows the members of a collection uses a SPARQL query is similar to:

145

CHAPTER 6. SYNBIOHUB

Figure 6.1: The front page of SynBioHub, a design repository for synthetic biology. Users can choose
to search for, upload, or share designs for publication or collaboration.

SELECT ?member ?name ?description WHERE {

 <https://synbiohub.org/public/igem/igem_collection/1>
 sbol:member ?member .

 OPTIONAL {
 ?member dcterms:title ?name .
 }

 OPTIONAL {
 ?member dcterms:description ?description .
 }
}

Using SPARQL to retrieve data from the triplestore in this manner means that only

146

CHAPTER 6. SYNBIOHUB

the specific properties required to render the page are retrieved, and it is not necessary
to load the SBOL using an SBOL library. The limitation of this approach is that every
SBOL property that is required for the page has to be included in the SPARQL query and
manually interpreted by SynBioHub, which repeats much of the implementation work
already completed by SBOL software libraries.

The second approach is to non-specifically retrieve all of the triples associated with
an SBOL object, and use sboljs to load them. This can be accomplished by filtering for
triples with a specific subject, and then using SPARQL CONSTRUCT to create an RDF
graph:
CONSTRUCT {
 ?s ?p ?o
} WHERE {
 ?s ?p ?o .
 FILTER(?s = <https://synbiohub.org/public/igem/BBa_K1367005/1>)
}

The resulting graph is valid RDF/XML, which can be loaded directly by sboljs and
navigated as with any SBOL file. This approach works well for rendering pages with
basic information about an SBOL object, but it is limited by child objects not being
included. For example, it would not have worked for the aforementioned collection
example, as the immediate properties of an SBOL2 Collection are only the URI of
each member, not its name and description.

The third approach is to recursively retrieve an entire SBOL top-level, including all
of its child objects. While potentially much slower than either of the other methods,
comprehensively retrieving a top-level is the only way to provide an SBOL “document”
which is ready to be loaded by tooling outside of SynBioHub. Originally, retrieving
SBOL was implemented using the recursive strategy defined by the SBOL Stack
(section 3.6.2). However, for large SBOL documents, repeating SPARQL queries for
every unresolved URI can quickly become expensive. Instead, SynBioHub now adds a
synbiohub:topLevel property to all SBOL objects upon submission. With this
predicate, retrieving all of the triples associated with an SBOL top-level and its children
can be accomplished in a single SPARQL query:

CONSTRUCT {
 ?s ?p ?o
} WHERE {
 ?s ?p ?o .

 FILTER(
 ?s
 synbiohub:topLevel
 <https://synbiohub.org/public/igem/BBa_K1367005/1>
)
}

6.2.1 SynBioHub vocabulary
As the SBOL data is stored directly as RDF in the triplestore, there is no
SynBioHub-specific data model. Where SynBioHub needs to add additional

147

CHAPTER 6. SYNBIOHUB

information which is not covered by the SBOL data model it can simply be added as
additional triples. For example, SynBioHub has the concept of an attachment, where
additional files (e.g. characterisation data) can be uploaded alongside SBOL. These are
added to the triplestore using a custom vocabulary: the attachment is assigned the
object type synbiohub:Attachment, and assigned to an SBOL object using the
predicate synbiohub:attachment. The namespace used for SynBioHub terms is
http://wiki.synbiohub.org/wiki/Terms/synbiohub#, which
resolves to a definition of each term on the SynBioHub wiki.

Classes

synbiohub:Attachment — A resource (e.g. file, or SBML [27] model) associated
with an sbol:TopLevel. The metadata for the attachment is described in RDF, but
only the SHA-1 sum of the file contents is stored, using the
synbiohub:attachmentHash predicate. This hash can then be mapped to the
file contents in a separate, compressed file store.

Predicates

synbiohub:attachment — Associates a synbiohub:Attachment with an
sbol:TopLevel. synbiohub:attachment has the domain
sbol:TopLevel and the range synbiohub:Attachment.

synbiohub:attachmentHash — The SHA-1 sum of a file associated with a
synbiohub:Attachment, represented as a string. This allows the content of the
file to be located in the SynBioHub file store, which is separate from the RDF
triplestore. synbiohub:attachmentHash has the domain
synbiohub:Attachment and the range xsd:string.

synbiohub:attachmentSize — The size of the file associated with a
synbiohub:Attachment, in bytes. synbiohub:attachmentSize has the
domain synbiohub:Attachment and the range xsd:integer.

synbiohub:mutableDescription — A description for a sbol:TopLevel
that, unlike dcterms:description, is mutable. That is, modifying the
mutableDescription in SynBioHub does not require creating a new version of
the sbol:TopLevel. synbiohub:mutableDescription has the domain
sbol:TopLevel and the range xsd:string.

synbiohub:snapshotOf — SynBioHub has the functionality to create snapshots
of the triplestore which used to roll back the state of the repository.
synbiohub:snapshotOf predicate indicates that an sbol:TopLevel is a
point-in-time snapshot of another sbol:TopLevel.
synbiohub:snapshotOf has the domain sbol:TopLevel and the range
sbol:TopLevel.

148

CHAPTER 6. SYNBIOHUB

synbiohub:topLevel — Used to indicate which is the nearest top-level to an
SBOL object. synbiohub:topLevel has the domain sbol:Identified and
the range sbol:TopLevel.

The only data that are not stored in the triplestore are sensitive information such as
usernames and password hashes. These are stored in an entirely separate SQLite
database to ensure no possibility of inadvertent access through SPARQL queries. The
only connection between the SQLite database and the RDF graph is the URI of each
user assigned by SynBioHub, which is used in both the RDF predicate
synbiohub:ownedBy and the uri column in the SQLite user table.

6.2.2 Users and graphs
One of the defining features of code repositories such as GitHub is the ability to have both
public and private repositories. Projects often begin as private repositories, and then are
made public once they reach maturity. SynBioHub implements this functionality with
the use of multiple RDF graphs: one large graph for everything that is public, and a
separate graph for each user.

Upon uploading a file (FASTA, GenBank, or SBOL1/2) to SynBioHub, it is first
converted to SBOL2. The URI prefix of the URIs in the resulting SBOL2 data is then
changed to the URL of the user, and if a part is later made public the prefix is changed
to the URL of the public store. For example:

• A user uploads a file containing an SBOL ComponentDefinition with the
URI http://testdesign/promoter/1. The URI prefix
http://testdesign/ is discarded and replaced with the SynBioHub URL
of the user, e.g.
https://synbiohub.org/user/james/promoter/1, and then
the RDF is stored in the graph assigned to the user.

• The user decides to make the design public. The URI prefix is again changed from
https://synbiohub.org/user/james/ to the SynBioHub public
URL, e.g. https://synbiohub.org/public/promoter/1.

Changing the URI prefix to match SynBioHub URLs means that each SBOL URI is
now also a resolveable URL, as opposed to fabricated URIs with prefixes such as
http://testdesign/. All SynBioHub URLs follow the “compliant URIs” scheme
defined by the SBOL specification, where the URI is constructed from the prefix
combined with the SBOL displayId and version properties.

6.3 Interfaces
While the goal of SynBioHub is to provide a user-facing design repository akin to
JBEI-ICE, the purpose of its development is to improve the computational tractability
of design information. As such, SynBioHub provides two interfaces: a Web interface
which functions as a visual abstraction layer, and a programmatic API which provides
access to the underlying SBOL data model.

149

CHAPTER 6. SYNBIOHUB

6.3.1 Web interface
The SynBioHub Web interface allows users to:

• Browse through collections of parts (Fig. 6.2). Collections are defined by the
presence of SBOL2 Collection objects in the triplestore.

• Search for parts, either using the free text or advanced search pages, which
generate SPARQL queries behind the scenes; or manually using SPARQL queries
(Fig. 6.3).

• View information about parts, including their visualisations rendered using
VisBOL (Fig. 6.5).

• Submit new parts from local SBOL2, GenBank, or FASTA files (Fig. 6.4). The parts
are converted to SBOL2, and then stored as RDF in the triplestore.

6.3.2 Programmatic API
As SynBioHub is built atop an RDF triplestore, it provides a SPARQL interface which
can be used with RDF tooling such as Linked Data Fragments [72].

SPARQL queries are very low-level, making operations which should be simple —
such as retrieving and inserting parts — require an understanding of SPARQL, which is
an unacceptable requirement for a software developer to interface with SynBioHub. To
address this issue, SynBioHub also provides a programmatic HTTP API which abstracts
over the underlying triplestore.

The API endpoint for retrieving SBOL for a part is simply the URL of the part. The
page decides whether to display the SBOL representation or the rendered Web page
depending on the Accept header of the HTTP request, where Accept:
text/html as sent by browsers results in the rendered page and Accept:
application/rdf+xml results in the SBOL RDF+XML. This approach is also
used for endpoints such as /search, where Accept: application/json
returns results as a JSON result set rather than displaying the search form. The
complete set of API endpoints provided by SynBioHub is documented in the
SynBioHub wiki 1.

In order to make the API easier to use from software, client libraries are also
provided for Java and JavaScript (Fig. 6.6). Additionally, the Java library has now been
incorporated into libSBOLj, meaning that users of libSBOLj can use SynBioHub
immediately without the requirement of any additional library support — the first time
libSBOLj has had support for access to remote resources.

6.4 Web of Registries
SynBioHub supports the Web of Registries (WoR) [128] concept. Both other SynBioHub
instances and ICE instances can be added as remote repositories to which queries can
be federated, enabling each SynBioHub instance to act as a portal to multiple distinct
upstream sources.

1http://wiki.synbiohub.org/wiki/HTTP_API

150

http://wiki.synbiohub.org/wiki/HTTP_API

CHAPTER 6. SYNBIOHUB

One of the interesting results of SynBioHub using an RDF triplestore is that data
integration techniques, such as the previously discussed innovation of Linked Data
Fragments [71], can be applied. Using LDF, it is possible to view the entire Web of
Registries as a single, unified database over which federated SPARQL queries can be
executed. This enables the design process to be distributed. Instead of collecting all of
the design information into a single place, knowledge about the different components
that make up a design can be split across multiple SynBioHub instances and
aggregated using federated LDF SPARQL queries (Fig. 6.8).

6.5 SynBioHub Lab
When SynBioHub was originally developed, the scope of SBOL was limited to
describing designs. Partly as a result of this work, SBOL is now also able to document
knowledge from other stages of the synthetic biology lifecycle, such as information
about constructs and experimental data. However, the SynBioHub user interface is
heavily design-focused. While it can display information about the SBOL
Implementation, Experiment, and ExperimentalData classes, it does
not provide the means to populate them.

SynBioHub Lab (Fig. 6.10) is a re-design of SynBioHub with an emphasis on
capturing whole-lifecycle knowledge for synthetic biology. In addition to an updated
user interface, SynBioHub Lab also takes advantage of recent software innovations to
greatly reduce the size and complexity of its codebase, with a complete
re-implementation of the code in TypeScript and a port of SBOL-related functionality
to the new sbolgraph library.

6.5.1 Whole-lifecycle knowledge management
The motivation for the development of SynBioHub Lab was to extend the scope of
SynBioHub from a design repository to a “one-stop shop” for recording information
about the entire synthetic biology lifecycle.

In the original version of SynBioHub, design information is submitted by uploading
an SBOL, GenBank, or FASTA file. As part of the submission process, the user specifies
a name and description for the design, which become the name and description of an
SBOL Collection object in the triplestore. While further files can later be uploaded
to the same collection, the process of creating a collection is strongly linked to uploading
design information.

In SynBioHub Lab, the process of creating a collection (a “project” in SynBioHub Lab)
is entirely separate from uploading design information. The form to create a project only
requests a name and description. The subsequent project view (formerly the view for
collection members in SynBioHub) is split into three sections: designs, constructs, and
experiments (Fig. 6.12). The button to add a design leads to an upload formwhich accepts
the same file formats as the original SynBioHub. The button to add a construct leads to
a separate form to create and populate an SBOL Implementation, and the button
to add an experiment leads to a form to create and populate an SBOL Experiment.

151

CHAPTER 6. SYNBIOHUB

6.5.2 Nomenclature
The purpose of the SynBioHub user interface is to provide an abstraction layer that
hides the complexity of the underlying SBOL data model from the user. In the original
version of SynBioHub, this is not a perfect abstraction — something highlighted in a
recent review paper of SynBioHub and JBEI-ICE, which said of SynBioHub that “the
semantic annotation process should be biologist-friendly and hide the underlying RDF
predicates” [129]. There are still many occurrences of SBOL nomenclature which could
be replaced with more intuitive terminology. For example, what SynBioHub refers to as
a “collection” could be renamed to a “project”, which would bring it in line with other
software such as Benchling [55]. SynBioHub Lab removes all SBOL nomenclature from
the user interface. For example:

• Collections are now referred to as “projects”

• Components are now referred to depending on their type. For example, a
component with a protein type is referred to as “Protein“. A DNA component
with a role of promoter is referred to as “Promoter”.

• Implementations are now referred to as “constructs”

6.5.3 Architectural changes
As described in section 6.2, the original version of SynBioHub has three methods of
communicating with the triplestore: directly via SPARQL queries, by non-recursively
retrieving SBOL, and by recursively retrieving SBOL. An example of where the first
approach is necessary is for retrieving the name and description of all members of a
collection. Non-recursively retrieving the collection would not include the details of its
members, and recursively retrieving the collection would result in at least one separate
SPARQL query for each member. Consequently, SynBioHub issues a SPARQL query
which specifically retrieves the name and description of all members, and iterates the
result setmanually to render the collection page. The result setmust be iteratedmanually
as it cannot be loaded by sboljs; it is only a partial view of the SBOL data model, and
would not contain enough information to populate the class hierarchy.

In SynBioHub Lab, the code is greatly simplified by using the sbolgraph library
described in section 3.3. Unlike previous SBOL libraries, sbolgraph is implemented
using a set of classes which provide views over an underlying RDF graph, rather than
as a class hierarchy which is populated by loading a document. The process of
rendering a page is simply to issue a SPARQL CONSTRUCT query that retrieves the
relevant data (e.g., the members of a collection and their metadata); load the result set
into the RDF graph; and use the sbolgraph facade classes to access the partially
populated data model. There is no requirement to manually iterate SPARQL result sets.

SynBioHub Lab also changes how design visualizations are produced. Instead of
generating a VisBOL display list and using VisBOL client-side in the browser to render
SVG, designs are rendered server-side using the SynBioCAD visualizer described in
chapter 7, and the resulting SVG is included as part of the design page. Unlike VisBOL,
SynBioCAD has comprehensive support for compositional hierarchy, resulting in
significantly more detailed design visualizations (Fig. 6.11).

152

CHAPTER 6. SYNBIOHUB

6.6 Discussion & Conclusion
The ability to effectively discover and share information is the foundation of science.
Any improvement in this area has the potential to accelerate research. In synthetic
biology, the need is particularly great: there is no platform that can be used to share a
comprehensive description of a design using a machine-tractable data representation.

The richness of the SBOL standard addresses the issue of the data representation, but
it does not provide the platform for sharing. While there are existing repositories that
are user-accessible and support SBOL — such as JBEI-ICE — they stop short of exposing
SBOL as a queryable RDF knowledge graph, undermining its machine-tractability. The
SBOL Stack solves this problem by facilitating the storage of SBOL in an RDF triplestore,
but is only a database for programmatic access and does not provide a user interface.

SynBioHub is an attempt to provide the best of both words: a graphical user
interface constructed atop an underlying RDF triplestore. While users of SynBioHub
do not need to understand SBOL or RDF, the knowledge that they submit is
automatically compatible with other SBOL-compliant tooling, and tractable as a graph
using SPARQL queries. It can be argued that this is exactly how SBOL should be used:
to standardize knowledge representation behind the scenes, while remaining invisible
to users that are only concerned with using the software.

The research goal of this chapter was to investigate how SBOL can be used as a
standard to create a user-facing platform for sharing designs. SynBioHub, the
realisation of this goal, is now a significant part of synthetic biology data
infrastructure, with multiple successful deployments worldwide:

• The reference instance at synbiohub.org2 hosts the complete iGEM Registry in
SBOL format, and is linked to from the official Registry page for each part

• SynBioHub is one of the tools incorporated by the Synergistic Discovery and
Design Environment (SD2E) project [10], serving the DARPA Synergistic
Discovery and Design (SD2) program [130]

• The Living Computing Project, a synthetic biology project recently awarded $10M
by the National Science Foundation [131], uses SynBioHub [9]

• The SevaHub repository [132] uses SynBioHub to provide access to the Standard
European Vector Architecture (SEVA) [133] plasmids in SBOL format

• The Java client for the SynBioHub programmatic API, developed as part of this
work, has now been integrated into libSBOLj, allowing any user of libSBOLj to
use SynBioHub without any additional dependencies

• The SBOLDesigner [89] tool for genetic circuit CAD integrates directly with the
SynBioHub programmatic API to allow users to retrieve parts to incorporate into
designs.

SynBioHub was the subject of a recent review by Urquiza-García et al., which
compared SynBioHub and JBEI-ICE as management platforms for synthetic biology

2https://synbiohub.org/

153

https://synbiohub.org/

CHAPTER 6. SYNBIOHUB

designs [129]. The review concluded that SynBioHub and JBEI-ICE are both
complementary solutions with “synergistic potential”. Advantages cited of SynBioHub
included its knowledge graph based representation of metadata, the ability to represent
abstract designs, and versioning of parts. The main disadvantage identified was that
SBOL is difficult to author, asserting that “SynBioHub must allow full online editing
and not depend on external SBOL editors”. It is possible that the Web-based editor for
SBOL described in chapter 7 could be integrated into SynBioHub to satisfy this need.

6.6.1 The FAIRdom principles
The issue of unpublished data is widespread in the life sciences. A 2011 Peccoud et al.
letter to Nature biotechnology [8] complained that missing sequence information in
papers was problematic for reproducibility and reuse in synthetic biology, and served
as the initial motivation for the development of SBOL. More recently, the systems
biology community has pioneered the concept of “FAIRdom” as an approach to enable
semantic interoperability between data, operating procedures, and models [134].
FAIRdom has since become a worldwide initiative across many different scientific
domains, and is endorsed by the intergovernmental data integration effort ELIXIR
[135]. FAIRdom consists of four principles: that data should be Findable, Accessible,
Interoperable, and Reusable. These principles are clearly aligned with the complaints
of Peccoud et al., and serve as a useful set of guidelines for what a data repository
should strive to enable.

Findability and Accessibility

SynBioHub directly addresses the issues of findability and accessibility by storing data
about biological parts in a highly machine-tractable RDF triplestore with powerful graph
querying capabilities.

The Web of Registries support also enables SynBioHub to participate in a wider
ecosystem of part repositories. SynBioHub instances can act as a gateway to other
repositories of knowledge, therefore increasing findability and accessibility not only of
parts contained in their own instance, but also parts stored elsewhere.

Interoperability

Unlike other repositories which use their own bespoke data representations, all of the
data stored in a SynBioHub instance is represented using SBOL — an open community
standard. Users of SynBioHub can have confidence that their parts will be interoperable
with any other parts represented in SBOL, regardless of where or how they are stored.
There is no “lock-in” to a SynBioHub data model; parts can easily be migrated to any
other repository with the ability to store SBOL.

Reusability

Parts stored in SynBioHub are inherently reusable, as the SBOL standard both supports
and encourages — through composition and provenance – the reuse of existing parts.

154

CHAPTER 6. SYNBIOHUB

Furthermore, the repository itself is also re-usable: as an open source project, it can be
customised to meet the needs of individual projects.

6.6.2 Dereferenceable URIs
As discussed in section 4.7, there are two approaches to capturing a design in SBOL:
the monolithic approach of copying information about constituent parts into the same
place, or the modular approach of only including immediately relevant design
information, providing references to any composed parts rather than including their
details. Integrating SBOL with other RDF resources using data integration technology
as demonstrated in chapter 4 solves one of the practical problems with the modular
approach: that SBOL designs often need to link out to non-SBOL resources such as
UniProt proteins, which cannot be easily de-referenced by SBOL tooling.

The other logistical challenge for modular design using SBOL is that the SBOL
objects themselves often cannot be de-referenced. The examples in the SBOL
specification almost exclusively use URIs which look like URLs but are actually
invented and unresolveable, such as
https://sbolstandard.org/example/toggleswitch. Even with the
querying power of RDF and Linked Data, it is difficult to find out more information
about a resource without an indication of where the information can be found.

SynBioHub provides a solution to this problem by re-mapping the URIs of uploaded
SBOL to resolveable URLs. If an SBOL design references a part hosted on SynBioHub by
URI, it is guaranteed that that URI can also be used as an HTTP URL to retrieve the SBOL
data for the part. As a direct result of SynBioHub providing this facility, libSBOLj has
recently added support to use SBOL URIs as URLs in order to download missing parts of
an “incomplete” SBOL document, which interestingly mirrors dependency resolution in
software: an SBOL design can now reference an existing part using its SynBioHub URL
instead of respecifying it.

6.6.3 Future work
Distributed design knowledge

The application of LDF to the Web of Registries enables SBOL design knowledge spread
across multiple instances of SynBioHub to be queried as a single knowledge graph of
knowledge. Figure 6.8 showed an example of how this federated approach could be used
to specify a design in one repository, while the definitions of its constituent components
remain in another.

There are many possibilities for distributing design knowledge in this manner. For
example, one repository could define a part, and another repository could contain
characterisation data for the same part URI. Any part of the SBOL data model can
potentially be split across multiple repositories. For example, there is no reason that a
separate repository would not be able to provide additional
SequenceAnnotation objects that refer to a ComponentDefinition
located elsewhere. Exploring the implications of SBOL moving away from a
document-based approach and toward a federated knowledge graph, and what

155

CHAPTER 6. SYNBIOHUB

potential effect such a development would have on the design process, would be an
interesting area for future research.

Sharing options

In SynBioHub, parts can currently be either private to a user (i.e. contained in the user
graph), or public (i.e. contained in the public graph). This sharing model is simple, but
also not necessarily well-suited to how the design process works in reality. A design
often belongs not to a single user, but to a group of users; e.g., a group representing a
lab.

While it is possible to work around this issue in SynBioHub by sharing a single
user account among a group of users, it is not ideal; it would be necessary to share
the login credentials, and there would be no way to attribute changes to specific users.
The Urquiza-García et al. review of SynBioHub and JBEI-ICE cites as an advantage of
JBEI-ICE that “multiple lab members can update the records for individual parts” [129].

A future version of SynBioHub could implement the concept of groups, where a
group has its own graph and multiple users can have membership. Permission for each
user in the group (e.g. read access, write access, and the ability to create new parts)
would be configurable.

Profile pages

SynBioHub assigns URIs to users, which are used e.g. to populate the
synbiohub:ownedBy property, and to provide a URI prefix for parts located in
the private graph. For example, the SynBioHub user james would be assigned the
URI https://synbiohub.org/user/james, and parts in the private graph
of that user would be assigned URIs such as
https://synbiohub.org/user/james/mydesign.

In code repositories such as GitHub, there is typically a user profile pagewhich shows
information about a user and a list of their contributions. SynBioHub could implement
this functionality by making user URIs dereferenceable URLs in the same manner as
part URIs. The same could be applied to the aforementioned potential feature of groups,
which would allow a lab to set up a SynBioHub group to provide a list of their members
and published designs — mirroring the GitHub concept of organizations.

While not directly related to improving the machine-tractability of design
knowledge, features such as profile pages could help to make SynBioHub even more of
a “hub” for the synthetic biology community, thereby encouraging its use and
consequently the availability of design information in SBOL.

Conclusion
This chapter concerned the development of SynBioHub, an open-source Web-based
repository for the sharing and dissemination of synthetic biology designs. Unlike
existing repositories, SynBioHub is built atop an RDF triplestore using the SBOL data
model, meaning that data uploaded to SynBioHub is highly machine-tractable,
represented using an open standard with a detailed specification. The SynBioHub user
interface functions as an abstraction layer over this underlying RDF knowledge

156

CHAPTER 6. SYNBIOHUB

representation, enabling users to publish design knowledge in a format amenable to
data integration without additional effort.

SynBioHub contributes toward both of the overarching aims of this work. By
providing a database and user interface for SBOL, it enables any existing parts
converted into SBOL (e.g. the iGEM registry) to be accessed in a standardised and
computationally tractable manner — thus contributing to the short-term aim of
improving access to existing knowledge. Going forward, it also provides a platform for
future parts to be published using SBOL, which means that future designers and design
automation software can take advantage of a standardised repository of parts.

157

CHAPTER 6. SYNBIOHUB

Figure 6.2: The Submissions view in SynBioHub provides an overview of uploaded collections from
both the private graph, and from the public graph where the public collection is owned by the current
user.

158

CHAPTER 6. SYNBIOHUB

Figure 6.3: In addition to free-text search, SynBioHub also supports SPARQL queries. Queries are
pre-processed by SynBioHub before being sent to the triplestore, in order to verify that they do not
contain any potentially malicious constructs such as the GRAPH keyword (which would allow access
to private user graphs) or INSERT and DELETE.

159

CHAPTER 6. SYNBIOHUB

Figure 6.4: The Submit page of SynBioHub. Submission in SynBioHub both creates an SBOL
Collection object, and optionally adds data to the collection from a file in SBOL, GenBank, or FASTA
format.

160

CHAPTER 6. SYNBIOHUB

Figure 6.5: A part from the iGEM-SBOL conversion described in chapter 5 displayed in SynBioHub,
with its VisBOL visualisation.

161

CHAPTER 6. SYNBIOHUB

Figure 6.6: An example of some of the functionality that SynBioHub provides through
its Application Programming Interface (API) and the relevant Java pseudo-code. libSBOLj
communicates with SynBioHub using the RESTful API over HTTP, and SBOL as the data exchange
format.

Web of
Registries

Service

LCP SynBioHub Utah SynBioHub

SynBioHub.org

SBOL
SB
OL

SBOL

Figure 6.7: The Web of Registries enables communication between SynBioHub instances. Any
SynBioHub can access theWeb of Registries to determine information about all registered SynBioHub
instances. If a design references a part within another SynBioHub instance, the information about
this part can be fetched in order to render this design information locally and provide links to the
corresponding design information page for this part. Figure credit: Zach Zundel

162

CHAPTER 6. SYNBIOHUB

sy
nb

io
hu

b.
ut
ah

.e
du

pL
ac

G
FP

te
rm

in
at

or
rb

s

IP
TG

 S
en

so
r

pr
ec

ed
es

pr
ec

ed
es

pr
ec

ed
es

co
m

po
ne

nt
co

m
po

ne
nt

co
m

po
ne

nt
co

m
po

ne
nt

BB
a_

K1
21

01
1

BB
a_

B0
03

4
BB

a_
K4

11
20

7
BB

a_
B0

01
5

de
fin

iti
on

de
fin

iti
on

de
fin

iti
on

de
fin

iti
on

gc
gc

cc
aa

t…
aa

ag
ag

ga
g…

se
qu

en
ce

at
gc

gt
aa

a…
cc

ag
gc

at
…

se
qu

en
ce

se
qu

en
ce

se
qu

en
ce

sy
nb

io
hu

b.
or
g

Fi
gu

re
6.
8:

A
n
ex

am
pl
e
SB

O
L
de

si
gn

of
an

IP
TG

se
ns

or
,s
pl
it
ac

ro
ss

tw
o
di
ffe

re
nt

Sy
nB

io
H
ub

in
st
an

ce
s.

Th
e
se
ns

or
co

m
po

ne
nt

its
el
fi
ss

ub
m
itt

ed
to

Sy
nB

io
H
ub

U
ta
h,

bu
tt

he
de

fin
iti

on
of

its
co

ns
tit

ue
nt

pa
rt
sa

re
lo
ca

te
d
in

th
es

yn
bi
oh

ub
.o
rg

re
po

si
to
ry

.D
es
pi
te

th
ep

ar
ts

ex
is
tin

g
in

se
pa

ra
te

lo
ca

tio
ns

,t
he

W
eb

of
Re

gi
st
ri
es

co
m
bi
ne

d
w
ith

fe
de

ra
te
d
LD

F
SP

A
RQ

L
qu

er
ie
s
al
lo
w
st

he
de

si
gn

to
be

qu
er
ie
d
as

a
un

ifi
ed

RD
F
gr

ap
h.

163

CHAPTER 6. SYNBIOHUB

PREFIX sbol2: <http://sbols.org/v2#>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX ncbi: <http://www.ncbi.nlm.nih.gov#>

SELECT ?Collection ?name ?description ?displayId ?version WHERE {
 ?Collection a sbol2:Collection .
 FILTER NOT EXISTS { ?otherCollection sbol2:member ?Collection }
 OPTIONAL { ?Collection dcterms:title ?name . }
 OPTIONAL { ?Collection sbol2:displayId ?displayId . }
 OPTIONAL { ?Collection dcterms:description ?description . }
 OPTIONAL { ?Collection sbol2:version ?version }
}

Figure 6.9: SPARQL query to select all of the “root” collections; that is, all of the collections that are
not contained by another collection.

Figure 6.10: The homepage of SynBioHub Lab, a comprehensive re-design of the SynBioHub
repository with an emphasis on capturing whole-lifecycle knowledge for synthetic biology.

164

CHAPTER 6. SYNBIOHUB

Figure 6.11: The part view in SynBioHub Lab, showing a design visualization using SynBioCAD in
place of VisBOL. Unlike VisBOL, SynBioCAD renders the compositional hierarchy of the design.

165

CHAPTER 6. SYNBIOHUB

Figure 6.12: The project view in SynBioHub Lab (formerly the view for collection members in
SynBioHub) is split into three sections: designs, constructs, and experiments.

166

7. SynBioCAD: a standards-enabled
design tool for synthetic biology

7.1 Introduction
One of the two aims of this work is to improve access to knowledge about biological
parts in the long-term. Unless synthetic biologists can easily document their parts and
devices in a manner which is standardised and computationally tractable, the issue of
knowledge fragmentation will continue in perpetuity.

Recent versions of SBOL provide a comprehensive data standard including
concepts such as composition, modularity, and functional relationships. However,
these concepts are largely ignored by tooling with SBOL support. For example, while
interactions were added to SBOL in 2015, to date there exists no user-facing tool that
can be used to create SBOL data incorporating interactions. The examples of
interactions in the SBOL2 specification were created by writing code to manually
interact with an SBOL library, a workflow which is prohibitively inaccessible to
non-programmers.

This situation is representative of a wider problem in the synthetic biology
community. Synthetic biology is an interdisciplinary pursuit, and necessarily includes
researchers from many different domains. While it is not typically expected that
computer scientists perform experiments in the wet lab, it is often necessary for
experimentalists to navigate data models and terminology developed by computer
scientists. This is counter-productive: if the ultimate goal is to get as much information
as possible from the designers into a computational standard such as SBOL, it is
essential that process is as accessible as possible and does not require computer science
domain knowledge.

Therefore, the research goal of the final chapter of this thesis is to investigate how
SBOL can be abstracted as a visual, user-facing tool. This chapter culminates in the
development of SynBioCAD, an open-source CAD tool for synthetic biology built on
the SBOL standard1,2. SynBioCAD provides an intuitive graphical interface that can be
used to design both from a “top-down” (parts first) and a ‘bottom-up” (sequence first)
perspective. SynBioCAD acts as both the entry point to the tooling provided in this
thesis — in that user-created designs can be augmented with additional information
using Enrichment and published using SynBioHub — and also as the final destination,
as it can be used to visualise and explore SBOL obtained from any source, including the

1https://github.com/SynBioCAD
2https://biocad.io

167

https://github.com/SynBioCAD
https://biocad.io

CHAPTER 7. SYNBIOCAD

iGEM conversion and Enrichment framework described in chapter 5 and the
SynBioHub repository described in chapter 6.

A note on SBOL versions
As discussed in section 2.5, there is a significant disparity between what the SBOL2 data
model can represent andwhat SBOL Visual tooling supports. It is possible that one of the
reasons for this disparity that SBOL2 essentially consists of two parallel datamodels: one
consisting of components, which is almost entirely supported by SBOL Visual tooling;
and one consisting of modules, which is almost entirely unsupported. While one of the
reasons for this lack of support may simply be that the module functionality was added
more recently, there is a more fundamental problem with SBOL2 visualization:

1. As described in section 3.5, with the introduction of modules, the SBOL data model
added additional “functional” hierarchy which is separate from the hierarchy of
the design.

2. In a visualisation, the “functional” hierarchy is often irrelevant as it does not
help to communicate the design. For example, if in order to add interactions to a
component it was first necessary to wrap the component in a module and create
MapsTo relations, the module-component hierarchy and MapsTo relation are
uninteresting to users and should not be displayed.

3. Visualisation software is therefore forced to provide a visual abstraction over the
SBOL data rather than simply rendering one visual entity for each SBOL entity, as
is possible with the component data model.

Visualisation tools can tackle this problem by first reducing SBOL to a simpler data
model where components and modules share the same hierarchy and then producing
the visualisation (Fig. 7.1). However, this means that each visualisation tool is forced
to define an ad-hoc data model, which undermines the motivation of SBOL to create a
standardised representation. The problem can be framed as “If this is how we draw it,
this is how we think about it, and if this is how we think about it, why is it not reflected
in the data model?”; or, in other words, should the disparity between the structure of the
data and the desired structure of its visual depiction be interpreted as an indication that
the data model should be changed?

Consequently, the work described in this chapter is built on a hypothetical “SBOL3”
in which the the following SEPs defined in section 3.5 have been accepted:

• SEP 010 – simplify description of sequence features and sub-parts

• SEP 025 – Merge ComponentDefinition and ModuleDefinition

• SEP 015 – Simplification of SBOL class names

Conversion to and from the hypothetical data model is implemented in sbolgraph,
and therefore SBOL2 is fully supported by SynBioCAD despite its internal use of
“SBOL3”. Assuming the SEPs are accepted, SynBioCAD will already have complete
support for SBOL3 upon release.

168

CHAPTER 7. SYNBIOCAD

Fl
at

te
ni

ng
 p

ro
ce

ss

D
oe

s
no

t m
ap

 to
 S

BO
L

da
ta

C
an

no
t b

e
re

pr
es

en
te

d
us

in
g

SB
O

L
lib

ra
rie

s;
 im

pl
em

en
te

d
by

 s
of

tw
ar

e
us

in
g

a
ne

w
 in

te
rm

ed
ia

te
 d

at
a

m
od

el
 (e

.g
. V

is
BO

L
di

sp
la

y
lis

ts
,

Pi
ge

on
 n

ot
at

io
n)

In
tu

iti
ve

 d
ep

ic
tio

n

U
ni

nt
ui

tiv
e

de
pi

ct
io

n
M

ap
s

di
re

ct
ly

 to
 S

BO
L

da
ta

Th
e

m
od

ul
e

hi
er

ar
ch

y
fo

rc
ed

 b
y

th
e

st
ru

ct
ur

al
/fu

nc
tio

na
l d

ic
ho

to
m

y
of

th

e
SB

O
L

da
ta

 m
od

el
 a

dd
s

un
ne

ce
ss

ar
y

co
m

pl
ex

ity
 to

 th
e

vi
su

al
is

at
io

n

??
?

SB
O

L

Fi
gu

re
7.
1:

Im
pl
em

en
tin

g
a
vi
su

al
iz
at
io
n
to
ol

fo
rS

BO
L
is

di
ffi

cu
lt
be

ca
us

e
it
is

no
ta

lw
ay

sp
os
si
bl
e
to

m
ap

SB
O
L
da

ta
di
re
ct
ly

to
vi
su

al
co

nc
ep

ts
.S

BO
L
fo
rc
es

hi
er
ar

ch
y
on

de
si
gn

sd
ue

to
th

es
ep

ar
at
io
n
of

its
st
ru

ct
ur

al
as

pe
ct
s(

e.
g.

C
o
m
p
o
n
e
n
t
D
e
f
i
n
i
t
i
o
n
)a

nd
its

fu
nc

tio
na

la
sp

ec
ts

(e
.g
.I

n
t
e
r
a
c
t
i
o
n
,w

hi
ch

ca
n
on

ly
ex

is
ti

n
th

e
co

nt
ex

to
fM

o
d
u
l
e
D
e
f
i
n
i
t
i
o
n
),
an

d
re
nd

er
in
g
th

is
im

po
se
d
hi
er
ar

ch
y
w
ou

ld
re
su

lt
in

an
un

in
tu

iti
ve

vi
su

al
iz
at
io
n.

Vi
su

al
is
at
io
n

so
ft
w
ar

e
is

co
ns

eq
ue

nt
ly

fo
rc
ed

to
fir

st
m
ap

SB
O
L

to
a
fla

tt
en

ed
re
pr

es
en

ta
tio

n,
w
hi
ch

is
ill
eg

al
in

th
e
cu

rr
en

t
SB

O
L2

da
ta

m
od

el
an

d
th

er
ef
or
e
ca

nn
ot

be
re
pr

es
en

te
d
us

in
g
SB

O
L
lib

ra
ri
es
,r

es
ul
tin

g
in

th
e
sp

ec
ifi

ca
tio

n
of

ad
-h

oc
“fl

att
en

ed
”
da

ta
m
od

el
s
su

ch
as

Vi
sB

O
L
di
sp

la
y
lis

ts
an

d
Pi
ge

on
no

ta
tio

n.

169

CHAPTER 7. SYNBIOCAD

7.2 Layouts for genetic circuits
The first challenge in developing a visual tool for authoring SBOL is to work out how
to bridge the gap between SBOL and SBOL Visual. Specifying a layout in order to
render a design has a different set of requirements to specifying the design itself.
While SBOL provides the facilities necessary to capture essential design information
such as sequences, function, and composition, a layout requires visual attributes such
as the location, size, and even color of design components.

As described in section 2.5, there have been at least two attempts to describe such
information in the context of SBOL. Pigeoncad [136] defined “Pigeon notation”, a simple
text-based format in which each line either lists a glyph type, name, and color; or the
name of two glyphs and an arc type (either positive or negative regulation). VisBOL [94]
defined a JSON display list format, which has a similar scope to Pigeon notation but also
supports the specification of multiple distinct backbones.

Both of these attempts are very high-level, in that they specify the list of glyphs
to display but without specific coordinates, and then rely on the rendering software to
determine size and positioning. Essentially, they both function as an abstraction over
the SBOL data model rather than a specification of layout.

With the proposed simplified data model and improved library support developed
in part 3, such an abstraction over SBOL is no longer necessary. Instead, it is possible
to use SBOL as the list of parts to display, and then a layout with a specific visual
configuration can be derived directly from the SBOL. This approach was used in this
work in the SynBioCAD Layout data model. SynBioCAD Layouts are not derivative of
the SBOL like the aforementioned display list formats, but instead complementary;
both the SBOL and the layout would be required to produce a visualization, with a
clear separation of concerns between the part knowledge captured by the SBOL data
model and the visual configuration described by the layout.

7.2.1 Specifying layouts
It was initially tempting to add layout information directly to the SBOL data model; i.e.,
by annotating objects such as ComponentDefinition with additional RDF triples
to describe their position and size. However, this approach was not viable because the
SBOL data model is fundamentally built on the principle of composition, whereby each
component can reference other components as sub-components. If the same component
is used multiple times in a design and that component also has sub-components, the sub-
components will appear multiple times in the visual rendering but will each have only
a single corresponding SBOL entity.

It is therefore necessary to define a new distinct class to represent the depiction of an
SBOL object. Unlike SBOL entities such as ComponentDefinitionwhich capture
information such as the sequence of a part, depictions concern the position and size of
a rendering within a layout. The base SynBioCAD Layout Depiction class has the
following properties:

• offset (x, y): The offset in layout units from the parent Depiction, or the
absolute offset if no parent.

170

CHAPTER 7. SYNBIOCAD

• size (x, y): The size of the depiction in layout units

• opacity: whether to show the details inside the depiction (“whitebox”) or not
(“blackbox”)

Several different of sub-classes Depiction are also defined:

• LocationableDepiction

• BackboneDepiction

• LabelDepiction

Two sub-classes are defined for LocationableDepiction:

• ComponentDepiction

• FeatureLocationDepiction

The majority of the existing tools for SBOL visualization have the visual concept of
a backbone. Though not explicitly described by the SBOL Visual specification, a
backbone is typically a horizontal line upon which glyphs can be placed representing
one or two strands of DNA. The undocumented convention is that glyphs placed atop
the backbone represent features on the forward strand, and glyphs placed below the
backbone represent features on the reverse complementary strand. The SBOL data
model, however, does not have such a concept. To address this, the
BackboneDepiction class was added. A BackboneDepiction can
optionally be used as a child of a ComponentDepiction to visually group the
“sequence-bound” children (either sub-components or sequence features) of the
component. A child is considered sequence-bound if it has one or more locations that
specify a sequence location (e.g. using a Range), or if it is the subject or object of a
SequenceConstraint.

7.2.2 Layout to SBOL references
Even with the simplified data model, it is not possible to accomplish a true 1:1 mapping
where each SBOL URI maps to exactly one visual depiction. The reason for this is the
same reason that layout information cannot simply be added directly to the SBOL data:
if the same component is used multiple times in a design and that component also has
sub-components, the sub-components will appear multiple times in the visual rendering
but will each have only a single corresponding URI (Fig. 7.3).

A workaround for this issue used in the SynBioCAD Layout data model is to map
depictions back to SBOL not by URI, but instead by URI “chains”. Each depiction holds
a URI chain containing its own URI, then the URI of the object that instantiated it,
recursively (Fig. 7.4).

An important distinction to make is that the chain of instantiation is not the same
as the chain of object ownership. For example, the chain of instantiation C;C.1;B.1
in Fig. 7.4 corresponds to the component C using a sub-component C.1 to instantiate
the component B, which has a sub-component B.1 to instantiate A, providing a unique

171

CHAPTER 7. SYNBIOCAD

In
te

ra
ct

io
n

S
e

q
u

e
n

ce
A

n
n

o
ta

ti
o

n

C
o

m
p

o
n

e
n

t
o

r
S

u
b

C
o

m
p

o
n

e
n

t

In
te

ra
ct

io
n

D
e

p
ic

ti
o

n

F
e

a
tu

re
L

o
ca

ti
o

n
D

e
p

ic
ti

o
n

L
a

b
e

lD
e

p
ic

ti
o

n

B
a

ck
b

o
n

e
D

e
p

ic
ti

o
n

b
a

ck
b

o
n

e
Y

:n
u

m
b

e
r

C
o

m
p

o
n

e
n

tD
e

p
ic

ti
o

n

L
o

ca
ti

o
n

L
o

ca
ti

o
n

a
b

le
D

e
p

ic
ti

o
n

o
ri

e
n

ta
ti

o
n

:F
o

rw
a

rd
|R

e
ve

rs
e

b
a

ck
b

o
n

e
P

la
ce

m
e

n
t:

A
to

p
|M

id
p

ro
p

o
rt

io
n

a
lW

id
th

:n
u

m
b

e
r

D
e

p
ic

ti
o

n

o
ff

se
t:

V
e

c2
o

ff
se

tE
xp

lic
it

:b
o

o
le

a
n

si
ze

:V
e

c2
m

in
S

iz
e

:V
e

c2
o

p
a

ci
ty

:B
la

ck
b

o
x|

W
h

it
e

b
o

x
la

b
e

lF
o

r
0

..
1

d
e

p
ic

ti
o

n
O

f
1

d
e

p
ic

ti
o

n
O

f
1

lo
ca

ti
o

n
 0

..
1

d
e

p
ic

ti
o

n
O

f
1

ch
ild

re
n

 0
..

*

Fi
gu

re
7.
2:

A
da

ta
m
od

el
to

sp
ec
ify

la
yo

ut
s
fo
r
th

e
Sy

nt
he

tic
Bi

ol
og

y
O
pe

n
La

ng
ua

ge
(S
BO

L)
.V

is
ua

li
nf

or
m
at
io
n

ab
ou

t
SB

O
L

en
tit

ie
s
is

de
sc
ri
be

d
us

in
g

su
bc

la
ss
es

of
th

e
D
e
p
i
c
t
i
o
n

cl
as

s.

172

CHAPTER 7. SYNBIOCAD

B

B.1

C

C.1

C.2

Depiction of C for URI C

Depiction of B for URI C.1

A

Depiction of B for URI C.2

Depiction of A
for URI B.1

Depiction of A
for URI B.1

Figure 7.3: If the same component is used multiple times in a design and that component also has
sub-components, the sub-components will appear multiple times in the visual rendering but will
each have only a single corresponding URI, meaning that there is no longer a 1:1 mapping where one
SBOL object maps to one depiction.

B

B.1

C

C.1

C.2

Depiction of C for chain C

Depiction of B for chain C;C.1

A

Depiction of B for chain C;C.2

Depiction of A for
chain C;C.1;B.1

Depiction of A for
chain C;C.2;B.1

Figure 7.4: A workaround for the issue shown in Fig. 7.3 is to point back to SBOL from depictions
using chains of URIs instead of a single URI. The chain of composition allows each depiction to
umambiguously point to a particular instance of an SBOL object.

identifier for one specific depiction of A. The chain of object ownership for the same
object, however, would invariably be B;B.1, as B.1 is a sub-component of B but the
context of B being instantiated as a sub-component is not respected.

7.2.3 Creating layouts for SBOL data
The process of populating the SynBioCAD Layout data model using data from SBOL is
mostly a straightforward case of creating the correct corresponding Depiction
subclass for each SBOL object. One complication is the issue of avoiding duplicate
depictions of the same object. Consider a design represented by a component with two
sub-components. Intuitively, one attempting to visualise SBOL would simply draw
each component along with its sub-components. However, if a component has already
been drawn as part of another component, creating another depiction for it as a

173

CHAPTER 7. SYNBIOCAD

top-level would result in duplication (Fig. 7.5). This can be avoided by identifying the
root components and working inwards:

1. Identify the set of “root” components R. These are Component objects are
never instantiated as part of another Component using a SubComponent;
i.e., components where the pattern ?subComponent sbol:definition
?component has no matches.

2. For each of these root components c ∈ R, create a ComponentDepiction d
where depicts(d, c)

3. For each sub-component c′ of c, create a ComponentDepiction d′ where
depicts(d′, c′) and child(d′, d)

4. For each sequence annotation c′ of c, create a
FeatureLocationDepiction d′ where depicts(d′, c′) and child(d′, d)

5. Repeat steps 3, 4, and 5 for each newly created ComponentDepiction and
FeatureLocationDepiction

C

C.1

Depiction of C for chain C

Depiction of A for chain
C;C.1

A

Depiction of A for chain
C;C.2

Depiction of A for chain AC.2

B

Depiction of B for chain B

Figure 7.5: Creating a single Depiction for each SBOL object results in additional depictions being
created at the root level for objects which were already included in compositional hierarchy.

Once the layout has been generated, it is desirable to be able to update it if the SBOL
it was generated from changes, rather than generating an entire new layout. This is
particularly important if the layout contains specific positioning or styling information
which would be lost if the layout was replaced. The synchronisation process can be
performed as follows:

1. Assign a unique version number to represent this iteration of the synchronisation

2. For each component, start with a URI chain containing only the URI of the
component. If the layout has a depiction corresponding to the chain, synchronise
its attributes with the SBOL (e.g. orientation) and set its version number to the
current version. Otherwise, create a new depiction.

3. For each sub-component of the component, extend the URI chain with the URI of
the sub-component. Synchronise or create a depiction as above, then repeat this
step for each sub-component of the definition of the sub-component.

4. Iterate through all of the depictions in the layout, removing any that do not match
the current version number; as they were not visited, they are no longer present
in the SBOL.

174

CHAPTER 7. SYNBIOCAD

7.2.4 Configurating layouts
Once the layout has been generated, it is not yet ready to render. First, an offset and
size must be assigned to all depictions. This process, termed herein as “configurating”
the layout, requires the combination of a number of different strategies to accommodate
requirements such as hierarchical composition and the layout of parts on backbones.

Hierarchical composition

The composition of hybrid parts from multiple smaller components is a key
requirement for the top-down design of genetic circuits. This presents a challenge in
the implementation of a visual rendering, in that the dimensions of each rendered part
must accommodate the dimensions of its contained parts. Therefore, the dimensions of
any part can not be established until the dimensions of all contained parts have been
established.

In order to implement these rules programatically, the parts can be represented as a
tree, where each node represents a part in the circuit, and edges represent composition.
The tree repesentation enables depth to be used to layout in an order where the
dimensions of leaves are known first before the more composed parts.

1. Perform a depth sort on the list of depictions. For sorting purposes, the depth
of any given depiction d can be calculated as 1 greater than the maximum of the
depth of its childrenmax(depth(children(d))+1, or just 1 if there are no children.

2. Iterate through the list of depictions, which now begins with the lowest depth
depictions (i.e. the leaves of the tree). Each depiction can calculate and store
its size taking into account the size of its children, which will already have been
calculated.

Backbone strategy

The purpose of backbone depictions is to convey locations within a sequence. SBOL has
two mechanisms to express location information:

1. Locations allow the location of a region to be specified using numeric sequence
offsets.

2. Sequence constraints allow the location of a region to be expressed as a function of
the location of another region.

Locations are fairly straightforward to implement. The most common type of
location in SBOL is Range, which specifies a start and an end offset. Constraints
specify a subject, an object, and a restriction (e.g., precedes). The backbone layout
strategy described here makes a “best effort” of supporting both, and does not any
attempt to identify cases where the locations contradict the constraints or vice-versa.
The strategy is as follows:

1. Define a set of layers. Initially, this set will be empty. Each set has an index,
where negative indexes represent layers above the backbone and positive below;
a height; and a set of occupied ranges, also initially empty.

175

CHAPTER 7. SYNBIOCAD

2. Set the initial length of the backbone. The initial length is the length of the
sequence multiplied by the scale factor.

3. Place all explicitly positioned depictions. These are depictions that have a
specific offset assigned (i.e., offsetExplicit is true), and should not be
subject to automatic layout.

4. Place all depictions with fixed locations. Any depictions with a Range are
designated as fixed. Depictions already positioned due to explicit positioning are
excluded.

5. Place all depictions with sequence constraints that reference already
placed depictions. Perform this step recursively until all depictions are placed.

If there are any depictions left over, they must have no explicit position, fixed
location, or constraints that refer to already placed depictions. The only other
possibility is that they have constraints that refer only to each other (as is the case for
much of the SBOL exported from SBOLDesigner). These remaining depictions can
simply be sorted as a list with respect ot their constraints, and placed in order on the
backbone.

Bin-packing strategy

The layout strategy used for a component with sub-components is based on a
bin-packing algorithm, in an attempt to display all sub-components in the smallest
possible space. As any sequence-bound sub-components are children of a
BackboneDepiction, they are already configurated by the backbone strategy,
and so the entire BackboneDepiction parent can be bin-packed as with any
other child depiction. The strategy is as follows:

1. Place the depictions into groups. First, place depictions that are participants
of the same interaction into the same group. Then place any remaining depictions
each into their own group.

2. Horizontally tile the children of each group. A simple horizontal tiling
strategy is used, i.e. for each child cn, let offset(cn) equal
offset(cn−1) + padding

3. Create layers above and below the group to allow for interaction arcs. The
height of the above layer is determined by the number of overlapping interactions
to display above the components, and the height of the below layer by the number
of overlapping interactions to display below.

4. Use a bin packing algorithm to position the groups. Jake Gordon’s binary
tree bin-packing implementation [137] is used, which allows packing into a
growing space rather than a fixed space

5. Route interactions within their layers. The interactions populate the
previously allocated layer space.

176

CHAPTER 7. SYNBIOCAD

7.2.5 JSON representation
While SBOL data is represented as RDF because of its connection with ontologies and
ease of querying, there would be little use for such functionality in the representation
of layouts. Instead, SynBioCAD Layouts are represented using a lightweight JSON
serialization (Fig. 7.6). The serialization has two top level properties: size, which
contains the dimensions of the layout; and depictions, which contains a list of the
depictions.

Each depiction has a class property to indicate which specific Depiction
subclass it is instantiating, and the properties of the depiction as described in
section 7.2.

7.3 Interactive genetic circuit visualizations for the
Web

Rendering a layout is the process of converting it into an actual image for display.
Previous SBOL Visual tooling has used a variety of visualization methods: Pigeoncad
uses the TikZ LaTeX library; dnaplotlib uses matplotlib [138]; and VisBOL uses
Scalable Vector Graphics (SVG) [139]. Of these approaches, SVG has a number of
advantages. First, SVG is resolution-independent: instead of being constructed of
pixels, an SVG image comprises a set of instructions to draw an image, and thus can be
rendered at any size without loss of quality. Secondly, SVG is natively supported by all
modern Web browsers. Rendering designs to SVG elements that can be incorporated
into a Web page enables the development of interactive, Web-based applications that
incorporate SBOL Visual.

7.3.1 Rendering layouts with Scalable Vector Graphics (SVG)
As the layout already contains offset and size information from the configuration
process, producing an SVG visualization is fairly straightforward. The depictions are
depth sorted as in 7.2.4, and then drawn starting with the highest depth so that the
nested-most depictions are drawn last. SVG allows objects to be manipulated using
translation matrices, which can be used to apply positioning, sizing, and rotation (in
the case of reverse complement orientation). For a depiction d, the absolute offset
absOffset(d) can be calculated as offset(parent(d)) + offset(d) in the case that the
depiction has a parent, or simply offset(d) otherwise. The translation matrix to
render a depiction is then:

size(d)x · gx 0 absOffset(d)x · gx
0 size(d)y · gy absOffset(d)y · gy
0 0 1

 (7.1)

In the case of rendering in reverse complement orientation, the depiction is rotated

177

CHAPTER 7. SYNBIOCAD

180° about the center using a standard rotation matrix:
cos(180) sin(180) size(d)x · 2
−sin(180) cos(180) size(d)y · 2

0 0 1

 (7.2)

The specific glyphs, such as the glyph for a promoter, are rendered using functions
derived from VisBOL [94]. These functions essentially work like a font does for text:
they are supplied a bounding box and draw the glyph, so SynBioCAD does not require
any knowledge of glyph geometry.

7.3.2 Interactivity
The most basic user interactivity — the ability to move and resize glyphs — can be
implemented with the addition of two new properties to the layout data model:

• In order to enable resizing glyphs, aminSize property is added toDepiction,
which is set to the new size when the glyph is resized. The configurate stage will
not allow a glyph to become smaller than the minSize, which defaults to (0, 0).
When higher levels configurate, they are then forced to accommodate the new
size.

• In order to enable dragging glyphs, an offsetExplicit property is added to
Depiction. If the glyph is moved, the new offset is assigned to the offset
property and offsetExplicit is set to true. The configurate stage will not
automatically assign an offset to a glyph with offsetExplicit set to true.

The addition of these properties means the layout can still be automatically
configured, but with additional user constraints. For example, if a glyph is moved
within its parent, its siblings will be forced to rearrange to accommodate the new
position of the glyph during automatic configuration.

SynBioCAD also supports more sophisticated interactivity through “drag
operations” (Table 7.1). Each drag operation is a function that receives a source layout
and accompanying SBOL graph; a destination layout and accompanying SBOL graph;
and the target bounding box (i.e., where the depiction has been dragged to). The source
and destination are usually the same layout and graph, but may be different e.g. if a
part is being placed after being imported from SynBioHub. The drag operation can
return a new layout (if the interaction caused a change in the visualization, e.g.
resizing a glyph), a new SBOL graph (if the interaction changed the underlying data,
e.g. altering hierarchical composition), or none of the above if the operation was not
applicable.

The depth-sorted list of depictions used to calculate sizes is also useful for user
interaction. In the event of interaction (e.g. a mouse click), the top depiction can be
retrieved by iterating the depictions starting with the lowest depth (i.e. the most
nested) and checking the bounding box of each against the coordinate of the user
interaction. It is guaranteed that if a depiction is obscured by another nested depiction,
the obscured depiction will not be the target of the user interaction.

178

CHAPTER 7. SYNBIOCAD

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sbol="http://sbols.org/v2#">
 <sbol:ComponentDefinition rdf:about="http://876d767d-9799-40fe-a5f4-fd0f522ca624/promoter/1">
 <sbol:persistentIdentity rdf:resource="http://876d767d-9799-40fe-a5f4-fd0f522ca624/promoter" />
 <sbol:version>1</sbol:version>
 <sbol:displayId>promoter</sbol:displayId>
 <sbol:role rdf:resource="http://identifiers.org/so/SO:0000167" />
 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion" />
 </sbol:ComponentDefinition>
</rdf:RDF>

(a)
{
 "size": {
 "x": 85.375,
 "y": 54.25
 },
 "depictions": [
 {
 "class": "ComponentDepiction",
 "uid": 3,
 "offset": {
 "x": 10.5625,
 "y": 11.0125
 },
 "offsetExplicit": true,
 "size": {
 "x": 2,
 "y": 1.6
 },
 "minSize": {
 "x": 0,
 "y": 0
 },
 "opacity": 0,
 "isExpandable": false,
 "depictionOf": "http://876d767d-9799-40fe-a5f4-fd0f522ca624/promoter/1",
 "identifiedChain": "http://876d767d-9799-40fe-a5f4-fd0f522ca624/promoter/1",
 "children": [],
 "orientation": 0,
 "backbonePlacement": "top",
 "proportionalWidth": 2,
 "label": 4
 },
 {
 "class": "LabelDepiction",
 "uid": 4,
 "offset": {
 "x": 10.5625,
 "y": 10.0125
 },
 "offsetExplicit": false,
 "size": {
 "x": 4,
 "y": 1
 },
 "minSize": {
 "x": 0,
 "y": 0
 },
 "opacity": 1,
 "isExpandable": true,
 "depictionOf": null,
 "identifiedChain": null,
 "children": [],
 "labelFor": 3
 }
]
}

(b)

Figure 7.6: An example of a SynBioCAD layout for a promoter (a) serialized in JSON (b). The URIs
of parts are temporary URIs generated by SynBioCAD, which would be changed e.g. to SynBioHub
URLs on publication. Information such as the names of parts are not included in the layout as they
are already specified by the SBOL data to which this layout is complementary.

179

CHAPTER 7. SYNBIOCAD

DOpEnterParent

When a ComponentDepiction
is dragged into a parent
ComponentDepiction, make the
associated SBOL SubComponent a child of
the parent Component.

DOpEnterSibling

When a ComponentDepiction
is dragged into a whitebox sibling
ComponentDepiction, create an SBOL
SubComponent as a child of the sibling
Component.

DOpEnterWorkspace

When a ComponentDepiction
is dragged out of a containing
ComponentDepiction into a space
where it would have no parent, delete its SBOL
SubComponent to allow it to be rendered
as a root depiction.

DOpMoveInBackbone

When a ComponentDepiction
is dragged horizontally within a
BackboneDepiction, change its X
offset only and allow the backbone layout to
reposition sibling depictions.

180

CHAPTER 7. SYNBIOCAD

DOpMoveInParent

When a ComponentDepiction is
dragged within a parent, change its offset and
allow the parent to resize to accommodate its
new position.

DOpMoveInWorkspace

When a ComponentDepiction is
dragged and has no parent, change its offset
only.
DOpTwoBlackboxesMakeConstraint

When a blackbox ComponentDepiction
is dragged over a sibling blackbox
ComponentDepiction, wrap the two
components in a parent component and create
an SBOL SequenceConstraint.

Table 7.1: The current set of drag operations implemented by SynBioCAD.

Performance caveats

Ideally, the implementation of interactivity would be as straightforward as:

• If user interaction causes a change in the layout but not the underlying SBOL data,
re-configurate the layout to accommodate for the change, then re-render the SVG

• If user interaction causes a change in the SBOL data (i.e., the graph),
re-synchronise the layout using the algorithm described in section 7.2.3,
re-configurate it, then re-render the SVG

Unfortunately, a practical implementation also has the consideration of
performance. Both configuration of the layout and rendering the SVG are expensive
operations — particularly in the context of a Web browser, where rendering alone can
cause the deletion and creation of hundreds of elements in the page. This can be
limited by restricting the configurate and render stages to only part of the layout. To
implement this, each Depiction is also assigned a version property. If a
depiction is modified, it increments its own version and that of all ancestors. The

181

CHAPTER 7. SYNBIOCAD

configurate process can then traverse the depiction hierarchy and only configurate
depictions where the version has been modified. Subsequently, only depictions which
have been reconfigurated need be re-rendered.

7.4 The SynBioCAD application
SynBioCAD3,4 is a Web-based editor for SBOL developed as part of this work, building
on the sbolgraph library and the new proposed version of the SBOL standard described
in chapter 3, the SynBioHub repository described in chapter 6, and the visual layout data
model defined in this chapter. The initial feature set of SynBioCAD comprises:

• Visualization of SBOL2 designs, including designs using the
ModuleDefinition and Interaction classes

• Modifying designs by the drag and drop manipulation of interactive SBOL Visual
glyphs

• Editing designs at a sequence level using an embedded sequence editor

• Integration with the SynBioHub design repository described in chapter 6,
providing access to the conversion of the iGEM Registry described in chapter 5
(Fig. 7.10)

The SynBioCAD user interface has three design views: the circuit view (Fig. 7.8),
the sequence view (Fig. 7.9), and the source view (Fig. 7.7). All of these views use the
same underlying SBOL data, represented by the sbolgraph library. The synchronisation
approach described in section 7.2.3 is used to propagate changes in the SBOL to changes
in the visualization, which is rendered directly as SVG nodes in the Web browser.

3https://biocad.io
4https://github.com/SynBioCAD/biocad

182

https://biocad.io
https://github.com/SynBioCAD/biocad

CHAPTER 7. SYNBIOCAD

Figure 7.7: The source view of SynBioCAD shows the underlying data in SBOLX (the proposed
version of SBOL used internally by SynBioCAD) or SBOL2 format. It can also show the current
layout in JSON format.

183

CHAPTER 7. SYNBIOCAD

Figure 7.8: The circuit view of SynBioCAD allows designs to be visualized and editedby “drag and
drop” using SBOL Visual glyphs. It shares the same SBOL data as the sequence view.

184

CHAPTER 7. SYNBIOCAD

Figure 7.9: The sequence view of SynBioCAD allows sequence data to be modified directly. It shares
the same SBOL data as the circuit view.

185

CHAPTER 7. SYNBIOCAD

Figure 7.10: In the SynBioCAD circuit view, parts can be imported from the SynBioHub repository
described in chapter 6. This screenshot shows a part imported from the iGEM-SBOL conversion
described in chapter 5.

186

CHAPTER 7. SYNBIOCAD

7.5 Discussion & Conclusion
The adoption of SBOL could make the representation of designs more standardized and
machine-tractable. However, most designs are not yet represented in SBOL. Chapter
5 addressed this problem in the short-term by exploring how an existing dataset can
be converted to SBOL. But the foundation of synthetic biology is the creation of new
designs. Unless these new designs are documented using standards from the outset, it
will be perpetually necessary to find ways to integrate design knowledge.

While there are some existing visual tools for the creation of SBOL data such as
SBOLDesigner [89], SynBioCAD brings new functionality such as rendering of
hierarchical composition; support for SBOL2 ModuleDefinition and
Interaction; and an entirely Web-based editor which can be used without the
need for any software.

SynBioCAD also attempts to accommodate for the fact that “Lego” potential of
SynBio — where parts can be taken and plugged together to create new devices — is
exciting, but also reductive. Much of the design process still takes place at the sequence
level, as evidenced by the widespread success of Benchling compared to the relative
obscurity of “top-down” tools such as SBOLDesigner.

For point-and-click design with interactive visual glyphs to be taken seriously, it
must co-exist with the ability to work directly with the underlying sequence. A
computing parallel is the prevelance of UNIX-like systems among software developers.
While macOS and modern Linux distributions provide friendly graphical user
interfaces, they still have a text-based Terminal emulator providing access to low-level
command line tools. While the initial version of the SynBioCAD sequence editor is not
comparable to a fully fledged editor such as Benchling [55], it demonstrates the idea of
having different levels of abstraction for editing the same design.

7.5.1 Future work
Standardization of layouts

The difficulty of the development of SBOL Visual tooling should be a clear indicator that
something needs to be done by the SBOL community to make their two standards —
SBOL and SBOL Visual — work together more effectively.

Standardization of a data representation for layouts to complement the SBOL data
model would be a logical step in this direction. Whether this representation would be
derived from the layout data model proposed in this chapter or a proposal from
elsewhere in the community, a formal specification for layouts could help to prevent
repeated efforts and to accelerate the development of tooling that integrates both SBOL
and SBOL Visual.

Continued development of SynBioCAD

SynBioCAD is a research project, and will require significant further development to
turn it into a fully fledged design tool for synthetic biology. While the engineering
groundwork — such as the sbolgraph library and specification of layouts — is in place,
there is still much to be done. Ideas for future versions of SynBioCAD include:

187

CHAPTER 7. SYNBIOCAD

• As the editor isWeb-based, it can be embedded into otherWeb-based software. The
recent review of SynBioHub [129] highlighted the need for the integrated ability
to edit SBOL. SynBioCAD could potentially be implemented as the SynBioHub
“submit” page to allow authors to document designs on the fly.

• Chapter 5 introduced Enrichment, a tool to enrich SBOL data using
bioinformatics analysis. It may be possible to integrate Enrichment into
SynBioCAD to suggest design elements such as interactions as the design is
being constructed, in a manner similar to code completion provided by
programming environments.

• The Virtual Parts Repository [80] provides a repository of SBOL components, each
of which has an SBML [27] model attached. There exist various simulators for
SBML such as COPASI [140] and iBioSim [141]. If SynBioCAD composed models
at the same time as composing SBOL, it would potentially be possible to embed a
simulator to provide a “Play” button for genetic circuit designs.

7.5.2 Conclusion
This chapter described a data model to bridge the SBOL data model and SBOL Visual by
specifying layouts to link visual offsets and sizes to the descriptions of biological parts;
and SynBioCAD, a Web-based tool for visualizing and editing SBOL built on much of
the technology developed as part of this work.

SynBioCAD is the first visual authoring tool for SBOL with support for the SBOL2
“functional” concepts of modules and interactions. By abstracting away the SBOL data
model, SynBioCAD is designed to serve not just the SBOL community, but synthetic
biology in general — enabling users to capture designs both as a visualization, and using
the machine-tractable data representation provided by SBOL.

188

Conclusions

189

8. Discussion & Conclusion

The two main research aims of this work were:

1. To explore how access to existing knowledge can be improved for the synthetic
biology design process

2. To propose data standards and software infrastructure to make future
knowledge about designs more accessible

8.1 The groundwork: Machine-tractable design
The prerequisite for either of these aims was to determine what knowledge about
designs actually is, and how it can be represented computationally. An ad-hoc
description of a design in a Word processor is not something a computer can easily
interpret. The representation of knowledge in a format which is amenable to
comprehension by software — or, machine-tractability — is absolutely essential if we
expect software to be able to do anything useful with that knowledge. The future of
biodesign is likely to be knowledge-augmented, with computer software able to inspect
a design and make suggestions about how to improve it or suggest parts that might be
helpful. We might also expect that one day, the design process will be entirely
automated: a user writes a specification for an engineered organism, and hits the
“print” button. However, before we can expect any of this to be possible, we must
make the design process transparent to machines.

One of the reasons that it is likely that this problem has not yet been adequately
addressed is that the discipline of bioinformatics is well-established, and consequently
has significant associated infrastructure, both in software and in data. It is very easy to
look at the file formats typically used by bioinformatics tooling, such as the venerable
FASTA and GenBank, and assume that they are adequate for synthetic biology. A
recurring theme in this work was the need to challenge this assumption. Engineered
systems are not the same as natural sequences. While they do share some things in
common, such as potentially a DNA sequence, engineered systems have an entire set of
additional properties which do not exist in natural sequences such as design intent,
provenance, and composition.

It is possible to make-do with reductive data representations at the expense of
machine-tractability. The iGEM Registry is a clear example of this: the only
machine-tractable knowledge in the database is the DNA sequence of each part with
annotated regions. All of the rich information that teams collect about parts is stored
in free-text. There is little incentive not to take this approach: free-text is easier to

190

CHAPTER 8. DISCUSSION & CONCLUSION

write than learning to use a data standard, and what advantage does using a data
standard actually bring to the designer of the part?

This considered, it is unsurprising that efforts such as SBOL struggle to gain traction.
Expecting users to adopt a data standard out of altruism is unrealistic. For a standard
to be adopted, it has to be easier to use the standard than not to use it. An example of
where this might be the case with SBOL is the export option of SynBioCAD (Fig. 8.1).
The user is presented with the option of exporting as SBOL, in which case they will keep
all of the information about the design if it is re-loaded; as GenBank, where hierarchy
and interactions will be lost; or as FASTA, where everything but the sequence will be
lost. If other tools also supported SBOL, it would simply become the most frictionless
option, much in the way that an Excel file is preferable to CSV for spreadsheets because
formatting and formulas are retained.

Figure 8.1: The export options in SynBioCAD, demonstrating the value added by the SBOL standard.
The user is presented with the option of exporting as SBOL, in which case they will keep all of the
information about the design if it is re-loaded; as GenBank, where hierarchy and interactions will
be lost; or as FASTA, where everything but the sequence will be lost.

The problem is that many other tools do not support SBOL. As described in
section 2.2.2, SBOL suffers from several interconnected issues which prevent it from
gaining momentum. Implementing SBOL support in tools has been prohibitively
difficult due to the only complete implementation being a Java library, libSBOLj —
excluding software written in more common languages such as Python and JavaScript.
Implementing new libraries for SBOL to address this problem has also proven very
difficult due to the complexity of the data model. Even with a software library,
understanding how to use SBOL is not an easy task.

191

CHAPTER 8. DISCUSSION & CONCLUSION

The situation today is significantly better. The software libraries described in
chapter 3 not only bring SBOL support to more programming languages, but also
demonstrate that by leveraging the RDF foundation of SBOL, it can be much easier to
implement the standard than the specification might suggest. Meanwhile, other
developers in the SBOL community have also implement new libraries and
abstractions, such as libSBOL [97].

The implementation of software libraries for a data standard may seem far removed
from the general problem of machine-tractable design. But the work presented here
has the potential to accelerate the adoption of SBOL, encouraging support to be added
to more tools. Eventually, perhaps the majority of synthetic biology designs will be
represented in SBOL, with vast repositories of SBOL data and a wealth of tooling with
SBOL support.

Standards should be seen not as an exercise in imposing regulation, but as a tool to
enable data and tooling to interoperate more effectively. Without co-operating on the
development of standards, the synthetic biology community — like many other
communities before it — will be forced to solve the same problems with
standardization in perpetuity. The chapters of this work concerning data
harmonization, while interesting from a research perspective, should not have been
necessary. Biology is already extremely complicated, and adding layers of complexity
by disagreeing on data representation creates more friction rather than less.

8.2 Aim 1: Access to existing knowledge
Previous attempts for data integration in the context of SynBio have mostly been
concerned with improving our understanding of natural organisms. SynBioMine [58],
for example, is almost entirely concerned with integrating data about genome features,
collecting information about engineered parts from only one source.

It is likely that knowledge about engineered parts has simply not been considered
worth integrating. Synthetic biology is still a fairly new field, and so engineered parts
that are documented were documented fairly recently; surely the dataset is too small and
too recent to require the application of data integration? However, this is simply not the
case: as discussed in section 2.3, there exist large repositories of engineered parts which
are disparate, heterogeneous, and computationally intractable.

SBOL can help in this regard by more than just providing yet another standard to
capture designs. The SBOL data model is backed by RDF, and with RDF comes decades of
research into knowledge representation and data integration. If designs are represented
in SBOL and stored in RDF triplestores such as the SBOL Stack, it is not necessary to
develop new SynBio-specific tooling to make design information tractable, because the
infrastructure is already there and applicable to any RDF dataset.

Consequently, chapter 4 of this thesis briefly departed from the synthetic biology
domain, focusing on the fundamentals of data integration using RDF. In this respect,
the recent innovation of Linked Data Fragments (LDF) is a game-changer. Prior to LDF,
federated querying was extremely verbose: a federated query had to manually specify
which remote datasources to query for specific triple patterns, rather than being able to
query multiple datasources simultaneously. The burden on servers of providing a full
SPARQL endpoint is also tremendous, which has resulted in RDF resources having a

192

CHAPTER 8. DISCUSSION & CONCLUSION

reputation for being unreliable and having low availability. LDF solves both issues at
once by moving the complexity of evaluating queries from the server to the client.

LDF is a very recent development, and not all of the possibilities of moving query
evaluation to the client have yet been explored. Chapter 4 demonstrated one such
interesting possibility. LDF servers are not encumbered with the processing of
complex SPARQL queries and only have to respond to triple patterns. So, do those
triple patterns really need to come from a real RDF datasource, or can triples be
generated dynamically from something else? It is shown that this can indeed be
accomplished by formalising a service such as a Web form or API into potential triple
patterns and building an intelligent server that translates to and from RDF. The
ldf-facade framework for developing such servers can be used to provide RDF views
over non-RDF datasets, which is applicable both to the SynBio domain and any other
knowledge on the Web.

Returning to more domain-specific applications of data integration, chapter 5
explored how the largest repository of engineered biological parts — the iGEM
Registry — can be converted to SBOL format. This process involved mapping its
database fields to fields in the SBOL data model, aligning its ad-hoc terminology to
well-defined ontological terms, and de-flattening the hierarchy of parts to make
composition more explicit. The resulting dataset is a significant resource for the SBOL
community, growing the number of parts available in SBOL2 from a handful of
examples in the specification to over 20,000 from the Registry. The advantages of an
SBOL representation in making the Registry data more machine-tractable are also
significant. While the Registry provides only a very basic keyword-driven search
facility, in the SBOL representation the parts are now available in RDF, with all of the
powerful querying capability enabled by SPARQL.

Converting knowledge from one representation to another can provide value when
the new representation is easier to work with, as in the case of iGEM-SBOL. However,
even if the new representation can capture a broader scope of knowledge than the
original, the scope of the knowledge remains the same if it converted from a reductive
form. The iGEM to SBOL conversion is an example of this: even though SBOL2
supports the description of additional layers of biology such as gene products and
interactions, the iGEM Registry is restricted only to DNA sequences and therefore so is
its resulting SBOL2 representation.

One method of enriching designs by “filling in” the SBOL2 data model is to predict
the function of the part. Predicting function given a DNA sequence might be is the
pursuit of the long-established field of bioinformatics. The technology developed by
bioinformaticians, such as models trained to predict the locations of sequence features
and protein domains, is traditionally used for the annotation of natural genomes.
Engineered parts have been designed for a specific purpose, so their re-annotation
using bioinformatics should be unnecessary. Nevertheless, we find ourselves with a
vast repository of parts represented only by their sequence, and a data standard with
the ability to capture much more.

The Enrichment tool described in chapter 5 allows additional information to be
added to SBOL designs by constructing and executing a pipeline of knowledge
integrations. As a proof-of-concept, an initial set of integrations were constructed from
common bioinformatics tools and datasources such as PromoterHunter [121],

193

CHAPTER 8. DISCUSSION & CONCLUSION

TransTerm [120], and Pfam [111]. These integrations are used to build a knowledge
base for the design, where each integration can build on information generated by
prior integrations. Enrichment was shown to be able to re-annotate SBOL2 designs
from a sequence level with some accuracy, and combined with SynBioCAD can even
be used to produce a diagram from nothing but a DNA sequence.

The accuracy of Enrichment was not explored in detail in this thesis because the tools
and datasets Enrichment integrates are not part of this work. They are intended to be
interchangeable. It does not matter which tool, for example, finds ORFs in a sequence,
because downstream integrations to translate the ORFs will still work with the same
concepts in the knowledge base. What the development of Enrichment demonstrates is
that the concept of using bioinformatics to fill in the gaps in knowledge about engineered
designs is a viable approach.

8.3 Aim 2: Accessibility of future knowledge
Improving access to knowledge in the short-term through data integration may help to
make the design process easier today by making it easier to collect knowledge about
existing parts. But considering the purpose of synthetic biology is to engineer new
designs, it is important to consider how those designs will be published for future
designers. How does someone creating a design today publish it in a computationally
tractable form?

The issues raised in the Peccoud et al. letter [8] — that publications about designs
often do not include sequences — are finally being taken seriously by journals, and SBOL
is central to the response. ACS Synthetic Biology now recommends that all authors use
SBOL to represent their designs [54]. While this development is well-intentioned and
definitely a step in the right direction, it cannot be an easy task for authors today. First,
an author would have to learn enough about the highly complex SBOL data model to
work out exactly how their design can be represented. They would then have to find
some way to actually generate the SBOL, which could require learning to write Java
code. The simplified data model and new tooling developed as part of this workmay help
to lower the burden on authors by making the process of building SBOL representations
of designs easier.

The ACS Synthetic Biology recommendations fall short of recommending where to
put the SBOL. The obvious place would be the supplementary material, but
supplementary material is a set of files that can be downloaded alongside a paper — far
removed from triplestores with rich querying capabilities as described throughout this
work. JBEI host an instance of JBEI-ICE dedicated to ACS Synthetic Biology1, but as
discussed in section 2.4 it suffers from a similar problem, treating SBOL as a file format
rather than as an RDF data model.

Using SBOL in this manner as essentially an improved format for sequences does
not take full advantage of what an RDF-based representation of design knowledge could
enable. The Semantic Web ambition of all of the data on the Internet being represented
in RDF may or may not be realistic, but the application of Semantic Web technology to
the specific domain of SynBio design is a powerful solution to an immediate problem,

1https://acs-registry.jbei.org

194

https://acs-registry.jbei.org

CHAPTER 8. DISCUSSION & CONCLUSION

particularly with recent data integration technology such as Linked Data Fragments.
SynBioHub is an attempt to address this problem by combining the rich data

representation of a triplestore with a Web-based user interface. Since its publication in
2018, SynBioHub has already found success in the SynBio community, having been
adopted by projects such as the NSF Living Computing Project (LCP) [9] and the
DARPA Synergistic Discovery & Design Project (SD2) [10]. Every new user of
SynBioHub expands the ecosystem of highly queryable semantic design knowledge
built around SBOL.

The final problem is how to create SBOL data in the first place. The recent review of
SynBioHub and JBEI-ICE highlighted this issue, asserting that “SynBioHub must allow
full online editing” [129]. Existing tools, such as SBOLDesigner [89], provide are
restricted mainly to the features of SBOL1. SynBioCAD provides a Web-based,
open-source editor for SBOL2, serving as an illustration of much of the work described
herein: it is built upon the sbolgraph library described in chapter 3, and provides
access to the parts converted from the iGEM Registry in chapter chapter 5 using the
SynBioHub repository described in chapter 6.

8.3.1 Conclusion
The research question motivating this work was how the machine-tractability of
knowledge can be improved in order to make the synthetic biology design process
more efficient. Both short-term and long-term approaches were explored: short-term
solutions to improve the tractability of knowledge that already exists, and long-term
solutions to ensure that future knowledge can be documented using a
machine-tractable data standard.

The Synthetic Biology Open Language (SBOL) served as the foundation for both of
these approaches. Its data model is a formalisation of what constitutes a synthetic
biology design, which is a prerequisite of any attempt to work with design knowledge.
The contributions made to SBOL as part of this work are intended to facilitate the
development of a smaller and easier to implement standard for the next iteration of
SBOL, SBOL 3.0 — thereby encouraging adoption of SBOL by software, and in turn the
long-term availability of design information in a standardized, machine-tractable
format.

SBOL is an example of a Resource Description Framework (RDF) standard, meaning
all SBOL data is also a knowledge graph which can be navigated using RDF tooling. The
existing software infrastructure for SBOL rarely took advantage of this capability. This
work has demonstrated that SBOL can be used directly as an RDF data model, using RDF
graph libraries and RDF triplestores. Additionally, a novel method for making existing
non-RDF knowledge tractable through dynamic harmonization was proposed. While
the motivation was to use this method with the SBOL RDF standard, it could in theory
be used to turn nearly any non-RDF datasource into a SPARQL endpoint.

The remainder of this work made use of the fundamental data representation
provided by SBOL to realise a suite of tools which can be used as part of a
standards-enabled data workflow for synthetic biology design. SynBioHub provides a
platform for any user to share design knowledge, and when combined with the
conversion of the iGEM Registry makes the largest SBOL dataset of parts to-date

195

CHAPTER 8. DISCUSSION & CONCLUSION

readily available online. Enrichment can automatically add additional information to
designs by integrating the output of bioinformatics analyses. SynBioCAD provides
Web-based visualization and editing capabilities using the SBOL and SBOL Visual
standards, enabling any user to create SBOL data regardless of familiarity with the
standard.

Together, the contributions of this work help to further standardization of
knowledge representation in the synthetic biology design process, potentially
improving its efficiency and ultimately the efficiency of the synthetic biology lifecycle
as a whole.

196

Bibliography

[1] Endy, D. “Foundations for engineering biology”. In:Nature 438.7067 (2005), p. 449.
[2] Medema,M. H., Breitling, R., Bovenberg, R., and Takano, E. “Exploiting plug-and-

play synthetic biology for drug discovery and production inmicroorganisms”. In:
Nature Reviews Microbiology 9.2 (2011), p. 131.

[3] Verseux, C. N., Paulino-Lima, I. G., Baqué, M., Billi, D., and Rothschild, L. J.
“Synthetic biology for space exploration: promises and societal implications”.
In: Ambivalences of Creating Life. Springer, 2016, pp. 73–100.

[4] SynbiCITE. Synthetic Biology Investors. url: http://www.synbicite.
com/collaboration/investors/ (visited on 07/10/2019).

[5] url: https : / / bbsrc . ukri . org / funding / grants /
priorities/synthetic-bio/ (visited on 07/17/2019).

[6] Carlson, R. H. Biology Is Technology: The Promise, Peril, and New Business of
Engineering Life. Harvard University Press, 2010. isbn: 978-0-674-05362-5.

[7] Doan, A., Halevy, A., and Ives, Z. Principles of Data Integration. Morgan
Kaufmann, 2012. isbn: 9780124160446.

[8] Peccoud, J., Anderson, J. C., Chandran, D., Densmore, D., Galdzicki, M.,
Lux, M. W., Rodriguez, C. A., Stan, G.-B., and Sauro, H. M. “Essential
information for synthetic DNA sequences”. In: Nature biotechnology 29.1 (2011),
pp. 22–22.

[9] Project, L. C. Living Computing Project Resources. url:
https://www.programmingbiology.org/resources (visited
on 09/14/2019).

[10] (TACC), T. A. C. C. Synergistic Discovery and Design Environment. url: https:
//sd2e.org/about/ (visited on 09/14/2019).

[11] Prakash, C. S. “The genetically modified crop debate in the context of agricultural
evolution”. In: Plant physiology 126.1 (2001), pp. 8–15.

[12] Wright, D. “TheGenetic Architecture of Domestication inAnimals”. In: Bioinform
Biol Insights 9.Suppl 4 (2015), pp. 11–20.

[13] Dijkstra, E. W. “The humble programmer”. In: Commun. ACM 15.10 (1972),
pp. 859–866.

[14] Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. “Synthetic biology:
new engineering rules for an emerging discipline”. In: Molecular systems biology
2.1 (2006).

197

http://www.synbicite.com/collaboration/investors/
http://www.synbicite.com/collaboration/investors/
https://bbsrc.ukri.org/funding/grants/priorities/synthetic-bio/
https://bbsrc.ukri.org/funding/grants/priorities/synthetic-bio/
https://www.programmingbiology.org/resources
https://sd2e.org/about/
https://sd2e.org/about/

BIBLIOGRAPHY

[15] Kelwick, R., MacDonald, J. T., Webb, A. J., and Freemont, P. “Developments in
the tools and methodologies of synthetic biology”. In: Frontiers in bioengineering
and biotechnology 2 (2014), p. 60.

[16] Suryanarayana, G., Samarthyam, G., and Sharma, T. “Chapter 5 - Modularization
Smells”. In: Refactoring for Software Design Smells. Boston: Morgan Kaufmann,
2015, pp. 93–122. isbn: 978-0-12-801397-7.

[17] Chen, D. and Vernadat, F. B. “Enterprise interoperability: A standardisation
view”. In: International Conference on Enterprise Integration and Modeling
Technology. Springer. 2002, pp. 273–282.

[18] Wheelwright, S. C. and Clark, K. B. “Accelerating the design-build-test cycle for
effective product development”. In: International Marketing Review 11.1 (1994),
pp. 32–46.

[19] Wang, J., Xiong, Z., Meng, H., Wang, Y., and Wang, Y. “Synthetic biology
triggers new era of antibiotics development”. In: Reprogramming Microbial
Metabolic Pathways. Springer, 2012, pp. 95–114.

[20] Chen, Y. Y. and Smolke, C. D. “From DNA to targeted therapeutics: bringing
synthetic biology to the clinic”. In: Science translational medicine 3.106 (2011),
106ps42–106ps42.

[21] Brophy, J. A. and Voigt, C. A. “Principles of genetic circuit design”. In: Nat.
Methods 11.5 (2014), pp. 508–520.

[22] Elowitz, M. B. and Leibler, S. “A synthetic oscillatory network of transcriptional
regulators”. In: Nature 403.6767 (2000), pp. 335–338.

[23] Gardner, T. S., Cantor, C. R., and Collins, J. J. “Construction of a genetic toggle
switch in Escherichia coli”. In: Nature 403 (2000), pp. 339–342.

[24] Jacob, F. and Monod, J. “Genetic regulatory mechanisms in the synthesis of
proteins”. In: Journal of molecular biology 3.3 (1961), pp. 318–356.

[25] Jusiak, B., Cleto, S., Perez-Pinera, P., and Lu, T. K. “Engineering synthetic gene
circuits in living cells with CRISPR technology”. In: Trends in biotechnology 34.7
(2016), pp. 535–547.

[26] Beal, J. “Bridging the gap: a roadmap to breaking the biological design barrier”.
In: Frontiers in bioengineering and biotechnology 2 (2015), p. 87.

[27] Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., et al. “The systems
biology markup language (SBML): a medium for representation and exchange
of biochemical network models”. In: Bioinformatics 19.4 (2003), pp. 524–531.

[28] Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M.,
Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., et al. “BioModels
Database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems”. In: Nucleic acids research
34.suppl_1 (2006), pp. D689–D691.

[29] International Workshop on Bio-Design Automation. url:
https://www.iwbdaconf.org/ (visited on 09/27/2019).

198

https://www.iwbdaconf.org/

BIBLIOGRAPHY

[30] Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V.,
Strychalski, E. A., Ross, D., Densmore, D., and Voigt, C. A. “Genetic circuit
design automation”. In: Science 352.6281 (2016), aac7341.

[31] Pearson, W. R. “Rapid and sensitive sequence comparison with FASTP and
FASTA”. In: (1990).

[32] Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell,
J., and Sayers, E. W. “GenBank”. In: Nucleic acids research 41.D1 (2013), pp. D36–
D42.

[33] Burks, C., Fickett, J. W., Goad, W. B., Kanehisa, M., Lewitter, F. I., Rindone, W. P.,
Swindell, C. D., Tung, C.-S., and Bilofsky, H. S. “CABIOS REVIEW: The GenBank
nucleic acid sequence database”. In: Bioinformatics 1.4 (1985), pp. 225–233.

[34] “ECMA-404: The JSON Data Interchange Format.” In: (2013).
[35] Extensible Markup Language (XML). url: https://www.w3.org/XML/

(visited on 09/19/2019).
[36] JSON Schema. url: https://json-schema.org (visited on 09/19/2019).
[37] W3C XML Schema Definition Language (XSD). url: https://www.w3.

org/TR/xmlschema11-1/ (visited on 09/19/2019).
[38] How can I access resources on this website programmatically? url: https://

www.uniprot.org/help/api (visited on 09/19/2019).
[39] W3C. RDF 1.1 Concepts and Abstract Syntax. Feb. 25, 2014. url: https://

www.w3.org/TR/rdf11-concepts (visited on 08/21/2019).
[40] Weibel, S., Kunze, J., Lagoze, C., andWolf, M. “Dublin core metadata for resource

discovery”. In: (1998).
[41] Ontologies. url:

https://www.w3.org/standards/semanticweb/ontology
(visited on 09/19/2019).

[42] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M.,
Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. “Gene ontology: tool for
the unification of biology”. In: Nature genetics 25.1 (2000), p. 25.

[43] Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., and
Ashburner, M. “The Sequence Ontology: a tool for the unification of genome
annotations”. In: Genome biology 6.5 (2005), R44.

[44] Redaschi, N., Consortium, U., et al. “Uniprot in RDF: Tackling data integration
and distributed annotation with the semantic web”. In: (2009).

[45] Fu, G., Batchelor, C., Dumontier, M., Hastings, J., Willighagen, E., and Bolton, E.
“PubChemRDF: towards the semantic annotation of PubChem compound and
substance databases”. In: Journal of cheminformatics 7.1 (2015), p. 34.

[46] Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton, A.,
Gehant, S., Laibe, C., Redaschi, N., et al. “The EBI RDF platform: linked open data
for the life sciences”. In: Bioinformatics 30.9 (2014), pp. 1338–1339.

199

https://www.w3.org/XML/
https://json-schema.org
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://www.uniprot.org/help/api
https://www.uniprot.org/help/api
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/standards/semanticweb/ontology

BIBLIOGRAPHY

[47] Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn, J. Y.,
Rodriguez, C. A., Roehner, N., Wilson, M. L., Adam, L., Anderson, J. C., et al.
“The Synthetic Biology Open Language (SBOL) provides a community standard
for communicating designs in synthetic biology”. In: Nature biotechnology 32.6
(2014), pp. 545–550.

[48] Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A.,
Dumontier, M., Finney, A., Golebiewski, M., Hastings, J., et al. “Controlled
vocabularies and semantics in systems biology”. In: Molecular systems biology
7.1 (2011).

[49] Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo,
D., Soiland-Reyes, S., Zednik, S., and Zhao, J. “Prov-o: The prov ontology”. In:
W3C recommendation 30 (2013).

[50] Weibel, S. “The Dublin Core: a simple content description model for electronic
resources”. In: Bulletin of the American Society for Information Science and
Technology 24.1 (1997), pp. 9–11.

[51] Mısırlı, G., Hallinan, J., Pocock, M., Lord, P., McLaughlin, J. A., Sauro, H., and
Wipat, A. “Data integration and mining for synthetic biology design”. In: ACS
synthetic biology 5.10 (2016), pp. 1086–1097.

[52] Galdzicki, M., Wilson, M. L., Rodriguez, C. A., Adam, L., Adler, A.,
Anderson, J. C., Beal, J., Chandran, D., Densmore, D., Drory, O. A., Endy, D.,
Gennari, J. H., Grünberg, R., Ham, T. S., Kuchinsky, A., Lux, M. W., Madsen, C.,
Misirli, G., Myers, C. J., Peccoud, J., Plahar, H., Pocock, M. R., Roehner, N.,
Smith, T. F., Stan, G.-B., Villalobos, A., Wipat, A., and Sauro, H. M. BBF RFC 84:
Synthetic Biology Open Language (SBOL) Version 1.0.0. Tech. rep. Sept. 2011. doi:
1721.1/60088.

[53] W3C. RDF 1.1 XML Syntax. Feb. 25, 2014. url: https://www.w3.org/
TR/rdf-syntax-grammar/ (visited on 09/10/2019).

[54] Hillson, N. J., Plahar, H. A., Beal, J., and Prithviraj, R. Improving Synthetic
Biology Communication: Recommended Practices for Visual Depiction and Digital
Submission of Genetic Designs. 2016.

[55] Benchling. url: https://www.benchling.com (visited on 09/24/2019).
[56] Kwok, R. “Five hard truths for synthetic biology”. In:Nature News 463.7279 (2010),

pp. 288–290.
[57] Lapatas, V., Stefanidakis, M., Jimenez, R. C., Via, A., and Schneider, M. V. “Data

integration in biological research: an overview”. In: Journal of Biological
Research-Thessaloniki 22.1 (2015), p. 9.

[58] Department of Genetics, U. o. C. SynBioMine. url:
http://www.synbiomine.org/ (visited on 08/21/2019).

[59] Smith, R. N., Aleksic, J., Butano, D., Carr, A., Contrino, S., Hu, F., Lyne, M., Lyne,
R., Kalderimis, A., Rutherford, K., et al. “InterMine: a flexible data warehouse
system for the integration and analysis of heterogeneous biological data”. In:
Bioinformatics 28.23 (2012), pp. 3163–3165.

200

https://doi.org/1721.1/60088
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.benchling.com
http://www.synbiomine.org/

BIBLIOGRAPHY

[60] Department of Genetics, U. o. C. SynBioMine: Data Categories. url: http :
//www.synbiomine.org/synbiomine/dataCategories.do
(visited on 08/21/2019).

[61] Bultelle, M., Murieta, I. S. de, and Kitney, R. “Introducing SynBIS-The synthetic
biology information system”. In: IET/SynbiCITE Engineering Biology Conference.
IET. 2016, pp. 1–2.

[62] Codd, E. F. “A relational model of data for large shared data banks”. In:
Communications of the ACM 13.6 (1970), pp. 377–387.

[63] W3C. SPARQL Query Language for RDF. Jan. 15, 2008. url: https://www.
w3.org/TR/rdf-sparql-query (visited on 08/21/2019).

[64] Broekstra, J., Kampman, A., and Van Harmelen, F. “Sesame: A generic
architecture for storing and querying rdf and rdf schema”. In: International
semantic web conference. Springer. 2002, pp. 54–68.

[65] Erling, O. and Mikhailov, I. “RDF Support in the Virtuoso DBMS”. In: Networked
Knowledge-Networked Media. Springer, 2009, pp. 7–24.

[66] McBride, B. “Jena: Implementing the rdf model and syntax specification”. In:
Proceedings of the Second International Conference on Semantic Web-Volume 40.
CEUR-WS. org. 2001, pp. 23–28.

[67] LLC, S. BlazeGraph. url: https://www.blazegraph.com (visited on
09/27/2019).

[68] Berners-Lee, T., Hendler, J., and Lassila, O. “The semantic web”. In: Scientific
american 284.5 (2001), pp. 28–37.

[69] Berners-Lee, T. Linked Data — Design issues. July 27, 2006. url:
https://www.w3.org/DesignIssues/LinkedData.html
(visited on 08/21/2019).

[70] W3C. SPARQL 1.1 Protocol. Mar. 21, 2013. url: https://www.w3.org/
TR/sparql11-protocol (visited on 08/21/2019).

[71] Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., and Van
de Walle, R. “Web-Scale Querying through Linked Data Fragments.” In: LDOW.
Citeseer. 2014.

[72] Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L.,
Vander Sande, M., Cyganiak, R., Colpaert, P., Mannens, E., and Van de Walle, R.
“Querying datasets on the web with high availability”. In: International
Semantic Web Conference. Springer. 2014, pp. 180–196.

[73] GenBank and WGS Statistics. url: https://www.ncbi.nlm.nih.gov/
genbank/statistics/ (visited on 05/28/2019).

[74] Current Release Statistics. url: https://www.ebi.ac.uk/uniprot/
TrEMBLstats (visited on 05/28/2019).

[75] Zhu, B. and Stülke, J. “SubtiWiki in 2018: from genes and proteins to functional
network annotation of the model organism Bacillus subtilis”. In: Nucleic Acids
Research 46.D1 (Oct. 2017), pp. D743–D748. issn: 0305-1048. doi: 10.1093/
nar/gkx908.

201

http://www.synbiomine.org/synbiomine/dataCategories.do
http://www.synbiomine.org/synbiomine/dataCategories.do
https://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/TR/rdf-sparql-query
https://www.blazegraph.com
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/sparql11-protocol
https://www.w3.org/TR/sparql11-protocol
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ebi.ac.uk/uniprot/TrEMBLstats
https://www.ebi.ac.uk/uniprot/TrEMBLstats
https://doi.org/10.1093/nar/gkx908
https://doi.org/10.1093/nar/gkx908

BIBLIOGRAPHY

[76] Guo, A. C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., Lo, P.,
Mandal, R., Krishnamurthy, R., and Wishart, D. S. “ECMDB: the E. coli
Metabolome Database”. In: Nucleic acids research 41.D1 (2012), pp. D625–D630.

[77] Consortium, U. “UniProt: a hub for protein information”. In:Nucleic acids research
43.D1 (2014), pp. D204–D212.

[78] Registry of Standard Biological Parts. url: http://parts.igem.org/
Main_Page (visited on 09/19/2019).

[79] Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and Keasling, J. D.
“Design, implementation and practice of JBEI-ICE: an open source biological part
registry platform and tools”. In: Nucleic acids research 40.18 (2012), e141–e141.

[80] University, N. Virtual Parts. url: http://virtualparts.org/parts
(visited on 08/21/2019).

[81] Herscovitch, M., Perkins, E., Baltus, A., and Fan, M. “Addgene provides an open
forum for plasmid sharing”. In: Nature biotechnology 30.4 (2012), pp. 316–317.

[82] Brown, J. “The iGEM competition: building with biology”. In: IET Synthetic
Biology 1.1 (2007), pp. 3–6.

[83] Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M., and Gennari, J. H.
“Standard biological parts knowledgebase”. In: PloS one 6.2 (2011), e17005.

[84] Kamens, J. “TheAddgene repository: an international nonprofit plasmid and data
resource”. In: Nucleic Acids Research 43.D1 (Nov. 2014), pp. D1152–D1157. issn:
0305-1048.

[85] Misirli, G., Hallinan, J., andWipat, A. “Composable modular models for synthetic
biology”. In:ACM Journal on Emerging Technologies in Computing Systems (JETC)
11.3 (2014), p. 22.

[86] Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J.,
Cristescu, I., Forbes, A. G., and Fontana, W. “The Kappa platform for rule-based
modeling”. In: Bioinformatics 34.13 (June 2018), pp. i583–i592. issn: 1367-4803.

[87] Quinn, J., Beal, J., Bhatia, S., Cai, P., Chen, J., Clancy, K., Hillson, N., Galdzicki, M.,
Maheshwari, A., Pocock,M., et al. “Synthetic biology open language visual (SBOL
Visual), Version 1.0.0”. In: (2013).

[88] Der, B. S., Glassey, E., Bartley, B. A., Enghuus, C., Goodman, D. B.,
Gordon, D. B., Voigt, C. A., and Gorochowski, T. E. “DNAplotlib: programmable
visualization of genetic designs and associated data”. In: ACS synthetic biology
6.7 (2016), pp. 1115–1119.

[89] Zhang, M., McLaughlin, J. A., Wipat, A., and Myers, C. J. “SBOLDesigner 2: an
intuitive tool for structural genetic design”. In: ACS synthetic biology 6.7 (2017),
pp. 1150–1160.

[90] Van Assche, E., Van Puyvelde, S., Vanderleyden, J., and Steenackers, H. P.
“RNA-binding proteins involved in post-transcriptional regulation in bacteria”.
In: Front. Microbiol. 6 (2015).

[91] Kushwaha, M. and Salis, H. M. “A portable expression resource for engineering
cross-species genetic circuits and pathways”. In: Nat. Commun. 6 (2015).

202

http://parts.igem.org/Main_Page
http://parts.igem.org/Main_Page
http://virtualparts.org/parts

BIBLIOGRAPHY

[92] Bhatia, S. and Densmore, D. “Pigeon: a design visualizer for synthetic biology”.
In: ACS synthetic biology 2.6 (2013), pp. 348–350.

[93] Chandran, D., Bergmann, F. T., Sauro, H. M., et al. “TinkerCell: modular CAD
tool for synthetic biology”. In: J Biol Eng 3.1 (2009), p. 19.

[94] McLaughlin, J. A., Pocock, M., Mısırlı, G., Madsen, C., and Wipat, A. “VisBOL:
web-based tools for synthetic biology design visualization”. In: ACS synthetic
biology 5.8 (2016), pp. 874–876.

[95] Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M., Oberortner, E.,
Samineni, M., Zundel, Z., Beal, J., Clancy, K., Wipat, A., and Myers, C. J.
“libSBOLj 2.0: A Java Library to Support SBOL 2.0”. In: IEEE Life Sci Lett 1.4
(Dec. 2016), pp. 34–37. doi: 10.1109/LLS.2016.2546546.

[96] Developer Survey Results 2019. url:
https : / / insights . stackoverflow . com / survey / 2019
(visited on 06/27/2019).

[97] Bartley, B. A., Choi, K., Samineni, M., Zundel, Z., Nguyen, T., Myers, C. J., and
Sauro, H. M. “pySBOL: A Python Package for Genetic Design Automation and
Standardization”. In: ACS synthetic biology (2018).

[98] Gómez, J., García, L. J., Salazar, G. A., Villaveces, J., Gore, S., García, A.,
Martín, M. J., Launay, G., Alcántara, R., del-Toro, N., Dumousseau, M.,
Orchard, S., Velankar, S., Hermjakob, H., Zong, C., Ping, P., Corpas, M., and
Jiménez, R. C. “BioJS: an open source JavaScript framework for biological data
visualization”. In: Bioinformatics 29.8 (Feb. 2013), pp. 1103–1104.

[99] Zundel, Z., Samineni, M., Zhang, Z., and Myers, C. J. “A validator and converter
for the synthetic biology open language”. In: ACS synthetic biology 6.7 (2017),
pp. 1161–1168.

[100] Roehner, N., Oberortner, E., Pocock,M., Beal, J., Clancy, K., Madsen, C., Mısırlı, G.,
Wipat, A., Sauro, H., and Myers, C. J. “Proposed data model for the next version
of the Synthetic Biology Open Language”. In: ACS synthetic biology ().

[101] RDFLib. url: https://github.com/RDFLib/rdflib (visited on
09/27/2019).

[102] Apache Commons RDF. url:
https : / / commons . apache . org / proper / commons - rdf/
(visited on 09/27/2019).

[103] rdf-ext. url: https://github.com/rdf-ext/ (visited on 09/27/2019).
[104] Microsoft. TypeScript. url: https : / / www . typescriptlang . org

(visited on 09/26/2019).
[105] Madsen, C., Moreno, A. G., P, U., Palchick, Z., Roehner, N., Atallah, C., Bartley, B.,

Choi, K., Cox, R. S., Gorochowski, T., Grünberg, R., Macklin, C., McLaughlin, J.,
Meng, X., Nguyen, T., Pocock,M., Samineni, M., Scott-Brown, J., Tarter, Y., Zhang,
M., Zhang, Z., Zundel, Z., https:andandorcid.organd0000-0002-1663-5102, J. B. iD:
Bissell, M., Clancy, K., Gennari, J. H., Misirli, G., Myers, C., Oberortner, E., Sauro,
H., and Wipat, A. “Synthetic biology open language (SBOL) version 2.3. 0”. In:
Journal of Integrative Bioinformatics 16 (2019).

203

https://doi.org/10.1109/LLS.2016.2546546
https://insights.stackoverflow.com/survey/2019
https://github.com/RDFLib/rdflib
https://commons.apache.org/proper/commons-rdf/
https://github.com/rdf-ext/
https://www.typescriptlang.org

BIBLIOGRAPHY

[106] Beazley, D. M. “Automated scientific software scripting with SWIG”. In: Future
Generation Computer Systems 19.5 (2003), pp. 599–609.

[107] Misirli, G., Taylor, R., Goñi-Moreno, A., Mclaughlin, J. A., Myers, C. J.,
Gennari, J., Lord, P., and Wipat, A. “SBOL-OWL: An ontological approach for
formal and semantic representation of synthetic biology information”. In: ACS
synthetic biology (2019).

[108] Limited, A. A. DistroWatch.com: Put the fun back into computing. Use Linux, BSD.
url: https://distrowatch.com (visited on 09/08/2019).

[109] Bartley, B., Beal, J., Clancy, K., Misirli, G., Roehner, N., Oberortner, E.,
Pocock, M., Bissell, M., Madsen, C., Nguyen, T., et al. “Synthetic biology open
language (SBOL) version 2.0. 0”. In: Journal of integrative bioinformatics 12.2
(2015), pp. 902–991.

[110] Wimalaratne, S. M., Bolleman, J., Juty, N., Katayama, T., Dumontier, M.,
Redaschi, N., Le Novère, N., Hermjakob, H., and Laibe, C. “SPARQL-enabled
identifier conversion with Identifiers.org”. In: Bioinformatics 31.11 (Jan. 2015),
pp. 1875–1877. issn: 1367-4803. doi:
10.1093/bioinformatics/btv064.

[111] Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S.,
Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., et al. “The Pfam
protein families database”. In: Nucleic acids research 32.suppl_1 (2004),
pp. D138–D141.

[112] Frequently Used Parts. url: http://parts.igem.org/Frequently_
Used_Parts (visited on 09/22/2019).

[113] Stewart, A. J., Hannenhalli, S., and Plotkin, J. B. “Why transcription factor
binding sites are ten nucleotides long”. In: Genetics 192.3 (2012), pp. 973–985.

[114] Rice, P., Longden, I., and Bleasby, A. EMBOSS: the European molecular biology
open software suite. 2000.

[115] Vilanova, C. and Porcar, M. “iGEM 2.0—refoundations for engineering biology”.
In: Nature biotechnology 32.5 (2014), p. 420.

[116] Bruce, A., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., and Walter, P.
Molecular Biology of the Cell Sixth Edition. Garland Science, 2015. isbn:
9780815344322.

[117] Stanke, M., Steinkamp, R., Waack, S., and Morgenstern, B. “AUGUSTUS: a web
server for gene finding in eukaryotes”. In: Nucleic acids research 32.suppl_2
(2004), W309–W312.

[118] Keiler, K. C., Waller, P. R., and Sauer, R. T. “Role of a peptide tagging system in
degradation of proteins synthesized from damaged messenger RNA”. In: Science
271.5251 (1996), pp. 990–993.

[119] ve-sequence-utils. DNA/RNA/AA sequence manipulation utility functions. url:
https : / / github . com / TeselaGen / ve - sequence - utils
(visited on 09/19/2019).

204

https://distrowatch.com
https://doi.org/10.1093/bioinformatics/btv064
http://parts.igem.org/Frequently_Used_Parts
http://parts.igem.org/Frequently_Used_Parts
https://github.com/TeselaGen/ve-sequence-utils

BIBLIOGRAPHY

[120] Jacobs, G. H., Chen, A., Stevens, S. G., Stockwell, P. A., Black, M. A., Tate, W. P.,
and Brown, C. M. “Transterm: a database to aid the analysis of regulatory
sequences in mRNAs”. In: Nucleic acids research 37.suppl_1 (2008), pp. D72–D76.

[121] Klucar, L., Stano, M., and Hajduk, M. “phiSITE: database of gene regulation in
bacteriophages”. In: Nucleic acids research 38.suppl_1 (2009), pp. D366–D370.

[122] Hamming, R. W. “One man’s view of computer science”. In: Journal of the ACM
(JACM) 16.1 (1969), pp. 3–12.

[123] GitHub, I. Build software better, together. url: https : / / github . com
(visited on 09/12/2019).

[124] GitLab. The first single application for the entire DevOps lifecycle. url: https:
//about.gitlab.com/ (visited on 09/12/2019).

[125] Atlassian. The Git solution for professional teams. url:
https://bitbucket.org (visited on 09/12/2019).

[126] Foundation, P. S. The PyPA recommended tool for installing Python packages. url:
https://pypi.org/project/pip/ (visited on 09/12/2019).

[127] npm, I. npm is the package manager for javascript. url:
https://www.npmjs.com (visited on 09/12/2019).

[128] JBEI Registry: Towards a Distributed Web of Registries. 2009. url: https://
www.iwbdaconf.org/2009/docs/iwbda2009proceedings.
pdf.

[129] Urquiza-Garcıá, U., Zieliński, T., and Millar, A. J. “Better research by efficient
sharing: evaluation of free management platforms for synthetic biology designs”.
In: Synthetic Biology (2019).

[130] DARPA. Synergistic Discovery and Design Environment. url: https://www.
darpa.mil/program/synergistic-discovery-and-design
(visited on 09/14/2019).

[131] University, B. Project to Engineer Cells That Compute Awarded $10M NSF Grant.
Jan. 8, 2016. url: http :
//www.bu.edu/eng/2016/01/08/project-to-engineer-
cells-that-compute-awarded-10m-nsf-grant-2/ (visited on
09/14/2019).

[132] University, N. SEVAhub is an instance of the SynBioHub design repository providing
access to SEVA-DB converted to the Synthetic Biology Open Language (SBOL). url:
http://sevahub.es/ (visited on 09/14/2019).

[133] Durante-Rodrıǵuez, G., Lorenzo, V. de, and Martıńez-Garcıá, E. “The standard
European vector architecture (SEVA) plasmid toolkit”. In: Pseudomonas Methods
and Protocols. Springer, 2014, pp. 469–478.

[134] Krebs, O., Wolstencroft, K., Stanford, N. J., Morrison, N., Golebiewski, M., Owen,
S., Nguyen, Q., Snoep, J. L., Mueller, W., and Goble, C. A. “FAIRDOM approach for
semantic interoperability of systems biology data and models.” In: ICBO. 2015.

205

https://github.com
https://about.gitlab.com/
https://about.gitlab.com/
https://bitbucket.org
https://pypi.org/project/pip/
https://www.npmjs.com
https://www.iwbdaconf.org/2009/docs/iwbda2009proceedings.pdf
https://www.iwbdaconf.org/2009/docs/iwbda2009proceedings.pdf
https://www.iwbdaconf.org/2009/docs/iwbda2009proceedings.pdf
https://www.darpa.mil/program/synergistic-discovery-and-design
https://www.darpa.mil/program/synergistic-discovery-and-design
http://www.bu.edu/eng/2016/01/08/project-to-engineer-cells-that-compute-awarded-10m-nsf-grant-2/
http://www.bu.edu/eng/2016/01/08/project-to-engineer-cells-that-compute-awarded-10m-nsf-grant-2/
http://www.bu.edu/eng/2016/01/08/project-to-engineer-cells-that-compute-awarded-10m-nsf-grant-2/
http://sevahub.es/

BIBLIOGRAPHY

[135] ELIXIR. FAIR Service Architecture. url:
https://elixir-europe.org/about-us/implementation-
studies/fair-service-architecture (visited on 09/14/2019).

[136] Bhatia, S. and Densmore, D. “Pigeon: a design visualizer for synthetic biology”.
In: ACS synthetic biology 2.6 (2013), pp. 348–350.

[137] Gordon, J. Binary Tree Bin Packing Algorithm. url:
https://codeincomplete.com/posts/bin-packing/ (visited
on 09/23/2019).

[138] Hunter, J. D. “Matplotlib: A 2D graphics environment”. In: Computing in science
& engineering 9.3 (2007), p. 90.

[139] Ferraiolo, J., Jun, F., and Jackson, D. Scalable vector graphics (SVG) 1.0 specification.
iuniverse, 2000.

[140] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P., and Kummer, U. “COPASI—a complex pathway simulator”. In:
Bioinformatics 22.24 (2006), pp. 3067–3074.

[141] Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C., and Nguyen, N.-P. D.
“iBioSim: a tool for the analysis and design of genetic circuits”. In: Bioinformatics
25.21 (2009), pp. 2848–2849.

206

https://elixir-europe.org/about-us/implementation-studies/fair-service-architecture
https://elixir-europe.org/about-us/implementation-studies/fair-service-architecture
https://codeincomplete.com/posts/bin-packing/

A. SEPs

207

pr
ov

:w
as

De
ri

ve
dF

ro
m

Id
en

ti
fi

ab
le

En
ti

ty
Ac

ti
vi

ty
Ag

en
t

En
ti

ty
Ag

en
t

wa
sA

tt
ri

bu
te

dT
o

En
ti

ty
wa

sD
er

iv
ed

Fr
om

En
ti

ty
qu

al
if

ie
dD

er
iv

at
io

n
De

ri
va

ti
on

De
ri

va
ti

on
En

ti
ty

De
ri

va
ti

on
Ac

ti
vi

ty
Ag

en
t

en
ti

ty
 (

en
ti

ty
1)

en
ti

ty
 (

en
ti

ty
2)

wa
sD

er
iv

ed
Fr

om
 (

de
ri

va
ti

on
Id

;
en

ti
ty

2,
 e

nt
it

y1
,

ac
ti

vi
ty

1)

:e
nt

it
y1

 a
 p

ro
v:

En
ti

ty
.

:e
nt

it
y2

 a
 p

ro
v:

En
ti

ty
;

 p

ro
v:

qu
al

if
ie

dD
er

iv
at

io
n

:d
er

iv
at

io
nI

d.

 :
de

ri
va

ti
on

Id
 a

 p
ro

v:
De

ri
va

ti
on

 ;

pr
ov

:e
nt

it
y

:e
nt

it
y1

;

pr

ov
:h

ad
Ac

ti
vi

ty
 :

ac
ti

vi
ty

1
.

Ac
ti

vi
ty

Ag
en

t
Ac

ti
vi

ty
qu

al
if

ie
dA

ss
oc

ia
ti

on
As

so
ci

at
io

n
As

so
ci

at
io

n
Ag

en
t

ag
en

t
Ro

le
ha

dR
ol

e
Ac

ti
vi

ty

Ac
ti

vi
ty

Us
ag

e
Ac

ti
vi

ty
qu

al
if

ie
dU

sa
ge

Us
ag

e
En

ti
ty

en
ti

ty
Ro

le
ha

dR
ol

e

ac
ti

vi
ty

(a
ct

iv
it

y1
,2

01
6-

09
-1

4T
10

:0
0:

00
,

20
16

-0
9-

14
T1

1:
00

:0
0)

wa
sA

ss
oc

ia
te

dW
it

h
(a

ss
oc

ia
ti

on
Id

;
ac

ti
vi

ty
1,

 a
ge

nt
1,

 -
 ,

[p
ro

v:
ro

le
=”

mo
di

fi
er

”]
)

us
ed

 (
us

ag
e1

;
ac

ti
vi

ty
1,

 e
nt

it
y1

,
[p

ro
v:

ro
le

=”
so

ur
ce

”]
)

:a
ct

iv
it

y1
 a

 p
ro

v:
Ac

ti
vi

ty
 ;

 p

ro
v:

st
ar

te
dA

tT
im

e
 "

20
16

-0
9-

14
T1

0:
00

:0
0"

^^
xs

d:
da

te
Ti

me
 ;

 p

ro
v:

en
de

dA
tT

im
e

 "
20

16
-0

9-
14

T1
1:

00
:0

0"
^^

xs
d:

da
te

Ti
me

 ;

 p

ro
v:

qu
al

if
ie

dA
ss

oc
ia

ti
on

 :
as

so
ci

at
io

nI
d

;

 p
ro

v:
qu

al
if

ie
dU

sa
ge

 :
us

ag
e1

 .

 :a
ss

oc
ia

ti
on

Id
 a

 p
ro

v:
As

so
ci

at
io

n
;

 p

ro
v:

ag
en

t
:a

ge
nt

1
;

 p

ro
v:

ha
dR

ol
e

:m
od

if
ie

r.

 :u
sa

ge
1

a
pr

ov
:U

sa
ge

 ;

 p

ro
v:

en
ti

ty
 :

en
ti

ty
1

;

 p
ro

v:
ha

dR
ol

e
:s

ou
rc

e.

:m
od

if
ie

r
a

pr
ov

:R
ol

e.

 :s
ou

rc
e

a
pr

ov
:R

ol
e

.
 :a

ge
nt

1
a

pr
ov

:A
ge

nt
.

wa
sD

er
iv

ed
Fr

om
qu

al
if

ie
dD

er
iv

at
io

n
en

ti
ty

wa
sA

tt
ri

bu
te

dT
o

En
ti

ty
Ag

en
t

Ac
ti

vi
ty

De
ri

va
ti

on
Ac

it
iv

it
y

Bo
b

fi
ll

in
gt

he
br

ea
d

ma
ke

r
Ch

ee
se

to
ma

to
e

us
ed

fi
ll

in
gs

br
ea

d
us

ed
co

nt
ai

ne
r

en
ti

ty
 (

sa
nd

wi
ch

)
en

ti
ty

 (
to

ma
to

e)

en
ti

ty
 (

ch
ee

se
)

en
ti

ty
 (

br
ea

d)

ag
en

t(
Bo

b)

 wa
sD

er
iv

ed
Fr

om
(s

an
dw

ic
h,

-,
fi

ll
in

gt
he

br
ea

d)

ac
ti

vi
ty

(f
il

li
nt

he
br

ea
d,

 2
01

6-
09

-1
4T

10
:0

0:
00

,
20

16
-0

9-
14

T1
1:

00
:0

0)

wa
sA

ss
oc

ia
te

dW
it

h
(f

il
li

nt
he

br
ea

d,
 B

ob
,

-
,

[p
ro

v:
ro

le
=”

ma
ke

r”
])

us
ed

 (
fi

ll
in

th
eb

re
ad

,
ch

ee
se

,
[p

ro
v:

ro
le

=”
fi

ll
in

g”
])

us
ed

 (
fi

ll
in

th
eb

re
ad

,
to

ma
to

e,
 [

pr
ov

:r
ol

e=
”f

il
li

ng
”]

)
us

ed
 (

fi
ll

in
th

eb
re

ad
,

to
ma

to
e,

 [
pr

ov
:r

ol
e=

”c
on

ta
in

er
”]

)

sb
ol

2:
Id

en
ti

fi
ed

sb
ol

2:
Id

en
ti

fi
ed

sb
ol

2:
Id

en
ti

fi
ed

 a
 p

ro
v:

En
ti

ty

sb
ol

2:
Id

en
ti

fi
ed

pr
ov

:w
as

De
ri

ve
dF

ro
m

pr
ov

:w
as

At
tr

ib
ut

ed
To

En
ti

ty

En
ti

ty

Id
en

ti
fi

ed

En
ti

ty

qu
al

if
ie

dD
er

iv
at

io
n

De
ri

va
ti

on

En
ti

ty

Ac
ti

vi
ty

As
so

ci
at

io
n

Us
ag

e

En
ti

ty En
ti

ty

Ac
ti

vi
ty

Ac
ti

vi
ty

Ac
ti

vi
ty

Ac
ti

vi
ty

Ag
en

t

En
ti

ty

wa
sD

er
iv

ed
Fr

om
en

ti
ty

Id
en

ti
fi

ed
Co

mp
on

en
tD

ef
in

it
io

n
Co

mp
on

en
tD

ef
in

it
io

n
Co

ll
ec

ti
on

Ac
ti

vi
ty

Ag
en

t
ag

en
t

De
ri

va
ti

on
Ac

ti
vi

ty
Us

ag
e

As
so

ci
at

io
n

sb
ol

2:
Ge

ne
ri

cT
op

Le
ve

l
Ac

ti
vi

ty

pr
ov

:w
as

De
ri

ve
dF

ro
m

pr
ov

:A
ct

iv
it

y
De

ri
va

ti
on

Ac
ti

vi
ty

De
ri

va
ti

on
Ac

ti
vi

ty
pr

ov
:A

ge
nt

wa
sD

er
iv

ed
Fr

om
wa

sA
tt

ri
bu

te
dT

o
En

ti
ti

es
Ag

en
t

De
ri

va
ti

on
Ac

ti
vi

ty

<?
xm

l
ve

rs
io

n=
"1

.0
"

en
co

di
ng
="

UT
F-

8"
?>

<r

df
:R

DF
 x

ml
ns
:r

df
="

ht
tp

:/
/w

ww
.w

3.
or

g/
19

99
/0

2/
22

-r
df

-s
yn

ta
x-

ns
#"

 x
ml

ns
:d

ct
er

ms
=

xm

ln
s:
pr

ov
="

ht
tp

:/
/w

ww
.w

3.
or

g/
ns

/p
ro

v#
"

xm
ln

s:
sb

ol
="

ht
tp

:/
/s

bo
ls

.o
rg

/v
2#
">

<s
bo

l:
Co

mp
on

en
tD

ef
in

it
io

n
rd

f:
ab

ou
t=
"h

tt
p:

//
cd

s/
co

do
n-

op
ti

mi
ze

d"
>

<d
ct

er
ms
:t

it
le
>C

od
on

 O
pt

im
iz

ed
 C

DS
</
dc

te
rm

s:
ti

tl
e>

<p
ro

v:
qu

al
if

ie
dD

er
iv

at
io

n>

<p
ro

v:
De

ri
va

ti
on
 r

df
:a

bo
ut
="

ht
tp

:/
/c

ds
/c

od
on

-o
pt

im
iz

ed
-d

er
iv

at
io

n"
>

<p
ro

v:
en

ti
ty
 r

df
:r

es
ou

rc
e=
"h

tt
p:

//
cd

s/
no

n-
co

do
n-

op
ti

mi
ze

d"
/

<p
ro

v:
ha

dA
ct

iv
it

y>

<p
ro

v:
Ac

ti
vi

ty
 r

df
:a

bo
ut
="

ht
tp

:/
/c

od
on

-o
pt

im
iz

at
io

n

<d
ct

er
ms
:t

it
le
>C

od
on

 O
pt

im
iz

at
io

n
Ac

ti
vi

ty
</
dc

t

<p
ro

v:
qu

al
if

ie
dU

sa
ge
>

<p
ro

v:
Us

ag
e
rd

f:
ab

ou
t=
"h

tt
p:

//
co

do
n-

op
ti

mi
z

<p
ro

v:
en

ti
ty
 r

df
:r

es
ou

rc
e=
"h

tt
p:

//
cd

s/
n

<p
ro

v:
ha

dR
ol

e
rd

f:
re

so
ur

ce
="

ht
tp

:/
/s

bo

</
pr

ov
:U

sa
ge
>

</
pr

ov
:q

ua
li

fi
ed

Us
ag

e>

<p
ro

v:
qu

al
if

ie
dA

ss
oc

ia
ti

on
>

<p
ro

v:
As

so
ci

at
io

n
rd

f:
ab

ou
t=
"h

tt
p:

//
co

do
n-

o

<p

ro
v:
ag

en
t
rd

f:
re

so
ur

ce
="

ht
tp

:/
/c

od
on

-

<p

ro
v:
ha

dR
ol

e
rd

f:
re

so
ur

ce
="

ht
tp

:/
/s

bo

</
pr

ov
:A

ss
oc

ia
ti

on
>

</
pr

ov
:q

ua
li

fi
ed

As
so

ci
at

io
n>

</
pr

ov
:A

ct
iv

it
y>

</
pr

ov
:h

ad
Ac

ti
vi

ty
>

wa
sD

er
iv

ed
Fr

om
 (

co
do

n-
op

ti
mi

ze
d,

no
n-

co
do

n-
op

ti
mi

ze
d,

 c
od

on
-o

pt
im

is
at

io
n-

ac
ti

vi
ty

)
 ac

ti
vi

ty
 (

co
do

n-
op

ti
mi

sa
ti

on
-a

ct
iv

it
y,

 2
01

6-
9-

13
T1

0:
00

:0
0,

 2
01

6-
9-

13
T1

1:
00

:0
0)

 us
ed

 (
co

do
n-

op
ti

mi
sa

ti
on

-a
ct

iv
it

y,
 n

on
-c

od
on

-o
pt

im
iz

ed
,

[p
ro

v:
ro

le
=”

so
ur

ce
”]

)
 wa

sA
ss

oc
ia

te
dW

it
h

(c
od

on
-o

pt
im

is
at

io
n-

ac
ti

vi
ty

,
co

do
n-

op
ti

mi
za

ti
on

-s
of

tw
ar

e,

-
,

[p
ro

v:
ro

le
=”

co
do

no
pt

im
is

er
”]

)
 ag

en
t

(c
od

on
-o

pt
im

iz
at

io
n-

so
ft

wa
re

,
[p

ro
v:

ty
pe

=”
pr

ov
:S

of
tw

ar
eA

ge
nt

”]
)

en
ti

ty
 (

Ba
ci

ll
us

Su
bt

il
is

16
8,

 [
rd

f:
ty

pe
=”

sb
ol

:C
om

po
ne

nt
De

fi
ni

ti
on

”]
)

en
ti

ty
 (

Ba
ci

ll
us

Su
bt

il
is

Nc
ib

36
10

,
[r

df
:t

yp
e=

”s
bo

l:
Co

mp
on

en
tD

ef
in

it
io

n”
])

wa
sD

er
iv

ed
Fr

om
(B

ac
il

lu
sS

ub
ti

li
s1

68
,B

ac
il

lu
sS

ub
ti

li
sN

ci
b3

61
0,

xr
ay

mu
ta

ge
ne

si
s)

ac
ti

vi
ty

(x
ra

ym
ut

ag
en

es
is

,
19

47
,

-)

wa
sA

ss
oc

ia
te

dW
it

h
(x

ra
ym

ut
ag

en
es

is
,

x-
ra

y,
 -

 ,
 [

pr
ov

:r
ol

e=
”m

ut
ag

en
”]

)

</
pr

ov
:D

er
iv

at
io

n>

</
pr

ov
:q

ua
li

fi
ed

De
ri

va
ti

on
>

</
sb

ol
:C

om
po

ne
nt

De
fi

ni
ti

on
>

<s
bo

l:
Co

mp
on

en
tD

ef
in

it
io

n
rd

f:
ab

ou
t=
"h

tt
p:

//
cd

s/
no

n-
co

do
n-

op
ti

mi
ze

d"
>

<d
ct

er
ms
:t

it
le
>N

on
 C

od
on

 O
pt

im
iz

ed
 C

DS
</
dc

te
rm

s:
ti

tl
e>

</
sb

ol
:C

om
po

ne
nt

De
fi

ni
ti

on
>

<p
ro

v:
Ag

en
t
rd

f:
ab

ou
t=
"h

tt
p:

//
co

do
n-

op
ti

mi
za

ti
on

-s
of

tw
ar

e"
>

<d
ct

er
ms
:t

it
le
>C

od
on

 O
pt

im
iz

at
io

n
So

ft
wa

re
</
dc

te
rm

s:
ti

tl
e>

</
pr

ov
:A

ge
nt
>

</
rd

f:
RD

F>

Ac
ti

vi
ty

en
ti

ty
(p

ro
te

in
_v

1,
 [

rd
f:

ty
pe

=”
sb

ol
:C

om
po

ne
nt

De
fi

ni
ti

on
”,

sb
ol

:t
yp

e=
”b

io
pa

x:
Pr

ot
ei

n”
])

en
ti

ty
(p

ro
te

in
_v

2,
 [

rd
f:

ty
pe

=”
sb

ol
:C

om
po

ne
nt

De
fi

ni
ti

on
”,

sb
ol

:t
yp

e=
”b

io
pa

x:
Pr

ot
ei

n”
])

wa
sD

er
iv

ed
Fr

om
(p

ro
te

in
_v

2,
pr

ot
ei

n_
v1

,
an

no
ta

ti
on

Ac
ti

vi
ty

)
ac

ti
vi

ty
(a

c1
,

20
16

,
20

16
)

wa
sA

ss
oc

ia
te

dW
it

h
(a

nn
ot

at
io

nA
ct

iv
it

y,
 p

ep
st

at
,

-
,

[p
ro

v:
ro

le
=”

ca
lc

ul
at

ed
pI

”,
 p

ro
v:

ro
le

=”
ad

de
dA

nn
ot

at
io

ns
”]

)
ag

en
t(

pe
ps

ta
t,

 [
pr

ov
:t

yp
e=

pr
ov

:S
of

tw
ar

eA
ge

nt
])

en
ti

ty
(p

ro
mo

te
rv

1,
 [

rd
f:

ty
pe

=”
sb

ol
:C

om
po

ne
nt

De
fi

ni
to

n”
])

en
ti

ty
(p

ro
mo

te
rv

2,
 [

rd
f:

ty
pe

=”
sb

ol
:C

om
po

ne
nt

De
fi

ni
to

n”
,

sb
ol

:s
eq

ue
nc

eA
nn

ot
at

io
n=

se
qA

nn
ot

at
io

n1
])

en
ti

ty
(s

eq
An

no
ta

ti
on

1,

[r
df

:t
yp

e=
”s

bo
l:

Se
qu

en
ce

An
no

ta
ti

on
”,

sb
ol

:r
ol

e=
”s

o:
re

st
ri

ct
io

nS
it

e”
])

wa
sD

er
iv

ed
Fr

om
(p

ro
mo

te
rv

2,
pr

om
ot

er
v1

,
ac

ti
vi

ty
)

wa
sA

ss
oc

ia
te

dW
it

h
(a

ct
iv

it
y,

 r
ts

Fi
nd

er
So

ft
wa

re
,

-
,

[p
ro

v:
ro

le
=”

pr
ed

ic
te

d
rt

s”
,

pr
ov

:r
ol

e=
”a

nn
ot

at
ed

Se
qu

en
ce

”]
)

us
ed

 (
ac

ti
vi

ty
,

se
qA

nn
ot

at
io

n1
,

[p
ro

v:
ro

le
=”

ge
ne

ra
te

d”
])

ag
en

t(
rt

sF
in

de
rS

of
tw

ar
e,

 [
pr

ov
:t

yp
e=

pr
ov

:S
of

tw
ar

eA
ge

nt
])

en
ti

ty
(p

ro
mo

te
rA

,
[r

df
:t

yp
e=

”s
bo

l:
Co

mp
on

en
tD

ef
in

it
on

”]
)

en
ti

ty
(e

xp
er

im
en

t1
,

[r
df

:t
yp

e=
”s

yb
io

nt
:E

xp
er

im
en

t”
]

en
ti

ty
(e

xp
er

im
en

t2
,

[r
df

:t
yp

e=
”s

yb
io

nt
:E

xp
er

im
en

t”
]

en
ti

ty
(e

xp
er

im
en

t3
,

[r
df

:t
yp

e=
”s

yb
io

nt
:E

xp
er

im
en

t”
]

en
ti

ty
(e

xp
er

im
en

t4
,

[r
df

:t
yp

e=
”s

yb
io

nt
:E

xp
er

im
en

t”
]

wa
sD

er
iv

ed
Fr

om
(p

ro
mo

te
rA

,
-

,
ac

ti
vi

ty
1)

wa
sD

er
iv

ed
Fr

om
(p

ro
mo

te
rA

,
-

,
ac

ti
vi

ty
2)

 wa
sI

nf
or

me
dB

y(
ac

ti
vi

ty
2,

 a
ct

iv
it

y1
)

 wa
sA

ss
oc

ia
te

dW
it

h
(a

ct
iv

it
y1

,
CO

PA
SI

,
-

,
[p

ro
v:

ro
le

=”
pa

ra
me

te
rE

st
im

at
io

n”
])

us
ed

 (
ac

ti
vi

ty
1,

 e
xp

er
im

en
t1

,
[p

ro
v:

ro
le

=”
ex

pe
ri

me
nt

”]
)

us
ed

 (
ac

ti
vi

ty
1,

 e
xp

er
im

en
t2

,
[p

ro
v:

ro
le

=”
ex

pe
ri

me
nt

”]
)

 wa
sA

ss
oc

ia
te

dW
it

h
(a

ct
iv

it
y2

,
CO

PA
SI

,
-

,
[p

ro
v:

ro
le

=”
pa

ra
me

te
rE

st
im

at
io

n”
])

us
ed

 (
ac

ti
vi

ty
2,

 e
xp

er
im

en
t3

,
[p

ro
v:

ro
le

=”
ex

pe
ri

me
nt

”]
)

us
ed

 (
ac

ti
vi

ty
2,

 e
xp

er
im

en
t4

,
[p

ro
v:

ro
le

=”
ex

pe
ri

me
nt

”]
)

 ag
en

t(
CO

PA
SI

,
[p

ro
v:

ty
pe

=p
ro

v:
So

ft
wa

re
Ag

en
t]

)

pr
od

uc
ti

on
St

at
us

te
st

s
Co

mp
on

en
tD

ef
in

it
io

n
Mo

du
le

De
fi

ni
ti

on

Te
st

Te
st

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

pr
od

uc
ti

on
St

at
us

Mo
du

le
De

fi
ni

ti
on

Co
mp

on
en

tD
ef

in
it

io
n

de
si

gn
bu

il
d

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

pr
od

uc
ti

on
St

at
us

de
si

gn
de

si
gn

s

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

bu
il

d

Co
mp

on
en

t
bu

il
d

de
si

gn
bu

il
d

wa
sD

er
iv

ed
Fr

om
de

si
gn

bu
il

d
Ac

ti
vi

ty
Us

ag
e

Te
st

Te
st

Mo
de

l
Te

st
Mo

de
l

Te
st

Mo
de

l

Te
st

Mo
de

l

At
ta

ch
me

nt
At

ta
ch

me
nt

Te
st

Id
en

ti
fi

ed
Te

st

pr
ot

oc
ol

at
ta

ch
me

nt
s

At
ta

ch
me

nt

de
si

gn
bu

il
d

bu
il

d
de

si
gn

wa
sD

er
iv

ed
Fr

om

de
si

gn
bu

il
d

co
mp

on
en

t
mo

du
le

pr
od

uc
ti

on
St

at
us

de
si

gn
bu

il
d

mo
du

le
s

co
mp

on
en

ts

pr
od

uc
ti

on
St

at
us

pr
od

uc
ti

on
St

at
us

:
de

si
gn

Mo
du

le
De

fi
ni

ti
on

pr
od

uc
ti

on
St

at
us

:d
es

ig
n

Te
st

te
st

s
de

si
gn

Mo
de

l

Mo
du

le
De

fi
ni

ti
on

pr
od

uc
ti

on
St

at
us

:b
ui

ld
Mo

de
l

mo
de

ls
bu

il
d

Te
st

de
si

gn
Mo

du
le

s
Co

mp
on

en
ts

mo
du

le
s

co
mp

on
en

ts
bu

il
d

bu
il

d
de

si
gn

de
si

gn
bu

il
ds

Co
mp

on
en

ts
de

si
gn

Te
st

Se
qu

en
ce

bu
il

d
bu

il
d

Se
qu

en
ce

An
no

ta
ti

on
s

Te
st

Mo
de

l
Te

st
Mo

de
l

Co
mp

on
en

tD
ef

in
it

io
ns

de
si

gn
de

si
gn

Co
mp

on
en

tD
ef

in
it

io
ns

Co
mp

on
en

tD
ef

in
it

io
ns

pr
od

uc
ti

on
St

at
us

de
si

gn

De
si

gn
Bu

il
d

Co
mp

on
en

tD
ef

in
it

io
n

ht
tp

:/
/s

bo
ls

.o
rg

/v
2#

de
si

gn
ht

tp
:/

/s
bo

ls
.o

rg
/v

2#
bu

il
d

Mo
du

le
De

fi
ni

ti
on

Co
mp

on
en

tD
ef

in
it

io
ns

Mo
du

le
De

fi
ni

ti
on

s

Co
mp

on
en

tD
ef

in
it

io
n

De
si

gn
Bu

il
d

ht
tp

:/
/s

bo
ls

.o
rg

/v
2#

de
si

gn
ht

tp
:/

/s
bo

ls
.o

rg
/v

2#
bu

il
d

Co
mp

on
en

tD
ef

in
it

io
n:

:t
yp

e

ty
pe

s
ty

pe
s

Mo
du

le
De

fi
ni

ti
on

ro
le

s

pr
od

uc
ti

on
St

at
us

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

te
st

s
Co

mp
on

en
tD

ef
in

it
io

n
Mo

du
le

De
fi

ni
ti

on
Te

st

Co
nt

ex
t

Co
nt

ex
t

Co
nt

ex
t

Ho
st

En
vi

ro
nm

en
t

Co
nt

ex
t

de
si

gn
Co

nt
ex

t

At
ta

ch
me

nt
At

ta
ch

me
nt

Te
st

At
ta

ch
me

nt

so
ur

ce

fo
rm

at
Mo

de
l.

la
ng

ua
ge

si
ze

ha
sh

At
ta

ch
me

nt
At

ta
ch

me
nt

s
Co

ll
ec

ti
on

s
At

ta
ch

me
nt

s
At

ta
ch

me
nt

To
pL

ev
el

Te
st

At
ta

ch
me

nt
at

ta
ch

me
nt

s
At

ta
ch

me
nt

De
si

gn

Co
mp

on
en

tD
ef

in
it

io
n

Co
mp

on
en

t
Mo

du
le

De
fi

ni
ti

on
Mo

du
le

Co
mp

on
en

t
Co

mp
on

en
tD

ef
in

it
io

n
Su

bC
om

po
ne

nt

Co
mp

on
en

t
Co

mp
on

en
tD

ef
in

it
io

n

Co
mp

on
en

t

Fi
le

Fi
le

Fi
le

De
fi

ni
ti

on

Fu
nc

ti
on

al
Co

mp
on

en
t

Co
mp

on
en

tD
ef

in
it

io
n

Co
mp

on
en

t

Co
mp

on
en

t
Su

bC
om

po
ne

nt

Mo
du

le
De

fi
ni

ti
on

Mo
du

le

Mo
du

le
Su

bM
od

ul
e

de
fi

ni
ti

on
in

st
an

ce
Of

ht
tp

:/
/s

bo
ls

.o
rg

/v
2#

ht
tp

:/
/s

bo
ls

.o
rg

/v
3#

ht
tp

:/
/s

bo
ls

.o
rg

/v
2#

ht
tp

:/
/s

bo
ls

.o
rg

/v
3#

Im
pl

em
en

ta
ti

on
Im

pl
em

en
ta

ti
on

Im
pl

em
en

ta
ti

on

sb
ol

:d
es

ig
n

sb
ol

:b
ui

ld
sb

ol
:t

es
t

sb
ol

:l
ea

rn
ha

dR
ol

e
Us

ag
e

As
so

ci
at

io
n

Im
pl

em
en

ta
ti

on
Im

pl
em

en
ta

ti
on

Im
pl

em
en

ta
ti

on
Mo

du
le

De
fi

ni
ti

on
Co

mp
on

en
tD

ef
in

it
io

n
wa

sD
er

iv
ed

Fr
om

wa
sG

en
er

at
ed

By
Im

pl
em

en
ta

ti
on

Mo
du

le
De

fi
ni

ti
on

Co
mp

on
en

tD
ef

in
it

io
n

Im
pl

em
en

ta
ti

on

bu
il

t
To

pL
ev

el
Co

mp
on

en
tD

ef
in

it
io

n
Mo

du
le

De
fi

ni
ti

on
Co

mp
on

en
tD

ef
in

it
io

n
Mo

du
le

De
fi

ni
ti

on Im
pl

em
en

ta
ti

on
bu

il
t

Co
mp

on
en

tD
ef

in
it

io
n

Im
pl

em
en

ta
ti

on
wa

sD
er

iv
ed

Fr
om

Im
pl

em
en

ta
ti

on
bu

il
t

Co
mp

on
en

tD
ef

in
it

io
n

Im
pl

em
en

ta
ti

on

de
si

gn
bu

il
d

te
st

le
ar

n
ha

dR
ol

e
Us

ag
e

As
so

ci
at

io
n

Ac
ti

vi
ty

Ag
en

t
Pl

an
Ac

ti
vi

ty

Us
ag

e

Ac
ti

vi
ty

Ac
ti

vi
ty

wa
sG

en
er

at
ed

By

..
.t

he
 c

om
pl

et
io

n
of

 p
ro

du
ct

io
n

of
 a

 n
ew

 e
nt

it
y

by
 a

n
ac

ti
vi

ty
.

Th
is

 e
nt

it
y

di
d

no
t

ex
is

t
be

fo
re

 g
en

er
at

io
n

an
d

be
co

me
s

av
ai

la
bl

e
fo

r
us

ag
e

af
te

r
th

is

ge
ne

ra
ti

on
.

Mo
du

le
De

fi
ni

ti
on

s
Co

mp
on

en
tD

ef
in

it
io

ns
Im

pl
em

en
ta

ti
on

s
Co

ll
ec

ti
on

s
At

ta
ch

me
nt

s
Mo

de
ls

Ac
ti

vi
ty

As
so

ci
at

io
n

wa
sG

en
er

at
ed

By
Mo

du
le

De
fi

ni
ti

on
Co

mp
on

en
tD

ef
in

it
io

n
Se

qu
en

ce
Ac

ti
vi

ty
Us

ag
e

Ac
ti

vi
ty

As
so

ci
at

io
n

wa
sG

en
er

at
ed

By
Im

pl
em

en
ta

ti
on

Ac
ti

vi
ty

Us
ag

e

Ac
ti

vi
ty

As
so

ci
at

io
n

wa
sG

en
er

at
ed

By
Co

ll
ec

ti
on

At
ta

ch
me

nt
Ac

ti
vi

ty
Us

ag
e

Ac
ti

vi
ty

As
so

ci
at

io
n

wa
sG

en
er

at
ed

By
Mo

de
l

Co
ll

ec
ti

on
At

ta
ch

me
nt

Mo
du

le
De

fi
ni

ti
on

Co
mp

on
en

tD
ef

in
it

io
n

Se
qu

en
ce

Ac
ti

vi
ty

Us
ag

e

Us
ag

e
Mo

du
le

De
fi

ni
ti

on
Co

mp
on

en
tD

ef
in

it
io

n
Se

qu
en

ce

Us
ag

e
Im

pl
em

en
ta

ti
on

Us
ag

e
Co

ll
ec

ti
on

At
ta

ch
me

nt

Us
ag

e
Mo

de
l

ha
dR

ol
e

Us
ag

e
Ac

ti
vi

ty

Im
pl

em
en

ta
ti

on
At

ta
ch

me
nt

s
Mo

du
le

De
fi

ni
ti

on

Mo
du

le
De

fi
ni

ti
on

Im
pl

em
en

ta
ti

on

Co
ll

ec
ti

on
At

ta
ch

me
nt

s
Mo

de
l

Mo
de

l
Mo

de
l

Ag
en

t
Pl

an

Ag
en

ts
Ac

ti
vi

ty

Pl
an

Ag
en

t

Mo
de

ls
Mo

de
l

Im
pl

em
en

ta
ti

on
Im

pl
em

en
ta

ti
on

Co
mp

on
en

tD
ef

in
it

io
n

co
mp

on
en

tD
ef

in
it

io
n

Co
mp

on
en

tD
ef

in
it

io
n

Im
pl

em
en

ta
ti

on

Co
mp

on
en

tD
ef

in
it

io
n

Co
mp

on
en

tD
ef

in
it

io
n

bu
il

t

Im
pl

em
en

ta
ti

on
Mo

du
le

De
fi

ni
ti

on
wa

sD
er

iv
ed

Fr
om

bu
il

t
Im

pl
em

en
ta

ti
on

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

Im
pl

em
en

ta
ti

on

di
sp

la
yI

d
Id

en
ti

fi
ed

id

di
sp

la
yI

d
na

me
di

sp
la

yI
d

di
sp

la
yI

d
id

se
qu

en
ce

Mo
du

le
De

fi
ni

ti
on

Mo
du

le
De

fi
ni

ti
on

In
te

ra
ct

io
n

Co
mp

on
en

tD
ef

in
it

io
n

Co
mp

on
en

tD
ef

in
it

io
n

Mo
du

le
De

fi
ni

ti
on

Fu
nc

ti
on

al
Co

mp
on

en
ts

In
te

ra
ct

io
n

In
te

ra
ct

io
n

Mo
du

le
De

fi
ni

ti
on

Mo
du

le

Mo
du

le
De

fi
ni

ti
on

Fu
nc

ti
on

al
Co

mp
on

en
t

Co
mp

on
en

tD
ef

in
it

io
n

In
te

ra
ct

io
n

Mo
du

le
De

fi
ni

ti
on

Mo
du

le

Fu
nc

ti
on

al
Co

mp
on

en
t

Ma
ps

To

Me
as

ur
e

dc
te

rm
s:

ti
tl

e
dc

te
rm

s:
de

sc
ri

pt
io

n

dc
te

rm
s:

ti
tl

e

pr
ov

:w
as

De
ri

ve
dF

ro
m

B. Examples of valid RDF/XML
incompatible with libSBOLj

243

Input

Output

In this example, a ComponentDefinition is instantiated inline as a child node of the
sbol:definition predicate. While valid RDF/XML, it crashes libSBOLj with a
ClassCastException.

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sbol="http://sbols.org/v2#"

 xmlns:dcterms="http://purl.org/dc/terms/" xmlns:prov="http://www.w3.org/ns/prov#">

 <sbol:ComponentDefinition rdf:about="http://example/promoter">

 <sbol:displayId>promoter</sbol:displayId>

 <sbol:persistentIdentity rdf:resource="http://example/promoter" />

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <dcterms:title>pLac</dcterms:title>

 <sbol:component rdf:resource="http://example/promoter/lacI_binding_site"/>

 </sbol:ComponentDefinition>

 <sbol:Component rdf:about="http://example/promoter/lacI_binding_site">

 <sbol:definition>

 <sbol:ComponentDefinition rdf:about="http://example/lacI_binding_site">

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <sbol:persistentIdentity rdf:resource="http://example/lacI_binding_site" />

 <dcterms:title>lacI binding site</dcterms:title>

 </sbol:ComponentDefinition>

 </sbol:definition>

 <sbol:persistentIdentity rdf:resource="http://example/promoter/lacI_binding_site" />

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <dcterms:title>lacI binding site subcomponent</dcterms:title>

 <sbol:access rdf:resource="http://sbols.org/v2#public"/>

 </sbol:Component>

</rdf:RDF>

Exception in thread "main" java.lang.ClassCastException: org.sbolstandard.core.datatree.NamedProperty$Impl

 cannot be cast to org.sbolstandard.core.datatree.IdentifiableDocument at

 org.sbolstandard.core2.SBOLReader.parseComponent(SBOLReader.java:3595) at

 org.sbolstandard.core2.SBOLReader.parseComponentDefinition(SBOLReader.java:1903) at

 org.sbolstandard.core2.SBOLReader.readTopLevelDocs(SBOLReader.java:1060) at

 org.sbolstandard.core2.SBOLReader.read(SBOLReader.java:727) at

 org.sbolstandard.core2.SBOLReader.read(SBOLReader.java:625) at

 org.sbolstandard.core2.SBOLReader.read(SBOLReader.java:512) at

 org.sbolstandard.core2.SBOLReader.read(SBOLReader.java:437) at

 org.sbolstandard.core2.SBOLReader.read(SBOLReader.java:422) at

 org.sbolstandard.core2.SBOLValidate.validate(SBOLValidate.java:2680) at

 org.sbolstandard.core2.SBOLValidate.main(SBOLValidate.java:2971)

Input

Output

In this example, a ComponentDefinition is split across two description blocks. In RDF/
XML, this is equivalent to having a single description block. However, it causes libSBOLj
to fail with validation errors.

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sbol="http://sbols.org/v2#"

 xmlns:dcterms="http://purl.org/dc/terms/" xmlns:prov="http://www.w3.org/ns/prov#">

 <sbol:ComponentDefinition rdf:about="http://example/promoter">

 <sbol:displayId>promoter</sbol:displayId>

 <sbol:persistentIdentity rdf:resource="http://example/promoter" />

 </sbol:ComponentDefinition>

 <sbol:ComponentDefinition rdf:about="http://example/promoter">

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <dcterms:title>pLac</dcterms:title>

 </sbol:ComponentDefinition>

</rdf:RDF>

sbol-10215: URI Compliance Warning:

The displayId property of a compliant Identified object is REQUIRED.

Reference: SBOL Version 2.3.0 Section 12.3 on page 61

: http://example/promoter

sbol-10502: Strong Validation Error:

The types property of a ComponentDefinition is REQUIRED and MUST contain a non-empty set of URIs.

Reference: SBOL Version 2.3.0 Section 7.7 on page 22

: http://example/promoter

Validation failed.

Input

 
Output

In this example rdf:Description is used instead of sbol:Component. In RDF/XML, this use
of rdf:Description would be equivalent to using sbol:Component. In libSBOLj, it causes a
validation error.

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sbol="http://sbols.org/v2#"

 xmlns:dcterms="http://purl.org/dc/terms/" xmlns:prov="http://www.w3.org/ns/prov#">

 <sbol:ComponentDefinition rdf:about="http://example/promoter">

 <sbol:displayId>promoter</sbol:displayId>

 <sbol:persistentIdentity rdf:resource="http://example/promoter" />

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <dcterms:title>pLac</dcterms:title>

 <sbol:component>

 <rdf:Description rdf:about="http://example/promoter/lacI_binding_site">

 <rdf:type rdf:resource="http://sbols.org/v2#Component" />

 <sbol:definition>

 <sbol:ComponentDefinition rdf:about="http://example/lacI_binding_site">

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <sbol:persistentIdentity rdf:resource="http://example/lacI_binding_site" />

 <dcterms:title>lacI binding site</dcterms:title>

 </sbol:ComponentDefinition>

 </sbol:definition>

 <sbol:persistentIdentity rdf:resource="http://example/promoter/lacI_binding_site" />

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <dcterms:title>lacI binding site subcomponent</dcterms:title>

 <sbol:access rdf:resource="http://sbols.org/v2#public"/>

 </rdf:Description>

 </sbol:component>

 </sbol:ComponentDefinition>

</rdf:RDF>

sbol-10519: Strong Validation Error:

The components property of a ComponentDefinition is OPTIONAL and MAY contain a set of Component objects.

Reference: SBOL Version 2.3.0 Section 7.7 on page 22

: http://example/promoter

Validation failed.

Input
 

Output

In this example, the prefix “ns” is used for SBOL, and the prefix “sbol” is used for another
namespace. In the libSBOLj output, tags correctly prefixed with the “ns” namespace
pointing to SBOL are switched to the “sbol” namespace pointing to the other namespace.

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:sbol="http://not/sbol/" xmlns:ns="http://sbols.org/v2#"

 xmlns:dcterms="http://purl.org/dc/terms/" xmlns:prov="http://www.w3.org/ns/prov#">

 <ns:ComponentDefinition rdf:about="http://example/promoter">

 <ns:displayId>promoter</ns:displayId>

 <ns:persistentIdentity rdf:resource="http://example/promoter" />

 <ns:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <dcterms:title>pLac</dcterms:title>

 <ns:component rdf:resource="http://example/promoter/lacI_binding_site"/>

 </ns:ComponentDefinition>

 <ns:Component rdf:about="http://example/promoter/lacI_binding_site">

 <ns:definition rdf:resource="http://example/lacI_binding_site" />

 <ns:persistentIdentity rdf:resource="http://example/promoter/lacI_binding_site" />

 <ns:displayId>lacI_binding_site</ns:displayId>

 <dcterms:title>lacI binding site subcomponent</dcterms:title>

 <ns:access rdf:resource="http://sbols.org/v2#public"/>

 </ns:Component>

 <ns:ComponentDefinition rdf:about="http://example/lacI_binding_site">

 <ns:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <ns:displayId>lacI_binding_site</ns:displayId>

 <ns:persistentIdentity rdf:resource="http://example/lacI_binding_site" />

 <dcterms:title>lacI binding site</dcterms:title>

 </ns:ComponentDefinition>

</rdf:RDF>

<?xml version="1.0" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ns="http://sbols.org/v2#"

 xmlns:sbol="http://not/sbol/" xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:prov="http://www.w3.org/ns/prov#" xmlns:om="http://www.ontology-of-units-of-measure.org/resource/om-2/">

 <sbol:ComponentDefinition rdf:about="http://example/promoter">

 <sbol:persistentIdentity rdf:resource="http://example/promoter"/>

 <sbol:displayId>promoter</sbol:displayId>

 <dcterms:title>pLac</dcterms:title>

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 <sbol:component>

 <sbol:Component rdf:about="http://example/promoter/lacI_binding_site">

 <sbol:persistentIdentity rdf:resource="http://example/promoter/lacI_binding_site"/>

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <dcterms:title>lacI binding site subcomponent</dcterms:title>

 <sbol:access rdf:resource="http://sbols.org/v2#public"/>

 <sbol:definition rdf:resource="http://example/lacI_binding_site"/>

 </sbol:Component>

 </sbol:component>

 </sbol:ComponentDefinition>

 <sbol:ComponentDefinition rdf:about="http://example/lacI_binding_site">

 <sbol:persistentIdentity rdf:resource="http://example/lacI_binding_site"/>

 <sbol:displayId>lacI_binding_site</sbol:displayId>

 <dcterms:title>lacI binding site</dcterms:title>

 <sbol:type rdf:resource="http://www.biopax.org/release/biopax-level3.owl#DnaRegion"/>

 </sbol:ComponentDefinition>

</rdf:RDF>

	Introduction
	Motivation for this work
	Aims & Objectives
	Contribution of this thesis
	Thesis structure

	Background
	Synthetic biology
	Genetic circuits
	An engineering lifecycle

	Data standards
	The Resource Description Framework (RDF)
	The Synthetic Biology Open Language (SBOL)

	Data integration
	Relational databases and their limitations
	RDF triplestores
	Linked Data
	Query federation
	Linked data fragments

	Sharing and dissemination
	iGEM Parts Registry
	Addgene
	JBEI-ICE

	Standards-enabled tooling
	SBOL Visual
	Tooling for SBOL Visual

	Conclusion

	I Knowledge representation
	Machine-tractability in the design process
	Introduction
	Challenges for adoption of SBOL
	Limitation in scope
	Lack of data
	Lack of tooling
	Portability
	Complexity

	Improving portability of SBOL
	sboljs: SBOL on the Web
	sbolgraph

	SBOL Stack
	Enhancement proposals for SBOL
	Integration of provenance
	Alignment with external ontologies
	Removal of unnecessary specification of serialization
	Addressing structural/functional dichotomy
	More intuitive nomenclature

	Discussion & Conclusion
	Libraries for SBOL
	SBOL Stack
	SBOL3 proposals
	Future work

	II Data Integration
	Data harmonization using Linked Data Fragments (LDF)
	Introduction
	Linked Data Fragments for non-RDF data sources
	Modelling non-RDF services using triple patterns
	Time complexity

	ldf-facade: An intelligent server for LDF
	Tracking state

	Example usage: RDFizing DistroWatch
	SynBio applications
	JBEI-ICE RDF using ldf-facade

	Discussion & Conclusion
	ldf-facade
	Federated design knowledge using SBOL Stack and LDF
	Future work

	Conversion and Enrichment of the iGEM Registry
	Introduction
	Modelling the iGEM database as SBOL
	Categories
	De-flattening

	iGEM-SBOL graph queries
	Use of transcription factor binding sites in the iGEM Registry
	Re-use of parts in the iGEM Registry

	Enrichment
	Building a knowledge base
	RDF representation
	Enrichment tool

	Discussion & Conclusion
	Future work

	III Sharing and Dissemination
	SynBioHub: a standards-enabled design repository for synthetic biology
	Introduction
	Architecture of SynBioHub
	SynBioHub vocabulary
	Users and graphs

	Interfaces
	Web interface
	Programmatic API

	Web of Registries
	SynBioHub Lab
	Whole-lifecycle knowledge management
	Nomenclature
	Architectural changes

	Discussion & Conclusion
	The FAIRdom principles
	Dereferenceable URIs
	Future work

	SynBioCAD: a standards-enabled design tool for synthetic biology
	Introduction
	Layouts for genetic circuits
	Specifying layouts
	Layout to SBOL references
	Creating layouts for SBOL data
	Configurating layouts
	JSON representation

	Interactive genetic circuit visualizations for the Web
	Rendering layouts with Scalable Vector Graphics (SVG)
	Interactivity

	The SynBioCAD application
	Discussion & Conclusion
	Future work
	Conclusion

	Conclusions
	Discussion & Conclusion
	The groundwork: Machine-tractable design
	Aim 1: Access to existing knowledge
	Aim 2: Accessibility of future knowledge
	Conclusion

	Appendix SEPs
	Appendix Examples of valid RDF/XML incompatible with libSBOLj

