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Abstract

An important challenge of contemporary neuroscience is the detec-
tion and understanding of significant brain activity using functional
magnetic resonance imaging (fMRI). One of the many motivations of
this research, related to the data set used in this thesis, is to investi-
gate brain activation and connectivity patterns aimed at identifying
associations between these patterns and regaining motor functional-
ity following a stroke. Much statistical modelling has attempted to
interpret noisy fMRI data and detect changes in response to activity.
However due to the large data sets usually involved in fMRI modelling,
here as many as 150, 000 measurements in localised spatial volumes
known as voxels at each time point, many simplifying assumptions are
usually made to make computation feasible. This is known to have a
negative impact on detecting voxel activation. In this work we fit a
space-time model to a fMRI data set using a sequential approach to
allow for scalability. However, the main contribution of this work is
an alternative method to detect activation in the brain. Here we take
the novel approach of using topological data analysis to investigate
the model residuals to detect changes in the fMRI data. In particular
we analyse the spatial distribution of topological features of the resid-
uals to provide a test for normality, and also by providing a method
to analyse how the spatial distribution of such features change over
time, we are able to detect changes in the data in response to activity
where conventional methods cannot. A recommendation for future
work is to also investigate how topological features change for differ-
ent filtration levels of the field, as this may provide new insights on
brain activation.
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1 Introduction

Detecting and understanding significant patterns of brain activity is among
the most important challenges of contemporary science. To this end, func-
tional magnetic resonance imaging (fMRI) has been at the forefront of neu-
roscience investigations for the past twenty years. Functional magnetic reso-
nance imaging measures brain activity by detecting changes in neural activity
associated with blood flow using the contrast between oxygenated and deoxy-
genated hemoglobin, which are diamagnetic and paramagnetic respectively.
fMRI scans produce images of high resolution, taking as many as 150, 000
measurements in localised spatial volumes known as voxels.

The statistical challenge is to develop a model which is able to detect the
changes in neural activity in voxels or regions of the brain. Many works in
to this area have been carried out and will be discussed in detail in Section
3.1. However the disadvantages of previously proposed models is the inability
to model the spatial dependence between the large number of voxels due to
computational limitations. The results are models which make simplifying
assumptions, such as independence between observations at different voxels
or regions. It has been shown, and will be demonstrated in this work, that
such assumptions significantly increase the rate of falsely identifying activity
in voxels.

In this work, we propose a model (Section 3) which captures the spatial
and temporal correlation between observations at different voxels. A signif-
icant part of this thesis will be dedicated to determining if any interesting
results can be found using the resulting model residuals. In Section 5 vari-
ous clustering techniques will be applied, and several interesting results are
found, such as a spatial partitioning of regions within the brain that appear
to be very closely related to the different brain lobes.

However the main contribution will be a new method of detecting ac-
tivation using the model residuals. In previous works, traditionally model
parameters are estimated and inferences on activation are made. Although
this will be explored in Section 4, we will use topological data analysis (TDA)
techniques to detect activation within regions in the brain. The novel ap-
proach here is to analyse the spatial distribution of topological features (Sec-
tion 8), and how these evolve over time to provide a method to detect neural
activation in voxels or regions of a brain. The results will show that this
method can reveal regions which are active, where other standard methods
do not.
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2 Exploratory Data Analysis

2.1 Introduction To The Data

This project is motivated from the work described in [31]. As described
in this paper, the data set that is being worked with arose from a study
at the neuro-rehabilitation laboratory of Dr. Cramer at the University of
California at Irvine. The goal of the study was to investigate associations
between motor functional deficits in stroke patients, and brain activation and
connectivity. The study consisted of taking functional magnetic resonance
images (fMRI) scans of a single subject over the course of an experiment.
The experiment consisted of 48 scans, alternating between a task and rest
condition, each lasting for a period of 12 scans. The task condition was
a simple hand grasping exercise. The patient was a stroke affected, right
handed male in the age group 18-35 years.

The data were collected using a Philips Achieva 3.0T MRI whole body
scanner, where the repetition time between consecutive scans is 2 seconds
and the resolution of the data points is 2 mm3. The functional data was
then preprocessed using SPM8 software (Wellcome Department of Imaging
Neuroscience, www.l.ion.ucl.ac.uk/spm), which included steps such as image
alignment, coregistration to the mean image and normalisation to a standard
template.

The final data set consists of measurements at 228453 points in the brain,
called voxels. Each of these voxels has an associated time series of length
48, which are the fMRI measurements for experiment. Also available is in-
formation of anatomically defined regions of interest (ROI) within the hu-
man brain (see Table 63 in the appendix). The ROIs being used are the
90 ROIs in the brain as described in [72] which are anatomically defined
using the Anatomical Automatic Labeling (AAL) atlas, also available at
www.l.ion.ucl.ac.uk/spm. Of the 228453 voxels, 152195 are assigned to one
of the 90 ROIs. More information regarding the ROIs, including some plots
of some regions on the brain will be given in Section 2.3.2.

2.2 Brain Anatomy

In this section some background detail of the anatomy of the brain will be
given, which will be referred to in later sections.

The brain consists of three main parts, known as the forebrain, midbrain
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and hindbrain. The forebrain consists of the cerebrum, thalamus and hy-
pothalamus. The midbrain consists of the tectum and tegmentum and the
hindbrain is made of the cerebellum, pons and medulla. The midbrain, pons
and medulla are collectively sometimes referred to as the brain stem [2].

Figure 1: The three main parts of a human brain (image taken from [1])

The cerebrum is the part of the brain associated with higher brain func-
tions such as thought, sensory perception and motor function. It is this part
of the brain that we have data for. The cerebrum can be divided into smaller
units called brain lobes. There are four main lobes in the forebrain, known as
the frontal lobe (associated with speech, movement, emotions, problem solv-
ing), temporal lobe (audio processing), parietal lobe (movement, recognition,
orientation, perception of stimuli) and occipital lobe (visual processing) [2].
These lobes can be seen in Figure 2.
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Figure 2: The four lobes of the forebrain (image taken from [7])

In later sections we will refer back to the brain anatomy presented here
when investigating the model residuals, to determine if these natural parti-
tions of the brain can be seen in the data.

2.3 Exploring The Data

2.3.1 The Voxels

At each voxel we have a time series of length 48, consisting of alternating
periods of rest and task conditions lasting 12 scans each. Figure 3 shows
an example of a voxel time series. The vertical dashed lines represent the
partitions of the rest and activity periods. From the figure we can see that the
response is very noisy and can vary a lot over the course of the experiment.
It should also be noted that the magnitude and variability of the signal can
vary substantially from voxel to voxel and in particular from region to region.
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Figure 3: An example of a voxel time series.

Figures 4 and 5 shows three dimensional plots of all voxels at various time
points. The coordinates range from 11 to 82 in the x direction, 11 to 100
in the y direction and 2 to 77 in the z direction. The fMRI measurements
are displayed using a colour map where dark blue represents low values and
lighter colours represent high values. From Figure 4 we note that very little
difference can be seen at various time points, however note that from these
images we can only see what is happening on the surface of the brain. If
viewing online, Figure 5 can be clicked on to view how these measurements
change at time changes from t = 1 to t = 48, the length of the experiment.
From Figure 5 we can see some areas of high activity (the lighter yellow
patches) but little systematic change over time.
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Figure 4: Four examples of the fMRI measurements at different time points
on the full brain.
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Figure 5: All voxel measurements from the fMRI dataset at time t = 1, light
corresponds to high and dark to low measurements. Click the image to see
how the measurements change from t = 1 to t = 48.

Figure 6 shows four examples of fMRI measurements at all voxels at t = 1
for four different fixed values of z, the vertical axis. From this figure we can
see more information about brain activity in contrast to Figure 5, as well as
how much it varies across different slices of the brain.
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Figure 6: Four examples of the fMRI measurements at time t=1 for voxels
at four different fixed values of z.

Figure 7 shows how the fMRI measurements at all voxels with fixed z = 42
change as time progresses from t = 1 to t = 48.
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Figure 7: All voxel measurements from the fMRI dataset at time t=1 for
constant z=42, light corresponds to high and dark to low measurements (and
white to no measurements). Click the image to see the how the measurements
change from t=1 to t=48.

2.3.2 The ROIs

As previously noted, there are 45 automatically defined ROIs in each hemi-
sphere of the brain which are obtained using the Anatomical Automatic
Labeling (AAL) atlas, see Appendix Table 63 for all ROI names. Figures
8-10 shows some examples of these regions.
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Figure 8: 4 of the 90 ROIs

Figure 9: The Precentral Gyrus on the brain (left) and the voxel measure-
ments in that region (right) at t=1.
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Figure 10: The Superior Frontal Gyrus on the brain (left) and the voxel
measurements in that region (right) at t=1.

Of the total 228453 voxels, 152195 have an assigned region of interest
label. Figure 11 (left) shows these voxels highlighted in yellow, with the
voxels not assigned to a region in blue, and Figure 11 (right) shows these
regions in different colours. Note only the regions on the surface of the brain
and from the angle in the plot can be seen.

Figure 11: All regions of interest (left - yellow), and those regions seperated
by colour (right).

For an initial idea of the spatial correlation between the regions of inter-
est, Figure 12 shows a simple measure of correlation between the regions of
interest. To calculate this, first a mean time series was calculated for each
region of interest, and the correlation between each pair was calculated. This
is then plotted against the Euclidean distance between the regional centroids.
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Figure 12: Correlation between ROI means.

Although there is quite a lot of noise in Figure 12 there is evidence of a
trend that as distance increases, the correlation reduces to zero.

2.3.3 The Ljung-Box Test

In Section 2.3.1 many plots of the data were given. In particular an example
of a voxel time series is given in Figure 3. From the figure it can be seen
that there is some evidence of slightly different behaviour across the different
stages of the experiment, however it is difficult to see if the signal shows any
response to the activity or if the signal is just noise. One method to test if
a time series signal is noise is the Ljung-Box Test [60]. The Ljung-Box Test
statistic is given by

Q(K) = N(N + 2)
K∑
k=1

ρ̂2
k

N − k
(1)

where K is the number of lags to be tested, N is the number of data points
and ρk is the autocorrelation function at lag k. The Ljung-Box statistic is
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used to test the null hypothesis H0 : ρ1 = ρ2 = ... = ρh = 0, where the null
distribution is χ2

K . That is, the Ljung-Box Test tests if the autocorrelations
in the time series data are zero up to a lag of choice. If the null hypothesis is
true this is evidence that the signal is white noise. The lag that is commonly
used in the test is K = ln(N) [71] which is the lag used here.

Here the Ljung-box test will be applied to each voxel time series, though
note that the periods of activity and rest are not tested separately. Applying
the Ljung-Box statistic to each voxel time series (with its mean removed)
resulted in 124135 of the 228453 voxels being nothing but noise (55%) when
testing at the 5% significance level, and the remaining 104318 failed the test
suggesting some autocorrelations in the data. Figure 13 shows examples of a
noisy signal and one for which the null hypothesis of the Ljung-Box test was
rejected.

Figure 13: A voxel containing autocorrelations (left) and a voxel of noise
(right) as determined by the Ljung-Box test.

As noted 104318 of 228453 voxels had their null hypothesis rejected, this
is approximately 45% of all voxels. Using the results of the Ljung-Box tests,
it would be interesting to investigate if the non-noisy signals were associ-
ated with particular regions of interest in the brain. Checking the total
number of voxels in each of the 90 ROIs and calculating the number of
which had the null hypothesis rejected means the proportion of non-noisy
signals in each region of interest can be found. The proportions range from
22 − 73% across regions, meaning there are some which consist mostly of
noise, and some which consist mostly of interesting signals. There are 14
regions identified from this analysis consisting mostly of noise, with less than
30% of the voxels in the regions being anything but noise. These regions
are (8, 20, 33, 34, 35, 36, 38, 61, 65, 69, 71, 74, 78, 80). There are only 3 regions
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of interest which contain a large number (> 70%) of non-noisy signals and
these are (28, 41, 87). These results are based on proportions alone. Further
investigation shows that, for example region number 41 has a high proportion
but overall it is the smallest region of interest with only 155 voxels tested as
being not just noise using the Ljung-Box test. Conversely, region number 8
has a low proportion of non-noisy voxels but is one of the largest regions of
interest and contains 1441 non-noisy voxels according to the Ljung-Box test.

Figure 14: Number of voxels in a ROI against proportion of those which
displayed correlations according to the Ljung-Box test.

The Ljung-Box test has revealed which of the voxels consist mostly of
noise, and which do not. There are a large number of both noisy and non-
noisy voxels. There are some regions which have a high proportion of noisy
voxels, however when looking at total numbers, these are often the regions
with the largest numbers of voxels in total, and they contain also some of
the largest number of non-noisy voxels.
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3 Modelling

In this chapter the aim is to describe and implement a spatio-temporal model
for the brain data. Fitting a good model will help us further understand the
data, allow us to test for voxel activation and use various methods to analyse
the model residuals.

The structure of this chapter is as follows. Section 3.1 will begin by
describing some previously proposed models, starting with an independent
model and then ones which include temporal and spatial correlation between
observations. The spatial model that we will initially aim to fit will be the
one proposed by Castruccio et al. (2016) [31]. A number of problems were
identified when fitting this model to the brain data, and so in subsection 3.3
these will be discussed and investigated. In Section 3.4 the proposed mean
structure of the model will be investigated in more detail and a new mean
structure will be discussed, and using an independent model, the two will be
compared. Once the final mean structure has been decided, temporal and
spatial models will be discussed, before moving on to application to the brain
data.

3.1 Previously Proposed Models

There has been much analysis carried out on fMRI brain data. The simplest
approach to the analysis is to fit a normal linear model to each voxel time se-
ries independently [78]. However it has been shown that if spatial correlation
is ignored, the result is an increase in type one error [40] when testing for
voxel activation. This means that there is an increase in detection of active
voxels when the voxel is actually inactive.

Many early works on the analysis of fMRI data focused on models which
allow for within voxel temporal correlation but either ignore the spatial cor-
relation between voxels, or impose a simplistic approach due to computa-
tional issues which may not fully account for spatial dependence. For exam-
ple, Worsley and Friston (1995) [76] discuss modeling smoothed fMRI data,
Losascio et al. (1997) [61] included only within voxel temporal components
and Bullmore et al. (2001) [28] made use of the wavelet transform of the
data (which is known to whiten the data) in order to deal with temporal
correlation.

Following this there have been many methods proposed to incorporate
spatial dependence in fMRI modeling. For example, Worsley et al. (1992)
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[75] indirectly modeled spatial correlation by assuming voxel activation test
statistics were realisations from a random field, and then a threshold was
used to detect active voxels. As noted in [31], this thresholding is depen-
dent on the spatial smoothing which is assumed to be isotropic. A Bayesian
approach to allow for spatial correlation has been developed by Bowman et
al. in [24], [25] and [26]. The approach here is a hierarchical analysis which
allowed for spatial dependence between voxels in a region. The drawbacks to
this approach was that stationarity was assumed for voxels within a region
(this has been shown to be not always true in [31]) and it is very computa-
tionally expensive, so much so that the analysis in these papers were limited
to subsets of the data such as two-dimensional slices of the brain. Kang et
al. (2012) [56] proposed a spatial model which captures both the local and
regional spatial correlation by defining the model on the spectral domain,
by modeling Fourier coefficients of the data. This approach was taken as
’Fourier coefficients are approximately uncorrelated under a temporal sta-
tionarity condition’, thus increasing the potential for scalability. However,
here activation was only assessed on the regional level and isotropy was as-
sumed at the local voxel level. There are many more recent approaches to
modeling spatial dependence, for example see [83], [81], [82], [84] and [54].
However all lack a method to adequately model the local non-stationarity at
the voxel level.

Castruccio et al (2016) [31] proposed a method that deals with many
of the drawbacks of the models described. This model allows for spatial
dependence that is locally non-stationary, describes the connectivity between
ROIs, allows for anisotropy and can be carried out on the full brain instead
of subsets. Therefore the proposed model in [31] will be a starting point for
our spatial model.

In this section, a basic independent model will be discussed, followed
by allowing for within voxel temporal correlation, initially using the method
proposed by Worsley et al. (2002) [77]. In this paper the proposed estimation
method is to initially fit an independent model to the data, and use the
residuals to estimate the autoregressive parameters before refitting the mean
parameters using differenced data. More details can be found in Section 3.6.
Finally a spatio-temporal model will be used following the proposed model
by Castruccio et al. (2016) [31].
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3.2 The Model Covariates

Following the work of [31], all models considered will initially involve three
independent variables, x1, x2, x3. The third covariate x3 allows for a time
trend and is the vector x3 = 1, 2, 3, ..., 48. The remainder of this subsection
will focus on the first two independent variables, x1 and x2, which are gen-
erated using the hemodynamic response function (HRF) [9]. The HRF is a
function which shows the typical changes at a voxel in terms of the increased
blood flow (or delivery of oxygen) in response to a movement (see Figure
15). At t = 0 a movement is carried out. It takes approximately 2 seconds
for the increase in blood at a voxel to begin, and it plateaus at a maximum
level at approximately 5-8 seconds after the movement begins. If the move-
ment continues the HRF stays at this level. If not then around 8-11 seconds
later the HRF will return to its normal level. Note that zero on the figure
is the baseline amount of blood oxygen required at all times. An interest-
ing feature of the HRF is the dip below zero that can be seen shortly after
the activity has stopped in Figure 15. This is known as the post-stimulus
undershoot. The interpretation of the undershoot is still under debate, but
could be caused by a number of things. The leading explanations are delayed
vascular compliance (a reduction in blood pressure due to the expansion of
the vascular wall) and a sustained increase in oxygen post stimuli [73].
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Figure 15: The HRF with temporal resolution of 1 second.

As the temporal resolution of the fMRI scans are every two seconds, the
HRF that will be used has been scaled so every one unit of time represents
two seconds. The way this information is used in the linear modelling is
to construct covariates known as BOLD (blood oxygen level dependent) re-
sponses. In general fMRI modelling, a BOLD covariate is included for each
different type of stimulus. For example in [78] a BOLD covariate was included
for both ’hot’ and ’warm’ stimulus conditions. Following the work in [31], for
the experiment this report is concerned with, a BOLD covariate is included
for the ’activity’ and ’rest’ stimuli. Each BOLD covariate is constructed by
convolving the HRF (hrf(t)) with an indicator function I(t), which gives the
times in the experiment where the stimuli occurs. Therefore x1(t) which is
the BOLD covariate for the activity stimuli is constructed with

x1(t) = hrf(t) ? I(t) (2)

and can be seen in Figure 16.

18



Figure 16: Top left shows the HRF with temporal resolution of two seconds.
Top right shows the indicator function for the activity stimuli, and bottom
centre is the BOLD response - the result of convolving the HRF with the
indicator function.

The activity stimuli here is the hand grasping exercise which the partici-
pant is asked to do continually over the course each set of 12 scans. Therefore
the effect of convolving the HRF with the indicator function is to maintain
the maximum level of blood flow expected at a voxel whilst the movement
occurs over the course of the 12 scans.

The second of the BOLD responses corresponding to the ’rest’ activity as
proposed by [31] is constructed by (3) where I2(t) = 1− I(t).

x2(t) = hrf(t) ? I2(t) (3)

To test for voxel activation we test if the estimated coefficients of the two
BOLD covariates are statistically equal or different. As at any one time there
is only one stimulus present (rest or active), if the estimated coefficients of
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the BOLD covariates are statistically the same then this implies the voxel is
inactive, ie a different weight need not be applied to account for a change in
the signal when activity (or rest) occurs.

3.3 Experiment Design And Modeling Issues Identi-
fied

The experiment consisted of scanning the participant’s brain whilst they were
at rest or performing a simple hand tapping exercise. There are a total of
48 scans. The experiment was designed such that the first 12 were whilst
the participant was at rest, and then alternating between the stimulus task
and rest conditions, each consisting of 12 scans. The result being a large
set of time series of length 48. The first issue identified when modeling such
data is that the short length of each time series resulted in poor estimates
for certain model parameters, in particular the autoregressive parameters
in the temporal model. As the time series length is short, the bias of the
estimated covariance parameters obtained when using maximum likelihood
was very noticeable. This can be remedied by using restricted maximum
likelihood estimation, and will be further discussed in Section 3.6.4, where
simulation studies will compare maximum likelihood and restricted likelihood
estimation.

The second issue identified is concerning the model covariates proposed by
[31] and described in Section 3.2. By fitting some models to simulated data,
it was quickly identified that there was an issue with collinearity between the
BOLD responses. The result of this was that parameter estimates had large
standard deviations. Here this problem will be shown in more detail.

3.3.1 Collinearity - Sequentially Adding Parameters

Let X be a design matrix consisting of the intercept covariate x0, and the
covariates x1, x2 and x3 as described in Section 3.2, and let β0, β1, β2 and
β3 be the corresponding covariate parameters. In this section we will use
simulations from a normal linear model fitted independently to each voxel to
show the issues with collinearity.

Here multiple sets of simulated independent data will be used, starting
with a mean consisting of a single parameter, β0, and then adding covariates
one at a time to investigate at what point the problems begin. Table 1 shows
the results.
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Mean Parameters Estimates Mean Estimates SD
β0 500.06 4.35

β0, β3 (499.85, 2.01) (8.85, 0.34)
β0, β1, β3 (499.93, 2.25, 2.00) (8.73,9.27,0.34)

β0, β1, β2, β3 (499.75, 2.08, 2.12, 2.01) (20.17, 23.49, 21.84,0.37)

Table 1: Independent model parameter estimates mean and standard devia-
tion using various numbers of parameters. In all cases results are from using
4338 voxels in ROI 7 with β0 = 500, β1 = 2, β2 = 2, β3 = 2 and σ = 30.

From Table 1 it can be seen that the standard deviation of the estimates of
β0 when fitting alone is 4.35. Adding the covariate x3 which is the time trace,
increases this to 8.85. Adding in the BOLD covariates one at a time first
does not change the standard deviation much when one is added, but when
a second is added it increases to 20.17. Through experimentation with the
order of adding covariates, we found that adding x1 to the intercept alone
increased the standard deviation of β0 to approximately eight like above,
and it seems that only when both the BOLD responses are included that
the standard deviation increases a lot to approximately 20. This leads us to
believe that the design matrix may be ill conditioned.

3.3.2 Collinearity - The Reciprocal Condition Number

The condition number of a square matrix is defined as the product of the
matrix norm with the norm of its inverse [8]. If the condition number is very
large then the matrix is close to singular which can cause computation issues
which can often lead to inaccurate results.

Consider the example of simple linear regression where we aim to solve

β̂ = AXTY

where A = (XTX)−1. The condition number of the matrix A tells us how
close to singular the matrix is, and so how stable the solution of this equation
is under small perturbations of the elements of A. The condition number is
high if small perturbations of A result in very different estimates for β̂. If the
condition number is small then the solution is stable. For matrices with a high
condition number, this can lead to unreliable estimates, and high variances
of those estimates. Conversely, the reciprocal condition number is very close
to zero for ill-conditioned matrices. Table 2 shows the reciprocal condition
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number of the different versions of the matrix (XTX)−1 as parameters are
added to the model.

Parameters Mean SD RCN
β0 500.06 4.35 1

β0, β3 (499.85, 2.01) (8.85, 0.34) 3 x 10−4

β0, β1, β3 (499.93, 2.25, 2.00) (8.73,9.27,0.34) 2 x 10−4

β0, β1, β2, β3 (499.75, 2.08, 2.12, 2.01) (20.17, 23.49, 21.84,0.37) 2 x 10−5

Table 2: Independent model parameter estimates mean and standard devi-
ation using various numbers of parameters and reciprocal condition number
(RCN) of (XTX)−1. In all cases results are from using 4338 voxels in ROI 7
with β0 = 500, β1 = 2, β2 = 2, β3 = 2 and σ = 30.

From Table 2 it can be seen that with a single parameter, the RCN is
one, that is it is very well conditioned and the solution is stable. Adding
a second parameter (the time trend) makes the RCN drop to almost zero
showing an unstable solution. Adding the first of the BOLD covariates does
not change the RCN much, hence the standard deviations stay roughly the
same, but adding the second BOLD responses reduces the RCN by another
order of magnitude which will explain the large increase in the variance here.
Therefore this shows that as more parameters are added, (XTX)−1 is be-
coming more and more unstable, which explains the increase in the variance
of the parameter estimates. The reason for this may be in part explained
by Figure 17 which shows that the two BOLD responses are highly corre-
lated. In fact the correlation is −0.9162 which may be causing collinearity
problems. However, note that simply adding a time trend caused a massive
decrease in RCN, so this is also an issue. One way to address this large
decrease when the time trend is added, is to centre the time trend covariate.
The result when added to the intercept term is a decrease in RCN from 1 to
0.005 which is some improvement.
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Figure 17: The BOLD covariate during activity (x1 - blue) and rest (x2 - red).
The activity stimuli is the hand grasping exercise which the participant is
asked to do continually over the course each set of 12 scans. The effect of
convolving the HRF with the indicator function is to maintain the maximum
level of blood flow expected at a voxel whilst the movement occurs over the
course of the 12 scans.

3.4 The Mean Structure

As discussed in Section 3.2, the model proposed by Castruccio et al. (2016)
[31] consists of a mean with two BOLD covariates, as well as a term for time
trend. For the most simple case where the errors of the model are assumed
independent, the model equation is given by

yi(t) = β0,i + β1,ix1(t) + β2,ix2(t) + β3,ix3(t) + εi(t) (4)

where yi(t) is the fMRI response at voxel i for t = 1, .., 48, the covariates
are as described in Section 3.2 and εi ∈ N(0, σ2

i ). Note that there is no i
subscript on the covariates as they are the same at all voxels, ie we assume
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the HRF is not dependent on location, however we do allow for a different
parameter estimate at all voxels.

It has been seen in Section 3.3 that the two BOLD responses are very
highly correlated, which may then cause collinearity problems. Castruccio et
al. (2016) included the two BOLD responses to account for the two stimulus
conditions; activity and rest. In general fMRI modeling, a BOLD covariate
is included for each different type of stimulus. This method is described in
[77], and an example of application was given in [78] where a BOLD covariate
was included for both ’hot’ and ’warm’ stimulus conditions of an experiment.
This method can be seen in many other works, for example in [74] or [34]
to name just a few. In all these papers note that the rest phases of an
experiment is not modelled with a BOLD response.

In this section, an alternative mean structure will be investigated. Firstly,
we will remove the BOLD covariate corresponding to periods of rest. This
will remove the collinearity issues. Then we will investigate if anything can
be gained by allowing for the possibility that the BOLD response may differ
for each of the activity parts of the experiment. That is, an extra covariate
will be included to allow for this.

3.4.1 Different Covariates For Each Period Of Exercise

In this section, we will propose a new independent model with

yi(t) = β0,i + β1,ix1(t) + β3,ix3(t) + εi(t) (5)

where yi(t) is the fMRI response at voxel i for t = 1, .., 48, with the covariates
as described in Section 3.2 and εi ∈ N(0, σ2

i ). Note that here we have dropped
the BOLD response for periods of rest, and have kept the BOLD response
x1(t) for periods of activity (see Figure 17). Note that this covariate assumes
that the response during the two periods of activity is the same. Therefore
a different model that we can consider is one where the BOLD response is
allowed to differ for the two periods of activity.

Let us define x?1(t) = hrf(t) ? I?1 (t) and x?2(t) = hrf(t) ? I?2 (t) where I?1 (t)
and I?2 (t) are new indicator functions which describe the first and second
periods of activity respectively. Then an alternative model to consider is

yi(t) = β0,i + β1,ix
?
1(t) + β2,ix

?
2(t) + β3,ix3(t) + εi(t). (6)

To compare the models, initially model (6) will be fit to some brain data and
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we will look at the estimates of β1 and β2 to see how similar or different they
look. Table 3 shows the estimates of the BOLD parameters calculated for
all voxels in the brain using the two independent models (one with a single
BOLD response and one with a BOLD response for each session of activity).

Model Parameters Mean(β1) SD(β1) Mean(β2) SD(β2)
β0,β1,β3 1.60 12.82 - -
β0,β1,β2,β3 1.48 15.73 1.94 10.47

Table 3: The mean and standard deviation of the estimates of β1 and β2

for the full brain and models which include a single BOLD covariate or two
BOLD covariates (one for each activity phase).

Figure 18 shows the results from applying model (6) to all voxels in each
ROI.
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Figure 18: The mean of the estimates of β1 (blue) and β2 (black) for all ROIs,
with the mean plus/minus one standard deviation (red dashed) of β̂1

From Figure 18 it can be seen that there is a lot of variability about
the estimates of β1 and β2, and on first impression it looks like it may be
unnecessary to include a separate BOLD response for each period of activity.
Note that for ROI 41 there appears to be a noticeable difference between the
estimates of the two parameters. This region has the fewest number of voxels
of all regions (211 voxels), and we will see later that some unusual results
can be found for this region as a result of this.

Next we will formally test which model is most suitable. One method is
to use AIC (Akaike’s Information Criterion) [13]. The AIC of a model fit is
given by
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AIC = 2k − 2ln(L̂) (7)

where k is the number of parameters estimated and lnL̂ is the value of the
log-likelihood at the maximum. The idea here is to calculate the AIC for
competing models, and the one with the lowest value is the preferred model.
Intuitively the criterion chooses the model which is most likely subject to a
penalty term for the number of model parameters.

Fitting the two competing models ((5) and (6)) to each voxel in the brain
independently and calculating the AIC for each model, it was found that
89989 of the 228453 voxels had a AIC score which was lower when using the
model with a BOLD response for each of the periods of activity, (6). This
is approximately 40% of the voxels. Therefore although Figure 18 suggests
one BOLD covariate is enough, there is an argument here to use two BOLD
covariates as it will benefit the modeling of a substantial number of voxels.

From this point forward we will only consider the model (6), and will
drop the star notation from the covariates x?1(t) and x?2(t). Hence from this
point forward x1(t) and x2(t) are to be the BOLD covariates representing the
first and second period of exercise respectively. The covariates are the same
at all voxels, ie we assume the HRF is not dependent on location, however
we do allow for a different parameter estimate at all voxels. Activation of
a voxel in response to exercise will then occur if the estimates of the model
parameters β1 or β2 are statistically non-zero. We will also redefine x3(t)
so it is the centered time trend to address the issue of a large drop in RCN
when the time trend is added (see Section 3.3).

3.5 The Independent Model

The first model to be considered in the independent model, which assumes
complete independence across space and time between voxels. As noted
earlier, this is not a realistic model. The inclusion here is intended to show a
basic working model where data can be simulated and parameters estimated
efficiently. Also later this model will be used to show the problem with the
independent model, in that when applied to correlated data, type one error
is inflated. The model equation is given by

yi(t) = β0,i + β1,ix1(t) + β2,ix2(t) + β3,ix3(t) + εi(t) (8)
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where yi(t) is the fMRI response at voxel i for t = 1, .., 48, εi ∈ N(0, σ2
i )

and the covariates are as described in Section 3.4, that is x1(t) and x2(t) are
BOLD responses corresponding to the different periods of exercise, and x3(t)
is the centered time trend.

3.5.1 Simulating Independent Data

To ensure there are no problems with the model fitting to the brain data, here
and in subsequent sections data will be simulated and parameters estimated
using maximum likelihood. For the independent model, data is generated to
mimic two different regions of interest which contain the largest and smallest
numbers of voxels. To generate the data, the parameters are set to be β0 =
500, β1 = β2 = β3 = 2 and σ = 30 at all voxels. These values were chosen
from results of fitting the model on some of the brain data. Table 4 shows
some results. In the table, number of voxels refers to the number of simulated
time series, so in the first case a single set of 4338 independent time series
were generated using the model described in (8). The mean and standard
deviation of the set of parameter estimates is given, as well as the standard
error of the mean (SEM).

Number of Voxels Parameter True Value Mean SD SEM
4338 β0 500 499.88 6.20 0.09

β1 2 1.98 10.30 0.16
β2 2 1.67 15.05 0.23
β3 2 2.00 0.43 0.01
σ 30 29.86 3.17 0.05

211 β0 500 500.18 6.41 0.44
β1 2 1.70 9.73 0.67
β2 2 1.19 14.76 1.02
β3 2 2.05 0.42 0.03
σ 30 29.78 3.01 0.21

Table 4: Independent model parameter estimates mean, standard deviation
and standard error of the mean, from simulation of different numbers of
voxels.

From Table 4 is can be seen that on average the parameter estimates
are quite close to the actual values used to generate the data. However the

28



standard deviation of these estimates is quite large, especially for the mean
parameters. However from the SEM we can see that all parameters are within
two standard errors of the true value.

3.6 The Temporal Model

The next model to be considered is to extend (8) to allow for temporal
correlation at each voxel by adding autoregressive errors. Let ρik be the k-th
autoregressive parameter at voxel i, then the model is given by

yi(t) = β0,i + β1,ix1(t) + β2,ix2(t) + β3,ix3(t) + εi(t) (9)

where

εi(t) =
K∑
k=1

ρikεi(t− k) + νi (10)

and νi ∈ N(0, σ2
i ).

Before any modelling can begin, the order of the autoregressive process
needs to be determined.

3.6.1 The Autoregressive Parameters

The order of a AR process can be determined using the partial autocorrela-
tion function (PACF). Typically for an AR(p) process the PACF will display
significant partial correlations for the first p lags. Significant correlations are
usually determined as ones which are larger in magnitude than some confi-
dence interval. The 95% confidence interval for partial correlations is ± 2√

N
where N is the length of the time series. In this section we will investigate
the order of the AR process for each of the voxels in some of the regions of in-
terest. The analysis is carried out on the residuals of the linear model which
initially assumes independence. Figure 19 shows an example of a PACF for a
voxel time series and Table 5 summarises the results of the PACF to all vox-
els in some regions of interest. These regions were chosen as they later will
be shown to display some interesting features when clustering or performing
topological data analysis on the data.
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Figure 19: An example of the PACF for a voxel time series

Region Total Number Voxels p = 0 p = 1 p = 2 p > 2
3 3262 2961 218 69 14
7 4338 3824 397 100 17
8 4865 4540 258 62 5
21 278 240 23 15 0
41 211 118 81 12 0

Table 5: Number of voxels displaying significant partial correlations up to
and including lag p.

From Table 5 it can be seen that for the majority of voxels, there is no
significant partial autocorrelation at any lags. There are some which justify
an AR(1) process and very few beyond that which are higher order. Fitting
models using AR(1) errors and AR(2) errors and comparing using AIC, it
was found that 37% of all voxels would benefit from a model with AR(2)
errors. This is a significant number of voxels, and therefore from this point
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on we will only consider models where the temporal correlations are described
using a AR(2) process.

Figures 20 and 21 show some three dimensional plots of the values of the
autoregressive parameters on the brain. It is difficult to get much informa-
tion from these plots, especially those regions with large numbers of voxels.
However there is some evidence of spatial correlation, ie the lighter colours
are near each other and do not appear to be randomly scattered. The model
is still spatially independent, so the voxels with higher values of ρ̂1 corre-
spond to signals with higher lag one correlations, and those which are dark
blue are less correlated, ie more noisy.
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Figure 20: 3D plots of ρ̂1 for different regions of interest.
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Figure 21: 3D plots of ρ̂2 for different regions of interest.

3.6.2 Procedure To Fit The Model

Given we have seen that an AR(2) process is likely to be suitable for this
data, the temporal model that we will be considering is of the form
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yi(t) = β0,i + β1,ix1(t) + β2,ix2(t) + β3,ix3(t) + εi(t) (11)

where

εi(t) = ρi1εi(t− 1) + ρi2εi(t− 2) + νi(t) (12)

and νi ∈ N(0, σ2
i ). Also note that we require

ρi1 + ρi2 < 1

ρi2 − ρi1 < 1

|ρi2| < 1

(13)

so that the process is stationary [11].
The fitting of such a model can be achieved in a number of ways. Firstly,

standard maximum likelihood estimation can be used to estimate all param-
eters simultaneously, however this may have limitations when scaling up if
we wish to model the full brain (see 3.6.3). To overcome this Worsley et al.
(2002) [77] proposed an alternative method which is computationally much
more efficient. The method proposed by Worsley et al. (2002) [77] will be
explored in this section, and results will be compared with those obtained
using standard maximum likelihood methods. The results obtained will show
that both maximum likelihood and the method proposed by Worsley et al.
(2002) [77] perform poorly on shorter time series, and thus this section will
conclude with modeling data using restricted maximum likelihood estimation
(REML).

For a given time series, Worsley et al. (2002) suggest that the first step
of fitting a temporal model to the data, is to first estimate the autoregressive
parameters, ρ1 and ρ2 . It is suggested by [77] that these estimates can be
obtained by the residuals of ordinary least squares regression on the original
data. Let rt denote these residuals at time t, then the estimate for ρ1 is given
by

ρ̂1 =

∑n
t=2 rtrt−1∑n
t=1 r

2
t

(14)

with a similar expression for ρ̂2. Note that if these estimates of the AR(2)
parameters do not meet the stationarity conditions above, then before the
modelling one could take steps to make the data stationary, for example by
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differencing [53]. Once these parameters are estimated, the next step is to
take differences of the response to recover independent errors, ie

yi(t)−ρ̂1yi(t−1)−ρ̂2yi(t−2) = β0(1−ρ̂1−ρ̂2)+
3∑
j=1

βj(xj(t)−ρ̂1xj(t−1)−ρ̂2xj(t−2))+νi(t).

(15)
The result of this differencing means we have a transformed equation of the
form

ỹi(t) = β̃0 + β1x̃1(t) + β2x̃2(t) + β3x̃3(t) + νi(t) (16)

where ỹi(t) = yi(t)− ρ̂1yi(t− 1)− ρ̂2yi(t− 2), β̃0 = β0(1− ρ̂1 − ρ̂2), x̃j(t) =
xj(t)− ρ̂1xj(t− 1)− ρ̂2xj(t− 2) (for j = 1− 3) and νi ∈ N(0, σ2

i ). Note that
in the transformation we let ỹi(1) = yi(1), x̃1(1) = x1(1) and x̃2(1) = x2(1).

In [77] it is noted that this procedure could be iterated, ie use ρ̂ to find
β̂ and then use the residual to gain a new estimate for ρ. However this does
not give much improvement to the fit.

In summary, the procedure for fitting a model with correlated autore-
gressive errors is to first fit an ordinary least squares model to the original
data, estimate ρ using the residuals, then transform the response and design
matrix then refit.

3.6.3 Simulating Temporal Data

In this section temporal data will be simulated and parameters estimated
using the proposed method by Worsley et al. (2002). For this model, data is
generated to mimic two different regions of interest which contain the largest
and smallest numbers of voxels in order to determine how the model performs
on large and small regions of interest.. To generate the data, the parameters
are set to be β0 = 500, β1 = β2 = β3 = 2, σ = 30, ρ1 = 0.15 and ρ2 = −0.30
at all voxels. These values were chosen from results of fitting the model on
some of the brain data. Table 6 shows some results. In the table, number
of voxels refers to the number of simulated time series, so in the first case
a single set of 4338 time series with AR(2) errors were generated using the
model described in (17) with parameters chosen as above. The mean and
standard deviation of the set of parameter estimates is given, as well as the
standard error of the mean (SEM).
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Number of Voxels Parameter True Value Mean SD SEM
4338 β0 500 500.00 5.44 0.08

β1 2 1.95 9.15 0.14
β2 2 2.27 13.71 0.21
β3 2 2.00 0.38 0.01
σ 30 29.42 3.28 0.05
ρ1 0.15 0.04 0.11 0.002
ρ2 -0.30 -0.31 0.12 0.002

211 β0 500 499.58 5.24 0.36
β1 2 2.75 9.27 0.64
β2 2 2.25 13.31 0.92
β3 2 1.97 0.38 0.03
σ 30 29.17 3.32 0.23
ρ1 0.15 0.03 0.11 0.01
ρ2 -0.30 -0.33 0.12 0.01

Table 6: Temporal model parameter estimates mean, standard deviation and
SEM from simulation of different numbers of voxels and estimation using the
Worsley method.

From Table 6 it can be seen that the mean parameters have large standard
deviations as seen before with the independent model. However what we
can also see here is that the first order autoregressive parameter is poorly
estimated, and has a large standard deviation with respect to the mean.

The results in Table 6 show simulation results using the model and co-
variates that will be used on the brain data. The poor estimates for the
autoregressive parameter may be due to the time series at each voxel being
only of length 48, or perhaps the number of voxels is not large enough. To
investigate the impact on the first order autoregressive parameter, Table 7
shows some results from simulating zero mean temporal data, where the vox-
els have time series of differing lengths, and different numbers of voxels are
used. In all cases the true value of the first order autoregressive parameter
is ρ1 = 0.25.
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Number of voxels
100 500 1000 5000

48 0.20 (0.15) 0.21 (0.14) 0.21 (0.14) 0.21 (0.14)
Length 144 0.23 (0.09) 0.24 (0.08) 0.24 (0.08) 0.24 (0.08)

500 0.24 (0.04) 0.25 (0.04) 0.25 (0.05) 0.25 (0.04)
1000 0.25 (0.02) 0.25 (0.03) 0.25 (0.03) 0.25 (0.03)

Table 7: Mean and standard deviation of estimates of the autoregressive
parameter, using different numbers of voxels with corresponding time series of
different lengths. In all cases the true values of the autoregressive parameter
is 0.25.

Table 7 shows that the voxel time series length is what is important to
get accurate estimates of ρ. Increasing the number of voxels has very little
impact on the estimates. Hence this may provide some explanation why ρ1

was poorly estimated in Table 6.

3.6.4 Restricted Maximum Likelihood Estimation

From Table 6 it can be seen that even for large numbers of voxels that the
estimates of the first autoregressive parameter is very poor. Table 7 shows
that this is likely a problem due to the length of each voxel time series. Recall
the temporal model

yi(t) = β0,i + β1,ix1(t) + β2,ix2(t) + β3,ix3(t) + εi(t) (17)

where

εi(t) = ρi1εi(t− 1) + ρi2εi(t− 2) + νi(t) (18)

and νi ∈ N(0, σ2
i ). In vector form the model can be written as

Yi ∈ N(Xβi,Σi)

where Σi = σ2
i V , and V is the correlation matrix. For a general linear model

such as this one, it can be shown that the standard maximum likelihood esti-
mator for the variance component of the model is biased. If Y ∈ N(Xβ, σ2V )
for some correlation matrix V then it can be shown that [37]

σ̂2 =
(Y −Xβ)V −1(Y −Xβ)

n
(19)
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which is a biased estimator. The unbiased result is

σ̂2
unbiased =

(Y −Xβ)V −1(Y −Xβ)

n− p
. (20)

If the length n, of the time series is large with respect to the number of
parameters p, then the biased version is a good estimate for σ2. However
if this is not the case, then the variance parameters of the model could be
significantly biased. A solution to correct for this bias when using small
n is to use restricted maximum likelihood estimation (REML). The reason
that the estimator for σ2 is biased when using standard maximum likelihood
estimation is that the fixed effects are ignored, and the degrees of freedom
used in deriving the estimators do not adjust for this [41]. The idea behind
REML is to perform maximum likelihood estimation on a set of linearly
transformed data Y ? = HY where H is any matrix such that E[HY ] = 0.
The result is estimation based on data which is independent of the mean
parameters β and only contains information about the variance components.
The REML log-likelihood is given by

lR = −1

2
log|Σ|− n− p

2
log((Y −Xβ)Σ−1(Y −Xβ))− 1

2
log|XTΣ−1X| (21)

which, when maximised results in an unbiased estimator for σ2. Note that
(21) does not depend on H, and this result can be derived using any choice of
H such that E[HY ] = 0. Full algebraic details can be found in [37], where it
is shown that the choice of H is independent of the resulting log-likelihood.

The following table shows the estimates for the mean and variance pa-
rameters of the temporal model using three methods. The first will be the
method described in Section 3.6 based on the work of Worsley [77]. The sec-
ond method is standard maximum likelihood estimation, and finally REML is
used. In all cases data has been simulated using all model covariates (includ-
ing two BOLD responses and a time trend) with parameters set as described
in Table 8.
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Estimation Method Parameter True Value Mean SD SEM
Worsley β0 500 499.95 5.53 0.09

β1 2 1.97 9.13 0.14
β2 2 2.03 13.79 0.22
β3 2 1.99 0.39 0.01
σ 30 29.38 3.30 0.05
ρ1 0.15 0.03 0.11 0.002
ρ2 -0.30 -0.32 0.12 0.002

Maximum Likelihood β0 500 499.96 5.58 0.09
β1 2 2.01 9.06 0.14
β2 2 1.90 13.88 0.22
β3 2 2.01 0.39 0.01
σ 30 30.49 3.51 0.06
ρ1 0.15 0.04 0.16 0.002
ρ2 -0.30 -0.36 0.12 0.002

REML β0 500 500.05 5.42 0.09
β1 2 2.03 9.17 0.14
β2 2 1.76 13.88 0.22
β3 2 2.01 0.39 0.01
σ 30 30.08 3.35 0.05
ρ1 0.15 0.12 0.16 0.002
ρ2 -0.30 -0.29 0.14 0.002

Table 8: Temporal model parameter estimates mean, standard deviation
(SD) and standard error of the mean (SEM), using 4000 simulated voxels of
length 48 and three different estimation methods.

From Table 8 we can see that REML has given a much better estimate
of the autoregressive parameters than the other methods. We can also see
that maximum likelihood estimation gives very similar results to those found
using Worsley’s method. One reason to use the Worsley et al. (2002) method
is that it is computationally much quicker than using maximum likelihood.
Table 9 compares the time taken to perform the simulations described using
the different methods.
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Time Series Length Worsley Maximum Likelihood REML
48 2 25 29
96 4 70 75
144 8 142 150

Table 9: Time (seconds) taken to fit the temporal model to 4000 time series
of different lengths using three different estimation methods.

From Table 9 it can be seen that increasing each voxel length results in
a much longer computation time for maximum likelihood and REML than
Worsley’s method.

In summary, Worsley’s method may be preferable for situations where
the time series is very large, or if there are a large number of time series to
model, due to the significantly quicker estimation method. However REML
gives better estimates of the autoregressive parameter, especially if the time
series are of shorter length, though the computation time is higher.

3.7 The Spatio-Temporal Model

The final model to be considered is to extend the temporal model and include
spatial correlation between voxels at different sites. Due to the size of the
data, the approach of constructing a covariance matrix which can model the
spatial dependence between observations and estimating parameters using
likelihood methods is extremely computationally intensive. The main issues
are the very large number of parameters that would need to be estimated
jointly (four mean parameters for each voxel plus temporal parameters), and
also the size of the covariance matrix that would be required. For example,
modelling 4000 time series, each of length 48, would result in a covariance ma-
trix consisting of approximately 200, 0002 elements, which cannot be stored
in most computers. Therefore following the work of [31], a sequential ap-
proach to spatial modeling will be carried out here. From Section 3.6, the
error term of the temporal model for voxel i is now expressed by

εi(t) = ρi1εi(t− 1) + ρi2εi(t− 2) + νi(t) (22)

where εi(t) is the time series of errors for voxel i, ρik is the k-th autoregressive
parameter for voxel i, and νi(t) ∈ N(0, σ2

i ). Now suppose we wish to model
a set of voxels i = 1, ..., V then we have
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ε1(t) = ρ11ε1(t− 1) + ρ12ε1(t− 2) + ν1(t)

ε2(t) = ρ21ε2(t− 1) + ρ22ε2(t− 2) + ν2(t)

...

εV (t) = ρV 1εV (t− 1) + ρV 2εV (t− 2) + νV (t).

(23)

The spatial dependence between the voxels will now be included by allowing
a spatial covariance between νi, i = 1, ..., V . We will use a scaled version

ε1(t) = ρ11ε1(t− 1) + ρ12ε1(t− 2) + σ1h1(t)

ε2(t) = ρ21ε2(t− 1) + ρ22ε2(t− 2) + σ2h2(t)

...

εV (t) = ρV 1εV (t− 1) + ρV 2εV (t− 2) + σV hV (t)

(24)

such that hi(t) have unit variance. In vector form we have

ε(t) = Φ1ε(t− 1) + Φ2ε(t− 2) + Sh(t). (25)

Hence
h(t) = S−1(ε(t)− Φ1ε(t− 1)− Φ2ε(t− 2)) (26)

where Φk is a diagonal matrix containing the k-th autoregressive parameters
at each voxel, and S is a diagonal matrix containing the voxel wise standard
deviations. These matrices are of dimension V × V . Now we assume that
h(t) ∈ N(0,Σ(θ)) where the covariance matrix is defined using a spatial
covariance function with parameters θ. Note that this method allows for
spatial dependence between voxels at each time point. There is no inclusion
of spatial dependence between voxels at different time points, ie we assume
that h(t) is independent from h(t′) where t 6= t′.

3.7.1 Procedure To Fit The Model

The algorithm to fit the spatio-temporal model as described in 3.7 is as
follows.

1. Use restricted maximum likelihood to estimate the βi, σi, ρi1 and ρi2
at each voxel i.
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2. At each voxel i, obtain the residuals Yi(t)−Xβi = εi(t), where εi(t) =
ρi1εi(t− 1) + ρi2εi(t− 2) + νi(t).

3. Calculate νi(t) = εi(t) − ρ̂i1εi(t − 1) − ρ̂i2εi(t − 2) where νi(1) = εi(1)
and νi(2) = εi(2).

4. Using σ̂2
i construct the matrix S, and multiply S−1 by ν(t) to give

estimates of h(t).

5. As h(t) ∈ N(0,Σ(θ)), estimate θ by maximising the log-likelihood

l ∝ −T
2
log|Σ(θ)| − 1

2

T∑
t=1

ĥ
T

(t)Σ−1(θ)ĥ(t). (27)

As Σ(θ) is a V × V matrix, it will computationally intensive to maximise
Equation (27) for large V . For the forms of Σ(θ) that we consider in subse-
quent sections, there are no closed form solutions. There are several methods
one could use to speed up the calculations at the expense of some approxi-
mation, for example see [57], [29] or [45]. However, in this case, although the
computation is time-consuming it is still feasible without using approxima-
tions.

3.7.2 Simulating Spatio-Temporal Data

The algorithm to simulate Spatio-Temporal data is as follows.

1. Choose some parameters β (dim 4×V ), ρ (dim V × 2), σ (dim V × 1)
and θ (dim 1x1) for a set of V voxels.

2. Simulate h ∈ N(0,Σ(θ)) using the following steps.

3. Construct Σ using the distance matrix between the voxels, and a spatial
covariance function with parameters θ.

4. Calculate the Choleski decomposition Σ = LLT where L is a lower
triangle matrix.

5. Obtain a realisation e ∈ N(0, IV ), where IV is the V by V identity
matrix, then h = Le ∈ N(0,Σ)
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6. Repeat Step 5 T times to obtain h(t) for t = 1....T .

7. Construct the matrix S = diag(σ), and then ν(t) = Sh(t) for t =
1....T .

8. Add in the autoregressive part of the model by letting εi(1) = νi(1),
εi(2) = νi(2) and εi(t) = ρi1εi(t− 1) + ρi2εi(t− 2) + νi(t) for t = 3, .., T .

9. Generate a response vector Y i = Xβi + εi at each voxel i .

Table 10 shows some results of simulating spatial data and estimating the
parameters as described in Section 3.7.1. The simulated data was generated
to be similar to the brain data in the smallest ROI initially. In the table the
true values refer to the values of the parameters used to generate the data.
For example β0 = 500 for all voxels in the region and for all simulations.
For the purpose of testing the estimation algorithm, the spatial covariance
function is set to be

Σ(θ) = θD (28)

where D is the V x V Euclidean distance matrix between the voxels within
a region and |θ| < 1. Note that in this case a higher value for θ equates to a
higher correlation between voxels.

The results of the simulation was a set of parameters for each voxel and
for each simulation. Therefore here the results gave an array of size 4 by V by
nsim (for the mean parameters) where V is the number of voxels in the ROI,
and nsim is the number of simulations. To obtain the mean of the estimates
for the mean parameters, the average of the average for each simulation was
taken, the standard deviation (SD) is calculated as the square root of the
average of the variances for each simulation, and the SEM is calculated in a
similar way. The same logic was used to calculate the statistics for the other
parameters.
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Parameter True Value Mean SD SEM
β0 500 500.03 3.82 0.26
β1 2 2.04 6.33 0.44
β2 2 1.84 9.60 0.66
β3 2 2.00 0.27 0.02
ρ1 0.15 0.12 0.13 0.01
ρ2 -0.30 -0.29 0.12 0.01
σ 30 30.26 5.71 0.39
θ 0.85 0.85 0.02 0.001

Table 10: Spatial model parameter estimates mean and standard deviation
from 2000 simulations of voxels in region 41 (211 voxels)

From Table 10 it can be seen that the estimation procedure proposed
gives adequate estimates for the parameters of the model.

3.8 Application To Brain Data

3.8.1 The Mean Parameters

As the mean parameters in the final model 3.7 are estimated using the tempo-
ral model 3.6, here it is computationally possible to estimate the parameters
for all voxels in the brain. Figure 22 shows some results. The blue lines in all
plots show the mean of the estimates of the parameter in each region of in-
terest. The red lines show the mean plus and minus two standard deviations
of the estimates of the parameters in each region of interest. From the figure
it can be seen that all parameters are highly variable. In particular it can
be seen that the mean of all parameters except the intercept term are within
two standard deviations of zero for all regions of interest. This is interesting
as if the estimates of the BOLD response parameters β1 and β2 are close to
zero, this would imply inactivity. This will be returned to in Section 4 where
the voxels will be formally tested for activation.

In Section 2 we saw that when adding the time trend to the intercept,
the reciprocal condition number dropped to near zero (2.88 x 10−4). We
then centered the time trend, and the RCN reduced to 0.005 when this
covariate was added to the intercept alone. This is still suggesting a poorly
conditioned matrix, and therefore removing this covariate may give better
parameter estimates. Here we will investigate if the time trend is required

44



in the model. Applying the temporal model to all voxels, we can test for
each voxel if β3 = 0. If this is true for the majority of voxels, then it may
make sense to remove the covariate. Applying the model to all 228453 voxels
resulted in 94407 which had significant p-values when testing at the 5% level,
implying the time trend is required in these cases. This is 41% of all voxels
and so it seems that the time trend is required for a large proportion of the
voxels.
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Figure 22: Mean (blue) and mean plus/minus two standard deviation (red)
of the parameter estimates in all regions of interest. Black dashed line shows
reference line at zero.
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3.8.2 The Autoregressive Parameters

Figure 23 shows the mean of all autoregressive parameters in each region of
interest. From the plot we can see that in each ROI there is a lot of variability
of the values of the parameter in the region.

Figure 23: The mean of the autoregressive parameters in each ROI (blue)
and plus/minus two standard deviations (red dashed). Black dashed line
shows reference line at zero.

Figure 24 shows some plots of the values of the autoregressive parameter
on the full brain. See Section 3.6.1 for some examples of the parameters on
some ROIs. From these plots it is difficult to see any real pattern, though
there are some areas where the parameter looks to be somewhat clustered.
suggesting some spatial correlation between the estimates.

Figure 24: The estimated autoregressive parameters on the surface of the
brain.
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3.8.3 The Spatial Parameter: Estimating The Spatial Covariance
Using Different Functions

In this section the spatial parameter will be estimated for the regions of
interest using some different spatial covariance functions. The first covariance
function that will be considered will make the assumption that

Σ(θ) = θD (29)

where D is the V x V Euclidean distance matrix between the voxels within
a region and |θ| < 1. Note that in this case a higher value for θ equates to a
higher correlation between voxels. Figure 25 shows the value of the spatial
parameter estimate for each ROI and Table 11 shows some of the interesting
results. Note that the figure does not show the standard deviations as they
are so small it makes it difficult to see the estimates clearly. In all cases the
parameter estimate is fairly high indicating spatial correlation between voxels
within regions of interest. Some interesting points are the two regions with
highest spatial dependence which are region 41 and 71 with spatial parameter
estimates of 0.85 and 0.88 respectively. Also of note is region 87 which has by
far the lowest estimate of 0.63, but still indicates a high correlation between
voxels in that region.
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Figure 25: The estimate of the spatial parameter in each ROI.

Region Number of Voxels θ̂ SD Time
3 3262 0.78 0.02 14 mins
7 4338 0.77 0.01 19 mins
8 4865 0.77 0.01 54 mins
21 278 0.78 0.05 6 secs
41 211 0.85 0.02 5 secs
71 965 0.88 0.04 58 secs

Table 11: Estimates of θ for some different regions of interest assuming
covariance function (29).

From Table 11 it can be seen that for the set of different regions of interest,
the value of the parameter θ is fairly high in most cases. The standard
deviation was obtained here using the output Hessian matrix from the Matlab
function fmincon.
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An alternative covariance function that will be considered is the Matérn
covariance function given by

Σ(α, ν) =
21−ν

Γ(ν)

(
d
√

2ν

α

)ν

Kν

(
d
√

2ν

α

)
. (30)

where d is the distance between two voxels, and Kν is the modified Bessel
function of the second kind of order ν. Applying this to some regions of
interest gives the following parameter estimates.

Region Number of Voxels α̂ SD(α̂) ν̂ SD(ν̂) Time
3 3262 1.53 0.01 2.44 0.03 56 mins
7 4338 1.51 0.03 2.39 0.05 130 mins
8 4865 1.48 0.01 2.49 0.02 190 mins
21 278 1.62 0.02 1.93 0.04 13 secs
41 211 1.80 0.03 2.20 0.07 20 secs
71 965 1.99 0.01 2.16 0.01 3 mins

Table 12: Estimates of α and ν for different regions of interest assuming
Matérn covariance function (30).

Table 13 shows a comparison of the covariance between voxels separated
by different distances in region of interest seven (chosen at random) using the
different covariance functions discussed. Here the aim is to see the similarity
and differences between the covariances at different distances using the two
covariance functions. The Matérn parameters used are the estimates for
those in region seven given in Table 12, and the exponential parameter used
is the estimate for the parameter in region seven, as given in Table 11.

Distance,d θd Matérn
1 0.770 0.727
2 0.593 0.354
3 0.457 0.141
4 0.352 0.050
5 0.271 0.017

Table 13: Estimates of the covariance between voxels seperated by distance
d for regions of interest seven using different covariance functions.
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From Table 13 we can see that the covariance function (29) and the
Matérn gives very different results. Although the lag one correlation is quite
close, the Matérn correlation decays much faster than the exponential covari-
ance function.

Figure 26 shows a comparison of the exponential and Matérn fits to the
brain data. In this plot, the correlation between the residual time series
h(t), (26), is plotted against distance, and the fitted exponential and Matérn
correlations are shown on top.
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Figure 26: The correlation between estimated residuals h(t) against distance
(blue) with estimated spatial correlation (exponential in black, Matérn in
red)

From Figure 26 it can be seen that for this selection of regions of inter-
est, the Matérn correlation function is a better fit to the residuals than the
exponential. We can also see that at larger distances the observed residual
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correlation is more erratic than at smaller distances. This is probably due
to the low number of pairs of voxel residuals which are separated by these
larger distances, ie most of the voxels have a small separation distance. Fig-
ure 28 shows histograms of the numbers of pairs of voxels against separation
distance corresponding to the regions of interest we have been working with.
Binning the distances gives a smoother observed curve (see Figure 27).

Figure 27: The correlation between estimated binned residuals h(t) against
distance (blue) with estimated spatial correlation (exponential in black,
Matérn in red)
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Figure 28: Histograms of the number of unique pairs of voxels separated by
different distances in some regions of interest.

One assumption made up until this point is that the spatial covariance
function has constant parameter values over the course of the experiment.
This may not be true, and one could assume for example, that the spatial pa-
rameter varies at each stage of the experiment. The next covariance function
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that will be considered is of the form

Σ(θ) =


θD1 , if 1 ≤ t ≤ 12

θD2 , if 12 < t ≤ 24

θD3 , if 25 < t ≤ 36

θD4 , if 37 < t ≤ 48

Table 14 shows the estimates of the spatial parameters for a few different
regions of interest.

ROI θ1 θ2 θ3 θ4

3 0.88 (0.001) 0.61 (0.001) 0.86 (0.007) 0.87 (0.004)
7 0.89 (0.003) 0.65 (0.55) 0.83 (0.004) 0.89 (0.002)
8 0.87 (0.002) 0.59 (0.005) 0.84 (0.006) 0.88 (0.001)
21 0.77 (1.03) 0.54 (3.75) 0.85 (2.43) 0.87 (2.63)
41 0.88 (0.002) 0.75 (0.006) 0.87 (0.002) 0.92 (0.003)
71 0.92 (0.003) 0.77 (0.002) 0.92 (0.002) 0.93 (0.001)

Table 14: Spatial parameter estimates (and standard deviation) when allow-
ing for a different exponential parameter in each of the four periods of the
experiment.

From Table 14 we can see that the spatial correlation drops in all cases
during the second period, ie the first period of activity.

An alternative method to determine if the spatial correlation is time de-
pendent is to introduce a time dependent spatial parameter. The next two
functions to be considered are the time dependent exponential given by

Σ(θ, t) = e
− D
θ0+θ1t+θ2t

2 (31)

and the time dependent Matérn given by (30) with α = θ0 +θ1t+θ2t
2. These

two spatial functions allow the spatial parameter to vary with time. Tables
15 and 16 shows the results.
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ROI θ0 θ1 θ2

3 2.80 (4.25) 0.001 (1.12) 0.002 (0.03)
7 2.64 (4.45) 0.001 (0.83) 0.002 (0.02)
8 2.78 (58.85) 0.001 (1.31) 0.002 (0.03)
21 3.32 (9.38) 0.001 (1.25) 0.001 (0.03)
41 4.66 (13.09) 0.001 (1.07) 0.002 (0.02)
71 5.27 (0.10) 0.001 (0.001) 0.004 (0.001)

Table 15: Spatial parameter estimates (and standard deviation) using the
time dependent exponential

ROI θ0 θ1 θ2 ν
3 1.55 (8.39) 0.001 (0.91) 0.001 (0.17) 1.20 (0.95)
7 1.59 (7.53) 0.001 (1.43) 0.001 (0.05) 1.34 (1.08)
8 1.43 (8.01) 0.001 (0.77) 0.001 (0.09) 1.27 (0.86)
21 1.80 (15.56) 0.001 (1.89) 0.001 (0.03) 0.92 (2.45)
41 1.99 (38.46) 0.001 (4.72) 0.001 (0.10) 1.17 (1.01)
71 2.10 (158.85) 0.001 (19.97) 0.001 (0.40) 1.34 (10.84)

Table 16: Spatial parameter estimates (and standard deviation) using the
time dependent Matérn

From Tables 15 and 16 it appears that the additional parameters θ1 and
θ2 are estimated near zero in all cases, indicating that they are not needed.
However note that the parameter estimate standard deviations are very large
in these cases.

One method of determining which of the covariance functions gives a
better model fit is to use the AIC (7). Here the log-likelihood given in
Equation (27) will be evaluated at the maximum for the covariance models
discussed in order to compute the AIC. As usual the model which gives the
lowest AIC is the preferable model. Table 17 shows the AIC for a selection
of the regions of interest.
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ROI θd Matérn e
− d
θ0+θ1t+θ2t

2 Matérn (time trend) Varying θ
3 -0.75 -1.38 -0.80 -1.16 -1.05
7 -0.96 -1.77 -1.13 -1.58 -1.40
8 -0.93 -1.84 -1.09 -1.62 -1.39
21 -0.04 -0.09 -0.05 -0.06 -0.05
41 -0.08 -0.11 -0.08 -0.09 -0.08
71 -0.47 -0.66 -0.49 -0.63 -0.55

Table 17: The AIC for some regions of interest using different covariance
functions (multiply all figures given by 105 for true values )

From Table 17 it can be seen that in all cases, the Matérn covariance
function with no time trend gives the lowest AIC, which indicates that this
is the best model.

3.9 Residual Analysis

In this section, the residuals of the model described in Section 3 will be
analysed for a number of reasons. Firstly, we can assess model fit. If our
statistical model is a good one, then the residuals should be approximately
noise. The second reason is that the residuals can be used to assess some of
our model assumptions. One assumption was that the residuals are spatially
correlated, and that this correlation is independent of time. Finally, as we
modeled the residuals and found evidence of spatial correlation, the residuals
can be used to analyse this pattern of spatial correlation further, by using
methods such as clustering.

In all of the following, the residuals of the model, h(t) are given in Equa-
tion (26).

3.9.1 Residuals Autocorrelation

If a good statistical model is fit to data, then the resulting residuals of such a
model will be approximate white noise. In this section we will formally test
if the residuals at each individual voxel are noise, or if there is any evidence
of correlation still remaining in the residual time series. One method to test
this is to use the Ljung-Box Test as described in Section 2.3.3.

Applying the Ljung-Box test to all voxel residuals in the brain resulted in
Figure 29 which shows the proportion of voxels which still have correlation
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when testing at the 5% significance level in all regions of interest.

Figure 29: The proportion of residuals in each ROI which have evidence of
correlation according to the Ljung-Box test. Shown are results using residuals
of a model with AR(1) errors (blue), and the model with AR(2) errors (red).

From Figure 29 we can see that the average across all regions of residuals
which contain some correlation is approximately 20% when applying a model
with first order autoregressive errors. When allowing for second order au-
toregressive errors, there is a substantial decrease in the number of residuals
which have evidence of autocorrelation. This is further evidence that the
second order autoregressive model is more suitable to use for this data set.

3.9.2 Residual Noise

The statistical model assumes that the model residuals h are standard nor-
mal at each voxel (see Section 3.7). Then we later assume spatial correlation
between the residuals across different voxels. In this section we will inves-
tigate if the assumption that h are standard normal at each voxel. If the
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assumption is valid, then we should find that the estimated residuals are
independent and approximately 95% should have value between −1.96 and
1.96. Also as the residuals are assumed to be uncorrelated noise, plotting
them against the fitted values should show a random scatter of points. Given
there are over 150, 000 residual time series that we could plot, a random set
of six are shown in Figure 30. Furthermore, Figure 32 shows histograms of
the residuals in six different regions of interest.
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Figure 30: The model residuals plotted against the fitted values for six ran-
dom voxels
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Figure 31: Q-Q plots of model residuals for six random voxels
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Figure 32: Histograms of the residuals in some regions of interest
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Figure 33: Histograms of the residuals in some regions of interest, with fitted
normal distribution (red).

The plots in this section show that the model residuals are approximately
standard normal, and uncorrelated suggesting a good model fit.
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3.9.3 Temporal Correlation Between Residuals

In the previous section we looked at determining if each individual residual
time series contained correlation or if they were just noise. Even though the
results showed that the majority of voxels were not correlated, it would be
interesting to investigate if the residual noise at each voxel is similar across
voxels. In this section we will investigate if the residual time series between
voxels are correlated. It is not feasible to test this for all pairs of voxels,
therefore for each region of interest we will test 1000 random pairs of voxels
for correlation using permutation tests.

For each pair of voxels we can calculate an observed correlation between
the residuals at those voxels. By randomly permuting one (or both) of these
vectors and recalculating the correlation we can obtain a new correlation
value. Repeating this process many times will result in a distribution of
correlation values. As we are calculating the values based on random per-
mutations, the resulting distribution describes the correlations under the
assumption that there is no order in the data. From this distribution we
can compare the observed correlation to obtain a p-value of the likelihood of
observing this correlation if there is no underlying order to the data. The
p-values are obtained by counting the number of permuted correlations which
are larger in magnitude than the observed one. This process will be carried
out for all regions of interest, using 1000 permutations in each case for each
pair of voxels. Figure 34 shows the results.
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Figure 34: The proportion of pairs of voxel residuals which are correlated
in each region of interest. In each region, 1000 pairs were assessed using a
permutation test

From Figure 34 we can see that on average around 40−50% of the assessed
pairs of voxels in each region were significantly correlated when assessing at
the 5% level. Therefore, although we have seen that the voxel residuals
are mostly noise, this shows that the residual noise at different voxels are
correlated in a large number of cases.

Aside from testing for correlation between voxels within a region, we can
also repeat this test for correlation of voxels between regions. One way of
doing this is to look for correlation between regional means. Let hv(t) be the
residual at voxel v at time t. Then we define the regional mean for region i
as

h̄i(t) =
∑
v∈Ri

hv(t)

|Ri|
(32)

where Ri denotes region i and |Ri| is the number of voxels in region i.
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Figure 35 shows a histogram of p-values obtained when testing 1000 pairs
of residual regional means for correlation using the permutation test.

Figure 35: Histogram of p-values obtained when testing 1000 pairs of residual
regional means for correlation using a permutation test.

From Figure 35 we can see a large number of significant p-values. In fact,
58% of the 1000 tested pairs of regional residual means had a p-value of less
than 0.05 implying correlation.

In this section we have seen that a large proportion of the residual time
series of voxels, and regional means are correlated. Although the residuals
look noisy, there is correlation between this noise. This can be explained due
to the fact that the residuals are spatially correlated, thus we would expect
to observe correlation between pairs of voxel residuals.
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4 Testing For Activation

4.1 Introduction

In this chapter we will look at testing the brain data for voxel activation.
Following the work in chapter 3, as the covariates x1 and x2 of the model
are the BOLD responses during the two different periods of activity in the
experiment, the voxel activation test is the hypothesis test

H0 : β1 and β2 = 0

vs

H1 : β1 or β2 6= 0.

(33)

All models described in chapter 3 assume normally distributed errors with
unknown variance, thus one method of performing the test would be to test
β1 = 0 and β2 = 0 independently using the usual t-test. However since we
are testing two conditions simultaneously, it may be preferable to perform
the activation test of both periods simultaneously, considering there is likely
correlation between the two periods of activity. This can be achieved using
the likelihood ratio test (LRT). The likelihood ratio test is used to compare
two nested statistical models. Let Lg be the value of the likelihood of a
general model evaluated at its maximum, and let Ls be the value of the
likelihood of a smaller nested model evaluated at its maximum. Then the
likelihood ratio test (expressed in terms of log-likelihoods) is given by

LRT = −2(log(Ls)− log(Lg)) ∼ χ2
q (34)

where q is the difference in the number of parameters in each model. In
the context of our problem, the larger general model will be that with both
BOLD covariates (Equation (9)), and the smaller nested model is one without
any BOLD response. Hence if we obtain a significant p-value using the LRT ,
then this will indicate that at least one of β1 or β2 is non-zero and required
in the model, thus indicating voxel activation.

The rest of this chapter will be structured as follows. First some back-
ground information on multiple hypothesis testing will be given, then simu-
lations will be used to explore correlation between the test statistics and to
ensure the activation tests are working as expected, and finally testing will
be applied to the brain data.
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4.2 Multiple Hypothesis Testing

When performing multiple hypothesis tests care must be taken with regard to
the type one error. If a single test is performed, the probability of rejecting
the null hypothesis when it is true (reporting an active voxel when it is
inactive) is

P (Reject null|Null true) = α (35)

where α is some acceptable threshold level, usually set to 0.05. This is a false
positive and so the probability of not reporting a false positive is 1− α.

Suppose V of such independent tests are carried out, where V is the
number of voxels, then the probability of reporting at least one false positive
is

P (At least 1 false positive) = 1− P (No false positives)

= 1− (1− α)V .
(36)

If α = 0.05 and V = 211 (the size of the smallest ROI), then the probability
of obtaining at least one false positive is then 0.99998. In other words as the
number of tests increase, the probability of falsely reporting active voxels
becomes an almost certainty. This is a problem as even obtaining 5% false
positives results in a lot of error if considering a large number of tests. For
example a large region of 5000 voxels could result in 250 false positives, or the
whole brain which consists of close to 200, 000 voxels could result in reporting
10, 000 voxels active when they are not. Therefore steps must be taken to
reduce the type one error.

4.2.1 Bonferroni Correction

One basic method to reduce the type one error is the Bonferroni correction
[23]. This method consists of changing the threshold for rejecting the null
from α to α/V , and this can be shown to keep the probability of obtaining
at least one false positive over all V tests to approximately α. For example,
using this correction with α = 0.05 and V = 211 we have
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P (At least 1 false positive) = 1− P (No false positives)

= 1− (1− α

V
)V

= 1− (1− 0.05

211
)211

= 0.0488.

(37)

Note that the probability obtained here is slightly below 0.05. The Bonfer-
roni correction can be used on any data, independent or correlated, however
it is known that for correlated data the Bonferroni correction can become
extremely conservative [68]. This means that if the data is correlated and
α = 0.05 the correction could lead to the probability of at least one false
positive reducing to a value much smaller than 0.05. Furthermore, even for
independent data, if V is large, the probability of rejecting the null for any
individual test becomes extremely small. Thus the Bonferonni correction has
the disadvantage of increasing the type two error. In other words it is much
more likely to report inactivity even when the voxel is active.

4.2.2 Benjamini-Hochberg Procedure

The Benjamini-Hochberg procedure [19] is another correction method which
is now a popular method which is used to reduce type one error. The method
is less conservative than the Bonferroni correction, however it has the advan-
tage that it does not increase the type two error as extremely as the Bon-
ferroni correction does. The Benjamini-Hochberg procedure can be used on
independent or positively correlated test statistics [20] and is described as
follows.

Suppose V hypothesis tests are performed. Order the p-values from low
to high such that

P1 < P2 < · · · < PV

Choose a desired level α for which the overall number of false positives is to
remain below then find the largest p-value which satisfies

Pk ≤
kα

V

and reject the null hypotheses corresponding to the p-values P1, P2, ..., Pk.
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4.2.3 Example Of How The Procedures Differ

In a subsequent section, simulated brain data will be used to observe how the
Bonferroni and Benjamini-Hochberg procedures perform in terms of type one
and two error. Here we will show a simple example where data is simulated
with 1000 points such that the first 900 are from the N(0, 1) distribution and
the remaining 100 are from the N(3, 1) distribution. The data are then tested
to see if they are observations from a N(0, 1) distribution. The proportion
of the first 900 data points which have a p-value of p < 0.05 is the type one
error, as we have simulated the data from the N(0, 1) distribution, though
would reject this if testing at the 5% significance level. The proportion of the
last 100 data points which have a p-value of p > 0.05 when tested against the
N(0, 1) distribution is the type two error, as we have simulated these data
points from the N(3, 1) distribution, though would be confident were from
the N(0, 1) distribution when testing at the 5% significance level.

In addition to looking at the type one and type two error without correc-
tions, we will also apply the Bonferroni and Benjamini-Hochberg corrections
to see how these impact the type one and type two errors. For example,
in the case of the Bonferroni correction, we set the critical value for each
individual test to be 0.05/1000. As described in Section 4.2.1, this will keep
the probability of obtaining at least one false positive to approximately 0.05.
Table 18 shows the results.

Correction Type 1 error Type 2 error
None 0.044 0.16

Bonferroni 0.001 0.88
Benjamini 0.003 0.42

Table 18: Type 1 and type 2 error obtained when testing mixed data which
is simulated from either the N(0, 1) or N(3, 1) distributions.

From Table 18 it can be seen that the Bonferroni correction does best
in reducing the type one error. As noted in Section 4.2.1, if the number of
tests is large, the correction gives very conservative results, and this comes at
the cost of a increased type two error. The results show how the Benjamini-
Hochberg procedure gives a reduced type one error (in comparison to no
correction), without inflating the type two error as much as the Bonferroni
correction.
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When performing multiple tests it is worth considering if type one error
or type two error is most important to the application. If type two error
is not an issue, then the Bonferroni correction gives the lowest type one
error. However, in general it is thought that in most applications that the
Benjamini-Hochberg correction is the best option.

4.3 Brain Simulations

4.3.1 Correlation Between Test Statistics

Given that we are working with a spatial model (see Section 3.7), we would
expect that test statistics for voxels will also be correlated and be dependent
on the strength of the spatial correlation. In this section, this relationship
will be investigated using simulated data. As in previous sections, data will
be simulated for a smaller region of interest (ROI 41) containing 211 voxels.
For each simulation spatial data will be generated, where all voxels will have
the following parameter values: β0 = 500, β1 = β2 = β3 = 2, σ = 30,
ρ1 = 0.15 and ρ2 = −0.30. The spatial covariance function in Equation (29)
will be used.

For each simulation we will estimate all parameters, and obtain a test
statistic for the hypothesis H0 : β1 = 0. Hence we will obtain 211 test
statistics for each simulation

t1 = (t1, ..., t211)

where

t1 =
β̂11

sd(β̂11)

and β̂11 is the estimate of β1 for the first voxel. To see how to correlation be-
tween test statistics change as the spatial parameter changes, another vector
of length 211 will be formed of test statistics of neighbouring voxels within
one unit distance

t2 = (t?1, ...t
?
211)

where t?1 is the t-statistic corresponding to a voxel of one unit distance from
the first voxel and so on. For each simulation corr(t1, t2) can be calculated
and will tell us the correlation between neighbouring test statistics. This
procedure will be repeated for 100 simulation and the mean will be taken.
Furthermore, the procedure will be repeated for a set of values of θ to see how
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the correlation in test statistics changes in relation to the change in the spatial
dependence on the field. Table 19 shows the results. A similar procedure
can also be implemented for the t-statistics for the second activation period,
ie testing if β2 = 0.

θ Correlation between β1 test stats Correlation between β2 test stats
0 −0.01 −0.01

0.1 0.09 0.08
0.2 0.18 0.18
0.3 0.26 0.27
0.4 0.35 0.34
0.5 0.43 0.42
0.6 0.48 0.51
0.7 0.56 0.56
0.8 0.61 0.63
0.9 0.68 0.66
0.99 0.67 0.68

Table 19: Correlation between the test statistics for β1 = 0 and β2 = 0 for
neighbouring voxels of one unit distance seperation. Results obtained using
the mean of 100 simulations of 211 voxels in ROI 41.

From Table 19 it can be seen that as the spatial dependence increases,
then so does the correlation between test statistics at neighbouring voxels
as expected. One final thing of interest is the correlation between the test
statistics for the estimates of β1 and β2 as the spatial parameter changes.
To investigate this, the above simulation is used and the test statistics at all
voxels are calculated. From this we can find the correlation as required. The
result were that the correlation did not vary noticeably with a change in θ,
and remained at an almost constant level of approximately 0.25. Noticing
that this is the value of the autoregressive parameter ρ in all simulations, the
simulation was repeated, this time holding θ constant and allowing ρ to vary,
and this had no effect on the correlation between any of the test statistics.

In this section we have seen using simulated data, that test statistics
are correlated between voxels, and as spatial dependence increases, so does
this correlation. The correlation between the test statistics for β1 = 0 and
β2 = 0 does not depend on the spatial parameter as expected, however
the simulation showed that there exists a correlation between the statistics.
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Therefore using the likelihood ratio test to test both simultaneously may be
better than testing them individually.

4.3.2 Testing For Activation

In Section 4.2 we noted that for any given activation test, there will be a
probability of detecting a false positive. If the threshold for the critical value
of a hypothesis test is set to 0.05, then there is a 5% chance of reporting a
false positive. In this section the objective is to simulate data and test for
voxel activation, ensuring the we obtain the correct number of false positives.
If this is achieved the simulations will also be used to show the impact of
model misspecification on the number of reported false positives.

The first thing to note is that all simulations will be of temporal data
only, as when we fit the spatial model, because of the sequential nature
of it, the temporal model is used to estimate all mean parameters. In all
simulations the temporal data will this time be generated with parameters
set to β0 = 500, β1 = 0, β2 = 0, β3 = 2, σ = 30, ρ1 = 0.15 and ρ2 = −0.30
at all voxels. Note that we use β1 = 0 and β2 = 0 to simulate inactive
voxels, with the aim of determining how many were inferred to be active,
thus obtain a false positive rate. If we fit the same model to the data as used
to generate the simulated data, the false positive rate should be 5% when
testing at the 5% level. As described in Section 4.1, the likelihood ratio test
will be used to determine if voxels are active. Here two models will be fit,
one which includes two BOLD responses, and one which includes neither.
If the likelihood ratio test gives a significant test statistic then the larger
model is favoured, implying at least one of the BOLD responses is required.
As the generated data is such that β1 = 0, β2 = 0, this is indicative of a false
positive.

Before presenting results, we briefly note an issue that arose when inves-
tigating this. Under the conditions described above, and using the likelihood
ratio test we found that almost all voxels were active. This is because the
restricted likelihood was used in the log-likelihood ratio test. Recall that the
proposed estimation method for the temporal model is to fit using REML
to simultaneously estimate all parameters. The first step of REML is to re-
move the fixed effects of a model, therefore the likelihood ratio test cannot
be use compare the fixed effects of competing models when REML is used
[5]. Hence for voxel activation tests, the parameters will be estimated using
REML, and the log-likelihood from regular maximum likelihood estimation
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will be evaluated at these values in order to perform the likelihood ratio test.
Table 20 shows the percentage of false positives obtained when generating

temporal data for differing numbers of voxels and different lengths of time
series. All tests carried out at the 5% significance level. The table shows the
results obtained via the likelihood ratio test, and also the results obtained
if testing each of the parameters β1 and β2 separately using the traditional
t-test.

Number of Voxels Length % FP (LRT) % FP β1 % FP β2

100 48 7 7 2
1000 48 7.7 6.2 5.3
10000 48 7.6 6.3 5.4
10000 96 6.5 5.3 5.4
10000 144 6.1 5.6 5.3

Table 20: Percentage of false positives obtained when simulating temporal
inactive data using the likelihood ratio test (LRT) or the t-test to test β1

and β2 seperately.

From Table 20 we can see that the percentage of false positives is a little
high when testing at the 5% level with time series of length 48. This is likely
due to the likelihood ratio test statistic being asymptotically chi-squared,
thus as the time series length increases, we can see the false positive level
decrease to the expected level. The t-test results obtained are much closer
in all cases to 5%.

An interesting thing to investigate is the impact of model misspecifica-
tion on the number of false positives obtained. Table 21 repeats the above
simulation, however now an independent model will be fit to the temporal
data.
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Number of Voxels Length % FP (LRT) % FP β1 % FP β2

100 48 26 17 13
1000 48 20.1 14.5 13.7
10000 48 17.4 13.6 12.1
10000 96 16.5 12.4 11.9
10000 144 15.6 11.4 11.4

Table 21: Percentage of false positives obtained when simulating temporal
inactive data and fitting an independent model, using the likelihood ratio
test (LRT) or the t-test to test β1 and β2 seperately.

From Table 21 we can see that when the incorrect model is used, the
number of false positives increases substantially. Therefore it is important
to ensure that the model fit is as good as possible.

4.4 Application To Brain Data

In this section we will investigate activation in the brain data. In particular
we will find the number of active voxels using the temporal model in different
regions of interest and testing at the 5% level The numbers are then adjusted
using the different corrections. Note that although the number of false pos-
itives will be correctly reduced using the Bonferroni or Benjamini-Hochberg
procedures, the type two error will be inflated as seen in 4.3. Therefore the
reported number of active voxels may be a lot lower than the true number
of active voxels. Table 22 show results for some different regions of interest
when the temporal model is fitted. In all cases the results obtained via test-
ing both activity periods simultaneously using the likelihood ratio test, or
individually using the usual t-test are given. Also the Benjamini-Hochberg
procedure is applied to adjust for multiple hypothesis testing as described in
Section 4.2.2.
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ROI Voxels LRT T-test β1 T-test β2 LRT (Benjamini)
3 3262 1177 (35%) 1174 (36%) 294 (9%) 587 (18%)
7 4338 1605 (37%) 1751 (40%) 304 (7%) 954 (22%)
8 4865 1314 (27%) 1193 (25%) 449 (9%) 389 (8%)
21 278 110 (40%) 117 (42%) 8 (3%) 64 (23%)
41 211 110 (52%) 127 (60%) 2 (1%) 95 (45%)

Table 22: Number of active voxels (and percentage) in different ROIs using
the likelihood ratio test (LRT) to test both simultaneously, or the t-test to
test individually. Also given is the result when corrected using the Benjamini-
Hochberg procedure.

The most notable thing that can be seen from Table 22 is that for a
subset of the regions of interest, there are far fewer activations detected in
the second period of exercise in the experiment than the first period. This
would imply that the response changes most significantly in the first period
of exercise, and this type of behaviour will be seen again in later sections
when using clustering or topological methods on the model residuals. Figure
36 shows the proportion of active voxels in all regions of interest.
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Figure 36: The proportion of active voxels (with correction) in all ROIs using
temporal model

From Figure 36 we can see that the proportion of active voxels varies
considerably across regions of interest, and Table 23 highlights some of the
regions with the most and fewest activations.
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ROI Number Voxels Percent Active
28 719 72
87 714 65
88 1090 51
52 2005 51
6 947 49
20 2176 2
69 1195 2
19 1953 1
70 714 0.4
35 472 0

Table 23: The lowest and highest percentage of active voxels in the ROIs
using the temporal model and correction.

These regions of interest (see Table 63 in the Appendix) are a mixture
of regions which are involved with movement and ones which are not. For
example, the regions with the highest percentage of active voxels contain
the Superior Frontal Gyrus (ROI 6) which makes up a substantial part of
the frontal lobe which is involved in movement (see Section 2.2), however
some of the other regions with a high percentage of active voxels are from
the temporal lobe which is more associated with audio processing. The same
can be said for the regions with the least percentage of active voxels. In the
next chapters, we will move on to using the model residuals to investigate if
any interesting features can be found using clustering then later topological
methods.
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5 Clustering

5.1 Clustering Of The Residual Regional Means

The model residuals are spatially correlated, as seen in the spatial modelling,
and by calculating the correlation between pairs of voxel residuals in the
previous section. In this section we will focus on investigating this spatial
correlation further by using clustering methods to assess if there are any
interesting spatial patterns in the residuals.

We begin by looking at the clustering of the regional residual means
given in Equation (32). That is, for each region of interest, the mean of the
residuals in that region will be used as being representative of that region.
Therefore we will be clustering ninety time series, with the aim to see if there
is any significant similarity or difference between regions.

5.1.1 The Number Of Clusters

The most simple method of clustering is to use k-means clustering. To use k-
means clustering, the number of clusters must be specified. There are many
different methods to choose the number of clusters. The Calinski-Harabasz
(CH) criterion [59] calculates a criterion score based on the distances between
clusters, B(k), and distances between objects within clusters, W (k), and is
given by

CH(k) =
(N − k)B(k)

(k − 1)W (k)
(38)

where k > 1 is the number of clusters.
The idea here is that a good clustering will have small within cluster

distances and large between cluster distances (tight compact clusters that
are well separated). The criterion is usually evaluated for a set of different
values of k, and the one with the maximum value is the best, that is the
one with the best ratio of between and within cluster distances. Figure 37
shows the Calinski-Harabasz criterion for the regional means. From this we
see that the optimal number of clusters in this case is two.
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Figure 37: The Calinski-Harabasz criterion for different numbers of clusters
using regional means.

The Calinski-Harabasz criterion here found that the optimal number of
clusters is two (see Figure 37). However note that this criterion is not defined
for one cluster. An alternative metric for determining the optimal number
of clusters is the gap statistic [70] given by

G(k) = E[log(Wk)]− log(Wk) (39)

where Wk is the average within cluster sum of squares about the cluster
means defined by

Wk =
k∑
r=1

1

2nr
Dr

and Dr is the sum of all pairwise squared distances for all points in cluster
r and nr is the number of points in cluster r. The idea here is to choose the
number of clusters which maximises the gap statistic. This occurs when the
difference between the observed within region variability and the expected
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within region variability (under the null distribution assumption that there
is no clustering) is greatest [70]. Figure 38 shows the gap statistic for a set
of different numbers of clusters applied to the regional residual means.

Figure 38: The gap statistic for different numbers of clusters

Although there is some suggestion from the Calinski-Harabasz criterion
that two clusters is best, the gap statistic (Figure 38) suggests a very high
number of clusters, here 49. Note that there are only 90 vectors being clus-
tered, thus the gap statistic suggests very little evidence of clustering in the
data. Therefore the Calinski-Harabasz criterion suggests very few clusters
whilst the gap statistic suggests the opposite. Choice of number of clusters
is clearly problematic for noisy time series data of this type. However, im-
posing two clusters did appear to give some interesting results (Figure 40),
which will be further investigated.
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5.1.2 Clustering Results

Using two clusters as suggested by the Calinski Harabasz criteria, Figure 39
shows a plot of the the residual times series’ in the two clusters.

Figure 39: The two clusters of regional residual means

From Figure 39 we can see that the residuals are noisy in both cases.
There are 60 of the residual regional means in the first cluster, and the
remaining 30 in the second cluster. It does appear from the clustering, that
the first cluster is much more noisy than the second cluster. Figure 40 shows
the regional centroids coloured according to the clustering. Note that in this
figure the points show the locations in the brain where the centroids are
located.
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Figure 40: The regional centroids coloured according to the clustering of the
regional residual means. Top left shows a 3D view of the clustering. Top
right is 2D view in the xy plane, bottom left in the xz plane and bottom
right yz plane.

From Figure 40 we can see that there is evidence of spatial clustering, that
is that the residual means which are near each other seem to be assigned to
the same cluster, and there seems to be a definite partition between the two
clusters, certainly in three of the four plots.

5.1.3 Within Cluster And Between Cluster Correlation

To investigate the clustering, an interesting thing to check is the within clus-
ter and between cluster voxel correlations. For each of the two clusters, the
correlation between all pairs of regional means within each cluster was cal-
culated, and then the correlation between all pairs between the two clusters.
Let Ck be the set of all regional means in cluster group k and let δk be the
set of all pairwise correlations between regional means in Ck. Then
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δ̄k =

∑
i,j∈Ck corr(h̄i, h̄j)(|Ck|

2

) (40)

is the mean of all pairwise correlations within cluster k and

SD(δk) =

√√√√∑i,j∈Ck(corr(h̄i, h̄j)− δ̄k)
2(|Ck|

2

)
− 1

(41)

is the standard deviation of all pairwise correlations in cluster k. We can also
define analogous expression for between cluster correlations. Let γkk′ be the
set of all pairwise correlations between regional means in Ck and Ck′ . Then

γ̄kk′ =

∑
i∈Ck,j∈Ck′

corr(h̄i, h̄j)

|Ck||Ck′|
(42)

is the mean of all pairwise correlations between cluster k and cluster k′ and

SD(γkk′) =

√∑
i∈Ck,j∈Ck′

(corr(h̄i, h̄j)− γ̄kk′)2

|Ck||Ck′ | − 1
(43)

is the standard deviation. Table 24 summarises the results for the clustering
of the regional means.

Cluster 1 2
1 0.44 (0.21) 0.23 (0.17)
2 0.23 (0.17) 0.47 (0.21)

Table 24: The mean within cluster correlations δk (and standard deviation),
and mean between cluster correlation γ12 (and standard deviation) for the
two clusters of the regional residual means.

From Table 24 it can be seen that the within cluster correlations are
higher than the between cluster correlations. However note that the standard
deviation is also fairly high in all cases.

5.1.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) provides a method of optimally sepa-
rating classes of objects. Using the clustering results, LDA can be used to
assess the separation of the two clusters.
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The general idea of LDA is to fit a line or surface (depending on the
dimension of the data) to separate classes of points, such that the differences
between the within class means are maximised and the within scatter is min-
imised [63]. More formally, let X1 = (x1

1, x
1
2, ...., x

1
l1

) and X2 = (x2
1, x

2
2, ...., x

2
l2

)
be samples from two different classes, where the complete sample is defined
by X = (x1

1, x
1
2, ...., x

1
l1
, x2

1, x
2
2, ...., x

2
l2

). Then the linear discriminant is defined
by the vector ω which maximises

J =
ωTSBω

ωTSWω
(44)

where

SB = (m1 −m2)(m1 −m2)T

SW =
∑
i=1,2

∑
x∈Xi

(x−mi)(x−mi)
T (45)

are the between and within class scatter matrices respectively, and mi is the
within class mean for class i. LDA can be used as a classification tool, or
as a method of dimension reduction. Once a discriminant is fit, a new point
can be classified, or assigned to a cluster, using its dependent variables, here
its three dimensional coordinates. With respect to dimension reduction, the
original points in n dimension space can be projected onto an m dimension
surface (where m < n) which separates the classes optimally. This may be
useful in order to visualise classes which cannot be seen by inspection in high
dimensions. In this section LDA will be used to both classify and to reduce
dimension in order generate plots of the separation of the clusters in two
dimensions.

Leave one out cross validation (LOOCV) can be used with LDA to assess
the quality of the separation of the two clusters. The method is to leave one
of the observations out (test data), and use the rest of the data as a training
set to fit the linear discriminant. The test data is then assigned to a cluster
based on which side of the linear discriminant its coordinates lies on. This
can be repeated for all points. As we know the true cluster which all points
are actually assigned to, we can then get a measure of accuracy of the LDA
classifier. If there is an obvious separation between the two clusters, then
this accuracy is expected to be high.

Figure 41 shows the residual regional means split into two clusters (top
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left). This three dimensional set of points in two classes is then projected
onto the optimal two dimensional surface (top right and bottom centre).

Figure 41: Clustering of regional residual means (top left), projection on to
discriminant plane (top right) and the rotated discriminant plane (bottom
centre).

Figure 41 shows that there is a clear separation between the two cluster
groups. To measure the separation, LOOCV will now be used as described
earlier. Table 25 shows the result from classifying each residual region mean,
by using LDA to fit a discriminant to all other regional means, and assigning
a class based on its location.
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Predicted Cluster
Actual Cluster 1 2

1 55 5
2 5 25

Table 25: The number of residual regional means in each of the actual clus-
ters, and the number in each of the clusters predicted using LOOCV.

Table 25 shows that out of the 60 residual region means in the first cluster,
55 are assigned to the first cluster using LOOCV and LDA. Similarly, out of
the 30 residual regional means in the second cluster, 25 are assigned to the
second cluster using LOOCV and LDA.

In order to summarise the results in Table 25, and in similar tables in later
sections, three measures will be used; accuracy, sensitivity and specificity [64].
Consider the general results in Table 26.

Predicted Cluster
Actual Cluster 1 2

1 a b
2 c d

Table 26: The general number of regional means in each of the actual clusters,
and the number in each of the clusters predicted using LOOCV.

First, let us define the accuracy of the classification as

Accuracy =
a+ d

a+ b+ c+ d
. (46)

Hence the accuracy is the proportion of regional means which are correctly
classified. Next define the sensitivity as the proportion of regional means in
cluster one which are predicted to be in cluster one, ie

Sensitivity =
a

a+ b
. (47)

Finally define the specificity as the proportion of regional means in cluster
two which are predicted to be in cluster two, ie

Specificity =
d

c+ d
. (48)
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Applying these measure to the results in Table 25 results in an accuracy of
0.89, sensitivity of 0.92 and specificity of 0.83. It is important that multiple
measures are used, as using accuracy alone can give misleading results (see
Table 33 later). High results for all three measure gives evidence for strong
separation between the two clusters.

5.2 Clustering Of Raw Data

5.2.1 Raw Regional Means

In the previous section we found that there appeared to be some spatial
clustering of the residuals. In this section we will investigate if this pattern
can be found by clustering various forms of the original raw data, rather than
the residuals.

Figure 42 shows the clustering of the raw regional mean vectors ȳi(t)
defined by

ȳi(t) =
∑
v∈Ri

yv(t)

|Ri|
. (49)

Note that two clusters have been chosen to compare the results with those
obtained when clustering the residuals. Applying the C-H criterion to the raw
mean vectors, the optimal number of clusters was 34. The actual clustering
on the brain looks fairly similar to that seen when clustering the residual
mean vectors. In Figure 42 the clustering appears to be due to the magnitude
of the signal. This cannot be the case for the clustering of the residual
regional means, as all residuals have mean zero.
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Figure 42: The two clusters of raw data regional means on the brain (top
left), the raw data (top right) and the clusters in the x-y, x-z and y-z 2D
planes.

Figure 43 shows the variance of each of the residual and raw regional
mean vectors. Note that in the modelling the residuals are scaled such that
they have unit variance. Investigating the model residuals it was found that
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the variance of the residuals h at each voxel was approximately equal to one
as expected. However note that the regional means of the residuals h̄i will
not have unit variance as seen in Figure 43.

Figure 43: The variance of the residual regional means (left) and the raw
regional means (right). Note the change of scale.

From Figure 43 we can see that there appears to be some evidence of
correlation between the variance of the raw regional mean vectors and the
variance of the residual regional mean vectors. In fact the correlation is 0.68
which may explain the similarity in the clustering of the two data sets.

5.2.2 Raw Centered Regional Means

Let r̄i(t) denote the centered regional means of the raw data defined by

r̄i(t) =
∑
v∈R

yv(t)− ȳv
|Ri|

(50)

where ȳv is the mean of the time series at voxel v. Figure 44 shows the result
of clustering the raw data with the mean removed, and although we have
specified two clusters here, the separation between the clusters is much less
evident than the previous cases.
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Figure 44: The two clusters of raw data means (centered) on the brain, the
raw data and views from the x-y, x-z and y-z planes.

In Figure 44, the centered raw regional means were clustered with two
clusters chosen. Using the C-H criterion the optimal number here is five.
Figure 45 shows the CH criterion in this case. From this we can see only
a marginal improvement of having five clusters over two, and further inves-
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tigation found that 80 of the 90 mean vectors were in two of the clusters,
therefore it would be preferable in this case to opt for two clusters.

Figure 45: The CH criterion for the clustering of the centered raw regional
means.

5.2.3 Clustering Using Number Of Voxels In Each Region

The next clustering to be considered will be the clustering of the regions of
interest based on the number of voxels. Initially, the C-H criterion was used
to calculate the optimal number of clusters. The result was 49 clusters (see
Figure 46), many of which had a single element. Upon further investigation
it was found that although region sizes vary from 211 to 4865 voxels, with
median 1364, regions which had a difference of only a small number of voxels
were put into different clusters. For example region two and three which have
3224 and 3262 voxels respectively were in the same cluster, though region
one which has 3178 was put in a different cluster. Therefore, it appears that
the C-H criterion is too sensitive in this instance. An alternative is to assume
two clusters as previously.
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Figure 46: The Calinski-Harabasz criteria applied to the number of voxels in
each region.

Figure 47 shows the clustering of the region sizes using two clusters. Here
the clusters are of sizes 72 and 18. From the figure we can see that there is
no real spatial pattern in the clustering. However the top right plot shows
that the clustering is based on region size as expected.
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Figure 47: Clustering of number of voxels in each region using two clusters
and the k-clustering algorithm. Top left shows the two clusters on the brain
in 3D. Top right shows the number of voxels per region coloured according
to cluster. The bottom three are the clusters on the brain in the x-y, x-z and
y-z 2D planes.
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5.2.4 Clustering Using Mean (Over Time) Of Regional Means

The next clustering to be considered will be clustering based on the mean
(over time) of each of the raw regional mean vectors. Let r̄i be the scalar
mean over time of the regional mean for region i defined by

r̄i =
48∑
t=1

r̄i(t)

48
. (51)

Hence again we are clustering 90 scalars. If we allow the C-H criterion to
choose the number of clusters, as before we obtain a large number of clusters,
here 50. suggesting no real clustering. Figure 48 shows the results from
forcing two clusters.

95



Figure 48: Clustering of the mean (over time) of the raw regional mean
vectors. Top left shows the two clusters on the brain in 3D. Top right shows
the scalar mean for each region coloured according to cluster. The bottom
three are the clusters on the brain in the x-y, x-z and y-z 2D planes.
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5.2.5 Clustering Using Standard Deviation Of Regional Means

The next clustering to be considered will be clustering based on the standard
deviation of each of the 90 raw regional mean vectors defined by

SD(r̄i(t)) =

√∑48
t=1(r̄i(t)− r̄i)2

47
. (52)

Hence again we are clustering 90 scalars. If we allow the C-H criterion
to choose the number of clusters, like before we obtain a large number of
clusters, here 47, suggesting no real clustering. Figure 49 shows the results
from forcing two clusters.
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Figure 49: Clustering of the standard deviation of the raw regional mean
vectors. Top left shows the two clusters on the brain in 3D. Top right shows
the standard deviation for each region coloured according to cluster. The
bottom three are the clusters on the brain in the x-y, x-z and y-z 2D planes.

From Figure 49 we can see that the clustering does separate out regions
with high and low standard deviations (see top right) as expected, though
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spatially there is no clear pattern.

5.3 Clustering Using Brain Anatomy

In Figure 40, we can see that there is a clear separation of two areas of the
brain when clustering the model residuals. In this section we will investigate
if there are any relationships between the brain anatomy (see Section 2.2)
and the clustering results.

Figure 50 shows the brain regional centroids divided into two to show
those which appear on the left or right side of the brain, and Figure 51 shows
the different regions divided into the four lobes of the forebrain.
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Figure 50: The regions of interest separated into left (yellow) and right (blue)
sides of the brain. Top left figure shows the division, and the top right is
the same plot orientated for comparison with other clustering plots. The
remaining plots show the view from the various two dimensional planes.
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Figure 51: The regions of interest coloured according to the lobes of the
forebrain (blue is frontal lobe, green is parietal lobe, yellow is occipital and
light blue is temporal lobe).

Comparing Figure 51 with the clustering of the model residuals (Figure
40) it appears that the clustering could potentially be separating the temporal
and occipital lobe from the frontal and parietal lobe. From Figure 50 it can
be seen that the clustering is not based only upon the left and right side of
the brain.

5.4 Comparing The Clusterings

5.4.1 Rand Index

One method of comparing the clusterings is to use the Rand Index. The
Rand index is given by

RI =
a+ b

a+ b+ c+ d
(53)
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where a is now the number of pairs of points which are in the same cluster
in both clusterings, b is the number of pairs which are in different clusters
in both clusterings, c is the number of pairs which are clustered together
in the first clustering, but clustered differently in the second cluster and d
is the number of pairs which are clustered differently in the first clustering,
but clustered together in the second cluster. The Rand Index takes a value
between zero and one, with values closer to one implying a closer relationship
between two clustering results. Table 27 shows the Rand index between the
different clusterings that have been performed in this section.

Number Voxels r̄i SD(r̄i(t)) ȳi(t) r̄i(t) h̄i(t)
Number Voxels 1 0.50 0.54 0.50 0.52 0.54

r̄i 0.50 1 0.50 1 0.53 0.66
SD(r̄i(t)) 0.54 0.50 1 0.50 0.62 0.50
ȳi(t) 0.50 1 0.50 1 0.53 0.66
r̄i(t) 0.52 0.53 0.62 0.53 1 0.51
h̄i(t) 0.54 0.66 0.50 0.66 0.51 1

Table 27: The Rand Index comparing various clusterings.

From Table 27 it can be seen that the strongest relationship between
clusterings is the comparison of the clustering of the raw regional means,
ȳi(t), and the residual regional means, h̄i(t). This reflects the similarity seen
in Figures 40 and 42.

A disadvantage of the Rand Index is that it does not take into consid-
eration the possibility of elements being clustered together by chance, and
also that it counts pairs which are grouped differently in both clusterings as
evidence of similarity.

The following is an example which highlights these problems. Here two
sets of independent standard normal data are generated, each set is of di-
mension 48 by 90 to mimic 90 regional mean vectors of length 48. Clustering
analysis is carried out on each of these sets, and the Rand Index is calculated
to compare the resulting cluster labels. Figure 52 shows the result of 1000
simulations.
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Figure 52: The Rand Index for 1000 simulations of sets of independent data
and imposing two clusters (left) and 45 clusters (right) .

From Figure 52 we can see that when imposing two clusters, the Rand
Index here has mean of 0.51 and standard deviation 0.03, yet when imposing
a large number of clusters (here 45), the Rand Index has mean 0.95 and stan-
dard deviation 0.01. Although the Rand Index is one for identical clusterings
we can see that for comparison of random clusterings the index is near 0.5
for two clusters. This is because of the random chance that pairs of points
could be clustered together. From Figure 52 we can see that if we increase
the number of clusters the similarity between the clusterings of random inde-
pendent data is near one. This is because the value b in Equation (53), which
counts pairs which are in different clusters in both sets of clusterings is used
as evidence for similarity. In this example of high number of clusters, the
cluster groups will be very small, and so it is highly likely for pairs of points
which are not clustered together in the first clustering to not be grouped
together in the second clustering, ie b will be large. Hence the Rand Index
will say the two clusterings are very similar, even when the two sets of data
are completely random and independent.

5.4.2 Adjusted Rand Index

An alternative to the Rand Index which accounts for this is the Adjusted
Rand Index (ARI) [52]. The ARI takes into consideration the expected value
of the index under the assumption of randomness. The general form of the
index [80] is

103



ARI =
Index− ExpectedV alue

MaximumIndex− ExpectedV alue
. (54)

Therefore the ARI is of value zero if the expected value equals the index
value, ie the ARI is zero if the clusterings we are comparing are random
and independent of each other. Like the Rand Index, the maximum value
for the ARI is one for when comparing identical clusterings, however the
ARI can also take negative values if the expected value under randomness
is greater than the index. The ARI assumes the generalised hypergeometric
distribution as the model of randomness [52], and it can be shown that under
this assumption the ARI can be expressed as

ARI =

∑
ij

(
nij
2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) (55)

To explain this formula let X and Y be two clusterings of the same n data
points into s and r cluster groups respectively. The nij, ai and bj are from
the contingency table

Y1 Y2 . . . Ys Sums
X1 n11 n12 . . . n1s a1

X2 n21 n22 . . . n2s a2

...
...

...
...

...
...

Xr nr1 nr2 . . . nrs ar
Sums b1 b2 . . . bs

Table 28: The Adjusted Rand Index comparing various clusterings

Here nij is the number of occurrences that an element in clustering X
is in group i and is in group j in clustering Y . Hence instead of counting
the numbers of pairs together or not across two clusterings, the ARI counts
the number of occurrences where an element (here a regional mean) has the
same cluster label in both clusters, and then corrects for the possibility that
this may happen by chance. Furthermore [69] gives a result for the variance
of the ARI index as

V ar(ARI) =

(
n
2

)2
α

(
(
n
2

)2 − [(a+ c)(a+ d) + (b+ c)(b+ d)])2
(56)
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where a, b, c, d are as defined in (53), and

α =
1

16

(
2n(n− 1)−

(
ef

n(n− 1)

)2

+
4(g − h)(m− h)

n(n− 1)(n− 2)

+
(e2 − 4g + 2h)(f 2 − 4m+ 2h)

n(n− 1)(n− 2)(n− 3)

) (57)

where

e = 2
r∑
i=1

a2
i − n(n+ 1)

f = 2
s∑
j=1

b2
j − n(n+ 1)

g = 4
r∑
i=1

a3
i − 4(n+ 1)

r∑
i=1

a2
i + n(n+ 1)2

h = n(n− 1)

m = 4
s∑
j=1

b3
j − 4(n+ 1)

s∑
j=1

b2
j + n(n+ 1)2.

(58)

Table 29 shows the ARI between the different clusterings that have been
performed in this section. The standard deviation for all comparisons as
calculated using the above formula is 0.2 to one decimal place.

Number r̄i SD(r̄i(t)) ȳi(t) r̄i(t) h̄i(t)
Number 1 -0.02 -0.08 -0.02 -0.01 0.04

r̄i -0.02 1 -0.02 1 0.05 0.32
SD(r̄i(t)) -0.08 -0.02 1 -0.02 0.17 -0.03
ȳi(t) -0.02 1 -0.02 1 0.05 0.32
r̄i(t) -0.01 0.05 0.17 0.05 1 0.01
h̄i(t) 0.04 0.32 -0.03 0.32 0.01 1

Table 29: The Adjusted Rand Index comparing various clusterings of the
data.
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Table 30 shows the ARI between the various clusterings and some cluster-
ings based upon the brain. Here left/right is a two cluster separating regions
in the left and right side of the brain, and lobes is a two cluster with the
temporal and occipital lobe in one region and the parietal and frontal lobe
in another.

Left/Right Lobes
Number -0.001 (0.20) -0.004 (0.20)

r̄i -0.01 (0.22) 0.38 (0.22)
SD(r̄i(t)) -0.002 (0.20) -0.001 (0.20)
ȳi(t) -0.01 (0.22) 0.38 (0.22)
r̄i(t) 0.02 (0.21) 0.01 (0.21)
h̄i(t) -0.01 (0.22) 0.30 (0.21)

Left/Right 1 (0.23) -0.01 (0.22)
Lobes -0.01 (0.22) 1 (0.22)

Table 30: The Adjusted Rand Index (and standard deviation) comparing
various clusterings of the data with the brain anatomy clusterings.

From Table 29 it can be seen that the ARI is very close to zero when
comparing most of the clusterings, indicating no evidence of a relationship
between the clusterings. However, the raw regional means (uncentered) and
the residual clusterings have an ARI of 0.32 with standard deviation 0.21,
indicating some relationship between the clusterings. This reflects what has
been seen in Figures 40 and 42. From Table 30 we can see that the ARI
between the residual mean clustering and the partition of the brain into
the left and right hand side is approximately zero, indicating an almost no
relationship between the clusterings. However the ARI between the residual
mean clustering and the two lobes clustering is 0.30, which is evidence of a
relationship.

The ARI fixes the issue that the Rand Index had in terms of taking into
consideration the possibility of pairs being grouped together by chance. As
in Section 5.4.1, Figure 53 shows results from 1000 simulations of sets of
random independent normal data, clustered using two or 45 clusters, and
using the ARI to compare clusterings each time.

106



Figure 53: The Adjusted Rand Index (right) for 1000 simulations of sets of
independent data and imposing two clusters (left) or 45 clusters (right).

Figure 53 shows that in both instances (small and large number of clus-
ters), the ARI is near zero. Here the mean and standard deviation when using
two clusters is 0 and 0.02 respectively, and for 45 clusters the mean and stan-
dard deviations is the same. Hence using the ARI we can be confident that
a result near zero indicates that the clusterings are independent.

5.4.3 Association Test

Table 31 gives a more intuitive way of comparing the clusterings.

Residuals Cluster 1 Residual Cluster 2 Total
F/P 48 8 56
T/O 12 22 34
Total 60 30 90

Table 31: Counts of the number of regions in the F/P (frontal/parietal lobes)
or T/O (temporal/occipital lobes) that are in cluster one or two of the clus-
tering of the residual regional means. Association p-value: 0.000001.

From Table 31 it can be seen that 48 of the 60 regions (80%) of the regions
in the first cluster are parts of the frontal or parietal lobes, and 22 of the
30 (73%) regions in the second cluster are parts of the temporal or occipital
lobes. This can be seen in Figure 51. Using this table, we can also test for
association between the lobe groups and the residual clusters using the χ2

test. Given two categorical variables, one with r levels and the other with
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c levels we can perform the hypothesis test with null H0 that there is no
association between the two variables, against the alternate H1 that there is
association, using the test statistic

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
(59)

where Oi,j is the number of observed samples which are of level i of the
first category, and level j of the second category, and Ei,j is the expected
frequency given by

Ei,j =
ninj
n

where ni is the total number of observed samples for level i of the first cate-
gory and nj is the total number of observed samples for level j of the second
category. The test statistic (8.4.2) can be tested using the χ2 distribution
with (r − 1)(c − 1) degrees of freedom. If the p-value is smaller than some
threshold, here 0.05, this is evidence to reject the null and conclude that
there is association between the two categories. Table 32 shows the associa-
tion p-values when comparing various clusterings.

Number r̄i SD(r̄i(t)) ȳi(t) r̄i(t) h̄i(t) L/R Lobes
Number 0 0.59 0.16 0.59 0.91 0.26 1 0.91

r̄i 0.59 0 0.29 0 10−4 10−7 0.52 10−8

SD(r̄i(t)) 0.16 0.29 0 0.29 0.004 0.23 0.40 0.85
ȳi(t) 0.59 0 0.29 0 10−4 10−7 0.52 10−8

r̄i(t) 0.91 10−4 0.004 10−4 0 10−4 0.06 0.005
h̄i(t) 0.26 10−7 0.23 10−7 10−4 0 1 10−7

Left/Right 1 0.52 0.40 0.52 0.06 1 0 1
Lobes 0.91 10−8 0.85 10−8 0.005 10−7 1 0

Table 32: The association χ2 p-values between various clusterings of the data

Table 32 shows some similarities and differences to the results obtained
by comparing the clusterings using the ARI (see Tables 29 and 30). It can be
seen that again there is a high similarity between the lobes of the brain and
the residual clustering labels. Recall that the clustering of the raw uncentered
data and the model residuals were similar, thus the figures in the tables above
are similar. It can also be seen that there is no evidence of a relationship
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between the clusterings of the residuals, raw and raw (centered) and the
side of the brain which the region is on. However there are some differences
between the association test results and ARI results. The association test has
revealed more associations between the clusterings than the ARI test did. For
example the ARI results between the model residuals and the raw centered
data is 0.01 indicating no relationship, however the association p-value is
10−4 which is strong evidence for association. This apparent contradiction in
results could potentially be due to the high standard deviation of the ARI.

In this section we have seen that there is a relationship between the
clustering of the residual means and the lobes in the brain, both by looking at
the counts of the numbers of regions in each lobe, and by the ARI comparing
the clusterings.

5.4.4 Linear Discriminant Analysis

In this section, LDA will be applied to each of the clusterings to compare the
separation of the two clusters in each case. Table 33 shows the accuracy of
classification of each regional mean using LOOCV and LDA, details of which
have been described in Section 5.1.4.

Clustering Classification Accuracy Sensitivity Specificity
Number 0.80 1 0

r̄i 0.83 0.89 0.74
SD(r̄i(t)) 0.80 0 0.96
ȳi(t) 0.83 0.89 0.74
r̄i(t) 0.83 0.65 0.91
h̄i(t) 0.89 0.92 0.83

Left/Right 1 1 1
Two Lobes 0.93 0.98 0.85

Table 33: The classification accuracy, sensitivity and specificity of the re-
gional means using LOOCV and LDA.

From Table 33 we can see how well separated the two clusters are in each
case. Using accuracy alone it appears all of the clusterings can be separated
using LDA into two very distinct groups. However it can be seen that the
clustering using the number of voxels in each region has zero specificity,
meaning those regions which are actually in cluster two are never predicted
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to be in group two using LOOCV. This highlights that these two cluster
groups are not well separated. The clustering based on the left and right
sides of the brain have perfect classification, specificity and sensitivity. This
is to be expected as two groups provide a natural division between the regions
that LDA can detect. Similarly the division of the brain into two pairs of
two lobes provides a natural separation. From the other results it can be
seen that the results which are generally best in terms of separation are the
model residuals, and this reflects what can be seen in Figure 40. It is also
interesting that although the clustering based on the raw uncentered data
appears very similar to that of the residual data (Figure 42), all three of
the measures in Table 33 are worse for the raw data than the residual data,
indicating that the residual data clusters are better separated.

5.5 Clustering Simulations

Following the result of clustering the residual regional mean vectors which
showed a clear spatial partition between the two clusters, in this section we
will investigate further if this could be due to chance, or perhaps is a result
of some aspect of the modelling. Here regional spatial data will be simu-
lated and as before the spatial model will be fit, and then residual regional
means will be clustered. The parameter values chosen in the simulation are
the standard values used in Table 10. Figure 54 shows the results of two
simulations using different values for the spatial parameter.

Figure 54: Clustering of regional residual means using simulated spatial data.
Left has spatial parameter equal to 0.85 and right 0.25.

From Figure 54 we can see that for the different parameter values, there

110



is little change in the clustering, and there is no sign of the spatial clustering
that was observed when applied to the brain data. It can often be difficult
to see clusterings forming in three dimensional figure such as Figure 54.

Figure 55 shows another example of some simulation regional data which
has be split into two clusters (top left), generated as described. This three
dimensional set of points in two classes is then projected on to the optimal
two dimensional surface (top right and bottom left) using LDA as described
in Section 5.1.4. Finally the bottom right plot shows the projections alone.
From here we can see clearly that there is no clear spatial separation between
the two clusters.

Figure 55: Clustering of regional residual means using simulated spatial data
(top left) and projection on to discriminant plane (top right), rotated pro-
jections (bottom left), and the discriminant plane (bottom right).

From Figures 54 and 55 we can see no evidence of clustering on simulated
brain data. Hence the clustering seen in Figure 40 is likely due to some
aspect of the brain data, rather than only spatial correlation in the residuals.
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5.6 Within Region Clustering

So far we have looked only at the clustering of the regional means. It may be
interesting to investigate if voxels within a region are adequately represented
by the regional mean for the purpose of clustering. In other words, would a
voxel within a cluster be most similar to its own regional mean or to others,
and therefore would it be within the same cluster group as its regional mean.

To investigate this we can perform a clustering analysis on the model
residual as before. However this time, we will use a proportion (here 90%) of
the voxels in each region of interest to calculate the regional mean, and then
do the clustering. Following this we can using the remaining 10% of voxels
to test if they would be clustered in the same group as its region’s mean, or
another group. To do this, we will check for each of the 10% of voxels which
of the regional means it is closet to, and assign as cluster label to each based
on this.

Figure 56 shows the clustering using 90% of all voxels, and from this we
can see that the clustering is almost identical to that found when using all
voxels to find regional means as expected.
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Figure 56: The two clusters formed using 90% of voxels in each region to
produce the regional mean.

The remaining 10% of voxels (15178) were each then compared to each
regional mean. It was found that 906 (6%) of these voxels were most similar
to their own regional mean (using Euclidean distance), and 9932 (65%) were
closest to a regional mean with the same cluster label as its own regional
mean. We would expect a low percentage of voxels to be most similar to its
own regional mean as the signals are noisy and many of the regional means
are somewhat similar. The fact that 65% of the voxels had the same cluster
label as its own regional mean suggests that there is a bias towards clustering
voxels within a region of interest into the same cluster as its mean. However
this is not overly convincing as there are only two clusters, so even if the 10%
were assigned labels at random, we should expect to cluster them correctly
50% of the time.
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5.7 Clustering Conclusions And Discussion

By clustering the model residuals we found a spatial partition of the regional
residual means in Figure 40. Investigation of various clusterings of the raw
data in Section 5.2 found that a similar clustering pattern could be found by
clustering the raw uncentered regional means. Although the raw uncentered
regional means were clustered according to the mean level (see Figure 42),
this cannot be true for the model residuals as all model residuals have mean
zero. However there appears to be a relationship between the variance of the
raw regional means and the variance of the residual regional means that may
explain the similarity in the clusterings (Figure 43).

Clustering using brain anatomy revealed that there was a similarity be-
tween the clustering of the residual regional means and clustering based upon
two groups of lobes (one consisting of the frontal or parietal lobes, and the
other of the temporal or occipital lobes) (see Section 5.3).

Various metrics were used to assess and compare the clusterings. The ARI
and Association test (Sections 5.4.2 and 5.4.3) both confirmed the similarity
between the model residuals, raw uncentered, and brain lobe clusterings.
LDA with LOOCV was also used to assess the separation of the cluster groups
for each clustering, and again this found that the residual, raw uncentered
and brain lobe clusterings provided the best separation into two clusters.

In Section 5.5, spatial data was simulated and clustered using various val-
ues of the spatial parameters, in order to investigate if similar cluster results
could be obtained. The results showed that there was no clear clustering of
the simulated data, which provides evidence that the results obtained via the
modelling is related to the brain data.

Although all clustering discussed here has been the result of k-means
clustering, other clustering methods were investigated, in particular standard
hierarchical [79] and spatial hierarchical clustering [50][46] were applied to
the data. Hierarchical clustering allowed for different distance metrics to
be investigated. Clustering is usually based on Euclidean distance between
objects, however other metrics such as correlation or dynamic time warping
[21] (which takes into account lagged correlation) could be used. Hierarchical
spatial clustering also incorporated the spatial location (as well as similarity
between voxels) to the clustering. This method was thought to strengthen the
clustering given that the data is spatially correlated. However the alternative
methods brought no new insights.
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6 Topological Data Analysis

In Chapter 5 clustering was used on the raw brain data and the model residu-
als to investigate the spatial correlation in the data. Topological Data Anal-
ysis (TDA) is a relatively recent field of study which is based on analysing
data from a topological perspective. In [33] a brief background on the field
is given, with reference to several important papers which popularised the
theory in the first few years of the 21st century. Most notable are the works
of Edelsbrunner et al. (2002) [43], Zomorodian and Carlsson (2005) [85] and
Carlsson (2009) [30] on persistent homology which is the foundation of most
applications of TDA. The important thing to note about TDA is that it ap-
proaches data analysis from a different perspective to classical statistics and
as a result it can often reveal different features in a data set. An example
of this can be seen in [51] where TDA revealed differences in distributions
when conventional marginal and correlation analyses did not.

In this section a brief introduction to some of the necessary theory of
TDA will be given, and then this theory will be applied to the brain data to
explore if TDA can reveal any distinguishing features in the data that the
raw data and the clustering analysis could not.

6.1 Important TDA Concepts

Topology is a field of study which is concerned with properties of space which
are preserved under continuous deformations. Intuitively this can be thought
of as two shapes in space being topologically identical if one can be deformed
into the other by stretching, crumpling or bending, but without splitting or
gluing. More formally two functions f(x) and g(x) are said to be homotopic
if there exists a function H(x, t) such that H(x, 0) = f and H(x, 1) = g [30].
If the second parameter of H(x, t) is thought of as time then this means that
at t = 0 we have the function f and as time increases the function smoothly
changes to g at t = 1. If H exists then there exists a deformation from
function f to g.

There are a number of properties of space which are topologically invari-
ant, which means that the properties do not change under deformations of
the space, and the analysis of such properties can reveal differences amongst
different spaces. Betti numbers and persistence homology are two such con-
cepts which are topologically invariant and will be the focus of the TDA
analysis in this section. Detailed mathematical background on persistence
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homology can be found in [33] and [85]. To describe the idea behind Betti
numbers and persistence homology, an example will be given.

Consider a function defined on some space. Let z(x) be the value of the
data at location x. Define a lower level set as

L(l) = {x : z(x) ≤ l} (60)

which is the set of locations in space such that z(x) ≤ l for some chosen
level l. Figures 57 and 58 show examples of different level sets on some brain
data and some example data respectively, the first in two dimensions and the
second in three. The brain data in Figure 57 is from brain slice number 42
and the example data in Figure 58 has been constructed to illustrate some
key aspects of TDA clearly in three dimensions. The same principles apply
to any data set, but the use of actual brain data in three dimensions does
not produce figures which explain the process as clearly.
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Figure 57: Some level sets of the brain data at t = 12 on slice with z-
coordinate 42. Top left shows the data and the other three show different
level sets.
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Figure 58: The level sets for a three dimensional example.

Figure 57 (top left) shows the brain data on a slice with z-coordinate
z = 42. It is colour coded such that dark blue indicates low values at those
points, and lighter yellow indicates high values. The other three plots show
examples of level sets. As the level increases, more points are added to
previous level sets, until at the highest level, the level set contains all points
on the brain slice.

Figure 58 shows four examples of level sets on data in three dimensions.
It can be seen that for a low level (top left) there are few locations where the
value of the data is less than the level, and as the level increases, more and
more locations appear. More formally, if we have n levels

l1 < l2 < l3 < .... < ln

then
L(l1) ⊂ L(l2) ⊂ L(l3) ⊂ ....L(ln)
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This process of subsetting the data using level sets is known as filtration,
and persistent homology is concerned with analysing how topology evolves
as we filter through the data using level sets. One quantity of interest which
is topologically invariant is the number of components at each level. Here a
simple example will be given to explain the notion of components.

Consider Figures 57 and 58. As the level increases, the size of the level
set increases and eventually some of the locations are close enough together
that we say they are connected. For the purpose of this work, where data
is observed on a lattice, we define the condition for connectivity as lattice
locations in the level set which share a lattice edge. In the most simple case
of a level set which contains two points x1 and x2, we say that they are
connected and form a component if d(x1, x2) = 1 where d is the distance
between x1 and x2. Let us denote this component C1 = (x1, x2).

As the level increases, the level set grows larger. In our example suppose
now that the level set increases and m new points xi, i = 3, 4, ..m + 2 are
added to the two points in the previous level set. Consider each point in
turn. If min(d(x3, x ∈ C1)) = 1, that is if x3 shares and edge with either x1

or x2, then x3 is added to the component and so C1 = (x1, x2, x3). However if
min(d(x3, x ∈ C1)) > 1 a new component is formed and so C2 = x3. For the
remaining points, one of three things can happen. Firstly, the point may not
share an edge with any points in previous components, thus forming another
component. Secondly, the point may share an edge with point(s) in exactly
one component set and so it will be added to that component. Finally, the
point may share an edge with point(s) in more than one component set. In
this case the components merge. The result of this process is that we have a
set of components associated with this level.

As the level increases further and more points are added, the same rules
apply for adding new points to existing or creating new components. However
in the case where a new point shares an edge with a member of more than one
existing component we add the rule that the component which was formed
at the latter level joins the one which formed at the earlier level.

Figure 58 shows examples of components. The top left plot shows three
connected components and top right shows six. The number of components
at each level is topologically invariant and summarised by the first Betti
number, denoted β0. In two dimensions there is also a second Betti number
β1 which is the number of holes/loops at each level, and in three dimensions a
third Betti number β2 describes the number of voids at each level. In Figure
57, two-dimensional holes can be seen in all three level plots, the (white)
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areas that are completely bounded by a single (blue) component. In Figure
58 a three dimensional hole can be seen in the bottom right plot, that is a
set of connected locations with a tunnel in the middle. In contrast a void in
three dimensional space is a set of locations which are not in the level set
but all locations around them are. A real world example could be a hollow
spherical object such as a tennis ball, and the empty space inside would be
comparable to a void in three dimensional space. More precise mathematical
definitions of these concepts can be found in [33].

Along with recording the number of components at each level, persistence
homology requires also the birth and death times of the components. The
birth time of a component is the level where a component first appears. As
noted, if two components join as the level increases the oldest component
survives and the newest component dies at that level. The result is that the
first component to be born is the last to die. If calculating components in
this manner using lower level sets as described, then it can be deduced that
the first component refers to the global minimum in the data set, and other
components refer to local minima. To highlight the idea of birth and death
times, Figure 59 shows a simple example of some data consisting of 16 points
on a four by four lattice, and Figure 60 shows some level sets of this data.
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Figure 59: Example data set on a four by four lattice.
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Figure 60: The level sets of some example data as the level increases.

Figure 60 shows the level sets at five different levels on the example data.
The first plot shows the first component is born at level 0.69. This is the
minimum of the 16 data points on the lattice as seen in Figure 59. Raising
the level to 1.96, two new component have been born, thus there are now
three components, so at this level β0 = 3. By level 2.61, two more data
points have been added to the level set. One forms a new component (top
left point), however the other point is close enough to an existing component
(seen at level 1.96, second row fourth column) that it joins, or becomes
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connected to that component. At this level of 2.61, although there are five
points in the level set, there are only four connected components hence β0 =
4. At level 2.92 many more points are added to the four components, but
no new components are formed as they are all close enough to an existing
component to be connected. At level 3.13, one additional point is added to
the level set. This point then connects the components first seen at level
1.96 (second row, fourth column) and level 2.61 (top left). At this level
(3.13) it is said that the component that was born later dies, as it joins the
component which was born at an earlier level. This example highlights how
components are formed, including how birth and death times are calculated.
An equivalent description of the components is the position of local minima
on the field. Figure 60 shows the first component is born at level 0.69. This
is the minimum of the 16 data points on the lattice. New components are
born only if they are local minima on the field, and so are not connected to
existing components. For a two dimensional field the holes can similarly be
described using the local maxima of the field.

6.2 Persistence Diagrams

The history of components, holes and voids being born and dying as level
sets change are often visualised using persistence diagrams, which plot birth
against death levels, with a separate plot for each of the features. Figures
61, 62 and 63 show the persistence diagrams associated with the examples
considered so far.
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Figure 61: Persistence diagram of the components of the example four by
four lattice of points.

Figure 61 shows the persistence diagram of the simple four by four lattice
example data shown in Figure 59. The four points in this persistence diagram
correspond to the four components described in Figure 60. As the data set
is very small, there are no holes in this example. Next, Figure 62 shows the
persistence diagram of the brain slice seen in Figure 57.
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Figure 62: Persistence diagrams of the components (left) and holes (right)
of the brain slice z = 42 at t = 12.

In Figure 62 there is a separate persistence diagram for the components
and holes of the two dimensional brain slice. Figure 63 shows the persistence
diagrams for the three dimensional cuboid in example 58.

Figure 63: Persistence diagrams of the components (top left), holes (top
right) and voids (bottom centre) of the three dimensional cuboid.

In Figure 63 there are three persistence diagrams, one for the components,
holes and voids of the three dimensional cuboid. Finally, Figure 64 shows
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the persistence diagram of the components of the full brain data set at t = 1,
and will be used to explain how persistence diagrams can be statistically
summarised.

Figure 64: Persistence diagram of the components of the full data set at first
time point.

In Figure 64 each point corresponds to a component of the full data set
for the first time point. From the plot it can be seen that there is a diagonal
for which no points lie below. This is because a component must be born
before it dies. There is a point is the top left of the plot which corresponds to
the birth and death of the first component as explained in Section 6.1. This
point corresponds to the global minima of the data. Points on a persistence
diagram which are very close to the diagonal correspond to components which
die very soon after birth, and these correspond to short lived local minima.
In term of the data, these points correspond to noisy sections in the signal.

In [51] various statistics are used to summarise a persistence diagram.
This is useful as the statistics can then be used to investigate differences
between persistence diagrams. The method used in [51] to summarise a per-
sistence diagram is as follows. First calculate the convex hull which encloses
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a proportion of the points in the persistence diagram. The convex hull of a
set of points is a convex polygon, ie all points in the set can be joined by
a straight line which lies on or within the polygon. Precise mathematical
definitions can be found in [4]. There are many known algorithms to cal-
culate the convex hull of a set of points, for example see [48], [32] or [14].
The method used here is most similar to [14], and is given by the following
algorithm, which splits the task by calculating both a lower and upper hull of
the set, together making the complete convex hull. Let (xi, yi), i = 1, 2, ..., n
be the n coordinates of the points in the set. To calculate the lower convex
hull:

1. Let P1 = (xj, yj) = min
xi

(xi.yi) be the coordinate with the smallest x

value. This is guaranteed to be on the convex hull.

2. Calculate θi = arcsin

(
yi−yj√

(yi−yj)2+(xi−xj)2

)
for i = 1, 2, ..., n and i 6= j.

This is the angle between P1 and all other points in the set.

3. Let P2 = (xk, yk), k ≤ n be the point which minimises θi. This is the
next point which lies on the lower convex hull.

4. Repeat steps 2 − 3 for each new point on the convex hull until Pl =
(xl, yl) = max

xi
(xi, yi), then P1, P2, ...., Pl are the coordinates of the ver-

tices of the lower convex hull.

This process can be thought of as starting with the point with the lowest
x-coordinate and moving in a counter clockwise direction to the point with
the largest x-coordinate, passing through points which must lie on the convex
hull. Similarly, to calculate the upper convex hull:

1. Start with Pl = (xl, yl) = max
xi

(xi.yi) which is the coordinate with the

largest x value.

2. Calculate θi = arcsin

(
yi−yl√

(yi−yl)2+(xi−xl)2

)
for i = 1, 2, ..., n and i 6= l.

This is the angle between Pl and all other points in the set.

3. Let Pl+1 = (xm, ym), m ≤ n be the point which maximises θi.
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4. Repeat steps 2 − 3 for each new point on the convex hull until Pu =
(xu, yu) = min

xi
(xi, yi), then Pl, Pl+1, ...., Pu are the coordinates of the

vertices of the upper convex hull. Note that Pu = P1.

Then P = (P1, P2, ...., Pl, Pl+1, Pl+2, ..., Pu) are the vertices of the complete
convex hull. The convex hull will give the overall shape of the distribution
of points. Note that because outliers (such as the birth/death level of the
first component) will have a large impact on the shape of the convex hull,
often convex hulls are constructed using a subset of the points, and these are
known as convex peels. Figure 65 shows the convex peels of the persistence
diagram in Figure 64.

Figure 65: 95% convex peel (red dots) of the persistence diagram of the
components of the full data set at the first time point.

Figure 64 shows in red the 95% convex peel, ie the convex hull constructed
using 95% of the points. Here the 5% of points with the lowest x-coordinate
were removed, hence the extreme points, such as the birth and death level of
the first component will not impact the shape of the convex hull when making

128



comparisons between different persistance diagrams. The grey lines in Figure
64 show higher percentile convex hulls, which are shown for illustration.

Using the convex peel, a number of statistics can then be derived to
summarise a persistence diagram. In [51] these statistics are as follows.

• The birth centroid, Cb

• The death centroid, Cd

• The area, A

• The perimeter, P

• The filamentarity, F

• The number of points, N

These statistics are derived from the final convex peel (red in Figure 65). As
the convex peel is a polygon, there exist well known formula to calculate the
centroid and area using the vertices of the polygon. The birth and death
centroid are the birth and death level of the centroid of the convex peel.
The perimeter of the convex peel can be found by calculating the distance
between adjacent vertices and summing. The filamentarity is defined as

F =
P 2 − 4πA

P 2 + 4πA
. (61)

If F = 1 then the the points lie on a line, and if F = 0 the convex hull makes
up a perfect circle. Finally, the number of points refers to the number of
points on the persistence diagram, which will vary for each time point, or for
each field we consider.

An alternative function that can be used to describe the shape of a per-
sistence diagram is the landscape function [27]. The landscape function first

rotates the birth death points (b, d) to (x, y) = ( (b+d)
2
, (d−b)

2
) before fitting a

piecewise linear tent function to each point. The k-th landscape function is
then defined as the k-th largest of these tents. Full detail on how the land-
scape function is constructed can be found in [27]. Intuitively the landscape
function can be thought of fitting a tent (triangle) function to each point,
with the first landscape function being the trace of the outline of the peaks
of all such tents. The second landscape function removes the peaks of the
first, and traces out the remaining peaks, and so on. Figure 66 illustrates
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this idea by showing an example of the first three landscape functions of
the components persistence diagram at the first time point of the full, raw
(centered) brain data.

Figure 66: Persistence diagram of the components of full brain raw centered
data at t = 1 (top left), and first three landscape functions (black, blue, red
respectively) (top right), and 95% convex peel (bottom centre).

From Figure 66, it can be seen that the tent function about the first
component (seen in the top left corner of the top left figure) surrounds all
points, and so we obtain the first landscape function, which in this case
has one peak. Removing this point, and recalculating the second landscape
function we obtain multiple peaks, as here each tent function is smaller as
the points are closer to the diagonal, and so will not enclose all points. Hence
tracing the outline of these tents will give a piecewise linear tent function with
multiple peaks. In contrast to using a convex peel, the landscape function
can capture more closely the shape of the persistence diagram. Figure 67
shows another example which highlights this more.
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Figure 67: Persistence diagram of the components of ROI 3 raw centered
data at t = 1 (top left), and first three landscape functions (black, blue, red
respectively) (top right), and 95% convex peel (bottom centre).

Figure 67 shows the persistence diagram, first three landscape functions
and 95% convex peel for the components for ROI 3 at t = 1. It can be seen
from the second and third landscape functions that there appears to be two
clusters in the diagram which cannot be seen from the convex peel. Like
with the convex peel, a set of summary statistics can be used to summarise
the landscape functions.

Finally, the bottleneck distance is a quantitative way of comparing the
similarity between persistence diagrams. This measure is based on finding
the optimal mapping between points in two persistence diagrams. A formal
description can be found in [44] with only an intuitive description given here.
Let A and B denote two persistence diagrams containing n and m points
respectively. In order to map points between A and B it is first necessary for
both persistence diagrams to contain the same number of points. The first
step of calculating the bottleneck distance is to add m points to persistence
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diagram A and n points to B. The additional m points are the projections
of all m points in B to the diagonal of A, with the same idea for adding
n points to B. This results in both persistence diagrams containing n + m
points. The additional points on the diagonals would in theory correspond
to points which die at the same time they are born, hence they do not change
the underlying structure of the field that the persistence diagrams represent.

The second step of calculating the bottleneck distance is to map each
point in A to a unique point in B and calculate the distance between all
mapped points. Let p1 denote the first choice of mapping from points in A
to B and d1i denote the distance between the ith mapped pair. Then the
maximum such distance for the first possible mapping is

Mp1 = max
i

(d1i)

Repeating this procedure for all possible mappings results in a set of values
Mp1 , ....,Mpq where q is the total number of possible mappings between the
points. The bottleneck distance is then given by

BD(A,B) = min
j

(Mpj)

The bottleneck distance, along with the summary statistics derived from the
convex peels and landscape functions, will be used to compare persistence
diagrams and will be the focus of the next few sections.

6.3 Topology Of The Model Residuals - Full Brain

In this section, the topology of the model residuals for the full brain will be
explored using the methods described in Section 6.2.

6.3.1 Convex Peels And Landscape Functions

Figures 68 and 69 shows how the vector (Cb, Cd, A, P, F,N) of summary
statistics for convex peels and landscape functions respectively, change over
time, when considering connected components. Similar results were obtained
for holes and voids and can be found in the Appendix 10.2.
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Figure 68: Summary statistics derived using 95% convex peels of persistence
diagrams for components of the full brain model residuals. Top left shows
the birth (black) and death (red) centroid levels over time, and the remaining
plots the other summary statistics.
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Figure 69: Summary statistics derived using the first three landscape func-
tions (black, blue, red) of persistence diagrams of the components of the full
brain model residuals.

As seen, the landscape and convex peels of the components show a large
increase in various statistics at t = 12, the onset of activity. This indicates
that the persistence diagram at this time, and so the topology of the field,
changes dramatically. Figure 70 shows the mean and variance profile of the
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full brain model residuals.

Figure 70: The mean and variance of the full brain model residuals.

From Figure 70 it can be seen that although each voxel has standardised
residuals, the variance across voxels at each time point changes significantly
at t = 12. This could explain the results seen so far in the persistence
diagrams.

6.3.2 Bottleneck Distances

Figure 71 shows the bottleneck distances of the full brain model residuals at
adjacent time points.
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Figure 71: The bottleneck distances of persistence diagrams of the full brain
at time t and t+ 1.

As in Section 6.3.1, the bottleneck distances in Figure 71 show an in-
crease in bottleneck distance at the same time as the onset of activity in the
experiment.

6.4 Topology Of The Model Residuals - Full Brain
Standardised

In this section, the model residuals (Equation (26)) will be standardised at
each time point before exploring the topology.

6.4.1 Convex Peels And Landscape Functions

Figures 72 and 73 shows the summary statistics for the components derived
from the convex peels and landscape functions. Similar results were obtained
for holes and voids and can be found in the Appendix 10.3.
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Figure 72: Summary statistics derived using 95% convex peels of persistence
diagrams of the components of the full brain model residuals (standardised).
Top left shows the birth (black) and death (red) centroid levels over time,
and the remaining plots the other summary statistics.
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Figure 73: Summary statistics derived using first three landscape functions
(black, blue, red) of persistence diagrams of the components of the full brain
model residuals (standardised).

From Figures 72 and 73 it can be seen that there is still a marked decrease
in the area and perimeter statistics at the onset of activity. Thus the topology
is picking up change that is not explained by increased variance. One method
of determining if there are any significant changes in the mean of a time series
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is to apply a change point model to the series [42], [66].
These methods were implemented using the changepoint package in R

and applied to the time series seen in Figures 72 and 73, but no significant
change points were detected in any time series. However, as expected, signifi-
cant change points could be detected for the non-standardised data shown in
Section 6.3 . Figure 74 shows one example of this, where two change points
were detected for the area summary statistic at t = 12 and t = 23, the start
and end times for the first period of activity. Also shown is the equivalent
standardised time series where no change points were found.

Figure 74: The area of the convex peel over time for the non-standardised
(left), and standardised (right) full brain data set. Vertical red dashed lines
show the change points in the time series.

6.4.2 Bottleneck Distances

Figure 75 shows the bottleneck distances of the full brain standardised model
residuals at adjacent time points.
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Figure 75: The bottleneck distances of persistence diagrams of the standard-
ised full brain residuals at time t and t+ 1.

Figure 71 does not show an increase in bottleneck distance at the same
time as the onset of activity in the experiment. However for all three features,
there is an increase in bottleneck distance between times five and six. Figure
76 shows the persistence diagrams at this time for components.
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Figure 76: The persistence diagrams of the standardised full brain residuals
at time t = 4 to t = 7.

From Figure 76 we can see that the points on the persistence diagram at
t = 5 are somewhat more compact than those at t = 6, explaining the large
difference in bottleneck distance between these two time points in particular.

6.5 Summary

In this chapter we have introduced some relevant background information
on Topological Data Analysis. The most popular area of TDA is persistence
homology which is concerned with the births and deaths of components, holes
and voids of a field. As persistence diagrams are computed for a single field,
it is useful to summarise the persistence diagram so that many diagrams
can be compared, for example for comparing two different fields, or a field
which changes over time. We have described two methods that can be used
to achieve this; convex peels and landscape functions. From each of these we
can obtain a set of summary statistics which can then be used to compare
multiple persistence diagrams. These ideas were then applied to the model
residuals of the full brain data set where it was found that the evolutions of
summary statistics showed significant changes at the onset of activity (Figure
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68). Upon investigation this seems mostly to be explained by changes in the
variance in the data, and so the procedure was repeated on standardised
model residuals. From this a change point analysis was applied to the time
series vectors of each summary statistic and no real evidence was found for
any significant change in the statistics over time.
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7 TDA: The Number Of Components And

Holes

In Section 6.1 it was noted that the components and holes are related to
the local minima and maxima of the field respectively. In [51] the expected
number of components and holes of a two dimensional stationary isotropic
Gaussian random field was used to investigate if the number of components
and holes of an observed field is consistent with a Gaussian random field. In
[51] the fields being tested were observations on a square two dimensional
lattice. In this section the aim is to extend this work to irregular lattices
such as brain slices, and also to obtain results for three-dimensional brain
data. Simulations will be used to investigate if any distinctions can be made
between distributions which are all marginally normal with the same correla-
tion structure on the brain slices, and how the correlation structure impacts
the number of components and holes on the fields. Finally, we will calculate
the number of components and holes for brain slices and the full brain to see
if they are consistent with a Gaussian field.

7.1 Expected Number Of Components And Holes For
A Gaussian Random Field

In this section we will give brief background to the theory presented in [51].
Given a standardised two-dimensional Gaussian random field z(x), let N0

andN1 be the number of components and holes respectively. The components
and holes can also be described using the local minima and maxima of the
field. Here we will concentrate on local maxima of the field. Due to the
symmetry of the Gaussian distribution, the same results can be applied to
local minima.

Let z1 = z(x1) be the value of the field at location x1 and z2 = z(x2)
be the k-vector of field values of the immediate neighbours of x1. As z(x) is
standardised and Gaussian we can write

z(x) =

(
z1

z2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ21

Σ12 Σ22

))
= N

((
0

0k

)
,

(
1 rT

r R

)) (62)
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where 0k is a k-vector of zeroes, r is the k-vector of correlations between
z(x1) and z(x2), and R is the k by k correlation matrix of z(x2).

A local maximum occurs at x1 if z2 < z11k. To calculate this probability
let us first consider the conditional distribution z2|z1. In general z2|z1 ∼
N(µ̄, Σ̄) where

µ̄ = µ2 + Σ21Σ−1
11 (z1 − µ1)

Σ̄ = Σ22 − Σ21Σ−1
11 Σ12.

(63)

In the case where the field is standardised, and using the notation in (62) we
have

z2|z1 ∈ N(rz1, R− rrT ). (64)

Let φ(p)(x;µ,Σ) denote the p-dimensional multivariate Gaussian probability
density function and Φ(p)(x;µ,Σ) the corresponding cumulative distribution
function. Then the conditional density for z2 given z1 can be written as
φ(k)(z2; rz1, R− rrT ) and so

p1 = Pr(z2 < z11k) =

∫
z1

Pr(z2 < z11k|z11k)Pr(z11k)dz1

=

∫
z1

(∫
z2<z11k

φ(k)(z2; rz1, R− rrT )dz2

)
φ(1)(z1; 0, 1)dz1

=

∫
z1

Φ(k)(z11k; rz1, R− rrT )φ(1)(z1; 0, 1)dz1

=

∫
z1

Φ(k)((1k − r)z1; 0k, R− rrT )φ(1)(z1; 0, 1)dz1.

(65)

A general skew normal distribution can be used [49], [16], [15], [18] to show
that

Φ(q)(Dµ; ν,∆ +DΣDT ) =

∫
y

Φ(q)(Dy; ν,∆)φ(p)(y;µ,Σ)dy. (66)

Using this result with p = 1, y = z1, µ = 0, Σ = 1, q = k, D = 1k− r, ν = 0k
and ∆ = R− rrT gives
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p1 = Φ(k)(0k; 0k, R + 1k1
T
k − r1Tk − 1kr

T ). (67)

Therefore to find the probability that z1 is a local maxima, all that is required
is to evaluate the zero mean, k-dimensional cumulative Gaussian density at
0k, given r and R. Finally, if we sum over all locations xj we find that
E[N0] = E[N1] =

∑
j pj.

As noted, in order to calculate E[N0] and E[N1] we require r and R,
which depend on the point and its immediate neighbours. As noted in [51]
immediate neighbours of a point in two dimensions could be defined by a
shared edge, or by either a shared edge or vertex. We will define two locations
to be neighbours only if their associated voxels have a shared edge. In two
dimensions, this means that a point may have up to a maximum of four
neighbours. Figure 77 show all possible neighbour configurations on a two
dimensional irregular lattice assuming isotropy.

Figure 77: The various two dimensional neighbourhood configurations. Black
is point of interest, and white are neighbours to that point. From left to right:
zero to four neighbour configurations.

Assuming that the field is stationary, the expected number of maxima,
E[N ], is then given by
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E[N ] =
∑
i

|Pi|f(R(Pi), r(Pi)) (68)

where Pi is point type i, and f(R(Pi), r(Pi)) is the probability that point
type i is a maximum, which depends on local correlations R and r as defined
above. Point type here is used to distinguish points on the lattice which have
a different number of neighbours. Hence to calculate the expected number
of maxima, we require the total number of points for each of the different
point types, and the probability of each point type being a maximum.

We can also find an expression for V ar(N). First let Ii be an indicator,
such that Ii = 1 if there is a maxima at position xi and Ii = 0 otherwise.
Therefore N =

∑
i Ii. Hence V ar(N) = V ar(

∑
i Ii) =

∑
i

∑
j Cov(Ii, Ij) =∑

i

∑
j(E[IiIj]−E[Ii]E[Ij]). To evaluate this expression, we need to consider

separately three possible arrangements of neighbours.
Let x11 and x12 be two positions on the field, with x21 the k1-vector of

neighbours of x11 and x22 the k2-vector of neighbours of x12.
The first possible arrangement of neighbours is such that x21 and x22 are

distinct, ie the case where x11 and x12 have no common neighbours. In this
case (z1, z2) where z1 = (z11(x11), z12(x12)) and z2 = (z21(x21), z22(x22)) is
Gaussian with zero mean and variance matrix(

R11 RT
12

R12 R22

)
.

In a similar derivation to that given above, Equation (66) can be used to find
that

E[I1I2] = Φ(k)(0k; 0k, R22 −R12R
−1
11 R

T
12 +DR11D

T ) (69)

where k = k1 + k2 and D = J −R12R
−1
11 where

J =

(
1k1 0k1
0k2 1k2

)
.

The second possible arrangement of neighbours is such that x11 and x12

have some common neighbours. In this case R22 is singular, however R22 −
R12R

−1
11 R

T
12+DR11D

T is in general not singular, hence the same result applies.
The final arrangement of neighbours is such that x11 is itself a neighbour

of x12. In this case E[I1I2] = 0 as it is impossible for both locations to be
local maxima, and so Cov(I1, I2) = −E[I1]E[I2].
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Using the above results, the variance of the number of maxima can now be
calculated in principle. However due to the size of the covariance matrices
involved, this becomes computationally expensive. Therefore an estimate
of the variance will be used in this work, where we will ignore covariances
between points separated by a distance where the covariances are so small
they become negligible. Define Ni = {j : |xi − xj| < δ0} then we estimate
the V ar(N) by

V̂ ar(N) =
∑
i

{
E[Ii](1− E[Ii]) +

∑
j∈Ni

Cov(Ii, Ij)

}
(70)

for a sensible choice of δ0, here three lattice distance units.
The results in this section show how to calculate the expected number

of minima and maxima of any Gaussian field. As noted in Chapter 6 , the
minima refer to the number of components, and the maxima to the number of
holes in two dimensions or voids in three dimensions. We have no theoretical
result for the expected number of holes on a three dimensional field.

7.2 Simulations

In this section, we will use simulations to investigate if distinctions can be
made between various distributions all marginally normalised with the same
correlation structure. The motivation is to determine if topological features
can distinguish between the fields, where analysis of first and second order
properties would not. Also of interest is how the number of components and
holes are affected by the underlying correlation structure of the field.

We will begin by introducing the various distributions and parameters
that will be considered. Next we will replicate the work on the lattice in
[51], showing that there is a difference in number of components and holes
when the lattice is of size 256 by 256, before investigating a smaller lattice of
similar size to the brain slices. Finally, we will move away from the regular
lattice, and see if the results are applicable to irregular lattices such as a
brain slice, or a full three dimensional brain.

7.2.1 Simulation Parameters

To begin, let us consider the five distributions as described in [51].

147



1. Let z(x) be a GRF with N(0, 1) margins with the Matérn correlation
function

Corr(z(x), z(x+ d)) =
21−ν

Γ(ν)
(
√

2ν|d|/η)νKν(
√

2ν|d|/η) (71)

where Kν is a modified Bessel function of the third kind. Note that
the Matérn reduces to the exponential correlation function if ν = 0.5.
This is our first distribution.

2. χ2
1. Let z1 be a GRF with Matérn correlation then z? = z2

1 is χ2
1.

Marginally transform using z = Φ−1(Fχ2
1
(z?)) where Φ(.) and Fχ2

1
(.)

are the N(0, 1) and χ2
1 cumulative distribution functions, respectively

to give our second distribution. Hence z is marginally Gaussian but
z(x) is not a Gaussian random field.

3. χ2
3. Let z1, z2 and z3 be three independent GRFs, each with the same

correlation structure. Then z? =
∑3

i=1 z
2
i is χ2

3. Marginally transform-
ing using z = Φ−1(Fχ2

3
(z?)) leads to the third distribution.

4. T3. Use four GRFs with the same Matérn correlation and then

z? =
z1√∑4
i=2 z

2
i /3

is T3. Transform using z = Φ−1(FT3(z
?)) to give the fourth distribution.

5. F3,3. Use six GRFs with the same Matérn correlation and then

z? =

∑3
i=1 z

2
i /3∑6

i=4 z
2
i /3

is F3,3. Transform using z = Φ−1(FF3,3(z
?)) to give the fifth and final

distribution.

By construction, the marginal distributions are all N(0, 1). The Gaussian
Matérn parameters that will be considered in simulations for model 1 are
(ν, η) = (0.5, 2), (0.5, 5), (1, 5), (0.5, 20). Exponential two was chosen be-
cause, as we will see in later sections, this is similar to the correlation on
the brain slices. Exponential 20 is chosen so that we can replicate results in
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[51], and exponential five is chosen as an intermediate step to see the impact
of increasing the value of η from two. Also included is the Matérn with ν = 1
and η = 5. The parameter ν is important for small scale correlations, and
increasing ν slows down the decay of small scale correlations. For models
2 − 5 parameters (root) will be chosen such that after the transform, the
correlations (target) are very similar to those in model 1. The root param-
eters will be estimated using a numerical search for each of the four sets of
parameters.

Table 34 shows an example where the Matérn parameters for model 1
are (ν, η) = (0.5, 2). The table shows estimates obtained using a numerical
search of the root Matérn parameters required for models 2−5 such that the
target correlations are very close to those of model 1. Also given is the mean
and standard deviation of the correlations at various distances for the various
fields using the specified parameters, obtained from 50 simulated fields.

Distance

Model ν η 1
√

2 2 3
Gauss 0.5 2 0.607 0.493 0.368 0.223
χ2

1 0.8 4 0.618 (0.02) 0.505 (0.03) 0.371 (0.03) 0.220 (0.03)
χ2

3 0.5 4.4 0.592 (0.02) 0.483 (0.02) 0.367 (0.02) 0.232 (0.02)
T3 0.8 1.9 0.610 (0.02) 0.481 (0.03) 0.341 (0.03) 0.187 (0.03)
F3,3 0.6 4.3 0.596 (0.02) 0.480 (0.03) 0.359 (0.03) 0.217 (0.03)

Table 34: The (exact) exponential correlations for the Gaussian field, and
the mean and standard deviation of correlations at various lengths from 50
simulations of various fields using the parameters given.

From Table 34 it can be seen that the estimated parameters return cor-
relations which are very close to the ones used on the GRF. Table 35 shows
the numerical estimates for the parameters obtained when considering other
correlation structures that will be used. In all cases the target correlations
are very close to the those for model 1.
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Model ν η ν η ν η ν η
Gauss 0.5 2 0.5 5 1 5 0.5 20
χ2

1 0.8 4 0.8 9.4 1.9 8.8 0.74 41
χ2

3 0.5 4.4 0.5 11.8 1.8 8 0.54 42
T3 0.8 1.9 0.5 7 1.3 5.5 0.58 22
F3,3 0.6 4.3 0.6 10.8 1.1 9.4 0.54 50

Table 35: The numerical estimates for the Matérn parameters for various
distributions such that the field correlations are very similar.

7.2.2 Images Of The Fields On Two Dimensional Lattices

In Section 7.2.3, simulations using the distributions and parameters stated in
Section 7.2.1 will be used to see if any distinctions can be made between the
various distributions based on number of components and holes. This will
be done for two different sized lattices. One of size 256 by 256 to replicate
the work in [51], and the second will be a smaller lattice of size 65 by 65
which contains a similar number of points to that of a brain slice. First,
we give examples of the types of pattern that are produced by the different
distributions. We concentrated on models 1, 2 and 4, with examples of
models 3 and 5 given in the Appendix Section 10.4. Figures 78-81 give two
examples for each model, on 65 by 65 lattices, and for the four choices of
correlations.
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Figure 78: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 2).
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Figure 79: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 5).
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Figure 80: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (1, 5).
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Figure 81: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 20).

From Figures 78 - 81, we can see some of the consequences of changing
the correlation parameters. For example, increasing η results in fewer red
points (small values), implying fewer components. Also note that for small
η, in particular when η = 2 there is little visual difference between the fields
considered. However as η increases we can see differences. Of particular
interest is the case where (ν, η) = (1, 5), where the χ2

1 simulations are very
different from the rest, where long thin lines of small values can be seen in
the images. Also note the two simulations on this field are quite different
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with respect to the locations of these lines. These images will be referred
back to in future sections where some of these interesting features will be
explored and explained.

7.2.3 Simulations On Regular Two Dimensional Lattices

In this section we will simulate data on lattices to investigate if the expected
number of components and holes for a Gaussian field using the theory in
Section 7.1 is consistent with simulations, and also to see if distinctions can
be made between distributions which are all marginally normal with the same
correlation.

Tables 36 and 37 show the mean and standard deviation of the number of
components and holes from 50 simulations for each of the five distributions
and each of the four correlations considered. Also given in the table is the
expected number of components/holes for the Gaussian field and approxima-
tions of the standard deviation using the theoretical result. Results are also
shown as boxplots in Figures 82-85.

Distribution (ν, η) = (0.5, 2) (ν, η) = (0.5, 20)
Components Holes Components Holes

Gauss Theory 9377 (64) 9377 (64) 7786 (66) 7786 (66)
Gauss 9379 (69) 9370 (68) 7782 (72) 7795 (71)
χ2

1 8884 (96) 7769 (74) 5558 (180) 5179 (124)
χ2

3 9644 (63) 9356 (71) 7365 (72) 7318 (79)
T 8290 (51) 8291 (62) 6956 (77) 6953 (85)
F 8944 (79) 8961 (53) 7364 (94) 7359 (81)

Table 36: The mean and standard deviation of the number of components
and holes from 50 simulations of each of the five different distributions on
256 by 256 lattices.
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Distribution (ν, η) = (0.5, 5) (ν, η) = (1, 5)
Components Holes Components Holes

Gauss Theory 8371 (65) 8371 (65) 4605 (35) 4605 (35)
Gauss 8377 (68) 8372 (55) 4609 (66) 4604 (58)
χ2

1 6910 (100) 6025 (77) 2643 (77) 1145 (40)
χ2

3 8508 (74) 8366 (73) 4250 (65) 4057 (56)
T 8379 (84) 8372 (59) 3209 (49) 3211 (48)
F 7570 (91) 7568 (66) 3526 (74) 3528 (67)

Table 37: The mean and standard deviation of the number of components
and holes from 50 simulations of each of the five different distributions on
256 by 256 lattices.
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Figure 82: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 256 by 256 lattices, all
with target correlation (ν, η) = (0.5, 2).
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Figure 83: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 256 by 256 lattices, all
with target correlation (ν, η) = (0.5, 5).
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Figure 84: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 256 by 256 lattices, all
with target correlation (ν, η) = (0.5, 20).
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Figure 85: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 256 by 256 lattices, all
with target correlation (ν, η) = (1, 5).

The boxplots show that the number of components and holes on the 256
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by 256 lattice can distinguish between the various distributions for some cor-
relation parameters. In particular when the local correlation between points
on the lattice is high, for example in the cases where the target parameters
are (ν, η) = (0.5, 20) or (ν, η) = (1, 5), the number of components and holes
on the Gaussian field is different from all other distributions. However for
the other cases, where local correlations are small the differences are not as
clear. For the case where (ν, η) = (0.5, 2) differences between the Gauss and
all other distributions can be seen in the number of components, but there
is overlap between the Gauss and χ2

3 field in the number of holes. Hence
there is asymmetry in the number of components and holes for the χ2

3 field,
and this can also be seen in the χ2

1 field. For the case where (ν, η) = (0.5, 5)
distinctions can only be made between the Gaussian, χ2

1 and F fields.
Figure 86 explores this further by fixing the target correlation parameter

ν = 0.5 and investigating the difference in components and holes of the
different distributions as η changes.
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Figure 86: The mean number of components and holes (and two standard
deviation interval for Gauss - black dashed), obtained from 50 simulations
on a 256 by 256 lattice. The Matérn parameter ν = 0.5 for the Gaussian
field in all cases and η varies. Parameters for other fields were chosen such
that all fields have correlation structures that are indistinguishable.

Figure 86 shows that as η increases, the number of components and holes
decrease in most cases. This is to be expected, and it will be shown later
in Section 7.3.2 (Figure 112) that for a Gaussian field, as lag one correlation
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increases the number of extrema decreases. The figure also shows that for
η = 20 there is a distinction between the Gaussian field and the other fields as
shown in [51]. However note that this distinction is present but less extreme
as η decreases (and so the small lag correlation decreases and hence there
are more extrema). Finally the figure also shows that there is asymmetry
in the number of components and holes for the χ2

1 field for all values of η.
However the difference in number of components and holes on the χ2

1 field is
much more noticeable when η is small. Here when η = 2, the difference in
extrema for the χ2

1 field is 1115, and η = 20 is 379.
Figures 87 repeats the above, however now all Gaussian fields have Matérn

parameter ν = 1. The effect of increasing this parameter is to increase
the local correlation, hence it can be seen that this leads to a decrease in
components and holes.
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Figure 87: The mean number of components and holes (and two standard
deviation interval for Gauss - black dashed), obtained from 50 simulations on
a 256 by 256 lattice. The Matérn parameter ν = 1 for the Gaussian field in
all cases and η varies. Parameters for other fields chosen such that all fields
have same correlation structure.

Tables 36 and 37, and Figures 86 and 87 show that on the 256 by 256
lattice, the number of components and holes on the Gaussian are significantly
different from the rest, except for the case where (ν, η) = (0.5, 5), where in
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this case the results from the T distribution is very similar to that of the
Gaussian.

The largest brain slice has 4338 points, hence we will repeat the above
for a 65 by 65 lattice, to determine if distinctions can still be made on a
smaller field. Tables 38 and 39 show the mean and standard deviation of
the number of components and holes from 50 simulations for each of the
five distributions and each of the four correlations considered. Also given in
the table is the expected number of components/holes for the Gaussian field
and approximations of the standard deviation using the theoretical result.
Results also shown as boxplots in Figures 88-91.

Distribution (ν, η) = (0.5, 2) (ν, η) = (0.5, 20)
Components Holes Components Holes

Gauss Theory 616 (17) 616 (17) 513 (17) 513 (17)
Gauss 615 (15) 615 (15) 512 (18) 511 (17)
χ2

1 580 (16) 513 (18) 358 (31) 340 (24)
χ2

3 631 (16) 615 (16) 488 (19) 484 (17)
T 544 (15) 547 (14) 462 (19) 458 (16)
F 590 (14) 589 (14) 485 (19) 487 (17)

Table 38: The mean and standard deviation of the number of components
and holes from 50 simulations of each of the five different distributions on 65
by 65 lattices.

Distribution (ν, η) = (0.5, 5) (ν, η) = (1, 5)
Components Holes Components Holes

Gauss Theory 551 (17) 551 (17) 308 (10) 308 (10)
Gauss 549 (19) 549 (13) 303 (12) 310 (14)
χ2

1 455 (24) 396 (23) 177 (22) 82 (11)
χ2

3 558 (19) 552 (18) 287 (16) 276 (15)
T 547 (14) 552 (20) 220 (13) 216 (13)
F 496 (19) 500 (18) 241 (12) 241 (16)

Table 39: The mean and standard deviation of the number of components
and holes from 50 simulations of each of the five different distributions on 65
by 65 lattices.
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Figure 88: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 65 by 65 lattices, all with
target correlation (ν, η) = (0.5, 2).
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Figure 89: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 65 by 65 lattices, all with
target correlation (ν, η) = (0.5, 5).
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Figure 90: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 65 by 65 lattices, all with
target correlation (ν, η) = (0.5, 20).
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Figure 91: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on 65 by 65 lattices, all with
target correlation (ν, η) = (1, 5).

From Tables 38 and 39 it can be seen that the simulations on the Gaussian
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field match the expected number, however Figures 88 - 91 show that very
little distinction can be made between the Gaussian and other distributions
based on number of components and holes.

Figures 92 and 93 explore this further by fixing the target correlation
parameter ν = 0.5 and ν = 1 respectively and investigating the difference in
components and holes of the different distributions as η changes.
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Figure 92: The mean number of components and holes (and two standard
deviation interval for Gauss - black dashed), obtained from 50 simulations
on a 65 by 65 lattice. The Matérn parameter ν = 0.5 for the Gaussian field
in all cases and η varies. Parameters for other fields are chosen such that all
fields have correlation structures that are indistinguishable.
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Figure 93: The mean number of components and holes (and two standard
deviation interval for Gauss - black dashed), obtained from 50 simulations
on a 65 by 65 lattice. The Matérn parameter ν = 1 for the Gaussian field
in all cases and η varies. Parameters for other fields are chosen such that all
fields have correlation structures that are indistinguishable.

Figures 92 and 93 again show the asymmetry in components and holes
on the χ2

1 field in all cases. The figures also show more overlap between the
results on the Gaussian and other fields, where at least one distribution in
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all plots overlap with the Gaussian, and there are several cases where this
happens even as η increases, which is in contrast to the results on the larger
lattice. When η = 2, which is similar to that on the brain slice z = 42,
the results for components on the χ2

3 and F3,3 fields are within two standard
deviations of the results for the Gaussian (when ν = 0.5), and the χ2

1 results
lie just outside the interval. This was not true for the larger lattice.

7.2.4 Simulations On Regular Three Dimensional Lattices

We will now use simulations to determine if distinctions can be made between
the distributions on a regular three dimensional lattice of dimension 603 =
216000 points, similar to that of the full brain. As described in Section
7.1, there is no theoretical result for the expected number of holes in three
dimensions, and so we will consider only components and voids which are
described by the minima and maxima of the field.

Tables 40 and 41 show the mean and standard deviation of the number of
components and voids from 50 simulations for each of the five distributions
and each of the four correlations considered. Also given in the table is the
expected number of components/voids for the Gaussian field and approxi-
mations of the standard deviation using the theoretical result.

Distribution (ν, η) = (0.5, 2) (ν, η) = (0.5, 20)
Components Voids Components Voids

Gauss Theory 19622 (116) 19622 (116) 15280 (110) 15280 (110)
Gauss 19619 (113) 19608 (105) 12205 (6170) 11902 (6196)
χ2

1 19471 (221) 14484 (179) 3855 (1644) 1686 (2029)
χ2

3 20759 (164) 19360 (144) 6597 (5068) 7315 (5449)
T 16731 (102) 16698 (111) 9127 (4892) 10307 (5741)
F 18556 (144) 18581 (121) 6832 (5504) 6753 (5506)

Table 40: The mean and standard deviation of the number of components
and voids from 50 simulations of each of five different 60 by 60 by 60 lattice
fields all standard normalised, with Gaussian Matérn parameters specified.
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Distribution (ν, η) = (0.5, 5) (ν, η) = (1, 5)
Components Voids Components Voids

Gauss Theory 16837 (112) 16837 (112) 7201 (82) 7201 (82)
Gauss 16844 (126) 16824 (127) 7224 (109) 7201 (127)
χ2

1 14012 (444) 10319 (262) 5656 (400) 870 (56)
χ2

3 17430 (315) 16846 (236) 6678 (142) 5941 (166)
T 16915 (148) 16926 (137) 4486 (110) 4444 (103)
F 14737 (172) 14698 (172) 5071 (134) 5098 (124)

Table 41: The mean and standard deviation of the number of components
and voids from 50 simulations of each of five different 60 by 60 by 60 lattice
fields all standard normalised, with Gaussian Matérn parameters specified.

Tables 40 and 41 show that for the simulations with Matérn parameters
(ν, η) = (0.5, 2) or (ν, η) = (1, 5) distinction can be made between all dis-
tributions, either due to significantly different number of components and
voids, or due to the asymmetry in the number of components and voids for
the χ2 distributions. When (ν, η) = (0.5, 5) there is some overlap between
the Gauss and T distributions.

From the tables it can also be seen that the expected number of com-
ponents and voids for the Gaussian agree with the simulations, except for
the case where (ν, η) = (0.5, 20). The simulated figures in the table were
obtained using the RandomFields package in R to simulate data on the lat-
tice. To check the results, an alternative package in R was used to simulate
the data - gstat. Using this package the mean number of components and
voids for the case where (ν, η) = (0.5, 20) is 15366 and 15387 with standard
deviations of 177 and 163 respectively (obtained from 50 simulations). These
figures are within two standard deviation of the expected value seen in Table
40. This indicates that there is something wrong with the RandomFields
package in R, when η gets large with respect to the size of the lattice. This
will be investigated further in Section 7.2.5.

Figures 94 - 91 summarise the above results using boxplots. Note that
the boxplot results for the case where (ν, η) = (0.5, 20) were obtained using
the gstat package.
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Figure 94: Boxplots of the number of components (top) and voids (bottom)
from 50 simulations of each of five distributions on 603 lattices, all with target
correlation (ν, η) = (0.5, 2).
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Figure 95: Boxplots of the number of components (top) and voids (bottom)
from 50 simulations of each of five distributions on 603 lattices, all with target
correlation (ν, η) = (0.5, 5).
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Figure 96: Boxplots of the number of components (top) and voids (bottom)
from 50 simulations of each of five distributions on 603 lattices, all with target
correlation (ν, η) = (0.5, 20).
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Figure 97: Boxplots of the number of components (top) and voids (bottom)
from 50 simulations of each of five distributions on 603 lattices, all with target
correlation (ν, η) = (1, 5).
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In this section it has been shown that on a three dimensional lattice of
similar size to the full brain, distinctions can be made between all distribu-
tions either due to significantly different number of components and voids, or
due to the asymmetry in the number of components and voids for the χ2 dis-
tributions. However when (ν, η) = (0.5, 5) there is some overlap between the
Gauss and T distributions. It has also been found that the RandomFields
package in R produces some inconsistent results when (ν, η) = (0.5, 20) and
this will be further explored in the next section.

7.2.5 Investigating Random Fields Package In R

In Section 7.2.4 it was found that the RandomFields package in R, used for
simulating spatial data, did not generate Gaussian fields on a three dimen-
sional square lattice with sides of length 60 units, with the expected number
of components and voids when the correlation parameters (ν, η) = (0.5, 20).
In this section we will investigate this further.

Figure 98 shows the simulated number of components and voids obtained
using both the RandomFields package, and the gstat package against the
expected number for varying values of η.

Figure 98: The expected number of components (left) and voids (right)
(black solid) plus/minus two standard deviations (black dashed) on a 653

Gaussian lattice with Matérn correlation parameters ν = 0.5 and varying
η. Also shown is the mean number obtained from 50 simulations using the
RandomFields package (red) and gstat package (green) in R.

From Figure 98 it can be seen that both the R packages agree with
the expected number of components and voids for η ≤ 10. As η increases
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beyond ten, the number of components and voids obtained by using the
RandomFields package decreases below two standard deviations of the ex-
pected number, however the gstat package produces results consistent with
the expected number.

Figure 99 shows normal q-q plots of four random realisations on the 603

lattice when (ν, η) = (0.5, 20) to check that the RandomFields package is
generating Gaussian data as expected.

Figure 99: Q-Q plots of four simulations on the 603 lattice from Gaussian
distributions with (ν, η) = (0.5, 20) using the Random Fields package.

From Figure 99 it can be seen that the data being produced looks Gaus-
sian, however the number of components and voids are not consistent with
the expected number (15280) or the number we find using the alternative
gstat package in R. For these four realisations the number of components
top left, top right, bottom left and bottom right were 13374, 18976, 26245
and 9794 respectively, with similar numbers for voids. Hence although the
data look Gaussian, there is high variability in the number of components
and holes as was seen the simulations in Section 7.2.4.
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Figure 100 shows the value of η where the number of components on a
Gaussian lattice generated using the RandomFields package first disagrees
with the expected number for different values of d, the side length of the
cube.

Figure 100: The first value of η when the number of components on a sim-
ulated Gaussian d3 lattice disagrees with the expected number, when using
the Random Fields package. Note only values of η = 1− 20 tested.

From Figure 100 it can be seen that for a three dimensional lattice of
side length up to ten, the expected number of components on the Gaussian
fields generated using the RandomFields package agrees with the expected
number for all values of η from 1− 20. However when d = 11, the number of
simulated components diverges from the expected number as soon as η = 6.
The maximum value of η for which the RandomFields package works as
expected increases as d increases until d = 37 where we see a decrease again.
The figure also shows three lines for three different values of ν which control
the local correlation. It can be seen that the results for all three values of ν
are very similar, suggesting that it is η which is causing the problem, the long
distance correlation. However there does not appear to be any systematic
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pattern, ie the maximum value of η is not always increasing with d, as can
be seen by the fact that there is no problem with small cubes, and with the
dip at d = 37.

Similar results were not found in two dimensions. Simulations were car-
ried out for ν = 0.5, 1, 2 and η = 1−20 for two dimensional fields with similar
numbers of points to the three dimension cases above. For example, in the
three dimension simulations, the RandomFields package did not compute
the correct number of components when d = 60 (216000 points) and η = 20,
however for the two dimensional case where d = 465 (216225) points, there
were no issues when η = 20.

The source code for all R packages are openly available, however no ob-
vious error could be found following inspection of the code.

7.2.6 Simulations On Two Dimensional Brain Slices

In this section, we aim to simulate data from the various distributions as in
Section 7.2.3 and compare the number of components and holes, however we
will now simulate on irregular lattices of the same shape as some brain slices.
We also use this section to ensure the theoretical and simulated number of
components and holes for a Gaussian field are the same on the irregular
lattice. We will focus on three brain slices in this section, those with z
coordinates z = 42, z = 60 and z = 70 (see Figure 101). Brain slice z = 42
is approximately midway through the brain, and the other two slices were
chosen at random. These choices are arbitrary as there are too many possible
two dimensional slices to consider them all.
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Figure 101: Examples of the fMRI measurements at time t=1 for voxels on
three different brain slices.

The theoretical result in Section 7.1 states that the probability of a point
being a component depends only on local correlations. Hence to adjust for
the irregular shape of the brain, all that is required is to calculate the number
of points with the different neighbour configurations (Figure 77) and the lag
1,
√

2 and 2 correlations. Table 42 shows the counts of the points with
different numbers of neighbours for the brain slices seen in Figure 101. As
there are two, two-neighbour configurations, 21 denotes a point where there
is a lag of 2 between the neighbours, and 22 denotes a point where there is a
lag of

√
2 between the neighbours.
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Number of Neighbours 0 1 21 22 3 4
Count z = 42 0 11 0 279 387 3042
Count z = 60 0 0 0 137 218 2652
Count z = 70 0 3 0 69 115 1446

Table 42: The counts of the number of points with different numbers of
neighbours on three different brain slices. 21 and 22 refer to the two different
two neighbour configurations seen in Figure 77.

Tables 43-45 show the results of simulating on the brain slices z = 42,
z = 60 and z = 70 respectively using the various distributions, with Gaus-
sian Matérn parameters (ν, η) = (0.5, 2). In later sections, it will be shown
that on the brain slices, the empirical correlation length is close to that of
the exponential with correlation length of two, thus only these results are
presented here. In each table, the theoretical number is also given in the
caption. Figures 102-104 show boxplots of these results.

Distribution Components Holes
Gauss Theory 595 (17) 595 (17)

Gauss 599 (15) 602 (15)
χ2

1 573 (18) 515 (17)
χ2

3 613 (15) 600 (14)
T3 540 (14) 541 (16)
F3,3 578 (17) 579 (17)

Table 43: The mean (and standard deviation) of the number of components
and holes from 50 simulations of each of five different fields on brain slice
z = 42, all standard normalised, with target correlation (ν, η) = (0.5, 2).
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Distribution Components Holes
Gauss Theory 463 (15) 463 (15)

Gauss 461 (12) 460 (15)
χ2

1 435 (14) 390 (15)
χ2

3 476 (16) 459 (15)
T3 416 (13) 415 (13)
F3,3 444 (13) 443 (15)

Table 44: The mean (and standard deviation) of the number of components
and holes from 50 simulations of each of five different fields on brain slice
z = 60, all standard normalised, with target correlation (ν, η) = (0.5, 2).

Distribution Components Holes
Gauss Theory 250 (11) 250 (11)

Gauss 250 (10) 251 (9)
χ2

1 240 (12) 212 (11)
χ2

3 256 (12) 250 (12)
T3 224 (10) 226 (8)
F3,3 238 (10) 239 (11)

Table 45: The mean (and standard deviation) of the number of components
and holes from 50 simulations of each of five different fields on brain slice
z = 70, all standard normalised, with target correlation (ν, η) = (0.5, 2).
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Figure 102: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on brain slice z = 42, all
with target correlation (ν, η) = (0.5, 2).
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Figure 103: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on brain slice z = 60, all
with target correlation (ν, η) = (0.5, 2).
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Figure 104: Boxplots of the number of components (top) and holes (bottom)
from 50 simulations of each of five distributions on brain slice z = 70, all
with target correlation (ν, η) = (0.5, 2).
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As in Section 7.2.3, Figures 102-104 shows little distinction between the
underlying distributions in terms of number of components and holes. In
particular the Gauss, T and F distributions overlap in all plots. Also note
that the number of components and holes on the χ2

1 field are asymmetric as
previously seen.

The simulations in Section 7.2.3 and in this section have shown that on
smaller fields, we may not be able to distinguish between all the distributions
based on number of components and holes. However we have demonstrated
that simulating Gaussian data on brain slices with irregular lattice structures
give results which are consistent with the expected theoretical number of
components and holes.

7.2.7 Simulations On Three Dimensional Full Brain

In this section we extend the work in Section 7.2.6 to three dimensional fields.
As before, to calculate the expected number of components and voids for the
Gaussian field, the local correlations and number of neighbours for each point
type is required.

In the three dimensional case, each point can have up to six neighbours.
For the isotropic case there are two, two, three and four neighbour config-
urations. The two two-neighbour configurations are the same as in the two
dimensional case in Figure 77. Figure 105 shows the two, three and four
neighbour configurations.

Figure 105: The three dimensional three and four isotropic neighbour con-
figurations.
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Table 46 shows the counts of the number of points on the full brain with
different neghbour configurations.

Neighbours 0 1 21 22 31 32 41 42 5 6
Count 0 0 0 477 104 6221 6 9053 15578 120756

Table 46: The counts of the number of points with different numbers of
neighbours on the full brain. 21 and 22 refer to the two different two neighbour
configurations seen in Figure 77 and 31, 32, 41 and 42 refer to the two types
of three and four neighbour configurations seen in Figure 105.

Table 47 show the simulated number of components and voids on the full
brain assuming (ν, η) = (0.5, 2).

Distribution Components Voids
Gauss Theory 15254 (103) 15254 (103)

Gauss 15264 (90) 15274 (96)
χ2

1 15020 (155) 11740 (132)
χ2

3 15991 (118) 15076 (99)
T 13217 (76) 13219 (75)
F 14508 (107) 14522 (110)

Table 47: The mean (and standard deviation) of the number of components
and voids from 50 simulations of each of five different fields all standard
normalised, with correlation parameters (ν, η) = (0.5, 2) (Full Brain).

As in Section 7.2.6, Table 47 shows that there is asymmetry in the number
of components and voids on the χ2

1 field, however it can also be seen that
there is now some asymmetry on the χ2

3 field also. On the much larger field,
it can now be seen that on the full brain distinctions can be made between
the Gaussian and the other distributions, either due to different numbers, or
the asymmetry of the of components and voids.

7.3 Application

The aim of this section is to compare the expected number of components/holes
as given in Section 7.1 with the observed number of components and holes
on various brain slices and the full brain.
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The theoretical result in Section 7.1 states that the probability of a point
being a component depends only on local correlations. Hence to adjust for the
irregular shape of the brain, all that is required is to calculate the number
of points with the different neighbour configurations (Figure 77) and the
lag 1,

√
2 and 2 correlations. In this section, the expected number will be

calculated using estimates of the local correlations found by a fitted Matérn,
and this will be compared to the theoretical result found when using the
empirical local isotropic correlations. A small number of simulations will
also be included in this section to show that expected number of components
on a Gaussian field with the fitted Matérn correlation obtained from the
brain data, is consistent with the simulated Gauss data with the same local
correlations. If the actual data is Gaussian and isotropic, then the expected,
simulated and actual number of components should be similar.

7.3.1 Number Of Components And Holes On Brain Slices

To obtain the expected number of components for the Gaussian field, we
will first estimate the local correlation by fitting a Matérn model using
least squares to the empirical isotropic correlations. This is time depen-
dent, and this procedure will need to be repeated when considering different
time points. Figure 106 shows the fitted Matérn against the actual field
correlations for brain slice z = 42 at t = 1.
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Figure 106: The correlation against lag of the brain slice z = 42 at t = 1
(black), and the fitted Matérn (red).

Note that in Figure 106 the local lags that we are interested in (1,
√

2, 2)
are fitted well using the Matérn correlation function. Using this Matérn we
can now obtain the expected number of components for the Gaussian field.
Table 49 shows the results, along with the count of the observed number
of components and holes on the brain slice z = 42 at different time points.
Also included is the result of 50 simulations to ensure the expected matches
simulated using the fitted Matérn correlation.
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Time E[N ] SD[N ] Sim Min Sim Max Obs Min Obs Max
1 394.1 10.5 401.3 (14.5) 397.4 (13.8) 382 404
11 439.3 11.3 447.1 (12.4) 446.7 (13.2) 436 426
12 418.1 11.4 424.8 (13.8) 424.0 (13.1) 407 387
13 416.9 11.9 423.2 (11.0) 419.8 (14.4) 395 396
14 390.1 11.3 395.7 (11.2) 395.3 (15.2) 405 358

Table 48: The theoretical expected number of components (min) and holes
(max) on a Gaussian field (using a fitted Matérn), the mean (and standard
deviation) number from 50 simulations, and the observed number for various
time points on brain slice z = 42.

An alternative to fitting a Matérn to the empirical isotropic correlations,
is to use the actual empirical correlations in the calculation for the expected
number of components. Table 49 shows the results in this case.

Time E[N ] SD[N ] Obs Min Obs Max
1 415.6 15.5 382 404
11 459.1 16.5 436 426
12 417.4 15.5 407 387
13 419.5 15.6 395 396
14 390.1 14.8 405 358

Table 49: The theoretical expected number of components (min) and holes
(max) on a Gaussian field (using actual field correlations) and the observed
number for various time points on brain slice z = 42.

Table 48 shows that the calculations for the expected number of compo-
nents on the irregular field are very similar to the simulated number, when
fitting a Matérn to the empirical slice correlations, and also to the actual
number on the brain slice. Table 49 shows results for the expected number
of components when the empirical correlations are used. From this it can be
seen that although there are some differences, due to the fitted Matérn not
being exactly the same as the empirical correlation, the expected number is
similar to that obtained when using the Matérn fit.

Figures 107 and 108 show the results for all time points.
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Figure 107: The actual number of components on slice z = 42 (blue), sim-
ulated number (red), and expected number plus/minus two standard devia-
tions (black dashed).

Figure 108: The actual number of holes on slice z = 42 (blue), simulated
number (red), and expected number plus/minus two standard deviations
(black dashed).

Figures 107 and 108 show that the simulated Gaussian data agree with
the theoretical calculation for the irregular two dimensional field shape on
the brain slice. It can also be seen that the actual number observed on the
brain slice falls within two standard deviations of the expected number at
all time points. This indicates that the model residuals at each time point
are consistent with a Gaussian Random Field. Although results here are
presented only for the brain slice z = 42, similar results were found for other
brain slices.
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As noted earlier, an assumption for the expected number of components
and holes on the Gaussian field is that the correlations are isotropic. Next,
we will investigate this assumption. It will now be allowed that the local
correlations depend on direction as well as distance. Considering only lags
1,
√

2, 2, six empirical correlations on the brain slices will be calculated. Note
here that there is now also an increase in the number of point types Pi, as
orientation as well as number of neighbours needs to be considered. Table
50 shows the values of the local lag correlations for slice z = 42 and t = 1
for both the isotropic and anisotropic cases. In the table the lag subscript
refers to orientation of the neighbours. For example, 2E refers to the lag
two correlations in the east/west directions, while 2N refers to the lag two
correlations in the north/south direction.

Lag Isotropic Correlation Anisotropic Correlation
1E 0.649 0.635
1N 0.649 0.664√
2SE 0.452 0.444√
2NE 0.452 0.459
2E 0.212 0.177
2N 0.212 0.250

Table 50: The local correlations on the brain slice z = 42 at t = 1 under the
assumptions of isotropy and anisotropy.

Table 51 shows the average correlations over time.

Lag Isotropic Correlation Anisotropic Correlation
1E 0.640 (0.04) 0.646 (0.03)
1N 0.640 (0.04) 0.634 (0.05)√
2SE 0.446 (0.05) 0.457 (0.06)√
2NE 0.446 (0.05) 0.435 (0.05)
2E 0.223 (0.06) 0.213 (0.05)
2N 0.223 (0.06) 0.233 (0.08)

Table 51: The mean (and standard deviation) of local correlations on the
brain slice z = 42 over time under the assumption of isotropy and anisotropy.

Table 51 shows that the anisotropic correlations are very similar to the
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isotropic correlations, meaning that the field is approximately isotropic, at
least locally, and assuming stationarity.

7.3.2 Number Of Components And Voids On The Full Brain

In this section, the theoretical number of components and voids for three
dimensional parts of the brain will be compared with the observed number
in the model residuals. Initially a region of interest will be tested, and then
the full brain. Figures 109 and 110 shows the number of components and
voids in region seven, the simulated number and the expected interval found
by fitting the Matérn to the empirical correlations, which are assumed to be
isotropic.

Figure 109: The actual number of components in region seven (blue), sim-
ulated number (red), and expected number plus/minus two standard devia-
tions (black dashed).

196



Figure 110: The actual number of voids in region seven (blue), simulated
number (red), and expected number plus/minus two standard deviations
(black dashed).

Like with the brain slice, Figures 109 and 110 show that the observed
number of extrema in region seven is consistent with an isotropic Gaussian
field. Similar results were obtained for other regions of interest. Table 52
shows some results for the full brain.

Time E[N ] SD[N ] Sim Min Sim Max Obs Min Obs Max
1 9940.8 88.8 9933.7 (78.2) 9959.4 (79.8) 6634 6702
11 9983.2 87.6 10001.8 (67.6) 10002.9 (65.4) 8347 8003
12 9809.7 88.0 9841.4 (61.1) 9827.9 (73.0) 7391 7437
13 8004.3 81.0 7956.44 (236.7) 7963.2 (216.1) 6701 6314
14 8395.2 83.1 8407.7 (83.1) 8405.3 (88.2) 6699 6691

Table 52: The theoretical expected number of components (min) and voids
(max) on a Gaussian field (using a fitted Matérn), the mean (and standard
deviation) number from 50 simulations, and the observed number for various
time points on the full brain.

From Table 52 it can be seen that the simulated agree with the theoretical
number of extrema on the full brain when fitting an Matérn to the empirical
isotropic correlations, however these figures do not match with the observed
number found on the field. Table 53 shows the expected number of extrema
using the empirical correlations found in the full brain, assuming stationarity
and isotropy.
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Time E[N ] SD[N ] Observed Components Observed Voids
1 6357.0 67.8 6634 6702
11 7789.5 70.4 8347 8003
12 7028.0 69.3 7391 7437
13 4773.5 62.2 6701 6314
14 6557.5 68.3 6699 6691

Table 53: The theoretical expected number of components and voids on a
Gaussian field (using empirical correlations) and the observed number for
various time points on the full brain.

From Table 53 it can be seen that the expected number of extrema has
reduced substantially in comparison to the expected number found using a
fitted Matérn to the correlations. Note that at t = 13 the expected number
has fallen far more than the others, and this is due to an increase in lag
one correlation at this time point (see Figure 111 below). The expected
numbers now fall slightly under the number observed on the brain. Figure
111 compares the fitted correlations using the Matérn and the empirical
correlations.
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Figure 111: The emprical lag 1,
√

2, 2 correlations (black) and the fitted
Matérn correlations (red) for the full brain.

From Figure 111 it can be seen that the Matérn fitted correlations are very
similar to the empirical ones. Therefore to explore why the Matérn fit fails,
we will now explore the sensitivity of the theoretical result to small changes
in local correlation. Figure 112 shows the effect of reducing the correlation
at local lags on the expected number of maxima on the brain slice.
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Figure 112: The expected number of maxima on the brain slice z = 42 at
t = 1 when reducing each of the lags independently (lags 1,

√
2, 2 - black,

blue, red).

From Figure 112 it can be seen that if the lag one correlation reduces,
the number of maxima increases, however if the lag

√
2 and 2 correlation

decreases, so does the number of maxima. Note also that the reduction in
local correlations in Figure 112 are very small and can change the number of
maxima significantly. Returning to Figure 111 it can be seen that the fitted
Matérn lag one correlations are always slightly lower than the empirical ones,
and the

√
2 fitted correlations are always higher than the empirical ones.

This, combined with the much larger number of points on the full brain,
explains why the expected number of extrema on the full brain is much
higher when using the fitted values.

To explain why this happens, consider the probability of a point in the
field being a maxima as in Equation (67). The probability is calculated by
evaluating the zero mean, k-dimensional cumulative normal distribution at
0k, where the variance is given by

V (r1, r√2, r2) = R + 1k1
T
k − r1Tk − 1kr

T (72)
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where r1, r√2, r2 are the lag 1,
√

2 and 2 correlations respectively. Recall that
R is a k by k matrix of the correlations between the neighbours of the point
of interest, and r is the k-vector of correlations between the point of interest
and it’s immediate neighbours. Therefore, R = R(r√2, r2) depends only on

correlations of lag
√

2 and 2, and r = r(r1) depends only on lag 1 correlations.
Hence from (72) it can be seen that for fixed lags

√
2 and 2, and so fixed R,

a increase in lag 1 correlation (increasing r) will reduce all elements of V , in
particular the off diagonal elements. These represent the correlation between
the variables of the multivariate normal distribution and so by considering
the contours of a multivariate normal, it can be deduced that a reduction
in these correlations will decrease the probability of obtaining a maximum.
Thus if lag 1 correlation increases, the probability of obtaining a maximum
decreases, as seen in Figure 112. To highlight this using an example, consider
the case of a point z1 with two neighbours, z2 and z3, each of distance one from
z1. In this case, the probability of z1 being a maximum is determined using
the cumulative bivariate normal distribution as given in Equation (67) with
k = 2, evaluated at zero. Suppose R is fixed such that there is independence
between the neighbours of z1, and let us consider three cases for different lag
1 correlations. If r1 = 0, r1 = 0.5 and r1 = 0.7 then we have

V (0, 0, 0) =

(
2 1
1 2

)
, V (0.5, 0, 0) =

(
1 0
0 1

)
, V (0.7, 0, 0) =

(
0.6 −0.4
−0.4 0.6

)
.

Here it can be calculated that the probability of z1 being a maximum is 0.33,
0.25 and 0.13 respectively. Hence increasing lag 1 correlation reduces the
probability of a maximum. This can also be seen by observing the contours
of the bivariate normal distribution in these cases. Figure 113 shows the three
cases, and note that the probability of a maximum is determined by the area
where z2 and z3 are less than zero. Therefore we can see that increasing lag
1 correlation reduces the probability of obtaining a maximum.
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Figure 113: Contours of the bivariate normal distribution for fixed R and
varying lag 1 correlations.
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In a similar way, if lag 1 correlation is fixed, and either lag
√

2 or lag 2
correlation increases, then some of the off diagonal elements of V increase,
and so the probability of obtaining a maximum increases, also seen in Figure
112.

7.4 Conclusion

In this chapter it has been shown that the number of components and holes
in the model residuals on various brain slices and the full brain are consistent
with that of a isotropic Gaussian field. However, simulations on lattices have
shown that distinctions between fields which are marginally normal with the
same correlation may not be possible for smaller fields using components
and holes alone. Also of interest is that the expected number of components
and holes on the Gaussian field is extremely sensitive to local correlation,
with only small changes in correlation causing large differences in number of
components and holes on the field. In the next chapter, we will investigate if
the spatial distribution of the components and holes on brain slices and the
full brain are consistent with an isotropic Gaussian field.
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8 Spatial TDA

In Chapter 7, we investigated the number of components and holes (or voids)
on the brain to determine if the data is consistent with a Gaussian field.
This extended work in [51] to irregular and three dimensional fields. In this
chapter we will focus on the point patterns of the topological features of a
field. The aim is to introduce a new method to use these point patterns to
compare fields and to determine if a field is Gaussian, and apply the theory
to the brain data.

In this chapter we initially test for spatial homogeneity in the model
residuals, in particular the focus will be on testing if certain topological
features are distributed randomly across the brain. Following this, methods
and simulations will be used to show how to compare two point patterns,
in particular to determine if a Gaussian point pattern can be distinguished
from other fields as described in Section 7.2.1. The section will end with
application to brain data, where we will test if the point pattern of topological
features on the brain are consistent with a Gaussian field.

8.1 Introduction

Suppose we observe some measurements in space, we may ask if the observa-
tions are randomly located or if there is any clustering present. One simple
method is quadrant count analysis [12] [36] [22], which splits the regions
where observations may be made into blocks, or quadrants, and compares
the number of observations in a block with the expected number under ran-
domness. This method usually involves computing a single statistic, derived
from the average number of counts in the blocks for the point pattern, which
can be used to test for departure from spatial randomness.

Alternatives to quadrant count analysis which are commonly used are
Ripley’s K-function [65], Besag’s L-function [38] and the pairwise correlation
function (PCF), sometimes also known as the radial distribution function,
described in [55]. In contrast to quadrant count analysis, these functions
analyse the point pattern at different scales, and so can give more infor-
mation. In this section, we will use both quadrant count analysis and the
alternatives to investigate spatial point patterns, both to simulated data, and
then to applications of topological features of the model residuals.

Another interesting question is how to compare two or more point pat-
terns. In this section we will use the cross K-function to determine if there
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is attraction or repulsion between two point patterns, which will allow us
to determine, for example, if the positions of components influence the po-
sitions of holes or if the position of components at a particular time point
influences the position at the next time point. Another method that will
be explored will be to use metrics to determine the distance between two
point patterns. This will allow us to investigate if the distances between the
components, for example, from pairs of Gaussian fields, differ from pairs of
fields from other distributions, in the case where the target correlation is
the same. This will be applied to the brain data by constructing a test to
determine if the components and holes on the brain slice are consistent with
a Gaussian field. Quadrant count analysis will also be used to compare point
patterns by counting the number of points for each pattern in each quadrant
and performing an association test.

8.2 Complete Spatial Randomness - Quadrant Count
Analysis

Quadrant count analysis is concerned with testing if observations are ran-
domly distributed in space. For a Poisson distribution with mean λ, the
probability of obtaining sample value n is

Pr(N = n) =
λn

n!
e−λ

where E[N ] = V ar(N) = λ. Suppose the space where observations may
be made is split up into a set of quadrants of equal size, V . Then the ex-
pected number of observed points in each quadrant, assuming a homogeneous
Poisson process is λV . If there are 1, ..., n quadrants, and N1, N2, .., Nn ob-
servations are made in each, with mean N̄ , then the ratio of the variance and
mean of the counts is given by

IOD =
1

(n− 1)N̄

n∑
i=1

(Ni − N̄)2 (73)

which is known as the index of dispersion. If the point pattern is consistent
with a homogeneous Poisson process, then the IOD will be close to one.
Note that this is very similar to the Pearson goodness of fit test

X2 =

∑n
i=1(Ni − N̄)2

N̄
(74)
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which can be tested against the χ2
n−1 distribution. In [12] it is noted that if

the test statistic is large this implies high variability suggesting clustering.
Similarly if the test statistic is low this implies lower than expected variability
under randomness, suggesting regularity.

One important question when using quadrant count analysis is the choice
of quadrant shape and number of quadrants. In [12] it is noted that the shape
of the quadrants are not important, though the size should be such that the
mean observed point count is at least one, and more than six quadrants
should be used.

8.3 Complete Spatial Randomness - Ripley’s K-function

Quadrant count analysis derives a single statistic from the point pattern to
test for complete spatial randomness (CSR). An alternative is Ripley’s K-
function which tests for CSR at different spatial scales. In this section the
background to the method will be given.

Let A be the area or volume of a space in two or three dimensions where
a quantity of interest may be observed. Let n be the number of observed
values within A. Then the expected number of observed values (under the as-
sumption of spatial homogeneity) per unit area/volume (intensity of points)
is given by

λ =
n

A
. (75)

The intuition behind the K-function is to test for each individual observed
value if it has the expected number of neighbours within a particular distance
under the assumption that the points are randomly scattered. To do this,
a circle (two dimensions) or sphere (three dimensions) of radius r, centered
at the observed value is drawn, and neighbours within the circle/sphere are
counted. Let K(r) denote the area of a circle (or volume of a sphere) of
radius r, then given the expected number of points per unit area/volume is
given by (75), the expected number of points, E(r), within the circle/sphere
is then

λK(r) = E(r), (76)

which implies that

K(r) =
E(r)

λ
= πr2 (77)
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in two dimensions, and

K(r) =
E(r)

λ
=

4

3
πr3 (78)

in three dimensions.
To obtain an estimate for K(r) from observed data, E is replaced by

counting the number of points within circles/spheres of radius r for all ob-
servations in A and this is averaged, to give the estimated K-function

K̂(r) =
1

n

1

λ

∑
i 6=j

I(dij < r) (79)

where dij is the distance between observations i and j and I is the indicator
function. This estimate should be approximately equal to πr2 (or 4

3
πr3 in

three dimensions) if the data is randomly scattered. If there is clustering,
more points will be observed than expected and so K̂(r) > πr2, and K̂(r) <
πr2 if the observed points are more regular than random data.

The K-function defined above for random data varies depending on the
dimension of the data being considered. Also, as the distance, r, being
considered increases, it is known [55] that fluctuations in the K-function
increases also. Therefore often the L-function defined by

L(r) =
d

√
K(r)

π
= r (80)

is used. The L-function is approximately r for all dimensions d, and the
transform stabilises the large distance fluctuations in the K-function.

The K-function and L-functions are very similar in the information that
they give about the point pattern process. They are cumulative in the sense
that all points up to and including the desired r are considered. Depending
on application, this may be a disadvantage. For example, suppose we are
interested in the distribution of points at distance r1 > r. If K(r) > πr2,
indicating clustering at the smaller distance, this information will impact
on K(r1) even if the point pattern is random at distance r1. The pairwise
correlation function (PCF) is an alternative to the K-function and L-function,
which looks at the point pattern process in intervals. In two dimensions, let
g(r) be the region between circles of radius r and r+dr. Given point intensity
λ as above, then

λg(r) = E(r) (81)
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where E(r) is now the expected number of points within the region g(r) if
the points follow a Poisson process. Therefore

g(r) =
E(r)

λ
≈ A(g(r)) (82)

where A(g(r)) is area of the region g(r).
To obtain an estimate from observed data, as before the expected value

E(r) is replaced by averaged counts of points

ĝ(r) =
1

n

1

λ

∑
i 6=j

I(r < dij < (r + dr)). (83)

To stabilise the result at large distances the result is usually divided by
A(g(r)) [55], [6] and [10] so that ˆg(r) = 1 for random data, ˆg(r) > 1 for

clustered data and ˆg(r) < 1 for regular data.

8.3.1 Edge Effects

If two-dimensional observed data are randomly scattered within the area
then K̂(r) = πr2 in two dimensions. However this is only true if the circles
about all points lie entirely within A. If this is not the case, then this
is an incorrect theoretical value for K(r), as if all circles do not fully lie
within A then under spatial homogeneity we would expect K(r) < πr2. In
subsequent sections, the impact of such points will be shown to be significant
when making inferences, therefore an adjustment needs to be made to (79)
to account for the edge effect. From Equation (76) we have

λK(r) = E(r)

where K(r) is the area of a circle of radius r. Let αi denote the proportion
of the circle centered on point i, which lies within the area A, then

λαiKi(r) = Ei(r) (84)

is the expected number of points within radius r of point i which are within
the area A, and so

Ki(r) =
Ei(r)

λαi
= πr2. (85)
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As before, to estimate the K-function, the expected number of points Ei(r)
is replaced with the observed count of points within radius r of point i, and
an average over all points i is taken (Equation (86)).

K̂(r) =
1

n

1

λ

∑
i 6=j

wiI(dij < r) (86)

where wi = 1/αi is the inverse of the proportion of the circle about point i
which lies within A.

In order to calculate the weights wi, we need to be able to calculate
the proportion of the circle centered at point i which within the area A.
Fortunately the brain data are observations on a lattice, therefore we can
overcome this problem of edge effects by making some small adjustments to
the theory in this section. See Section 8.3.5 for more details.

8.3.2 Confidence Envelopes

As noted in Section 8.3, if the observed point pattern is homogeneous then
the expected K-function in two dimensions is K(r) = πr2. To assess if
the observed K-function is close to enough to πr2 to conclude that the point
pattern is homogeneous a confidence envelope is used. The idea is to simulate
lots of homogeneous data on the area of interest, and using the minimum
and maximum values of the K-function on the simulations, produce a lower
and upper limit curve for the theoretical value. Then if the observed K-
function lies within this envelope it can be concluded that the point pattern
is consistent with homogeneity. The same idea can also be applied to the
L-function and PCF.

8.3.3 Example: Homogeneous Data On A Square Region

In this section, two-dimensional simulations will be used to highlight how the
K-function is typically implemented and the importance of edge effects.

The first simulation will be of 400 random points on a 65 by 65 square
grid. This was chosen as it has approximately the same number of points
as the largest brain slice, which has approximately 400 components. In this
case A = 652 = 4225 units squared and n = 400, thus the point intensity

λ =
n

A
=

400

4225
= 0.09
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points per unit area.

Figure 114: A random set of 400 points on a 65 by 65 grid (left) and
the K-function under assumption of complete spatial randomness (black),
with the observed K-function with (blue) and without (red) edge correction.
Also included is the confidence envelope obtained from 50 simulations (black
dashed).

From Figure 114 it can be seen that the observed K-function (red) is not
consistent with the random point pattern, especially as r increases. This is
because in this case no edge correction has been made. However, the blue
curve shows that when edge correction is accounted for, the observed K-
function does lie within the confidence interval for a random point pattern.
In subsequent sections, all results given will use edge correction.

8.3.4 Example: Clustered And Regular Data On A Square Region

Figure 115 shows the K-function when applied to clustered and regular data.
In this simulation, two clusters were simulated on the two-dimensional 65 by
65 grid, again using 400 observations, and the regular data were simulated
so that the 400 observations were evenly spaced across the region.
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Figure 115: Sets of 400 clustered (top left) and evenly spaced points (top
right) on a 65 by 65 grid and the K-function under assumption of complete
spatial randomness (black), with confidence envelopes (black-dashed) and
the observed K-function with edge correction for clustered (red) and regular
data (blue).

Figure 115 shows that the observed K-function (red) for the clustered
data is much higher than expected for homogeneous data, thus indicating
clustering. Also observe that if data are evenly spaced (regular), the ob-
served K-function falls only very slightly below the homogeneous confidence
envelope. This suggests that the K-function may not work well when testing
for regularity.

8.3.5 Testing For Homogeneity On A Lattice

In this section, we will make some adjustments to the K-function and PCF
to test for spatial homogeneity on any lattice or set of coordinates, like the
brain data. First, let us redefine

211



λ =
n

A
(87)

where A is the total number of lattice points where an observation may be
made, and n is the number of lattice points where an observation is made.
Then λ is the marginal probability that any one of the A lattice points is an
observed point.

Let PA denote the full set of lattice points where an observation may be
made, On ∈ PA be the n points on the lattice where observations are made
and dij be the distance between point i and point j on the lattice. Then the
expected number of points within radius r (under spatial randomness), from
any point i on the lattice is given by

Ei(r) = λ
∑

j∈PA,j 6=i

I(dij < r). (88)

Summing over all points on the lattice, and averaging over the A total lattice
points gives

E(r) =
λ

A

∑
(i,j)∈PA,j 6=i

I(dij < r). (89)

This can then be compared with the average observed number of points,
Ê(r), within radius r for all points in On, given by

Ê(r) =
1

n

∑
j 6=i,(i,j)∈On

I(dij < r). (90)

This method has an advantage over the K-function when dealing with a lat-
tice, as edge effects are automatically accounted for. Note that E(r) now
depends on PA, in contrast to the Ripley K-function which always has ex-
pected value πr2 in two dimensions. This is not a concern as PA is fixed for
every given application.

Similar adjustments can be made to the PCF. Let Eg(r) denote the ex-
pected number of points that satisfy r < dij < r+ dr under complete spatial
randomness. Then

Eg(r) =
λ

A

∑
(i,j)∈PA,j 6=i

I(r < dij < r + dr). (91)

Given an observed point pattern, this can be estimated as before using
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Êg(r) =
1

n

∑
j 6=i,(i,j)∈On

I(r < dij < r + dr). (92)

Analogous to the PCF (see Section 8.3), we will divide Êg(r) by its expected

value under randomness Eg(r) such that Êg(r) = 1 for homogeneous data,

Êg(r) > 1 for clustered data, and Êg(r) < 1 for regular data.

8.4 Comparing Spatial Point Patterns

So far, this chapter has been concerned with testing if a single point pattern
is completely random, clustered or dispersed. Another question of interest
is the relationship between multiple point patterns. One method would be
to calculate the distance between the two sets of points using a mapping
which minimises the distance. However, if we would like to understand the
relationship between point patterns for various scales, the cross K-function
can be used [65], [3], [39].

8.4.1 Minimum Distance Between Point Patterns

A starting point for measuring the similarity between two point patterns is
to calculate the distance between the two patterns. In this section, some
commonly used distance metrics, as introduced in [17] and discussed in [67]
will be described. Let the position of points in each point pattern X and Y ,
be respectively denoted xi and yj, where i = 1, ..., n1 and j = 1, ..., n2 with
n2 ≥ n1. Define d?0(xi, yj) to be the Euclidean distance between points xi
and yj, and let d0(xi, yj) ≤ 1 to be the min-max normalised distance given
by

d0(xi, yj) =
d?0(xi, yj)−min(d?0(xi, yj))

max(d?0(xi, yj))−min(d?0(xi, yj))
.

Then

d1(X, Y ) = min
π∈Π(n1,n2)

1

n1

n1∑
i=1

d0(xi, yπi) (93)

is the minimum average distance between the two point patterns, considering
all possible mappings of the smaller point pattern X on to the larger point
pattern Y . Here Π(n1,n2) is the set of all possible combinations of n1 elements
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of Y , and yπi is the i-th point of Y for combination π. In the general problem
of comparing pairs of point patterns, it is important that the Euclidean
distance is normalised, so that the results are based on the similarity of the
distribution of points rather than the physical coordinates. For example,
consider three points patterns A, B and C where A and B have very similar
point patterns but have very different coordinates, but A and C are close
in space but have very different point patterns. Without normalising the
distances, we would conclude that A is more similar to C than B.

The distance metric d1(X, Y ) could be extended to allow for a p-th order
average

d2(X, Y ) = min
π∈Π(n1,n2)

1

n1

(
n1∑
i=1

d0(xi, yπi)
p

)1/p

. (94)

A disadvantage of the d1 and d2 metrics are that if n1 6= n2 then d1(X, Y )
will be smaller than a similar point pattern with n1 = n2, as it is more likely
to find a permutation which maps X on to Y with smaller distance if Y has
many more points than X, as not all points in Y are required to map to a
point in X. A common method [17] to overcome differences in number of
points is to use the metric

d3(X, Y ) =

{
d2(X, Y ), if n1 = n2

1, if n1 6= n2.
(95)

This metric has the opposite problem to d2. Instead of giving small distances
when the number of points in the two patterns differ, d3 assigns the max-
imum distance. This is disadvantageous as one could imagine two almost
identical point patterns, differing by a very small number of points, giving a
result which would indicate the maximum possible distance between the two
patterns. In [67], a solution to the problem of different numbers of points in
the patterns is proposed by using the metric

d4(X, Y ) = min
π∈Π(n1,n2)

1

n2

(
n2∑
i=1

d0(xi, yπi)
p + c(n2 − n1)

)1/p

(96)

for some choice of p ≥ 1 and 0 ≤ c ≤ 1. The effect of adding (n2−n1) inside
the sum of Equation (96) is to add the difference in number of points to the
smaller point pattern at the maximum allowed distance of one (for c = 1). In
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Section 8.6.1 we will use simulation studies to show that the metric d4(X, Y )
is a better metric than the first three when the number of points differ in the
point patterns, and the choice for values of p and c will be explored.

Finally, we will consider the well known discrete linear transport problem
[62] which in general aims to minimise the costs associated with transporting
supply between locations. In this context the distances between topological
features of two point patterns (components or holes) are the costs which
we aim to minimise, and we assume that each point pattern has total mass
(supply) n1 to be spread evenly across the points. The spatspat package
in R implements an algorithm to find the weights wij which minimises the
weighted distance, d5(X, Y ), between the two sets of points as described in
(97).

d5(X, Y ) = min
∑
i

∑
j

wijd0(xi, yj) (97)

subject to the constraints

∑
j

wij = 1,∀i∈[1,n1]∑
i

wij =
n1

n2

,∀j∈[1,n2]

wij > 0

In Section 8.6.1 these various distrance metrics will be explored using simu-
lations.

8.4.2 Quadrant Count Analysis

As well as testing if a single pattern is homogeneous (see Section 8.2 ) quad-
rant count analysis can be used to compare two point patterns. Suppose we
observe two point patterns on the same space. As in Section 8.2, suppose
the space is split into a set of n quadrants, not now necessarily equal in size.
To compare the two point patterns, one could count the number of observa-
tions of each pattern in each quadrant, and perform a χ2 association test, to
determine if there is an association between the quadrants and the type of
point.

If there are n quadrants, we can count the number of points of pattern X
and pattern Y in each quadrant to obtain the table
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Quadrant 1 2 3 . . . n Total
Pattern X O1,1 O1,2 O1,3 . . . O1,n r1

Pattern Y O2,1 O2,2 O2,3 . . . O2,n r2

Total c1 c2 c3 . . . cn N

Table 54: The observed number Oi,j of points of pattern i in quadrant j.

Then the χ2 test statistic is given by

χ2 =
2∑
i=1

n∑
j=1

(Oi,j − Ei,j)2

Ei,j

where Oi,j is the number of observed points of pattern i in quadrant j, and
Ei,j is the expected frequency given by

Ei,j =
ricj
N

where ri is the total number of observed points in pattern i and cj is the
total number of observed samples of any point type in quadrant j. The test
statistic can be tested against the χ2 distribution with (n − 1) degrees of
freedom.

8.4.3 Cross K-function

The cross K-function is very similar in definition to the standard K-function
described in Section 8.3. As we are working on lattice data, all definitions
given here will be adjusted to account for the lattice configurations. Given
two spatial point patterns, both observable on the lattice points PA, with
n1 and n2 points observed from point pattern X and Y respectively, we can
define

λ1 =
n1

A
(98)

λ2 =
n2

A
(99)

as the marginal probabilities that any one of the A lattice points are from
point pattern one or two. Let E1(r) denote the expected number of points
of type one within distance r of any given point on the lattice A, then as in
Equation (89) we have

216



E1(r) =
λ1

A

∑
(i,j)∈PAj 6=i

I(dij < r) (100)

with a similar expression for E2(r). As before let PA denote the full set
of lattice points where an observation may be made, On1 ∈ PA be the n1

points on the lattice where observations of point pattern one are made and
On2 ∈ PA be the n2 points on the lattice where observations of point pattern
two are made. Then

Ê12(r) =
1

n1

∑
i∈On1 ,j∈On2

I(dij < r) (101)

is the average observed number of points of type two within distance r of
the type one points on the lattice A. We can then compare Ê12(r) with
E2(r) to determine if more or less points are observed than expected under
randomness.

8.4.4 Confidence Envelopes

When investigating a single point pattern, the goal was to test if the pattern
was random. Now we would like to test for similarity between point patterns.
In particular we would like to know if the point patterns are independent,
or if there is attraction or repulsion between them. One such method is a
random labelling test. Full details can be found in [3] and [47], and here brief
details will be given.

Given observed locations (s1, ..., sn) with labels (m1, ...,mn) with n1 points
from process one, and n2 points from process two, randomly permute the
labels τ = 1...N times. For each permutation compute the observed cross
K-function Êτ

12(r). If the observed point processes are spatially indistinguish-
able, then the observed cross K-function Ê12(r) should be a typical sample
from Êτ

12(r). Using the permuted samples, we can construct p-values to test
this.

Let M+(r) and M−(r) denote the number of permutations where Êτ
12(r) ≥

Ê12(r) and Êτ
12(r) < Ê12(r) respectively. Then define attraction and repul-

sion p-values as

p̂attraction(r) =
M+(r) + 1

N + 1
(102)
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p̂repulsion(r) =
M−(r) + 1

N + 1
. (103)

The attraction p-value is the proportion of permutations where the permuted
K-function is at least as large as the observed. Hence if M+(r) is small, this
means that the observed cross K-function is larger than expected under the
random permutations, implying an attraction between the point processes.
Similarly if M−(r) is small,this implies that the original point patterns have
smaller cross K-function than expected under random permutations, imply-
ing a repulsion between points in the point processes.

Note that the method described here, presented in [3] and other works,
is based on permuting the point labels for the two spatial patterns only, and
it ignores the overall space where observations may be made. The argument
for this is that it is advantageous when the space where observations may
be made is irregular, maybe with gaps or holes. For example, analysing the
relationship between positions of two different species of plants in a park,
where there is a lake in the middle where plants cannot grow. However,
consider the case where there are clustered data, where each cluster is a mix
of the two point patterns. Randomly permuting the labels of the points and
calculating the cross K-function will very likely give a similar result to that
of the observed, ie if we allow only the observed points to be permuted, there
is a high chance that each cluster will contain a mix of the two point types.
Therefore in this case, any confidence interval for spatially indistinguishable
point patterns will very likely include the observed cross K-function for the
clustered data. This may be interpreted as independence between the points,
even if clear attraction can be seen.

To overcome this, note that the theoretical work in [3] does not limit the
labels of points to be restricted to two groups. Therefore, in this work we
will allow a third group which are points where observations are not made
but are in the overall space where points could be made. This overcomes the
problem of the given example. Simulated examples of this will be given in
Section 8.6.4.
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8.5 Simulations I - Complete Spatial Randomness

8.5.1 Quadrant Count Analysis On A Square Lattice

In this section we will use quadrant count analysis on simulated data sets to
determine if departures from randomness can be detected using this method.
For all two dimensional simulations on a lattice, the dimension of the lattice
will be 65 by 65. The number of points inside the lattice where we assume
observations are made will be chosen to be 400. Hence for these simulations

A = 652 = 4225

lattice points, and so the probability that any one of the 4225 points is in
the observed set is

λ =
n

A
=

400

4225
= 0.09

As noted in Section 8.2, there is no general rule for the size of the quad-
rants, the number chosen is usually application-dependent. However it is
asserted in [12] that the expected mean count of points in each quadrant
should exceed one. In this situation, this means that the number of lattice
points per quadrant should exceed 1/0.09 ≈ 12 lattice points.

Figure 116 shows a single simulation of the random points on the lattice,
and the p-value obtained from the χ2 goodness of fit test for a number of
different quadrant sizes. Non-overlapping quadrants were chosen, and in each
case the quadrant sizes were chosen such that all quadrants were of equal size,
and each lattice point was contained in exactly one quadrant. The figure
shows the 0.05 critical value for the test (black dashed). Also included is
the 0.95 critical value that in [12] is used as a threshold to indicate regular
points.
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Figure 116: A random set of 400 points on a 65 by 65 lattice (top left),
the χ2 p-value for a number of different number of quadrants, with critical
values (black dashed) (top right), and the mean and variance of points in the
quadrants (bottom centre).

Figure 116 shows that for a random set of points on the lattice, the χ2

p-value is greater than 0.05 and less than 0.95 for all quadrant sizes which
means there is no evidence in any case for departure from randomness, as
expected. The figure also shows that in all cases, the mean and variance of
points in the quadrants are approximately equal, as expected from a random
Poisson process.
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Figure 117: A clustered set of 400 points on a 65 by 65 lattice (top left),
the χ2 p-value for a number of different number of quadrants, with critical
values (black dashed) (top right), and the mean and variance of points in the
quadrants (bottom centre).

Figure 117 shows results for the case of extreme clustering, and from this
it can be seen that the χ2 p-value is very small in all cases, indicating that the
counts are much higher than expected. Also note that the mean and variance
differ significantly, which shows that the point pattern is not consistent with
the homogeneous Poisson process. Here the variance is higher than the mean
as expected for clustered data.
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Figure 118: A regular set of 400 points on a 65 by 65 lattice (top left),
the χ2 p-value for a number of different number of quadrants, with critical
values (black dashed) (top right), and the mean and variance of points in the
quadrants (bottom centre).

Finally Figure 118 shows the results for regular data. From this it can
be seen that for the lowest number of quadrants, there is no evidence from
departure from randomness. However as the size of the quadrants increase,
the p-value is larger than 0.95. The mean/variance plot shows that the
variance is lower than the mean, which means we can conclude that the
point pattern is regular, as expected.

8.5.2 K-function On A Square Lattice

In this section we will compute the adjusted K-function and pairwise corre-
lation function (PCF) for the random set of points on the 65 by 65 lattice
as seen in Figure 116. Figure 119 shows E(r) and the confidence envelope
obtained from 50 simulations of random data on the lattice.
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Figure 119: A random set of 400 points on a 65 by 65 lattice (top left),
E(r) under assumption of complete spatial randomness (black), with the
confidence envelope obtained from 50 simulations (black dashed) (top right)
and Eg(r) with its associated confidence envelopes (bottom centre).

Figure 120 shows the K-function when applied to clustered and regu-
lar data, as seen in Figures 117 and 118. From this it can be seen that
Ê(r) > E(r) for the clustered data, and Ê(r) < E(r) for the regular data
as expected. The simulation results in this section show that we can as-
sess spatial homogeneity on a lattice, and detect when there is clustering or
regularity in the data.
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Figure 120: A set of 400 clustered points (top left) and regular points (top
right) on a 65 by 65 lattice, E(r) (bottom left) and Eg(r) (bottom right)
under assumption of complete spatial randomness (black), with confidence
envelopes (black-dashed) and estimated functions for the clustered (red) and
dispersed data (blue).

8.5.3 Comparing The K-function Of Different Distributions

In this section we will now return to point patterns generated using topo-
logical data analysis. As in Section 7.2.1, various random fields will be gen-
erated on the lattice such that they all are marginally normalised with the
same correlation structure. In Chapter 7 it was found that under certain cir-
cumstances, differences could be seen in the number of components and holes
between the distributions, when considering the lattice data. The goal in this
section is to investigate if differences can be seen in how these components
and holes are distributed across the lattice, by calculating and comparing
the K-function for the various point patterns.

The method here is to simulate 50 data sets from all distributions, us-
ing the correlation parameters given in Section 7.2.1, then to compute the
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K-function and radial distribution function to determine if there is any dif-
ferences between the distributions.

Figures 121 and 122 show examples of the locations of the components
and holes from two simulations of the various distributions on the lattice
when (ν, η) = (1, 5). These correspond to the heatmaps seen in Section
7.2.2, Figure 80. Appendix 10.5 shows the locations of the components and
holes for the other sets of parameters and distributions.
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Figure 121: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (1, 5).
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Figure 122: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (1, 5).

Figures 123 and 124 shows the mean K-function from all the distributions
and parameters considered in Section 7.2.1 from 50 simulations. The plot
shows (black dashed) the mean plus/minus two standard deviations for the
Gaussian. Figure 125 shows the results for smaller values of r.
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Figure 123: The mean K-functions for each distribution (black dashed is
Gaussian interval) from the point pattern of components (left) and holes
(right) on a 65 by 65 lattice from 50 simulations. All distributions marginally
normal with similar correlation. Top row shows results for Gaussian Matérn
(ν, η) = (0.5, 2) and bottom row (ν, η) = (0.5, 5).
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Figure 124: The mean K-functions for each distribution (black dashed is
Gaussian interval) from the point pattern of components (left) and holes
(right) on a 65 by 65 lattice from 50 simulations. All distributions marginally
normal with similar correlation. Top row shows results for Gaussian Matérn
(ν, η) = (1, 5) and the bottom row (ν, η) = (0.5, 20).
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Figure 125: As in Figures 123 and 124 for small values of r. Top to bottom:
Gaussian Matérn (ν, η) = (0.5, 2), (ν, η) = (0.5, 5), (ν, η) = (1, 5) and (ν, η) =
(0.5, 20)
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From Figures 123 and 125 it can be seen that there is a lot of overlap
between the various random fields. The results from the T distribution lie
outside two standard deviations of the Gaussian in almost all cases. Also,
the asymmetry of the χ2

1 distribution can be seen as before in almost all
cases. Therefore, a distinction can be made between the Gaussian, χ2

1 and
T distributions. However in almost all cases, the χ2

3 and F results for both
components and holes lie inside the Gaussian interval.

Table 55 and 56 shows the numerical results for the case where (ν, η) =
(0.5, 2).

Gauss χ2
1 χ2

3 T3 F3,3

r
1 0 0 0 0 0√
2 0.68(0.04) 0.71 (0.05) 0.72 (0.04) 0.59 (0.05) 0.65 (0.05)

2 2.85(0.08) 2.82 (0.12) 2.97 (0.10) 2.48 (0.09) 2.72 (0.09)√
8 3.40(0.10) 3.34 (0.13) 3.53 (0.11) 2.97 (0.11) 3.24 (0.11)

3 6.05(0.17) 5.89 (0.25) 6.30 (0.17) 5.32 (0.15) 5.80 (0.19)
4 10.22(0.29) 9.80 (0.40) 10.59 (0.29) 9.00 (0.24) 9.76 (0.28)
5 14.29(0.38) 13.70 (0.58) 14.78 (0.39) 12.62 (0.34) 13.68 (0.44)

Table 55: The average observed number of components within distance r on
a 65 by 65 lattice with each given root distribution, all marginally normal
with similar correlation (here Gaussian Matérn (ν, η) = (0.5, 2)). The mean
(standard deviation) from 50 simulations of each distribution is given.
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Gauss χ2
1 χ2

3 T3 F3,3

r
1 0 0 0 0 0√
2 0.68(0.06) 0.55 (0.05) 0.68 (0.04) 0.59 (0.04) 0.65 (0.04)

2 2.85(0.11) 2.28 (0.11) 2.84 (0.11) 2.45 (0.11) 2.72 (0.10)√
8 3.40(0.13) 2.75 (0.13) 3.39 (0.12) 2.93 (0.12) 3.26 (0.11)

3 6.09(0.20) 4.99 (0.22) 6.06 (0.17) 5.27 (0.17) 5.81 (0.19)
4 10.27(0.32) 8.52 (0.37) 10.22 (0.30) 8.94 (0.30) 9.78 (0.27)
5 14.38(0.42) 11.95 (0.52) 14.32 (0.42) 12.52 (0.39) 13.71 (0.38)

Table 56: The average observed number of holes within distance r on a
65 by 65 lattice with each given root distribution, all marginally normal
with similar correlation (here Gaussian Matérn (ν, η) = (0.5, 2)). The mean
(standard deviation) from 50 simulations of each distribution is given.

Table 55 shows that the average number of components within radius r
is very similar for all distributions. In almost all cases, the results lie within
two standard deviations of each other. However note that the results from
the T distribution are all slightly lower than the rest. Table 56 shows similar
results for the holes. Note that also in this case the χ2

1 results are also lower
that the rest, again highlighting the asymmetry in the components and holes
on the χ2

1 field. There are no observed components within distance r = 1 for
any distribution, as it is not possible that two neighbours on a lattice are
both components. Figure 126 shows the corresponding PCF results.
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Figure 126: As in Figure 125 but for the pcf.
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Again, Figure 126 shows that there is little difference between distribu-
tions. There are some exceptions though. For all correlation lengths, in
particular the higher ones, there is evidence again of the asymmetry in the
χ2

1 results. This is most notable in the cases where the Gaussian Matérn cor-
relation parameters are (ν, η) = (1, 5) and (ν, η) = (0.5, 20). In both these
cases, there is high local correlation, and in particular for (ν, η) = (1, 5) there
is a very large difference between the number of components and holes on
the χ2

1 field and the other distributions, in the intervals 1 < r ≤
√

2 and
2 < r ≤

√
8.

8.6 Simulations II - Comparing Point Patterns

8.6.1 Minimum Distance Between Point Patterns - Cumulative
Distribution Functions

In this section we will use simulations to compare two spatial point patterns
using the distance metrics introduced in Section 8.4.1. As in Section 7.2.1
data will be simulated from various random fields, all marginally N(0, 1) and
with the same target correlation structure. From these simulated fields, the
point patterns of the position of components and/or holes will be compared
for the various distributions. The goal is to determine if differences between
the fields can be seen by the distance between the positions of the components
or holes.

Firstly, we will simulate 100 pairs of random realisations of each of the five
different field types described in Section 7.2.1. For each pair we will calculate
the distance between the components on the fields, to obtain five vectors of
length 100, one for each distribution. We will plot the cumulative density
function of each to see if there are any differences in the distance between
components on the various fields. This will be repeated for the holes, and
also for the four sets of parameters. Figures 127 to 130 show the results when
the metric in Equation (97) is used.
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Figure 127: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of each
field on a 65 by 65 lattice and correlation parameters (ν, η) = (0.5, 2).

Figure 128: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of each
field on a 65 by 65 lattice and correlation parameters (ν, η) = (0.5, 5).
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Figure 129: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of each
field on a 65 by 65 lattice and correlation parameters (ν, η) = (1, 5).

Figure 130: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of each
field on a 65 by 65 lattice and correlation parameters (ν, η) = (0.5, 20).

Figures 127 - 130 show that the distance between the components (or
holes) from simulations on pairs of fields from the same distributions vary
depending on what that distribution is, even if they have the same correla-
tion structure. In particular the χ2

1 field has much larger distances between
components and holes than the others, and this difference is more noticeable
as the local correlations on the field increases. This pattern is similar for
all distance metrics described in Section 8.4.1 (results not shown). This is
particularly notable when using the metric in Equation (96), which corrects
for differing numbers of points in each pattern. The similarity between the
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results whilst using the different metrics, and choices for p and c (where ap-
plicable) is due to pairs of the same fields having an approximately equal
number of components or holes in each case.

Next, we will repeat the above but for each simulation look at the distance
between the components of different fields. For example, simulate 100 pairs of
Gaussian and χ2

1 fields, each time computing the minimum distance between
the components. This will allow us again to plot the cdfs and see if there
are any notable difference between the distance between the components of
two Gaussian fields, and a Gaussian and some other distribution. Note that
in this example, the number of components (or holes) will vary between the
point patterns we are comparing, as the two point patterns will come from
different distributions. Therefore we will present results using two of the
distance metrics to highlight the importance of correcting for the different
number of points. Firstly we use the metric (94) which does not correct for
the differering number of points, and then metric (97) which does. Figure
131 shows the results using the distance metric (94).
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Figure 131: The cumulative distribution function of the minimum distances
(metric (94)) between components (left) and holes (right) of 100 simulated
pairs of each field on a 65 by 65 lattice and correlation parameters (top to
bottom) (ν, η) = (0.5, 2), (0.5, 5), (1, 5), (0.5, 20).
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Figure 131 shows that the distance between components on pairs of Gaus-
sian fields and a Gaussian and some other fields is different. This difference
is more notable again as correlation length increases. An interesting thing to
note is that the distance between the components on pairs of Gaussian fields
is typically bigger than the distance between the components of a Gaussian
and some other type of field. This is due to the difference in the number
of components on fields with different underlying distributions. Therefore
when using the metric (94) which does not account for the differences, it
becomes easier to find a mapping between the two sets of points which can
give a smaller distance. Hence we obtain a counter-intuitive result. Figure
132 shows the results obtained by using the distance metric in Equation (97)
which corrects for differing number of points in each pattern.
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Figure 132: As in Figure 131 but using the distance metric (97).
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Figure 132 shows that we now obtain the results we would expect, the
distance between components on pairs of Gaussian fields are smaller than
the distance between components on the Gaussian and components on one
of the other fields. Note that similar results were found using metric (96)
and for various sets of (p, c). All combinations of p = (1, 2, 3) and c =
(0, 0.25, 0.5, 0.75, 1) were investigated, with little difference in conclusions.

Next, we will use the same method to compare the distance between com-
ponents for pairs of Gaussian fields, for the four different sets of parameter
choices.

Figure 133: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of Gaus-
sian fields on a 65 by 65 lattice and with different correlation parameters.

Figure 134: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of Gaus-
sian fields on a 65 by 65 lattice and with different correlation parameters.

Figures 133 and 134 show that as local correlation on the field increases,
then so does the distance between components (or holes) on pairs of simulated
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Gaussian fields. However, the distance between components (or holes) on
pairs of two Gaussian fields with different sets of correlation parameters is
less than if the parameters on both fields were the same (for the reference case
where (ν, η) = (0.5, 2)). Again this can be attributed to the large difference in
number of points between fields with different correlation parameters. Figure
135 shows results when the distance metric is corrected for the differing
number of points.

Figure 135: The cumulative distribution function of the minimum distances
between components (left) and holes (right) of 100 simulated pairs of Gaus-
sian fields on a 65 by 65 lattice and with different correlation parameters.
Here the distance metric is Equation (96) which corrects for different numbers
of points. Results show case with p = 1, c = 1.

Figure 135 again shows that the use of the distance metric in Equation
(96) which corrects for the different numbers of points in the patterns has
given results which are as expected. That is, the distance between compo-
nents (or holes) on two Gaussian fields with parameters (ν, η) = (0.5, 2) are
closer to each other than the distance between components (or holes) where
we have one Gaussian field with parameters (ν, η) = (0.5, 2) and one with
some set of correlation parameters.

Finally, we will look at the difference between the distance between com-
ponents and holes on the five different fields.
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Figure 136: The cumulative distribution function of the minimum distances
between components and holes of 100 simulated pairs of fields on a 65 by 65
lattice and with different correlation parameters.

Figure 136 shows that the difference between components and holes on
pairs of fields is notable, especially when the local correlation increases, where
the Gaussian has the smallest distance between components and holes, and
as before the χ2

1 field has large difference between the components and holes.
In this section we have seen that the distance between components (or

holes) on pairs of different fields, all marginally normalised and with the
same correlation structure, appear to distinguish between the distributions.
Furthermore, the distance between components on pairs of Gaussian fields
is closer than the distance between the components of a Gaussian and some
other field. It has also been demonstrated that the distance metrics given in
Equation (96) and (97) are very important when the number of points in the
two point patterns being investigated are different, so that any differences are
not based different number of points, but genuine differences in the spatial
distribution of the points.

Although the cumulative distribution functions appear to show differ-
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ences, it is difficult to assess the significance of these differences. One method
is to repeat the simulations many times to obtain many cdf’s from which we
could determine the significance of the overlap between the distributions.
However this is very computationally expensive. In the next section we will
use an alternative method to assess the similarity and differences between
the distances of all the comparisons made in this section.

8.6.2 Minimum Distance Between Point Patterns - Probability
Functions

In this section, we will further investigate the similarity between point pat-
terns of different distributions. In contrast to the work in Section 8.6.1, we
will look at the pdfs of the distances between point patterns as opposed to
the cdfs.

The first questions we will consider as before is to investigate if distances
between the point pattern of the positions of the components (or holes) of
two Gaussian fields are similar or different to a pair of χ2

1, χ2
3, T or F fields,

when all the fields are simulated such that the target correlation on each are
approximately equal.

The method will be to simulate j = 1 − 1000 pairs of Gaussian fields,
and for each pair compute a distance, Dj, between the point patterns of
the components (or holes) using the distance metric given in Equation (97).
Then for each of the other distributions, i = 1 − 100 pairs of fields will be
simulated, and 100 distances, di between the point patterns computed. We
then define the p-value, pi, for distance di of the alternative distribution as

pi =

∑1000
j=1 I(Dj > di)

1000
(104)

where I(Dj > di) = 1 if Dj > di and zero otherwise. If the distance di
from the non-Gaussian distribution is typical of a distance between a pair of
Gaussian distributions, then we expect pi to be larger then some critical value
(here 0.05). Alternatively if pi < 0.05 we can conclude that the distance is
significantly different from what is expected from a pair of Gaussian fields.

The p-value pi will be computed for i = 1−100 to obtain a set of p-values.
Then the proportion of the p-values which are less than 0.05 is the estimated
power of the test, ie the probability of detecting a non-Gaussian pair of
distributions when the distance is from a pair of non-Gaussian distributions.
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Power =

∑100
i=1 I(pi < 0.05)

100
. (105)

Parameters χ2
1 χ2

3 T3 F3,3

(0.5, 2) 0.13/0.16 0.05/0.03 0.05/0.05 0.09/0.09
(0.5, 5) 0.29/0.31 0.08/0.06 0.04/0.06 0.13/0.07
(1, 5) 0.48/0.58 0.06/0.11 0.14/0.13 0.07/0.12

(0.5, 20) 0.53/0.39 0.10/0.05 0.08/0.14 0.10/0.09

Table 57: The power obtained from comparing the components/holes of 100
pairs of simulated fields from different distributions on 65 by 65 lattices to
1000 Gaussian distances.

Table 57 shows that as local correlation on the fields increases, the power
also increases. This is in agreement with results found in Section 8.6.1.
However, in all cases the power is low, which suggests that the differences
between the distributions are not consistently detected. To confirm these
figures, Figure 137 shows histograms of the 1000 Gaussian distances, and
100 χ2

1 distances when (ν, η) = (0.5, 2).

Figure 137: Histograms of the distances between components on pairs of
Gaussian fields (left) and χ2

1 fields (right), when (ν, η) = (0.5, 2)

From Figure 137 it can be seen that the two histograms are quite similar.
In fact, 95% of the Gaussian distances are less than 0.08, and from the
histogram on the right it can be seen that very few of the χ2

1 distances are
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larger than 0.08 (13%), and so in most cases we would conclude that the χ2
1

distances are consistent with the Gaussian distribution of distances, thus the
power is small. Histograms for the other distributions were also consistent
with the results in Table 57.

Table 58 shows the power when comparing distances between components
(or holes) from pairs of Gaussian fields, to the distances between a Gaussian
field and another distribution (see Figure 132).

Parameters χ2
1 χ2

3 T3 F3,3

(0.5, 2) 0.34/0.98 0.09/0.04 0.95/0.90 0.20/0.28
(0.5, 5) 0.99/1.00 0.08/0.10 0.05/0.09 0.56/0.57
(1, 5) 1.00/1.00 0.21/0.44 1.00/1.00 0.96/0.93

(0.5, 20) 0.99/1.00 0.18/0.16 0.61/0.63 0.26/0.17

Table 58: The power obtained from comparing the components/holes of 100
pairs of simulated fields, one a Gaussian field, the other a field from a different
distribution, on 65 by 65 lattices to 1000 distances obtained from pairs of
Gaussian fields.

Table 58 shows that in almost all cases the distance between components
or holes on two Gaussian fields can be distinguished from the distance be-
tween components or holes on a Gaussian and a χ2

1 field. It can also be seen
that distinctions can be made for some correlation parameters between the
Gauss-Gauss and Gauss-T or Gauss-F fields.

Table 59 compares the point patterns of the components and holes on
pairs of Gaussian fields with correlation parameters (ν, η) = (0.5, 2) and
pairs of Gaussian fields with the other three sets of correlation parameters.

Parameters Power
(0.5, 5) 0.08/0.05
(1, 5) 0.40/0.33

(0.5, 20) 0.20/0.16

Table 59: The power obtained from comparing the components/holes of 100
pairs of Gaussian simulated fields with different correlation parameters on 65
by 65 lattices to 1000 distances obtained from pairs of Gaussian fields with
parameters (ν, η) = (0.5, 2).
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Table 59 shows that there is little evidence that we can consistently dis-
tinguish between pairs of Gaussian fields based on the locations of the com-
ponents and holes.

8.6.3 Quadrant Count Analysis

In this section we will implement the theory in Section 8.4.2 and use a χ2

association test based on quadrant counts to compare fields.
Table 60 shows the proportion of p-values with value less than or equal

to 0.05 obtained from 100 simulations of pairs of the various fields, where
in all cases the correlation parameters are Matérn (ν, η) = (1, 5). Hence
the table shows the probability of rejecting the null hypothesis that the two
point patterns are from the same distribution. Therefore, we would expect
the numbers on the diagonal to be small, and for a high enough number of
simulations to be approximately 0.05, and the off diagonal elements are the
power of the test.

Gauss χ2
1 χ2

3 T3 F3,3

Gauss 0.00/0.00
χ2

1 0.46/0.01 0.78/0.04
χ2

3 0.02/0.00 0.45/0.02 0.00/0.02
T3 0.02/0.00 0.44/0.02 0.01/0.00 0.01/0.01
F3,3 0.01/0.00 0.40/0.02 0.02/0.00 0.00/0.02 0.02/0.00

Table 60: The proportion of p-values (obtained from an association test using
25 quadrants on a 65 by 65 lattice) less than or equal to 0.05 obtained from
100 simulations of pairs of the various fields. Results obtained using the point
patterns of components/holes of pairs of fields with Matérn (ν, η) = (1, 5)
correlation.

Table 60 shows a lot of very small values. For example, using quadrant
counts to compare the position of components (or holes) of two Gaussian
fields did not give any p-values less than 0.05 from the 100 simulations.
From Figures 121 and 122 it can be seen that the distribution of components
and holes are similar from different random realisations of the Gaussian field,
therefore the quadrant analysis always gives a very high p-value (> 0.9) when
making the comparisons.
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Table 60 also shows interesting results for the cases where one of the dis-
tributions is χ2

1 and the point pattern is that of the components. Here it
can be seen that the probability of detecting that the two distributions are
different is almost 0.5 in all cases. What is more interesting is that the prob-
ability of rejecting that both distributions are χ2

1 is high, here 0.78. These
results are not true when considering the holes. This result suggests that
although the number of components on the χ2

1 field remain fairly constant
across simulations (see results in Section 7.2.3 ), they vary in location and
are not evenly distributed across the quadrants, thus some clustering takes
place. This is not true or noticeable if the local correlations are smaller, as
similar results were not found in these cases. Results were obtained for the
three other sets of correlation parameters, though the results here are the
most extreme, and the other cases had all values of power less that 0.05 for
every comparison.

Figure 138 shows some heatmaps of the χ2
1 fields for different correlation

parameters. From this it is noticeable that as local correlation increases,
patterns emerge on the field which explains the association test results. For
example, for (ν, η) = (0.5, 2), the components are fairly evenly distributed
across the grid, however when (ν, η) = (1, 5), there are definite patterns,
or clustering of components on the grid. Figure 139 shows four examples
of the χ2

1 fields when (ν, η) = (1, 5). From the figure it can be seen that
the components (dark red) are not consistent across different simulations,
which explains the results in Table 60, ie the position of the components
are different across different simulations, but the qualitative patterns are the
same. This is indicative of an inhomogenous process such as the Cox process
[35] [58] where the point intensity is itself a random process which can change
over time, or in this case space.
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Figure 138: Heatmap images of simulated data from the χ2
1 distribution with

correlation parameters (ν, η) = (0.5, 2) (top left), (ν, η) = (0.5, 5) (top right),
(ν, η) = (0.5, 20) (bottom left) and (ν, η) = (1, 5) (bottom right).
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Figure 139: Examples of heatmap images of simulated data from the χ2
1

distribution with correlation parameters (ν, η) = (1, 5).

Comparisons were also made between the point patterns of the compo-
nents or holes of pairs of Gaussian fields with different correlation parame-
ters. For all possible combinations of the four sets of parameters, 100 pairs
of Gaussian fields were simulated and the power calculated. In all cases the
power was less than 0.05 suggesting that no distinction can be made between
Gaussian fields with different correlation parameters.
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(ν, η) = (0.5, 2) (0.5, 5) (1, 5) (0.5, 20)
Gauss 0.00 0.00 0.01 0.00
χ2

1 0.00 0.00 0.26 0.10
χ2

3 0.00 0.00 0.00 0.00
T3 0.00 0.00 0.01 0.00
F3,3 0.00 0.00 0.00 0.01

Table 61: The proportion of p-values (obtained from an association test using
25 quadrants on a 65 by 65 lattice) less than or equal to 0.05 obtained from
100 simulations of pairs of the various fields. Results obtained by comparing
the point patterns of components and holes of pairs of fields.

Table 61 shows a comparison between components and holes on the var-
ious fields, for the various correlation parameters. From the table, it can
be seen that there is very little distinction between the point patterns of
the components and holes on the various fields. Again refer to Figures 121
and 122 to see the similarity between the point patterns of the components
(or holes) from different random realisations of the various fields. Quadrant
count analysis, using 25 quadrants on the field of size 65 by 65 can not detect
differences between the point patterns.

The simulations in this section show that using an association test on
quadrant counts, is not an effective method to detect differences amongst
distributions which have the same correlation structure. However, like the
other methods, it can detect the unusual distribution of components on the
χ2

1 field.

8.6.4 Cross K-function

An alternative method of comparing two point patterns, this time at different
scales, is the cross K-function as described in Section 8.4. Again simulations
will be used on a two dimensional lattice to show how the cross K-function
can detect attraction, repulsion or independence between two point patterns.

Let us consider two spatial point patterns, both on a lattice of size 65
by 65 (4225 points). Let the size of the first point pattern be n1 = 400 and
the second pattern n2 = 400 (similar to the number of components and holes
on the brain slice of similar size). Therefore here λ1 = λ2 = 400/4225 =
0.09. The following examples will show how the estimated cross K-function
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(101) compares with the expected (100), which gives a sense of attraction or
repulsion between the two point patterns. Also shown will be a plot with a
confidence band to assess the significance of any departure from independence
as per the details in Section 8.4.4.

The first example, seen in Figure 140, shows an extreme example of at-
traction between two sets of points.

Figure 140: Two set of attracted points (left), observed cross k-function
(right - red) and expected under randomness (right-black). Also shown is
the confidence envelope under independence (black dashed).

Figure 140 shows two sets of points, red and blue, which are positioned
(attracted) near each other in the space. The cross K-function shows that
there are more red points close to blue points than expected under spatial
randomness, ie if the red points were randomly distributed across the full
lattice. The confidence envelope is the result of N = 99 permutations of both
sets of points across the space, and so as the observed cross K-function falls
outside and above this envelope, this shows that the attraction is significant.
Therefore this example shows that if the two point patterns are positioned
close to each other, the cross K-function can detect the attraction.

Figure 141 shows the results for two sets of points which are simulated
such that they are repulsed, and Figure 142 shows the results for two sets of
independent points.
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Figure 141: Two set of repulsed points (left), observed cross K-function
(right - red) and expected under randomness (right-black). Also shown is
the confidence envelope under independence (black dashed).

Figure 142: Two set of random points (left), observed cross K-function (right
- red) and expected under randomness (right-black). Also shown is the con-
fidence envelope under independence (black dashed).

Figure 141 shows that when the two sets of points are repulsed, the ob-
served cross K-function is well below that which is expected under spatial
randomness, and Figure 142 shows that the observed cross K-function is
within the confidence band for spatial randomness, when the two point pat-
terns are randomly simulated.

Figures 143 and 144 show some comparisons of observed cross K-functions
for the components and holes of pairs of fields from different distributions
as described in Section 7.2.1. In particular an interval obtained from the
minimum and maximum cross K-function of 100 pairs of Gaussian fields is
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shown as well as the cross K-function from the other distributions. From the
plots it can be seen that for some correlation parameters, in particular for
cases where the local correlation increases, differences can be seen between
the distributions.
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Figure 143: The cross K-function from the point pattern of the compo-
nents (left) and holes (right) of pairs of each of the distributions (black
dashed is Gaussian interval from 100 simulations) on a 65 by 65 lattice.
All distributions are marginally normal with similar correlation. Top to bot-
tom: Gaussian Matérn (ν, η) = (0.5, 2), (ν, η) = (0.5, 5), (ν, η) = (1, 5),
(ν, η) = (0.5, 20). 255



Figure 144: The cross K-function from the point pattern of the compo-
nents (left) and holes (right) of pairs of each of the distributions (black
dashed is Gaussian interval from 100 simulations) on a 65 by 65 lattice.
All distributions are marginally normal with similar correlation. Top to bot-
tom: Gaussian Matérn (ν, η) = (0.5, 2), (ν, η) = (0.5, 5), (ν, η) = (1, 5),
(ν, η) = (0.5, 20). 256



8.7 Application I - Complete Spatial Randomness

In this section, the work of the previous sections will be applied to some two
dimensional brain slices. As in previous sections, results for slices z = 42, z =
60 and z = 70 will be shown. For a given brain slice we will initially apply the
quadrant count analysis to test for complete spatial randomness. Then the K-
function and radial distribution function will be calculated, and simulations
of random data on the slice will again be used to obtain a confidence envelope.
The locations of components and then holes on the brain slice will be used
to assess if the components and holes are randomly distributed across the
brain slice.

8.7.1 Quandrant Count Analysis On Brain Slices

Figure 145 shows the position of the components and holes of the model
residual data at t = 1 on brain slice z = 42 (see Figure 101 for image of full
brain slice.)

Figure 145: The position of model residuals components (left) and holes
(right) on brain slice z = 42 at t = 1.

From Figure 145, the components and holes of the model residuals do not
appear to be clustered in any way. There are a total of 3719 lattice points
on slice z = 42, 382 components and 404 holes at t = 1, hence here λ = 0.10
to two decimal places in both cases.
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Figure 146: The χ2 p-values (top row) and mean and variance (bottom row)
for the counts of components (left) and holes (right) of model residuals on
brain slice z = 42 at t = 1.

Figure 146 shows the results of quadrant counts on this slice at the first
time point. Here the association test p-value is shown for several different
numbers of quadrants. It can be seen that the counts are consistent with
random points. The p-values are greater than 0.05 for all quadrant sizes con-
sidered and the mean and variance plots show that the points are consistent
with a homogeneous Poisson point process, in the sense that the mean and
variance of the counts are almost equal.

Following are results from two more brain slices. First let us consider
brain slice z = 60 (see Figure 101) which has 3007 points, with 290 observed
components and 294 holes at t = 1. Hence here λ = 0.10. Figure 147 shows
the position of components and holes on the slice.
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Figure 147: The position of model residuals components (left) and holes
(right) on brain slice z = 60 at t = 1.

Again Figure 147 shows no sign of clustering. Figure 148 shows the
quadrant analysis results.

Figure 148: The χ2 p-values (top row) and mean and variance (bottom row)
for the counts of components (left) and holes (right) of model residuals on
brain slice z = 60 at t = 1.
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Figure 148 shows that there is evidence of regularity in the point patterns
on slice z = 60 at t = 1.

Finally let us consider brain slice z = 70 (see Figure 101) which has 1633
points, with 154 observed components and 142 holes at t = 1. Hence here
λ = 0.09. Figure 149 shows the position of components and holes on the
slice.

Figure 149: The position of model residuals components (left) and holes
(right) on brain slice z = 70 at t = 1.

Figure 150 shows the quadrant analysis, and shows that there is evidence
of regularity in the point patterns on slice z = 70 at t = 1.
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Figure 150: The χ2 p-values (top row) and mean and variance (bottom row)
for the counts of components (left) and holes (right) of model residuals on
brain slice z = 60 at t = 1.

In this section we have tested for homogeneity on three different brain
slices using quadrant count analysis and found that there is no evidence
of clustering of the position of components and holes on these brain slices.
However the quadrant test showed some evidence for regularity of points for
the slices z = 60 and z = 70. Although only t = 1 results are shown, in all
cases similar results were found for other time points.

8.7.2 K-function On Brain Slices

Figure 151 shows K-function results for the slice z = 42 at t = 1.
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Figure 151: E(r) for the brain slice z = 42 (black) with confidence enve-
lope from 50 simulations (dashed), and Ê(r) (red) obtained from the 382
components (left) and 404 holes (right) on the slice at t = 1.

Figure 151 shows the comparison of E(r) and Ê(r). From this it can be
seen that Ê(r), obtained from the position of components and holes on the
slice, is within the confidence envelope of E(r), therefore the components
and holes on slice z = 42 at t = 1 seem to be randomly distributed across
the slice. Although the result at t = 1 is presented here, very similar plots
were found for all time points on the slice. Therefore there is no evidence
of clustering of components or holes on the brain slice z = 42. Figure 152
shows the results of the pairwise correlation function applied to the data.

262



Figure 152: The PCF for the brain slice z = 42 (black) with confidence
envelope from 50 simulations (dashed), and Êg(r) (red) obtained from the
382 components (left) and 404 holes (right) on the slice at t = 1. Bottom
plots show results for smaller distances.

Figure 152 shows that for small distances, there is evidence of regularity
in position of components and holes on the slice, ie fewer points are observed
than expected when considering intervals of width one up to approximately
r = 4, and thereafter the data in the intervals are consistent with a random
point pattern. This is probably due to the lattice structure of the data and
that components (or holes) cannot be adjacent to one another on the lattice.

Figures 153 and 155 shows the corresponding results for slices z = 60 and
z = 70 respectively.
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Figure 153: E(r) for the brain slice z = 60 (black) with confidence envelope
from 50 simulations (dashed), and Ê(r) obtained from the 290 components
(left) and 294 holes (right) on the slice at t = 1.

Figure 154: The PCF for the brain slice z = 60 (black) with confidence
envelope from 50 simulations (dashed), and Êg(r) (red) obtained from the
290 components (left) and 294 holes (right) on the slice at t = 1. Bottom
plots show results for smaller distances.
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Figure 155: E(r) for the brain slice z = 70 (black) with confidence envelope
from 50 simulations (dashed), and Ê(r) obtained from the 154 components
(left) and 142 holes (right) on the slice at t = 1.

Figure 156: The PCF for the brain slice z = 70 (black) with confidence
envelope from 50 simulations (dashed), and Êg(r) (red) obtained from the
154 components (left) and 142 holes (right) on the slice at t = 1. Bottom
plots show results for smaller distances.
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Figures 154 and 156 again show that for small distances, there is evidence
of regularity in position of components and holes on the slice, and as noted
this is due to the lattice nature of the data.

The results in this section have shown that for the three slices considered,
the K-function and radial distribution function show that the distribution
of components and holes on these slices could be random except for small
values of r. In these cases the number of observed points fall below expected
indicating regularity, which agrees with the results of the quadrant count
analysis seen in Section 8.7.1. We note however that this may be due to
the lattice nature of the data and the fact that adjacent points cannot both
be components, hence for small r, we may observe fewer components than
expected.

8.7.3 Testing For Homogeneity On The Full Brain

In this section we will test for spatial randomness on the full brain. Figure
157 shows the results of quadrant counts on the full brain at the first time
point.
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Figure 157: The χ2 p-values (top row) and mean and variance (bottom row)
for the counts of components (left) and holes (right) of model residuals on
the full brain at t = 1.

From Figure 157 it can be seen that there is evidence of clustering of both
the position of components and holes on the full brain. Similar results were
found at other time points.

There are a total of 152195 lattice points on the full brain, 6634 compo-
nents and 6702 holes at t = 1, hence here λ = 0.04 to two decimal places in
both cases. Figure 158 shows the comparison of E(r) and Ê(r) in this case.
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Figure 158: E(r) for the full brain at t = 1 (black) with confidence envelope
from 50 simulations (dashed), and Ê(r) obtained from the 6634 components
(left) and 6702 holes (right) .

Figure 158 shows that Ê(r), obtained from the position of components
and holes on the full brain, is very slightly lower than the confidence enve-
lope of E(r) for all r, therefore there may be some slight evidence that the
components and holes on the full brain at t = 1 are more regular than what
we would see if the data were randomly distributed across the brain.
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Figure 159: The PCF for the full brain at t = 1 (black) with confidence
envelope from 50 simulations (dashed), and Êg(r) (red) obtained from the
6634 components (left) and 6702 holes (right). Bottom plots show results for
smaller distances.

Figure 159 shows that at smaller distances the distribution of points
within intervals are not consistent with a random point pattern. From the
bottom plots it can be seen that for 1 > r > 0 the pairwise correlation func-
tion is zero for both components and holes. As before this is because there
cannot be a component within radius one of another component, due to ob-
servations being made on the lattice. It can also be seen that for

√
2 ≥ r > 1

that there are more observed components/holes than expected under com-
plete randomness. Again, this is due to the lattice structure. To highlight
this consider a simple example. Suppose we have a three by three lattice,
with nine possible locations of a component. Suppose that two components
are observed on the lattice, hence λ = 2/9 = 0.22. That is, the probability
of any one of the nine lattice points being a component under randomness
is 0.22. Now suppose we observe a component on the central point of the
lattice. In this situation, the four immediate neighbours can no longer be
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components. However as there is a second component, this increases the
probability that the remaining four points (satisfying

√
2 ≥ r > 1) are com-

ponents to λ = 1/4 = 0.25.
As we consider intervals at larger distances the point patterns become

more consistent with the random point pattern as can be seen in the top
plots.

In this section we have seen conflicting results between the quadrant
count analysis and the K-function results. The quadrant counts show that
there is clustering present, however the K-function and radial distribution
function show that the points could be randomly distributed except at short
distances as expected for the lattice data. As noted above, the results from
the quadrant analysis could be influenced by the increased probability of
observing a component (or hole) at distance

√
2 ≥ r > 1 from another

component when considering lattice data. Therefore, the K-function and
radial distribution function (pairwise correlation function) are more useful in
this instance as it is clear what is happening at different scales. These results
show that as r increases beyond two, the point patterns become consistent
with a random point pattern.

8.8 Application II - Comparing Point Patterns

8.8.1 Minimum Distance Between Point Patterns

In this section we will compare the spatial point patterns of the components
and holes on brain slices by computing the minimum distance between point
patterns as described in Section 8.4.1. The aim is to compare components
and holes over all time points to investigate if there are any time points where
the point patterns change significantly.

Figures 160, 161 and 162 show examples of a mapping between two sets
of points which minimises the Euclidean distance between points. Here the
mappings are between the components and holes on brain slices z = 42,
z = 60 and z = 70 respectively at t = 1, however any two sets of points
could be used, for example the components on the slice at two different time
points. This was achieved using the R package ’clue’. Note that as the pairs
of point patterns being considered will be of different sizes, the distance
metric (97) given in Section 8.4.1 which adjusts for uneven number of points
will be used in all cases.
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Figure 160: The position of the components and holes (blue and red) on
brain slice z = 42 at t = 1, with the mapping between points with minimal
Euclidean distance.
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Figure 161: The position of the components and holes (blue and red) on
brain slice z = 60 at t = 1, with the mapping between points with minimal
Euclidean distance.
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Figure 162: The position of the minima and maxima (blue and red) on
brain slice z = 70 at t = 1, with the mapping between points with minimal
Euclidean distance.

Figures 163, 164 and 165 show the minimum distance between compo-
nents (and holes) of adjacent time points on the brain slices z = 42, z = 60
and z = 70 respectively.

Figure 163: The distance between the components (left) and holes (right) on
brain slice z = 42 at adjacent time points, using the mapping between points
with minimal Euclidean distance.
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Figure 164: The distance between the components (left) and holes (right) on
brain slice z = 60 at adjacent time points, using the mapping between points
with minimal Euclidean distance.

Figure 165: The distance between the components (left) and holes (right) on
brain slice z = 70 at adjacent time points, using the mapping between points
with minimal Euclidean distance.

Figure 166 shows the corresponding results for the full brain.
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Figure 166: The distance between the components (left) and holes (right)
on the full brain at adjacent time points, using the mapping between points
with minimal Euclidean distance.

Figures 163-166 show that the distance between adjacent time points
for components or holes reveal evidence of an increase at the time of the
onset of activity in the experiment. This was not seen in the analysis of the
standardised model residuals using traditional topological methods such as
persistence diagrams or landscape functions (Section 6.4), nor was this found
by analysing the number of topological features in Chapter 7.

8.8.2 Comparing Gaussian And Brain Slice Point Patterns

In this section, the aim is to determine if the observed position of compo-
nents and holes on brain slices are consistent with that of a Gaussian field.
In Chapter 7 it was found that the number of components and holes on brain
slices is very similar to the number obtained from simulating isotropic Gaus-
sian data on the brain slices. Here we will investigate if the position of the
components and holes on the slices are similar to simulated Gaussian data
on the slices.

The method used is similar to that of Section 8.6.1. First 50 pairs of
Gaussian fields will be simulated on the brain slice, using the estimated cor-
relation on the slice, and for each pair of fields, the distance between the
point patterns of the components will be calculated using Equation 96 which
corrects for difference in number of points. From this set of 50 distances, the
cumulative distribution function will be calculated. This will be repeated
100 times to obtain a mean cdf for pairs of Gaussian fields, as well as an
interval for Gaussian cdfs. These will then be plotted against the cumula-
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tive distribution function obtained from the distances between 50 simulated
Gaussian fields on the slice, and the actual point pattern of the components
on the slice. If the point pattern of components on the brain slice is similar
to that of a Gaussian field, the cumulative distribution functions should be
similar. Figure 167 show two pairs of point patterns on the brain slice with
z = 42. One is the components of two simulated Gaussian fields, and the
other the components of one Gaussian field and the actual components on
the brain slice. From this we can see that the patterns look similar.

Figure 167: The components of two simulated Gaussian fields on slice z = 42
at t = 1 (left), and the components of a Gaussian simulation (blue) and the
components of the brain data (red) (right).

Figures 168, 169 and 170 show results comparing the cumulative distri-
bution functions obtained from pairs of Gaussian fields and pairs of Gaussian
field components and actual components on the slices.
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Figure 168: The mean cumulative distribution function (black) and 95%
interval (black dashed) of the distances between components (left) and holes
(right) of 50 pairs of simulated Gaussian fields on the brain slice z = 42
at t = 1. Also shown is the cdf of 50 simulated Gaussian and actual point
pattern pairs (red).

Figure 169: The mean cumulative distribution function (black) and 95%
interval (black dashed) of the distances between components (left) and holes
(right) of 50 pairs of simulated Gaussian fields on the brain slice z = 60
at t = 1. Also shown is the cdf of 50 simulated Gaussian and actual point
pattern pairs (red).
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Figure 170: The mean cumulative distribution function (black) and 95%
interval (black dashed) of the distances between components (left) and holes
(right) of 50 pairs of simulated Gaussian fields on the brain slice z = 70
at t = 1. Also shown is the cdf of 50 simulated Gaussian and actual point
pattern pairs (red).

Although the plots give a good indication of whether the cumulative
distribution functions are similar or different, we will use the method as
described in Section 8.6.2 to compute the power. As in that section, for the
above cases we can compute 1000 distances based on pairs of Gaussian brain
slices, and investigate where the distances of 100 simulated Gaussian slice
and actual brain slice pairs lie on that distribution. If the power is large,
implying that the distances between the Gaussian-brain slice pairings is large
with respect to the Gauss-Gauss distances, then we can infer that the brain
slice point patterns are non-Gaussian. Table 62 shows the results for the
three slices considered.

Brain Slice Components Power Holes Power
42 0.05 0.00
60 0.02 0.00
70 0.01 0.23

Table 62: The power obtained from comparing the components/holes of 100
pairs of fields, one a simulated Gaussian field, the other the specified brain
slice at t = 1, to 1000 distances obtained from pairs of Gaussian fields on the
brain slice.

Table 62 shows that the power is very small in all cases, hence we cannot
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distinguish between the Gauss-Gauss distances and the Gauss-brain slice
distances, implying that the point pattern on the brain slices are consistent
with a Gaussian point pattern.

8.8.3 Cross K-function

Next, the cross K-function will be used to investigate if there are any attrac-
tion or repulsion between components and holes at different scales.

Figure 171 shows the cross K-function, which is comparing the position
of components and holes on each the brain slices z = 42, z = 60 and z = 70.

Figure 171: The cross K-function between the components and holes at t = 1
on the brain slices z = 42 (top left), z = 60 (top right) and z = 70 (bottom
centre). Red is the observed cross k-function, and black is the expected under
randomness.

Figure 171 shows that the observed cross K-function on the slices is very
close to the expected. That is the number of components within distance r
of the holes are on average similar to what we would get under the assump-
tion that the components were randomly distributed across the slice. The
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figures in Section 8.8.1 which show the position of components and holes on
these slices do not show any sign of clustering of components or holes, or
attraction or repulsion, hence this result is as expected. Figure 171 does
show some difference between the observed and expected cross K-function.
As described in Section 8.4, this difference can be measured for significance
using a permutation test. Figure 172 shows the results. The plots show the
interval obtained by permuting the components and holes on the slice 99
times, recalculating the cross K-function each time, and comparing where
the observed lies in relation to the interval.

Figure 172: The cross K-function between the components and holes on the
brain slices z = 42 (top left), z = 60 (top right) and z = 70 (bottom centre).
Red is the observed cross K-function, and black dashed is the confidence
envelope obtained from 99 permutations.

Figure 172 shows that in all three slices that the observed cross K-function
is consistent with independence.

Similar results were also found when comparing the components and holes
on a single slice over time, ie the cross K-function and associated confidence
envelopes did not change significantly over time.
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Figure 173 shows the cross K-function comparing the position of compo-
nents and holes on the full brain at t = 1, along with the confidence envelope
for independence arising from 99 random permutations of the components
and holes.

Figure 173: The cross K-function between the components and holes on the
full brain at t = 1 (left) and the confidence envelope (right). Red is the
observed cross K-function, and black is the expected under randomness.

Figure 173 shows that the observed cross K-function on the full brain
is very close to the expected. That is the numbers of components within
distance r of the holes are on average similar to what we would get under
the assumption that the components were randomly distributed across the
brain. The figure on the right shows the confidence envelope obtained from
99 random permutations of the components and holes on the full brain. Note
that at all values of r, the observed cross K-function falls below the interval,
which indicates repulsion between the components and holes which may be
statistically significant but small.

Similar results were also found when comparing the components and holes
on the full brain over time, ie the cross K-function and associated confidence
envelopes did not change significantly over time.

8.9 Conclusion

In this chapter we have discussed many methods that can be used to test for
complete spatial randomness of a point pattern or to compare two spatial
point patterns. Simulations were used to demonstrate how these methods
work on lattice data. Quadrant count analysis can be used to obtain a single
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statistic to test for spatial randomness, and can distinguish often between
random, clustered and regular point patterns. However if one is interested
in testing for randomness at different scales, Ripley’s K-function can also be
used. Simulations were also used to determine if the point patterns of the
components and holes of various fields, all marginally normalised and with the
same target correlation, could be used to distinguish between the underlying
distributions. It was found, using the K-function of single point patterns,
that distinctions could be made between the Gaussian and T distribution,
and also the χ2

1 distribution due to its asymmetry in components and holes.
It was found that using the cumulative distribution functions of the dis-

tance between point patterns of either the same or different distributions
produced plots which gave an idea of the similarity or difference between
pairs of such point patterns, however using the probability distribution of
such distances gave a more efficient way of testing for differences amongst
components and holes of various pairs of distributions. It was found that
little distinction could be made between pairs of Gaussian fields and pairs of
the other fields, however it was found that two Gaussian point patterns were
almost always statistically distinct from a Gaussian-other distribution pair.
This is interesting as this provides a test for determining if brain data are
Gaussian using the spatial point patterns of the topological features.

In the application section, quadrant count analysis showed that the point
patterns of components and holes on some slices were random, and some
were regularly distributed across the slice. However the K-function analysis
did not show this except for at small scales, and this may be attributed to
the lattice nature of the data. Also note that when applying these methods
to the full brain, quadrant count analysis revealed clustering. The radial
distribution function showed that this is only true at for 1 < r ≤

√
2, which

is again a consequence of the lattice data as explained previously. Therefore
it is recommended to use the K-function and radial distribution function
(pairwise correlation function) to investigate spatial randomness at different
scales.

Comparing the point patterns of the brain data with Gaussian data
showed that the observed components and holes were consistent with that of
Gaussian data. Finally it was found by comparing the point patterns of the
components or holes on brain slices at adjacent time points that evidence
of a change could be seen at the onset of activity. This was not seen in
the analysis of the standardised model residuals using traditional topological
methods such as persistence diagrams or landscape functions (Section 6.4),
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nor was this found by analysing the number of topological features in Chap-
ter 7. Therefore this method could be used to detect the onset of activity is
noisy fMRI data, where other explored methods fail.
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9 Conclusion

9.1 Summary Of Findings And Contribution

The aim of this thesis was to fit a statistical model to the fMRI data and
develop a method to detect changes in neural activity in response to activity.
As discussed in Section 3.1, previously proposed models had the disadvantage
of being unable to model the spatial dependence between the large number of
voxels due to computational limitations. This often resulted in models which
make simplifying assumptions, such as independence between observations
at different voxels or regions. It has been shown that such assumptions
significantly increase the rate of falsely identifying activity in voxels. In
Chapter 3 we proposed a model which captures the temporal and spatial
dependence between sets of voxels using a sequential approach to parameter
estimation, which significantly reduces computation time. Model checks in
Section 3.9 show that the model residuals were approximately noise indicating
an adequate fit.

Analysis of the model residuals in Chapter 5 revealed interesting findings.
In particular, clustering of the residual regional means into two groups very
closely matched the partitioning of the brain into two groups of two lobes
(one consisting of the frontal or parietal lobes, and the other of the temporal
or occipital lobes) (see Section 5.3). It is well known (2.2) that the frontal and
parietal lobes are associated with movement, and the temporal and occipital
with audio and visual processing. Therefore, the clustering of the model
residuals can distinguish between regions of the brain which are involved
with movement from those which are not.

In Chapter 4, we used the estimated model parameters to test which
regions of the brain were associated with activity. However the main contri-
bution of this work is the new methods developed in Chapter 8 which analyse
the spatial distribution of topological features to detect neural activity. In
Chapter 6 we introduced the main concepts of TDA, and found a promising
result using the changes in persistence homology over time. It appeared that
changes could be seen at points of activity within the experiment. However,
this could also be seen in the variance of the residuals over time. When the
residuals were standardised over time, no changes could be seen in the mean
or variance of the data or in the persistence diagrams.

In Chapter 7 we extended the work of [51] to investigate the number
of topological features on various fields, all normal standardised with the
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same target correlation. The main difference being the extension to three
dimensional, and irregular lattices. It was found through simulations that
distinctions between the fields may not be possible for smaller lattices using
components and holes alone. Also of interest is that the expected number
of components and holes on the Gaussian field is extremely sensitive to local
correlation, with only small changes in correlation causing large differences
in number of components and holes on the field. In addition, through simu-
lations we found that a very popular R package used for simulating random
fields (RandomFields) fails in three dimensions to produce fields with the
theoretical number of topological features. Although the package appears
to produce fields which are Gaussian, the number of components and voids
expected are far from those observed on simulated fields (see Section 7.2.5).
This package has over 400, 000 total downloads, and over 90, 000 within the
last year, as found using the R package cranlogs. Therefore this is an inter-
esting finding, as any analysis of minima or maxima on three dimensional
fields produced in this package may be incorrect.

The main finding is in Chapter 8. We worked with residuals standardised
over time, where as stated no changes could be seen in the mean or variance
of the data, or in the persistence diagrams of the data. However, applying a
new idea of analysis of the spatial distribution of the topological features and
how these change over time, we were able to detect a significant change due
to the onset of activity. This is a new method that could be used in future
work to detect changes in a signal where standard approaches cannot.

9.2 Suggestions For Future Work

In Chapter 3 we proposed a space-time model for the data. One limitation
of our model is the assumption of stationarity. Although checks were made
to ensure that this was a sensible assumption for this data set, a suggestion
for future work could be to incorporate a non-stationary spatial dependence
between observations. The model we proposed also assumed the spatial de-
pendence is constant though time, an assumption we found to be adequate
for this data set. In future work allowing for spatial dependence between time
points could be an interesting addition to the model, however computational
limitations will need to be considered. Finally, although we had access to
only a single data set, incorporating additional data sets from future fMRI
studies into the modelling could strengthen the inference.

The main contribution of this work is the new method of detecting acti-
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vation using the model residuals and spatial topological data analysis. Note
that in the application of the topological methods, the uncertainty in the
model residuals has been ignored. Uncertainty in the model residuals comes
from two sources, the variance of the data, and the uncertainty arising from
the fitting of the model. It is the second source of uncertainty that is ig-
nored in our application. An interesting extension to this work would be to
measure this uncertainty. Figures 174 and 175 show examples of a starting
point of this. Here data is simulated from the spatial model in Section 3.7,
with mean and autoregressive parameters used in Table 10 such that the
voxels are active, and the Matérn spatial covariance function with param-
eters (ν, η) = (0.5, 2). Here data is simulated on a 65 by 65 lattice where
each time series is of length 48. Figure 174 shows the number of components
found using the residuals used to simulate the data, and the number found
when using the estimated residuals after the model is fit, thus showing the
impact of the uncertainty arising from the model fitting. Similarly Figure
175 shows the distance (using metric (97)) between the point patterns of the
components at adjacent time points using the two sets of residuals.
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Figure 174: The number of components at each time point on a 65 by 65
lattice using simulated residuals (blue) and estimated residuals (red) after
model fitting. Black solid horizontal line shows the expected number for the
Gaussian field, with the mean plus/minus two standard deviations (black
dashed).

Figure 175: The distance between the components of adjacent time points
on a 65 by 65 lattice using simulated residuals (left) and estimated residuals
after model fitting (right).

Figure 174 shows that there are some differences in the number of com-
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ponents of the two sets of residuals, however the difference is not substantial,
as the estimated residuals still give results which lie within two standard
deviations of the expected as calculated in Table 38. However Figure 175
shows differences between the two sets of results. In particular, using the
simulated residuals we can see the two peaks of activation at t = 12 and
t = 36, however after the model fitting, the results are much more noisy,
with much less evidence of activation. An option for future work would be
a more in depth analysis of how the uncertainty from the model affects this
and other topological methods discussed in the thesis.

Finally, an interesting possibility of extension to this work could be to
investigate how the topological features evolve on a field as the level set
changes. This could reveal further differences between different fields, even
when they are normalised and with the same target correlation, or if used
in combination with the temporal evolution of the field, could reveal more
information regarding neural activation.
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10 Appendix

10.1 The Regions Of Interest

Region Number Region Name
1,2 Precentral Gyrus (Left,Right)
3,4 Superior Frontal Gyrus, Dorsolateral (Left,Right)
5,6 Superior Frontal Gyrus, Orbital Part (Left,Right)
7,8 Middle Frontal Gyrus (Left,Right)
9,10 Middle Frontal Gyrus, Orbital Part (Left,Right)
11,12 Inferior Frontal Gyrus, Opercular Part (Left,Right)
13,14 Inferior Frontal Gyrus, Triangular Part (Left,Right)
15,16 Inferior Frontal Gyrus, Orbital Part (Left,Right)
17,18 Rolandic Operculum (Left,Right)
19,20 Supplementary Motor Area (Left,Right)
21,22 Olfactory Cortex (Left,Right)
23,24 Superior Frontal Gyrus, Medial (Left,Right)
25,26 Superior Frontal Gyrus, Medial Orbital (Left,Right)
27,28 Gyrus Rectus (Left,Right)
29,30 Insula (Left,Right)
31,32 Anterior Cingulate and Paracingulate Gyri (Left,Right)
33,34 Median Cingulate and Paracingulate Gyri (Left,Right)
35,36 Posterior Cingulate Gyrusi (Left,Right)
37,38 Hippocampus (Left,Right)
39,40 Parahippocampal Gyrus (Left,Right)
41,42 Amygdala (Left,Right)
43,44 Calcarine Fissure and Surrounding Cortex (Left,Right)
45,46 Cuneus (Left,Right)
47,48 Lingual Gyrus (Left,Right)
49,50 Superior Occipital Gryus (Left,Right)
51,52 Middle Occipital Gryus (Left,Right)
53,54 Inferior Occipital Gryus (Left,Right)
55,56 Fusiform Gryus (Left,Right)
57,58 Postcentral Gryus (Left,Right)
59,60 Superior Parietal Gryus (Left,Right)
61,62 Inferior Parietal Gryus (Left,Right)
63,64 Supramarginal Gryus (Left,Right)
65,66 Angular Gryus (Left,Right)
67,68 Precuneus (Left,Right)
69,70 Paracentral Lobule (Left,Right)
71,72 Caudate Nucleus (Left,Right)
73,74 Lenticular Nucleus, Putamen (Left,Right)
75,76 Lenticular Nucleus, Pallidum (Left,Right)
77,78 Thalamus (Left,Right)
79,80 Heschl’s Gyrus (Left,Right)
81,82 Superior Temporal Gyrus (Left,Right)
83,84 Temporal Pole: Superior Temporal Gyrus (Left,Right)
85,86 Middle Temporal Gyrus (Left,Right)
87,88 Temporal Pole: Middle Temporal Gyrus (Left,Right)
89,90 Inferior Temporal Gyrus (Left,Right)

Table 63: The 90 Regions of Interest
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10.2 Model Residual Topology Summary Statistics

Figure 176: Summary statistics derived using 95% convex peels of persistence
diagrams of the holes of the full brain model residuals. Top left shows the
birth (black) and death (red) centroid levels over time, and the remaining
plots the other summary statistics.
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Figure 177: Summary statistics derived using 95% convex peels of persistence
diagrams of the voids of the full brain model residuals. Top left shows the
birth (black) and death (red) centroid levels over time, and the remaining
plots the other summary statistics.
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Figure 178: Summary statistics derived using first three landscape functions
(black, blue, red) of persistence diagrams of the holes of the full brain model
residuals.
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Figure 179: Summary statistics derived using first three landscape functions
(black, blue, red) of persistence diagrams of the voids of the full brain model
residuals.
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10.3 Standardised Model Residual Topology Summary
Statistics

Figure 180: Summary statistics derived using 95% convex peels of persistence
diagrams of the holes of the full brain model residuals (standardised). Top
left shows the birth (black) and death (red) centroid levels over time, and
the remaining plots the other summary statistics.
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Figure 181: Summary statistics derived using 95% convex peels of persistence
diagrams of the voids of the full brain model residuals (standardised). Top
left shows the birth (black) and death (red) centroid levels over time, and
the remaining plots the other summary statistics.
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Figure 182: Summary statistics derived using first three landscape functions
(black, blue, red) of persistence diagrams of the holes of the full brain model
residuals (standardised).
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Figure 183: Summary statistics derived using first three landscape functions
(black, blue, red) of persistence diagrams of the voids of the full brain model
residuals (standardised).
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10.4 Images Of The Fields On Two Dimensional Lat-
tices

Figure 184: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 2).
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Figure 185: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 5).
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Figure 186: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (1, 5).
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Figure 187: Heatmap images of simulated data from the various distributions
with target correlation parameters (ν, η) = (0.5, 20).

10.5 Locations Of Components And Holes Of The Fields
On Two Dimensional Lattices

10.5.1 (ν, η)=(0.5, 2)

Figures 188 and 190 show the position of the components and holes of the
random realisations seen in Figure 78. Figures 189 and 191 correspond to
the heatmaps in Figure 184 .
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Figure 188: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 2).
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Figure 189: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 2).
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Figure 190: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 2).
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Figure 191: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 2).

10.5.2 (ν, η)=(0.5, 5)

Figures 192 and 194 show the position of the components and holes of the
random realisations seen in Figure 79. Figures 193 and 195 correspond to
the heatmaps in Figure 185 .
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Figure 192: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 5).
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Figure 193: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 5).
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Figure 194: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 5).
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Figure 195: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 5).

10.5.3 (ν, η)=(1, 5)

Figures 196 and 197 show the position of the components and holes of the
random realisations seen in Figure 186.
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Figure 196: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (1, 5).
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Figure 197: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (1, 5).

10.5.4 (ν, η)=(0.5, 20)

Figures 198 and 200 show the position of the components and holes of the
random realisations seen in Figure 81. Figures 199 and 201 correspond to
the heatmaps in Figure 187 .
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Figure 198: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 20).
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Figure 199: The position of the components from two realisations from the
various distributions with target correlation parameters (ν, η) = (0.5, 20).
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Figure 200: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 20).
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Figure 201: The position of the holes from two realisations from the various
distributions with target correlation parameters (ν, η) = (0.5, 20).
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