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Abstract

Osteoarthritis is a prevalent disease among domestic dogs which, even when well-

managed, often causes bouts of chronic pain and a lesser quality of life. Despite a

lack of training dog owners are relied upon to recognise the signs of pain or illness in

their animals. This often leads to treatment being sought later than would be ideal,

resulting in the unnecessary and avoidable suffering of their dogs. This can be further

compounded by the qualitative nature of lameness assessment performed by veterin-

arians. The difficulty of which is further exacerbated when symptoms are subtle, and

the disease is in its early stages. This thesis investigates the use of remote, animal-

borne, tri-axial accelerometers to supplement the welfare information available to both

caregivers and veterinarians. Published acceleration-derived measures, of both the

time and frequency domains, common within human and non-human animal acceler-

ometer research, are assessed for their potential as daily and weekly identifiers of os-

teoarthritic lameness. The suitability of identified measures was evaluated using both

Principal Component Analysis based feature selection and logistic linear models. The

results of this process highlighted a potential link between both the level and entropy of

an animals overall weekly activity with the occurrence of osteoarthritis. It also provided

insight into areas of further development and established the complexity of the task of

recognising lameness from acceleration data. A behaviour-based methodology was

established hybridising techniques used across wildlife ecology deployments, existing

veterinary assessment of lameness and, the assessment of human gait impacted by

both physical illness and neurodegeneration. This led to the development of a method-

ology focussing on the identification of behaviours, starting with canine postural state,

to provide context as to the daily activities of the subject. Two distinct approaches to

postural recognition were assessed both employing machine learning techniques with

a focus on the interpretability of results. The first, examined the identification of 6 pos-

tural transitions, similar to methods established in human accelerometer assessments,

using linear discriminant analyses at 3 different sliding window lengths. The inclusion

of an empirical cumulative distribution function representation was also assessed. The

results suggested that the isolation of transitional periods from among non-transitional

periods was difficult and there was high confusion between the transitions themselves.

The second examined the identification of the postures themselves alongside the oc-

currence of locomotion during the standing posture. Linear discrimination analyses
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were once again used due to the interpretability of the method and the simplicity of its

implementation. The effects of pre-processing techniques and differing posture group-

ings were also explored. The findings suggested a binary decision tree approach was

the most effective mechanism and that the application of pre-processing techniques to

clean data caused a distinct negative impact that requires forethought as to the poten-

tial costs and benefits of their use. Standing was the most easily identified, perhaps

due to its prominence, and the further classification of locomotion from among stand-

ing periods was ineffective. To further supplement the postural methods of identifying

osteoarthritis an investigation of the remote monitoring of circadian rhythm was estab-

lished. This is of interest due to prior results highlighting the potential relationship of

activity entropy and level with lameness and the reports of sleep disruption by human

chronic pain sufferers. Features relating to the length and frequency of both resting

and active bouts were used in logistic regression models to establish their relationship

to the presence or absence of osteoarthritis. Minor disruption was observed to the

amplitude of activity frequencies within osteoarthritic dogs consistent with prior find-

ings. However, further work is needed to disentangle this effect from that of advanced

age, a possible confound. The potential of remote sensing technologies is shown but

further development of methodologies is required. A combination of the described

approaches, with the refinements highlighted within this thesis, could further improve

their efficacy and should be investigated. A behaviour based, transparent and fully in-

terpretable monitor of lameness, pain, and/or welfare could prove valuable to the early

and effective treatment of canine osteoarthritis and should be pursued further.
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Chapter 1

Introduction and Literature Review

Our understanding of animal sentience and welfare continues to deepen as animals

continue to play fundamental roles within our society. Within a research context prac-

tical concerns regarding the effects of poor conditions, or poor physical or mental health

on subjects have led to the continual improvement of standards (Broom, 2016; Poole,

1997). For the public, the close contact with domestic animals, the effective commu-

nication of sentience research, and continuing popularity of ethical lifestyles has led

to a heightened awareness of animal welfare. In research and livestock settings this

has resulted in a widely shared desire for improved standards of care, and regulation

within animal agriculture, where consumers are seen to pay more for products with

perceived higher welfare practices, and research, where animal technologists often go

beyond the minimum required by legislation in the care of their animals (Broom, 2010;

Chen & Hong, 2019; Coleman, 2007; Degeling & Johnson, 2015; Greenhough & Roe,

2018; Janssen et al., 2016; Knight & Barnett, 2008). In domestic settings this has led

owners to seek out ways of maintaining higher standards for their own animals and

understanding what it is their animals need and want. Technology could prove useful

for this task and below I review the potential of novel technological solutions to the

measurement of different aspects of welfare.

1.1 Welfare

The concept of animal welfare has long been related to an organisms physical health

but has since evolved to also encapsulate cognitive well-being (Broom, 2011; Dawkins,

2017). This modern combined meaning, based within an ever-improving understand-

ing of animal sentience, has developed alongside legislation regarding non-human an-

imal treatment (Broom, 2011). Within the United Kingdom the the Brambell Report was

published to address increasing concerns over, and awareness of, animal welfare (Har-

rison, 2013). The report led to the establishment of The Five Freedoms by the Farm

Animal Welfare Council (Brambell et al., 1965; Whitham & Wielebnowski, 2013). These

five basic requirements; Freedom from Hunger and Thirst, Freedom from Discomfort,

Freedom from Pain, Injury, or Disease, Freedom to Express Normal Behaviour, and
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the Freedom from Fear, form the basis of modern legislation in the United Kingdom

as well as being used by international and intergovernmental organisations such as

The World Organisation for Animal Health (Mellor, 2016; Office International des Epi-

zooties, 2015). The Five Freedoms continue to be applied however, modern definitions

of welfare attempt to also incorporate the recognition, rectification, and prevention of

conditions which violate these freedoms. Additionally, many modern approaches also

incorporate the assessment of positive welfare measures in addition to the more es-

tablished negative measures (Mellor, 2016; Webster, 2016; Yeates & Main, 2008).

The later realisation that the Five Freedoms cannot be fully addressed, and that do-

ing so can interfere with the freedom to perform natural behaviours, has resulted in an

increased focus by researchers on the provision of resources for the satisfaction of the

freedoms and a renewed definition of welfare which instead concerns the interactions

of the organisms with their environment (Mellor, 2016). Through this subtle pivot natural

behaviours are encouraged alongside the satisfaction of animal needs. Researchers

gauge an individuals state through its ability to cope with an environment, and the be-

haviours employed by the individual to do so (Broom, 1986; Mellor, 2016). Where an

individual is unable to adapt the resultant distress and suffering would, if severe or over

a long enough timespan, result in a degradation of its physical or cognitive well-being

(Broom, 2016; Dawkins, 1990; Mellor, 2016; Webster, 2016).

This approach requires an acceptance of a degree of animal sentience that, al-

though now generally accepted, has been controversial, particularly in the considera-

tion of invertebrate species (Dawkins, 2017; Duncan, 2006). To successfully satisfy the

requirements of sentient species an understanding of how organisms reason and think

is required and remains difficult to address completely (Dawkins, 2015, 2017). This

complication required the development of adjustments to the interpretation of animal

welfare that remain useful regardless of the subjective opinion of the researcher re-

garding animal sentience. To achieve this Dawkins (2004, 2017) proposed a 2-pronged

approach that incorporates both the physical health, similar to prior definitions, and the

cognitive health, by asking if the animal has what it wants. This allows assessors to ac-

count for the effects of non-physical aspects of an environment, and for the attachment

of valence, how positive or negative a stimulus is, to welfare measures. For example,

mild thirst in the absence of a water source. The animal experiences discomfort and a

negative cognitive state due to the unsatisfied desire for water but will not experience

a negative physical state unless the want remains unsatisfied for a prolonged period.

Despite improving the generalisability of the concept of welfare regardless of where

researchers stand on the topic of non-human animal sentience, this approach creates

issues in how best to account for both facets, particularly the cognitive aspect, object-

ively. This is of note when considering the increase in interest in automated systems

of whole-picture welfare monitoring which would be required to infer want alongside
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signs of physical stress (Botreau et al., 2007). To allow a focus on methodology rather

than the presence or absence of sentience however this thesis will use Dawkins (2004)

definition while acknowledging the difficulties in inferring want.

1.2 Measurement of Welfare

To measure welfare and account for the intricacies of these definitions is therefore a

challenge. This is further exasperated when measurement and monitoring attempts are

made on large numbers of animals as are commonly found in agricultural or research

settings. Another complicating factor is the communication of these measures to vastly

different audiences (e.g. caregivers,veterinarians, researchers, etc.) with unique needs

and understanding.

Visual assessment methods focused on the development of rating scales (scores

with written and/or visual descriptors) have long been employed for the clinical assess-

ment of health, and pain (Rutherford, 2002). Such scales are often used in agricultural

settings where they attempt the rapid recognition of problems without the need to fully

assess or diagnose the specific issues of every individual being observed. For ex-

ample, the gait of commercially farmed broiler chickens can be scored to assess leg

health with a scale ranging from 0 (healthy legs) to 5 (unable to walk) (Kestin et al.,

1992). This allows the rapid diagnosis of problem birds in a flock. But, it achieves

this by disregarding the underlying causes of the lameness, which can vary widely, in

favour of assessment speed (Dawkins, 2004). The subjectivity of such methodology

means their use requires the training of assessors and the cross-validation of results

to ensure minimal mislabelling (Butterworth et al., 2007; Dawkins et al., 2009; Engel

et al., 2003). The additional requirement for assessors to be either present, or able to

watch extended periods of video leads to a large time investment that is also imprac-

tical. The stocking densities of agricultural settings also often requires the restriction

of observations to a smaller proportion of the entire flock which reduces the represent-

ativeness of the data. Similarly, gait examination of domestic animals by veterinarians

is often done by visual assessment (Belshaw et al., 2016; Quinn et al., 2007). This

situation is the inverse of the above as only one animal is being observed, and obser-

vations are not cross-validated between multiple trained observers. Additionally, the

period of observation is reduced and, unless symptoms are severe, could be missed if

not exhibited, or is concealed, by the individual during the examination (Belshaw et al.,

2016).

The visual assessment of behaviours and behavioural patterns has also been used

extensively to assess welfare (Dawkins, 2004; Paul et al., 2005; Titulaer et al., 2013).

Choice and preference measures are among the most logical when attempting to

identify "what animals want" directly but are often difficult to implement in real-world
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settings (Dawkins, 2004). To address this, methodologies used in free-ranging animal

behavioural ecology have been adapted. Such methods involve the observation of an-

imal distribution in relation to environmental factors and conspecifics. These data are

then used to gain insight into the question of "what animals want" (Dawkins et al., 2003;

Keeling, 1995; Morris et al., 2001). However, such observations can only be used to

make adjustments to what, and how many, resources are provided to animals, which

differs between individuals and is not responsive to current welfare need. Another,

complementary method is the observation of behaviours which typically characterise

positive or negative reactions to stimuli. The construction of an ethogram with valen-

cies, either positive or negative, tied to each behaviour then allows the assessment

of the effect of stimuli. The vocalisations of chicks undergoing isolation stress is one

example of such behaviours (Feltenstein et al., 2002). The limitation of this approach

is the occurrence of the same or similar behaviours regardless of stimulus valency

and the variation in responses by individuals to the same stimuli. In kennel dogs

both increased locomotion and decreased activity have been observed as indicators

of chronic stress. However, such behavioural markers show large variation between

individuals (Beerda et al., 2000; Part et al., 2014). Furthermore, findings have indic-

ated that behavioural responses are tied to the previous experience of the stimulus by

the individual (Rooney et al., 2007). This suggests that such methods are unreliable

in isolation and necessitates the frequent combination of measures to gain a true es-

timation of welfare. Additionally, it is not possible for the observer to be blinded to the

environment, conditions, or treatments when assessing welfare through observation.

This may introduce bias either through knowledge of the environment or through the

introduction of anthropocentric bias, such as more attention being paid to faces which

may be of less importance to the species being observed (Leach et al., 2011).

In response to these issues with manual, visual observation animal welfare assess-

ment and research has turned more and more towards technological solutions. This

trend has resulted in a wealth of research regarding either instrumented or invasive

methods of observation of animal condition and behaviour (Brown et al., 2013; Cooke

et al., 2004; Jukan et al., 2017; Kramer & Kinter, 2003). Central to this research is

the removal of subjectivity of assessments relating to health and welfare, the capture

of data imperceptible using traditional assessment methods, the removal of assessor

bias, and reductions in time and training requirements (Brown et al., 2013; Tuyttens

et al., 2014; Wilson et al., 2014).

Invasive methods, which require minor surgery for the implantation of devices, can

monitor a range of physiological features such as; heart rate, blood flow, respiratory

rate, pH and temperature. These can then be used to infer physical health and have

been shown to co-vary with features of cognitive well-being such as stress (Kramer &

Kinter, 2003). However, such measurements are often difficult to interpret and attribute
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to state, particularly as they have frequently been found to co-vary with non-welfare

related features. For example, heart rate escalates in times of fear, an affective state

of negative valence, but also during experiences and behaviours, such as play or sex,

which have a positive valence (Dawkins, 2015; Titulaer et al., 2013). The additional

requirements of surgery and recovery times make invasive methods impractical for im-

plementation on a significant scale and undesirable for owners of animals in domestic

settings. Furthermore, the act of surgically implanting a device itself, often requiring

the administration of anaesthesia, could cause discomfort and pain which would result

in a significant drop in welfare post-surgery (Popova et al., 2017).

There has been a variety of non-invasive devices developed to automatically mon-

itor the behaviours of animals and, by extension, infer their welfare state (Rushen et

al., 2012; Whitham & Miller, 2016). The removal of a human observer allows the cap-

ture of large data-sets over equally large time-scales which would usually be imprac-

tical, or impossible, to manually observe. This, coupled with the use of computational

analysis methods, allows the collection and rapid processing of large data-sets of in-

creased quality and quantity. These improvements in turn open up the possibility of

employing new techniques geared towards the analysis of large, longitudinal and/or

high resolution data-sets. The absence of observers can lead to the recording of beha-

viour that would not be performed with humans present or that occurs in inaccessible

areas (Whitham & Miller, 2016). The removal of the human element in this way would

go some way to address accusations of subjectivity and arbitrariness which are often

used in the criticism of welfare measures.

1.2.1 Physical Welfare

Understanding and assessing the physical health of an individual is critical to building

a picture of its overall welfare. This has, in the past, been a time and labour intens-

ive process involving the diagnoses of conditions through physical examination. Such

methods range from the collection and analysis of samples of serum, tests of antibod-

ies, observations of injury or swelling, and the physical manipulation of effected limbs

(Belshaw et al., 2016; Mosaferi et al., 2015; Polgár et al., 2019; Rault et al., 2018; Sta-

ley et al., 2018). Alternatively imaging methods, such as radiography, can be used, but

are only indicative of the severity of a condition. Research has reported mixed results

as to whether radiographic severity provides insight into the degree of pain experienced

(Duncan, 2006; Hannan et al., 2000).

In contrast to those more invasive, potentially pain-inducing, and usually costly

methods, behaviour based methods forgo formal diagnoses in favour of the rapid re-

cognition of abnormal or aberrant behaviours, such as reduced appetite or lethargy,

which are thought to be indicative of an underlying issue(Dawkins, 2004). However,
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these methods rely on the accuracy of reports from owners and caregivers (Dawkins,

2004). The limitations of such methods, besides their reduction in specificity, lie with

their use of human observers and has meant that there has been much interest in the

development of alternative, non-invasive, technology based methodologies focused on

replacing the role of the observer (Brown et al., 2013; Rushen et al., 2012; Whitham &

Miller, 2016).

The monitoring technologies that will be discussed are examples of those afford-

able and accessible enough to be practically implemented in agricultural, domestic and

research settings. This will exclude invasive procedures and imaging solutions in fa-

vour of methods of remote monitoring that remove the human element, and enable a

longitudinal monitoring period which would allow the representation of the progression

of welfare degradation or improvement. These methods fall into 2 broad categories;

animal attached monitoring (where devices are secured to an animal), or vision based

monitoring (where cameras are used to observe animals remotely).

1.2.1.1 Animal Attached Monitors

Inertial measurement units (IMUs) have been of much interest across multiple discip-

lines in recent years. These devices are a collection of sensors that measure the spe-

cific force of a body. From human medicine to wild animal behavioural ecology IMUs

containing a combination of three dimensional (also known as tri-axial) accelerometers,

gyroscopes and, on occasion, magnetometers have been deployed and have returned

promising results (Brown et al., 2013; Fong & Chan, 2010; Wilson et al., 2008). In

the field of animal welfare the devices have shown equal promise, particularly in the

detection of behavioural indicators of injury and illness, thus allowing an objective view

into the physical state of focal individuals (Barthelemy et al., 2009; de Passillé et al.,

2010; Pfau et al., 2016).

The attachment of IMUs to animals allows the high frequency recording of, typically,

three dimensional movement data which can be interpreted to provide information as

to the movement of the device. This, in turn, can be used to infer aspects of behaviours

being performed by the individual (Wilson et al., 2007). Advances in battery techno-

logy, memory capacity and the ability to transmit data have all contributed to making

the devices more practical for longitudinal observation of individuals, at higher frequen-

cies, allowing the capture of both rapid behavioural events and longitudinal patterns of

behaviour, which may both be difficult to observe with traditional methods.

IMUs have been employed in a variety of ways to assess the physical welfare of in-

dividuals. Primarily among these is their use in gait scoring (Dawkins, 2004). The detail

of data produced by the devices is such that, when attached to the legs of individuals,

each step of a walking pattern can be clearly observed (Rushen et al., 2012). Even the
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gait type the animal is engaging in can be defined through comparisons with previously

labelled data and the calculation of timings for different phases of the steps (de Passillé

et al., 2010). High fidelity data allows the objective assessment, by researchers, own-

ers and veterinarians, of the gait of individuals over time periods previously impractical

for collection. Animals with severe impairments would likely be detected easily by their

owners and so the value lies in the potential of such methods to detect changes in gait

at earlier stages than is typical by human observers (Mccracken et al., 2012).

Alternatively IMUs have been employed for the monitoring of more simplistic be-

havioural aspects, such as the general physical activity of individuals. Here simple

thresholds are drawn that dictate activity levels, typically defined by comparisons of

data with human observations (Morrison et al., 2013). Physical activity schedules are

then derived based on these thresholds. Any observed drops in activity levels can be

indicative of poor health, injury, or behavioural changes, such as oestrus (Holman et

al., 2011; Kozak et al., 2016; Morrison et al., 2013). The occurrence and patterns of

these behaviours could be indicative of welfare state and is akin to data collected using

more traditional observation-based methodologies (Martiskainen et al., 2009; Rushen

et al., 2012; Wilson et al., 2008). Postural patterns, frequency of feeding, social inter-

actions and other behaviours of interest have all been observed through the use of IMU

devices in both wild and domesticated species (Fehlmann et al., 2017; Martiskainen et

al., 2009; Rushen et al., 2012). By capturing behavioural patterns IMUs could be used

in lieu of human observers with the potential to capture more detailed data over longer

periods, such as the daily patterns of posture exhibited by an individual (Brown et al.,

2013; Martiskainen et al., 2009; Ringgenberg et al., 2010). For example, feeding beha-

viour and the amount of time spent laying down have been detected with high levels of

accuracy and have both been identified as relevant to welfare in cattle (Diosdado et al.,

2015).

These methods do not come without their drawbacks. The ability to collect high

frequency data over long time spans produces data-sets of sizes that often require the

attention of trained individuals to identify behaviour patterns by eye or, more commonly,

the use of sophisticated machine learning techniques. These techniques attempt to

identify patterns by extrapolating thresholds and definitions, provided by previously

human-labelled data-sets, or by creating likely classifications based on provided rule-

sets, but little or no a priori information (Nathan et al., 2012; Valletta et al., 2017). This

allows the rapid analysis of the data of multiple animals which can often stretch for

hours, days or months. However, the nature of some machine learning algorithms has

led to some being referred to as black-box methodologies. This is due to the difficulty

involved in the assessment and interpretation of the internal rules generated and used

by the algorithms to arrive at their classifications.

A further complication involves the attachment of the devices to the animal and,
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although modern IMUs are small and lightweight, the potential for impact on an animals

normal behaviour should be considered (Casper, 2009; Ropert-Coudert et al., 2004;

Wilson et al., 2006). This is especially true when smaller animals are being sampled,

and appropriate attachment methods should be fully investigated. Time invested in

habituating animals to the presence of the device(s) would be well spent but could be

impractical if managing larger numbers, such as the stocking densities of commercial

agriculture. The costs of devices in agricultural or research settings could also be

cause for concern. The prices of individual components and even complete IMUs have

fallen drastically however when outfitting an entire herd of cattle, for example, the initial

investment would be significant.

Another form of animal attached monitoring is one which focuses on a much grander

scale, namely the animals location opposed to the specific movement it is currently en-

gaged in. Global Positioning Systems (GPS), and Local Positioning Systems (LPS)

have been used extensively in the tracking of free-roaming animals (Barker et al.,

2018; Cagnacci et al., 2010; Rushen et al., 2012; Tomkiewicz et al., 2010). What

these sensors offer is a species agnostic method for tracking distances and speeds

of travel as they do not require specific calibration to account for attachment method

and body plan differences, something that is needed when attempting to identify beha-

viour from IMU outputs. This allows the detection of distances travelled, of significant

changes in daily activity, patterns of movement and resource access (Handcock et al.,

2009; Rufener et al., 2018; Ungar et al., 2005). Each of these outputs can, as in IMUs,

be used to monitor for changes or inconsistencies which would be difficult to capture

with manual observation methods and that may be indicative of an individuals welfare.

The battery life of GPS devices is inversely related to recording frequency and so

increases in the fidelity of the data significantly reduce the potential deployment time.

Additionally the dependence of GPS on clear signals to satellites being available may

preclude it from use in species which spend extended periods inside, or under cover,

or where device longevity is required alongside high recording frequencies (Frair et

al., 2010; Tomkiewicz et al., 2010). This has been addressed somewhat in the use

of Dead-Reckoning techniques where an IMU device is deployed simultaneously and

data relating to the movements and turns of an individual are used to inform its path of

travel between infrequent GPS calibration-fixes (Wilson et al., 2007).

Where habitats are tightly controlled, or only specific features are of interest, radio

frequency identification (RFID) can be used. RFID tags are used extensively in the

beef, dairy and swine industries for the recording of feeding behaviours on an indi-

vidual basis (Rushen et al., 2012; Whitham & Miller, 2016). These methods involve

the detection, by a receiver, of the animal-attached RFID tag at the point of interest, for

example a feeder, and from this it can be inferred that the individual in question is likely

engaging in a specific behaviour, such as feeding (Mendes et al., 2011). Such uses
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could help to isolate abnormalities in feeding behaviours, or other physiological beha-

vioural indicators of welfare which could signal the occurrence of health conditions or

changes to welfare (González et al., 2008; Huzzey et al., 2007; Urton et al., 2005). The

use of RFID is simple and effective but difficult to apply in less controlled settings or

where behaviours of interest are unknown. This is due to the requirement to pre-place

receivers at points of interest. In such eventualities the aforementioned LPS may be a

more appropriate method.

1.2.1.2 Vision-based Monitors

Where attachment of devices to animals is impractical or impossible, due to the size of

the focal species, the likelihood of the destruction of devices, or the significant costs of

outfitting large numbers of animals, alternatives must be sought. One of these is the

use of varying kinds of video and image capture technologies. Large groups can be

captured simultaneously with much less of an initial investment than outfitting some or

all with individual tags. Additionally the ability to capture video from areas inaccessible

to the animals means issues arising from contact or attachment of the devices are

circumvented (Dawkins et al., 2009; Rushen et al., 2012).

One prominent example of the use of video in the investigation of physical state in

captive animals uses the theory of optical flow. Here the rate of change of brightness in

a video is detected and analysed for a rapid group level indication of the prevalence of

physical issues such as lameness. Dawkins et al. (2009) used this method to effectively

assess the lameness of broiler chicken flocks ranging from 3,000 to 40,000 individuals.

The group-centric nature of this approach makes it appealing for use in agricultural

settings where many, often near identical, individuals are housed together on a large

scale and any treatments or assessments are performed at the flock-level. This method

loses the ability to easily isolate individuals that are exhibiting symptoms. However, the

comparative inexpensiveness, both monetarily and temporally, makes the methodology

a highly appealing approach in such settings.

A more individual approach would require group housed individuals to be easily

identified from video, which often requires prior marking. For some species sophistic-

ated machine learning solutions have been developed to allow individual identification

without potential disruptions, such as marking (Zhang et al., 2019). The determination

of physical traits or abnormal movement characteristics which predict ailments, such

as lameness, could be automatically assessed and scored by image processing al-

gorithms (Rushen et al., 2012). For example, in cattle an arched back and poor hoof

tracking are distinct signs of lameness and have been shown to be detectable auto-

matically in videos (Poursaberi et al., 2010; Viazzi et al., 2014). Similar deviations from

the norm exist in other species, and in other conditions, although their is a requirement
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of extensive prior investigation and validation before such methods can be employed

(Grégoire et al., 2013; Poursaberi et al., 2010). This approach is highly species specific

and could be impractical in real world settings as it would require the movement of an

animal across the cameras field of view in a relatively controlled manner.

In common with animal attached devices, image based solutions are particularly

interesting due to their ability to surpass the observational capacities of human ob-

servers. High frame rate video and infrared thermography (IRT) are two areas that

have, in recent years, become both more prolific and more affordable. Each surpass

the natural capabilities of human observers in different ways.

The first of these, high frame rate (also known as slow motion or high speed) cine-

matography has seen much use within the investigation of physical welfare. However,

its use appears to rarely be the focus of the research. This is often left to the fea-

tures being detected and is perhaps due to the similarity between high frame rate and

standard cinematography, with the most meaningful difference lying in the sampling

frequency.

One application that takes advantage of the increased temporal resolution of high

frame rate cinematography is in the subjective assessment of gait. Here research has

shown subjective assessment to be poorly correlated with objective alternatives when

assessing the presence of subtle lameness (Lane et al., 2015; Quinn et al., 2007).

It has been suggested that this is due to the rapid rate of limb movement making

assessment of subtle differences difficult (Gillette & Angle, 2008; Lane et al., 2015).

However, Lane et al. (2015) reports that within the gait assessment of canines the use

of high frame rate video provided no increase in either the accuracy or consistency

of assessors ratings when compared to standard observations. This did not include

classifications of the lameness of the dogs assessed and so further work would be

required to observe the effects of high frame rate video on the assessment of subtle

lameness. High frame rate video has also been used in the computational analysis of

gait which presents the possibility of identifying differences in gait phenotype that are

missed by subjective assessment (Preisig et al., 2016).

IRT allows observers to visibly interpret the temperature data of individuals, re-

motely. This method is non-invasive with no need for restraint or other stressors in-

herent in the use of equivalent alternatives. IRT allows the visualisation of temperature

across the entire surface visible to the camera rather than just at the location of a probe.

One of the most prominent uses of such technology is as a non-invasive diagnostic tool

for injury with the potential to detect inflammation of joints or tendons up to two weeks

prior to the presentation of other symptoms (Church et al., 2009; Purohit & McCoy,

1980).

Once again such methods are impractical for continuous monitoring, due to the spe-

cific positioning required during measurement. However, when used as part of regular
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check-up procedures vision-based methodologies have been useful in the detection

and diagnosis of conditions prior to severe symptom presentation in species ranging

from dogs to poultry (Ben Sassi et al., 2016; Church et al., 2009).

1.2.2 Cognitive Welfare

The physical state of an individual is no longer considered the be all and end all of

their welfare. Their cognitive, or emotional, state is of equal importance. This realisa-

tion has led to the development of a range of techniques focused on the identification

of changes in cognitive state and a reassessment of the treatment of animal affective

state, emotion and mood within welfare science (Dawkins, 2017). Striving to ensure

individuals have what they want is a good rule of thumb in maintaining good cognitive

welfare. By following this rule researchers can observe and quantify behaviours attrib-

uted to the fulfilment of an individuals perceived needs (Dawkins, 2004). These wants

can be strong enough that individuals will attempt to carry out behaviours to satisfy

them even when doing so adversely affects physical condition.

Subjective methods of assessing cognitive state, feeling and emotion are quickly

being supplanted by new technological methods. Many of these employ similar sensors

to those used for the assessment of physical welfare and differ only in analysis tech-

nique or focal behaviours. One interesting point of note is that, unlike the monitoring of

physical condition, the behavioural measures of mental state often involve the assess-

ment of positive indicators, such as play, and do not merely focus on the identification

of stimuli and other aspects with a negative valence (Whitham & Wielebnowski, 2013;

Yeates & Main, 2008).

1.2.2.1 Animal Attached Monitors

IMU devices have not been used as prominently in the detection of non-physical as-

pects of welfare as they have physical ones. However, there has been some work into

their ability to provide insight into their use as objective tools for the measurement of

animal affective state. For example, Wilson et al. (2014) showed the potential for IMU

devices to detect statistically significant changes in movement and posture in African

elephants when they were exposed to stimuli of differing valencies.

An alternative measure for use in inferring the presence of positive or negative af-

fective states is that of sleep periods. Humans have been found to experience fewer

sleep problems when self-reporting a positive state in waking time prior to sleep (Step-

toe et al., 2008). The same phenomenon has been suggested to occur in other mam-

mals (Langford & Cockram, 2010). Hokkanen et al. (2011) reported the ability to suc-

cessfully identify 90% of calf sleeping time using collar mounted accelerometers and a
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machine learning classifier. The inverse has also been reported with stressors having

been shown to negatively effect the sleep of rodents (Pawlyk et al., 2008).

One further employment of IMU devices embraces their ability to differentiate between

forms of locomotion. Locomotor play is a common occurrence in many species and in

calves it appears within a few hours of birth (Boissy et al., 2007). The time spent

playing per day however is typically only a few minutes and so manual observations of

these behaviours are time consuming and difficult when attempted by human observ-

ers (Held & Spinka, 2011; Whitham & Miller, 2016). As play typically only occurs when

other needs are met it has much potential as an indicator of good welfare (Boissy et al.,

2007; Whitham & Wielebnowski, 2013). In calves, locomotor play has been shown to

be impacted by negative stimuli (e.g. pain or insufficient energy intake) and as such the

monitoring of a decrease in, or the absence of, such behaviour could be an effective

warning that some aspect of the animals environment is not meeting its needs or is

imposing excessive stress (Boissy et al., 2007; Held & Spinka, 2011; Rushen et al.,

2012). Rushen et al. (2012) showed the potential of IMUs to automatically measure lo-

comotor play in cattle. The application of IMUs in the measurement of play would allow

the detection of the rare occurrences exhibited by adult animals, a feature of behaviour

that is often highly unlikely to be captured when observing in person (Held & Spinka,

2011; Whitham & Miller, 2016).

There are further inferences which can be made when collecting inertial data for use

in assessing cognitive state. IMUs, as mentioned previously, are able to be used for the

counting of steps and activity in relation to aspects of environment. By extension these

step counts can indicate how effective changes to this environment are in improving

welfare. An example is the suitability and effects of flooring surfaces on the number

of steps taken by an individual (Platz et al., 2008). Alternatively, investigations into

the suitability of other aspects of environment, such as stall size in horses, can be

performed through investigations of stepping or postural time budgets (Raabymagle &

Ladewig, 2006).

The issues faced in the use of IMU devices in the detection of cognitive states are

much the same as in their use regarding physical states. There is particular issue in the

application of the techniques across species. Extensive, species specific, validation

is required prior to the use of these techniques to avoid the misinterpretation of the

effects of affective state on behaviour. This is not helped by the absence of a current

gold standard alternative for the attribution of positive or negative state to non-human

animals.

Both GPS and LPS have also been embraced in the measurement of cognitive

state. This technology has been of particular use in the detection of environmental

use and preferences in captive zoo animals and free ranging livestock (Holdgate et al.,

2016; Leighty et al., 2010; Schoenbaum et al., 2017). These methods mirror those of-
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ten used for the investigation of wild animal movement and habitat preferences (Brown

et al., 2013; Tomkiewicz et al., 2010). Leighty et al. (2010) employed GPS units to

monitor the habitat preferences and ranging habits of captive African elephants. They

found that movement rates increased, and more closely resembled distances moved

by wild individuals, when captive elephants were able to live in larger enclosures and

within complex social groups. Preferences and resource use were also found to be

tied to the social rank of the elephant within the group. Holdgate et al. (2016) showed

that the walking distances of elephants, based on GPS tags, were impacted by feeding

variables as well as social variables. These findings were then used to inform the use

of dynamic feeding schedules. Additionally, the ability to compare the locations of mul-

tiple individuals also provides information as to the potential rate of social behaviour

between individuals (Hacker et al., 2015). From this, inferences regarding the sociality

of individuals, the effects of increased or limited potential social interactions, and the

effect of environmental change on the degree of sociality can be made (Hacker et al.,

2015; Whitham & Miller, 2016). The potential of this technology is again tempered

somewhat by the same restraints that exist when employing these devices for the as-

sessment of physical activity.

RFID devices offer a degree of utility here that addresses some of the issues with

GPS devices or IMUs in exchange for a decrease in potential resolution of data collec-

ted. These devices show particular utility in the investigation of preference and choice

in animals. Ringgenberg et al. (2015) attached tags to hens and monitored their choice

of nest where potential nesting sites differed in the colour and pattern of the outer ap-

pearance. RFID has also been used in similar ways to GPS when referring to social

interactions and where animals are detected in the same location at the same time

it can be inferred there is a degree of associative behaviour occurring (Krause et al.,

2013).

1.2.2.2 Vision-based Monitors

Standard speed cinematography has been used for many years in replacing the ob-

servation of animals by humans. Videos captured can be replayed in real time or at

accelerated speeds. Human observers can then identify individuals and note their

behaviours. The ability to pause, slow down and rewind can be helpful in the full tran-

scription of behaviour but these methods can still prove highly time consuming.

The introduction of computer vision methods have meant that the manual transcrib-

ing and annotating of video can be expedited and the time investments of observers

spent elsewhere. The capture of habitat preferences and space use are of particular

interest when attempting to use video to capture data on what animals want. Currently

most tools used detect movement in a two dimensional plane. This means that move-
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ment paths around the frame of the camera and trajectory of the animal are all that are

able to be tracked leading to the typical positioning of the camera above the enclosure

and the resultant inability to simultaneously detect details such as postural state (Ju-

nior et al., 2012). The algorithms for the automatic detection of human movement and

posture are more advanced than those currently used for the same task in animals and

the breadth of methods available reveals various differing schools of thought as to how

to perform such a task (Torres & Solberg, 2001). However, promise has been shown

in examples as complex as the automatic detection of dog postures and patterns of

movement in three dimensional space (Barnard et al., 2016). This method also groups

similar patterns of behaviour together to potentially allow the detection of abnormalit-

ies. It, and similar algorithms, are still very much in the prototyping stages and further

validation and optimisation is required.

The capture of faces has been of great use in the detection of whether an animal

is in frame, therefore allowing data to be collected regarding the time spent at the

cameras location. This would allow the camera data to be used similarly to location

based measures, such as GPS, or even in the detection of behaviours or locomotive

modes such as in Burghardt and Calic (2006).

High frame rate video capture methods may be of particular use in the observation

of facial movements. Minute aspects of facial expressions can change rapidly and as

such the capture of extra frames could assist in the improvement of the performance

of both observer-based and computer-based analysis methods. In humans there is

evidence of micro-expressions which betray the true emotional state of an individual

when attempting to obscure this and instead present an alternative state to others

(Iwasaki & Noguchi, 2016). Animals may engage in similar behaviours and further

investigation of the presence of such expressions could yield a useful tool in earlier

recognition of poor affective state. One known example of this would be the pain face,

which is often assessed through the use of grimace scales, but is considered by vets

to be frequently hidden or suppressed (Fenwick et al., 2014; Leach et al., 2011).

The capture of facial expressions in particular has been an area of much interest

in both animals and humans. The Facial Action Coding System (FACS) is an objective

system of describing facial behaviours by the use of action units. Action units describe

the movements of specific muscles of the face and by using these, and temporal inform-

ation relating to them, observers can code any anatomically possible facial expression

(Ekman & Friesen, 1976). Different versions of FACS have been developed for differ-

ent species, such as chimpanzees, orangutans, cats, and dogs (Caeiro et al., 2017;

Caeiro et al., 2013; Vick et al., 2007; Wathan et al., 2015). Here slow motion video

allows the observance of often rapid and minuscule action units that may be missed if

coded in real time. The potential to miss or misinterpret is such that the use of FACS

requires the videos be viewed in slow motion under the standard methodology.FACS
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is often employed in the objective assessment of pain expressions which are a clear

indicator of a negative cognitive state. Attempts to identify pain expressions is com-

mon in the literature across multiple species, including mice, horses, cattle and sheep

(Descovich, 2017; Gleerup et al., 2015a; Gleerup et al., 2015b; Langford & Cockram,

2010; McLennan et al., 2016). One drawback of such a methodology, in terms of real

world application, is the requirement of an individual animal to position themselves

before the camera when engaging in behaviours which would elicit the desired expres-

sion. Another is that the technique has an obvious relationship to the anthropocentric

focus upon the face and facial expressions which may not be equally expressive across

species (Leach et al., 2011).

IRT has also been used in the monitoring of the occurrence of negative affective

states. During exposure of cattle to fear inducing stimuli the extremities of an individual

will cool relative to baseline temperatures (Stewart et al., 2008). Similar extremity fo-

cused vasoconstriction is seen in other animals. For example, rats which are placed

in a foot-shock chamber, having previously been fear-conditioned in such a chamber,

show similar patterns with temperatures of the feet and tail dropping while the tem-

perature of the eye increases (Vianna & Carrive, 2005). It should be noted that eye

temperature in particular has displayed conflicting results (Whitham & Miller, 2016). As

such, the experimenter should be wary and ensure that IRT has been validated for use

with the focal species and the desired site of measurement.

1.3 Models of Welfare

The investigation of welfare and monitoring methodologies requires the selection of

a suitable model species and welfare case. Dogs (Canis lupus familiaris) are one

of the most popular companion animals in the UK with over 9 million living as pets,

over 11,000 cared for by welfare organisations, and a further 2,550 used for research

(Anderson et al., 2020; Asher et al., 2011; Clark et al., 2012; Murray et al., 2015).

This prevalence and their use across varying contexts, from domestic to research,

presents a strong case for using dogs as a model organism for the development of

welfare assessment methods. Researchers, caregivers, and veterinarians are already

increasingly turning towards smart technological solutions to monitor the welfare of

domestic dogs. This alongside the degree to which the species is intertwined with

human society make a focus on the application of modern technology to their care,

monitoring and assessment timely and relevant (Jukan et al., 2017). This thesis will

attempt to establish a foundation from which a low-cost, low-burden solution can be

refined that would output data of use across the spectrum of contexts dogs are found

in.

To assess the efficacy of methodologies in monitoring welfare a suitable condition
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known to have a negative impact should be chosen. Canine osteoarthritis was selected

due to it being one of the major health and welfare concerns in domestic dogs. It

is widespread, with an estimated 2.5% of dogs in the UK affected by the condition

annually with the difficulty inherent in its diagnosis likely resulting in a much higher

actual prevalence (Anderson et al., 2018). The condition can vary in severity and

location but is briefly described as a disease of the joints that is typically exemplified

by the degradation or dysfunction of articular cartilage (Anderson et al., 2020).The

problematic nature of the diagnosis of the condition is resultant from this large variability

in its presentation and its uncertain etiology (Anderson et al., 2020; Belshaw et al.,

2016). A wealth of risk factors for the development of osteoarthritis in dogs have been

identified and are believed to exacerbate a pre-exisiting genetic disposition towards

the disease (Anderson et al., 2020). For example, the condition is known to be age-

related, occurinng in older individuals more frequently. But risk factors can also be

related to aspects of a dogs breed, such as the increased occurence of joint dysplasia

due to breed conformation, or their lifestyle, such as obesity or exercise (Anderson et

al., 2020).

Diagnosis within day to day veterinary practice relies on prior owner recognition of

the disease, or the potentially delayed diagnosis by a vet during regular check-ups.

The extent and severity of expected osteoarthritis is confirmed through the combin-

ation of owner reports, which may be potentially biased by the "caregiver placebo",

and a number of other, often subjective, outcome measures (Belshaw & Yeates, 2018;

Conzemius & Evans, 2012; Reid et al., 2013). However, there does not exist a con-

sensus on which measures to use. Additionally other more objective alternatives, such

as force-plate gait analysis, are resource or cost prohibitive and are impractical for first-

opinion practice (Belshaw et al., 2016). These more costly objective techniques would

only be applied after an initial or suspected diagnosis and, as such, would require a

noticeable prior change in behaviour or welfare detected by the owner or during an un-

related veterinary examination or consultation (Belshaw et al., 2016). These difficulties

in the diagnosis of osteoarthritis contribute to the significant impact that the condition

has on canine welfare. The chronic pain and mobility inhibition inherent in the condi-

tion are further exacerbated by the frequent delay in its diagnosis due to the difficulties

in owner, and potentially veterinary, recognition (Belshaw et al., 2016; Reaney et al.,

2017).

For this research an individual was considered to have the condition only if formally

diagnosed by a veterinary professional prior to recruitment. Variation in location and

severity were not constrained within the osteoarthritic group at this stage with the intent

to collect a dataset of generalisable nature to the osteoarthritic population with minimal

segregation along a priori assumptions of presentation.
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1.4 Conclusions

Technological methodologies can serve as useful tools to supplement the arsenal of

those tasked with caring for animals in a number of settings. The potential for the

monitoring of physical state is well established within the literature and with further

development and validation, particularly in technologies which are both affordable and

versatile, could provide effective means to detect potential illness at stages not possible

to achieve using traditional subjective methods. Additionally, the cognitive states of

captive animals have become increasingly important to all parties in recent years. With

increased scrutiny upon the proposition of objective, technological monitoring methods

as an answer to detect deterioration in this aspect of welfare. Results from those

studies attempting to measure such aspects show much potential and the ability to

remotely examine internal affective states presents an opportunity to all involved in the

care of animals.

The use cases for a technological solution to welfare monitoring across fields, situ-

ations and species are vastly different and as such a modular multi-method approach

would be suggested. The potential to have the same basic systems and analysis us-

able in the home, as are used in industrial agricultural or research settings is entirely

possible, and the thinking behind such an initiative would echo that of other interdis-

ciplinary movements such as the one health initiative (Monath et al., 2010). It should

also be noted that there appears to exist a slight separation between those employ-

ing remote monitoring methods within a welfare context and those using them on wild,

free-ranging species. This perhaps arises from the history of device use in the two

fields which are only now beginning to converge. Those in the animal tracking and

behavioural ecology fields spearheaded development of devices in an effort to observe

species which are difficult to monitor by traditional methods. Devices used in veterinary,

research and agricultural contexts tend to originate as measures of physical condition

to expedite and objectify the assessment of animals in their care. Animal welfare sci-

entists tend to bridge this separation and employ methods from both fields however

the integration of methodologies does not seem to be complete. Attempts to further

bridge this gap would likely result in gains for both sides. However, care should be

taken in deciding the extent to which the automation of animal care should be allowed

to progress. To eliminate the human element from welfare assessment completely

would add further distance between carers and their animals. Which could lead to a

more "laissez faire" attitude towards the welfare of animals (Balzani & Hanlon, 2020).

It would perhaps be best to suggest a system wherein automated, longitudinal monit-

oring is supplemented by more traditional subjective methods at regular intervals and

when data suggests it would be required (Donnell et al., 2015).
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Table 1.1: Summary of a selection of potential remote monitoring methods, their uses,

benefits and limitations

Measurement

Method

Welfare Measures Benefits Limitations

IMU

(Accelerometer,

Gyroscope,

Magnetometer)

Gait Assessment

(Accelerometer, Gyroscope),

Small scale behavioural

observation (Accelerometer,

Gyroscope), Longitudinal

patterns of behaviour

(Accelerometer, Gyroscope,

Magnetometer), Postural data

(Accelerometer, Gyroscope)

Versatile and widely applied

across species and contexts,

modular with multi-sensor

deployments common, typically

battery and memory efficient in

comparison to alternatives

Difficult to interpret manually,

Requires observational or video

"truthing", Requires robust and

consistent attachment, Data

captured dependent on position

GPS/LPS Movement patterns, Estimated

resource use

Allows spatial and

environmental analysis

regardless of husbandry and

degree of human interaction,

can be combined with existing

GIS and environmental

datasets for additional

behavioural context, low

memory requirements

Deployments often limited by

high battery use, Easily

obscured signal

RFID Movement patterns, Estimated

resource use

Can allow identification of

individuals within data,

deployments focus on points of

pre-assigned interest reducing

data processing requirements

Requires pre-placed receivers,

short range can result in

missing data points

Video Movement patterns, Estimated

resource use, Social behaviour

recording, Small scale

behaviour observation, Gait

assessment, Postural data

Provides gold standard

behavioural observation

potential without potential

observer effects

Limited observation area, Time

consuming manual annotation

or requirement of sophisticated

machine learning annotation

protocols

High Framerate

Video

Rapid behaviour patterns

Movement patterns, Estimated

resource use, Social behaviour

recording, Small scale

behaviour observation, Gait

assessment, Postural data

Potential to capture rapid

behaviours usually difficult to

observe

High memory requirements,

Limited observation area,

Sensitive to lighting and other

environmental influences

IRT Surface temperature,

Vasoconstriction / Vasodilation,

Extremity temperature, internal

temperature via optic nerve

Non-invasive method of

capturing objective

physiological data inaccessible

using traditional observation

methods

Limited observation area,

Relative scale is sensitive to

environmental temperatures
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The field of animal welfare stands to gain much from the implementation of the

technology mentioned. There exist many other examples of alternative hardware that

could be explored however those examined here tend toward the more affordable and

more widely available.

Osteoarthritic and healthy domestic dogs are common and a sizeable sample is

obtainable. The unique domestic context enforces a number of constraints regarding

device deployment and usability that should be considered in selecting an approach to

ensure the methodology transfers well across contexts. Table 1.1 provides a summary

of the presented methodologies, the benefits of their use, their methodological limita-

tions, and the welfare measures attainable. From this the decision was made to use a

single tri-axial accelerometer due to the small form factor, wealth of potential welfare

measures attainable, longitudinal nature of data collection, and the ease with which

devices can be deployed and data retrieved.

There is still much to be done to move towards a more cohesive approach to the

monitoring of animal behaviour, welfare, and condition across fields and between in-

dustries. The rate of development of such a cohesive approach would be significantly

expedited through the concerted effort of the community towards collating and combin-

ing the diversity of established knowledge. Such interdisciplinary collaboration would

ultimately lead to blanket improvements across many aspects of animal welfare. This

thesis aims to establish a foundational framework for such an approach which is ini-

tially validated within the prolific case of osteoarthritis in domestic dogs. To this end the

application of affordable and accessible technologies, tri-axial accelerometer devices,

which are used across species and research areas, will be assessed. The maturity

and widespread nature of the technology has resulted in a diverse selection of poten-

tial analyses employed across various species and contexts and this thesis assesses

which of these are appropriate to translate the longitudinal, high-resolution accelera-

tion data collected into meaningful representations of the physical and cognitive welfare

of domestic dogs. Chapter 2 begins this assessment through the exploration of sev-

eral extant measures. These measures are utilised frequently within behavioural eco-

logy to extract meaning from acceleration data and, as such, have often been applied

within welfare science without consideration of the precise biographical or biological

correlates. Here the established measures are applied to the characterisation of the

differences between osteoarthritic and healthy dogs, and their effectiveness, interre-

latedness, and the relation of the measures to aspects of both biology and history of

participating dogs will be considered and discussed. The established understanding

of the data and the various calculated features are then used to further investigate

the flexibility of the accelerometer devices, and the potential of incorporating and ad-

apting established methods from across disciplines. Chapter 3 replicates a common

technique for the monitoring and assessment of human gait. This application of the

19



Chapter 1

devices investigates their use in the recognition and evaluation of postural transition

movements, the degradation of which is often indicative of the osteoarthritic condition

within human patients. This also provides the basis of Chapter 4 which, rather than

the transitory events of the prior chapter, focusses on the longitudinal monitoring of

behavioural modes similar to those used in the monitoring of wild and agricultural spe-

cies. These behavioural modes, such as posture or locomotion, if identified reliably,

would allow a level of behavioural monitoring which could be further built upon for com-

plex analyses of behaviour and lifestyle that may be indicative of osteoarthritic health.

Finally, Chapter 5 builds upon this idea of the potential uses of the longitudinal monitor-

ing of behavioural modes by applying the assessment of acceleration to the detection

of circadian and ultradian rhythms in overall activity. This chapter differentiates itself

by attempting to decipher underlying activity patterns across the entire 24 hour period

experienced by dogs rather than focussing on the specific identification and character-

isation of behaviour. Each included chapter attempts to build out from aspects of the

former and results in a wide foundation on which to further develop a platform for the

longitudinal monitoring of canine behaviour. These methodologies are utilised through-

out the thesis to gain potential insights into the osteoarthritic health of domestic dogs

and, in doing so, their potential application within a wider health and welfare context.

20



Chapter 2

Activity, Energy and an Assessment of Extant Measures

2.1 Abstract

The use of accelerometer sensors in a wide variety of research has led to a wealth of

potential measures devised to characterise the output. An initial assessment and com-

parison of these existing measures should therefore be performed to assess their suit-

ability to the characterisation of the behavioural, and physiological aspects which may

be indicative of the osteoarthritic health of dogs. By investigating the effectiveness of

these extant measures in the discrimination of healthy control and osteoarthritic groups

this chapter aims to better situate these commonly employed features within the con-

text of osteoarthritic dogs and the potential biological or biographical indicators that are

possibly being reflected. Features used were derived from the 3 raw orthogonal axes

of the accelerometer devices and 3 common transformations of these data. Each dog

therefore produced a total of 208 acceleration features to be assessed at both the daily

and weekly temporal resolutions. These feature sets were then reduced, and collin-

ear variables removed, through the application of Principal Component Analysis, for

weekly feature sets, and Multi-Factor Analysis, for the daily feature set. Multi-Factor

Analysis is a variation on Principal Component Analysis which accounts for the re-

peated measures nature of the daily features. Despite this the overall methodology

used was equivalent with the number of output principal components being selected

from the visual assessment of scree plots and, for each chosen component, the highest

contributing feature was identified for use in a series of logistic models. Contribution

tables for the daily Multi-Factor Analysis components were summarised to allow selec-

tion of the most influential contributor across the 7 days and a random effect controlling

for the individual was included within the resulting logistic models. Most features selec-

ted in this way were poor indicators of osteoarthritic group when using both daily and

weekly models. Only 2 ODBA related, weekly summary measures were found to have

a significant relationship. These were the mean weekly ODBA and the weekly mean of

daily ODBA entropy. This may suggest a strong relationship with energy expenditure

while being indicative of the masking effect caused by the high levels of variance seen

within dogs between days. Further exploration of these features was performed by the
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investigation of their relationship with LOAD, a subjective measure of quality of life fo-

cussing on osteoarthritic health. The resulting linear regressions mirrored the logistic

results and further supported the use of LOAD as a potentially more informative meas-

ure that accounts for aspects of the condition not covered by a binary diagnosis. The

collinearity of age was also demonstrated and concerns highlighted as to the effect

such confounds could have on this and future analyses.

2.2 Introduction

As highlighted in Chapter 1 accelerometers have been used for many years across

a multitude of disciplines, species and contexts with a large degree of crossover in

both aims and methodology. Their use continues to grow in prominence within both

human and animal research and processing methods for the inference of health, state

and behaviour from acceleration have been developed extensively. This ubiquity has

resulted in the use of many different features and measures derived from the, less

easily interpretable, raw acceleration. An investigation of extant features is therefore

required when adapting such prolific technologies to new contexts. Here I examine a

number of features, gathered from the literature, for their applicability to the detection

of osteoarthritis in domestic dogs. Reviews such as Brown et al. (2013) describe a

number of methods for extracting meaning via the processing of raw acceleration data

and form the basis of the features examined here for their potential in discriminating

between healthy and osteoarthritic dogs. The past applications of accelerometers in

both human and animal contexts to establish biomechanical function and behavioural

monitoring present a well defined case for the use of these devices.

Perhaps the most distinct divide in the nature of the features examined here is

whether they concern the time or frequency domains. The former refers to how the

signal changes over time, the temporal aspect of the data, while the latter relates to

which frequency bands the signal lies within, the rhythmic aspect. The time domain

is frequently processed further to expose different aspects of interest, such as the

dynamic or static acceleration components, or to convert the raw acceleration into al-

ternative measures, such as the Actigraph activity count metric (Actilife, Actigraph, FL,

USA). The frequency spectrum of these alternative representations can often then be

calculated to provide the rhythmic information of the processed component. 8 trans-

formations of raw acceleration data are examined here (Table 2.1).

This chapter aims to explore the features used within the literature and to form a

foundation based within this to guide the thesis. The extensive feature list includes

many similar or correlated measures with the intention to compare and contrast the

effectiveness of these, often very similar, methodologies within the context of dogs

instrumented with a collar attached, tri-axial accelerometer device. This initial explor-
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ation of past methods will attempt to identify the practicality of adapting those existing

measures to the detection of osteoarthritis using a computationally light combination

of a PCA-based feature reduction and logistic regression methodology. Through this

a more developed understanding of the detection problem itself and the suitability of

the measures should be attainable and help to guide future work. This is of partic-

ular importance when measures have been taken from a wide array of species and

contexts.

Table 2.1: List of acceleration data transformations and relevant references.

Transformation Domain Description Reference

Raw Acceleration Time Acceleration (g) as output by the accelerometer
in each of the three axes (x, y and z)

Moreau et al 2009, Howe et al
2009

Activity Count Time Proprietary counts of activity over an epoch
(typically a minute) provided by Actigraph
devices or using unofficial solutions such as the
activityCounts R package

Morrison et al 2013, Straker et
al 2012, Michel et al 2011,
Westerterp 2007, Papailiou et al

2007

Vector Magnitude Time Square root of the sum of the squares of the
three raw axes or activity counts. Robust to
rotation.

Ladha et al, Morrison et al,
Howe et al 2009

Static Component
Measures

Time Acceleration component relating to the effect of
gravity on the device and discounting device
movement or acceleration from other sources.
Calculated through taking the running mean of
acceleration data or through the application of
signal filtering techniques.

Wilson et al 2008, Shepard et al
2008, Vázquez Diosdado et al

2015

Overall Dynamic Body
Acceleration (ODBA)

Time The summed total of the dynamic acceleration
component. The dynamic component is typically
calculated by the subtraction of the static
component from the raw acceleration data.

Bidder et al 2012, Wilson et al
2008, Shepard et al 2008,

Qasem et al 2015

Vector of Dynamic Body
Acceleration (VeDBA)

Time The vector resulting from the dynamic
component of acceleration. Calculated similarly
to the ODBA but rather than summing the 3
axes the root sum of the squares is taken.

Bidder et al 2012, Wilson et al
2008, Shepard et al 2008,
Vázquez Diosdado et al 2015,

Qasem et al 2015

Orientation Time The orientation of the device, relative to either
gravity or the subject, converted and dealt with
as rotation matrices or degrees.

Moreau et al 2009,
Ringgenberg et al 2010, Ladha

& Hoffman 2018

Estimated Power
Spectral Density /
Amplitude

Frequency The strength of constituent frequencies
decomposed from an overall signal following
transformation from the time to the frequency
domain. The Fast Fourier Transformation (FFT)
is a common method of decomposition
providing the amplitude measure for frequencies
up to the Nyquist frequency.

Watanabe et al. 2005,
Sakamoto et al. 2009, Soltis et
al 2012
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2.3 Materials and Methods

2.3.1 Data Collection

A sample of 85 domestic dogs were fitted with a tri-axial accelerometer (AX3, Axivity,

York, UK: 23.0 x 32.5 x 7.6mm). Participants were recruited using a volunteer and

snowball based sampling methodology involving recruitment from the general public in

and around the city of Newcastle-Upon-Tyne, U.K. Participants were first asked to com-

plete a recruitment survey requiring the provision of details regarding their dogs health

and disposition to allow the exclusion of dogs with potential confounds or that could

show signs of stress or aggression during handling and device attachment. Appendix

A includes tables summarising the collected samples with dogs divided into Osteoarth-

ritic and Control groups. Osteoarthritic group dogs were those with a formal diagnosis

of osteoarthritis given by a veterinarian, 29 of the 85 sampled dogs were in this group

with the remaining 56 assigned to the healthy control group.

The age, breed, sex and whether the individual was neutered were also collected.

Of the 85 dogs 46 were female and 39 were male. Within the osteoarthritic group 12

were female and 17 were male. Within the control group 34 were female and 22 were

male. This reflects some prior work suggesting sex as a risk factor in the development

of some variants of the condition (Anderson et al., 2018). However, it should be noted

that much of the literature is directly contradictory on how sex relates to increased risk

of osteoarthritis and further work would be needed to establish the true nature of such

a relationship (Anderson et al., 2020). Additionally, only 4 dogs were not neutered

within this study and all were in the control group. Dogs were accepted for inclusion if

over 2 years of age to ensure full maturity regardless of breed or background (Geiger

et al., 2016; Salmeri et al., 1991). 3 dogs were rescued and the owners were unable to

provide an age or provided estimates with large margins of error. The breeds of dogs

included in the study varied in conformation and size with 31 breeds included alongside

a large proportion of crosses.

Details regarding the dogs home life, condition severity and any pain management

or treatments currently, or recently, undertaken were also requested and provided.

However, the free text nature of these answers and wide variance in treatment method,

dosage and adherence required an alternative indication of such measures for use in

further analyses. To assess severity, while accounting for the dogs actual quality of life,

the owner was asked to complete the Liverpool Osteoarthritis in Dogs (LOAD) ques-

tionnaire (Belshaw & Yeates, 2018; Walton et al., 2013). The LOAD questionnaire gives

an indication of the owner-perceived quality of life of osteoarthritic dogs. Its applica-

tion here, across dogs, regardless of the reported presence of osteoarthritis, aimed to

capture a quantitative representation of the qualitative differences between individuals
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in the effects, and their experience, of the osteoarthritic condition which accounts for

the reduction of pain, symptoms or severity across management regimens, lifestyle

differences, or conformational differences. It should however be noted that such a rep-

resentation is subject to potential influence by owner-related confounds such as the

"caregiver placebo" effect (Belshaw & Yeates, 2018; Conzemius & Evans, 2012; Reid

et al., 2013). LOAD scores were not obtainable for 3 participant dogs due to incorrectly

completed or absent questionnaires.

Device attachment methods vary between species and context. It is critical that

due consideration is paid to the methods by which devices are attached and that such

decisions are made with consideration of species physiology and individual welfare,

regardless of setting (Brown et al., 2013). When implementing methods on non-wild

populations further consideration should also be paid to compliance, how likely owners

and carers are to tamper with, remove, and correctly reattach devices and the per-

ception of owners and carers of the comfort of the attachment method. With domestic

dogs this decision is typically confined to just two widely used options: collar-based

tags and harness-based tags with the former selected for this thesis. Many owners

may perceive a collar to be more comfortable as the majority of domestic dogs are

accustomed to regular collar wear. The effects of lead attachment reported in Martin

et al. (2017) necessitate, that when using a collar, the device is attached to a second-

ary collar. However, small dogs are potentially unable to comfortably wear two collars

simultaneously (Westgarth & Ladha, 2017). Despite the potential to collect more con-

sistent data, harness-based solutions require additional habituation to the wearing of

a harness, either at all times or for being walked with, and these may be perceived as

more obtrusive to owners. To minimise the perceived impact of the study a collar based

solution was selected.

The sensor was initially aligned ventrally as suggested in Hansen et al. (2007), with

the device Z axis corresponding to the dog’s dorsoventral axis, as shown in Figure 2.1.

The device laden collar was worn in addition to any usually worn collar to avoid the

need for lead attachment and disturbance. Owners were instructed to not disturb the

collar unless necessary. Seven days of continuous acceleration data were collected.

Accelerometers were set to record at 100Hz, which has been shown to be sufficient for

the collection of canine activity (Ladha et al., 2013).

2.3.2 Data Processing

Once collection had been completed the acceleration data were downloaded and res-

ampled, to correct any deviance from 100Hz that had occurred, by using the bi-cubic in-

terpolation method available within the OMGUI software Open Lab, 2018. Resampled

data were then loaded into R (R Core Team, 2018)for further processing. This first
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Figure 2.1: Location of collar-mounted sensor and device axes in relation to the dog

required the calculation of the data transformations described in Table 2.1.

Raw data in the three dimensions were preserved as some success had been

shown in past literature with unprocessed acceleration (e.g. Moreau et al., 2009). The

vector magnitude (VM3), the square root of the sum of the squared axes, was then

calculated using equation 2.1, where X, Y and Z each represent the respective axis at

the nth reading. VM3 has been used previously as an effective and prominent measure

and provides a summary of acceleration across all three axes regardless of a devices

initial and ending positions (Howe et al., 2009; Robert et al., 2009; Rodríguez-Martín

et al., 2015; Rodríguez-Martín et al., 2013).

VM(n) =
√

X2
(n) + Y 2

(n) + Z2
(n) (2.1)

Activity counts are often used due to the prevalence of Actigraph accelerometers

and software within the research community. Activity counts are a proprietary measure

of activity given for each of the 3 dimensions and provide an abstract but accepted

overall indication of activity across a set time period, typically 1 minute (Morrison et

al., 2013; Yam et al., 2011). As Activity Counts are a proprietary metric, and I did

not have access to the Actigraph software, counts used here were produced using

the acitivtyCounts R package which attempts to replicate the Actigraph activity count

output (Brondeel et al., 2019). The vector magnitude of activity counts was calculated

here as a single summary measure of counts for the 3 dimensions (Hoffman et al.,

2019; Morrison et al., 2013).

To calculate the static, or gravitational, component of acceleration a 4th order, zero-

phase, low-pass Butterworth filter was applied to each of the 3 axes. This filter served

to smooth the data and diminish the dynamic component leaving a representation of

device orientation relative to gravity, and by extension the neck position of the dog

(Grundy et al., 2009; Shepard et al., 2008b).
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The dynamic component was also calculated and relates to all other, non-static ac-

celeration removed by the above filter (Grundy et al., 2009; Shepard et al., 2008b).

This involves the subtraction of the static component from the raw acceleration and

the remaining signal relates to the bodily motion of the focal individual (Chakravarty

et al., 2019; Shepard et al., 2008b). In addition to the dynamic component for each of

the three axes two additional, combination representations were calculated, the over-

all dynamic body acceleration (ODBA) and the vector of dynamic body acceleration

(VeDBA). These are both used extensively in the estimation of energy expenditure of

wild, free-ranging animals (Bidder et al., 2012; Qasem et al., 2012). The ODBA is the

sum of the dynamic component values across the three axes, the VeDBA is the VM3 of

these values and is calculated in the same manner as other VM3 values (Bidder et al.,

2012; Qasem et al., 2012).

A more direct estimation of orientation, in comparison to that provided by the static

component, was calculated using the trigonometric equations described in 2.2 and 2.3

which provide the pitch and roll of the sensor, in degrees, relative to gravity.

Pitch(n) = arctan(
−X(n)√
Y 2
(n) + Z2

(n)

) (2.2)

Roll(n) = arctan(
Y(n)√

X2
(n) + Z2

(n)

) (2.3)

Each of the above described transformations were then segmented into 7 24 hour

epochs for the calculation of daily features. Table 2.2 describes each feature and for

which transformation they were calculated.

These segments of data were also converted to the frequency domain by applying

a Fast Fourier Transformation (FFT) algorithm to each of the three axes and the VM3

representation of each epoch (McClune et al., 2014; Watanabe et al., 2005). Data were

normalised prior to the application of the FFT algorithm and, to reduce the occurrence

of artefacts in the frequency spectra, a Hanning Window was applied, generated using

the Signal R package (Developers, 2014). The application of a windowing function is

necessary as the FFT algorithm assumes that the window assessed will be repeated

perfectly and infinitely. If the window is not applied then it would result in the occur-

rence of a step function where the window begins and ends at differing levels and

would introduce a false rhythmic pulse equal to the epoch length. The FFT algorithm is

applied using the function available as part of R (R Core Team, 2018) and the R code

used to calculate the frequency spectra of windows and the features calculated from

these spectra is included in Appendix E. The resulting FFT spectra consist of a series

of frequency bins displaying the magnitude of signal components occurring at the rel-

evant frequencies. The resolution of the frequency bins is dictated both by sampling
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rate (100Hz) and window size (24 hours). The magnitude of the signal relating to the

0Hz frequency is excluded from all feature calculations as this is equivalent to the DC

component of the signal and is therefore equivalent to the mean of the time domain

data.

The calculated features of the frequency domain are described in Table 2.2 and

expanded upon here. They were chosen to represent the overall shape and distribu-

tion of the spectrum. The first of these is the mean power which was calculated as a

representation of the central tendency of the entire spectrum. The Shannon’s entropy

of the frequency domain was also calculated and has been used previously in human

and animal literature to estimate the stochastic nature of behaviour or the informational

content of the acceleration signal (Bao & Intille, 2004; Benaissa et al., 2017; Marais

et al., 2014; Wang et al., 2005). The maximum, and second maximum values of power

(calculated as the square of the absolute signal magnitude for a frequency) and the

coinciding frequency are calculated to provide an indication of the dominant frequency

of the spectrum. The use of dominant frequency and power is similar to methods used

by Watanabe et al. (2005) to characterise actions. However, unlike Watanabe et al.

(2005) the Power Spectral Density (PSD) used here is an estimation that has not been

corrected for variance. This is typically addressed using Welch’s method of spectral

density estimation which involves the averaging of multiple FFT spectra, relating to the

same action or period of interest, but here the focus is on the characterisation of an

entire day rather than single actions (Welch, 1967). Variance in schedules across the

weeks and across owners could be of interest, particularly as varying levels of attach-

ment between dogs could be reflected in the data (Lund & Jørgensen, 1999). For this

reason Welch’s method was not used. Energy per sample was calculated as the sum of

estimated PSD values divided by the total number of samples per window (8,640,000

or 24 hours at 100Hz) and is a potentially valuable counterpart to the dominant PSD

values as it provides a summary of the overall energy of the signal, rather than only of

those which are most prominent (Bao & Intille, 2004; Benaissa et al., 2017; Ravi et al.,

2005; Wang et al., 2005).

A total of 171 features were calculated from the time domain. This total consists

of 12 features for each of the X, Y and Z axes of the raw, static and dynamic data

transformations as well as a further 20 features per transformation for the combination

measures (Vm3, VeDBA, ODBA, pitch and roll) Table 2.2 shows for which transforma-

tion the combination features were calculated. 3 inter-axes correlations (XY, XZ and,

YZ) were also calculated for the raw, static and dynamic data transformations resulting

in 9 further features. From the frequency spectra a total of 7 features were calculated

from each of the 3 axes, and from the VM3 of those axes, resulting in 28 total frequency

features. All together 208 total features were generated per dog, per epoch.
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Table 2.2: List of features, their descriptions and the data transformations it is

appropriate to calculate them from

Common
Features

Definition Derived from

Mean The arithmetic mean, typically across a set
epoch or window length of the data

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Median The central value of the data, an epoch or
window which separates the upper and lower
halves

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Maximum The highest reported value within the data, an
epoch, or a window.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Minimum The lowest reported value within the data, an
epoch, or a window.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

IQR A measure of variability equal to the difference
between the 25th and 75th percentiles of the
data.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Entropy A measure of the information content, or
unpredictability, of the data. Shannon’s entropy
is typically used and lower values relate to
higher levels of unpredictability and more
information contained in the data.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Standard
Deviation

A measure of the amount of variation within the
data relative to the mean.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Variance A measure of the amount of variation within the
data relative to the mean. Calculated as the
square of the standard deviation

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Skewness A measure of the asymmetry of a variable about
the mean.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Kurtosis A measure of the ’tailedness’, or the degree of
extremity of outliers, of a variable.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Pairwise Axis
Correlations

The correlation of pairs of axes; XY, YZ, XZ. Raw, Activity Count, Static Component,

Orientation

Root Mean
Square

The square root of the mean of the square of an
epoch or window of data.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Range The difference between the highest and lowest
values of an epoch or window

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Mean Absolute
Deviation

A measure of variance from ther mean.
Calculated as the mean absolute difference
between all values of an epoch and the mean
value of that epoch.

Raw, Activity Count, Vector Magnitude, Static
Component, ODBA, VeDBA, Orientation,

Amplitude

Maximum
power

The highest value of magnitude reported within
a signal spectrum

Amplitude

Dominant
Frequency

The frequency value which has the maximum
value power value

Amplitude

Energy per
sample

The sum of the squared magnitudes of the
signal divided by the number of samples for
normalisation.

Amplitude
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2.3.3 Feature Reduction and Model Construction

Including all 208 features in a model would result in over-parametrisation of the model

and a large degree of collinearity. To avoid this, and to attempt to find the features

which explain the highest degree of variance between the control and osteoarthritic

dogs, a dimension reduction protocol was developed. Principal component analysis

(PCA) and its extension, Multi-Factor Analysis (MFA), were chosen for this. The MFA

was included to better account for the repeated measures structure of the data due to

the collection of acceleration across 7 24 hour epochs. Both the PCA and MFA were

applied using the FactoMineR package (Lê et al., 2008) in R (R Core Team, 2018).

To remove the repeated daily samplings, for the PCA, the mean of each feature per

dog was taken. Once the PCA function had been applied a scree plot was generated

and number of dimensions were selected. This was chosen based on the point at

which the slope of the eigenvalues, the amount of variance each principle component,

or dimension, describes, levelled out (Tabachnick & Fidell, 2001). It should be noted

that use of the screeplot alone for this process has shown both good and poor reliability

when reviewed but was deemed sufficient for this exploratory stage (Cattell & Jaspers,

1967; Crawford & Koopman, 1973; Kanyongo, 2005).

Once the number of dimensions had been selected the contributions of each fea-

ture to each of the chosen number of principle components were analysed. The highest

contributor for each component was chosen. If the same feature was chosen for mul-

tiple components then the combination of components resulting in the highest summed

contribution were selected. By doing this a drastically reduced subset of features was

selected that explained the highest degree of variance between control and osteoarth-

ritic dogs. The correlations within this subset of features were then assessed before

generating univariate logistic regression models for each one. These features were

then combined in the formula of a multivariate logistic regression with the lower con-

tributing of any highly correlated features excluded.

The MFA methodology, performed using the FactoMineR package (Lê et al., 2008),

followed that described above however the separate readings per day were maintained

through the component analysis stage. The mean contribution of features across the 7

days was then used for sub-setting. The logistic models were assessed as above with

each also including a random effect term to control for the multiple daily recordings

from each individual. Feature subset correlation was again assessed and informed

model formulation.

The features found to be the most successful at differentiating between the two

groups were then used to explore their potential ability to capture details as to the

severity and qualitative impact of the condition upon individuals. First a t-test was

performed to establish the distinction in LOAD scores between binary groupings. Once
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the existence of difference was established linear regression models were assessed

which used the owner-provided LOAD score for each dog as the outcome variable.

An additional assessment of the correlation of LOAD with age was also performed to

investigate the relationship of owner-perceived quality of life with age.

As age is a significant risk factor of osteoarthritis its relationship to the presence

of the condition and to features most successful in differentiating the groups was also

assessed (Anderson et al., 2020). A t-test assessing the presence and significance

of any difference in age between the healthy and osteoarthritic groups was performed.

Additionally, the correlation of the most successful features with age was examined and

the possibility of incorporating age into established linear models was explored.
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2.4 Results

2.4.1 Weekly Summarised Acceleration Models

The scree plot of the week-summarised PCA, shown in Figure 2.2, was used for the

selection of 6 dimensions as the minimum number of components required to explain

data variance.
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Figure 2.2: Scree plot showing the explained variance of the first 10 principal compon-

ents of the week summarised feature-set
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The 3 features with the highest contributions to each of the first 6 principal compon-

ents are shown in Table 2.3 and were used to select the 6 features to retain. They were;

Mean ODBA (2.12 to PC1), the Entropy of the ODBA (2.78 to PC6), Mean Device Pitch

(4.18 to PC4), the Standard Deviation of Device Pitch (2.44 to PC2), Mean Absolute

Deviation of the Y axis (3.72 to PC3), and Median Device Roll (3.27 to PC5).

Table 2.3: Contributions of the highest 3 contributing features for each of the first 6

principal components

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6

Mean ODBA 2.116

Mean VeDBA 2.108

ODBA MAD 2.100

Pitch SD 2.435

MAD X Axis Static 2.427

X Axis Static SD 2.423

MAD Y Axis Static 3.724

IQR Y Axis Static 3.703

MAD Y Axis 3.639

Mean Pitch 4.179

Mean X Axis Static 4.146

Mean X Axis 4.146

Median Roll 3.274

Median Y Axis Static 3.250

Median Y Axis 3.228

ODBA Entropy 2.499 2.780

VeDBA Entropy 2.254 2.735

Roll Entropy 2.164

The generated univariate logistic regression models investigate the isolated effect

of each feature upon the presence or absence of osteoarthritis within the sample. An

increase in the mean weekly ODBA resulted in the decreased probability of a positive

osteoarthritis diagnosis, OR = 0.33 (CI: 0.13-0.70, P = 0.01). However, an increase in

weekly ODBA entropy coincided with increased odds of a dog suffering from osteoarth-

ritis, OR = 1.99 (CI: 1.06-4.02, P = 0.04). Table 2.4 also shows the results for other,

non-impactful features for which univariate models were calculated.

The multicollinearity between the 6 features is shown in Table 2.5. As there were

no pairs of features with correlation coefficients necessitating further feature removal

all 6 features were included in a multivariate model with results given in Table 2.6. Only
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the mean weekly ODBA remains significant and shows a consistent relationship with

the presence of osteoarthritis, OR = 0.28 (CI: 0.09-0.66, P = 0.01). The pseudo R2 of

the multivariate model for weekly summarised activity was 0.464.

Table 2.4: Results of the univariate logistic models for each of the 6 selected features

Variable Odd’s Ratio 2.5% CI 97.5% CI P Value Pseudo R2

Mean ODBA 0.326 0.127 0.699 0.009 0.276

Pitch SD 0.999 0.551 1.839 0.997 0.000

MAD Y Axis Static 1.080 0.582 1.916 0.795 0.002

Mean Pitch 0.897 0.492 1.635 0.718 0.004

Median Roll 1.677 0.909 3.308 0.111 0.075

ODBA Entropy 1.985 1.061 4.025 0.041 0.125

Table 2.5: The intercorrelations of the 6 selected features to allow for redundant feature

removal

Mean ODBA Mean Pitch Median Roll ODBA Entropy Pitch SD MAD Y Axis Static

Mean ODBA 1.00 0.09 -0.02 -0.11 0.03 0.19

Mean Pitch 0.09 1.00 -0.06 0.03 -0.18 0.11

Median Roll -0.02 -0.06 1.00 0.18 -0.06 0.14

ODBA Entropy -0.11 0.03 0.18 1.00 -0.18 0.10

Pitch SD 0.03 -0.18 -0.06 -0.18 1.00 -0.15

MAD Y Axis Static 0.19 0.11 0.14 0.10 -0.15 1.00

Table 2.6: Results of a multivariate logistic model including all selected features

Variable Odd’s Ratio 2.5% CI 97.5% CI P Value

Mean ODBA 0.28 0.09 0.66 0.01

Pitch SD 1.31 0.66 2.71 0.44

MAD Y Axis Static 1.28 0.62 2.57 0.48

Mean Pitch Angle 0.98 0.49 1.98 0.95

Median Roll Angle 2.04 0.92 5.01 0.09

ODBA Entropy 1.83 0.88 4.11 0.12
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2.4.2 Repeated Measures Daily Acceleration Models

When each day was treated as a separate collection period, and repeated measures

were controlled for, the scree plot of the MFA, shown in Figure 2.3, suggested 7 rather

than 6 dimensions would explain the majority of data variance.
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Figure 2.3: Scree plot showing the explained variance of the first 10 principal

components of the daily summarised feature-set resulting from an MFA analysis

As the MFA results in an output per grouping, in this instance per day, the mean

contributions per feature were taken as a summary of performance across the week,

Table 2.7 shows all features which achieved contributions within the top 5% (using a

threshold set at the contribution mean+2SD). The 7 features selected to be retained
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were; the spectral density of the second most dominant frequency of the VM3 (1.28 to

PC1), the spectral density of the second most dominant frequency of the Z axis (0.60

to PC2), the entropy of the power spectral density of the VM3 (1.01 to PC3), the power

spectral density of the dominant Y axis frequency (0.83 to PC4), the entropy of the Y

axis power spectral density (0.71 to PC5), the density of the second most dominant

frequency of the X axis spectrum (0.63 to PC6), and the most dominant frequency of

the Z axis power spectral density (0.58 to PC7).

Table 2.7: The mean contributions of the top 5% contributing features for each of the

first 7 component dimensions when the MFA contribution per day output has been

summarised per dog

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7

Mean Y Axis 0.32

Mean Y Axis Static 0.32

Mean Roll 0.32

Median Y Axis 0.32

Median Y Axis Static 0.32

Median Roll 0.33

X Axis Dominant PSD 0.54 0.47 0.47

Y Axis Dominant PSD 0.58 0.83 0.35

Z Axis Dominant PSD 0.54 0.44 0.58

VM3 Dominant PSD 1.24 0.80 0.30 0.40

X Axis 2nd Dominant PSD 0.72 0.63 0.42

Y Axis 2nd Dominant PSD 0.50 0.71 0.35

Z Axis 2nd Dominant PSD 0.60 0.40 0.55

VM3 2nd Dominant PSD 1.28 0.77 0.34

Y Axis 2nd Dominant PSD Freq. 0.31

X Axis PSD Entropy 0.64 0.43 0.57

Y Axis PSD Entropy 0.45 0.70 0.71 0.44 0.43

Z Axis PSD Entropy 0.73 0.43 0.30 0.39

VM3 PSD Entropy 0.56 0.48 1.01 0.88

The inclusion of each variable in separate mixed models, alongside only the random

effect of the individual, resulted in models which did not suitably explain the presence

or absence of osteoarthritis, as can be seen from the results in Table 2.8.
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Table 2.8: Results of the mixed logistic models, each including a random term

accounting for individual differences, for each of the 7 selected features

Variable Odd’s Ratio 2.5% CI 97.5% CI P Value Pseudo R2

VM3 2nd Dominant PSD 0.698 0.002 208.742 0.902 0.000

Z Axis 2nd Dominant PSD 1.133 0.102 12.608 0.919 0.000

VM3 PSD Entropy 1.177 0.028 48.793 0.932 0.000

Y Axis Dominant PSD 1.077 0.135 8.612 0.944 0.000

Y Axis PSD Entropy 0.605 0.056 6.485 0.678 0.000

X Axis 2nd Dominant PSD 1.089 0.088 13.435 0.947 0.000

Z Axis Dominant PSD 1.160 0.101 13.367 0.905 0.000

An examination of multicollinearity between features revealed a high positive cor-

relation between the dominant and second dominant densities of the Z axis power

spectrum (r = 0.85). Notable negative correlation were also present between the dom-

inant power spectral density of the Y axis and the entropy of the power spectrum of

the Y axis (r = -0.55), and between the dominant power spectral density of the VM3

representation and the entropy of the VM3 power spectral density (r = -0.66). The

contributions of each pair to the 7 principal components were compared and that with

the higher mean contribution was retained. The final model including all 4 retained

features performed poorly, as shown in Table 2.9, with no significant features and an

overall pseudo R2 value of <0.000025.
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Table 2.9: The intercorrelations of the 7 selected features to allow for removal of highly

correlated variables
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Table 2.10: Results of a mixed multivariate logistic model including all selected features

and a random effect accounting for the unaccounted variance between dogs

Variable Odd’s Ratio 2.5% CI 97.5% CI P Value

VM3 2nd Dominant PSD 0.72 0.00 217.88 0.91

Z Axis 2nd Dominant PSD 1.10 0.09 13.01 0.94

Y Axis Dominant PSD 1.07 0.12 9.33 0.95

X Axis 2nd Dominant PSD 1.07 0.08 13.68 0.96

2.4.3 Exploration of Variance in the Osteoarthritic Condition

The LOAD score of the two groups appeared to follow the expected increase corres-

ponding to osteoarthritis grouping, albeit with a large degree of within group variance,

with a mean of 5.11 years (± 5.19 SD) for the Control group and of 17.57 years (± 8.45

SD) for the Osteoarthritic group (Figure 2.4). Assessment of this relationship using a

t-test confirms that there was a significant difference in LOAD between groups (t(15) =

5.24, p < 0.001).
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Figure 2.4: Visualisation of the variation in group LOAD score

The features most highly indicative of osteoarthritic grouping, when assessed using

the logistic models above, were included in univariate linear regression models where

the output variable was the LOAD score. The mean weekly ODBA was significantly

associated with LOAD score (F(1,61) = 13.46, p < 0.001), with an R2 of 0.18. This is

shown in Figure 2.5 A) and reflects the relationships exposed by prior logistic regres-

sions. Similarly the 7 day mean of daily ODBA entropy (Figure 2.5 B)) also maintained
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a relationship with LOAD reminiscent of that shown in previous logistic models (F(1,61)

= 9.66, p = 0.003), with an R2 of 0.14.
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Figure 2.5: Regression of LOAD Score against A) Mean Weekly ODBA and B) 7 day

mean of ODBA entropy

2.4.4 Age Relatedness

To assess the potential influence of age an assessment of the difference between

the control and osteoarthritic groups was performed. Excluding the individuals whose

owners had not been able to supply an accurate age, the mean age of the sample was

7.7 years (± 3.9 SD). Within individual groups the mean age was 6.1 years (± 3.5 SD)

for control dogs and 11.3 years (± 2.7 SD) for osteoarthritic dogs (Figure 2.6). A t-test

assessing the ages of the two groups indicated a significant difference between groups

(t(26) = 5.85, p < 0.001) which confirmed the presence of this age-relatedness within

the sample.
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Figure 2.6: Visualisation of the variation in group ages

The use of the LOAD score in lieu of a binary diagnosis-based classification was

established through the assessment of the correlation between it and age. A strong

positive correlation (r = 0.67) is clear with an owner-perceived reduction in canine qual-

ity of life as age progresses (Figure 2.7).
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Figure 2.7: The relationship between LOAD Score and Age in years

An examination of the correlation between age and the features shown to be most

related to osteoarthritic group, mean weekly ODBA and the 7 day mean of daily ODBA

entropy, revealed both to have slight correlations. Figures 2.8 A) and B) show the

moderate negative correlation between mean weekly ODBA and age (r = -0.47) and

the weak positive correlation between 7 day mean of daily ODBA entropy and age (r =

0.29) respectively.
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Figure 2.8: Visualisation of the relationships between dog age and A) the mean weekly

ODBA or B) the 7 day mean of daily ODBA entropy

2.5 Discussion

The use of features previously established within the literature, to identify the presence

or absence of osteoarthritis in dogs, from 7 days of data collected by a single collar-

mounted tri-axial accelerometer, requires further investigation and methodological ad-

justment. This initial exploration has shown the relationships between accelerometer

data and positive or negative diagnoses to be difficult to establish and examine with

simple logistic models and aggressive, simplistic feature reduction techniques. This

may be due to the nature of the binary groupings used here, with individuals likely

varying greatly in the area affected by or their pain levels caused by the condition, or

the extent and management of the condition. The inclusion of linear models with LOAD

score as the output measure attempts to address this through the use of a measure of
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perceived quality of life. Additionally, an investigation of age, an established osteoarth-

ritis risk factor, was also performed to explore the potential of features were confounds

incorporated into models (Anderson et al., 2020). These results have provided some

insight into the possible issues with these methods and some indication of potential

next steps in establishing an effective methodology.

Summarising activity measures as single, weekly values provided the best results

from among both univariate and mixed model solutions. The PCA feature reduction

and subsequent univariate modelling revealed 2 of the ODBA related features (Mean

weekly ODBA and 7 day mean of daily ODBA entropy) to have a significant relationship

to the presence or absence of osteoarthritis. ODBA has been shown to be an effect-

ive proxy for the energy expenditure of many species (Gleiss et al., 2011; Miwa et al.,

2015; Qasem et al., 2012). This result could be indicative of a relationship between

the energy expenditure of dogs and osteoarthritis, with lower levels of expenditure be-

ing indicative of the condition, which has been commonly reported in humans and is

consistent with anecdotal reports from dog owners (Belshaw et al., 2016; Henchoz

et al., 2012; Mancuso et al., 2007; Roubenoff et al., 2002). The indication that higher

levels of entropy is indicative of osteoarthritis is notable and may suggest a heightened

level of behavioural fragmentation with less consistency in duration. In other words,

osteoarthritic dogs appear to be less active overall, but their periods of activity are also

less consistent and feature frequent breaks or changes in vigorousness. The linear

models that instead use LOAD score as the output measure, and as such the indicator

of osteoarthritic presence and severity, also reflect these relationships. However, as

this is an owner reported measure, and does not include questions requiring the spe-

cific assessment of a dogs osteoarthritis, the measure is possibly capturing variance

in the quality of life of the dogs examined, or more specifically the owners perception

of their own dogs quality of life and changes in this measure may therefore not be re-

lated to the presence or severity of osteoarthritis (Belshaw et al., 2016). The clearest

example of this potential for confound can be seen within the exploration of age as an

osteoarthritic risk factor and its inclusion in the linear models. Age is shown here to

be closely correlated with the ODBA based features and LOAD score while also being

significantly different between sample groups. As such, the effects of age, and other

potential confounds, should be considered and further explored when attempting to

use acceleration based measures for osteoarthritis prediction and gauging the severity

and impact of the condition. This supports the anecdotal reports of dog owners and

human osteoarthritis sufferers (Belshaw et al., 2016; Henchoz et al., 2012; Mancuso et

al., 2007; Roubenoff et al., 2002). Following from these analyses we must also ques-

tion the reliability of the LOAD scores gathered as each was collected by a different

individual. With advancing age, as illustrated in the models correlations given above,

a dogs activity levels naturally decline, this change may be perceived by the owner
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in such a way as to produce artificially high LOAD scores, alternatively a dog with no

known condition may be given an artificially low score due to an expectation of health

by the owner.

The poor performance of daily measures and the resultant repeated measures fea-

ture selection and models may be indicative of a heightened level of variation between

days that results in the obscurement of osteoarthritic state. This would result in the

smoothing of these inconsistencies when taking the mean value for a week lessen-

ing their influence and revealing an overall trend towards lower, more chaotic ODBA

levels. Such inconsistencies could be for several reasons. The first of these relates

to husbandry with owner schedules likely playing an important role in animal activity.

For example, non-anxious dogs are known to be less active when owners are absent,

something that would commonly occur daily with owner work schedules (Scaglia et al.,

2013). Similarly the current study did not account for the day of the week at which data

collection commenced leading to the occurrence of the weekend, where owners may

be more likely to be home all day, at different points of the collection period for each

dog. Another related potential reason is the inconsistency of exercise opportunities that

may be afforded by the owner. Inconsistency in walk times, changes to walk length,

or the absence of walking exercise on some days could each have impacted results

in terms of weekly activity level and entropy. It should be noted that this may also be

a cause of difference as an owners perception of their dogs osteoarthritis may lead

to changes in husbandry and exercise schedules that are owner rather than dog-led

(Belshaw et al., 2016).

2.6 Conclusion

It can be seen that simple measures, as frequently used in past studies, are not suf-

ficient to confidently identify osteoarthritic health. The two ODBA related measures

identified in this study as showing potential for the identification of osteoarthritis, or

for the recognition of a related reduction in physical or cognitive welfare, were insuf-

ficient for the task in isolation and using the regression based measures presented

here. However,this study has provided insight on what could be required to achieve

this and has successfully illustrated some of the considerations that should be made

when attempting automated osteoarthritic assessment. The features both summarised

the weekly energy expenditure of the animals and may also be indicative of other con-

ditions or, as shown in this chapter, of natural aging. Additionally, these features only

provide useful information regarding the welfare of an animal over a minimum of 7 days.

For veterinarians and researchers such a system could still be of use but in real-world

domestic applications a more immediate indication of current health and welfare would

be desirable to owners for indications of immediate change. The usefulness of ODBA
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shown here should be taken forward and inform future methods, as should the sus-

ceptibility of the features to osteoarthritic risk factors and confounds, but alternatives

should be sought to better monitor real time health. One potential avenue would be

the remote identification of behaviours themselves rather than the indications of their

vigorousness. By showing how dogs act within their environment the accelerometer

based system could provide information on what dogs want as well as the physical

component illuminated here by ODBA related variables.
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Chapter 3

The Automatic Categorisation of Postural Transitions of the
Domestic Dog

3.1 Abstract

The ability of individuals to transition between postures can be informative as to the

physical and cognitive condition of an individual. Within human medicine postural

transitions are frequently assessed and monitored for a number of conditions using

tests such as the Sit to Stand test. There has also been a wealth of research into

the replacement or supplementation of the qualitative assessment methods used, or

prohibitively expensive quantitative techniques, with more practical and affordable ac-

celeration based alternatives. The similarities displayed by domestic dogs when suf-

fering from such conditions coupled with their inability to communicate chronic pain

or cognitive issues, and the difficulty owners face in noticing such problems in the

early stages, presents a strong case for the development and application of equivalent

methods in veterinary practice. This chapter is an initial exploration and development of

such a technique focussing on the ability to identify postural transition events, between

three identified posture states, using features derived from collar-based accelerometer

devices. A series of linear discriminant analysis models were applied to data collected

from 20, kennel housed, Labradors with approximately 10 hours of annotated video

data and paired accelerometer data. A total of 51 features, derived from both hu-

man and animal based literature were assessed using 4 feature selection methods

and data windows with lengths of 2,3 or 5 seconds centred on the transitional event.

Additionally, the inclusion of each windows’ estimated cumulative distribution function

was assessed. All variations in methodology showed difficulty in the identification of

transitional events from among randomly sampled, non-transitional data. Results also

suggest difficulty in the differentiation of postural transitions from each other. This ini-

tial exploration therefore does not seem entirely promising however alternative meth-

ods of pattern recognition, further inspection of the data and altered methods of pre-

processing, alongside a reassessment of the calculated features and their applicability

should allow further insight into the ultimate practicality of such a task and these results

suggest more sophisticated, or entirely reformulated, methods are required.
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3.2 Introduction

The postural state of an individual constrains the potential behaviours available to be

performed (Grundy et al., 2009; Shepard et al., 2008b). To engage in their full rep-

ertoire of behaviours domestic dogs are therefore necessitated to frequently transition

between postures. These transitions could be of interest for a number of reasons but

foremost would be that their occurrence or absence could be indicative of an individuals

ability to perform normal behaviours, satisfy their needs, and, by extension, their abil-

ity to satisfy the five freedoms (Hart, 1988; Mellor, 2016). Extending this further the

perceived normality of the transitional movement, when it occurs, may provide further

insight into exactly how, and the extent to which, the health and welfare of the focal

individual has been affected.

Within human medical literature the examination of postural transitions is a well-

established indicator for a number of physical and cognitive conditions, such as Parkin-

sons disease and Osteoarthritis (Hickey et al., 2016; Rodríguez-Martín et al., 2013).

The sit to stand (SiSt-T) and timed up and go (TUG-T) tests are used by clinicians to

assess the presence or progression of such conditions and both revolve around the

efficiency and quality of a postural transition (Anan et al., 2015; Duncan et al., 2011;

Podsiadlo & Richardson, 1991). During these tests patients are asked to rise from a

sitting to a standing posture and the kinematics of the transition are examined by a

professional. The latter test also requires the patient to be timed as they perform the

task, walk a set distance and then return to a seated position. Remote sensing tech-

nologies, and the commercial proliferation of such devices for use as fitness trackers

and in medical practice and research, has led to a substantial quantity of literature at-

tempting to either provide a more comprehensive, quantitative equivalent of such tests,

to enhance the established assessments, or to capture such transitions during typic-

ally unobserved daily activity (Hickey et al., 2016; Millor et al., 2014; Rodríguez-Martín

et al., 2015; Rodríguez-Martín et al., 2013; Weiss et al., 2011; Yang & Hsu, 2010). Ac-

celerometers, and other sensor-based methods are used frequently due to their small

size, the ease with which they can be attached, the ability to deploy the devices longit-

udinally, and their relative inexpensiveness when compared to kinematic or force-plate

based instrumentation which can be prohibitively expensive and inaccessible (Belshaw,

2017).

The detection of posture and postural transitions in humans is typically performed

by sensors attached to the trunk or waist (Aminian & Najafi, 2004; Ganea et al., 2012;

Yang & Hsu, 2010). This is also often adhered to within behavioural ecological contexts

and could be considered preferable for postural detection due to the direct correlation of

trunk orientation and postural mode (Fourati et al., 2011; Grundy et al., 2009; Shepard

et al., 2008b). However, the unique conditions of the domestic dog result in the need to
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balance the expectations and perceptions of owners along with the usual attachment

constraints of comfort and habituation. As collars are required by law in the UK, when

dogs are in public areas, the majority of dogs already habituated to their presence and

owners are unlikely to object to the use of collars as an attachment method and such

implementations have been found previously to have high compliance rates (Westgarth

& Ladha, 2017). For these reasons a collar-based solution was proposed, despite the

additional impact of head movement.

The inability of dogs to self-report discomfort, illness or pain, presents a further

instance of utility for the longitudinal monitoring of transitions using accelerometers

(Belshaw et al., 2016). For example, human osteoarthritic sufferers frequently report

a temporal aspect to their chronic pain which is likely present in canine sufferers and

would possibly be missed during a single veterinary examination, or captured only once

severe, as current metrics of companion animal quality of life and condition, outside

of veterinary examination, are dependent on subjective owner report (Belshaw et al.,

2016; Reid et al., 2013). Post-operative rehabilitation and analgesic efficacy monitoring

are other potentially valuable longitudinal uses of such a sensor.

In this chapter the potential of automating the detection of postural transitions from

longitudinal accelerometer data was assessed. Drawing a set of features from across

both animal behavioural ecology and human medical literature an exploratory method-

ology was outlined and resulting models validated. This included the comparison of

identical methodologies across 3 different data window lengths (2, 3, and 5 seconds).

Linear Discriminant Analysis (LDA) classifiers were applied due to their ease of imple-

mentation and interpretation. LDA attempts to characterise a dependent variable as a

linear combination of features. To achieve this LDA maximises the separation between

classes while minimising separation within classes. During the initial LDA cross valid-

ation feature sets were reduced using one of 4 different selection methods. Once the

performances of all combinations of feature selection methods and window lengths had

been compared the most commonly selected features of the best performing combin-

ation was used to retrain the model and was then applied to novel data for validation.

These results were then interpreted to assess the possibility and practicality of correctly

identifying and differentiating between postural transition events from acceleration data

when further developing the methods for real use, such as in the development of auto-

mated equivalents to the SiSt-T and TUG-T for use with free-living dogs with a single

collar-based accelerometer sensor.
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3.3 Materials and Methods

3.3.1 Data Collection

A pre-existing sample (n = 20) of kennel-housed Labrador retrievers, consisting of 9

males and 11 females was used. All dogs within this sample were aged between 3

and 6 years of age with specific ages unavailable within the provided sample data. The

individuals included within this sample were known to be osteoarthritis-free.

Acceleration data were collected over a single day for each dog. Individuals were

fitted with a collar and Axivity AX3 tri-axial accelerometer, set to record at 100Hz, as

described in Chapter 2. The sensors were configured to run from 8am to 5pm on a

single data collection day.

A total of 21 hours 18 minutes and 25 seconds of video was taken of the dogs dur-

ing their daily walk and periods where they were able to access a communal paddock

area. Walking periods consisted of a on-lead walk, a training session and an off-lead

play session with the camera focussing on a single dog for a total duration of approx-

imately 30 minutes. Paddock-based videos were taken from a static observation point

outside of the area and focussed on multiple dogs simultaneously. Paddock periods

were spread throughout the morning and afternoon and lasted between 40 and 105

minutes with 1 to 3 videos captured per kennel grouping.

3.3.2 Video Annotation

Postural transitions occurring within the videos were annotated, by one observer, as

described in the ethogram provided in Table 3.1 using ELAN Version 5.7 software (Max

Planck Institute for Psycho-linguistics, 2019). Transitions which were obscured or out

of frame were ignored, even if posture had changed upon the dog re-entering the

camera’s field of view. Dogs were frequently observed using the sitting posture as

a brief, transitional phase between lying and standing. In such instances transitions

were considered distinct and were annotated as such where the description of sitting

(a position where fore-legs are extended and hind-legs flexed as described in Table

3.1) persisted for at least 1 second before beginning a further postural transition.

3.3.3 Accelerometer Data Processing

Accelerometer data were retrieved from the devices and resampled using the OMGUI

software (Open Lab, 2018) as described in Section 2.3. Resampled data were then

loaded into ELAN to calculate the offset time between the accelerometer reported

timestamps and the timing of the video annotations. At least three events per video,

distinct when viewed in both the video and acceleration data streams, such as jumping,
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Table 3.1: Ethogram of annotated postural transitions

Postural Transition Definition

Lie to Stand Subject moves from a ventral or lateral recumbent posture,

where weight is predominantly supported by belly with

sternum in contact with the floor or weight supported by

the side with the shoulder in contact with the floor, to a

standing position, where weight is supported exclusively by

three to four paws.

Lie to Sit Subject moves from a ventral or lateral recumbent posture,

where weight is predominantly supported by belly with

sternum in contact with the floor or weight supported by

the side with the shoulder in contact with the floor, to a

position where fore-legs are extended and hind-legs flexed.

Sit to Lie Subject moves from a sitting position where fore-legs are

extended and hind-legs flexed to a ventral or lateral

recumbent posture, where weight is predominantly

supported by belly with sternum in contact with the floor or

weight supported by the side with the shoulder in contact

with the floor.

Sit to Stand Subject moves from a sitting position where fore-legs are

extended and hind-legs flexed to a standing position, where

weight is supported exclusively by three to four paws.

Stand to Sit Subject moves from a standing position, where weight is

supported exclusively by three to four paws, to a position

where fore-legs are extended and hind-legs flexed.

Stand to Lie Subject moves from a standing position, where weight is

supported exclusively by three to four paws, to a ventral or

lateral recumbent posture, where weight is predominantly

supported by belly with sternum in contact with the floor or

weight supported by the side with the shoulder in contact

with the floor.

head movements and shaking were used as synchronisation events.Annotations were

then loaded into R 3.6.0 (R Core Team, 2018) and adjusted using the offsets to ensure

synchronisation. The function created to do this is included in Appendix B. A second

function was then run to create an equal number of annotations relating to a randomly

sampled "unknown" data class. This class is created to allow the assessment of future

model performance against non-focal behaviours or those behaviours not accounted
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for in the ethogram in Table 3.1. The code to generate these is included in Appendix C.

Attachment of devices to the collar of domestic animals is common but presents a

number of idiosyncrasies that should be considered and accounted for when compared

to alternative attachment methods (Brown et al., 2013; Westgarth & Ladha, 2017).

The most prominent of these is that the position of the device allows head and poten-

tially jaw movements to be detected. This could prove useful and informative however

neither are relevant to the current classification problem and the existence of the po-

tential differences caused by these movements should be kept in mind as possible

confounds. Additionally, the nature of using pre-existing data is such that sub-optimal

or non-ideal data collection methods cannot be addressed. In this sample, when walk-

ing the dogs, leads were attached to the collar and this, as described in Martin et al.

(2017), will result in abnormalities in the data during these periods due to any additional

acceleration caused by lead tension and pulling. The exclusion of these time periods

was not judged to be necessary due to the rarity of transition events during lead-walking

and attachment periods as well as the frequency of transitions immediately prior to and

after such periods.

The ethical attachment of the devices to individuals requires the use of sub-optimal

attachment methods that prioritises the comfort of the dog over data integrity. To be

comfortable for extended periods it is necessary that collars are not fit too tightly. There-

fore rotation of the device, about the neck, throughout the instrumented period, was un-

avoidable and may have produced additional confounding acceleration profiles within

the data, potentially highly disruptive due to the aim of detecting posture. As such a

modified rotation correction algorithm was applied to the data adapted from that de-

scribed in (Ladha et al., 2017).

Acceleration data were loaded into R 3.6.0 (R Core Team, 2018) and the static

component was calculated using the method described in Section 2.3. The mean of

the data was taken across each 5 second window, at 2.5 second intervals. Data were

then converted from Cartesian coordinates to spherical coordinates. When plotted

as coordinates a 1g sphere about the origin describes the acceleration due to gravity

acting upon a stationary object. It follows that when the sensor is stationary it falls near

or upon the described sphere. By searching the spherical coordinates of the averaged

data the windows signifying stationary periods can be identified. As this gravitational

component reduces minutely with elevation, the fact a living organism will never be

entirely still and that there exists a degree of signal noise, a leniency of +/-0.2g was

used to signify candidate windows and all windows with a ρ coordinate greater than

0.8g and less than 1.2g were extracted. A target stationary orientation was described

to coincide with the ideal ventral orientation as shown in Figure 2.1, this would be

approximately equivalent to (0,0,1) in 3-dimensional Cartesian coordinates. As the

collar can rotate only around the neck of the dog, and therefore can only rotate about
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the X axis, here equivalent to the dog’s medial-lateral plane (Figure 2.1), correction was

only attempted in the X axis. Rotation matrices corresponding to all possible rotations

about the X axis in 1° intervals were identified and applied. The resultant coordinates

with the shortest vectorial distance from the target coordinates was selected. This

matrix is then applied to each subsequent reading until a new stationary period is

identified and any rotation that had subsequently occurred could be accounted for and

corrected. The function code is available in Appendix D.

3.3.4 Feature Extraction

Once corrected the data were used to generate features across windows of set lengths

(2 seconds, 3 seconds and 5 seconds) centred on the annotation midpoints. The

window lengths used included the mean annotation period rounded down, average an-

notation period rounded up and 5 seconds to ensure no transition is captured incom-

pletely. Features were calculated for each axis individually as well as for a combination

measure, the signal vector magnitude of the three axes. The signal vector magnitude

(VM3) is described in Section 2.3. VM3 provides a summary of acceleration across all

three axes that would be unaffected by any rotational interference that has not been

fully corrected by the prior algorithm.

A collection of 13 time-domain features, common in both human and animal activity

classification literature, were calculated to attempt to characterise the windows of ac-

celeration and any inter-relationships (Martiskainen et al., 2009; Nathan et al., 2012;

Ravi et al., 2005; Rodríguez-Martín et al., 2015; Shepard et al., 2008b; Watanabe et

al., 2005). Features are calculated using the appropriate, in-built, R functions except

where stated. Included were 3 measures of central tendency: mean, median and root

mean square. Root mean square was calculated by taking the square root of the win-

dow mean. 6 measures of statistical dispersion were also calculated; minimum value,

maximum value, range, standard deviation, mean absolute deviation and, interquart-

ile range. Shannon’s entropy was calculated per window to give an indication of the

internal stochasticity, or predicability, of acceleration data within a window and was cal-

culated using the entropy function of the entropy package (Hausser & Strimmer, 2014).

Skewness and kurtosis of the windows were also calculated to provide an indication

of the asymmetry and tailedness of the focal window using functions included in the

e1071 package (Meyer et al., 2019). The paired correlation between axes was calcu-

lated for each combination of the X, Y and Z axes as described in Ravi et al. (2005).

Calculating each of these across the 3 axes and VM3 results in 51 features per window.

All feature calculation code can be found in Appendix E.

The above features were calculated with the aim of characterising the distribution

of the acceleration data of each axis and to identify the strength or absence of any

53



Chapter 3

relationships between axes. Due to the nature of accelerometer data it is often difficult

to fully summarise with simplistic and computationally efficient methods such as those

previously described. Hammerla et al. (2013) propose the Empirical Cumulative Distri-

bution Function (ECDF) as an alternative approach to the characterisation of data that

can more precisely represent the statistical characteristics of time series data when

compared to the calculation of more traditional statistical features and their selection.

Both Ladha et al. (2013) and Kumpulainen et al. (2018) have employed this method

with domestic dogs using K-nearest neighbour and discriminant analysis based classi-

fiers respectively. The ECDF for each window of each axis, and VM3, was calculated

using the ECDF function that is part of base R. From here, the inverse ECDF is cal-

culated through interpolation and 100 equally spaced points are selected to produce

a 100 dimension data representation for further selection. The number of calculated

ECDF coefficients was limited to 100 to limit the computational strain of the method

and avoid problems of dimensionality when training classifiers. The function provided

in Appendix F was used to achieve this.

The initial method of feature selection was a manual selection drawing on domain

knowledge, and related inferences, and experience of the data from prior processing.

This subset excluded all X axis variables as the movements within the medial-lateral

plane have been subdued through the application of the rotation correction algorithm

and because the movements involved in postural transitions were observed as being

most extreme along the anterior-posterior and dorsoventral planes. Root mean square

was the only measure of central tendency to be retained, as an established measure of

acceleration magnitude within animal remote monitoring (Spivey & Bishop, 2013), and

the minimum, maximum and standard deviation features were included as dispersion

metrics. Kurtosis, skewness, entropy and the correlation between the Y and Z axis

were also included.

3.3.5 Model Implementation and Feature Selection

LDA is applied here using the MASS R package implementation (Ripley, 2008; Ven-

ables & Ripley, 2002).

A k-fold cross-validation method, where k = 5, was used to assess the performance

of the entire start-to-finish procedure of model building and feature selection. To al-

low for a final validation of models resulting from the cross-validation a total of 6 folds

were sampled using a stratified sampling method as implemented in the caret package

partitioning functions (Kuhn. et al., 2019). One fold was removed from the data, so to

not be used in the training of the models, and designated as the validation set. The

5 remaining folds were then used within the k fold cross-validation. The rarity of the

"Lie to Sit" and "Sit to Lie" classes (see Table 3.2) results in a distinct class imbalance
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Table 3.2: Frequencies of postural transitions and the randomly sampled "unknown"

class

Transition

Classifica-

tion

Frequency

Lie -> Sit 13

Lie -> Stand 186

Sit -> Lie 56

Sit -> Stand 375

Stand -> Lie 145

Stand -> Sit 570

Unknown 1345

across many classification tasks focussing on these two transitions. This therefore ne-

cessitated the removal of these classes or of entire classification tasks to alleviate the

threat of over-fitting models when subsampled for both validation and cross-validation

and to reduce the adverse effects of class imbalance on the performance of the LDA

classifier (Xie & Qiu, 2007).

At any point where model assessment is required during cross validation, to com-

pare the performance of two feature subsets within a stepwise methodology for ex-

ample, the area under the curve (AUC) of the receiver operating characteristics (ROC)

curve, where model True Positive rate (sensitivity) is plotted against the False Positive

rate (1-specificity), is used as produced by the ROCR package (Hanley & McNeil, 1982;

Sing et al., 2005). The AUC is used to assess performance here as it is easily compar-

able across differing models and feature subsets. It presents a measure of perform-

ance accounting for all possible classification thresholds, all points on the ROC curve,

and indicates the probability that the classification algorithm will be able to effectively

separate the positive and negative classes. The higher the AUC, the more pronounced

the ROC curve, and the more effective a model is at consistently maximising the True

Positive rate and minimising the False Positive rate across all classification thresholds.

A suite of 8 different classification tasks were proposed and assessed for their per-

formance in either the detection of postural transitions or in the ability to identify the

transition occurring. The first of these reclassifies all classes, except those labelled

as "Unknown", into a generic "Postural Transition" class. The aim was to establish the

performance of using feature sets drawn from literature, along with a simplistic classific-

ation model, for the identification of transitional events from among a random sampling

of non-transitional periods. It is the only model to include the "Unknown" class as other
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models operate on the assumption that transition identification has been previously

performed using this, or an alternative, methodology. The 4 subsequent tasks focus on

the discrimination of a single class (i.e. Lie to Stand, Sit to Stand, Stand to Lie, and

Stand to Sit) from all others. This is achieved by labelling the focal transition as the pos-

itive class and all others as a generic negative class. Lie to Sit and Sit to Lie classes are

not included as positive classes in this set of models due to their low frequencies within

the dataset, contributing less than 1% and less than 5% of the dataset respectively,

when not including the unknown class (Table 3.2). Such low frequencies of a positive

class can cause difficulties in the assessment of performance using the AUC and the

undersampling of data to address this would negatively impact the wider assessment

of model performance (Berrar & Flach, 2011). The 6th and 7th tasks paired classes

that feature inverse movements (i.e. Lie to Stand/Stand to Lie, and Sit to Stand/Stand

to Sit). The Sit to Lie/Lie to Sit model was not included, this was once again due to

low class frequencies. Classification task 8 paired the classes into two combinations

delineated by their direction of movement, up from a lying position to that of a sit or

stand posture or down to a lying position from a sit or stand posture. In this model

transitions between sit and stand are excluded as it is intended to examine the ability

of the calculated features to recognise the distinct forelimb extension motion common

to the transition from lie to both other positions, as well as the inverse motion.

As stated previously many of the calculated features are variations upon similar

statistical representations of the data (e.g. mean, median and root mean square) and

as such are likely to exhibit high multicollinearity. To address this, prior to feature selec-

tion multicollinearity is assessed through the calculation of the variance inflation factor

(VIF). The VIF assesses the degree to which the variance of one feature is increased

due to the existence of in-feature multicollinearity (James et al., 2013; Mansfield &

Helms, 1982; Zuur et al., 2010). It is used here to provide estimates of linear and

higher order collinearity among features and implemented using a stepwise method-

ology that removes the feature with the highest VIF value and recalculating VIF for

the remaining feature-set until all VIF values are below a threshold of 5 (James et al.,

2013).

Each of the above described classification tasks were run on reduced feature sub-

sets excluding collinear variables. Further refinement of feature subsets was then per-

formed using 4 simple and distinct methods of feature selection. Feature selection

methods allow the selection of optimal subsets of features that can lower the compu-

tational overhead of future implementations of a classification model by removing the

need to calculate extensive numbers of features and hold them in memory, and sim-

ultaneously allows for the improvement of model performance by identifying the most

relevant features and removing those with no or negative performance contribution.

The ECDF representation was included as a single feature and its dimensionality was
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tuned within the cross-validation as a model hyper-parameter, with number of dimen-

sions reported with model results. This was performed after the selection of other

features and performance of the models was calculated both with and without the in-

clusion of the ECDF representation. Models were also produced that used the ECDF

representation as the only feature, as presented in Vij et al. (2017).

One model was processed using the manually selected features mentioned pre-

viously. An alternative subset of features was selected through forward stepwise se-

lection. An empty model was populated feature by feature based on the largest im-

provement to the AUC of the ROC curve. When no further improvement is gained by

the addition of features, or the AUC remains stable despite the addition of features,

the process is terminated and the posterior probabilities of the resultant model calcu-

lated. A third reduced feature set was then calculated using the inverse methodology to

forward stepwise selection, backward stepwise feature selection, beginning with a full

model and removing features in order of which results in the greatest improvement to

the AUC. The fourth method of feature selection is correlation feature selection (CFS)

as described in Hall (1999) and implemented in the FSelector R package (Romanski &

Kotthoff, 2018). CFS uses a best-first search algorithm to calculate the feature subset

that best maximises the correlation of each feature with the dependent variable while

simultaneously minimising the correlation between features.

Once feature subsets have been calculated an additional step of adding and tuning

the ECDF representation for each individual axis and combinations of axes is per-

formed. ECDF representation based features are assessed both as the only feature

set and as features included alongside feature subsets established by the previous se-

lection methods. The 100 equally spaced inverse ECDF points that were previously

calculated are repeatedly sub-setted to produce feature sets of between 1 and 100

equally spaced points. These are then assessed for the feature number and which

combination of axes provides the highest AUC.

Posterior probabilities of test data produced by each LDA model, calculated within

each fold of the cross-validation loop are combined and exported for interpretation

alongside the coinciding observed classifications. The tuned ECDF representation

numbers and model subsets are also exported for each fold and LDA model. Perform-

ance of classifiers and feature subsets produced by the differing selection methods is

presented using 5 distinct metrics. AUC is calculated as in the cross-validation perform-

ance assessment from the ROC curve and provides an indication of general classifier

performance at all potential decision thresholds and gives an indication of the models

ability to effectively separate the positive and negative classes. The higher the AUC,

the more pronounced the ROC curve, and the more effective a model is at consist-

ently maximising the True Positive rate and minimising the False Positive rate across

all classification thresholds.
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The ROC curve is then used to calculate an optimal threshold to use when calculat-

ing a number of other performance measures that require the threshold to be set. This

threshold was determined by finding the point at which the True Positive Rate (TPR)

was maximised and False Positive Rate (FPR) was minimised through the identification

of the point where subtraction of the FPR from the TPR is highest. These thresholds

are then used to calculate 3 performance metrics used here.

The first of these is the TPR at the threshold selected. The TPR is also known

as the Sensitivity and indicates the proportion of positive windows correctly identified.

As previously stated a ROC curve is the TPR plotted against the FPR. The FPR is

calculated as 1-Specificity where the Specificity indicates the proportion of correctly

identified negative windows within the total number of negative windows. The 3rd of

the performance measures used for assessment is the model Precision at the selected

threshold. Precision is the proportion of correctly identified positive class windows from

all windows identified as the positive class. Following these descriptions the best per-

forming model is that which produces the highest values of each, therefore minimising

the occurrence of misclassification of both positive and negative classes (Sensitivity

and Specificity) and ensures that the selection parameters are not causing excessive

misclassification by facilitating a high TPR at the expense of a high FPR (Precision).

To rapidly assess each of these metrics combination measures that allow insight into

the balance between Precision, Sensitivity, and Specificity are used here.

The first of the 2 combination measures is the AUC which has already been cal-

culated and allows insight into the overall performance of the model with respect to

the interplay of the Sensitivity and Specificity. The second to be calculated is the F

measure which is the harmonic mean of the Sensitivity and Precision values and in-

dicates the effectiveness of the model at correctly identifying positive classes without

generalising excessively and causing a high number of False Positives. F measure was

chosen over the more ubiquitous accuracy measure as accuracy often fails to control

for this occurrence in what is commonly termed the "Accuracy Paradox". Both of these

combination measures provide general summaries of the model performance and can

be used to rapidly assess the overall performance of a model relative to alternatives.

Where two different models provide the highest values of AUC and F score the sens-

itivity, specificity, and precision will then be compared individually for a more detailed

indication of the assets and liabilities of each model.

Once a model building methodology has been selected data used within the cross

validation is recombined and used to train a final model. This final model is created

through a rudimentary feature voting method that draws variables used in greater than

50% of cross validation folds, taken here as a simplistic measure of model importance,

from the most highly performing cross validated model. This is then applied to the

previously excluded validation dataset to generate final performance metrics of a model
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on data to which it is entirely naive and therefore to indicate the degree of over-fitting

that may have occurred.

3.4 Results

The manually selected feature subset was consistent across the different models and

was constructed to attempt to characterise both the anterior-posterior and dorsoventral

acceleration based on knowledge gained during the video observation and annotation

procedure. Additionally the application of the rotation correction is such that it will po-

tentially, as well as adjusting for rotation of the sensor in either medial-lateral direction,

subdue medial-lateral acceleration and the accentuate dorsoventral acceleration. The

VM3 focussed features were also not included. VM3 functions as a summary of all three

axes and as a representation of total acceleration magnitude and so with the inclusion

of two of the three axes being summarised, coupled with the observed lack of variation

in visually assessed postural transition energy noted during the annotation procedure,

it was decided that the inclusion of VM3-based features would have limited impact.

The assessment of VIF revealed a varying number of features with strong relation-

ships dependant on the classification problem posed (i.e. postural transition identific-

ation from randomly sampled miscellaneous data, Lie to Stand from all other postural

transition events, etc.) and the window length.

3.4.1 Postural Transition Identification

The detection of postural transition events from among randomly sampled miscel-

laneous data is shown in Table 3.3. As previously described the data were divided

into two parts, a combined class of postural transitions (N = 1345), and class com-

prised of randomly sampled non-transitional data (N = 1345). One sixth of the data

was removed for validation (N = 448) resulting in a training set of 2242 cases that was

further assigned into 5 cross-validation folds. A 50/50 class composition, consistent

with the full data set, was maintained for training, testing and validation datasets.

When using a 2 second window length the Backward + ECDF method provides the

greatest values for both AUC (0.618) and F score (0.638), and is therefore selected

for further comparison. This method reports the highest value of sensitivity (0.706)

relative to the other methods assessed and lower relative values of specificity (0.492)

and precision (0.582).

Window lengths of 3 seconds and the use of a Backward + ECDF derived feature

set again produce the highest values of AUC (0.619) and F score (0.635), and again the

sensitivity (0.695) of the models devised through this method is the highest reported

when using this window size. The specificity (0.506) and precision (0.584) are lower
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than those reported by alternative models. As such, the Backward + ECDF method will

be considered for use in the creation of the validation model.

The performance of the 5 second window methods shows both the Forward + ECDF

and Backward + ECDF feature selection procedures as viable options. The Forward

+ ECDF method produces the highest F score (0.634), and second highest of both

AUC (0.632) and sensitivity (0.700). The values of specificity (0.490) and precision

(0.578) are low relative to other methods assessed using a 5 second window. In con-

trast, the assessment of the performance of the Backward + ECDF method reveals

the highest reported value of AUC (0.646), the third highest F score (0.617), and the

second highest Precision (0.605) relative to the alternative methods. Both sensitivity

(0.630) and specificity (0.590) are low when compared across the assessed methods.

As the Forward + ECDF performance provides the highest relative rankings for the two

combined measures it is the candidate selected as the best option for the 5 second

window length.

A comparison of the selected models from each of the three window sizes fails to

clearly expose any one option as optimal when considering the combined measures,

AUC and F score. Assessment of models focussing on metrics of sensitivity, spe-

cificity and precision reveals an imbalance between sensitivity and the other metrics in

methods using either the 2 second or 5 second window sizes. As such the Backward

+ ECDF method using a 3 second window size is chosen to construct the validation

LDA model. Figure 3.1 shows how frequently features and ECDF representations were

included within the 5 cross-validation folds. 10 features were included in greater than

50% of cross-validation folds alongside the ECDF representations of the Z axis and the

VM3. Both ECDF representations were comprised of a mean of 28 (± 33 SD) ECDF

coefficients resulting in a validation model using a total of 66 features, with 56 of those

being ECDF coefficients. The AUC of the resultant LDA model, when applied to the

validation data, is 0.560 and the decision threshold, selected to maximise TP classi-

fications and minimise FP classifications, is 0.511. At this threshold the sensitivity is

0.460, specificity is 0.634, precision is 0.557, and F score is 0.504.
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Table 3.3: The performance statistics of the identification of postural transitions using

LDA. Each permutation of feature selection and window size is presented with the

highest performers highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.551 0.387 0.706 0.568 0.460 0.522

Manual + ECDF 0.588 0.484 0.664 0.590 0.532 0.514

ECDF 0.590 0.665 0.477 0.560 0.608 0.487

Forward 0.537 0.525 0.549 0.537 0.531 0.500

Forward + ECDF 0.588 0.459 0.684 0.592 0.517 0.513

Backward 0.611 0.685 0.509 0.583 0.630 0.485

Backward + ECDF 0.618 0.706 0.492 0.582 0.638 0.484

CFS 0.559 0.604 0.498 0.546 0.573 0.490

CFS + ECDF 0.591 0.669 0.490 0.567 0.614 0.489

3 Seconds

Manual 0.556 0.522 0.583 0.556 0.538 0.492

Manual + ECDF 0.603 0.633 0.529 0.574 0.602 0.483

ECDF 0.609 0.618 0.550 0.579 0.598 0.495

Forward 0.559 0.459 0.632 0.554 0.502 0.500

Forward + ECDF 0.609 0.657 0.508 0.572 0.612 0.489

Backward 0.601 0.548 0.621 0.591 0.569 0.493

Backward + ECDF 0.619 0.695 0.506 0.584 0.635 0.482

CFS 0.555 0.638 0.452 0.538 0.584 0.486

CFS + ECDF 0.607 0.543 0.629 0.594 0.568 0.499

5 Seconds

Manual 0.571 0.706 0.409 0.544 0.615 0.462

Manual + ECDF 0.623 0.616 0.576 0.593 0.604 0.490

ECDF 0.624 0.398 0.780 0.644 0.492 0.534

Forward 0.568 0.490 0.617 0.561 0.523 0.496

Forward + ECDF 0.632 0.700 0.490 0.578 0.634 0.474

Backward 0.615 0.633 0.561 0.591 0.611 0.486

Backward + ECDF 0.646 0.630 0.590 0.605 0.617 0.492

CFS 0.555 0.425 0.667 0.561 0.483 0.502

CFS + ECDF 0.628 0.646 0.555 0.592 0.618 0.485
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Figure 3.1: The frequency of inclusion of features within cross-validation of Postural

transition classification models. The 2.5 threshold is marked.
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3.4.2 Lie to Stand Transition Identification

Randomly sampled non-transitional data were excluded, all non-Lie to Stand transitions

were grouped into a combined, negative class (n = 1159), and Lie to Stand transitions

were assigned to the positive class (n = 186). A validation dataset comprising one

sixth of the data was removed for validation (n = 224) resulting in a training set of 1121

cases to be further split into train and test sets through the 5 fold cross-validation.

Class composition was maintained within each data subset. Performance metrics of

the automatic differentiation of Lie to Stand transitions from the combined class of all

other postural transitions is shown in Table 3.4.

Using a 2 second window length the Backward + ECDF is selected for further con-

sideration. The values of AUC (0.672) and F score (0.332) are the highest reported

using this window length, satisfying the selection criteria. The values of sensitivity

(0.768) and precision (0.212) are the second and third highest recorded respectively

but the specificity (0.541) is relatively low for the window size.

The 3 second window length presents Backward + ECDF feature selection as the

optimal method choice as it gives the highest values of AUC (0.688) and F Score

(0.351) as well as relatively high values of both specificity (0.654) and precision (0.237).

The sensitivity (0.671) of models created with this method of feature selection is lower

than alternatives but at the cost of the other metrics.

A window size of 5 seconds again suggests a Backward + ECDF method as having

produced the best performing feature set due to it providing the highest values for AUC

(0.719), sensitivity (0.742), precision (0.257) and F score (0.381). However, the value

of specificity (0.655) given is lower than those of other methods of feature selection

using a 5 second window size.

Comparison across the three window sizes reveals that the use of a Backward +

ECDF feature selection method and a 5 second window size has produced the highest

performing feature sets, except in terms of specificity where a 2 second window size

and Backward only method perform better. As both the AUC and F score of the method,

functioning as representations of the balance between the sensitivity/specificity and

sensitivity/F score dichotomies, are higher than the two alternative window sizes this is

the method chosen to construct the validation model.

Figure 3.2 shows the frequency of features selected using the Backward + ECDF

method, for 5 second window length data, across the 5 folds of the cross-validation. 10

features occurred in greater than 50% of cross validation folds and therefore were used

alongside the ECDF representation of the VM3, which also met this inclusion criteria.

A mean of 9 (± 7 SD) ECDF coefficients per fold were used during cross validation.

This number of coefficients were combined with the selected features to build an LDA

model consisting of 19 total features for validation on the previously withheld validation
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data. The AUC of the validated model was 0.463. A decision threshold of 0.062 was

selected as previously described. At this cut-off the sensitivity of the validation model

was reported as 1.000 but specificity, precision and F score were 0.067, 0.147, and

0.256 respectively.

Table 3.4: The performance statistics of the identification of lie to stand transitions

using LDA. Each permutation of feature selection and window size is presented with

the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.554 0.729 0.392 0.161 0.264 0.121

Manual + ECDF 0.620 0.594 0.638 0.209 0.309 0.137

ECDF 0.631 0.690 0.571 0.205 0.317 0.137

Forward 0.555 0.581 0.543 0.169 0.262 0.139

Forward + ECDF 0.642 0.484 0.762 0.246 0.326 0.160

Backward 0.651 0.490 0.759 0.246 0.328 0.161

Backward + ECDF 0.672 0.768 0.541 0.212 0.332 0.130

CFS 0.495 0.916 0.159 0.149 0.256 0.129

CFS + ECDF 0.649 0.542 0.704 0.227 0.320 0.152

3 Seconds

Manual 0.556 0.606 0.518 0.168 0.263 0.137

Manual + ECDF 0.641 0.626 0.588 0.196 0.298 0.130

ECDF 0.659 0.710 0.588 0.217 0.332 0.140

Forward 0.553 0.458 0.654 0.175 0.254 0.145

Forward + ECDF 0.631 0.484 0.761 0.245 0.325 0.160

Backward 0.642 0.594 0.688 0.234 0.336 0.150

Backward + ECDF 0.688 0.671 0.654 0.237 0.351 0.147

CFS 0.496 0.968 0.070 0.143 0.249 0.121

CFS + ECDF 0.660 0.723 0.553 0.206 0.320 0.139

5 Seconds

Manual 0.626 0.652 0.566 0.194 0.299 0.127

Manual + ECDF 0.684 0.613 0.681 0.236 0.341 0.141

ECDF 0.664 0.581 0.706 0.241 0.340 0.151

Forward 0.599 0.490 0.683 0.199 0.283 0.143

Forward + ECDF 0.686 0.665 0.673 0.246 0.359 0.143

Backward 0.695 0.684 0.643 0.235 0.350 0.141

Backward + ECDF 0.719 0.742 0.655 0.257 0.381 0.143

CFS 0.507 0.161 0.885 0.184 0.172 0.167

CFS + ECDF 0.649 0.639 0.601 0.205 0.310 0.139
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Figure 3.2: The frequency of inclusion of features within cross-validation of Lie to Stand

transition classification models. The 2.5 threshold is marked.

3.4.3 Sit to Stand Transition Identification

Randomly sampled non-transitional data were excluded, all non-focal transitions were

grouped into a combined, negative class (n = 970), and Sit to Stand transitions were

assigned to the positive class (n = 375). A validation dataset comprising one sixth of

the data was removed for validation (n = 224) resulting in a training set of 1121 cases

to be further split into train and test sets through the 5 fold cross-validation. Class

composition was approximately maintained within each data subset. The performance

of feature subset selection methods for the classification of Sit to Stand postural trans-

itions from among a combined dataset of other postural transitions is shown in Table

3.5.

When using a 2 second window size the Backward + ECDF provides the highest

values of the two combined measures, AUC (0.656) and F score (0.505), relative to

other methods. Using this method the sensitivity (0.728), and precision (0.386) are

both the second highest among alternatives using a 2 second window length. However

the specificity (0.553) is low relative to alternatives.
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Increasing the window length to 3 seconds results in the Backward + ECDF meth-

odology again being the optimal choice of model in comparison to alternatives of the

same window size. The Backward + ECDF method produces the highest values of

both of the combined measures, AUC (0.641) and F score (0.495). Additionally this

technique provides the highest value of precision (0.384), the second highest value of

specificity (0.569), and the third highest value of sensitivity (0.696) relative to other 3

second window size methods.

The 5 second window length performance metrics again suggest the Backward +

ECDF method of feature selection as the technique which produces the best classi-

fier. With the highest values of both AUC (0.686) and F Score (0.520) the Backward

+ ECDF methodology also presents the best value of precision (0.446) and third best

of specificity (0.700). The sensitivity (0.623) of the technique is lower than alternative

methods but is the highest attained that did not adversely impact specificity or preci-

sion.

A comparison of the Backward + ECDF method across each of the three window

lengths reveals that a 5 second window size, using a Backward + ECDF method of

feature selection produces the most effective LDA classifier with higher values for the

two combined measures, specificity, and precision. The increase to both combined

measures confirms that the decrease in sensitivity is offset by the higher levels of spe-

cificity and precision exhibited by model using this method. Figure 3.3 shows which

features and ECDF representations were selected during cross validation of the model

and the frequency of occurrence for each. 17 features occurred in greater than 50%

of cross-validation folds and are included in the validation model. No ECDF represent-

ation occurred in greater than 50% of folds but, as shown in Table 3.5, the inclusion

of an ECDF representation had a positive effect on performance, when compared to

a Backward only approach, a finding consistent across the three window size options.

As such the ECDF representation with the highest frequency, VM3 is included in the

final model. A mean of 53 (± 19 SD) ECDF coefficients are included in ECDF rep-

resentations during the 5 fold cross-validation. The validation LDA model is therefore

comprised of 70 individual features, with 53 of these being the VM3 ECDF coefficients.

Testing the newly trained LDA model, using this feature subset, on the validation data

gives an AUC of 0.551. At an optimised decision threshold of 0.250 the Sensitivity is

0.661, Specificity is 0.481, Precision is 0.328, and F Score is 0.439.
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Table 3.5: The performance statistics of the identification of sit to stand transitions

using LDA. Each permutation of feature selection and window size is presented with

the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.522 0.738 0.326 0.298 0.424 0.250

Manual + ECDF 0.604 0.498 0.670 0.369 0.424 0.291

ECDF 0.605 0.482 0.691 0.377 0.423 0.280

Forward 0.547 0.684 0.443 0.322 0.438 0.271

Forward + ECDF 0.624 0.629 0.590 0.372 0.468 0.257

Backward 0.622 0.728 0.503 0.362 0.484 0.271

Backward + ECDF 0.656 0.728 0.553 0.386 0.505 0.271

CFS 0.490 0.112 0.928 0.376 0.172 0.284

CFS + ECDF 0.614 0.556 0.663 0.389 0.458 0.270

3 Seconds

Manual 0.519 0.545 0.522 0.306 0.392 0.277

Manual + ECDF 0.609 0.769 0.449 0.350 0.481 0.233

ECDF 0.607 0.696 0.491 0.346 0.462 0.261

Forward 0.543 0.631 0.458 0.310 0.416 0.273

Forward + ECDF 0.621 0.702 0.520 0.361 0.477 0.262

Backward 0.612 0.638 0.579 0.369 0.468 0.279

Backward + ECDF 0.641 0.696 0.569 0.384 0.495 0.270

CFS 0.512 0.606 0.448 0.298 0.399 0.278

CFS + ECDF 0.620 0.663 0.558 0.367 0.473 0.257

5 Seconds

Manual 0.557 0.348 0.769 0.368 0.358 0.313

Manual + ECDF 0.659 0.613 0.667 0.416 0.496 0.284

ECDF 0.649 0.732 0.537 0.380 0.500 0.257

Forward 0.531 0.735 0.329 0.298 0.424 0.269

Forward + ECDF 0.657 0.687 0.579 0.387 0.495 0.256

Backward 0.634 0.559 0.668 0.395 0.463 0.295

Backward + ECDF 0.686 0.623 0.700 0.446 0.520 0.288

CFS 0.537 0.760 0.329 0.305 0.435 0.267

CFS + ECDF 0.649 0.553 0.707 0.422 0.479 0.278
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Figure 3.3: The frequency of inclusion of features within cross-validation of Sit to Stand

transition classification models. The 2.5 threshold is marked.

3.4.4 Stand to Lie Transition Identification

Randomly sampled non-transitional data were excluded, all non-focal transitions were

grouped into a combined, negative class (n = 1200), and Stand to Lie transitions were

assigned to the positive class (n = 145). A validation dataset comprising one sixth

of the data was removed for validation (n = 224) resulting in a training set of 1121

cases to be further split into train and test sets through the 5 fold cross-validation.

Class composition was approximately maintained within each data subset. Table 3.6

shows the performance metrics of feature selection methodologies for the design of

LDA classifiers of Stand to Lie transitions across 3 window lengths.

With data segmented into windows of 2 seconds the Backward + ECDF methodo-

logy is the most consistently well-performing method. The technique gives the highest

values for the two combined measures, AUC (0.735), and F Score (0.348), and the

highest reported value of precision (0.226). Additionally Backward + ECDF gives the

second highest level of specificity (0.688), and the third highest of sensitivity (0.758)

making it the optimal choice for the window size.
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Using a data window length of 3 seconds results in a similar outcome. The Back-

ward + ECDF methodology provides the best performing feature subset with the highest

values of both combined methods, AUC (0.738) and F score (0.355), and of specificity

(0.773), and precision (0.248). The sensitivity (0.620) is lower than alternative tech-

niques but, as shown by the high values of the combined measures, this reduction is

offset by the levels of both specificity and precision.

A 5 second window length presents Backward + ECDF as, once again, producing

the best performing feature subsets. The AUC (0.732), F score (0.380), and precision

(0.276) are the highest values given for the window size among all assessed feature

selection methodologies. The specificity (0.806) is the second highest reported, where

the higher method, the manually selected subset, features significant degradation in

the other two measures and, as a result, in the combined measures. The sensitivity

(0.612) is low relative to other strategies of feature selection but all those with a higher

sensitivity also show degradation in specificity or precision.

Despite lower values of AUC and F score, when compared to the 3 second Back-

ward + ECDF method, the 5 second Backward + ECDF method is selected as providing

the best feature subsets for use in building a validation model. This is due to the higher

levels of both specificity and precision being judged as more important to the current

classification task than a slight decrease in sensitivity. Figure 3.4 shows the frequency

at which features were selected across the 5 folds of the cross validation. 9 features

and 1 ECDF representation, the representation of the Z axis. occurred in greater than

50% of cross validation folds. A mean of 11 (± 7 SD) ECDF coefficients were used to

form the ECDF representations used in the Backward + ECDF method of each cross

validation fold. The final validation model therefore consists of a total of 20 features, 11

of which are the Z axis ECDF coefficients. An AUC of 0.660 is attained when perform-

ance is assessed using the validation data. The selection of the decision threshold by

maximising the TPR and minimising the FPR results in an optimal threshold of 0.111.

The Sensitivity of the model is 0.625, the Specificity is 0.630, the Precision is 0.169,

and the F Score is 0.265.

69



Chapter 3

Table 3.6: The performance statistics of the identification of stand to lie transitions

using LDA. Each permutation of feature selection and window size is presented with

the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.593 0.508 0.665 0.154 0.236 0.117

Manual + ECDF 0.655 0.700 0.558 0.160 0.260 0.098

ECDF 0.682 0.733 0.575 0.172 0.278 0.118

Forward 0.531 0.600 0.505 0.127 0.210 0.107

Forward + ECDF 0.662 0.767 0.537 0.166 0.273 0.107

Backward 0.699 0.667 0.697 0.209 0.318 0.121

Backward + ECDF 0.735 0.758 0.688 0.226 0.348 0.121

CFS 0.621 0.533 0.685 0.169 0.257 0.121

CFS + ECDF 0.689 0.783 0.550 0.173 0.283 0.114

3 Seconds

Manual 0.582 0.463 0.683 0.150 0.227 0.117

Manual + ECDF 0.649 0.777 0.497 0.157 0.262 0.085

ECDF 0.698 0.769 0.569 0.177 0.288 0.114

Forward 0.608 0.686 0.504 0.143 0.237 0.109

Forward + ECDF 0.694 0.860 0.474 0.165 0.277 0.094

Backward 0.706 0.769 0.591 0.185 0.299 0.111

Backward + ECDF 0.738 0.620 0.773 0.248 0.355 0.133

CFS 0.598 0.562 0.651 0.163 0.253 0.120

CFS + ECDF 0.692 0.579 0.731 0.206 0.304 0.131

5 Seconds

Manual 0.560 0.289 0.849 0.188 0.228 0.153

Manual + ECDF 0.644 0.645 0.599 0.163 0.260 0.094

ECDF 0.668 0.512 0.770 0.212 0.300 0.137

Forward 0.601 0.678 0.508 0.143 0.236 0.108

Forward + ECDF 0.673 0.661 0.623 0.175 0.277 0.115

Backward 0.708 0.645 0.756 0.242 0.352 0.129

Backward + ECDF 0.732 0.612 0.806 0.276 0.380 0.140

CFS 0.626 0.653 0.620 0.172 0.272 0.118

CFS + ECDF 0.680 0.636 0.675 0.192 0.294 0.125
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Figure 3.4: The frequency of inclusion of features within cross-validation of Stand to

Lie transition classification models. The 2.5 threshold is marked.
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3.4.5 Stand to Sit Transition Identification

Randomly sampled non-transitional data were excluded, all non-focal transitions were

grouped into a combined, negative class (n = 775), and Stand to Sit transitions were

assigned to the positive class (n = 570). A validation dataset comprising one sixth of

the data was removed for validation (n = 224) resulting in a training set of 1121 cases

to be further split into train and test sets through the 5 fold cross-validation. Class

composition was approximately maintained within each data subset. The performance

of LDA classifiers of Stand to Site transitions, using different feature selection methods

and window sizes, is presented in Table 3.7.

When using a 2 second window length the Backward + ECDF feature selection

methodology presents the most balanced performance with the highest values of AUC

(0.662) and F score (0.606). The sensitivity (0.682) is the third highest of the window

size and the precision (0.545) is the second highest. However, the specificity (0.582)

of models produced using this method suffers relative to alternatives.

The Backward + ECDF methodology is the highest performing method when using

a 3 second window length. The values of both AUC (0.670) and F score (0.615) are the

highest among those using the same window length. The sensitivity (0.682) of models

created using the method is the third highest of those using the same window length,

and the precision (0.560) is the highest reported. A low specificity (0.605), compared

to alternatives, is the highest achieved without negatively impacting other metrics of

performance.

Using a 5 second window length the Backward + ECDF method once again pro-

duces the most balanced models in regards to performance across the calculated

metrics. The AUC (0.669) and F score (0.586) are both the highest values reported

for the window size despite all of the three contributing measures, sensitivity (0.594),

specificity (0.681), and precision (0.578), being exceeded by alternative methods.

Comparing the 3 selected methods from across the 3 different sizes of windows

shows 3 second windowed data with the Backward + ECDF method of feature selec-

tion to be the best choice with which to construct a validation model, as shown by

the higher values of the two combination measures, from which it can be inferred that

models constructed with this window size, using this method, exhibit a more balanced

performance across the three individual performance factors. Using this method does

require the sacrifice of some degree of specificity and precision, where the 5 second al-

ternative excels, but the increased sensitivity is shown to offset this. Figure 3.5 shows

the frequency of occurrence of each of the features selected by the method during

cross validation. Of these 10 features and 1 ECDF representation were selected in

greater than 50% of cross validation folds. The ECDF representation of the Y axis con-

sisted of a mean of 13 coefficients (± 14 SD). Therefore, the resultant model consists
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of 23 individual features. When tested using the validation data an AUC of 0.571 is

given. 0.407 was selected as the optimal decision threshold, as described previously,

and was used for the calculation of the other performance metrics. The Sensitivity of

the model was 0.621, the Specificity was 0.546, the Precision was 0.500, and the F

Score was 0.554.
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Table 3.7: The performance statistics of the identification of stand to sit transitions

using LDA. Each permutation of feature selection and window size is presented with

the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.563 0.398 0.720 0.511 0.447 0.438

Manual + ECDF 0.618 0.684 0.498 0.501 0.578 0.365

ECDF 0.614 0.539 0.630 0.517 0.528 0.403

Forward 0.578 0.764 0.365 0.470 0.582 0.397

Forward + ECDF 0.633 0.434 0.763 0.574 0.494 0.450

Backward 0.644 0.625 0.594 0.531 0.574 0.408

Backward + ECDF 0.662 0.682 0.582 0.545 0.606 0.398

CFS 0.575 0.566 0.565 0.489 0.525 0.409

CFS + ECDF 0.616 0.669 0.526 0.510 0.579 0.387

3 Seconds

Manual 0.558 0.408 0.707 0.507 0.452 0.436

Manual + ECDF 0.598 0.503 0.678 0.535 0.518 0.421

ECDF 0.634 0.558 0.656 0.544 0.551 0.413

Forward 0.601 0.724 0.429 0.483 0.580 0.409

Forward + ECDF 0.632 0.545 0.660 0.542 0.544 0.411

Backward 0.651 0.674 0.571 0.536 0.597 0.407

Backward + ECDF 0.670 0.682 0.605 0.560 0.615 0.404

CFS 0.513 0.817 0.239 0.441 0.573 0.382

CFS + ECDF 0.617 0.493 0.709 0.555 0.522 0.429

5 Seconds

Manual 0.569 0.699 0.415 0.468 0.560 0.375

Manual + ECDF 0.630 0.539 0.656 0.536 0.537 0.407

ECDF 0.616 0.518 0.684 0.547 0.532 0.421

Forward 0.601 0.615 0.551 0.502 0.553 0.418

Forward + ECDF 0.647 0.383 0.841 0.639 0.479 0.468

Backward 0.648 0.531 0.718 0.581 0.554 0.433

Backward + ECDF 0.669 0.594 0.681 0.578 0.586 0.419

CFS 0.547 0.423 0.666 0.482 0.451 0.426

CFS + ECDF 0.622 0.691 0.503 0.505 0.584 0.370
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Figure 3.5: The frequency of inclusion of features within cross-validation of Stand to

Sit transition classification models. The 2.5 threshold is marked.
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3.4.6 Lie to Stand and Stand to Lie Combined Class Identification

Randomly sampled non-transitional data were excluded, and both Lie to Stand and

Stand to Lie transitions were grouped into a combined positive class (n = 331). The

negative class consists of the remaining transitions (n = 1014). A validation dataset

comprising one sixth of the data was removed for validation (n = 224) resulting in a

training set of 1121 cases to be further split into train and test sets through the 5 fold

cross-validation. Class composition was approximately maintained within each data

subset. The performance of the 5 fold cross validated performance across a range of

feature selection methods and window sizes is presented in Table 3.8.

Both the Backward + ECDF and Backward only methods gave the best measures of

performance when using data with a 2 second window length. The Backward + ECDF

method gave the highest value of AUC (0.675), and the second highest value of F score

(0.463), despite a low value of sensitivity (0.496). This is likely due to the method

providing the highest values of both specificity (0.788), and precision (0.434). The

Backward only method provides the second highest value of AUC (0.665) and highest

of F score (0.470), a result of the heightened value of sensitivity (0.605) providing

enough of an offset to the reduced precision (0.385) but insufficient for the reduction

in specificity (0.684). The more strict, but more precise model, Backward + ECDF, is

chosen for further consideration.

Performance measures for a window size of 3 seconds reveals the Backward +

ECDF method as producing the best performing feature sets. The AUC (0.664) and F

score (0.475) are both the highest among the alternative methods of feature selection

using the 3 second window size. The sensitivity (0.725) and precision (0.353) are

both the third highest reported and specificity (0.567) is relatively low in comparison to

alternative methods.

The best method of feature selection for a 5 second window is once again the

Backward + ECDF method. Both of the combined measures, AUC (0.696) and F score

(0.492), are the highest reported. The sensitivity (0.815) is the second highest among

the methods of feature selection using a 5 second window. The specificity was 0.510

and the precision was 0.352.

In a comparison of the models selected from each of the 3 window sizes the 5

second Backward + ECDF method is the best general model, when assessed by its

values of the combination measures, AUC and F Score, by which it outperforms both

other models. This is likely due to the high level of sensitivity given by this model that

offsets sub-optimal levels of both precision and specificity. Figure 3.6 provides a list of

all features included across the 5 folds of the cross validation, including which ECDF

representation were used, and the frequency of feature occurrence. 10 non-ECDF

based features were included in greater than 50% of cross validation folds. No ECDF
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representation was included in greater than 50% of cross validation folds. As a result

the most frequent ECDF representations were selected, the Y and Z axis representa-

tions, to create the ECDF portion of the Backward + ECDF methodology. The Y axis

and Z ECDF representations consisted of a mean of 9 coefficients (± 13 SD). The

final LDA model created from this is therefore composed of 28 individual features, 18

of which are the two included ECDF representations. When performance is assessed

using the validation data the resultant LDA model gives an AUC of 0.570. The decision

threshold is set at 0.208, the point at which TP results are maximised and FP results

are minimised as described previously. At this threshold the sensitivity is 0.782, the

specificity is 0.355, the precision is 0.283, and the F score combination measure is

0.415.
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Table 3.8: The performance statistics of the identification of the combined class of lie

to stand and stand to lie transitions using LDA. Each permutation of feature selection

and window size is presented with the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.580 0.420 0.710 0.321 0.364 0.283

Manual + ECDF 0.617 0.630 0.578 0.328 0.431 0.259

ECDF 0.643 0.761 0.457 0.314 0.444 0.241

Forward 0.612 0.688 0.522 0.320 0.437 0.247

Forward + ECDF 0.647 0.743 0.503 0.328 0.455 0.242

Backward 0.665 0.605 0.684 0.385 0.470 0.264

Backward + ECDF 0.675 0.496 0.788 0.434 0.463 0.291

CFS 0.572 0.475 0.660 0.313 0.378 0.275

CFS + ECDF 0.633 0.529 0.685 0.354 0.424 0.283

3 Seconds

Manual 0.562 0.471 0.637 0.297 0.365 0.265

Manual + ECDF 0.628 0.736 0.490 0.320 0.446 0.234

ECDF 0.639 0.623 0.633 0.357 0.454 0.272

Forward 0.582 0.601 0.544 0.301 0.401 0.249

Forward + ECDF 0.653 0.667 0.601 0.353 0.462 0.261

Backward 0.657 0.540 0.746 0.409 0.466 0.268

Backward + ECDF 0.664 0.725 0.567 0.353 0.475 0.247

CFS 0.560 0.529 0.595 0.299 0.382 0.262

CFS + ECDF 0.633 0.739 0.501 0.326 0.452 0.250

5 Seconds

Manual 0.624 0.442 0.751 0.367 0.401 0.284

Manual + ECDF 0.661 0.717 0.563 0.349 0.470 0.230

ECDF 0.658 0.583 0.665 0.363 0.447 0.266

Forward 0.604 0.696 0.509 0.316 0.435 0.245

Forward + ECDF 0.676 0.837 0.454 0.334 0.477 0.226

Backward 0.685 0.714 0.599 0.368 0.485 0.241

Backward + ECDF 0.696 0.815 0.510 0.352 0.492 0.224

CFS 0.557 0.627 0.489 0.286 0.393 0.245

CFS + ECDF 0.639 0.757 0.475 0.320 0.450 0.226
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Figure 3.6: The frequency of inclusion of features within cross-validation of Lie to Stand

and Stand to Lie Combined Class classification models. The 2.5 threshold is marked.

3.4.7 Sit to Stand and Stand to Sit Combined Class Identification

Randomly sampled non-transitional data were excluded, and both Sit to Stand and

Stand to Sit transitions were grouped into a combined positive class (n = 945). The

negative class consists of the remaining transitions (n = 400). A validation dataset

comprising one sixth of the data was removed for validation (n = 224) resulting in a

training set of 1121 cases to be further split into train and test sets through the 5 fold

cross-validation. Class composition was approximately maintained within each data

subset. The performance of the classification of transitions between Sit and Stand

postures, regardless of the direction, is displayed in Table 3.9 and assessed to inform

the construction of a validation model.

When using a 2 second window size the Backward + ECDF method of feature

selection gave the best performance across the 5 folds of the cross validation. Both

AUC and F score were the highest reported for the window size (0.663 and 0.730

respectively), suggesting the Backward + ECDF method exhibits the highest values of

sensitivity (0.666), specificity (0.628), and precision (0.809) that are attainable while
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maintaining inter-measure balance.

A 3 second window size suggests either the Backward + ECDF method or the

Forward + ECDF method of feature selection. Models created using the Backward +

ECDF method gave the highest value of AUC (0.667) and the second highest value

of precision (0.820). The sensitivity, specificity, and F score were 0.592, 0.694 and

0.688 respectively. The Forward + ECDF method gave the highest F score (0.741),

and second highest value of AUC (0.659), of methods using a 3 second window size.

Both the specificity (0.571) and precision (0.793) were lower than those reported for the

Backward + ECDF method. However, the sensitivity (0.695) was higher and the third

highest reported for the window size. As a result of the relative ranking of combined

measures the Forward + ECDF method was selected for further consideration.

Separating data into larger 5 second windows and assessing performance presents

three models as potential choices for comparison. The Forward + ECDF method pro-

duces the highest F score (0.770) and sensitivity (0.753) among the alternatives as-

sessed here. The specificity (0.523), precision (0.789), and AUC (0.655) are all low

relative to values produced by alternative methods. The second method of interest,

the Backward + ECDF method, gives the highest AUC (0.687) of the feature selec-

tion techniques assessed. The precision (0.812) of this method is the second highest

recorded, and the specificity (0.628), while low relative to other methods, is higher

than that reported by the Forward + ECDF method. This is countered by the relatively

low values of sensitivity (0.680) and F score (0.740). The Backward only method is

notable as a compromise between the two previously outlined methods. This is due

to the combined measures, AUC (0.672) and F score (0.750), both being the second

highest values reported for the window size, and values of sensitivity (0.707), specificity

(0.580), and precision (0.799) which all fall between those reported by the other two

methods. For these reasons it is the Backward only method that exhibits the most bal-

anced performance across the measures of interest and will therefore be considered

further.

A comparison of the methods chosen from the 3 window sizes reveals the 5 second

Backward only method as having the highest performance across both of the combined

measures of AUC, and F score. Figure 3.7 presents a summary of all features that were

selected for inclusion in the 5 models generated by the chosen method during the 5

fold cross validation. 14 features occurred in greater than 50% of cross validation folds.

When used to classify the previously excluded validation data an AUC value of 0.616

is achieved. A decision threshold, optimised so as to maximise TPs and minimise FPs,

of 0.650 is used. At this threshold the sensitivity of the model is 0.834, the specificity

is 0.388, the precision is 0.762, and the F score is 0.796.
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Table 3.9: The performance statistics of the identification of the combined class of sit

to stand and stand to sit transitions using LDA. Each permutation of feature selection

and window size is presented with the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.561 0.615 0.498 0.743 0.673 0.680

Manual + ECDF 0.626 0.635 0.601 0.790 0.704 0.674

ECDF 0.651 0.558 0.724 0.827 0.666 0.690

Forward 0.582 0.521 0.619 0.764 0.619 0.698

Forward + ECDF 0.660 0.632 0.640 0.806 0.708 0.669

Backward 0.632 0.640 0.616 0.797 0.710 0.696

Backward + ECDF 0.663 0.666 0.628 0.809 0.730 0.689

CFS 0.544 0.628 0.480 0.741 0.680 0.683

CFS + ECDF 0.630 0.476 0.739 0.812 0.600 0.702

3 Seconds

Manual 0.579 0.698 0.435 0.745 0.720 0.667

Manual + ECDF 0.632 0.572 0.643 0.791 0.664 0.692

ECDF 0.654 0.637 0.604 0.791 0.706 0.668

Forward 0.584 0.393 0.766 0.798 0.526 0.705

Forward + ECDF 0.659 0.695 0.571 0.793 0.741 0.662

Backward 0.645 0.525 0.718 0.815 0.638 0.719

Backward + ECDF 0.667 0.592 0.694 0.820 0.688 0.708

CFS 0.589 0.704 0.453 0.753 0.728 0.673

CFS + ECDF 0.655 0.454 0.793 0.838 0.589 0.719

5 Seconds

Manual 0.601 0.565 0.592 0.766 0.650 0.703

Manual + ECDF 0.645 0.637 0.598 0.789 0.705 0.686

ECDF 0.658 0.698 0.589 0.801 0.746 0.663

Forward 0.552 0.443 0.673 0.762 0.560 0.705

Forward + ECDF 0.655 0.753 0.523 0.789 0.770 0.654

Backward 0.672 0.707 0.580 0.799 0.750 0.683

Backward + ECDF 0.687 0.680 0.628 0.812 0.740 0.684

CFS 0.586 0.334 0.823 0.817 0.474 0.722

CFS + ECDF 0.658 0.626 0.643 0.806 0.704 0.680
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Figure 3.7: The frequency of inclusion of features within cross-validation of Sit to Stand

and Stand to Sit Combined Class classification models. The 2.5 threshold is marked.
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3.4.8 Directional Transition Identification

Randomly sampled non-transitional data, and transitions between sitting and standing

postures were excluded. Transitions from a sit or stand posture to that of a lying posture

were grouped into a combined positive class (n = 201). The negative class consists

of the remaining transitions from lying to standing or sitting (n = 199). A validation

dataset comprising one sixth of the data was removed for validation (n = 66) resulting

in a training set of 334 cases to be further split into train and test sets through the

5 fold cross-validation. Class composition was approximately maintained within each

data subset. The classification performance of feature selection methods attempting to

discriminate between movements to and from a lying position is shown in Table 3.10.

The ECDF only and Manual + ECDF methods of feature selection each meet the

selection criteria when using a 2 second window length. The Manual + ECDF method

gives the highest value of F score (0.644), and the third highest of sensitivity (0.806)

among the methods examined. However, the AUC (0.610), specificity (0.393), and

precision (0.536) are each outperformed by alternative methods. LDA models consist-

ing only of ECDF representations of the axes performed the best in regards to AUC

(0.667) and gave the second highest value of F score (0.634). The ECDF only method

gave a low sensitivity (0.658), relative to many of the other assessed methods, but the

third highest values of both specificity (0.635), and precision (0.611). As a result of

the relative rankings of the two combined measures the ECDF only method of model

construction was chosen.

When using a 3 second window size both the Forward + ECDF and Backward +

ECDF methods satisfy the selection criteria. The Forward + ECDF method gives the

highest values of the AUC (0.675) and precision (0.641). The F score (0.636) of the

method is the second highest recorded, but both the sensitivity (0.632) and specificity

(0.691) are outperformed by other methods. The Backward + ECDF method gives the

highest values of F score (0.674) and of sensitivity (0.794). The AUC (0.673) is the

second highest reported for the window size. Both the specificity (0.511) and precision

(0.586) using the Backward + ECDF method are lower than alternative methods. As

the relative rankings of the two viable methods are equal the values of the contributing

measures are assessed. The Forward + ECDF method is selected due to the more

equal distribution of performance across the three metrics.

The performance of methods using a 5 second window highlights two methods

which satisfy the selection criteria. The Backward stepwise feature selection method

gives the second highest AUC (0.687), the highest sensitivity (0.755), the third highest

value of precision (0.619), and the highest achieved F score (0.680). The specificity

(0.596) did not outperform alternative methods. The addition of an ECDF representa-

tion, the Backward + ECDF method, gave the highest values of AUC (0.721), specificity
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(0.725), and precision (0.671). The F score (0.658) was the second highest among the

assessed methods. The sensitivity (0.645) of the Backward + ECDF technique was

relatively poor in comparison to alternative methods assessed. The relative rankings

of the two summary measures, AUC and F score, for the two methods were equivalent

and as such the three contributing measures, sensitivity, specificity, and F score, were

assessed. Therefore, the Backward + ECDF method was chosen due to the higher

relative rankings among the three measures.

A comparison of the performance of the 3 selected methods provides support for

the use of a 5 second window length and the selection of features based on those used

by the Backward + ECDF methodology. Figure 3.8 gives a list of all features, and ECDF

representations, included in the 5 feature subsets, generated with this methodology,

during cross validation. 16 features and 1 ECDF representation, that of the Z axis, were

selected in greater than 50% of cross-validation folds. A mean of 10 (± 5 SD) ECDF

coefficients formed the ECDF representations resulting in an LDA model consisting of

26 individual features to use with the validation data. The model achieves an AUC of

0.429. At an optimised decision threshold of 0.776 the model achieves a sensitivity of

0.097, a specificity of 0.972, a precision of 0.750, and an F score of 0.171.
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Table 3.10: The performance statistics of the identification of the directional grouped

transition classes using LDA. Each permutation of feature selection and window size is

presented with the highest performers highlighted

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

2 Seconds

Manual 0.534 0.819 0.303 0.506 0.626 0.387

Manual + ECDF 0.610 0.806 0.393 0.536 0.644 0.400

ECDF 0.667 0.658 0.635 0.611 0.634 0.457

Forward 0.557 0.568 0.584 0.543 0.555 0.469

Forward + ECDF 0.662 0.639 0.652 0.615 0.627 0.466

Backward 0.652 0.665 0.601 0.592 0.626 0.468

Backward + ECDF 0.657 0.600 0.730 0.660 0.628 0.486

CFS 0.464 0.884 0.140 0.472 0.616 0.450

CFS + ECDF 0.648 0.677 0.567 0.577 0.623 0.463

3 Seconds

Manual 0.483 0.535 0.506 0.485 0.509 0.463

Manual + ECDF 0.550 0.645 0.478 0.518 0.575 0.451

ECDF 0.641 0.561 0.719 0.635 0.596 0.472

Forward 0.559 0.755 0.388 0.518 0.614 0.439

Forward + ECDF 0.675 0.632 0.691 0.641 0.636 0.476

Backward 0.654 0.619 0.669 0.619 0.619 0.474

Backward + ECDF 0.673 0.794 0.511 0.586 0.674 0.425

CFS 0.494 0.310 0.758 0.527 0.390 0.471

CFS + ECDF 0.648 0.561 0.713 0.630 0.594 0.469

5 Seconds

Manual 0.598 0.568 0.612 0.561 0.564 0.475

Manual + ECDF 0.632 0.581 0.646 0.588 0.584 0.480

ECDF 0.622 0.613 0.596 0.569 0.590 0.465

Forward 0.586 0.626 0.573 0.561 0.591 0.458

Forward + ECDF 0.669 0.645 0.640 0.610 0.627 0.455

Backward 0.687 0.755 0.596 0.619 0.680 0.439

Backward + ECDF 0.721 0.645 0.725 0.671 0.658 0.478

CFS 0.531 0.748 0.371 0.509 0.606 0.464

CFS + ECDF 0.678 0.671 0.657 0.630 0.650 0.456

85



Chapter 3

0

1

2

3

4

5

X
M

ed
ia

n
Y

M
ed

ia
n

V
M

3
M

ed
ia

n
Z

M
ax

im
um

Y
A

bs
ol

ut
e

M
ea

n
Y

S
ke

w
ne

ss
Z

S
ke

w
ne

ss
V

M
3

S
ke

w
ne

ss
X

K
ur

to
si

s
Y

K
ur

to
si

s
Z

K
ur

to
si

s
V

M
3

K
ur

to
si

s
X

IQ
R

Y
IQ

R
Z

IQ
R

X
E

nt
ro

py
Y

E
nt

ro
py

Z
E

nt
ro

py
X

Y
C

or
re

la
tio

n
Y

Z
C

or
re

la
tio

n
X

Z
C

or
re

la
tio

n
X

E
C

D
F

Y
E

C
D

F
Z

E
C

D
F

Features

Fr
eq

ue
nc

y
of

S
el

ec
tio

n

Figure 3.8: The frequency of inclusion of features within the cross-validation of the

classification of directional combined transitions. The 2.5 threshold is marked.

3.5 Discussion

The detection of postural transition events is challenging when attempted on a ho-

mogenous population of healthy dogs. The potential for such event-based methods

to prolong the operational lifespan of deployed devices, by strategically reducing the

data captured and stored on a device, or in using transitions to postures of interest as

triggers for more intensive capture or analyses, makes such a finding disappointing.

The AUC values provided by the 8 validation models presents an unexceptional

picture of performance with values ranging from 0.429 to 0.660. As previously stated,

the AUC is a representation of the sensitivity/specificity dichotomy and its effect on a

models ability to correctly balance these aspects when discriminating between groups.

Review of the F scores of the validation models gives a more variable picture of per-

formance, ranging from a low of 0.171 to a high of 0.796. Some of this variation can

be accounted for in the relative difficulty, or even the uncovered impossibility, of the

classification tasks themselves. These classification tasks can be grouped into four

groups, postural transition detection, identification of a single transition type, identifica-
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tion of a group of inverse transitions, and detection of direction of travel. Each of these

groupings serve to outline the nature of the tasks and aid in the broad formation of

relevant conclusions. It should also be noted that such delineation of tasks is useful in

understanding the potential practical uses of such classifiers in the formation of hier-

archical classification methods (Chakravarty et al., 2019; Mathie et al., 2004; Zhang

et al., 2010). Additionally, combined measures, although useful for rapid assessment

of performance, particularly when using more than one measure, are insufficient for

the further assessment of models. The full examination of where model performance

suffers requires discussion and interpretation of the three constituent measures of per-

formance, sensitivity, specificity, and precision. This also ensures that high values of

any one value are not masking the performance of another within the combined meas-

ures.

The first classification task, and the only one to include the randomly selected non-

transitional data, aimed to identify the occurrence of a transition event regardless of the

postures that are moved between or the direction of travel. The intent was to identify if

there was, within the acceleration of the collar-mounted device, some common mark-

ers or features of transitional movements. The performance of the differing methods of

feature selection and ECDF inclusion give promising values across the different met-

rics of performance but acceptable or exceptional values are often coupled with low

values of opposed measures. The use of a 3 second window size for data and the

Backward + ECDF method of feature selection that was selected produced a validation

model that ultimately underperformed when applied to the validation data previously

withheld. This suggests either a degree of over-fitting had occurred during the previ-

ous performance assessment or that the method of feature selection used, the simple

voting method based on the feature subsets generated across the cross-validation,

had not been sufficient. As a result it is difficult to justify the use of such a classi-

fier for further use. The features calculated are unable to provide a distinct definition

of a posture transition behaviour, which could be due to the breadth of movements

this encapsulates, the variety possible within the non-transitional data, and the limited

nature of the features themselves in accounting for these aspects. Class frequencies

were artificially equalised, through random subsampling of the non-transitional data,

and the poor performance that occurs despite the focal class being artificially amplified

suggests a distinct difficulty in the data-driven definition of a "postural transition event".

These shortcomings of the methodology, and the resulting models, continue to oc-

cur when examining the second through to, and including, the fifth classification task, a

group of tasks each attempting to characterise the distinctions between a focal trans-

ition and all other transitions. These models were constructed with an ideal dataset,

unaffected by the shortcomings of the first classifications task, as would occur if running

within a hierarchical methodology, that was composed entirely of postural transitions
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and did not include any non-transitional data. These tasks each focussed on a much

more limited movement that occurred in a singular direction and between set postural

states. However, despite this the performance of the models produced for validation

displayed little improvement. Due to the more focussed nature of the task it is difficult to

justify poor performance as a result of a high level of variance in the focal movements.

The similarity of the movements, particularly those that are inverted directionally from

each other, may also introduce difficulties in the delineation of transitions. The short-

comings of the features are another likely explanation of this. The poor performance

given by the validation model of each task, despite being trained on a dataset consisting

only of postural transitions, further highlights the lack of suitability of these classifiers

for further applications, where such data would not be as "clean" and the accrued error

could be severe.

The Sit to Stand, Stand to Lie and Stand to Sit tasks each provide similar levels

of sensitivity, with the number of identified true positive results ranging from 62.1% to

66.1% of the total positive classes, but suffer in regards to other metrics. The specificity

of the Sit to Stand model, the best performing of the three when assessed by sensitivity,

suggests that only 48.1% of non-"Sit to Stand" transitions are identified correctly. With

greater than 50% of the majority, negative class being falsely identified as positive the

precision suffers with only 32.8% of those identified as positive being true positives.

The validation model created for the inverse transition, Stand to Sit, was the highest

overall performer when considering all three metrics simultaneously, despite only giving

the highest value for precision. The performance of the model in terms of precision

revealed a 50% split between true and false positives, again suggesting the model

would be difficult to use in a real setting. The relationship between precision and

prevalence, namely that with increased prevalence but consistent values of sensitivity

and specificity the precision will also increase, it is likely that the perceived increase in

precision is therefore partly due to the higher frequency of occurrence of the Stand to

Sit transition (Table 3.2).

The Lie to Stand transition is proven the most problematic to classify, with the val-

idation model succeeding in correctly identifying 100% of the focal transition but at the

cost of mislabelling 93.3% of the negative class transitions which leads to just 14.7%

of positive classified cases being true positives. This outcome illustrates the sensitiv-

ity/specificity and sensitivity/precision dichotomies under which the models operate as

well as the issues in generalisability and overhitting that have occurred when applying

models constructed from the feature selection methodologies to validation data.

The third classification group considered the possibility of similarity between in-

verse movements resulting in high confusion, and, if so, whether combining inverse

transitions into a single group would result in improvements to the classification abil-

ity. Both models, the first attempting to find transitions between lie and stand posture

88



Chapter 3

regardless of direction, and the second attempting to extract transitions between sit

and stand postures regardless of direction, showed high levels of sensitivity, identify-

ing 78.2% and 83.4% of true positives respectively. However, both also showed poor

specificity with 64.5% and 61.2% of negative classes misclassified. A more distinct

difference between the two models is presented by the values of precision given. The

lie to/from stand transition model provides a very low value of precision, with 28.3% of

windows identified as positive being correct, whereas the sit to/from stand model gives

a higher value, with 76.2% correctly identified. This finding would make the sit/stand

model a promising choice for further examination. However, the sit/stand transitional

classes were the most frequently occurring within the dataset (Table 3.2) and it is likely

that this result of precision is more reliant on the prevalence of the class rather than on

a real improvement to model performance. This is well illustrated by the similarity of

the other measures of the two models within this classification group.

The final classification task attempts to identify the potential of a directional group-

ing method to narrow the selection of possible transitions. It is clear from the values

of both sensitivity and specificity that the validation model derived from the prior cross-

validation suffered from a distinct decrease in performance. This suggests a lack of

generalisability of the model to data that has not been used for training and may be

compounded further by the more limited sample size of this task. This was due to the

exclusion of the most frequently observed transitions, those between a sit and stand,

due to the lack of upward or downward directionality.

Almost every assessed classification task presented the Backward + ECDF model

as the highest performing method of feature selection. The consistency of this result

lends further weight to the argument that the methods used here are not sufficient for

the task. The backward stepwise selection, with feature exclusion assessed using the

relative increase to AUC observed, is a greedy method of feature selection that typic-

ally results in large feature sets with a high level of redundancy (Derksen & Keselman,

1992; Mao, 2004). This suggests a difficulty in identifying features which provide a

clear distinction between the classes assessed across each classification task and is

shown by the frequent instability of selected feature sets, with many selected occur-

ring in fewer than half of cross-validation folds, implying an interchangeability between

features despite prior exclusion of those which are highly correlated. The difficulty of

calculated models to provide a clear class distinction based on the supplied features is

further supported by the consistent inclusion of the ECDF representation across 7 of th

8 assessed models. This was added as an alternative data representation which would

highlight the insufficiency in the ability of the time-domain features to characterise the

differences between classes (Hammerla et al., 2013). The underperformance of the

Backward + ECDF method despite its inclusion of a more granular representation of

the windowed data suggests that this may not be a case of incorrectly selected time-
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domain features, where methods including or exclusively using the ECDF would be the

highest performers. It is perhaps more likely that the location of the sensor and the

nature of the acceleration experienced by the sensor are obscured. This could, for the

first assessed classification task, be due to the wide range of motion and behaviours

that closely resemble the acceleration profiles of postural transitions, or, for the other

tasks which exclude non-transitional data, the differences between transitions being

difficult to define and discern when represented and summarised in the time domain.

Further separation of classes could be achieved with dimensional reduction methods,

such as principal component analysis (PCA), which would aim to consolidate features

into those few that best characterise the variation within the dataset. However, in this

case the improvement would likely be marginal and the cost of abstraction, the loss

of the ability to speak in more real terms as to what features are of interest within a

model, makes further exploration of such adjustments a less appealing prospect. An

alternative classification method would be required due to the potential conflict of the

PCA methodology with an LDA classifier (Sunderam et al., 2007). Additionally, the

methods used for model construction and assessment place a high level of importance

on sensitivity as a performance indicator. Both F score and AUC are calculated using

the sensitivity and this is apparent when viewing the results. Stepwise elimination and

selection methods were also optimised using only the AUC measure. The metric was

chosen due to its assessment of performance across all potential decision thresholds

but its use emphasises the importance of sensitivity and specificity within model per-

formance and excludes the consideration of alternative measures, such as precision.

The most frequently selected window size was 5 seconds. This being the maximum

size assessed, and exceeding all recorded transitional durations, could suggest that the

postural states occurring either side of the actual transition event are more informative,

contribute more valuable information to the features, than the transition behaviour itself.

However, the differences in performance between the highest performing methods of

each window were often slight. This possibility will be examined in the next section in

more detail. The pre-processing methodology makes an assumption about the mech-

anics of collar rotation that will never be truly satisfied in practice and may have led to

the obfuscation of transitional acceleration. The (0,0,1) target orientation would not be

obtained unless the neck of the dog is directly parallel to the ground which is highly

unlikely, except when the dog is in a sternal, recumbent position. The use of a vectorial

minimum in searching for the most appropriate rotation matrix relaxes this assumption

as rotation around the Y axis, such as when the dog raises or lowers its head, would not

effect the matrix selection as all "correct" matrices would continue to be the minimum

vectorial distance from the target. In addition the use of rotation matrices preserves the

total energy across all three axes, but the correction methodology used here serves to

maximise this energy in the Z, or dorsoventral, axis and minimise it within the X, or
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medial-lateral, axis. This results in an increased likelihood of the over and under es-

timation of single axis acceleration. Further work should attempt to validate the use

of the correction methodology and investigate the comparative effects of its application

within behaviour classification. Alternatively the inclusion of additional sensors, such

as a gyroscope to directly measure orientation, may be preferable.

In future work it may be possible to refine models that focus on the event-based

identification of postural transitions in domestic dogs, based on a single collar mounted

sensor. The potential to correctly identify transitions and to then inspect the duration, or

perceived normality of the movement could be highly informative but the limitations of

an event sampling focussed approach are clear. The sample size of n = 1345 proved to

be low for the validation requirements of the current study and would require extensive

and intensive manual labelling to expand further, which would be highly expensive or

impractical. The event based nature of the transitional behaviours also makes the

implementation of alternative measures difficult. The current feature set attempts to

capture acceleration in each axis, the relationships between the axes, the nature of the

acceleration through and over time, and the energy of the movements itself across the

three axes.

A further possible symptom of the limited sample sizes is the observed tendency of

models to appear to over-fit to the supplied training data making the proposed uses in

veterinary contexts problematic due to the likelihood of abnormality in the transitional

behaviour, due to injury, illness, age, or conformation, leading to misclassification and

even possible misdiagnosis where transition abnormalities indicative of illness occur

only after or during certain periods (i.e. after intense activity) and only normal trans-

itions are captured. The analysis of postural transitions themselves, particularly the sit

to stand and stand to sit transitions, is a common practice in the assessment of human

physical and neurological healthcare with a wealth of research on the importance and

use of these assessments and in the use of accelerometer and gyroscope instrument-

ation in automating the approach or in extending it to include transitions occurring in

free-living environments (Millor et al., 2014; Pickford et al., 2019; Van Lummel et al.,

2013). The usefulness of such a tool within veterinary practice, whether focussing on

sit to stand or lie to stand, has been previously explored but focusses on controlled

assessment or requires instrumentation that is impractical for longitudinal, free-living

data capture (Brugarolas et al., 2013; Ellis et al., 2018; Thompson et al., 2016). A

common feature of these solutions, both for human and animal transition detection

and assessment, is the inclusion of orientation focussed features, indicating a shift in

device position that relates to the position of the attached body part. For the detec-

tion of human postural transitions in free-living environments this requires attachment

to the thigh or waist (Janssen et al., 2005; van Lummel et al., 2018). In quadrupedal

species the attachment location for such devices is often the trunk of the animal and
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frequently involves multiple sensors (Brugarolas et al., 2013; Thompson et al., 2016).

A single sensor equivalent to the method used in the detection of human sit to stand

transitions would be the attachment of the device to a forelimb. This would allow a clear

orientation based delineation between lie and stand transitions but would perhaps fail

to collect information relating to sit to stand transitions or from non-focal limbs (Robert

et al., 2009). The use of a collar mounted sensor prevents the use of such meas-

ures due to the influence of the head orientation. However, the practicality of such an

attachment method for long term data collection, the potential perception of alternat-

ive methods, such as glue, or obstructive limb or torso based attachment strategies,

among dog owners and the low, or even non-existent, habituation period, due to the

prevalence of collar use in domestic dog populations, presents a strong case for the

assessment of a collar based solution.

3.6 Conclusion

The poor performance of the classifiers in terms of the summary measures, AUC and F

score, across various window size and feature selection method combinations clearly

represents the difficulty inherent in the prediction of behaviours within the constraints

presented by the procedures employed here. The use of these methods to interpret

the postural transition frequency and to classify the type of transition from a novel

dataset would be unreliable and insufficient. This is compounded by low values for, or

lack of appropriate balance between, sensitivity, specificity and precision. Ultimately

the models generated here would be unfit for purpose, particularly as all classification

tasks were assessed at optimal thresholds and as such the performance metrics given

were optimistic.

The collection of a more expansive sample of transitional behaviours would ad-

dress the tendency of the model to over-fit. However, transitional events are relatively

rare due to their non-rhythmic nature and occurrence only between postures, making

such an expansion difficult and time consuming. Additionally, transitional events are

short, lasting a second or less in most cases, and could further compound the diffi-

culty of the task. An alternative methodology would be to imply their existence from

the identification of the preceding and subsequent postural states of the dog, and such

an approach is supported by the improved performance of the lengthened data win-

dowing shown here. This approach should be investigated further as the longitudinal

postural transition monitoring of dogs could provide a valuable comparison point for the

assessment of health and welfare. Particularly as similar methodologies have shown

continued success within human medicine.
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The Automatic Categorisation of Postural States and Locomotion of
the Domestic Dog

4.1 Abstract

The remote identification of postural states and behaviour has been embraced within

the fields of behavioural ecology, and human medicine to provide measures of an-

imal health, welfare and activity. The current postural state of an individual informs

the behaviours which are likely to be performed and the duration and frequency of

such behaviours can further indicate the ability of an individual to behave normally.

The development of an automated and longitudinal method of behavioural logging for

use with domestic dogs could assist in supplementing the abilities of both owners and

veterinary practitioners to notice irregularities, and to diagnose and treat conditions

earlier. This chapter explores the application of established posture and locomotion

recognition techniques, from both human and animal focussed fields, to a sample of

20 kennel-housed Labrador Retrievers with approximately 10 hours of annotated video

data and paired accelerometer data. The established technique attempts to identify

between three annotated postural states (Sitting, Standing, or Lying) using features de-

rived from a single, tri-axial, collar-worn, accelerometer. Periods where a dogs posture

was identified as Standing were further analysed to investigate whether an individual

was Stationary or Locomoting. Preprocessing methods, to correct for rotation of the

collar and to clean potential noise from data, were also assessed for their perform-

ance impact. After feature selection Linear Discriminant Analysis classification models

were applied and performance was assessed. One vs all binary classification models

struggled to perform satisfactorily except in the identification of the Standing posture.

Further assessment showed notable performance gains when classification tasks were

simplified into one vs one binary tasks. This therefore suggests the arrangement of

classifications into a hierarchy could lead to optimal performance however further test-

ing would be required to test such a system structure beginning to end. Preprocessing

methods appeared to almost universally negatively impact performance. Where such

impacts were minimal further validation should be performed to investigate this trade

off in performance where the issues they are attempting to correct occur. It may be
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that as minimal collar rotation was observed within this sample the impact of correct-

ing the data was greater than the impact of rotation. Equally as all 20 dogs were of

a similar size and breed the further noise reduction to account for breed size discrep-

ancies and step frequency differences did not exist and valuable information content

was sacrificed. This exploration has provided satisfactory results, has informed how

best to structure future classification tasks and has highlighted potential issues with

preprocessing methods. The use of more sophisticated classification methods, among

other refinements of the features and methodologies, should present further improved

performance.

4.2 Introduction

Posture detection has been central to the remote sensing of animal behaviour for dec-

ades (Shepard et al., 2008b). As stated in Chapter 3, the current posture of an in-

dividual informs the behaviours that it is possible for it to engage in (Grundy et al.,

2009). At a fundamental level the identification of distinct postural states, and the

amount of time spent within each, provides additional context to which behaviours an

individual may be engaging in at different times, and at different levels of intensity. For

example, extended periods of lying, particularly during the night-time and with low in-

tensity, would be indicative of resting behaviour (Ladha & Hoffman, 2018; Preston et

al., 2012; Sunderam et al., 2007). Through such inferences remote, longitudinal ob-

servations of behaviour can be constructed to provide insight into an individuals daily

schedule that would be impractical or time consuming to obtain using more traditional

methods (Wilson et al., 2008). The longitudinal monitoring of wild, often difficult to

observe, animals has been a boon to the research, monitoring and assessment of

the biomechanical and behavioural aspects of species, their life histories, and their in-

teractions with conspecifics, other species, and environment (Fehlmann et al., 2017;

Shepard et al., 2008b).

Such methods have also been adapted for use within more controlled environments

with captive animals, and livestock (Martiskainen et al., 2009; Robert et al., 2009; Soltis

et al., 2012; Thompson et al., 2016). Within these contexts implementations of, and

research into, remote sensing technologies tend towards behavioural monitoring. Us-

ing such techniques can help to augment traditional methods of observations. Within

most applications, in industrial or captive environments, there is a focus on the im-

provement of the efficacy and efficiency of animal management and the maintenance

of welfare(Martiskainen et al., 2009; Rushen et al., 2012; Soltis et al., 2012).

The health of an individual is fundamental to its welfare, and the freedom from

disease constitutes one of the five freedoms and as such, is central to the maintenance

of good animal management practices (Mellor, 2016). Therefore, measurements and
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observations of behaviour taken using remote sensing technologies are often used

to infer the health of individuals. One of the more common implementations of such

techniques is in the gait analysis of livestock species, where lameness is a common

issue and can be difficult to diagnose until severe. The approaches to such methods

vary but typically revolve around the identification of behavioural states and the direct

measurement of movements or intensities during behaviours of interest (Cornou et al.,

2011; Martiskainen et al., 2009; Pastell et al., 2009). Similar approaches are also used

in human medical research for the assessment of both physical and cognitive disease,

as well as in the general, commercial monitoring of human activity and fitness (Anan

et al., 2015; Pickford et al., 2019; Rodríguez-Martín et al., 2015; Zhang et al., 2010).

As stated in Chapter 2 accelerometer data is composed of two discrete compon-

ents. The first of these, the static component, relates to the pull of Earth’s gravity on

the device, and is therefore a distribution of the 1g pull of the planet across the 3 accel-

erometer axes, which in turn can be interpreted to provide device orientation (Grundy

et al., 2009; Shepard et al., 2008b). Within both human and animal remote sensing the

static component of acceleration has been combined with biomechanical knowledge

and the consistent placement of the device to derive associated postures.

The dynamic component of acceleration represents all other, non-gravitational, sources

of acceleration and is calculated as described in Section 2.3. The interpretation of dy-

namic acceleration, its intensity and rhythmicity, provides information as to the motion

of the device that, when paired with a known posture, provide detail as to how an

individual is moving and, potentially, what behaviours it is engaging in.

When analyses of these two components are combined a detailed image of an

individual’s movement can be created (Grundy et al., 2009; Shepard et al., 2008b).

The multi-level nature of the data processing techniques allows classification problems

to be arranged in hierarchical systems, well suited to automated and machine-learning

classification techniques, to aid in accelerometer-based inferences (Chakravarty et al.,

2019; Zhang et al., 2010). By identifying the differing utility of static and dynamic

acceleration data the analyses can be tailored towards specific observational goals

and problems (Shepard et al., 2008b). Behaviours of interest can then be considered in

terms static and dynamic components with the static component representing postural

state and the dynamic component representing intensity, often provided simplistically

as activity counts or combinations of dynamic acceleration within each, or across all,

of the three axes (Wang et al., 2005; Yang & Hsu, 2010). As behaviour occurs over

time there also exists a periodic, or rhythmic, component (Chakravarty et al., 2019;

Watanabe et al., 2005). Here behaviours which possess a consistent repetitive nature,

such as steps when walking, are exposed through the decomposition of acceleration

waveforms to the frequency components which establish it.

Companion animals, domestic dogs in particular, have seen some products de-
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veloped that promise similar monitoring capabilities to devices used by their human

owners (Väätäjä et al., 2018; Zamansky et al., 2019). Additionally, remote sensing

devices have been developed with the intent of monitoring health, and welfare using

methods applied within non-companion animal populations (Ladha et al., 2018; Ladha

et al., 2017; Rhodin et al., 2017). Here I have outlined a methodology which draws on

a multitude of measures established across both animal and human remote sensing

research, in both the time and frequency domain and using both static and dynamic

representations of activity to construct a model which could provide an automated rep-

resentation of the canine daily schedule. Due to the exploratory nature of the invest-

igation the scope was limited to cover postural states, and, from there, the detection

of locomotion within a standing state. These two tasks were selected as logical first

steps in behavioural mapping through remote sensing as both could provide a wealth

of information regarding an individuals daily activity. As in Chapter 3 LDA models are

once again used to quickly and efficiently explore and interpret the practicality of such

a task using a collar mounted attachment method. The effect of data pre-processing

methodologies, to correct for collar rotation and to remove high frequency noise, was

also assessed.

4.3 Materials and Methods

4.3.1 Data Collection and Annotation

The accelerometer data and postural transition annotations generated from the kennel-

housed, healthy, Labrador sample described in Section 3.3 were used here. The pos-

tural state of the dogs was inferred from the transitional annotations previously collec-

ted. The final posture of a transition was compared to the beginning posture of the

next annotation, and, if matching, the intervening time period was labelled as the co-

inciding posture. Where subsequent transitional annotations do not follow from each

other (e.g. a Sit to Stand transition followed by a Lie to Sit), implying an non-annotated

transition had occurred, no postural annotation is recorded. As such there were three

possible posture annotations, Stand, Sit, or Lie. An additional series of annotations

were collected, across the same sample video samples using ELAN (Max Planck Insti-

tute for Psycho-linguistics, 2019), referring to any occurrence of locomotion, all periods

not labelled as locomotion were labelled as stationary. Any stationary periods that

overlapped with periods not given a postural label were removed due to uncertainty in-

herent in the inferential method of annotation. Additionally, any stationary labels which

occurred during periods where posture was not labelled as "Standing" were removed

as locomotion would be unlikely to have occurred and these periods would be outliers.

Both postural and locomotion annotations were divided into sliding 5 second windows
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with a 2.5 second overlap, a windowing that has been successful in previous works

(Ladha et al., 2017). A single window length was selected for both to ensure parity

between the two classification tasks and a 5 second length was observed to be suffi-

cient for multiple stride cycles at all observed gaits. Annotations that were less than

5 seconds in length were excluded for the training sample. The resulting sample con-

sisted of 7152 sitting periods, 8476 lying periods and 28948 standing periods. During

standing periods there were 14627 windows labelled as stationary and 4362 labelled

as locomotion.

4.3.2 Accelerometer Data Processing

Accelerometer data were re-sampled to 100Hz, to account for the slight drift in fre-

quency that occurs with extended device deployments. The pre-processing of the data

is extensive and as such multiple permutations of the detection models were construc-

ted with different levels of pre-processing applied. This allows for the potential identi-

fication of accrued error that could be introduced by the pre-processing steps.

The first pre-processing stage aimed to correct for rotation of the collar during wear

and was processed identically to the methods described in Section 3.3. Once cor-

rected, data were filtered to produce both the static, the acceleration due to gravity,

and dynamic, corresponding to changes in velocity due to movement, components of

acceleration (Shepard et al., 2008a; Shepard et al., 2008b). To reduce the degree

of data summarisation prior to feature calculation a low-pass filter method was used

(Sato et al., 2003; Shepard et al., 2008a). Permutations of the classification tasks were

performed where either one filter or two filters were applied to the data. The first was

required in all cases to derive the static component of the data and to allow the calcu-

lation of the dynamic component. The second, optional, filter was applied to attempt to

further "clean" the remaining dynamic component data.

The stop frequencies of the two filters were derived through the application of bio-

mechanical formulae, derived by Heglund and Taylor (1988), allowing the estimation of

stride frequency from the body weight of a quadruped at the preferred speeds for the

trot (Formula 4.1) and the gallop (Formula 4.2) gaits. The largest and smallest dogs of

a heterogeneous sample (n = 85) were used to create the upper and lower estimates

of canine stride frequency.

TrottFreq(s−1) = 3.35W−0.130 (4.1)

GallopFreq(s−1) = 4.44W−0.156 (4.2)

To approximate the static component of acceleration, a low-pass filter with a cut-off

frequency equal or lower than the stride frequency should be used to properly exclude
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minor, rhythmic variances in orientation caused by the different phases of locomotion

(Shepard et al., 2008a). As stride frequency is negatively correlated with size the

largest dog, a 64Kg Irish Setter, was used to estimate the lower bound of canine stride

frequency. The stride frequency of this dog, at their preferred speed for the trot gait,

was calculated as 1.95Hz, using Formula 4.1. As there are slower gaits possible, for

which there are no equivalent formulae, and to account for larger or slower dogs, due

to age or illness, this value was halved and rounded to the nearest whole number.

Therefore, the static component was obtained through the application of a 1Hz fourth

order, zero phase, low-pass Butterworth filter to the rotation-corrected data.

The dynamic component was recovered by subtracting the static component from

the signal. This dynamic component was then further filtered to reduce the influence of

noise or non-focal movements. To achieve this the stride frequency of the gallop of the

smallest dog of the sample, a 7.6Kg Cavalier King Charles Spaniel/Poodle cross, was

calculated. The calculated value of 3.26Hz, using Formula 4.2, provides an approx-

imate upper range of the frequency of the possible rhythmic movements within canine

locomotion. This value was rounded up to the nearest 0.5Hz increment to account for

smaller dogs, or for dogs with conformations or aerobic ability leading to an increase

in the potential preferred stride frequency. A 3.5Hz fourth order, zero phase, low-pass

Butterworth filter was applied to remove noise and rapid, non-focal behaviours from the

dynamic component of acceleration.

To explore the effects of preprocessing processes each classification task was at-

tempted with all possible combinations or exclusions of the rotation correction and

second dynamic filter stages applied.

4.3.3 Feature Extraction

Features for both postural and locomotion focused classification tasks were calculated

for each annotated 5 second rolling window. The VM3 combination measures of both

the static, postural, and dynamic, locomotion-focused, components were calculated as

previously described in Formula 2.1, in Section 3.3. The VM3 of the dynamic com-

ponent is equivalent to the VeDBA measure used frequently in behavioural ecology

and assessed in Chapter 2 (Qasem et al., 2012). Of the 13 time domain features cal-

culated in Section 3.3 all but the measures of window skewness and kurtosis were

calculated again for the static and dynamic components. The ECDF representation

was also not calculated here for either classification task. These exclusions are due to

the less transient nature of posture and locomotion resulting in a lesser focus on the

shape and relative variance of the acceleration over time.

Locomotion is a rhythmic behaviour, as strides repeat over time following set pat-

terns, or gaits, at a variety of frequencies. Transformation of the accelerometer signal
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into the frequency domain allows the extraction of features which have been shown to

allow classifiers to more effectively distinguish between the rhythmicity of animal and

human gaits, and other rhythmic behaviours, and the lack of regular rhythm in beha-

viours occurring while stationary (Barrey et al., 1994; McClune et al., 2014; Pillard et

al., 2012; Soltis et al., 2012; Watanabe et al., 2005).

The frequency domain representation of the dynamic acceleration is obtained by

applying a Fast Fourier Transform (FFT) to each of the three axes and the VM3 repres-

entation of the accelerometer data of each window (McClune et al., 2014; Watanabe

et al., 2005). Data are normalised prior to the application of the FFT algorithm and,

to reduce the occurrence of artefacts in the frequency spectra, a Hanning Window is

applied to each 5 second window, generated using the Signal R package (Developers,

2014). The application of a windowing function is necessary as the FFT algorithm as-

sumes that the window assessed will be repeated perfectly, infinitely and, if this is not

the case it results in the occurrence of a step function where the window begins and

ends at differing levels. The FFT algorithm is applied using the function available as

part of R (R Core Team, 2018) and the function used to calculate the frequency spectra

of windows and the features calculated from these spectra is included in Appendix E.

The resulting FFT spectra consists of a series of frequency bins displaying the mag-

nitude of signal components occurring at the relevant frequencies. The resolution of

the frequency bins is dictated both by sampling rate and window size. Here each bin

occurs at 0.2Hz intervals up to the Nyquist frequency of 50Hz, the highest frequency

that can be observed at a 100Hz sampling rate.

5 features are calculated from the frequency spectra of the 3 axes and VM3 repres-

entation, resulting in a total of 20 frequency spectra features. Features are calculated

using functions included in R 3.6.0 (R Core Team, 2018) except where specified. The

magnitude of the signal relating to the 0Hz frequency is excluded from all feature calcu-

lations as this is the DC component of the signal and would have previously been cal-

culated as it is the mean of the time domain data. The calculated features were chosen

to represent the overall shape and distribution of the spectrum. The first of these is the

mean magnitude which was calculated as a representation of the central tendency of

the entire spectrum. The Shannon’s entropy of the frequency domain was also calcu-

lated and has been used previously in human and animal literature (Bao & Intille, 2004;

Benaissa et al., 2017; Marais et al., 2014; Wang et al., 2005). The maximum power

(calculated as the square of the absolute signal magnitude for a frequency) and the

coinciding frequency are calculated to provide an indication of the dominant frequency

of the spectrum. The use of dominant frequency and power is similar to methods used

by Watanabe et al. (2005) to characterise actions. However, unlike Watanabe et al.

(2005) the Power Spectral Density (PSD) used here is an estimation that has not been

corrected for variance. This is typically addressed using Welch’s method of spectral
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density estimation involves the averaging of multiple FFT spectra, relating to the same

action, but this would drastically reduce the sample size available for training models

(Welch, 1967). Energy per sample is calculated as the sum of estimated PSD values

divided by the total number of samples per window (500) and provides a summary of

the overall energy of the signal (Bao & Intille, 2004; Benaissa et al., 2017; Ravi et al.,

2005; Wang et al., 2005).

Another variation to the pre-processing performed is the application of scaling to

calculated features. Alternative feature sets were calculated that had been scaled and

the absolute values taken to attempt to account for the variance in scale presented

across the variety of features. This treatment was not applied to values, such as the ab-

solute mean value of an axis, that had already been scaled or the absolute had already

been taken, or features, such as those relation to correlation, where such treatment

would not make sense.

4.3.4 Model Implementation and Feature Selection

Features were assessed for collinearity and selected using the same methods de-

scribed in 3.3. The LDA classifiers were also constructed and cross-validated in the

same manner as previously described. A validation data set was excluded from the

entire process for the testing of the final model based on the feature-voting methodo-

logy used previously. All performance assessments were, as in described in Chapter

3, quantified through the use of AUC, F-score, sensitivity, specificity, and precision.

The postural classification was divided into three binary, one vs all, classification

tasks, with one classifier for each of the three annotated postural states, Lie, Sit, and

Stand. Alternatively the postural classification tasks were also structured as a set of

three binary tasks accounting for each pairwise combination of postures. The dis-

crimination of locomotion from stationary periods was, as previously mentioned, only

performed on periods where the dogs were annotated as being in a standing posture

to reduce the incidence of unnecessary classification and to reduce the level of class

imbalance exhibited in the data. This arrangement of the classification tasks into a

series of binary models, similar to the series of binary classifications of transitional be-

haviours in Section 3, allows for the construction of a hierarchical classification method

to maximise the overall performance.

The manually selected feature sets were constructed to maximise the relevant in-

formation available to classifiers. The postural classification model, used for all three

relevant classification tasks, prioritises device orientation, recorded in the static accel-

eration component, and the inter-relatedness of axes. The generated model closely

resembles that of the manual model in Section 3 except in its exclusion of entropy,

skewness and kurtosis. The latter two measures were not calculated for the postural
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data set and entropy was excluded due to the theoretical irrelevance of the measure

due to the lack of stochasticity within the gravitational component of the data. The

manual model for the locomotion classification task features the same time domain

features as the postural model but also includes 5 frequency domain features calcu-

lated for the 3 axes. The frequency domain features of the VM3 were not included as

it is a summary representation of the three individual axes already included. Validation

models were constructed based on the best performing permutation per classification

task and used feature subsets derived from the prominence of features, across the

5-fold cross-validation, within those models, as described in Chapter 3.

4.4 Results

4.4.1 One VS All Postural Identification

The manual model was consistent across all one vs all posture identification tasks and

consisted of the mean, minimum, maximum, and standard deviation of the Y and Z

axes. The correlation of the two axes was also included as a feature.

4.4.1.1 Standing Detection

One sixth of data relating to postural states was removed for validation (N = 7430)

resulting in a dataset of 37146 5 second windows, with 24123 labelled as Standing,

to be used in a 5 fold cross-validation. The performance for the detection of periods

where the individual is adopting a standing posture from among all recorded 5 second

windows is shown in Table 4.1 with results relating to all combinations of preprocessing

and feature selection methodologies.

The overall best performing methodology was a backward stepwise feature selec-

tion with data that had not been corrected for rotation or had additional filtering of

dynamic data applied. This produced the highest value for the AUC (0.787) when com-

pared across all other permutations and gave an F score (0.784) second only to the

backward selected feature set for the rotation corrected, no additional filter dataset.

This also suggests that despite alternative combinations of feature selection and pre-

processing methods outperforming in terms of specificity (0.741), sensitivity (0.724),

or precision (0.832) values the three measures are more consistent and therefore pro-

duce preferable performance summary measures.

Figure 4.1 presents a summary of the features selected for inclusion within the

validation model. 28 features occurred in greater than 50% of cross validation folds

and were therefore included within the validation model. When the model is used

to classify standing within the previously withheld validation data an AUC of 0.79 is

given and an optimal decision threshold of 0.57 is selected. Using this threshold the
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validation model produces an F Score of 0.78 and values of 0.74, 0.72, and 0.83 for

Sensitivity, Specificity, and Precision respectively.

Dynamic VM3 Entropy
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Figure 4.1: The frequency of inclusion of features within cross-validation of Postural

state classification models. The 2.5 frequency threshold is marked.
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Table 4.1: The performance statistics of the identification of the Standing postural

state from among all other recorded postures using LDA. Each permutation of feature

selection, rotation correction, and dynamic filtering is presented with the highest

performers highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.718 0.663 0.705 0.806 0.728 0.624

Forward 0.763 0.739 0.684 0.812 0.774 0.587

Backward 0.775 0.737 0.703 0.821 0.777 0.577

CFS 0.770 0.724 0.717 0.826 0.772 0.575

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.616 0.654 0.537 0.723 0.687 0.632

Forward 0.715 0.697 0.646 0.785 0.738 0.608

Backward 0.743 0.736 0.653 0.797 0.766 0.606

CFS 0.731 0.719 0.662 0.798 0.757 0.597

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.765 0.732 0.695 0.816 0.772 0.580

Forward 0.703 0.551 0.794 0.832 0.663 0.638

Backward 0.769 0.697 0.725 0.825 0.755 0.611

CFS 0.762 0.648 0.783 0.847 0.734 0.607

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.646 0.528 0.689 0.759 0.623 0.669

Forward 0.731 0.641 0.733 0.817 0.718 0.609

Backward 0.781 0.737 0.709 0.824 0.778 0.599

CFS 0.768 0.678 0.752 0.835 0.749 0.621

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.714 0.662 0.705 0.806 0.727 0.626

Forward 0.761 0.736 0.686 0.813 0.773 0.587

Backward 0.773 0.768 0.672 0.812 0.790 0.570

CFS 0.768 0.749 0.686 0.815 0.780 0.568

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.618 0.664 0.522 0.720 0.691 0.627

Forward 0.714 0.673 0.664 0.787 0.725 0.613

Backward 0.747 0.755 0.636 0.793 0.774 0.601

CFS 0.738 0.735 0.643 0.792 0.763 0.602

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.764 0.746 0.681 0.812 0.778 0.574

Forward 0.685 0.528 0.787 0.821 0.643 0.644

Backward 0.787 0.741 0.724 0.832 0.784 0.573

CFS 0.779 0.736 0.722 0.831 0.780 0.566

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.643 0.525 0.682 0.754 0.619 0.669

Forward 0.742 0.677 0.724 0.819 0.742 0.612

Backward 0.773 0.695 0.746 0.835 0.759 0.624

CFS 0.762 0.671 0.754 0.835 0.744 0.631
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4.4.1.2 Sitting Detection

As before one sixth of the data (N = 7430) were randomly selected and excluded from

the initial model training and assessment for validation purposes. A dataset of 37146

5 second windows with 5960 of those classified as Sitting. Table 4.2 shows the per-

formance, across a 5 fold cross-validation, for all combinations of preprocessing and

feature selection methodologies.

The best performing preprocessing and feature selection methodology, in terms

of the two summary measures, was the backward stepwise feature selection on data

that had neither the rotation correction nor a second dynamic filter applied. Within

this methodology features had also been standardised, and only the absolute value

taken prior to the construction of the LDA model. Both the AUC (0.74) and the F

Score (0.43) were the highest recorded across all methodologies and feature selection

methods processed. This is despite the Sensitivity (0.651), Specificity (0.73), and the

Precision (0.32), all being outperformed by alternative method combinations. However,

such a finding suggests that where each of these were outperformed the antagonistic

nature of the measures resulted in an imbalanced trade-off in another measure. This

is supported through further inspection of values in Table 4.2. The optimal threshold,

used for calculation of performance measures, was 0.178.

Figure 4.2 summarises the 39 features which occurred in greater than 50% of cross

validation folds for the selected method and were therefore included within the valida-

tion model. When applied to the previously withheld data the summary measures of

AUC and F Score are 0.73 and 0.42 respectively. Sensitivity, Specificity and Precision

give values of 0.70, 0.69, and 0.30 suggesting the Precision of the model is the cause

of the lower F Score value and suggests a high false positive rate and low false negat-

ive rate. An optimised decision threshold of 0.16 was selected during validation model

training.
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Table 4.2: The performance statistics of the identification of the Sitting postural state

from among all other recorded postures using LDA. Each permutation of feature selec-

tion, rotation correction, and dynamic filtering is presented with the highest performers

highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.682 0.669 0.603 0.244 0.357 0.151

Forward 0.686 0.626 0.681 0.273 0.380 0.178

Backward 0.722 0.646 0.691 0.286 0.396 0.176

CFS 0.697 0.631 0.664 0.264 0.373 0.172

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.640 0.387 0.829 0.302 0.339 0.223

Forward 0.544 0.890 0.214 0.178 0.297 0.160

Backward 0.712 0.612 0.718 0.293 0.397 0.187

CFS 0.695 0.618 0.687 0.274 0.380 0.175

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.673 0.341 0.922 0.456 0.390 0.260

Forward 0.623 0.709 0.487 0.209 0.323 0.164

Backward 0.714 0.555 0.751 0.299 0.388 0.191

CFS 0.688 0.467 0.796 0.304 0.368 0.210

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.655 0.327 0.916 0.426 0.370 0.264

Forward 0.643 0.704 0.527 0.221 0.337 0.171

Backward 0.742 0.680 0.677 0.287 0.404 0.156

CFS 0.712 0.577 0.731 0.291 0.387 0.181

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.680 0.627 0.640 0.250 0.357 0.157

Forward 0.683 0.628 0.693 0.281 0.388 0.178

Backward 0.716 0.664 0.667 0.276 0.390 0.169

CFS 0.695 0.667 0.625 0.254 0.367 0.164

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.647 0.382 0.841 0.315 0.345 0.228

Forward 0.577 0.625 0.505 0.194 0.296 0.162

Backward 0.718 0.598 0.741 0.307 0.405 0.194

CFS 0.695 0.580 0.722 0.285 0.382 0.184

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.674 0.351 0.914 0.439 0.390 0.256

Forward 0.589 0.522 0.652 0.223 0.312 0.162

Backward 0.734 0.622 0.723 0.300 0.405 0.179

CFS 0.712 0.688 0.619 0.256 0.373 0.154

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.659 0.352 0.891 0.382 0.366 0.250

Forward 0.623 0.580 0.620 0.226 0.325 0.170

Backward 0.742 0.651 0.730 0.315 0.425 0.178

CFS 0.722 0.640 0.719 0.304 0.412 0.179
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Figure 4.2: The frequency of inclusion of features within cross-validation of the One vs

All Sitting postural state classification models. The 2.5 frequency threshold is marked.
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4.4.1.3 Lying Detection

Approximately one sixth of the data (N = 7429) was excluded for use in validation of the

final trained model. Within the remaining training dataset of 37417 5 second windows

of acceleration data a total of 7063 were labelled as Lying. Table 4.3 displays the per-

formance of each combination of preprocessing and feature selection methodologies

which were attempted.

The performance results suggest that the best methodology for the identification of

the Lying posture is the backward stepwise feature selection applied onto the absolute

scaled features that have not been corrected for collar rotation but have had a second

filter applied to the dynamic acceleration component. The AUC of this methodology

(0.794), produced during the 5 fold cross-validation, was the highest reported for the

detection of Lying down. Using an optimised decision threshold of 0.225 also produced

the highest reported F Score (0.506) and value of Precision (0.392). The values of

Sensitivity and Specificity reported were 0.713 and 0.741 respectively.

Figure 4.3 shows a total of 25 features were selected in greater than 50% of cross-

validation folds and were therefore incorporated into the final validation model. When

trained on all training data and applied to the previously excluded test data an AUC

value of 0.78 was achieved. At an optimised decision threshold of 0.21 the F Score,

Sensitivity, Specificity, and Precision were 0.48, 0.75, 0.68, and 0.36 respectively.

Again this suggests the detection of the lying posture struggles in terms of precision

and this is a trend that can also be seen across the training results presented in Table

4.3.
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Table 4.3: The performance statistics of the identification of the Lying postural state

from among all other recorded postures using LDA. Each permutation of feature selec-

tion, rotation correction, and dynamic filtering is presented with the highest performers

highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.694 0.630 0.687 0.321 0.425 0.211

Forward 0.733 0.717 0.644 0.321 0.444 0.197

Backward 0.756 0.701 0.687 0.344 0.462 0.198

CFS 0.742 0.708 0.652 0.323 0.443 0.193

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.632 0.597 0.618 0.268 0.370 0.196

Forward 0.685 0.674 0.591 0.279 0.395 0.188

Backward 0.739 0.640 0.725 0.354 0.456 0.191

CFS 0.714 0.582 0.733 0.338 0.428 0.201

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.748 0.638 0.744 0.369 0.468 0.231

Forward 0.765 0.802 0.604 0.323 0.460 0.217

Backward 0.776 0.793 0.642 0.342 0.478 0.210

CFS 0.775 0.827 0.609 0.332 0.474 0.206

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.636 0.617 0.618 0.275 0.380 0.193

Forward 0.724 0.780 0.576 0.302 0.435 0.210

Backward 0.794 0.713 0.741 0.392 0.506 0.225

CFS 0.772 0.766 0.638 0.332 0.463 0.215

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.693 0.636 0.683 0.320 0.426 0.210

Forward 0.734 0.697 0.660 0.325 0.443 0.197

Backward 0.760 0.657 0.733 0.366 0.470 0.208

CFS 0.751 0.649 0.731 0.362 0.465 0.207

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.630 0.621 0.589 0.262 0.368 0.190

Forward 0.684 0.692 0.575 0.277 0.395 0.184

Backward 0.742 0.649 0.717 0.350 0.455 0.189

CFS 0.718 0.611 0.708 0.329 0.428 0.197

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.751 0.647 0.741 0.370 0.470 0.231

Forward 0.688 0.757 0.565 0.290 0.419 0.196

Backward 0.775 0.781 0.671 0.358 0.491 0.218

CFS 0.766 0.760 0.680 0.358 0.486 0.223

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.636 0.638 0.596 0.271 0.380 0.189

Forward 0.734 0.776 0.600 0.313 0.446 0.209

Backward 0.791 0.748 0.707 0.375 0.499 0.213

CFS 0.769 0.808 0.614 0.329 0.468 0.207
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Figure 4.3: The frequency of inclusion of features within cross-validation of the One vs

All Lying postural state classification models. The 2.5 frequency threshold is marked.
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4.4.2 Locomotion Detection

As with the postural detection the data used for the differentiation of locomotion and sta-

tionary standing postures was split into validation (N = 3179) and training (N = 15899)

datasets. 3645 windows within the training data were identified as relating to loco-

motion behaviour. The manually selected feature subset was consisted of the dynamic

equivalents of the static features used in the postural models of Section 4.4.1. To at-

tempt to capture the rhythmic component of locomotion the manual model here also

included features derived from the frequency spectra. These were the dominant fre-

quency, dominant frequency amplitude, entropy of the spectrogram and the energy per

sample domain features for both the Z and Y axes. Table 4.4 summarises the per-

formance of each combination of preprocessing and feature selection methodologies

attempted.

The results suggest that periods of locomotion were most effectively differentiated

from those where the individual was stationary when using data that had not been

corrected for rotation, a second filter had not been applied to the dynamic data, and

where appropriate features had been normalised and the absolutes taken. The back-

ward stepwise feature selection, using this method of preprocessing data, gave an AUC

of 0.782. The optimised decision threshold was set at 0.189. At this value the F score

given was 0.544, and the sensitivity, specificity and precision were 0.669, 0.764, and

0.458.

Figure 4.4 shows the frequency of selection for each of the features included within

each of the folds of the 5 fold cross validation. 66 features were used in greater than

50% of the cross validation folds and as such were used to train a final model for valida-

tion and assessment. The AUC of this final model was 0.78 and an optimised decision

threshold of 0.21 was selected. The F score, Sensitivity, Specificity, and Precision of

this model, on the validation data, were 0.56, 0.64, 0.80, 0.50 respectively.
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Table 4.4: The performance statistics of the identification of periods of locomotion from

among all standing posture periods using LDA. Each permutation of feature selection,

rotation correction, and dynamic filtering is presented with the highest performers high-

lighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.631 0.645 0.547 0.298 0.408 0.222

Forward 0.630 0.611 0.609 0.318 0.418 0.211

Backward 0.707 0.615 0.689 0.371 0.462 0.232

CFS 0.677 0.707 0.558 0.323 0.443 0.199

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.592 0.498 0.633 0.291 0.367 0.249

Forward 0.577 0.517 0.614 0.288 0.370 0.228

Backward 0.691 0.687 0.596 0.339 0.454 0.205

CFS 0.668 0.669 0.579 0.325 0.437 0.205

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.696 0.755 0.537 0.329 0.458 0.178

Forward 0.691 0.680 0.626 0.353 0.465 0.215

Backward 0.736 0.711 0.664 0.388 0.502 0.218

CFS 0.710 0.724 0.616 0.362 0.482 0.206

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.620 0.511 0.678 0.324 0.397 0.245

Forward 0.655 0.669 0.560 0.315 0.428 0.200

Backward 0.735 0.752 0.616 0.371 0.497 0.189

CFS 0.717 0.681 0.661 0.378 0.486 0.210

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.632 0.546 0.662 0.326 0.408 0.243

Forward 0.642 0.589 0.638 0.328 0.421 0.210

Backward 0.704 0.727 0.575 0.339 0.462 0.196

CFS 0.676 0.757 0.505 0.315 0.445 0.186

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.595 0.489 0.654 0.296 0.369 0.251

Forward 0.607 0.550 0.615 0.298 0.387 0.217

Backward 0.687 0.724 0.549 0.323 0.447 0.193

CFS 0.655 0.677 0.552 0.310 0.425 0.201

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.700 0.726 0.571 0.337 0.460 0.186

Forward 0.667 0.608 0.649 0.342 0.438 0.225

Backward 0.773 0.683 0.746 0.447 0.540 0.237

CFS 0.753 0.708 0.688 0.405 0.516 0.207

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.618 0.663 0.522 0.292 0.405 0.211

Forward 0.696 0.563 0.737 0.389 0.460 0.217

Backward 0.782 0.669 0.764 0.458 0.544 0.189

CFS 0.741 0.628 0.761 0.439 0.517 0.180
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Figure 4.4: The frequency of inclusion of features within cross-validation of the Loco-

motion period classification models. The 2.5 frequency threshold is marked.
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4.4.3 Paired Postural Binary Decisions

Re-framing the classification task into a series of binary decisions between postures,

rather than a system utilizing all three one vs all classifiers, necessitates the removal

of non-focal classes for model training to assess performance in ideal conditions. The

manually derived feature set is the same as used in Section 4.4.1.

4.4.3.1 Standing VS Sitting

The combined dataset of Standing and Sitting (N = 36100) was, as before, split into a

training dataset (N = 30083) and a validation dataset (N = 6017).

Table 4.5 gives the performance of this classification task for each combination of

feature selection and preprocessing methodologies. Models using a backward feature

selection on the absolute, scaled features derived from a dataset that had neither rota-

tion correction nor a second dynamic filter applied showed the best performance with

an AUC of 0.770. This is despite a less favourable F Score (0.808) at the optimised

decision threshold (0.79) but, further inspection of those models which outperform in

this measure shows that they do so at the expense of AUC and at least one of the two

measures which contribute to it (Sensitivity or Specificity). This methodology can be

observed to show a more equal distribution in performance with a Sensitivity of 0.729,

a Specificity of 0.695, and a Precision of 0.906.

Figure 4.5 shows the frequency of selection for each feature included within the 5

fold cross validation of this methodology. 41 features occurred in greater than 50%

of the cross-validation folds and were therefore included in the model applied to the

previously excluded validation data. The AUC of this model was 0.76 and the decision

threshold was set at 0.80. At this level the F Score was 0.79, the Sensitivity was 0.69,

the Specificity was 0.72, and the Precision was 0.91.
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Table 4.5: The performance statistics of the separation of the Standing and Sitting

postural states using LDA. Each permutation of feature selection, rotation correction,

and dynamic filtering is presented with the highest performers highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.721 0.658 0.693 0.897 0.759 0.805

Forward 0.729 0.668 0.721 0.907 0.769 0.774

Backward 0.758 0.721 0.691 0.904 0.802 0.776

CFS 0.743 0.708 0.675 0.898 0.792 0.772

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.652 0.871 0.369 0.848 0.859 0.712

Forward 0.601 0.386 0.807 0.890 0.538 0.801

Backward 0.743 0.787 0.588 0.886 0.833 0.746

CFS 0.720 0.675 0.661 0.890 0.767 0.787

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.723 0.712 0.618 0.883 0.788 0.775

Forward 0.667 0.578 0.719 0.893 0.701 0.795

Backward 0.746 0.694 0.670 0.895 0.782 0.797

CFS 0.712 0.794 0.502 0.866 0.828 0.749

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.674 0.880 0.356 0.847 0.863 0.708

Forward 0.700 0.635 0.685 0.891 0.742 0.780

Backward 0.773 0.722 0.698 0.906 0.804 0.791

CFS 0.748 0.766 0.604 0.887 0.822 0.763

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.722 0.632 0.720 0.901 0.743 0.811

Forward 0.739 0.737 0.667 0.900 0.810 0.757

Backward 0.758 0.742 0.681 0.904 0.815 0.772

CFS 0.738 0.706 0.680 0.899 0.791 0.780

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.653 0.825 0.414 0.851 0.838 0.729

Forward 0.661 0.459 0.802 0.904 0.609 0.801

Backward 0.741 0.755 0.610 0.887 0.816 0.759

CFS 0.726 0.746 0.604 0.884 0.809 0.764

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.724 0.743 0.589 0.880 0.806 0.765

Forward 0.589 0.450 0.683 0.852 0.589 0.802

Backward 0.771 0.712 0.707 0.908 0.798 0.791

CFS 0.760 0.717 0.696 0.905 0.800 0.783

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.670 0.932 0.302 0.844 0.886 0.664

Forward 0.706 0.620 0.728 0.902 0.735 0.783

Backward 0.770 0.729 0.695 0.906 0.808 0.790

CFS 0.755 0.733 0.672 0.900 0.808 0.782
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Figure 4.5: The frequency of inclusion of features within cross-validation of the com-

bined Standing and Sitting postural state class classification models. The 2.5 frequency

threshold is marked.
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4.4.3.2 Standing VS Lying

A validation dataset (N = 6236) was excluded from a combination of both Standing and

Lying periods (N = 37424) leaving a training set of N = 31118.

The performance measures in Table 4.6 suggest that a methodology consisting of

backward feature selection on features derived from data that has not been corrected

for rotation and has not had a second filter applied to the dynamic component. This

is due to the both combined measures, the AUC (0.820), and the F Score (0.822) at

the optimised threshold (0.715), are both the highest recorded among all other fea-

ture selection and pre-processing method combinations. The Sensitivity, Specificity,

and Precision are 0.746, 0.763, and 0.915 respectively. All three of these contributing

measures are outperformed by other method combinations but, as can be observed in

Table 4.6, this is at the cost of one or both of the other contributing measures.

Figure 4.6 shows the selection frequency for each feature included by the LDA

models constructed during the 5 fold cross-validation of the selected methodology. 32

features were included in greater than 50% of cross-validation models and were there-

fore also included within the validation model. When an LDA model was trained on

the entire training dataset, using those features, and applied to the previously withheld

validation data an AUC of 0.824 was achieved and a decision threshold of 0.733 was

selected. At this threshold an F Score of 0.823 was obtained. The Sensitivity, Spe-

cificity, and Precision, which contribute to either the AUC and/or F Score, were 0.744,

0.780, and 0.920 respectively.
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Table 4.6: The performance statistics of the separation of the Standing and Lying pos-

tural states using LDA. Each permutation of feature selection, rotation correction, and

dynamic filtering is presented with the highest performers highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.723 0.737 0.630 0.872 0.798 0.737

Forward 0.779 0.748 0.697 0.894 0.815 0.740

Backward 0.795 0.731 0.738 0.905 0.809 0.733

CFS 0.788 0.735 0.729 0.903 0.810 0.727

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.634 0.613 0.598 0.839 0.708 0.770

Forward 0.724 0.656 0.681 0.875 0.750 0.763

Backward 0.766 0.719 0.695 0.890 0.795 0.765

CFS 0.744 0.738 0.640 0.875 0.801 0.741

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.786 0.725 0.737 0.904 0.804 0.731

Forward 0.808 0.695 0.789 0.918 0.791 0.726

Backward 0.810 0.687 0.808 0.925 0.788 0.733

CFS 0.807 0.724 0.774 0.916 0.809 0.716

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.646 0.609 0.635 0.851 0.710 0.775

Forward 0.752 0.614 0.788 0.908 0.733 0.748

Backward 0.814 0.701 0.790 0.919 0.795 0.741

CFS 0.808 0.690 0.791 0.919 0.788 0.737

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.722 0.739 0.626 0.871 0.799 0.734

Forward 0.780 0.709 0.734 0.901 0.794 0.751

Backward 0.800 0.757 0.714 0.900 0.822 0.737

CFS 0.791 0.747 0.716 0.900 0.816 0.739

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.636 0.641 0.568 0.835 0.725 0.763

Forward 0.726 0.669 0.667 0.873 0.758 0.763

Backward 0.771 0.761 0.661 0.885 0.818 0.754

CFS 0.752 0.732 0.657 0.879 0.799 0.755

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.786 0.732 0.726 0.901 0.808 0.727

Forward 0.809 0.692 0.842 0.937 0.796 0.736

Backward 0.820 0.746 0.763 0.915 0.822 0.715

CFS 0.813 0.745 0.759 0.913 0.820 0.702

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.650 0.622 0.637 0.854 0.720 0.772

Forward 0.774 0.654 0.792 0.915 0.763 0.745

Backward 0.810 0.732 0.773 0.917 0.814 0.739

CFS 0.802 0.685 0.818 0.928 0.788 0.746
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Figure 4.6: The frequency of inclusion of features within cross-validation of the com-

bined Standing and Lying postural state class classification models. The 2.5 frequency

threshold is marked.
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4.4.3.3 Lying VS Sitting

The combined dataset of periods labelled as either Lying or Sitting postures (N =

15628) was split into a training dataset (N = 13024) and a validation dataset (N =

2604) prior to the initial model training and methodology performance assessment.

The performance values given in Table 4.7 suggest the standardised absolute of

features calculated from data that had not been corrected for rotation, but where the

dynamic acceleration component had had an additional filter applied, was the best

synthesis of methods for this classification task. This is due to the AUC (0.784) being

the highest reported among all alternatives but despite the reported F Score (0.743)

being equivalent or worse to alternatives. The Sensitivity (0.756), Specificity (0.670),

and Precision (0.731) are all outperformed by alternative combinations however fur-

ther inspection of these results reveals heightened results in any one measure often

coincides with reductions in one or both others.

Figure 4.7 shows the selection frequency for each feature included within the LDA

models generated within the 5 fold cross validation. 50 features occurred in greater

than 50% of generated models and were therefore used in the validation stage. The

AUC of the validation model, trained on all training data and applied to the previously

withheld validation data, was 0.757 and the optimal decision threshold was set to 0.594.

At this threshold the F Score for this classification validation is 0.682, the Sensitivity is

0.613, the Specificity is 0.782, and the Precision is 0.769.

119



Chapter 4

Table 4.7: The performance statistics of the separation of the Lying and Sitting pos-

tural states using LDA. Each permutation of feature selection, rotation correction, and

dynamic filtering is presented with the highest performers highlighted.

AUC Sensitivity Specificity Precision F Score Optimised

Decision

Threshold

Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.679 0.846 0.488 0.662 0.743 0.463

Forward 0.681 0.777 0.562 0.678 0.724 0.474

Backward 0.708 0.760 0.570 0.677 0.716 0.481

CFS 0.664 0.741 0.578 0.675 0.707 0.487

Standardised
Absolute
Rotation
Corrected
& Second
Dynamic Filter

Manual 0.661 0.475 0.745 0.688 0.562 0.595

Forward 0.593 0.335 0.860 0.740 0.462 0.555

Backward 0.742 0.755 0.632 0.708 0.731 0.498

CFS 0.674 0.665 0.619 0.674 0.670 0.528

Non-Rotation
Corrected
&
Second Dynamic
Filter

Manual 0.664 0.777 0.513 0.654 0.710 0.491

Forward 0.658 0.695 0.632 0.691 0.693 0.491

Backward 0.749 0.807 0.578 0.694 0.746 0.473

CFS 0.675 0.718 0.593 0.677 0.697 0.512

Standardised
Absolute
Non-Rotation
Corrected

Manual 0.667 0.840 0.408 0.627 0.718 0.433

Forward 0.636 0.672 0.572 0.650 0.661 0.531

Backward 0.784 0.756 0.670 0.731 0.743 0.518

CFS 0.718 0.752 0.594 0.687 0.718 0.502

Rotation
Corrected
No Second
Dynamic Filter

Manual 0.679 0.842 0.495 0.664 0.742 0.469

Forward 0.682 0.780 0.571 0.683 0.728 0.475

Backward 0.707 0.807 0.520 0.666 0.730 0.465

CFS 0.660 0.767 0.535 0.662 0.710 0.481

Standardised
Absolute
Rotation
Corrected
No Second
Dynamic Filter

Manual 0.664 0.458 0.765 0.698 0.554 0.606

Forward 0.617 0.439 0.811 0.733 0.549 0.554

Backward 0.734 0.736 0.632 0.703 0.719 0.504

CFS 0.679 0.648 0.647 0.685 0.666 0.528

Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.664 0.779 0.508 0.653 0.710 0.489

Forward 0.648 0.709 0.590 0.672 0.690 0.491

Backward 0.736 0.860 0.519 0.680 0.759 0.443

CFS 0.667 0.656 0.637 0.682 0.669 0.527

Absolute
Standardised
Non-Rotation
Corrected
No Second
Dynamic Filter

Manual 0.665 0.839 0.406 0.626 0.717 0.432

Forward 0.633 0.699 0.541 0.643 0.670 0.528

Backward 0.761 0.771 0.618 0.705 0.736 0.496

CFS 0.710 0.723 0.609 0.687 0.705 0.512
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Figure 4.7: The frequency of inclusion of features within cross-validation of the classi-

fication models attempting to separate the Sitting and Lying postural states from each

other. The 2.5 frequency threshold is marked.
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4.5 Discussion

The classification of the postural states of dogs, using a single collar-mounted accel-

erometer, shows promise and would likely be deployable as currently described with

minor adjustments to the structure of the classification process and the feature-sets

used. However, the differentiation between stationary-standing and locomotion peri-

ods performed less well the methodology described above.

The first section aimed to identify postural states individually, using a one vs all

technique the final classification could be assigned based on the highest probability

output by the 3 LDA models. However, this methodology would only work if all 3 LDA

models had acceptable performance across the assessed measures. The AUC values

presented by the validation models for the 3 one vs all, postural classifications were

between 0.73 and 0.79. Only the classification of the standing posture maintained ac-

ceptable performance when also assessed using the F score. The standing posture

classifier attained a score of 0.78 which was much larger than the sitting and lying

classifiers which achieved scores of 0.42 and 0.48 respectively. Further inspection re-

veals that both sitting and lying classifiers underperformed in terms of their precision

(with values of 0.30 and 0.36 respectively), hence the lack of impact on the AUC of the

model, which only summarises the measures of sensitivity and specificity. This means

that both sitting and lying classifiers frequently misidentified a high proportion of posit-

ive classifications within the output. As the sensitivity typically remains high it is evident

the models are including a large proportion of false positives within their results. As the

standing classifier does not have poor precision it could be that the posture of standing

is the most distinct from the other two, or inversely that sitting and lying are the most

similar, when considering the time domain representations of acceleration included in

the models. The inclusion of all three axes and the vector magnitude summaries within

all 3 models suggests there are aspects of acceleration in each direction that are use-

ful in describing the current posture. Additionally the inclusion of features relating to

the dynamic component of acceleration in each axis and the vector magnitude could

show that some of the ability of the classifiers to discern current postural state relates

to the degree of activity which does or can occur within that posture. This is similar

to past work which uses physical activity counts to assess the time spent within broad

categories of activity levels, e.g. Morrison et al. (2013), which may lead to increased

misclassification where activity level and device orientation do not both match a trained

norm, e.g. stationary standing or vigorous movements within R.E.M sleep.

Section 2 focussed on the identification of locomotion, when standing, the posture

wherein locomotion behaviour occurs, had been previously identified. This model and

that for the identification of standing were intended to occur in series, and would ideally

prevent the misclassification of movements occurring while in a non-standing posture

122



Chapter 4

as locomotion. However, here this model was trained and tested with data that were

labelled by traditional observation methods and was therefore operating in an artificial,

ideal scenario. As such performance is an overestimate if the model were employed

in a true hierarchical structure, as errors would likely be accrued. Even when tested

on such data the performance of the locomotion classifier was sub-optimal. The AUC

reported for the validation model, 0.78, would be promising. However, the F score

of the classifier, 0.56, is once again lacking. Further inspection reveals that both the

sensitivity and precision are low at 0.64 and 0.50 respectively. This arrangement of

performance measures suggests a model that is reporting large proportions of false

negative classifications, which in turn have led to a low proportion of the total number

of periods identified as locomotion being true positives. As above summary features

of both the dynamic and static acceleration components, for all 3 axes and the vector

magnitude summary, were selected for inclusion in the final validation models. For

this model frequency domain features were also calculated and included due to the

rhythmic nature of locomotion (Watanabe et al., 2005). Interestingly the frequencies

at which dominant, and second dominant, PSDs occurred were included much more

frequently than the PSD values themselves, suggesting the presence and rate of the

rhythm is more useful to locomotion detection than the strength of that rhythm. The only

dominant PSD selected frequently enough to be included within the validation model

was that of the vector magnitude summary of all 3 axes of acceleration. This suggests

the strength of the rhythm of the overall movement is more informative than that of the

dominant rhythms of any one direction. It may be that Locomotion as a single category

is too general and therefore led to a high degree of confusion with Stationary periods.

Further separation of locomotion into differing gait categories may be desirable for

future implementations. The inclusion of measures of activity level, or the interpretation

of dynamic component measures to identify such, may also help to improve locomotion

discretion by eliminating low energy periods entirely. The inclusion of additional gait

categories would necessitate the validation of multiple new LDA models and further

investigation of how best to implement them. Alternatively multi-class LDA or other

models could be used instead. Additionally gait recognition can be challenging and

often requires extensive observer training to achieve acceptable levels of reliability.

The categorisation of movements into more broad, intensity-based categories, such as

those used within Morrison et al. (2013), may therefore be more practical.

The third section involved the re-framing of the postural classification tasks into a

series of binary LDA classifiers which each aimed to select between just 2 of the 3

posture categories. As previously mentioned this, when applied alongside selected

classifiers from previous sections, would allow for the construction of a hierarchical

structure of classification (Chakravarty et al., 2019; Gao et al., 2013). Arranging the

classification tasks into 3 binary choices between pairs of postures, Stand vs Sit, Stand
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vs Lie, and Lie vs Sit. Each of these reported higher values of both AUC and F Score

measures when compared to the one vs all arrangements of the first section. AUC

values for these three classifiers ranged between 0.75 and 0.82, and F Scores were

between 0.68 and 0.82. The Stand vs Lie classifier was the best performing of the

three with the highest values of both measures. In comparison the Lie vs Sit classifier

was the worst, with both AUC and F Score values being the lowest reported. This

supports previous conclusions that standing is the most easily identified and adds to

the evidence that it is the sitting posture which is the most difficult to discern from

the others, this is likely due to the relative lack of samples collected for that postural

state. Once again the models were trained and assessed in ideal conditions, meaning

they were each performed here in isolation and as a result there was no possibility of

accrued errors from previous classifications.

These results help to inform potential arrangements of classifiers in future work. For

example, as Standing appears the most easily identified then it can be classified earlier

in the process (Figure 4.8). This arrangement would remove a large proportion of non-

sitting and non-lying postures which would allow the use of the better performing Sitting

vs Lying classifier of Section 3, rather than the less effective Sitting vs All or Lying vs

All classifiers of Section 1. Another alternative, based on the overall lack of Sitting

posture periods collected, would be to disregard the Sitting posture category entirely

and instead run the best performing Standing vs Lying classifier across all data. This

would invite a number false classifications as Sitting would not be a viable category.

However, its rarity in comparison to the two other categories, and the higher functional

importance of Standing and Lying, in terms of including behaviours of interest such as

sleep or locomotion, means the performance costs may be minimal. From there con-

sideration should be given to how the task is presented, as a Stand vs All problem, as

in Section 1 where only Standing is labelled as the positive class and all non-Standing

periods are assumed as Lying, or as a Stand vs Lie problem, as in Section 2 where

examples of sitting and any other non-focal postures are not included in training data.

As previously stated, the further subdivision of the Locomotion category may improve

performance. This is also the case with the lying category and investigations into the

orientation of the dog while lying (e.g. side-recumbent or sternal), and the type of

behaviours which occur within each, should be performed.
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Figure 4.8: Arrangement of binary classification hierarchy suggested by results

The inclusion of different methods and combinations of pre-processing allowed

some insight into the costs and benefits of employing such methods. The rotation

correction methodology, as described in Chapter 3 and Ladha et al. (2018), works to

dampen acceleration in the medial-lateral axis of the dog and to maximise accelera-

tion in the dorsal-ventral axis. This would appear likely for the majority of classification

tasks where it resulted in poorer performance during cross-validation for the models.

However, video observation suggests a lack of rotation of the collars as may be expec-

ted in wider use with a more diverse range of dog breeds. As such further work should

be performed to assess whether the loss in performance resulting from the implement-

ation of the rotation correction is significant enough to outweigh any improvements

that occur when regular collar rotation occurs during deployment. Similar further work

should also be performed to assess the effect of the second dynamic filter. The inten-

tion of such a filter was to further clean the noise from dynamic data by only including

frequencies relating to that of dog locomotion between an established range of breed

heights. The filter itself may have been too strict, based as it is on biomechanical for-

mulae and not on the actual observation of gait frequency within the sample, therefore

removing information relating to the movement and acceleration of the individual which

could aid in classification. Further work should explore the relaxing of the filter, as well
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as its costs and benefits when applied on a more varied sample of dog breeds and

heights.

As in Chapter 3 all assessed tasks performed best when using a backward stepwise

feature selection methodology. This method is the greediest of those attempted, result-

ing in large feature-sets with high levels of feature redundancy, and suggests the tasks

presented were difficult for the LDA classifiers used and there was no clear distinction

(Derksen & Keselman, 1992; Mao, 2004). However, unlike Chapter 3 features were

relatively rarely included within 1 or 2 cross validation folds. This suggests that unlike

with postural transitions there was a lower level of feature inter-changeability within the

overall feature-set.

Future work should focus on the refinement of models and the incorporation of

knowledge gained during this exploration as well as within the complimentary findings

of Chapters 2 and 3. Further validation of pre-processing methodologies and addi-

tional comparative investigations of more simplistic measures, such as overall activity

counts and others discussed in Chapter 2, that could be used to infer postural or beha-

vioural states should be performed. The use of additional sensors attached alongside

the accelerometer would provide further details which could be useful in deriving pos-

ture. Gyroscopes are often deployed in both human and animal contexts for the direct

measurement of device orientation and would be more reliable replacements for sim-

ilar measures derived from static acceleration here (Wilson et al., 2008). Collar-based

sensor placement is suboptimal but, as previously mentioned, is more practical in lon-

gitudinal, free-ranging use-cases and should therefore be continued to be investigated

despite lacking performance here. Such placements have also seen past success in

other work (Hansen et al., 2007; Ladha et al., 2013; Ladha & Hoffman, 2018; Preston

et al., 2012). Alternative measures to imply locomotion, the refinement of behavioural

subdivisions and hierarchy and an alternative model with a focus on the Standing vs

All methodology should each be explored and assessed alongside comparisons and

cost-benefit assessments of the pre-processing methodologies used here. Alternat-

ive methods of machine learning and classification, such as random forest or Support

Vector Machines, may also prove more effective at the tasks than the LDA models em-

ployed here and now this initial exploration has provided some insight into the issue at

hand more sophisticated models could be used, at the expense of run-speed, to bet-

ter complete the task. Additionally, the stepwise feature selection methods should be

replaced or developed further where possible due to the greedy nature of the method.

Manually selected features and correlation based selection methods both performed

poorly in comparison but investigation of features which occur frequently in the valida-

tion models here could inform future manually constructed models and produce better

models with fewer features. As mentioned in Chapter 3 separation of classes could be

further improved using dimensional reduction methods, such as PCA, but this would

126



Chapter 4

reduce transparency and, if PCA is used, require alternative classification methods due

to conflicts with LDA (Sunderam et al., 2007).

4.6 Conclusion

This exploration of posture and locomotion classification suggests a selection of bin-

ary decision points produces classifiers with the highest levels of performance when

using an LDA-based methodology. The differentiation of the standing posture from ly-

ing was particularly accurate and has the potential to be highly informative within an

osteoarthritic context for observation of rest periods. The broader results across the

many different permutations assessed here suggest that with further development ac-

ceptable levels of performance could be attained but the selection of features and the

models used should be reassessed or developed further. One potential development

would be the hierarchical structure outlined which may assist in the removal of false

positives when assessing one vs all binary decisions. Additionally, The lists of feature

selection frequency provide some insight into the influence of aspects of acceleration

on this performance and could prove useful in future work. The application and as-

sessment of methods such as PCA may allow the derivation of principal components

that could be further assessed to understand the influence of groupings and common-

alities between selected features. Further work with homogenous breeds should be

performed prior to applying these methods on the wider range of breeds collected as

part of the DogBox dataset.
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Circadian Rhythm and Nocturnal Activity as Canine Welfare
Measures

5.1 Abstract

Patterns of activity and rest are potential indicators of health which could be automatic-

ally recorded using accelerometers. The circadian, and ultradian rhythms exhibited by

the domestic dog could be vulnerable to interference by poor states of welfare such as

stress, anxiety, pain or disease. Conversely many conditions have been suggested to

be caused by consistent sleep disturbance. Osteoarthritis is once such condition which

has been reported to be both caused and the cause of these disturbances. Modern

sensor technology allows behaviour to be measured continuously over days, weeks,

or even months, meaning that daily rhythms in activity and rest can be examined in

free-living animals at resolutions and durations not previously possible. This allows

the accurate and comprehensive assessment of the robustness of these rhythms in

the face of chronic conditions, such as osteoarthritis, which would impose negative

welfare costs. The aim of this study was to examine differences between patterns of

activity and rest in healthy pet dogs and those with a chronic disease, osteoarthritis.

We measured the periodicity of the activity of pet dogs using triaxial accelerometers

mounted to their collars. Activity data were collected over 7 days in the home environ-

ment for 85 pet domestic dogs of various breeds where: 14 dogs had been diagnosed

with osteoarthritis; 56 were healthy controls; and 15 had to be excluded from ana-

lyses. Summarised 24 hour periods for the 2 groups were calculated and examined

for distinct group-level differences. The most active and least active 5 hour periods

were calculated for the 2 groups and compared before passing the summarised data

through a Fast Fourier Transformation. The number of significant harmonics occurring

within the resultant frequency spectra, as selected through the calculation of Fisher’s

g statistic, were examined and used to inform the selection of frequencies of interest

for individual-level analyses. The 24 hour period of each individual dog was calculated,

the most and least active 5 hour periods and features relating to the rhythmic nature

of activity were extracted from the 3 acceleration axes and the Overall Dynamic Body

Acceleration summarisation. Through the application of an FFT the maximum amp-
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litude observed, the average amplitude of all frequencies, the entropy of the frequency

spectra, the kurtosis and skewness of the spectra, and the mean absolute deviation

were all calculated for use as features. The number of significant harmonics occurring

within the spectra, calculated using Fisher’s g as before, was also assessed and used,

as were the amplitudes of frequencies of interest that had previously been identified at

the group level. Each feature was included in a mixed logistic regression with a random

effect for individual. Of the 7 features found to be significantly indicative of osteoarth-

ritic group the mean ODBA Fourier component amplitude, the number of significant

harmonics within the X axis, and the amplitude of the component relating to a 12 hour

rhythm were identified as the best individual predictors from among cross-correlates.

The potential of the selected features to indicate the overall impact and severity of the

condition upon the quality of life of the dogs was also explored using the LOAD scores

as an outcome variable. Significant relationships were revealed between each of the 3

highlighted features but only the mean ODBA Fourier component amplitude was found

to explain a meaningful level of LOAD score variance. Additionally, each of the 3 final

features were assessed for their correlation with age. This revealed that those found

to be most indicative of high LOAD scores or the presence of osteoarthritis were also

the most collinear with age. These results suggest the monitoring of the ultradian and

circadian rhythms of behaviour shown in dogs could be used to indicate a reduction

in welfare state, specifically one produced by the presence or onset of osteoarthritis

but that further adjustment to account for confounds should be investigated further to

attempt to disentangle these and produce features that are both predictive and inde-

pendent.

5.2 Introduction

Behaviour is often rhythmic and the most prominent behavioural rhythm is that of the

mammalian sleep/wake cycle. This fluctuating pattern of activity, the circadian rhythm,

is due to a mechanism present and consistent across all bodily tissues. The period

is approximately 24 hours in healthy individuals and is entrained and maintained by

environmental stimuli, typically light (Aschoff & Pohl, 1978; Reppert & Weaver, 2002).

Within the circadian rhythm there also exist additional ultradian rhythms, those cycles

occurring wholly within a single circadian period, and infradian rhythms, those which

are longer than a circadian period. Changes or disruptions to any of these rhythms

could be a valuable indicator of a change in welfare state and requires the inspection

of behaviour at a level frequently overlooked in favour of more immediate and specific

indications of behaviour such as those described in previous chapters. In unhealthy or

welfare-impaired subjects, for example those suffering from neurodegeneration, age-

ing, inflammation, chronic stress, or chronic pain, circadian rhythms of activity and rest
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are often reported to exhibit varying degrees of disruption (Cheeta et al., 1997; Drewes,

1999; Fast et al., 2013; Hamilton et al., 2007; Volicer et al., 2001; Wulff et al., 2010).

In humans, disruption to the initiation and maintenance of sleep has been well es-

tablished as a co-morbidity of osteoarthritis and is a frequently reported concern by

sufferers (Parmelee et al., 2015). Such disruptions may be due to the degradation of

the maintenance of the circadian rhythm or are in spite of the influence of the meta-

bolic processes responsible. Additionally, it has been suggested that disturbances to

human sleep could be a causal factor in the development of many diseases, including

osteoarthritis (Berenbaum & Meng, 2016). Berenbaum and Meng (2016) describes

the bidirectional nature of the relationship between circadian rhythm and osteoarthritis

in humans may potentially form a negative feedback loop and necessitates interven-

tion as early as is practical. It is reasonable to expect that due to similarities between

canine and human osteoarthritis that a similar co-morbidity could occur in dogs which

could be exploited for the monitoring and assessment of the condition (Meeson et al.,

2019; Pond & Nuki, 1973).

Sleep and rest disturbances have been noted by owners of dogs in chronic pain

and disturbances to rest behaviour have been reported in dogs with surgically induced

arthritis (Knazovicky et al., 2015; Little et al., 2016). Previous research has recog-

nised the potential for the monitoring of circadian rhythms in activity and rest as an

indicator of health and welfare (Langford & Cockram, 2010; Owczarczak-Garstecka

& Burman, 2016). Together this suggests monitoring of the rhythmic nature of activ-

ity could provide effective indicators of health and welfare in dogs with osteoarthritis.

However the inherent differences in the activity patterns of dogs necessitates the de-

velopment of a methodology that accounts for the idiosyncrasies of domestic dogs.

For example, the sleep-wake cycle of dogs differs from that of humans as they display

polyphasic, rather than biphasic, patterns and periods of sleep and wakefulness are

short when compared directly (Adams & Johnson, 1993; Bódizs et al., 2020; Kis et al.,

2017; Takahashi et al., 1978). As a result the nature of domestic dog activity may be

better described by ultradian rhythms, those with periods less than the 24 hour circa-

dian rhythm, and as such the measurement of any impact to these shorter periods of

behaviour is also of interest in the recognition of osteoarthritis-related disruption.

Anderson et al. (2018) has shown that, in humans, we can measure both rest and

activity using a wrist worn accelerometer and hence obtain a convenient and non-

invasive window into the underlying circadian sinusoid signal. In this chapter I aim

to build on previous work on the investigation of behavioural rhythmicity in both hu-

man and non-human species to develop a methodology that investigates the potential

of rhythmic disruption as an indicator of osteoarthritis in domestic dogs, and related

chronic pain and welfare impacts. The use of tri-axial accelerometers attached to the

collars of domestic dogs has previously been demonstrated to be an effective tool in
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the measurement of canine rest and activity (Ladha et al., 2013; Preston et al., 2012;

Zanghi et al., 2013). I hypothesise that osteoarthritic dogs will exhibit more fragmented

activity rhythms, including those likely related to sleep and wakefulness, and that there

would be less distinction between rest and active states due to the previously observed

decrease in overall activity.

5.3 Materials and Methods

5.3.1 Data Collection and Preprocessing

The previously used sample of n = 86 dogs of mixed breed, age and sex, as described

in Section 2.3 and detailed in full in Appendix A, were each fitted with a collar-mounted

tri-axial accelerometer for a 7-day period. The sample details, attachment protocol,

sampling protocol, and data download and interpolation methodology were all identical

to those described in Chapter 2. All collected periods were trimmed to start and end at

midnight 7 days apart. 18 dogs were removed due to less than 7 days of continuous

data remaining when processed in this way. This resulted in a final sample of n = 68

dogs. 14 of these dogs had been diagnosed with osteoarthritis and 54 dogs formed

the control group.

The 100Hz acceleration data of each separate axis and of the Overall Dynamic

Body Acceleration (ODBA) were summarised to a 1 minute sampling rate, 1/60Hz,

as sub-minute period behaviours were not of interest. The ODBA was chosen due

to the findings of Chapter 2, where it was the measure showing the most distinction

between both control and osteoarthritic groups. The X, Y and Z axes were included as

indications of data features excluded by the use of the ODBA.

As the data collection for each dog began at different points during the week due

to the inconsistencies in owner availability the 7 day period collected was further sum-

marised into a mean 24 hour period. This was generated for each dog by taking the

mean of the 7 values for each minute of a day, resulting in a total of 1440 values per

dog. The mean 24 hours of both the control and osteoarthritic groups were calculated

in the same fashion, by taking the mean of each equivalent minute across the dogs in

each of the 2 groups. Mean days, both per group and per dog, were further summar-

ised to an hourly resolution and a rolling window of 5 hours applied. Values of ODBA

were summed for each 5 hour period and the maximum and minimum values extrac-

ted, giving the most active and least active 5 hour periods of overall activity (M5 and

L5 respectively) often used as indications of the phase of activity rhythms (Korte et al.,

2004; Ortiz-Tudela et al., 2014). The mean ODBA per minute over 24 hours for each

of the 2 groups are shown in Figure 5.1.
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Figure 5.1: The mean 24 hour ODBA of Control and Osteoarthritic groups

A Fast Fourier Transform (FFT) algorithm was applied, following the methodology

described in Chapter 2, to the X, Y, Z, and ODBA data of the mean 24 hour periods at

both the individual and group levels. The resulting periodograms for the mean 24 hour

ODBA of the 2 groups are shown in Figure 5.2. Once again following the methodology

described in Chapter 2 the spectra of individual dogs was calculated and the domin-

ant and second dominant magnitudes and frequencies were extracted as features for

further analysis along with the mean, entropy, skewness, and kurtosis of the spectra.

As can be seen from the group level spectra of 24 hour ODBA presented in Figure 5.2

there are more than 2 dominant frequencies. The strongest would be expected to be

the circadian frequency however each of the others would likely represent an ultradian

rhythm which may be impacted by the presence of a condition such as osteoarthritis.

To identify frequencies which are considered significantly different from noise Fisher’s

g statistic was calculated and assessed (Fisher, 1929; Li et al., 2020; Liew et al., 2009;

Percival & Walden, 1993). The same was performed at the individual level.
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Figure 5.2: Frequency domain representations of the mean 24 hour ODBA of the

A) Control and B) Osteoarthritic groups. Frequency represented as Cycles per Day

(CPD).

5.3.2 Statistical Analyses

To identify significant Fourier components from the calculated spectra Fisher’s g stat-

istic was used (Fisher, 1929; Li et al., 2020; Liew et al., 2009; Percival & Walden,

1993). The g statistic is the ratio of the periodogram magnitude for the focal frequency

to the sum of all magnitudes, up to the Nyquist frequency, and is frequently used across

disciplines when interpreting spectra (Fisher, 1929; Li et al., 2020; Liew et al., 2009;

Percival & Walden, 1993). The calculation for Fisher’s g was implemented in R (R Core

Team, 2018) using code available in Appendix G. The definition of Fisher’s g is shown

in equation 5.1 from Fisher (1929).

g =
maxkI(ωk)∑N/2

k=1 I(ωk)
(5.1)

I(ω) denotes the periodogram generated by the Fourier transform, N is the sample

size, and k = 0, 1, . . . , [N/2]. The value of g is calculated for each fourier frequency

where large values will result in a rejection of the null hypothesis that the frequency
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magnitude is not significantly distinct from noise. The p value used to assess the

significance of each g statistic was calculated using Equation 5.2.

P (g > χ) = n(1− χ)n − 1− n(n− 1)

2
(1− 2χ)n − 1

+ · · ·+ (−1)p
n!

p!(n− p)!
(1− pχ)n − 1 (5.2)

Here n = [N/2], χ is the observed value of the g statistic and p is equivalent to the

largest value less than 1/χ. Once calculated for each Fourier frequency the bonferroni

correction was applied to the p values to account for the high number of comparisons

(Cabin & Mitchell, 2000; Li et al., 2020). Frequencies were then ordered by descend-

ing g statistic and a significance threshold of p = 0.05 was set. Once a frequency

component was found to be insignificantly different from others all remaining ordered

components were discounted. This method was used to characterise the dominant

frequencies of the mean 24 hour values of the ODBA for the osteoarthritic and control

groups to investigate the presence of rhythmic aspects of overall activity at a group

level. Fisher’s g statistic was also applied to the X, Y, and Z axes, and the ODBA rep-

resentation of each dog to extract the total number of significant harmonic periods as

a feature for individual level comparison. This was included, along with the previously

mentioned M5, L5 and FFT features, in mixed effect logistic regression models. The

Fourier amplitudes of any significant rhythms found to differ between the 2 groups were

also included as features.

A series of mixed effects logistic regression models were devised, using the lme4

package in R, to assess the ability of the calculated features to differentiate between

the control and osteoarthritic groups. The individual was included as a random effect

in each of the models. All features, except the M5, L5, and amplitudes of significant

components as they were generated or selected from the ODBA, were calculated for

the ODBA representation and the 3 raw axes. This was to investigate whether the

information lost through summarisation was not of use to the task. Those found to be

significant were assessed for correlation and a final selection of features was produced

for discussion.

Following this, linear models aiming to explore the potential of identified features

for their potential to indicate the severity and extent of the osteoarthritic condition were

generated. This was achieved through the use of LOAD scores provided by owners.

This measure has, in Chapter 2, been shown to be potentially more informative than a

binary classification.

The potential effect of confounds on these features was also considered through the

exploration of the collinearity of age. This continues to expand on the initial exploration

of such relationships demonstrated in Chapter 2.

135



Chapter 5

5.4 Results

The M5 value of the control group’s mean 24 hour ODBA trace was between 09:00 and

14:00, the L5 for the same group was between 01:00 and 06:00. For the osteoarthritic

group the M5 was between 14:00 and 19:00, and the L5 was also between 01:00 and

06:00.

Analysis of the Fisher’s g statistic for each Fourier component of the control group

ODBA waveform revealed 5 frequencies with statistically significant magnitudes. The

first, and strongest component, is that relating to the 24 hour (1 cycle per day) circadian

rhythm (p = 7.913 × 10−35). The two components to also be significantly strong within

the signal are much shorter with periods of 0.393 and 0.406 hours, approximately 24

minutes (p = 1.018×10−15 and p = 1.823×10−15 respectively). An intermediate frequency

component can be seen in Figure 5.2 which is not significant. As these are within

seconds of each other, and due to the nature of the Fourier transform approximation

and discretization of frequencies causing an increased likelihood of spectral leakage,

it is probable that this pair of rapid ultradian rhythms is instead a single activity cycle

(Zeng et al., 2011). The mean 24 hour ODBA trace of the control dogs exhibited 2

further significant components. The first occurred approximately twice per day, a 12

hour period (p = 2.417 × 10−7), and the last occurred approximately three times daily,

with an 8 hour period ( p = 0.00124).

Table 5.1: The frequencies (CPD) and period length (hours) of harmonic components

of the mean ODBA of Control dogs found to be significantly distinct through the use of

Fisher’s g statistic.

CPD Period Length Figher’s g P value

1.001 23.967 0.120 7.913× 10−35

61.085 0.393 0.064 1.018× 10−15

59.082 0.406 0.064 1.823× 10−15

2.003 11.983 0.039 2.417× 10−7

3.004 7.989 0.027 0.00124

When the same analysis is applied to the mean 24 hour activity waveform of the

osteoarthritic group 5 significant components are identified. The first three are identical

to the first three of the control group with the first representing the circadian period (p

= 4.226 × 10−19), and the 2 subsequent frequencies likely representing the same 24

minute rhythm (p = 5.704 × 10−8 and p = 1.902 × 10−7). The values of Fisher’s g for

each of these components are consistently lower than those reported for the control

group, suggesting they are less distinct from the remaining signal noise (Fisher, 1929;
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Percival & Walden, 1993). In lieu of the 12 hour period rhythms of the control group the

osteoarthritic activity trace instead features an ultradian rhythm with a 6 hour period (p

= 6.434× 10−5). The 8 hour period ultradian rhythm is again present (p = 0.02667). As

a result of these findings the amplitudes of the 12 hour and the 6 hour period rhythms

were calculated as features in the mixed effects models.

Table 5.2: The frequencies (CPD) and period length (hours) of harmonic components

of the mean ODBA of Osteoarthritic dogs found to be significantly distinct through the

use of Fisher’s g statistic.

CPD Period Length Figher’s g P value

1.001 23.967 0.074 4.226× 10−19

61.085 0.393 0.041 5.704× 10−8

59.082 0.406 0.039 1.902× 10−7

4.006 5.992 0.031 6.434× 10−5

3.004 7.989 0.023 0.02667

The results for when each generated feature is included individually in mixed effects

models alongside a random effect accounting for subject difference are shown in Table

5.3. Of the 33, 7 models are significant. The mean ODBA FFT amplitude of 24 hours,

or the energy per sample, OR = 0.205 (CI: 0.078-0.541, P = 0.001), the entropy of the

Fourier spectra of the X axis, OR = 0.518 (CI: 0.277-0.968, P = 0.039), the entropy of

the Fourier spectra of the Z axis, OR = 0.472 (CI: 0.244-0.913, P = 0.026), the mean

absolute deviation of the fourier transform magnitude, OR = 0.223 (CI: 0.087-0.575, P

= 0.002), the number of detected significant harmonics in the x axis, OR = 2.621 (CI:

1.33-5.17, P = 0.005), and the Z axis, OR = 2.302 (CI: 1.18-4.49, P = 0.014), and the

circadian amplitude of the ODBA, OR = 0.249 (CI: 0.088-0.700, P = 0.0.008).
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Table 5.3: The results of logistic regression models including each feature alongside a

random effect accounting for the individual dog.

Variable Odd’s Ratio 2.5% CI 97.5% CI P Value Pseudo R2

Dominant X Axis Amp. 1.318 0.751 2.312 0.336 0.023

Dominant Y Axis Amp. 1.050 0.573 1.926 0.874 0.001

Dominant Z Axis Amp. 1.473 0.651 3.335 0.353 0.038

Dominant ODBA Amp. 0.469 0.213 1.033 0.060 0.148

Mean X Axis Amp. 0.726 0.337 1.565 0.414 0.028

Mean Y Axis Amp. 0.894 0.490 1.634 0.716 0.004

Mean Z Axis Amp. 0.868 0.477 1.579 0.643 0.006

Mean ODBA Amp. 0.205 0.078 0.541 0.001 0.433

X Axis Spectrum Entropy 0.518 0.277 0.968 0.039 0.116

Y Axis Spectrum Entropy 0.826 0.425 1.608 0.574 0.010

Z Axis Spectrum Entropy 0.472 0.244 0.913 0.026 0.147

ODBA Spectrum Entropy 0.887 0.459 1.716 0.723 0.004

X Axis Spectrum Kurtosis 1.149 0.629 2.097 0.651 0.005

Y Axis Spectrum Kurtosis 1.103 0.603 2.017 0.751 0.003

Z Axis Spectrum Kurtosis 1.051 0.575 1.923 0.872 0.001

ODBA Spectrum Kurtosis 1.033 0.573 1.860 0.915 0.000

X Axis Spectrum Skewness 1.308 0.636 2.690 0.465 0.019

Y Axis Spectrum Skewness 1.180 0.614 2.269 0.620 0.008

Z Axis Spectrum Skewness 1.233 0.623 2.442 0.547 0.012

ODBA Spectrum Skewness 0.973 0.537 1.765 0.929 0.000

X Axis Spectrum Amp. MAD 0.841 0.434 1.628 0.607 0.009

Y Axis Spectrum Amp. MAD 1.013 0.553 1.857 0.967 0.000

Z Axis Spectrum Amp. MAD 0.985 0.544 1.784 0.960 0.000

ODBA Spectrum Amp. MAD 0.223 0.087 0.575 0.002 0.406

ODBA Sig. Harmonics 0.714 0.314 1.624 0.422 0.031

X Axis Sig. Harmonics 2.621 1.329 5.169 0.005 0.220

Y Axis Sig. Harmonics 1.144 0.608 2.152 0.677 0.005

Z Axis Sig. Harmonics 2.302 1.181 4.485 0.014 0.174

Mean ODBA M5 1.023 0.565 1.852 0.940 0.000

Mean ODBA L5 0.604 0.255 1.430 0.251 0.071

ODBA 24 hour Amp. 0.450 0.199 1.015 0.054 0.163

ODBA 12 hour Amp. 0.249 0.088 0.700 0.008 0.370

ODBA 6 hour Amp. 0.657 0.271 1.592 0.352 0.047
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The correlation of the 7 selected features was assessed in Table 5.4. Where pairs of

features exhibited a correlation coefficient of greater than 0.7 the feature whose model

gave the highest pseudo R2 value was retained. High correlation can be seen between

mean absolute deviation of the ODBA Fourier components, and the mean amplitude of

ODBA Fourier components. The latter was retained due to its higher R2 value of 0.433.

Similarly correlation was revealed between the entropy of the fourier spectra of the X

and Z axes and the count of reported significant harmonics from within the 2 spectra.

The number of detected significant harmonics of the X axis was selected with an R2

value of 0.220.

The 3 remaining features were the mean amplitude of ODBA Fourier components,

the number of detected significant harmonics of the X axis, and the amplitude of the

12 hour period Fourier component of the ODBA. Figures 5.3 A), B), and C) give an

indication of the distribution of the features within and between groups. A simple indic-

ation of class separation is given in Figure 5.4 A), B), and C), where it can be observed

that dogs suffering from osteoarthritis exhibit an overall reduced amplitude of Fourier

components, including the 12 hour period component, along with an increased number

of significant harmonics in the acceleration of the X axis.
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Table 5.4: The correlation of features revealed to be significantly related to

osteoarthritic group when included in logistic regression models with only a random

term for individual
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Figure 5.3: A series of plots indicating the inter and intra-group variance of significant,

uncorrelated features. A) The Amplitude of the mean ODBA, B) the number of identified

X axis harmonics, C) the amplitude of the 12 hour period ultradian rhythm.
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Figure 5.4: A selection of plots providing an indication of class separability when using

the selected features as predictors of group. A) The amplitude of the 12 hour period

ultradian rhythm against the number of identified X axis harmonics, B) the amplitude of

the 12 hour period ultradian rhythm against the Amplitude of the mean ODBA, C) the

number of identified X axis harmonics against the Amplitude of the mean ODBA.
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5.4.1 Exploration of Variance in the Osteoarthritic Condition

The three remaining features were included in univariate linear regression models with

the LOAD score as the output variable (Figure 5.5). The amplitude of the 12 hour period

ultradian rhythm was significantly related to the LOAD scores of the dogs (F(1,62) =

6.79, p < 0.05), but the model struggled to explain the full extent of the variance of

LOAD with an R2 of 0.1. Similarly the number of significant X axis harmonics was

indicative of LOAD score (F(1,62) = 4.83, p < 0.05), but again indicated poor model fit

by presenting a low R2 value of 0.07. The amplitude of the mean ODBA signal was a

more effective indicator (F(1,62) = 21, p < 0.001), with an R2 value of 0.25.
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Figure 5.5: Regression of LOAD score against A) the amplitude of the 12 hour ultradian

rhythm of the mean ODBA signal, B) the number of significant X axis harmonics, C)

the amplitude of the mean ODBA signal
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5.4.2 Age Relatedness

The correlation of age with the three selected rhythmic features was examined (Figure

5.6). The amplitude of the 12 hour ultradian cycle within the ODBA was found to have

a small negative correlation with age (r = -0.24) and was marginally insignificant (p

= 0.057). The number of significant harmonics of the X axis was found to correlate

positively with Age (r = 0.39) and was significant (p = 0.001). Of the three the most

related to age was the negative correlation of the amplitude of the mean ODBA signal

(r = -0.60, p < 0.001).
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Figure 5.6: The relationships between dog age and A) the amplitude of the 12

hour ultradian rhythm of the mean ODBA signal, B) the number of significant X axis

harmonics, C) the amplitude of the mean ODBA signal
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5.5 Discussion

The assessment of the rhythmic aspects of acceleration has been shown to have po-

tential for the future discretization of osteoarthritic dogs from healthy controls and the

work here serves as a robust foundation to guide further development of these methods

both in terms of osteoarthritis and other conditions or welfare issues.

The phase shift of the M5 period from a start time of 09:00 in the control group to

14:00 in the osteoarthritic appears present only when a mean 24 hour signal is taken

per group. The mixed model featuring the mean calculated M5 period per dog was

non-significant showing no relation between such changes and osteoarthritic health.

The L5 reported in the group level assessment remained the same between control

and osteoarthritic dogs suggesting daily sleep periods remained consistent with those

expected of healthy dogs (Adams & Johnson, 1993).

Comparisons of the Fourier components identified as significant across the mean

group ODBA representations show minimal differences. For both groups the circadian

period is the strongest observed with 4 additional ultradian rhythms identified. 3 of

these are consistent between groups but the control group exhibits a significant 12

hour period rhythm whereas the osteoarthritic group instead shows a significant 6 hour

rhythm. It is not possible to ascribe cause to these ultradian rhythms without additional

data but hypotheses can be made for future testing particularly as the majority of ultra-

dian rhythms relate to physiological processes. The 2 periods reported, in both groups,

that possess 24 minute periods are so short as to be difficult to place and may be an

artefact generated through the processing methodologies. However, the canine sleep-

wake cycle is reported as possessing a mean period of 21 minutes which may also

cause such a rhythm to appear within the data (Adams & Johnson, 1993). The longer

period ultradian rhythms could be representative of behaviours that occur more inter-

mittently throughout the day or whose occurrence is restrained by the husbandry of the

animal. Piccione et al. (2014) outlines various factors that can dramatically impact the

activity patterns of domestic dogs. The home environment (Siwak et al., 2002), feeding

times (Zanghi et al., 2013), and owner engagement (Dow et al., 2009; Piccione et al.,

2014) have all been previously reported to significantly affect the activity levels of dogs.

It is possible that one of these behaviours, or others, is more intermittently engaged in

by the osteoarthritic group causing the presence of the related Fourier component at

a 6 hour, rather than 12 hour, period. The collection of further data, such as video for

visual behaviour verification, owner activity and diaries for control of husbandry pat-

terns, and EEG for the assessment of sleep-wake cycles, could help to explain each of

these rhythms and why the groups differ.

The majority of features calculated from the Fourier spectra were shown to be un-

related to the presence or absence of osteoarthritis. As can be seen in Figure 5.2 the
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spectra of the mean group ODBA values are similar with visible differences occurring

predominately in the amplitude of components. This shift in Fourier amplitude also ap-

pears to be consistent across individuals as shown in the results of the mixed models

where the mean amplitude of the Fourier spectra of the ODBA, and the amplitude of the

12 hour period were both found to be significantly related to osteoarthritic diagnosis.

The odds ratios, of 0.205 and 0.249 respectively, suggesting a decrease in amplitude

is indicative of an increased probability of osteoarthritis. Interestingly the two are not

highly correlated (r = 0.30) which shows the decrease in the 12 hour period compon-

ent is distinct from the overall decrease of amplitudes across the spectrum. As the

decrease in overall amplitude is illustrative of an overall decrease in activity levels, as

found to be indicative of an osteoarthritis diagnosis in Chapter 2 and is known to be in-

dicative of the disease in humans (Berenbaum & Meng, 2016), the decreased strength

of the 12 hour rhythm could be a useful indicator even when activity is constrained by

husbandry or other circumstances (i.e post-operative recovery) and should be invest-

igated further with particular attempts to identify the behavioural cause of the rhythm

itself.

The number of significant harmonics identified within the X axis was also found to

be significant and does not correlate with the ODBA amplitude features. This sug-

gests that summarisation of acceleration to the ODBA has excluded information held

within the X axis that could assist in the identification of osteoarthritis. The X axis

relates to the medial-lateral acceleration of the device and with an odds ratio of 2.621

an increasing number of significant harmonics can drastically increase the probability

of the presence of osteoarthritis. As can be seen in Table 5.4 this feature is highly

positively correlated with the number of identified significant harmonics in the Z axis (r

= 0.70), and negatively with the entropy of both the X and Z axes (r = -0.92 and r =

-0.75 respectively). This suggests that whatever movement or behaviour is related to

this increased number of harmonics involves similar acceleration within the devices Z

axis, which is aligned with the dogs dorsal-ventral plane. Simultaneously the entropy of

the Fourier spectra of the X and Z axes are decreasing, and therefore becoming more

deterministic. One potential explanation for this could be the presence of a consistent

gait or movement impairment caused by the osteoarthritis or related pain or that be-

haviours involving movement in these directions are more fractured and activities and

behaviours are engaged in for shorter periods before resting. Additionally, as covered

in Chapters 3 and 4 both the X and Z axes static components can be representative

of postural state, for example whether the individual is standing or recumbent on their

side. The use of ODBA which removes this static component, and thus discounts pos-

ture in favour of the non-gravitational acceleration, would have caused the rhythms of

postures, and the transitions between them, to be excluded from this analysis. It could

be that these features are reflecting more fragmented periods spent in different pos-
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tures. Further research into the specific frequencies that have been identified along

with supplementary data sources, such as video, would allow for the identification of

causal behaviours.

The potential use of the rhythmic features generated here in, not just the detection

of changes due to osteoarthritis, but of changes due to the effect of the condition on the

quality of life of the dog also shows some promise but, as shown by the relationship of

mean ODBA signal amplitude with LOAD, only when monitoring the overall distinction

between peaks and troughs of activity over a day. The effective fit of the model was

shown to be poor using this single predictor and such a feature is likely closely related

to similar measures of activity level taken from the time domain and without need of

Fourier Transformation.

As in Chapter 2 an initial exploration of the effects of age upon potential models

was explored. These correlation results support the further investigation of the effect

of age on both the number of significant X axis harmonics and the amplitude of the

mean ODBA signal. Additionally, the potential for the 12 hour harmonic amplitude to

be a predictor of LOAD while also being robust to age differences should be explored.

Future work should build on the findings outlined here to further refine rhythm

based methodologies within the unique context of domestic animal attached, collar-

mounted accelerometers. It may be that the methodology used caused the obfusca-

tion of rhythmic components of interest, for example by taking the mean day per dog.

A summarisation such as the mean may be effected by the existence of outliers or high

levels of intra-week activity variability. Similarly intra-group variation requires further

assessment as the summarised 24 hour period of each group formed an informative

foundation for the individual-level analyses. Humans express a number of distinct chro-

notypes and this also appears to be true to some extent in domestic dogs (Little et al.,

2016; Nauha et al., 2020; Randler et al., 2018; Refinetti et al., 2016). The current study

also assumed all dogs within the assigned groups would share consistent patterns of

disruption, which may be too strong an assumption and should be considered when

interpreting results and developing future methodologies. The further assessment of

LOAD scores for individual dogs may help to disentangle such a phenomena as would

further information as to the specific nature of the condition within each individual. It is

also possible the chronotype of the owner has a high level of influence on the exhibited

rhythms of the dog. This would also be true of ultradian rhythms, which from the results

shown here appear to be more indicative of osteoarthritis than the circadian rhythm,

and which would be impacted by intra-week schedule changes such as the weekend or

owner work patterns. For example, Zanghi et al. (2013) found that alteration of feeding

schedules would drastically effect the rest-activity rhythms of dogs.

Further investigation of the dataset with unsupervised tools such as clustering al-

gorithms may help to reveal groupings of dogs that could account for variation in chro-

147



Chapter 5

notypes or other unidentified source of intra-group variation. Another strategy that may

improve the ability of the methodology to discern between groups is the application of

a transformation, such as the logarithm, to the Fourier amplitude values, which often

differ over orders of magnitude. This process could reveal additional rhythmic compon-

ents hidden within the low level noise. Finally constraint of the assessed epoch could

help disentangle ultradian rhythms of interest. As the circadian rhythm itself has been

found to be unchanged in period length between the groups the reduction of the pro-

cessed acceleration to only the nocturnal periods could reveal rhythmic components of

sleep disturbance which would be consistent with owner reports of night time restless-

ness in osteoarthritic dogs (Knazovicky et al., 2015). In the specific case of nocturnal

rhythms such a change to the sampling protocol could also help to reduce owner im-

pact by removing daytime periods where contact is more common. Additional factors

of canine health and welfare should also be investigated once methods are further re-

fined to ensure features are indicating osteoarthritic health and not co-morbidities or

other correlated features such as age (Siwak et al., 2002).

5.6 Conclusion

The detection of the presence of osteoarthritis from a single collar-mounted, tri-axial

accelerometer using a frequency-based methodology focussed on the extraction of the

circadian and ultradian rhythms of behaviours shows promise. From this initial explor-

ation the mean amplitude of the ODBA Fourier components, the number of identified

significant Fourier components within the X axis, and the amplitude of the 12 hour

period ODBA Fourier component are each shown to be related to the dogs osteoarth-

ritic state. This supports the hypothesis that such measures could, as in Humans, be

used in dogs to monitor for welfare change, such as the development of osteoarthritis.

However, initial exploration of the known collinear feature of age and its effect suggests

that these features need further refinement and perhaps reformulation to account for

such confounds. Specific data concerning the extent and management of the condition

along with other idiosyncrasies would be informative. The LOAD score assessment

of the variance of condition effect on quality of life as percieved by owners appears to

show promise for future work focussing on welfare as a measure of disease impact,

or probability of condition presence based on linear changes in lifestyle rather than a

binary assignment of diagnosis.

The circadian period of dogs was not found to differ between groups, with the ul-

tradian rhythms appearing to be more indicative. Increased ultradian fragmentation

may be present in the X and Z axes of acceleration as there are correlating changes

in the entropy of the 2 axes and both feature an increased number of detected sig-

nificant Fourier components. Further development of these methods alongside the
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collection of supplemental observational data would assist in the assignment of causal

relationships between identified components of interest and behavioural patterns. The

use of frequency related features and the Fourier transform at these circadian and

ultradian scales may allow the creation of rhythmic fingerprints of conditions, such

as osteoarthritis, or welfare states to supplement other identification methods and,

in much the same way it is used in commercial human gait and behaviour recogni-

tion algorithms, improve overall classification results (Bao & Intille, 2004; Foerster &

Fahrenberg, 2000).
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Discussion

This thesis investigated the potential of using a single, collar-mounted, tri-axial acceler-

ometer to characterise canine welfare, using osteoarthritis as a model negative state.

The focus of this research was on establishing the breadth of potential applications

of these devices, drawing from human and animal research, to enhance the ability of

both owners and vets to recognise subtle changes in behaviour or physical function

that could be indicative of underlying welfare issues and could, with further develop-

ment, allow earlier intervention. The initial groundwork put forward in the thesis was

broadly successful in this task and as a result it appears that the monitoring of a reduc-

tion in physical function would be possible with further work to address areas where

classification ability was lacking.

This discussion will consider the thesis as a whole and the interplay of the methods

examined within. The limitations and intricacies common to multiple chapters will be

assessed further.

6.1 Overview of Findings

Across the thesis the potential of accelerometers to understand the bio-mechanistic

and behavioural differences of osteoarthritic dogs, when compared to healthy controls,

has been established. However, success has been limited in performance with each re-

vealed indicator of osteoarthritic health, or of behavioural states requiring further work

to refine. A combination of these methods with such refinements however could prove

effective and informative by accounting for behavioural and biomechanical changes at

multiple levels and resolutions. Such methods could also be applied in different welfare

compromising conditions to attempt to characterise each independently.

Where this work struggles is the distinction between negative physical and neg-

ative cognitive welfare. The current methodologies do not account for the potential

differences in the symptoms of these two facets of poor welfare.

Chapter 2 showed the ability of existing measures of activity entropy and overall

activity to differentiate between osteoarthritic and control dogs when summarised to a

7 day period. However, when applying this to daily summaries of activity the variabil-
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ity of day to day data presented a masking effect that obscured such difference. The

success of ODBA and its entropy reveals an effect of osteoarthritic grouping on the

overall energy expenditure of individuals and the increased stochasticity of expendit-

ure patterns. Due to this relationship with energy expenditure models using these two

features could also be indicative of other activity impacting conditions, e.g. the monit-

oring of obesity in dogs (Morrison et al., 2013). The mean ODBA is potentially more

susceptible to influence from husbandry practices, such as the frequency of walks dic-

tated by owners. It may therefore be that entropy is a more robust indicator and could

be indicative of sporadic stopping for pain avoidance or other cognitive welfare related

reasons. Further study would be required to investigate this further.

The findings of Chapter 3 indicated that a postural transition recognition algorithm,

using a collar-mounted tri-axial accelerometer, is not reliable using the methods out-

lined within this thesis. Within the specific case of osteoarthritis this is disappointing

where such a methodology would allow the replication of similar outcome measures

assessed with human literature (Podsiadlo & Richardson, 1991). This would have

been a good measure of physical welfare but may perhaps have been specific to the

osteoarthritic case, or only those conditions causing significant biomechanical impacts.

The detection of postural states and locomotion assessed in Chapter 4 would al-

low the longitudinal monitoring of basic behavioural patterns in free-ranging domestic

dogs. This limited number of states would serve as an important foundational step

to further behavioural classifications informed by the behavioural repertoire available

to dogs within each posture, or when locomoting. This method would provide an al-

ternative observation method for the behavioural assessment of welfare as changes

to behaviour can be indicative of changes to welfare state. Therefore, this method

could be applied to other cases of compromised welfare to investigate the behaviours

and patterns exhibited. The longitudinal nature of the device also potentially allows for

the monitoring of behaviour during negative welfare state onset and of recovery using

within dog comparisons. In contrast to the physical nature of osteoarthritis the tool

could also be applied when cognitive welfare is compromised, such as during periods

of chronic stress, where behaviours are also known to deviate from the norm (Beerda

et al., 1997). The performance of the method requires further development however

the potential collection of long-term data could provide sufficient indication of ‘welfare

degradation to offset issues of classification accuracy.

The final exploration, within Chapter 5, examined the rhythmic nature of accelera-

tion and its applicability to osteoarthritic detection. Differences reported were subtle

between groups. As in Chapter 4 the potential for longitudinal collection of behaviour

and activity reveals the exciting prospect of the collection of data difficult to obtain with

traditional or alternative methods. For example, sleep behaviours are often difficult to

collect in a dogs natural environment due to the requirement of set sleeping positions,
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if using vision based methods, or the potential impact of human observers and time

required, when using traditional methods. Changes to circadian and ultradian rhythms

of behaviour were anticipated to be indicative of welfare disruption. However, differ-

ences between groups were subtle. This could be due to the same inter-day variability

seen in Chapter 2 and is perhaps indicative of the daily difference in severity reported

by dog owners (Belshaw, 2017; Belshaw et al., 2016; Belshaw & Yeates, 2018). How-

ever, this could also be due to the influence of owner behaviour, such as the night time

routines effect on circadian rhythm, or the heterogeneity of the osteoarthritic sample

itself, with potential differences in pain management and severity. The difference detec-

ted in circadian amplitude is likely a reflection of the same reduced energy expenditure

observed in Chapter 2. Similarly the indication that ultradian rhythms are more indic-

ative of osteoarthritic group, and by extension potentially of welfare state, lends further

support to the suggestion made regarding Chapter 4 that individual rhythms of beha-

viour could be more sensitive and robust measures which could be investigated further

in the future. Across the chapters are common limitations and extensions which are

explored in the following sections.

6.2 Attachment Method

The unique context offered by domestic dogs provided a number of obstacles to the

project. The use of a single, collar-mounted device is not ideal for the monitoring

of canine behaviour and movement for several reasons. Most prominent of these was

that it was believed to be more agreeable to owners, in terms of their perception of their

dogs comfort, and would not require additional habituation as the majority of domestic

dogs are already accustomed to wearing a collar.

Collar attachment is particularly problematic for Chapters 3 and 4 which attempt to

replicate automated postural recognition used in the assessment of gait impairment in

humans, and livestock. For humans devices are typically positioned at the hip or on

the thigh. Here changes from lying to standing or sitting to standing and vice versa

involve distinct orientation transitions that are not replicated in the vertical movement

exhibited by devices placed at the neck of a dog. Similarly measures of rest and

lameness in livestock, particularly cattle, are taken from devices attached to the leg

or ankle, again where changes would be most apparent (Martiskainen et al., 2009). As

a result of this compromise features of interest required reassessment and the task of

classification was likely more difficult due to the lack of distinct orientation changes and

separation from the area of interest of the dog. The classifier was no longer attempting

to classify features relating to the direct results of impaired movement but instead was

assessing the effects of the condition at a holistic level. However, this shifted focus

allows the methodologies discussed throughout the thesis, particularly of Chapters 2,
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3 and 4, to concentrate on the behavioural rather than the bio-mechanistic which could

be more meaningful to owners and allow discussion of symptoms and intervention to

be couched in more immediately recognisable terms by veterinarians.

The initial problem with a collar attachment method is the ability of the sensor to ro-

tate around the neck of the dog, an issue that was highlighted in Chapter 2 when con-

sidering measures that were robust to such changes, and was addressed in Chapters 3

and 4 with attempts to rectify such an eventuality with a rotational correction algorithm

(provided in Appendix D). However, Chapter 4 reported a reduction in the classification

performance as a result of the application of the algorithm. This, coupled with a lack of

perceived rotation during video recording, resulted in the correction for an eventuality

that was present only in theory, and not observed.

One potential solution suggested was the addition of rotational sensors, such as

a gyroscope. This would be useful, and has shown much success when used both

in human and non-domestic free-ranging animal remote sensing, but would further in-

crease the price of the device, the battery draw, and the memory requirements, which

could each impact the size, deployment time or the price (Wilson et al., 2008). Within

research environments such changes may not be problematic, particularly as the in-

clusion of a gyroscope would be unlikely to significantly impact device size or weight.

However, this thesis situates its findings within the domestic context. Accessibility, both

in price and in usability, should be considered throughout the development of such

techniques. The current deployment of devices allows a set it and forget it approach

by owners that would be preferable to repeated interventions by owners which would

increase the perceived burden and introduce further points of failure.

An alternative approach would be the exclusive use of rotationally robust features,

in particular the use of VeDBA in lieu of the ODBA, however measures derived from

the vector of acceleration have been shown in Chapters 2, 3, and 4 to have reduced

classification ability due to their exclusion during feature selection methods. This is

despite showing a strong correlation with the ODBA when compared directly, and sug-

gests there is some obscuration of information, possibly the rotational component that

has been corrected for, that is useful in discerning between the groups when data are

summarised in such a way (Qasem et al., 2012).

The placement of the device on the collar may not be optimal for the detection of the

activities discussed throughout the thesis. Placement of the device at the neck intro-

duces increased influence of head orientation upon the static acceleration component

and of head movements upon the dynamic component.

Features of Chapter 2 relying on the dynamic acceleration component could be

less susceptible to corruption, as brief movements of the head are limited in scope and

should not produce high dynamic acceleration readings. Similarly, such an attachment

position would be unlikely to significantly affect the ODBA derived measures of Chapter
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5 as it once again concerns itself with overall dynamic activity.

The slower movements of the head, relating more to a shift of orientation and there-

fore a change in the static component, could be a potential influence on features cal-

culated in all methodologies depending on their inclusion of the static component of

acceleration. Chapter 2 lists several orientation and static component related features

which could be affected by frequent adjustments of head position. Similarly, Chapters

3 and 4, are both dependant on the interpretation of the static component of acceler-

ation to identify postural transitions or states and increased potential variation within

a postural state would reduce classification ability. Alongside features relating to the

rhythmicity of the ODBA summarisation Chapter 5 includes rhythmic features of the 3

axes which have not been filtered to remove the static or dynamic components.

However, despite this potential influence each chapter has produced indications

that such static-inclusive features are related to osteoarthritic grouping. For example,

in Chapter 5 rhythmic features of both the X and Z axes were significant. Both of these

were unfiltered representations of the axes and as such included both dynamic and

static components. It could be that rhythm of the head position static component is

more indicative of osteoarthritic state than that of the overall posture, as detected from

the neck. Head orientation would likely be highly correlated with rest, alertness, feeding

from a bowl, and other such behaviours where deviation from normality could indicate

issues.

The relationship between head orientation and the calculated features should be

further investigated with an aim to disentangle the influence of such a distinct move-

ment on the ability of calculated features to classify or represent behaviours of interest.

Comparisons against devices situated on the back or underbelly of the dog, where

head movement would be less influential, would be sufficient particularly when ob-

serving behaviours that require distinct shifts in head position. If found to be distinct

then adaptation of methods should be pursued to account for such orientation changes.

However, this should be alongside the investigation and addition of a head orientation

algorithm. This is due to the ability of head position identification through acceleration

to be indicative of behaviours such as feeding, or resting (Ladha & Hoffman, 2018;

Moreau et al., 2009; Watanabe et al., 2005).

6.3 The DogBox Sample

The DogBox sample, consisting of the 7-day acceleration profiles of N = 85 dogs, con-

tained a wide assortment of breeds, ages, living environments and husbandry practices

(Appendix A). When the entire sample was used, in Chapters 2 and 5, each of these

factors presents an additional source of variation that was controlled for through the

inclusion of a random effect term accounting for the individual within generated models
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or in the use of the LOAD score to assess the perceived effect of the condition on qual-

ity of life, and therefore accounting for aggravating or mitigating factors. Additionally,

the osteoarthritic group was under-represented with only 14 dogs confirmed to suffer

from the disease by veterinary diagnosis. This under-representation of the focal class

could be problematic where classification is attempted due to the increased probability

of misclassification due to the accuracy paradox (Valverde-Albacete & Peláez-Moreno,

2014). To combat this, alternative measures of classification ability were used that are

more robust to such occurrences and that produce more conservative results. How-

ever, the proportion of healthy to osteoarthritic dogs within the DogBox sample is ap-

proximately consistent with estimates of prevalence estimated within the UK and USA

(Anderson et al., 2018). As such the prior probability of belonging to either of the two

classes is consistent and may in fact improve the accuracy of models by reflecting the

true population.

The postural state and transition recognition chapters, 3 and 4, used a reduced

sample of 20 healthy control dogs, from a separate and pre-existing dataset, that were

all the same breed and subject to identical husbandry conditions. This allowed more

precise claims to be made in terms of the predictive ability of the models for the pre-

diction of postural state. However, the limited sample created difficulties in the cross

validation of predictive models and a large degree of class imbalance between rare

and common behaviours. The sample itself also lacks generalisability and if further de-

veloped will need to be adapted to account for the wide range of breed variation within

dogs.

The DogBox sample lacked detail in terms of the daily schedules of the dogs. The

addition of owner diary methods or the additional instrumentation of owners would

help to untangle the relationship between the features calculated through the thesis

and husbandry, owner schedules and related confounds. The additional completion of

further owner-perception related questionnaires would also be of use to interpret any

changes in husbandry that may result from the perceived welfare change of the dogs

due to their positive osteoarthritis, for example reduced activity may be originating from

the owner providing fewer exercise opportunities than from the dogs unwillingness to

engage (Belshaw, 2017). Such additional tasks however would be difficult to collect

across such a large sample due to the increased level of engagement required by

owners and increased likelihood of non-continuous compliance to the protocol.

6.4 Osteoarthritis as a model of reduced welfare

The core assumption of this thesis is that osteoarthritis is equivalent to a reduction in

welfare and by extension that the automated detection of the presence of the disease

would be equivalent to an automated detection of negative welfare state. It is widely re-
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ported that human sufferers of osteoarthritis report chronic pain, and stiffness of move-

ment at levels which impact daily function (Duncan et al., 2007; Duncan et al., 2011).

As the mechanisms of osteoarthritis in both species are equivalent, and dogs are often

used as models for human osteoarthritic research, it is assumed that this is also true

in canine sufferers. As such any measurement of pain within dogs with osteoarthritis

is assessed and measured second hand rather than by the sufferer themselves. In this

study indications of osteoarthritic health were provided by owners and their personal

perception of their dogs quality of life and level of pain. Such phenomena as the care-

giver placebo effect, where owners are found to be poor reporters of acute pain, could

have resulted in the under-diagnosis of osteoarthritis within the sample. Such an even-

tuality was attempted to be controlled for using quality of life questionnaires, such as

the Liverpool Osteoarthritis in Dogs questionnaire, which more extensively probed the

daily function of dogs but remained owner dependent (Belshaw, 2017; Belshaw et al.,

2016; Belshaw & Yeates, 2018).

Additionally, accelerometers measure the actual acceleration of the device, which

is then used to draw conclusions regarding the biomechanics and behaviour of the

animal it is attached to. As such it must be questioned whether the methodologies

described are detecting osteoarthritis or welfare at all and just what the generated fea-

tures coincide with. The features generated across the thesis may each be indicative of

different symptoms of osteoarthritis but fall along two interrelated axes, pain avoidance

behaviours or reduced welfare behaviours. Physical adjustment to gait, the reduction

of the number of postural transitions, or changes to the patterns and degree of activity

or postural states, may each be indicative of pain avoidance. If this is the case then

similar results would be found when investigating other chronic pain conditions, par-

ticularly those affecting similar areas of the body. Simultaneously behavioural shifts in

terms of rhythmicity, frequency, or amplitude of activity or posture could be indicative of

the stress and impact on affective state of the condition, including effect of the inability

of the animal to engage in natural behaviours due to pain. This presents 3 possibilities

as to what the features calculated throughout the thesis are detecting: the occurrence

and development of specific symptoms of osteoarthritis, evidence of increased pain

avoidance behaviour in osteoarthritic dogs, or the changes of behaviour resulting from

a reduction in welfare irrespective of physical health. To disentangle these additional

work would be required on a population suffering from a differing chronic pain caus-

ing condition, and with a non-physical negative welfare causing condition, such as a

cognitive impairment (e.g. epilepsy) or a known negative experience or stress causing

situation (e.g. anxiety).

Across both Chapters 2 and 5 the collinear nature of age with the condition is ex-

plored with relation to highlighted features and the LOAD score. The nature of ageing

within dogs is such that both activity and health are reduced as it advances. As such,
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there was no clear feature that was found to be entirely disentangled from age as a

confounding factor. This is a difficult problem to fully solve and should be considered

with future work. Further work into the biomechanical and/or the behavioural informa-

tion that could be obtained via remote sensing methods, such as the postural methods

illustrated in Chapters 3 and 4, may be a more robust methodology to pursue when

attempting to account for this as they focus more on alterations to how and when be-

haviours are being performed that may be easier to attribute to the condition itself.

6.5 The role of Technology in animal welfare

This thesis attempts to avoid sophisticated machine learning methodologies for the

classification of the osteoarthritic grouping throughout. This is a conscious attempt

to preserve the interpretability of results in terms of the features and their potential

meanings. The implementation of more sophisticated methods that have shown a high

degree of performance in other work, such as random forest methods, would create a

black-box environment (Rudin, 2019). This would result in a disconnect between the

classification of dogs and specific causes. At this foundational stage and in an effort

to better understand the changes that occur and how they relate to the osteoarthritic

state it was decided that the preservation of features and the use of simplistic statistical

models was of more importance than the performance attained. Despite this sacrifice

the methods proved promising and have presented several features and insights that

are worth pursuing further throughout the thesis.

The black box issue is present throughout the application of machine learning in

animal behaviour and work is frequently published with outstanding performance but

with little interpretation possible beyond the proclamation of relationships or the ability

to classify. In some situations this is desirable and further interpretation of cause and

effect is superfluous. The extensive use of such methods for behaviour detection in

wild free-ranging species or in commercial agricultural settings are examples of this.

The presence or absence of the behaviour is of the highest importance as this can

then be used to gain further insight into the focal animals behavioural ecology. Within

work such as this thesis, where the interest lies not in the presence of the disease,

but on its wider effects and repercussions, a more transparent methodology that can

convey meaning and cause more easily is more desirable. By aiming for transparency

of methods it is hoped that if applied such methods could provide insight that better

allows the treatment or alleviation of the condition, pain or negative welfare state. This

is in direct contrast to the ever-increasing commercial solutions which operate as true

black boxes and often obscure the methodologies used for their output due to concerns

regarding competition.
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6.6 Future work

The most prominent avenue to pursue further is the incorporation of the methods with a

naïve dataset to truly assess performance. This could be coupled with the combination

of the more successful methods described in Chapters 2, 4, and 5 into a multi-faceted

classifier consisting of either a hierarchical or vote based system of classification which

could help to address any shortfalls exhibited when used individually. The issues re-

lating to collar rotation and positioning should be addressed as described and such

improvements would allow for the addition of head orientation analysis that, if coupled

with postural identification, could further inform the ability of the sensors to infer beha-

vioural state. There also exists the potential to combine the procedures of chapters 4

and 5 to analyse the rhythmicity of postural state and the time spent within each state.

The application of knowledge regarding the interrelationship of features and os-

teoarthritic health gained here could also be used to inform the future use of less trans-

parent machine learning methodologies. Such methods may allow the achievement of

levels of performance akin to those seen in similar literature however care should be

taken to minimise their black-box nature. The information required in management and

care of dogs the vast, varying domestic should be accessible and unobscured where

possible. Data condensation through methods such as PCA or MFA could also present

improvement to performance and should be assessed, however care should be taken

in the derivation of real-world meaning from the presented components.

The potential effect of owner schedule and husbandry should be accounted for

through simultaneous instrumentation of owners and/or the completion of diary ques-

tionnaires. Additional condition groupings would be a valuable addition to the samples

to better understand the level of specificity the classification procedures are achieving

(i.e. whether the classifier is identifying osteoarthritis, pain, or negative welfare).

This work focussed on the negative welfare of dogs affected by the osteoarthritic

disease. As the field of animal welfare research increasingly involves the assessment

of positive welfare state and behaviour it would be of interest to also attempt to devise

a classifier that detects it. Combined with the broad methods described in this thesis it

could be that rather than an increase in pain-related behaviour the grouping of the dogs

is instead seen in a decrease of positive welfare related behaviours, such as play. This

is already claimed to be detected by commercial solutions and in research. However,

play is often conflated with periods of vigorous activity that do not infer valence and

although this may be broadly true the diversity of play behaviour exhibited by dogs

presents the distinct possibility that such simplifications may be insufficient and should

be assessed.
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6.7 Conclusions

This thesis highlights the potential of accelerometer based methods, particularly those

relating to behavioural rhythmicity and energy expenditure, for the remote monitoring

of conditions relating to a negative welfare state, specifically osteoarthritis. Method-

ologies that have been deployed in past works across multiple species and within a

variety of fields have been adapted to the specific context of domestic dog welfare. A

promising foundation for further work and refinement has been laid with initial explora-

tions of established acceleration measures revealing the difficulties in their adaptation

to this welfare context. It may be that instead higher order interpretations of acceler-

ation measures are required to attribute behaviour and biomechanical abnormalities

to individuals. The hierarchical model of Chapter 4 poses a framework for the devel-

opment of meaningful remote sensing ethograms that, from a ground up perspective,

could provide a modular and effective method of observation, similar to that established

in wild animal behavioural ecology. I would suggest that such a system could then form

the basis which provides the additional context allowing meaning to be found from the

methodologies proposed throughout the rest of the thesis. The attempt to recognise

transitional movements was largely unsuccessful but an automated "stand up and go"

test or similar could be implemented at probable postural change windows if such a

hierarchical system were further developed. Similarly, the varied measures of overall

activity of Chapter 2 may be more widely informative when taken during speicifc peri-

ods or behaviours. Measures of circardian and ultradian rhythms may also benefit from

details relating to behaviour, such as nocturnal orientation changes and disturbance

recognition, or rhythmic nature of specific behaviours and events that may be difficult

to recognise when interpreting raw acceleration. The overall focus of this thesis has

centred around interpretation by the end user and the transparency of revealed rela-

tionships and potential confounds. This is core to the useability of such methods going

forward and their practicality within real-world home and veterinary environments. A

system that more closely resembles existing behavioural and health monitoring meth-

ods, by representing acceleration in behavioural and biomechanical terms, would also

greatly help in further promoting this useability and ensuring that such tools are ac-

cessible within research, veterinary care and the domestic environment to ensure the

maximal improvement to canine welfare.
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Appendix A

Sample Details

Table A.1: Sample details of the Osteoarthritic dog group

ID Age Breed Sex Neutered LOAD
OA001MZB 10 Greyhound M Y 14
OA002FZB 11 Labrador F Y 52
OA003MZB 14 Springer Spaniel M Y 36
OA004MCL 13 Border Collie M Y 22
OA005FZB 14 Labrador F Y 25
OA006FZB 11 Labrador F Y 26
OA007MCL 9 German Shorthaired Pointer M Y 2
OA008FZB 9 Springer Spaniel F Y 23
OA009MZB 11 Border Collie M Y 21
OA010MZB 8 German Shepherd M Y 24
OA011MZB 8 Spinone M Y 15
OA012FZB 10 Rottweiller F Y 36
OA013FZB 11 Labrador F Y 16
OA014FZB 11 Boxer F Y 20
OA015FCL 12 Cross F Y 11
OA016FZB 9 Basset F Y 23
OA017FZB 13 Toy Poodle F Y 10
OA018FCL 14 Border Collie F Y 14
OA019MCL 15 Jack Russell M Y 33
OA020MZB 13 Collie cross M Y 13
OA021MZB 9 Collie cross M Y 16
OA022MZB 9 Toy poodle M Y 7
OA023MCL 10 Boxer M Y 26
OA024MDB 8 Unknown M Y 21
OA025MDB 10.58 Lab x Collie M Y 7
OA026MDB 13 Border Collie M Y 26
OA027MDB 8 Labrador M Y 15
OA028FDB 9 Collie cross F Y 12
OA029MDB 16 Fox Terrier M Y 20
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Table A.2: Sample details of the Control dog group

ID Age Breed Sex Neutered LOAD
C001FGK 5 Labrador F Y 0
C002FGK 6 Irish Wolfhound F Y 9
C003MGk 6 Lurcher M Y 1
C004MGk 2 Cockerpoo M Y 2
C005MGk 7.5 Rhodesian Ridgeback M Y 4
C006MGK 2 Labrador M N 0
C007FGK 10 Springer Spaniel F Y 10
C008FGK 9 Rhodesian Ridgeback F Y 8
C009MGK NA Lurcher M Y 2
C010FGK 1.5 Cavapoo F N 4
C011FGK 8 Mongrel F Y 2
C012FGK 9 Jack Russell F Y 2.5
C013MGK 4 Jack Russell M Y 2
C014FGK 5 Labrador F Y 3
C015FGK 10 Cross (Terrier/Lurcher style) F Y 2
C016FGK 2 Corgi F Y 3
C017FGK 5 Springer/Collie Cross F Y 2
C018FGK 1.9 Lurcher F Y 1
C019MGK NA Labrador M Y 3
C020FGK 3.5 Collie cross F Y 2
C021MDB 1.5 Springer Spaniel/Labrador M Y 1
C022MDB 2 Miniature Schnauzer M Y 2
C023MDB 4 Kelpie M Y 0
C024MDB 3.5 Labradoodle M Y 3
C025MDB 7 Lurcher M Y 0
C026MDB 2 Sprocker (Working cocker/Working springer) M Y 0
C027MDB 4 Staffordshire bull terrier M Y 3
C028MDB 7 Utonagan M N 6
C029FDB 3.5 Mongrel (small) F Y 6
C030FDB 8 Labrador Retriever F Y 3
C031FDB 2.75 Border Terrier F Y 4
C032FDB 2.75 Border Terrier F Y 5
C033FDB 4 Working Cocker Spaniel F Y 3
C034FDB 5 Bedlington Terrier F Y 6
C035MDB 6 Beagle M Y 9
C036FDB 2 Border collie F N 1
C037MDB 7.5 Ibizan Hound M Y 5
C038MDB 7.5 Ibizan Hound M Y 3
C039FDB 13 Collie Alsatian Cross F Y 6
C040MDB 11 West highland terrier M Y 19
C041FLA 7 Dachshund F Y 9
C042FJO 9 Jack Russell F Y 9
C043FJO 11.92 Jack Russell F Y 9
C044FLA 6 Golden Doodle F Y NA
C045FLA 2 Vizla F Y NA
C046MLA 2 Cocker Spaniel M Y NA
C047MDB 2.58 Working collie cocker cross M Y 2
C048MDB 13 Jack Russell M Y 12
C049FDB 9 Welsh Springer Spaniel F Y 7
C050FDB 3 Greyhound F Y 4
C051FDB 13 Border collie F Y 24
C052FDB 3 Sprocker spaniel F Y 3
C053FDB 5.25 Alsatian F Y 1
C054FDB 13 Jack Russell F Y 2
C055FDB 8 Border collie F Y 15
C056FDB 9 Border collie F Y 17
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Read.ELAN function code

1 library ( data . table )

2

3 read . e lan <-function ( d , v s t a r t , ao f f se t , t z ) {

4 if ( missing ( d ) ==T) {

5 stop ( "No ELAN expor t s p e c i f i e d . ELAN exported

f i l e s should be i n CSV format and inc lude

Sta r t , Stop , Durat ion and Behviour Class . " )

6 }

7

8 if ( missing ( v s t a r t ) ==T) {

9 v s t a r t <- s t r p t ime ( " 0 " , format = "%S" )

10 warning ( paste ( ’ Time of video not s p e c i f i e d

d e f a u l t to midn ight ’ , s t r p t ime ( " 0 " , format

= "%S" ) , sep=" " ) )

11 }

12 if ( missing ( a o f f s e t ) ==T) {

13 a o f f s e t <- " 0 "

14 warning ( ’ O f f se t o f annota t ions to video not

s p e c i f i e d . De fau l t to 0 . ’ )

15 }

16 if ( missing ( t z ) ==T) {

17 t z <-Sys . timezone ( )

18 warning ( paste ( ’ Timezone not s p e c i f i e d . De fau l t

to system timezone : ’ , Sys . timezone ( ) , sep="

" ) )

19 }

20

21 # v s t a r t = video s t a r t t ime ca lcu la ted , conver t to un ix

using t z
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22 v s t a r t <- as . numeric ( as . POSIXct ( v s t a r t , format="%d/%m/%Y

%H:%M:%OS" , t z = t z ) )

23 a o f f s e t <-as . numeric ( substring ( ao f f se t , 7 ) )

24

25 # I d e n t i f y second counts w i t h i n annota t ion f i l e

26 # f i n d s numeric columns ( those inpu t as second counts )

& i nc ludes c lass l a b e l

27 if ( typeof ( d ) == " charac te r " ) {

28 d <- f read ( d )

29 } else { d<-as . data . table ( d ) }

30

31 d<-cbind ( d [ , which ( unlist ( lapply ( d , function ( x ) all ( is .

numeric ( x ) ==TRUE) ) ) ) , w i th=F ] , d [ [ ncol ( d ) ] ] )

32 # adds v s t a r t and annota t ion o f f s e t to conver t to UNIX

t ime and a l i g n

33 # c u r r e n t l y a o f f s e t on ly takes number o f seconds −

needs to be adjusted to take timestamp min : sec . msec

s t y l e i npu t too

34 d [ , 1 : 2 ] <- d [ , 1 : 2 ] + v s t a r t + a o f f s e t

35 names ( d ) <-c ( " s t a r t " , " end " , " du ra t i on " , " c lass " )

36 return ( d )

37 }
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Unknown annotation generation function code

1 library ( data . table )

2

3 unknown . gen<-function ( data , wlen , f s =100 ,ann ) {

4

5 # ad jus t annota t ions to window leng th by f i n d i n g

d i f f e r e n c e from ac tua l window leng th to ca l cu la ted

window leng th

6 wlen . edit<- ( wlen −(ann$end−ann$start ) ) /2

7 ann$start<-ann$start−wlen . edit

8

9 for ( i i n 1 : nrow ( ann ) ) {

10 start . ind <- which . min ( abs ( data [ [ 1 ] ] − ann$start [

i ] ) )

11 ann$start [ i ] <- data [ [ 1 ] ] [ start . ind ]

12 ann$end [ i ] <- data [ [ 1 ] ] [ start . ind +( f s *wlen −1) ]

13 }

14

15

16 # check i f unknown data a l ready e x i s t s − i f i t does

then t h i s f u n c t i o n j u s t ensures every th ing matches

the wlen

17 if ( any ( ann$class==" unknown " ) ==FALSE) {

18

19 data<-data [ data$Time>=min ( ann$start ) & data$

Time<=(max ( ann$end ) ) , ]

20

21 # Generate unknown data from w i t h i n min/max

c o l l e c t i o n per iod to t r a i n aga ins t non−

pos tu ra l t r a n s i t i o n

22
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23 unknown . ann<-data . table ( start=double ( nrow ( ann ) )

, end=double ( nrow ( ann ) ) , du ra t i on =double ( nrow (

ann ) ) , class=character ( nrow ( ann ) ) )

24

25 for ( i i n 1 : nrow ( ann ) ) {

26 unknown . ann$start [ i ] <- sample ( data$

Time , 1 )

27 start . ind <- which . min ( abs ( data [ [ 1 ] ] −

unknown . ann$start [ i ] ) )

28 unknown . ann$start [ i ] <- data [ [ 1 ] ] [ start

. ind ]

29 end . ind <-start . ind +( f s *wlen −1)

30 unknown . ann$end [ i ] <- data [ [ 1 ] ] [ end . ind

]

31 unknown . ann$ dura t i on [ i ] <- wlen

32 unknown . ann$class [ i ] <- " unknown "

33 }

34

35 ann<-rbind ( ann , unknown . ann ) }

36

37 return ( ann )

38

39 }
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Rotation correction function code

1 library ( data . table )

2 library (doSNOW)

3 library ( foreach )

4 library ( pracma )

5 library ( s i g n a l )

6 library ( u t i l s )

7 library ( d o P a r a l l e l )

8

9 r . fix <- function ( d , fs , gDev , wlen , writeCSV=FALSE, path ) {

10

11 # Check f o r arguments and add d e f a u l t s i f missing .

12 if ( missing ( f s ) ==T) {

13 f s <-100

14 warning ( ’ Frequency ( f s ) not s p e c i f i e d . De fau l t

f s = 100 ’ )

15 }

16

17 if ( missing ( gDev ) ==T) {

18 gDev<-0.2

19 warning ( ’ Grav i t y de v i a t i o n th resho ld not

s p e c i f i e d . De fau l t gDev = 0.2 ’ )

20 }

21

22 if ( missing ( wlen ) ==T) {

23 wlen<-5

24 warning ( ’Window leng th not s p e c i f i e d . De fau l t

wlen = 5 ’ )

25 }

26

27 if ( writeCSV==TRUE) {
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28 if ( missing ( path ) ==T) {

29 path<-getwd ( )

30 warning ( ’ path not s p e c i f i e d . De fau l t i s

your working d i r e c t o r y ’ )

31 }

32 }

33

34 cores <- detectCores ( ) −1

35

36 # Var iab les held constant / not def ined w i t h i n f u n c t i o n

c a l l

37 t a rg . c a r t <- c (0 ,0 ,1 )

38

39 # create temporary data v a r i a b l e

40 temp . d<-d [ , 2 : 4 ] # removes charac te r s t r i n g datet ime

41

42 # Bu i ld f i l t e r

43 b u t t e r . f i l <- b u t t e r (4 ,0 .1 / ( f s / 2) , type=" low " )

44

45 # Apply to temp data

46 temp . d [ , 1 ] <- as . numeric ( f i l t f i l t ( b u t t e r . f i l , as . matrix

( temp . d [ , 1 ] ) ) ) # apply f i l t e r to x

47 temp . d [ , 2 ] <- as . numeric ( f i l t f i l t ( b u t t e r . f i l , as .

matrix ( temp . d [ , 2 ] ) ) ) # apply f i l t e r to y

48 temp . d [ , 3 ] <- as . numeric ( f i l t f i l t ( b u t t e r . f i l , as .

matrix ( temp . d [ , 3 ] ) ) ) # apply f i l t e r to z

49

50 temp . d$Time <- seq (1 / fs , length ( temp . d [ [ 1 ] ] ) / fs , by=1/ f s )

51

52 window . s i ze = f s *wlen

53 step . s i ze = window . s i ze /2

54 i t e r . seq<-seq (0 , length ( temp . d [ [ 1 ] ] ) −1 , step . s i ze )

55

56

57 # progress bar 1

58 sink ( tempfile ( ) ) # prevents the empty 0% bar being

p r i n t e d

59 pb1 <- t x tProgressBar ( min =0 , max=length ( i t e r . seq ) ,

s t y l e =3)
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60 progress <- function ( n ) setTxtProgressBar ( pb1 , n )

61 opts1 <- list ( progress=progress )

62 sink ( )

63 cat ( ’ \ nWindowing data : \ n ’ )

64

65 c l <- makeSOCKcluster ( cores )

66 registerDoSNOW ( c l )

67

68 win . sum<-as . data . frame ( foreach ( i = i t e r . seq , . combine = ’

rb ind ’ , . packages=" data . t ab l e " , . options . snow=opts1

) %dopar% {

69 x=mean ( as . numeric ( unlist ( temp . d [ i : ( i +window .

s i ze ) , 1 ] ) ) ) #each data frame has to be

u n l i s t e d and parsed

70 y=mean ( as . numeric ( unlist ( temp . d [ i : ( i +window .

s i ze ) , 2 ] ) ) )

71 z=mean ( as . numeric ( unlist ( temp . d [ i : ( i +window .

s i ze ) , 3 ] ) ) )

72 t=temp . d [ ( i +1) , 4 ] # i f i =0 i t w i l l throw an

e r r o r

73 cbind ( x , y , z , t )

74 } )

75 close ( pb1 )

76 s topC lus te r ( c l )

77

78 # conver t ca r tes ian to sp h e r i c a l coords f o r the average

of the window

79 sph . coord <- car t2sph ( as . matrix ( win . sum [ , 1 : 3 ] ) )

80

81 # Selec t candidate windows f o r c o r r e c t i o n by

e s t a b l i s h i n g a l l t h a t d i f f e r from the o r i g i n by 1g

82 cand . index <- which ( sph . coord [ ,3] >=(1 −gDev ) & sph . coord

[ ,3 ] <=(1+gDev ) )

83

84 #subset by cand . index

85 win . sum<-win . sum [ cand . index , ]

86

87 # b u i l d the ta l i s t to i t e r a t e through

88 t he ta . i t e r <-seq (0 , 359.5 , by =1)* ( p i /180)
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89

90 # create dataframe f o r s t o r i n g converted coords p r i o r

to s e l e c t i o n

91 t he ta . coords <-data . frame ( x=double ( length ( t he ta . i t e r ) ) , y

=double ( length ( t he ta . i t e r ) ) , z=double ( length ( t he ta .

i t e r ) ) )

92

93 # dataframe to s to re vec to r between t a r g e t and

cor rec ted

94 t . vect <-data . frame ( x=double ( length ( t he ta . i t e r ) ) , y=

double ( length ( t he ta . i t e r ) ) , z=double ( length ( t he ta .

i t e r ) ) )

95

96 # create output copy of data

97 temp . d . r o t <-as . data . frame ( temp . d )

98

99 # progress bar 2

100 sink ( tempfile ( ) )

101 pb2 <- t x tProgressBar ( min =1 , max =( length ( cand . index ) ) ,

s t y l e =3)

102 progress <- function ( n ) setTxtProgressBar ( pb2 , n )

103 opts2 <- list ( progress=progress )

104 sink ( )

105 cat ( ’ \ nFinding opt ima l adjustment angles : \ n ’ )

106 # loop through the l i s t o f candidates f i n d i n g value o f

the ta r e s u l t i n g i n minimum dis tance from t a r g e t to

cor rec ted

107

108 c l <- makeSOCKcluster ( cores )

109 registerDoSNOW ( c l )

110

111 t he ta . ang <- foreach ( i =1 : ( length ( cand . index ) ) , . combine

= ’ rb ind ’ , . packages=" data . t ab l e " , . options . snow=

opts2 ) %dopar% {

112

113 # create l i s t o f coords f o r each angle and each

candidate frame

114 t he ta . coords [ 1 : length ( t he ta . i t e r ) , 1 ] <- ( win . sum [

i , 1 ] *cos ( t he ta . i t e r ) ) +( win . sum [ i , 3 ] *sin (
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the ta . i t e r ) )

115 t he ta . coords [ , 2 ] <-win . sum [ i , 2 ]

116 t he ta . coords [ , 3 ] <- ( win . sum [ i , 1 ] *−sin ( t he ta . i t e r

) ) +( win . sum [ i , 3 ] *cos ( t he ta . i t e r ) )

117

118 # vec to r from cor rec ted coords to t a r g e t frame

119 t . vect [ 1 : length ( t he ta . i t e r ) , 1 ] <- t a rg . c a r t [1 ] −

the ta . coords [ , 1 ]

120 t . vect [ , 2 ] <- t a rg . c a r t [2 ] − the ta . coords [ , 2 ]

121 t . vect [ , 3 ] <- t a rg . c a r t [3 ] − the ta . coords [ , 3 ]

122

123 # the index of the sma l les t vec to r d is tance

124 t . vect . ind <- which ( sqrt ( t . vect [1 ] ^2+ t . vect

[2 ] ^2+ t . vect [ 3 ] ^ 2 ) ==min ( sqrt ( t . vect [1 ] ^2+ t .

vect [2 ] ^2+ t . vect [ 3 ] ^ 2 ) ) )

125

126 # the value o f the ta to b u i l d the r o t a t i o n

mat r i x from s t a r t o f window to s t a r t o f next

127 t he ta . ang <- t he ta . i t e r [ t . vect . ind ]

128 }

129

130 close ( pb2 )

131 s topC lus te r ( c l )

132

133 # cbind the ta values to win . sum

134 win . sum<-cbind ( win . sum , t he ta . ang )

135

136 # Col lapse consecut ive , i d e n t i c a l values o f the ta

137 win . sum<-win . sum [ nrow ( win . sum ) : 1 , ]

138 win . sum<-win . sum [ c ( win . sum$ t he ta . ang [ −1] != win . sum$

t he ta . ang[ − nrow ( win . sum ) ] ,TRUE) , ]

139 win . sum<-win . sum [ nrow ( win . sum ) : 1 , ]

140

141 if ( win . sum [ 1 , 4 ] !=temp . d . r o t [ 1 , 4 ] ) {

142 win . sum<-rbind ( c (0 ,0 ,0 , temp . d . r o t [ 1 , 4 ] , 0 ) , win .

sum )

143 }

144

145 sink ( tempfile ( ) )
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146 # progress bar 3

147 pb3 <- t x tProgressBar ( min =0 , max=nrow ( win . sum ) , s t y l e

=3)

148 progress <- function ( n ) setTxtProgressBar ( pb3 , n )

149 opts3 <- list ( progress=progress )

150 sink ( )

151 cat ( " \ nApply ing r o t a t i o n c o r r e c t i o n : \ n " )

152

153 c l <- makeSOCKcluster ( cores )

154 registerDoSNOW ( c l )

155

156 # Foreach loop to apply r o t a t i o n mat r i cs

157 temp . d . r o t [ 1 : 3 ] <- foreach ( i =1 : ( nrow ( win . sum ) ) , .

combine = ’ rb ind ’ , . packages=" data . t ab l e " , . options .

snow=opts3 ) %dopar% {

158

159 if ( !is . na ( win . sum [ i +1 ,1 ] )==TRUE) {

160 # c o r r e c t x ax is between windows

161 temp . x<-

162 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] & temp . d . r o t [ ,4 ] <

win . sum [ i +1 ,4 ] ,1 ] *cos ( win .

sum [ i , 5 ] ) +

163 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] & temp . d . r o t [ ,4 ] <

win . sum [ i +1 ,4 ] ,3 ] *sin ( win .

sum [ i , 5 ] )

164 # add y ax is

165 temp . y<-

166 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] & temp . d . r o t [ ,4 ] <

win . sum [ i +1 ,4 ] ,2 ]

167 # c o r r e c t z ax is

168 temp . z<-

169 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] & temp . d . r o t [ ,4 ] <

win . sum [ i +1 ,4 ] ,1 ] *−sin ( win .

sum [ i , 5 ] ) +

170 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .
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sum [ i , 4 ] & temp . d . r o t [ ,4 ] <

win . sum [ i +1 ,4 ] ,3 ] *cos ( win .

sum [ i , 5 ] )

171

172 #combine

173 temp . all<-cbind ( temp . x , temp . y , temp . z )

174 } else {

175 # c o r r e c t x ax is between windows

176 temp . x<-

177 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] , 1 ] *cos ( win . sum [ i

, 5 ] ) +

178 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] , 3 ] *sin ( win . sum [ i

, 5 ] )

179 # add y ax is

180 temp . y<-

181 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] , 2 ]

182 # c o r r e c t z ax is

183 temp . z<-

184 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] , 1 ] *−sin ( win . sum [ i

, 5 ] ) +

185 temp . d . r o t [ temp . d . r o t [ ,4 ] >= win .

sum [ i , 4 ] , 3 ] *cos ( win . sum [ i

, 5 ] )

186

187 #combine

188 temp . all<-cbind ( temp . x , temp . y , temp . z )

189 }

190 return ( temp . all )

191

192 }

193 close ( pb3 )

194 s topC lus te r ( c l )

195

196 temp . d . r o t <-cbind ( as . numeric ( as . POSIXct ( d [ [ 1 ] ] ) ) , temp . d

. r o t [ , 1 : 4 ] )
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197 temp . d . r o t <-temp . d . r o t [ , 1 : 4 ]

198 names ( temp . d . r o t ) <-c ( " Time " , " x " , " y " , " z " )

199

200 # checking i f the path argument has been passed , i f not

se t path to working d i r e c t o r y

201 if ( !exists ( " path " ) ) {

202 path <- getwd ( )

203 }

204

205 # checking i f the user has passed a CSV f i l e , i f so and

w r i t e CSV i s t rue , w r i t e to i t , e lse create a

r o t a t i o n _ c o r r e c t i o n CSV

206 if ( writeCSV == TRUE) {

207 if ( writeCSV && file_ ext ( path ) == " csv " ) {

208 print ( " w r i t i n g to CSV" )

209 write . csv ( temp . d . ro t , file=path , row .

names = FALSE)

210 } else {

211 warning ( "No f i l e s p e c i f i e d i n your path

, c rea t i ng \ " r o t a t i o n _ c o r r e c t i o n . csv

\ " " )

212 write . csv ( temp . d . ro t , file=paste ( path , "

r o t a t i o n _ c o r r e c t i o n . csv " , sep= ’ ’ ) ,

row . names = FALSE)

213 }

214 }

215

216 return ( temp . d . r o t )

217

218 }
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Feature calculation function code

1 library ( data . table )

2 library (doSNOW)

3 library ( foreach )

4 library ( pracma )

5 library ( s i g n a l )

6 library ( u t i l s )

7 library ( d o P a r a l l e l )

8

9 f e a t . ca lc <-function ( data , wlen =5 , f s =100 ,ann , FFT=FALSE, unknown .

gen = FALSE, angle . ca lc = FALSE, svm . r a t i o = FALSE) {

10

11 # Cur ren t l y on ly c a l c u l a t e s fea tu res f o r annota t ions (

f o r t r a i n / t e s t ) − i n f u t u r e needs opt ions to

c a l c u l a t e across a l l

12

13

14 # inpu t f o r annota t ion = s t a r t ( i n un ix t ime ) , end ( i n

un ix t ime ) , dura t ion , c lass . Check i f i t e x i s t s and

i f so use dura t i on to ca lc wlen

15 # i f / else statement to e i t h e r read data from a v a r i a b l e

OR i f passed a s t r i n g to f read i t i n .

16 if ( missing ( ann ) ==FALSE) {

17 if ( typeof ( ann ) ==" charac te r " ) {

18 ann<- f read ( ann )

19 }

20 if ( missing ( wlen ) ==TRUE) {

21 wlen<-ceiling ( mean ( ann$ dura t i on ) +(2*sd (

ann$ dura t i on ) ) )

22 message ( "Window leng th set to " , wlen ,

" der ived from mean annota t ion
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leng th + 2 standard dev ia t i ons " )

23 # Use wlen argument ( or ann f i l e

du ra t i on ) or d e f a u l t to 2

24 }

25 }

26

27 # Check i f data i s loaded or needs load ing from a

s t r i n g

28 if ( typeof ( data ) == " charac te r " ) {

29 data<- f read ( data )

30 }

31

32 # conver t data t ime to UNIX

33 if ( typeof ( data$Time ) ==" charac te r " ) {

34 data$Time<-as . numeric ( as . POSIXct ( data$Time ) )

35 warning ( " Timestamps f o r accelerometer data were

charac te r format . I f t imezone of data

d i f f e r e d from system timezone convers ion

w i l l be i n c o r r e c t . " )

36 }

37 data$Time<-as . numeric ( data$Time ) # accounts f o r t imes

being i n pos i xc t format a l ready − redundant i f

a l ready unix

38

39 # f i n d min s t a r t and max end unix i n annota t ion . Then

t r i m data to t h i s to conserve memory p r i o r to

loop ing

40 data<-data [ data$Time>=min ( ann$start ) & data$Time<=max (

ann$end ) , ]

41

42 # Generate SVM

43 svm <- sqrt ( data [ , 2 ] ^2+ data [ , 3 ] ^2+ data [ , 4 ] ^ 2 )

44 names ( svm) <-c ( "svm" )

45 data<-cbind ( data , svm)

46

47 # progress bar 1

48 sink ( tempfile ( ) ) # prevents the empty 0% bar being

p r i n t e d

49 pb1 <- t x tProgressBar ( min =0 , max=length ( ann$start ) ,

200



Chapter E

s t y l e =3)

50 progress <- function ( n ) setTxtProgressBar ( pb1 , n )

51 opts1 <- list ( progress=progress )

52 sink ( )

53 cat ( ’ \ nCa lcu la t i ng Time−Domain fea tu res : \ n ’ )

54

55 # begin foreach loop to generate fea tu res

56 cores <- detectCores ( ) −1

57 c l <- makeSOCKcluster ( cores )

58 registerDoSNOW ( c l )

59

60 f e a t . out <- foreach ( i =1: nrow ( ann ) , . combine = ’ rb ind ’ ,

. packages=c ( " data . t ab l e " , " e1071 " , " entropy " ) , .

options . snow=opts1 ) %dopar% {

61

62 # Mean

63 x_mean <- mean ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

64 y_mean <- mean ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

65 z_mean <- mean ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

66 svm_mean <- mean ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ] )

67

68 # median

69 x_median <- median ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

70 y_median <- median ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

71 z_median <- median ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

72 svm_median <- median ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

73

74 # min

75 x_min <- min ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

76 y_min <- min ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &
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data [ ,1 ] <= ann$end [ i ] ] )

77 z_min <- min ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

78 svm_min <- min ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

79

80 # max

81 x_max <- max ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

82 y_max <- max ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

83 z_max <- max ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

84 svm_max <- max ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

85

86 # range

87 x_range <- diff ( range ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

88 y_range <- diff ( range ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

89 z_range <- diff ( range ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

90 svm_range <- diff ( range ( data [ [ 5 ] ] [ data [ ,1 ] >= ann

$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

91

92 # sd

93 x_sd <- sd ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

94 y_sd <- sd ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

95 z_sd <- sd ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

96 svm_sd <- sd ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

97

98 # Variance

99 x_var <- var ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )
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100 y_var <- var ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

101 z_var <- var ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

102 svm_var <- var ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

103

104 # rms

105 x_rms <- sqrt ( mean ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ^ 2 ) )

106 y_rms <- sqrt ( mean ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ^ 2 ) )

107 z_rms <- sqrt ( mean ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ^ 2 ) )

108 svm_rms <- sqrt ( mean ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ^ 2 ) )

109

110 # MAD

111 x_mad<-mad ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , center=mean ( data [ [ 2 ] ] [

data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end [ i

] ] ) )

112 y_mad<-mad ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , center=mean ( data [ [ 3 ] ] [

data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end [ i

] ] ) )

113 z_mad<-mad ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , center=mean ( data [ [ 4 ] ] [

data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end [ i

] ] ) )

114 svm_mad<-mad ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , center=mean ( data [ [ 5 ] ] [

data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end [ i

] ] ) )

115

116 # C o r r e l a t i o n ( Ravi e t a l 2005)

117 xy_cor <- cov ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , data [ [ 3 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) / ( x_sd*y_
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sd )

118 yz_cor <- cov ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , data [ [ 4 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) / ( y_sd*z_

sd )

119 xz_cor <- cov ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] , data [ [ 4 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) / ( x_sd*z_

sd )

120

121

122 # Window Gradient min/max

123

124 # Min Index

125 x_min_index <- min ( which ( data [ [ 2 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == min (

data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

126 y_min_index <- min ( which ( data [ [ 3 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == min (

data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

127 z_min_index <- min ( which ( data [ [ 4 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == min (

data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

128 svm_min_index <- min ( which ( data [ [ 5 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == min (

data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

129

130 # Max Index

131 x_max_index <- max ( which ( data [ [ 2 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == max (

data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

132 y_max_index <- max ( which ( data [ [ 3 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == max (

data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=
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ann$end [ i ] ] ) ) )

133 z_max_index <- max ( which ( data [ [ 4 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == max (

data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

134 svm_max_index <- max ( which ( data [ [ 5 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] == max (

data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ] &data [ ,1 ] <=

ann$end [ i ] ] ) ) )

135

136 # Gradient

137 x_grad <- ( x_min − x_max ) / ( x_min_index − x_max_

index )

138 y_grad <- ( y_min − y_max ) / ( y_min_index − y_max_

index )

139 z_grad <- ( z_min − z_max ) / ( z_min_index − z_max_

index )

140 svm_grad <- ( svm_min − svm_max ) / ( svm_min_index −

svm_max_index )

141

142 # Mean of absolu te acce l e ra t i o n

143 x_abs_mean <- mean ( abs ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

144 y_abs_mean <- mean ( abs ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

145 z_abs_mean <- mean ( abs ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

146 svm_abs_mean <- mean ( abs ( data [ [ 5 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

147

148 # Skewness

149 x_skew <- skewness ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

150 y_skew <- skewness ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

151 z_skew <- skewness ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

152 svm_skew <- skewness ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )
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153

154 # Kur tos i s

155 x_ k u r t <- k u r t o s i s ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

156 y_ k u r t <- k u r t o s i s ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

157 z_ k u r t <- k u r t o s i s ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

158 svm_ k u r t <- k u r t o s i s ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

159

160 # IQR

161 x_ i q r <- IQR ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

162 y_ i q r <- IQR ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

163 z_ i q r <- IQR ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [ i ] &

data [ ,1 ] <= ann$end [ i ] ] )

164 svm_ i q r <- IQR ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$start [ i ]

&data [ ,1 ] <= ann$end [ i ] ] )

165

166 # Shannon Entropy

167 x_ ent <- entropy ( data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ] )

168 y_ ent <- entropy ( data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ] )

169 z_ ent <- entropy ( data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ] )

170 svm_ ent <- entropy ( data [ [ 5 ] ] [ data [ ,1 ] >= ann$

start [ i ] &data [ ,1 ] <= ann$end [ i ] ] )

171

172 # combine

173 all . f ea t s <-cbind ( ann [ i , 4 ] , ann [ i , 1 : 3 ] , x_mean , y_

mean , z_mean , svm_mean , x_median , y_median , z_

median , svm_median , x_min , y_min , z_min , svm_min ,

174 x_max , y_max , z_max , svm_max , x_range , y_range , z_

range , svm_range , x_sd , y_sd , z_sd , svm_sd , x_var ,

y_var , z_var , svm_var ,

175 x_rms , y_rms , z_rms , svm_rms , x_mad , y_mad , z_mad , svm
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_mad , x_abs_mean , y_abs_mean , z_abs_mean ,

176 svm_abs_mean , x_skew , y_skew , z_skew , svm_skew , x_

kur t , y_ kur t , z_ kur t , svm_ kur t , x_ i q r , y_ i q r , z_

i q r , svm_ i q r ,

177 x_ent , y_ent , z_ent , svm_ent , xy_cor , yz_cor , xz_cor )

178

179 if ( angle . ca lc == TRUE) {

180

181 x_seg <- data [ [ 2 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ]

182 y_seg <- data [ [ 3 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ]

183 z_seg <- data [ [ 4 ] ] [ data [ ,1 ] >= ann$start [

i ] &data [ ,1 ] <= ann$end [ i ] ]

184

185 # cacu la te average p i t c h

186 mean_ p i t c h <- mean ( atan ( −x_seg/sqrt ( y_

seg^2+z_seg ^2) ) )

187

188 # c a l c u l a t e average r o l l

189 mean_ r o l l <- mean ( atan ( y_seg/sqrt ( x_seg

^2+z_seg ^2) ) )

190

191 # combine

192 all . f ea t s <-cbind ( all . fea ts , mean_ p i t ch ,

mean_ r o l l )

193

194 }

195 if ( svm . r a t i o ==TRUE) {

196 x_ r a t i o <- x_mean/svm_mean

197 y_ r a t i o <- y_mean/svm_mean

198 z_ r a t i o <- z_mean/svm_mean

199

200 # combine

201 all . f ea t s <-cbind ( all . fea ts , x_ r a t i o , y_

r a t i o , z_ r a t i o )

202

203 }

204
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205

206 }

207 s topC lus te r ( c l )

208 close ( pb1 )

209

210 # i f / else f o r FFT loop − i f you need t h i s l e t me know

and w i l l send over the code we have

211 if (FFT==TRUE) {

212

213 #Nyquist

214 fn <- f s /2

215 # Bu i ld Hanning window

216 fft_win <-hanning ( wlen* f s )

217

218 # progress bar f f t

219 sink ( tempfile ( ) ) # prevents the empty 0% bar

being p r i n t e d

220 pb2 <- t x tProgressBar ( min =0 , max=length ( ann$

start ) , s t y l e =3)

221 progress <- function ( n ) setTxtProgressBar ( pb2 ,

n )

222 o p t s f f t <- list ( progress=progress )

223 sink ( )

224 cat ( " \ nCa lcu la t i ng Frequency−Domain Features : \ n

" )

225

226 c l <- makeSOCKcluster ( cores )

227 registerDoSNOW ( c l )

228

229 fft . out <- foreach ( i =1: nrow ( ann ) , . combine = ’

rb ind ’ , . packages=c ( " data . t ab l e " , " e1071 " , "

entropy " , " s i g n a l " ) , . options . snow= o p t s f f t ) %

dopar% {

230

231 #Normalise data

232 norm_x <- data . matrix ( data [ [ 2 ] ] [ data

[ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end

[ i ] ] )

233 norm_x <- norm_x−mean ( norm_x )
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234 norm_y <- data . matrix ( data [ [ 3 ] ] [ data

[ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end

[ i ] ] )

235 norm_y <- norm_y−mean ( norm_y )

236 norm_z <- data . matrix ( data [ [ 4 ] ] [ data

[ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end

[ i ] ] )

237 norm_z <- norm_z−mean ( norm_z )

238 norm_svm <- data . matrix ( data [ [ 5 ] ] [ data

[ ,1 ] >= ann$start [ i ] &data [ ,1 ] <= ann$end

[ i ] ] )

239 norm_svm <- norm_svm−mean ( norm_svm)

240

241 #Apply window

242 norm_x <- fft_win*norm_x

243 norm_y <- fft_win*norm_y

244 norm_z <- fft_win*norm_z

245 norm_svm <- fft_win*norm_svm

246

247 # FFT ampl i tude /magnitude/power

c a l c u l a t i o n

248 fft_x<-fft ( norm_x ) /length ( norm_x )

249 fft_y<-fft ( norm_y ) /length ( norm_y )

250 fft_z<-fft ( norm_z ) /length ( norm_z )

251 fft_svm<-fft ( norm_svm) /length ( norm_svm)

252

253 #Frequency ax is

254

255 f r eq _axis <- seq (0 ,1 , length . out =

round ( length ( fft_x ) /2+1) ) * fn

256

257 # Features − Check v a l i d i t y o f some (

entropy etc )

258

259 # Estimated PSD

260 psd_x <- ( abs ( fft_x ) ^2) [ 2 : ( length ( fft_x

) / 2) ]

261 psd_y <- ( abs ( fft_y ) ^2) [ 2 : ( length ( fft_x

) / 2) ]
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262 psd_z <- ( abs ( fft_z ) ^2) [ 2 : ( length ( fft_x

) / 2) ]

263 psd_svm <- ( abs ( fft_svm) ^2) [ 2 : ( length (

fft_x ) / 2) ]

264

265 # Dominant Est imated PSD

266 dpsd_x <- max ( psd_x )

267 dpsd_y <- max ( psd_y )

268 dpsd_z <- max ( psd_z )

269 dpsd_svm <- max ( psd_svm)

270

271 # Dominant Est imated PSD Frequency

272 dpsd_ f r eq _x <- f r eq _axis [ 2 : ( length ( fft_

x ) / 2) ] [ which . max ( psd_x ) ]

273 dpsd_ f r eq _y <- f r eq _axis [ 2 : ( length ( fft_

x ) / 2) ] [ which . max ( psd_y ) ]

274 dpsd_ f r eq _z <- f r eq _axis [ 2 : ( length ( fft_

x ) / 2) ] [ which . max ( psd_z ) ]

275 dpsd_ f r eq _svm <- f r eq _axis [ 2 : ( length (

fft_x ) / 2) ] [ which . max ( psd_svm) ]

276

277 # Second Dominant EPSD

278 psd_x2 <- psd_x [ − which . max ( psd_x ) ]

279 psd_y2 <- psd_y [ − which . max ( psd_y ) ]

280 psd_z2 <- psd_z [ − which . max ( psd_z ) ]

281 psd_svm2 <- psd_svm[ − which . max ( psd_svm)

]

282

283 dpsd_x2 <- max ( psd_x2 )

284 dpsd_y2 <- max ( psd_y2 )

285 dpsd_z2 <- max ( psd_z2 )

286 dpsd_svm2 <- max ( psd_svm2)

287

288 # Second Dominant EPSD Frequency

289 f r eq _ axis2 _x <- f r eq _axis [ 2 : ( length ( fft

_x ) / 2) ] [ − which . max ( psd_x ) ]

290 f r eq _ axis2 _y <- f r eq _axis [ 2 : ( length ( fft

_y ) / 2) ] [ − which . max ( psd_y ) ]

291 f r eq _ axis2 _z <- f r eq _axis [ 2 : ( length ( fft
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_z ) / 2) ] [ − which . max ( psd_z ) ]

292 f r eq _ axis2 _svm <- f r eq _axis [ 2 : ( length (

fft_svm) / 2) ] [ − which . max ( psd_svm) ]

293

294 dpsd_ f r eq _x2 <- f r eq _ axis2 _x [ which . max (

psd_x2 ) ]

295 dpsd_ f r eq _y2 <- f r eq _ axis2 _y [ which . max (

psd_y2 ) ]

296 dpsd_ f r eq _z2 <- f r eq _ axis2 _z [ which . max (

psd_z2 ) ]

297 dpsd_ f r eq _svm2 <- f r eq _ axis2 _svm [ which .

max ( psd_svm2) ]

298

299 # Mean Estimated PSD

300 mean_psd_x <- mean ( psd_x )

301 mean_psd_y <- mean ( psd_y )

302 mean_psd_z <- mean ( psd_z )

303 mean_psd_svm <- mean ( psd_svm)

304

305 # Entropy o f PSD

306 ent _psd_x <- entropy ( psd_x )

307 ent _psd_y <- entropy ( psd_y )

308 ent _psd_z <- entropy ( psd_z )

309 ent _psd_svm <- entropy ( psd_svm)

310

311 # Energy per sample from Estimated PSD

312 eps_psd_x <- sum ( psd_x ) / ( wlen* f s )

313 eps_psd_y <- sum ( psd_y ) / ( wlen* f s )

314 eps_psd_z <- sum ( psd_z ) / ( wlen* f s )

315 eps_psd_svm <- sum ( psd_svm) / ( wlen* f s )

316

317 # b u i l d output dataframe

318 fft . f e a t <- cbind ( dpsd_x , dpsd_y , dpsd_z ,

dpsd_svm , dpsd_ f r eq _x , dpsd_ f r eq _y ,

dpsd_ f r eq _z , dpsd_ f r eq _svm ,

319 dpsd_x2 , dpsd_y2 , dpsd_z2 , dpsd_svm2 , dpsd_

f r eq _x2 , dpsd_ f r eq _y2 , dpsd_ f r eq _z2 ,

dpsd_ f r eq _svm2 ,

320 mean_psd_x , mean_psd_y , mean_psd_z , mean_
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psd_svm ,

321 ent _psd_x , ent _psd_y , ent _psd_z , ent _psd_

svm , eps_psd_x , eps_psd_y , eps_psd_z ,

eps_psd_svm)

322

323 }

324 s topC lus te r ( c l )

325 close ( pb2 )

326

327 f e a t . out <-cbind ( f e a t . out , fft . out )

328 }

329 return ( f e a t . out )

330 }
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ECDF calculation function code

1 library ( data . table )

2 library ( d o P a r a l l e l )

3 library (doSNOW)

4 library ( e1071 )

5 library ( ent ropy )

6

7 ecdf . ca lc <-function ( data , wlen =2 , f s =100 ,ann , write . csv=FALSE) {

8

9 # ECDF code

10 i nv _ ecdf <- function ( f ) {

11 x <- environment ( f ) $x

12 y <- environment ( f ) $y

13 approxfun ( y , x )

14 }

15

16 # Cur ren t l y on ly c a l c u l a t e s fea tu res f o r annota t ions (

f o r t r a i n / t e s t )

17 # Column names are s p e c i f i c a l l y referenced throughout

code

18

19 # inpu t f o r annota t ion = s t a r t ( i n un ix t ime ) , end ( i n

un ix t ime ) , dura t ion , c lass . Check i f i t e x i s t s and

i f so use dura t i on to ca lc wlen

20 # i f / else statement to e i t h e r read data from a v a r i a b l e

OR i f passed a s t r i n g to f read i t i n .

21 if ( missing ( ann ) ==FALSE) {

22 if ( typeof ( ann ) ==" charac te r " ) {

23 ann<- f read ( ann )

24 }

25 if ( missing ( wlen ) ==TRUE) {
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26 wlen<-ceiling ( mean ( ann$ dura t i on ) +(2*sd (

ann$ dura t i on ) ) )

27 message ( "Window leng th set to " , wlen ,

" der ived from mean annota t ion

leng th + 2 standard dev ia t i ons " )

28 }

29

30 }

31

32 # FFT d e f a u l t s to f a l s e − set to TRUE to c a l c u l a t e FFT

fea tu res

33 # Check i f data i s loaded or needs load ing from a

s t r i n g

34 if ( typeof ( data ) == " charac te r " ) {

35 data<- f read ( data )

36 }

37

38 # conver t data t ime to UNIX

39 if ( typeof ( data$Time ) ==" charac te r " ) {

40 data$Time<-as . numeric ( as . POSIXct ( data$Time ) )

41 warning ( " Timestamps f o r accelerometer data were

charac te r format . I f t imezone of data

d i f f e r e d from system timezone convers ion

w i l l be i n c o r r e c t . " )

42 }

43 data$Time<-as . numeric ( data$Time ) # accounts f o r t imes

being i n pos i xc t format a l ready − redundant i f

a l ready unix

44

45 # f i n d min s t a r t and max end unix i n annota t ion . Then

t r i m data to t h i s to conserve memory p r i o r to

loop ing

46 data<-data [ data$Time>=min ( ann$start ) & data$Time<=(max (

ann$end ) ) , ]

47

48 # Generate SVM

49 svm <- sqrt ( data [ , 2 ] ^2+ data [ , 3 ] ^2+ data [ , 4 ] ^ 2 )

50 names ( svm) <-c ( "svm" )

51 data<-cbind ( data , svm)
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52

53 # progress bar 1

54 sink ( tempfile ( ) ) # prevents the empty 0% bar being

p r i n t e d

55 pb1 <- t x tProgressBar ( min =1 , max=length ( ann$start ) ,

s t y l e =3)

56 progress <- function ( n ) setTxtProgressBar ( pb1 , n )

57 opts1 <- list ( progress=progress )

58 sink ( )

59 cat ( ’ \ nProcessing ECDF\ n ’ )

60

61 # begin foreach loop to generate fea tu res

62 cores <- detectCores ( ) −1

63 c l <- makeSOCKcluster ( cores )

64 registerDoSNOW ( c l )

65

66 ecdf . out <- foreach ( i =1: nrow ( ann ) , . combine = ’

rb ind ’ , . packages=c ( " data . t ab l e " , " e1071 " , "

entropy " ) , . options . snow=opts1 ) %do% {

67

68 # ECDF

69 x_ ecdf <- i nv _ ecdf ( ecdf ( data [ [ 2 ] ] [ data [ ,1 ] >= ann

$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

70 y_ ecdf <- i nv _ ecdf ( ecdf ( data [ [ 3 ] ] [ data [ ,1 ] >= ann

$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

71 z_ ecdf <- i nv _ ecdf ( ecdf ( data [ [ 4 ] ] [ data [ ,1 ] >= ann

$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

72 svm_ ecdf <- i nv _ ecdf ( ecdf ( data [ [ 5 ] ] [ data [ ,1 ] >=

ann$start [ i ] &data [ ,1 ] <= ann$end [ i ] ] ) )

73

74 x_ ecdf _ f u l l <- numeric ( length =0)

75 y_ ecdf _ f u l l <- numeric ( length =0)

76 z_ ecdf _ f u l l <- numeric ( length =0)

77 svm_ ecdf _ f u l l <- numeric ( length =0)

78

79 for ( j i n 1:100) {

80 x_ ecdf _ f u l l <- cbind ( x_ ecdf _ f u l l , x_

ecdf ( j /100) )

81 y_ ecdf _ f u l l <- cbind ( y_ ecdf _ f u l l , y_
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ecdf ( j /100) )

82 z_ ecdf _ f u l l <- cbind ( z_ ecdf _ f u l l , z_

ecdf ( j /100) )

83 svm_ ecdf _ f u l l <- cbind ( svm_ ecdf _ f u l l ,

svm_ ecdf ( j /100) )

84 }

85

86 # combine

87 x_ ecdf . out <-cbind ( ann [ i , 4 ] , ann [ i , 1 : 2 ] , axis= ’ x ’ ,

x_ ecdf _ f u l l )

88 y_ ecdf . out <-cbind ( ann [ i , 4 ] , ann [ i , 1 : 2 ] , axis= ’ y ’ ,

y_ ecdf _ f u l l )

89 z_ ecdf . out <-cbind ( ann [ i , 4 ] , ann [ i , 1 : 2 ] , axis= ’ z ’ ,

z_ ecdf _ f u l l )

90 svm_ ecdf . out <-cbind ( ann [ i , 4 ] , ann [ i , 1 : 2 ] , axis= ’

svm ’ ,svm_ ecdf _ f u l l )

91

92 ecdf . combined <- rbind ( x_ ecdf . out , y_ ecdf . out , z_

ecdf . out , svm_ ecdf . out )

93

94 }

95 s topC lus te r ( c l )

96 close ( pb1 )

97

98 return ( ecdf . out )

99 }
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Calculation of Fisher’s g Statistic

Code given for example list of mean ODBA values (mean.odba). Processes FFT of

values, then calculates and statistically assesses Fisher’s g statistic.

1 library ( data . table )

2 library ( s i g n a l )

3 library ( seewave )

4

5 temp . dat <- mean . odba

6

7 # normal ise

8 norm_odba <- temp . dat − mean ( temp . dat )

9

10 #Apply window

11 norm_odba <- fft_win*norm_odba

12

13 fft_odba<-fft ( norm_odba ) /length ( norm_odba )

14

15 #Frequency ax is

16 f r eq _axis_mean <- ( seq (0 ,1 , length . out = round ( length ( fft_odba )

/ 2) ) * fn )

17

18 d . raw_odba <- abs ( fft_odba [ 2 : ( length ( fft_odba ) / 2) −2])

19 # remove nyqu is t f requency and 0 Hz (DC component )

20 a <- length ( abs ( fft_odba [ 2 : ( length ( fft_odba ) / 2) −2]) )

21 pval . out <- data . frame ( )

22

23 for ( j i n 2 : ( ( length ( fft_odba ) / 2) −2) ) {

24

25 f i s h e r g _odba <- d . raw_odba [ j ] /sum ( d . raw_odba )

26 b <- 1: floor (1 / f i s h e r g _odba )
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27 pval . out <- rbind ( pva l . out , cbind ( j , f i s h e r g _odba , as .

numeric ( sum ( ( ( − 1 ) ^ ( b−1) ) *exp ( lchoose ( a , b ) ) * ( (1 −( b*

f i s h e r g _odba ) ) ^ ( a−1) ) , na . rm = T) ) ) )

28 }

29

30 pval . out <- pval . out [ !is . nan ( pva l . out [ [ 3 ] ] ) &!is . i n f i n i t e ( pva l .

out [ [ 3 ] ] ) , ]

31

32 pval . out [ , 3 ] <-p . ad jus t ( pva l . out [ , 3 ] , method = " bon fe r ron i " )

33

34 pval . out <- pval . out [ order ( − pva l . out $ f i s h e r g _odba ) , ]

35

36 f i r s t i n s i g <- which ( pva l . out [ ,3 ] > pthresh ) [ 1 ]

37

38 sigharm . mean <- pval . out [ 1 : ( f i r s t i n s i g −1) , ]

39

40 sigharm . mean [ 1 ] <- f r eq _axis_mean [ sigharm . mean [ [ 1 ] ] ] *86400

41

42 sigharm . mean <- cbind ( sigharm . mean [ 1 ] , 24 /sigharm . mean [ 1 ] ,

sigharm . mean [ 2 : 3 ] )

43

44 names ( sigharm . mean ) <- c ( "CPD" , " Per iod Length " , " Figher ’ s g " , "P

value " )

45

46 s ig . harmonic <- length ( sigharm . mean [ [ 1 ] ] )
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