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Abstract 

The configuration of urban areas, and of infrastructures which serve them is central to 

managing the urbanisation process. Integrated assessment frameworks aim to inform 

decisions regarding planning, policy, and design to coordinate projects across sectors. 

Development of such models poses a number of challenges; (i) scenario generation, (ii) 

intelligibility to stakeholders, (iii) validity, (iv) control and feedback, (v) execution time, (vi) 

data requirements, (vii) uncertainties and, (viii) flexibility/reusability.  

This research has developed a multi-scale flexible framework which disaggregates projected 

regional employment to ward-level population, and further to rasterised development. This 

comprises; (i) transport network generalised cost, (ii) cost composition, (iii) spatial interaction 

incorporating transport accessibility, (iv) development zoning, (v) multi-criteria evaluation of 

development suitability, and (vi) cellular development. The framework is generically 

implemented, each model being specified in terms of inputs, outputs, and parameters. Model-

linkage is via input/output chaining, providing the opportunity to experiment with alternative 

solutions. Execution is flexible/configurable to perform multiple model runs whilst varying 

parameters and propagating metadata through stages. Python controls execution flow, C++ 

provides performance, PostgreSQL manages data, and QGIS assists input/output.   

The framework is deployed in baseline scenarios for London and Innsbruck, and in more 

detailed scenario/uncertainty exploration for London. The framework’s utility is judged by 

criteria corresponding to the above challenges and is found to be favourable, with 

performance, flexibility and uncertainty support as key attributes. The framework executes 

models for London in ~52 seconds on modest hardware (1.6GHz, 8GB). This involves cost-

weighted Dijkstra - 4 transport networks (~42s), cost composition and accessibility 

conversion (~4s), spatial interaction - 633 wards (~2s), rasterised 4-hectare development 

zones (~1s), 7 criteria development suitability evaluation (~1s), and cellular development - 

100m scale (~2s). Combinatorial uncertainties are accommodated by a flexible, modular 

structure which promotes reuse, and records run configuration as well as model parameters in 

chained metadata.  
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Chapter 1. Introduction 

1.1 Urbanisation and Climate Change 

The majority of the world’s population now live in urban areas and the trend towards 

urbanisation is set to continue; global population growth projections indicate that between 

2000 and 2050 the capacity of urban areas will need to be doubled in the case of developed 

countries and increased by over 300% in developing nations (UN, 2012).  

This global urbanisation drives the expansion of existing urban areas, increasing the demands 

on land use, resources and infrastructure. Cities account for around 80% of global economic 

function and roughly 75% of global resource consumption, comprising energy and material 

flows. The current reliance on mostly finite resources to fuel economic growth places the 

process of urbanisation at the forefront of sustainability research. This focusses on decoupling 

economic growth from the increased use of resources, and reconfiguring urban infrastructure 

to provide more efficient intra-urban resource flows (Hodson et al., 2012). 

Critical infrastructures underpin the economic and social function of modern society and rapid 

urbanisation in developing countries requires the construction of infrastructure at an 

unprecedented rate to meet the basic living demands of the increasing urban population 

(McKinsey, 2011). Inadequate infrastructure provision in these scenarios leads to the 

degradation of living and sanitation conditions, and the impedance of economic and social 

function (McKinsey, 2010).  

Most of the world’s urban areas with population greater than 5M inhabitants are situated 

within 100 km of the coast (Nicholls et al., 2007); this near-coastal region is estimated to 

house around a quarter of the world’s population at a density nearly three times the global 

average (Small and Nicholls, 2003). The spatial expansion and densification of these areas 

increases exposure to the impacts of climate change; projected rises in sea level will lead to 

increased flooding and submergence in coastal zones. Poverty increases vulnerability to 

climate-related hazards which exacerbates other problems resulting from uneven development 

processes. By limiting the magnitude of climate change the overall risks of severe and 

irreversible impacts can be reduced (IPCC, 2014). 

The Paris Agreement (UNFCC, 2015), commits signatories to limit anthropogenic climate 

change requiring a rapid reduction in greenhouse gas (GHG) emissions to slow the global rate 

of temperature increase. This mitigation effort must be coordinated with adaptation challenges 

posed by increasingly frequent and severe weather events accompanying existing climate 
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change. Further to the Paris Agreement signed by national governments, city-level measures 

to reduce GHG emissions and adapt to climate change have been agreed by many of the 

world’s city leaders (UCLG, 2015). 

Cities consume resources and generate greenhouse gas emissions disproportionately to their 

spatial extent, they are also especially vulnerable to disrupted resource supplies and the 

effects of climate change (McEvoy et al., 2012).  

The most likely critical effects of climate change on cities include: 

• Impacts on energy consumption for heating and cooling. 

• Impacts on water availability. 

• Impacts of rising sea levels and storm surges on coastal areas. 

• Impacts on built infrastructure of extreme events such as storms, flooding, heat 

extremes and droughts. 

• Impacts on health including mortality and disease due to higher average temperatures 

and extreme events (Hunt and Watkiss, 2011). 

Excessive heat exposure poses a threat to life, particularly for the most vulnerable in society. 

Projected increases in the frequency and duration of heatwaves have heightened potential to 

impact cities due to population density and the Urban Heat Island Effect (UHI) in which 

waste heat from industry and transport is stored in the materials of the built environment 

causing urban temperatures to be higher than surrounding rural areas (Jenkins et al., 2014).  

A key measure of spatial form in cities is the density of development and associated degree of 

urban sprawl resulting from land use policy. The inverse relationship between residential 

density and energy consumption from transport suggests that policies which minimise urban 

sprawl can be used to mitigate against climate change (Larson et al., 2012); however, cities 

with higher densities are faced with more acute adaptation issues such as flooding and urban 

heat islands with greater intensity (Dawson, 2007).  

The demands of climate change mitigation require the transition away from fossil fuels as the 

primary source of energy; emissions targets will determine government policy leading to a 

change in urban mobility which is also subject to the impact of escalating fuel prices. Systems 

are required which can model this transition, combining mitigation policies on transport such 

as redirected infrastructure investment and incentives to switch fuel types, with carbon 

taxation and land use. There is a need to incorporate environmental considerations into urban 

planning to assess potential policy impacts on climate change mitigation and adaptation; the 
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ability to refine policies to address environmental concerns and model the resulting urban 

system would provide valuable insight (Wegener, 2014).    

Urban policies required by goals set out in the Paris Agreement could be explored by linking 

models of land use and transportation with models of GHG emissions and extreme weather 

events allowing alternative land use and transport policies to be assessed in terms of both 

mitigation and adaptation using models of rapid change. By integrating climate hazard models 

with urban configuration and associated exposure, the areas which are most at risk for a given 

scenario can be identified, thus the trade-offs between mitigation and adaptation can be 

explored by policy makers (Ford et al., 2018). 

1.2 Decision Support 

The interaction between policies aimed at mitigation and those aimed at adaptation requires 

detailed planning to avoid positive interventions aimed at one strategy leading to negative 

consequences in another (Dawson, 2011). To support decision-making in this domain 

characterised by conflicting agendas it is necessary to model multiple possible scenarios of 

future land use and transport corresponding to a suite of planning interventions to evaluate 

policy implications including environmental impacts; this process should involve multiple 

stakeholders to inform discussion, seeking compromise to formulate transition plans which 

are in sympathy with strategies for both mitigation and adaptation.  

Improvements to the conceptual design and deployment of models is needed to engage 

community with the requirements of mitigation and adaptation. Participatory approaches 

based on integrated modelling have great potential to explore solutions and understand the 

consequences of policy change. In the context of urban mitigation and adaptation policies, 

there is a need to convey the benefits and side-effects of proposals to the public. Long-term 

projections of socio-economic, land use and climate changes are subject to great uncertainty. 

A range of plausible future scenarios can be used to address this uncertainty to an extent; 

however, formal analysis of uncertainties and sensitivities is required to handle uncertainties 

in model inputs, tracking their effects to model outputs (Ford et al., 2018).   

Systems are required which consider planning options at a range of spatial and temporal 

scales, which take climate hazards into account as policy constraints or impact assessments 

for different planning options, and which allow the robust exploration of model uncertainties 

and sensitivities. 
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Integrated models of land use and transport generally combine land use, socio-demographic 

and transport components into model execution, adopting a range of techniques for the 

computation of each stage which vary in complexity. The current trend is towards models 

with greater complexity which increases model execution time and adds significant data 

requirements resulting in difficult model calibration. The need to integrate environmental 

factors to investigate future policies regarding energy and climate change is an area requiring 

further research (Acheampong and Silva, 2015).  

The dominant approach to urban modelling aims to predict the future state of the urban 

system with some degree of accuracy using complex models; contrasting this is the use of 

simpler models whose objective is not to predict, but to explore the parameters and scenario 

space across multiple model iterations to inform discussion (Batty, 2013).  

There is a scarcity of simple urban models which are suited to the task of integrating land use 

and transportation with the environment; in many cases the data requirements, difficulty of 

calibration and slow execution times prevent the adoption of existing models for this purpose 

(Mikovits et al., 2014).  

SIMULACRA is a framework to vary and rapidly generate multiple instances of a generic 

spatial interaction model to generate zonally disaggregate values. The model incorporates 

transport accessibility and handles four sectors; employment, population, retail and industry 

which can be combined in any order allowing constraints to be resolved flexibly across zones 

and sectors to balance the system using iteration (Batty et al., 2013).  

In (Mikovits et al., 2017) the authors describe the development of a simple urban model based 

on random utility which uses limited input data to generate land use scenarios at the level of 

vector-parcels representing development blocks suitable for the investigation of urban 

drainage and flooding. The emphasis is on performance, ease of use and integration with 

models of urban water systems such as a hydrodynamic sewer model; the application of the 

model generates a range of stochastic development patterns linked to urban drainage and 

flooding which reduces the required detail and accuracy of the land use model.  

SLEUTH is a simple and extensively used cellular automata model which uses transition rules 

to simulate urban growth and land use change at the level of raster cells. It makes use of six 

raster inputs; Slope, Land cover, Excluded, Urban, Transportation, Hill-shade from which its 

name is derived. Five input coefficients control growth rate in terms of; dispersion, breed, 

spread, slope resistance and road gravity. These coefficients are used to adjust the influence of 

four cellular growth factors; diffusive, organic, new spreading centre and road influenced. 
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SLEUTH can be used in scenario modelling for policy testing by making use of the exclusion 

layer and has been coupled with other models to explore environmental issues such as 

hydrology (Chaudhuri and Clarke, 2013). 

The three simple models described above each have desirable properties in terms of exploring 

scenarios of land use alongside climate change mitigation and adaptation, however, none of 

them possess the complete set of model requirements; SIMULACRA cannot produce outputs 

at the fine-scale required for interaction with most sources of environmental data; the model 

described in Mikovits et al (2014) does not account for transport or planning policy; finally, 

SLEUTH is perhaps too simple to capture detailed land use and transport policies and model 

calibration is computationally expensive.      

In terms of the complexity of urban land use and transport models, each planning problem has 

bespoke model requirements regarding scale and complexity when the practical tasks of data 

gathering, calibration and model execution time are considered; the optimum model is one 

which outputs just enough detail to address the problem whilst minimising these practical 

costs. “Future urban models will be modular and multi-level in scope, space and time.” 

(Wegener, 2011, pp 171) 

Integrated land use, transport and environment models are rare; one example is the Urban 

Integrated Assessment Framework (UIAF) developed by the Tyndall Centre for Climate 

Change Research (Hall et al., 2009) which models urban processes at multiple scales to assess 

the interaction between policies, climate impacts and emissions; the framework has been 

successfully applied to the Greater London Authority area in a stakeholder dialogue setting. 

Further research is needed to develop an operational generic decision support tool capable of 

model exploration for a range of planning problems in multiple settings.   

1.3 Aims and Objectives 

The aim of this research is to develop a flexible modelling framework to provide decision 

support to urban planners and stakeholders engaged in participatory modelling; by exploring 

the tensions and trade-offs of alternative spatial planning policy in scenarios of future land use 

and transportation, urban transitions can be made which account for climate change mitigation 

and adaptation measures. 

The thesis has 5 distinct objectives to meet this aim: 

Objective 1: Explore the link between spatial planning and urban form in the context of 

climate change and sustainability to identify key drivers of spatial planning policy 
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Objective 2: Specify the modelling requirements to best support the decision-making 

processes identified in objective 1.  

Objective 3: Review the field of urban modelling to identify and assess candidate modelling 

approaches. 

Objective 4: Develop a modelling framework using techniques identified by objective 3, to 

provide decision support for planners and meet the requirements specified in objective 2. 

Objective 5: Apply the modelling framework to study regions and modelling scenarios to 

demonstrate the utility of the approach. 

1.4 Thesis Structure 

The remainder of this thesis responds to the aims and objectives presented in Section 1.3 and 

is composed of six chapters. In chapter 2 the field of urban planning is reviewed to identify 

challenges faced by policy makers and decision support requirements in the context of climate 

change and sustainability. Following this, the theoretical background of key urban modelling 

trends is provided along with a critical analysis of their approach. This analysis is then used in 

conjunction with the decision support requirements to formulate an appropriate modelling 

approach. Chapter 3 outlines the methodology of a multi-scale flexible framework for urban 

modelling while chapters 4-6 describe its software implementation in detail. In Chapter 7 the 

framework is applied to a case study for London, a large urban area, using multiple modes of 

transportation and detailed spatial planning policy for model calibration. Chapter 8 outlines a 

case study for the Alpine city of Innsbruck and the state of Tyrol in western Austria in which 

focus is placed upon model calibration using a minimum set of input data. Chapter 9 critically 

assesses the utility of the developed framework, discussing the London and Innsbruck case 

studies and a range of further model applications. The final chapter concludes the thesis by 

summarising the research findings with respect to the aims and objectives set out in Section 

1.3 and identifies several avenues of future research.        
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter establishes the research gap to be addressed by this thesis; section 2.2 examines 

policy and spatial planning in the context of sustainable development including environmental 

considerations and establishes the need for advanced decision support tools to better assess 

the sustainability impacts of development; section 2.3 reviews urban modelling theory and 

identifies techniques to develop an appropriate modelling and assessment system. 

2.2 Sustainable Urban Development 

The concept of sustainable development came to prominence after the publication of the 

United Nation’s World Commission on Environment and Development (Brundtland, 1987) 

which detailed future challenges faced by urban areas; in response, governments have adopted 

the concept and dedicated independent institutions have been formed. The Brundtland Report 

gives a somewhat vague definition of sustainable development as follows: “…meeting the 

needs of the present without compromising the ability of future generations to meet their own 

needs.” (UN, 1987) 

A more specific definition is based on the work of Pearce et al. (1989) which defines a 

sustainable development framework as comprising economic growth, social justice and 

environmental protection; often referred to as the ‘three pillars of sustainability’ (Gibson, 

2006). The economic role is focussed on supporting economic growth through the provision 

of land and infrastructure; the social role is focussed on the provision of housing and services 

in support of health, social and cultural wellbeing; while, the environmental role is focussed 

on the protection and enhancement of the environment, including biodiversity and natural 

resource management. The definition is typically interpreted as a Venn diagram where 

sustainable development is defined by the intersection of three rings representing the 

environment, the economy and society. The UK government adopts this ‘three-pillar’ 

definition in the ‘Sustainable Development Strategy’ (Defra, 2005) and the ‘National 

Planning Policy Framework’ (DCLG, 2011). 

Sustainability efforts are concentrated on high density populations in urban areas and the 

continuing process of urbanisation. In turn, urban sustainability is increasingly considered in 

the context of climate change (Carter, 2011). The majority of the world’s population now live 

in urban areas and the trend towards urbanisation is set to continue; global population growth 

projections indicate that between 2000 and 2050 the capacity of urban areas will need to be 
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doubled in the case of developed countries and increased by over 300% in developing nations 

(UN, 2012).  

This global urbanisation drives the expansion of existing urban areas, increasing the demands 

on land use, resources and infrastructure. Cities account for around 80% of global economic 

function and roughly 75% of global resource consumption, comprising energy and material 

flows. The current reliance on mostly finite resources to fuel economic growth places the 

process of urbanisation at the forefront of sustainability research. This focusses on decoupling 

economic growth from the increased use of resources, and reconfiguring urban infrastructure 

to provide more efficient intra-urban resource flows (Hodson et al., 2012). 

The Paris Agreement (UNFCC, 2015), commits signatories to limit anthropogenic climate 

change requiring a rapid reduction in GHG emissions to slow the global rate of temperature 

increase. This mitigation effort must be coordinated with adaptation challenges posed by 

increasingly frequent and severe weather events accompanying existing climate change. 

Further to the Paris Agreement signed by national governments, city-level measures to reduce 

GHG emissions and adapt to climate change have been agreed by many of the world’s city 

leaders (UCLG, 2015). Most of the world’s urban areas with population greater than 5M 

inhabitants are situated within 100 km of the coast (Nicholls et al., 2007); this near-coastal 

region is estimated to house around a quarter of the world’s population at a density nearly 

three times the global average (Small and Nicholls, 2003). The spatial expansion and 

densification of these areas increases exposure to the impacts of climate change; projected 

rises in sea level will lead to increased flooding and submergence in coastal zones. Poverty 

increases vulnerability to climate-related hazards which exacerbates other problems resulting 

from uneven development processes. By limiting the magnitude of climate change the overall 

risks of severe and irreversible impacts can be reduced (IPCC, 2014). 

Cities consume resources and generate greenhouse gas emissions disproportionately to their 

spatial extent, they are also especially vulnerable to disrupted resource supplies and the 

effects of climate change (McEvoy et al., 2012).  

The most likely critical effects of climate change on cities include: 

• Impacts on energy consumption for heating and cooling. 

• Impacts on water availability. 

• Impacts of rising sea levels and storm surges on coastal areas. 

• Impacts on built infrastructure of extreme events such as storms, flooding, heat 

extremes and droughts. 
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• Impacts on health including mortality and disease due to higher average temperatures 

and extreme events (Hunt and Watkiss, 2011). 

The interaction between policies aimed at mitigation and those aimed at adaptation requires 

detailed planning to avoid positive interventions aimed at one strategy leading to negative 

consequences in another (Dawson, 2011); table 2.1 gives examples of some of these policy 

trade-offs. 

Response Potential benefit Potential negative impact 

Air conditioning Reduce heat stress Increase energy needs and 

GHG emissions 

Densification of cities Reduce GHG emissions Increase urban heat island 

intensity and noise pollution 

Desalination plants Secure water supply Increase GHG emissions 

Irrigation Supplying water for food Salinization of soil and 

degradation of wetlands 

Biofuels for transport and 

energy 

Reduce GHG emissions Deforestation, replacement 

of food crops, raised food 

prices, air quality pollutants 

Catalytic convertors Improve air quality Large scale mining and 

resource movements 

Cavity wall insulation Reduce GHG emissions Increased flood damage 

Raise flood defences Reduce flood frequency Encourage more 

development 

Pesticides Control vector borne disease Impact on human health, 

increased insect resistance 

Conservation areas Preserve biodiversity and 

ecosystems 

Loss of community 

livelihoods 

Insurance or disaster relief 

schemes 

Spread the risk form high-

impact events 

Reduce longer-term 

incentive to adapt 

Traffic bypasses or radial 

routes 

Displaces traffic emissions 

from city centre, improving 

air quality and reducing 

noise 

Can increase congestion and 

journey times (and 

consequently GHG 

emissions) 
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Vehicle user charging Discourage vehicle use to 

reduce GHG emissions 

Lead to greater social 

inequality 

 

Table 2.1: Example trade-offs between mitigation, adaptation and sustainability policies 

(Dawson, 2011) 

 

There is considerable debate as to what constitutes sustainable urban form with conflicting 

ideas about which sustainability measures are most important and how they should be 

addressed. 

The Compact City model was conceptualised by Dantzig and Saaty (1973) to constrain urban 

sprawl and hence protect surrounding rural areas. Advocates of the model claim that more 

dense cities exhibit a reduced reliance on private vehicles which in turn reduces expenditure 

on fuel, GHG emissions and places a greater emphasis on the provision of public transport. In 

terms of policy, the model has had a significant impact on national planning policy including 

in the UK and is implemented by development constraints in greenbelt land and the 

promotion of brownfield sites for redevelopment (Williams, 2004). Critics dispute the central 

claim that reliance on private vehicles is reduced and point to the potential implications of 

increased congestion, poorer air quality and the exacerbation of the urban heat island effect.  

The review of urban intensification policies in Melia et al. (2011) demonstrates that the 

implementation of the Compact City model resulted in higher congestion and poorer air 

quality. Transit Oriented Development (TOD) is a conceptual response to the unsuitability of 

some urban areas for densification and reflects the need for change in residents’ commuting 

habits. The model promotes a more polycentric view of the city and emphasises development 

and the provision of services around transport hubs which are linked to other centres. In terms 

of policy, the model is partly implemented by improved transport infrastructure and increased 

land use densities around major transport stations (Cervero et al., 2002). Advocates of the 

model point to lower emissions due to sustainable transport policies whereas critics suggest 

that reliance on private vehicles for transport is not significantly reduced when compared with 

compact cities.  

The concept of Garden Cities was originally developed by Howard (1902) and has been 

revisited in the context of sustainable development. The model emphasises the proximity 

between the urban population and nature by using multiple development centres, each of 

which is surrounded by a greenbelt. The historic dominance of the Compact City model in 

planning has minimalised the implementation of the model but it has been revived by recent 

research into sustainable urban form (Randolph, 2013). In relation to the Compact City model 
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and TOD: The peripheral development in the Green City concept can alleviate development 

pressures resulting from densification attributed to the Compact City model; whilst the aim of 

reducing private vehicle use and emissions by developing around public transport stations and 

along existing routes is in sympathy with TOD. Opposition to the model is in the form of 

reluctance to develop satellite urban areas in existing greenbelt land and concerns about 

increased emissions due to longer journeys.         

The UK employs the use of sustainability appraisals (DCLC, 2011), stipulated as part of the 

National Planning Policy Framework (DCLG, 2011) during the preparation of a local 

development plan (ODPM, 2004); local requirements form the basis for specific sustainability 

plans which are used to form objectives for the sustainability appraisal of proposed 

development. The appraisal is based on economic, social and environmental considerations 

and expects proposals for new development to seek opportunities to provide net gains across 

all three categories. The proposed development options are assessed against sustainability 

criteria to compare alternatives and identify the most sustainable options. The consideration of 

climate change impacts and conflicting policies between development alternatives is highly 

limited and whilst the appraisals are broad in scope, they are subjective and lacking in 

quantitative detail. This element of the planning process has attracted criticism where a more 

detailed and analytical treatment of evidence and policy interaction is needed (Gibson, 2006). 

In addition, whilst the UK planning process requires the modelling of transport, there is no 

equivalent requirement for land use modelling to assess potential impacts. This lack of detail 

in the implementation seems to be contrary to the supposed shift in UK spatial planning from 

the use of sustainability as one factor in the consideration of competing land uses, to the 

stated principle aim of the planning system (DCLG, 2011).  

Decision support tools involving sophisticated spatial modelling could be integrated into the 

planning process to address these concerns (Geertman and Stillwell, 2009). Hansen (1959) 

demonstrated that accessibility and land availability can be used to model residential land use. 

Since then a vast array of models have been developed which model the spatiotemporal 

evolution of land use and transportation, in recent times emphasis has been placed upon 

linking these with environmental models to assess the impact of urban development. Decision 

support tools which allow detailed analysis have potential to inform and positively steer the 

planning process (Gasparatos et al., 2008).    

To support decision-making in this domain characterised by conflicting agendas it is 

necessary to model multiple possible scenarios of future land use and transport corresponding 

to a suite of planning interventions to evaluate policy implications including environmental 
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impacts; this process should involve multiple stakeholders to inform discussion, seeking 

compromise to formulate transition plans which are in sympathy with strategies for both 

mitigation and adaptation. 

The demands of climate change mitigation require the transition away from fossil fuels as the 

primary source of energy; emissions targets will determine government policy leading to a 

change in urban mobility which is also subject to the impact of escalating fuel prices. Systems 

are required which can model this transition, combining mitigation policies on transport such 

as redirected infrastructure investment and incentives to switch fuel types, with carbon 

taxation and land use. There is a need to incorporate environmental considerations into urban 

planning to assess potential policy impacts on climate change mitigation and adaptation; the 

ability to refine policies to address environmental concerns and model the resulting urban 

system would provide valuable insight (Wegener, 2014). 

Improvements to the conceptual design and deployment of models is needed to engage 

community with the requirements of mitigation and adaptation. Participatory approaches 

based on integrated modelling have great potential to explore solutions and understand the 

consequences of policy change. In the context of urban mitigation and adaptation policies, 

there is a need to convey the benefits and side-effects of proposals to the public (Ford et al., 

2018). 

2.3 Urban Modelling 

In an empirical study of Washington, DC, Hansen (1959) demonstrated that accessibility and 

land availability can be used to model residential land use; the potential for growth and the 

density of that growth is proportional to the accessibility of the location. This co-dependent 

link between land use and transportation paved the way for coordinated planning and formed 

the basis for extensive further research.  

In his Model of Metropolis, Lowry (1964) developed the first operational model which 

integrates land use and transport using nested spatial-interaction based on the law of 

gravitation to model residential and service/retail employment locations within a zonal 

system. The model incorporates transport in the form of trips between residences and 

workplaces, trips from residences to retail and the travel time between zones. Linked by 

assumptions on the balance of residents and workers via ratios of activity and inverse activity, 

the two models are iterated until the system reaches equilibrium generating the final zonal 

values of employment and population. A more robust theoretical framework for spatial-

interaction location is grounded in the theory of entropy maximisation, where entropy refers 
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to the degree of system disorder i.e. the location of residents and workers (Wilson, 1970). 

Four types of spatial-interaction are defined: unconstrained, in which the location of 

residences and workplaces is not fixed; production-constrained, in which households seek 

workplaces; attraction-constrained, in which households seek residences; and doubly-

constrained, in which the locations of residences and workplaces is fixed.  

The economic basis for land use assumes that accessibility, attractiveness and market value 

are directly proportional when choosing between development locations. In his description of 

bid rent, Alonso (1964) formalises the urban economy in a theory where the locational choice 

of households and firms is determined by matching their bid rent to the asking price of the 

land owner resulting in equilibrium of the land market. Firms generating a higher monetary 

value per unit of land can make higher bids and hence occupy more attractive locations with 

higher accessibility. Accessibility-based location models build upon Alonso’s theory of bid 

rent using accessibility indicators of varying complexity to predict the opportunity for spatial-

interaction at potential locations. A commonly used complex indicator of accessibility 

combines all destinations of interest with an inverse function of the cost of reaching them in 

terms of time, money or both i.e. generalised cost (Wegener, 2014). 

Random Utility Theory (RUT) developed by McFadden (1973) provides a framework for 

modelling the complex behavioural dynamics of individual choice when applied to decisions 

of locational accessibility, utility and migration in land use and transport modelling. Choice 

behaviour sampled from a representative population is used to statistically adjust the model of 

individual choice to reflect individual choices which are based on preference but also exhibit 

random variation. The link between individual choice behaviour and the distribution of 

decision rules in the population allows the representation of choice when faced with a set of 

alternatives. The theories of Lowry (1964), Wilson (1970) and McFadden (1973) were 

combined to embed discrete choice theory into a model of the urban economy, introducing 

several factors pertaining to choices and preferences (Anas, 1984). Most operational 

accessibility-based location models build upon this work by applying discrete choice models 

to functions of utility combining accessibility with various measures determining the 

attractiveness of potential locations. 

Action-Space or Time-Geography theory (Hagerstrand, 1970; Chapin 1974) predicts the 

patterns of land use resulting from activities attributed to different population groups using 

“time budgets” to distinguish between groups’ mobility, income and social role. Different 

groups are assigned different action spaces corresponding to available opportunities which are 

subject to three constraints: capacity, the ability to overcome space in time; coupling, the need 
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to coordinate time with others; and institutional, access restrictions at locations. These restrict 

spatial-interaction for each group according to their “time budgets” where the generalised cost 

of performing a set of activities is minimised. 

General theories on system dynamics such as those developed by Forrester (1969) have been 

applied to urban areas using a representation of the urban system comprising three categories 

for businesses, housing and people respectively. Factors such as land density and the 

availability of employment are represented as “rates of flow” which flow into and out of 

categories. The numbers present in each category for the current interval is determined by 

flows into and out of all categories from all previous intervals. The feedback across all flows 

results in a complex system which moves from its initial conditions to equilibrium via a series 

of oscillations revealing the unexpected short-term consequences of long-term policies.  

Using general systems theory, cities can be viewed as complex adaptive systems which are 

constantly in a state of disequilibrium (Batty, 2007). Long term dynamical system behaviour 

is determined by initial conditions; however, such systems are subject to feedbacks and can be 

in one of three states at any one time: chaos, where no rules apply; stability, where behaviour 

is linear or differentiable; or complexity, where both chaos and stability apply in different 

periods or regions.   

The two simplest approaches to modelling the behaviour of complex systems use Cellular 

Automata (CA) and Agent-Based Models (ABM); both methods employ agents and actions at 

the microscale which are extended over time and space producing aggregate behaviour. CA 

are mapped to a (generally two-dimensional) raster grid of cells and use local interactions to 

apply a provided set of rules to each cell in turn; this produces a changed grid which is 

swapped with the initial grid in the next iteration hence extending the application of rules over 

time and space (Clarke, 2014). 

The four key components of a CA are as follows:  

1. A grid of cells whose state is one of a finite set; 

2. A neighbourhood of cells over which defined actions are applied; 

3. A set of initial conditions which initiates the specific state of each cell; 

4. A set of one or more rules which change a cell’s state based upon the states of cells 

within its neighbourhood. 

CA can be used to simplify and model complex dynamical systems including feedbacks such 

as cities, demonstrating emergent behaviour using a minimum set of states, initial conditions 
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and rules (Batty, 2000); this work explored variations in the use of CA including the 

relaxation of neighbourhood assumptions to incorporate action-at-a-distance and the 

relationship to simple Cell Space models which apply cell transitions over time. Sante et al. 

(2010) compared 33 urban CA models and describe further modifications made to strict CA 

when applied to modelling urban growth including the use of nonuniform cell spaces, 

irregular timesteps and complex transition rules.     

ABMs simulate the behaviour, actions and interactions of autonomous agents representing 

individuals or collectives. Agents are goal-oriented independent units generally used to 

explore behavioural impacts and the resulting variations in the system being modelled; in 

simple cases a single agent can be used for this purpose while more complex cases involving 

agent-agent interactions can be modelled using a multiagent model. Agents react to system 

properties and other agents, using this information to “learn” and subsequently adapt their 

behaviour to better meet their goals (Clarke, 2014).      

The five key components of an ABM are as follows:   

1. Agents specified in terms of their type and model scale; 

2. Heuristics for agent decision-making; 

3. Rules which govern how agents learn and adapt; 

4. Agent engagement procedure for actions and interactions; 

5. An environment which can exert influence on and be impacted by the behaviour of 

agents.   

A key example of ABM as applied to urban systems is the work of Schelling (1971) on 

residential segregation which conceptualised the use of autonomous agents interacting within 

their environment to produce an observed aggregate result.   

In McDonnell and Zellner (2011) the authors describe the use of a prototype ABM to 

investigate the primary and secondary impacts of the introduction of Bus Rapid Transit (BRT) 

involving exclusive lanes and other priority measures. The primary impact is the potential 

modal shift from cars and reduced congestion in response to quicker bus journeys; the 

potential secondary impact is the reversion to travel by car which could result from reduced 

congestion. ABM allows the examination of potential impact interactions along with the 

travel times and modal share in the system as agents respond to BRT policy incentives. 

Another approach to modelling at the individual level is the use of microsimulation to 

generate synthetic populations of agents whose behaviour is sampled from more aggregate 
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data. This method is adopted by Waddell et al (2003) in the design of the UrbanSim system 

which represents the most detailed integrated model of land use and transport in terms of 

disaggregation and dynamics. In its use of microsimulation, UrbanSim generates synthetic 

populations from census data and operates at the level of individuals and households; every 

person, household, building, job etc is represented and models of individual choice are used 

extensively drawing upon random utility maximisation and discrete choice theory. In recent 

work (Waddell, 2018), an ABM of travel demand, ActivitySim is being developed which 

integrates with UrbanSim to model the travel choices of synthetic agents.   

The overwhelming trend in urban modelling is the disaggregation towards microsimulation; 

this is driven by the development of more powerful computers and the availability of 

disaggregate data from GIS-based applications. These resources are coupled with complex 

systems approaches using CA and ABM, and models of both land use and transport using 

microsimulation. Modelling at the individual level has the benefit of improved conceptual 

theories of behaviour, interactions and preferences which influence mobility and patterns of 

location; however, this must be balanced against the associated practical drawbacks of large 

data requirements and long computing times. Microsimulation models are also prone to a lack 

of stability arising from stochastic variation when different random seeds are used across 

model iterations; this can obscure the response to variations of model inputs preventing 

spatial policy assessment (Wegener, 2014).          

The dominant approach to urban modelling aims to predict the future state of the urban 

system with some degree of accuracy using complex models; contrasting this is the use of 

simpler models whose objective is not to predict, but to explore the parameters and scenario 

space across multiple model iterations to inform discussion (Batty, 2013). There is a scarcity 

of simple urban models which are suited to the task of integrating land use and transportation 

with the environment; in many cases the data requirements, difficulty of calibration and slow 

execution times prevent the adoption of existing models for this purpose (Mikovits et al., 

2014).  

Long-term projections of socio-economic, land use and climate changes are subject to great 

uncertainty. A range of plausible future scenarios can be used to address this uncertainty to an 

extent; however, formal analysis of uncertainties and sensitivities is required to handle 

uncertainties in model inputs, tracking their effects to model outputs (Ford et al., 2018). 

Spatial-interaction location models have the positive attribute of being rooted in the economic 

theory of production and consumption; however, the treatment of households as industries 
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within this system implies that workplace location is the sole determining factor for the choice 

of household location. Accessibility-based location models improve on this by their ability to 

consider a range of different accessibility indicators to reflect different needs; this introduces 

system lag since indicators are computed for each timestep to inform the generalised cost of 

travel, and hence choice of location in the following timestep. Accessibility-based location 

models also have the advantage of separating land use and transport model components 

allowing the development of bespoke sub-models for location behaviour; this modular 

structure has positive implications in terms of the software implementation of the model 

which contrasts with the approach of spatial-interaction location models which are unified by 

a single complex equation (Wegener, 2014).    

Integrated models of land use and transport generally combine land use, socio-demographic 

and transport components into model execution, adopting a range of techniques for the 

computation of each stage which vary in complexity. The current trend is towards models 

with greater complexity which increases model execution time and adds significant data 

requirements resulting in difficult model calibration. The need to integrate environmental 

factors to investigate future policies regarding energy and climate change is an area requiring 

further research (Acheampong and Silva, 2015).  

In terms of the complexity of urban land use and transport models, each planning problem has 

bespoke model requirements regarding scale and complexity when the practical tasks of data 

gathering, calibration and model execution time are considered; the optimum model is one 

which outputs just enough detail to address the problem whilst minimising these practical 

costs. “Future urban models will be modular and multi-level in scope, space and time.” 

(Wegener, 2011, pp 171) 

Integrated land use, transport and environment models are rare; one example is the Urban 

Integrated Assessment Framework developed by the Tyndall Centre for Climate Change 

Research (Hall et al., 2009) which models urban processes at multiple scales to assess the 

interaction between policies, climate impacts and emissions; the framework has been 

successfully applied to the Greater London Authority area in a stakeholder dialogue setting. 

Further research is needed to develop an operational generic decision support tool capable of 

model exploration for a range of planning problems in multiple settings. 

2.4 Summary 

This chapter has established the research gap to be addressed by this thesis; section 2.2 

examined policy and spatial planning in the context of sustainable development including 
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environmental considerations and established the need for advanced decision support tools to 

better assess the sustainability impacts of development; section 2.3 reviewed urban modelling 

theory and identified techniques to develop an appropriate modelling and assessment system. 

The following chapter presents the methodological framework for this thesis and begins with 

a detailed discussion of the model requirements for decision support.  
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Chapter 3. Methodological Framework 

3.1 Introduction 

Building on the review of the literature in Chapter 2 this chapter describes the methodology of 

an integrated urban modelling system for decision support in the context of climate change 

mitigation and adaptation planning. The chapter first describes the need for an integrated 

approach to modelling future land use, transport and the environment (Section 3.2), before 

defining desirable characteristics required by such a system in Section 3.3. It then reviews 

existing urban modelling frameworks and considers their relative strengths and limitations 

(Section 3.4). Section 3.5 discusses the concept and models of the Urban Integrated 

Assessment Framework (UIAF) before critiquing the framework in terms of requirements 

identified in Section 3.3. In Section 3.6 the conceptual design and implementation of an 

Urban Integrated Modelling Framework (UIMF) is presented which reworks and integrates 

existing models in order to address problems identified in Section 3.5.  

3.2 Problem Formulation  

The Paris Agreement of December 2015 commits signatories to limit anthropogenic climate 

change requiring a rapid reduction in greenhouse gas (GHG) emissions to slow the global rate 

of temperature increase (UNFCC, 2015). The challenges of mitigation must be addressed 

alongside those of adaptation posed by increasingly frequent and severe weather events 

accompanying existing climate change. Densely populated urban areas are spatially 

disproportionate contributors to global emissions and are at an increased risk from climate 

change and extreme weather events (Walsh et al., 2011). In response to this 

disproportionality, and further to the Paris Agreement signed by national governments, city-

level measures to reduce GHG emissions and adapt to climate change have been agreed by 

many of the world’s city leaders (UCLG, 2015, Reckien et al., 2018).  

The timeframe set out in the Paris Agreement requires that rapid change is implemented if 

signatories are to fulfil their obligations; by exploring scenarios of radical change in urban 

systems and gaining an understanding of possible consequences, cities could pave the way to 

global change as required by the Paris Agreement (Bai et al., 2018). City-scale policies aimed 

at climate change mitigation and adaptation should lead to an improved quality of life for 

inhabitants; the sharing of knowledge and experience in tackling these challenges between 

different urban areas and in different countries could spread this improvement globally. 
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Strategies to drastically reduce GHG emissions (Rockstrom, 2017) will dictate national and 

local policies on both the production and consumption of energy and will have impacts on 

urban mobility. Many cities have formulated plans to mitigate against further climate change, 

but adaptation measures are less well addressed (Heidrich et al., 2016). Extremes of higher 

temperatures, more intense rainfall and water scarcity will impact both human health by 

increasing morbidity and mortality (Harlan and Ruddell, 2011), and urban systems locally and 

remotely via disruption to interdependent resource networks (Pregnolato et al., 2016). 

Concurrently with the commitment to mitigation, improved measures for risk adaptation 

associated with observed climate change must be developed to improve infrastructure 

resilience and protect urban inhabitants. 

Adaptation-targeted policies for land use and transportation aim to reduce the risk to urban 

areas by limiting the vulnerability of inhabitants and their exposure to climate hazards 

(Funfgeld, 2010). Urban policy must be informed by detailed consideration of the possible 

consequences of planning decisions including land use and transportation. Tensions between 

policies aimed at mitigation and those aimed at adaptation require comprehensive strategies to 

achieve a balanced outcome (Dawson, 2011). By integrating climate hazard models with 

spatial configuration of urban areas and associated exposure, areas most at risk for a given 

scenario may be identified, and the trade-offs between mitigation and adaptation can be 

explored by policy makers.  

Long-term changes in policy, population and prosperity drive changes in land use and 

transportation. Developments in tools linking LUTMs with environmental models could help 

to manage these transitions and the policies required to steer them (Wegener, 2014). Socio-

economic factors could then be linked with environmental factors in scenarios for policy 

testing using integrated LUTMs and goals set out in the Paris Agreement could be explored 

by linking LUTMs with models of GHG emissions and extreme weather events allowing 

alternative land use and transport policies to be assessed in terms of both mitigation and 

adaptation using models of rapid change. 

Improvements to the conceptual design and deployment of models is needed to engage 

policymakers and the public with the requirements of mitigation and adaptation; models 

should be used to inform the planning process taking into account a range of considerations 

and involving multiple stakeholders, demonstrating the feasibility and possible implications 

of various measures under test.  
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Models are often used to forecast based on current trends, testing measures aimed at 

improving transport and boosting economic growth (Batty, 2013a).  In the context of climate 

change mitigation and adaptation, multiple scenarios using relatively simple models could 

form the basis for further exploration using more detailed approaches where stakeholder 

dialogue and collaboration is required in a coordinated effort to explore and design for future 

urban transitions. Long-term projections of socio-economic changes (e.g., employment and 

population), land use and climate change are subject to great uncertainty (Waddell, 2011). 

Formal analysis of uncertainties and sensitivities is required to handle uncertainties in model 

inputs and track their effects to model outputs.    

There is a need to convey the benefits and side-effects of proposals to the public. The use of 

LUTMs in governance should migrate from attempted prediction towards exploration, 

learning and policy adaptation in a participatory modelling process where public involvement 

could improve understanding and acceptance, allowing a greater range of more radical 

policies to be explored. Analysing suites of alternative options to address climate change via 

integrated LUTMs is key to exploring the conflict between policies and the trade-offs 

required. The accessibility of simulations could be improved by using simple interfaces using 

open source software to manage data, generate scenarios and drive model equations providing 

the opportunity for greater participation and understanding of model outcomes (Ford et al., 

2018). 

The interrelated processes of climate change and socio-economic change should be 

considered concurrently within climate impact assessment to assess the future state of the 

system and the potential effectiveness of planned interventions. The dominant approach to 

climate impact assessment judges observed socio-economic conditions against predicted 

future climate scenarios which neglects the socio-economic evolution of the system under test 

(Berkhout, Hertin and Jordan, 2002). As shown in figure 3.1, climate change and socio-

economic change in urban systems are inextricably linked; a change in one aspect inevitably 

leads to impacts in another.     
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Figure 3.1: Complex Interactions and Interdependencies between Climate Change Mitigation 

and Adaptation (Hall et al, 2009). 

 

The varied timescales of mitigation and adaptation processes coupled with the complexity of 

their interactions and interdependencies requires a holistic, system-level view to appraise 

portfolios of policy scenarios across multiple objectives over long-term timescales. A systems 

approach to cities including interactions of investment, infrastructure, land use and the built 

environment helps to balance objectives of mitigation and adaptation whilst considering 

climate change and sustainability alongside economic development (Walsh et al, 2011). It is 

only by the simultaneous consideration of all of these factors and their interactions that the 

concomitant strategies required to bring about overall benefits whilst minimising adverse 

effects in any one aspect can be agreed upon.      
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3.3 Driving Concepts of Integrated Modelling and Simulation 

Integrated Assessment and Modelling (IAM) is motivated by the need to handle multiple 

issues of concern, identifying interdependencies between them and where possible, a solution 

which satisfies conflicting agendas for the system in question. Taking a holistic view of the 

system ensures that the interests of all parties are represented and that interventions which 

modify the function of the system in terms of investment, legislation and control can be 

assessed in terms of their impact by multiple stakeholders (Hamilton et al, 2015). An 

overview of the key dimensions of IAM from an environmental engineering perspective is 

shown in figure 3.2. This definition will be used to frame the required capabilities of an 

integrated modelling framework suited to tackling the problems set out in the previous 

section. The concepts of key integration drivers, system characteristics and methodological 

approaches are discussed in the following subsections.   

 

 
 

Figure 3.2: Dimensions of Integrated Assessment and Modelling (Hamilton et al, 2015). 
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3.3.1 Key Integration Drivers 

The principal issue of concern in the effort to mitigate against climate change is the reduction 

of GHG emissions. Commitments to limit global average temperature rise below 2 degrees 

Celsius and ideally below 1.5 degrees Celsius have been agreed between many of the world’s 

leading cities as part of the C40 Cities directive alongside increased resilience to the impacts 

of existing climate change (C40a).  

The global challenge of mitigation can be partly addressed by the collaborative efforts of 

multiple individual cities whose mitigation pathways differ in accordance with their 

circumstances. These cities are unified by their commitment to reduce GHG emissions but 

their approach to achieving agreed targets must be bespoke in order to consider differences in 

their economies, industries and geographies alongside the needs of inhabitants. In each city, 

the fundamental issue of concern is how to reduce GHG emissions to the required level within 

the timeframe agreed. The stakeholders involved include government and politicians who 

form legislature, industries who adopt new standards and legislation, and individuals who are 

affected by new laws and associated changes in their living situation. Some member cities of 

the C40 Cities Climate Leadership Group have already peaked their GHG emissions via a 

range of mitigation pathways as shown in table 3.1. 

C40 Member City Year Mitigation Example 

Copenhagen 1991 Decentralisation: expansion of district heating system.  

San Francisco 2000 Decarbonisation: switch to renewable energy sources for 

electricity grid. 

Paris 2004 Mobility: infrastructure improvements for public transport 

and cycling. 

Sydney 2007 Buildings: improved energy performance and retrofitting. 

Vancouver 2009 Waste: improved composting and landfill gas collection. 

Table 3.1: Example Peaked Emission Cities and Mitigations (adapted from C40b). 

 

The plan for Zero carbon London (GLA, 2018) targets a maximum of 1.5 degrees Celsius rise 

in global temperature and develops strategies for energy including decentralised energy, high 

electrification and decarbonised gas; strategies for transport including emissions surcharging, 

ultra-low emissions zones and zero emissions vehicles; and strategies for buildings including 

zero carbon new buildings and retrofitting for improved energy efficiency. These mitigations 

each impact on different sectors of industry and the economy and require coordination from 
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national government, the Mayor and Greater London Authority (GLA), London boroughs, 

businesses and individuals.  

3.3.2 System Characteristics 

Human settings refer to factors including population, politics and the economy whilst natural 

settings refer to factors including land use, water and climate. The dependence of urban 

populations on natural systems for resources, and the impact of human activities on those 

natural systems leads to tensions between interventions aimed at reducing environmental 

impacts whilst maintaining perceived quality of life including economic growth and mobility. 

Measures to mitigate against climate change disproportionately affect poorer communities 

meaning that the push to tackle climate change must be matched by an effort to reduce 

inequalities. Legislating the shift towards lower emissions and greater energy efficiency has a 

greater impact upon lower-earning households who may be unable to meet the costs of 

conversion without support (C40c). In addition to the costs associated with buildings, the 

reliance on carbon-emitting vehicles to support employment in many cities is a concern. As 

well as being more susceptible to negative impacts of mitigation, poorer cities and areas 

within cities are more vulnerable to the impacts of existing climate change in sectors such as 

energy, water, waste and public health etc. (C40d). An integrated approach to coupling human 

and natural systems for both mitigation and adaptation must be developed in order to address 

these problems concurrently.      

The temporal scale of urban processes and interventions is important when seeking to 

holistically model urban systems; large-scale infrastructure projects such as the construction 

of new roads can take years to complete and the intermittent disruption may be neglected by 

models which are based upon snapshots into the future such as relative-static models. In terms 

of mitigation versus adaptation, global efforts to mitigate against climate change have a long-

term payoff versus the short-term payoff of adaptation measures.  

Different processes occur at different speeds and at different spatial scales, model outputs are 

often represented at different spatial scales by area attributes such as zonal land use 

apportioned to population increase in spatial interaction models, or by uniform grid-cells 

sampling environmental conditions. This can result in a fundamental mismatch in spatial scale 

when integrating otherwise valid models which can be referred to as the “Tyranny of Zones” 

(Spiekermann and Wegener, 1999) in which zonal land use attributed to urban growth in 

spatially aggregated models cannot be reasonably combined with fine-scale environmental 

data.      
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3.3.3 Methodological Approaches 

One approach to integrating climate change with urban systems would be to construct a 

comprehensive model combining all aspects of the system. In theory, a model could be 

constructed according to a set of principles agreed upon by the modelling team, accounting 

for all possible conflicts and inconsistencies between modules. However, the level of 

collaboration required across disciplines to develop such a model, and the complexity of the 

resulting system favours a more modular approach to integration. When integrating models 

across disciplines it is inevitable that results will be interpreted differently by groups with 

different expertise. It must be ensured that the modelling effort is coordinated to ensure that 

data transactions can take place and that data formats and modelling scales (both spatial and 

temporal) are agreed. Failure to account for modelling inconsistencies can lead to so called 

“ugly constructs” in which the coupling of two or more models leads to unexpected results. 

One approach to model integration is based upon the assemblage of existing models achieved 

by loose coupling in which the output of one model is fed to the input of another via data 

files. This reuse and repurposing of existing models has the potential to save time; however, 

this must be balanced against considerations for model linkage to ensure consistency across 

independently developed models in terms of parameters and scales (Voinov and Shugart, 

2013).  

There are many software frameworks which help to bridge the gap between disparate 

modelling disciplines; a comprehensive review can be found in Granell, Schade and Ostlander 

(2013). OpenMI can facilitate interoperability between models but can lead to significant 

overheads in terms of the format and complexity of models developed (Knapen et al, 2013). 

3.3.4 Framework Requirements 

Exploration of how interventions affect systems, or systems-of-systems can be carried out 

using participatory modelling. IAM is generally conducted via a participatory modelling 

process as depicted in figure 3.3 which represents modelling stages as cards which can be 

rearranged flexibly to adapt the process flow in response to feedback between modelling 

stages. The purpose of modelling in each of these stages can vary as shown in figure 3.4.  
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Figure 3.3: Overview of Participatory Modelling Process (Voinov and Bousquet, 2010). 

 

 
 

Figure 3.4: Why Model? Adapted from Epstein (2008) 
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The need to formulate climate change mitigation and adaptation strategies which address the 

needs of a range of urban inhabitants requires that an integrated approach is taken. For each 

city these considerations comprise national governance, regional rules, local legislation, 

businesses and individuals. In order to explore the many problems and potential solutions, an 

integrated approach should be adopted allowing policy interventions in one sector to be 

assessed in terms of their impact upon the system as a whole. This approach should be applied 

to all sectors, culminating in the collation of evidence to inform suites of policy portfolios. 

Modelling with stakeholders specific to urban systems and climate change leads to the 

following requirements as shown in table 3.2. 

Requirement Description 

Validity 

 

 

The ability of a model to reproduce changes in observed data should be 

demonstrated in model validation to minimise bias and provide 

confidence in model outputs 

Transparency Decision support tools aimed at resolving conflicting opinions on urban 

policy require transparency to be of use; opaque, or ‘Black Box’ models 

do not convey sufficient understanding to support argument. 

Transparency must be balanced with validity for a model to be of 

practical use i.e. simple models may provide greater transparency at the 

expense of reduced validity in representing the problem; whereas, 

complex models may provide a more valid problem representation at the 

expense of reduced transparency 

Usability To be deployed independently of developers, a model should be able to 

be configured, adapted and understood by model users and stakeholders. 

Usability should therefore be maximised whilst maintaining behavioural 

and empirical validity. Collating suitable data whilst accounting for errors 

and omissions, and ensuring consistency poses a significant task which is 

not helped greatly by currently available software. Exhaustive input 

requirements and the complexity of data development can deter users and 

prevent model implementation. 

Flexibility To be applicable to a wide range of users and purposes a model system 

must have enough flexibility to handle variations in input data and model 

output requirements. The development of decision support tools must also 

respond to advances in data, software and theory to provide new solutions. 
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Performance Computational performance must be considered alongside the other 

challenges of integrated modelling; for instance, poor performance can 

restrict the use of otherwise viable models whereas models which aim 

for interactive runtimes can compromise validity. 

 

Table 3.2: Framework Requirements – adapted from Waddell (2011). 

 

 

3.4 Existing Urban Modelling Frameworks 

Section 2.3 presented an overview of the many existing theoretical approaches to modelling 

urban systems, each of which has relative benefits and drawbacks. The question is whether 

they are well-suited to the task of rapid assessment in a participatory modelling process? A 

suitable approach to modelling land use, transport and environmental factors in an IAM 

setting must be established in order to design such a system. Table 3.3 provides an overview 

of existing urban modelling frameworks which are considered and critiqued against the 

concepts and requirements for modelling with stakeholders described in section 3.3.  

Modelling 

Paradigm 

Example Models and Considerations 

Aggregate 

spatial 

interaction 

Lowry-Garin model (Lowry, 1964) 

MEPLAN (Echinique et al, 1990) 

TRANUS (de la Barra, 1989) 

Pros: Rooted in economic theory of production and consumption 

Cons: Implies that workplace location is sole determinant for household 

location 

Aggregate 

utility 

DELTA (Simmonds, 1999) 

IRPUD (Wegener, 2011a) 

Uplan (Walker, Gao and Johnston, 2007) 

Pros: Choice of location considers a range of needs via accessibility 

indicators - Separation of land use and transport allows modular development 

of bespoke sub-models of location behaviour 

Cons: Accessibility indicators for each timestep inform location in the next 

timestep introducing system lag - Greater data requirements and longer 

computing times 
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Micro-

simulation 

ILUMASS (Moeckel, Schumann and Wegener, 2003) 

ILUTE (Salvini and Miller, 2005) 

UrbanSim (Waddell et al, 2003) 

Pros: Improved validity of behaviours and interactions using agent-based 

modelling - Greater spatial disaggregation 

Cons: Significantly greater data requirements and much longer computing 

times - Lack of stability due to stochastic variation 

Cellular 

Automata 

SLEUTH (Silva and Clarke, 2002) 

Pros: Relatively simple and flexible approach to modelling urban growth 

based on past development 

Cons: Difficult to incorporate top-down policy drivers – long model execution 

times 

 

Table 3.3: Existing Urban Modelling Frameworks 

 

3.4.1 Aggregate Spatial Interaction Models 

Aggregate spatial interaction models simulate flows of activities such as traffic or household 

relocation between geographical zones in an urban region. These origins and destinations of 

flows are typically represented by point locations at the centroid of each zone. Interactions 

between locations are in proportion to the product of masses at origins and destinations, and 

inversely proportional to a measure of their separation. This gravity model is adapted from 

Newton’s second law of motion to consider the measure of separation between origins and 

destinations in terms of the distance, time or cost of travel. The use of spatial interaction is 

well established in the four-step transport model (trip generation, trip distribution, modal split, 

traffic assignment) where trip distribution is based upon a gravity model. This distribution can 

be used to predict activities at particular locations using the concept of potential which in this 

case is defined as the sum of interactions between one origin and all destinations or vice versa 

(Batty, 2007a).     

A key characteristic of spatial interaction models is that households are represented as 

industries which produce labour and consume commodities. Household location is then 

predicted using a multi-industry input-output model based upon production and consumption. 

This provides model foundations in economic theory but implies that household location is 

based solely upon workplace location, neglecting other aspects of residential choice.     
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3.4.2 Aggregate Utility Models 

The simple relationship between the location of workplaces and households used in spatial 

interaction is expanded upon by aggregate utility models to represent a wider range of 

locational choice factors. These models are based upon accessibility which is defined as the 

opportunity for spatial interactions at any given location. Bespoke accessibility indicators can 

be developed to predict the location of workplaces and households using discrete choice 

models which consider a range of activities. The potential accessibility of any given location 

can be found by summing activities across destinations and weighting by an inverse function 

of the distance, time, or generalised cost of reaching them. Potential accessibility can then be 

combined with other zonal attributes to determine the attractiveness of locations in terms of 

each type of workplace and household thus representing a range of different needs (Wegener, 

2014).         

The use of bespoke zonal attractors based on accessibility indicators allows the location 

choices made by different types of workplace and household to be simulated. This modelling 

requires more data than spatial interaction but better represents the needs of different groups 

within the system. A key implication of using accessibility is that the resulting transport 

demand can only be known in the following timestep.     

3.4.3 Microsimulation Models 

The disaggregation of locational choice by workplace and household type as used in utility 

models is taken further in microsimulation models which represent the urban system as an 

aggregation of individual agents and interactions. These agents can represent the migration 

and relocation choices of households; the workplace choices of individual people; location 

and relocation choices of businesses as well as the real estate market. When paired with 

microsimulation models of activity-based transport the choices and behaviours of agents 

within the urban system can be modelled at the individual level. These synthetic populations 

of agents are based upon high-resolution data, where available, or can be generated from more 

aggregate data using statistical techniques and stochastic variation.        

The improved behavioural validity of microsimulation models comes at the cost of 

practicality. Data requirements both in terms of quantity and quality are greatly increased 

where inputs which are not available at the individual level must be generated increasing the 

time taken for model configuration. Execution times are also increased significantly which 

when combined with the stochastic variation across model outputs makes it a more complex 

task to generate and compare results for a range of scenarios.     
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3.4.4 Cellular Automata Models 

In common with microsimulation models, Cellular Automata (CA) employs agents and 

actions at the microscale which when extended over time and space, produce aggregate 

behaviour. CA are mapped to a (generally two-dimensional) raster grid of cells and use local 

interactions to apply a provided set of rules to each cell in turn; this produces a changed grid 

which is swapped with the initial grid in the next iteration hence extending the application of 

rules over time and space (Clarke, 2014). The application of CA to model urban growth is 

widespread and assumes that future patterns of land use can be derived from localised 

interactions between land use of different types based upon past development. This can 

involve refinements from simple models to include the use of nonuniform cell spaces, 

irregular timesteps and complex transition rules (Sante et al, 2010).    

The bottom-up nature of CA models, transmitting change via localised neighbourhoods of 

cells can lead to problems configuring such models using top-down policy drivers. This 

becomes particularly important when trying to capture important factors from higher spatial 

scales such as accessibility to employment. CA model execution including calibration is an 

inherently slow process which limits applicability in some cases. 

3.4.5 Summary 

Micro-simulation approaches are not well-suited to the task of rapidly assessing future 

scenarios of land use and transport in spite of their improved behavioural validity and greater 

spatial disaggregation. This is due to significantly increased demand for input data, issues 

with stochastic variation and very long model execution times.   

The comparative reduction in complexity and model execution times afforded by aggregate 

spatial interaction and aggregate utility models provide potential solutions to the requirement 

of rapid assessment. When comparing these two approaches it must be questioned whether the 

improved representation of locational choice afforded by utility-based models warrants the 

increase in model complexity and data requirements. It can be argued in the case of climate 

change mitigation and adaptation that models of land use and transport should rely less on the 

consideration of preferences but instead focus on fundamental needs (Wegener, 2014). 

A key problem with aggregate approaches to modelling land use and transport is the spatial 

representation of such systems. Trips between zones assume that activities are located at zonal 

centroids, and the land use resulting from such models is not spatially explicit beyond an 

aggregate value for each zone. This “Tyranny of Zones” (Spiekermann and Wegener, 1999) 
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means that land use attributed to population increase cannot be meaningfully compared with 

environmental models such as air quality which are represented at fine spatial scales, typically 

as raster grids. 

One way of solving the problem of aggregation is to adopt a multi-level and multi-scale 

approach as shown in figure 3.5 for the Dortmund region where multi-level refers to 

economic downscaling from global projections to the region of interest, and multi-scale refers 

to the consideration of the urban area as both a collection of administrative zones with inter-

zonal processes, and as an arrangement of regularly-spaced grid cells with intra-zonal 

proximity attractors. The advantage of such an approach is that each process can be 

represented and modelled at its own spatial-scale which allows for the combination of top-

down (aggregate) with bottom-up (disaggregate) processes which are hierarchically 

constrained. Care must be taken to ensure consistency across modelling levels and spatial 

scales, for instance, the representation of inter-zonal accessibility to employment via transport 

networks in the zonal system should be mirrored by the proximity to transportation in the 

raster grid system. 

 
Figure 3.5: The multi-level model system of the Dortmund urban region (Wegener, 2011). 
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3.5 Urban Integrated Assessment Framework 

The aim of this research is to develop a simple, transferable and consistent modelling system 

suited to the purpose of generating plausible scenarios of future development for analysis 

along with environmental factors. Building such a system from first principles in a relatively 

short timeframe is not feasible so an existing framework was identified which has desirable 

properties but does not meet all of the requirements of integrated modelling frameworks for 

stakeholder dialogue as described in section 3.3 

The Tyndall Centre’s Urban Integrated Assessment Framework (UIAF), (Hall et al., 2009) 

integrates land use, transport, and environmental models across consistent scenarios to 

consider the mitigation and adaptation of the urban system across multiple scales. This 

facilitates the city-scale assessment of potential future interaction with climate hazards such 

as extreme heat, water scarcity and flooding. The UIAF models changes in population and 

land use in scenarios consistent with emissions and climate impacts enabling the concurrent 

testing of mitigation and adaptation strategies to examine and compare consonance and 

dissonance between policies.  

Changes in land use and transport driven by socio-economic processes are linked to long-term 

climate impacts for the greater London area in scenarios driven by exogenous projections of 

employment, population and climate hazards. An econometric model, E3MG (Global Energy-

Environment-Economy Model) provides drivers based on the global economy using a variety 

of indicators including oil prices to provide future growth projections. This is downscaled at a 

national level to attribute growth to a particular region using a multi-sectoral dynamic model 

of the UK (MDM).  

The UIMF takes these higher-scale models as exogenous drivers for the urban area and 

further downscales employment, population and land use in two stages from urban area 

through urban zones to urban land parcels composed of raster grid cells. An important 

consideration for model use is the application of data produced at each spatial scale; growth 

projections for the entire urban area based upon economic and population growth can be used 

to produce emissions data based upon aggregated data, administrative decisions such as the 

provision of school places can be based upon zonal data, whilst interactions with 

environmental models can only be explored by further spatial disaggregation to the urban-

parcel scale.  
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The methodology developed by this research unifies the multi-scale LUTM components of 

the UIAF in an integrated modelling framework. The UIAF was developed in a modular 

fashion by separate teams using their own preferred software and languages, these modules 

are integrated in a process described at best as loose coupling to simulate transport, locational 

choice and land use in the Greater London area.  

The requirements of integrated modelling frameworks for stakeholder dialogue as described 

in section 3.3 are: Validity, providing confidence in model outputs; Transparency, 

documenting model processes, equations and algorithms; Usability, simplifying model 

calibration and scenario generation; Flexibility, allowing models to be grouped and their 

execution controlled in a range of configurations; and Performance, ensuring fitness for 

interactive stakeholder dialogue. These requirements are used to critique the UIAF in the 

following subsections to define design criteria for an integrated modelling framework 

presented in the next section. 

3.5.1 Validity 

A spatial interaction model (SIM) uses accessibility to employment via transport networks to 

simulate population scenarios resulting from land use and transport planning policy. A set of 

weighted zonal attractors is incorporated to represent a range of spatial factors derived from 

planning policy decisions whilst a transport accessibility model (TAM) uses generalised cost 

to evaluate trips allowing for network modification to test scenarios of transport investment 

and infrastructure development.  The urban development model (UDM) maps zonal 

population to a raster grid using attractors and constraints representing planning policy 

decisions. This increased spatial detail of development in the UDM permits the assessment of 

exposure to spatial climate hazards. The UDM is based upon multi-criteria evaluation (MCE) 

of development suitability and a process similar to cellular automata (CA) to spread 

development across and within land parcels.  

The outputs of this modelling arrangement are multi-resolution rather than multi-scale given 

that both the SIM and UDM are applied to the same region. Although both models are 

parameterised with global data for the study region there is a clear distinction as to the spatial 

extent of each modelling stage. The SIM models the inter-zonal disaggregation of people and 

jobs based upon employment accessibility via the transport network, whereas the UDM 

models the resulting land use from locational choice based upon localised factors such as 

proximity to transport. A simple view of the modelling arrangement is of a nested set of 
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UDMs, one for each zone in which each UDM is spatially bound by zonal extents whereas 

SIM operates across the zonal system and is bounded by regional extents.  

The coupling of SIM and UDM is a key process in terms of capturing micro-scale dynamics 

within an aggregate model of locational choice; inter-zonal attractors in SIM are replicated by 

intra-zonal attractors in UDM for example, the transport accessibility in SIM is replicated by 

proximity to transport in UDM. This results in a consistent modelling system which considers 

two spatial scales in a simplified manner resulting in fine scale development outputs from 

minimal input data. 

3.5.2 Transparency 

The relatively simple models used in the UIAF can be conceptually described in terms which 

are easily communicable, making them suitable for interactive engagement with stakeholders 

and the public. The model implementations themselves along with their integration within the 

framework is somewhat more complex but must be adequately described to potential users. 

Developers may wish to modify any part of the framework or individual models requiring full 

code transparency meaning that open source software only should be used.      

3.5.3 Usability 

The UIAF has no interface and other than by rewriting model code there is no way of 

modifying its operation or configuring scenarios. The minimum set of data required by the 

UIAF is relatively modest but models can make use of more input data, where available, such 

as attractors in the SIM and UDM to represent additional spatial drivers of population and 

land use change. To maximise the potential user-base of the framework, methods using open 

source software to prepare model inputs should be documented which should be supported by 

data handling functions to map inputs and parameters to framework models.     

3.5.4 Flexibility 

Different scenarios require different drivers in terms of model inputs; in the UIAF these 

alternatives are provided as model-specific configuration files in which outputs from the 

previous modelling stage are stored as alternative inputs to the current model. This approach 

requires that each model is responsible for selecting an input from a specified range of 

provided datasets meaning that modelling stages must be configured in cooperation to 

generate the desired result. This collective configuration across models implemented in 

different languages places an unnecessary burden on the user who simply wishes to 

consistently drive a modelling scenario. The framework should simplify the task of consistent 
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configuration across models by formalising model interfaces and abstracting the process of 

scenario selection. Exploratory modelling requires that multiple scenarios are run to assess the 

implications of alternative policies. Uncertainties and sensitivities can be explored by 

executing the model multiple times whilst varying inputs. To facilitate this, the framework 

should allow models to be grouped and executed in a range of configurations, providing 

control across iterations to adjust inputs, outputs and parameters.       

3.5.5 Performance 

The emphasis on rapid assessment suitable for stakeholder dialogue places a limit on model 

execution times. Although it is difficult to ascertain the overall performance of the UIAF 

comprising multiple languages and modes of execution, a significant bottleneck can be found 

in the computation of shortest paths between origin and destination nodes in transport 

networks using Dijkstra’s algorithm. The prototype code for shortest-path computation uses 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑥, a purely python implementation which stores lists as python dictionaries which 

are inefficient in-memory containers. The algorithm performs poorly for large networks and 

renders the model unsuitable for interactive purposes. In more general terms, the required 

flexible model runtime must be combined with higher performance model computation.      
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3.6 Urban Integrated Modelling Framework 

The principal aim of this research is to package the LUTM components of the UIAF into a 

transferable and consistent modelling system suited to the purpose of generating plausible 

scenarios of future development for analysis along with environmental factors. In the first step 

of this process, the LUTM scenario generation system is separated from the environmental 

impact models resulting in the system diagram as shown in figure 3.6. This collection of 

models along with their implementation in the specific software environment developed by 

this research is henceforth referred to as the Urban Integrated Modelling Framework (UIMF) 

reflecting the separation of LUTM scenario generation from environmental impact 

assessment, and the focus on flexibility, performance, transferability and consistency.  

The requirement for transferability dictates that the framework should be portable across 

study regions determined by different model parameters. The proof-of-concept integration of 

models created by development teams in the UIAF was achieved by loosely coupling models 

configured for consistent scenarios based on a shared study region, the Greater London area, 

resulting in a framework which is bound to its original application area and to the agreed 

scenarios. If the framework is to be applied to new study regions without the collaborative 

involvement of the original model development teams it must be decoupled from the Greater 

London area. Decoupling aims to extract key model parameters such as the number of zones 

or available modes of transport allowing the framework to be transferred between study areas 

and scenarios. This involves the removal of hardcoded variables, control flow 

parameterisation, and handling external model configuration data in a variety of file formats.    

Figure 3.6 shows the modelling system to be implemented in the UIMF. From left to right, the 

operation and flow between models is as follows:  

1. For each mode of transport, network data for is combined with generalised cost 

parameters considering both money and time. Least-cost paths are found for each 

mode before combining costs across all modes and converting via a deterrence 

function to an origin-destination matrix of transport accessibility. 

2. In each timestep, projected values of employment and population for the urban area 

are spatially disaggregated into zones using zonal attractors and constraints where 

zonal population is also based upon employment locations and accessibility to that 

employment via the origin-destination matrix of transport accessibility. 
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3. Zonal population is further spatially disaggregated to a raster grid of cells using 

rasterised local attractors and constraints producing a detailed map of current and 

potential future land use.  

 

Figure 3.6: Models implemented in the Urban Integrated Modelling Framework  

 

Each model in the system shown in figure 3.6 is reimplemented using generic features of the 

Urban Integrated Modelling Framework shown in figure 3.7.  These implementations are 

described in detail in the following chapters: Spatial Interaction Model (SIM), chapter 4; 

Transport Accessibility Model (TAM), chapter 5; and Urban Development Model (UDM), 

chapter 6.  

Figure 3.7 gives an overview of the software architecture of the UIMF which was designed in 

response to the critique of the UIAF in sections 3.5.1 to 3.5.5 in terms of requirements for 

modelling with stakeholders described in section 3.3. Features of this design indicated in 

figure 3.7 are discussed in the following subsections: 

• 3.6.1 describes the use of a database to store and manage spatial datatypes corresponding 

to the model inputs shown across the top of figure 3.6. 

• 3.6.2 describes the use of a minimal standardised model interface using tables of inputs, 

outputs and parameters.   
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• 3.6.3 describes simple model coupling as part of a model group. 

• 3.6.4 describes advanced flow control across model groups in support of situations 

requiring multiple model runs. 

• 3.6.5 describes the flow of model data and metadata. 

• 3.6.6 describes model execution and computational flexibility. 

 

 
 

Figure 3.7: Software Architecture of the Urban Integrated Modelling Framework 
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3.6.1 Spatial Data 

The suite of models shown in figure 3.6 describe the geography and interactions of an urban 

system using the following spatial datatypes: 

• Polygons 

o The study region is described by a collection of polygons which defines the 

extent of each zone in the SIM. Polygons also define parcels of land with 

particular attributes which can be used as attractors or constraints such as 

currently developed land.   

• Points 

o Accessibility in the TAM models journeys between origin and destination 

zones using point locations (network nodes) at the centroid of zone polygons. 

Points are also used to generate proximity rasters in the UDM for features of 

interest such as public transport stations.  

• Linestrings 

o Routes in the transport networks used in the TAM are represented by 

linestrings (network edges).  

• Cells 

o The UDM describes the study region as a grid of uniform cells, each of which 

is typically 1 hectare in area. Vector features such as polygons representing 

zones, attractors and constraints in the SIM must be rasterised to ensure a 

consistent spatial representation across models.      

PostgreSQL is an established, free and open source object-relational database management 

system which supports Structured Query Language (SQL) and can be extended to support 

geographic objects and spatial queries using PostGIS. The resultant spatial database can be 

managed using pgAdmin which is a web or desktop application allowing database exploration 

and advanced administration. QGIS is a free and open source Geographic Information System 

(GIS) which can connect to spatial databases and allows geospatial data to be edited, analysed 

and visualised. The UIMF uses all of these tools to manage spatial data from the preparation 

of model inputs to the visualisation of model outputs as shown in the left column of figure 

3.7.  

Input vector data can be prepared using QGIS or uploaded to the spatial database via 

shapefiles in 𝑝𝑔𝐴𝑑𝑚𝑖𝑛 using the shapefile import/export manager plugin. The use of ascii 
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raster files provides a simple format to exchange raster data along with the following header 

information: 

• 𝑛𝑐𝑜𝑙𝑠 (number of columns) 

• 𝑛𝑟𝑜𝑤𝑠 (number of rows)  

• 𝑥𝑙𝑙𝑐𝑜𝑟𝑛𝑒𝑟 (lower-left-corner, lower-left-cell, x coordinate) 

• 𝑦𝑙𝑙𝑐𝑜𝑟𝑛𝑒𝑟 (lower-left-corner, lower-left-cell, y coordinate) 

• 𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒 (size of each cell) 

• 𝑁𝑂𝐷𝐴𝑇𝐴_𝑣𝑎𝑙𝑢𝑒 (cell data mask value) 

The ascii format is used as the UIMF raster interface in terms of importing and exporting data 

which can be prepared and viewed in QGIS but since a large amount of raster data may need 

to be transferred between models and to/from the spatial database some modifications have 

been made to improve performance which are described in Appendix A.  

The need for the UIMF to be portable between study regions in different parts of the world 

requires that a Spatial Reference System (SRS) identifier is used to define the map projection 

and hence the location of geographical entities. The value used for British National Grid is 

27700 for example. 

3.6.2 Python Model Interface 

As well as handling spatial data as described in the previous subsection, the UIMF uses 

PostgreSQL to manage tables of non-spatial data defining each model or sub-model to be 

executed by the framework in minimalist terms. This standardised model definition is in 

contrast to the use of bespoke model configuration files and operations as was used in the 

UIAF model implementations.  

All models within the UIMF are run via the Python Model Interface (PMI) shown in figure 

3.8 which requires that each model is described by a set of database tables holding inputs, 

outputs, and parameters which can be created and modified using any comma-separated 

values (CSV) file editor. The Python script which executes each framework model can then 

establish a connection to the database holding these tables, use parameters to configure model 

operation, read inputs from named database tables, run the model code and write outputs to 

named database tables.  
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Figure 3.8: Python Model Interface 

 

In all models running under the PMI, a Python module which executes the model code is 

linked to database tables specifying model inputs, outputs and parameters. Tables of inputs 

and outputs share the same format (table 3.4), consisting of an integer primary key along with 

string columns for names and values. Parameter tables (table 3.5) consist of an integer 

primary key, an integer model key and named columns of user-defined type for n parameters 

as required.  

 

primary key  name  value  

1 data_1 table_1 

Table 3.4: Example PMI model inputs / outputs 

 

primary key model key parameter_1  parameter_2  

1 1 1 234.5 

Table 3.5: Example PMI model parameters 

 

 

The model to be run is linked with its datasets via a database table specifying the model group 

(table 3.6) which consists of an integer model key and a string column for the model and each 

of its generic datasets. The model column entry names the Python module to be run whilst the 

columns for inputs, outputs and parameters reference configuration tables stored in the same 

database. 
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model key model inputs outputs parameters 

1 m1 m1_inputs m1_outputs m1_parameters 

Table 3.6: Example PMI model group 

 

The PMI model class has the following key methods: 

• 𝑙𝑜𝑎𝑑() - load the model into memory along with all inputs, outputs and parameters 

• 𝑟𝑢𝑛() - execute the model 

The PMI can interact with and run a model if it is executed via a main function in the Python 

module which takes Python dictionaries for inputs, outputs and parameters as arguments; this 

function should unpack the provided dictionaries of pointers, manage the transfer of data and 

run the model before returning a Boolean value which is used to control model iteration.  

3.6.3 Model Coupling 

All models in the UIMF are executed via a model group as shown in table 3.6 in which each 

model has its own row. Models can be coupled together in a simple manner by specifying the 

order of model execution and routing specified outputs to inputs as illustrated in figure 3.9. 

 
Figure 3.9: Simple Model Coupling Example. 

 

The PMI model group class has the following key methods: 

• 𝑟𝑒𝑎𝑑𝑡𝑎𝑏𝑙𝑒() – creates a model list from a database table 

• 𝑟𝑢𝑛𝑔𝑟𝑜𝑢𝑝() - loads and runs each model in a model list   

• 𝑖𝑡𝑒𝑟𝑎𝑡𝑒() - calls 𝑟𝑢𝑛𝑔𝑟𝑜𝑢𝑝() according to 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

Within a group, models are run sequentially via a Python script whose main function is 

executed when Python calls the module from the command line; this function uses a Python-

PostgreSQL database adapter to form a connection to the database specified by 𝑐𝑜𝑛𝑛𝑒𝑐𝑡() 

function arguments before interfacing with the model group class. The model group 
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𝑟𝑒𝑎𝑑𝑡𝑎𝑏𝑙𝑒() function is called with the database connection and specified model group table 

as arguments before setting the 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 value and calling the 𝑖𝑡𝑒𝑟𝑎𝑡𝑒() function.  

The PMI provides three modes of iteration, all of which run each model in the group. The 

desired mode is specified using the 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 value as follows: 

• Group (0) run group once 

• N-conditional (𝑛) run group 𝑛 times unless stop condition is reached 

• Forced-conditional (-1) run group indefinitely until stop condition is reached   

In the first mode the execution is dependent solely upon the number of rows representing 

models, sub-models etc. in the model group list. The remaining modes use the Boolean value 

returned by the main function of each model executable to terminate iteration of the group if 

any model returns a value of True indicating that the stop condition has been reached. 

The flow of operations in the PMI as depicted in figure 3.10 is as follows: 

• The 𝑟𝑒𝑎𝑑𝑡𝑎𝑏𝑙𝑒() function creates and populates a model list from a PostgreSQL 

database provided by the user 

• The 𝑖𝑡𝑒𝑟𝑎𝑡𝑒() function iterates over the model list according to the 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

variable, calling the 𝑟𝑢𝑛𝑔𝑟𝑜𝑢𝑝() function in each iteration mode. If the 𝑔𝑟𝑜𝑢𝑝. 𝑠𝑡𝑜𝑝 

variable is True, then iteration of the model list stops 

• The 𝑟𝑢𝑛𝑔𝑟𝑜𝑢𝑝() function runs each model in the list using the model class 𝑙𝑜𝑎𝑑() 

function to load the model and its datasets into memory, and the 𝑟𝑢𝑛() function to 

call the PMI compliant main function in the Python module. If the Boolean 

𝑚𝑜𝑑𝑒𝑙. 𝑠𝑡𝑜𝑝 value returned by the main function of the model is True, then the 

𝑔𝑟𝑜𝑢𝑝. 𝑠𝑡𝑜𝑝 variable is set to True 
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Figure 3.10: Running a model group via the PMI using the n-conditional iteration mode; user-

provided database tables and model shown in black. 

 

3.6.4 Advanced Flow Control 

The previous section described how the PMI can be used to iterate over a group of models in 

a flexible manner. Using the simplest form of iteration, a model can be run multiple times 

within the same group by specifying it in multiple rows of the model group table (Table 3.6), 

where each instance of the model has a different model key. The model parameters table can 

then be used to provide a different set of values for each model instance as specified by the 

model key column. This arrangement can be used to generate a range of model outputs, for 

example, based upon swept parameters for uncertainty analysis. 

The different parameter values used in each instance of the model generate different model 

outputs which should be stored in their own database table. This mapping of model iterations 

to output tables could be achieved by deriving the name of output tables using a suffix 

indicating the model instance; however, if the same model code is to be reused in different 

applications then this mapping should be external. 
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The UIMF uses model drivers to generalise the control and mapping of model instances 

within model groups. A model driver must be able to be run as part of the model group and 

therefore must adhere to the requirements of the PMI. The key feature of a model driver is 

that it can access and modify the datasets of other models within its group thereby managing 

the routing of inputs and outputs, and the use of parameters both within the group and across 

group iterations. This allows the models themselves to be fixed in their functionality which in 

turn facilitates the ability to arrange and rearrange models without modification of their 

module code.  

The generic methods presented so far show how models can be chained in model lists 

controlled across iterations by model drivers. The rationale for grouping models in any given 

way varies according to the requirements of the simulation run; models may be configured 

such that the group is run until some condition is reached (e.g. equilibrium), or to produce 

results for a swept range of input values.  

The UIMF accommodates scenarios involving multiple model groups, with each group 

performing a given task within the overall simulation. This is achieved by allowing the user to 

specify a group of model groups to be executed. This group of groups is stored in a database 

table (table 3.7) containing a string column to list model groups and an integer column to 

specify the corresponding iteration control for each group specifying the value of 

𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to be used. 

model group group iterations 

g1 0 

  Table 3.7: Group of groups table format 

 

The python script to run the framework can then be configured to export the named group of 

groups table to a CSV file before reimporting and performing the following for each row in 

the table: 

• Use the provided entry in the model group column as an argument to the 

𝑟𝑒𝑎𝑑𝑡𝑎𝑏𝑙𝑒() function 

• Set 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to the value provided in the group iterations column 

• Call the model group 𝑖𝑡𝑒𝑟𝑎𝑡𝑒() function 

The generic methods described in this section extend the PMI to allow for the specification of 

a range of modelling scenarios. Using these foundations, the user can build model group 
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chains where each model group has its own iteration control and model drivers to control data 

routing.  

3.6.5 Data and Metadata 

When models are chained to form an overall system simulation the interface between models 

i.e. model inputs and outputs must be recorded so that variation in results can be attributed to 

variation in model inputs; this requires a metadata system which is chained accordingly to 

keep track of model configuration. The framework should support future model development 

by using a minimally prescriptive model format along with generic model datasets; this 

should simplify coupling newly developed models with existing models whose key 

parameters are extracted. The exploration of model uncertainties based on the automated 

generation of large result sets with accompanying metadata should also be supported.  

The results produced by any given model run can only be of lasting value if the means of their 

production in terms of the model and its data are preserved. Model data should be retained 

and made available to users of the resulting models and data. The PMI requires that the main 

function in a compliant model executable should unpack the provided dictionaries of data 

pointers to use that data. To record metadata, the main function should also repack the 

provided dictionaries i.e. the inputs, outputs and parameters, and store this in a database table 

for use in conjunction with the model output for analysis.     

To simplify the table format, all metadata is stored as a pair of string variables with columns 

for names and values. The process of recording metadata within a Python module begins with 

the creation of two Python lists: ‘name’ and ‘value’. These lists are then filled with 

corresponding data for each item described in PMI model datasets using either 𝑎𝑝𝑝𝑒𝑛𝑑() to 

add single items, or 𝑒𝑥𝑡𝑒𝑛𝑑() to combine lists of items. Once this process is complete, the 

‘name’ and ‘value’ lists are used to form a ’metadata’ list of lists which is combined in a 

single list of name-value tuples using the 𝑧𝑖𝑝() function.  

When models and sub-models are arranged in a model chain where the output of one model 

serves as the input to another and so on, it is important that the final model metadata contains 

the metadata for all models before it in the chain to comprehensively describe the model run 

configuration. When forming metadata chains any model whose input is derived from another 

model output should assume responsibility for retrieving and incorporating metadata from the 

previous stage. The list of metadata for the current model or sub-model is added to the end of 

the input metadata list using the 𝑒𝑥𝑡𝑒𝑛𝑑() function and written to a newly created database 

table e.g. 𝑚2_𝑜𝑢𝑡𝑝𝑢𝑡_𝑚𝑑, as before. 
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A model which is preceded by a model driver should be indicated by a value of 𝑡𝑟𝑢𝑒 for the 

generic model parameter 𝑑𝑟𝑖𝑣𝑒𝑛. The process of retrieving and incorporating the metadata 

from the driver model named in the generic model input 𝑑𝑟𝑖𝑣𝑒𝑟_𝑛𝑎𝑚𝑒 can then be automated 

As with chained model metadata, the list of metadata for the current model or sub-model is 

complete it is added to the end of the driver metadata list using the 𝑒𝑥𝑡𝑒𝑛𝑑() function. 

3.6.6 Model Execution 

The UIMF makes use of SQL commands embedded within Python programs to interact with 

model data stored in spatial database tables. These Python modules can be arranged and 

connected in a flexible manner to meet the requirements of a range of modelling scenarios. 

Interactivity and flexibility are two of the key attributes of Python and scripting languages in 

general, another benefit of using Python is the ability to make use of existing libraries written 

in C/C++ where improved performance is required.  

The Python Application Programming Interface (API) details the steps required to manually 

extend Python with modules written in C/C++; however, this is a laborious task which would 

need to be repeated for each new extension. The key principle of language interoperability in 

this case is to convert function arguments from Python to C/C++, and the results returned by 

functions back from C/C++ to Python. The Simplified Wrapper and Interface Generator 

(SWIG) was chosen to accomplish this task within the UIMF due to its ease of use.  

SWIG is a software development tool which creates wrappers to interface C/C++ programs 

with several different languages including Python; it provides extensive customisation options 

but often requires only basic information to package C/C++ libraries for use as Python 

extension modules. Wrappers are generated using interface files in which everything to be 

included in the extension module is declared. These interface files can simply reference 

existing C/C++ headers for function prototypes and class definitions. The declarations in the 

interface file are used to generate the ‘module’ which has two outputs: a _𝑤𝑟𝑎𝑝. 𝑐𝑥𝑥 file 

which is compiled into a shared library, and a . 𝑝𝑦 file which is imported by users of the 

module. The final extension module (including the _𝑤𝑟𝑎𝑝. 𝑐𝑥𝑥 file) is compiled into a shared 

library using a file format (. 𝑝𝑦𝑑) which is the Python equivalent of a Dynamic Link Library 

(DLL).  

The management and transfer of data between spatial database tables and models which 

consume and produce that data should be handled within the Python module responsible for 

executing each model. The UIMF provides numerous functions and techniques to manage this 

data handling process which involves vector, raster and non-spatial data types. In the case of 
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using wrapped C++ models, this exchange involves exporting data to and importing data from 

CSV files in a designated folder.  

3.7 Summary 

This chapter identified the need for an integrated approach to modelling future land use, 

transport and the environment (Section 3.2), before defining desirable characteristics required 

by such a system in Section 3.3. It then reviewed existing urban modelling frameworks and 

considered their relative strengths and limitations (Section 3.4). Section 3.5 presented the 

concept and models of the Urban Integrated Assessment Framework (UIAF) before critiquing 

the framework in terms of requirements identified in Section 3.3. In Section 3.6 the 

conceptual design and implementation of an Urban Integrated Modelling Framework (UIMF) 

was presented which reworks and integrates existing models in order to address problems 

identified in Section 3.5. The following three chapters detail the implementation of models 

within the UIMF beginning with the SIM in chapter 4. 
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Chapter 4. Spatial Interaction Model 

4.1 Introduction 

This chapter presents the Spatial Interaction Model (SIM) implemented in the Urban 

Integrated Modelling Framework (UIMF). Section 4.2 provides theoretical underpinnings, 

compares the SIM with similar models and justifies the simplified approach taken. Section 4.3 

describes the development of this model from the reference implementation in the Urban 

Integrated Assessment Framework (UIAF) and highlights key differences. Section 4.4 gives a 

high-level overview of the model and its operation within the software environment of the 

UIMF, and Section 4.5 provides a detailed description of the SIM implementation.       

4.2 Overview 

Spatial interaction models the flow of activities between geographical locations often depicted 

by point locations representing larger areas. Flows between locations can represent a range of 

factors including traffic, migration and materials; however, focus is placed upon interactions 

which are routine and repeated. The physical networks by which interactions take place are 

not always modelled, instead a function of the distance between locations is often used as a 

measure of separation. Spatial interaction models are widely used as part of the four-stage 

transport model, modelling transport demand from existing land use.  

Hansen (1959) demonstrated that accessibility and land availability can be used to model 

residential land use. This co-dependent link between land use and transportation paved the 

way for coordinated planning. Lowry (1964) developed the first operational model integrating 

land use and transport using nested spatial interaction models to simulate residential and 

service/retail employment locations within a zonal system.  

The simplest form of spatial interaction models trips, 𝑇(𝑖)(𝑗), between residential locations and 

employment locations according to attributes of the origin, 𝑉(𝑖), attributes of the destination, 

𝑊(𝑗), and their geographical separation, 𝑆(𝑖)(𝑗); this is formulated as in Eq. 4.1. 

𝑇(𝑖)(𝑗) = 𝑓(𝑉(𝑖), 𝑊(𝑗), 𝑆(𝑖)(𝑗))  Eq. 4.1 

The SIM is singly constrained meaning that employment locations are established prior to the 

distribution of population. The potential for spatial interactions in any given zone to access 

employment via transport networks is a key driver of residential location choice. Employment 

and population models are coupled by sharing area availability within each zone, so each 

iteration of the employment/population model modifies available land for the next.  



55 

 

4.3 Development 

The SIM is based upon the corresponding Zonal Model (ZM) from the UIAF which was 

implemented using MATLAB for the Greater London Authority (GLA) region, this was 

loosely coupled with other models in a climate impact assessment framework. A key 

requirement of the UIMF is that models should be transferable from one study region or 

scenario to another without modification of the source code; this means that the approach 

taken in the UIAF which was to create bespoke scripts and data-loading for each model run is 

not suitable. The SIM is generalised in terms of inputs, outputs and parameters and all model 

data is held in a PostgreSQL database.  

All hardcoded parameters were moved from model scripts to database tables allowing the 

model to be applied to case studies with different numbers of zones, timesteps, population 

attractors, employment attractors and sectors of employment; this enables the SIM to allocate 

memory and load input data for different model applications. All model inputs and outputs 

were moved from hardcoded local files to named PostgreSQL database tables enabling model 

parameterisation via a shared data reservoir. 

The ZM uses exogeneous models to provide employment and population inputs for the GLA 

region. SIM generalises the process of model driving via projected values of employment and 

population. Clearly it is desirable to drive the SIM with projected values for both employment 

and population for the study region based upon reasonable assumptions, but it is also 

necessary to produce model outputs in cases where input data may be limited.  

SIM can be driven using projected values of employment, population or ideally both. In the 

case that either employment or population data is not available the SIM uses a fixed inverse 

activity ratio calculated using observed values of employment and population to estimate the 

missing set of projected data.  

Projected data for employment and/or population may not be available at the level of the 

study region therefore it is useful to be able to drive the model using either national data or 

simple growth functions. The SIM treats projections of employment and/or population as 

percentage drivers relative to observed values.    

The ZM deals only with positive growth, in cases of decline the model either provides no 

response in terms of population or offsets declining sectors against growing sectors in terms 

of employment. This approach is incomplete and in the case of employment results in sectors 

being located in areas which do not necessarily correspond to their input attractors as a result 
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of the offsetting process across sectors. The SIM explicitly models both positive and negative 

change in employment and population using reciprocal drivers to handle decline, this assumes 

that since positive change is spread in proportion to relative zonal attractiveness, negative 

change should be spread in proportion to relative zonal unattractiveness i.e. decline is 

apportioned to the least promising areas for growth. Where either employment or population 

is in decline, land is given back to the zone in proportion to the observed density of 

development, hence assuming that buildings are repurposed or demolished to make way for 

new development.  

The process of enforcing area capacity constraints in the ZM is retained in this model, but the 

results of the process are now output from the model to be used as practical checks on 

whether all employment and population could be accommodated in each timestep. Since the 

ZM does not adjust density values to ensure this is the case, the model should be iterated with 

increasing values of density in cases where current density values cannot serve demand for 

employment and population; the results of the area capacity constraints test provide a measure 

to test against in such situations. 

The process of generating the available area for development within each zone is changed in 

the SIM. The ZM calculates this on the basis of vector data for each zone whereas the SIM 

uses a value output from the Urban Development Model (UDM) (Chapter 6) to ensure 

consistency across spatial scales. In the SIM, the available area for development value is 

calculated according to the number of available cells defined by the constraint raster input to 

the UDM. This results in values derived from the number of cells (i.e. where UDM uses 100m 

grid cells the available area value is in units of hectares).  

Finally, the SIM records metadata for its own inputs, outputs and parameters and for all 

models which precede it in the modelling chain; this metadata is passed using the name of the 

model output appended with ‘_md’ and passed on to UDM along with values of population 

and employment for further modelling. A comparison between the UIAF ZM and UIMF SIM 

is shown in table 4.1.         

Functionality UIAF ZM UIMF SIM 

Programming Language MATLAB Python/C++ 

Data loading Bespoke Shared database 

Parameterisation No Yes 

Projected data adjustment No Yes 
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Decline No Yes 

Overflow No Yes 

Consistent with UDM No Yes 

Table 4.1: UIAF ZM Vs UIMF SIM. 

 

4.4 Framework Spatial Interaction Model  

4.4.1 Overview 

As shown in Figure 4.1 the SIM implemented in the UIMF is linked to PostgreSQL database 

tables via the Python Model Interface (PMI) described in Section 3.6.2 The SIM algorithm is 

written in C++ which is made callable from Python using the Simplified Wrapper and 

Interface Generator (SWIG). High-level operation of the model involves exporting data in the 

Python script from named input database tables to csv files held in the designated swap folder 

to provide inputs to the C++ model. 

The parameters 𝑒𝑚𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 and 𝑝𝑜𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 determine whether projected employment and 

population datasets are available and therefore should be exported and used as model drivers. 

The C++ SIM class constructor is initiated by passing in key parameters such as the number 

of zones which allows the C++ model to allocate memory to load input data. Data is then 

loaded into the C++ model from csv files in the swap folder and the model is executed. 

Upon completion of the C++ SIM algorithm, the Python script creates PostgreSQL database 

tables named as outputs via the PMI to store results which are copied from csv files held in a 

designated swap folder and model inputs, outputs and parameters specified by the PMI are 

gathered into SIM metadata. Since the SIM takes the output of the Transport Accessibility 

Model (TAM) as an input, TAM metadata is loaded and incorporated into the model metadata 

chain before writing to the named PostgreSQL database along with model results. 
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Figure 4.1: Overview of the Spatial Interaction Model framework. 
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4.4.2 Model Interface 

An overview of the datasets for the UIMF SIM is shown in figure 4.2. 

 
 

Figure 4.2: Spatial Interaction Model Data 

 

Integer parameters shown in figure 4.2 specific to the zonal model are: ‘number of 

timesteps’ (t), ‘number of zones’ (z), ‘number of sectors of employment’ (s), ‘number of 

employment attractors’ (e) and ‘number of population attractors’ (p). This 

parameterisation specifies the dimensions of the zonal model, its inputs and outputs; and is 

fundamental to transferability between study regions. 

The inputs ‘observed employment’, 𝑬(𝒛)(𝒔)
𝒐𝒃𝒔𝒓𝒗, and ‘observed population’, 𝑷(𝒛)

𝒐𝒃𝒔𝒓𝒗, describe 

the initial spatial distribution of employment and population i.e. in the first timestep. The 

input ‘free area’, 𝑨(𝒛)
𝒇𝒓𝒆𝒆

, quantifies the land available for future development within each zone 

and can be described as in equation 4.2. 

𝐴(𝑧)
𝑓𝑟𝑒𝑒

=  𝐴(𝑧)
𝑡𝑜𝑡𝑎𝑙 −  𝐴(𝑧)

𝑐𝑜𝑛𝑠𝑡𝑟 −  𝐴(𝑧)
𝑜𝑏𝑠𝑟𝑣 𝑒𝑚𝑝 − 𝐴(𝑧)

𝑜𝑏𝑠𝑟𝑣 𝑝𝑜𝑝  (Eq. 4.2) 

Where 𝐴(𝑧)
𝑡𝑜𝑡𝑎𝑙 is the total area of the zone, 𝐴(𝑧)

𝑐𝑜𝑛𝑠𝑡𝑟 is the area subject to development 

constraints, 𝐴(𝑧)
𝑜𝑏𝑠𝑟𝑣 𝑒𝑚𝑝

 is the area which currently houses employment, and 𝐴(𝑧)
𝑜𝑏𝑠𝑟𝑣 𝑝𝑜𝑝

 is the 

area which currently houses population. 

Modifying the constrained area, 𝐴(𝑧)
𝑐𝑜𝑛𝑠𝑡𝑟, and recalculating 𝐴(𝑧)

𝑓𝑟𝑒𝑒
, allows for a range of 

constraints to be applied reflecting different land use development policies.  

The inputs ‘projected employment’, 𝑬(𝒔)(𝒕)
𝒑𝒓𝒐𝒋

, and ‘projected population’, 𝑷(𝒕)
𝒑𝒓𝒐𝒋

, provide 

possible future values based on exogenous model inputs.  
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These values are converted to ratios which multiply 𝐸(𝑧)(𝑠)
𝑜𝑏𝑠𝑟𝑣 and 𝑃(𝑧)

𝑜𝑏𝑠𝑟𝑣 respectively; this 

allows the change in employment and population within the study region to be driven in a 

flexible manner e.g. using national projections or percentage multipliers. 

Future development i.e. where 𝑡 > 0, is carried out according to the inputs ‘employment 

density’, 𝑫(𝒛)
𝒆𝒎𝒑

, and ‘population density’, 𝑫(𝒛)
𝒑𝒐𝒑

. Observed density values are calculated 

using equations 4.3 and 4.4 respectively, to which offsets and multipliers can be applied to 

reflect densification scenarios etc. 

𝐷(𝑧)
𝑒𝑚𝑝  =  𝐸(𝑧)(𝑠)

𝑜𝑏𝑠𝑟𝑣 𝐴(𝑧)
𝑜𝑏𝑠𝑟𝑣 𝑒𝑚𝑝⁄  (Eq. 4.3.) 

𝐷(𝑧)
𝑝𝑜𝑝  =  𝑃(𝑧)

𝑜𝑏𝑠𝑟𝑣 𝐴(𝑧)
𝑜𝑏𝑠𝑟𝑣 𝑝𝑜𝑝⁄   (Eq. 4.4) 

The spatial disaggregation of employment is driven by the inputs ‘employment attractors’, 

𝑨𝒕𝒕(𝒛)(𝒆)
𝒆𝒎𝒑

, and ‘employment weights’, 𝑾(𝒆)(𝒔)
𝒆𝒎𝒑

; for example, 𝐸(𝑧)(𝑠)
𝑜𝑏𝑠𝑟𝑣 could be used to attract 

future employment in proportion to existing employment. The spatial disaggregation of 

population is driven by the inputs ‘population attractors’, 𝑨𝒕𝒕(𝒛)(𝒑)
𝒑𝒐𝒑

, ‘population weights’, 

𝑾(𝒑)
𝒑𝒐𝒑

, and ‘accessibility matrix’, 𝑨𝒄𝒄(𝒛)(𝒛); where 𝐴𝑐𝑐(𝑧)(𝑧)represents the accessibility 

between origin and destination zones as output by the travel model. Both sets of attractors and 

weights are normalised during model execution to simplify the configuration process.  

4.4.3 Setup and memory allocation 

After an instance of the zonal model class is created, the setup function is called with the 

parameters s, t, z, e and p; these parameters are copied to integer variables used for memory 

allocation, data loading and iteration control. The memory footprint of the model is largely 

determined by the parameters which are not known at compile time, so dynamic memory 

must be allocated on the heap.  The vector class within the C++ standard namespace could be 

used for this purpose; however, plain arrays are used in this case. All arrays are allocated in 

advance from the setup function and are deallocated when the model run is complete.     

The method for loading input data (table 4.2) from .csv files employs arrays of string 

variables to temporarily store the contents of a single column of data read from file. Each 

parameter input to the setup function; s, t, z, e and p; has a corresponding dynamically 

allocated array; 𝑆(𝑠), 𝑆(𝑡), 𝑆(𝑧), 𝑆(𝑒) and 𝑆(𝑝).  
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Name Symbol Rows Columns 

observed 

employment 

𝐸(𝑧)(𝑠)
𝑜𝑏𝑠𝑟𝑣 z s 

observed 

population 

𝑃(𝑧)
𝑜𝑏𝑠𝑟𝑣 z  

free area 𝐴(𝑧)
𝑓𝑟𝑒𝑒

 z  

projected 

employment 

𝐸(𝑠)(𝑡)
𝑝𝑟𝑜𝑗

 s t 

projected 

population 

𝑃(𝑡)
𝑝𝑟𝑜𝑗

 t  

employment 

density 

𝐷(𝑧)
𝑒𝑚𝑝

 z  

population 

density 

𝐷(𝑧)
𝑝𝑜𝑝

 z  

employment 

attractors 

𝐴𝑡𝑡(𝑧)(𝑒)
𝑒𝑚𝑝

 z e 

employment 

weights 

𝑊(𝑒)(𝑠)
𝑒𝑚𝑝

 e s 

population 

attractors 

𝐴𝑡𝑡(𝑧)(𝑝)
𝑝𝑜𝑝

 z p 

population 

weights 

𝑊(𝑝)
𝑝𝑜𝑝

 p  

Table 4.2: Input data dimensions and string arrays 

 

Each array shown in Table 4.2 is loaded via a function taking the name of a .csv file as an 

argument. The data loading process makes use of two framework functions: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡() and 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡(). 𝐸𝑥𝑡𝑟𝑎𝑐𝑡() reads a designated column of data from a named .csv file, storing it in 

a string array; 𝐶𝑜𝑛𝑣𝑒𝑟𝑡() converts datatypes, from string to double in this case. To load the 

one-dimensional arrays of input data in table 4.2, 𝐸𝑥𝑡𝑟𝑎𝑐𝑡() is called once to read data into 

the named string array, then 𝐶𝑜𝑛𝑣𝑒𝑟𝑡() is iterated over rows to convert and copy each 

element of the array. This process is extended to load the two-dimensional arrays of input data 

by iterating over columns. 
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4.5 Detailed Spatial Interaction Model Description 

 

 
 

Figure 4.3: Flow of Operations in the SIM. 

   

4.5.1 Study Region Projections 

The SIM is driven using projections of employment and/or population for t timesteps, in the 

initial timestep both employment and population are set to observed values. In all subsequent 

timesteps, projections are converted to ratios which are used to multiply observed 

employment or population. This ensures that discrepancies between observations and 

projected data in the initial timestep are resolved and allows the model to be used with a range 
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of inputs including projections which are not specific to the study region and simple 

percentage drivers.   

For each employment sector the employment ratio, 𝐸(𝑠)(𝑡)
𝑟𝑎𝑡𝑖𝑜, is found by dividing projected 

employment in each timestep by projected employment in the initial timestep (Eq. 4.5). 

Observed employment is then summed over all zones, z, for each sector, s, (Eq. 4.6) allowing 

the calculation of study region employment by multiplying observed employment by the 

employment sector ratio for each timestep and each sector (Eq. 4.7). The model of zonal 

employment (section 4.5.2) spreads the change in employment relative to the previous 

timestep so employment change for each sector in each timestep, 𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

, is found (Eq. 4.8).  

𝐸(𝑠)(𝑡)
𝑟𝑎𝑡𝑖𝑜 = 𝐸(𝑠)(𝑡)

𝑝𝑟𝑜𝑗
𝐸(𝑠)(𝑡=0)

𝑝𝑟𝑜𝑗
⁄   (Eq. 4.5) 

𝐸(𝑠)
𝑜𝑏𝑠𝑟𝑣 = ∑ 𝐸(𝑧)(𝑠)

𝑜𝑏𝑠𝑟𝑣  (Eq. 4.6) 

𝐸(𝑠)(𝑡) = 𝐸(𝑠)(𝑡)
𝑟𝑎𝑡𝑖𝑜 × 𝐸(𝑠)

𝑜𝑏𝑠𝑟𝑣  (Eq. 4.7) 

𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝐸(𝑠)(𝑡) − 𝐸(𝑠)(𝑡−1)  (Eq. 4.8) 

The population ratio, 𝑃(𝑡)
𝑟𝑎𝑡𝑖𝑜, is found by dividing projected population in each timestep by 

projected population in the initial timestep (Eq. 4.9). Observed population is then summed 

over all zones, z, (Eq. 4.10) allowing the calculation of study region population for each 

timestep by multiplying observed population by the population ratio (Eq. 4.11). The model of 

zonal population (section 4.5.3) spreads the change in population relative to the previous 

timestep so population change in each timestep, 𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

, is calculated (Eq. 4.12).  

𝑃(𝑡)
𝑟𝑎𝑡𝑖𝑜 = 𝑃(𝑡)

𝑝𝑟𝑜𝑗
𝑃(𝑡=0)

𝑝𝑟𝑜𝑗
⁄   (Eq. 4.9)  

𝑃𝑜𝑏𝑠𝑟𝑣 = ∑ 𝑃(𝑧)
𝑜𝑏𝑠𝑟𝑣  (Eq. 4.10) 

𝑃(𝑡) = 𝑃(𝑡)
𝑟𝑎𝑡𝑖𝑜 × 𝑃𝑜𝑏𝑠𝑟𝑣  (Eq. 4.11) 

𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑃(𝑡) − 𝑃(𝑡−1)  (Eq. 4.12) 

The Boolean parameters 𝑒𝑚𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 and 𝑝𝑜𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 (Figure 4.2) specify the projected data 

used by the model. Where both parameters are TRUE, employment and population are 

configured as described previously in this section. Where either value is FALSE, further 

calculations are needed to drive both employment and population from a single set of 

projected values.  
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Where only 𝑝𝑜𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 is TRUE, it is assumed that there is a single sector of employment. 

Study region employment for each timestep can then be scaled from observed employment 

values using the population ratio (Eq. 4.9). Where only 𝑒𝑚𝑝_𝑑𝑟𝑖𝑣𝑒𝑟 is TRUE, the 

employment ratio calculation (Eq. 4.5) is modified to sum across all sectors, study region 

population for each timestep can then be scaled from observed population values using the 

all-sector employment ratio. Both of these approaches assume a fixed inverse activity ratio 

(Eq. 4.13) based on total observed population (Eq. 4.10) and total observed employment (Eq. 

4.14). 

𝐴𝑐𝑡𝑖𝑛𝑣 = 𝑃𝑜𝑏𝑠𝑟𝑣 𝐸𝑜𝑏𝑠𝑟𝑣⁄   (Eq. 4.13) 

𝐸𝑜𝑏𝑠𝑟𝑣 = ∑ 𝐸(𝑧)(𝑠)
𝑜𝑏𝑠𝑟𝑣  (Eq.  4.14) 

4.5.2 Model of Zonal Employment 

Employment change,  𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

, calculated in section 4.5.1 is spread across zones in the study 

region using input zonal employment attractors and weights, these are combined into a 

normalised employment mass term which sums to one across all zones for each sector.  

The employment mass term, 𝑀(𝑧)(𝑠)
𝑒𝑚𝑝

, is used to spread positive employment change across 

zones for timesteps 𝑡 > 0. 

Input employment attractors are firstly summed over all zones (𝐴𝑡𝑡𝑠𝑢𝑚) then normalised 

across all zones (Eq. 4.15) for each attractor, whilst input employment weights are firstly 

summed over all attractors (𝑊𝑠𝑢𝑚) then normalised across all attractors (Eq. 4.16) for each 

sector. Spatial employment attractors are used in conjunction with sector weights allowing 

each sector to be independently spatially driven.  These are combined by copying attractors to 

all sectors then multiplying by weights to create a set of weighted employment attractors for 

all zones, attractors and sectors (Eq. 4.17). The employment mass term, 𝑀(𝑧)(𝑠)
𝑒𝑚𝑝

, is then 

calculated as the sum of weighted employment attractors over all attractors. 

𝐴𝑡𝑡(𝑧)(𝑒)
𝑒𝑚𝑝 = 𝐴𝑡𝑡(𝑧)(𝑒)

𝑒𝑚𝑝 𝐴𝑡𝑡𝑠𝑢𝑚⁄   (Eq. 4.15)  

𝑊(𝑒)(𝑠)
𝑒𝑚𝑝 = 𝑊(𝑒)(𝑠)

𝑒𝑚𝑝 𝑊𝑠𝑢𝑚⁄   (Eq. 4.16)  

𝑤𝐴𝑡𝑡(𝑧)(𝑒)(𝑠)
𝑒𝑚𝑝 = 𝐴𝑡𝑡(𝑧)(𝑒)(𝑠)

𝑒𝑚𝑝 × 𝑊(𝑒)(𝑠)
𝑒𝑚𝑝

  (Eq. 4.17) 

A negative employment mass term, 𝑀(𝑧)(𝑠)
−𝑒𝑚𝑝

, is used to spread negative employment change 

(calculated in 4.5.1) across zones in the study region for timesteps 𝑡 > 0. This uses the 
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reciprocal of the employment mass calculated to spread positive employment (Eq. 4.18) on 

the basis that decline is most likely to occur in the least attractive areas for growth. The 

negative employment mass is calculated by firstly summing the reciprocal employment mass 

over all zones (𝑟𝑀𝑠𝑢𝑚) then normalising across all zones (Eq. 4.19) for each sector. 

𝑟𝑀(𝑧)(𝑠)
𝑒𝑚𝑝 = 1 − 𝑀(𝑧)(𝑠)

𝑒𝑚𝑝
  (Eq. 4.18) 

𝑀(𝑧)(𝑠)
−𝑒𝑚𝑝 = 𝑟𝑀(𝑧)(𝑠)

𝑒𝑚𝑝 𝑟𝑀𝑠𝑢𝑚⁄   (Eq. 4.19)  

The spread of employment across zones for each sector is dependent upon whether 

employment change is positive or negative. Where employment change is positive, 𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

>

0, then disaggregation across zones uses the employment mass term (Eq. 4.20), where 

employment change is negative, 𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

< 0, then disaggregation across zones uses the 

negative employment mass term (Eq. 4.21). This initial spread is subject to corrections for 

negative employment (section 4.5.4) and land use capacity (section 4.5.6). 

𝐸(𝑧)(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑀(𝑧)(𝑠)
𝑒𝑚𝑝 × 𝐸(𝑠)(𝑡)

𝑐ℎ𝑎𝑛𝑔𝑒
  (Eq. 4.20) 

𝐸(𝑧)(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑀(𝑧)(𝑠)
−𝑒𝑚𝑝

× 𝐸(𝑠)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

  (Eq. 4.21) 

 

4.5.3 Model of Zonal Population 

The population mass term, 𝑀(𝑧)
𝑝𝑜𝑝

, is used along with accessibility to employment to spatially 

disaggregate population change calculated in section 4.5.1. Input population attractors are 

firstly summed over all zones (𝐴𝑡𝑡𝑠𝑢𝑚) then normalised across all zones (Eq. 4.22) for each 

attractor, whilst input population weights are firstly summed over all attractors (𝑊𝑠𝑢𝑚) then 

normalised across all attractors (Eq. 4.23). These are combined by multiplying attractors by 

weights to create a set of weighted population attractors for all zones and attractors (Eq. 4.24). 

The population mass term, 𝑀(𝑧)
𝑝𝑜𝑝

, is then calculated as the sum of weighted population 

attractors over all attractors. 

𝐴𝑡𝑡(𝑧)(𝑝)
𝑝𝑜𝑝 = 𝐴𝑡𝑡(𝑧)(𝑝)

𝑝𝑜𝑝 𝐴𝑡𝑡𝑠𝑢𝑚⁄   (Eq. 4.22)  

𝑊(𝑝)
𝑝𝑜𝑝 = 𝑊(𝑝)

𝑝𝑜𝑝 𝑊𝑠𝑢𝑚⁄   (Eq. 4.23) 

𝑤𝐴𝑡𝑡(𝑧)(𝑝)
𝑝𝑜𝑝 = 𝐴𝑡𝑡(𝑧)(𝑝)

𝑝𝑜𝑝 ×  𝑊(𝑝)
𝑝𝑜𝑝

  (Eq. 4.24) 
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The population potential term, 𝑃𝑜𝑡(𝑧)(𝑡)
𝑝𝑜𝑝

, is used to spread population change across zones in 

the study region for timesteps 𝑡 > 0. It combines the population mass term constructed from 

weighted attractors with all-sector employment and the accessibility matrix, 𝐴𝑐𝑐(𝑧)(𝑧), output 

from the TAM (Chapter 5). 

For each origin zone, the product of all-sector employment in the destination zone, and the 

accessibility from origin to destination, is summed for all destinations (Eq. 4.25) to generate 

accessibility to employment which is multiplied by the population mass for the origin zone 

(Eq. 4.26). Population potential, 𝑃𝑜𝑡(𝑧)(𝑡)
𝑝𝑜𝑝

, is then summed over all zones (𝑃𝑜𝑡𝑠𝑢𝑚) and 

normalised across all zones (Eq. 4.27). 

𝐴𝑐𝑐(𝑜𝑟𝑖𝑔)(𝑡)
𝑒𝑚𝑝 = ∑ 𝐸(𝑑𝑒𝑠𝑡)(𝑡)

𝑡𝑜𝑡𝑎𝑙  ×  𝐴𝑐𝑐(𝑜𝑟𝑖𝑔)(𝑑𝑒𝑠𝑡)  (Eq. 4.25) 

𝑃𝑜𝑡(𝑜𝑟𝑖𝑔)(𝑡)
𝑝𝑜𝑝 = 𝐴𝑐𝑐(𝑜𝑟𝑖𝑔)(𝑡)

𝑒𝑚𝑝 × 𝑀(𝑜𝑟𝑖𝑔)
𝑝𝑜𝑝

  (Eq. 4.26) 

𝑃𝑜𝑡(𝑧)(𝑡)
𝑝𝑜𝑝 = 𝑃𝑜𝑡(𝑧)(𝑡)

𝑝𝑜𝑝 𝑃𝑜𝑡𝑠𝑢𝑚⁄   (Eq. 4.27) 

A negative population potential term, 𝑃𝑜𝑡(𝑧)(𝑡)
−𝑝𝑜𝑝

, is used to spread negative population change 

(calculated in 4.5.1) across zones in the study region for timesteps 𝑡 > 0. This uses the 

reciprocal of the population potential calculated to spread positive population (Eq. 4.28) on 

the basis that decline is most likely to occur in areas with the lowest accessibility to 

employment and the least attractiveness for growth. The negative population potential is 

calculated by firstly summing the reciprocal population potential over all zones (𝑟𝑃𝑜𝑡𝑠𝑢𝑚) 

then normalising across all zones (Eq. 4.29). 

𝑟𝑃𝑜𝑡(𝑧)(𝑡)
𝑝𝑜𝑝 = 1 − 𝑃𝑜𝑡(𝑧)(𝑡)

𝑝𝑜𝑝
  (Eq. 4.28) 

𝑃𝑜𝑡(𝑧)(𝑡)
−𝑝𝑜𝑝 = 𝑟𝑃𝑜𝑡(𝑧)(𝑡)

𝑝𝑜𝑝   𝑟𝑃𝑜𝑡𝑠𝑢𝑚⁄   (Eq. 4.29)  

The spread of population across zones is dependent upon whether population change is 

positive or negative. Where population change is positive, 𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

> 0, then disaggregation 

across zones uses the population potential term (Eq. 4.30), where population change is 

negative, 𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

< 0, then disaggregation across zones uses the negative population 

potential term (Eq. 4.31). This initial spread is subject to corrections for negative population 

(section 4.5.4) and land use capacity (section 4.5.5). 

𝑃(𝑧)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

 ×  𝑃𝑜𝑡(𝑧)(𝑡)
𝑝𝑜𝑝

  (Eq. 4.30) 
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𝑃(𝑧)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑃(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

 ×  𝑃𝑜𝑡(𝑧)(𝑡)
−𝑝𝑜𝑝

  (Eq. 4.31) 

 

4.5.4 Negative Correction 

In some circumstances the initial spread of negative change in employment sectors (Section 

4.5.2 – Eq. 4.21) and population (Section 4.5.3 – Eq. 4.31) may result in some zones being 

allocated negative total sectoral employment and/or population; this is not physically possible 

and must therefore be corrected. The approach to these corrections taken in the UIMF SIM 

(figure 4.4 and table 4.2) gives back employment/population to zones with a deficit and 

removes employment/population from zones with a surplus. The SIM maintains values of 

total employment/population as well as changes relative to the previous timestep in order to 

make these corrections. Sets of temporary values are calculated from total 

employment/population in the previous timestep plus the initial change in the current timestep 

(Eq. 4.32) which are used in the correction process. 

𝑋(𝑧)
𝑡𝑒𝑚𝑝 =  𝑋(𝑧)(𝑡−1)

𝑡𝑜𝑡𝑎𝑙 +  𝑋(𝑧)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

  (Eq. 4.32) 

Figure 4.4 generalises the negative correction process and table 4.3 details specific operations 

for employment and population. A key difference between the processes is that negative 

employment must be corrected on a sector by sector basis to preserve total employment levels 

in each sector, meaning that the flow of operations shown in figure 4.4 must be iterated for 

multiple employment sectors.      

The removal of employment/population from Z2 zones is equivalent to iterating the negative 

spread across zones in the models of employment (Section 4.5.2 – Eq. 4.21) and population 

(Section 4.5.3 – Eq. 4.31); the difference is that the models are only applied to zones in set Z2 

which have a surplus hence the negative employment mass and negative population potential 

terms are normalised over set Z2 zones to distribute the summed deficit across them. After 

corrections have been made on the sets of temporary values the total employment/population 

(Eq. 4.33) and change in the current timestep (Eq. 4.34) are found and used to calculate the 

available area in each zone by updating the land use for employment (section 4.5.7) and 

population (section 4.5.8).    

𝑋(𝑧)(𝑡)
𝑡𝑜𝑡𝑎𝑙 =  𝑋(𝑧)

𝑡𝑒𝑚𝑝
  (Eq. 4.33) 

𝑋(𝑧)(𝑡)
𝑐ℎ𝑎𝑛𝑔𝑒

=  𝑋(𝑧)
𝑡𝑒𝑚𝑝 −  𝑋(𝑧)(𝑡−1)

𝑡𝑜𝑡𝑎𝑙   (Eq. 4.34) 
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Figure 4.4: Overview of negative correction process. 

 

Function – (see Figure N) Employment Model Population Model 

Evaluate F(Z) for all zones Total employment in sector Total population 

Sum F(Z) over Z1 = F(Z1) Sum negative employment 

for sector in Z1 zones 

Sum negative population in 

Z1 zones 

Clamp Z1 F(Z) to zero Clamp employment for 

sector to zero in Z1 zones 

Clamp population to zero in 

Z1 zones 

Spread F(Z1) across Z2 

using G(Z) 

G(Z) = Z2 normalised 

negative employment mass  

G(Z) = Z2 normalised 

negative population potential  

 

Table 4.3: Functions used in negative correction process (Figure 4.4). 
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4.5.5 Population Capacity Correction 

In some circumstances the initial spread of positive change in population (Section 4.5.3 – Eq. 

4.30) may result in some zones being allocated more population than can be housed at the 

input observed population density; this could be rectified by increasing the population density 

to meet demand within the available area but the approach taken in the UIMF SIM is to 

enforce capacity constraints within each zone and redistribute excess population where 

possible over zones with land availability. The UIMF SIM overflow output records whether 

there was enough land available in the study region to accommodate the projected increase in 

population for each timestep; where this was not the case, zonal population densities can be 

adjusted before rerunning the model.  

Figure 4.5 provides an overview of the land use correction process which is structurally 

similar to the process of negative correction described in section 4.5.4. Excess population is 

evaluated (Figure 4.5 - *1 – F(Z)) by comparing the initial spread of population change with 

the maximum change possible within each zone in terms of population density and remaining 

free area within the zone (Eq. 4.35). Zones with spare capacity are pushed into set Z2 whilst 

zones which exceed capacity are pushed into set Z1 and excess population is summed across 

the set. Population change in Z1 zones is set to the maximum possible for each zone (Figure 

4.5 - *2) at current population density within available land. 

𝑃(𝑧)
𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑃(𝑧)(𝑡)

𝑐ℎ𝑎𝑛𝑔𝑒
− (𝐷(𝑧)

𝑝𝑜𝑝  × 𝐴(𝑧)
𝑓𝑟𝑒𝑒

)    (Eq. 4.35) 

The redistribution of excess population across Z2 zones is equivalent to iterating the positive 

spread in the model of zonal population (Section 4.5.3 – Eq. 4.30); the difference is that the 

model is only applied to zones in set Z2 which have spare capacity hence the population 

potential term (Figure 4.5 - *3 – G(Z)) is normalised over set Z2 zones to distribute the 

summed excess population across them. 
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Figure 4.5: Population Capacity Correction. 
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4.5.6 Employment Capacity Correction 

In some circumstances the initial spread of positive change in employment (Section 4.5.2 – 

Eq. 4.20) may result in some zones being allocated more employment than can be housed at 

the input observed employment density; this could be rectified by increasing the employment 

density to meet demand within the available area but the approach taken in the UIMF SIM is 

to enforce capacity constraints within each zone and redistribute excess employment where 

possible over zones with land availability. The UIMF SIM overflow output records whether 

there was enough land available in the study region to accommodate the projected increase in 

employment for each timestep; where this was not the case, zonal employment densities can 

be adjusted before rerunning the model.  

Figure 4.6 provides an overview of the employment capacity correction process which is 

similar to population capacity correction (Section 4.5.5) but is more complex due to the need 

to handle employment change over multiple sectors. Key details corresponding to the shaded 

and numbered boxes in Figure 4.6 are as follows: 

1. Employment is summed across sectors with positive employment change within each 

zone; this is because sectors with negative employment change have already given 

land back to the zone in proportion to employment density and the amount of negative 

change. Excess employment, (F(Z)) in figure 4.6, is evaluated by comparing the initial 

spread of employment change in positive sectors with the maximum change possible 

within each zone in terms of employment density and remaining free area within the 

zone (Eq. 4.36). Zones which exceed capacity are pushed into set Z1 whilst zones with 

spare capacity are pushed into set Z2. 

 

𝐸(𝑧)
𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐸(𝑧)(+𝑠)(𝑡)

𝑐ℎ𝑎𝑛𝑔𝑒
− (𝐷(𝑧)

𝑒𝑚𝑝  × 𝐴(𝑧)
𝑓𝑟𝑒𝑒

)    (Eq. 4.36) 

 

2. In Z1 zones the excess employment is as calculated in Eq. 4.36 and the maximum 

employment possible is the product of employment density and area remaining in the 

zone. In each zone the employment change in positive sectors is summed and 

normalised across sectors, G(Z) in figure 4.6, in support of steps 3 and 4. 

 

3. Employment change in each Z1 zone is recalculated using the maximum employment 

value and the normalisation across sectors, G(Z) in figure 4.6, calculated in step 2. 

This ensures that the employment in each sector is in proportion to the initial spread. 
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4. Excess employment change in each zone is split into sectors using the normalisation 

across sectors calculated in step 2. This allows the excess to be redistributed across Z2 

zones on a sector by sector basis, equivalent to iterating the positive spread in the 

model of zonal employment (Section 4.5.2 – Eq. 4.20); the difference is that the model 

is only applied to zones in set Z2 which have spare capacity hence the employment 

mass term (Figure 4.6 – H(Z)) is normalised over set Z2 zones to distribute the 

summed excess employment across them for each sector. 

 

 
Figure 4.6: Employment Capacity Correction. 
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4.5.7 Update Employment Land Use 

Having corrected the spread of employment change for the current timestep the free area 

within each zone must be updated. After negative correction the area from contracting 

employment sectors (Eq. 4.37) is added back to zones. After capacity correction the area used 

by positive employment change is removed from each zone (Eq. 4.38). 

𝐴(𝑧)
𝑓𝑟𝑒𝑒

−= 𝐸(𝑧)(𝑠)(𝑡)
−𝑐ℎ𝑎𝑛𝑔𝑒

𝐷(𝑧)
𝑒𝑚𝑝⁄   (Eq. 4.37) 

𝐴(𝑧)
𝑓𝑟𝑒𝑒

−=  𝐸(𝑧)(𝑡)
+𝑐ℎ𝑎𝑛𝑔𝑒

𝐷(𝑧)
𝑒𝑚𝑝⁄   (Eq. 4.38) 

4.5.8 Update Population Land Use 

Having corrected the change in population change for the current timestep the free area within 

each zone must be updated. The area from contracting population is added back to zones (Eq. 

4.39). The area used by positive population change is then removed from each zone (Eq. 

4.40). 

𝐴(𝑧)
𝑓𝑟𝑒𝑒

−= 𝑃(𝑧)(𝑡)
−𝑐ℎ𝑎𝑛𝑔𝑒

𝐷(𝑧)
𝑝𝑜𝑝⁄   (Eq. 4.39) 

𝐴(𝑧)
𝑓𝑟𝑒𝑒

−=  𝑃(𝑧)(𝑡)
+𝑐ℎ𝑎𝑛𝑔𝑒

𝐷(𝑧)
𝑝𝑜𝑝⁄  (Eq. 4.40) 

4.6 Summary 

This chapter has presented the Spatial Interaction Model (SIM) implemented in the Urban 

Integrated Modelling Framework (UIMF). Section 4.2 discussed theory and justified the 

simplified approach taken. Section 4.3 described the development of this model from the 

reference implementation in the Urban Integrated Assessment Framework (UIAF) and 

identified key differences between them. Section 4.4 provided a high-level overview of the 

SIM and its operation within the software environment of the UIMF, and Section 4.5 gave a 

detailed description of the SIM implementation. The following chapter details the Transport 

Accessibility Model (TAM) which provides the SIM with an origin-destination matrix of 

transport accessibility.       
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Chapter 5: Transport Accessibility Model 

5.1 Introduction 

This chapter presents the Transport Accessibility Model (TAM) implemented in the Urban 

Integrated Modelling Framework (UIMF). Section 5.2 provides theoretical underpinnings, 

compares the TAM with similar models and justifies the simplified approach taken. Section 

5.3 describes the development of this model from the reference implementation in the Urban 

Integrated Assessment Framework (UIAF) and highlights key differences. Section 5.4 gives a 

high-level overview of the model and its operation within the software environment of the 

UIMF, while Sections 5.5 to 5.9 provide detailed descriptions of each stage of the TAM 

implementation.       

5.2 Context 

Accessibility is a key driver of urban growth and locational choice, as described in 3.4.2 

where aggregate utility models are based upon accessibility, which is defined as the 

opportunity for spatial interactions at any given location. The potential accessibility of any 

given location can be found by summing activities across destinations and weighting by an 

inverse function of the distance, time, or generalised cost of reaching them. The Spatial 

Interaction Model (SIM – Chapter 4) is in fact a simple utility model which uses accessibility 

to employment as a spatial driver of residential location choice. 

Aggregate approaches to accessibility such as the TAM are based on spatial zones which are 

approximated by geometric centroids to from trip origins and destinations. The analysis of 

transport networks via which these trips are made is based on the computation of ‘shortest’ or 

‘least-cost’ paths between each pair of origin and destination nodes. Factors relating to time 

and monetary costs are attributed to network edges which forms the basis of finding ‘least-

cost’ network routes across weighted edges using Dijkstra’s algorithm. 

The UIMF retains the following key assumptions of the UIAF Accessibility Assessment 

Framework (AAF): 

• Trips between origins and destinations are via a single mode of transport 

• Congestion is not modelled therefore network edges are assumed to have infinite 

capacity 

The first of these simplifications can be addressed by further model development to allow 

interchanges between transport modes whilst applying costs to network edges which are 
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relevant to each mode. The second assumption can be addressed to an extent using traffic 

counts and public transport service reliability as a measure of observed congestion which 

would improve the representation of trip costs at the expense of significantly increased data 

requirements. The problem with this approach is that when networks are modified to simulate 

the construction of new routes there is no observed congestion data for new network edges or 

the impact of their construction on the congestion of other routes. A full macro approach such 

as the four-step transport model or microsimulation of traffic such as that provided by 

MATSim or SUMO, could be used to address this problem but exhaustive data requirements 

and long computation times can render such models unsuitable in the context of rapid 

assessment and can prevent their uptake by non-expert users.  

5.3 Model Development 

The UIAF AAF was developed using Visual Basic for Applications (VBA) as an add-in for 

ESRI’s ArcGIS applying the Network Analyst extension to compute shortest routes using 

Dijkstra’s algorithm. The UIMF TAM was developed to match the capabilities of this 

framework in terms of network processing and the generation of origin-destination matrices 

of generalised cost for accessibility analysis. An early prototype using Python and the 

NetworkX library was developed using the process description provided by Ford et al (2015) 

as summarised in Figure 5.1.     

Initial development focussed on connecting zone centroids to their nearest network access 

points, building the networks and storing them in PostgreSQL tables before computing 

shortest paths using NetworkX. Development of the TAM continued by incorporating 

generalised cost parameters such as public transport fares and private vehicle occupancy, 

making the model portable between geographical regions using a spatial reference system 

identifier and adding desirable functionality based upon discussions with the UIAF AAF 

development team. These features include: 

• The automated generation of interchange edges between public transport stops for a 

single mode of transport  

• A flexible charging system based on an input charge zone polygon for private vehicles 

• Combining costs from multiple modes of transport for a given scenario 

• Converting costs to accessibility using a deterrence function 

The final stage of development was optimisation; network building was identified as a 

bottleneck during initial testing along with the search for shortest paths using Dijkstra’s 

algorithm. This led to the separation of network processing and cost models, and the use of 
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C++ and the igraph library for pathfinding as opposed to Python and the NetworkX package, 

resulting in significant performance gains. A comparison of features between the UIAF AAF 

and the UIMF TAM is shown in table 5.1.  

 
 

Figure 5.1: Computational Framework for Transport Accessibility Analysis (Ford et al, 2015) 
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Feature UIAF AAF UIMF TAM 

Interchange 

between public 

transport stops 

Described for London case study 

(Ford et al, 2015) 

 

Generated automatically given a 

maximum interchange distance 

value. 

Zone-based 

charging 

Described for London case study 

(Ford et al, 2015) 

 

Flexible system based on 

geometry testing against network 

edges and zone centroids 

Dijkstra’s 

algorithm 

performance 

Unknown Optimised using C/C++ and 

igraph for high performance 

Cost matrix 

aggregation across 

transport modes 

No Yes 

Link to spatial 

interaction model 

Manual loose coupling Integrated coupling via UIMF 

model group chaining 

Metadata No Yes 

Graphical User 

Interface 

Yes No 

Open source No Yes 

 

Table 5.1: Feature Comparison between UIAF AAF and UIMF TAM 

 

5.4 Model Overview 

As shown in Figure 5.2, the TAM comprises five sub-models allowing both private and public 

transport networks to be assessed in terms of origin-destination trips, generalised cost and 

accessibility. The private network processing and cost models (5.5 and 5.6) can be used for 

cars and bicycles, whilst the public network processing and cost models (5.7 and 5.8) can be 

used for a variety of public transport modes such as bus or train. This flexibility allows the 

TAM to be applied to different urban areas with different transport infrastructure where the 

generalised costs of travel for each transport mode are combined to generate a single origin-

destination matrix of transport accessibility (5.9). This accessibility matrix is used by the 

Spatial Interaction Model (SIM – Chapter 4) in combination with zonal employment as a 
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spatial driver of residential location choice requiring that the order of zones is consistent 

across models as indicated by the dotted line. 

For both private and public modes of transport, the process of generating trip costs is split into 

two stages due to the execution time of network processing models when working with large 

network datasets. It is only necessary to run the network processing models when simulating 

physical changes such as the construction of new roads or stations, this enables the impact of 

changes in parameters to the cost models to be explored more efficiently.        

Network processing models connect zone centroids to their nearest network access points and 

operate directly on data stored in PostgreSQL tables using PostGIS for spatial operations such 

as intersection testing. These PostGIS functions are indicated in the text in italics, for 

example, 𝑆𝑇_𝑊𝑖𝑡ℎ𝑖𝑛(). The Python package, NetworkX is used to construct modified 

transport networks geometrically from tables of network nodes (points) and edges 

(linestrings). The nx_pgnet library developed at Newcastle University is then used to write 

processed networks to PostgreSQL tables with a specific format supporting graph traversal 

and pathfinding; the nx_pgnet library is a network database schema and Application 

Programming Interface (API) for storing networks within a relational database with an 

interface to python and the NetworkX network format. 

Network cost models apply cost parameters to set edge weights and carry out pathfinding 

making use of the computational flexibility of the UIMF by using C++ and the igraph library 

to optimise the computation of ‘least-cost’ paths between origins and destinations using 

Dijkstra’s algorithm. All sub-models of the TAM write data and metadata back to the 

database such that the metadata recorded by the final sub-model (5.9) contains network 

processing and cost model metadata for each mode of transport in the study region.  
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Figure 5.2: Transport Accessibility Model Overview 

 

5.5 Private Network Processing Model 

As shown in Figure 5.3, the private network processing model operates on the geometries of 

an input transport network, and a collection of zones consistent with the spatial interaction 

model (Chapter 4). The input network comprises points for ‘centroid’ nodes, 𝑁, and 

linestrings for ‘route’ edges, 𝐸, where nodes are point locations which serve as origins and 

destinations of trips between zones, and edges are roads in the network. The polygon zones, 

𝑍, define the spatial extent of each zone and are used to optimise the search for nearest ‘route’ 

edges when modifying the network. 
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Figure 5.3: Private Network Processing Model Interface 

 

The overall function of the model is to generate new ‘access’ edges between zone centroids 

and nearest ‘route’ edges thus enabling network traversal from origins to destinations where 

connections permit. The time taken to travel along ‘access’ edges from ‘centroid’ nodes to the 

nearest ‘route’ edge is calculated using the access speed parameter.  

The optional input charge zone is a geometrically defined region within which charges apply; 

this acts in conjunction with the parameters charge centroids and charge edges to perform 

tests on input geometry in support of flexible charging in the private transport cost model 

(5.6). Enabling charge centroids tests whether ‘centroid’ nodes are within the charge zone 

whereas enabling charge edges tests whether ‘route’ edges and ‘access’ edges cross the charge 

zone boundary. 

The model uses the spatial reference parameter to add new ‘access’ edges to the network and 

outputs a processed network which is used in the private transport cost model (5.6). The flow 

of operations in the model are described in the following subsections as indicated in Figure 

5.4. 
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Figure 5.4: Private Network Processing Model Overview 

 

 

5.5.1 Build Access Edges  

This function iterates over all zones and carries out the following operations as depicted in 

Figure 5.5: 

• Finding the nearest edge 

For each ‘centroid’ node, the search for the nearest ‘route’ edge is optimised using the 

function 𝑆𝑇_𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠() leaving only ‘route’ edges which touch, overlap, or are 

within the zone polygon. The nearest ‘route’ edge is found by applying the function 

𝑆𝑇_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒() to each ‘route’ edge along with the ‘centroid’ node of the zone, 

ordering results by the value returned. 

• Finding the nearest point on the nearest edge 

The point on this nearest ‘route’ edge which is nearest to the ‘centroid’ node is first 

found in terms of the fractional edge length returned by the function 

𝑆𝑇_𝐿𝑖𝑛𝑒_𝐿𝑜𝑐𝑎𝑡𝑒_𝑃𝑜𝑖𝑛𝑡(). The function 𝑆𝑇_𝐿𝑖𝑛𝑒_𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒_𝑃𝑜𝑖𝑛𝑡() is then used 

to locate the point in terms of the fractional edge length and the linestring representing 

the nearest ‘route’ edge.     
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• Adding access edge 

New ‘access’ edges are generated between ‘centroid’ nodes and the nearest point on 

the nearest ‘route’ edge using the function 𝑆𝑇_𝑀𝑎𝑘𝑒𝑙𝑖𝑛𝑒(). These linestrings are 

measured using the function 𝑆𝑇_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒() which, in conjunction with the access 

speed parameter, allows the time taken to access a nearest ‘route’ edge to be 

calculated. 

• Splitting nearest edge 

The nearest ‘route’ edge is then split into two sub-edges, A and B, at the nearest point 

to the centroid. The function 𝑆𝑇_𝐿𝑖𝑛𝑒_𝑆𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔() is used to extract a substring of 

the nearest ‘route’ edge linestring where sub-edge A runs from 0 to the fractional edge 

length at the point nearest to the ‘centroid’ node, and sub-edge B runs from that point 

to 1. The length of each sub-edge is then found using the function 𝑆𝑇_𝐿𝑒𝑛𝑔𝑡ℎ() and 

the split ‘route’ edge is removed from the network. 

 
 

Figure 5.5: Private Access Edges 

 

5.5.2 Build Network 

NetworkX is used to construct the modified transport network geometrically from a table of 

nodes containing ‘centroid’ nodes, and a table of edges containing ‘route’ edges and ‘access’ 

edges. The nx_pgnet library is used to write the processed network to PostgreSQL tables with 

a specific format supporting graph traversal and pathfinding; network nodes have a unique 

identifier attribute, whilst network edges have a ‘from’ node attribute and a ‘to’ node attribute 

which link to the node unique identifiers.  

5.5.3 Test Charge Centroids 

When enabled by the charge centroids parameter, this function tests whether each ‘centroid’ 

node is within the charge zone using the function 𝑆𝑇_𝑊𝑖𝑡ℎ𝑖𝑛() and the input charge zone 
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polygon. The results of these tests are retained for use in the private transport cost model 

(5.6). 

5.5.4 Test Charge Edges 

When enabled by the charge edges parameter, this function tests whether each ‘route’ edge 

and ‘access’ edge cross the input charge zone boundary. 

Firstly, the function tests whether each ‘route’ node and ‘centroid’ node is within the charge 

zone using the function 𝑆𝑇_𝑊𝑖𝑡ℎ𝑖𝑛() and the input charge zone polygon. Then, using the 

nx_pgnet table format described in subsection 5.5.2, results for the ‘from’ node and ‘to’ node 

of each edge are tested using an Exclusive OR (XOR) gate to determine whether the edge 

starts and ends on different sides of the input charge zone boundary. The results of these tests 

are retained for use in the private transport cost model (5.6). 

5.6 Private Network Cost Model 

As shown in Figure 5.6, the private network cost model operates on the processed transport 

network output from the private network processing model (5.5). The parameters walking 

weight, occupancy, value of time and parking charge are all used in the calculation of 

generalised cost along with parameters for fuel and non-fuel costs which define vehicle 

operating costs. The Boolean parameters charge centroids and charge edges are used to enable 

a flexible charging system based upon the location of trip origins, destinations and routes with 

respect to a charging zone. This functionality uses a range of further input cost parameters and 

is based upon geometry tests performed in the private network processing model (5.5). 

 
 

Figure 5.6: Private Network Cost Model Interface 
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The overall function of the model is to apply input cost parameters to the calculation of 

weights for each network edge. These weighted edges are then used to compute least cost 

paths between origin and destination nodes which are combined with other charging 

parameters to generate an origin-destination matrix of trip costs. The Boolean parameter 

simple is used to run a barebones version of the model by disregarding most parameters in the 

calculation of edge weights. This can be used to for cycle routes or to assess trips via any 

mode of transport in terms of time or distance only, providing functionality in use cases with 

limited data availability. The flow of operations in the model are described in the following 

subsections as indicated in Figure 5.7. 

 
 

Figure 5.7: Private Network Cost Model Overview 
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The generalised cost for private transport networks is calculated as shown in Equation 5.1. 

𝐶𝑝𝑣𝑡 = (𝑉𝑤𝑘  ×  𝐴) + 𝑇 + 𝐷 ∗ 
𝑉𝑂𝐶

𝑜𝑐𝑐∗𝑉𝑂𝑇
+ 

𝑃𝐶

𝑜𝑐𝑐∗𝑉𝑂𝑇
   (Eq.5.1) 

Where 𝑉𝑤𝑘 is the walking disincentive weight; 𝐴 is the network access time; 𝑇 is the journey 

time; 𝐷 is the journey distance; 𝑉𝑂𝐶 is the vehicle operating cost; 𝑜𝑐𝑐 is the vehicle 

occupancy; 𝑉𝑂𝑇 is the value of time; and, 𝑃𝐶 are parking and other charges.     

Vehicle operating costs are calculated as shown in Equation 5.2. 

𝑉𝑂𝐶 = 𝐿 + 𝐶  (Eq.5.2) 

Where 𝐿 are fuel costs as shown in Equation 5.3, and 𝐶 are non-fuel costs as shown in 

Equation 5.4. 

𝐿 =  
𝑎

𝑉
+ 𝑏 + 𝑐 ∗ 𝑉 + 𝑑 ∗ 𝑉2 (Eq.5.3) 

Where 𝑎, 𝑏, 𝑐, 𝑑 are parameters defined for each vehicle category; and, 𝑉 is the average 

speed. 

𝐶 = 𝑎 +  
𝑏

𝑉
  (Eq.5.4) 

Where 𝑎 is a distance related costs parameter including maintenance and depreciation; 𝑏 is a 

vehicle capital saving parameter; and, 𝑉 is the average speed. Parameter 𝑏 is only relevant for 

commercial vehicles so for non-commercial vehicles the non-fuel operating costs simplify to 

the parameter 𝑎 as in Equation 5.6. 

𝐶 = 𝑎  (Eq. 5.6) 

5.6.1 Vehicle Edge Cost 

The cost of ‘access’ edges, 𝐶𝑝𝑣𝑡
𝑎𝑐𝑐𝑒𝑠𝑠, is calculated as shown in Equation 5.7 whilst the cost of 

‘route’ edges, 𝐶𝑝𝑣𝑡
𝑟𝑜𝑢𝑡𝑒, is calculated as shown in Equation 5.8 where vehicle operating cost 

parameters are applied as in Equation 5.9. 

𝐶𝑝𝑣𝑡
𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑉𝑤𝑘 ∗ 𝐴 +

𝑃𝐶 2⁄

𝑜𝑐𝑐∗𝑉𝑂𝑇
  (Eq.5.7) 

𝐶𝑝𝑣𝑡
𝑟𝑜𝑢𝑡𝑒 =  𝑇 + 𝐷 ∗  

𝑉𝑂𝐶

𝑜𝑐𝑐∗𝑉𝑂𝑇
  (Eq.5.8) 

𝑉𝑂𝐶 =  
𝑎

𝑉
+ 𝑏 + 𝑐 ∗ 𝑉 + 𝑑 ∗ 𝑉2 + 𝐶  (Eq.5.9) 
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Where 𝐷 (length), 𝑉 (speed), 𝐴 and 𝑇 (time) were computed in the private network processing 

model (5.5) and stored as attributes of network edges.  

5.6.2 Simple Edge Cost 

The cost of ‘access’ edges, 𝐶𝑠𝑖𝑚𝑝𝑙𝑒
𝑎𝑐𝑐𝑒𝑠𝑠, is calculated as shown in Equation 5.10 whilst the cost of 

‘route’ edges, 𝐶𝑠𝑖𝑚𝑝𝑙𝑒
𝑟𝑜𝑢𝑡𝑒 , is calculated as shown in equation 5.11. 

𝐶𝑠𝑖𝑚𝑝𝑙𝑒
𝑎𝑐𝑐𝑒𝑠𝑠 =  𝑉𝑤𝑘 ∗  𝐴  (Eq.5.10) 

𝐶𝑠𝑖𝑚𝑝𝑙𝑒
𝑟𝑜𝑢𝑡𝑒 = 𝑇  (Eq.5.11) 

Where 𝐴 and 𝑇 (time) were computed in the private network processing model (5.5) and 

stored as attributes of network edges.  

5.6.3 Edge Charging  

Where edge charging is enabled, the input 𝑐ℎ𝑎𝑟𝑔𝑒 cost parameter is added to the existing cost 

of ‘access’ edges and ‘route’ edges which cross the charge zone boundary as shown in 

Equation 5.12. This is based upon geometry tests performed in the private network processing 

model (5.5). 

𝐶𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐶 + 
𝑐ℎ𝑎𝑟𝑔𝑒

𝑜𝑐𝑐∗𝑉𝑂𝑇
  (Eq.5.12) 

5.6.4 Pathfinding 

Network nodes, edges and costs are mapped to arguments of Dijkstra’s shortest paths function 

implemented in the igraph library as shown in Figure 5.8: 

1. Graph construction: An undirected empty graph with vertices equal to the number of 

nodes is created before an array of interleaved edge identities is allocated whose size is 

twice the number of edges. Iterating over all network edges, node identities of ‘from’ 

nodes and ‘to’ nodes are added to the interleaved array which is indexed by an 

incremental count variable.  

2. Origins and Destinations: The order of zones in the origin-destination matrix of trip 

costs must be consistent with that used by all other models in the framework. A simple 

‘Node’ data structure with an integer identity and a string label is used to store ‘centroid’ 

nodes and sort ascending by label to enforce zone ordering. 

3. Edge Weights: The generalised cost calculated for each edge in the network (5.6.1) 

(5.6.2) (5.6.3) is used as a weight.   
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Figure 5.8: Mapping Private Transport Networks to Dijkstra’s Algorithm 

 

 

5.6.5 Invalid Routes 

Iterating over all rows and columns of the output cost matrix, cells with the value of 

𝑖𝑔𝑟𝑎𝑝ℎ_𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 indicating that no path could be found for a given origin-destination pair are 

set to the no data value specified in the cost matrix header. 

5.6.6 Intra-zone Costs 

The intra-zone trip cost (where origin = destination) for any given zone is set at two thirds of 

the minimum inter-zone trip cost for that zone (Ford et al, 2015) which is found for each 

origin by searching all destinations in the cost matrix.  

5.6.7 Centroid Charging 

Centroid charging is based upon geometry tests performed in the private network processing 

model (5.5) to establish whether ‘centroid’ nodes are within the charge zone boundary as 

indicated in Table 5.2. This functionality can be used in combination with edge charging, for 

instance, to apply charges to edges which cross the charge zone boundary and then apply 

discounts to origins within the charge zone.  
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centroid charge charge charge charge 

origin 0 0 1 1 

destination 0 1 0 1 

 

Table 5.2: Centroid Charging Combinations 

 

Iterating over all rows and columns of the output cost matrix, all four combinations of origin 

and destination zone status are accounted for when adding provided charges to values 

currently held in the cost matrix. Note that the provided monetary charge values are converted 

to generalised cost as shown in Equation 5.13. 

𝑂𝑓𝑓 =
𝑂𝑓𝑓

𝑜𝑐𝑐∗𝑉𝑂𝑇
  (Eq. 5.13) 

 

5.7 Public Network Processing Model 

As shown in Figure 5.9, the public network processing model operates on the geometries of 

an input transport network, and a collection of zones consistent with the spatial interaction 

model (see Chapter 4). The input network comprises points for ‘stop’ nodes, 𝑁, and 

linestrings for ‘route’ edges, 𝐸, where nodes are locations of public transport stops, and edges 

are routes between stops in the network. The polygon zones, 𝑍, define the spatial extent of 

each zone and are used to calculate point centroids which serve as origins and destinations of 

trips between zones. 

 
 

Figure 5.9: Public Network Processing Model Interface 
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The overall function of the model is to generate new ‘access’ edges between zone centroids 

and nearest public transport stops thus enabling network traversal from origins to destinations 

where connections permit. The access speed parameter is used in the calculation of time taken 

to reach nearest stops. The model also generates new ‘interchange’ edges between stops 

within a range specified by the interchange distance parameter. This allows connections to be 

made between different routes at stations etc. The model uses the spatial reference parameter 

to add these new edges to the network and outputs a processed network which is used in the 

public transport cost model (5.8). The flow of operations in the model are described in the 

following subsections as indicated in figure 5.10. 

 

 

 
 

Figure 5.10: Public Network Processing Model Overview 

 

 

5.7.1 Add Centroids 

The centroid point locations which approximate input zones by acting as origins and 

destinations of trips are found by applying the function 𝑆𝑇_𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑() to the polygons of 

input zones. These new points are identified as ‘centroid’ nodes and are added to the input 

table holding transport stops identified as ‘stop’ nodes. 
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5.7.2 Build Access Edges 

The public transport cost model (5.8) calculates the cost of trips between all pairs of origin 

and destination zones in the study region.  

In the case of zones containing multiple transport stops, this cost is averaged for all routes 

accessed via all transport stops, this requires that ‘access’ edges are generated between the 

‘centroid’ node and all ‘stop’ nodes within the zone. The condition that ‘stop’ nodes are in the 

same zone as the ‘centroid’ node is enforced by the function 𝑆𝑇_𝑊𝑖𝑡ℎ𝑖𝑛() using the zone 

polygon from which the centroid was calculated. In the case of zones which contain no 

transport stops, the nearest stop outside of the zone is found.   

New ‘access’ edges are generated between ‘centroid’ nodes and ‘stop’ nodes using the 

function 𝑆𝑇_𝑀𝑎𝑘𝑒𝑙𝑖𝑛𝑒(). These linestrings are measured using the function 𝑆𝑇_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒() 

which, in conjunction with the access speed parameter, allows the time taken to access a 

nearest station to be calculated.  Both methods of generating ‘access’ edges for public 

transport networks are depicted in figure 5.11. 

 

 
 

Figure 5.11: Public Access Edges 

 

 

5.7.3 Find Nearest Stations 

The public transport cost model (5.8) eliminates trips between origins and destinations which 

have the same nearest transport stop, this prevents attribution to the transport network of 

nonsensical trips containing only ‘access’ edges routed via a ‘stop’ node. In order to eliminate 

these trips, the nearest ‘stop’ node to each ‘centroid’ node is recorded at this stage. 
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5.7.4 Build Interchange Links 

To allow connections to be made at stations the model generates new ‘interchange’ edges 

between transport stops within a radial distance specified by the interchange distance 

parameter. New ‘interchange’ edges are created between ‘stop’ nodes and other ‘stop’ nodes 

using the function 𝑆𝑇_𝑀𝑎𝑘𝑒𝑙𝑖𝑛𝑒(). These linestrings are measured using the function 

𝑆𝑇_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒() which, in conjunction with the walking speed parameter, allows the time 

taken to walk between transport stops to be calculated. The condition that ‘stop’ nodes are 

within the specified range of one another is enforced using the function 𝑆𝑇_𝑊𝑖𝑡ℎ𝑖𝑛(). The 

method of building interchange edges for public transport networks is depicted in Figure 5.12. 

 

 
 

Figure 5.12: Public Interchange Edges 

 

5.7.5 Build Network 

NetworkX is used to construct the modified transport network geometrically from a table of 

nodes containing ‘station’ nodes and ‘centroid’ nodes, and a table of edges containing ‘route’ 

edges, ‘access’ edges, and ‘interchange’ edges. 

Processed networks are in the form of a simple graph characterised by a single edge between 

any given pair of nodes. When networks are constructed from data containing multiple edges 

between any pair of nodes only the most recently added edge is retained. Since ‘interchange’ 

edges are generated regardless of existing ‘route’ edges between stations it is necessary to 

upload ‘interchange’ edges before ‘route’ edges to ensure that they are overwritten where a 

connection already exists. 
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The nx_pgnet library is used to write the processed network to PostgreSQL tables with a 

specific format supporting graph traversal and pathfinding; network nodes have a unique 

identifier attribute, whilst network edges have a ‘from’ node attribute and a ‘to’ node attribute 

which link to the node unique identifiers.  

5.8 Public Network Cost Model 

As shown in Figure 5.13, the public network cost model operates on the processed transport 

network output from the public network processing model (5.7). The parameters walking 

weight, waiting weight, average wait, value of time, fare and fare per km are all used in the 

calculation of generalised cost for each network edge.  

 
 

Figure 5.13: Public Network Cost Model Interface 

 

The overall function of the model is to apply input cost parameters to the calculation of 

weights for each network edge. These weighted edges are then used to compute least cost 

paths between origin and destination nodes which generates an origin-destination matrix of 

trip costs. The flow of operations in the model are described in the following subsections as 

indicated in Figure 5.14. 
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Figure 5.14: Public Network Cost Model Overview 

 

 

The generalised cost of travel via public transport networks is calculated as shown in 

Equation 5.14. 

𝐶𝑝𝑢𝑏 =  (𝑉𝑤𝑘 ∗ 𝐴) +  (𝑉𝑤𝑡 ∗ 𝑊) + 𝑇 +  
𝐹

𝑉𝑂𝑇
+ 𝐼  (Eq. 5.14) 

Where 𝑉𝑤𝑘 is the walking disincentive weight; A is the network access time; 𝑉𝑤𝑡 is the 

waiting disincentive weight; 𝑊 is the waiting time; 𝑇 is the journey time; 𝐹 is the fare paid; 

𝑉𝑂𝑇 is the value of time; and, 𝐼 is the interchange penalty. 

5.8.1 Flat Fare Edge Cost 

The cost of ‘access’ edges is calculated as shown in Equation 5.15; the cost of ‘interchange’ 

edges is calculated as shown in Equation 5.16; and, the cost of ‘route’ edges is calculated as 

shown in Equation 5.17. 
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𝐶𝑝𝑢𝑏 
𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑉𝑤𝑘 ∗ 𝐴 +  𝑉𝑤𝑡 ∗  

𝑊

2
+  

𝐹 2⁄

𝑉𝑂𝑇
  (Eq. 5.15) 

𝐶𝑝𝑢𝑏
𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑉𝑤𝑘 ∗  𝑇 + 𝑉𝑤𝑡 ∗  𝑊  (Eq.5.16) 

𝐶𝑝𝑢𝑏 
𝑟𝑜𝑢𝑡𝑒 = 𝑇  (Eq.5.17) 

Where 𝐴 and 𝑇 (time) were computed in the public network processing model (5.7) and 

stored as attributes of network edges.  

5.8.2 Fare Per KM Edge Cost 

The cost of ‘access’ edges is calculated as shown in Equation 5.18; the cost of ‘interchange’ 

edges is calculated as was shown in Equation 5.16; and, the cost of ‘route’ edges is calculated 

as shown in Equation 5.19.  

𝐶𝑝𝑢𝑏 
𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑉𝑤𝑘 ∗ 𝐴 + 𝑉𝑤𝑡 ∗  

𝑊

2
  (Eq. 5.18) 

𝐶𝑝𝑢𝑏 
𝑟𝑜𝑢𝑡𝑒 = 𝑇 +  

𝐹∗𝐷

𝑉𝑂𝑇
  (Eq.5.19) 

Where 𝐴 and 𝑇 (time) and 𝐷 (length) were computed in the public network processing model 

(5.7) and stored as attributes of network edges.  

5.8.3 Cost Matrix Expansion 

The order of zones in the origin-destination matrix of trip costs must be consistent with that 

used by all other models in the framework. A ‘Node’ data structure with an integer identity 

and a string label is used to sort ‘centroid’ nodes by label to enforce zone ordering before 

copying to a vector of node identities.  

The trip cost for zones containing multiple stops is calculated as the average cost of trips via 

all stops in the zone. In this case, stops rather than centroids are used as trip origins and 

destinations and must be added to the vector of node identities. Where a zone contains 

multiple stops, each ‘stop’ node is added to the vector of node identities and the current index 

of the vector is recorded to enable retrieval of results when contracting the cost matrix and 

averaging trip costs. This makes use of the ‘from’ node and ‘to’ node attributes of ‘access’ 

edges where the ‘from’ node is the ‘centroid’ node and the ‘to’ node is the ‘stop’ node.  

 

 

 



96 

 

5.8.4 Pathfinding 

Network nodes, edges and costs are mapped to arguments of Dijkstra’s shortest paths function 

implemented in the igraph library as shown in Figure 5.15: 

1. Graph construction: An undirected empty graph with vertices equal to the number of 

nodes is created before an array of interleaved edge identities is allocated whose size is 

twice the number of edges. Iterating over all network edges, node identities of ‘from’ 

nodes and ‘to’ nodes are added to the interleaved array which is indexed by an 

incremental count variable.  

2. Origins and Destinations:  The vector of node identities including ordered ‘centroid’ 

nodes and ‘stop’ nodes (5.8.3) is used.  

3. Edge Weights: The generalised cost calculated for each edge in the network (5.8.1) 

(5.8.2) is used as a weight.   

 
Figure 5.15: Mapping Public Transport Networks to Dijkstra’s Algorithm 

 

5.8.5 Cost Matrix Contraction 

The trip cost for zones containing multiple stops is calculated as the average cost of trips via 

all stops in the zone. The expanded cost matrix generated in subsection 5.8.3 holds the results 

of pathfinding (5.8.4) and must now be contracted to calculate trip costs including averaging 

where necessary for the output origin-destination cost matrix. 
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The method of contracting the cost matrix uses a vector of costs to combine and then average 

trip costs involving multiple routes and is based upon the number of stops and hence ‘access’ 

edges in each zone as follows: 

1. Neither origin nor destination has multiple stops 

In this case the expanded cost matrix is copied to the contracted cost matrix at the position 

of the current origin and destination. 

2. Origin only has multiple stops  

Iterating over all origin ‘access’ edges, the access cost is read from the ‘access’ edge 

while the route cost is read from the expanded cost matrix using the ‘access’ edge ‘to 

node’ as the origin, and the current destination.  

3. Destination only has multiple stops  

Iterating over all destination ‘access’ edges, the access cost is read from the ‘access’ edge 

while the route cost is read from the expanded cost matrix using the current origin and the 

‘access’ edge ‘to node’ as the destination.  

4. Origin and destination have multiple stops  

Iterating over all origin ‘access’ edges and all destination ‘access’ edges, the access cost is 

the sum of the weights read from both origin and destination ‘access’ edges while the 

route cost is read from the expanded cost matrix using the origin ‘access’ edge ‘to node’ 

as the origin, and the destination ‘access’ edge ‘to node’ as the destination.  

In all multiple stop scenarios, where the route is valid i.e. not the 𝑖𝑔𝑟𝑎𝑝ℎ_𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 value, the 

route cost is added to the access cost and is pushed into the costs vector. When all ‘access’ 

edges have been processed, values in the costs vector are summed before dividing by the size 

of the vector to produce an average cost. This value is then written to the contracted cost 

matrix at the position of the current origin and destination. An empty costs vector indicates 

that no valid routes were found in which case the 𝑖𝑔𝑟𝑎𝑝ℎ_𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 value is written to the 

contracted cost matrix.  

5.8.6 Invalid Routes 

Removing journeys via shared nearest stations 

Iterating over all zones as origins and all zones as destinations, the node identity of the nearest 

station held within the ‘Edge Group’ for each zone is read at the origin and destination. Where 

these values are equal the no data value is written to the output cost matrix at the position of 

the current origin and destination. 
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Setting no paths 

Iterating over all rows and columns of the output cost matrix, cells with the value of 

𝑖𝑔𝑟𝑎𝑝ℎ_𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 indicating that no path could be found for a given origin-destination pair are 

set to the no data value specified in the cost matrix header. 

5.8.7 Intra-zone Costs 

The intra-zone trip cost (where origin = destination) for any given zone is set at two thirds of 

the minimum inter-zone trip cost for that zone (Ford et al, 2015) which is found for each 

origin by searching all destinations in the cost matrix.  

5.9 Accessibility Model 

As shown in Figure 5.16, the accessibility model operates on input cost matrices for a variable 

number of transport modes generated by models of Private Network Cost (5.6) and Public 

Network Cost (5.8). The model outputs an accessibility matrix which combines input cost 

matrices and converts from cost to accessibility using a deterrence function in a process tuned 

by parameters lambda λ and beta β. The flow of operations in the model are described in the 

following subsections as indicated in Figure 5.17. 

 
 

Figure 5.16: Accessibility Model Interface  

 



99 

 

 
 

Figure 5.17: Accessibility Model Overview 

 

5.9.1 Calculate Exponential Cost 

Iterating over all cells of all input cost matrices, the exponential cost is calculated as shown in 

equation 5.20. This only applies to cells with positive cost values i.e. where a valid route 

between origin and destination was found, otherwise the result is set to zero. 

𝐶𝑖𝑗
𝑒𝑥𝑝 =  𝑒𝑥𝑝−λ ∗ 𝐶𝑖𝑗  (Eq.5.20) 

5.9.2 Sum Exponential Cost 

Iterating over all cells of all exponential cost matrices, the current cell of the summed cost 

matrix is added to by the current cell of each exponential cost matrix as shown in Equation 

5.21. 

𝐶𝑖𝑗
𝑠𝑢𝑚 =  ∑ 𝐶𝑖𝑗

𝑒𝑥𝑝
  (Eq.5.21) 

5.9.3 Calculate Logarithmic Cost 

Iterating over all cells of the summed cost matrix, the current cell is calculated as shown in 

Equation 5.22. This process is masked to avoid the error associated with finding the logarithm 

of 0 which is undefined.  

𝐶𝑖𝑗
𝑙𝑜𝑔

=  
−1

λ
 * ln (𝐶𝑖𝑗

𝑠𝑢𝑚)  (Eq.5.22) 



100 

 

5.9.4 Calculate Accessibility  

Iterating over all cells of the logarithmic cost matrix, the current cell is calculated as shown in 

equation 5.23. This process is masked to avoid zero so that only cells where a valid route 

between origin and destination was found are included, otherwise the result is kept at zero. 

𝐴𝑖𝑗 = 𝑒
−β ∗ 𝐶𝑖𝑗

𝑙𝑜𝑔

  (Eq.5.23) 

5.10 Summary 

This chapter has described the UIMF TAM which provides a simple method of modelling 

accessibility using data for transport networks and generalised costs to produce an origin-

destination matrix of accessibility. This measure of accessibility is used by the Spatial 

Interaction Model (SIM – Chapter 4) in combination with zonal employment to form a spatial 

driver of residential location choice.  The TAM allows network modification to simulate the 

construction of new routes which can be used to explore infrastructure investment in multi-

sectoral scenarios using the UIMF in the context of rapid assessment. The UIMF TAM 

matches the core operation of the UIAF AAF and provides standalone functionality using 

open source software which is optimised to rapidly generate results. The TAM is integrated 

within the UIMF which allows the SIM to be driven directly from its outputs to explore 

patterns of residential location driven by accessibility to employment. These patterns are used 

in the Urban Development Model (UDM) to model land use at a fine-scale as described in the 

following chapter.    
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Chapter 6. Urban Development Model 

6.1 Introduction 

This chapter presents the Urban Development Model (UDM) implemented in the Urban 

Integrated Modelling Framework (UIMF). Section 6.2 provides theoretical underpinnings to 

the simplified approach taken. Section 6.3 describes the development of this model from the 

reference implementation in the Urban Integrated Assessment Framework (UIAF) and 

highlights key differences. Section 6.4 gives a high-level overview of the model and its 

operation within the software environment of the UIMF, and Sections 6.5 to 6.7 provide a 

detailed description of each stage of the UDM implementation.   

6.2 Context 

The UDM was developed to downscale predictions of zonal population from the Spatial 

Interaction Model (SIM) to generate possible fine-scale patterns of land use change resulting 

from future development. This permits the assessment of these development patterns with 

respect to environmental models which operate at a finer spatial scale than zone polygons, 

such as urban drainage and flood risk. The UDM employs spatial Multi-criteria Evaluation 

(MCE) to determine areas and cells which are most attractive for new development, and a 

Cellular Automata (CA) spreading function to distribute development across and within 

development areas which are integrated within existing urban fabric. 

6.3 Development 

The UIAF UDM was written as a Visual Basic for Applications (VBA) macro using 

ArcObjects within the ArcGIS environment to manage the loading and manipulation of input 

spatial data including the conversion from vector to raster datatypes. The UIMF UDM was 

developed in Python/C++ to match the core UIAF UDM functionality using open source 

software but operates directly on input raster data using techniques to convert between vector 

and raster datatypes in QGIS described in Appendix A. These UDM versions are compared in 

table 6.1. 
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Feature UIAF UDM UIMF UDM 

Model performance Unknown Optimised using C/C++  

Link to spatial interaction 

model 

Manual loose coupling Integrated coupling via 

UIMF model group chaining 

Metadata No Yes 

Graphical User Interface Yes No 

Open source No Yes 

Vector to raster conversion Internal External 

Table 6.1: UDM Version Comparison 

6.4 Overview 

The urban development model (figure 6.1) disaggregates zonal population to cellular urban 

development which is integrated with existing land-use. It comprises 3 stages whose raster 

inputs and outputs are internally linked as shown in figure 6.2. The first stage (6.5) employs 

multi criteria evaluation to produce a raster of development suitability from weighted 

suitability inputs and development constraints. The second stage (6.6) groups cells into 

development areas within each zone of a specified minimum size and computes the average 

development suitability for each area using the raster output from multi criteria evaluation. 

The final stage (6.7) develops cells within development areas in each zone as required by 

zonal population change. This process makes use of suitability for both development areas, 

and individual cells to distribute development and produce a raster output showing current 

and future development, as well as undeveloped cells.  

 
 

Figure 6.1: Urban Development Model Overview 
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The inputs, outputs and parameters shown in figure 6.2 are used by the model stages as 

follows: 

• All stages of the UDM use the input ‘raster header’ to setup, load and save raster 

data. 

• The multi-criteria evaluation stage takes input tables specifying input raster data of 

integer and double precision type; ‘MCE rasters’. Integer raster data is used for the 

constraint mask and discrete attractors, whilst double precision raster data is used for 

continuous attractors such as rasterised proximity. Each raster input has an associated 

weight which is used to produce a masked weighted summation of development 

suitability.  

• The creation of development areas within zones is controlled by the ‘minimum dev 

area’ parameter which is specified in terms of the number of cells. This parameter is 

used in conjunction with cell size derived from the raster header to configure a 

suitable minimum development area size. A further parameter, ‘expanded 

neighbourhood’ dictates the type of cell neighbourhood used when grouping cells into 

development areas: a value of true specifies an 8-cell Moore neighbourhood, whilst 

false specifies a 4-cell Von Neumann neighbourhood. Raster inputs are required in the 

form of the constraint mask and zone identity to create development areas within 

zones; this raster data is specified in the input table ‘UDM rasters’. 

• In addition to the raster data generated by the previous stages, the final urban 

development stage takes input raster data in the form of zone identity and current 

development, both of which are referenced in the input table ‘UDM rasters’. The input 

‘zones’ is used to provide labels for overflow data while the input ‘zonal population’ 

holds a population value for each zone in each time-step. This data is used to calculate 

the change in population and hence required development for each zone. The input 

table ‘density’ is used in conjunction with the parameter ‘density provided’ to provide 

density values to the urban development model which are consistent with the zonal 

model.  
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Figure 6.2: Urban Development Model Interface 

 

6.5 Multi-Criteria Evaluation  

The multi criteria evaluation model operates on a variable number of raster inputs named in 

tables also containing weights data for each input raster. Raster tables have associated row 

count tables from which the number of rasters and weights is obtained and used for dynamic 

memory allocation.  

The MCE model performs the following operations: 

1. Output raster setup 

A result raster is setup using the input raster header and all cells are initialised to zero.  

2. Input raster reading 

The MCE dynamically allocates arrays for raster names and weights which are read from 

the input raster tables. A vector of rasters is setup and the specified number of (empty) 

rasters are pushed in. This vector is then iterated over, setting up each raster and loading 

cell data from files specified in the raster names array.  

3. Weighted summation            

A weight value of -1 is used to identify the constraint mask which is excluded from the 

following summation: all cells in each raster are iterated over and the value read from 

each input raster is multiplied by the corresponding raster weight before being added to 

the result raster.     
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4 Masking 

Iterating over all cells, if the constraint raster is invalid at the current cell position i.e. has 

the no data value, this is reproduced in the result raster; otherwise, the result raster is 

multiplied by the constraint raster (0 or 1) to mask the weighted summation.    

5 Raster output 

The final masked weighted sum raster is then written to file for use in further stages (6.6 

and 6.7) of the UDM. 

6.6 Development Areas 

Figure 6.3 shows the flow of operations to create development areas which makes use of two 

simple data structures to group cells into areas. The first defines a ‘Cell’ which holds 

variables for row, column, and area identity. The second defines an ‘Area’ which holds an 

identity variable, and a vector of Cells.  

 
 

Figure 6.3: Development Area Creation 

 

6.6.1 Input raster setup 

There are two raster inputs to the algorithm in the form of zone identity, and a constraint mask 

as used in multi criteria evaluation. Areas are created by grouping together contiguous 

unconstrained cells which are in the same zone. The constraint mask is declared and setup 

using the input raster header before loading cell data from file via the input raster string.  
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If the creation of development areas does not consider zone boundaries i.e. the spatial extent 

of a given area is not constrained to a single zone, then errors can occur when spreading urban 

development so a zone identity raster is taken as an input which is loaded in the same manner 

as the constraint mask.       

6.6.2 Area Setup 

Initial and final area identity rasters are setup using the input raster header and their cells are 

initialised to -1 which is defined as ‘NOAREA’. The initial raster is used to keep track of 

areas as they are created whilst the final raster is used to output results after the minimum area 

size parameter has been applied. An area identity count variable is set to 0 to identify the first 

area and is then incremented after each new area is created. A vector of type ‘Area’, 

𝑉(𝑎𝑟𝑒𝑎)
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,  is declared which will hold all cells in all areas when the algorithm is complete. 

6.6.3 Current area and zone 

Raster cells are indexed by row and column, and each cell is designated as the current cell 

exactly once starting at the top left of the defined raster region. Nested loops are used to 

iterate over all cells in the raster, for which row and column values are used to access and 

store data. Constrained cells are excluded from development areas and the first use of the row 

and column iteration values is to index the constraint raster at the current position. A mask 

value of 1 indicates unconstrained, and processing of the current cell continues whilst a value 

of 0 indicates constrained, and the algorithm skips to the next cell iteration. Further values are 

required to define the current position in the form of the current area which is read from the 

initial area identity raster, and the current zone which is read from the zone identity raster. 

The current area value is used along with the row/column iteration values to form an instance 

of the simple ‘Cell’ data structure. 

6.6.4 Gather Neighbours 

The algorithm then proceeds to examine cells contiguous to the current position. The 

expanded neighbourhood parameter is used to specify the contiguity type where false 

indicates a 4-cell Von Neumann neighbourhood, and true indicates an 8-cell Moore 

neighbourhood as depicted in figure 6.4. These neighbouring cells are accessed by offsetting 

the current row and/or column iteration values by plus or minus one provided the offset value 

is a valid raster cell index. A vector of type ‘Cell’, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , is used to store neighbouring cells 

which are both unconstrained (read from constraint mask) and in the same zone as the current 

cell (read from zone identity and compared with current zone). The area value of cells 
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meeting these criteria is read from the initial area identity raster before forming a ‘Cell’ 

instance and pushing into the neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 . 

 
Figure 6.4: Von Neumann (left) and Moore (right) cell neighbourhoods 

 

 

6.6.5 Classify Neighbours 

This algorithm builds all areas incrementally, adding cells and merging partially constructed 

areas via the current cell position as it moves from top left to bottom right. It is necessary 

therefore to consider the function of the current cell as either seeding a new area identity and 

passing this to a neighbour, inheriting an area identity from a neighbour, or bridging between 

two sections of the same area which currently have different area identities.  

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains a maximum of 8 cells which are first 

classified by their area status as depicted in figure 6.5. Two further ‘Cell’ vectors; area cells, 

𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, and no area cells, 𝑉(𝑐𝑒𝑙𝑙)

𝑛𝑜 𝑎𝑟𝑒𝑎; are used to divide the neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , 

into cells with either a valid area identity or the ‘NOAREA’ initialised identity. This 

distinction allows the current cell to either seed or inherit an area identity as appropriate. The 

area cells vector holds cells which may have different area identities. To merge areas via the 

current cell the lowest area identity observed is assigned to the current cell and to all cells 

contained within areas to be merged i.e. with a greater area identity. Two further ‘Cell’ 

vectors; low area cells, 𝑉(𝑐𝑒𝑙𝑙)
𝑙𝑜𝑤 , and high area cells, 𝑉(𝑐𝑒𝑙𝑙)

ℎ𝑖𝑔ℎ
; are used to divide the area cells 

vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, by area identity. The lowest observed identity is recorded and used to split the 

area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, where cells with area identities higher than the recorded value are 

pushed into the high area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
ℎ𝑖𝑔ℎ

, or otherwise the low area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑙𝑜𝑤 .  

Finally, a vector of integer merge area identities, 𝑉(𝑖𝑑)
𝑚𝑒𝑟𝑔𝑒

, is created and populated with 

unique area identities from the high area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
ℎ𝑖𝑔ℎ

, and from the current cell where 

this has already been assigned a higher area identity.     

 



109 

 

6.6.6 Build Areas 

The algorithm builds and merges areas based on the size of the various ‘Cell’ vectors holding 

neighbouring cells. When a cell seeds an area, it is assigned the area identity count value 

which is also written to the initial area identity raster at the cell position. A new area is created 

using this value and pushed into the areas vector before the cell is pushed into the area. When 

a cell joins an area, it is assigned the area identity of a cell currently in the area which is also 

written to the initial area identity raster at the cell position. The cell is then pushed into the 

area. When a cell moves area, it joins its new area and is removed from its previous area.    

  
Figure 6.5: Neighbouring cell classification 

 

No neighbours (figure 6.5, top left) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , is empty and the current cell seeds a new area before 

incrementing the area identity count value. A new area is created so that the algorithm can be 

used with a minimum area size of a single cell.  

Single neighbour, not currently in an area (figure 6.5, top middle) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains a single cell and the area cells vector, 𝑉(𝑐𝑒𝑙𝑙)

𝑎𝑟𝑒𝑎, 

is empty. The current cell seeds a new area and the single cell in the no area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑜 𝑎𝑟𝑒𝑎, joins the area before incrementing the area identity count value. 

Single neighbour, currently in an area (figure 6.5, top right) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains a single cell and the no area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑜 𝑎𝑟𝑒𝑎, is empty.  The area identity of the current cell is tested against the ‘NOAREA’ value 

to find out if it is already in an area. If the current cell is not in an area, it joins the area of the 

single cell in the area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎. 
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Multiple neighbours, none currently in an area (figure 6.5, bottom left) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains multiple cells and the area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, is empty. The current cell seeds a new area and all cells in the no area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑜 𝑎𝑟𝑒𝑎, join the area before incrementing the area identity count value. 

Multiple neighbours, one currently in an area (figure 6.5, bottom middle) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains multiple cells and the area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, contains a single cell. The area identity of the current cell is tested against the 

‘NOAREA’ value to find out if it is already in an area. If the current cell is not in an area, it 

joins the area of the single cell in the area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎. All cells in the no area cells 

vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑜 𝑎𝑟𝑒𝑎, join the area of the single cell in the area cells vector, 𝑉(𝑐𝑒𝑙𝑙)

𝑎𝑟𝑒𝑎. 

Multiple neighbours, multiple currently in an area (figure 6.5, bottom right) 

The neighbourhood cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , contains multiple cells and the area cells vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑎𝑟𝑒𝑎, contains multiple cells. The area identity of the current cell is tested against the 

‘NOAREA’ value to find out if it is already in an area. If the current cell is not in an area, it 

joins the area of the first cell in the low area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑙𝑜𝑤 . All cells in the no area cells 

vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑜 𝑎𝑟𝑒𝑎, join the area of the first cell in the low area cells vector, 𝑉(𝑐𝑒𝑙𝑙)

𝑙𝑜𝑤 . If the high 

area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
ℎ𝑖𝑔ℎ

, is not empty, the merge area ids vector, 𝑉(𝑖𝑑)
𝑚𝑒𝑟𝑔𝑒

, is also not empty, 

and all cells in all areas indexed in the merge area identities vector, 𝑉(𝑖𝑑)
𝑚𝑒𝑟𝑔𝑒

, move to the area 

of the first cell in the low area cells vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑙𝑜𝑤 .  

6.6.7 Minimum Area Size 

The iteration over all cells is now complete so the vector, 𝑉(𝑎𝑟𝑒𝑎)
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, contains all 

unconstrained cells in all areas. The minimum area size parameter can now be applied whilst 

tidying up area identity values using an output area identity count which is initially set to 

zero. Iterating over all areas, if the size of the area’s cell vector is greater than or equal to the 

minimum area size then the current output area identity count value is written to the final area 

identity raster at the position of each cell before being incremented between valid areas. The 

final area identity raster is then written to file and is used to compute average development 

area suitability along with the output from the MCE stage (6.5). 
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6.6.8 Development Area Suitability  

Figure 6.6 shows the flow of operations to calculate the average suitability of development 

areas which makes use of two simple data structures to group cells into areas. The first defines 

a ‘Cell’ which holds variables for row, column, and area. The second defines an ‘Area’ which 

holds an identity variable, and a vector of Cells. The variable ‘NOAREA’ is defined as -1. 

 
 

Figure 6.6: Development Area Average Suitability 

 

6.6.9 Input raster setup 

There are two raster inputs to the algorithm in the form of area identity (output by 

development area creation), and development suitability (output by multi criteria evaluation). 

Both rasters are declared and setup using the input raster header before loading cell data from 

file via the input raster strings.  

6.6.10 Area setup 

An area suitability raster is setup using the input raster header and its cells are initialised to 

zero. An area count variable is set to zero, which will be incremented after each new area is 

found. A vector of type ‘Area’, 𝑉(𝑎𝑟𝑒𝑎)
𝑓𝑜𝑢𝑛𝑑

, is declared which will hold all cells in all areas when 

the algorithm has read in all areas from the area identity raster. 
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6.6.11 Gather Cells into Areas 

Raster cells are indexed by row and column values starting at zero. To set the limits for cell 

iteration, the total number of rows and columns are obtained from the area identity raster. 

Nested loops are used to iterate over all cells in the raster, for which row and column values 

are used to access and store data. The method used for area creation results in an area identity 

raster in which the identity of cells in new areas increments sequentially from zero when 

reading data from the top left of the raster, in a rightwards and downwards manner. This 

makes it straightforward to assign cells to areas which is the first stage of this algorithm. 

Iterating over all cells, the area identity is read from the area identity raster at the current cell 

position. Where area identity is greater than ‘NOAREA’, the cell belongs to a valid area. 

Where area identity is equal to the size of the found areas vector, 𝑉(𝑎𝑟𝑒𝑎)
𝑓𝑜𝑢𝑛𝑑

, a new area is 

created with the area identity and pushed into the found areas vector, 𝑉(𝑎𝑟𝑒𝑎)
𝑓𝑜𝑢𝑛𝑑

, before 

incrementing the area count. Cells are then pushed into the area with corresponding area 

identity.  

6.6.12 Mean average area suitability 

The found areas vector, 𝑉(𝑎𝑟𝑒𝑎)
𝑓𝑜𝑢𝑛𝑑

, now contains all cells in all areas, and the area count records 

the total number of areas found. The area count value is used to dynamically allocate an array 

of double precision variables to hold area average values; this is populated for each area by 

summing the suitability values for all cells (read from the development suitability raster) and 

dividing by the number of cells in the area.  

6.6.13 Output Average Suitability  

The area average values are then written to the area suitability raster by iterating over all cells. 

Area identity is read from the area identity raster at the current cell position. Where area 

identity is greater than ‘NOAREA’, the cell belongs to a valid area and the area average value 

(indexed by area identity) is written to the area suitability raster at the current cell position. 

Where area identity is ‘NOAREA’ and the current value read from the development 

suitability raster is also ‘NOAREA’ then ‘NOAREA’ is written to the area suitability raster. 

The final development area suitability raster is then written to file for use in the final stage of 

the UDM (6.7). 
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6.7 Urban Development 

Figure 6.7 shows the flow of operations in the final stage of the UDM which makes use of a 

hierarchical structure of classes to manage the development process. At the top level of this 

class hierarchy is a vector of type ‘Zone’, 𝑉(𝑧𝑜𝑛𝑒),. The ‘Zone’ class houses zone-level 

variables, such as population change, as well as a vector of type ‘Area’, 𝑉(𝑎𝑟𝑒𝑎), and a vector 

of type ‘Cell’, 𝑉(𝑐𝑒𝑙𝑙). The ‘Area’ class has its own vector of type ‘Cell’, 𝑉(𝑐𝑒𝑙𝑙). 

 
 

Figure 6.7: Urban Development 

 

6.7.1 Load Input Data 

Urban development requires 5 input rasters containing the following cell data: zone identity, 

current development, area identity (from development area creation), area suitability (from 

area average suitability), and cell suitability (from multi-criteria evaluation). All rasters are 

declared and setup using the input raster header before loading cell data from file via the input 

raster strings.  
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6.7.2 Create Zones 

The number of zones parameter is used to determine the number of empty zones which are 

pushed into the zones vector, 𝑉(𝑧𝑜𝑛𝑒). Iterating over all cells using the number of rows and 

columns, the zone identity raster is read at the current cell position. Where this is valid (i.e. 

not the no data value) the value returned is used as an index to the zones vector, 𝑉(𝑧𝑜𝑛𝑒), and 

the current cell is pushed into the vector of cells, 𝑉(𝑐𝑒𝑙𝑙), within that zone, 𝑉(𝑧𝑜𝑛𝑒). 

6.7.3 Population change 

Iterating over all zones, 𝑉(𝑧𝑜𝑛𝑒), the zone’s population change is calculated by subtracting 

current population from future population using the iteration number to index the double 

precision arrays loaded earlier. Where population change is less than or equal to zero the 

zone’s Boolean variable, development required, is set to false. 

6.7.4 Assign areas 

Iterating over the vector of cells, 𝑉(𝑐𝑒𝑙𝑙), in all zones, 𝑉(𝑧𝑜𝑛𝑒), which require development, the 

area identity at the current cell position is read from the area identity raster. Where area 

identity is valid (i.e. not the no data value) the vector of areas, 𝑉(𝑎𝑟𝑒𝑎), in the zone, 𝑉(𝑧𝑜𝑛𝑒), is 

searched for the area identity value. Where an area with corresponding area identity is found, 

the cell is pushed into the vector of cells, 𝑉(𝑐𝑒𝑙𝑙), within that area, 𝑉(𝑎𝑟𝑒𝑎), otherwise the cell is 

pushed into a new area; areas are created using the area identity value and the area suitability 

value which is read from the area suitability raster at the current cell position.     

6.7.5 Required development 

Iterating over the vector of cells, 𝑉(𝑐𝑒𝑙𝑙), in all zones, 𝑉(𝑧𝑜𝑛𝑒), which require development, the 

current development raster is read at the current cell position. A value of 1 indicates a 

currently developed cell which is added to a count of developed cells for each zone, 𝑉(𝑧𝑜𝑛𝑒), 

and used to set the zone’s current development cells variable, 𝑍𝑐𝑢𝑟 𝑑𝑒𝑣 𝑐𝑒𝑙𝑙𝑠.  

Zonal current development area, 𝑍𝑐𝑢𝑟 𝑑𝑒𝑣 𝑎𝑟𝑒𝑎, is found by multiplying the current 

development cells, 𝑍𝑐𝑢𝑟 𝑑𝑒𝑣 𝑐𝑒𝑙𝑙𝑠, by the cell size squared.  

Where density values are provided for each zone: 

• Zonal density, 𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦, is read from the array of provided data. 

• Zonal cell density, 𝑍𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, is found by multiplying the density, 𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦, by the 

cell size squared. 
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Otherwise: 

• Zonal cell density, 𝑍𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, is found by dividing the current zone population, 

𝑍𝑐𝑢𝑟 𝑝𝑜𝑝, by the current development cells, 𝑍𝑐𝑢𝑟 𝑑𝑒𝑣 𝑐𝑒𝑙𝑙𝑠.   

• Zonal density, 𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦, is found by dividing the current zone population, 𝑍𝑐𝑢𝑟 𝑝𝑜𝑝, by 

the current development area, 𝑍𝑐𝑢𝑟 𝑑𝑒𝑣 𝑎𝑟𝑒𝑎. 

Future development is found by dividing the zonal population change, 𝑍𝑝𝑜𝑝 𝑐ℎ𝑎𝑛𝑔𝑒, by the 

zonal cell density, 𝑍𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. This value is then rounded up to the nearest integer and set as 

the zonal required development cells, 𝑍𝑟𝑒𝑞 𝑑𝑒𝑣 𝑐𝑒𝑙𝑙𝑠. 

6.7.6 Overflow zones 

Iterating over all zones, 𝑉(𝑧𝑜𝑛𝑒), which require development, the size of the vector of cells, 

𝑉(𝑐𝑒𝑙𝑙), in all areas, 𝑉(𝑎𝑟𝑒𝑎), within the zone, 𝑉(𝑧𝑜𝑛𝑒), are summed to produce the zone’s 

suitable development cells variable. If the zone’s suitable development cells variable is less 

than the zone’s required development variable the zone’s Boolean overflow variable is set to 

true.  

6.7.7 Develop zones 

Overflow zones are developed by iterating over all overflow zones, 𝑉(𝑧𝑜𝑛𝑒), which require 

development, the development status of all cells, 𝑉(𝑐𝑒𝑙𝑙), in all areas, 𝑉(𝑎𝑟𝑒𝑎), is set to true, 

incrementing the zone’s developed cells variable in the process. 

Iterating over all non-overflow zones, 𝑉(𝑧𝑜𝑛𝑒), which require development, areas, 𝑉(𝑎𝑟𝑒𝑎), 

within zones, 𝑉(𝑧𝑜𝑛𝑒), are sorted by highest average area suitability as depicted in figure 6.8. 

Iterating over all areas, 𝑉(𝑎𝑟𝑒𝑎), within each zone, 𝑉(𝑧𝑜𝑛𝑒), which requires further development 

(where the zone’s developed cells variable is less than the zone’s required development cells 

variable); the algorithm establishes if the current area, 𝑉(𝑎𝑟𝑒𝑎), is the final area where 

development spreading takes place by checking whether the zone’s developed cells variable 

plus the size of the cell vector, 𝑉(𝑐𝑒𝑙𝑙), in the current area, 𝑉(𝑎𝑟𝑒𝑎), is greater than the zone’s 

required development cells variable. Where this is false the current area, 𝑉(𝑎𝑟𝑒𝑎), is not the 

final area and all cells within the area are developed by iterating over the cells vector, 𝑉(𝑐𝑒𝑙𝑙), 

setting each cell’s Boolean development status variable to true, and incrementing the zone’s 

developed cells variable.  
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Figure 6.8: Areas ranked and developed by average suitability 

 

6.7.8 Final area development  

Carrying on from the previous section, the algorithm is in an iterative cycle of all non-

overflow zones, 𝑉(𝑧𝑜𝑛𝑒), which require development and the current area, 𝑉(𝑎𝑟𝑒𝑎), is the final 

area where development spreading takes place. Iterating over all cells, 𝑉(𝑐𝑒𝑙𝑙), within the final 

spreading area, 𝑉(𝑎𝑟𝑒𝑎), the cell suitability is read from the cell suitability raster at the current 

cell position. Cells within the final area are then sorted by highest suitability placing the most 

suitable, the seed cell, at the front of the cells vector, 𝑉(𝑐𝑒𝑙𝑙). Two further vectors of type ‘Cell’ 

are setup to store cells used as seeds, 𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠, and neighbours, 𝑉(𝑐𝑒𝑙𝑙)

𝑛𝑏𝑟𝑠 , the initial seed cell is 

developed and the zone’s developed cells variable is incremented before the initial seed cell is 

pushed into the vector of seed cells, 𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠.    

Since it is known in advance that there are sufficient cells to meet the zone’s required 

development cells variable, a while loop is used to control the spreading algorithm depicted in 

figure 6.9, while the zone’s developed cells variable is less than the zone’s required 

development cells variable.  

Within this loop, the neighbours cell vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , is cleared and then populated with cells 

within the area which make up an 8-cell Von Neumann neighbourhood around the final cell in 

the seeds vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠, then the current seed is removed by popping the back of the seeds 

vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠. Cells in the neighbourhood vector, 𝑉(𝑐𝑒𝑙𝑙)

𝑛𝑏𝑟𝑠 , are sorted by highest suitability and 

developed in turn where the cell has not already been developed and the zone’s required 

development cells variable has not been reached, whilst incrementing the zone’s developed 
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cells variable. Cells in the neighbourhood vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑛𝑏𝑟𝑠 , are then pushed into the seeds vector, 

𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠, which is sorted by lowest suitability so that the most suitable seed can be accessed via 

the final position in the vector and can then be removed by popping the back of the seeds 

vector, 𝑉(𝑐𝑒𝑙𝑙)
𝑠𝑒𝑒𝑑𝑠.  

 
 

Figure 6.9: Final Area Seeding and Spreading 

 

6.7.9 Configure output raster 

The raster output from the UDM has a single band with integer values signifying land use 

status as follows: 

• No Development. 

Iterating over all cells, if the value read from the zone identity raster is the no data value 

then the value written to the final development raster is the no data value, otherwise it is 

initialised to 0.  

• Current Development. 

Iterating over all cells, the final development raster at the current cell position is set to the 

corresponding value read from the current development raster where this is equal to 1 

signifying current development.  
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• Future Development. 

Iterating over all cells, 𝑉(𝑐𝑒𝑙𝑙), in all areas, 𝑉(𝑎𝑟𝑒𝑎), in all zones, 𝑉(𝑧𝑜𝑛𝑒), which require 

development, if the cell development status is true then a value of 2 is written to the final 

development raster at the current cell position indicating future development.    

6.7.10 Configure overflow data 

The following attributes are output for each zone: 

• Label 

• Overflow status 

• Current population 

• Future population 

• Population assigned 

• Population not assigned 

• Expected number of cells developed 

• Actual number of cells developed 

• Area required 

• Area developed 

• Current cell density 

• Required density in free cells 

• Required density in zone cells 

6.8 Summary 

This chapter has described the UIMF UDM which provides a simple method to downscale 

zonal population output from the Spatial Interaction Model (SIM) generating fine-scale 

patterns of land use change resulting from future development. The model permits the 

assessment of land use patterns in conjunction with environmental models which operate at a 

finer spatial scale than zone polygons. The UDM employs spatial Multi-criteria Evaluation 

(MCE) to determine areas and cells which are most attractive for new development, and a 

Cellular Automata (CA) spreading function to distribute development across and within 

development areas which are integrated within existing urban fabric. The UIMF UDM 

matches the core operation of the UIAF UDM and provides standalone functionality using 

open source software which is optimised to rapidly generate results and is integrated within 

the UIMF which allows it to be driven directly from outputs of the SIM.  
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The following chapter presents a baseline case study applied to the Greater London area 

which demonstrates the application of the UIMF using a rich set of parameterisation data 

representing policies set out in the London Plan. 
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Chapter 7. London Case Study 

7.1 Introduction 

This chapter revisits the original setting of the Urban Integrated Assessment Framework 

(UIAF) models as developed by the Tyndall Centre for Climate Change Research. The case 

study is focussed on the Greater London Authority (GLA) area with a population of 8.2 

million people at the time of the 2011 Census (GLA, 2016). The activity and transport 

demand of this densely populated region generate huge greenhouse gas (GHG) emissions, 

42.5 million tonnes of carbon dioxide in 2009 (LEGGI), which must be reduced by mitigation 

strategies. The GLA area is situated in the southeast of the UK, a region vulnerable to heat 

waves, water scarcity and sea level rise. Potential climate change impacts within the GLA 

area such as flooding, water shortages, excessive urban heat, and air quality problems require 

adaptation strategies to minimise risk to the urban population.    

The purpose of this case study is to demonstrate that the Urban Integrated Modelling 

Framework (UIMF) can be parameterised for a baseline scenario in the GLA area using 

existing transport networks and detailed spatial development strategy as described in section 

7.2. This shows the utility of the framework when working with generic model groups, 

interfaces and datasets, providing evidence that the recoded models have been implemented 

successfully by demonstrating their combination and the results produced for the GLA area 

when running under the framework.    

Section 7.2 introduces the London Plan and the key spatial development policies which are to 

be used as model drivers; sections 7.3 to 7.5 cover model parameterisation, section 7.6 

describes the process of model and model group setup within the framework, finally, section 

7.7 presents the results generated by each modelling stage from transportation to zonal and 

sub-zonal land use disaggregation.    

7.2 Planning Policy 

The GLA was formed in 2000 and has adopted a proactive approach to dealing with climate 

change mitigation and adaptation at the urban level, including collaborating with the Tyndall 

Centre to develop questions requiring new models to provide insights. The London Plan 

published by the GLA disseminates the social, economic, environmental and spatial 

development framework for the region; the plan is a statutory requirement, first published in 

2004, and most recently in 2017 as an amendment to the current plan of 2016. In all published 
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versions to date, chapter two describes the broad development strategy and culminates by 

drawing together spatial policies in a key diagram as shown in figure 7.1.    

The 8.2 million people living in the GLA area at the time of the 2011 Census were housed in 

3.28 million households and population was growing at an average rate of 87 thousand people 

per annum relative to the 2001 Census. Although subject to a degree of uncertainty, in some 

cases the population is projected to rise to 9.2 million people in 3.74 million households by 

2021 and reach 10.1 million people in 4.26 million households by 2036. Population growth on 

this scale requires detailed planning to provide housing, jobs and infrastructure to an 

expanded urban population whose needs must be met without negatively impacting upon 

quality of life. Growth in the economy is expected to be accompanied by change as new 

sectors develop whose specific needs in terms of locations and infrastructure should be 

fostered. Climate change adaptation, including the protection of urban green space and 

management of flood risks must be progressed alongside developments to reduce GHG 

emissions as required by mitigation (GLA, 2016). 

The spatial policies set out in the Key Diagram of the London Plan (figure 7.1) form inputs to 

the multi-scale simulation framework as described in the following sub-sections. 

Opportunity areas have the potential to accommodate a sizable increase in employment 

(~5000 jobs) or housing (~2500 homes). Most include large areas of previously developed 

land and offer significant potential for densification. They hold promise for climate change 

adaptation and mitigation measures with their development supported by improvements to 

public transport access where required. Areas of intensification have good public transport 

accessibility and offer the potential for development, redevelopment and densification to 

significantly increase housing and employment. Regeneration areas are the 20 percent most 

deprived areas as measured by the Government’s Index of Deprivation. They require 

regeneration to address social exclusion allowing links to be forged with nearby opportunity 

areas to take advantage of their provision. Metropolitan centres offer the best public 

transport accessibility outside of central London and are therefore key to integrating land use, 

including housing and employment, with transport to meet sustainability objectives. Thames 

Gateway is the portion of the Thames Gateway which is situated within the GLA boundary. 

Policy for this region reflects Government strategy for regeneration, infrastructure 

improvement and development of the gateway region. 
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Figure 7.1: Key Diagram from the London Plan 2008 (GLA, 2008). 

 

Green belt areas maintain the separation of towns and therefore constrain urban sprawl. 

Protection of the green belt should be maintained by preventing inappropriate development 

unless there are exceptional circumstances. Metropolitan open land areas consist of open 

space within the city, often linked by footpaths to form green chains. The preservation of open 

space within the built urban fabric should be maintained by providing these areas with the 

same level of protection as the green belt. 

7.3 Spatial Interaction Model Parameterisation 

In this case study the GLA region is divided into 633 zones as defined by the UK Office for 

National Statistics (ONS) Census Area Statistics (CAS) wards which cover the 33 London 

Boroughs (figure 7.2).   
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Figure 7.2: The GLA region divided into 633 zones. 

 

Projected employment values in decade increments up to 2100 are generated exogenously by 

a Multi-Sectoral Dynamic Model (MDM-E3) which combines sectoral econometric models 

with input-output models driven by a Global energy-environment-economy model (E3MG). 

MDM-E3 employs a 42-sector UK Standard Industrial Classification (SIC) which, in this case 

study, is aggregated to employment in five industrial sectors; Primary industries, Retail, 

Construction, Finance, and Other services (for example public sector) as shown in figure 7.3.   

 
Figure 7.3: MDM-3 employment projection aggregated to 5 sectors. 
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The key diagram attractors described in section 7.2.1 are used in the spatial disaggregation of 

both employment and population along with their respective observed values; the use of 

observed employment and population as attractors reflects the tendency for new development 

to agglomerate around existing development. Areas of opportunity, regeneration, and the 

Thames Gateway occupy large tracts of overlapping land as shown in figure 7.4. Metropolitan 

centres and intensification areas are localised into small pockets of land distributed around the 

GLA region as shown in figure 7.5 along with previously developed land; the London Plan 

sets out a policy for the use of previously developed land consisting of Brownfield sites 

whose development should be maximised as part of a wider set of sustainability criteria. 

These spatial attractors are shown in table 7.1. 

Attractor: zonal attribute or area within each zone Weight 

Brownfield 1 

Gateway 1 

Intensification 1 

Metropolitan 1 

Opportunity 1 

Regeneration 1 

Observed Employment / Population 1 

 

Table 7.1: SIM Employment and Population Attractors 

 

The key diagram constraints described in section 7.2.2 are used to prevent inappropriate 

development; protected areas of metropolitan land and the green belt are shown in figure 7.6. 

Additionally, the London Plan identifies the following areas, shown in figure 7.7, which are 

used as development constraints: 

• Special Areas for Conservation. 

• Sites of Special Scientific Interest (SSSI). 

• Local Nature Reserves. 

• National Nature Reserves. 
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Figure 7.4: Case Study Attractors; Opportunity, Regeneration and Thames Gateway. 

 
Figure 7.5: Case Study Attractors; Metropolitan centres, Intensification and Previous 

Development. 
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Figure 7.6: Case Study Constraints; Greenbelt and Metropolitan Open Land. 

 
Figure 7.7: Case Study Constraints: Nature, Conservation and SSSI. 
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The Spatial Interaction Model (SIM) does not redevelop existing areas so currently developed 

land and bodies of water, as shown in figure 7.8, are used as practical constraints on future 

development. To ensure consistency across modelling scales the available land within each 

zone in the SIM is computed from the input constraint raster used in the Urban Development 

Model (UDM). The constraints described in this section are combined into a single vector 

layer which is rasterised with a cell size of 1m before being down-sampled to a raster with a 

cell size of 100m using the framework function 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟() with a threshold of 

50%. The framework function 𝐴𝑟𝑒𝑎𝐹𝑟𝑜𝑚𝑅𝑎𝑠𝑡𝑒𝑟() is then used to output a .csv file 

containing an available area value for each zone computed from the number of free cells 

multiplied by the cell size squared.    

Observed data for initial employment in each employment sector for each zone (shown in 

figure 7.9 aggregated over all sectors) is provided by ONS official labour market statistics 

(National Online Manpower Information System - NOMIS) using Annual Business Inquiry 

(ABI) data for 2005, whilst observed data for initial population in each zone (shown in figure 

7.11) is provided by ONS England and Wales Census counts for 2001. The ONS Generalised 

Land Use Database (GLUD) classifies land use in the Ordnance Survey (OS) MasterMap 

Topography Layer and documents the total area occupied by each category. The area 

occupied by domestic buildings is used along with observed population to compute the 

observed population density for each zone (shown in figure 7.12) whilst the area occupied by 

non-domestic buildings is used along with observed employment to compute the observed 

employment density for each zone as shown in figure 7.10.  

A pragmatic check when running the SIM showed that the projected values of employment 

and population could not be housed for each timestep using their respective observed density 

values. One option to remedy this situation would be to remove the greenbelt constraint 

freeing up development area but the London Plan stipulates that this should not be done 

unless there are exceptional circumstances. For the purposes of this case study, the observed 

density values for each zone were doubled which allows new development, for both 

employment and population, to be housed in each timestep. This rather crude approach will be 

refined and presented as a densification scenario in the discussion chapter.   
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Figure 7.8: Case Study Constraints: Current Development and Water. 

 
Figure 7.9: Observed Employment. 
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Figure 7.10: Employment Density. 

 

 
Figure 7.11: Observed Population. 

 

 



131 

 

 
Figure 7.12: Population Density. 

 

7.4 Transport Accessibility Model Parameterisation 

7.4.1 Road 

Spatial model inputs as shown in figure 7.13 consist of zone centroids as points which act as 

journey origins and destinations, and the network of major roads as edges along which 

journeys run in the GLA region; the ‘Congestion Charge Zone’ polygon with the western 

extension removed i.e. post-2011, is included to implement route-dependent charging which 

results in journeys being routed to avoid the charge where a lower cost network path exists. 

Key generalised cost parameters for the road network are shown in table 7.2.    

Spatial Data Key Parameter Values 

OS Mastermap 

Integrated 

Transport 

Network (ITN) 

Walking speed: 6 km/h. 

Access time: 3 minutes. 

Vehicle occupancy: 1.16 people per trip (WebTAG, 2009). 

Value of time: 1 hour = £5.04 (WebTAG, 2009). 

Congestion charge: £8 for journeys entering or leaving the congestion 

zone, 90% discount applied to routes originating within the zone (TFL, 

2013). 
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Operating costs (fuel): computed using the coefficients a, b, c and d 

(WebTAG, 2009).  

𝑎 = 88.205 

𝑏 = 5.727 

𝑐 =  −0.02865 

𝑑 = 0.00034 

Operating costs (non-fuel): computed using the coefficient a 

(WebTAG, 2009). 

𝑎 = 3.846 

Travel speed: average speed for three cordons in the city from 2006 

London Travel Report (TFL 2006). 

Table 7.2: Key generalised cost parameters for the road network 

 

7.4.2 Bus 

Spatial model inputs as shown in figure 7.14 consist of bus stops as points and the network of 

connecting roads as edges; a vector of the GLA region containing zone polygons is provided 

to configure access edges from zone centroids to nearest stops. Key generalised cost 

parameters for the bus network are shown in table 7.3. 

Spatial Data Key Parameter Values 

Transport for 

London data 

produced by 

Jacobs Consulting 

Walking speed: 6 km/h. 

Interchange distance: 640m (TFL, 2010). 

Walking disincentive: 1.6 (WebTAG, 2009). 

Waiting disincentive: 2.6 (WebTAG, 2009). 

Fare: flat rate of £1 assuming fixed cost of Oyster card as used in over 

85% of journeys within London (TFL, 2007). 

Value of time: 1 hour = £5.04 (WebTAG, 2009). 

Average wait: half the average frequency of service (assumed to be 3 

minutes). 

Travel speed: equivalent edge speed computed from travel time 

included in dataset. 

Table 7.3: Key generalised cost parameters for the bus network 
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7.4.3 Light Rail 

Spatial model inputs as shown in figure 7.15 consist of light rail stations as points and the 

network of connecting tracks as edges; a vector of the GLA region containing zone polygons 

is provided to configure access edges from zone centroids to nearest stations. Key generalised 

cost parameters for the light rail network are shown in table 7.4. 

Spatial Data Key Parameter Values 

OS Meridian data with 

all links assumed to be 

bi-directional and 

passenger-carrying 

Walking speed: 6 km/h. 

Interchange distance: 960m (TFL, 2010). 

Walking disincentive: 1.6 (WebTAG, 2009). 

Waiting disincentive: 2.6 (WebTAG, 2009). 

Fare: average of £0.18 per km (TFL, 2006). 

Value of time: 1 hour = £5.04 (WebTAG, 2009). 

Average wait: half the average frequency of service (assumed to 

be 3 minutes). 

Travel speed: equivalent average speeds computed from 

timetabled sections of light rail network in the GLA area. 

Table 7.4: Key generalised cost parameters for the light rail network 

 

7.4.4 Heavy Rail 

Spatial model inputs as shown in figure 7.16 consist of heavy rail stations as points and the 

network of connecting tracks as edges; a vector of the GLA region containing zone polygons 

is provided to configure access edges from zone centroids to nearest stations. Key generalised 

cost parameters for the heavy rail network are shown in table 7.5. 

Spatial Data Key Parameter Values 

OS Meridian data with 

all links assumed to be 

bi-directional and 

passenger-carrying 

Walking speed: 6 km/h. 

Interchange distance: 960m (TFL, 2010). 

Walking disincentive: 1.6 (WebTAG, 2009). 

Waiting disincentive: 2.6 (WebTAG, 2009). 

Fare: average of £0.18 per km (TFL, 2006). 

Value of time: 1 hour = £5.04 (WebTAG, 2009). 

Average wait: half the average frequency of service (assumed to 

be 7.5 minutes). 
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Travel speed: equivalent average speeds computed from 

timetabled sections of heavy rail network in the GLA area. 

Table 7.5: Key generalised cost parameters for the heavy rail network 

 

 

 

 

 

 
Figure 7.13: Road Network and Congestion Zone. 
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Figure 7.14: Bus Network and Stops. 

 

 

 

 
Figure 7.15: Light Rail Network and Stations. 
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Figure 7.16: Heavy Rail Network and Stations. 

 

 

7.5 Urban Development Model Parameterisation 

A raster of integer zone identity values must be created for the UDM to correctly assign cells 

to zones. These values range from zero to the total number of zones minus one and 

correspond to the index to the zone array used in the UDM.  

To ensure consistency across modelling scales the London Plan attractors used in the SIM for 

inter-zonal population disaggregation are used in the UDM for intra-zonal population 

disaggregation at the cellular level. Areas of opportunity, regeneration, and intensification, 

along with metropolitan centres and the Thames Gateway are merged into a single vector 

layer before converting to a Boolean raster of London Plan suitability as shown in figure 7.17; 

previously developed land is also converted to a Boolean suitability raster as shown in figure 

7.18. Inter-zonal population disaggregation is also driven by accessibility to employment via 

the Transport Accessibility Model (TAM) so intra-zonal population disaggregation employs 

localised accessibility to transportation; rasters of proximity to the road network (shown in 

figure 7.20), and proximity to public transport access points (shown in figure 7.21) are used 

for this purpose. The tendency for new development to agglomerate around existing 



137 

 

development is also represented at the intra-zonal level by using rasterised proximity to 

current development as shown in figure 7.19. These spatial attractors are shown in table 7.6. 

Attractor Weight 

London plan 0.2 

Previous development 0.2 

Development proximity 0.2 

Road proximity 0.2 

Public transport proximity 0.2 

 

Table 7.6: UDM Spatial Attractors and Weights 

 

As well as using consistent attractors, coherence across modelling scales is ensured by using 

consistent constraints which are used to define the available area for new development in both 

the SIM and UDM. The constraints used by the SIM as shown in figures 7.6, 7.7 and 7.8 are 

merged into a single vector layer and rasterised as described in section 7.3 to create a Boolean 

raster of development constraint (shown in figure 7.22). 

7.6 Framework Setup 

A shown in figure 7.23, 11 models are required to model the GLA region; a network 

processing model and generalised cost model for each of the 4 input transport networks 

respectively, followed by an accessibility model to aggregate and convert input cost matrices. 

The output accessibility matrix is fed into the SIM which, in turn, generates zonal population 

data to be used by the UDM.    
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Figure 7.17: London Plan Suitability Raster. 

 
Figure 7.18: Previous Development Suitability Raster. 
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Figure 7.19: Current Development Proximity Raster. 

 
Figure 7.20: Road Network Proximity Raster. 

 

 

 



140 

 

 
Figure 7.21: Public Transport Proximity Raster. 

 
Figure 7.22: Development Constraint Raster. 
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Figure 7.23: Sequence of models used to simulate the GLA region 

 

As shown in figure 7.24, PostgreSQL databases are used to configure and run the collection 

of models for the GLA region. Model and model group data in .csv format is prepared in a 

spreadsheet using a template table for each dataset before loading to the 

𝐶𝑆𝐿𝑜𝑛_𝑀𝑜𝑑𝑒𝑙𝐺𝑟𝑜𝑢𝑝𝑠 and 𝐶𝑆𝐿𝑜𝑛_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 databases. Raster data is prepared in 𝑄𝐺𝐼𝑆 and 

exported using the asci file format before converting and loading into the 𝐶𝑆𝐿𝑜𝑛_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 

database. Vector data is prepared in 𝑄𝐺𝐼𝑆 and imported to the 𝐶𝑆𝐿𝑜𝑛_𝑅𝑎𝑤𝐷𝑎𝑡𝑎 database 

using the shapefile import/export plugin in 𝑝𝑔𝑎𝑑𝑚𝑖𝑛. This vector data is then processed to 

extract the required columns of data, reformatting where necessary and loading into tables in 

the 𝐶𝑆𝐿𝑜𝑛_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 database  

 
Figure 7.24: Model configuration process for the GLA region. 

7.7 Results 

7.7.1 Transport Accessibility Model 

The output from the road network processing model adds access edges linking zone centroid 

origins and destinations to the input road network as shown in figure 7.25. In addition, edges 
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which span the congestion charge boundary are identified as shown in figure 7.26 so that the 

provided congestion charge value can be used as an edge weight in the computation of least-

cost paths.  The cost matrix output from the road network generalised cost model (figure 7.27) 

shows a radial spread of cost values like that which would be obtained by using the Euclidean 

distance between zone origins.  

The output from the bus network processing model adds access edges linking zone centroid 

origins and destinations with one or more nearest bus stops to the input bus network as shown 

in figure 7.28. In addition, interchange edges are created between stops within the defined 

radius of one another as shown in figure 7.29. The cost matrix output from the bus network 

generalised cost model (figure 7.30) shows an approximately radial spread of cost values like 

that obtained using the shared network of major roads but with high-costs evident where 

access edges are significant resulting in long access times to nearest stops.    

The output from the light rail network processing model adds access edges linking zone 

centroid origins and destinations with one or more nearest light rail stations to the input light 

rail network as shown in figure 7.31. In addition, interchange edges are created between 

stations within the defined radius of one another as shown in figure 7.32. The cost matrix 

output from the light rail network generalised cost model (figure 7.33) shows a spread of cost 

values where low costs follow the network, corresponding to zones with nearby access to 

stations, and high costs represent the time and disincentive to walk to the nearest station.  

The output from the heavy rail network processing model adds access edges linking zone 

centroid origins and destinations with one or more nearest heavy rail stations to the input 

heavy rail network as shown in figure 7.34. In addition, interchange edges are created 

between stations within the defined radius of one another as shown in figure 7.35. The cost 

matrix output from the heavy rail network generalised cost model (figure 7.36) shows a 

spread of cost values where low costs follow the network, corresponding to zones with nearby 

access to stations, and high costs represent the time and disincentive to walk to the nearest 

station. 
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Figure 7.25: Road Network Access Edges.

 
Figure 7.26: Road Network Congestion Charge Edges. 
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Figure 7.27: Road Network Generalised Cost. 

 
Figure 7.28: Bus Network Access Edges. 
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Figure 7.29: Bus Network Interchange Edges. 

 

 
Figure 7.30: Bus Network Generalised Cost. 
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Figure 7.31: Light Rail Network Access Edges. 

 
Figure 7.32: Light Rail Network Interchange Edges. 
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Figure 7.33: Light Rail Network Generalised Cost. 

 
Figure 7.34: Heavy Rail Network Access Edges. 
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Figure 7.35: Heavy Rail Network Interchange Edges. 

 
Figure 7.36: Heavy Rail Network Generalised Cost. 
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The accessibility matrix output from the transport accessibility model (figure 7.37) shows the 

spread of accessibility values when aggregating costs across all 4 input networks. The radial 

spread of costs in the road network is evident alongside long access times for modes of public 

transportation corresponding to zones with poor access to stations and stops. 

7.7.2 Spatial Interaction Model 

To be consistent with the timescale of the London Plan, figures 7.38 and 7.40 show the 

zonally disaggregated values of employment and population respectively for the year 2030; 

these maps provide strong evidence that the spatial attractors described in the London Plan act 

as the principal drivers of future development. Further extrapolation using these attractors 

leads to the zonal employment and population maps shown in figures 7.39 and 7.41 

respectively, where in the year 2080, the spread of development is roughly the same, allowing 

for the spread of excess development where targeted zones have reached capacity at the 

specified density.       

 
Figure 7.37: Aggregate Transport Accessibility. 
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Figure 7.38: 2030 Zonal Employment. 

  
Figure 7.39: 2080 Zonal Employment. 
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Figure 7.40: 2030 Zonal Population. 

 
Figure 7.41: 2080 Zonal Population. 
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7.7.3 Urban Development Model 

The first output of the UDM is a raster of development area identity where development area 

identity values increment from the top-left to the bottom-right of the raster. The minimum 

zone size parameter, specified as the number of cells is set to 4, which produces the raster 

shown in figure 7.42, showing the progression of identity values and cells excluded from 

development areas (shaded white). The second output of the urban development model is a 

raster of development suitability which is computed using the multi-criteria evaluation of 

input raster attractors described in section 7.5, and the constraint raster described in section 

7.5. Cell development can only occur within valid development areas so a raster of average 

development suitability (figure 7.44) is output which combines development area identity 

with the output of multi-criteria evaluation.   

Figure 7.45 shows the cellular population development for 2030, corresponding to the output 

of the zonal model shown in figure 7.39. It is clear the cellular disaggregation of population is 

in accordance with the SIM output and its input attractors. Figure 7.46 shows the cellular 

population development for 2080, corresponding to the output of the SIM shown in figure 

7.41; this cellular spread of population also correlates with the SIM output and its attractors.

 

Figure 7.42: Development Area Identity. 
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Figure 7.43: Multi-Criteria Evaluation Development Suitability. 

 

 
Figure 7.44: Development Area Average Development Suitability. 
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Figure 7.45: 2030 Cellular Population Land Use Development. 

 

 
Figure 7.46: 2080 Cellular Population Land Use Development.  
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7.8 Summary  

This chapter has described the application of the UIMF to a case study focussed on the GLA 

region. A set of detailed spatial policies set out in the Key Diagram of the London Plan was 

identified and used to form attractors and constraints to the SIM; this was parameterised using 

observed data and driven using exogenously generated multi-sectoral employment projections 

from the MDM-E3 model aggregated to five industrial sectors. 

Input networks and key parameters used for model parameterisation have been described for 

each of the four modes of transport in the GLA region. These input networks were modified 

using the network processing models to include edges for access, interchange and congestion 

charging. The generalised cost matrix produced for each mode of transport was input to the 

accessibility model to produce an accessibility matrix aggregated over all transport modes 

which is input to the SIM. 

SIM outputs for employment and population were presented for the year 2030 to match the 

approximate timeframe of the policies set out in the London Plan. Further outputs were 

presented for the year 2080 to indicate the possible development resulting from extending the 

application of these policies far into the future. In all cases, the outputs demonstrate the 

correct operation of the model in disaggregating future development in accordance with 

spatial attractors.   

The UDM was parameterised with raster data to drive and constrain intra-zonal cell 

development in a consistent manner with the inter-zonal spatial disaggregation of the SIM. 

UDM raster outputs were described for development area identity, suitability based on input 

rasters and obtained using multi-criteria evaluation, and development area average suitability. 

The final outputs for UDM were cell development rasters for the years 2030 and 2080 which 

correspond to the SIM outputs presented earlier; the development pattern demonstrates the 

coherence across modelling scales and shows the progression of development over a 50-year 

timespan using the same set of attractors and constraints. 

This chapter has provided evidence that the UIMF can be applied to the GLA region using a 

detailed set of spatial policies as inputs. The outputs from each modelling stage show the 

correct operation of the models themselves and the coherence between models and across 

modelling stages. Model execution times for each stage in this case study are shown in table 

7.6. 
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Model Execution time (seconds) 

TAM: bus network processing 297 

TAM: heavy rail network processing 51 

TAM: light rail network processing 38 

TAM: road network processing 401 

TAM: bus cost and pathfinding 10 

TAM: heavy rail cost and pathfinding 4 

TAM: light rail cost and pathfinding 4 

TAM: road cost and pathfinding 23 

TAM: accessibility 4 

SIM 2 

UDM 4 

 

Table 7.7: GLA Case Study Model Execution Times  

 

The following chapter presents another case study, this time applying the UIMF to Innsbruck 

in Austria. The focus will be upon driving the model using a relatively sparse set of input data 

in contrast with the detailed approach taken in this chapter, whilst demonstrating that the 

modelling framework can be transferred from one study region to another.      
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Chapter 8. Innsbruck Case Study 

8.1 Introduction 

This chapter applies the Urban Integrated Modelling Framework (UIMF) to a case study 

focussed on the city of Innsbruck and its surrounding region; the Inn Valley. Innsbruck has 

around 125,000 inhabitants (Mikovits et al., 2014) and is situated at an elevation of 574m 

above sea level in the federal state of Tyrol, in western Austria. The state of Tyrol forms part 

of the central Alpine ridge and is therefore morphologically defined by mountains and valleys 

with forest accounting for much of its surface area; this restricts the area available for 

permanent human settlement. The region is subject to the effects of extreme climate events, 

particularly rainfall and associated flooding which forms the context of this study.     

The purpose of this case study is to demonstrate that the UIMF can be applied to a second 

study region, used for a different purpose, and can be parameterised with a minimal set of 

inputs. This shows the utility of the framework, providing further evidence of the models in 

operation and, in this case, demonstrates transferability.  

Section 8.2 introduces the need for simple models to explore possible future scenarios in the 

context of flooding and urban drainage; sections 8.3 to 8.5 cover model parameterisation, 

section 8.6 describes the process of model and model group setup within the framework, 

finally, section 8.7 presents the results generated by each modelling stage from transportation 

to zonal and sub-zonal land use disaggregation.    

8.2 Case Study Context 

Land use change resulting from growth and development places further demand on existing 

critical infrastructure including urban drainage systems. Surface flooding is impacted by the 

increase in impervious area due to surface sealing for new development, while the additional 

burden placed on existing drainage can propagate flooding across the system. Development of 

measures for infrastructure adaptation requires simulation of land use change for a range of 

scenarios to plan appropriate resilience. Many existing approaches to urban simulation place 

great demands on resources to parameterise and run models which may be complex, requiring 

exhaustive inputs and significant computational power. In the context of urban drainage, 

simpler models have been shown to provide utility in the generation of plausible future 

scenarios which can then be integrated with models of flooding and drainage infrastructure 

(Mikovits et al., 2015).      
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Although the UIMF has relatively modest data requirements as demonstrated for the London 

case study in Chapter 7, the goal for this case study was to produce a ‘working’ simulation 

which was parameterised quickly and made use of as few inputs as possible. This 

demonstrates that the UIMF has utility in situations characterised by a lack of either time or 

available data. The key model simplifications are as follows: 

• The Spatial Interaction Model (SIM) is driven by linear projections of employment 

and population for three scenarios. 

• Zonal attractors for employment and population use areas designated for future 

development by regional planning, as well as observed values. 

• The Transport Accessibility Model (TAM) uses a single network which carries three 

modes of transport. 

• Generalised cost is simplified to network distance. 

Raw input datasets for this case study were provided by Christian Mikovits during a week-

long process of guided data-collection which took place at Newcastle University. Census 

counts were obtained from Statistik Austria for the state of Tyrol, whilst spatial inputs were 

extracted from open data layers such as OpenStreetMap (OSM).  

8.3 Spatial Interaction Model Parameterisation 

The study region comprises 140 zones in the state of Tyrol, most of which are situated along 

the Inn Valley which is centred upon the city of Innsbruck. Figure 8.1 shows this study region 

which is clipped by a low-resolution raster of habitable area for Austria resulting in a rather 

un-aesthetic map perimeter.  
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Figure 8.1: Study region comprising 140 zones within Tyrol, Austria. 

 

This case study uses seven timesteps starting from observed values in 2000 and culminates in 

projections of employment and population for 2030. It makes use of simple linear drivers for 

three scenarios of projected employment and population: in scenario A, both employment and 

population increase by 12%; in scenario B, both employment and population increase by 8%; 

whilst, in scenario C, population is increased by 12% and employment is increased by 8%. 

These scenarios which are depicted in figure 8.2, demonstrate that simple ratios or 

percentages can be used to generate offsets to observed values, and drive the model.  

 
 

Figure 8.2: Linear growth projections for study region. 
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As well as observed values which act as agglomerative attractors, the case study employs 

attractor areas which are consistent with Austrian spatial development planning as shown in 

table 8.1. “Örstliches RoumOrdnungsKOnzept” roughly translates as “Local Regional 

Planning Concept” and must be developed by each municipality within Tyrol. The ÖROKO 

was first developed by the city of Innsbruck in 2002 and identifies future zoning and 

development planning in a spatial strategy document. A raster of ÖROKO areas designated 

for structural development including housing and employment was provided as a SIM input 

as shown in figure 8.3. The function 𝐴𝑟𝑒𝑎𝐹𝑟𝑜𝑚𝑅𝑎𝑠𝑡𝑒𝑟() was then used to output a .csv file 

containing an attractor area value for each zone computed from the number of valid attractor 

cells multiplied by the cell size squared.        

Attractor type Attractor 1 (weight) Attractor 2 (weight) 

Employment Zonal observed employment (1) Plan area within each zone (1) 

Population Zonal observed population (1) Plan area within each zone (1) 

Table 8.1: SIM Employment and Population Attractors 

 
Figure 8.3: ÖROKO designated areas for future development. 

 

A raster of ÖROKO constrained areas, including agriculture, greenspace and landscape 

protection was provided as a zonal model input as shown in figure 8.4. The function 

𝐴𝑟𝑒𝑎𝐹𝑟𝑜𝑚𝑅𝑎𝑠𝑡𝑒𝑟() was then used to output a .csv file containing an available area value for 

each zone computed from the number of free cells multiplied by the cell size squared.   
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Figure 8.4: ÖROKO constrained areas. 

 

The maps of observed employment (figure 8.5) and employment density (figure 8.6) show 

that the city of Innsbruck which is divided into numerous relatively small zones, contains a 

spatially disproportionate number of jobs. Other zones with high employment but relatively 

low employment density correspond to settlements located along the Inn valley which follows 

an east-west axis with Innsbruck at the centre. The maps of observed population (figure 8.7) 

and population density (figure 8.8) show that the city of Innsbruck contains zones with the 

highest population densities. The settlement pattern along the Inn valley as described for 

employment is echoed with zones of high population corresponding to, and situated around, 

zones of high employment. The density values for both employment and population were 

calculated relative to relevant building footprint area by zone using OSM data.     



163 

 

 
Figure 8.5: Study region observed employment. 

 
Figure 8.6: Study region employment density. 
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Figure 8.7: Study region observed population. 

 
Figure 8.8: Study region population density. 
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8.4 Transport Accessibility Model Parameterisation 

In this case study, for the purposes of simplification, transport accessibility is represented by a 

single network as shown in figure 8.9. The road network carries three modes of transport; 

private vehicles, cycles and buses. As a further simplification measure, all network edges are 

set to the same speed which effectively configures the Dijkstra algorithm to find shortest 

distance paths between all zones. Early spatial interaction models used the straight-line 

Euclidean distance between zones as a measure of separation in their gravity models of spatial 

disaggregation; in practice, this would result in straight-line routes connecting zones through 

mountains which suggests that network distance, as used in this case study, is a more sensible 

choice as a basic measure of separation.     

 
Figure 8.9: Study region input road network. 

 

8.5 Urban Development Model Parameterisation 

A raster of integer zone identity values must be created for the Urban Development Model 

(UDM) to correctly assign cells to zones. These values correspond to the index to the zone 

array used in the urban development model.  

To ensure consistency across modelling scales the ÖROKO attractors used in the SIM (figure 

8.3) for inter-zonal population disaggregation are used in the urban development model for 
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intra-zonal population disaggregation at the cellular level as shown in table 8.2. Inter-zonal 

population disaggregation is also driven by accessibility to employment via the transport 

model so intra-zonal population disaggregation employs localised accessibility to 

transportation; the raster of proximity to the road network (shown in figure 8.10) is used for 

this purpose. The tendency for new development to agglomerate around existing development 

is also represented at the intra-zonal level by using rasterised proximity to current 

development as shown in figure 8.11.  

Suitability Attractors Attractor Weight 

Plan area 0.4 

Development proximity 0.3 

Road proximity 0.3 

 

Table 8.2: UDM Suitability Attractors 

 
Figure 8.10: Rasterised proximity to road network. 
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Figure 8.11: Rasterised proximity to current development. 

 

As well as using consistent attractors, coherence across modelling scales is ensured by using 

consistent constraints which are used to define the available area for new development in both 

the SIM and UDM. The raster of ÖROKO constrained areas was shown in figure 8.4. 

8.6 Framework Setup 

A shown in figure 8.12, five models are required to model the Innsbruck region; a network 

processing model and generalised cost model for the road network, followed by an 

accessibility model to convert the input cost matrix. The output accessibility matrix is fed into 

the SIM which, in turn, generates zonal population data to be used by the UDM. As shown in 

figure 8.13, PostgreSQL databases are used to configure and run the collection of models for 

the Innsbruck region. Model and model group data in .csv format is prepared in a spreadsheet 

using a template table for each dataset before loading to the 𝐶𝑆𝐼𝑛𝑛𝑠𝐵_𝑀𝑜𝑑𝑒𝑙𝐺𝑟𝑜𝑢𝑝𝑠 and 

𝐶𝑆𝐼𝑛𝑛𝑠𝐵_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 databases. Raster data is prepared in 𝑄𝐺𝐼𝑆 and exported using the ascii 

file format before converting and loading into the 𝐶𝑆𝐼𝑛𝑛𝑠𝐵_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 database. Vector data 

is prepared in 𝑄𝐺𝐼𝑆 and imported to the 𝐶𝑆𝐼𝑛𝑛𝑠𝐵_𝑅𝑎𝑤𝐷𝑎𝑡𝑎 database using the shapefile 

import/export plugin in 𝑝𝑔𝑎𝑑𝑚𝑖𝑛. This vector data is then processed to extract the required 

columns of data, reformatting where necessary and loading into tables in the 

𝐶𝑆𝐼𝑛𝑛𝑠𝐵_𝑅𝑢𝑛𝐷𝑎𝑡𝑎 database.  
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Figure 8.12: Study region models. 

 
Figure 8.13: Study region model setup. 

 

8.7 Results 

8.7.1 Transport Accessibility Model 

The distance-based cost matrix for the road network which is shown in figure 8.14 exhibits 

the expected radial pattern of transport cost centred on the city of Innsbruck. Figure 8.15 

shows this pattern converted into accessibility in which a higher cost of travel between zones 

leads to lower accessibility. A more detailed representation of transport accessibility for the 

study region would incorporate all available modes of transport and make use of full 

generalised cost parameterisation; however, this greater detail comes at the expense of 

increased data requirements.     
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Figure 8.14: Study region network distance-based cost. 

 
Figure 8.15: Study region employment accessibility. 
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8.7.2 Spatial Interaction Model 

To simplify the task of basic analysis, all maps of zonal outputs are presented as the change in 

values from 2000 to 2030. The linear projection scenarios for employment and population 

described in section 8.3 were used to produce three sets of outputs which were then used to 

drive the UDM. Only scenarios A and C are presented here since scenario B simply reduces 

scenario A employment and population growth from 12% to 8%, resulting in a similar spatial 

spread with scaled back values. As shown in figure 8.16, scenario A employment change 

(12%) reflects the attraction to observed employment (figure 8.5) and designated ÖROKO 

areas (figure 8.3) subject to available space. Figure 8.17 shows scenario A population change 

which reflects the attraction to observed population (figure 8.7) and designated ÖROKO areas 

(figure 8.3); however, population disaggregation is heavily influenced by accessibility to 

employment (figure 8.15) which leads to most future development occurring close to the city 

of Innsbruck. 

 
Figure 8.16: Scenario A employment change. 
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Figure 8.17: Scenario A population change. 

 

As shown in figure 8.18, scenario C employment change (8%) reflects the same spatial 

attractors as for scenario A (figure 8.16) but is scaled back and must compete for available 

space with the faster growing population. Figure 8.19 shows scenario C population change 

(12%) which is spatially similar to scenario A (figure 8.17) but the slower growing economy 

and associated land use change permits more development for housing in zones with higher 

accessibility in and around the city of Innsbruck.   
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Figure 8.18: Scenario C employment change. 

 
Figure 8.19: Scenario C population change. 

 

Zonal population disaggregation is driven by accessibility to employment which in this case 

study has been greatly simplified using network distance as a measure of separation; this 
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introduces a strong bias towards the central region around the city of Innsbruck which ignores 

the various modes of transport available and the associated time and cost of travel. To quickly 

generate an alternative view of accessibility for comparison, the SIM was driven using a 

uniform accessibility matrix in which all values are set to one; although this represents an 

extreme and unlikely situation where network distance is offset by edge speeds and journey 

costs it is useful to demonstrate the effect of accessibility on population disaggregation.  

Figure 8.20 shows scenario C population change (12%) driven by a uniform matrix, by 

nullifying accessibility the change in population is spread throughout the study region 

reflecting the attraction to observed population (figure 8.7) and designated ÖROKO areas 

(figure 8.3).      

 
Figure 8.20: Scenario C uniform accessibility population change. 

  

8.7.3 Urban Development Model 

The first output of the UDM is a raster of development area identity where development area 

identity values increment from the top-left to the bottom-right of the raster. The minimum 

zone size parameter, specified as the number of cells is set to1, which produces the raster 

shown in figure 8.21, showing the progression of identity values. The second output is a raster 

of development suitability which is computed using the multi-criteria evaluation of input 

raster attractors described in section 8.5, and the constraint raster described in section 8.5. 
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Cell development can only occur within valid development areas so a raster of average 

development suitability (figure 8.22) is output which combines development area identity 

with the output of multi-criteria evaluation.   

 
Figure 8.21: Study region development area identity. 
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Figure 8.22: Study region development area average suitability. 

 

Figure 8.23 shows the cellular population development for 2030, corresponding to the output 

of the SIM for scenario A shown in figure 8.17. The cellular disaggregation of population is 

in accordance with the SIM output and its input attractors. Figure 8.24 shows the cellular 

population development for 2030, corresponding to the output of the SIM for scenario C 

shown in figure 8.19. The land use change associated with slower economic growth permits 

more development for housing in zones in and around the city of Innsbruck which is reflected 

in the pattern of cellular development. Figure 8.25 shows the cellular population development 

for 2030, corresponding to the output of the SIM for scenario C using uniform accessibility 

shown in figure 8.20. The cellular development pattern corresponds to the spread of 

population throughout the study region reflecting the attraction to observed population (figure 

8.7) and designated ÖROKO areas (figure 8.3).    
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Figure 8.23: Scenario A cellular development. 

 

 
 

Figure 8.24: Scenario C cellular development.  
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Figure 8.25: Scenario C uniform accessibility cellular development. 

 

8.8 Summary 

This chapter has described the application of the UIMF to a case study focussed on the city of 

Innsbruck and its surrounding region; the Inn Valley. Spatial policies set out in the ÖROKO 

were used to form attractors and constraints to the SIM; this was parameterised using 

observed data and driven using simple linear projections of employment and population for 

three scenarios. A single input network was used for TAM parameterisation which was 

modified using network processing to build access edges. A transport cost matrix was 

produced using network distance as a simple measure of cost which was then converted to an 

accessibility matrix input to the zonal model. 

SIM outputs for employment and population were presented for the year 2030 to match the 

linear projection scenarios A and C. A further zonal population output was presented to 

indicate the possible development resulting from uniform accessibility. In all cases, the 

outputs demonstrate the correct operation of the model in disaggregating future development 

in accordance with spatial attractors. The UDM was parameterised with raster data to drive 

and constrain intra-zonal cell development in a consistent manner with the inter-zonal spatial 

disaggregation of the SIM. UDM raster outputs were described for development area identity, 
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suitability based on input rasters and obtained using multi-criteria evaluation, and 

development area average suitability. The final outputs for UDM were cell development 

rasters for the year 2030 which correspond to the SIM outputs presented earlier; the cellular 

development pattern demonstrates coherence across modelling scales. 

This chapter has provided evidence that the UIMF can be transferred from one study region to 

another and demonstrates its utility when using a minimal set of inputs. The outputs from 

each modelling stage show the correct operation of the models themselves, the coherence 

between models and across modelling stages. In the context of flooding and urban drainage, it 

is evident that the cellular output of the UDM could be used to drive modifications to existing 

drainage networks, and that the increase in impervious area resulting from development could 

be used in models of flooding. The model execution time for each stage in this case study is 

shown in table 8.3. 

Model Execution time (seconds) 

TAM: network processing 45 

TAM: cost and pathfinding  3 

TAM: accessibility 1 

SIM 2 

UDM 6 

 

Table 8.3: Innsbruck Case Study Model Execution Times 

 

The following chapter discusses the findings of this research, including an examination of 

framework utility in the generation of results for the case studies presented in this chapter and 

for the GLA region (chapter 7).  
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Chapter 9. Discussion 

9.1 Introduction 

This chapter examines the utility of the Urban Integrated Modelling Framework (UIMF) 

beginning in section 9.2 by comparing the case studies presented in the previous two chapters. 

Section 9.3 presents further exploration of the Greater London Authority (GLA) region for a 

range of future spatial planning scenarios. Section 9.4 examines the applied utility of the 

framework. Densification scenarios are explored in section 9.5 demonstrating the flexibility of 

model group iteration and drivers in the UIMF. Section 9.6 describes the estimation process 

of model uncertainty and outlines supporting framework properties. Section 9.7 presents the 

modelling of both employment and population in the Urban Development Model (UDM) 

whilst section 9.8 proposes an alternative model configuration to spatially model decline in 

the UDM. Section 9.9 discusses the relationship between vector and raster data in the UIMF 

whilst section 9.10 presents work which further addresses issues of spatial scale. Section 9.11 

discusses issues of simplification in the models implemented within the UIMF whilst section 

9.12 examines operational issues including model interfaces and execution times. Finally, 

section 9.13 critiques the UIMF against the requirements for modelling with stakeholders 

identified in chapter 3.  

9.2 Case Study Comparison 

The case studies presented in the previous two chapters demonstrate the transferability of the 

UIMF by its application to different study regions. Chapter 4 described model 

parameterisation for the GLA region, a major global city, whilst chapter 5 applied the UIMF 

to the city of Innsbruck and its surrounding region; the Inn Valley, in the western Austrian 

state of Tyrol. A fundamental difference between the case studies was the level of detail in 

model parameterisation and therefore data requirements; the GLA region was parameterised 

using detailed spatial planning policy, multiple transport networks and generalised cost 

parameterisation whereas the Innsbruck study region used a single spatial policy attractor, a 

single transport network and distance-based cost. This demonstrates that the UIMF can make 

use of detailed parameterisation data, where available, and can also be parameterised to 

quickly produce a reasonable output using a sparse set of data acting as the basis for further 

model exploration; this transferability and scalability of model complexity using the UIMF 

are key to its utility and relative ease of application.      

In terms of the Transport Accessibility Model (TAM), the GLA region case study models 

private transport as well as three modes of public transport (bus, light rail and heavy rail) 
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using generalised cost to calculate edge weights for input to Dijkstra’s algorithm. Private 

transport congestion charging is implemented using an input polygon of the charge zone 

along with parameters to apply charges and discounts to selected journeys. The detail of this 

approach to modelling transport accessibility is contrasted in the Innsbruck case study where a 

single network is used and edge weights for Dijkstra’s algorithm are calculated using 

distance; this greatly reduces data requirements for the TAM and quickly produces a 

reasonable output at the expense of accuracy in the representation of transport accessibility for 

the region. The UIMF’s ability to pre-process and modify transport networks for different 

study regions is underpinned by using an input spatial reference parameter; the GLA study 

region uses British National Grid (27700) while the Innsbruck study region uses Austria GK 

West (31254).   

The number of zones is a fundamental parameter which defines any applied UIMF study 

region; the division of the study region into zones must be done so in such a way that 

empirical data to ground the models in observed reality can be obtained for each zone. In both 

case studies, zones are defined by areas for which census data can be used which splits the 

GLA region into 633 zones and the Innsbruck study region into 140 zones respectively. Both 

the number of zones, and the order in which zones are handled when loading and transferring 

data is crucial to the consistent definition of the study region across model scales. Transport 

models produce zone to zone origin-destination matrices of cost and accessibility; the Spatial 

Interaction Model (SIM) uses the transport accessibility matrix to disaggregate and output 

zonal population; and the UDM is driven by zonal population and employs class composition 

to group raster cells into the study region’s zones. 

The SIM disaggregates employment and population over all zones, and outputs zonal 

population which is further disaggregated to a fine-scale raster of expected future land use in 

the UDM; this disaggregation process operates on exogenously generated projection values 

over a fixed number of timesteps. There is considerable variation in the method of projection 

and the timeframe employed in each case study; the GLA region is driven by projected multi-

sectoral employment and uses inverse activity to generate future population values based 

upon observed employment and population for 11 timesteps between 2000 and 2100; the 

Innsbruck study region uses three scenarios of linear increases specified separately for 

employment and population for seven timesteps between 2000 and 2030. This demonstrates 

the ability to drive the UIMF SIM with a wide range of projected employment and population 

data from varied sources; for any given set of input projected values, the SIM converts these 
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values to ratios relative to the base year, these ratios are then applied to observed values of 

employment and population which are disaggregated across zones in the study region.  

The process of zonal disaggregation is driven by a set of weighted attractors for both 

employment and population; this permits the use of a user-defined number of zonal attractors 

which can be enabled or disabled using the associated weights. Detailed spatial planning 

strategy as set out in the London Plan was used in the GLA region case study, defining both 

the set of spatial constraints which determine land availability for development, and the set of 

spatial attractors describing targeted development areas. The Innsbruck case study employed a 

much simpler approach where a single spatial constraint and a single spatial attractor were 

built from provided raster data to represent Austrian spatial development planning for the 

study region.    

The UDM outputs a raster of expected land use which permits the fine-scale assessment of 

sub-zonal development and its interaction with spatially detailed models of climate hazard 

impacts and adaptation. Both case studies make use of input raster data to represent sub-zonal 

attractors and constraints which are consistent with the inputs to the zonal model. The 

comparison of case studies shows that this fine-scale detail can be tuned as required to 

provide the desired cellular representation of the study region; the rasterised GLA region is 

described by 100 metre cells arranged in 585 columns and 450 rows, while the rasterised 

Innsbruck study region is described by 50 metre cells arranged in 2380 columns and 1300 

rows. Cells are grouped into development areas of a specified minimum size; the GLA case 

study sets this parameter to four to stipulate that only cells which can be grouped into 

contiguous blocks of four hectares with at least three other cells are considered for 

development. The Innsbruck case study sets this parameter to one allowing all cells to be 

considered which results in relatively small areas of new development; altering this parameter 

to represent different development policy would result in different fine-scale patterns of land 

use for assessment in terms of urban drainage and flooding.      

9.3 GLA Scenarios 

The applied utility of the UIMF extends far beyond the simple case studies discussed in the 

previous section which focussed on model parameterisation and transferability. To provide a 

more comprehensive demonstration of the application of the UIMF, a suite of previously 

generated scenarios combining spatial policy drivers with transport infrastructure investment 

is used to drive the UDM developed in chapter 3. The output values of expected population 

and density are used along with the raster of future development to provide detailed 
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information which can be used in the comparative assessment of alternative policies in the 

context of climate change adaptation.  

The intended application of the UIMF is to provide decision support, this includes the 

assessment of future climate impact risk when considering alternative policies for urban 

development. In this case, the risk of flooding will be considered which can be attributed to 

development taking place in flood-prone areas, extreme rainfall events and rising sea level. 

The tidal floodplain of the GLA region is potentially at risk from future flooding of the River 

Thames; this is due to projected increases in the mean sea level and associated increases in the 

frequency of surge tides.    

Four land use scenarios are used representing extreme policy drivers, these are simulated 

using UIMF models to produce spatial outputs of land use, population and density for the year 

2100 which permits the comparative assessment of flood risk across all scenarios. The 

scenarios were constructed relative to the development attractors and constraints of the zonal 

model along with accessibility attributed to current transport infrastructure, and to future 

scenarios of low and high infrastructure investment. These four narrative scenarios are as 

follows: 

• Baseline 

o Development attributed to future increases in employment and population 

continues to follow current trends. Policies set out in the London Plan are 

extrapolated into the future along with the current level of transport 

infrastructure investment. 

• Eastern 

o Development is concentrated along the eastern axis of the city towards the 

Thames estuary. This involves the redevelopment of brownfield areas and the 

assignation of significant employment and transport infrastructure investment 

to the east of London. 

• Central 

o Development is focussed on central London where observed employment 

levels are highest to reduce greenhouse gas (GHG) emissions from transport.   

• Suburban 

o Development is targeted outside of central London towards metropolitan 

centres and suburbs, supported by significant investment in transport 

infrastructure for satellite towns. 
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In each of these scenarios, existing constraints such as the greenbelt were adhered to, and the 

attractors identified in the London Plan were retained as principal drivers of urban change. 

Zonal population projections in the year 2100 for each of these scenarios are shown in figures 

9.1 - 9.4.  

Policy and population projections over this timescale have inherent uncertainties which result 

in a lack of stakeholder confidence in model outputs; however, rather than predicting 

development, the outputs are aimed at parameterising the extremities of policy projection 

using contrasting ‘what-if’ scenarios which can then be used to inform and explain the 

exploration of the scenario space i.e. by comparing the policy drivers and outputs for the 

central and suburban scenarios. The differing future patterns of zonal population resulting 

from a range of land use and transport planning scenarios provide a consistent basis upon 

which comparative analysis and implications can be drawn, therefore informing the decision-

making process. In many cases, this zonally aggregated data is sufficient to inform debate; 

where this is not the case and more spatial detail is required, the outputs from the SIM can be 

used to drive the UDM to develop a raster output at the specified cell size.         

Each of the four zonal population scenarios can be used to generate corresponding rasters of 

land use development using the UDM; these scenarios can be expanded upon by varying the 

raster inputs and parameters representing spatial planning policy. UDM land use rasters based 

on the zonal population projections for the four narrative scenarios are shown in figures 9.5 – 

9.8; these outputs are at a resolution of 100m and use spatial policy drivers consistent with the 

corresponding SIM inputs. The increased spatial detail of the raster output of expected urban 

development allows fine-scale assessment of the possible implications of development policy 

such as vulnerability to flooding which may lead to the development of adaptation options.    
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Figure 9.1: 2100 GLA population for baseline scenario output from zonal model. 

 
Figure 9.2: 2100 GLA population for eastern scenario output from zonal model. 
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Figure 9.3: 2100 GLA population for central scenario output from zonal model. 

 
Figure 9.4: 2100 GLA population for suburban scenario output from zonal model. 
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Figure 9.5: 2100 GLA land use development for baseline scenario output from UDM. 

 
Figure 9.6: 2100 GLA land use development for eastern scenario output from UDM. 
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Figure 9.7: 2100 GLA land use development for central scenario output from UDM. 

 
Figure 9.8: 2100 GLA land use development for suburban scenario output from UDM. 
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The UDM can also be used to calculate the density requirements of new development 

providing further information for impact assessment. The density of development in the UDM 

is made consistent with the SIM by using observed densities in both models; future 

development density is assumed to be the same as that observed unless policy drivers and 

projected population require densification to accommodate the increase. The required density 

adjustments reported by the UDM are included in the overflow data described in chapter 3. To 

make use of this densification reporting, the constraints used in the SIM and UDM are 

deliberately made inconsistent, removing constraints from the zonal model so that more land 

is available; the UDM then applies the complete set of constraints and calculates the density 

required to accommodate the projected zonal population increase according to spatial policy 

drivers. The required spatial densification to accommodate increased demand for population 

growth corresponding to each of the four scenarios is shown in figures 9.9 – 9.12. Table 9.1 

summarises the implications of each of the four scenarios in terms of increased population 

density and new development in the flood plain. 

Scenario narrative Development in 

flood plain 

Population densification 

(mean) 

Baseline +1697 hectares 114.50 people/ha 

Eastern +2160 hectares 106.30 people/ha 

Centralised +1552 hectares 123.10 people/ha 

Suburban +1503 hectares 115.30 people/ha 

Table 9.1: GLA scenario summary. 

 

Attractors and constraints in the UDM can be used to test a suite of policy options in response 

to future climate threats. Taking the eastern population scenario produced by the combination 

of spatial policy drivers as an example, the following three contrasting planning options are 

considered:    

• Eastern planning scenario A: Remove the greenbelt constraint allowing more space for 

development away from the river as shown in figure 9.13.   

• Eastern planning scenario B: Retain the greenbelt constraint and add a further 

constraint to prevent development in the floodplain as shown in figure 9.14. 

• Eastern planning scenario C: Remove the greenbelt constraint but add the floodplain 

constraint as shown in figure 9.15. 

Table 9.2 summarises the implications of each of the three scenarios in terms of increased 

population density and new development in the flood plain relative to the eastern scenario 

presented earlier. The UDM land use raster outputs along with maps of required densification 

for each eastern policy scenario are shown in figures 9.16 – 9.21. 
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Figure 9.9: 2100 GLA population densification for baseline scenario output from UDM 

overflow data and aggregated to zones. 

 
Figure 9.10: 2100 GLA population densification for eastern scenario output from UDM 

overflow data and aggregated to zones. 
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Figure 9.11: 2100 GLA population densification for central scenario output from UDM 

overflow data and aggregated to zones. 

 

 
Figure 9.12: 2100 GLA population densification for suburban scenario output from UDM 

overflow data and aggregated to zones. 
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Figure 9.13: Constraint map for eastern scenario A input to UDM. 

 
Figure 9.14: Constraint map for eastern scenario B input to UDM. 
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Figure 9.15: Constraint map for eastern scenario C input to UDM. 

 

 

 

 

 

 

Scenario narrative Development 

in flood plain 

Development in 

greenbelt 

Population 

densification (mean) 

Eastern +2160 

hectares 

0 hectares 106.30 people/ha 

No greenbelt constraint, 

No floodplain constraint 

+2219 

hectares 

+3646 hectares 104.29 people/ha 

Greenbelt constraint, 

floodplain constraint 

0 hectares 0 hectares 109.60 people/ha 

No greenbelt constraint, 

floodplain constraint 

0 hectares + 3783 hectares 107.62 people/ha 

 

Table 9.2: Eastern population scenario policy options. 
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Figure 9.16: 2100 GLA land use development for eastern policy scenario A output from 

UDM. 

 
Figure 9.17: 2100 GLA population densification for eastern policy scenario A output from 

UDM overflow data and aggregated to zones. 
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Figure 9.18: 2100 GLA land use development for eastern policy scenario B output from 

UDM. 

 
Figure 9.19: 2100 GLA population densification for eastern policy scenario B output from 

UDM overflow data and aggregated to zones. 
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Figure 9.20: 2100 GLA land use development for eastern policy scenario C output from 

UDM. 

 
Figure 9.21: 2100 GLA population densification for eastern policy scenario B output from 

UDM overflow data and aggregated to zones. 
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This section has shown an approach to the integrated assessment of climate change impacts in 

urban areas using the UIMF. It has shown that by downscaling climate change impacts and 

socio-economic changes to a fine scale, understanding can be gained about the resulting patterns 

of vulnerability. As growing urban populations place pressure on cities to develop further, land 

in the floodplain or in the previously protected greenbelt may need to be developed - tensions 

between issues such as population density and flood risk are likely to increase.  The linking of 

simulation modules which use spatial interaction modelling and cellular automata development 

projection with impact assessment is a powerful framework for exploring the implications of 

different planning policies and understanding their relative strengths and weaknesses. 

9.4 Framework Utility 

As presented in Chapters 7 and 8, the framework has been applied to two study regions whose 

spatial geography differs significantly; the parameters which define these regions, their spatial 

extent and the disaggregation of multiple factors including sectors of employment and 

development raster cell size are contrasted in Section 9.2. A variety of planning contexts are 

examined for the GLA region in Section 9.3, which distribute projected population and land 

use at two spatial scales for a range of spatial policy inputs. The results for the case studies 

and scenarios were generated by UIMF models using the same format for datasets across 

model applications; this demonstrates that the abstraction of common model properties is 

sufficient to transfer the framework models between study regions and planning contexts.   

The cross-scale parameterisation of the SIM and UDM permits the fine-scale assessment of 

land use development which is consistent with spatial planning policy and transport planning. 

This fine-scale pattern of developed land is key to the interaction with climate models 

allowing the potential consequences of policy and planning to be analysed in terms of climate 

impacts which can then be used to inform a process of stakeholder dialogue and policy 

refinement.   

In terms of the utility of the UIMF as a decision-support tool, results for the GLA scenarios 

described in Section 9.3 demonstrate the potential impact of spatial policy in terms of the area 

and population density of new development in the floodplain which increases risk. This 

climate threat was then factored into a range of alternative policies including the relaxation of 

the greenbelt constraint and the inclusion of a flood constraint which resulted in a further set 

of model outputs representing the competing pressures faced by urban planners; either 

develop in the floodplain, develop in the greenbelt or increase population density.      
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The Innsbruck case study presented in Chapter 5 demonstrates that the framework can operate 

using minimum data for simple study region parameterisation. The detailed land use patterns 

generated by UDM were used to assess potential impacts on urban drainage and flooding in 

wider research comparing simple approaches to land use modelling. The main objectives for 

the case study were achieved by demonstrating the transferability and usability of the 

framework while the results generated by simple model parameterisation form the basis for 

further work exploring policy scenarios and potential impacts for the Innsbruck region.    

In summary, the generic transferability of the framework has been demonstrated which 

enables its application to a range of problems without further modification of the framework 

models themselves. The coherency provided by the framework in terms of model 

parameterisation and execution is essential to its utility and flexibility as a decision-support 

tool.  

9.5 Densification  

As described in section 7.3, projected employment and population for the GLA region could 

not be accommodated for all timesteps using observed density values. Rather than relaxing 

constraints and thus making more area available for development, a global density adjustment 

was made in which the density of new development in each zone was twice the respective 

observed value. This simplification did not account for attractor areas in the London Plan 

which are specifically targeted for densification; opportunity areas and areas of intensification 

(chapter 7.2).  

Two alternative scenarios of exploring densification are considered, both of which require an 

input table of Boolean values identifying zones targeted for densification and involve the 

adjustment of density values so that both employment and population can be accommodated 

for all timesteps. In the first scenario (A), the densities of targeted zones only are increased 

leaving non-targeted zones at observed values; since this could lead to implausibly high 

densities in targeted zones, a second scenario (B) is considered in which targeted zones use 

provided density values while the densities of non-targeted zones only are increased.  

In each scenario, design features of the UIMF described in chapter 3 are used to automate and 

control the densification scenarios. As shown in figure 9.22, the zonal model and two driver 

models are placed into a model group which is iterated over using the forced-conditional 

option by setting 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to -1 i.e. the group is run until the stop condition is reached. 

The first driver model controls the density adjustment process providing modified values 
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which are input to the SIM, while the second driver model stops group iteration when 

employment and population can be accommodated for all timesteps.  

 
Figure 9.22: Densification scenario model group. 

 

As shown in figure 9.23, the densification driver model takes the tables of observed density 

values, 𝑫(𝒛)
𝒐𝒃𝒔𝒓𝒗, for employment and population as inputs. The corresponding table names 

specified as inputs to the SIM are changed to point to temporary tables, 𝑫(𝒛)
𝒕𝒆𝒎𝒑

, created and 

modified by the densification driver model in each iteration.  

 
Figure 9.23: Densification driver model inputs, outputs and parameters. 

 

The table of Boolean values describing target zones for densification, 𝑻(𝒛), is supplied along 

with target densities, 𝑫(𝒛)
𝒕𝒂𝒓𝒈𝒆𝒕

, for use in scenario B. To drive the adjustment of density values, 

the densification driver must keep track of the number of model group iterations. This integer 

is initially set to zero and is stored in a table named as both an input and an output to the 

densification driver model; the value is read from the table, incremented at the end of the 

model script and written back to the table. The granularity of density adjustment is controlled 

by the multiplier parameter, 𝒎𝒖𝒍𝒕, which is used along with the iteration number, 𝒊𝒕𝒆𝒓, to 

generate temporary values based on observed density inputs.   

In scenario A, the densities of target zones, where 𝑇(𝑧) == 1, are incrementally increased 

from observed values according to equation 9.1 whilst non-target zones, where 𝑇(𝑧) == 0, are 
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held at observed values as shown in equation 9.2. In scenario B, the densities of target zones, 

where 𝑇(𝑧) == 1, are set to the provided target values according to equation 9.3 whilst non-

target zones, where 𝑇(𝑧) == 0, are incrementally increased from observed values as shown in 

equation 9.1. 

𝐷(𝑧)
𝑡𝑒𝑚𝑝 = 𝐷(𝑧)

𝑜𝑏𝑠𝑟𝑣 + (𝑖𝑡𝑒𝑟 × 𝑚𝑢𝑙𝑡 × 𝐷(𝑧)
𝑜𝑏𝑠𝑟𝑣)  (Eq. 9.1) 

𝐷(𝑧)
𝑡𝑒𝑚𝑝 = 𝐷(𝑧)

𝑜𝑏𝑠𝑟𝑣  (Eq. 9.2) 

𝐷(𝑧)
𝑡𝑒𝑚𝑝 = 𝐷(𝑧)

𝑡𝑎𝑟𝑔𝑒𝑡
  (Eq. 9.3) 

The densification driver model should write all inputs, outputs and parameters to a metadata 

table so that the SIM can access and stitch this information, before its own, into the chained 

model metadata; this process is automated by setting the SIM parameter 𝑖𝑠_𝑑𝑟𝑖𝑣𝑒𝑛 to 1 and 

providing the name of the driver model. 

The model group driver, as shown in figure 9.24, is responsible for ending group iteration 

when employment and population can be accommodated for all timesteps. The inputs are 

combined to form the fully qualified name of the development status .csv file which is output 

from the SIM to the designated folder used to transfer model data to and from database tables.  

 
Figure 9.24: Densification scenario model group driver. 

 

The development status .csv file output from the SIM C++ class documents whether 

employment and population were accommodated in each timestep. This is determined when 

handling area capacity corrections i.e. where there is excess employment or population in set 

Z1 zones which cannot be accommodated by spare capacity in set Z2 zones. The file consists 

of Boolean values for employment and population in each timestep where a value of 1 

indicates that there was no overflow. The model group driver script simply searches the file 

for values of 0, if any are found then group iteration is continued by returning a 𝑚𝑜𝑑𝑒𝑙. 𝑠𝑡𝑜𝑝 

value of false; if none are found then group iteration is stopped by returning a 𝑚𝑜𝑑𝑒𝑙. 𝑠𝑡𝑜𝑝 

value of true.    

The techniques presented in this section permit the detailed exploration of spatial 

densification scenarios where the available area for development is held constant and 
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projected employment and population must be allocated land. Using the setup for scenario A, 

it can be established whether the densification of target zones only can accommodate future 

land use within plausible density bounds. Using the setup for scenario B, the impact in terms 

of required densification on non-target zones can be found when specific density values are 

provided for target zones. A range of different target zones and associated densities could be 

tested to generate a portfolio of options to inform densification policy.   

9.6 Uncertainty 

Long-term projections of land use are inherently uncertain even when using complex models 

whose aim is to predict with some degree of accuracy. The UIMF provides the basis for a 

simple, fast and auditable approach to understand the scale and implications of uncertainty 

which can help stakeholders make better informed choices.    

Consider the case of vehicle operating costs used in the computation of generalised cost for 

private networks described in chapter 5; the coefficients used are based upon a profile of 

vehicles, their fuel efficiencies, and fuel prices. This mixture of vehicles is subject to change 

due to initiatives to increase fuel efficiency, transition to electric vehicles and reduce GHG 

emissions, whilst the price of fuel is highly volatile. It was demonstrated in chapter 8 that the 

zonal disaggregation of population is strongly influenced by accessibility to employment via 

the matrix of transport accessibility; uncertainties in fuel prices can cascade through UIMF 

models all the way from generalised cost to the fine-scale raster of land use development in 

the UDM.   

Confidence in the output or response of any computational model is restricted by uncertainty 

in the model inputs such as errors or bias in data, and by uncertainty in the concepts of the 

model itself including the adopted simplifications from reality. To form scientifically robust 

arguments based upon such a model, it is necessary to assess the uncertainties linked to its 

response and determine the level of confidence in the model. In cases where the precision of a 

model is deemed to be unsatisfactory i.e. when Uncertainty Analysis (UA) returns an 

estimated model response distribution which fails to meet a given standard, it is desirable to 

be able to apportion responsibility to individual input factors to guide improvements in the 

modelling process. This quantification of individual input uncertainty contributions to the 

variation of overall model response is achieved via Sensitivity Analysis (SA).  

UA provides an evaluation of model output uncertainty as a function of the uncertainties 

associated with its inputs. In UA the model in question is considered to have a single output 

variable, 𝑌, and 𝑘 input variables, 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘), which capture the total potential for 
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uncertainty from both data-based and model-based factors in terms of stochastic variables 

with a predefined Probability Density Function (PDF). Equation 9.4 shows that the link 

between model response and its inputs is described by a mathematical function of the 

computational model, 𝑓(), mapping from the 𝑘-dimensional space of the inputs to the single 

output variable, 𝑌. UA quantifies the effect of input uncertainties and facilitates the estimation 

of the output variable’s PDF using an expected value (equation 9.5) and variance (equation 

9.6); this provides an assessment of the precision of the model (Crosetto et al., 2000). 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘)   (Eq. 9.4) 

�̂�(𝑌) =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1    (Eq. 9.5) 

�̂�(𝑌) =
1

𝑁−1
∑ (𝑁

𝑖=1 (𝑌𝑖 − �̂�(𝑌))2   (Eq. 9.6)  

The development of an uncertainty framework will be addressed in future research based 

upon a four-step Monte Carlo (MC) technique to estimate uncertainty as follows: 

Step one: Allocate PDFs to model inputs, 𝑋𝑖; this process should be informed by the nature of 

each input in terms of its potential for uncertainty to generate an appropriate range; 

Step two: Generate a sample set, 𝑁(𝑋𝑗 , 𝑗 = 1, … , 𝑁), from the input factors’ distributions 

using some form of random sampling technique; 

Step three: Execute the model for each sample point, 𝑋𝑗, using the generated input values to 

produce an output value for each iteration; 

Step four: Carry out analysis on the response variables,𝑌𝑗 . Estimate the expected value 

(equation 9.2), variance (equation 9.3), and produce response variable histogram. 

Assuming step one has been carried out to generate an input distribution for 𝑋𝑖, steps two and 

three involve executing the model with randomly sampled inputs, 𝑋𝑗, from that distribution to 

produce a set of outputs, 𝑌𝑗 for analysis. This process could be automated using model group 

iteration and a model driver to modify model inputs, 𝑋𝑗, execute the model 𝑓(), and store 

model outputs, 𝑌𝑗, along with metadata for all required iterations. The time taken to compute 

the MC uncertainty estimation on any given system is almost entirely governed by the 

execution time of the model under test; the use of high-performance C++ models in the UIMF 

which are wrapped by SWIG and executed from Python scripts minimises this computational 

cost and permits the generation of output values from multiple model executions in a short 

timeframe.  
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 9.7 Multiple UDMs 

As described in chapter 8, the raster of land use change attributed to population development 

which is output from the UDM has utility when examining localised effects of surface sealing 

and drainage network modification. The only relevant output which reflects land use change 

for both employment and population is at the zonal level where the change in available area 

within each zone could be directly interpreted as a change in the impervious area for each 

zone; this output may not be sufficient when considering flooding and drainage at a highly 

localised level so a raster of land use change attributed to employment development could be 

generated to provide a more spatially detailed output.  

A further rationale is that the way in which the UDM is used to produce snapshots of future 

population development relative to the defined base-year is not consistent with the allocation 

of land in the SIM; for each timestep in the SIM, land is allocated first to employment change, 

then to population change, where area availability is reduced proportionally for each zone by 

each allocation.  

Consider an arrangement of multiple UDMs which map the change in both employment and 

population over all simulated timesteps to produce a more detailed account of land use change 

associated with urban growth. For the purposes of simplification, only positive change is 

considered; section 9.7 discusses the possible representation of negative change in the UDM. 

Features of the UIMF described in chapter 3 are used to control and coordinate the multiple 

UDMs used in this modelling arrangement which is shown in figure 9.25. This involves the 

update of raster data between UDM runs to reflect changes in development along with model 

feedback across iterations to synchronise UDM land use change for employment and 

population development with values generated by the SIM. 

 
Figure 9.25: Multiple UDMs model group. 
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As shown in figure 9.26, UDM driver models take the previously generated development 

raster, 𝑢𝑑𝑚_𝑟𝑎𝑠𝑡𝑒𝑟, as an input, this raster data must be processed by the respective UDM 

driver model to provide updated raster inputs referenced in 𝑢𝑑𝑚_𝑟𝑎𝑠𝑡𝑒𝑟_𝑡𝑎𝑏𝑙𝑒𝑠 to the next 

instance of UDM. chapter 3 describes the format of the cellular development raster output 

from the UDM as follows: 

• -1: represents no data values. 

• 0: represents no development i.e. constrained areas. 

• 1: represents current development. 

• 2: represents future development. 

The UDM driver models are responsible for using this output raster data to generate updated 

rasters of current development, development proximity and constraint for use by the next 

instance of UDM. Converting future development to current development can be achieved 

using the framework raster function 𝐶ℎ𝑎𝑛𝑔𝑒_𝑅𝑒𝑓_𝑉𝑎𝑙() to convert raster cell values of 2 to 

values of 1; this produces an updated current development raster from which an updated raster 

of development proximity can be generated. The modified current development raster can 

then be used to update the constraint mask by first using the framework raster function 

𝑁𝑜𝑡_𝐵𝑜𝑜𝑙𝑒𝑎𝑛() to convert values of 1 signifying current development to values of 0 

signifying constraint, then by combining with the current constraint raster using the 

framework raster function 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝐵𝑜𝑜𝑙𝑒𝑎𝑛(). After processing this raster data, the UDM 

driver models must ensure that the correct rasters are present in the folder assigned to swap 

data, and that they are correctly named in the corresponding input raster tables.  

 
Figure 9.26: UDM driver model inputs, outputs and parameters. 

 

Aside from managing the update of raster data between UDM instances, the UDM drivers 

must adjust values of employment and population change to ensure consistency with the SIM. 

An initial idea would be that since the available area in the SIM is calculated with reference to 

available cells in the initial constraint raster input to the UDM, that the available area should 

be updated after each UDM run; however, this would lead to an inconsistent linkage between 
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modelling scales since the UDM must assign a cell for development when presented with 

positive change, even if the cell is only partially occupied. In the interest of forming a 

working solution, UDM overflow data is used in such a manner that partially occupied cells 

from the previous run are filled up before new cells are developed in the current run; this 

negates the inconsistency between modelling scales and permits this modelling arrangement 

to function in accordance with the values generated by the SIM. 

The method presented in this section permits a more detailed exploration of the temporal and 

spatial distribution of land use change attributed to development for both employment and 

population. This results in a more detailed model of land use change which could, for 

example, be used to examine the localised effects of surface sealing and urban drainage 

network modification.    

9.8 Decline 

The application of most urban models is restricted to scenarios of urban expansion and the 

associated land use demands of future development. For the GLA region presented in chapter 

7, the total employment decreases between 2080 and 2100; since, in this case, the population 

was linked to employment via inverse activity, the population also decreases over the same 

timeframe. For simplification, the decision of how to handle land use for declining 

employment and population change can be reduced to a binary choice between retaining this 

previously occupied land or releasing the land for future development; the UIMF SIM adopts 

the latter approach.   

As described in chapter 4, the UIMF SIM can spatially disaggregate employment and 

population where the change in either value for the current timestep is positive or negative. In 

the case of employment, reciprocal attractor values derived from the input weighted attractors 

are used to proportionally remove employment from zones. For population, reciprocal values 

based on both input weighted attractors and accessibility to employment are used to 

disaggregate population decline across zones. In both cases, negative change assigned to a 

zone results in land being given back to the zone in accordance with the zone’s specified 

development density.   

By giving back available area to declining zones, the SIM assumes that this newly vacated 

land and the buildings upon it can either be repurposed or is demolished allowing new 

development to take place. Clearly, the repurposing of existing building stock is not always 

feasible and is dictated by the differing requirements of housing and across employment 

sectors. In many cases, demolition is likely which incurs extra development cost since, in 
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effect, the land would be classified as brownfield; however, the use of brownfield sites for 

new development is often incentivised as part of sustainability policy as in the London Plan 

described in chapter 7.    

The UDM, as described in chapter 6, considers positive population change only, and is 

generally used to provide a view of future land use development relative to population in the 

base year. In most cases this results in positive change but section 9.6 describes how land use 

attributed to change in both employment and population can be output for each timestep 

relative to the previous timestep to provide a more detailed picture; in this case the inability of 

the UDM to model decline and give back available area for development would be 

inconsistent with the function of the SIM.     

The UDM could be used to output a fine-scale representation of land reuse, repurposing or 

demolition for zones assigned negative change by the SIM; this could be achieved by the 

following adjustments:  

1. The UDM calculates the number of cells required for development in each zone based 

on the amount of positive change and the development density. This number is 

converted from double precision to an integer using a 𝑐𝑒𝑖𝑙𝑖𝑛𝑔() function to ensure that 

a sufficient number of cells are developed to accommodate the positive change; this 

generally results in some excess development in which the final cell is only partially 

occupied. Assuming negative change assigned to a zone is identified and used to set a 

Boolean variable, the negative change is first switched to a positive value using an 

𝑎𝑏𝑠(𝑐ℎ𝑎𝑛𝑔𝑒) function. The number of cells to free is calculated as before but using a 

𝑓𝑙𝑜𝑜𝑟() function for the conversion from double precision to integer to ensure that the 

total area removed by all cells does not exceed the assigned zonal decline i.e. each cell 

to free is completely empty.    

2. UDM development can only be accommodated by unconstrained cells specified by a 

value of 1 in the input constraint raster; further to this, unconstrained cells are grouped 

into development areas of a specified minimum size. To configure the UDM to 

remove rather than assign development, the constraint raster should be replaced by the 

raster of current development in which values of 1 indicate potential cells for removal. 

3. The UDM uses multi-criteria evaluation to create a raster of development suitability 

based upon the input constraint mask and a set of rasterised weighted attractors which 

are combined to determine each cell’s suitability for development. These suitability 

values are averaged for groups of cells in development areas and dictate the order in 

which both groups of cells and individual cells are developed within each zone. The 
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Multi-criteria evaluation function can be used to create a raster of reciprocal suitability 

in a similar manner to the zonal model’s reciprocal attractors so that the same set of 

rasterised weighted attractors which determine suitability could be used to determine 

unsuitability; however, it is likely that a different set of factors determine the removal 

of development such as building condition and some factors may be inherently un-

spatial.       

4. In the development raster output from the UDM, cell values of two signify future 

development. To adapt this output for modelling decline, cell values of zero should be 

written to the output raster signifying cells made available which can then be used to 

update the rasters of constraint and current development for use by the next instance of 

UDM.   

9.9 UDM Raster Data from Vector inputs 

The first step in preparing data for the urban development model is to define the study region 

in terms of the attributes described by the asci raster header. The rasterised study region is 

buffered to avoid clipping perimeter data and the minimum and maximum extents are rounded 

to values which accommodate an exact quantity of cells using the specified cell size. The 

lower left corner values are the minimum extents of the rasterised study region in x and y 

respectively, whilst the number of columns and rows are the number of cells in the x and y 

directions respectively.  

9.9.1 Standard Sampling 

Input raster data for the study region is derived from vector layers describing various 

attributes of interest. These layers must be sampled and converted to the asci raster format 

before loading into the framework. To sample only the location of items in a vector layer it is 

practical to add a temporary integer column to the layer and set this to 1 for all rows, this will 

result in the production of a binary location raster when the subsequent steps are followed.  

The QGIS Regular Points function is used to create a vector layer which contains an array of 

points at a specified point spacing, covering a given range in x and y. Input coordinates are 

calculated from values in the asci raster header using the following equations: 

𝑋𝑚𝑖𝑛 = 𝑋𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑓𝑡 𝑐𝑜𝑟𝑛𝑒𝑟 +  (𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒
2⁄ ) 

𝑋𝑚𝑎𝑥 = 𝑋𝑚𝑖𝑛 + ((𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1)  ×  𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒) 

𝑌𝑚𝑖𝑛 = 𝑌𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑓𝑡 𝑐𝑜𝑟𝑛𝑒𝑟 + (𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒
2⁄ ) 
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𝑌𝑚𝑎𝑥 = 𝑌𝑚𝑖𝑛 + ((𝑟𝑜𝑤𝑠 − 1)  ×  𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒) 

 

Where the offset (𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒
2⁄ ) is used to place each point at the centre of a corresponding 

raster cell. The point spacing is set to the cell size before creating and reimporting the 

resulting vector points layer.   

This spatially uniform array of vector points is then used to sample data from the source 

vector layer. The QGIS Join Attributes by Location function is configured to keep all records 

including non-matching target records which results in a joined vector points layer that 

contains columns for all attributes from the source vector layer. These columns are populated 

with either valid data where an intersection was found or NULL values otherwise.  

The joined vector points layer is converted to a raster via the QGIS Rasterize function, 

specifying the input shapefile, attribute field, and the raster resolution. This creates a raster of 

the desired resolution which contains either the value from the specified attribute field that 

was set to 1 earlier, or 0 for NULL values.  

9.9.2 Super Sampling 

Where reasonably small raster cells are used, it may be sufficient to use the standard sampling 

strategy to capture details of the source vector layer in the target raster. The method of using a 

single point sample at the centre of each raster cell becomes less reliable as the cell size 

increases and may lead to unwanted results. Consider a Boolean constraint raster used to mask 

development with a cell size of 100m, a cell which contains a small island in the middle of a 

lake, or a garden in an otherwise heavily developed area may be deemed suitable for 

development.   

To mitigate this error a super sampling strategy can be employed using a linear scale factor 

which multiplies the number of cells in both x and y dimensions and divides the cell size. For 

example, using a linear scale factor of 10, a single 100m cell is replaced by 100 10m cells 

covering the same area which are sampled as before. These updated values for cell size, 

columns and rows are used to create a vector points layer with an increased sample density 

and the raster preparation proceeds as usual. 

This super sampled raster can then be down sampled to restore the original values for cell 

size, columns and rows, and apply a threshold to the method of cell reduction. The linear scale 

factor is used to divide the number of cells in both x and y dimensions, and multiply the cell 
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size, whilst the threshold determines how many input cells set to 1 in the super sampled raster 

constitute a cell set to 1 in the down sampled raster.  

9.9.3 Zone Identity Raster 

A raster of integer zone identity values must be created for the urban development model to 

correctly assign cells to zones. These values range from zero to the total number of zones 

minus one, and correspond to the index to the zone array used in the urban development 

model. Since zone order needs to be consistently defined across all models it is assumed that 

the zones vector layer has been sorted in ascending order using zone labels. A temporary 

integer column (id) must then be added to the zones layer which holds values incrementing in 

units from 1 to the total number of zones, a practical solution within QGIS is to set the values 

within this column equal to the row number. The standard sampling strategy can then be 

followed to produce a raster which holds values from the newly created (id) column, or 0 for 

NULL values which explains why values in the id column must start at 1. 

Since zone identity values are to be used as an index to the zone array they must start at zero 

and increment in unit steps up to the number of zones minus one. To achieve this the 0 values 

in the raster which represent NULL i.e. non-zone values must be changed to some other no 

data value. A function is provided by the framework which loops through all raster cells and 

sets cells which are equal to a provided reference value (0 in this case) to the default no data 

value (-1). Valid zone identity values in the raster must then be adjusted so that the index 

starts at 0 instead of 1. Another function is provided by the framework which loops through 

all raster cells and adds a provided integer (-1 in this case) to all valid (i.e. not no data) cells. 

9.9.4 Proximity Raster Data 

The QGIS Proximity function can be used to calculate the shortest distance from each cell in a 

newly created target raster to a cell in the specified source raster with a given reference value 

(1 where the standard sampling strategy is used). Whilst a raster calculator is provided within 

QGIS which could be used to standardise the results, it was not found to be satisfactory so this 

functionality is provided by the framework. Two functions are provided which take proximity 

raster data as inputs and standardise the result using standard or reverse polarity using the 

following formulae: 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄  

𝑋𝑟𝑒𝑣𝑒𝑟𝑠𝑒 =
(𝑋𝑚𝑎𝑥 − 𝑋)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄  
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Since the study region geometry is being mapped to a rectangular raster the maximum 

proximity value is often contained in a cell which does not belong to any zone. An optional 

input to each function is a mask, typically in the form of the zone identity raster. When this 

input is provided, cells with the no data value (-1) in the mask are not included in the 

standardisation equations. The proximity data is then standardised only for valid cells within 

the study region which leads to a better spread of standardised values across the 0 to 1 range. 

9.10 UDM Downscaling 

An experimental workflow was developed to bridge between land use rasters generated by 

UDM and models of urban drainage requiring higher spatial resolution. A method of 

converting average residential density at the census ward scale into a set of one-hectare tiles 

was developed by Hargreaves (2015) which enables the estimation of variability in residential 

land use and dwelling types. The specification of tile types includes density in dwellings per 

hectare (dph) and coverage percentages for permeable and impermeable surfaces. This work 

makes use of 16 of these tiles types, 4 in each housing category of Detached (D), Semi-

detached (S), Terraced (T) and Flats (F) as shown in table 9.3. 

Tile Type Buildings % Green % Roads and Paths % Density (dph) 

D1 8 78 14 7 

D2 13 73 14 12 

D3 18 60 22 23 

D4 20 56 24 30 

S1 8 76 16 13 

S2 13 68 19 23 

S3 17 61 22 31 

S4 20 50 30 42 

T1 12 63 25 22 

T2 29 39 32 68 

T3 34 23 43 90 

T4 34 15 51 109 

F1 20 48 32 77 

F2 21 41 38 101 

F3 27 19 54 164 

F4 27 27 46 216 

Table 9.3: Tile Types, Ground Coverage and Densities adapted from Hargreaves (2015). 
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The specifications in table 9.3 were used to create a set of rasters to represent each of the 16 

tile types as follows: 

1. Create a one-hectare template using a cell size of 5m resulting in a raster region of 400 

cells. 

2. Convert the raster to a grayscale image. 

3. Draw features for each surface category corresponding to the coverage percentage – 

ensure that roads connect across all tile types. 

4. Convert the grayscale image back to raster. 

This process was repeated for each row in table 9.3 to produce the set of 16 one-hectare tiles 

shown in figure 9.27  

Figure 9.27: 1-hectare tiles with surface coverage percentages corresponding to table 9.3. 

9.10.1 Downscaling Process 

The tiles shown in figure 9.27 were then mapped to the UDM output as described in the 

following downscaling process: 

1: Generate Gridded Network 

It is assumed that drainage infrastructure for the test area follows the road network and is 

arranged in a simple grid. Network nodes are placed at the centre of each raster cell using 

regular points which are then connected by network edges.  
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2: Generate Density Surface and Bands 

The test area follows a pattern of high density mixed-use central areas, through to medium-

density residential through to low-density residential on the outskirts. The UDM uses spatial 

MCE to generate a raster of development suitability which in this case includes proximity to 

the point location at the centre of the test area. This proximity is used to generate a simple 

monocentric density surface which is then split into bands representing high, medium and 

low-density development. 

3: Assign Tiles to Bands 

The raster of density bands for the test area is used to generate a tile map where each band is 

populated with tiles randomly selected from the relevant set where tiles are grouped according 

to their number of dwellings per hectare (dph). The process of mapping raster cells from 

density bands to tile codes is shown in figure 9.28. 

 

Figure 9.28: Overview of tile map generation process. 
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4: Generate Downscaled Development Raster 

The tile map generated in the previous stage is used to generate a downscaled development 

raster for the test area including surface coverage types. This raster has the same extents in X 

and Y but has a cell size of 5m meaning that the number of columns and rows are multiplied 

by 20. Each cell in the tile map has an integer code referencing a 20*20 tile raster which is 

alternately rotated for variation and then mapped to the relevant subregion of the downscaled 

raster. 

5: Split and Convert to Vector 

The final step splits the downscaled development to generate a raster for each surface type 

which are then converted from raster to vector providing inputs to the urban drainage model 

along with the gridded network nodes and edges.  

The five vector layers provided as input to the urban drainage model are shown in figure 9.29 

which was draped over the topography of the test area using a 2m Digital Elevation Model 

(DEM). A design storm was then applied to the model demonstrating the ability to map 

flooded areas and estimate flood risk as shown in the resulting flood depth map shown in 

figure 9.30. 
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9.10.2 Downscaling Results 

 

Figure 9.29: Gridded network and surface coverage variation driven by density from high 

(top-left) through medium to low (bottom-right). 

 
Figure 9.30: Flood depth maps for a 100-year design storm showing the effects of (top) inset 

roads, and (bottom) conventional drainage density.  
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9.11 Simplification 

The primary function of the UIMF is to manage the integration and execution of models, 

providing the flexibility required to explore scenarios of land use and transport. The system of 

models developed in chapters 3 to 6 aim to provide a simple yet useful approach with 

minimum parameterisation requirements but crucially the architecture of the UIMF allows 

more complex approaches to be developed and integrated where necessary. Future work could 

expand upon existing capabilities in the areas described in the following subsections.    

9.11.1 Spatial Interaction Model 

1. Population age needed to simulate travel behaviour is not modelled by demographics. 

The SIM makes use of trips to work and therefore accessibility to employment to 

spatially disaggregate population; this is dominated by working age population which 

when driving the SIM with projected employment, is captured in the inverse activity ratio 

of employment and population. When driving the SIM with projected population, future 

population projections based on human fertility and migration do not include age; 

however, a population age profile could be provided by linking to a model such as 

SPENSER (Synthetic Population Estimation and Scenario Projection Model) being 

developed at the University of Leeds to give a full demographic breakdown of 

population. 

2. Household income needed to simulate travel behaviour is not modelled. 

There is a lack of readily available data on income in the UK which could be used to drive 

such a model; however, modal split can be used to adjust the influence of accessibility via 

each mode of transport on resulting population patterns. In the UIAF Tyndall Cities 

project modal split for baseline scenarios was driven by empirical data as observed in the 

census data trip information. A minor adjustment is needed to incorporate this into the 

TAM so that trip costs via each mode are weighted to reflect modal split when combining 

cost matrices and converting to accessibility.  

9.11.2 Transport Accessibility Model 

1. Cycling and walking which are important for sustainable transport require further 

modelling. 
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Walking is included in the TAM by the assumption that intra-zonal costs are set at two-

thirds of the minimum inter-zonal cost, and cycling is incorporated using a simple 

method of weighting network edges without monetary costs. Further considerations 

include the availability of additional network layers for walking and cycling and additional 

cost factors such as gradient and the perceived risk of cycling on roads with or without 

dedicated cycle lanes (Ford et al, 2015).  

 

2. Traffic flows by vehicle type needed to model transport greenhouse gas emissions are not 

simulated. 

 

The UIAF and hence the UIMF is mainly targeted towards climate change adaptation 

rather than mitigation. In terms of traffic flows, the focus is on the land use patterns 

resulting from aggregate trips via all modes and vehicle types between origin and 

destination zones. Modal split can be used as an indication of shift between transport 

modes and associated vehicle types but transport GHG emissions can only be calculated 

using more complex methods.  

 

3. Road congestion which is essential for the simulation of private vehicle traffic is not 

modelled. 

Congestion could be included as a measure of network capacity by adding costs to 

congested network edges to impede or redirect trips in response, this is similar to the 

congestion edge charging approach in the TAM. However, the incorporation of 

congestion as a deterrence measure across the network would require a more 

sophisticated approach than is currently used in the TAM such as microsimulation of 

traffic or an iterative equilibrium approach to determine which trips are affected. 

 

9.12 UIMF Operation 

9.12.1 Model Execution Times 

The timings for running framework models in each case study (chapters 7 and 8) are repeated 

in tables 9.4 and 9.5. In both studies the TAM network processing models account for much 

of the running time of the framework which is why they are separated from other TAM 

stages; each network only needs to be (re)built to simulate physical changes such as the 
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building of new roads or public transport stops. The most expensive network processing 

model in terms of time is for London’s road network which has over 65k network edges and a 

congestion charge zone which requires additional geometry tests to model. All model stages 

other than network processing execute very quickly which supports multiple model runs to 

examine uncertainties and in terms of rapid assessment in a stakeholder dialogue setting the 

performance of the UIMF models is fit for purpose.    

Model Execution time (seconds) 

TAM: bus network processing 297 

TAM: heavy rail network processing 51 

TAM: light rail network processing 38 

TAM: road network processing 401 

TAM: bus cost and pathfinding 10 

TAM: heavy rail cost and pathfinding 4 

TAM: light rail cost and pathfinding 4 

TAM: road cost and pathfinding 23 

TAM: accessibility 4 

SIM 2 

UDM 4 

 

Table 9.4: GLA Case Study Model Execution Times  

 

Model Execution time (seconds) 

TAM: network processing 45 

TAM: cost and pathfinding  3 

TAM: accessibility 1 

SIM 2 

UDM 6 

 

Table 9.5: Innsbruck Case Study Model Execution Times 

 

 

9.12.2 User Interface 

The UIMF provides extensive functionality to configure and run groups of models and load 

datasets for model calibration; this workflow which is based on Python scripts is functional 

and highly flexible but should be improved in terms of usability by the development of a 

Graphical User Interface (GUI). In keeping with the open-source aim of this research, QGIS 
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was used to prepare and visualise geographic data throughout this thesis and represents a 

logical choice for GUI development. QGIS is implemented using C++, Python and Qt, and 

extensive documentation is available including the 𝑃𝑦𝑄𝐺𝐼𝑆 developer cookbook for plugins 

and scripting, the Python interface API and the C++ API (QGIS). In the first instance, this 

development should focus on allowing the user to parameterise and execute a single model 

from within QGIS using scripting to automate the generation of visual outputs. After applying 

this to all models, a GUI should be developed to allow the user to control the flexible 

configuration, iteration and execution of model groups provided by the UIMF. Further work 

is required to adapt and target this system for non-expert users who may not be comfortable 

using a GIS, this would involve the automation of spatial operations within QGIS and the 

development of a user-friendly GUI.  

9.13 UIMF Assessment 

The requirements of integrated modelling frameworks for stakeholder dialogue as described 

in section 3.3 are used to critique the UIMF in the following subsections. 

9.13.1 Validity 

The use of models coupled across spatial scales in the UIMF is capable of generating 

scenarios of future urban development for rapid assessment in terms of climate change 

mitigation and adaptation. Although relatively simple, the models are based on established 

theory which provides validity to model outputs which should be treated as plausible rather 

than predictive. The UIMF is transferrable and maintains validity when applied to new study 

regions by ensuring that all models (TAM, SIM, UDM) are parameterised consistently.      

9.13.2 Transparency 

The relatively simple models used in the UIMF can be conceptually described in terms which 

are easily communicable, making them suitable for interactive engagement with stakeholders 

and the public. The UIMF is implemented entirely using open source software with full 

source code transparency allowing further development and modification of the software 

architecture and individual models where required. 

9.13.3 Usability 

The UIMF provides a basic user interface via the minimal standardised model descriptions 

developed in the PMI (3.6.2). It is not necessary to modify any Python scripts in order to 

apply the framework to new study regions or scenarios, instead, this is achieved by editing 

template PMI tables for each model provided that input data has been prepared. This is still 
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somewhat cumbersome so a graphical user interface (GUI) and tighter integration with GIS to 

prepare model input data would greatly improve the process.     

The minimum set of data required by the UIMF is relatively modest, but the framework can 

make use of more input data where available, such as attractors in the SIM and UDM to 

represent additional spatial drivers of population and land use change. This is achieved by 

taking the number of attractors as a parameter and automating the process of loading and 

using named input datasets in the models themselves. 

9.13.4 Flexibility 

The UIMF simplifies the task of consistent configuration across models by formalising model 

interfaces using the PMI (3.6.2) and model coupling via model groups (3.6.3). For any given 

study region, each scenario run by the UIMF is specified simply as a particular combination 

of model inputs. Exploratory modelling requires that multiple scenarios are run to assess the 

implications of alternative policies. Uncertainties and sensitivities can be explored by 

executing the model multiple times whilst varying inputs. To facilitate this, the UIMF allows 

models to be grouped and executed in a range of configurations, providing control across 

iterations to adjust inputs, outputs and parameters (3.6.4). The results produced by any given 

model run can only be of lasting value if the means of their production in terms of the model 

and its data are preserved. The UIMF records the inputs, outputs and parameters of all model 

configurations in metadata tables (3.6.5). 

9.13.5 Performance 

The emphasis on rapid assessment suitable for stakeholder dialogue places a limit on model 

execution times. Python modules can be arranged and connected in a flexible manner to meet 

the requirements of a range of modelling scenarios. The performance of UIMF models has 

been optimised by interfacing Python and C++ models using SWIG, and by ensuring that 

slower operations are only performed where needed (3.6.6). 

9.14 Summary 

This chapter has described the utility of the UIMF developed in chapter 3 which is itself, the 

principal result of this research. In section 9.2 the framework has been shown to be 

transferable between study regions and the complexity of the parameterisation process is 

scalable allowing quick results to be generated which act as the basis for further model 

exploration. Section 9.3 demonstrated that the examination of model response for a range of 

possible scenarios is key to the assessment of future land use development. Section 9.4 
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examined the utility of the framework as applied to planning problems described in the case 

studies and GLA scenarios, identifying generic transferability and framework coherence as 

key properties. Section 9.5 showcased the flexible features of the generic modelling 

framework developed in section 3.3, describing the use of these techniques to explore 

densification scenarios. Section 9.6 described how framework flexibility, performance and 

metadata support the MC technique of uncertainty estimation. Section 9.7 showed that the 

UDM could be applied to both employment and population to give a more detailed 

representation of future land use development. Section 9.8 described how the UDM could be 

configured to model decline consistent with the approach in the SIM. The UIMF is the key 

contribution to knowledge of this thesis; the ability to adapt and apply the framework in a 

range of situations as described above demonstrates utility which far exceeds that of the 

original UIAF models which were further developed in the UIMF. Section 9.9 discussed the 

handling vector and raster data in the UIMF whilst section 9.10 addressed issues of spatial 

scale. Section 9.11 covered simplification in the models implemented within the UIMF whilst 

section 9.12 examined operational issues including model interfaces and execution times. 

Finally, section 9.13 critiqued the UIMF against the requirements for modelling with 

stakeholders identified in chapter 3. 

The following chapter concludes the thesis and details the key findings and implications of 

this research. 
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Chapter 10. Conclusion 

The aim of this research was to develop a flexible modelling framework to provide decision 

support to urban planners and stakeholders engaged in participatory modelling; by exploring 

the tensions and trade-offs of alternative spatial planning policy in scenarios of future land use 

and transportation, urban transitions can be made which account for climate change mitigation 

and adaptation measures. 

The following objectives were set to meet this aim: 

Objective 1: Review the field of urban planning in the context of climate change and 

sustainability to identify key drivers of spatial planning policy 

Objective 2: Specify the modelling requirements to best support the decision-making 

processes identified in objective 1.  

Objective 3: Review the field of urban modelling to identify and assess candidate modelling 

approaches. 

Objective 4: Develop a modelling framework using techniques identified by objective 3, to 

provide decision support for planners and meet the requirements specified in objective 2. 

Objective 5: Apply the modelling framework to study regions and modelling scenarios to 

demonstrate the utility of the approach. 

Research and development carried out to meet these objectives is summarised in the following 

5 subsections. 

10.1 Review of Urban Planning in the Context of Climate Change and Sustainability 

This objective was met by examining policy and spatial planning in the context of sustainable 

development including environmental considerations, establishing the need for advanced 

decision support tools to better assess the sustainability impacts of development. 

Cities consume resources and generate greenhouse gas emissions disproportionately to their 

spatial extent, they are also especially vulnerable to disrupted resource supplies and the 

effects of climate change (McEvoy et al., 2012). Sustainability efforts are concentrated on 

high density populations in urban areas and the continuing process of urbanisation. In turn, 

urban sustainability is increasingly considered in the context of climate change (Carter, 2011).  
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The interaction between policies aimed at mitigation and those aimed at adaptation requires 

detailed planning to avoid positive interventions aimed at one strategy leading to negative 

consequences in another (Dawson, 2011). 

In UK sustainability appraisals the consideration of climate change impacts and conflicting 

policies between development alternatives is highly limited and whilst the appraisals are 

broad in scope, they are subjective and lacking in quantitative detail. This element of the 

planning process has attracted criticism where a more detailed and analytical treatment of 

evidence and policy interaction is needed (Gibson, 2006). In addition, whilst the UK planning 

process requires the modelling of transport, there is no equivalent requirement for land use 

modelling to assess potential impacts. This lack of detail in the implementation seems to be 

contrary to the supposed shift in UK spatial planning from the use of sustainability as one 

factor in the consideration of competing land uses, to the stated principle aim of the planning 

system (DCLG, 2011).  

Improvements to the conceptual design and deployment of models is needed to engage 

community with the requirements of mitigation and adaptation. Participatory approaches 

based on integrated modelling have great potential to explore solutions and understand the 

consequences of policy change. In the context of urban mitigation and adaptation policies, 

there is a need to convey the benefits and side-effects of proposals to the public (Ford et al., 

2018). 

10.2 Specification of Modelling Requirements for Decision-Support 

The general requirements for decision-support in participatory modelling with stakeholders 

are as shown in table 10.1. 

Requirement Description 

Validity 

 

 

The ability of a model to reproduce changes in observed data should be 

demonstrated in model validation to minimise bias and provide 

confidence in model outputs 

Transparency Decision support tools aimed at resolving conflicting opinions on urban 

policy require transparency to be of use; opaque, or ‘Black Box’ models 

do not convey sufficient understanding to support argument. 

Transparency must be balanced with validity for a model to be of 

practical use i.e. simple models may provide greater transparency at the 

expense of reduced validity in representing the problem; whereas, 
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complex models may provide a more valid problem representation at the 

expense of reduced transparency 

Usability To be deployed independently of developers, a model should be able to 

be configured, adapted and understood by model users and stakeholders. 

Usability should therefore be maximised whilst maintaining behavioural 

and empirical validity. Collating suitable data whilst accounting for errors 

and omissions, and ensuring consistency poses a significant task which is 

not helped greatly by currently available software. Exhaustive input 

requirements and the complexity of data development can deter users and 

prevent model implementation. 

Flexibility To be applicable to a wide range of users and purposes a model system 

must have enough flexibility to handle variations in input data and model 

output requirements. The development of decision support tools must also 

respond to advances in data, software and theory to provide new solutions. 

Performance Computational performance must be considered alongside the other 

challenges of integrated modelling; for instance, poor performance can 

restrict the use of otherwise viable models whereas models which aim 

for interactive runtimes can compromise validity. 

 

Table 10.1: Framework Requirements – adapted from Waddell (2011). 

 

10.3 Review of Urban Modelling Techniques 

This objective was met by reviewing urban modelling theory and identifying techniques to 

develop an appropriate modelling and assessment system. 

The overwhelming trend in urban modelling is the disaggregation towards microsimulation; 

this is driven by the development of more powerful computers and the availability of 

disaggregate data from GIS-based applications. These resources are coupled with complex 

systems approaches using CA and ABM, and models of both land use and transport using 

microsimulation. Modelling at the individual level has the benefit of improved conceptual 

theories of behaviour, interactions and preferences which influence mobility and patterns of 

location; however, this must be balanced against the associated practical drawbacks of large 

data requirements and long computing times. Microsimulation models are also prone to a lack 

of stability arising from stochastic variation when different random seeds are used across 
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model iterations; this can obscure the response to variations of model inputs preventing 

spatial policy assessment (Wegener, 2014).      

The dominant approach to urban modelling aims to predict the future state of the urban 

system with some degree of accuracy using complex models; contrasting this is the use of 

simpler models whose objective is not to predict, but to explore the parameters and scenario 

space across multiple model iterations to inform discussion (Batty, 2013). There is a scarcity 

of simple urban models which are suited to the task of integrating land use and transportation 

with the environment; in many cases the data requirements, difficulty of calibration and slow 

execution times prevent the adoption of existing models for this purpose (Mikovits et al., 

2014).  

In terms of the complexity of urban land use and transport models, each planning problem has 

bespoke model requirements regarding scale and complexity when the practical tasks of data 

gathering, calibration and model execution time are considered; the optimum model is one 

which outputs just enough detail to address the problem whilst minimising these practical 

costs. “Future urban models will be modular and multi-level in scope, space and time.” 

(Wegener, 2011, pp 171) 

10.4 Development of Modelling Framework 

The aim of this research was to develop a simple, transferable and consistent modelling 

system suited to the purpose of generating plausible scenarios of future development for 

analysis along with environmental factors. Building such a system from first principles in a 

relatively short timeframe was not feasible so an existing framework was identified which has 

desirable properties but does not meet all of the requirements of integrated modelling 

frameworks for stakeholder dialogue as summarised in table 10.1. 

The UIAF was developed in a modular fashion by separate teams using their own preferred 

software and languages, these modules are integrated in a process described at best as loose 

coupling to simulate transport, locational choice and land use in the Greater London area. The 

requirements summarised in table 10.1 were used to critique the UIAF to define design 

criteria for an integrated modelling framework. The methodology developed by this research 

unifies the multi-scale LUTM components of the UIAF in an integrated modelling framework 

in which the LUTM scenario generation system is separated from the environmental impact 

models. This collection of models along with their implementation in the specific software 

environment developed by this research constitutes the Urban Integrated Modelling 

Framework (UIMF).  
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As the UIMF is the principle output of this research the key features are summarised as 

follows: 

10.4.1 Generic Models and Data 

The framework standardises model configuration and execution via a python model interface; 

all models are executed from Python scripts linked to Postgres tables which hold model 

datasets. Three modes of model group iteration are supported allowing models in the group to 

be executed once, n-times or until a stop condition reported by a model within the group is 

reached. 

10.4.2 Metadata 

To provide traceability, the results produced by framework models are accompanied by 

metadata which documents the model used and its datasets. Models running under the 

framework can be arranged in model chains where the output of one model serves as the input 

to another; the handling of metadata in the framework mirrors this by stitching together 

metadata into chains.  

10.4.2 Model Drivers 

In many cases when iterating over model groups, the model inputs, outputs and parameters 

must be changed for each group iteration. The framework abstracts this flow control and 

routing from the models themselves using model drivers which promotes model reusability, 

allowing models to be arranged and rearranged without modification of their Python scripts.  

10.4.3 Model Group Lists 

Framework models, model drivers and metadata can be chained together in model groups; this 

functionality is extended using model group lists to accommodate scenarios where multiple 

model groups are required in which each model group performs a given task within the 

overall simulation. Using these foundations, the user can build model group chains where 

each model group has its own iteration control and model driver to control data routing.  

10.4.4 Computational Flexibility 

Models are executed via Python scripts using embedded SQL commands to interact with data 

stored in Postgres spatial database tables; the interactivity and flexibility of Python allows 

models to be connected in a flexible manner for a range of modelling purposes. To improve 

performance whilst retaining flexibility, the framework uses SWIG to create wrappers which 

interface C/C++ code with Python.  
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10.4.5 Data Handling 

The framework provides numerous functions and techniques to manage the data transfer 

process involving csv, vector, and raster datatypes.  

10.4.6 Spatial Interaction Model (SIM) 

Projected values of employment and population are converted to ratios which scale the 

respective observed value allowing the change in employment and population within the 

study region to be driven in a flexible manner. Modifying the available area input allows a 

range of constraints to be applied reflecting different land use development policies. 

Employment is spatially disaggregated using normalised weighted attractors reflecting 

development policy for the study region. The spatial disaggregation of population uses 

normalised weighted attractors to reflect development policy, along with accessibility to 

employment via the matrix output from the transport model.  

10.4.7 Transport Accessibility Model (TAM) 

The private network processing model connects zone centroids to the input transport network 

and optionally performs spatial checks in support of a flexible charging scheme. The public 

network processing model connects zone centroids to one or more stations and creates 

interchange links between stations within a user-defined radius of one another. Network cost 

models use input cost parameters to calculate network edge weights used in the computation 

of shortest paths; an origin-destination cost matrix is generated which, for public networks, 

accounts for all possible routes for zone centroids connected to multiple stations. The 

accessibility model aggregates all input cost matrices using the log sum of exponentials.  

10.4.8 Urban Development Model (UDM) 

The first UDM stage employs multi criteria evaluation to produce a raster of development 

suitability from weighted suitability inputs and development constraints. The second UDM 

stage groups cells into development areas within each zone of a specified minimum size, 

before computing the average development suitability for each area using the raster output 

from multi criteria evaluation. The final UDM stage develops cells within development areas 

in each zone according to zonal population change and zonal population density using the 

suitability for both development areas, and individual cells to distribute development.  
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10.5 Framework Applications 

In chapters 7 and 8 the UIMF was parameterised in case studies for the GLA region, a major 

global city, and for the city of Innsbruck and its surrounding region; the Inn Valley, in the 

western Austrian state of Tyrol. The GLA region was parameterised using detailed spatial 

planning policy, multiple modes of transport and generalised cost parameterisation whereas 

the Innsbruck study region used a single spatial policy attractor, a single transport network 

and distance-based cost; this demonstrates that the UIMF can make use of detailed 

parameterisation data, where available, and can also be parameterised using a sparse set of 

data.   

A more comprehensive demonstration of the application of the UIMF is presented in Chapter 

9.3 where a suite of scenarios combining spatial policy drivers, transport infrastructure 

investment and climate impacts is used to drive the UDM. Four land use scenarios are used 

representing extreme policy drivers, these are simulated using UIMF models to produce 

spatial outputs of land use, population and density for the year 2100 which permits the 

comparative assessment of flood risk across all scenarios.  

10.6 UIMF Assessment 

The requirements of integrated modelling frameworks for stakeholder dialogue as described 

in section 3.3 are used to critique the UIMF in the following subsections. 

10.6.1 Validity 

The use of models coupled across spatial scales in the UIMF is capable of generating 

scenarios of future urban development for rapid assessment in terms of climate change 

mitigation and adaptation. Although relatively simple, the models are based on established 

theory which provides validity to model outputs which should be treated as plausible rather 

than predictive. The UIMF is transferrable and maintains validity when applied to new study 

regions by ensuring that all models (TAM, SIM, UDM) are parameterised consistently.      

10.6.2 Transparency 

The relatively simple models used in the UIMF can be conceptually described in terms which 

are easily communicable, making them suitable for interactive engagement with stakeholders 

and the public. The UIMF is implemented entirely using open source software with full 

source code transparency allowing further development and modification of the software 

architecture and individual models where required. 
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10.6.3 Usability 

The UIMF provides a basic user interface via the minimal standardised model descriptions 

developed in the PMI (3.6.2). It is not necessary to modify any Python scripts in order to 

apply the framework to new study regions or scenarios, instead, this is achieved by editing 

template PMI tables for each model provided that input data has been prepared. This is still 

somewhat cumbersome so a graphical user interface (GUI) and tighter integration with GIS to 

prepare model input data would greatly improve the process.     

The minimum set of data required by the UIMF is relatively modest, but the framework can 

make use of more input data where available, such as attractors in the SIM and UDM to 

represent additional spatial drivers of population and land use change. This is achieved by 

taking the number of attractors as a parameter and automating the process of loading and 

using named input datasets in the models themselves. 

10.6.4 Flexibility 

The UIMF simplifies the task of consistent configuration across models by formalising model 

interfaces using the PMI (3.6.2) and model coupling via model groups (3.6.3). For any given 

study region, each scenario run by the UIMF is specified simply as a particular combination 

of model inputs. Exploratory modelling requires that multiple scenarios are run to assess the 

implications of alternative policies. Uncertainties and sensitivities can be explored by 

executing the model multiple times whilst varying inputs. To facilitate this, the UIMF allows 

models to be grouped and executed in a range of configurations, providing control across 

iterations to adjust inputs, outputs and parameters (3.6.4). The results produced by any given 

model run can only be of lasting value if the means of their production in terms of the model 

and its data are preserved. The UIMF records the inputs, outputs and parameters of all model 

configurations in metadata tables (3.6.5). 

10.6.5 Performance 

The emphasis on rapid assessment suitable for stakeholder dialogue places a limit on model 

execution times. Python modules can be arranged and connected in a flexible manner to meet 

the requirements of a range of modelling scenarios. The performance of UIMF models has 

been optimised by interfacing Python and C++ models using SWIG, and by ensuring that 

slower operations are only performed where needed (3.6.6). 
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10.7 Key Findings and Implications 

10.7.1 Key Findings 

1. That it is possible via the framework developed by this research to implement and 

undertake robust scenario evaluation of climate impacts on cities within an integrated 

modelling framework. This flexibility is provided by a standardised model interface 

and the controlled iteration and execution of chained groups of models linked to 

PostgreSQL tables holding model datasets and metadata.  

2. That relatively simple separate models can be coupled in such a manner that multi-

scale planning options can be investigated to provide information and insights that are 

broadly comparable with more complex models which require more input data and are 

more difficult to parameterise. 

3. That results for the GLA scenarios described in Section 9.3 demonstrate the potential 

impact of spatial policy in terms of the area and population density of new 

development in the floodplain which increases risk. This climate threat is factored into 

a range of alternative policies including the relaxation of the greenbelt constraint and 

the inclusion of a flood constraint which result in a further set of model outputs 

representing the competing pressures faced by urban planners.   

4. That the Innsbruck case study presented in Chapter 8 demonstrates the framework can 

operate using minimum data for simple study region parameterisation. The main 

objectives for the case study are achieved by demonstrating the transferability and 

usability of the framework while the results generated by simple model 

parameterisation form the basis for further work exploring policy scenarios and 

potential impacts for the Innsbruck region. 

10.7.2 Implications 

1. The demonstrated generic transferability of the framework permits the investigation of 

different regions, planning contexts and applications. The coherency provided by the 

framework in terms of model parameterisation and execution is essential to its utility 

and flexibility as a decision-support tool.  

2. The modular nature of the framework facilitates the inclusion and integration of new 

models as they are developed. The examination of rapid transitions in policy aimed at 

climate change and sustainability requires the integration of models from many 

disciplines involving different modelling paradigms; the development of tools for 
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decision support must respond to advances in data, software and theory to provide new 

solutions. 

10.8 Further Framework Applications 

Section 9.5 considers two alternative methods of exploring densification scenarios involving 

the density adjustment of targeted and non-targeted zones to accommodate projected future 

development. In each method, two driver models and model group iteration are used to 

automate and control the densification scenarios. The first driver model controls the density 

adjustment process providing modified values which are input to the zonal model, while the 

second driver model stops group iteration when employment and population can be 

accommodated for all timesteps. A range of different target zones and associated densities 

could be tested to generate a portfolio of options to inform densification policy.   

Section 9.6 describes a four-step process to estimate model uncertainty which could be 

automated using model drivers and model group iteration to modify model inputs, execute the 

model, and store model outputs, along with metadata for all required iterations. The time 

taken to compute the uncertainty estimation depends on the execution time of the model under 

test; the performance of the UIMF minimises this computational cost and permits the 

generation of output values from a large number of model executions in a short timeframe.  

Section 9.7 describes the configuration of the UIMF using multiple UDMs to map the change 

in both employment and population over all simulated timesteps. Model drivers and model 

group iteration are used to control and coordinate the multiple UDMs used in the modelling 

arrangement which involves the update of raster data between UDM runs to reflect changes in 

development along with model feedback across iterations to synchronise UDM land use 

change for employment and population development with values generated by the zonal 

model. This permits a more detailed exploration of the temporal and spatial distribution of 

land use change attributed to development for both employment and population which could 

be used to examine the localised effects of surface sealing and urban drainage network 

modification.    

The application of most urban models is restricted to scenarios of urban expansion and the 

associated land use demands of future development; however, the UIMF SIM can also 

spatially disaggregate employment and population where the change in either value for the 

current timestep is negative which results in land being given back to the zone in accordance 

with the zone’s specified development density. The UDM considers positive population 

change only, so to address this inconsistency across modelling scales, Section 9.8 describes 
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how the UDM could be used to output a fine-scale representation of land reuse, repurposing 

or demolition for zones assigned negative change by the zonal model.  

Climate impact models overlay the spatial footprints of climate hazards with the patterns of 

land use generated by the UIMF to spatially assess vulnerability and exposure. The potential 

impacts of tidal and fluvial flooding were discussed in the GLA scenarios in terms of the 

interaction with future population development outputs. The outputs generated by the UIMF 

could be used in conjunction with a range of environmental models to assess the impact of 

multiple climate hazards including the use of future extremes of precipitation to assess pluvial 

flooding and surface-water flows, and temperature simulations to assess air quality attributed 

to emissions and excessive heat. Section 9.9 describes an experimental downscaling workflow 

which was developed to bridge between land use rasters generated by UDM and models of 

urban drainage requiring higher spatial resolution. 

Climate impacts on infrastructure can be direct such as the flooding of buildings, or indirect 

such as the disruption to transport networks caused by flooding and temperature extremes 

negatively effecting performance in terms of capacity and journey times. Future climate 

extremes of temperature and the associated reduction in air quality also pose serious health 

threats to urban citizens. There is a need to assess adaptation options and test their 

effectiveness against all potential impacts to provide a comprehensive basis from which to 

explore tensions between mitigation and adaptation, for example, densification to reduce 

transport related greenhouse gas (GHG) emissions Vs more intense urban heat island effect.   

The UIMF could be applied to more general consideration of future urban liveability to 

construct and analyse a suite of policies aimed at the development of sustainable urban areas; 

this would include sustainable transport goals such as reducing emissions, promoting low-

carbon modes of transport and reducing long-distance commuting. Options to improve urban 

mobility and minimise congestion could be explored along with an expanded model of 

accessibility considering access to employment as well as a range of other locations such as 

retail and green space.       

10.9 Further Research 

10.9.1 Advanced Analysis 

The use of C++ to implement relatively simple models in the UIMF results in an application 

capable of generating near-real-time results for scenario exploration in an interactive 

stakeholder dialogue setting; however, the communication to stakeholders of model 



233 

 

uncertainties and sensitivities can require the generation of many thousands of model results 

involving a far greater computational cost. Further research is required to develop suitable 

UIMF performance for this task; this should be accompanied by the development of analytical 

tools based upon software in the SciPy Stack for instance the Python Data Analysis Library 

(pandas) and Matplotlib.    

One option for accelerating the UIMF codebase on systems with the requisite hardware is the 

use of general-purpose computing on graphics processing units (GPGPU). The massively 

parallel architecture of graphics cards can be harnessed using CUDA or OpenCL to achieve 

significant performance gains, the former being preferable in terms of documentation, 

development tools and supporting libraries. Custom routines can be developed to perform 

computation on the GPU taking charge of the fundamental steps of writing host code on the 

CPU to interface with the device and manage memory, and kernel code to implement 

computation which executes on the GPU. Another option is the use of distributed computing; 

Condor is a management system supporting high throughput computing (HTC) for dedicated 

compute nodes which is well suited to tasks which apply the same processing to many 

different datasets. Condor jobs are submitted via a command file, queued, and executed on 

available computers, making use of configuration files or the network to communicate. Given 

that PC clusters are highly heterogeneous computing environments care must be taken to 

ensure that executable code has the best chance of running on any given machine; this can be 

achieved by statically rather than dynamically linking any code dependencies.   

The UIMF supports the multi-scale analysis of policy, land use, transport and climate impacts 

by generating future patterns of development over long timeframes; further research and 

improvements are required to model processes of rapid change and sub-cellular land use to 

provide greater insights into the detailed spatiotemporal pathways to improved adaptation and 

planning.  

10.9.2 Advanced Visualisation 

QGIS provides a fit-for-purpose solution for visualising model inputs and outputs in single 

model runs as presented in Chapter 7; however, more advanced use of the UIMF such as the 

generation of results for uncertainty analysis and parameter sweeping across multiple models 

runs can generate a huge number of results. The problem posed in this situation is how to 

visualise the outcomes from multiple model runs in way which can be easily interpreted to aid 

the model assessment process. The QGIS rendering system is not designed for high 

throughput, does not employ hardware acceleration using a Graphics Processing Unit (GPU) 
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and provides only a fixed set of visualisation capabilities which severely limits its application 

to the task at hand. OpenGL is an API for hardware-accelerated graphics used in video games 

and scientific visualisation. Since version 2.0 was released in 2004, the API includes a C-like 

language which can be used to create bespoke shading programs which are executed on GPUs 

exploiting the vastly superior performance in comparison with CPUs. The current OpenGL 

version is 4.6 and the API includes a vast array of extensions which can be applied to the 

visualisation of complex data. A key feature is the buffering of generic data from the CPU 

which is linked to objects rendered on the GPU; in conjunction with the speed of geometry 

throughput and the rendering flexibility offered by shaders, this provides an adaptable and 

high-performance solution to the problem of visualising large datasets. Further research in this 

area is required to develop a visualisation system capable of communicating the results from 

multiple model runs in a timely and comprehensible manner.   

10.9.3 User Interface 

The UIMF provides extensive functionality to configure and run groups of models and load 

datasets for model calibration; this workflow which is based on Python scripts is functional 

and highly flexible but should be improved in terms of usability by the development of a 

Graphical User Interface (GUI). In keeping with the open-source aim of this research, QGIS 

was used to prepare and visualise geographic data throughout this thesis and represents a 

logical choice for GUI development. QGIS is implemented using C++, Python and Qt, and 

extensive documentation is available including the 𝑃𝑦𝑄𝐺𝐼𝑆 developer cookbook for plugins 

and scripting, the Python interface API and the C++ API (QGIS). In the first instance, this 

development should focus on allowing the user to parameterise and execute a single model 

from within QGIS using scripting to automate the generation of visual outputs. After applying 

this to all models, a GUI should be developed to allow the user to control the flexible 

configuration, iteration and execution of model groups provided by the UIMF. Further work 

is required to adapt and target this system for non-expert users who may not be comfortable 

using a GIS, this would involve the automation of spatial operations within QGIS and the 

development of a user-friendly GUI.  
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10.10 Contribution to Knowledge 

In summary, this research contributes to the field of spatial analytics and modelling in the 

following key areas: 

1. The reimplementation of existing UIAF models using open source software and 

coding platforms. 

The UIAF models were all implemented using proprietary software and in some cases 

are no longer supported due to licencing issues – this work ensures that those models 

can be used and developed in further research. 

2. The development of a generic and flexible framework in which spatial models can be 

specified, integrated and executed. 

The UIMF reimplements the LUTM components of the UIAF but it could be used in a 

variety of situations where spatial (and non-spatial) models require integration. 

3. The implementation of the UIMF which can be used for rapid assessment in a 

stakeholder dialogue setting and also for more robust analysis involving uncertainties 

and sensitivities which require multiple model runs coupled with metadata to record 

the provenance of results. 
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Appendix A. Datatypes and Data Flows 

The management and transfer of data between Postgres database tables and models which 

consume and produce that data should be handled within the Python module responsible for 

executing each model. The UIMF provides numerous functions and techniques to assist in this 

data handling process which involves csv, vector, and raster data types. The discussion of 

these techniques begins with csv data in the context of the user setting up generic datasets 

required by each model to be run using the PMI. These datasets could be setup within 

PostgreSQL using the 𝑝𝑔𝐴𝑑𝑚𝑖𝑛 interface; however, doing so is somewhat cumbersome 

which lead to an alternative method being used in which the generic datasets are created and 

edited externally and uploaded to the database via csv files. 

Generic model inputs and outputs share the same table format with columns for primary key, 

name and value being completed for each item of data. The first step in managing this data via 

an external source is to create a named database table of the required format. SQL code for 

table creation can be uploaded to the database and called by Python functions with the table 

name as an argument; this is an appropriate solution for table formats which are regularly 

reused as is the case here. The primary purpose of this SQL code is to 𝐸𝑋𝐸𝐶𝑈𝑇𝐸 the 

𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸 instruction using the name provided before defining the name and type of 

each column to be included in the table.  

The only table format in section which is not fixed is that for parameter tables which have 

columns for primary key, model key and a column for each parameter assigned to the model. 

Parameter tables can be created as described previously where each table definition requires a 

separate function, an alternative solution is to further generalise the process of table creation; 

a generic function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑚𝑝𝑡𝑦_𝑡𝑎𝑏𝑙𝑒() can be used to call the SQL commands 𝐸𝑋𝐸𝐶𝑈𝑇𝐸 

and 𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸 along with the table name provided as an argument in the Python 

function to create a table with no columns. The SQL commands 𝐴𝐿𝑇𝐸𝑅 𝑇𝐴𝐵𝐿𝐸 and 

𝐴𝐷𝐷 𝐶𝑂𝐿𝑈𝑀𝑁 can then be used to format the generic parameter table as required.  

After a table is created, it can be populated with data from a suitably formatted csv file from 

within a Python script using a generic 𝑑𝑎𝑡𝑎_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒() function which uses the SQL 

commands 𝐶𝑂𝑃𝑌, 𝐹𝑅𝑂𝑀, 𝐷𝐸𝐿𝐼𝑀𝐼𝑇𝐸𝑅𝑆 and 𝐶𝑆𝑉 𝐻𝐸𝐴𝐷𝐸𝑅 along with the names of the 

database table and input csv file to upload the data. Note that the csv file must be publicly 

accessible for Postgres to execute the data transfer. 
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Inputs named in generic PMI model datasets can refer to vector data providing the database 

used is spatially enabled using the 𝑃𝑜𝑠𝑡𝐺𝐼𝑆 extension. Vector data can be uploaded directly 

within 𝑝𝑔𝐴𝑑𝑚𝑖𝑛 using the shapefile import/export manager plugin or can be handled in a 

similar manner to csv data by creating the table and loading from a suitably formatted csv file; 

a generic 𝑑𝑎𝑡𝑎_𝑡𝑜_𝑔𝑒𝑜𝑚_𝑡𝑎𝑏𝑙𝑒() function extends the aforementioned 𝑑𝑎𝑡𝑎_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒() 

function by enforcing the provided spatial reference and dimensions of the geometry column. 

The techniques described in this section so far allow the user to upload data to specify generic 

model datasets and input data; these methods are also utilised during model execution to write 

outputs to named database tables while further techniques are provided for models to read 

inputs from database tables. A set of functions prefixed 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_ provides the ability for 

models to pull data from tables. In cases where the entire table is required and data is suitably 

ordered, 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑎𝑙𝑙() uses the SQL commands 𝐶𝑂𝑃𝑌, 𝑆𝐸𝐿𝐸𝐶𝑇, 𝐹𝑅𝑂𝑀, 𝑇𝑂 and 

𝐶𝑆𝑉 𝐻𝐸𝐴𝐷𝐸𝑅 along with the name of the database table and output csv file to export the 

data. Note again that the csv file must be publicly accessible for PostgreSQL to execute the 

data transfer. Where only a subset of the table is required, the SQL command 𝐴𝑆 is used in 

the 𝑆𝐸𝐿𝐸𝐶𝑇 statement along with the provided name for each column to be exported. Where 

data order needs to be specified, the SQL command 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 can be used to arrange the 

rows of exported data according to the row order of a named column while 𝐷𝐸𝑆𝐶 can be used 

to order the exported rows in reverse. 

The use of ascii raster files provides a simple format to exchange raster data along with the 

following header information: 

• 𝑛𝑐𝑜𝑙𝑠 (number of columns) 

• 𝑛𝑟𝑜𝑤𝑠 (number of rows)  

• 𝑥𝑙𝑙𝑐𝑜𝑟𝑛𝑒𝑟 (lower-left-corner, lower-left-cell, x coordinate) 

• 𝑦𝑙𝑙𝑐𝑜𝑟𝑛𝑒𝑟 (lower-left-corner, lower-left-cell, y coordinate) 

• 𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒 (size of each cell) 

• 𝑁𝑂𝐷𝐴𝑇𝐴_𝑣𝑎𝑙𝑢𝑒 (cell data mask value) 

The raster data follows the header starting at the top left i.e. the first row and first column of 

the raster. For each row, the cell value in each column is recorded using whitespace delimiters 

before moving to the next row to complete all cells in the raster.  

Raster data stored in the ascii format can be handled within C++ models using a simple Raster 

class containing member variables for each item of header information; the 𝑛𝑐𝑜𝑙𝑠 and 𝑛𝑟𝑜𝑤𝑠 
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header items are used to dynamically allocate a 2d array into which cell values are loaded 

using 𝑠𝑡𝑟𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑎𝑚 and 𝑠𝑡𝑟𝑖𝑛𝑔 types to read data from file and convert to 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 or 

𝑑𝑜𝑢𝑏𝑙𝑒 data types as required.     

The ascii format is used as the UIMF raster interface in terms of importing and exporting data 

which can be prepared and viewed in 𝑄𝐺𝐼𝑆 but since a large amount of raster data may need 

to be transferred between models and to/from Postgres some modifications have been made to 

improve performance. The 𝑃𝑜𝑠𝑡𝐺𝐼𝑆 raster type (formerly 𝑃𝑜𝑠𝑡𝐺𝐼𝑆 𝑊𝐾𝑇 𝑅𝑎𝑠𝑡𝑒𝑟) was first 

included in 𝑃𝑜𝑠𝑡𝐺𝐼𝑆 version 2.0 permitting the storage and querying of raster data stored in 

Postgres tables. All UIMF models to date load and save rasters via local files but raster data 

must be stored alongside other model data and metadata to fully record any given model run. 

Since the 𝑃𝑜𝑠𝑡𝐺𝐼𝑆 raster type was not required it was decided to store raster data in standard 

Postgres tables using a single column to standardise table creation, and to seek to improve 

data transfer speed when working with ascii files. To preserve the use of standard ascii files 

for raster import and export the C++ Raster class was modified to use a setup function which 

takes a header file (. ℎ𝑑𝑟) containing the 6 items from the ascii file format header and 

dynamically allocates storage as before. The Raster class was then expanded with functions to 

load and save data using two alternative formats; single column csv and binary.    

The C++ code to read raster data from a single column csv file reads the entire raster into a 

one dimensional 𝑠𝑡𝑟𝑖𝑛𝑔 array before converting to 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 or 𝑑𝑜𝑢𝑏𝑙𝑒 data types and re-

indexing as required. This provides a considerable increase in performance when compared 

with reading from ascii files in which each line of data representing a raster row is read from 

file into a 𝑠𝑡𝑟𝑖𝑛𝑔, then into and out of a 𝑠𝑡𝑟𝑖𝑛𝑔𝑠𝑡𝑟𝑒𝑎𝑚 to skip whitespace before conversion. 

The methods to transfer this data to and from a single column database table are as described 

previously in this section for importing and exporting csv data.   

Reading an entire raster from a single column csv file using the basic csv interface developed 

for the UIMF still involves reading data for each line; a better strategy for fast data transfer 

would be to handle the entire raster using a single read operation. Binary data in raw form 

would be easy to manage e.g. for rasters containing integer values the data would be the 

number of cells multiplied by 𝑠𝑖𝑧𝑒𝑜𝑓(𝑖𝑛𝑡) in C++ parlance. In practice, binary data transfer 

to and from Postgres is faster (byte for byte) than other formats but involves considerable data 

redundancy and coding effort to manage the transfer; reading and writing binary data to 

database tables is simply a matter of including a format option wrapped within the generic 

function 𝑏𝑖𝑛𝑎𝑟𝑦_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒().  
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The SQL 𝐶𝑂𝑃𝑌 command has a parameter 𝐹𝑂𝑅𝑀𝐴𝑇 which specifies the type of data to be 

transferred. One of these formats is 𝑏𝑖𝑛𝑎𝑟𝑦 which offers improved data transfer performance 

at the expense of machine architecture portability and data type flexibility. The binary format 

includes a file header, padded tuples of row data and a file footer, all of which are in network 

byte order.    

The problems of handling binary data as used by Postgres lie in the data padding used which 

greatly increases file sizes, and the network byte ordering (endianness) which is counter to 

that used on most operating systems. Reading raster data involves a 19-byte header and a 2-

byte footer, then each cell value (4-bytes for integer, 8-bytes for double) is preceded by 6-

bytes of padding which bloats the stored raster file. The goal of reading the entire raster in a 

single operation is achieved but converting endianness from most significant byte to least 

significant byte or vice versa results in the use of staggered reverse and copy operations to 

manipulate data. The binary method of transferring raster data is the still the fastest option but 

is not necessarily portable since the code relies on 𝑠𝑖𝑧𝑒𝑜𝑓(𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒) which may vary across 

machine architectures and assumes that the endianness of the client is different from the 

server. Using an alternative raster format within model code could avoid many of the issues 

encountered and provide a means of quickly transferring raster data between models and 

to/from the database; however, the methods developed address performance problems 

associated with the ascii format to provide a working solution fit for purpose. 

Both the single column csv and binary raster exchange formats benefit significantly from the 

use of unlogged tables to transfer data. The SQL command 𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸 has a parameter 

𝑈𝑁𝐿𝑂𝐺𝐺𝐸𝐷 which specifies whether table data is written to the write-ahead-log confirming 

data integrity. The use of unlogged tables significantly improves the performance of data 

transfer; however, this performance increase is traded against the loss of protection in the 

event of a system crash since the table contents in the secondary server used by the write-

ahead-log will be empty when disabled.    
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