
Saving Our Bacon
Applications of Deep Learning for Precision Pig Farming

Jake Cowton

School of Natural and Environmental Sciences

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2020

Abstract

The research presented in this thesis focussed on how deep learning can be applied to the field of
agriculture to enable precision livestock farming for pigs. This refers to the use of technology
to automatically monitor, predict, and manage livestock. Increased consumer awareness of the
welfare issues facing animals in the farming industry, combined with growing demand for high-
quality produce, has resulted in a need for providing farmers with tools to improve and simplify
animal care. The concept of precision livestock farming tackles these requirements, as it makes
it possible to treat animals as individuals, rather than as batches. This translates to tailored care
for each animal and the potential for higher-quality produce. As deep learning has shown rapidly
increasing potential in recent years, this research explored and evaluated various architectures
for applications in two distinct areas within pig farming. We began by demonstrating how deep
learning methods can be used to monitor and model the environmental conditions in which pigs
are living in order to forecast oncoming respiratory disease. Implementing this approach can
mean earlier intervention than if simplify looking for clinical symptoms. However, as not all
diseases are caused by environmental conditions, we also implemented and evaluated a full
workflow for the localisation and tracking of individual pigs. This made it possible to extract
behavioural metrics to better understand the wellbeing of each pig. Overall, this research shows
that deep learning can be used to advance the agriculture industry towards better levels of care,
which is valuable for all stakeholders.

Acknowledgements

I would like to begin by thanking my supervisory team for their support and encouragement over
the past four years. Without their guidance, undertaking this research and completing this thesis
would have been infinitely more challenging. In particular, I would like to thank Jaume Bacardit,
who has guided me through the majority of my work and spent a great deal of time proofreading
this thesis and the papers stemming from it.

A number of people have supported me throughout my work on this research. In particular,
Ben whom I thank wholeheartedly for putting up with me for the past nine years. His friendship
has made this journey all the more enjoyable and his support has played a huge role in keeping
me going. I would also like to thank Sarah for taking the time to proofread this thesis. Her
support throughout the last few weeks of writing has been incredible.

Finally, my thanks goes to my parents for their commitment and dedication to ensuring I
reached my full potential, and for their unwavering love and support. The countless number of
hours they spent working with me from a young age to ensure I achieved well in school is what
has enabled me to go on to pursue a PhD. I will never be able to thank them enough for all that
they have done for me.

The thesis has received funding from the European Union Seventh Framework Programme
for Research, Technological Development and Demonstration under grant agreement 613574
(PROHEALTH) and the European Union Framework Programme for Research and Innovation
Horizon 2020 under Grant 633531 (Feed-a-Gene).

Publications

• Cowton, J., Kyriazakis, I., Plötz, T., & Bacardit, J. (2018). A Combined Deep Learning
Gru-Autoencoder For The Early Detection Of Respiratory Disease In Pigs Using Multiple
Environmental Sensors. Sensors, 18(8), 2521.

• Cowton, J., Kyriazakis, I., & Bacardit, J. (2019). Automated Individual Pig Localisation,
Tracking and Behaviour Metric Extraction Using Deep Learning. IEEE Access, 7, 108049-
108060.

Table of Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Precision Livestock Farming . 2

1.2 Deep Learning . 4

1.3 Deep Learning in Agriculture . 7

1.4 Thesis Outline . 10

2 A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respira-
tory Disease in Pigs Using Multiple Environmental Sensors 13

2.1 Introduction . 13

2.2 Background . 15

2.3 Experimental Design . 17

2.3.1 Data Collection . 17

2.3.2 Data Preprocessing . 18

2.4 Time-Series Early Warning Methods . 21

2.4.1 GRU-Autoencoder . 21

2.4.2 Other Metrics Used for Evaluation . 26

2.4.3 Methods Included for Comparison . 26

Table of Contents

2.5 Results . 28

2.5.1 Case Study . 31

2.5.2 Influence of the Number of Hidden Layers on GRU-AE Performance . 34

2.5.3 Computation Time . 35

2.6 Discussion . 35

2.7 Conclusions . 37

3 Deep Learning Architectures for Anomaly Detection In Multivariate Time Series
Data 39

3.1 Introduction . 39

3.2 Materials and Methods . 41

3.2.1 Data Description . 41

3.2.2 Models and Training Methods . 41

3.3 Results . 46

3.3.1 Training Parameters . 46

3.3.2 Resource Efficiency . 47

3.3.3 Test Results . 48

3.3.4 Case Study . 50

3.4 Discussion . 53

3.5 Conclusion . 54

4 Automated Individual Pig Localisation, Tracking And Behaviour Metric Extrac-
tion Using Deep Learning 55

4.1 Introduction . 55

4.2 Materials & Methods . 57

4.2.1 Dataset Descriptions . 57

4.2.2 Pig Detection Method . 60

x

Table of Contents

4.2.3 Pig Tracking Methods . 64

4.2.4 Behavioural Metrics Extraction . 66

4.2.5 Evaluation . 67

4.3 Results . 69

4.3.1 Detection Results . 69

4.3.2 Association Metric Learning . 71

4.3.3 Tracking Results . 71

4.3.4 Behaviour Metrics Extraction Results 76

4.4 Discussion . 77

4.5 Conclusion . 79

5 Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep Re-Identification 81

5.1 Introduction . 81

5.2 Dataset Descriptions . 82

5.2.1 Pig Detection Dataset . 83

5.2.2 Re-Identification Datasets . 83

5.2.3 Pig Tracking Dataset . 85

5.3 Methods Applied . 86

5.3.1 Pig Detection & Tracking . 86

5.3.2 Pig Tracklet Stitching . 87

5.4 Results . 90

5.4.1 Re-Identification Results . 90

5.4.2 Baseline Deep Simple Online and Real-time Tracking (Deep SORT)
Results . 92

5.4.3 Tracklet Stitching Results . 93

5.5 Discussion . 93

xi

Table of Contents

5.6 Conclusion . 96

6 General Discussion 97

6.1 Research Contributions . 97

6.2 Research Limitations . 100

6.3 Challenges to Deep Learning Approaches . 102

6.4 Real-World Deployment . 104

6.5 Future Research . 106

6.6 Conclusion . 107

References 109

xii

List of Figures

1.1 A visualisation of the data to which batch (left) and layer (right) normalisation is
applied. Sourced from [1]. 6

2.1 A boxplot describing the temperature, humidity, and CO2 sensor data for the
three countries included in the data collection—Belgium (BE), Cyprus (CY),
and Spain (SP)—after preprocessing. 18

2.2 A graph showing the average prevalence of respiratory disease against age (in
days) in all batches of growing pigs in Belgium (BE), Cyprus (CY), and Spain
(SP) after preprocessing. 19

2.3 An overview of the entire processing workflow, from the raw sensor data to
anomaly detection. Temperature, CO2, and humidity sensors were prepro-
cessed and merged with daily health data. This was then broken down into four
folds—Ht and Hv (used for the GRU-AE), and Oe and Ot (used for the anomaly
detection). Each of these folds was broken down using a sliding window sized at
30 min. Each window of 30 min was processed by the GRU-AE, and a recon-
struction error was produced. The distance between this reconstruction error and
normality was used to detect whether the window was anomalous or not using a
threshold-based anomaly detector optimised using particle swarm optimisation. 20

2.4 A visualisation of a rolled and unrolled recurrent neural network [2]. 22

2.5 A visualisation of the internal architecture of a Gated Recurrent Unit [2]. 22

2.6 A visualisation of a classic autoencoder (left) and recurrent neural network con-
sisting of gated recurrent units (GRUs) (right) [3]. These two methodologies are
what we combined to create an autoencoder (AE) capable of utilising temporality. 23

2.7 The average number of alerts raised, given an alert window start of α days and a
size of β = 6, using the optimal threshold τ for each given α found using grid
search on the anomaly detection used on Mahalanobis distances produced by a
GRU-based autoencoder. 28

xiii

List of Figures

2.8 Results for batch 27 processed by the Luminol-powered anomaly detection,
given its grid search-optimised parameters α (the start of the window for which
an alert is for) and β (the length of the window), in relation to the prevalence of
respiratory disease within a single batch. 32

2.9 Results for batch 27 processed by the ARIMA-powered anomaly detection, given
its grid search-optimised parameters α (the start of the window for which an
alert is for), β (the length of the window), and τ (the threshold which the loss
between predicted values and actual values must cross to be considered an alert),
in relation to the prevalence of respiratory disease within a single batch. 33

2.10 Results for batch 27 processed by the GRU-R-powered anomaly detection, given
its PSO-optimised parameters α (the start of the window for which an alert is
for), β (the length of the window), and τ (the threshold which the loss between
predicted values and actual values must cross to be considered an alert), in
relation to the prevalence of respiratory disease within a single batch. 33

2.11 Results for batch 27 processed by the GRU-AE-powered anomaly detection,
given its PSO-optimised parameters α (the start of the window for which an
alert is for), β (the length of the window), and τ (the threshold which the loss
between predicted values and actual values must cross to be considered an alert),
in relation to the prevalence of respiratory disease within a single batch. 34

2.12 How different numbers of layers in a GRU-AE affect the ability to model
environmental data. The smaller the standard deviation, the better the model
performs. 35

3.1 A visual representation of original U-Net architecture used for biomedical image
segmentation [4]. 42

3.2 A visual representation of the Seq-U-Net architecture used for time-series au-
toencoding [5]. 43

3.3 A visual representation of original End-to-End Memory architecture used for
question answering [6] . 44

3.4 A visual representation of the DSANet architecture used for multivariate time-
series forecasting [7]. 46

xiv

List of Figures

3.5 Results for batch 27 processed by the GRU-autoencoder-powered anomaly
detection, given its PSO-optimised parameters α (the start of the window for
which an alert is for), β (the length of the window), and τ (the threshold which
the loss between predicted values and actual values must cross to be considered
an alert), in relation to the prevalence of respiratory disease within a single batch. 51

3.6 Results for batch 27 processed by the Seq-U-Net-powered anomaly detection,
given its grid search-optimised parameters α (the start of the window for which
an alert is for), β (the length of the window), and τ (the threshold which the loss
between predicted values and actual values must cross to be considered an alert),
in relation to the prevalence of respiratory disease within a single batch. 52

3.7 Results for batch 27 processed by the DSANet-powered anomaly detection,
given its PSO-optimised parameters α (the start of the window for which an
alert is for), β (the length of the window), and τ (the threshold which the loss
between predicted values and actual values must cross to be considered an alert),
in relation to the prevalence of respiratory disease within a single batch. 52

4.1 A example image from the pig dataset where pigs are densely packed into one
area with corresponding ground-truth annotations. 58

4.2 Distributions of the number of overlapping bounding boxes per image (top left),
the number of pigs per image (top right) and the average brightness of a pig per
image (bottom left) within the test set. 59

4.3 Representation of the manually annotated pig tracks. The Y-axis shows the
ground truth pig ID, the X-axis shows the frames during which the pig was
visible. Once a pig left the camera, it was not re-identified and was therefore
given a new ID. 61

4.4 Top: A sample of two identities of the MARS dataset for person re-identification.
Bottom: A sample of two identities of the pig re-identification dataset. 62

4.5 An overview of the Faster R-CNN structure 62

4.6 A breakdown of the full workflow of our implementation from the video footage
of a pig pen, to the behavioural metrics we extract from the tracking methods. . 64

4.7 Examples of how IoU is calculated. Left: Poor performance IoU = 0.4034.
Middle: Good performance, IoU = 0.7330. Right: Excellent performance, IoU
= 0.9264. 67

xv

List of Figures

4.8 Top: Performance of Faster R-CNN models trained on a dataset of pigs in a
live farm using 2 methods of transfer learning from a model pre-trained on
VOC: adding an additional fully-connected layer and modifying the final fully-
connected layers along with a model trained only on the pig data. Bottom:
The same data zoomed in to highlight the difference between the two similarly
performing models. 69

4.9 Four sample images from our pig detection test set processed by the Faster
R-CNN with the feature extraction layers pre-trained on ImageNet, the rest
pre-trained on VOC and an additional fully-connected layer for the pig dataset.
Detections to the left of the red wall are ignored. The top left image is from
the low-light test segment. The top right image is from the densely packed
test-segment. The bottom left image is from the overexposed test segment. The
bottom right image is from the “many pigs” test segment. 70

4.10 Representation of the detected tracklets for pig 1 from frame 1300 to 1875. This
pig was visible for all frames, but showing the detail at this segment of frames
was not possible if we showed all the tracklets from all frames. The Y-axis shows
the tracklet IDs (which are independent for each method), the X-axis shows
the frames during which the pig was visible. Red represents SORT generated
tracklets, blue represents Deep SORT generated tracklets. 73

4.11 Representation of the detected tracklets for pig 12 for all the frames it was visible.
The Y-axis shows the tracklet IDs (which are independent for each method), the
X-axis shows the frames during which the pig was visible. Red represents SORT
generated tracklets, blue represents Deep SORT generated tracklets. 74

4.12 “Where there is one true identity A (thick line, with time in the horizontal
direction), a tracker may mistakenly compute identities 1 and 2 (thin lines)
broken into two fragments (a) or into eight (b, c). Identity 1 covers 67% of the
true identity’s trajectory in (a) and (b), and 83% of it in (c). Current measures
charge one fragmentation error to (a) and 7 to each of (b) and (c). Our proposed
measure charges 33% of the length of A to each of (a) and (b), and 17% to (c).”
(This figure and caption are from [8]). 78

5.1 An example of an image used within our manually annotated pig detection
dataset. This particular example shows how, in some images, the pigs are
densely packed into one area. 84

5.2 Top: A sample of two identities of the MARS dataset for person re-identification.
Bottom: A sample of two identities of the pig re-identification dataset. 84

xvi

List of Figures

5.3 A representation of the manually annotated pig tracks used in the pig tracking
dataset. The Y-axis shows the ground-truth pig ID, the X-axis shows the frames
during which the pig was visible. Once a pig left the camera, it was not possible
to re-identify it, and was therefore given a new ID. 85

5.4 An example of a pig identity tracked by Deep SORT and SORT that is made up
of several tracklets. 87

5.5 The training accuracy (left) and cross-entropy loss (right) for each of the evalu-
ated models on the pig re-identification dataset with transfer learning from the
MARS dataset. 90

5.6 UMAP scatter plots of the feature vectors of each image in the pig re-identification
test set extracted from 3 differently performing models: DenseNet, the best
performing model in terms of mAP and CMC at Rank-1; S&E ResNet, a mid-
performing model; and OSNet, the poorest performing model. Plots a, b, and c
use a different random seed to plots d, e, and f. 92

xvii

List of Tables

2.1 The grid search-optimised hyper-parameters used to train a GRU-AE used on
multidimensional time-series data. 29

2.2 Table of results for the grid search-optimised implementation of LinkedIn’s
anomaly detection library (Luminol), the grid search-optimised autoregression
integrated moving average (ARIMA) model, particle swarm optimisation (PSO)-
optimised threshold-based anomaly detection of loss incurred from a GRU-based
regression, and PSO-optimised threshold-based anomaly detection of Maha-
lanobis distance produced by a GRU-based autoencoder. The events column lists
how many times the respiratory disease prevalence increased from 0 within the
batch, P denotes the precision, and R is the recall of the model. These results are
from the test data Ot . The final I/B/C row indicates the number of folds that were
Incorrect (MCC = 0.0), Between (0.0 < MCC < 1.0), or Correct (MCC = 1.0) . 30

2.3 Table of results for the grid search-optimised implementation of LinkedIn’s
anomaly detection library (Luminol), the grid search-optimised ARIMA model,
PSO-optimised threshold-based anomaly detection of loss incurred from a GRU-
based regression, and PSO-optimised threshold-based anomaly detection of the
Mahalanobis distance produced by a GRU-based autoencoder. α and β denote
the start and length of the time window (in days), respectively, for which an
alert is assessed, and τ is the threshold the loss/Mahalanobis distance needed
to exceed in order to raise an alert. They are optimised using training data Oe;
these results are from the test data Ot . 31

3.1 Hyper-parameters used for GRU-AE, Seq-U-Net and DSANet that are used in
the training of all models. 47

3.2 The time (hours) and memory (GB) required to train the GRU-AE, Seq-U-Net
and DSANet models on all batches of data. 47

xix

List of Tables

3.3 Table of results for the PSO-optimised threshold-based anomaly detection of
Mahalanobis distance produced by a GRU-based autoencoder, PSO-optimised
threshold-based anomaly detection of Mahalanobis distance produced by a
Sequential U-Net, and particle swarm optimisation (PSO)-optimised threshold-
based anomaly detection of loss incurred from a DSANet. The events column
lists how many times the respiratory disease prevalence increased from 0 within
the batch, P denotes the precision, and R is the recall of the model. These
results are from the test data Ot . The final I/B/C row indicates the number of
folds that were Incorrect (MCC = 0.0), Between (0.0 < MCC < 1.0), or Correct
(MCC = 1.0). 48

3.4 Table of results for the PSO-optimised threshold-based anomaly detection of
the Mahalanobis distance produced by a GRU-based autoencoder, Seq-UNet
and DSANet. α and β denote the start and length of the time window (in
days), respectively, for which an alert is assessed, and τ is the threshold the
loss/Mahalanobis distance needed to exceed in order to raise an alert. They are
optimised using training data Oe; these results are from the test data Ot 50

4.1 The parameters used for the Faster R-CNN that perform best on the VOC dataset. 63

4.2 An overview of the CNN architecture used to produce the association metric for
pig re-identification. This is trained using the MARS dataset followed by fine-
tuning on our own pig re-identification dataset. The cosine softmax classification
layer is not shown in this table as it is removed for inference. 65

4.3 The parameters used for the Faster R-CNN that perform best on the VOC dataset. 71

4.4 Results of the SORT & Deep SORT tracking algorithm used to track individual
pigs. ID is the ground truth ID for a pig, F is the ground truth for how many
frames the pig was visible, T are the number of tracklets the method created for
each individual pig, C is the percent of the ground truth tracks that were tracked
by the method, S is the number of identity switches that occurred, FN is the
number of false negatives (pig not detected). The arrows indicate whether lower
or higher is better. There were also 153 and 105 total False Positives (a pig was
detected that did not exist) for SORT and Deep SORT respectively. 72

xx

List of Tables

4.5 Results of the behaviour extractions and the ground truth associated with them.
Results are shown for SORT and Deep SORT. Distance is measured as the
number of pixels travelled, the average speed is measured as the average number
of pixels travelled per second, and idle time is measured as the number of seconds
a pig did not move more than 4 pixels. These results are normalised and the
mean squared error (MSE) is shown for each (lower is better). The absolute error
between the estimated behaviour and true behaviour for each method and metric
is calculated; the number of IDs where this error is below a threshold is counted
(higher is better). 76

5.1 The models used for reassigning newly generated identities with previous lost
ones where the pigs are the same and their number of trainable parameters.tab . 89

5.2 The mAP and CMC at ranks 1, 3 and 5 of the nine re-identification models,
trained on MARS and fine-tuned on our custom pig re-identification dataset,
used for re-identifying pigs. We also include the cosine association model that is
integrated as part of Deep SORT. 91

5.3 The IDF1 (higher is better) and number of IDSWs (lower is better) of nine
models used for stitching tracklets produced by Deep SORT along with the
values associated with the original tracklets. 93

xxi

Chapter 1. Introduction

An ever-increasing population [9] directly translates to an ever-increasing demand for food.
Combined with an increasing consumption of meat per capita [10], it is immediately clear that
animals play an integral part in the future of the world’s food supply, with pigmeat being the most
popular [10]. In order to supply the growing demand, the agricultural industry must increase
farming intensity. Generally, this can be achieved in one of two ways: increase the number of
animals farmed, or improve the performance of each animal. However, it is not enough to simply
produce more.

The agricultural industry has a responsibility to the environment and to animal welfare, both
of which must be taken into account when scaling intensity. Additionally, figures from 2015 show
that many countries (including the vast majority of European and North American countries)
exceed the target of no more than 50mg of antibiotics per kilogram of meat production [10–12].
A broadly agreed target that was set due to concerns that improper and excessive use will lead to
antibiotic resistance in both livestock and humans [13]. This means further reductions in usage
of antibiotics are still necessary despite the need for higher intensity farming. These concerns
are not just academic; consumer awareness with regards to these issues has been growing
rapidly [14, 15]. This has mounted even more pressure for solutions to be environmentally
sustainable, whilst improving the overall welfare of animals. In summary, the agricultural
industry is tasked with providing increasing quantities of high-quality food, in a way that reduces
its environmental impact, reduces its overall antibiotic use, and improves the quality of life and
welfare for animals, all whilst keeping costs as low as possible for the consumer.

This need for increased production, whilst also abiding by the limitations and requirements,
fundamentally set by consumers, poses a substantial challenge to the industry, and was therefore
the core motivation behind the research presented in this thesis. We sought implementations that
embrace the concepts of Precision Livestock Farming (PLF) [14], and that assist, rather than
replace, the humans involved in the management of livestock1. We explored, developed and
evaluated an early-warning system for oncoming respiratory disease, along with a full workflow
for providing farmers with behavioural information for each individual pig. A farmer that has
access to this information is in a significantly better position to provide a level of care, not only
at an individual level, but also at an earlier stage than if they were only looking for clinical
symptoms.

1referred to as farmers throughout the remainder of this thesis

1

Introduction

Applying machine learning to agricultural challenges is nothing new [16]. However, deep
learning, the subcategory of machine learning we employ throughout this thesis, is a relatively
new field whose full potential for applications in agriculture is still in the process of being
realised. The remainder of this introductory chapter introduces and outlines what both PLF and
deep learning are, and how the latter can be used in pursuit of concepts of the former. Due to
the interdisciplinary nature of this thesis, Section 1.2 contains a high-level overview of some
of the core concepts of deep learning that are required to understand the design decisions made
throughout this thesis. This chapter concludes by setting out the overarching aims and objectives
of this thesis and provides an overview of the subsequent chapters.

1.1. Precision Livestock Farming

PLF is a subset of precision agriculture that focuses specifically on livestock. The currently
accepted definition notes it as a type of management strategy that combines temporal, spatial, and
individual data with “other data” to inform management decisions in such a way that improves
performance [17]. Performance, in this context, can be measured in various ways such as, but not
limited to, efficiency, productivity and economical. As disease drastically hinders performance,
using collected data to avoid outbreaks of disease is one of the many goals of PLF.

There are a wide variety of variables that can be measured for the purpose of informing
management decisions. Commonly tracked variables typically include environmental [18],
consumption [19], and general animal activity [20]. Temperature and humidity are commonly
monitored environmental variables in livestock management [21]. CO2 concentration is also
often monitored as it can be used as a proxy for how well ventilated an area is (i.e. a higher
concentration indicates low ventilation and vice versa). Knowing this can help estimate the
concentration of ammonia on the air, which can increase the risk of respiratory disease [18].
Monitoring these variables is strongly recommended as they are known risk factors of various
respiratory diseases [21].

Monitoring an animals consumption over time, along with their weight, allows farmers to
calculate Feed Conversion Ratio (FCR). This ratio is a metric for understanding how well an
animal is converting the food they are eating into mass (i.e. the performance of an animal).
This is particularly important for growing pigs, as the main goal is to maximise the weight
gain of a pig with as few resources possible in the shortest amount of time. An animal’s FCR
over time, alongside pigs of similar size and gender, can give a good indication of the animal’s
health [20, 22]. In addition to FCR, research has shown that water consumption, particularly
changes in consumption pattern, is also a strong indicator of pig health [23, 24].

The implementations required for the monitoring of both the environmental and consumption
variables described above are relatively straightforward, as they can all be directly measured
using electronic sensors. Whereas, monitoring animal activity is more resource-intensive. Animal

2

1.1 Precision Livestock Farming

activity monitoring is commonplace throughout research [25–27], as it can be used as a means
to understand their behaviour [28]. This is valuable data as changes in an animal’s behaviour
is another potential indicator for the presence of disease [29]. Typically, this data is obtained
by human observation, either in-person or through the use of a video recording, where the
observer notes the behaviour of animals over time. This approach has its limitations, as different
people can interpret the same data in different ways [30]. Research has also shown that different
people can even evoke different reactions from animals [31], adding bias to the data collected.
Furthermore, having a human observe an animal can be expensive. This is even more so the
case if specialist knowledge is required to capture the required data, for example, to understand
specific animal behaviours.

In the majority of cases, tracking the change in these values over time provides much greater
insight than knowing the value at a single given time, as it is often the changes in these values
that can indicate potential problems. However, taking FCR as an example, in a scenario where
a single pig’s FCR decreases, only a small change in the batch’s average would be seen. This
means several pigs need to show a decrease in FCR for a farmer to see a change that warrants
intervention. Therefore, tracking metrics for individual animals, rather than as a batch, drastically
increases the value of collected data. With individual-level data, the farmer can know precisely
which pig is having issues and intervene at an earlier stage, which in many cases would cause less
disruption, reduce the need for medication and make any necessary treatment more effective [32].

Tracking individual-level data is an attractive solution to some of the challenges facing
livestock management. However, tracking these variables for individuals, rather than for an entire
batch, drastically increases the challenges around implementation. For example, calculating FCR
for a group of animals requires weighing the amount of food given to the group, then, at a given
time, weighing a sample of the animals in the group and weighing how much feed remains to
calculate total consumed feed. Making the same calculation for an individual requires knowing
how much feed the individual consumed along with its weight at a given time, which is not
feasible without constantly monitoring each animal.

Electronic sensors that can assist with individual tracking have rapidly become more accessi-
ble, and the accuracy of data they capture is sufficient for most use cases. The two main sensor
types that are used are Radio-Frequency Identification (RFID) tags and high-resolution cameras.
RFID tags, typically attached to a pig’s ear, are used as a means of identifying specific pigs
using RFID antennas, which can remotely detect the ID of a given tag (within a limited range
depending on the type of sensor used). This approach has been used to calculate the feeding
behaviour of individual pigs [33] by placing RFID antenna around the feeding area and detecting
when specific pigs were in that area. There are limitations to this approach, as the authors of this
research acknowledge. Due to the nature of RFID tags, only one pig can be detected at a time. In
this paper, this limitation was managed by only allowing one a pig access to the feeder at a time,
but this is a sub-optimal solution for implementation in commercial farms, as adapting feeding
areas to allow only one animal access is impractical.

3

Introduction

More recent research has shown RFID tags can also be used to track a pig’s movements
between certain areas. In this paper [34], each pig was assigned an ultrahigh-frequency RFID
tag and its location was determined by a set of antennas placed in calculated “hotspot” areas.
If a pig entered the hotspot, the antenna would detect it and log the pig’s ID and time it was
detected. Knowing the distances between the hotspots, the authors were able to infer a “virtual
walking distance”. This metric could be used to detect lameness in pigs by applying a linear
moving window regression model, that was applied on a per-pig basis, that made predictions
about expected behaviour. Deviations between predicted and actual measurements indicated a
potential problem. This research demonstrated an ability to detect lameness in 32% of cases; a
particularly low detection rate, which the authors attribute to the high variation between pigs.
However, the authors argue that their approach acts as an effective way of tracking general,
individual pig movements within a pen.

The location data collected from RFID-based methods is very coarse as it can only provide a
sequence of times a pig was at one of several locations. Additionally, the only way to verify the
captured data would be to either have a human presence or to install cameras to verify the RFID
data. As discussed earlier in this section, research has used cameras as a means for monitoring
pigs, which avoids in-person contact with animals. However, more recent research has made use
of computer vision techniques to automatically monitor pig behaviour in video footage. Two
main types of camera are typically used for this: 3D depth cameras that use infrared light [35–37]
and 2D RGB (colour) cameras [38, 39]. Both types of cameras offer different benefits and
drawbacks. Depth cameras offer much more information regarding the shape and size of the
pig, which enables better performance in tasks such as weight estimation [40]. However, the
main downsides of this hardware are that depth cameras are typically expensive and, as they use
infrared light, no colour data can be captured. On the other hand, high-definition cameras are
very inexpensive and, though they only produce a 2D image, they do capture colour data, which
can be integral in telling two pigs apart for the purpose of identifying individuals. Currently, one
of the main approaches to automatically processing the images recorded by cameras is to train a
Convolutional Neural Network (CNN), a deep learning architecture, which we will discuss in
the following section.

1.2. Deep Learning

In its most fundamental form, “deep learning” is a type of Artificial Neural Network (ANN) [41]
that uses several hidden layers. This definition is more of a technicality as, in reality, the hidden
layers in deep learning models are much more complex than traditional multi-layer perceptrons,
which are comprised of what we now refer to as fully connected layers. In traditional machine
learning methods, including shallow ANNs, extensive preprocessing and feature engineering is
required to model the input data. Whereas in deep learning algorithms, the extensive and more

4

1.2 Deep Learning

complex layers are relied upon to model data without the need for much preprocessing or feature
engineering, if any at all.

Though research in this area has drastically increased over the past decade, the term itself
is not new [42]. However, at that time, the large amount of computational power required for
neural networks to achieve competitive results in reasonable time made them less desirable, as
compute power was limited. This resulted in methods, such as support vector machines [43]
and random forests [44], being able to achieve comparable, if not better, performance whilst
requiring less computational resources. Falling into the "traditional machine learning" category,
they required relatively extensive data preprocessing for them to be effective.

The necessary computing power was eventually more readily available [45, 46] and significant
advances in the field were made. The following is a non-exhaustive, high-level list of some of
the major advances within the field of deep learning. The application of backpropagation to
CNNs, allowing them to outperform traditional computer vision approaches [47] was one of the
first pieces of research that pushed deep learning architectures into the spotlight. This led to the
development of LeNet [48], a top-performing CNN-based image classification architecture.

Around the same time, Long Short-Term Memory (LSTM) units were presented as a solution
to the memory issues of vanilla Recurrent Neural Network (RNN) 2 implementations [49],
enabling recollection of data from over 1,000 prior timepoints in the past. These architectures
were particularly well-suited to handling sequential and time-series data as the temporality of data
is explicitly handled by their recurrent architecture, rather than requiring the temporal relationship
between values to be learned through training. In later research, they were augmented with
an additional component referred to as “attention”, which were learned weights that improved
performance in a number of temporal applications [50–52]. This was followed by the introduction
of the transformer, an architecture which relied almost entirely upon attention weights [53].
These architectures are discussed in more detail in Sections 2.4.1 and 3.2.2 respectively.

The introduction of the Rectified Linear Unit (ReLU) activation function [54], one of the
most used activation functions in deep learning, made significant strides to minimise the effect
of the vanishing gradient problem. This is where small derivatives of each layer in the network
are multiplied together causing the error that is propagated through the network to exponentially
decrease. This causes low gradients in earlier layers, meaning very slow learning. Leaky ReLU
proposed changes that further minimised the vanishing gradient problem for this activation
function [55].

Later, batch normalisation [56] greatly improved the generalisability of a model by nor-
malising inputs on a mini-batch level, enforcing a mean of 0 and a standard deviation of 1,
ensuring that all mini-batches had the same distribution. The authors claimed that this is a form
of regularisation, and therefore using batch normalisation mitigates the need for using “dropout”.

2we use "RNN" throughout this thesis to refer to all recurrent architectures including LSTMs and GRUs

5

Introduction

This is another regularisation strategy where a proportion (often half) of the neuron activations
are ignored [57]. Layer normalisation was later introduced for recurrent-based architectures [58],
which applies the same theory as batch normalisation but to a different axis of the input data
(Figure 1.1). All of these methods reduce training time and prevent overfitting for their respective
architectures.

Figure 1.1 A visualisation of the data to which batch (left) and layer (right) normalisation is applied.
Sourced from [1].

Finally, a number of optimisation algorithms were presented that improved the convergence
of deep learning models. Before the use of deep learning models was widespread, AdaGrad [59]
and stochastic gradient descent with momentum [60] were two of the most commonly used
optimisation algorithms. The latter was commonly implemented with a learning rate scheduler
that could modify the learning rate throughout training based on certain parameters (e.g. number
of iterations/epochs or performance). One such method of learning rate scheduling reduces
the learning rate using cosine annealing strategy [61]. The authors of this paper also included
“warm restarts” that increase the learning rate after a given number of steps to avoid getting
stuck in local optima. Since, RMSProp [62] and ADAM [63] have taken over as the two main
optimisation algorithms; the latter was published as an improvement over the former and both,
alike AdaGrad, are adaptive learning rates.

The combination of these advances in training strategy and greater compute power allowed
deep learning implementations to become leading solutions to complex problems in many areas.
This was most notably the case for areas such as computer vision [64], Natural Language
Processing (NLP) [65] and data generation tasks [66].

Selecting the best architecture for a given task is a crucial part of building a high-performance
solution, especially as architectures begin to be successfully used outside of their traditional
applications, such as using CNNs for text translation [67]. However, identifying the best metric
to measure performance is an equally important decision. Different metrics are often used to
evaluate different parts of a system, such as one metric to evaluate the performance of a trained
model on a test set and another metric to evaluate the performance of that model in a given
application. When selecting which metric to use, it is crucial to understand not only the objective

6

1.3 Deep Learning in Agriculture

of the system (e.g. classification vs regression), but also the data that it is using, as this can affect
the appropriateness of a given metric. For example, in a balanced dataset used for classification,
it is common to use classification accuracy as a metric for the performance of a model, as it is
simple to calculate and interpret. However, for datasets where there are imbalanced classes, either
in the number of samples per class or in the importance of one class over another, classification
accuracy would not be appropriate as it does not account for class distribution. Precision and
recall are often used in these circumstances [68], along with their harmonic mean, F1, as it takes
the class distribution into account rather than only comparing correct vs incorrect classifications.
This feature of F1 has led to it becoming one of the most widely used evaluation metrics for
classification tasks in machine learning. Although, it is not always the most appropriate, as it
does not account for correctly classified negative cases (true negatives). In applications where
these are important, other metrics, such as Matthews Correlation Coefficient (MCC), may be
better suited [69]. Therefore, we paid particular attention to the performance metrics we made
use of throughout our research.

In this thesis, we focussed on two of the main categories of deep learning architectures:
CNNs and RNNs. CNNs are primarily comprised of layers of convolving filters that are applied
to input. They gained popularity for their exceptional performance in computer vision challenges
such as image classification [70], object detection [71] and facial recognition [72]. More recently,
they have been successfully applied to other applications such as natural language processing [73]
and speech recognition [74]. RNNs, specifically the LSTM variant [49], garnered attention for
its strong performance in sequence processing, especially in sequence-to-sequence tasks such as
text translation for NLP [75] and time-series forecasting [76]. There are limited use cases for
NLP in an agriculture setting [77]. However, sequence processing, the underpinning concept
for many deep learning-based methods applied to NLP, is a valuable tool for modelling the
time-series data that is collected about animals (Section 1.1).

1.3. Deep Learning in Agriculture

Traditional machine learning methods have been used throughout agriculture for some time; a
substantial proportion of this has focussed on crop yield and disease forecasting [16]. More
so, these implementations often inherently adopt the concepts of precision agriculture, not only
by enabling the capture of richer and more specific data, but additionally by assisting in the
processing of complex data such as images and videos. Support Vector Machines have commonly
been used in these applications [78–80]. For example, in this particular paper [80], the authors
implemented a Support Vector Machine (SVM) for the purpose of an early-warning system to
alert farmers to upcoming decreases in egg production. In this, strong performance across a range
of metrics is achieved by the SVM. However, the authors were required to handcraft the features
they used as inputs to the model, whereas deep learning algorithms can be applied to data without
the need for feature engineering, and often with performance gains. For example, CNNs can be

7

Introduction

used to automatically detect fruits in images. When this is applied to an entire field, an estimate
of the total number of fruits can be obtained. Furthermore, if a time-of-flight camera is used or if
the distance from the camera to the fruit is known, then this can be translated to an estimated
total yield based on the size and number of fruit. Recent research has used Faster R-CNN [81]
to implement the detection component of this workflow [82]. However, a commonly observed
challenge faced by CNN-based approaches is the vast variations in illumination conditions in
real-world conditions. Though strong performance is still achievable, this is seen as a current
limitation to the practical applications of these methods in the real-world [83].

CNN-based approaches are also well suited for weed detection [84]. In this implementation,
the implemented CNN was capable of detecting weeds even in scenarios where the weeds were
occluded, though it did not go so far as to identify the exact type of weed, which is useful
for autonomously determining the correct weed control method. This implementation used
DetectNet [85], essentially GoogLeNet [86] without the input and two of the output layers, to
detect weeds in an image. This is a fully convolutional method (i.e. there are no fully connected
layers) that takes an input image and outputs an image mask. That mask is then translated
into bounding boxes using thresholding to show where weeds are. Similar research has made
use of the You Only Look Once (YOLO) [87] architecture as a starting point for proposing a
custom architecture for a detecting a specific type of weed [88]. In this implementation, synthetic
training data is generated to make up for a lack of real-world data. This meant that within the
training data there were variations of image brightness as there would be in real-world data. This
approach tackles one of the major challenges in deep learning; a lack of annotated data.

Although the applications discussed thus far have focussed on CNNs, there are also imple-
mentations using RNN-based approaches. Satellite image data contains valuable data for under-
standing and classifying land cover and deep learning can be used to process this data [89, 90]. At
first glance, this appears to be simple image data that could be processed by methods that perform
well on spatial data (e.g. CNNs), but land cover changes throughout the year depending upon the
season. Recent research has shown that because of this, methods that can account for temporal
data (e.g. RNNs), as well as spatial, tend to outperform CNN-based alternatives [91] that can
only assess images in a single context. Deep learning methods have also been applied to livestock
in applications such as animal counting and classification [92, 93], growth forecasting [94], and
activity recognition [95]. In the activity recognition paper, CNNs were used to process the input
images and detect pigs. Assumptions were made based on the overlap between the head area and
the feeding area to determine if the pig was feeding or not. However, this assumption does not
always hold, as it is not uncommon for pigs to be in the feeding area but not eat, referred to as
“non-nutritive visits”. This is an area recent research has tackled using CNNs [96]

In all of the activity tracking methods discussed above, none track the identity of individual
pigs, often reverting to painting an identity onto the pig itself [97, 95]. Deep learning appli-
cations have been successfully implemented and deployed for real-world use for the purpose
of detecting, tracking and predicting human behaviour. In particular, research has achieved

8

1.3 Deep Learning in Agriculture

implementations that track humans in video feeds [98], including across multiple cameras [99].
However, this is a challenging task when trying to apply similar techniques to pigs, as they are
often indistinguishable from one another to the human eye. Humans, on the other hand, are
easier to tell apart due to differences in appearance, most notably caused by clothing, which
impacts both spatial and colour-based features. These are feature changes that CNNs perform
well at detecting, making them well-positioned to be able to tell two humans apart based on their
appearance.

Research into using these methods for pig identification has presented a solution through the
use of identity tags attached to a pig’s ear. These tags can be detected using CNNs and used to
assign an identity to the pig [100]. The use of additional hardware that must be attached to the
pig certainly overcomes the indistinguishability challenges, however, the installation and removal
of tags adds to the workflow of day-to-day farming, which can affect adoption in real-world
applications. One of the few successful solutions to identifying pigs that requires no additional
hardware or markings on the pig has been through the use of a “tag box” [101]. This tag-box
was defined using keypoint detection, around which a box was defined and HOG [102] features
extracted for identification.

A substantial proportion of the challenges and solutions presented in this section relate to how
deep learning can be used to process image data, and we have shown that there is increasingly
extensive literature in this space. This is likely due to the fact that computer vision is one of the
main areas where deep learning methods have excelled. However, there are also RNN-based
applications for methods such as sequence processing [103–105]. In particular, this can be
used for disease prediction using time-series data, though much of the literature has focussed
on human applications [106]. One of the first papers to apply a recurrent architecture in this
area [106], specifically, to use multivariate inputs, demonstrated that LSTM architectures have
a clear ability to model environmental conditions, and used this to forecast the spread of flu.
The environment and flu data used was weekly totals and preprocessing was applied to each of
the variables independently to account for each of their respective lagged impact on the total
flu count (e.g. temperature change may take x days to impact flu prevalence whereas humidity
change may take y days). Theoretically, this is an unnecessary step as a well trained LSTM
architecture should be capable of accounting for these offset relationships.

Other papers have also demonstrated the performance of RNN-based models on univariate
time-series data [107, 108], though this is typically a less challenging scenario. The success of
RNN-based models that have been applied to disease prediction in humans, though indicative of
their general capability, does not mean that they would be successful in a livestock setting, as
there are substantial differences between the two applications. Specifically for livestock housed
indoors, the environment in which animals are kept is typically rigorously climate controlled
to maintain optimal conditions [109]. This means that changes in the environmental conditions
are typically on a much smaller scale than in open-air conditions. The literature shows that

9

Introduction

environmental conditions do impact disease for livestock, flu or otherwise, so a model used to
detect these changes needs to be able to do so for much subtler patterns and relationships.

Recent research has explored the performance of LSTM-based models in comparison with
Autoregressive Integrated Moving Average (ARIMA) directly, however, these are frequently ad-
dressing financial stock prediction challenges [110, 111]. Interestingly, one particular paper [111]
combines both CNN and LSTM-based architectures to create a single model for forecasting
financial stock data. In this model, the LSTM observes the minute-by-minute stock price and
the CNN processes a “candlestick chart”, as an image, of the same data. Though the authors
observed a performance improvement by combining the features produced by these two models,
it begs the question of whether the sole LSTM model would have benefited from more in-depth
fine-tuning as it contains a more granular representation of the data contained within the graph.

Overall, there are many applications for deep learning in agriculture, though some are still
in their infancy as the benefits of deep learning for PLF become more widely evaluated and
understood. The following section outlines the overarching aims of this thesis, along with an
overview of the areas in which this research applies deep learning methodologies.

1.4. Thesis Outline

Two core aims drove the research presented in this thesis. Firstly, we aimed to investigate how
deep learning methodologies can be implemented for use cases in operational farms; moving
away from tightly constrained lab conditions. We evaluated our implementations under real-
world conditions, on operational, commercial farms, in order to ensure the solutions we presented
addressed all of the challenges. Secondly, we sought to demonstrate how these implementations
could be used to make treating animals as individuals a more manageable task for farmers.
Across the experimental chapters, this research addressed two broad applications: environmental
monitoring for disease forecasting, and individual behaviour tracking. The first of these shows
how deep learning can be used to process complex, imbalanced data and the second used deep
learning to focus on animals as individuals.

We began this research by monitoring and modelling multiple environmental sensor data
to provide an early warning system for oncoming increases in respiratory disease prevalence
(Chapter 2). We compared our proposed recurrent-based method to other deep learning methods
alongside traditional approaches. Our evaluation demonstrated that our architecture choice and
choosing to treat disease detection as an anomaly detection problem, allowed it to achieve the
best performance. As this method required substantial computational resources, further research
was conducted to evaluate the benefits and drawbacks of alternative architectural variations that
would use fewer resources (Chapter 3). Here we evaluated both CNN and transformer-based
architectures against our RNN-based one, showing that, under the right conditions, CNNs can be
powerful alternatives even when data is temporal.

10

1.4 Thesis Outline

In order to extract behaviour tracking metrics for individual pigs, we implemented a full
workflow for the detection and tracking of pigs. This was achieved using standard colour
cameras, without the need for additional hardware (e.g. RFID or ear tags), markings on pigs,
or the definition of “tag boxes”. The data produced by this workflow was then used to extract
metrics regarding each pig’s activity levels (Chapter 4). This data could be used by farmers
to better understand the condition and needs of each pig. In order to enhance the tracking
performance on an individual level, an additional module for this workflow was developed for
the purpose of re-identifying pigs after prolonged occlusions (Chapter 5). We evaluated several
CNN-based approaches that were capable of re-identifying pigs based on their appearance to
re-assign seemingly newly detected pigs to their original identities. This thesis is then finalised
by a general discussion of the research that was presented (Chapter 6), how it relates back to
the material and challenges presented in this chapter, and proposes various avenues for further
research. Relevant background material is covered both in this introductory chapter and in the
relevant chapters rather than in a dedicated background material chapter.

11

Chapter 2. A Combined Deep Learning GRU-Autoencoder for the Early
Detection of Respiratory Disease in Pigs Using Multiple

Environmental Sensors

Abstract

We designed and evaluated an assumption-free, deep learning-based methodology for animal
health monitoring, specifically for the early detection of respiratory disease in growing pigs based
on environmental sensor data. Two recurrent neural networks (RNNs), each comprising gated
recurrent units (GRUs), were used to create an autoencoder (GRU-AE) into which environmental
data, collected from a variety of sensors, was processed to detect anomalies. An autoencoder
is a type of network trained to reconstruct the data it is fed as input. By training the GRU-AE
using environmental data that did not lead to an increase in respiratory disease prevalence,
data that did not fit the pattern of “healthy environmental data” had a greater reconstruction
error. All reconstruction errors were classified as either normal or anomalous using a threshold
that was optimised using particle swarm optimisation (PSO), from which alerts are raised.
The results from the GRU-AE method outperformed both classical statistical and other deep
learning implementations that raised alerts when predictions deviated from actual observations.
The results show that a change in the environment can result in occurrences of pigs showing
symptoms of respiratory disease within 1–7 days, meaning that there is a period of time during
which farmers can act to mitigate the negative effect of respiratory diseases, such as porcine
reproductive and respiratory syndrome (PRRS), a common and destructive disease endemic in
pigs.

2.1. Introduction

The forecasting of an oncoming health challenge in animals is fundamental to maintaining a
high level of health and animal welfare. The earlier a disease is predicted, the sooner it can
be dealt with, thus lowering the overall impact of the disease on both the animal and the farm,
and increasing the likelihood of treatment success [32]. Respiratory diseases, such as porcine
reproductive and respiratory syndrome (PRRS), pneumonia, and pleurisy are some of the most
common types of disease found in commercial pig populations [21]. Therefore, it is highly

13

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

valuable to be able to predict occurrences of respiratory disease, which we define as the point in
time where respiratory disease prevalence increases from 0 to greater than 0.

There are many factors that influence the contraction of respiratory diseases, in particular, the
environment which the pigs inhabit. A number of the respiratory disease risk factors discussed
in established research [21] - specifically, air quality, temperature, and humidity - are now able
to be monitored continuously in real time and at a high resolution using inexpensive electronic
sensors. Such data can be used to further understand the relationship between environmental
conditions and respiratory disease.

In most situations, recording data continuously means storing data that predominantly
describes normal circumstances, as anomalous events are less frequent. In an ideal situation,
datasets are comprised of balanced data for each class. In the case of the data used in this chapter,
where the classes are considered to be “healthy” and “not healthy”, the classes are considered to
be extremely imbalanced, due to the large amount of “healthy” data where no respiratory disease
occurs. However, the large amount of normal (“healthy”) data generated, allowed us to train
a solid, robust model of normality. This meant that as environmental conditions were tracked
over time, the model could be used to evaluate the data as it is received and any deviations from
this model could be quantified. This quantification could be used to determine if that deviation
indicated a potential problem that might cause occurrences of respiratory disease prevalence.

The objective of this chapter was to describe and evaluate a methodology for the early warning
of environmental anomalies pertaining to respiratory disease in growing pigs. We implemented a
recurrent-based autoencoder, built using gated recurrent units (GRUs) [112], that was trained to
reconstruct the raw environmental sensor data which did not lead to an increase in respiratory
disease prevalence within a batch of pigs. This GRU-autoencoder (GRU-AE) was then used
to evaluate periods of sensor data and measure how close it is to normality. A threshold-based
anomaly detector, whose parameters were optimised using particle swarm optimisation (PSO),
used this score to determine whether to raise an alert for scores which are too great and therefore
represent environmental conditions that do not fit in line with the data it was trained to represent.

The benefits of using such a method were that there was no need for hand-crafted features, as
is typically required in classic machine learning and statistical approaches, meaning that raw
sensor data could be used with minimal preprocessing. Also, no arbitrary thresholds were set, as
the detection of anomalous events was wholly data-driven. In addition, there is no requirement
for an in-depth understanding of the relationship between environmental conditions and pig
health, as this is handled implicitly by the network. The drawback to this is that, because of
the nature of RNN-based approaches, interpretability of the model is very poor. This work is
structured as an anomaly detection solution, rather than, for example, predicting increases in
respiratory disease prevalence; therefore, the method is able to perform on data consisting of
low disease prevalence without affecting performance. However, the more cases of disease there

14

2.2 Background

are, and the higher the prevalence at these times, the easier it is to validate the performance of a
method.

Previous research has demonstrated the potential of a Long short-term memory (LSTM)-based
encoder-decoder structure for multi-sensor anomaly detection [113], showing the methodology
has good potential for using data which is not easily predictable [114]. This implementation
used LSTM cells, rather than a standard artificial neural network (ANN) structure, in order
to handle the temporal dimension of the data, and reconstruction error was used to determine
deviations from normality. However, the results of their implementation on various datasets
suffered distinctly either in precision or recall (defined in Section 2.4.1). This chapter revisits the
design choices made in previous work, such as that by Malhotra et al., specifically by:

• exchanging long short-term memory cells for GRU cells

• introducing particle swarm optimisation to optimise an anomaly detector that determines
whether the loss from the GRU-AE is anomalous

• changing how the overall system is evaluated to demonstrate a more balanced anomaly
detection system

The remainder of the chapter is structured as follows. Firstly, Section 2.2 gives context for
the approach taken. Section 2.3 explains the composition of the data and the preprocessing that
was applied, followed by Section 2.4, which details how each of the models was constructed.
Section 2.5 outlines the performance of the systems described, followed by the discussion in
Section 2.6 and the conclusions drawn in Section 2.7.

2.2. Background

In recent years, agricultural research has begun to shift away from relying only on classical
statistical approaches and started to regularly incorporate machine learning (ML) methodologies,
such SVMs and Random Forest Classifiers, into the approach to data analysis [80, 115–119].
Recent work has seen SVMs being used, for example, to detect anomalies in the production
curve of eggs produced by commercial hens, covering a range of prediction windows for the
purpose of an early warning system [80]. Other research has applied ensemble learning methods
(combined models) for the prediction of avian influenza prevalence using meteorological data,
showing improved performance over support vector regression [115].

Classification methods have been used to separate normality from abnormality through the
implementation of one-class classifiers (OCCs). SVM-based methods are very common in this
approach, though there are many potential methods which can be applied. Models of this type
usually have high sensitivity but a comparatively poor specificity [117], which is to be expected

15

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

given the natural imbalance in the datasets that these methodologies are commonly used for.
However, these metrics are not always suitable, particularly if the true negatives drastically
outweigh the number of false positives.

There are also approaches to anomaly detection outside of classification, such as cluster-
ing [120] and correlation analysis [121]. Clustering uses distance metrics to determine if a
new point’s distance from a cluster centroid exceeds an acceptable value: if this is the case, it
is considered anomalous. However, methods falling into this category are typically unable to
strike a reasonable balance between the quality of analysis and speed due to the innate temporal
component of time-series data [122]. Conversely, correlation analysis uses similarity metrics to
determine if new data is similar to known normal data.

Anomaly detection can be used in health applications to detect outbreaks of disease or other
deviations from normality. A common methodology used for this task is Bayesian networks,
which have been shown to outperform classical statistical methods, such as control charts, moving
average models, and ANOVA regression [123]. In one simulation of an anthrax outbreak [124],
the Bayesian network was able to correctly trigger an alarm within 2 days, in comparison to 9
days for the moving average model and 11–12 days for the others. Anomaly detection is very
well suited to healthcare, as often there are not necessarily certain conditions that constitute a
problem, but rather deviations from certain conditions. For example, when detecting arrhythmia
through electrocardiography (ECG), it is not possible to have knowledge of all of the different
types, as new types can occur in the future [125]. It is therefore necessary to understand what
normality looks like, rather than what problems look like.

In health applications where sensors are used, there are two main challenges. Firstly, there
is a need to focus not only on a high detection rate but also a low false positive rate [126], as,
if this is high, alerts from this system will not be trusted. Secondly, though not in all cases,
anomalies ought to be detected in near real-time [127] in order to provide a quick response so
that interventions can be carried out.

Often, these approaches require a transformation to be carried out on the data in order to
generate a useful feature representation [128–130]. However, deep learning-based methods do
not require this. Raw data can be passed to a deep network without any hand-crafting of features,
as this is handled intrinsically by the network [125], though this does depend upon a substantial
amount of data to function effectively [131]. This is particularly valuable for high-dimensional
data, as, provided the network is deep enough to model the data, all of the data can be utilised.

A relatively small amount of work in agriculture has made use of deep learning, which
mostly focuses on image analysis and remote sensing [132]. This chapter demonstrates how deep
learning methods, used in conjunction with evolutionary algorithms, can be used for multivariate
time-series analysis for the purpose of anomaly detection.

16

2.3 Experimental Design

2.3. Experimental Design

2.3.1. Data Collection

Data was collected for growing pigs from a variety of operating, commercial farms across Europe
as part of an EU-funded multidisciplinary project. Each farm was represented by a number of
batches of pigs (3–16 batches), where a batch consists of varying population sizes (40–1294
pigs), and the batches were monitored for varying lengths of time (14–145 days). The starting
weight of the pigs was variable, ranging from 17.5 to 27.6 kg. The number of pigs per batch
affected by respiratory disease was recorded on a daily basis. Respiratory disease prevalence was
divided into four levels of severity, as defined by Zoetis’s Individual Pig Care [133]. A pig could
be either scored (identified as diseased but no treatment given) or treated for each level of severity.
Health data, regarding the number of pigs showing symptoms of disease, was collected by a
trained person that manually counted the number of pigs in each batch that showed symptoms of
certain diseases, and classified it by the level of severity into which the symptoms fell. Given the
nature of the system, pigs cannot be identified individually each day, so the number of pigs that
are classified as showing symptoms can be new cases or pigs that were identified as such in the
previous day.

The environmental data was collected using General Alert sensors [134], which were sus-
pended in the centre of the room in which the batch was located. The sensors recorded the
environmental features relevant to pig health [135]. Briefly, the system monitored temperature (a
sensor range of −50 ◦C to +250 ◦C ± 0.05%), relative humidity (a sensor sensitivity of ±2%
and operating temperature range of −40 ◦C to +85 ◦C), and CO2 concentration (with a range
from 0 ppm to 5000 ppm ± 30 ppm or ±3% of reading, operating temperature range from 0 ◦C
to 50 ◦C, and humidity from 0% to 95%), which was sampled every minute.

17

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

2.3.2. Data Preprocessing

Figure 2.1 A boxplot describing the temperature, humidity, and CO2 sensor data for the three countries
included in the data collection—Belgium (BE), Cyprus (CY), and Spain (SP)—after preprocessing.

Incorrect sensor data was determined to be anything outside µ±2σ per variable per batch and
were removed from the data. This was in order to handle sensor errors, such as impossibly high
values for temperature (e.g 70◦C) and human interference, such as where pens were cleaned, but
the humidity sensor was not sealed up correctly, allowing for extremely high values (e.g. 100%).
It was not enough to simply set upper and lower boundaries for the sensors as very high and
very low values are possible. Instead, this preprocessing step allowed for unrealistic spikes and
troughs to be determined relative to the rest of the data for that batch.

Missing data induced both from the removal of outliers and due to hardware issues were filled
using linear interpolation. This was deemed acceptable, as the environment has low short-term
variance, meaning that, on average, the assumption of a linear change between two values was
reasonable. The results of this preprocessing of sensor data are shown in Figure 2.1. The three
sensor readings—temperature, humidity, and CO2—constitute the inputs to the models outlined
in Section 2.4. The four severity levels were summed and used to calculate the proportion of
pigs showing symptoms of respiratory disease on a given day, rather than looking at one specific
level of severity). For our definition of prevalence, see Equation 2.1

prevalence =
Number of pigs showing any symptoms

Total number of pigs
(2.1)

This was done because respiratory diseases rarely exceed the classification of light or mild, as
in most cases they are treated before the disease develops into more severe symptoms. Therefore,
there were very few cases of severe or irrecoverable respiratory disease across all farms. Even

18

2.3 Experimental Design

with the aggregation of data, the level of prevalence was still very low, and it decreased even
further over time (Figure 2.2). The sensor data was merged with the daily health data by
upscaling the resolution of the latter by duplicating the values for the full 24 h period. All input
was normalised to between 0 and 1.

Figure 2.2 A graph showing the average prevalence of respiratory disease against age (in days) in all
batches of growing pigs in Belgium (BE), Cyprus (CY), and Spain (SP) after preprocessing.

Separation of Assumed Healthy and Assumed Unhealthy Data

As this chapter investigates the effects of environmental conditions on health, it was necessary
to account for the existence of a lag period between a change in environment and a change in
health, as a change in environment will not immediately result in an outbreak of disease [136].
Lag periods of 14 and 21 days were both evaluated [136]; greater windows were not used, as this
would greatly reduce the amount of data available for training. This lag period was referred to as
the assumed unhealthy window, u. Using this window, the data was labelled as one of two sets:
“assumed healthy” and “assumed unhealthy”. Data from any point where the proportion of pigs
showing symptoms was greater than 0 to u days after the disease prevalence decreases to 0 was
labelled “assumed unhealthy”; all other data was labelled “assumed healthy”. All data at this
point was broken down into 30 minute “frames” using a sliding window (Figure 2.3).

19

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

Figure 2.3 An overview of the entire processing workflow, from the raw sensor data to anomaly detection.
Temperature, CO2, and humidity sensors were preprocessed and merged with daily health data. This
was then broken down into four folds—Ht and Hv (used for the GRU-AE), and Oe and Ot (used for the
anomaly detection). Each of these folds was broken down using a sliding window sized at 30 min. Each
window of 30 min was processed by the GRU-AE, and a reconstruction error was produced. The distance
between this reconstruction error and normality was used to detect whether the window was anomalous or
not using a threshold-based anomaly detector optimised using particle swarm optimisation.

Splitting Data into Train, Validation, and Test Sets

Leave-one-batch-out cross-validation was used to split the data into training and testing sets
(Figure 2.3). Our method, detailed in Section 2.4.1, and the GRU-regression model (GRU-R)
used for comparison, detailed in Section 2.4.3, were each composed of two parts: a GRU network
and a threshold-based anomaly detector. Both the GRU network and anomaly detector required
two sets of data for the full workflow. Ht ,Hv were used for the GRU network, and Oe and Ot

were used for the anomaly detector. Ht was used for the training of GRU networks and Hv was
used to validate it. Oe was used to optimise an anomaly detector via PSO and Ot was the set the
anomaly detector was tested on to attain an evaluation metric. There was no overlap between
any of these sets.

Ot was a single, independent farm batch, Oe was composed of three randomly chosen batches,
Hv contained only the assumed healthy data of another independent farm batch, and Ht contained
only the assumed healthy data from all the remaining batches.

Each of the four datasets could be represented as a matrix X ∈ IRn×3, where n is the number
of minutes of data in a farm batch, and each Xn contains sensor data for temperature, humidity,
and CO2. This matrix was broken down into frames using a sliding window of size w, which
moved one timepoint (1 min) per step, creating T ∈ IRm×w×3, where m was the number of frames
in the set.

20

2.4 Time-Series Early Warning Methods

Preliminary Experiments Utilising Batch Normalisation

Batch normalisation is a deep learning technique that has shown to be very effective at training
robust networks by performing a per batch normalization process on input data. It should be
noted that the meaning of batch in this context differs from the farm batches used throughout
the rest of the manuscript. In this context, batches are the subsets of the training data that are
fed in blocks to the network being trained with the subsequent back-propagation-based error
correction. In anomaly detection, the effect of this technique is not necessarily desirable and, in
this particular application, based on preliminary experiments, was found to be detrimental to
performance. This was determined to be because batch normalisation allows a model to deal
with internal covariate shift by normalising each mini-batch by its mean and variance [137],
meaning that the model is more capable of handling data it has never seen before. The decrease
in performance when using batch normalisation showed that there is a requirement that the model
be highly sensitive to slight variations in the data, and so it was not used in the final models.

2.4. Time-Series Early Warning Methods

2.4.1. GRU-Autoencoder

Autoencoders are trained to reconstruct the data input to them. Given an input tensor N, an
encoding M is found which is used to create N′. The network is trained to minimise the loss
between N and N′. The transformation of N to M is the encoder, and the attempted reconstruction
of M to N′ constitutes the decoder. Traditional autoencoders achieve this using an ANNs, where,
typically, the M that is produced by this network has lower dimensionality than that of N. This
way it acts as a type of dimensionality reduction technique. Most commonly the encoded output,
M, is used as an input to some other model, such as an SVM, for tasks such as classification
or regression. Autoencoders have shown good performance in assisting anomaly detection by
using the feature representation M as the input to an OCC [138–140]. However, other research
has shown that the reconstruction error between N and N′ can be used to detect anomalous
data [141].

In this particular paper, the authors applied a stacked denoising autoencoder [142] to a Latent
Dirichlet Allocation (LDA) [143] representation of an SMS message, in order to determine if
the text was “spam” or not. While the approach demonstrated the potential behind using the
reconstruction error for anomaly detection, it did not make implicit use of the temporal aspect
of natural language, relying instead upon a pre-processing step to extract important features;
something that an RNN is capable of achieving when applied to raw data. Additionally, due to
the nature of natural language, the method was only evaluated on univariate inputs.

21

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

Figure 2.4 A visualisation of a rolled and unrolled recurrent neural network [2].

Unlike ANNs, the architecture of an RNN accounts for the temporality of data. Through the
use of learned weights, each time-step in a time-series input is incorporated into a “hidden state”
sequentially until all time-steps have been processed (Figure 2.4). At this point, the hidden state
represents all of the data in the time-series. In the sense of an autoencoder, this would be the
same as the feature representation M, which could subsequently be decoded back to the original
time-series input to create an RNN-based autoencoder. This kind of recurrent architecture is
known as a “vanilla” RNN, and although it constitutes a major milestone in deep learning
research, this implementation faced challenges when trying to model long-term dependencies.
If an application required knowledge of values far back in the input time-series, vanilla RNNs
would typically underperform.

LSTM cells were introduced to solve the memory issues with vanilla RNNs, enabling recur-
rent architectures to be able to “remember” more than 1,000 time-steps of an input sequence [49].
This was achieved by adding a new state to work alongside the already existing hidden state
called the cell state. Additionally, several “gates” were introduced to determine what data should
be forgotten (the “forget” gate), what data should be remembered (the “input” gate), and what
data should be output to the next cell (the “output” gate). This combination of an additional
state and the introduction of gates allowed more granular control over how to process the input
sequence, which is learned by the model through training.

Figure 2.5 A visualisation of the internal architecture of a Gated Recurrent Unit [2].

zt = σ(Wz · [Ht−1,xt]) (2.2)

22

2.4 Time-Series Early Warning Methods

rt = σ(Wr · [Ht−1,xt]) (2.3)

h̃t = tanh(W · [rt ∗ht−1,xt])

ht = (1− zt)∗ht−1 + zt ∗ h̃t
(2.4)

The improvements over vanilla RNNs that LSTMs introduced came at a cost. By increasing
the complexity of the model, the training of LSTMs was slower. Further research resulted in
the introduction of the Gated Recurrent Unit (GRU) [112] (Figure 2.5), which could be used
in place of the LSTM cells. This implementation combined the “input” and “forget” gates to
create the “update gate” (Equation 2.2), such that t is the current time point of the input sequence,
W are the learned weights of the GRU, H is the hidden state and X is the input sequence. A
“reset gate” was introduced to determine how much previously remembered information to forget
(Equation 2.3), and the cell state was removed. The hidden state remained and was updated
using Equation 2.4, such that z is the output of the update gate, and r is the output of the reset
gate. This reduction in states and gates, along with other changes to how values are updated,
simplified the processing of an input, which increased training speed, with limited impact on
performance [144–147].

The implementation of the GRU-based autoencoder consisted of two multi-layer GRU
networks — an encoder and a decoder — that were trained simultaneously. This is instead of the
traditional ANN architecture (Figure 2.6), which does not intrinsically account for temporality
in data within its architecture. The encoder learned a fixed-size representation M of an input N.
The quality of this representation was measured by using it to attempt a reconstruction of N, N′,
using the decoder. The model was optimised to minimise the reconstruction error, calculated
using binary cross-entropy loss, between N and N′. N was reversed when calculating loss, as it
creates short-term dependencies that result in an increased performance in sequence-to-sequence
networks [148].

Figure 2.6 A visualisation of a classic autoencoder (left) and recurrent neural network consisting of
gated recurrent units (GRUs) (right) [3]. These two methodologies are what we combined to create an
autoencoder (AE) capable of utilising temporality.

23

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

Ht was used to train the GRU-AE using mini-batch RMSprop gradient descent [62]. This dataset
contained only “assumed healthy” data, which resulted in the GRU-AE optimising towards a
lower reconstruction error for this class of data and a higher reconstruction error for all other
data. Hyper-parameters, hidden size, number of layers, mini-batch size, dropout, learning rate,
and momentum were selected using grid search, and the parameters which resulted in the lowest
reconstruction error for each fold’s Hv were selected. The hidden size represents the amount of
information the GRU-AE can store for each time series it is given. As there was no requirement
for a large amount of memory for this task, the hidden size representation identified by the grid
search was expected to be fairly small. The number of recurrent layers represents the capability
of the GRU to create deep models and understanding of the time series. These are expensive
in terms of computation and memory. The mini-batch size is how many sequences are passed
forward through the network before back-propagating the loss. This is typically desired to be
as large as possible to speed up training, though is entirely dependent on the other parameters
and the amount of memory available. Dropout is a regularisation technique used to reduce the
likelihood of over-fitting and is common in standard artificial neural networks. The learning
rate and momentum are also used in standard artificial neural networks. They determine how
drastically weights are changed during back-propagation. The selected hyper-parameters were
then used to calculate reconstruction errors for all frames in Oe and Ot .

Once all reconstruction errors were calculated, the threshold-based anomaly detector was
used to determine whether each reconstruction error of a frame was to be considered anomalous
or not. This was estimated by calculating the Mahalanobis distance (Equation 2.5) between
the reconstruction error of a given frame e and the distribution of the reconstruction errors for
all frames of Hv, defined as R, where Σ = COV (e,R). This was then smoothed using locally
weighted smoothing (LOWESS) [149]. If the smoothed distance was above some threshold τ

(the optimisation of which is described in Section 2.4.1), then it was considered an anomalous
frame.

d =
√

(e− R̄)T Σ−1(e− R̄) (2.5)

PSO-Optimised Anomaly Detection

Once all Mahalanobis distances were calculated for all frames, the next step was to optimise the
threshold-based anomaly detector, capable of determining which frames should be considered
anomalous, using PSO [150]—a meta-heuristic, which uses concepts of swarm intelligence to
find a set of hyper-parameters that produce a near-optimal solution. In this method, an initial
“population” of particles, that represent a set of potential solutions to a given “fitness” function,
are randomly initialised with a fixed-length vector, representing the particle’s position within a
search space, and an initial “velocity”. They are then each evaluated against the fitness function

24

2.4 Time-Series Early Warning Methods

and the best overall particle is saved as the “global best”. If the score a particle achieves is
the best it has achieved so far, it is saved as the “local best” for that particle. Each particle’s
position is then updated based upon its velocity, its local best, and its distance from the global
best. This is repeated until some termination condition is reached, often a maximum or minimum
fitness score, or a maximum number of iterations. The final global best particle represents a
near-optimal set of hyper-parameters for the given fitness function.

For our application of PSO, consider the vector of Mahalanobis distances of all frames in
a sequence D = {d0,d1,d2, ...,dn}, such that each di is the Mahalanobis distance between the
reconstruction error of a frame at index i from the distribution of reconstruction errors resulting
from the autoencoding of Hv. An alert was defined as any di : di−1 < τ ∧di ≥ τ . The validity
of an alert was assessed by determining whether respiratory disease prevalence increased from
0 within an acceptable forecasting window starting at i+α and ending at α +β . If so, and if
no other alert had been raised for this increase in prevalence, the alert was considered a true
positive, else a false positive. Furthermore, consider the vector F = { f0, f1, f2, ..., fn} such that
each fi contains the number of animals showing symptoms of respiratory disease at frame i. A
false negative was determined to be any frame i : fi−1 = 0∧ fi > 0 for which there is no alert
raised within i−α and i−β .

Once a true positive is raised, no further true positives are counted for the period of time the
first trust positive is raised. This is to stop models raising multiple “alerts” for the same period
of time, artificially boosting performance metrics.

F = 2 ·MCC+α−β (2.6)

The parameters τ , α , and β of the detector were the parameters to be optimised using PSO.
Although these parameters created a relatively small search space, τ being a continuous variable
drove the decision behind using PSO over something more systematic, such as grid search,
as it allowed for finer changes in τ to be evaluated. The particles were optimised for each
fold independently in Oe, and the best values for each parameter were then tested on Ot for
a final performance evaluation. Each particle was randomly initialised with three dimensions
representing τ , α , and β . The fitness function (Equation 2.6) used by the PSO was designed
to maximise both Matthews correlation coefficient MCC (Equation 2.7) and α whilst, at the
same time, minimising β . Both α and β were normalised between 0 and 1 when entered into the
fitness function.

MCC =
T P×T N−FP×FN√

(T P+FP)(FP+FN)(T N +FP)(T N +FN)
(2.7)

25

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

MCC is a measure designed to evaluate the predictions of binary classifiers, which is
especially robust in problems with high class imbalance, such as our dataset. MCC scores 1
for perfect classification, −1 for perfect misclassification, and 0 for the equivalent to random
classification. The F-measure is commonly used in information/document retrieval, as it does
not fall prey to the same problems, however, it does not include true negatives in the calculation.
This is not an issue within document retrieval, as they are not important to that particular task;
however, in a detection system, correctly classifying negatives (true negatives) is an integral
objective of the system.

It was desirable to attain a high α , as this corresponds to how far in advance the alert of
oncoming disease is raised, whereas β needs to be minimised, as this represents the period of
time the alert is for. For example, given the values α = 7 and β = 1, we know that when an alert
is raised, it is expected that occurrences of respiratory disease will appear within 7–8 days. Given
a different detector for the values α = 3 and β = 5, we know that when an alert is raised, it is
expected that occurrences of respiratory disease will appear within 3–8 days, a larger window
and, therefore, more uncertainty. As we consider MCC to be the most important component of
our fitness function, it has a larger weighting in Equation 2.6.

2.4.2. Other Metrics Used for Evaluation

Specificity, a commonly used evaluation metric, can produce misleading scores in datasets with
a large number of negative examples (the typical scenario in anomaly detection tasks). Instead of
specificity, we have used positive predictive value (also known as precision, Equation 2.8). For
the sake of brevity, we identify this metric as precision throughout this chapter. We also made
use of sensitivity (also known as recall, Equation 2.9), which we identify as recall throughout
this chapter. We did not use precision or recall for the optimisation of the hyper-parameters of
the detector. They were only used to evaluate the final performance of each method. It should be
noted that neither of these metrics account for true negatives.

P =
t p

t p+ f p
(2.8)

R =
t p

t p+ f n
(2.9)

2.4.3. Methods Included for Comparison

All methods used were tested on identical test sets Ot . Once all methods for comparison were
carried out, a Wilcoxon test was conducted to compare the precision, recall, and MCC between

26

2.4 Time-Series Early Warning Methods

the three comparison methods and the GRU-AE. These results were corrected for multiple
observations using Holm’s method [151].

Luminol

In order to provide a baseline for comparison of performance, LinkedIn’s open-source, univariate
time-series anomaly detection package, Luminol [152], was used. This library represents out-of-
the-box anomaly detection, as well as methods which require data be univariate, often achieved
using principal component analysis (PCA). This anomaly detection method uses a bitmap
representation of a univariate time series, calculated using symbolic aggregate approximation
(SAX)—a method for the discretisation of time-series data [153]—to detect anomalies [154].
This is implemented using two concatenated windows, a lagged window and a leading window,
which slide across the time series. Each window is then converted into a SAX representation
and subsequently into bitmaps based on the frequency of each SAX “subword”. The distance
between the two bitmaps is calculated and represents the anomaly score for the leading window.
The calculated anomaly scores are then tested using a grid search-optimised threshold-based
anomaly detector in the same way that the GRU-AE is assessed. In order to transform the three
environmental variables into a univariate time series, the first principal component was taken.

Time-Series Regression with Autoregression Integrated Moving Average (ARIMA)

Autoregression integrated moving average (ARIMA) is a frequently used model for univariate
time-series analysis in statistical analysis. The parameters for this model (p, the order of
autoregressive model; d, the degree of differencing; and q, the order of the moving average
model) were found using grid search on Ht , optimising for the lowest Akaike information criteria
(AIC). This is a metric used for comparing the goodness of fit of statistical models, though it is
not a measure of goodness of fit. Once the optimal parameters were found, Hv was used to fit the
model. This was then used to forecast 30-minute windows, given the previous 180 minutes in
Oe, a larger input window than is used for the GRU-AE. Windows where the mean square error
between the predicted window and ground truth was beyond some threshold (τ) were considered
an alert for the window i+α to i+α +β . Values for τ , α , and β were optimised using grid
search and, finally, tested on Ot . Similar to the Luminol method, the first principal component
was taken to transform the three environmental variables into a univariate time series.

Time-Series Regression with GRU Network (GRU-R)

To provide context for how the GRU-AE performs with regards to an alternative deep learning
methodology, a GRU network was used for regression. This network was trained to predict future
values of the environmental sensors. By training this regression network on only healthy data Ht ,

27

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

it learned to predict environmental variables for conditions which do not result in occurrences of
respiratory disease. The model was trained to predict windows of 30 minutes, the same size as
the windows used for the GRU-AE, but used the prior 180 minutes of data to make this forecast,
similar to the ARIMA model. Windows where the mean square error was beyond some threshold
(τ) were considered an alert for the window i+α to i+α +β . Similar to the configuration laid
out in Section 2.4.1, these parameters were optimised using PSO, which is trained using Oe, and
finally evaluated on Ot .

2.5. Results

For the purpose of exploration, the GRU-AE’s anomaly detector was initially optimised using a
grid search with a fixed β = 6 with Oe used as the test set. For values from α = 10 onwards, there
was a steady and sustained decrease in the total number of alerts raised (Figure 2.7). This was
indicative of the point where the acceptable forecast window extended beyond the data available,
resulting in an increased portion of alerts that were unverifiable in terms of validity. This decline
in alerts signified the maximum range of the acceptable forecast window α +β = 16. This
maximum endpoint was used to reduce the search space of the PSO, and, therefore, a particle
was considered invalid if α +β > 16. The search space was also restricted by stipulating that
a particle was also invalid if it exceeded the following ranges: 0 ≤ τ ≤ 20, 1 ≤ α ≤ 12, and
1≤ β ≤ 6. The limits on τ cover all feasible values; this was found through preliminary testing.
β was limited to a maximum of 6, as a range greater than this was deemed to be too large.

Figure 2.7 The average number of alerts raised, given an alert window start of α days and a size of β = 6,
using the optimal threshold τ for each given α found using grid search on the anomaly detection used on
Mahalanobis distances produced by a GRU-based autoencoder.

28

2.5 Results

As outlined in Section 2.4.1, grid search was used to find the hyper-parameters for the GRU-
AE. The grid search converged to the same set of parameters in almost all batches, so, for the sake
of space, we report in Table 2.1 the most frequently identified values for all hyper-parameters.
As expected, the hidden size was very low. This is because under healthy circumstances there is
little fluctuation in the environment, and, therefore, only a small amount of memory is required.
It is when there are deviations from this—frequent or drastic fluctuations—that occurrences of
respiratory disease can be expected.

Hyper-Parameter Value
Hidden size 4
No of layers 20

Mini-batch size 1024
Dropout 0.5

Learning rate 1×10−6

Momentum 0.3

Table 2.1 The grid search-optimised hyper-parameters used to train a GRU-AE used on multidimensional
time-series data.

Table 2.2 shows the batch-by-batch performance of each of the three methodologies; each
row presents the performance of the three compared systems when a given batch is used for
testing. The GRU-AE achieves better results than the other methods in terms of recall and MCC,
though is outperformed by ARIMA and the GRU-R in terms of precision. When looking at
the results of batches where there are cases of disease (i.e. “events > 0”), a higher precision
is achieved in comparison to recall in the ARIMA and GRU-R models, indicating that these
models are more conservative in their alerts. However, in the GRU-AE model, the solutions
found tend to rely on maximising recall at the expense of precision, µP = 0.651,µR = 1.000.
The substantially higher recall across all batches for the GRU-AE model indicates the model’s
capacity to identify negative changes in the environment that lead to an increase in the number
of pigs with symptoms of respiratory disease; the lower precision of the model could indicate
that not all negative changes in the environment result in occurrences of respiratory disease. This
is backed up by the fact that there are other factors [155] that contribute to respiratory disease
prevalence, not just the environmental measures used in this analysis.

Looking only at test batches where there were no events, the deep learning models excel in
determining that there are no alerts to be raised, achieving the highest values for precision and
recall. This indicated that the GRU is capable of modelling the underlying representation of
“normality” very well, as alerts are not raised when they should not be. Comparing the batches
where events = 0 and batches where events > 0, both of the GRU-based models decreased in
performance in terms of precision, but only the GRU-AE was able to retain its high recall.

29

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

ID Events Luminol ARIMA GRU-R GRU-AE
P R MCC P R MCC P R MCC P R MCC

5 0 1 1 1 1 1 1 1 1 1 0 1 0
9 0 0 1 0 1 1 1 1 1 1 0 1 0

10 0 0 1 0 1 1 1 0 1 0 1 1 1
14 0 0 1 0 1 1 1 1 1 1 1 1 1
16 0 0 1 0 0 1 0 1 1 1 1 1 1
17 0 0 1 0 1 1 1 1 1 1 1 1 1
18 0 0 1 0 0 1 0 1 1 1 1 1 1
19 0 1 1 1 1 1 1 1 1 1 1 1 1
24 0 1 1 1 1 1 1 1 1 1 1 1 1
26 4 1 1 1 0.053 0.500 0.162 1 0 0 0.250 1 0.500
27 5 0.031 0.667 0.144 1 0 0 0 0 1 0.111 1 0.333
28 3 1 0.667 0.816 1 0 0 1 0 0 1 1 1
29 1 1 1 1 1 1 1 0 1 0 0 1 0
30 0 0 1 0 0 1 0 0 1 0 1 1 1
31 1 0 1 0 1 1 1 1 1 1 0.050 1 0.224
32 0 0 1 0 1 1 1 1 1 1 1 1 1

Avg. Events = 0 0.273 1.000 0.273 0.727 1.000 0.727 0.818 1.000 0.818 0.818 1.000 0.818
Avg. Events > 0 0.606 0.867 0.592 0.811 0.500 0.432 0.600 0.400 0.400 0.282 1.000 0.411

Avg. All 0.377 0.958 0.373 0.753 0.844 0.635 0.750 0.813 0.688 0.651 1.000 0.691
I/B/C 9/2/5 5/1/10 5/0/11 3/3/10

Table 2.2 Table of results for the grid search-optimised implementation of LinkedIn’s anomaly detection
library (Luminol), the grid search-optimised autoregression integrated moving average (ARIMA) model,
particle swarm optimisation (PSO)-optimised threshold-based anomaly detection of loss incurred from a
GRU-based regression, and PSO-optimised threshold-based anomaly detection of Mahalanobis distance
produced by a GRU-based autoencoder. The events column lists how many times the respiratory disease
prevalence increased from 0 within the batch, P denotes the precision, and R is the recall of the model.
These results are from the test data Ot . The final I/B/C row indicates the number of folds that were
Incorrect (MCC = 0.0), Between (0.0 < MCC < 1.0), or Correct (MCC = 1.0)

The last row of Table 2.2 contains a high-level quantitative summary of the performance
of all methods across batches. We have counted the number of batches in which each method
obtains either an incorrect score of 0 for MCC (I), correct score of 1 for MCC (C), or in between
0 and 1 (B). In terms of the C count, Luminol clearly performs the worst of the methods, while
the others have a similar score (10–11). At the same time, GRU-AE stands out as having the
lowest count of I, three times lower than Luminol’s, whilst simultaneously keeping a low count
of B.

Numerically, at least, we can see that the difference in performance between Luminol
and GRU-AE may be considered substantial. However, the results from the Wilcoxon test,
implemented as described in Section 2.4.3, showed that the difference was not statistically
significant for precision (p = 0.325), recall (p = 0.100), and MCC (p = 0.285). The Wilcoxon
test also concluded there was no significant difference between the ARIMA model and GRU-AE,
and GRU-R and GRU-AE models, in terms of any of the performance metrics. The inclusion
of a statistical test to compare the performance of various architectures on a given task is not
particularly common in deep learning research, despite it being a valuable step in presenting
performance data transparently. Future research in deep learning should consider this when
presenting multiple methods for comparison, regardless of whether one method appears to
drastically outperform the others or not. The optimised α and β values for each batch are
reported in Table 2.3.

30

2.5 Results

ID Events Luminol ARIMA GRU-R GRU-AE
α β α β α β α β

5 0 12 4 12 1 1 6 1 1
9 0 12 4 12 1 1 6 1 2

10 0 12 4 12 1 1 6 1 2
14 0 12 4 12 1 1 6 1 4
16 0 12 4 12 1 1 6 3 1
17 0 12 4 12 1 1 6 1 5
18 0 12 4 12 1 1 6 3 5
19 0 12 4 12 1 1 6 1 5
24 0 12 4 12 1 1 6 1 6
26 4 12 4 12 1 2 6 3 6
27 5 12 4 12 4 4 6 1 6
28 3 12 4 12 1 5 6 8 6
29 1 12 4 12 2 1 6 2 6
30 0 12 4 12 1 1 6 4 6
31 1 12 4 12 1 1 6 1 6
32 0 12 4 12 1 1 6 8 5

Table 2.3 Table of results for the grid search-optimised implementation of LinkedIn’s anomaly detection
library (Luminol), the grid search-optimised ARIMA model, PSO-optimised threshold-based anomaly
detection of loss incurred from a GRU-based regression, and PSO-optimised threshold-based anomaly
detection of the Mahalanobis distance produced by a GRU-based autoencoder. α and β denote the start
and length of the time window (in days), respectively, for which an alert is assessed, and τ is the threshold
the loss/Mahalanobis distance needed to exceed in order to raise an alert. They are optimised using
training data Oe; these results are from the test data Ot .

2.5.1. Case Study

The following case is presented for batch 27 exemplifies the characteristics of each of the
methodologies applied to the problem. This batch was chosen as it contained the highest
number of anomalous events in a single batch, making it one of the more challenging batches
for a method to perform well on. The batch was analysed by a Luminol-powered, grid search-
optimised anomaly detection (Figure 2.8), an ARIMA-powered, grid search-optimised anomaly
detection (Figure 2.9, a GRU-R-powered, PSO-optimised anomaly detection (Figure 2.10), and a
GRU-AE-powered, PSO-optimised anomaly detection (Figure 2.11). The first subplot for each
figure shows respiratory disease prevalence in both analogue and binary form; the second plots
the univariate time series that was used for anomaly detection and the alerts raised for it. In the
case of the Luminol model, this was the first principal component of the temperature, humidity,
and CO2 time series. For the GRU-R and ARIMA models, the mean square error between
predicted and ground truth was used; for the GRU-autoencoder, the binary cross-entropy loss
between each input window and the model’s recreation of it was used. The final subplot shows
the results of the anomaly detection for each of the alerts, along with their alert windows.

The two deep learning-based models show signs of consistency in the underlying technology,
as they both capture similar events within the environmental data, demonstrated by the common
peaks and troughs seen in the loss. The Luminol-based model correctly produces alerts to some
of the occurrences of respiratory disease prevalence, but these are severely outweighed by the

31

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

number of false positives that it also produces. The GRU-R and ARIMA models suffer from
the inverse problem in that no alerts are raised, even though the latter appears at first glance
to produce some significant anomalous points. These points rarely align with actual events,
and the success of the ARIMA model is largely down to not raising many alerts at all. The
GRU-autoencoder model, however, strikes a balance between these solutions, alerting to almost
all of the occurrences of respiratory disease, albeit with some false positives, though far fewer
than the Luminol model.

Figure 2.8 Results for batch 27 processed by the Luminol-powered anomaly detection, given its grid
search-optimised parameters α (the start of the window for which an alert is for) and β (the length of the
window), in relation to the prevalence of respiratory disease within a single batch.

32

2.5 Results

Figure 2.9 Results for batch 27 processed by the ARIMA-powered anomaly detection, given its grid
search-optimised parameters α (the start of the window for which an alert is for), β (the length of the
window), and τ (the threshold which the loss between predicted values and actual values must cross to be
considered an alert), in relation to the prevalence of respiratory disease within a single batch.

Figure 2.10 Results for batch 27 processed by the GRU-R-powered anomaly detection, given its PSO-
optimised parameters α (the start of the window for which an alert is for), β (the length of the window),
and τ (the threshold which the loss between predicted values and actual values must cross to be considered
an alert), in relation to the prevalence of respiratory disease within a single batch.

33

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

Figure 2.11 Results for batch 27 processed by the GRU-AE-powered anomaly detection, given its PSO-
optimised parameters α (the start of the window for which an alert is for), β (the length of the window),
and τ (the threshold which the loss between predicted values and actual values must cross to be considered
an alert), in relation to the prevalence of respiratory disease within a single batch.

2.5.2. Influence of the Number of Hidden Layers on GRU-AE Performance

The number of layers used in the encoder and decoder affected what the GRU-AE was capable
of modelling (Figure 2.12). Since the concept behind the model was that loss is reduced for
“healthy” data, the perfect environment’s loss would have a constant loss over time, therefore
meaning the model architecture should be chosen to minimise the standard deviation of the loss
in healthy data. Using a small number of layers, 1–15, there was little change in the ability of the
GRU-AE to model “healthy data”. Once the number of layers reached 20 for each half of the
GRU-AE, the performance reached its maximum and would not reduce the standard deviation of
loss any further.

34

2.6 Discussion

Figure 2.12 How different numbers of layers in a GRU-AE affect the ability to model environmental data.
The smaller the standard deviation, the better the model performs.

2.5.3. Computation Time

Despite its lacking in performance, the Luminol-based model presented (Figure 2.8) was com-
pleted in a fraction of the time required to train the two GRU models presented. The Luminol
model was fully trained within a period of 6 h and the ARIMA-based model was fully trained
within 24 h. These models were run on a machine containing two Xeon E5-2699v4 processors
(totalling 44 cores), whereas the two GRU models took just over 3 days on a similarly performing
machine equipped with an Nvidia GTX 980 Ti.

2.6. Discussion

This chapter set out to develop and evaluate a methodology utilising recurrent neural networks
comprising GRUs, and to apply the methodology to the early detection of respiratory disease in
growing pigs. This network structure was used to build an autoencoder capable of accounting for
the temporal aspect of data within the structure of the network itself, rather than solely through
the structuring of the data. The GRU-AE specifically outperforms the GRU-R where there were
events to be detected, resulting in a substantially higher recall for the GRU-AE.

The novelty of this work lies in the complete reassessment of the idea of a recurrent autoen-
coder for multi-sensor anomaly detection of Malhotra et al. [113]. The primary adjustments
made were switching from LSTM cells, currently the most common unit in recurrent networks,
to GRUs. This benefited the network as a whole, as GRUs are less complex, and therefore
more efficient, whilst providing comparable performance [144–147]. A PSO-optimised anomaly

35

A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory
Disease in Pigs Using Multiple Environmental Sensors

detector was also created for processing the output of the GRU-AE to determine if a window
was anomalous or not. In addition to the methodological changes, this work provides a much
more in-depth evaluation of the performance of the GRU-AE through the use of a case study
and concrete comparisons with alternative methods, whilst also applying the methodology to
real-world data from operating, commercial farms across Europe.

Given the recent trends in livestock keeping, there is a move towards automating significant
portions of livestock management and monitoring in response to the ever-increasing demand
for high-quality, sustainable, and safe meat production [156]. These changes in livestock
management offer opportunities for automation in disease detection, such as the one developed
here. A common approach to embracing precision livestock farming is the introduction of a
variety of sensors. Small, relatively cheap, and high-resolution sensors can monitor environmental
variables, such as those assessed in this study, and also capture large quantities of other data
using sensors such as cameras [157] and microphones [158]. In the case of disease detection,
any false negatives have the potential to lead to epidemics and therefore increase the disease risk
of livestock systems. For this reason, a high precision ought to be sacrificed if a higher recall
can be achieved, as false positives pose less danger than false negatives in this application. The
GRU-AE presented in this chapter acts upon this, ensuring that recall is maximised as much as
possible.

The motivation for developing such a methodology was to deal with the very low disease
prevalence in the data that was collected. In this work, we concentrated on the detection of
respiratory diseases. There were several reasons for this, including the fact that the prevalence
of respiratory diseases was highest amongst this class of pigs in this dataset. We had similar
data for other disorders that affect pigs, such as lameness and digestive diseases, but as their
incidence was much lower than respiratory diseases, developing similar methodologies would
have resulted in an insufficient number of occurrences to validate the model.

Steps were taken to mitigate the challenges posed by the data, such as summing all severity
levels of respiratory disease (light, mild, severe, and irrecoverable), as described in Section 2.3.2.
This was justified, as this methodology is for an early-warning system, which only needs to
know if there is disease or if there is not. Therefore, looking at respiratory disease prevalence as
a whole, rather than segmented into levels of severity, makes for a simpler dataset that is more
focussed on the challenge being tackled. It should be noted that the methodology developed here
can be applied to all types of respiratory diseases in pigs.

The detection of respiratory disease following a change in the environmental condition fits
within the parameters derived from literature, such that we are not predicting oncoming disease
before pathogen incubation (e.g., PRRS has an average incubation time of 14 days [136]). Both
the GRU-R and GRU-AE are able to raise an alert for oncoming respiratory disease 1–7 days
prior to pigs in a batch first showing symptoms. The Luminol model does not reflect this,
however, this is likely due to its inability to find hyper-parameters that result in a strong MCC.

36

2.7 Conclusions

This causes the PSO to maximise the values for α and β , as there is no repercussion for doing so
if the performance is poor regardless.

Due to the renewed popularity of recurrent-based models for sequence analysis, a result
of their exceptional performance in fields such as natural language processing, there is a need
for methods to increase the interpretability of these models. Work in this area has steadily
grown [159, 160], and any work building upon this research might consider applying such
methods to the model to gain a better understanding of the risk factors for respiratory disease
in growing pigs based on the GRU-AE. As this method is assumption-free and works without
considering differences between countries, additional work to validate that this multi-sensor
anomaly detection scales beyond the domain of health within agriculture, thus validating its
robustness, would be valuable to the wider community. However, the GRU-based models
required substantially more resources than their classical statistical counterparts to achieve the
necessary level of performance, therefore research ought to be carried out to address these
arguably excessive requirements.

2.7. Conclusions

We have presented a deep learning-based model capable of raising an early warning to occur-
rences of respiratory disease in growing pigs. The proposed methodology of a GRU-based
autoencoder combined with a PSO-optimised anomaly detector shows strong potential in its
ability to detect anomalies that will lead to occurrences of respiratory disease in growing pigs,
and it is robust to country-specific environments. This GRU-AE was able to outperform other
comparable methodologies in precision, recall, and overall performance in both scenarios where
there was a presence or an absence of disease.

37

Chapter 3. Deep Learning Architectures for Anomaly Detection In
Multivariate Time Series Data

Abstract

Recurrent neural networks have long been touted as the best solution for modelling temporal data
due to the fact that the concept of temporality is built into their architecture. However, because
of this architectural design, the data must be processed sequentially, making parallelisation
impossible, which has a substantial impact on performance for both training and inference. In our
previous chapter, we proposed an architecture, comprised of two RNN-based models using GRU
cells, to autoencode multivariate environmental sensor data for the purpose of anomaly detection.
Although our architecture outperformed both classical statistical methods as well as another deep
learning-based approach, the amount of training time required made it difficult to recommend for
real-world use. In this chapter, we evaluate CNN and transformer-based architectures that could
replace the GRU-AE in order to lower resource requirements, improve training time and still be
able to reliably detect anomalies. We show that although CNNs have traditionally been used to
solve spatial problems, they can be well suited to temporal applications through the use of causal
convolutions. In our implementations, both the CNN and transformer-based architectures train
faster and use less memory than the GRU-AE, though only the CNN-based architecture was able
to maintain performance on our dataset.

3.1. Introduction

In the previous chapter we evaluated how a GRU-based autoencoder (GRU-AE) can be used to
model multivariate time series data and thus be used to detect anomalies. The proposed GRU-AE
was trained to create a robust representation of the multi-sensor data and outperformed alternative
methods. However, this implementation relied on a recurrent neural network architecture, which
is more computationally expensive than alternative deep learning architectures, as it is difficult to
parallelise an inherently sequential task, which results in a performance bottleneck. At the time
of writing the previous chapter, RNN-based approaches, typically using LSTM cells and often
including attention mechanisms, were generally considered the best approach to time-series.
Since, further research has shown that CNNs may be viable alternatives to RNNs in temporal
applications [67]. Furthermore, transformer architectures have largely replaced RNN-based

39

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

architectures in NLP [161, 162], which is fundamentally a sequence processing task. Therefore,
this chapter focussed on evaluating how convolutional and transformer-based architectures, both
of which are non-recurrent architectures, can replace the GRU-AE used in the previous chapter
to improve resource efficiency, whilst minimising the impact on anomaly detection performance.

Though CNNs have traditionally been used to solve various computer vision challenges
such as multi-label classification [163] and object detection [81], they have since been used
in a broader range of problem areas such as NLP [164] and time series classification [165].
More recently, transformers, an architecture consisting of “self-attention” layers [53], have been
used with great success within NLP; outperforming both recurrent and convolutional-based
networks [161, 166]. The transformer architecture has been particularly successful due to its
ability to better model the context of inputs. For example, BERT [161], uses transformers
to learn bidirectional representations of natural language, which gives it a deep contextual
understanding of input sequences. More recently, GPT-3 was introduced [162], which uses
a very large transformer architecture to create a comprehensive language model. This model
can then be fine-tuned to achieve outstanding performance in various NLP challenges. Unlike
recurrent architectures, CNNs and transformers do not have the concept of temporality explicitly
built into their architecture and are therefore expected to learn this concept implicitly through
training. This increases the challenges in training, as there is more that needs to be learned, but
can simultaneously improve raw training speed as the task is no longer inherently sequential,
allowing tasks such as sequence prediction to be parallelised.

This chapter focused on two models in particular, one CNN-based and one deriving from the
original transformer. The CNN architecture evaluated was Sequential-U-Net (Seq-U-Net) [5],
which uses causal convolutions to auto-encode time series data. It is a variant of the UNet
architecture that was originally developed for medical image segmentation [4]. This method
is described in more detail in Section 3.2.2. The transformer-derived architecture was Dual
Self-Attention Network (DSANet) [7], which uses two branches containing self-attention blocks
alongside an auto-regressive branch to forecast multivariate time-series data. This is a relatively
unexplored application of transformers as most of their popularity comes from their applications
in NLP. DSANet is described in more detail in Section 3.2.2

The main contribution of this chapter was in demonstrating how these methods are less
resource-intensive to train with minimal performance compromises. This research makes use of
identical training and testing data to the previous chapter in order to be able to make a direct
comparison. The remainder of this chapter is structured as follows. Section 3.2 outlines the data,
models and training methods used, where Section 3.2.2 describes the two methods evaluated in
more detail. The results of this evaluation are presented in Section 3.3, followed by the discussion
in Section 3.4 and conclusion in Section 3.5.

40

3.2 Materials and Methods

3.2. Materials and Methods

3.2.1. Data Description

The dataset used in this chapter was identical to the data used in the previous chapter. It consisted
of environmental sensor data (temperature, relative humidity and CO2 levels), which were
recorded every minute and respiratory disease prevalence, which was recorded every day. The
daily health data was remapped to minutely data by repeating values. The data was collected
from a number of farms across Europe, where each farm had multiple “batches” of pigs, each of
which consisted of 40-1294 pigs and lasted for 14-145 days.

Any timepoint in our dataset that had a respiratory disease prevalence of 0 and was not
followed by an increase in respiratory disease prevalence within 2 weeks was referred to as
“assumed healthy” Timepoints that were followed by an increase in respiratory disease prevalence
within 2 weeks were referred to as “assumed unhealthy”, along with any timepoints that coincided
a respiratory disease prevalence of greater than 0.

Leave-one-batch-out cross-validation was used to train and evaluate both the models and the
anomaly classifier, such that each “batch” was used as the final test set once. For each fold, the
dataset was broken into four sets:

• Ht : the data used to train the deep learning models (only “assumed healthy” data).

• Hv: the data used as the baseline for normality to compare test data to (only “assumed
healthy” data).

• Oe: the data used to optimise the parameters for the classifier.

• Ot : the data for an entire single batch of pigs for the test set.

The sets were then broken down further into 30 minutes segments using a sliding window,
each of which constituted a single input to the model. The order of these windows was randomised
for training.

3.2.2. Models and Training Methods

This section describes the two models, Seq-U-Net and DSANet, that were evaluated against
the GRU-AE along with a description of the training methodology used for each model. The
difference in model performance was tested for statistical significance using Wilcoxon tests that
were corrected for multiple observations using Holm’s method, as was done in the previous
chapter.

41

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

Seq-UNet

Seq-U-Net [5] was a development on top of the original U-Net [4] architecture, which was
designed for the purpose of biomedical image segmentation. Visualised in Figure 3.1, it was
constructed as two main components that come together to create a single, fully-convolutional
network (i.e. there are no fully connected layers). The first component, referred to as the
contracting path, followed the standard pattern of a CNN that is used to extract a feature map
from an input tensor (i.e. convolutional layers, using a ReLU activation followed by max pooling).
The second component, referred to as the expansive path, took the feature map resulting from
the contractive path and up-scaled it to the size of the original input. However, rather than just
using transposed convolutional layers, where filters increase the size of the input rather than
decrease it, the up-scaling also concatenated the feature map from the corresponding layer in the
contracting path.

Figure 3.1 A visual representation of original U-Net architecture used for biomedical image segmenta-
tion [4].

As image data is non-directional, it is acceptable for a filter applied to a region of an image
to use all values, as all surrounding values provide context. However, as time-series data is
directional, when applying filters to a value at a given timepoint, the filter must not make use
of any values from future timepoints. Therefore the implementation of Seq-U-Net adapted
the underlying architecture of U-Net, such that the processing of time-series data using the
convolutional filters applied at time point t did not include values from time points greater than t.

42

3.2 Materials and Methods

This was achieved by “padding” any filters that would otherwise process future values with zeros
in order to exclude the values. This adapted architecture achieved similar performance metrics
to models such as WaveNet [167] and Temporal Convolutional Network (TCN) [168] but with
substantially lower resource requirements in terms of both time and memory.

In the implementation of the work in this chapter, Seq-U-Net was trained in the same manner
as the GRU-AE from the previous chapter. The model was trained to recreate 30 minute windows
of Ht , using a binary cross-entropy loss function, and subsequently, inference was performed
on Hv. The reconstruction errors produced by this inference were used as the baseline for
“normality”. If the Mahalanobis distance between a new time window’s reconstruction error and
the distribution of reconstruction errors created by Hv increased beyond a certain threshold, τ ,
then that time window was determined to be anomalous. From this, it was possible to say that
occurrences of respiratory disease prevalence were likely to occur within α to α +β days. The
reconstruction errors for all time windows in Oe were calculated and the three parameters, τ , α

and β were optimised using particle swarm optimisation (PSO). Finally, the model trained on Ht

and classifier optimised using Oe were evaluated on Ot , and a corresponding precision, recall
and MCC were calculated.

Figure 3.2 A visual representation of the Seq-U-Net architecture used for time-series autoencoding [5].

DSANet

The concept of “attention” in the encoder-decoder structures [169], that are commonly used in
sequence prediction [170], was introduced as a means to overcome the limitations of the original
LSTM and GRU-based recurrent architectures. The primary one being that all of the information
contained in the input sequence had to be reduced to single hidden state, (i.e. the final hidden

43

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

state). Attention solved this by using “attention weights” in conjunction with all hidden states,
rather than just the final one. These learned weights allowed for certain parts of all hidden
states to have different levels of impact at each timepoint in the sequence, allowing for much
longer-term memory. This came at the cost of larger model sizes and greater computational
complexity.

Fundamentally, hidden states are simply approximations of an input sequence. Research in
the area of question-answering models [6], which are models that are trained to answer questions
about a body of text, took this viewpoint and showed that attention could instead be directly
applied to the input sequence (Figure 3.3). This removed the need for hidden states altogether
and conceptually replaced them with “Query”, “Key” and “Value” vectors.

Figure 3.3 A visual representation of original End-to-End Memory architecture used for question answer-
ing [6]

.

Question-answering models are given a body of text and a question about that text as input
and are trained to generate a correct answer to the question. Using this architecture, we can
create an analogy of what these new vectors represent. In this application, the “Key” and “Value”
vectors are two different encodings of the input body of text, created by two different sets of
weights, one for each vector. The “Key” vector is used to approximate the relationship between
the input and the query, whereas the “Value” vector represents the input. The “Query” vector is
an encoding of the question that is being asked about the body of text. From these new vectors,
the “Attention” weights that used to be applied to hidden states, became the inner product of
the “Query” and “Key” vectors, instead of an independently trained set of weights. The sum of
the “Value” vector, weighted by this new attention vector, gave the final output sequence from
the model, the answer to the question. The use of these vectors in this way allowed sequence

44

3.2 Materials and Methods

forecasting to overcome their sequential nature. Instead, the problem is presented as a memory
querying (e.g. lookup) task, where a representation of the query is "looked up" in a representation
of the body of text in order to produce an answer.

From this foundation, the transformer architecture was developed which described “self-
attention” [53]. This refers to allowing a model, too look at other words in a sequence to influence
how the current word being processed is encoded. This concept was developed further, with
the introduction of the “multi-headed self-attention” module [171]. This module adds several
trainable weights to the “Query”, “Key”, “Value” vectors, allowing for multiple outputs per
timepoint, rather than just one that is produced by the usual self-attention module.

Finally, to account for the removal of the recurrent architecture, which was well suited
to handle the temporal nature of sequences, positional encodings were introduced. These are
vectors that are added to a word embedding that indicates a word’s position within a sequence.
However, the model must learn that the resulting embedding contains the temporality of the input
sequence, as it is not built into the architecture as in recurrent networks. The combination of
these approaches are generally referred to as “transformers” and have shown strong performance
in NLP-based tasks such as text generation [162].

The DSANet [7] used in this chapter was built on top of the original transformer architecture.
As natural language generation is similar to time-series regression, it was reasonable to hypoth-
esise that transformers would perform well in time-series forecasting, a relatively unexplored
application of this architecture. DSANet was able to outperform several other machine-learning
approaches to multivariate time-series forecasting. It used input sequences of lengths ranging
from 32–128 days in order to forecast windows ranging from 3–24 days in the future.

The DSANet architecture (Figure 3.4) was comprised of 3 main pathways: local, global,
and auto-regressive, which are combined to produce the forecasted values. Unlike recurrent
approaches, this method produces all forecasted values in parallel, rather than sequentially. The
global pathway applies a fixed number of convolutional filters, whose size is equal to the length
of the input sequence, such that each row in the output feature map corresponds to one of the
univariate sequences that make up the full multivariate input. This output is then passed to a fixed
number of self-attention modules which include position-wise feed-forward networks. The local
pathway does the same as the global except that the size of the convolutional filter is smaller
and max pooling is applied to the resulting feature maps to produce a resulting feature map the
same size as that of the global pathway. These two feature maps are then combined using a fully
connected layer that outputs a vector the size of the forecasting window, which is finally summed
with the resulting vector of a classic multivariate auto-regressive model [172]. The authors justify
the use of this auto-regressive pathway as a way to account for linear relationships that might be
missed by the convolutional and self-attention modules due to their inherent non-linearity.

45

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

Figure 3.4 A visual representation of the DSANet architecture used for multivariate time-series forecast-
ing [7].

In the implementation of this chapter, DSANet was trained using the same approach as
GRU-R from the previous chapter. The forecasting model was trained to forecast windows of 30
minutes from the Ht dataset, given the previous 180 minutes, and used Hv as its validation set
to evaluate the performance of the model after each epoch. The forecasting was therefore only
trained to forecast data that did not result in occurrences of respiratory disease. This meant that
if forecasted data deviated from the ground truth by more than a given amount (τ), it could be
labelled as anomalous; if it wasn’t anomalous, the model would have more accurately predicted
it. As with Seq-U-Net, the parameters τ , α and β used for the classifier were optimised using
PSO, which used Oe to find optimal values. The resulting parameters were then used to evaluate
the model and classifier on Ot and a corresponding precision, recall, and MCC were calculated.

3.3. Results

3.3.1. Training Parameters

Table 3.1 outlines the hyper-parameters that were used for GRU-AE, Seq-U-Net and DSANet.
The values for GRU-AE are identical to that in the previous chapter and were selected using grid
search. Additionally, the hyper-parameters used for the PSO were also identical to that of the
previous chapter. The hyper-parameters selected for Seq-U-Net and DSANet were determined
manually.

There were two main changes to the training strategy implemented for both Seq-U-Net and
DSANet in comparison to the GRU-AE. Firstly, the AMSGrad [173] variant of the Adam [63]
optimiser was used in place of RMSProp. Adam combined the properties RMSProp and
stochastic gradient descent with momentum and bias correction, to produce a more robust
optimiser. In further research, AMSGrad took a step further by adding a “long-term memory” of
past gradients, solving some of the convergence challenges faced by Adam [173].

46

3.3 Results

GRU-AE Seq-UNet DSANet
Hidden Size 4 256 64
No of Layers 20 4 4
Batch Size 1024 1024 1024
Dropout 0.5 0.5 0.5

Optimiser RMSProp AMSGrad AMSGrad
Scheduler Plateau Cosine Annealing Cosine Annealing

Learning Rate 1×10−6 1×10−5 1×10−3

Momentum 0.3 N/A N/A

Table 3.1 Hyper-parameters used for GRU-AE, Seq-U-Net and DSANet that are used in the training of
all models.

Secondly, the GRU-AE used a learning rate scheduler that decreased the learning rate if
performance plateaued after a given a number of steps, helping to avoid local maximums. For
Seq-U-Net and DSANet, a cosine annealing-based scheduler was used that decreases the learning
rate in line with a cosine annealing schedule that converges the learning rate to 0. As AMSGrad
is an adaptive learning rate algorithm, calculating a learning rate for each training parameter
every iteration, it could be argued that it did not need a learning rate scheduler as it carries out
its own adjustments. However, by introducing a learning rate scheduler, the maximum learning
rate the adaptive value can take is gradually lowered after each step in the training process. This
meant that the learning rate could be initialised at a higher value in order to reduce loss more
drastically in the early stages of training, whilst still benefiting from the adaptive learning rate
set by AMSGrad.

3.3.2. Resource Efficiency

Table 3.2 shows the time it took to train each of the models along with the maximum amount
of GPU memory required. These measurements were taken on a machine equipped with an
Intel Xeon E5-2690 and a single Nvidia P100. Both Seq-U-Net and DSANet were substantially
less resource-intensive, being both faster to train and used less memory to do so. Alongside the
performance bottleneck present in recurrent neural networks described in section 3.1, this was
also due to the lower number of layers required to construct an effective model (see Table 3.1).

GRU-AE Seq-UNet DSANet
Time (hours) 77 7 6

Memory (GB) 3.4 1.9 2.5

Table 3.2 The time (hours) and memory (GB) required to train the GRU-AE, Seq-U-Net and DSANet
models on all batches of data.

47

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

ID Events GRU-AE Seq-U-Net DSANet
P R MCC P R MCC P R MCC

5 0 0 1 0 0 1 0 1 1 1
9 0 0 1 0 1 1 1 1 1 1

10 0 1 1 1 1 1 1 1 1 1
14 0 1 1 1 1 1 1 1 1 1
16 0 1 1 1 1 1 1 1 1 1
17 0 1 1 1 1 1 1 1 1 1
18 0 1 1 1 1 1 1 1 1 1
19 0 1 1 1 1 1 1 1 1 1
24 0 1 1 1 1 1 1 1 1 1
26 4 0.250 1 0.500 1 1 1 1 0 0
27 5 0.111 1 0.333 0.167 1 0.408 1 0 0
28 3 1 1 1 1 1 1 1 0 0
29 1 0 1 0 0 1 0 1 0 0
30 0 1 1 1 0 1 0 1 1 1
31 1 0.050 1 0.224 0.029 1 0.169 1 1 1
32 0 1 1 1 0 1 0 1 1 1

Avg 0 Events 0.818 1.000 0.818 0.727 1.000 0.727 1.000 1.000 1.000
Avg >0 Events 0.282 1.000 0.411 0.439 1.000 0.515 1.000 0.200 0.200

Avg All 0.651 1.000 0.691 0.637 1.000 0.661 1.000 0.750 0.750
I/B/C 3/3/10 4/2/10 4/0/12

Table 3.3 Table of results for the PSO-optimised threshold-based anomaly detection of Mahalanobis
distance produced by a GRU-based autoencoder, PSO-optimised threshold-based anomaly detection of
Mahalanobis distance produced by a Sequential U-Net, and particle swarm optimisation (PSO)-optimised
threshold-based anomaly detection of loss incurred from a DSANet. The events column lists how many
times the respiratory disease prevalence increased from 0 within the batch, P denotes the precision, and
R is the recall of the model. These results are from the test data Ot . The final I/B/C row indicates the
number of folds that were Incorrect (MCC = 0.0), Between (0.0 < MCC < 1.0), or Correct (MCC = 1.0).

3.3.3. Test Results

Table 3.3 shows the performance of the GRU-AE, Seq-U-Net and DSANet for each of the
individual batches. The final four rows in the table show different summarisations for each model
used. The first summary row shows the average precision, recall and MCC for batches where no
respiratory disease prevalence occurred in the ground-truth data; the second shows the inverse,
batches where respiratory disease prevalence was greater than 0. The penultimate row shows the
average precision, recall and MCC across all batches. To better understand the overall MCC, the
final row shows a high-level summary, for which the values I, B and C were created. I was the
number of batches where the overall MCC was 0, B was the number of batches where overall
MCC was greater than 0 but less than 1 and C was the number of batches where overall MCC
was 1. Each of these summary metrics provides a different insight into model performance, so
must be assessed together in order to properly evaluate the performance of each of the models.
In addition to the performance metrics, the values for α and β , that were selected by the PSO
are shown in Table 3.4.

48

3.3 Results

Firstly, regarding batches where there were no cases of respiratory disease, both the GRU-AE
and DSANet models performed very well across all metrics, with Seq-U-Net trailing behind. In
terms of the precision and recall for these batches, the GRU-AE and DSANet were both well
balanced, whereas Seq-U-Net’s main underperformance was in terms of precision. This indicates
that Seq-U-Net raised more false positives for these batches, misclassifying normal windows as
anomalous.

However, for the batches where there were cases of respiratory disease, DSANet drastically
underperformed, missing all but one of the anomalous time windows. This is likely a result of
the PSO either maximising or minimising the value for τ so as to minimise the number of alerts
raised, rather than to find the correct balance. The GRU-AE from the previous chapter achieved
perfect recall for these batches. This was at the expense of precision, indicating that although
there were no false negatives, a substantial number of its alerts were false positives. Seq-U-Net’s
poor performance on “normal” batches appears to have allowed it to achieve the highest average
MCC, despite its poor precision, for batches where there was respiratory disease. This was a
notable improvement over the GRU-AE.

Despite the apparent performance improvement, the Wilcoxon test, corrected for multiple
observations, showed no statistically significant difference between any of the models over-
all MCC. Although DSANet scored an MCC of 1.0 for many batches, it did not detect the
anomalous periods in 80% of the batches where they occurred. The GRU-AE outperformed
Seq-U-Net when respiratory disease prevalence was 0. However, Seq-U-Net struck a better
overall balance, accepting poorer performance when respiratory disease prevalence was 0, for
increased performance for batches with respiratory disease.

49

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

ID Events GRU-AE Seq-UNet DSANet
α β α β α β

5 0 1 1 1 6 1 6
9 0 1 2 1 6 1 6

10 0 1 2 1 6 1 6
14 0 1 4 1 6 1 6
16 0 3 1 1 6 1 6
17 0 1 5 1 6 1 6
18 0 3 5 1 6 1 6
19 0 1 5 1 6 1 6
24 0 1 6 1 6 1 6
26 4 3 6 1 6 1 6
27 5 1 6 1 6 10 6
28 3 8 6 1 6 1 6
29 1 2 6 1 6 1 6
30 0 4 6 1 6 4 6
31 1 1 6 4 6 1 6
32 0 8 5 1 6 1 6

Table 3.4 Table of results for the PSO-optimised threshold-based anomaly detection of the Mahalanobis
distance produced by a GRU-based autoencoder, Seq-UNet and DSANet. α and β denote the start and
length of the time window (in days), respectively, for which an alert is assessed, and τ is the threshold the
loss/Mahalanobis distance needed to exceed in order to raise an alert. They are optimised using training
data Oe; these results are from the test data Ot .

The PSO-optimised values for α and β were consistent for both Seq-U-Net and DSANet,
typically raising an alert for oncoming respiratory disease 1 to 7 days prior to an actual increase.
The GRU-AE achieved numerous higher values for α and typically lower values for β , indicating
that it was able to forecast occurrences of respiratory disease prevalence further into the future
and for a more specific time window.

3.3.4. Case Study

As in the previous chapter, figures 3.5, 3.6, and 3.7 show a summary visualization of each of the
models performance on batch 27 from Table 3.3. This batch was chosen as it shows a range of
characteristics that can be found across all batches, such as quick successive periods of disease,
both long and short periods time where there was disease, long and short periods time where
there was no disease and both high and low levels of disease.

The visualisations for each model are broken down into 3 graphs. The topmost graph shows
the ground truth respiratory disease prevalence each day, which has been translated into a single
bar which represents where respiratory disease prevalence is 0 (green) and respiratory disease
prevalence is greater than 0 (red). The second graph shows the Mahalanobis distance between

50

3.3 Results

the output of each model for a given time window of Ot and the baseline output of the model
produced by Hv along with the threshold, τ , that was selected by PSO. There are also markings
to show alerts, which are defined as timepoints where the Mahalanobis distance goes from below
τ to above τ . The final graph shows these alerts and their corresponding alert window using the
models respective α and β values, and how they relate to periods of respiratory disease. These
are coloured to distinguish true positives, false positives and false negatives.

The Mahalanobis distance of the GRU-AE and Seq-U-Net were very similar. Seq-U-Net
had fewer false positives than the GRU-AE, particularly after the elongated period of increased
respiratory disease prevalence. It does not detect the first two anomalous periods early enough,
though does raise alerts after the clinical symptoms of respiratory disease start showing. This
exemplifies the results presented in Section 3.3.3, showing Seq-U-Net raises fewer false positives
than the GRU-AE at the cost of increased false negatives.

The output produced by DSANet helps to better understand the poor performance it achieved
as threshold τ is set very low, meaning an alert is never raised for this batch. This is symptomatic
of there not being enough of an increase in the Mahalanobis distance when respiratory disease
prevalence was greater than 0. Something even the GRU-R approach, presented in the previous
chapter, did not suffer from.

Figure 3.5 Results for batch 27 processed by the GRU-autoencoder-powered anomaly detection, given
its PSO-optimised parameters α (the start of the window for which an alert is for), β (the length of the
window), and τ (the threshold which the loss between predicted values and actual values must cross to be
considered an alert), in relation to the prevalence of respiratory disease within a single batch.

51

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

Figure 3.6 Results for batch 27 processed by the Seq-U-Net-powered anomaly detection, given its grid
search-optimised parameters α (the start of the window for which an alert is for), β (the length of the
window), and τ (the threshold which the loss between predicted values and actual values must cross to be
considered an alert), in relation to the prevalence of respiratory disease within a single batch.

Figure 3.7 Results for batch 27 processed by the DSANet-powered anomaly detection, given its PSO-
optimised parameters α (the start of the window for which an alert is for), β (the length of the window),
and τ (the threshold which the loss between predicted values and actual values must cross to be considered
an alert), in relation to the prevalence of respiratory disease within a single batch.

52

3.4 Discussion

3.4. Discussion

In the previous chapter, we presented an approach to multivariate time-series anomaly detection
that could be used to detect conditions that were likely to result in occurrences of respiratory
disease. Although the proposed GRU-AE method performed well, it required a substantial
amount of resources, both in terms of training time and memory. The methods applied for
comparison to this method were able to achieve similar, albeit slightly poorer, performance
metrics using a fraction of the time and memory necessary for the GRU-AE. Therefore, the
objective of this chapter was to evaluate how alternative deep learning-based models could be
used in place of the GRU-AE, that would require fewer resources, whilst minimising the impact
on performance metrics.

Both of the architectures evaluated as alternatives to the GRU-AE required less time and
memory resources in order to be able to detect environmental scenarios that would likely lead to
occurrences of respiratory disease. However, only Seq-U-Net, the CNN-based architecture, was
able to do so whilst also limiting the impact on performance relative to the GRU-AE. The poor
performance of the DSANet was determined to likely be due to the inability of the PSO to find a
balance between the three parameters it was optimising. A potential solution to this would be to
use multi-objective optimisation, rather than compressing the different objectives into a single
fitness function [174]. Therefore, future work may consider this as an alternative approach to
optimising the parameters of the anomaly detector.

Seq-U-Net achieved a higher MCC than the GRU-AE for batches where there were cases
of respiratory disease, but a lower overall MCC. This appears to have been caused by allowing
more false positives, as is indicated by the lower overall precision, whilst still achieving high
overall recall. Though this trade-off is not ideal, the substantial reduction in necessary resources
creates a case for choosing Seq-U-Net over the GRU-AE.

The general approach of this work is not without flaws. The main limitation is that there
are factors other than the environmental conditions within a housing unit that contribute to the
prevalence of respiratory disease [155]. This means it is not feasible to expect a model only
using these variables as inputs to detect all upcoming occurrences of respiratory disease. Though
this should be taken into account when assessing the performance of the models, both in this and
the previous chapter; future research should seek to include additional variables that represent
known risk factors identified in the literature such as heard size and density [175]. This data,
alongside the environmental sensor data, would allow the model to better contextualise the sensor
data.

The core contribution of this chapter was in the evaluation of how a convolutional-based
model can match the performance of a recurrent-based model at modelling time-series data, whilst
taking a fraction of the time and memory to train despite not being explicitly aware of temporal

53

Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data

nature of the data. Resource-intensive deep learning solutions have become commonplace [162],
which can make building new approaches on top of existing solutions inaccessible. As this
implementation reduces resource requirements, it simplifies the process of iterating and tuning
models, whilst also improving the accessibility to deep learning-based anomaly detection.
Furthermore, as single-board compute devices become more developed [176, 177], smaller
models that can easily fit onto these devices will become more attractive, as they can more easily
be deployed into remote locations where poor infrastructure limits access to cloud-based services.
As data collection must be done on farms that are typically in these types of locations, this is an
important factor to consider when developing new technologies in this field. Due to the reduced
requirements of the work presented in this chapter, the feasibility of deploying the workflow
we have presented into production into a rural setting is both realistic and affordable, even for
smaller farms.

This proposed architecture for anomaly detection is not limited to only applications in pig
farming. The general workflow we have presented could not only be adapted to function in a
similar context for different species, but also in entirely different fields that require multivariate
time-series anomaly detection. The performance of our architecture would certainly vary between
use cases, but, at its core, the approach is entirely agnostic to the application. Further research
might consider implementing this general workflow as a solution in a broader range of challenges
and evaluating its performance.

3.5. Conclusion

This chapter evaluates two alternatives to the recurrent-based architecture presented in the
previous chapter for the purpose of creating an early warning system for occurrences of res-
piratory disease. We evaluated one CNN-based and one transformer inspired architecture and
demonstrated how a CNN-based approach, augmented with causal convolutions, can drastically
reduce the resource requirements for training a model on multivariate sequential data compared
to a recurrent-based approach. Although the end results were impacted, the benefits of faster
training and lower memory requirements make it an attractive option for “edge”-based machine
learning. This maximises the feasibility of deployment in operating, commercial farms, whilst
also delivering an effective anomaly detection solution.

54

Chapter 4. Automated Individual Pig Localisation, Tracking And
Behaviour Metric Extraction Using Deep Learning

Abstract

Individual pig tracking is key to stepping away from group-level treatment and towards individual
pig care. By doing so we can monitor individual pig behaviour changes over time and use these
as indicators of health and well-being, which, in turn, will assist in the early detection of disease
allowing for earlier and more effective intervention. However, it is a much more computationally
challenging than performing this task at the group level, particularly as mistakes in identification
and tracking accumulate over time. We combine a CNN-based object detection method, Faster
Region-based convolutional neural network (Faster R-CNN), with two potential real-time multi-
object tracking methods in order to create a complete system that can autonomously localise and
track individual pigs allowing for the extraction of metrics pertaining to individual pig behaviours
from RGB cameras. We evaluate two different transfer learning strategies to adapt Faster R-CNN
to our custom-built pig detection dataset that is more challenging than conventional tracking
benchmark datasets. We are able to localise pigs in individual frames with 0.901 mean average
precision (mAP), which then allows us to track individual pigs across video footage with 92%
Multi-Object Tracking Accuracy (MOTA) and 73.4% Identity F1-Score (IDF1), and re-identify
them after occlusions and dropped frames with 0.862 mAP (0.788 Rank 1 cumulative matching
characteristic (CMC)). From these tracks we extract individual behavioural metrics for total
distance travelled, time spent idle, and average speed with less than 0.015 mean squared error
(MSE) for each. Changes in all these behavioural metrics have value in the detection of pig
health and wellbeing.

4.1. Introduction

The ability to monitor the behaviour of animals, in particular, how said behaviour changes
over time and under varying circumstances, provides us with the knowledge that can assist in
identifying problems before they become serious, or even life-threatening, and enhances the
success of intervention[157, 178]. Continuous human observation of animals is impractical
due to the effort required and the enormity of the scale of modern pig livestock units. As a
consequence, farm staff usually resort to brief observations that are only able to detect substantial

55

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

changes or clinical signs. Thus they fail to detect subtle changes in behaviour that usually precede
clinical signs of disease; this results in late intervention [157, 35].

Recurrent research developed a method that enables the measuring of behavioural traits in
groups of pigs [35]. Despite the usefulness of having group-level pig behaviour measures, there
are several advantages in being able to automatically detect individual behaviours and identify
pigs that may be at risk or are challenged [178] as this enables more personalised treatment plans.
Targeted and selective animal treatment may result in furthering the trend towards reducing
antimicrobial input in livestock systems [179]. However, individual-level methods create data
that is sparser and hence more sensitive to potential estimation errors [180]. Moreover, errors in
pig identification and tracking can propagate to later frames, which is an issue that does not affect
group-level measurements. In addition to the clinical advantages, treating pigs as individuals
also helps to assuage consumer concerns regarding animal welfare.

In this chapter, we present an approach to detect and track individual pigs kept in groups,
using inexpensive, colour (RGB) cameras in commercial farm conditions. The approach does
not use individual pig identifiers, such as RFID tags, due to their impracticality and industry
concerns over their use, mainly associated with their retrieval at the abattoir, potential residues
and cost. Additionally, this approach does not change the day-to-day operations of farmers by
requiring them to make and record regular observations or install and remove identity tags and
markers.

We make use of a Faster Regions with CNN features (Faster R-CNN) [81] architecture
adapted to our domain using transfer learning in order to detect the location of pigs in each
frame of an RGB video. These detections are then used to generate identities that are then
processed by multi-object tracking (MOT) algorithms. In this chapter we present two approaches
to tracking the identities of pigs between frames, one which uses trajectory-based prediction and
association [181], and one which uses both trajectory and similarity in visual appearance [182].
We then calculate behaviour measures from the tracks to illustrate how we can extract valuable
and actionable knowledge from these algorithms in our concrete domain of application.

The main contribution of our method is that it provides a full workflow to localise, track, and
extract behavioural metrics of individual pigs using only an RGB camera, in real-time, without
the need for additional hardware (such as ID tags) or visual aids (such as IDs marked directly on
pigs), whilst also still being feasible to install in a commercial farm. We also demonstrate that,
despite the very similar visual appearance of the pigs in our dataset, deep learning methodologies
can be used to generate feature vectors capable of discriminating between identities of pigs. We
achieve this using the entire bounding box produced by the Faster R-CNN, rather than defining a
smaller area to identify pigs as recent research has done [101]. This is key to understanding the
potential applications of deep learning in precision livestock farming.

56

4.2 Materials & Methods

The remainder of this chapter is structured as follows. Section 4.2.1 describes the datasets
that were used for training and evaluation in our models. Section 4.2.2 describes the detection
method used followed by Section 4.2.3 which outlines the two methods used for multi-object
tracking, and how the deep association metric model was trained. Section 4.2.4 describes how we
use these tracks to extract behaviour metrics for individual pigs and is followed by Section 4.2.5
which describes how each of the components of our method is evaluated. Section 4.3 and
Section 4.4 outline and discuss the results of each of the components respectively. We finalise
with the conclusion in Section 4.5.

4.2. Materials & Methods

In this section, we describe the data used to train and evaluate our methods for detection, tracking
and extracting behavioural metrics, the model used to detect the location of pigs in an image, the
tracking methods that were used to assign the detections to identities, and how we analysed the
tracks to extract behavioural metrics. We also describe the means by which we evaluate these
methods.

4.2.1. Dataset Descriptions

Three standard datasets were used in order to implement all of the components of our work:
ImageNet [183], an image classification dataset commonly used to pre-train a CNN that processes
images; Pascal Visual Object Classes Challenge 2007 [184], commonly used as a benchmark
dataset for object detection and classification; and Motion Analysis and Re-identification Set
(MARS) [185], a video-based person re-identification (Re-ID) dataset. Additionally, we used
three of our own, manually-annotated, pig datasets: one for detection (Section 4.2.1), one for
tracking (Section 4.2.1), and one for re-identification (Section 4.2.1).

We selected distance travelled, time spent idle, and average speed for behavioural metrics to
extract from individual pig tracks as they best inform us about a pigs activity levels, an valuable
metric for understanding pig health and wellbeing.

The images used in these pig datasets were collected at Newcastle University’s Cockle Park
farm. Because the images were collected from pigs husbanded under farm conditions, there was
no need for ethical approval. The building used houses 4 pens, each containing 20 pigs of the
same age and of balanced weight. The pigs were recorded using the RGB sensor within the
Microsoft Kinect v2 (resolution: 1920× 1080, field of view: 84.1× 53.8, focal length: 3.29,
shutter speed: 14ms, max frame rate: 30 FPS) mounted on the ceiling of the room, pointing
downwards. Although we used this specific sensor, for the purpose of the methods presented in
this work, any RGB camera with similar parameters would be suitable as we do not use any of the
specialised features of the Kinect. The camera was tilted at an angle (rather than perpendicular

57

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

to the floor) so that the camera covered half of one of the pens. There is some overlap in the
images with the adjacent pen (Figure 4.1), separated by a red wall, however, we removed any
detections in this area. Due to technical constraints of the data capturing infrastructure, we were
not able to record long, continuous segments of video so were limited to a theoretical maximum
of 10 minutes, which, although short, is longer than a human observer would realistically spend
watching the animals.

Pig Detection Dataset

Figure 4.1 A example image from the pig dataset where pigs are densely packed into one area with
corresponding ground-truth annotations.

Our manually-annotated (Figure 4.1) pig dataset consisted of 1,646 images (50% used for
training and 50% used for testing) consisting of 9,014 annotations. All data used in this dataset
came from the same camera and the same batch of pigs, though was collected across different
days and times. The days used for creating the test set are not included in the training set in
order to create a level of separation. This dataset contained roughly 6 times fewer images and
nearly 3 times fewer annotations than Pascal Visual Object Classes Challenge 2007 (VOC),
hence indicating that our dataset has a higher annotation density (number of objects per image).
The pig detection dataset suffered from a number of complexities that are not found in the VOC
dataset. The challenges largely stem from the fact the data was collected on a commercial farm
environment. For example, the reason there were more annotations per image in this dataset
was because the objects were often very densely packed into a small space within the image 4.1.
This made the separation of the pigs a very difficult task, even when carrying out the manual
annotations.

58

4.2 Materials & Methods

Secondly, the quality of the images in the pig dataset was substantially lower than that of the
images in VOC. This was because the images were captured on a live farm, which is extremely
dusty. Additionally, images can sometimes be overexposed due to natural light entering through
windows. Having this natural light is a requirement in order to comply with UK legislation.
When contrasted with the very high-quality level of photographs used in VOC there was a very
significant difference. Because the features of an object were much more difficult to identify due
to the lower image quality, models trained on this data are at a disadvantage as these are typically
what is used in order to create a generalisable model.

These factors combined show that the pig dataset was a substantially more difficult dataset
than VOC, which is something that previous research has had to overcome by employing
post-processing methods [38]. In order to quantify how our implementation performs in these
conditions, in addition to testing on the whole test set, we also assessed the detection performance
independently for images containing: many pigs, densely packed pigs, overexposed images, and
low-light images (Figure 4.2).

Images were classed as containing many pigs if more than 10 pigs were in the image, as this
meant more than half the pigs were in less than half the pen space (4% of the test set). As for
the densely packed pigs segment, images were placed here when more than 4 bounding boxes
were overlapping (43% of the test set). Images were determined to be overexposed by manual
annotation (11% of the test set). Finally, the low-light segment was made up of images where the
average brightness of a pig was lower than 100 (4% of the test set). Pig brightness was calculated
by converting a bounding box containing a pig to greyscale and taking the average pixel intensity.

Figure 4.2 Distributions of the number of overlapping bounding boxes per image (top left), the number of
pigs per image (top right) and the average brightness of a pig per image (bottom left) within the test set.

59

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

As can be seen in Figure 4.1, the camera’s field of view overlapped with the adjacent pig pen.
We therefore ignored any detections from this area of the camera. This was achieved by setting a
threshold on the Y-axis, along the red wall, and ignoring any detections to the left of it.

Pig Tracking Dataset

Images from the detection dataset were used to create another dataset specifically for tracking.
This consisted of a single 7.8 minute video recorded at an average of 4 frames per second (FPS)
(∼ 1,874 frames) from a single camera covering half a pig pen (the maximum was 10 FPS.
Each frame was annotated, in the same way as the detection dataset, however IDs were given
to each pig that persisted from frame to frame. Due to the nature of the recording environment,
in particular the hardware used, the recording varied in its FPS and regularly dropped frames
throughout the recording. This resulted in some drastic changes, frame-to-frame, in some
situations (e.g. a pig appear in the middle of the pen, or extremely quickly moving pigs).

Moreover, as pigs leave and later re-enter the scene, we cannot continuously track them for
the whole length of the video. This has resulted in a set of 25 manually curated, unique tracking
IDs. Some tracks last for most of the video while some others are fairly short. The duration of
each track is represented in Figure 4.3

Pig Re-Identification Dataset

In addition to this single-camera tracking dataset, we gathered a separate, dual-camera pig Re-ID
dataset (Figure 4.4), structured similarly to MARS [185], a dataset for person Re-ID. This pig
Re-ID dataset consisted of 25 pig identities, where each identity had an average of 280 images,
totalling 5,653 images (60% for training, 40% for testing). All annotations were resized to be
128 x 256 for processing by a CNN (outlined in Section 4.2.3). This is a difficult Re-ID dataset
as, when compared to that of a person Re-ID dataset, such as MARS, where clothes strongly
distinguish two people apart, pigs look very similar to one another (Figure 4.4).

4.2.2. Pig Detection Method

Regions with CNN features (R-CNN) was originally proposed in order to use a high-capacity
CNN for region proposals for the purpose of object detection [186]. This was very successful but
suffered from very slow training times as there were several models that contributed to the overall
system, meaning they needed to be trained individually. An improvement to this method was
proposed called Fast Regions with CNN features (Fast R-CNN), which made use of Region of
Interest (ROI) pooling to speed up the assessment of region proposals [187]. This offered another
substantial performance boost, but the initial region proposals were still created by a separate

60

4.2 Materials & Methods

Figure 4.3 Representation of the manually annotated pig tracks. The Y-axis shows the ground truth pig
ID, the X-axis shows the frames during which the pig was visible. Once a pig left the camera, it was not
re-identified and was therefore given a new ID.

model. Faster R-CNN [81] solved this problem by introducing a region proposal network to the
system which allowed for the whole system (extracting features from images and proposing and
classifying regions) to be trained as one single model (Figure 4.5). This reduced the training
time whilst still achieving strong performance.

The feature extraction layers of the Faster R-CNN can be pre-trained using large datasets
such as ImageNet. This has shown to be a very powerful way of initially training CNNs [188]
and is the standard approach for initialising these layers [70, 189, 190]. The remainder of the
network requires an annotated dataset of bounding boxes around objects in images along with
their class, such as VOC. When doing further transfer learning with these networks (e.g. training
the network to identify a different set of classes), the fully connected (FC) layers are often
where the changes are made. This has been shown to perform well in applications such as

61

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

Figure 4.4 Top: A sample of two identities of the MARS dataset for person re-identification. Bottom: A
sample of two identities of the pig re-identification dataset.

Figure 4.5 An overview of the Faster R-CNN structure

self-driving cars [191] where the classes in the target dataset differ from the source dataset, and
detecting guns in images and video [192]. Recent research has also shown that when the target
domain is dissimilar to the source domain, the fully-connected layers are vital to successful
visual representation transfer [193], meaning their weights need to be preserved as part of the
transfer learning.

The Faster R-CNN model, used in our application to detect pig locations in images, is
comprised of 3 main components: the feature extractor, responsible for creating a fixed-length
feature vector from an input image; the Region Proposal Network (RPN), which selects regions
that are likely to contain an object based on the feature vector; and the FC layers, which classifies
each of the regions into one of the classes. In our implementation, we used ResNet-101 [70], a
popular image classification architecture, where 101 denotes the number of layers used. This
architecture was chosen due to its improved performance over VGG-16 [64], another commonly
used network in similar applications, when applied to multiple object detection datasets sets

62

4.2 Materials & Methods

such as VOC (∼ 75 mean average precision (mAP) vs ∼ 70 mAP depending upon configuration)
and Common Objects in Context (COCO) [194](∼ 36 mAP vs ∼ 30 mAP depending upon
configuration). Other variations of the ResNet architecture that use a different number of
layers are also used, where fewer layers improve speed, while more layers typically improve
performance. We deemed the 101 variant to be the best balance between speed and performance
for this application.

Once the feature vector is created, it is passed to the RPN along with anchor boxes. These
are pre-defined boxes that are used to start the process of determining where objects are within
an image. The RPN proposes the regions of the image that are likely to be objects as opposed
to background. These proposed regions are then passed through an ROI warping layer [195],
an improved variation of ROI pooling, along with the feature vector from the feature extractor,
which allows for the proposed regions to be represented as equal sizes allowing for significantly
faster processing. The output from this layer is another fixed-length vector which is finally
passed to the fully-connected layers which carry out the classification of each region.

For the training of our models, we used the parameters that perform best on the VOC dataset
(Table 4.1) using stochastic gradient descent. An Nvidia Tesla P100 graphics card was used for
both training and inference.

Hyper-Parameter Value
Learning rate (LR) 0.001

LR Decay step 5
LR Decay multiplier 0.1

Batch Size 8

Table 4.1 The parameters used for the Faster R-CNN that perform best on the VOC dataset.

We made use of all three datasets in order to build this model. The feature extraction layers
of the model were pre-trained on ImageNet. This is common when training any CNN on images
as the dataset is extremely large (∼ 14 million images) and therefore takes a substantial amount
of time to train from randomly initialised weights (a week in some cases, dependent upon
hardware). The RPN and FC layers of the Faster R-CNN were trained using two datasets: firstly
VOC, followed by the pig detection dataset. It was expected that the densely-packed nature of the
pigs at certain time points in the dataset would be particularly a problem for the Faster R-CNN as
it uses non-maximum suppression (NMS) to filter overlapping bounding boxes which is typically
enacted when Intersection over Union (IoU) > 0.7 [81] (described in Section 4.2.5).

Before we could train the model on the pig dataset after training on VOC, it was necessary to
modify the model architecture to account for the change in the number of potential classes. This
change in model architecture is referred to as transfer learning, where a model is trained to solve
one task, in order to help it solve a different, but related problem. There are multiple ways this
can be implemented, two common approaches would be to train the RPN and FC layers on VOC,
then modify the FC layers to account for the different classes in the pig dataset (20 in VOC, 1 in

63

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

the pig dataset). Alternatively, an additional layer can be added to the final FC layer after training
on VOC which has only one class outcome. This results in two output nodes (1 for pig and 1 for
background), which creates an additional 78 trainable parameters in our fully-connected layers.
Despite this slight increase in the number of parameters, we used the transfer learning strategy
that adds an extra layer as it performed better than the other evaluated strategies (Section 4.3.1).

Figure 4.6 A breakdown of the full workflow of our implementation from the video footage of a pig pen,
to the behavioural metrics we extract from the tracking methods.

4.2.3. Pig Tracking Methods

Once the Faster R-CNN detected the pigs’ locations in each frame, it was necessary to track the
identity of each pig between frames. To achieve this, we evaluated two alternative strategies for
this task.

Distance-based Tracking (SORT)

For our baseline tracker, we used Simple Online and Real-time Tracking (SORT) [181]. This
method combines the Kalman filter [196] with the Hungarian algorithm [197] to create a multi-
object tracking algorithm that uses object trajectory to associate new detections with a tracklet.
While the Kalman filter assumes that the process it is predicting (e.g. the tracklet of a pig) is
not random, and the movements of pigs are arguably arbitrary, it may seem that the Kalman
filter is not an ideal choice for a tracking mechanism in this application. However, as the
distance an individual pig moves between frames is relatively small, it was not expected that
this would cause problems for the tracking of the pigs despite not meeting the main assumption
of the Kalman filter. The main benefit of using the Kalman filter over other methods, such as a
particle filter [198, 199], is that the Kalman filter is much simpler, making it less computationally
expensive.

This method is highly dependent upon accurate object detection, as only the location of
objects is used, and is an entirely unsupervised method. As no training data is required, it can be
applied directly to the detections found for the tracking test data set outlined in Section 4.2.1.

64

4.2 Materials & Methods

The Kalman filter uses the previous locations of an object to predict the next most likely location;
this is done for all objects independently. Once detections are produced for the next frame, their
centre points are calculated and they are assigned to the nearest location that the Kalman filter
predicted by means of the Hungarian algorithm. One of the main challenges for this approach is
when two objects are near each other as only a small deviation between the Kalman filter and
ground truth can result in an identity switch (IDSW). Section 4.2.5 provides a more detailed
description of the values and metrics used to evaluate this method.

Distance & Visual-based Tracking (Deep SORT)

We also made use of Deep SORT [182], which, alongside the Kalman filter & Hungarian
algorithm used in SORT, uses a learned association metric to determine if two images of a pig
contain the same pig or not. In this method, when identities of objects are being matched between
frames, both the trajectory prediction and the association metric are used to determine if two
objects in different frames are the same. Because this method is able to identify if a “newly”
identified pig actually belongs to an identity that has already been established, it is much more
capable of handling long-term occlusions and corruptions in the dataset (e.g. dropped frames),
which is not uncommon in the datasets we used. This method is configured to only use the
previous 480 images (2 minutes at 4 FPS) so that it can consistently track a pig as it grows. If all
previous known images of the pig were stored it could degrade performance as pigs change in
appearance over time.

Layer No. Name Size/Stride Output
1 Conv 3×3/1 32×128×64
2 Conv 3×3/1 32×128×64
3 Max Pool 3×3/2 32×64×32
4 Residual 3×3/1 32×64×32
5 Residual 3×3/1 32×64×32
6 Residual 3×3/2 64×32×16
7 Residual 3×3/1 64×32×16
8 Residual 3×3/2 128×16×8
9 Residual 3×3/1 128×16×8

10 FC - 128
11 l2Norm - 128

Table 4.2 An overview of the CNN architecture used to produce the association metric for pig re-
identification. This is trained using the MARS dataset followed by fine-tuning on our own pig re-
identification dataset. The cosine softmax classification layer is not shown in this table as it is removed
for inference.

This association metric is learned using a small CNN-based model (Table 4.2), which uses
a re-parametrisation of the softmax classifier that includes a measure of cosine similarity in
the representation space, which is a 1×128 vector, initially developed for person Re-ID [200].
Where an input is a cropped image of a detected object, the network is trained to minimise the

65

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

cross-entropy loss of the class predictions generated by the model and the true label distribution.
This means that the final feature representation (the output of the l2 layer) implicitly learns to
maximise inter-class separation. Once the model is trained, the cosine softmax classification
layer is discarded and feature vectors can then be compared with the feature vectors that are
stored for each existing identity so that is can be assigned to the identity with the closest match.
However, cosine similarity is not the only factor used. In order for the identity assignment to be
made, it must also appear within range of the predicted location produced by the Kalman filter
for that identity, thereby taking both visual appearance and trajectory into account. Training is
carried out by feeding forward a single “query” image, which is compared to a range of “gallery”
images. Where there are multiple cameras in the dataset, the gallery images are taken from
different cameras. The performance of this model discussed in Section 4.2.5.

The original implementation of the CNN that generates the association metric was created
for the purpose of person Re-ID [200]. This research area focuses on being able to identify if
two images or videos of a person are the same person. The key applications of this research
focus on facial recognition and datasets where the objective is to track individual people within
a crowd, allowing for individuals to become temporarily occluded and then recovering their
original tracking identity.

As we used this method for tracking pigs, which look very similar to one another, rather
than humans, our application is considered much more challenging than human Re-ID. Our
implementation was pre-trained on MARS to learn the basic concepts of Re-ID, followed by
training using our custom pig Re-ID dataset (Section 4.2.1) to optimise the method to be able
to identify identical pigs in a commercial setting. The CNN was trained using the Adam
optimiser [63] with a low learning rate of 0.00001 and a batch size of 128.

4.2.4. Behavioural Metrics Extraction

Once tracks were established for individual pigs, we were able to derive behavioural metrics
pertaining to each individual track. We measured average speed, total distance covered and time
spent idle as these values quantify how active pigs are. Change in activity has been linked to
several pig health and welfare challenges, with the general trend being that such challenges tend
to decrease the levels of activity in individuals [157, 35]. We track activity levels by measuring
idle time, which is the reciprocal of active time.

In order to calculatethe distance travelled and idle time we used the Euclidean distance
between the centre-point of each detection box from frame to frame. We did not convert these
measurements into real-world distances as it is simpler to calculate and because we have variable
FPS, which we did not store when recording the footage. This, for example, makes it not possible
to accurately estimate speed. This causes some discrepancies, albeit small, as the camera we
used was not perfectly perpendicular to the floor; it was set at an angle in order to have full

66

4.2 Materials & Methods

coverage of the pen. The amount of time a pig spent idle was defined by the amount of time
where the pig moves no more than 4 pixels between frames.

4.2.5. Evaluation

Detection Evaluation

Intersection over Union (Equation 4.1) was used to assess how accurate a predicted bounding
box was in comparison with the ground truth (localisation performance), which was calculated
using Equation 4.1. The higher the IoU, the more accurate the bounding box is (Figure 4.7).
Rather than using the threshold of 0.5 to determine whether the IoU of a predicted bounding box
is accurate, which is the standard proscribed in the Pascal Visual Object Classes Challenge 2007
challenge, we required an IoU ≥ 0.6. This was due to the fact that there are often many pigs in
close proximity to one another, so there was a need to ensure that bounding boxes produced by
the detector were as close to the ground truth as possible.

IoU =
Area of overlap between bounding boxes

Are of union between bounding boxes
(4.1)

In order to summarise the performance of the detector, we used mAP a standard metric that
is used to evaluate the performance of object detection methods [81, 186, 187, 201].

Figure 4.7 Examples of how IoU is calculated. Left: Poor performance IoU = 0.4034. Middle: Good
performance, IoU = 0.7330. Right: Excellent performance, IoU = 0.9264.

Deep Association Metric Evaluation

In order to evaluate the performance of the association metric learned by the CNN outlined in
Section 4.2.3, we made use of the overall mAP of the classifier and the Cumulative Matching

67

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

Characteristic (CMC). It is common to evaluate CMC ranks 1 through to 20 [202], however, as
we only have 25 identities in our pig Re-ID dataset, it was not possible to do this. As with many
1 : m identification systems, for our application, the CMC at rank 1 is the most crucial [203, 204].
We therefore focus predominantly on this metric, though we additionally report CMC ranks 3
and 5, in order to better show how our model is generally performing.

Tracking Evaluation

We used the widely accepted metrics outlined in the 2016 MOT Challenge [205] in order to
evaluate the performance of our tracker, implemented using the py-motmetrics library [206].
The tracking performance measure we used was multi-object tracker accuracy (MOTA) (Equa-
tion 4.2), the most commonly used metric to benchmark MOT solutions, as it accounts for the
three types of error that occur: false negative (FN), false postive (FP) and IDSW. False negatives
are defined as an object that is not tracked, false positives are defined as tracked objects which
should not be and identity switches are when two objects that should be tracked swap identities.
Fragmentations are defined as the number of times an identity switches from “tracked” to “not
tracked”.

MOTA = 1− ∑t FNt +FPt + IDSWt

∑t GTt
(4.2)

However, as MOTA has shortcomings in terms of how it accounts for identity switches [8],
we also report tracking metrics using IDF1, which is also included as a metric in the MOT
Challenge, as this provides a much more global way to assess the performance of the tracking
system in terms of its ability to track identities.

Behaviour Metrics Extraction Evaluation

All detected tracks were grouped respective to the ground truth pig ID to which they belonged.
For total distance travelled and time spent idle, the frame-to-frame estimations belonging to each
pig were summed and speed was averaged. All behavioural metric estimations were evaluated by
normalising the values to between 0 and 1, followed by calculating mean squared error (MSE)
(Equation 4.3), where i is the pig ID, Y is the ground truth behaviour and Ŷ is the predicted
behaviour.

MSE =
1
n

n

∑
i=1

(Yi− Ŷi)
2 (4.3)

68

4.3 Results

Additionally, we calculated the absolute error for each of the behaviour metrics for each pig
identity and carried out a paired Wilcoxon test [207] on them to determine if the absolute errors
for each method were significantly different.

4.3. Results

4.3.1. Detection Results

Figure 4.8 Top: Performance of Faster R-CNN models trained on a dataset of pigs in a live farm using 2
methods of transfer learning from a model pre-trained on VOC: adding an additional fully-connected layer
and modifying the final fully-connected layers along with a model trained only on the pig data. Bottom:
The same data zoomed in to highlight the difference between the two similarly performing models.

Results from the Faster R-CNN (Figure 4.8) show that the performance difference between
adding an FC layer or modifying the final FC layers was negligible for our application. This was

69

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

also the case for detection (inference) speed, as both models had an average inference time of
80ms per frame. Both models that were pre-trained on VOC outperformed the model which was
only trained on the pig data in terms of performance and speed of learning, hence showing the
effectiveness of the transfer learning strategy.

The model that was only pre-trained on ImageNet (but not on VOC) achieved good results
(mAP = 0.894) but never reached the same level of performance as the other two models (mAP
∼ 0.901). This is as expected as the other models are not only pre-trained on more data, but also
on a related task, which is highly beneficial in transfer learning, but nonetheless the inclusion of
this option in our comparison provides us with a useful performance baseline.

Figure 4.9 Four sample images from our pig detection test set processed by the Faster R-CNN with
the feature extraction layers pre-trained on ImageNet, the rest pre-trained on VOC and an additional
fully-connected layer for the pig dataset. Detections to the left of the red wall are ignored. The top left
image is from the low-light test segment. The top right image is from the densely packed test-segment.
The bottom left image is from the overexposed test segment. The bottom right image is from the “many
pigs” test segment.

Figure 4.9 shows examples of detections made from each of the test segments defined in
Section 4.2.1. The top left image shows the Faster R-CNN correctly detecting 2 pigs from the
low-light test segment. The top right image shows that the model was capable of detecting pigs
from images in the densely packed pigs test segment. The bottom left image exemplifies issues
relating to overexposure caused by strong sunlight which distorts the edges of the pigs, making
them more difficult to detect. The model does appear to have suffered from the camera being at
an angle rather than pointing directly down. This causes some pigs at the top of the images to be
hidden behind other pigs in such a way that distorts their shape and makes them undetectable.
This is particularly noticeable in the bottom right image, which is from the test segment for
images containing many pigs.

70

4.3 Results

In order to proceed with adding MOT tracking to our method, we selected the model which
added an additional, final layer to the FC layers. We used this model to evaluate the test segments
individually (Table 4.3).

Test Segment mAP
Many pigs 0.905

Densely packed 0.906
Overexposed 0.906

Low-light 0.850

Table 4.3 The parameters used for the Faster R-CNN that perform best on the VOC dataset.

Test segments with many, densely packed, and overexposed pigs performed in line with the
rest of the dataset. However, images that suffer from low-light relatively under-perform. This is
mainly due to the fact that Faster R-CNN is an image-based detection method, which requires
light in order to detect objects. Nonetheless, the implementation does perform moderately well
in low-light conditions.

4.3.2. Association Metric Learning

As described in Section 4.2.3, the CNN used to learn the association metric was trained using
MARS followed by our own pig Re-ID dataset (Section 4.2.1). Compared to the MARS dataset
(1.1 million images), our pig Re-ID dataset is very small (5,653 images). Despite this, the
fine-tuning increased the rank 1, 3, and 5 CMC by 17%, 15%, and 15% respectively, achieving
a rank 1 CMC of 0.788. The additional training also increased the overall mAP from 0.760 to
0.862. This increase in performance is to be expected, as we are fine-tuning, but it is valuable to
understand by how much the additional training has improved performance.

4.3.3. Tracking Results

As discussed, the SORT tracker is heavily dependent upon accurate detections. Therefore, as the
detector was capable of achieving a high level of mAP (0.901), it was expected that the tracker
would perform similarly well.

The direct output of the SORT tracker is a series of IDs, which then are mapped to our
manually-annotated tracks (Section 4.2.1). From this mapping process, we can identify when
the tracker detects an object that does not exist (FP), when the tracker is not able to detect an
existing object (FN), or when the identifiers of two tracks are switched (IDSW) [205, 206, 208].
The result of this implementation was a large number of “tracklets” (partial tracks), subsets of
which belong to individual pig identities.

71

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

SORT achieved a score of 95.1% MOTA. In total there were 153 FPs, 331 FNs, 50 IDSWs
and 56 fragmentations. The average number of consecutive frames which perfectly tracked
all pigs was 21.746 frames (5.437 seconds), with a maximum of 208 frames (52.000 seconds).
The average length of time an individual pig could be perfectly tracked for was 129.358 frames
(32.339 seconds), where the maximum was 981 frames (4 minutes). To further characterise the
results of our method, Table 4.4 reports, for each of the 25 unique pig IDs, the percentage of
frames for which such ID was correctly tracked. Five out of the 25 IDs had a perfect tracking
score of 1.00, and 21 out of 25 had at least 0.9 successful tracking proportion. One ID had a very
poor score of less than 0.5.

From the metrics derived, we can see that the general implementation works well (95%
MOTA), but the occasional dropping of frames caused by the implemented recording system
seriously impacts the continuity of IDs given to pigs between frames which is better represented
by the 70.3% IDF1 score.

SORT Deep SORT
ID F T ↓ C ↑ S ↓ FN ↓ T ↓ C ↑ S ↓ FN ↓
1 1875 11 0.97 10 48 6 0.95 4 97
2 540 2 0.99 0 5 3 0.96 1 20
3 1747 6 0.98 4 33 6 0.96 4 73
4 983 2 1.00 0 2 2 0.99 0 8
5 119 2 0.99 0 1 4 0.92 2 8
6 122 3 0.95 1 5 3 0.80 1 23
7 63 1 1.00 0 0 2 0.92 0 5
8 9 3 0.33 1 5 2 0.33 0 6
9 100 2 0.97 0 3 3 0.91 1 8

10 52 1 1.00 0 0 1 1.00 0 0
11 630 7 0.97 5 16 5 0.92 3 48
12 608 18 0.79 16 110 7 0.81 5 111
13 64 4 0.83 2 9 4 0.61 2 23
14 501 2 0.99 0 3 2 0.98 0 9
15 429 3 0.94 1 25 4 0.87 2 53
16 427 6 0.90 4 38 5 0.69 3 130
17 489 1 1.00 0 0 1 1.00 0 0
18 263 3 0.96 1 9 3 0.92 1 20
19 825 3 1.00 1 3 3 0.97 1 22
20 666 5 0.98 3 9 4 0.96 2 25
21 13 2 0.77 0 3 2 0.08 0 12
22 141 3 0.98 1 2 3 0.94 1 7
23 27 2 0.93 0 2 2 0.70 0 8
24 117 1 1.00 0 0 2 0.92 0 9
25 49 1 1.00 0 0 2 0.82 0 9

Avg. 3.76 0.90 2 13.2 3.24 0.84 1.32 29.3

Table 4.4 Results of the SORT & Deep SORT tracking algorithm used to track individual pigs. ID is
the ground truth ID for a pig, F is the ground truth for how many frames the pig was visible, T are the
number of tracklets the method created for each individual pig, C is the percent of the ground truth tracks
that were tracked by the method, S is the number of identity switches that occurred, FN is the number
of false negatives (pig not detected). The arrows indicate whether lower or higher is better. There were
also 153 and 105 total False Positives (a pig was detected that did not exist) for SORT and Deep SORT
respectively.

Unlike SORT, Deep SORT is less reliant upon accurate detections, though it does still require
them to be of good quality as it still makes partial use of the Kalman filter to make assignment
decisions between the existing tracklets and detections from the following frame. Deep SORT
achieved a score of 92.1% MOTA. In total there were 105 FPs, 734 FNs, 33 IDSWs, and 40

72

4.3 Results

Figure 4.10 Representation of the detected tracklets for pig 1 from frame 1300 to 1875. This pig was
visible for all frames, but showing the detail at this segment of frames was not possible if we showed all
the tracklets from all frames. The Y-axis shows the tracklet IDs (which are independent for each method),
the X-axis shows the frames during which the pig was visible. Red represents SORT generated tracklets,
blue represents Deep SORT generated tracklets.

fragmentations. The average number of consecutive frames which perfectly tracked all pigs was
24.163 frames (6.041 seconds), with a maximum of 208 frames (52.000 seconds). The average
length of time an individual pig could be perfectly tracked for was 197.882 frames(49.471
seconds), where the maximum was 981 frames (4 minutes). Two out of the 25 IDs had a perfect
tracking score of 1.00, and 16 out of 25 had at least 0.9 successful tracking proportion. Two IDs
had a very poor score of less than 0.5.

Although there was almost double the number of FNs, there was a 32% decrease in the
average number of IDSWs and a 31% decrease in the number of false positives raised by
the system. Despite the increase in FNs being substantial, and therefore also decreasing the
proportion of track coverage, it was considered a fair trade-off, as a FN is much easier for the
system to recover from than an IDSW. This is because an IDSW tends to be permanent, where
a FN may only be a for a few frames, after which, the identity can be recovered. Because of
this ability to recover from FNs and the decrease in IDSWs the introduction of the visual Re-ID
component within Deep SORT results in an increase in IDF1 to 73.4% and a 30% decrease the

73

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

Figure 4.11 Representation of the detected tracklets for pig 12 for all the frames it was visible. The
Y-axis shows the tracklet IDs (which are independent for each method), the X-axis shows the frames
during which the pig was visible. Red represents SORT generated tracklets, blue represents Deep SORT
generated tracklets.

number of fragmentations, which increases the average length of a track increases by 17.132
(+16%) and the average number of frames in which all pigs are perfectly tracked increases by
0.604 seconds (+11%). The maximum number of frames where all pigs are perfectly tracked,
and the maximum frame length remains unchanged from those reported for SORT.

Naturally, FPs, FNs and IDSWs are to be avoided, as they each decrease the general per-
formance of the tracker. In our application, FPs are commonly caused by substantial changes
in object location between frames, often cause by dropped frames, or by the occasional rogue
detection produced by the object detector. This results in tracklets for pigs that don’t exist that
are subsequently analysed to extract behaviour metrics. As this is not a real pig, it is unlikely
that the tracks produced by false positives would result in behaviour metrics similar to that of
pigs, which would likely produce a spurious alert to the farmer.

While FPs are undesirable, it is far less damaging to raise unnecessary alerts than to miss
alerts that should be raised as is the case with FNs. A high number of FNs means that objects
are not being tracked, which translates to periods of time where a pigs behaviour is not being

74

4.3 Results

analysed for potential problems. As long as periods of FNs are relatively short, Deep SORT is
able to recover from them. This is why the increase in FNs from SORT to Deep SORT is not
a concern. In fact, it is a by-product of the implementation that requires the first n frames of a
“new” tracklet to be left unassigned so that a robust history of visual appearance can be built.
This helps to prevent spurious appearance metrics from damaging existing tracklets. This is why
our results showed a lower track completion for Deep SORT despite a lower average number of
tracklets and IDSW per pig. A post-processing step could be introduced to mitigate the impact
of this effect in the final results. On the other hand, IDSWs are much more challenging to detect
without ground-truth data and are subsequently very challenging to recover from. A high number
of IDSWs renders the tracker much more unreliable and can result in one pig being treated for
another pigs illness, leaving the ill pig untreated.

These challenges can all be exacerbated by a poorly performing CNN used to determine
the visual similarity of two objects. This is particularly a concern in our application as the
pigs are very similar in appearance, meaning it is easier to mistake two different pigs as the
same pig, resulting in IDSWs across large distances. If we had been unable to achieve a high
mAP in the CNN component of this tracker, one option to mitigate the negative effects of this
would be to give more weight to the Kalman filter component of Deep SORT. The decrease in
average IDSWs from 2 to 1.32 from SORT to Deep SORT respectively is a major performance
improvement and indicates that the cosine metric learner was well trained. The combination
of a strong mAP, Rank 1 CMC and reduced number of IDSWs indicates that Deep SORT is
capable of being deployed into commercial farm environments to track medium-sized objects
that are indistinguishable by eye. The main drawback of this approach is the number of frames
per second that can be processed, 20 FPS compared to SORTs 260 FPS. Although being able
to track at higher frame rates would likely improve performance of any tracker, 20 FPS is still
more than the average FPS we were able to record video on a commercial farm (4 FPS) and was
therefore more than capable of processing our footage in real-time.

Case Studies

In Figure 4.10 we show an example of Deep SORT’s ability to consistently recover tracks
between missed detections enables it to outperform SORT. The visualisation is of the tracklets
generated for pig 1, the longest tracked pig in our dataset. The first tracklet in the visualisation,
beginning at frame 1300, was lost and subsequently recovered 3 times when using Deep SORT.
SORT is capable of recovery, but this is only possible when the detection is lost very briefly.
This is why the gaps between recovered tracklets are consistently small, whereas Deep SORT
can handle longer drops in detections, which is why Deep SORT is a much more robust method.
This is also visible in Figure 4.11, which shows the detected tracklets for pig 12, the ID which
benefited from the greatest reduction in IDSWs by using Deep SORT. SORT generated 18
tracklets for this identity, whereas Deep SORT only generated 7. We can see that tracklets

75

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

generated under Deep SORT were much more stable than that of SORT; all whilst having greater
track coverage (Table 4.4).

4.3.4. Behaviour Metrics Extraction Results

Distance Avg. Speed Idle Time
ID True SORT Deep SORT True SORT Deep SORT True SORT Deep SORT
1 7811 10868 12024 16 260 136 395 290 266
2 7368 6762 5830 53 50 75 79 42 52
3 3514 5638 5879 8 149 145 399 346 338
4 2224 3026 2814 9 12 11 226 214 213
5 1135 1498 2843 38 34 128 21 21 24
6 1745 1390 1050 56 94 81 18 10 10
7 397 579 520 25 35 34 12 5 5
8 264 1498 182 105 34 25 1 21 4
9 303 592 1256 11 21 60 22 18 26

10 179 366 316 10 21 19 11 10 10
11 1385 2791 3050 8 300 94 145 116 126
12 9749 5722 5346 63 798 217 103 47 155
13 1470 823 1619 90 132 219 8 5 40
14 994 1946 1841 7 15 14 115 89 88
15 1807 2922 2154 16 67 49 95 50 53
16 2720 2649 1733 25 172 172 91 51 40
17 229 1181 1174 1 9 9 116 109 108
18 2381 2090 1981 35 83 84 46 38 37
19 1393 1975 1755 6 32 26 191 181 178
20 2976 3916 3922 17 172 116 142 96 95
21 297 268 546 88 89 32 1 0 6
22 551 1713 1661 15 54 56 26 39 38
23 764 730 523 110 100 85 0 0 0
24 917 1125 1092 31 38 39 20 16 15
25 717 740 670 58 58 61 5 3 3

MSE ↓ - 0.010 0.015 - 0.148 0.008 - 0.003 0.008
Wilcoxon Test P-Value - 0.221 - 0.037 - 0.331

Table 4.5 Results of the behaviour extractions and the ground truth associated with them. Results are
shown for SORT and Deep SORT. Distance is measured as the number of pixels travelled, the average
speed is measured as the average number of pixels travelled per second, and idle time is measured as
the number of seconds a pig did not move more than 4 pixels. These results are normalised and the
mean squared error (MSE) is shown for each (lower is better). The absolute error between the estimated
behaviour and true behaviour for each method and metric is calculated; the number of IDs where this error
is below a threshold is counted (higher is better).

The behavioural metrics extracted from both SORT and Deep SORT tracks are shown in Ta-
ble 4.5. Total distance and time spent idle scored well (0.010 MSE and 0.003 MSE respectively),
however the average speed estimations substantially underscored (0.148 MSE). In particular,
the average speed calculations were overestimated for the tracklets in almost all cases (80% of
pigs). Estimations for pig 12 across all metrics derived from SORT were largely incorrect. This
is reflected in Table 4.4, as this ID incurred a high number of IDSWs (16). The metrics derived
from Deep SORT, however, are more accurate for this pig due to the considerable decrease in
IDSWs (5).

This relationship between a high number of IDSWs and poor estimations of behavioural
metrics, specifically time spent idle and average speed, can be seen through all pigs (e.g.
pigs 1 and 12). A higher number of IDSWs results in an overestimation of average speed.
This is confirmed by the improved behaviour extraction when using Deep SORT (Table 4.5),

76

4.4 Discussion

which has a significantly lower error for average speed, which is why there is a substantial
performance improvement for this metric when using Deep SORT (0.008 MSE, -95%). However,
this relationship is much less consistent when calculating the total distance travelled. The total
distance (0.015 MSE) and time spent idle (0.008 MSE) metrics extracted from Deep SORT show
no statistically significant performance change over SORT.

4.4. Discussion

With the increasing use of deep learning for multi-object tracking [209], particularly in crowd
analysis (i.e. people tracking), it is valuable to evaluate the extent to which these methods can
be applied to more difficult applications. Applications can be more difficult for varying reasons
such as: low FPS recordings, poor image quality, and similar-looking objects.

Individual pig tracking on a commercial farm is an example of an application where all of
these challenges can be found. This is mainly due to fact that the available infrastructure is
limited and pigs are much less distinguishable from one another when compared to humans,
especially with clothing taken into account. Deep learning methods for computer vision are
much less common in the agricultural field, which tends to rely on classical signal processing
methods, especially in the area of individual animal tracking. The ability to track individual pigs
in real-time is key to creating a full system that can provide the information required for their
management, including early detection of disease.

Previous research has focussed on how depth cameras can be utilised to track pigs under
the challenging conditions presented by farm environments, such as poor image quality and low
network bandwidth for data collection [35, 37, 36, 210, 211]. These methods have been able
to achieve good tracking results (89% MOTA [35]). However, they rely upon accurate depth
sensor data which is only achievable at short distances, which limits the distance a camera can
be placed from an object. This limits the field of view, and thus the pen coverages of a single
depth-camera meaning more cameras are required to cover a large area when compared to the
RGB cameras we use.

More recent research has applied deep learning models to the tracking of pigs [95] using
object detection models, similar to the implementation used in our method, on RGB images,
obtaining 89.58%. However, this depends upon IDs being sprayed on the pig and detecting each
pig as a separate class. This is not feasible or practical in a commercial setting due to the large
number of pigs that may reside within a pen. Moreover, the sprayed markers do not hold for long
and therefore would need to be continually reapplied for reliable tracking. Secondly, the model
needs to be specifically trained on each numerical ID that it needs to track, which impedes the
generalisability of the method.

77

Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction
Using Deep Learning

Figure 4.12 “Where there is one true identity A (thick line, with time in the horizontal direction), a tracker
may mistakenly compute identities 1 and 2 (thin lines) broken into two fragments (a) or into eight (b, c).
Identity 1 covers 67% of the true identity’s trajectory in (a) and (b), and 83% of it in (c). Current measures
charge one fragmentation error to (a) and 7 to each of (b) and (c). Our proposed measure charges 33% of
the length of A to each of (a) and (b), and 17% to (c).” (This figure and caption are from [8]).

YOLO [71] is a commonly used method for object detection that is popular for its fast
inference times was considered for use in our application. However, despite the real-time
inference, its performance on detecting smaller objects is much poorer than that of Faster R-CNN.
YOLOv3 does attempt to rectify this, but it does so at the cost of poorer performance on larger
objects relative to Faster R-CNN [87]. As we wanted our method to generalise to different
environments such as taller buildings where the camera is mounted higher, thus making pigs
smaller in the images, and because we do not deal with high FPS videos, we decided against
using it.

The use of standardised metrics for MOT in all applications is key to summarising how well
methods perform in various domains and applications as concisely and as accurately as possible.
Of the research discussed above, several report MOTA, but none report IDF1. This poses a risk of
skewing the effectiveness of the tracking method that has been implemented, by misrepresenting
the effect of IDSWs within the system. Figure 4.12 (taken from [8]) demonstrates an example
where there are varying examples of IDSW. Based on these tracklets, MOTA would favour (a),
as it has the fewest number of fragmentations; where IDF1 would favour (c) it provides a greater
identity coverage (83% vs 67%). Hence, we believe that in our context, the under-reported IDF1
metric is a more informative tracking quality metric than the more widely used MOTA.

Our method was able to detect, track and extract behavioural metrics of individual pigs
in real-time using a Faster R-CNN for localisation and Deep SORT for tracking. Alternative
methods for tracking do exist (e.g. a kernelized correlation filter [212]), however, we chose
SORT and Deep SORT as they provide a good side-by-side comparison of trajectory-based
tracking and a combined trajectory and visual-based tracker respectively. This results in our
main contribution, which is a complete, end-to-end system that can process raw images and
produce behavioural metrics for individual pigs, whilst maintaining the identity of pigs between
frames. We relied solely on footage recorded from an inexpensive RGB camera, as opposed to
expensive 3D depth cameras, recording at an average of only 4 FPS and a resolution of 1920
x 1080. This low FPS was a limitation of the hardware that was used, as it was responsible for
other background tasks which limited the number of frames that could be captured.

From this data, we were able to achieve comparable performance to previous research in
terms of MOTA (95%), with the improvement that our method can do so without the use of

78

4.5 Conclusion

additional or expensive hardware, such as RFID tags and depth cameras, or visual aids, such as
painted IDs. We were also able to use this data to reliably re-identify pigs when they become
occluded or the detector fails to localise them (0.862 mAP), which enables us to achieve an
IDF1 of 73.4%. This use of visual appearance when assigning identities at runtime proved
valuable, as the method was able to more accurately determine the average speed of a pig,
without compromising on other metrics, as this is easier to do when the number of IDSWs is
lower. As our data was restricted to the pig sizes that were available, we were not able to verify
whether the method will work as pigs grow.

Where other research focussed on performance aspects (e.g. weight) of individual pigs [213],
we looked specifically at how active pigs are by extracting movement-related behavioural metrics
from the generated tracks. We recorded pig behaviours for up to a theoretical maximum of 10
minute video segments. This is equivalent to the behavioural method of scan sampling, where
all of the actions of all animals are recorded for intervals in order to obtain behavioural metrics
for individuals within a group [214]. We have shown not only that we are able to successfully
localise and track pigs from challenging naturalistic settings (commercial farms), but also that we
are able to successfully extract a range of domain-relevant, useful knowledge from the outputs of
fairly generic object localisation and tracking algorithms as the ones that we have used. One
of the advantages of the method is that we are able to extract several behaviours from the same
pig in real-time. This is beneficial, as it is suggested that a combination of behavioural metrics
might be a better indicator of pig health than a change in a single behaviour [215].

4.5. Conclusion

We have implemented a system to detect and track pigs in a commercial farm setting using deep
learning that allows us to track pigs for up to 4 minutes, with an MOTA of 92% and IDF1 of
73.4% without the use of additional hardware or visual aids. The tracks derived from this system
are able to be used to calculate behavioural metrics for total distance travelled, average speed
and time spent idle for individual pigs. The length of the identified tracks is mostly limited by
the length of the realistic video we could use to evaluate the method, due to technical constraints
in the data capturing system. However, this method generates a set of tracklets that (mostly)
successfully cover parts of the annotated tracks and in cases where detections are missed, is
capable of recovering the identity. Overall, our work shows how deep learning algorithms
enable the development of a relatively inexpensive pig monitoring system that can provide useful
information to characterise pig’s behaviour by applying transfer learning strategies on top of
a standard object localisation method such as Faster R-CNN. The literature shows how such
descriptors enable the creation of more personalised pig treatment plans [157, 178] which in turn
decrease disease risk and reduce the use of medication, whilst maintaining animal performance.

79

Chapter 5. Pig Tracklet Stitching for Improved Individual Pig Tracking
Using Deep Re-Identification

Abstract

As commercial pig farming moves to embrace the concepts of Precision Livestock Farming,
providing care on an individual pig level, rather than as groups, is vital. Human observation is
often used to monitor to health and wellbeing of pigs, either in-person or using video footage,
this can very resource-intensive and does not scale well for applications in larger farms. In our
previous chapter, we presented a complete workflow for the detection and tracking of individual
pigs within an operating, commercial farm. Through this implementation, we discovered
performance issues relating to the recovery of identities after long-term occlusions, which we
attributed to our tracking algorithm partially relying upon trajectory as well as visual appearance.
Deep learning has shown good performance in the tracking of humans across multiple cameras,
using CNNs as a means for re-identification. However, humans are often easily distinguishable
from one another, often due to differences in clothing, whereas pigs are typically indistinguishable
by eye. Therefore, the work in this chapter focused on evaluating the re-identification methods
typically used to track humans across multiple cameras for the purpose of re-identifying pigs after
long-term occlusions. We showed that the latest developments in CNN-based feature extraction
for images can be used to improve the tracking of individual pigs by using it to assign seemingly
newly detected pigs to their original identities, thereby increasing the IDF1 tracking metric of
the tracker and lowering the number of identity switches.

5.1. Introduction

In the previous chapter, we developed a method to localise, track, and extract behavioural metrics
on individual pigs, using a regular RGB camera, in an effort to move towards a more individual
level of care that does not require human supervision. We evaluated how a Faster R-CNN could
be used to automatically detect pigs within images, and then track these detections in videos using
both a trajectory-based method (SORT)[182] and a method that combined trajectory and visual
appearance (Deep SORT)[200]. We demonstrated that despite pigs often being indistinguishable
from one another by eye, CNNs can be used to enhance trajectory-based methods in order to
re-identify pigs after events that would otherwise cause their original identity to be lost. However,

81

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

this was only achievable after brief gaps in detections; long occlusions typically resulted in the
existing identity being lost and a new identity being assigned to a pig.

In this chapter, we have evaluated several state-of-the-art, CNN-based Re-ID models on
a dataset of pig identities. We have demonstrated, firstly, how such models can be used to
re-identify pigs based on their appearance alone and secondly, how these models can be used to
recover from the long-term occlusions that Deep SORT was not capable of recovering from on
its own. This was achieved without the need for additional hardware (e.g. RFID tags), physically
marking the pigs (e.g. drawing numbers on their back), or to define a “tag-box” which can be
used to identify pigs based on a reduced portion of the pig [101]. Additionally, we show that,
despite being trained on high-quality images, the methods generalise well enough to work on
significantly lower resolution images.

The primary contribution of this chapter is demonstrating that existing tracking methods
can be augmented without changes to their original implementation, to improve their multi-
object tracking capability, increasing IDF1 and decreasing the number of identity switches,
whilst still being able to operate in real-time. We achieved improved results without the need
for additional hardware (e.g. RIFD tags) or physical markings (e.g. identities painted onto
pigs). Secondly, though Re-ID methods that only use visual information are commonplace in
tracking humans [200, 185, 203], they have not previously been used on pigs, which are often
indistinguishable to the human eye. Therefore, our dataset provides a benchmark for how far
CNN-based Re-ID models can be pushed. We have shown that even when using this challenging,
low-resolution data, several of the CNN-bsaed Re-ID methods we evaluated were able to achieve
very high performance in terms of mAP (0.737) and CMC at Rank-1 (0.957).

Section 5.2 describes the datasets, both benchmark and custom, that were used to carry out
this work. Section 5.3 outlines the training and evaluation procedures for the methods used for
detection, tracking and tracklet stitching. Section 5.4 and Section 5.5 present and discuss the
results respectively, followed by our conclusion in Section 5.6.

5.2. Dataset Descriptions

This research made use of three, standard benchmark datasets: ImageNet [183], used for
pre-training our detection and re-identification models; Pascal Visual Object Classes Chal-
lenge 2007 [184], used for pre-training of our detection model; and Motion Analysis and
Re-identification Set [185], used for pre-training of our re-identification models. Additionally, 3
custom-built datasets were used: one for detection (training and testing), one for re-identification
(training and validation) and finally one for tracking (the overall test set), a subset of which was
used to test the re-identification models.

82

5.2 Dataset Descriptions

ImageNet is an image classification dataset consisting of around 14m images of objects each
falling into more than 10k categories. VOC is an object localisation and classification dataset
consisting of 5,304 images and 9,507 objects that are split evenly between training and test sets.
Within this dataset, there are 20 different classes. Finally, MARS is a video dataset for person
re-identification that was recorded across 20 cameras. It consists of 625 human identities for
training (8,298 tracklets) and 636 for testing (12,180 tracklets). The identities are spread across
6 cameras, though not all identities span all cameras. Each identity has a set of short, sequential
images of an individual identity, referred to as tracklets, from a varying number of the cameras.

All images used in the detection and re-identification custom datasets were recorded using
the RGB sensor of a Microsoft Kinect v2 (resolution: 1920×1080, field of view: 84.1×53.8,
focal length: 3.29, shutter speed: 14ms, maximum frame rate: 30 FPS). The tracking dataset
was recorded on a 640×360 RGB camera with all other parameters kept the same. No special
features of the Kinect camera were used and any other RGB sensor with similar parameters
would achieve similar results. All cameras were mounted to the ceiling, pointing at the floor, at
a slight angle (rather than perpendicular to the floor) in order to capture the entirety of half of
the pen. The building used was comprised of 4 pens, each housing 20 pigs of the same age and
similar weight. The pigs used in the detection and re-identification datasets are the same pigs
captured on different days in the same pen, whereas the tracking dataset was a different cohort
of pigs in a different pen. The images used in these pig datasets were collected at Newcastle
University’s Cockle Park farm and fell into 5 distinct categories: densely packed, overexposed,
low-light, many pigs, or normal. Because the images were collected from pigs husbanded under
farm conditions, there was no need for ethical approval.

5.2.1. Pig Detection Dataset

As described in Section 5.1, our custom detection dataset is identical to that used in our previous
chapter. The dataset is comprised of 1,646 images, each manually annotated to note the location
of each pig in each image, resulting in 9,014 annotations (Figure 5.1). The images are of 20 pigs
across differing days and times and were all sourced from a single camera. The images were
split equally between training and testing data, where days used for test data did not overlap with
training data.

5.2.2. Re-Identification Datasets

As part of the previous chapter, we also built a pig Re-ID dataset consisting of 20 pigs across 2
cameras covering a whole pen. This dataset contained an average of 280 images per identity. We
extended this dataset with additional footage to contain an average of 885 images per identity.
These identities were broken down as 15 identities for training and 5 identities for validation

83

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

Figure 5.1 An example of an image used within our manually annotated pig detection dataset. This
particular example shows how, in some images, the pigs are densely packed into one area.

(840 query tracklets & 3366 gallery tracklets). As our pig Re-ID dataset was video-based, it was
broken down into sequences of 10 images using a sliding window.

We structured the dataset similarly to MARS by creating tracklets such that

X = {{xt+i, . . . ,xt+10+i}, . . .}

where t is the frame number of the video the image is sourced from and i is the tracklet number.
As in MARS, tracklets that spanned cameras were discarded.

Though the structure and design of our Re-ID dataset are similar to that of MARS, it is a
distinctly more challenging dataset. The most notable reason was the difficulty in distinguishing
identities from one another (Figure 5.2). Where with person re-identification, certain cues can
be used, such as clothing colour and gait, this is not possible in our dataset. Though pigs will
naturally be different colours, the amount of variation is substantially lower than that within
human clothing.

Figure 5.2 Top: A sample of two identities of the MARS dataset for person re-identification. Bottom: A
sample of two identities of the pig re-identification dataset.

Typically, methods used for re-identification are dependent upon a large number of identities
in order for the distance metric to be maximised between two feature vectors of different pigs.
As our dataset consists of considerably fewer identities than are in MARS (625 in MARS and 20
in the pig Re-ID dataset), it makes generalisation a challenging task.

84

5.2 Dataset Descriptions

We used a separate test set to evaluate the performance of each model that was comprised of
a subset of the identities from dataset outlined in the following section (Section 5.2.3).

5.2.3. Pig Tracking Dataset

Unlike the other custom datasets, the dataset used for evaluating the final tracking result and
re-identification models was not developed as part of our previous work. This new dataset
consisted of frames extracted from a 9.3 minute video recorded from a single camera recorded at
a significantly lower resolution (640×360). We use a lower resolution for this testing dataset in
order to evaluate how well the methods will generalise from being trained on data with a high
resolution (1920×1080), though in our implementation the images were resized to 1920×1080
using bilinear interpolation.

Each frame was manually annotated with the location and identity of each pig in order for
the pig to be tracked between frames (Figure 5.3). As the camera did not cover the entire pen
area, if a pig left the field of view of the camera, it was not possible to reassign its previous
identity, meaning a new identity had to be assigned. Therefore the 20 pigs used in this dataset
resulted in 74 identities. This means that there are a large number of pigs with multiple identities
in the ground truth data. We, therefore, selected the 6 identities that lasted the longest period of
time and manually verified that they were not the same pig, to be used as the test segment for the
dataset outlined in Section 5.2.2.

Figure 5.3 A representation of the manually annotated pig tracks used in the pig tracking dataset. The
Y-axis shows the ground-truth pig ID, the X-axis shows the frames during which the pig was visible. Once
a pig left the camera, it was not possible to re-identify it, and was therefore given a new ID.

85

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

The FPS of the video was variable (averaging 4 FPS) as background jobs running alongside
image capturing affected the performance. High FPS in video footage makes tracking objects
easier as the distance an object can move between frames is much lower. However, due to
technical limitations of the infrastructure used to record this data, it was not possible to record at
an average frame rate higher than 4.

5.3. Methods Applied

5.3.1. Pig Detection & Tracking

In this section, we will briefly cover the detection and tracking methods used to create the
baseline tracking that our tracklet stitching methods would be applied to. This is the same as the
Deep SORT configuration in our previous chapter. All models were trained on an Nvidia Tesla
P100 graphics card.

Pig Detection

Faster R-CNN was used to detect the location of pigs within each frame. This method consists
of 3 main components: feature extraction, RPN and FC layers. ResNet-101 [70] was used for the
feature extraction layer and was initialised using weights pre-trained on ImageNet. The whole
model was then trained on VOC using stochastic gradient descent (learning rate: 0.001, learning
rate decay step: 5, learning rate decay multiplier: 0.1, batch size: 8).

Transfer learning was then used to continue the training of the model on the pig detection
dataset, outlined in Section 5.2.1. This was achieved by adding an extra FC layer to the model
with two output nodes (one for “pig” and one for “background”), which created an additional 78
trainable parameters; a relatively insignificant amount. Our previous chapter demonstrated that
this worked marginally better than modifying the final layer.

Pig Tracking

In order to track pigs between frames, we implemented Deep SORT, which utilised both the
trajectory of pigs and similarity in their visual appearance, in order to retain identities between
frames. This method used a combination of a Kalman filter [196] and the Hungarian algo-
rithm [197] to calculate the distance metric. Similarity in visual appearance was evaluated using
a lightweight CNN, which used a re-parametrisation of the softmax classifier that included a
measure of cosine similarity in the representation space [200]. This model was initially trained
on MARS using the ADAM [63] optimiser with a learning rate of 1×10−4, using cosine decay

86

5.3 Methods Applied

(decaying the learning rate to 1×10−12 over 25,000 steps). This was then followed by training
on the pig re-identification dataset outlined in Section 5.2.2 using transfer learning with the same
hyper-parameters, with the exception of cosine decay, which was implemented over 9,000 steps
due to the smaller size of the pig Re-ID dataset compared to MARS.

The small size of the model (2.8×106 trainable parameters) allowed it to be used alongside
the distance metric whilst still allowing tracking to be executed in real-time. Smaller models are
typically faster but are restricted in the amount of information they can extract from an image,
which typically results in poorer performance. However, a model that is too large increases the
likelihood of overfitting, so a balance is necessary.

5.3.2. Pig Tracklet Stitching

Figure 5.4 An example of a pig identity tracked by Deep SORT and SORT that is made up of several
tracklets.

As Deep SORT uses similarity in visual appearance, as well as a distance metric, it was
capable of reassigning a pig’s original identity following an IDSW or missed detections at times
where SORT could not (Figure 5.4). However, it was not capable of this when gaps in tracking
occurred for an extended period of time.

To combat this, Deep SORT can be configured to allow more time between missed detections
by increasing the number of reference images stored for each known identity. However, we found
that doing so increases the number of IDSWs, as the more historic images that were stored for a
given identity, the lower the intra-class cosine distance between pigs, which makes it difficult to
distinguish between two pigs.

When a new identity is created by Deep SORT, it means one of two things: either a new pig
has entered the field of view that has not previously been seen, or a pig that has already been seen
has mistakenly been assigned a new identity. We, therefore, present a tracklet stitching approach
that need only be ran when a new identity is identified (Algorithm 1). This method takes any new

87

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

identity and compares it to all identities that have been lost since the beginning of tracking. If a
match is found where the cosine distance between two identities is below a threshold τ , the pig
is reassigned its original identity. In addition to this, every n frames we compared the identities
in the current frame with the identities being tracked n frames ago to assess whether there had
been any identity switches. Both n and τ are optimised using grid search for each of the models.

L← lost identities;
E← existing identities;
τ ← similarity threshold;
while new frame do

deepSORT ();
foreach id i in all identities active in current frame I do

if i not in E then
foreach lost identity l in L do

if reid(l, i)< τ then
t← l;
break;

end
end

end
end

end
Algorithm 1: Pseudocode showing how a model used for tracklet stitching is integrated with
Deep SORT.

In order to compare identities, we trained and evaluated 9 state-of-the-art image classification
and re-identification models to evaluate the visual similarity between them. As we were dealing
with identity recovery over an arbitrary period of time, it was not possible to use a physical
distance metric. As the method was only applied when a new identity was generated and every n

frames, it did not hinder the ability for the overall tracking to run in real-time. Additionally, as
this approach ran independent of the underlying tracking method, this approach could be applied
to any existing tracking method in order to improve identity retention.

Re-Identification Models & Training

In total, 9 models were trained and evaluated for use as the tracklet stitching model (Table 5.1).
Each model’s feature extraction component was loaded with their respective pre-trained weights
from training on ImageNet and then trained using the MARS dataset.

At this stage, the FC layers were further trained on the pig Re-ID dataset (Section 5.2.2)
whilst all other layers were “frozen” (made untrainable); the final FC layer was reconfigured to
have the number of classes required for the new dataset. This is done to prevent harmful changes
introduced by the final, reconfigured FC layer propagating to the other pre-trained layers and also
decreases training time [187, 225, 226]. This trained model could then be adapted for inference

88

5.3 Methods Applied

Model Size
Densely Connected CNNs (DenseNet-121) [216] 7×106

Inception v4 [217] 41×106

Multi-Level Factorisation Network (MLFN) [218] 32×106

Multi-Scale Deep Network (Mudeep) [219] 134×106

Omni-Scale Network (OSNet) [220] 2×106

ResNet-50 [221] 24×106

ResNet with Mid-level Features (ResNet-MidFeat) [222] 27×106

Squeeze-and-Excitation Network (S&E ResNet) [223] 27×106

Xception [224] 20×106

Table 5.1 The models used for reassigning newly generated identities with previous lost ones where the
pigs are the same and their number of trainable parameters.tab

by removing the final FC layer and using the new final layer as a feature vector for the input
image.

Re-Identification Model Evaluation

When evaluating the performance of Re-ID models, our primary metric was the mAP as it gives
a whole overview of how the method performs and is therefore a better indicator of how well
the method might generalise. As secondary metrics, we evaluate the CMC at ranks 1, 3 and 5.
These better describe how the method is performing specifically regarding gallery images that
are deemed the most similar to query images. A higher mAP means that, given a query image,
gallery images with the same identity would rank the most similar across all gallery images.
Whereas a higher CMC at rank N indicates how often a correct gallery image is in the top N

most similar to the query image. These are standard metrics for Re-ID models [185].

In order to evaluate the efficacy of each model on improving the tracking results produced
by Deep SORT, we compared the change in IDF1 [8] and the number of IDSWs (how many
times two identities are incorrectly swapped) from before and after tracklet stitching was applied.
Though MOTA is often used to evaluate tracking performance, it does not properly take into
account how well an identity is maintained, looking only at the number of IDSWs; we did not
use it for our evaluation. A reduction in IDSWs is something that should be worked towards, but
only if this also results in an increase in IDF1.

89

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

5.4. Results

5.4.1. Re-Identification Results

As outlined in Section 5.3, each model was initialised with pre-trained weights from training
on ImageNet, trained on MARS, and then trained on the pig Re-ID dataset. All models were
trained with a starting learning rate of 1×106.

A cosine annealing [61] was used to decay the learning rate. “Warm-restarts” were not used,
which periodically increase the learning rate in an attempt to avoid local optima, and model loss
was calculated using cross-entropy loss. Initially, the learning rate was decayed by multiplying it
by 0.1 every other epoch. However, using this method, most models were unable to exceed 50%
accuracy before plateauing. Introducing a more gradual decrease in the learning rate, by means
of the cosine annealing, was a substantial improvement in performance in terms of both accuracy
and loss.

Figure 5.5 The training accuracy (left) and cross-entropy loss (right) for each of the evaluated models on
the pig re-identification dataset with transfer learning from the MARS dataset.

Figure 5.5 shows the training loss and accuracy of each of the models used as part of our
evaluation. The best model in terms of training accuracy, Mudeep, notably the biggest model
evaluated, is not the same as the best model in terms of training loss, Xception. It is worth
noting at this point that though accuracy is not the optimal metric to use when training data
is not balanced, it is the simplest metric to compute for multi-class classification and, as we
were only using this to evaluate training, and not testing, we felt it was appropriate to get a
general idea of model training. Though accuracy trends upwards and loss trends downwards,
they both do so with a notable amount of noise. This is a by-product of mini-batch gradient
descent, which backpropagates loss after every mini-batch instead of at the end of an epoch as

90

5.4 Results

with batch gradient descent. This is advantageous as noisier updating can help to avoid local
minima, though comes at the cost of being more computationally expensive. For these models,
we used a mini-batch size of 8, as this was the most we could fit on our GPU (Nvidia P100
16GB).

Model mAP Rank-1 Rank-3 Rank-5
Cosine Association Model 0.654 0.654 0.853 0.975

DenseNet-121 0.737 0.957 0.984 0.987
Inception v4 0.622 0.915 0.962 0.982

MLFN 0.720 0.947 0.977 0.983
Mudeep 0.606 0.942 0.972 0.977
OSNet 0.565 0.856 0.936 0.950

ResNet-50 0.723 0.948 0.973 0.984
ResNet-MidFeat 0.653 0.938 0.977 0.985

S&E ResNet 0.683 0.928 0.964 0.978
Xception 0.670 0.950 0.982 0.992

Table 5.2 The mAP and CMC at ranks 1, 3 and 5 of the nine re-identification models, trained on MARS
and fine-tuned on our custom pig re-identification dataset, used for re-identifying pigs. We also include
the cosine association model that is integrated as part of Deep SORT.

The performance of each model was clearer when they were evaluated on the Re-ID test data
outline in Section 5.2.3. DenseNet-121 was the highest performing in terms of mAP and CMC
at ranks 1 and 3 (Table 5.2). Despite a relatively average mAP, Xception achieved the second
highest CMC at ranks 1 and 2, eventually outperforming DenseNet-121 at rank 5. This indicates
that though Xception was able to perform well on the test set it was presented, it may be less
capable of generalising to broader, more challenging datasets. Mudeep appears to be in a similar
situation, scoring poorly in mAP, but well in CMC ranks.

When looking at the size of models used, there was no correlation between the size of a
model and it’s performance (both mAP and CMC). However, in extreme cases (i.e. Mudeep
and OSNet), the model size appears to offer further detail to understand their performance. For
example, Mudeep has nearly 10 times the number of trainable parameters than the other models,
which, in line with its performance, suggests an inability to generalise to the test set. Similarly
for OSNet, the model has over 10 times fewer parameters than the other models, which, for this
particular application, suggests that it is too small to model the necessary features to carry out
accurate pig Re-ID.

As part of the analysis of these results, we used Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP) [227] to reduce the dimensionality of the feature
vectors produced by the Re-ID models of each image sequence to two dimensions. Figure 5.6a,
b & c shows scatter plots of these two dimensions for three of the models: DenseNet-121,
the best performing model; S&E ResNet, a mid-performing model; and OSNet, the poorest
performing model, in terms of mAP and Rank-1 CMC. In these plots, the features appear to
group into lines, where the plots of better performing models form longer lines than poorer

91

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

(a) DSANet:
0.737 mAP, 0.957 Rank-1 CMC

(b) S&E ResNet:
0.683 mAP, 0.928 Rank-1 CMC

(c) OSNet:
0.565 mAP, 0.856 Rank-1 CMC

(d) DenseNet:
0.737 mAP, 0.957 Rank-1 CMC

(e) S&E ResNet:
0.683 mAP, 0.928 Rank-1 CMC

(f) OSNet:
0.565 mAP, 0.856 Rank-1 CMC

Figure 5.6 UMAP scatter plots of the feature vectors of each image in the pig re-identification test set
extracted from 3 differently performing models: DenseNet, the best performing model in terms of mAP
and CMC at Rank-1; S&E ResNet, a mid-performing model; and OSNet, the poorest performing model.
Plots a, b, and c use a different random seed to plots d, e, and f.

performing models. Unlike Principal Component Analysis (PCA), UMAP is non-deterministic,
meaning that a different output vector is produced each time it is calculated despite the input
being the same unless a random seed is set. We, therefore, produced duplicate versions of each
of the UMAP plots (Figure 5.6d, e & f) and found that these groupings formed similarly in
each. Substantial differences between the plots can be observed, however, we consistently see
a correlation between the forming of lines within the scatter plot and model performance; the
better a model performs, the more sequence-like groupings occur with an identities features.

5.4.2. Baseline Deep SORT Results

The cosine association metric learner was trained firstly on MARS, followed by our pig Re-ID
dataset described in Section 5.2.2. After training on MARS the model achieved 0.661 mAP
and 0.492, 0.775, and 0.933 CMC at ranks 1, 3 and 5 respectively on the pig Re-ID dataset.
Following fine-tuning, this increased to 0.654 mAP, and 0.654, 0.853, and 0.975 CMC at ranks 1,
3 and 5 respectively. This network was subsequently integrated with Deep SORT and evaluated

92

5.5 Discussion

on the tracking set described in Section 5.2.3 without any tracklet stitching. This resulted in a
baseline of 0.841% IDF1 and 881 IDSWs. The tracklets produced by this method are the starting
point for tracklet stitching that the Re-ID models are applied to.

5.4.3. Tracklet Stitching Results

The nine models that were trained were then applied to the tracks produced by Deep SORT as
outlined in Section 5.3.2. Table 5.3 shows the results of applying each of the models to the task
of tracklet stitching.

Model IDF1↑ IDSWs↓
No Stitching 0.841 881

DenseNet-121 0.846 869
Inception v4 0.826 870

MLFN 0.808 869
Mudeep 0.826 870
OSNet 0.820 869

ResNet-50 0.817 869
ResNet-MidFeat 0.816 869

S&E ResNet 0.827 870
Xception 0.797 873

Table 5.3 The IDF1 (higher is better) and number of IDSWs (lower is better) of nine models used for
stitching tracklets produced by Deep SORT along with the values associated with the original tracklets.

DenseNet-121 had the greatest effect on the base IDF1 and IDSWs produced by Deep SORT.
This resulted in an increased average tracklet length from 28.44 seconds to 53.78 seconds, an
89% increase. Though they scored a lower IDF1 than the original output from Deep SORT,
MLFN, OSNet, ResNet-50, and ResNet-MidFeat also reduced the number of IDSWs to the same
level as DenseNet-121. This indicated that the number of frames tracked under a single identity
was shorter when using these models.

5.5. Discussion

When compared to the high-quality data typically used in crowd analysis and vehicle tracking,
there are additional challenges to detecting and tracking pigs on commercial farms. This is mainly
caused by low FPS footage and poor image quality. The data itself is also more challenging as
pigs are often densely packed into a small area and look very similar in appearance. However, as
understanding the behaviour of pigs can help us to provide a more individually tailored level
of care and thus improve welfare, research into how multi-object tracking can be applied to
individual pig tracking on commercial farms in order to provide individual pig care is valuable.

93

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

Previous research has focussed on applications of multi-object tracking systems using both
depth and colour cameras. In most cases, the MOTA is reported, often alongside multi-object
tracker precision (MOTP) (a metric for measuring localisation rather than tracking), and good
tracking results are reported. However, MOTA fails to properly quantify how well identities are
maintained throughout tracking as it assesses the number of times an identity changes, rather
than how long a tracker correctly identifies an object. MOTA is a measure of how well objects
are tracked, but it does not accurately reflect how well identities are maintained.

In multi-object tracking, reliably maintaining an identity, is not always essential. Therefore
one might choose to prioritise MOTA over IDF1. This is particularly the case if the aim is to
gather group-level statistics. Previous research focussing on individual-level tracking [37], where
tracks were able to be maintained for around 20 minutes, rely entirely on the notion that it is
possible to re-identify pigs by eye. However, this is not always feasible due to how similar they
often look. Therefore, in the case of individual pig tracking, maintaining the identity of a pig
over time is the most important goal.

Typically, research in how multi-object tracking can be applied to pigs focusses directly
on how the tracker can be improved [181, 182, 101, 228, 229, 37, 213], but this comes with
a tradeoff. Generally speaking, improving re-identification capability either comes from an
additional pre-processing step [101] or by improving the model that computes visual similarity
(i.e. increasing model capacity) [182]. As both of these approaches are part of the pipeline
of the tracker, they inherently increase the runtime of the method, meaning they reduce the
FPS the tracker can process. For this reason, this research has focussed on how pigs can be
automatically re-identified to “stitch” tracklets that are produced by real-time trackers that belong
to the same ground truth identity. This way, re-identification runs in parallel to the tracking
method and thus does not affect the performance of the tracker in terms of maximum FPS that
can be processed. Therefore, the main contribution of this work is improving the performance
of existing multi-object trackers, without the need for modifications to the tracking, additional
hardware or physical markings on the pigs.

The models used were trained on a relatively small dataset consisting of only 20 identities.
This added an additional challenge to the training of the models. In the task of Re-ID, it is
desirable to have a large number of identities to train on so that the penultimate layer in the CNN,
that acts as a Re-ID feature vector for an image, generalises well. We attribute the ability of
the Re-ID models to generalise beyond the training data, despite the small number of identities,
substantially to a large number of identities in the MARS dataset (625) that the models were
trained on prior to our custom pig Re-ID dataset which was used for fine-tuning.

Additionally, as all of the methods we have implemented are CNNs, temporality is not
explicitly programmed into the architecture as it is in recurrent neural networks. Instead, the
image that is input to the model is 10 images concatenated. It is expected that the models will

94

5.5 Discussion

learn the concept of temporality implicitly rather than through making it explicit as part of the
architecture.

Of the models we trained on our pig Re-ID datasets and evaluated on our individual pig
tracking dataset, the best model, DenseNet-121 (0.737 mAP, 0.957 rank 1 CMC), improved the
IDF1 score from 0.841 to 0.846. MLFN, OSNet, ResNet-50, and ResNet-MidFeat achieved the
same reduction in IDSWs as DenseNet-121, however, this came at the cost of a lower IDF1. A
simple example of how this is possible is outlined in the previous chapter (Section 4.4).

Where other research focussed on metrics that favour reducing the number of negative
events, we have made use of a more appropriate metric that more accurately evaluates a model
based on its ability to maintain the correct identity of pigs as they are tracked within a pen
on a commercial farm. We have used this metric to evaluate a real-time tracking method
that uses visual appearance to improve identity retention. We then also used it to measure
how implementing a re-identification model, running in parallel to the tracker, can improve
the performance of the algorithm. The advantage of this approach is the ability to get this
performance increase without requiring changes to the existing algorithm, affecting its runtime
or requiring any additional hardware.

Regarding the limitations of this work, we acknowledge that the improvement gained in
terms of IDF1 is relatively small. However, the improvement achieved by the DenseNet-121
model, in terms of IDF1, was on a test set substantially more challenging than the data it had
been trained upon. Specifically, the MARS dataset consists of humans, where identities are
typically much easier to tell apart, and both MARS and our own pig Re-ID dataset consisted
of images of a high-resolution (1920×1080), where the test set was of a very lower resolution
(640×360). Additionally, despite there only being 20 pigs in the pen used for collecting the final
test data, 74 identities were created, as the data collection was carried out using a single camera
that covered only half of the pen. If a pig left the field of view of the camera and then re-entered,
it was assigned a new identity. This meant that it would be possible for the re-identification
model to correctly determine that two images were of the same pig, but for the ground-truth data
to count it as incorrect, as pigs have multiple identities. Despite this, our implementation is still
able to achieve a CMC at Rank 1 of 0.957.

In retrospect, not allowing multiple identities for each pig to be created will give a much
more accurate, and likely favourable, picture of the models’ performance. Also, it would be
more beneficial to improve the pig Re-ID dataset by increasing the number of identities at the
cost of reducing the number of images per identity (i.e. it would be better to have 20 images of
885 identities, rather than the 885 images of 20 identities that made up our dataset).

95

Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep
Re-Identification

5.6. Conclusion

We have implemented and evaluated multiple methods for pig re-identification in a commercial
farm setting that can be used for stitching together tracklets produced by a multi-object tracker
in parallel without affecting runtime even when the images are of very low resolution and the
pigs are indistinguishable by eye. Despite the obstacles created by a challenging dataset, we
were able to increase the IDF1 and reduce the number of IDSW of an existing tracker, that
already contained a visual similarity component. Overall, this work demonstrates that without
the need for additional hardware, preprocessing or increased runtimes, we can improve existing
pig trackers based entirely on their visual appearance. In doing so, we can extract more accurate
behavioural metrics on an individual level, which can give us a better understanding of a pigs
health and wellbeing, without requiring a substantial amount of additional manpower.

96

Chapter 6. General Discussion

In this chapter, we re-visit the overarching aims of this thesis that were set out in Chapter 1,
and outline the main research contributions that were developed throughout our core research
chapters in pursuit of them. In addition to this, we have highlighted the limitations of these
contributions, particularly relating to how current hardware impacts real-world adoption and
implementation. We specify some of the specific challenges regarding the use of deep learning in
agriculture, along with recommendations of how to best deploy our implementations in operating
commercial farms. Finally, we discuss the importance of metric selection when implementing
deep learning models, particularly in relation to the models described in this thesis, and present
areas for further research that this thesis has laid the groundwork for.

6.1. Research Contributions

In the introductory chapter of this thesis (Chapter 1), we outlined what both PLF and deep learn-
ing are, and introduced some of the most recent and influential literature along with identifying
the challenges that are faced both by PLF methods and specific deep learning approaches. Until
recently, research in PLF has predominantly focussed on group-based metrics for livestock,
as monitoring metrics on an individual level comes with extensive challenges. Additionally,
there have been few implementations that exploit the most recent developments in the machine
learning space. Therefore, this thesis set out to show that deep learning methodologies can be
used to improve upon the approaches that have typically been relied upon. Our research has
shown how the advancements in computer vision can be used to greatly enrich the data farmers
can collect about individual animals, and how various deep learning architectures can be used to
process multiple environmental sensors for early warning of oncoming disease.

Despite a wealth of research regarding applications of deep learning for computer vision
challenges, we found a gap in the literature pertaining to the use of deep learning methodologies
for disease forecasting in livestock. Though these methods had been applied to human disease
prediction, though often using univariate data, we explained why this was not enough to assert
that the approaches were directly transferable to livestock applications. We found that the current
commonly implemented methods for agricultural applications were typically SVMs, ARIMA
and a variety of random forest-based architectures. Therefore, we dedicated part of this thesis to
identifying a robust solution for modelling the relationship between environmental conditions

97

General Discussion

and respiratory disease prevalence that could act as an early warning system. In addition, we
sought solutions that used inexpensive hardware and required no additional modification beyond
the initial set up.

Through our research presented in Chapters 2 and 3, we empirically demonstrated that
there is enough information within the environmental data alone to make good estimates about
respiratory disease prevalence and that deep learning methods are well suited to modelling this
relationship. Our implementation used much higher resolution data than the existing literature in
similar applications [230, 106], without the need for preprocessing, demonstrating that they are
capable of processing raw, high-throughput data. Additionally, we showed how reframing the
problem as an anomaly detection task, rather than a forecasting task, improved performance in
RNN-based models, as it allows the model to benefit from the wealth of “normal” data. Finally,
we showed that although CNN architectures do not account for the temporality of data explicitly
in their architecture, they are still capable of learning this relationship through training, and
achieved similar performance to RNN-based approaches but with substantially reduced resources.
It would not be reasonable to expect a system that looks solely at environmental factors to be
able to achieve near-perfect performance, as there are many other factors that affect disease
prevalence [155]. Despite this, our models still achieve strong performance in detecting the
environmental conditions that are likely to cause an increase in respiratory disease prevalence.

The inherent temporal nature of the RNN architecture makes a strong argument for using
them to process time-series data, however, the substantially reduced resource requirements of
both CNNs and transformers makes them very attractive. The research presented in Chapter 3
showed that these non-recurrent architectures are capable of maintaining the performance of
their recurrent counterparts when modelling multivariate time-series data despite their reduced
resource requirements and no explicit concept of temporality. These results, combined with the
overwhelming popularity of both CNNs and transformers in time-series processing, are a strong
indicator that, in some applications, RNNs can be replaced with these newer architectures [168].
The temporal characteristics built into the RNN should not be enough to make them the default
model of choice for temporal data. This sentiment is generally established for applications
processing univariate temporal data [167, 168], but our research shows that this can also be the
case for multivariate temporal data.

Though applications of object detection in PLF, including classification, have been researched
to some extent for both crops and livestock, there is limited literature addressing the long-term
tracking of individual animals in video. Instead, projects that depend upon the monitoring of
animals use human observation to note specific activities and behaviours. Putting the flaws with
this approach aside (addressed in Section 1.1), human observation can work for capturing data
for research, but it does not scale up for the purpose of monitoring a commercial farm, as there is
a drastic difference in scale.

98

6.1 Research Contributions

From the existing literature, we identified that though RFID tags had shown promising results
in tracking the movements of pigs between designated “hotspots”, it was only enough to provide
a rough estimate of activity (e.g. pig 1 located in area A at time X then located in area B at
time Y and so on). This meant that inferring further information from these measurements
would be challenging, as large assumptions would have to be made about the pig’s activity
between these hotspots. Furthermore, there are also challenges for this hardware when there are
multiple identities to detect. In addition to the performance issues, the need for RFID tags to be
regularly installed and removed, along with configuring RFID antennas, is generally undesirable
for real-world implementations, as it requires a change in the existing workflow for farmers,
therefore adding friction to adoption. Additionally, the utilisation of this technology is not
considered cost-effective within the farming industry. Based on these findings, our research
sought a solution that could be implemented into commercial farms and that would not require
any hardware beyond the initial installation. Any hardware that was required also had to be
inexpensive to further reduce the barrier to entry for commercial farms.

The research presented in Chapters 4 and 5 were combined and ran in parallel to form a
workflow for the long-term tracking of pigs using deep learning methodologies in all components
of the system: detection, tracking, and re-identification. Our research has shown that multiple
stages of training on benchmark datasets and fine-tuning on our custom-built pig detection
dataset enables a Faster R-CNN architecture to detect pigs in images with strong performance,
and that the visual appearance of a pig can be used to enhance the tracking of them between
frames. This was achieved even in extremely challenging scenarios, such as times where pigs
were densely packed together and across extreme variations in light intensity, both of which are
common, challenging conditions for CNNs.

In addition to the detection and tracking, numerous CNN architectures were evaluated to
determine their performance in pig re-identification and demonstrated that the best performing
model, DenseNet, could be used to improve tracking performance. This re-identification model
was implemented in such a way that it could be used alongside any tracking mechanism, as it
was designed to run in parallel to an existing tracker so as to not impact performance in terms of
FPS. This combination of tracking and Re-ID architectures created a foundation for tracking the
behaviours of pigs as individual animals over prolonged periods of time, rather than as an entire
batch.

The design of the tracking system, accounted for the generalisation capacity of our models,
considering the different farms, or animals, this approach could be implemented in or applied to.
Though we do not validate this in our research, by choosing the Faster R-CNN architecture over
YOLO, the system could be installed in taller buildings or be used on smaller animals with limited
effect on detection rates, as Faster R-CNN performs better on smaller objects. Additionally, the
detector could be trained to detect any number of species in a single model, allowing a single
model to be applied to various animals. However, regarding the re-identification and association
metric components, variations in object size would likely impact performance unless a higher

99

General Discussion

resolution camera was used, as these were dependent on the finer details in images. Nonetheless,
we would expect these models to also be able to re-identify multiple animals within a single
model.

The performance of DenseNet in pig Re-ID demonstrated the impressive capability of
CNN-based models. Despite the fact that the pigs used in our dataset were almost entirely
indistinguishable from one another by eye, it achieved both a strong mAP and CMC at rank 1.
Multi-object tracking is most commonly applied to humans (e.g. crowd analysis) and vehicles
(e.g. self-driving cars) [205]. In both of these applications, an object’s trajectory at any given
time is typically a strong indicator of their future location. However, our research shows that the
Re-ID workflow, typically reserved for multi-camera Re-ID, can go beyond this. The approach
we presented validates that it is also well suited to the task of tracklet stitching, not only to
recover from long-term occlusions, but also when the object movement is chaotic and objects are
extremely similar in appearance.

6.2. Research Limitations

As with many interdisciplinary research projects, striking a balance between the various sides was
not straightforward. In the case of this thesis, which was at the intersection of computer science
and agriculture, it meant both sides needed to accept trade-offs. Our research focussed not only
on introducing novel approaches to the challenges in PLF, but also on providing accessible
solutions, by taking into account how the methods we presented could be deployed into operating,
commercial farms. This created a drive to reduce computational resources where possible and
ensure that any hardware that was necessary for implementation was affordable.

The main limitation of the work presented across Chapters 2 and 3 was that only environ-
mental data from within the housing unit was used to train the model to understand “normality”.
Values for temperature, humidity and CO2 only describe a narrow view of farm conditions.
Factors beyond environmental conditions are known to impact disease prevalence, such as herd
size, herd density, vaccination usage, weaning age and whether a farm has facilities to incinerate
deceased pigs [175]. Providing these values as training data, alongside the environmental condi-
tions within the housing unit, would likely improve the performance of the model, as it provides
a more holistic view of the farm conditions.

A further limitation of the early-warning system for oncoming respiratory disease relates to
the generalisability of the overall approach to pigs at different stages of growth. The data used
to train the Seq-U-Net was captured from growing pigs, resulting in the model being limited to
the ideal conditions for growing pigs specifically. Weaning pigs, which are younger and smaller
than growing pigs, are much more susceptible to disease due to their immune system being less
developed [231]. Therefore, a model that is capable of achieving similar results for pigs at this
stage would be valuable. Although the general approach presented in Chapter 3 is likely capable

100

6.2 Research Limitations

of modelling similar data captured from weaning pigs, in its current configuration, it would not
be able to account for both growing and weaning pigs simultaneously. This is largely due to
weaning pigs having different environmental needs and a lower tolerance to changes in their
environmental conditions. However, accounting for the age of pigs alongside the other inputs
would be a potential remedy to this challenge. It would enable the model to learn that the concept
of normality changes depending upon the age of the pigs and would avoid the need for training
different models for pigs of different ages.

Typically, farms are situated in remote locations where access to high-speed network and
other infrastructure is severely limited, putting constraints on the types of solutions that can be
used. Our experience regarding the collection of data throughout this research project made
it clear that until substantial improvements are made to the network infrastructure available
in remote locations, there will always be limitations on what can be achieved. For example,
carrying out data collection on-site and streaming it to a cloud-based service for processing
would not be workable as the network is often too unreliable.

As the computing power of single-board devices improves, such as Nvidia’s Jetson de-
vices [176] and Google’s Coral devices [177], implementing “edge compute” solutions for deep
learning methods becomes more feasible. Using this approach, solutions are deployed onto a
device located on-site. This device both captures and processes the raw data, meaning only the
relevant outputs need to be disseminated to external services. In the case of computer vision
applications, this is typically several orders of magnitude less data, reducing the impact of
poor infrastructure. These devices are still in their infancy, but significant improvements have
been made in recent years to make “embedded machine learning” a viable method of deploy-
ment [176], and provides a real alternative to cloud-based solutions, particularly for remote
locations. Currently, these devices have very limited memory, which was why our research to
reduce the resource requirement of our work in Chapter 2 was so valuable, as the CNN-based
approach (Section 3.2.2) reduced the memory requirement by almost half. This made the overall
solution more feasible to be used in an edge-based deployment and memory is usually scarce.

The hardware decisions that needed to be made regarding our capturing of the environmental
data were relatively simple. The necessary sensors are inexpensive and commercial, off-the-shelf
units exist specifically for deployment in farms [134]. However, in almost all applications
of computer vision, there is a need for the use of cameras and choosing the right one has a
substantial impact on what can be achieved.

For our work in Chapters 4 and 5 we used the Microsoft Kinect v2 for image capturing (only
the RGB sensor was used meaning any high-resolution camera could be used as a substitute).
As discussed in Section 1.1, both RGB and depth sensors have been used in existing literature
for applications relating to pig management, including activity monitoring, and both come with
the respective benefits and drawbacks. One of the major downsides of using an RGB sensor
is that they cannot be used at night. This is a particular issue in an agricultural setting as, by

101

General Discussion

law, all animals must be provided with an appropriate day/night cycle [232]. Although the
work in this thesis achieved surprisingly good performance in very low-light conditions for pig
detection (Section 4.3.1), it was not expected that this would be enough for carrying out reliable
multi-object tracking at night. Depth sensors, on the other hand, can be used to overcome this, as
they use infrared light, though they are not without drawbacks.

Our research showed that using the visual appearance of pigs can be used to enhance the
performance of multi-pig tracking. Though research has been carried out with relation to pig
tracking in 3D depth images [35], for our particular application, it would inhibit the performance
of the tracking algorithm as there would be no access to colour data making it very difficult
to have individual-level tracking. Research has begun to address the challenges of human re-
identification using depth sensors, often focussing on applications where there is low lighting or
the specific use case requires the capability to re-identify people after they change clothes [233].
However, this research is still very much tied to human applications, as approaches often rely
upon estimating a skeleton for the person and using that to determine an identity. This is
dependent on viewing the target human from a specific angle. An additional drawback of depth
sensors is that their accuracy typically degrades the further away an object is. This can create
challenges if a system needs to be installed in a building with a high ceiling or if large areas
needs to be covered by the sensor’s fields of view. Furthermore, depth sensors are typically more
expensive than RGB, especially if they need to have an accurate, large operating range.

One of the benefits of RGB sensors over depth is that there was no need for any kind of
sensor calibration, whereas this is typically a common requirement when using depth sensors.
Through the research presented in Chapter 5, we showed that our detection and re-identification
models trained on data captured on the Kinect v2 were able to detect, track, and re-identify pigs
in images captured from a different RGB sensor that was recording at a resolution that was 3
times lower. These two sensors were installed in different locations and no explicit effort was
made to ensure they were installed in a similar configuration (e.g. angle to the floor). The only
consideration that was made was to ensure that they covered their designated area of the pen.
This speaks for the generalisability of our implementation, meaning that it is possible for our
models to be deployed on another farm without requiring any additional training or calibration
to the new location.

6.3. Challenges to Deep Learning Approaches

One of the biggest criticisms of deep learning methodologies, with respect to classical statistical
approaches and even traditional machine learning, is the sheer amount of data that is necessary
for them to achieve their performance gains. This was part of the reason that the work we present
in Chapters 2 and 3 treated our early-warning system as an anomaly detection problem, as a
substantial majority of our data was “normal” data, so it made sense to make the most of this

102

6.3 Challenges to Deep Learning Approaches

situation. However, knowing which parts of the data were normal required extensive human
annotation over a long period of time across multiple farms throughout Europe, which was only
achievable due to the scale of the project. In the case of the image data used for this research,
pre-training the part of the network responsible for extracting feature maps (often referred to as
the “backbone”) is a common step taken to reduce the need for large amounts of domain-specific
training data.

In our work presented in Chapter 4, the ResNet backbone used in our object detection model
was initialised with weights that were pre-trained on the ImageNet dataset. It is common to
initialise with pre-trained weights, rather than manually pre-training, as the ImageNet dataset
is extremely large and tuning a model to this dataset is a task in and of itself. This pre-training
meant that this portion of the model had already been optimised to extract feature maps from
images that could be used to classify it. Once the region proposal network and fully connected
layers were added to this backbone, the model was then pre-trained on an object detection
benchmark dataset (VOC) and subsequently on our own domain-specific object (pig) detection
dataset. Without the ImageNet dataset for pre-training, our domain-specific dataset of around
1,000 images would not have been enough for accurate object detection. The amount of data
that would need to be annotated to achieve this without ImageNet would have likely made our
approach infeasible.

Even with an abundance of pre-training data, there was still a need for domain-specific data
annotation, particularly for our research in re-identification, as we used a supervised training
approach. Though more recent research has started to explore using similar architectures for
unsupervised re-identification of objects, the decision to use a supervised training approach in
this thesis was driven by the fact that our data was particularly challenging. This is particularly
the case when compared to person re-identification as is often covered in the literature [234–237].
Before research can address an unsupervised approach for this application, it was necessary to
understand the performance of a supervised approach. This gives an indication of the capability
of a CNN-based approach for pig re-identification and sets a baseline for what can be achieved
these architectures.

Another criticism of deep learning-based solutions is substantially longer training times,
which is often a by-product of the quantity of data used to train the models. This issue is
particularly noticeable in Chapter 2 of this thesis, where we compared deep learning methods
with a classical statistical approach, ARIMA. In Section 2.5.3, our results showed that GRU
models took several days, whereas ARIMA was trained within 24 hours. Looking at the
performance improvement of the GRU-AE model over ARIMA, an argument could be made
that it is not worth the additional training time. However, in the same way that our pig re-
identification chapter laid the groundwork for future unsupervised approaches to this problem,
the GRU-AE model laid the groundwork for exploring other autoencoder-based architectures
that could remedy this flaw. In Chapter 3, we demonstrated that a similar approach using a

103

General Discussion

CNN could reduce the training time to a fraction of that of ARIMA with minimal effect on the
performance of the model.

As outlined in the introductory chapter of this thesis, selecting the correct metric to evaluate
a deep learning model is equally as important as selecting the correct architecture. Throughout
this thesis, multiple decisions were made regarding the choice of metric. In Chapters 2 and 3
the decision was made to use precision and recall, as is typical in these cases, but rather than
using F1 we opted for MCC. This metric meant that the classifier had to correctly classify both
positive and negative cases in order to achieve a good MCC, making it more suitable for our
imbalanced dataset [69]. In Chapters 4 and 5, rather than using solely MOTA, we also reported
IDF1. Where MOTA quantifies how well multiple objects are tracked, IDF1 quantifies how
well multiple identities are tracked. In both the case of MCC and IDF1, our research has found
them to be relatively under-utilised metrics in the existing literature. In the case of IDF1, this
may be because identity tracking is not always pertinent to the particular application being
evaluated. Nonetheless, it should be reported regardless, as it much more accurately represents
the performance of multi-object tracking systems.

The development of deep learning frameworks such as PyTorch [238] and TensorFlow [239]
have made implementing deep learning models substantially faster than using array libraries
such as NumPy [240]. All of the work for this thesis was implemented using PyTorch. This
decision was made at the time as PyTorch utilised a dynamic computation graph, as opposed
to a static computation graph that was used by TensorFlow. At the cost of performance, a
dynamic computation graph allows for an easier development cycle as they are easier to debug.
Additionally, it simplified the process for allowing our RNN-based architectures to accept
variable-length input sequences, as the graph is created for the data it is receiving at runtime,
rather than requiring it to be specified beforehand. Since making that decision, both frameworks
now support both dynamic and static computation graphs. There are also a plethora of additional
libraries than can be used to improve experiment reproducibility [241] and to simplify the
development process by helping with the tracking of experiments, their parameters, and their
results [242].

6.4. Real-World Deployment

One of the main aims of this thesis was to account for how the work we have presented could be
used in an operational, commercial farm. From a data perspective, we ensured that all the data we
collected for model training and evaluation was obtained from working farms in order to ensure
that we had to deal with as many of the challenges that a real-world implementation would face.
Additionally, in order to demonstrate that our solutions could be implemented on any farm, we
evaluated both the early-warning system from Chapters 2 and 3 and the pig tracking system from
Chapters 4 and 5 under varying conditions. The early-warning system was evaluated on data

104

6.4 Real-World Deployment

from farms across Europe in substantially different climates (Belgium, Cyprus and Spain) and
the pig tracking system was evaluated on data from two different cameras operating at different
resolutions, covering different locations.

With respect to the installation of hardware for the Seq-U-Net early warning system, tem-
perature, humidity and CO2 sensors would need to be installed and linked to a compute device.
Despite training and evaluating the models on GPUs, a CPU would be sufficient for the de-
ployment of the system, as inference is only done on a minutely basis. For the pig tracking
system, our research only covered implementations with a single camera. Therefore, in an ideal
situation, a single camera would cover the entire pen area, as having only a proportion of the
pen covered introduces substantial challenges to re-identification of pigs; mostly in situations
where the pigs leave and subsequently re-enter the field of view of the camera. In addition to the
camera, a compute device equipped with a GPU would be necessary for this implementation,
as it is not currently possible to do CPU-based object detection at a good enough frame rate
that allows for reliable tracking of objects between frames. Both Deep SORT and the DenseNet
re-identification model could be run on a CPU rather than GPU. However, for the latter of the
two, this would depend upon the conditions at a given farm (e.g. lighting, camera angle, etc.). In
poorer conditions, it would be expected that longer periods of lost detections would occur, which
impacts how often the re-identification model would be needed.

Despite RGB sensors not requiring specific calibration or configuration, a proportion of the
flaws in tracking the performance can likely be attributed to the angle at which the cameras
were installed. In all of the camera installations that were used to create our own datasets, two
cameras were installed next to each other on the ceiling, in the centre of the pen. In order to
have coverage of the entire pen, the cameras were angled outwards, rather than pointing directly
at the floor, meaning that it was more likely that a pig on the outskirts of the pen would be
occluded by another pig next to it. This would undoubtedly negatively impact the performance
of detection, and therefore also tracking. Although the re-identification model was introduced
to recover from these situations, it is preferable to avoid these situations where possible. In a
real-world deployment, we would recommend that cameras be installed so that the sensor is
positioned perpendicular to the ground and, in order to still have good pen coverage, they should
be mounted in the centre of the area the sensor is expected to cover, rather than the centre of the
pen.

In all of the implementations proposed in this thesis, outside of the initial installation, no
changes in day-to-day activity on the farm would be necessary. Where other methods might
require the spraying of identifiers onto the backs of pigs, or the installation and removal of
identity tags, our approaches adopt a "set-and-forget" approach. After the hardware is installed,
an application could be deployment so that farmers receive notifications regarding potential
problems to prompt them to investigate. This, combined with their own expertise, would
minimise the amount of time needed to spend observing animals, allowing them to focus on
more challenging tasks.

105

General Discussion

6.5. Future Research

Through the research presented in this thesis, we have created the potential for additional research
that could build upon our findings and implementations to further utilise technology to make the
adoption of PLF concepts easier for commercial farms. One such example of this could be using
the early-warning system and pig tracking system in conjunction with one another. Implementing
these systems alongside one another would give broader coverage of many of the variables that
can alert to the signs of disease. Where the early-warning system could provide a general alert to
poor environmental conditions for a batch of pigs, the tracking system could be used to identify
any specific pigs that need intervention. Furthermore, our specific approach to anomaly detection
in time-series data could be applied directly to the activity levels of each individual pigs. Where
the training data would be a sequence of coordinates that represents “normal” activity levels.

As discussed in Section 6.2, a major factor holding back the performance of the environmental
sensor anomaly detection is that there are other factors that contribute to the respiratory disease
prevalence. Therefore, in addition to extending the anomaly detection model to other species,
future research may consider including additional inputs to the model to improve coverage
of the various factors that contribute to respiratory disease prevalence. Previous research has
indicated that changes in food and water consumption is a strong indicator of a change in an
animal’s condition [23, 24], therefore incorporating this data, as well as the variables identified
in Section 6.2, into the anomaly detection model would likely improve the overall early-warning
system. This data can be recorded using flow rate sensors that can be calibrated to calculate the
total amount of water consumed by animals for a given batch. It can be integrated into the model
by adding an additional dimension to the input tensor, all other training and inference stages
would remain as described.

The work presented throughout this thesis has been implemented such that it is species
agnostic, meaning that minimal changes to the implementation would be necessary for it to be
applied to animals other than pigs. Object detection architectures, such as the Faster R-CNN
detector used in Chapters 4 and 5, are often proposed alongside performance metrics for the
benchmark datasets such as VOC. These typically contain a range of objects such as household
items, vehicles and various animals. Therefore, future work may look at collecting a multi-
species dataset to create a single detection and tracking workflow that could be applied to various
species. Variations in performance should be expected, as animals that look similar to one another
would likely result in poorer performance in re-identification. However, understanding the limits
of existing re-identification approaches, such as which species are difficult to re-identify and
why, is a step towards developing improved architectures.

As our tracking system currently only supports a single camera, extending the algorithm to
enable re-identification of animals between multiple cameras would be a major improvement to
the system, allowing for tracking of animals in a much larger area and potentially even outside.

106

6.6 Conclusion

To achieve this using a supervised training approach, multiple images of each identity from
various cameras would need to be collected. However, unsupervised methods may prove to be
a better option, as they can improve the generalisability of the model to different settings as
discussed in Section 6.3; their ability to perform on visually similar objects has not yet been
fully determined.

6.6. Conclusion

In pursuit of the aims of this thesis, we have shown that deep learning has a lot to offer the
agricultural industry regarding the monitoring and modelling of individual animals. In this
thesis, we have proposed a deep learning, autoencoder-based approach to anomaly detection in
multivariate time-series. This architecture was able to detect when environmental conditions
are likely to result in an increase in respiratory disease prevalence in pigs. Our implementation
generalises across multiple climates across Europe and does not require any pre-processing
of sensor data, such as handcrafted features or time-series decomposition. Additionally, we
have presented a full workflow for the detection and tracking of individual pigs in an operating,
commercial farm that did not require any hardware beyond a standard RGB camera. This used a
pig’s appearance, in conjunction with its trajectory, to re-identify it after short-term interruptions
to tracking A separate model was used to recover from long-term tracking interruptions, which
only used a pig’s appearance to associate it with an existing identity. This individual pig
tracker was used to extract activity metrics for each pig, which could then be used by farmers
to understand the health and welfare conditions of each pig. Despite our research focussing
specifically on applications in pig farming, it is clear that the methods we have implemented
and evaluated have applications to other species and more broadly within the field. Although
there is often a great deal of unwarranted “hype” surrounding deep learning algorithms, the work
presented in this thesis demonstrates that there is justified reason to be excited for the future of
deep learning in Precision Livestock Farming.

107

References

[1] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018.

[2] Christopher Olah. Understanding lstm networks, 2015.

[3] Fjodor Van Veen. A Mostly complete chart of Neural Networks. The Asimov Institute,
2016.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[5] Daniel Stoller, Mi Tian, Sebastian Ewert, and Simon Dixon. Seq-u-net: A one-dimensional
causal u-net for efficient sequence modelling. arXiv preprint arXiv:1911.06393, 2019.

[6] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In
Advances in neural information processing systems, pages 2440–2448, 2015.

[7] Siteng Huang, Donglin Wang, Xuehan Wu, and Ao Tang. Dsanet: Dual self-attention
network for multivariate time series forecasting. In Proceedings of the 28th ACM In-
ternational Conference on Information and Knowledge Management, pages 2129–2132,
2019.

[8] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Per-
formance measures and a data set for multi-target, multi-camera tracking. In European
Conference on Computer Vision, pages 17–35. Springer, 2016.

[9] Hannah Ritchie Max Roser and Esteban Ortiz-Ospina. World population growth. Our
World in Data, 2013. https://ourworldindata.org/world-population-growth.

[10] Hannah Ritchie. Meat and dairy production. Our World in Data, 2017.
https://ourworldindata.org/meat-production.

[11] Thomas P Van Boeckel, Charles Brower, Marius Gilbert, Bryan T Grenfell, Simon A
Levin, Timothy P Robinson, Aude Teillant, and Ramanan Laxminarayan. Global trends
in antimicrobial use in food animals. Proceedings of the National Academy of Sciences,
112(18):5649–5654, 2015.

[12] European Surveillance of Veterinary Antimicrobial Consumption European
Medicines Agency. Sales of veterinary antimicrobial agents in 30 european countries in
2015. 178p, 2017.

[13] Christy Manyi-Loh, Sampson Mamphweli, Edson Meyer, and Anthony Okoh. Antibiotic
use in agriculture and its consequential resistance in environmental sources: potential
public health implications. Molecules, 23(4):795, 2018.

[14] Daniel Berckmans. Automatic on-line monitoring of animals by precision livestock
farming. Livestock production and society, 287, 2006.

109

References

[15] Beth Clark, Gavin B Stewart, Luca A Panzone, I Kyriazakis, and Lynn J Frewer. A
systematic review of public attitudes, perceptions and behaviours towards production
diseases associated with farm animal welfare. Journal of Agricultural and Environmental
Ethics, 29(3):455–478, 2016.

[16] Konstantinos G Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson, and Dionysis
Bochtis. Machine learning in agriculture: A review. Sensors, 18(8):2674, 2018.

[17] International Society for Precision Agriculture. Precision ag definition, 2019.

[18] Annelies Michiels, Sofie Piepers, T Ulens, N Van Ransbeeck, R Del Pozo Sacristán,
Annelies Sierens, Freddy Haesebrouck, P Demeyer, and Dominiek Maes. Impact of
particulate matter and ammonia on average daily weight gain, mortality and lung lesions
in pigs. Preventive veterinary medicine, 121(1):99–107, 2015.

[19] Ilias Kyriazakis. Pathogen-induced anorexia: a herbivore strategy or an unavoidable
consequence of infection? Animal Production Science, 54(9):1190–1197, 2014.

[20] ST Ahmed, H-S Mun, H Yoe, and C-J Yang. Monitoring of behavior using a video-
recording system for recognition of salmonella infection in experimentally infected grow-
ing pigs. Animal, 9(1):115–121, 2015.

[21] Katharina DC Stärk. Epidemiological investigation of the influence of environmental
risk factors on respiratory diseases in swine—a literature review. The Veterinary Journal,
159(1):37–56, 2000.

[22] Qingyun Li and John F Patience. Factors involved in the regulation of feed and energy
intake of pigs. Animal Feed Science and Technology, 233:22–33, 2017.

[23] Thomas Nejsum Madsen and Anders Ringgaard Kristensen. A model for monitoring
the condition of young pigs by their drinking behaviour. Computers and electronics in
agriculture, 48(2):138–154, 2005.

[24] HM-L Andersen, Lise Dybkjær, and Mette S Herskin. Growing pigs’ drinking behaviour:
number of visits, duration, water intake and diurnal variation. Animal, 8(11):1881–1888,
2014.

[25] Janeen L Salak-Johnson, Deirdre L Anderson, and John J McGlone. Differential dose
effects of central crf and effects of crf astressin on pig behavior. Physiology & behavior,
83(1):143–150, 2004.

[26] Jeffery Escobar, William G Van Alstine, David H Baker, and Rodney W Johnson. Be-
haviour of pigs with viral and bacterial pneumonia. Applied Animal Behaviour Science,
105(1-3):42–50, 2007.

[27] Marian Stamp Dawkins. Observing animal behaviour: design and analysis of quantitative
data. Oxford University Press, 2007.

[28] Jarissa Maselyne, Wouter Saeys, Bart De Ketelaere, Petra Briene, Sam Millet, Frank
Tuyttens, and Annelies Van Nuffel. How do fattening pigs spend their day?, 09 2014.

[29] Benjamin L Hart. Behavioral adaptations to pathogens and parasites: five strategies.
Neuroscience & Biobehavioral Reviews, 14(3):273–294, 1990.

[30] David Fraser. Understanding animal welfare. Acta Veterinaria Scandinavica, 50(1):1–7,
2008.

[31] Paul H Hemsworth, Grahame J Coleman, John L Barnett, and Samantha Borg. Relation-
ships between human-animal interactions and productivity of commercial dairy cows.
Journal of animal science, 78(11):2821–2831, 2000.

110

References

[32] RG Huhn. Swine enzootic pneumonia: incidence and effect on rate of body weight gain.
American journal of veterinary research, 31:1097–1108, 1970.

[33] TM Brown-Brandl and RA Eigenberg. Development of a livestock feeding behavior
monitoring system. Transactions of the ASABE, 54(5):1913–1920, 2011.

[34] Anita Kapun, Felix Adrion, and Eva Gallmann. Activity analysis to detect lameness in
pigs with a uhf-rfid system. In 10th International Livestock Environment Symposium
(ILES X), page 1. American Society of Agricultural and Biological Engineers, 2018.

[35] Stephen G Matthews, Amy L Miller, Thomas PlÖtz, and Ilias Kyriazakis. Automated
tracking to measure behavioural changes in pigs for health and welfare monitoring.
Scientific reports, 7(1):1–12, 2017.

[36] Jinseong Kim, Yeonwoo Chung, Younchang Choi, Jaewon Sa, Heegon Kim, Yongwha
Chung, Daihee Park, and Hakjae Kim. Depth-based detection of standing-pigs in moving
noise environments. Sensors, 17(12):2757, 2017.

[37] Mateusz Mittek, Eric T Psota, Jay D Carlson, Lance C Pérez, Ty Schmidt, and Benny
Mote. Tracking of group-housed pigs using multi-ellipsoid expectation maximisation.
IET Computer Vision, 12(2):121–128, 2017.

[38] Miso Ju, Younchang Choi, Jihyun Seo, Jaewon Sa, Sungju Lee, Yongwha Chung, and
Daihee Park. A kinect-based segmentation of touching-pigs for real-time monitoring.
Sensors, 18(6):1746, 2018.

[39] Martin Riekert, Achim Klein, Felix Adrion, Christa Hoffmann, and Eva Gallmann. Au-
tomatically detecting pig position and posture by 2d camera imaging and deep learning.
Computers and Electronics in Agriculture, 174:105391, 2020.

[40] Andrea Pezzuolo, Marcella Guarino, Luigi Sartori, Luciano A González, and Francesco
Marinello. On-barn pig weight estimation based on body measurements by a kinect v1
depth camera. Computers and Electronics in Agriculture, 148:29–36, 2018.

[41] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[42] Rina Dechter. Learning while searching in constraint-satisfaction-problems. AAAI, pages
178–185, 01 1986.

[43] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[44] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[45] Dave Steinkraus, Ian Buck, and PY Simard. Using gpus for machine learning algorithms.
In Eighth International Conference on Document Analysis and Recognition (ICDAR’05),
pages 1115–1120. IEEE, 2005.

[46] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural
networks for document processing. In Tenth International Workshop on Frontiers in
Handwriting Recognition, 2006.

[47] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

[48] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

111

References

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[50] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-based lstm for
aspect-level sentiment classification. In Proceedings of the 2016 conference on empirical
methods in natural language processing, pages 606–615, 2016.

[51] Lianli Gao, Zhao Guo, Hanwang Zhang, Xing Xu, and Heng Tao Shen. Video captioning
with attention-based lstm and semantic consistency. IEEE Transactions on Multimedia,
19(9):2045–2055, 2017.

[52] Yang Li, Ting Liu, Jing Jiang, and Liang Zhang. Hashtag recommendation with topical
attention-based lstm. In Proceedings of the 26th International Conference on Computa-
tional Linguistics. Coling, 2016.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[54] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

[55] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[56] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[57] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. arXiv preprint arXiv:1207.0580, 2012.

[58] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[59] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[60] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

[61] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[62] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[64] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[65] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[66] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

112

References

[67] Shiyao Wang, Minlie Huang, and Zhidong Deng. Densely connected cnn with multi-scale
feature attention for text classification. In IJCAI, pages 4468–4474, 2018.

[68] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M
Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2097–2106, 2017.

[69] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation
coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC
genomics, 21(1):6, 2020.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[71] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[72] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015.

[73] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of cnn
and rnn for natural language processing. arXiv preprint arXiv:1702.01923, 2017.

[74] Ying Zhang, Mohammad Pezeshki, Philémon Brakel, Saizheng Zhang, Cesar Lau-
rent Yoshua Bengio, and Aaron Courville. Towards end-to-end speech recognition with
deep convolutional neural networks. arXiv preprint arXiv:1701.02720, 2017.

[75] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[76] Ryo Akita, Akira Yoshihara, Takashi Matsubara, and Kuniaki Uehara. Deep learning
for stock prediction using numerical and textual information. In 2016 IEEE/ACIS 15th
International Conference on Computer and Information Science (ICIS), pages 1–6. IEEE,
2016.

[77] Gustavo Marques Mostaco, Icaro Ramires Costa De Souza, Leonardo Barreto Campos,
and Carlos Eduardo Cugnasca. Agronomobot: a smart answering chatbot applied to
agricultural sensor networks. In 14th international conference on precision agriculture,
volume 24, pages 1–13, 2018.

[78] Subhajit Sengupta and Won Suk Lee. Identification and determination of the number
of immature green citrus fruit in a canopy under different ambient light conditions.
Biosystems Engineering, 117:51–61, 2014.

[79] Chia-Lin Chung, Kai-Jyun Huang, Szu-Yu Chen, Ming-Hsing Lai, Yu-Chia Chen, and
Yan-Fu Kuo. Detecting bakanae disease in rice seedlings by machine vision. Computers
and electronics in agriculture, 121:404–411, 2016.

[80] Iván Ramírez Morales, Daniel Rivero Cebrián, Enrique Fernández Blanco, and Alejan-
dro Pazos Sierra. Early warning in egg production curves from commercial hens: A svm
approach. Computers and Electronics in Agriculture, 121:169–179, 2016.

113

References

[81] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2015.

[82] Suchet Bargoti and James Underwood. Deep fruit detection in orchards. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 3626–3633. IEEE,
2017.

[83] Nicolai Häni, Pravakar Roy, and Volkan Isler. A comparative study of fruit detection
and counting methods for yield mapping in apple orchards. Journal of Field Robotics,
37(2):263–282, 2020.

[84] Mads Dyrmann, Rasmus Nyholm Jørgensen, and Henrik Skov Midtiby. Roboweedsupport-
detection of weed locations in leaf occluded cereal crops using a fully convolutional neural
network. Advances in Animal Biosciences: Precision Agriculture, 8(2):842–847, 2017.

[85] J Barker, S Sarathy, and AT July. Detectnet: Deep neural net-
work for object detection in digits. Nvidia,(retrieved: 2020-09-10),
https://web.archive.org/web/20200809183711/https://developer.nvidia.com/blog/detectnet-
deep-neural-network-object-detection-digits/, 2016.

[86] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

[87] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[88] Junfeng Gao, Andrew P French, Michael P Pound, Yong He, Tony P Pridmore, and
Jan G Pieters. Deep convolutional neural networks for image-based convolvulus sepium
detection in sugar beet fields. Plant Methods, 16(1):1–12, 2020.

[89] Dino Ienco, Raffaele Gaetano, Claire Dupaquier, and Pierre Maurel. Land cover classifi-
cation via multitemporal spatial data by deep recurrent neural networks. IEEE Geoscience
and Remote Sensing Letters, 14(10):1685–1689, 2017.

[90] Dinh Ho Tong Minh, Dino Ienco, Raffaele Gaetano, Nathalie Lalande, Emile Ndiku-
mana, Faycal Osman, and Pierre Maurel. Deep recurrent neural networks for mapping
winter vegetation quality coverage via multi-temporal sar sentinel-1. arXiv preprint
arXiv:1708.03694, 2017.

[91] Marc Rußwurm and M Körner. Multi-temporal land cover classification with long short-
term memory neural networks. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 42:551, 2017.

[92] Beibei Xu, Wensheng Wang, Greg Falzon, Paul Kwan, Leifeng Guo, Zhiguo Sun, and
Chunlei Li. Livestock classification and counting in quadcopter aerial images using mask
r-cnn. International Journal of Remote Sensing, pages 1–22, 2020.

[93] Liang Han, Pin Tao, and Ralph R Martin. Livestock detection in aerial images using a
fully convolutional network. Computational Visual Media, 5(2):221–228, 2019.

[94] Theo GM Demmers, S Gauss, CM Wathes, Y Cao, DJ Parsons, et al. Simultaneous
monitoring and control of pig growth and ammonia emissions. In The Ninth International
Livestock Environment Symposium (ILES IX). International Conference of Agricultural
Engineering-CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valen-
cia, Spain, 8-12 July 2012. CIGR-EurAgEng, 2012.

114

References

[95] Qiumei Yang, Deqin Xiao, and Sicong Lin. Feeding behavior recognition for group-
housed pigs with the faster r-cnn. Computers and Electronics in Agriculture, 155:453–460,
2018.

[96] Ali Alameer, Ilias Kyriazakis, Hillary A Dalton, Amy L Miller, and Jaume Bacardit.
Automatic recognition of feeding and foraging behaviour in pigs using deep learning.
Biosystems Engineering, 197:91–104, 2020.

[97] Qiumei Yang, Deqin Xiao, and Genxing Zhang. An algorithm for pig detection and
behavior recognition based on deep learning technique. Animal Environment and Welfare,
2017.

[98] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin Wang. Towards real-time
multi-object tracking. arXiv preprint arXiv:1909.12605, 2019.

[99] Ergys Ristani and Carlo Tomasi. Features for multi-target multi-camera tracking and
re-identification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6036–6046, 2018.

[100] Eric T Psota, Ty Schmidt, Benny Mote, and Lance C Pérez. Long-term tracking of
group-housed livestock using keypoint detection and map estimation for individual animal
identification. Sensors, 20(13):3670, 2020.

[101] Lei Zhang, Helen Gray, Xujiong Ye, Lisa Collins, and Nigel Allinson. Automatic
individual pig detection and tracking in pig farms. Sensors, 19(5):1188, 2019.

[102] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[103] Khaled A Althelaya, El-Sayed M El-Alfy, and Salahadin Mohammed. Stock market
forecast using multivariate analysis with bidirectional and stacked (lstm, gru). In 2018
21st Saudi Computer Society National Computer Conference (NCC), pages 1–7. IEEE,
2018.

[104] Sajjad Ali Haider, Syed Rameez Naqvi, Tallha Akram, Gulfam Ahmad Umar, Aamir
Shahzad, Muhammad Rafiq Sial, Shoaib Khaliq, and Muhammad Kamran. Lstm neural
network based forecasting model for wheat production in pakistan. Agronomy, 9(2):72,
2019.

[105] Kiran M Sabu and TK Manoj Kumar. Predictive analytics in agriculture: Forecasting
prices of arecanuts in kerala. Procedia Computer Science, 171:699–708, 2020.

[106] Siva R Venna, Amirhossein Tavanaei, Raju N Gottumukkala, Vijay V Raghavan, An-
thony S Maida, and Stephen Nichols. A novel data-driven model for real-time influenza
forecasting. IEEE Access, 7:7691–7701, 2018.

[107] G Wang, W Wei, J Jiang, C Ning, H Chen, J Huang, B Liang, N Zang, Y Liao, R Chen,
et al. Application of a long short-term memory neural network: a burgeoning method of
deep learning in forecasting hiv incidence in guangxi, china. Epidemiology & Infection,
147, 2019.

[108] Yongbin Wang, Chunjie Xu, Shengkui Zhang, Li Yang, Zhende Wang, Ying Zhu, and
Juxiang Yuan. Development and evaluation of a deep learning approach for modeling
seasonality and trends in hand-foot-mouth disease incidence in mainland china. Scientific
reports, 9(1):1–15, 2019.

[109] Sébastien Fournel, Alain N Rousseau, and Benoit Laberge. Rethinking environment
control strategy of confined animal housing systems through precision livestock farming.
Biosystems Engineering, 155:96–123, 2017.

115

References

[110] Jian Cao, Zhi Li, and Jian Li. Financial time series forecasting model based on ceemdan
and lstm. Physica A: Statistical Mechanics and its Applications, 519:127–139, 2019.

[111] Taewook Kim and Ha Young Kim. Forecasting stock prices with a feature fusion lstm-cnn
model using different representations of the same data. PloS one, 14(2):e0212320, 2019.

[112] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[113] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal,
and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection.
CoRR, abs/1607.00148, 2016.

[114] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term
memory networks for anomaly detection in time series. In Proceedings, page 89. Presses
universitaires de Louvain, 2015.

[115] Rama K Singh and Vikash C Sharma. Ensemble approach for zoonotic disease prediction
using machine learning techniques, 2015.

[116] Pablo Valdes-Donoso, Kimberly VanderWaal, Lovell S Jarvis, Spencer R Wayne, and
Andres M Perez. Using machine learning to predict swine movements within a regional
program to improve control of infectious diseases in the us. Frontiers in Veterinary
Science, 4, 2017.

[117] George Gomes Cabral and Adriano Lorena Inacio de Oliveira. One-class classification for
heart disease diagnosis. In Systems, Man and Cybernetics (SMC), 2014 IEEE International
Conference on, pages 2551–2556. IEEE, 2014.

[118] Qian Leng, Honggang Qi, Jun Miao, Wentao Zhu, and Guiping Su. One-class classification
with extreme learning machine. Mathematical problems in engineering, 2015, 2015.

[119] Robin Thompson, Stephanie M Matheson, Thomas Plötz, Sandra A Edwards, and Ilias
Kyriazakis. Porcine lie detectors: Automatic quantification of posture state and transitions
in sows using inertial sensors. Computers and electronics in agriculture, 127:521–530,
2016.

[120] Gerhard Münz, Sa Li, and Georg Carle. Traffic anomaly detection using k-means cluster-
ing. In GI/ITG Workshop MMBnet, pages 13–14, 2007.

[121] Mohammed A Ambusaidi, Zhiyuan Tan, Xiangjian He, Priyadarsi Nanda, Liang Fu Lu,
and Aruna Jamdagni. Intrusion detection method based on nonlinear correlation measure.
International Journal of Internet Protocol Technology 7, 8(2-3):77–86, 2014.

[122] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a
decade review. Information Systems, 53:16–38, 2015.

[123] Weng-Keen Wong, Andrew W Moore, Gregory F Cooper, and Michael M Wagner.
Bayesian network anomaly pattern detection for disease outbreaks. In Proceedings
of the 20th International Conference on Machine Learning (ICML-03), pages 808–815,
2003.

[124] Weng-Keen Wong, Andrew Moore, Gregory Cooper, and Michael Wagner. What’s strange
about recent events (wsare): An algorithm for the early detection of disease outbreaks.
Journal of Machine Learning Research, 6(Dec):1961–1998, 2005.

[125] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long
short-term memory networks. In Data Science and Advanced Analytics (DSAA), 2015.
36678 2015. IEEE International Conference on, pages 1–7. IEEE, 2015.

116

References

[126] Shah Ahsanul Haque, Mustafizur Rahman, and Syed Mahfuzul Aziz. Sensor anomaly
detection in wireless sensor networks for healthcare. Sensors, 15(4):8764–8786, 2015.

[127] Bharadwaj Veeravalli, Chacko John Deepu, and DuyHoa Ngo. Real-time, personalized
anomaly detection in streaming data for wearable healthcare devices. In Handbook of
Large-Scale Distributed Computing in Smart Healthcare, pages 403–426. Springer, 2017.

[128] S Kanarachos, J Mathew, A Chroneos, and M Fitzpatrick. Anomaly detection in time
series data using a combination of wavelets, neural networks and hilbert transform. In
IISA, pages 1–6, 2015.

[129] Jinbo Li, Witold Pedrycz, and Iqbal Jamal. Multivariate time series anomaly detection: A
framework of hidden markov models. Applied Soft Computing, 60:229–240, 2017.

[130] Mooi Choo Chuah and Fen Fu. Ecg anomaly detection via time series analysis. In
International Symposium on Parallel and Distributed Processing and Applications, pages
123–135. Springer, 2007.

[131] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and perspectives.
IEEE access, 2:514–525, 2014.

[132] Andreas Kamilaris and Francesc X Prenafeta-Boldú. Deep learning in agriculture: A
survey. Computers and Electronics in Agriculture, 147:70–90, 2018.

[133] Zoetis. Individual Pig Care. Zoetis, 2012.

[134] General Alert. Application areas. http://www.general-alert.com/Applications, 2011. Last
accessed 30/04/2018.

[135] Colin T Whittemore and Ilias Kyriazakis. Whittemore’s science and practice of pig
production. John Wiley & Sons, 2006.

[136] The World Organisation for Animal Health. Infection With Porcine Reproductive And
Respiratory Syndrome Virus. The World Organisation for Animal Health, 2014.

[137] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[138] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow
prediction with big data: a deep learning approach. IEEE Transactions on Intelligent
Transportation Systems, 16(2):865–873, 2015.

[139] Jerone TA Andrews, Edward J Morton, and Lewis D Griffin. Detecting anomalous data
using auto-encoders. International Journal of Machine Learning and Computing, 6(1):21,
2016.

[140] Ashfaqur Rahman, Daniel Smith, James Hills, Greg Bishop-Hurley, Dave Henry, and
Richard Rawnsley. A comparison of autoencoder and statistical features for cattle be-
haviour classification. In Neural Networks (IJCNN), 2016 International Joint Conference
on, pages 2954–2960. IEEE, 2016.

[141] Noura Al Moubayed, Toby Breckon, Peter Matthews, and A Stephen McGough. Sms
spam filtering using probabilistic topic modelling and stacked denoising autoencoder. In
International Conference on Artificial Neural Networks, pages 423–430. Springer, 2016.

[142] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Man-
zagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of machine learning research,
11(12), 2010.

117

References

[143] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

[144] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[145] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback
recurrent neural networks. In International Conference on Machine Learning, pages
2067–2075, 2015.

[146] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

[147] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of
recurrent network architectures. In International Conference on Machine Learning, pages
2342–2350, 2015.

[148] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[149] William S Cleveland. Robust locally weighted regression and smoothing scatterplots.
Journal of the American statistical association, 74(368):829–836, 1979.

[150] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory.
In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43. Ieee, 1995.

[151] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics, pages 65–70, 1979.

[152] LinkedIn. Luminol. https://github.com/linkedin/luminol, 2016. Last accessed 30/04/2018.

[153] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge discovery, 15(2):107–
144, 2007.

[154] Li Wei, Nitin Kumar, Venkata Nishanth Lolla, Eamonn J Keogh, Stefano Lonardi, and
Chotirat (Ann) Ratanamahatana. Assumption-free anomaly detection in time series. In
SSDBM, volume 5, pages 237–242, 2005.

[155] Sten Mortensen, Henrik Stryhn, Rikke Søgaard, Anette Boklund, Katharina DC Stärk, Jette
Christensen, and Preben Willeberg. Risk factors for infection of sow herds with porcine
reproductive and respiratory syndrome (prrs) virus. Preventive veterinary medicine,
53(1):83–101, 2002.

[156] Daniel Berckmans. Precision livestock farming technologies for welfare management in
intensive livestock systems. Scientific and Technical Review of the Office International
des Epizooties, 33(1):189–196, 2014.

[157] Stephen G Matthews, Amy L Miller, James Clapp, Thomas Plötz, and Ilias Kyriaza-
kis. Early detection of health and welfare compromises through automated detection of
behavioural changes in pigs. The Veterinary Journal, 217:43–51, 2016.

[158] Yongwha Chung, Seunggeun Oh, Jonguk Lee, Daihee Park, Hong-Hee Chang, and Suk
Kim. Automatic detection and recognition of pig wasting diseases using sound data in
audio surveillance systems. Sensors, 13(10):12929–12942, 2013.

[159] Viktoriya Krakovna and Finale Doshi-Velez. Increasing the interpretability of recurrent
neural networks using hidden markov models. arXiv preprint arXiv:1606.05320, 2016.

118

References

[160] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning models. arXiv
preprint arXiv:1708.08296, 2017.

[161] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[162] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020.

[163] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. Cnn-rnn:
A unified framework for multi-label image classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2285–2294, 2016.

[164] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves,
and Koray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint
arXiv:1610.10099, 2016.

[165] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 International joint conference on
neural networks (IJCNN), pages 1578–1585. IEEE, 2017.

[166] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[167] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[168] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

[169] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[170] Po-Yao Huang, Frederick Liu, Sz-Rung Shiang, Jean Oh, and Chris Dyer. Attention-
based multimodal neural machine translation. In Proceedings of the First Conference on
Machine Translation: Volume 2, Shared Task Papers, pages 639–645, 2016.

[171] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

[172] L Harrison, William D Penny, and Karl Friston. Multivariate autoregressive modeling of
fmri time series. Neuroimage, 19(4):1477–1491, 2003.

[173] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. arXiv preprint arXiv:1904.09237, 2019.

[174] CA Coello Coello and M Salazar Lechuga. Mopso: A proposal for multiple objective
particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), volume 2, pages 1051–1056. IEEE, 2002.

119

References

[175] Martina Velasova, Pablo Alarcon, Susanna Williamson, and Barbara Wieland. Risk factors
for porcine reproductive and respiratory syndrome virus infection and resulting challenges
for effective disease surveillance. BMC veterinary research, 8(1):184, 2012.

[176] Sparsh Mittal. A survey on optimized implementation of deep learning models on the
nvidia jetson platform. Journal of Systems Architecture, 97:428–442, 2019.

[177] Benjamin Hawks, Pradeep Jasal, Michael Wang, and Brian Nord. Real-time machine
learning inferencing with edge computing devices from google and intel. Technical report,
Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2019.

[178] Sophie Helene Richter and Sara Hintze. From the individual to the population–and back
again? emphasising the role of the individual in animal welfare science. Applied Animal
Behaviour Science, 2018.

[179] Zoe Berk, Yan CSM Laurenson, Andrew B Forbes, and Ilias Kyriazakis. Modelling the
consequences of targeted selective treatment strategies on performance and emergence of
anthelmintic resistance amongst grazing calves. International Journal for Parasitology:
Drugs and Drug Resistance, 6(3):258–271, 2016.

[180] Ahmet Yigit and Alptekin Temizel. Individual and group tracking with the evaluation of
social interactions. IET Computer Vision, 11(3):255–263, 2016.

[181] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online
and realtime tracking. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 3464–3468. IEEE, 2016.

[182] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 3645–3649. IEEE, 2017.

[183] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal Of Computer Vision,
115(3):211–252, 2015.

[184] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html.

[185] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su, Shengjin Wang, and Qi Tian.
Mars: A video benchmark for large-scale person re-identification. In European Conference
on Computer Vision, pages 868–884. Springer, 2016.

[186] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

[187] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1440–1448, 2015.

[188] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for
transfer learning? arXiv preprint arXiv:1608.08614, 2016.

[189] Dimitrios Marmanis, Mihai Datcu, Thomas Esch, and Uwe Stilla. Deep learning earth
observation classification using imagenet pretrained networks. IEEE Geoscience and
Remote Sensing Letters, 13(1):105–109, 2015.

120

References

[190] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia.
Abc-cnn: An attention based convolutional neural network for visual question answering.
arXiv preprint arXiv:1511.05960, 2015.

[191] Wendi Cai, Jiadie Li, Zhongzhao Xie, Tao Zhao, and LU Kang. Street object detection
based on faster r-cnn. In 2018 37th Chinese Control Conference (CCC), pages 9500–9503.
IEEE, 2018.

[192] Roberto Olmos, Siham Tabik, and Francisco Herrera. Automatic handgun detection alarm
in videos using deep learning. Neurocomputing, 275:66–72, 2018.

[193] Chen-Lin Zhang, Jian-Hao Luo, Xiu-Shen Wei, and Jianxin Wu. In defense of fully con-
nected layers in visual representation transfer. In Pacific Rim Conference on Multimedia,
pages 807–817. Springer, 2017.

[194] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[195] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-
task network cascades. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3150–3158, 2016.

[196] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960.

[197] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[198] Pierre Del Moral. Nonlinear filtering: Interacting particle resolution. Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, 325(6):653–658, 1997.

[199] Katja Nummiaro, Esther Koller-Meier, and Luc Van Gool. An adaptive color-based
particle filter. Image and vision computing, 21(1):99–110, 2003.

[200] Nicolai Wojke and Alex Bewley. Deep cosine metric learning for person re-identification.
In 2018 IEEE winter conference on applications of computer vision (WACV), pages
748–756. IEEE, 2018.

[201] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European Conference
On Computer Vision, pages 21–37. Springer, 2016.

[202] Seyed Hamid Rezatofighi, Anton Milan, Zhen Zhang, Qinfeng Shi, Anthony Dick, and
Ian Reid. Joint probabilistic matching using m-best solutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 136–145, 2016.

[203] Sakrapee Paisitkriangkrai, Chunhua Shen, and Anton Van Den Hengel. Learning to rank
in person re-identification with metric ensembles. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1846–1855, 2015.

[204] Xu Lan, Xiatian Zhu, and Shaogang Gong. Person search by multi-scale matching. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 536–552,
2018.

[205] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. Mot16: A
benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

[206] Christoph Heindl. py-motmetrics. https://github.com/cheind/py-motmetrics, 2019.

121

References

[207] Edmund A Gehan. A generalized wilcoxon test for comparing arbitrarily singly-censored
samples. Biometrika, 52(1-2):203–224, 1965.

[208] Keni Bernardin, Alexander Elbs, and Rainer Stiefelhagen. Multiple object tracking perfor-
mance metrics and evaluation in a smart room environment. In Sixth IEEE International
Workshop on Visual Surveillance, in conjunction with ECCV, volume 90, page 91. Citeseer,
2006.

[209] Vishwanath A Sindagi and Vishal M Patel. A survey of recent advances in cnn-based single
image crowd counting and density estimation. Pattern Recognition Letters, 107:3–16,
2018.

[210] Jonguk Lee, Long Jin, Daihee Park, and Yongwha Chung. Automatic recognition of
aggressive behavior in pigs using a kinect depth sensor. Sensors, 16(5):631, 2016.

[211] Jaewon Sa, Younchang Choi, Hanhaesol Lee, Yongwha Chung, Daihee Park, and Jinho
Cho. Fast pig detection with a top-view camera under various illumination conditions.
Symmetry, 11(2):266, 2019.

[212] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed tracking
with kernelized correlation filters. IEEE transactions on pattern analysis and machine
intelligence, 37(3):583–596, 2014.

[213] Mateusz Mittek, Eric T Psota, Lance C Pérez, Ty Schmidt, and Benny Mote. Health mon-
itoring of group-housed pigs using depth-enabled multi-object tracking. In Proceedings
of Int Conf Pattern Recognit, Workshop on Visual observation and analysis of Vertebrate
And Insect Behavior, 2016.

[214] Paul Martin, Paul Patrick Gordon Bateson, and Patrick Bateson. Measuring behaviour:
an introductory guide. Cambridge University Press, 1993.

[215] Amy L Miller, Hillary A Dalton, Theo Kanellos, and Ilias Kyriazakis. How many pigs
within a group need to be sick to lead to a diagnostic change in the group’s behavior?
Journal Of Animal Science, 97(5):1956–1966, 2019.

[216] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[217] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[218] Xiaobin Chang, Timothy M Hospedales, and Tao Xiang. Multi-level factorisation net for
person re-identification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2109–2118, 2018.

[219] Xuelin Qian, Yanwei Fu, Yu-Gang Jiang, Tao Xiang, and Xiangyang Xue. Multi-scale
deep learning architectures for person re-identification. In Proceedings of the IEEE
International Conference on Computer Vision, pages 5399–5408, 2017.

[220] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. Omni-scale feature
learning for person re-identification. arXiv preprint arXiv:1905.00953, 2019.

[221] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1492–1500, 2017.

122

References

[222] Qian Yu, Xiaobin Chang, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. The devil
is in the middle: Exploiting mid-level representations for cross-domain instance matching.
arXiv preprint arXiv:1711.08106, 2017.

[223] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[224] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[225] Abrar H Abdulnabi, Gang Wang, Jiwen Lu, and Kui Jia. Multi-task cnn model for attribute
prediction. IEEE Transactions on Multimedia, 17(11):1949–1959, 2015.

[226] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Freezeout: Accelerate
training by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

[227] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approxima-
tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[228] Lei Zhang, Helen Gray, Xujiong Ye, Lisa Collins, and Nigel Allinson. Automatic individ-
ual pig detection and tracking in surveillance videos. arXiv preprint arXiv:1812.04901,
2018.

[229] Young-chul Yoon, Abhijeet Boragule, Young-min Song, Kwangjin Yoon, and Moongu
Jeon. Online multi-object tracking with historical appearance matching and scene adaptive
detection filtering. In 2018 15th IEEE International conference on advanced video and
signal based surveillance (AVSS), pages 1–6. IEEE, 2018.

[230] Michael J Kane, Natalie Price, Matthew Scotch, and Peter Rabinowitz. Comparison
of arima and random forest time series models for prediction of avian influenza h5n1
outbreaks. BMC bioinformatics, 15(1):276, 2014.

[231] F Blecha, DS Pollman, and DA Nichols. Weaning pigs at an early age decreases cellular
immunity. Journal of Animal Science, 56(2):396–400, 1983.

[232] Home Office. Code of practice for the housing and care of animals bred, supplied or used
for scientific purposes, 2014.

[233] Ancong Wu, Wei-Shi Zheng, and Jian-Huang Lai. Robust depth-based person re-
identification. IEEE Transactions on Image Processing, 26(6):2588–2603, 2017.

[234] Zimo Liu, Dong Wang, and Huchuan Lu. Stepwise metric promotion for unsupervised
video person re-identification. In Proceedings of the IEEE international conference on
computer vision, pages 2429–2438, 2017.

[235] Minxian Li, Xiatian Zhu, and Shaogang Gong. Unsupervised person re-identification
by deep learning tracklet association. In Proceedings of the European conference on
computer vision (ECCV), pages 737–753, 2018.

[236] Yanbei Chen, Xiatian Zhu, and Shaogang Gong. Deep association learning for unsuper-
vised video person re-identification. arXiv preprint arXiv:1808.07301, 2018.

[237] Minxian Li, Xiatian Zhu, and Shaogang Gong. Unsupervised tracklet person re-
identification. IEEE transactions on pattern analysis and machine intelligence, 2019.

[238] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

123

References

imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[239] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[240] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al.
Array programming with numpy. Nature, 585:357–362, 2020.

[241] WA Falcon. Pytorch lightning. https://github.com/PyTorchLightning/pytorch-lightning,
2019.

[242] Weights & Biases. Weights & Biases. http://wandb.com/, 2017.

124

https://github.com/PyTorchLightning/pytorch-lightning
http://wandb.com/

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Precision Livestock Farming
	1.2 Deep Learning
	1.3 Deep Learning in Agriculture
	1.4 Thesis Outline

	2 A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors
	2.1 Introduction
	2.2 Background
	2.3 Experimental Design
	2.3.1 Data Collection
	2.3.2 Data Preprocessing

	2.4 Time-Series Early Warning Methods
	2.4.1 GRU-Autoencoder
	2.4.2 Other Metrics Used for Evaluation
	2.4.3 Methods Included for Comparison

	2.5 Results
	2.5.1 Case Study
	2.5.2 Influence of the Number of Hidden Layers on GRU-AE Performance
	2.5.3 Computation Time

	2.6 Discussion
	2.7 Conclusions

	3 Deep Learning Architectures for Anomaly Detection In Multivariate Time Series Data
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Data Description
	3.2.2 Models and Training Methods

	3.3 Results
	3.3.1 Training Parameters
	3.3.2 Resource Efficiency
	3.3.3 Test Results
	3.3.4 Case Study

	3.4 Discussion
	3.5 Conclusion

	4 Automated Individual Pig Localisation, Tracking And Behaviour Metric Extraction Using Deep Learning
	4.1 Introduction
	4.2 Materials & Methods
	4.2.1 Dataset Descriptions
	4.2.2 Pig Detection Method
	4.2.3 Pig Tracking Methods
	4.2.4 Behavioural Metrics Extraction
	4.2.5 Evaluation

	4.3 Results
	4.3.1 Detection Results
	4.3.2 Association Metric Learning
	4.3.3 Tracking Results
	4.3.4 Behaviour Metrics Extraction Results

	4.4 Discussion
	4.5 Conclusion

	5 Pig Tracklet Stitching for Improved Individual Pig Tracking Using Deep Re-Identification
	5.1 Introduction
	5.2 Dataset Descriptions
	5.2.1 Pig Detection Dataset
	5.2.2 Re-Identification Datasets
	5.2.3 Pig Tracking Dataset

	5.3 Methods Applied
	5.3.1 Pig Detection & Tracking
	5.3.2 Pig Tracklet Stitching

	5.4 Results
	5.4.1 Re-Identification Results
	5.4.2 Baseline deepsort Results
	5.4.3 Tracklet Stitching Results

	5.5 Discussion
	5.6 Conclusion

	6 General Discussion
	6.1 Research Contributions
	6.2 Research Limitations
	6.3 Challenges to Deep Learning Approaches
	6.4 Real-World Deployment
	6.5 Future Research
	6.6 Conclusion

	References

