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Abstract

Growing acceptance for in-house Distributed Energy Resource (DER) installations at low-
voltage level have gained much significance in recent years due to electricity market lib-
eralisations and opportunities in reduced energy billings through personalised utilisation
management for targeted business model. In consequence, modelling of passive customers’
electric power system are progressively transitioned into Prosumer-based settings where pres-
idency for Transactive Energy (TE) system framework is favoured. It amplifies Prosumers’
commitments into annexing TE values during market participations and optimised energy
management to earn larger rebates and incentives from TE programs. However, when dealing
with mass Behind-The-Meter DER administrations, Utility foresee managerial challenges
when dealing with distribution network analysis, planning, protection, and power quality
security based on Prosumers’ flexibility in optimising their energy needs.

This dissertation contributes prepositions into modelling Distributed Energy Resources
Management System (DERMS) as an aggregator designed for Prosumer-centered coop-
eration, interoperating TE control and coordination as key parameters to market for both
optimised energy trading and ancillary services in a Community setting. However, Pro-
sumers are primarily driven to create a profitable business model when modelling their
DERMS aggregator. Greedy-optimisation exploitations are negative concerns when decisions
made resulted in detrimental-uncoordinated outcomes on Demand-Side Response (DSR)
and capacity market engagements. This calls for policy decision makers to contract safe (i.e.

cooperative yet competitive tendency) business models for Prosumers to maximise TE values
while enhancing network’s power quality metrics and reliability performances.

Firstly, digitalisation and nanostructuring of distribution network is suggested to identify
Prosumer as a sole energy citizen while extending bilateral trading between Prosumer-to-
Prosumer (PtP) with the involvements of other grid operators−TE system. Modelling of
Nanogrid environment for DER integrations and establishment of local area network infras-
tructure for IoT security (i.e. personal computing solutions and data protection) are committed
for communal engagements in a decentralise setting. Secondly, a multi-layered Distributed
Control Framework (DCF) is proposed using Microsoft Azure cloud-edge platform that



iv

cascades energy actors into respective layers of TE control and coordination. Furthermore,
modelling of flexi-edge computing architecture is proposed, comprising of Contract-Oriented
Sensor-based Application Platform (COSAP) employing Multi-Agent System (MAS) to
enhance data-sharing privacy and contract coalition agreements during PtP engagements.
Lastly, the Agents of MAS are programmed with cooperative yet competitive intelligences
attributed to Reinforcement Learning (RL) and Neural Networks (NN) algorithms to solve
multimodal socio-economical and uncertainty problems that corresponded to Prosumers’
dynamic energy priorities within the TE framework. To verify the DERMS aggregator
operations, three business models were proposed (i.e. greedy-profit margin, collegial-peak
demand, reserved-standalone) to analyse comparative technical/physical and economic/social
dimensions. Results showed that the proposed TE-valued DERMS aggregator provides
participation versatility in the electricity market that enables competitive edginess when util-
ising Behind-The-Meter DERs in view of Prosumer’s asset scheduling, bidding strategy, and
corroborative ancillary services. Performance metrics were evaluated on both domestic and
industrial NG environments against IEEE Standard 2030.7-2017 & 2030.8-2018 compliances
to ensure deployment practicability.

Subsequently, proposed in-house protection system for DER installation serves as an
add-on monitoring service which can be incorporated into existing Advance Distribution
Management System (ADMS) for Distribution Service Operator (DSO) and field engineers
use, ADMS aggregator. It provides early fault detections and isolation processes from al-
lowing fault current to propagate upstream causing cascading power quality issues across
the feeder line. In addition, ADMS aggregator also serves as islanding indicator that distin-
guishes Nanogrid’s islanding state from unintentional or intentional operations. Therefore, a
Overcurrent Current Relay (OCR) is proposed using Fuzzy Logic (FL) algorithm to detect,
profile, and provide decisional isolation processes using specified OCRs. Moreover, the
proposed expert knowledge in FL is programmed to detect fault crises despite insufficient
fault current level contributed by DER (i.e. solar PV system) which conventional OCR fails
to trigger.
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Chapter 1

Introduction

Operational modelling for today’s electric power system have proved to be highly complex
where holistic/cooperative managerial solutions are somehow conjugated with nonlinearity
relationship factors (i.e. human behavioural interventions, transient-stability constrained
optimal power flow). For instances, having high penetration of Distributed Energy Re-
source (DER) especially at the low-voltage level and liberation in Retail Electricity Market
(REM), Distribution and Transmission System Operator (DSO-TSO) are forced to strengthen
utility-customer reciprocal engagements in view of Transactive Energy (TE) values; grid-tied
flexibility and reconfigurable (plug-and-play), resilient in self-healing executions and reliable
interoperability (power quality efficiency), convergence of Internet of Things (IoT), and
synchronised participation in energy market. Hence, research investments and industrial
synthesisation for decentralised yet cohesive Distribution Management System (DMS) so-
lutions have exponentially inclined involving new and multiple energy actors perspectives.
It incentivise operational reliability, performance, and overall productivity for sustainable
economical and societal benefits across all energy actors. Hence, this chapter reveals rev-
olution towards decentralised managerial trends where consumer(s) are empowered with
greater stake in directing energy regulatory outcomes with favourable participating policies;
top-down and bilateral energy/market legislations.

1.1 Primitive Energy Security and Management Systems

The primitive configured Electric Power System (EPS) seen in Fig. 1.1 is conventionally
divided into three regions; generating station, transmission lines/feeders, and distribution
network comprising residential and commercial customers. The EPS is modelled such that
it has a single localised coupling point for all online/offline thermal generating units, and



2 Introduction

(a) Electric power system high-level layout.

(b) State diagram for EPS control operation.

Fig. 1.1 First generation of electric power system and its operational management sequences.

customers’ were only to receive electrification at the receiving-end of transmission lines
operating as a load entity. In this sense, modelling of energy managerial proceeding for
distribution grid planning was unambiguous as the network operational were passive (i.e.

top-down administrations); power generation uses unit commitment algorithm to balance
demand-supply equilibrium, routing strategy to ensure transmission lines are not overloaded
with minimised power losses, intelligent energy distribution during peak demand loading,
outage management services, and optimise voltage level compensation planning during both
peak and non-peak demand periods [1–3]. In that sense, several key energy actors were
introduced:

1. Transmission System Operator (TSO)−focuses on voltage and frequency level reliabil-
ity through supply and demand equilibrium, robust and resilient in providing recovery
solutions when faced with unexpected low impact crises or outage vulnerability, and
dynamically adapts to normal changes in system conditions or potential line congestion.
Comprehensively, they are responsible in managing the reliability and management
processes in transporting electrifications from the contracted generation capacities and
ensure customers have constant access to electricity.
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2. Distribution Network Operator (DNO)−anticipates customers’ Demand-Side Response
(DSR) expectancies and incentivise cost effective solutions when dispatching schedul-
ing available generations and loads. It comprises interoperable intelligent systems to
coordinate new integrated technology devices/generation for sustainable yet profitable
engagements at low-voltage level.

3. Energy Market Authority (EMA)−responsible in regulating effective competition in
the non-discriminatory wholesale and Retail Energy Market (REM) while enforcing
compliance activities. Work closely with TSO to create greater market flexibility and
price transparency that would satisfy customers’ expectancy.

Nevertheless, among the selected operators listed above, TSO holds a major stake in the power
grid operational and planning domains, whose objectives involved ramping robust-reliable
performance and optimise generation availability under both abnormal and normal conditions
including transient responses (i.e. motor start-up, loads’ nonlinearity, and generator losses)
[4–7]. Much research efforts were contributed into solving optimum transmission planning
also known as n− 1 contingency; using collected measuring data to perform load flow
analysis based on current operating state, and predict future demand capacity in the next
window timeframe (t +1), to better schedule generation availability using state estimation
approach. For instances; (i) finding the optimum surge impedance loading to meet the
required transmission operating limit from voltage or transient instability (i.e. classic P−V

curve, Power−Angle curve) [8], (ii) regulating energy prices based on market limit that
discerns transmission constraints and congestion [9, 10], (iii) security and resiliency for
protection system automations during overcurrent crises or power outage (i.e. scaling down
the affected area through re-routing strategy of transmission feeders) [11–14], (iv) perform
load flow analysis to identify areas for improvement based on different loading conditions,
and (v) model low-variance with maximum likelihood state estimation for profitable operation
planning in future timestamps.

1.1.1 Introducing Renewable Energy Resources in Transmission

As EPS enters into early technology modernisation, deployment of large-scaled Renewable
Energy Resource (RES) technologies (i.e. windfarms and solar farms) coupled at transmis-
sion level gained recognitions as DNO-TSO foresees befitting potentials towards security
planning and power quality. Hence, centralised Virtual Power Plant (VPP) were introduced
mainly addressing solutions for economical operation during peak demand loading, increase
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Fig. 1.2 Summary of critical TSO-DNO control managements with integration of RES
technologies at transmission level.

contingency efficiency, and provide intuitive risk-based distribution network planning. The
VPP controls active power generation across a group of integrated RESs to provide several
grid services that are not dependent on feeder’s location [15, 16]. Hence, typically, the
operations of VPP provides system wide regularities with respect to increase or decrease of
generation capacity or load size for regional transmission system areas. The grid services
includes supporting DSR [17], frequency compensation [18], reserve generation pooling [19],
energy arbitrages [20], and curtailment during peak demand crises [21]. Nevertheless, in the
transmission planning for grid services, TSO-DNO regards integrated VPP (public/investor
owned) as an auxiliary asset where contracted energy bidding agreements are ordered to
render support in securing the distribution network reliability, wholesale electricity prices,
and large energy demand deviation episodes. Fig. 1.2 illustrates the integration of VPPs at
transmission and corresponding control functionalities rendered by respective operators.

Research efforts in identifying challenges/opportunities when adopting generation mix
are trending, assessing operational impacts when unloading dependency on power plants and
divert to RES-based VPP. Listed below were several open discussions in view of addressing
a balanced and unbiased operations of RES penetrations [22]:

1. Essential reliability services (frequency response, ramping, and voltage support)−as
the generation resource mixes continue to evolve, what measures were taken to ensure
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power quality reliability is secured? are there specific beneficiaries or risks posed
by generation variability from RES-based resources and what are the roles of these
transmission customers (energy retailers) can do for reserve margin or in the market
despite operation irregularities?

2. RES integration does impose high risks−lessons drawn from August 2016 Blue Cut
Fire and October 2017 Canyon Fire events, inverter-connected and non-synchronous
technologies do impose reliability and resiliency issues hence, what measures should
Standard regulators impose and how industry are preparing solutions in their responds
(reliability and resiliency)? are there still potentials toward improving power quality
metrics with such technologies?

3. Optimal planning adaptations−what real-time monitoring data and energy manage-
ment system application requires, or changes in Reliability Standards, would better
enhance grid operations and resiliency anticipations? what is considered best practices
when planning transmission system with VPPs? How does it impact the wholesale and
retail electricity market policies?

Contrastively, addressing its socio-economical impacts in adopting RES-based VPP as
part of bulk power generation sources, realisations in system’s return on investments and
customers’ flexible participation in the revised energy market must be considered. RES
installations and, operation and maintenances costs have high-risk return on investments
hence, it will only be successful if partnering power generation companies and state gov-
ernments provide supportive programmes (i.e. incentives, rebates) for market penetration.
Therefore, VPP operators need to find emerging business models that will maximise VPP
potentials in supporting TSO-DNO managements through grid service augmentations or
increase credibility in the reserve market (i.e. ancillary services).

Studies in [23–27] have present holistic solutions between system’s integration and
operational responses when addressing or prioritising challenges/risks associated to VPP
penetrations. Identified from these studies, two common application functions were often
mentioned; Energy Management System (EMS) and VPP control managements. They
represent key managerial drivers in securing optimal power flow with VPP participations to
secure power quality and customer connectivity in the distribution network.
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1.1.2 Energy Management Control System

EMS is defined as a scalable computer-aided system [28–30] that provides monitoring, auto-
mated control, and scheduling services that optimises geographical operations of generation
customers, transmission, and dispersed distribution substation in real-time. It is designed with
modular based managerial functions/applications that are typically fused with distribution
Supervisory Control and Data Acquisition (SCADA), generation dispatch and control, energy
scheduling and accounting, and transmission security management [31–33].

In practice, EMS is a collective suite system that optimally manages transmission grid
and energy generation to increase customers’ network performance; resilient towards either
curtailing or preventing power outages, observes constrained security requirements respec-
tively based on electricity market prices and Standard compliance rulings, and fuel-operation
management cost and transmission loss reductions [29, 34, 35]. In this sense, EMS are
programmed to provision (i) operating system that is comprehensive, unified, and free from
malicious invasion/corruption, (ii) industrial deployable transmission security applications
and generation control, (iii) synchronised platform independent graphical user interface,
(iv) accessible backup control center options during malfunction episodes, (v) sustainable
decision-making processes, (vi) provide training simulation for dispatcher/operator.

Supervisory Control and Data Acquisition System

Computer-based control and monitoring platforms serves as the most ciritical medium that
can support operators in system visualisation for cost effective solutions where realisations
in reliability or optimum operation can be augmented in real-time. SCADA [36] is common
referred as solution for data acquisition, monitor, and control system that has bi-directional
communication infrastructure; portable and scalable. In the context of SCADA in power
system application, the major components in SCADA system comprises Remote Terminal
Units (RTUs), Master Terminal Units (MTUs), Information and Communications Technology
(ICT), and Human Machine Interface (HMI). The deployment of SCADA system architecture
can be viewed as two categories [37]; transmission and distribution network management.
They have similar monitoring and control capabilities however, differs from the equipment
devises (i.e. sensors, actuators, meter) used.

RTU serves as the main devise in SCADA system that physically connects with various
sensors, meters and control actuators. It is a real-time programmable logic controller that
converts measured data into digital format for transmitting. It communicate closely with
MTUs where operators can remotely send out control command and pilot actuators and
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switchboxes operations. Meanwhile, MTU is a central host server(s) that networked with
other RTUs, also known as SCADA center, performing read and write functions during
scheduled scanning. It is a GUI platform that programmed with alarm management and
notifications during abnormal events and suggest possible restoration processes. Whereas,
in normal condition, optimum supervisory control schemes can be deployed remotely and
perform predictive or state estimation for security planning. It uses conventional ICT
infrastructure mainly to perform data/command transfers from field interface devices to
central host computer servers and vice versa. Lastly, HMI is a platform comprising of
multiple software from request-receive applications to intelligent computing for control and
protection solutions based on the gathered data from the remote field parameters.

Transmission Security Management

Discussed in [38–43], actual case studies and results were contributed into network topology
analyses focusing in optimising utilisation of transmission assets and security-constrained
optimal power flow. Following reviews several sub-components/attributes when deal with
transmission security management:

Suggested in [40], it elaborates recommended practice when conducting modern load

flow studies using computer-aided computing system on existing transmission network, con-
sidering optimal power flow calculation techniques for steady-state power flow and voltage
transient analysis. It aims to navigate power-oriented operators with limited experience to
conduct load flow analyses and quantify sufficient generation in real-time (5mins intervals)
while observing minimised operating costs.

Additionally, [41] explains the importance in extending load flow studies with state

estimation observability analysis using standard normal equation (triangular factorisation) to
a orthogonal transformation-based approach. It eliminates numerical ill-condition in the gain
matrix by combining sparsity from the normal equations method and orthogonal transforma-
tion numerical robustness. It aims to solve normal equation using orthogonal transformation
on the Jacobian matrix to render hybrid state estimator that performs observability analysis.

Meanwhile, interoperation of contingency analysis is required where it provides oper-
ator(s) with major information on static security when planning transmission operations
discussed in [42]. It assess vulnerability where one or multiple contingencies occur (i.e. trans-
mission line fault, transformer overloaded, voltage rise/fall), contingency analysis calculates
violations and suggest real-time remedial actions to bring normality in the transmission’s
operations. Correctional solutions provided are much dependant on the quality of state
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estimator and computational speed as required by the operating Standard; violations to be
cleared within 30mins.

Lastly, [43] provide optimal solution in solving security management using successive

linear programming when allocating reactive and active power generation to relieve violations
based on control action time constraints. It aims to minimise active and reactive power
losses while maximising reactive power reserve absorbed by generating units to compensate
system voltage dip crises during high interconnected load capacity subjected to power flow
constraints. These algorithms comprehend that active and reactive power are non-separable
and largely nonlinear, generators’ cost-rate curves were considered to discourage near limit
operation, and piecewise linearisation techniques are employed which iterates with fast
convergence towards minimal variance of AC power flow.

Dispatch Control for Generating Assets

In relations to fuel driven generating units, the term Economic Dispatch (ED) and Unit
Commitment (UC) optimisation are commonly associated to solve generation capacity for
individual generating units and, select which and when a generation units to start-up or shut-
down for a short-term period respectively. Its global objective is to search for the minimised
total fuel costs based on real-time demand load capacity, subjected to transmission line and
generating unit operating constraints. Primitively, the two mentioned optimiser functions
are modelled as piecewise linear problems and are solved individually in a sequential order.
However, with the advancement in computing intelligence technology today, ED and UC
can be solved simultaneously as a single statement problem using nested loop approach
incorporating robust operating constraints and relative fuel costs with no prior assumptions.
Its goal is to solve minimised operating costs by selecting which thermal generating unit(s)
has the lowest marginal costs (i.e. locational marginal prices due to transmission constraints)
that can satisfy the demand load capacity at time, t.

There are two popular optimisation approaches when solving UC and ED problems;
integer programming algorithm involving Mixed Integer Linear Programming (MILP) or
Mixed Integer Quadratic Programming (MIQP), and any methods from heuristic algorithms.
In [44] and [45], they proposed similar two-stage MILP approach when solving minimised
ED-UC problem considering quadratic fuel cost, transmission line loss, and valve-point
functions. Here, the quadratic objective function is converted into a linear approximation
problem statement using piecewise linearisation method. Meanwhile, [46] addresses possible
linear approximation errors in MILP due to the non-linearity in objective cost function which
dissatisfies the power balance constraints. Thus, MIQP was proposed where it suggests
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a combined warm start technique and range restriction scheme with MIQP to eliminate
convergence stagnancy and increase computation efficiency during optimisation process.

On the contrary, [47] and [48] proposed a heuristic approach when solving UC-ED.
Heuristic algorithm is best used to solve nonlinear multi-objective optimisation problems
within a search space. It is known for its reduced computational processing time and proves
close to optimal solution based on the search jump greediness intensity (i.e. computation
speed proportional to solution accuracy). Therefore, given a quadratic fuel cost and other
operating constraint functions, the iteration process (gradient descent) in finding optimal
solution may not be the global minimum. Nevertheless, heuristic approach is sufficient
to solve fast and feasible short-term solutions such as ED-UC problem verified in [47]. It
suggests nested Particle Swarm Optimization (PSO) while comparing to other optimisa-
tion programming approach where the minimised costs differences were <+2% and, the
computation stress and time improves by 50%. However, PSO may suffer computation diver-
gence due to operating limit constraints. Therefore, [48] suggest hybrid solution approach,
optimisation-based heuristics, where it infuses priority list optimiser to localise initial starting
point in the vast search space based on generator’s and transmission inequality constraints
before gradient descending towards the optimal solution using Genetic Algorithm (GA)
approach.

Energy Scheduling and Accounting

TSO control center or or Independent System Operator (ISO) keeps track of regional area en-
ergy production costs and transactions at specific evaluating periods. The energy scheduling
and accounting software has the capability to compile electricity production costs comprising
the physical transfer of energy through transmission lines and operation & maintenance
committed by generating units. It schedules energy exchange and actual power flow based
on NERC Reliability Standards that will authorised user-defined parameters when format-
ting power transfer against electricity marketplace as shown in Fig. 1.3. Here, it involves
more in-depth towards policy modelling and Standard compliances where they set opera-
tional requirements for generating assets to meet balanced market transactions and quality
electrification for customers.

An example case study implementing hourly based energy scheduling and accounting
architecture can be seen in [49] where it uses 49 historical days data using SCADA and
Automatic Generation Control (AGC) systems to generate an economical/profitable business
model for seven future days. It also suggest regulation in limiting net schedule interchange,
congestion settlement credits, and basepoint generation capacity.
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Fig. 1.3 Energy marketplace−horizontally integrated business model between energy actors.

1.1.3 Distribution Management Control System

Primitively, DMS is designed to govern electrification in the distribution network to meet
customers’ quality requirements which later known as Advance DMS (ADMS) which
suggests operational integrations with other featured applications discussed in Chapter 1.2.4.
As a base, DMS serves as a dynamic decisional support system comprising collective suite
of applications that can assist operator (i.e. Distribution Network Operator (DNO)) with
monitoring (i.e. SCADA, smart meter) and control functions to resolve abnormal/outage
events. It is also commonly referred as Outage Management System (OMS) as it key
deliverables improve; (i) outage duration, (ii) minimise and isolate outage affected area, and
(iii) restore/compensate frequency-voltage level to prevent outage crisis. Minimally, DNOs
have their OMS equipped with comprehensive IT framework that integrates Geographical
Information System (GIS), Customer Information System (CIS), and Interactive Voice
Response System (IVRS) [50, 51]. From its networked communication infrastructure,
its uses information received from customers regarding power outage and knowledge of
protection devices location (i.e. circuit breakers) to localise and isolate the outage affected
area. With this information, DNO will proceed with restoration activities and dispatch ground
crews to physically access the cause of outage. Correspondingly, DMS can also be employed
for scheduling maintenance and network expansion works in the distribution, or profile DSR
(i.e. energy consumption) trends for better transmission security planning.

A comprehensive review on DMS is presented in [52] where it explained customer ser-
vice and reliability are key drivers into modelling OMS functionalities while considering
complexity when distribution system expands and operational knowledge base starts to
erode without the aid of IoT-based framework. Thus, considering cost effective solutions,
DNO turned to process automation technology imbued with decision-making features where



1.1 Primitive Energy Security and Management Systems 11

parallel communications can generate faster service restoration and accurate reporting of
outage information. It also highlight other areas of enterprise integrating business pro-
cess, information systems, and users’ feedback data for effective with cost-efficient OMS.
Meanwhile, [53] proposed distribution network protection and restoration control algorithms
where it exploit IoT framework with automated controlled equipments in distribution. The
algorithm uses MultiAgent system architecture to communicate and coordinate switching
controllers in circuit breakers along the distribution network to isolate and restore service to
customer during an outage event. The results have shown advantages in self-management
trajectory where self-healing and adaptive (i.e. learning) re-routing capabilities procured
faster fault interjections resulting in minimised loss margin. Uniquely in [54], it highlights
the importance in hybridising EMS with DMS functionality to gain higher level security
analysis; state estimations and security contingency for EMS and voltage level in feeders and
loss optimisation for DMS. Such hybrid systems was proposed to encapsulate extended real-
time and study mode functions that administer corresponding operational aids for network
reliability-security while dispatching optimum economic operation. Neither a pure EMS nor
DMS would fulfil distribution network operation requirements.

1.1.4 Virtual Power Plant Control System

In corporation with EMS operations, how does VPP services fit in? What are the necessary
control functions or managerial features when governing VPP?

The operational objectives of VPP management is much dependant on the market envi-
ronment specified by users. In general, it aims to concatenate RES or Sustainable Power
Generation (SPG) and Energy Storage System (ESS) with flexible power consumers with the
ability to forecast and monitor uncertainty, and dispatch generation or consumption capacity
optimally. It is viewed and traded as a single power plant [55] into the existing markets
where it brings forth flexibility in terms of VPP readiness to be deployed instantaneously
during grid balance crisis as compared to those thermal generating units.

Asset Dispatch and Control

As the demand for energy at distribution level grows considering charging of electric vehi-
cles, consumers have took much interests into profiling retail market price fluctuations in
correspond to different time intervals [56]. In consequence, TSO-DNO suffers anticipation
crises when levelling supply-demand equilibrium and scheduling of thermal generating units
would take on greater ED-UC dispatch losses due to ramping or start-up issues in order to
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meet large power deviations within smaller timeframe intervals (i.e. overgeneration spinning
reserve). Therefore, VPP can provide solutions into handling large power fluctuation in
real-time while thermal units operate as baseload power plants. It would maximise utilisation
of RES-based generation units and compensate using controllable units (i.e. hydro, biogas)
during shortage and store surplus into ESS. A comprehensive study in VPP economic short-
term scheduling and joint profit distribution problem is discussed in [57] where it proposes
an operation scheduling model. The results attained from the case study proves to provide
optimal decision-making solutions when piloting generation assets in VPP with maximised
profit return. In addition, the cooperative decision-making process exploits market policy
incentives to further gain greater profit margin.

Likewise, the operation of VPP can be market driven and steer consumers to have a
predictable energy consumption profile. It can react quickly to changes in the exchanged
electricity prices and thus, execute shorter time interval trades [58]. In turn, it triggers DSR
flexibility for grid support and overturn additional revenue affecting power exchanges. VPP
takes advantage of the changes in wholesale energy prices by contracting larger generation
when tariff is high and conserve/store during low. In [59], analyses on interactive dispatch
and bidding strategy models of VPP based on DSR against locational marginal market prices
(wholesale) using game theory were presented. It proposed a VPP dispatch model that
coordinates time-of-use pricing mechanism against DSR. In addition, the VPP dispatch
controller incorporate multi-time scale rolling scheduling strategy to gain approximate
generation certainty when operating RESs. To comprehend the operations of VPPs in a
multi-actor environment, the authors introduced game theory approach where individual VPP
will optimally compete and bid in the wholesale market based on maximised profit margin.

Forecasting Generation Availability

When dealing with RESs in VPP (i.e. solar PV farm, windfarm), generation uncertainty which
results to UC scheduling errors at time, (t +1), are inevitable. In addition, it creates security-
constraint complexity when planning for optimal N−1 contingency which often resorted to
deployment redundancy (RESs under-utilised) or power quality reliability issues mentioned
in [60]. Therefore, renewable energy forecasting is a crucial and cost effective tool that aids
VPP operators to up- or down-ramps those controllable generation assets in VPP to achieve
cost-effective UC-ED and meet demand equilibrium for intra-day or day ahead scheduling
with minimised RESs generation curtailment. The influencing factor when profiling RESs’
generation is mainly contributed by weather conditions thus, weather prediction model is
key to gain high forecasting accuracy. Depending on the scheduling operation required, the
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learning algorithm for accuracy can be attuned to adapt long-term relaxed criterion (errors
<30%) to short-term high precision and fast convergence rate criterion (errors <12%).

Commonly, forecasting tools are modelled based on two categories; Physical and Sta-
tistical methods. Physical approach focuses in creating a numerical weather prediction
(NWP) using weather-related parameters (i.e. temperature, atmospheric pressure, humidity,
precipitation) as input to create terrain-specific weather conditions. With those information,
it is converted into energy production. Whereas, statistical method uses historical data of
real-time power generation to statistically correct results derived from NWP models. To eval-
uate the performance index of the modelled forecasting tool, three forecast accuracy metrics
can be employed to weigh prediction deviation between the forecasted and actual data; mean
bias error, mean absolute error, and root mean square error. The mentioned metrics help the
adopted forecasting model to better attune it learning algorithm and minimised forecast error.
A comprehensive literature review [61] on NWP explained the importance in hybridising
forecasting approach to increase accuracy. Likewise, [62] presents possibilities in using
deterministic input parameters in NWP when forecasting output power generation. It also
explained that by hybridising both physical and statistical methods can improve performance
accuracy as they compliment each others’ limitations at different time horizon. Meanwhile,
it highlights that persistence model presents the worst forecasting approach with large spread
of errors when compared to others.

Utilisation of forecasting tools is not limited only to power generation from RES whereas,
industries have proved that it serves better in transmission N−1 security-constraint planning
which involved DSR profiling, and electricity tariffs [63].

Ancillary Services for Transmission Security Planning

VPP fits very well in the spinning reserve and reactive power market [64] where supporting
services during power quality crises in the transmission network (i.e. voltage-frequency
dip/swell, thermal generator unit failure, malicious power transformer tripping) can be com-
pensated instantaneously. In addition, it is frequent that the transmission system ought to
experience momentary voltage dip/swell crises due to sudden increase/decrease in energy
demand during peak/off-peak periods. Therefore, VPP can serve as a power quality compen-
sator that can be deployed instantaneously by injecting or absorbing real/reactive power into
the distribution network to regulate the voltage/frequency level. Thus, introducing VPP into
the transmission security constraint planning as N +1 redundancy can increases system’s re-
siliency [65]. Likewise, VPP can also provide solution for weak N−1 contingency planning
that often resorted to reserving large spinning generation as relief. Having energy demand
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demographic to expand with unanticipated capacity trajectory (i.e. energy ramp-up and down
during peak- and off-periods), TSOs were resorted in having multiple thermal generators in
spinning reserve mode at time, (t−1), to counter unforeseen large energy demand deviations
while observing generator’s operating time-domain limitations(i.e. cold-start, ramp-rate limit,
prohibited zones).

Explained in [66], research investigations on VPP deployments serving as a self-healing,
physical resilient, and energy efficient services were presented. It models corresponding loci
control features for new emerging operations in relations to electricity market participation,
DSR, and ESS solutions. In addition, studies involving economics, sociology, and psychology
interactions were considered implicating evolutionary challenges/opportunities from current
practice dealing with generators to consumers and planning real-time operation. Meanwhile,
[67] schedules VPP dispatch for optimal bidding, and spot arbitrage opportunities in the
electricity market environment through spinning reserve and reactive power services. It
employs security-constrained price-based unit commitment model that maximises operational
profit margin from arbitrage ancillary opportunities. The results offers single optimal bidding
profile and schedules active-reactive power under market participation. The proposed model
produces minimised reactive power costs through strategic allocation and secures voltage
level at transmission feeder. In view of transmission security planning, [68] suggested a
day-ahead self-scheduling model for VPP as a single entity to trade both energy and reserve
electricity market based on optimised asset dispatch. It also considered uncertainty operation
rendered by RES-based generations in VPP when called upon to partake as reserve hence,
it the problem statement is modelled as a stochastic adaptive robust optimization. The
results showed advantage when characterising certainty in lieu of market prices and available
generation capacity from RES to accommodate reserve deployment upon request. Low values
uncertainty budget produces less conservative solutions while high value increases robustness.
In addition, having flexibility in DSR operation can be useful to arbitrage leverage in different
market participations against inflexible energy consumption over the scheduled horizon.

1.2 Power System Turning into Grid Edge Technologies

The concept in Grid Edge has become the center of next generation utilities. Having
decentralised installation of generation resources in the distribution network, also referred as
DER, the edge has become the focus [69]. It promotes the concept of decentralised and active
management between TSO and DNO to address DSR requirements and increase credibility in
DMS during system abnormal events in the distribution network. Primarily, the ideology was
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to bring DERs as a single entity closer to demand shifting from transmission to distribution
installations regulated by DNO using centralised VPP management approach that aims to
relief TSO’s shortfalls during DSR, voltage dip/swell, or transmission line failure crises. Its
operations are biased towards providing ancillary services for DMS [70] management as
these installed DERs (incl. ESS) are typically modelled with small-scaled power generation
capacity (<500kW system).

However, it was found that DERs were economically underutilised when employed
only for DMS purposes and feeder congestion crises were often observed due non-strategic
distribution of DER installation to ill-defined optimisation constraints in ED-UC problem
[71]. Whereas, DERs have greater potentials if they are strategically allocated providing grid
services that are highly dependant on the specific location (i.e. feeder oriented). It aims to
resolve locational voltage management, optimal power flow, and energy capacity relief of a
specific feeder that has critical demand loads or high intense energy consumptions. Therefore,
the concept of Distributed Energy Resource Management System (DERMS) was proposed
governing multiple DERs in a single feeder bridging TSO and DNO operating alongside to
meet customers’ demand along that peculiar feeder as seen in Fig. 1.4. In this sense, DNOs
were bestowed with system operator functions, transitioning DNO to Distribution Service
Operator (DSO) that accounts for multiple points of generation variability against energy
consumptions in addition to DERMS requirements in a decentralised environment.

Fig. 1.4 Integrating feeder-oriented DER systems in distribution network.
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(a) DERMS interaction layers with SCADA and ADMS.

(b) Hybrid DSO-TSO control architecture with DER operations.

Fig. 1.5 Distributed governing regimes and interactions for DER penetrations in distribution
network; enabling bi-directional energy transactions.

1.2.1 Distributed Energy Resources in Distribution Network

When mentioned about DERs penetrations in distribution level, association with DERMS
architecture modelled for DSO is favoured. DERMS [72] comprises of combined managerial
systems designed to optimally coordinate and automate business processes for DERs in a
decentralised environment at individual feeder; DSR planning-optimisation, schedule VPP
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generation and storage, load management to satisfy demand-supply equilibrium, ancillary
services, and short-term forecasting ability to gain certainty (i.e. load capacity, weather, spot
price in wholesale market). Likewise, DERMS also has the ability to support DERs from
multiple feeders grouping them into a single VPP to maximise DERs’ value by selling excess
into the energy capacity markets thus, enabling flexibility-availability price market [73].

The modelling of DERMS functions variates from one energy provider to another de-
pending on mandated requirements for regulatory and market environments. Therefore,
there is no common definition agreed upon for DERMS industrial operations, and it is often
confused with other similar systems accomplished from utilising DERs. Nevertheless, the
value of DERMS addresses three specific business models; (i) operating as a DER aggregator
platform for Advance DMS (ADMS) operations, (ii) generate optimised solution for genera-
tion dispatch, charging/discharging ESS, and load shedding/scheduling in local or cohesive
domain influencing wholesale price market (i.e. clearing, spot), and (iii) ancillary services
focusing at individual feeder (i.e. Volt/VAR support, peak load management).

Despite having DERMS operating as VPP or feeder-based stability and control, the
sum of managed feeders in the distribution network might not be optimised for overall
efficiency-reliability. Hence, ADMS is introduced to enable energy aggregation so that DSO
can plan and optimise DERs in a unified problem statement with TSO’s objectives; hybrid
DSO-TSO interactions. In this sense, integrated DERMS and ADMS serves as the next key
intelligent platform for distribution utility [74]. Apart from aggregated DERMS, ADMS
architecture also links with other components such as distribution SCADA [75] designed
with distributed-based IoT interface for big data computing, data storage, and monitor DER
energy exchange, and ICT infrastructure to command operations for automation devices as
seen in Fig. 1.5.

1.2.2 Feeder-based DERMS (Local)

Table 1.1 lists the typical localised (feeder-based) DERMS use case functionalities; not all
additional cases were mentioned as the platform is still evolving and proliferating. Here, the
cases focuses in utilising DERs installed along an individual feeder to service connected
customers at low-voltage as seen in Fig. 1.4.

Many research studies have proved positive performances in using DERs to optimise
decentralised DERMS cases mentioned in Table 1.1 at individual feeder; highlighting from
reduced operating costs through strategic dispatch of forecasted RES-ESS [76] against peak
demand to securing feeder head voltage using Volt/VAR optimiser [77] to other short-term
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ancillary services [78]. In addition, investigations into selection of which distribution feeder
and sizing of DER capacity implementations also require greater attention to better utilise
non-dispatchable renewable resources in sync with dispatchable DER technologies against
feeder’s demand load profile. In [79, 80], both articles reviewed and suggest an optimised
approach when selecting which feeder and DER size based on several performance indexes
that helped to quantify the relationship between feeder load and stochastic nature of RESs.
The algorithm ranks utility feeder for DER system installation based on performance index
of peak-load reduction and feeder load growth while DER capacity uses increased system
capacity and load-generation correlation indexes. The comparative results have shown
redundancies for some feeder to install DERs as higher operating costs were incurred. The
ranking algorithm is greatly steered towards Volt/VAR crises due to large peak demand
deviation and line congestions, indicating reliance on DER system is greatly recommended
for instantaneous response. Meanwhile, [81] suggested introducing a feeder-based market
platform for DER as players to partake in the clearing market by trading energy with
neighbouring feeders and redeem incentives. The decentralised control algorithm adopted
two-step clearing price mechanism; first, local market is cleared independently and second,
DERs can trade energy with neighbouring feeders.

1.2.3 VPP-based DERMS (Global)

Table 1.2 lists the full spectrum of DERMS use cases serving for the whole distribution
network. Here, the cases are driven to support mostly in the grid services domain and their
impact in the electricity spot market. The optimisation control algorithms focus in technical
and financial aspects using centralized decision-making protocols that aggregate independent
DER operations and interacts closely with the bulk power system operators to gain optimal

Table 1.1 Spectrum of decentralised DERMS (aggregator) use cases based on short-term
planning.

Beyond the Meter T&D System
Feeder Optimiser Grid Services Market Application

-schedule RES-ESS -peak load management -ancillary services
-operating costs reduction -relief line congestion (i.e. voltage support, reserve,
-forecasting tools -enhance power quality frequency regulation)
-islanded with resiliency (i.e.Volt/VAR)
-%shifting load vs
AVAIL. generation
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power flow. In [82, 83], a proof-of-concept illustrating interactive protocols between DERMS
and stakeholders interactions were presented highlighting predictive decision-making tool
performances on reduced operating costs and support distribution network optimisation
(i.e. optimal power flow, line congestion & unbalanced load management, switching and
Volt/VAR optimisation, optimal DER placement, FISR & outage management). In addition,
through optimal allocation of available DER resources and its flexibility, it aimed to solve
optimal match local supply and global demand while flattening the remaining net exchange
over time.

Apart from supporting grid services, the electricity spot and contract market serves
as an influential component that can steer VPP-based DERMS to match desired market
signals despite operating in a decentralised environment [84]. In addition, an energy sharing
market platform was proposed to reinforce coordination between operators’ of DERs using
crowdsourcing approach. Each DER participant undergoes revenue-based operation based on
it inherent characters and develop risk preferences while the energy sharing market governs
the crowdsourced DER energy supplies with ESS. In addition, through revenue analysis,
DER aggregator can cipher investment decision and appropriate DER sizing. In lieu of energy
clearing market, [85] proposed an optimised day-ahead Distribution Locational Marginal
Pricing (DLMP) for line congestion management and voltage support. It comprised of
marginal costs for active and reactive power, line congestion, substation and feeder losses,

Table 1.2 Full spectrum of centralised DERMS use cases for distribution network application.

Beyond the Meter T&D System
Feeder Optimiser Grid Services Market Application

-shifting time-of-use -situational awareness -VPP management
-reduce demand charges (i.e. DER monitoring, -contract capacity &
-Microgrid operation generation forecasting) trading

-peak load management -spot market &
-reroute line congestion (i.e. clearing price
AVAIL. feeder, upgrade deferral) -ancillary services
-load shaping (i.e. reserve pooling,
-coupling renewable system freq. regulation, voltage
-power quality optimisation support)
(i.e. Volt/VAR)
-ADMS support (i.e. Outage
management, FLISR)
-distribution interconnection
(i.e. IEEE 1547, Rule 21)
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and voltage support to steer price signals. The overall DLMP decreased proportionally with
DER penetration level, procuring financial benefits for spot market, and contribute balance
and loss reduction in distribution network.

1.2.4 Advance Distribution Management System

Promoting DER penetrations in distribution network, DSOs are much reliant on ADMS, a
comprehensive power distribution intelligent system designed to provide situational intelli-
gence for planning and reliable grid analyses management during rapid change in network
state. ADMS is commonly referred as a modular-based intelligent computing and monitoring
system equipped with five operating features; GIS, SCADA, DMS, Distribution Network
Applications (DNA), and OMS. It is an improved version from previously designed DMS
where it boost technological advancement in remote automations, enhanced quality of data
acquisition, precise prediction/forecasting for network resiliency, and initiate DNA that
optimises distribution state estimation processes for unbalanced load allocation and non-
technical losses. Figure 1.6 summaries the control functionalities and framework of ADMS
incorporation with DERMS to support DSO in grid-following operations. Despite decen-
tralised computing for DERMS to regulate individual DERs, the operation of ADMS adopts
centralised-based optimisation processes to secure benefiting unified objectives seen in Fig.
1.6b. Here, it is assumed that all DERs are regarded as Beyond-The-Meter installation where
regional DSOs are granted with full access control and data transparency while engaging
diversified government registered operating policies/programs preferred by owners.

A comprehensive review on ADMS functionalities cooperating with DERs were reviewed
in [86]. It suggested four critical management features for ADMS; (i) model dynamic state
estimation to monitors each component and perform protection functions, (ii) synthesise
distribution network feeders in real-time using DMS from the estimated states, (iii) perform
time sensitive optimisation for both upper (operations planning) and lower (instantaneous
control) levels using hierarchical structured processes, and lastly (iv) design control feedbacks
that search for global optimum operating point. Findings have showed unified solutions
in integrating emerging technology/devices in the distribution network with intelligent
optimisation tools to support operation competency in a closed-loop environment. Flexible
grid-management platform without compromising operating costs effectiveness is key to
accommodate emerging demands from customers, investors, and regulator.

As ADMS is a data-driven, probabilistic system that is highly dependant on statistical
trends and data quality for state estimation likelihood, [87] highlights the importance in
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(a) Unified architecture.

(b) Operation functionalities.

Fig. 1.6 Modelling of ADMS in response to DER penetrations in distribution network.



22 Introduction

pseudomeasurements, placement of metering instruments, and cyber-security along the
distribution network. Hence, modelling of SCADA is pivotal, eradicate vulnerability in data
misinterpretations for situational awareness. [88] provide solutions in SCADA deployment
using cloud-based networking infrastructure mapping as a virtual machine, focusing on
ADMS functional blocks performances using four metric evaluations; processor, memory,
network, and storage utilisation. The cloud platform serves as the data concentrator and
middleware interoperability for interactive metering devices operating at low-level protocols.
Moreover, cloud services is a big data oriented software modules that solves scalability-
portability issues in cooperative settings and has competency in generating virtual solutions
without comprising system efficiency.

1.3 Problem Descriptions:
Distributed Energy Resources Behind-The-Meter

Advancing into the Fourth Industrial Revolution, research and industrial interests for DER
installation Behind-The-Meter (BTM) progresses beyond its timeline trajectory. Public
access for technological and IoT solutions in low-powered DER technologies become eco-
nomically adequate, and liberalisation in the retail energy market have steered demands for
DER installations at low-voltage level [89]. In this sense, penetration of Personal-owned
Sustainable Power Generation (PSPG) system (i.e. solar PV, CHP, diesel-driven generators,
HVAC, ESS, PHEV) are taking much fame for their potentials in bringing generation closer
to demand load devices shown in Fig. 1.7a. Additionally, modelling of PSPGs are not limited
to bulk generation system which includes offshore technologies that can be coupled directly
to the low-voltage network. Such positive trends expose energy customers (i.e. residential
and building owners) and RES-based generation investors to take greater ownership in elec-
trification, seeking opportunities in owning in-house VPP system with an objective to reduce
energy billing and partake in market trading (peer-to-peer) against retail prices.

1.3.1 Behind-The-Meter DER for Distribution System Planning

Modelling of customers’ electrical power system has evolved into Prosumer environment
[90]: to produce and consume electricity seen in Fig. 1.7b. Such configuration rises concerns
for DSO as the location and operation of DERs are left up to Prosumer adoptions which
provoke; (i) detrimental effects on distribution power quality and reliability, (ii) unpredicted
DSR which complicate unit commitment scheduling (baseload) and state estimations, (iii)
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(a) A simplified one line drawing of distribution network with DER installations at low-voltage level.

(b) Example of DER components in a local electrical power system of Prosumer: Residential.

Fig. 1.7 Customers demand for Behind-The-Meter DER system installations: Prosumer
Community.

high volume participants in the spot market and peer-to-peer energy trading, and (iv) multi-
tenant decentralise ADMS-DERMS coordination (i.e. diverged management interests based
on business model options) thus, optimisation problem exponentially increases. Furthermore,
regional DSOs need to find value contributions when implementing Utility owned feeder-
or VPP-based DERMS against Prosumer Community. How these PSPGs can serve as an
aggregator in DERMS to improve operations in the distribution network that is cooperative
yet competitive.
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Till to date, DSOs are working closely with International Energy and Renewable Agencies,
customising Prosumer’s roles in delivering new electrification policies and standards that
synchronise with ADMS and DERMS interoperability [91]. Due to large penetration of
PSPGs, primary innovation was to anatomise distribution network into Microgrid settings
governed by respective Regional Distribution System Operators (RDSO). It comprises of
decentralised aggregators (Prosumer Community) and DERs (Utility) into a single centralised
DERMS with ADMS functionalities to meet optimised regional DSR and operating costs
requirements while performing global market trading (bid/sell) with neighbouring DSOs.
Nevertheless, there are still many open issues when planning for desired DERMS-ADMS
operations against realism as; (i) Prosumers are out to exploit spot and retail market to
gain higher return on investment without considering ’duck curve’ or unit commitment
crises, (ii) undetected islanded operations which can expose field engineers with live wires,
(iii) synchronising individual Advance Metering Infrastructure (AMI) with DSO or other
Prosumers without comprising data security and sharing, (iv) Programs and incentives for
DERMS (aggregator) that adopts cooperative optimisation with decentralised intelligences,
(v) contracting Prosumers’ bilateral energy trading (i.e.peer-to-peer or back to grid) and
transmission, distribution, and administrative (TD&A) costs, (vi) the layered control hierarchy
of ADMS is structured in a bottom-up-lateral order (low-voltage level), and (vii) PSPGs will
have stronger coupling impact on voltage and frequency level over grid due to larger stake in
serving demand load capacity (incl. generation intermittency and inertia responses).

1.3.2 Empower Prosumer as the Major Energy and Market Stakeholder

Policy Officer Gerd Schönwälder, a member of European Commission in Accelerating Clean
Energy Innovation, in his recent paper [92] questioned, "Is power really seeping away from the

giant energy behemoths of the past to the nimble, green-energy Prosumers and cooperatives

of the future?". How successful it will be if Prosumer Community are empowered to take
greater authoritarian in shaping operations/managements in the distribution network?

A comprehensive review in [92] explained empowering to the people really meant
and how future’s energy landscape should be redefined, relieving electricity poverty and
intensify alternatives for carbon-intensive regions. The term ’empowering’ demonstrates
three prepositions; (i) grant full data access and transparency on electricity usage billings
and flexibility to interchange energy contract inbetween retailers in real-time, (ii) wide-range
of incentive programs for Home or Building Energy Management System, also known as
DERMS aggregator, that serves as a catalyst for business model innovations while reducing
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dependency on Utility, and (iii) establish data privacy and public access to AMI-ICTI
for personal area network digitalisation. Substantially, to empower bestow liberations in
positioning individual Prosumer as sole energy citizen that orchestrates operation and market
choices. However, obligations are not to be compromised, safeguarding power quality
integrity at global level and block discriminatory against retail energy providers.

Understanding the motivations behind Prosumers’ energy-related choices and behaviour
can influence DERMS aggregator competency when making optimum decisions. For an
instance, the declining cost and accessibility in owning PSPG system has put into a position
where energy trading instincts have leverage ways in which energies are produced. It has
become a pivotal drivers for DERMS aggregator modelling in which Prosumers are expecting
high investment returns. In consequence, energy transactions may largely divert away from
retail markets and monopolism in wholesale tariffs (i.e. spot market) for Prosumers that have
superiority over its geographical location or PSPG system capacity. In general, [92] urged
researchers to innovate benefitting management strategies, devising ways to reach co-existing
operating objectives. Demand for DER interoperability services (e.g. installing, maintaining,
power quality of DER) will incline hence, initiation for new operator is recommended as part
of DSO’s grid service chain.

1.3.3 Negative Impacts on Power Quality and System Reliability

Predicaments on malicious reliability incidents generated by BTM PSPGs at low-voltage level
present coordination challenges (i.e. unintended system tripping) due to several technical
issues (e.g. ride-through capability, unintentional islanding, low inertia synchronisation) as
the primitive electric power system was not designed to carry generation upstream [93, 94].
RDSOs are constantly challenged with unsighted BTM fault interruptions, having fault
currents to propagate upstream which can result to line feeder failure if PSPG is not isolated
instantaneously. Likewise, the grid’s ride-through requirements needs larger timespan
tolerance that allows PSPG to remain connected within a specified voltage-frequency level
thresholds. Meanwhile, unintentional and intentional islanding is viewed as the utmost
challenge in distribution planning and feeder protection. In unintentional islanding, transient
overvoltage or undervoltage crises will transpire due to rapid change in demand loading
capacity; oversupply or insufficient respectively. It can also resulted in large transient torque
forced onto prime-moving generators which can damage mechanical parts. In view of
protection system, islanded settings generate insufficient fault current level to trigger fuses or
overcurrent relay protection devices (undetected). On the contrary, unscheduled intentional
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islanding could cause negative reciprocal effects on distribution security planning, N− 1
contingency, and state estimation as provisioning for ancillary services to other feeders are
blocked out. Likewise, in the context of Prosumer’s EPS, it may not have access to gain
external support during power quality issues which results to constant system tripping.

On the contrary, data misinterpretation and weak short-term forecasting tools can be
burdensome in securing DERMS and gratifying the supposed contracted energy trading.
Having power generation uncertainty from RES-based PSPGs, security in supply-demand
equilibrium from scheduled unit-commitment and Volt/VAR optimisation can be a challenge
as the transmission system has weaker power quality coupling than PSPGs’ inverters [95].
Likewise, weak forecasting algorithms in predicting energy market tariff and DERs’ available
power generation capacity can drive cooperative participation of Prosumers to diverge
thus, leading to an uncoordinated DSR management (i.e. duck curve, baseload, or large
power deviation crises) [96]. Typically, accuracy of forecasting model is much dependant
on historical data and quality. Thus, data misinterpretations due to package loss during
transmitting or low sampling intervals can cause negative and propagating impact on system
state estimation planning or optimisation of DERMS.

1.4 Motivations

DERMS and ADMS of yesterday are forced to maturate into contracting idiocentric yet
cooperative managements as costumers at low-voltage level are indeed ready to be Prosumers.
On the surface, energy trading has transitioned from a rigid top-down management structure
with centralised optimisation approach to a mixed-oriented (i.e. centralised and decentralised)
with multi-layered transactive control framework that enables Prosumer-centric BTM ad-
ministrations; Home or Building Energy Management System. In this sense, modelling of
DERMS and ADMS as an aggregator in a single operating platform for in-house automated
governance needs recognition. It is programmed to comprehend standards and policy compli-
ances that can be useful to Prosumer individually or as a Community when providing grid
services and market participations based on RDSO requirements. Likewise, convergence
in game-theory mathematical modelling and decentralisation in DERMS aggregator are
fundamental additives for Prosumer when creating cost efficient billing experience [97] to
habituate; (i) optimal integration of PSPGs considering cyber-physical architecture and oper-
ational constraints, (ii) competitive yet cooperative peer-to-peer business models and value
realisation, and (iii) self-optimised incentive-driven energy management that is flexible in
supporting roles (i.e. ancillary and DSR services). Meanwhile, ADMS aggregator focuses in
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local protection system and feeder-based reliability optimisations to support RDSO in power
flow and outage security in distribution network. The local protection system ensure fault gen-
eration from PSPG does not propagate upstream causing deficiency to other feeder-connected
customers. In this sense, preposition for advance overcurrent relays that are equipped with
better malicious tripping tolerance towards RES ride-through transients and immediate fault
diagnose rectifications to isolate fault current with restoration capability. Whereas, reliability
optimisations involves Volt/VAR compensation, peak demand management, over-generated
baseload due to high PSPG penetration, and large power deviation in UC.

Meanwhile, despite having an optimised Prosumer-centric DERMS and ADMS aggrega-
tor, realisation in transforming Prosumer’s electrical infrastructure into Nanogrid identifies
the operating habitat for a single energy citizen. It comprises from local area network that
connects with local PSPG devices and loads to cloud system framework for computational
needs when ciphering optimise control solutions to establishment of communications beyond
the meter. Its goal is to create a secured yet public accessible nano-scaled SCADA platform
designed for Nanogrid system, bridging AMI and ICTI with cloud computing services to
orchestrate data-driven functionalities in DERMS and ADMS aggregator. It also addresses
concerns for data privacy and quality suitable in peer-to-peer sharing platform where cyber-
attack vulnerability and operation BTM transparency must meet in the middle to navigate
RDSO with necessary security planning and resiliency.

1.4.1 Fitting Prosumer into Transactive Energy Framework

The pivotal driver when conceptualising the control/management features for DERMS
and ADMS aggregator lies within the Transactive Energy (TE) framework [98]. TE was
popularised by Grid-Wise Architecture Council back in 2011 where growing discussion
originated from the realisation in high demand for DER penetration at low-voltage level [99].
In view of TE system applicability to emerging challenge in DER integrations, it aims to built
a community set of economic and control practices that promotes dynamic balance between
supply-demand in the distribution infrastructure using value as key operational parameter. It
can be viewed as two parts definition of TE; using value as key operational parameter for
’transactive’ decision-making processes made through value-based exchanged information
captured during transactions between Prosumers that is feasible across the entire power grid,
from transmission system level to variety of Prosumers at low-voltage level.

In addition, involvement of governments initiatives in TE framework promoting mar-
ket signal rebates for better investment returns can steer Prosumers to subscribe for cost-
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Fig. 1.8 TE values across all levels of the grid.

benefitting models on a levelled playing field. This includes bidding and selling of excess
energy in spot market to long-term PSPG resource planning for capacity market. Fig. 1.8
[99] illustrates an overview of TE defined by Grid-Wise council and how values are assigned
across all energy actors respectively. It advocates transparent energy prices that enables
Prosumers to join traditional energy providers in producing, buying, and selling electricity
using personalised automated control system that prioritises network reliability and operating
cost-efficient.

1.4.2 Prosumer Communication and Monitoring Interdependency

The constitution of nano-scaled SCADA comprises AMI and ICTI setups, providing bidirec-
tional IoT platform that preprocess metering information at Nanogrid’s point of common
coupling (PCC) for broadcasting and monitors PSPG, demand load, and other interactive
devices status in real-time [100, 101]. The utilisation of AMI provides visibility into under-
standing social-centered analytics that enabled Prosumer to prioritise programs for optimal
decisions/actions in a Community settings. The security of data transportation/management
will only guarantee the success in gaining optimal solution as decision-making processes
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Fig. 1.9 Nano-scaled SCADA system using Nanogrid area network architecture for Prosumer
empowerment.

are generally data-oriented. Meanwhile, ICTI provides interoperability of multiprotocol
communication from diversified devices and data acquisition services [102]. Its focal func-
tionality is to interoperate all communication devices under a single mainframe where remote
automation commands are encrypted and decrypted for user access. Fig. 1.9 [103] presents
AMI and ICTI set-up in Nanogrid for Community engagements, connecting local devices to
other energy actors.

1.4.3 Sole Assigned Cloud Framework for Prosumer Use

Accompanied with nano-scaled SCADA, virtualisation on data structuring (i.e. storage, shar-
ing) and computing platform using IoT cloud-edge services is key in imparting intelligences
into any operating system. Using edge computing settings, also known as fog computing,
provides Prosumers with improved response time and save bandwidth as computation and
data storage are brought closer to operating sites, Nanogrid. It ensures measured data com-
mitments are organised peripherally, curtailing network congestions or falsified data content
transfer crises. Moreover, subscription cost and maintenances significantly reduced as phys-
ical machines are not dependant on network size; quick scaling of provisioned instances,
data mapping, storage automation, and reserving more leeway for high-computing server
capacity as compared to centralised cloud system connecting to millions of devices [102].
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Fig. 1.10 Cloud-edge computing architecture.

Figure 1.10 [104] presents the architecture of edge computing that be applied for Prosumer
use, connecting IoT devices with computing intelligences.

1.4.4 Consideration for Highly-Coordinated Intelligences

These monitored data from IoT devices will then used to perform reliability and resiliency
assessments using learning-based computing algorithms (i.e. either off- or on-line) to
generate optimised solution, schedule, actions (actuator) during normal or abnormal Nanogrid
operations. Decision processes such as heuristic search, knowledge-based, and probabilistic
machine learning are no stranger towards Community-based optimisation; minimising search
space, increase operation certainty, and cooperative yet competitive. Moreover, decentralised
computing will be ideal to accommodate growth in Prosumers and avoid high order functions
when using centralised approach. Thus, research efforts into constructing time-critical
big-data engine architectures and costs minimisation data processing are in trend to justify
reduced convergence response time using parallel and hierarchical computing approach
while endorsing joint optimisation to limit storage and computation resources as proposed in
[105–107].
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1.5 Research Aims and Objectives

This dissertation explores into nanotechnology innovations, transitioning distribution en-
ergy security planning into Prosumer-biased flexible management that responses towards
cooperative yet competitive energy services based on TE values. It provides autonomous
authoritarian in DERMS and ADMS aggregator catered for Prosumer(s) to personalise and
reap beneficiaries from TE-based framework operations as shown in Fig. 1.11. Prosumers’
short-term planning expectancy will be reviewed in grid-tied engagements based on both spot
and ancillary market opportunities. The suggested problem statements and propositions are
formulated based on Nanogrid EPS, peer-to-peer electrification that recognises Prosumer(s)
as sole energy citizen.

Novel intelligent systems are proposed to advance Prosumer Community energy hub for
aggregatable Nanogrids. Modelled in a Prosumer-centric domain, the proposed decentralised
DERMS and ADMS aggregator modular systems will act as the primary regulator. Its
ideology is to promote TE values and relief DSO-TSO from; (i) BTM complexity for
whole system DERMS optimisation and DSR managements at low-voltage, (ii) centralised to

Fig. 1.11 Distribution network TE model; Prosumer Community engagements.
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distributed ADMS support for systematised OMS (incl. islanding) with reduced fault-isolated
customers, and schedule load shedding/shifting during supply-demand crises, (iii) scalability
for millions of IoT devices and data management bottlenecks, and (iv) multi-participant
chaos in the biding/selling of energy trading in the spot and ancillary market. Meanwhile,
RDSOs focuses more on peer-to-peer, regional distribution network analysis facilitating
N−1 contingency planning and day-ahead or long-term scheduling for levelled, reliable, and
resilient power distribution. It also operate as a policy maker that steers Prosumer Community
into incentive-based business models that support grid’s stability and efficiency.

Bounded in a Nanogrid-based EPS, this research aims to validate the feasibility of:

1. Prosumer-centric DERMS aggregator controlled by MultiAgent reinforcement learning
swarm intelligence using Q-learning algorithm and other subsidiary machine learning
techniques under various operating environmental parameters involving local DER
resource planning and load scheduling, cooperative yet competitive energy trading
(sell/bid) in capacity-spot-ancillary market, and relief DSR crises through incentive
programs. Thus, organisational structure of involving energy actors’ responsibility and

roles are redefined to fit in the TE framework along with its respective values.

2. Prosumer-centric ADMS aggregator targeted for in-house protection system which
provides decisive isolation from possible fault interruptions transpire from PSPG
and load shedding/scheduling intelligences. In addition, provide safe monitoring for
islanded operations.

3. Cloud-edge computing and nano-scaled SCADA platform for decentralised and per-
sonalised data computing, storage, monitoring system immuned to quantity/latency
limitations and computation divergences. It suggests to unload computational and
storage stresses on main cloud interface with greater latency tolerance.

4. A BTM full-suite modular platform that hybridises DERMS and ADMS aggregator with
TE value functions for an autonomous in-house energy manager unique to Prosumer’s
interests.

The objectives are to:

i model Nanogrid EPS comprising PSPG technologies and establish nano-SCADA using
AMI in smart meter and ICTI for meshed-based area network. They are bridged
with bilateral communications, control commands, computing intelligence, and data
acquisition under a single cloud-edge layer that is equipped with data privacy protocols
and high resolution low latency data exchange processes.
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ii define control functions of DERMS and ADMS aggregator in the layered decentralised

optimisation for peer-to-peer TE operation modes. Here, Prosumer Community takes
greater roles in dictating energy security in distribution network while Utility focuses
in secondary and tertiary control layers involving network contingency analysis and
market participation respectively to ensure energy monopolism or price discrimination

are levelled as not to obsolete or bypass existing energy retailers.

iii introduce acceptable error percentage trade-off for high computing speed forecasting

techniques to solve renewable uncertainty operations, load consumption capacity curve,
and profiling meta-relations that influence energy usage patterns. Hence, managerial
proceedings can be attuned to achieve optimal scheduling of available generation, ESS,

and controllable loads against electricity tariffs and incentives in real-time to solve
DSR commitments/equilibrium.

iv formulate computing intelligences based on Prosumer’s business model interest that
provide optimum DERMS and ADMS aggregator solutions for cooperative yet compet-
itive in Community environment. Strategic scheduling of BTM renewable, ESS, and
controllable load capacity in response to DSR constraints and peak load management,

and TE markets. In addition, arbitrate bidding-abled competency market participation
(i.e. spot, capacity, ancillary) to yield high return on investment through bidding/selling
optimisation based on incentive payout and electricity retail prices.

v administrate accurate BTM point detection for fault interferences and perform au-

tonomous isolation protocols on PSPG to prevent cascading catastrophe on distribution
network and malicious tripping of circuit breaker. Furthermore, cooperation of inten-

tional islanding operation is incorporated.

1.6 Main Research Contributions

The main contribution is to devise a Prosumer-centric energy manger "platform" that high-
lights TE values, employing plug-and-play modular system that is equipped with nano-scaled
SCADA and execute DERMS and ADMS as an aggregator in relations to RDSO’s oper-
ational requirements. Despite having their control intelligences designed for Prosumer’s
Nanogrid EPS engagements, it should not be limited to Community (peer-to-peer) settings. It
is expected that Prosumer Community will take larger presidency being the primary regulator
in shaping DSR demographics, securing energy efficiency, and level the market economics
as a cumulative creation, "the power grid is only as smart as its consumers".
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Subsequently, stimulus-response system is modelled based on IoT edge device cloud
network with intelligent-embed Multi-Agent System (MAS) at respective Nanogrid for de-
centralised Community engagements. Agent of MAS are then modelled with TE values and
organised based on level of importances decision-making processes for assembled DERMS
and ADMS operations. Using data collected from nano-SCADA system, data-driven intelli-
gence map inherent knowledges using artificial neural network considering model-reality
mismatch when quantifying uncertainty and Prosumers energy usage behaviour. It then de-
ploys dynamic programming technique for individual Nanogrid, employing MultiAgent Deep
Deterministic Policy Gradient (MADDPG) reinforcement learning in DERMS and ADMS
aggregator to create a cooperative yet competitive TE-based business model. The proposed
reinforce Q-learning algorithm reasons decisive actions (policy) to meet Prosumer’s energy
usage interests from the joined critics (Prosumer Community) attained from MADDPG.
The optimised DERMS dictate Prosumers’ energy management strategies which includes
scheduling of short-term forecasted RES and ESS against load consumption capacities in
view of real-time retail prices.

Meanwhile, in view on ADMS aggregator operations, a fuzzy logic controlled Overcurrent
Current Relay (OCR) device is proposed to serve as a BTM protection mechanism for PSPG.
The proposed controller feature profiling and detecting fault direction attributes, locating fault
origin and perform isolation processes. The algorithm is designed using expert knowledge
characterisation reference to Nanogrid fault level and short-circuit current suitable for any
type of RES integration at low-voltage where conventional OCR operation would failed to
detect or maliciously triggered. In addition, it serve and an indicator for islanded operation,
indicating upstream directional current flow reference at Nanogrid’s PCC.

Detailed contributions of this research are as follows:

1. Modelling comprehensive Nanogrid environment and formatting decentralised
organisational structure for Prosumer Community and RDSO commitments.

i Decomposing distribution network into Nanogrid EPS with corresponding IoT in-
frastructure that will identify Prosumer as a sole energy citizen. The decentralised
managerial operations of power distribution system is retrofitted, mapping Pro-
sumer(s) as the primary regulator in provisioning TE values through personalised
energy business model while DSO provides tertiary control dispatch focusing
network analysis (i.e. distribution network optimization, protective device co-
ordination). Meanwhile, RDSOs operates in a peer-to-peer domicile managing
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regional VPP-based DERMS and feeder-based ADMS to built community of
practice in the area of transactive control and coordination.

ii Develop nano-SCADA using AMI and ICTI for local area network connecting
BTM IoT devices and adopt flexi-edge cloud topology for decentralised data
storage management and fog computing processes. Here, Microsoft Azure Cloud
Platform is employed as the IoT base station system (close to end-user), ac-
celerating computational processes using flexible/stackable modular structured
drop-and-drag algorithm block functions from container registry. In a sense, to
create an organised data-oriented environment efficient for data-driven intelli-
gent system attached with data-sharing privacy protocols during peer-to-peer
information broadcasting or hidden away for personal use.

2. Modelling of Prosumer-centric DERMS aggregator based on various business
models in view of TE values.

i Establish a multi-layered Distributed Control Framework (DCF) that defines roles
and responsibility of energy actors in their respective layer. It focuses in creating
Prosumer-centric DERMS as an aggregator to RDSO in securing DSR and
peak demand managements. The primary control in DERMS ciphers short-term
forecast of BTM RES and optimum scheduling of ESS against retail electricity
prices. It also characterises demand load and shed/schedule controllable loads
corresponding to available generation resources and retail prices using demand
load metrics (i.e. load factor, demand factor). The secondary control provides
optimised portfolio management, solutions in peer-to-peer or upstream energy
trading (sell/bid) to level market signals and reap economic benefits in Prosumer’s
energy billing. At tertiary level, the DERMS aggregator operates in a Community
settings for long-term resource planning to support RDSO in optimising power
flow and N−1 contingency planning. Here, MADDPG algorithm is employed to
render cooperative yet competitive learning nature induced by it decentralised
critic function and centralised state-action policy well suited for Community
settings. From the bid energy capacity and price, the Q-learning algorithm
transacts maximum TE values in relations to Prosumer’s business model.

ii Provide Prosumers with forecasting tools to gain PSPG generation certainty for
better scheduling plans in response to load demand capacity. A supervised Ex-
treme Learning Machine (ELM) is employed to forecast PSPG energy generation
and demand load consumptions. It is modelled based on qualitative technique
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with flexible forecast bias responses (i.e. generation: under-forecast, demand
load: over-forecast) that uses less historical data with fairly reasonable percentage
error (<15%) suitable for short- to medium-term forecasting. Here, it traded off
percentage error with computational speed to meet 5-15mins forecasting intervals
requirements. The need for high accuracy is not necessary as compensations
can be rendered from ESS and controllable load management. Meanwhile, in
market participation, Utility-owned DERs can compensate contracted generation
capacity shortfalls in real-time. It is cheap to operate and maintain, and adaptable
to changes in PSPG system responses (i.e. size, seasonal) as the forecast does not
require large historical data; suitable for first launch product.

iii Provide clustering tool to weigh demand load consumption contribution/awareness
for individual Prosumer among Community and add-on resilient in DSR ser-
vices. Using data collected at AMIs, Nanogrids are clustered using Expectation
Maximisation-Gaussian Mixture model (EM-GMM) to assign Prosumers into
respective consumption attributed based Community. This allows RDSO to better
plan long-term DSR operations, evaluating their energy trading attributes and
participation in the market. In addition to EM-GMM, K-Nearest Neighbors
Algorithm (KNN) and K-means clustering algorithms are integrated to charac-
terise local demand loads into respective classes (i.e. fixed, shiftable, throttleable,
instantaneous loads). It helps Prosumers to optimally schedule online loads (peak
load management) to meet the desired demand load curve at respective time
intervals.

3. Modelling of Prosumer-centric ADMS aggregator for BTM protection system
and support ancillary services in Community setting.

i It focuses on accurate fault security assessments on PSPG, provisioning BTM
protection, profiling, and isolation capabilities. An OCR with fault directional
current detection is proposed to replace conventional OCR that often trigger
maliciously due to renewable generation voltage-current transient profiles. Thus,
using fuzzy logic system and defining its expert knowledge (i.e. membership
functions, fuzzy rules), the proposed OCR is equipped with ride-through toler-
ance understanding operations of respective renewable system which strengthen
accurate triggering of relay during fault interruptions or intentional/unintentional
islanded operations. Based on the Nanogrid’s maximum fault current level against
PSPG operating current and current phase angle, it determines switching opera-
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tion of OCR and provide comprehensive analysis for exact rectification. Such
implementation prevent fault current to travel upstream and create a cascading
power quality detrimental effect on the distribution network.

ii In Community settings, it provide ancillary services such as Duck curve and unit
commitment crises for baseload and peak demand management. Participation in
capacity market is primary objective and reap incentives to reduce Prosumer’s
energy billing. Meanwhile, it also provide feeder-based Volt/VAR optimisation to
increase power quality and ride-through issues generated from renewable system
integration.

The proposed DCF and corresponding algorithms have shown successful TE valued
operations and gaps. Several proposed testbed systems were modelled representing various
types of Prosumer’s EPS environment and its business model using industrial and commer-
cially available product specifications to view operational practicability in energy trading
and distribution network stability. Several test cases were simulated to view comparative
operational performances against other existing Prosumer-centric EMS methodologies, high-
lighting decision-making superiority for end-to-end operation of TE system and market
commitments.

1.7 Dissertation Outline

The dissertation is divided into 6 chapters. The outlines of each chapter are as follows:

1. Chapter 2 - proposes digitalisation of Nanogrid EPS as a sole energy citizen (Prosumer).
It modernises distribution network with PSPG system BTM integrations and nano-
scaled SCADA implementation for local area network in cloud-edge computing system
that establishes interconnection between local IoT devices and AMI with other energy
actors. Case studies were proposed to view Prosumer Community energy trading
engagements using greedy-oriented DERMS and their impacts on DSR managements
without considering TE framework. Here, the obtained results will serve as the pivotal
driver to recognise TE values and contributions as the prime energy actor in securing
optimum power distribution systems.

2. Chapter 3 - explores into designing Multi-Agent intelligent systems using decentral-
ized computing infrastructure, flexi-edge computing, correspond to TE control and
coordination at respective layers of proposed DCF. Modelling of Agents’ intelligent
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functions is presented using Coopeception (Cooperative and Deception) Reinforcement
Learning algorithm to view potential bidding capability in Community setting, suitable
for Prosumer-centric DERMS aggregator engagements in DSR and markets operations.
Mathematical modelling of Coopeception learning is discussed and tested.

3. Chapter 4 - models the Prosumer-centric DERMS aggregator in TE framework and
evaluate operating performances in both Prosumer and Community setting using dif-
ferent business models as case studies. Here, the Coopeception (Cooperative and
Deception) Reinforcement Learning algorithm is defined along with Agents’ char-
acterisation mapping TE control and coordination functions, and system constraints.
In addition, demand load clustering program is deployed to comprehend Prosumers’
socio-economic attributes in DSR and group them into Community classifications.
The Agents’ intelligent system were then tested on three case studies to validate the
cooperative yet competitive learning regression of Agent’s in view of TE values against
DSR performances.

4. Chapter 5 - models Prosumer-centric ADMS aggregator that provides BTM fault
protection for PSPG integrations and Nanogrid islanding indicator. Using centralised
fuzzy logic system on deployed OCRs, the expert knowledge algorithm is modelled
with fault current inferences to detect and perform characterisation. Moreover, fault
current directional flow membership is also incorporated, providing decisional isola-
tion processes using specified OCRs. The fuzzy logic system is then tested against
momentary fault interruptions (symmetrical and asymmetrical) typically transpired
during RES operations and refrained from malicious tripping of PSPG system.

5. Chapter 6 - concludes the dissertation, and provides future research directions that
progresses further into power converter ride-through controller design that can improve
integration/coupling security of PSPG.



Chapter 2

Nanostructuring Distribution Network
into Prosumer-based Ecosystem

This chapter discusses on nanostructuring the distribution network into Nanogrid EPS to
pave way for Prosumer engagements at low-voltage level as sole energy citizen. The
Nanogrid comprises of BTM DER system integrations, PSPG, and digitalise local area
network, Nanogrid Area Network (NAN), to extend communications, data management, and
connectivity of IoT devices. Subsequently, explorations into hierarchical structuring of new
service providers/operators into their respective operating boundary as an aggregator within
the power distribution operation framework is presented to accommodate scalable penetration
of Prosumers. Understanding Prosumers’ socio-economical energy interests and possible
market exploitations serves as a basis in defining respective independent aggregator’s roles
and responsibilities so that Prosumers are levelled on the same playing ground in community
setting.

To visualise operational impacts on distribution network optimisation against uncoordi-
nated Prosumers’ DERMS aggregator and RDSO absence, simulation-based case studies
of a 2-feeder distribution network testbed system involving 27 Nanogrid units is proposed.
Investigations on DSR performances, Prosumers’ energy billing, market participation, and
distribution system state estimations against uncertain BTM DERs penetrations were evalu-
ated. Moreover, review on power quality metrics and stability were presented to comprehend
issues between high penetration of BTM DERs and performance of ADMS (i.e. Volt/VAR
optimisation, unintentional islanding, fault isolation & service restoration).
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2.1 Prosumer Existence as Sole Energy Citizen

Adaptations of Nanogrid-based distribution network involving smart homes/buildings oper-
ating at low-voltage level as sole energy citizen is only valuable to DSO if planned energy
services from Prosumer Community can increase distribution optimisation globally. Depen-
dency on grid-centric managements, centralised EMS and ADMS, regulated by DSO-TSO
remains critical as existing modelled EPS infrastructure was designed not to carry power
generation upstream from low-voltage level, a passive distribution network. It introduces
regulatory impairments on network’s stability as DERs in distribution network will have
stronger power quality coupling due to inferior upstream power generation capacity, from
grid-following to grid-forming. Table 2.1 [108] gives a perspective of BTM PSPG installation
and energy usage in a Prosumer’s EPS (Nanogrid), it being household or commercial building
setting.

Thus, DSO-TSO needs to rethink new aggregative solutions that are decentralised and
scalable to promote active administrations in view of Prosumers’ energy subscriptions in
liberalised markets. This call for organisational restructuring in the distribution network
interlinked directives and introduce new energy service providers/actors as independent
aggregator to set-up and contract regional settlements on behalf of Prosumer Community in
the domain of market functioning which includes ancillary services, PtP cross-region energy
trading cooperation, and high level of digitalisation protections. It aims to relief DSO-TSO
from EMS and ADMS bottleneck complications when treating millions of Prosumers’ energy
behavioural interests and constraints while securing distribution system analysis, planning
and optimisation in a centralised intelligent environment.

However, there are still many open questions to what are the control and coordination
boundaries for respective aggregators in view of Prosumer Community participation limi-
tations and billing compensations. How would aggregators retrofit into existing EMS and
ADMS functionalities, providing add-on services to relief DSO-TSO engagements in re-
lations to PtP energy trading and participation in liberalised market? What are the ruling
measures when defining policies and regulations that can strengthen Prosumers’ trusts in
subscribing these aggregators; responsibility in protecting Prosumers from penalty fees while
endorsing switching of service provider freely? Critically, what are the protective measures
in ensuring communication between Prosumers and aggregator are digitally secured from
external malicious threads (i.e. data-sharing privacy, data tempering)? In this sense, reali-
sations in Prosumers’ energy interests; business model choices and consumption trends are
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Table 2.1 Power usage & BTM PSPG generation capacity of Prosumer during summer
(estimated trajectory).

Home Usage EV PV 5kW Energy Other
(24Hrs) (Appliances) Charging (rooftop) Storage SPG

Rating 15.0−20.8 16.0−30.0 14.0−22.0 13.2kWh,48V Diesel
(≈ kWh) (Make Models (∝ capacity & (2 sets) Gen.

& Mileage,km) weather) (back-up)

Costs 2.7−4.5 3.2−6.0 1.4−2.7 0.8−1.7 nil
(≈ $/day) (O&M) (O&M) (O&M)

Upstream nil. 1.4 6.1 3.8 nil
(≈ kW/day)

($/monthly) Gross Billing:160∼230, Savings:50∼100, Rebates:15∼40

Comm. Usage EV PV 100kW Battery Other
Building (Machines & Charging (rooftop) Size SPGs
(24Hrs) Appliances) Storage

Rating 0.214−0.336 0.16−0.24 0.23−0.28 0.35−0.67 0.1−0.3
(≈MWh) (20 Charge Pt.) (∝ capacity (Container (CHP, HVAC,

weather) based) µTurbine)

Costs 42.7-67.2 32.5-65.0 75.0−140.0 40.0−80.0 65.0−140.0
(≈ $/day) (O&M) (O&M) (O&M) (O&M)

Upstream nil. nil 0.152 0.488 0.242
(≈MW/day)

($/monthly) Gross Billing:6000∼8000, Savings:280∼500, Rebates:120∼300

pivotal drivers in defining operation boundaries of independent aggregators as a new energy
service provider in-line with TE framework and values.

2.1.1 Building a Community of Practices in Transactive Energy

Inclination interests for both BTM DER installation at the low-voltage and bulk DER
integrations at medium-voltage have led compelling variability in demand-side planning.
Furthermore, liberalisation in energy markets and digitalisation for Nanogrid infrastructure
have forced operators to adopt stackable-ecotechnological offset mechanisms when securing
power distribution system operations (i.e. distribution network analysis, planning, protection,
and resources management). Since the rise of TE in the year 2011 till to date, research and
industrial developments are still focused on strengthening TE’s perspective framework and
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Table 2.2 Operation attributes and principles in TE framework.

Attribute Principle
-Objectives alignment implement high-level of self-optimisation coordina-

tion.-Socio-economical
-Effectuate commodities ensure non-discriminatory participation for qualified

Prosumers.-Fair mechanism & value
-Extendable architecture the geographic boundary must be adaptable, scalable,

and portable for device-participant connectivity.
-Interoperability reliable control features for system resiliency & relia-

bility for optimal DER integrations.-Operation stability
-Spatial & temporal variability system interfaces must be observable & auditable.
-Transaction data
-Value assignment & discovery transacting parties must held accountable for policy &

standard compliance.

its credibility for future distribution network engagements [99]. Several pilot demonstrations
have been initiated to serve as a learning experience program that views varying degrees and
propositions that will benefit both sides of the meter, Behind- and Beyond-The-Meter [109].
In-line with organising of community practices and synchronising different TE values, the
TE framework also interprets attributes and principles of TE system as a shown in Table 2.2.

Prosumers are constantly seeking for business opportunities that transcend full ownership
in scheduling use of PSPG and demand loads. It includes having participation privileges
during two-sided market clearing; assent PtP energy trading and auxiliary services. However,
such propositions propagate DSO predicaments when Prosumer engagements increases ex-
ponentially; (i) monopolism in the electricity market and possible obsoletion from upstream
generation; generation capacity from DERs have larger significance than Utility, (ii) provoke
unsighted reliability issues due to stronger power quality coupling rendered by DERs, (iii)

uncertainty in demand-side planning-optimisation and high volume market participants, and
(iv) complex data management bottleneck in SCADA system for IoT device visualisations.
Therefore, TE framework serves as a useful intersystem catalyst in preserving an interactive
electric system that promotes decentralised BTM DER installation interests while securing
DSO and market operating boundaries through high-level coordination from new energy
service providers (i.e. independent aggregator). It serves as a mediator in collaborating multi-
ple stakeholders; regulators, vendors, asset owners, policy & decision makers, developers,
and customers in driving communal revitalisation and economic growth for reliable and cost
effective distribution network.
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2.1.2 Independent Aggregator as Energy Service Provider in Transac-
tive Energy Framework

As an independent energy and market aggregator, it creates managerial gateways that interlink
optimisation objectives between decentralised Prosumers’ energy interests and centralised
DSO security in view of transactive DERMS, ADMS, and market participations. Hence, Fig.
2.1 proposes two independent aggregators; feeder-based RDSO aggregator that contracts
Prosumer Community engagements in-line with DSO operating boundary and, hybridised
DERMS and ADMS aggregator only for Prosumer use. Following discusses the overview
governing boundary of individual aggregators at their respective operating layer.

RDSO Aggregator

The proposed RDSO provides five feeder-based services for Prosumer Community connecting
at a peculiar feeder:

1. Promote cooperative yet competitive energy market−participation for both aggregators
and Prosumers in the market should be made easy. Moreover, Prosumers must have
the flexibility and freedom to change energy supplier or transactive value programs-
incentives of choice in real-time without facing contractual penalties.

2. Participations are voluntary and provide diverse business model options for Pro-

sumers−Prosumer engagement with aggregators should be voluntary, that includes se-

Fig. 2.1 Re-structuring distribution network management architecture with independent
aggregators: Prosumer hierarchy of priorities in-line with DSO services.
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lection from wide range of affordable and non-variable prices electricity offers/programs.
Aggregators must able to contract tailorable offers that matches Prosumer’s energy
consumptions and lifestyles with clear, transparent, and agreeable to early termina-
tion of fixed-term contracts under strict terms and conditions. Lastly, EMA should
be updated on aggregators entry into the market to facilitate market monitoring and
intervene when there are indications of malicious in aggregator offers.

3. Prosumers are only to reap benefits and flexibility−Prosumers are to be financially
remunerated for their flexibility in energy consumptions and savings claims must be
reasonably awarded in lieu to the services rendered. Moreover, Prosumers should not
be penalised for costs of compensation between market operator. In the case if required
financial arrangements, it will be financed through the benefits collected by all market
operators. Likewise, overall benefits from using flexible electricity consumption in
view of lower system costs must be disseminated to all Prosumers through lower
network costs.

4. Policymakers and Regulators must co-exist across policy areas−Security and liability
policies should be updated, addressing possible threads/risks from aggregators when
participating digital-sharing technologies in the energy sector. Collaborations with
regulators across sectors address new complexities in what flexible electricity services
will offer.

5. Prosumers and aggregators should enjoy the same level of protection−constant mon-
itoring of personal data collection and processing should be subject to participant
explicit concern and General Data Protection Regulation. In addition, Product Liability
Directive must be extended to all products, digital content, and other services (i.e.

message command & control). By default, connected IoT devices are protected by
design and IoT PtP communications are legislated across sectors. Any product in the
IoT chain should be liable for defects when product’s activities have breached the
market safety, including software applications.

Hybridised DERMS-ADMS Aggregator

The proposed hybridised DERMS-ADMS aggregator provides local services for Prosumer:

1. DERMS: Participate in responsive demand−take advantage of available business
model options from aggregator’s TE programs and execute scheduling algorithm for
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BTM PSPG generations and consumptions according to contracted agreement, reduce
energy billing.

2. DERMS: establish nano-scaled SCADA system−Prosumer will have access to a cen-
tralised monitoring and communication platform that connects local IoT devices with
data security features installed. Prosumer also have the ability to remotely send com-
mands and perform billing comparisons against other business models offered by
aggregators.

3. DERMS: facilitate participation in the energy market−Prosumer has the flexibility to
sell excess energy to selected aggregator or render available grid services in real-time
to gain incentives. Likewise, buy energy from multiple sources based on costs and
value.

4. ADMS: BTM PSPG integration protection−secure system integrity to avoid cascading
upstream fault interruptions.

2.1.3 Realisation of Transactive Values for Prosumers’ Demands

Energy identification of Prosumer involvements as a standalone EPS system or cooperative
settings as Prosumer Community are initial process in creating operating environment for
independent aggregator. Prosumer(s) is regarded as an electric customer that produces lo-
cal power generation and consumes energy within the boundary of his/her domestic EPS,
Nanogrid. It also includes an Energy Storage System (ESS) that stores excess generation
or discharge for consumptions locally. Therefore, independent aggregators need to realise
respective transactive values to promote Prosumer’s participations in the TE framework,
an operating platform where Prosumers’ are authorised and rewarded for their value-based

Fig. 2.2 Energy service provider appreciating transactive values of Prosumer’s relationships
and expectations.
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approach in domestic energy usage and supply. Thus, Prosumer’s relationships and expecta-
tions are divided into two categories Electricity Prosumer Community (EPC) and Electricity
Prosumer Relation (EPR) as shown in Fig. 2.2, comprehending collaborative solution based
on shared objectives while regarded as a value-adding actors in the energy value network.

Prosumer Community

There are four sub-branches under the Prosumer Community tree; (i) Prosumer’s roles as a
value-added proposition that drives sustainable and receptive energy system, (ii) effective
asset management and resources planning to optimise local and global objectives, (iii) market
design and prosumption schemas that evaluates respective Prosumer’s involvements across
the distribution network, and (iv) promote coalition legislation to render cooperative energy
transactions based on global reliability interests. Following explains in correspondences:

(i) As an RDSO provisioning for global sustainable energy administrations, it has the
ability to influence early stages of smart grid implementations employing peculiar
intelligent control system, and business model opportunities [110]. It too serves as dig-
italisation aggregator in energy value chain that contributes co-creational managements
[111–113].

Hypotheses developed for Prosumer roles need more attention in quantification val-
idation on human behavioural factors [114, 110, 112]. Influencing elements such
as billing rebates due to incentives, constitution percentage of consumer versus Pro-
sumer, and flexibility to co-create cooperative solutions for long-term sustainability by
compromising local commitments.

(ii) Prosumers’ energy consumption demographics, behavioural organisation of lifestyle
preferences, and motives for market participation are pivotal drivers for effective
coordination in reinforcing unbiased ethics when jointing energy trading processes
[115]. Formulating goal-oriented management programs, it being individual [116]
or simple-group integration approach [117], can steer stronger synchronicity across
independent aggregators through mutual business model offers on a levelised playing
field [118].

Management schemes for Prosumer communities need more attention [115, 119];
considering passive consumer into the energy sharing equation, employ analytical
techniques when grouping Prosumer’s risk management induced by unfavourable
behaviours, recognise energy efficiency programmes and incentives that reward Pro-
sumers, and literate towards non-financial aspects when modelling business model.



2.1 Prosumer Existence as Sole Energy Citizen 47

(iii) Introduce Prosumer Market Platform (PMP) in the energy value chain using market-
based prosumption schemas [120]. The PMP models facilitate PtP, Prosumer-to-Utility
(PtU), Prosumer-to-Microgrid (PtM), and hybrid of both PtP and PtU [121]. On
the basis, PMP adopts four transactive layers (i.e. Prosumer activities, value-adding
services, ICT digitalisation, energy) to bind diversified intelligent processes which
bring forth ecological community success [111–113].

Suggested in [113, 122], incorporating economic, politic, and social dependence el-
ements into designing PMP can avoid risks of market monopolism or biased energy
trading thereby advocating initiatives for continual improvements. In addition, aggre-
gators must consider emerging algorithms that identify communities with the ability to
transcend multi-player energy distribution within the same time frame.

(iv) Employing intelligent community gateway for wide-area communication, optimal coali-
tion formation for Prosumer Community setting, can offer emerging socio-economic
settlements using object-oriented problem solving regime [123]. It aims to globally
facilitate balanced TE across actors while maximising Prosumer’s interests. In this
sense, historical data of Prosumers’ energy behaviour and geographic profiles provide
insights on formalising distributed optimisation problems into hierarchical framework
based on high influential factors [122].

Common research direction mentioned in [116, 122] was assessing dependant intensity
and reputation effectiveness in building sustainable Prosumer community groups. In
this sense, data driven approach for decentralised energy trading strategies using Agent-
based modelling scheme can gain deeper comprehension of Prosumers’ strengths and
weaknesses for a more robust coalition energy engagements.

Prosumer Relationships

On the contrary, under the Prosumer relationships has three sub-branches; (i) investigates
Prosumer commitments that define participation enabling elements and promote acceptances,
(ii) hybridising socio-eco-tech drivers for effective management/interaction in community
operations, and (iii) healthy relationship establishment between aggregators and Prosumers
in a circular process. Following explains their correspondences:

(i) Using PMP to generate market objectives and profile Prosumer’s level of commitment
in community [124, 125]. Support and increase Prosumers’ confidences in subscribing
aggregators. Transparencies in critical economical risks and compensations must be
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publish to give Prosumers commitment options. Thus, trusted and competitive business
models tailored for Prosumer’s energy lifestyle bring forth benefitting awareness and
prevent stakeholder resistances [126].

Identifying social-economic commitment catalyst, long-term funding policies to boost
sustainable community energy system, and decentralised regulatory qualitative ap-
proach, are key drivers to strengthen cohesive business relationships based on endoge-
nous and exogenous functions [127, 128].

(ii) Endorse holistic thinking in view of economic, technological, and socialism impacts
are significant drivers that can either serves as an enabler or barrier on Prosumers’ par-
ticipations [129–131]. It can steer social values, forcing trading or utilising electricity
leaning towards billing security and even resort to islanded operation mode.

Resolving social-economic acceptability to educate Prosumers with high costs incur-
ment due to technological advancement does not imply negative business decision.
Hence, convincing collaborative propositions using holistic approach is suitable to
heighten the communal relationship, entrusting aggregators to uphold fair play in the
name of sustainability [131].

(iii) Establishment of aggregator-Prosumer relationship provides influential impact on
demand-side security (i.e. DSR, DERMS, ADMS, SCADA). It is a reciprocal relation
that contracts incentive and risk sharing to avoid biasness or objective conflicts there-
fore, deviating managerial perspectives from a linear ordering to a circular process of
production. Realisations on agreed expectations from aggregator-Prosumer interests
must align to gain "bilateral monopoly" [132].

Demand for participatory approaches [133] can mitigate biased decision-making pro-
cesses reflected from retrospective interviews poised from provider-consumer relation-
ship. Retaliation and compensation factors conspired from communal interactions can
actuate unfavourable energy sharing patterns from Prosumers. Hence, joint production
business models needs higher order of scrutiny that considers underlying behavioural
risk evaluations.

2.1.4 Transactive Energy Policies and Standards

Primarily, the development of an ideal independent aggregator in TE framework revolves
around the engagements of operation policies and standards, and recognising require-
ments/viewpoints that synchronises objectives statements for high Prosumer penetrations
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at low-voltage level. Likewise, it creates awareness in lieu of limitations and compliances
for customer to voluntarily operate as a Prosumer. Through establishment of TE policies
and preferred energy programs, aggregators can steer Prosumer(s) into a accountable course
of actions with respect to DERMS and ADMS optimisations at demand-side (Behind- and
Beyond-The-Meter). It aims to progressively update supply and demand demographics based
on optimised DSR ruling while considering open market pricing and trading scheme in
real-time. Policy setters has to indulge Prosumers’ behavioural trends into the equation on
how policies/incentives can influence confidence despite having to bear large investment
costs on what is still remained uncertain. Serving as a guideline, there are four dominant
pillars of state policy design based on the learning experiences gained from New York State
Energy Plan [134]:

1. Mandate Utility to welcome new service provider and endorse TE management frame-
work to mediate Prosumer penetration. Envisioned installation of DER systems in
distribution network to take its presidency by year 2030 in gratifying 70% of national
electricity consumptions. Thus, an aggressive $34billion funding (spread across 10
years) was approved to accelerate the economics for clean energy involving research
and development, safe system integrations, subsidiary for private sector investment,
and customer accessibility to own affordable renewable systems at low-voltage level.

Policies: Clean Energy Standards (CES) [135] & Fund (CEF) [136]−Integrating Large
Scale Renewables, DERs Oversight [137].

2. Prosumers have the liberation to select a list of independent aggregators (i.e. demand-
side business proposal) to facilitate bidding-abled services, coordination and control
functionality of local BTM DERs, and long-term investment assessments. In a sense,
envisioning communal transactive values, Prosumers will be guided to contract tai-
lorable business model offer while boosting their confidences in reduced energy billing
and faster return on investments. Such program will attune operation obligatory namely;
optimum consumption scheduler based on local PSPG status (e.g. ES availability either
for storage or distribution), market trade tracking analyser and energy bill reduction,
identifying online load patterns (e.g. shiftable energy loads or peak demand shaving),
and comfortability (i.e. electricity usage lifestyle habits).

Policies: Community Choice Aggregated Programs [138], Community Distributed
Generation [139], Benefits of Net Metering [140].
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3. Open up a hybridised market between energy retailers and Prosumer by extending
wholesale into retail market region. Assignment of incentives and financial support
from the governments must be made aware to Prosumers, setting a community-based
business practices in retail market design that prevents biasness and monopolism.
Subsequently, modelling of DER market that considers liquidity and social equity
plans to boost general affordability can serve as a pivotal driver to transform consumer
into Prosumer setting. Likewise, exploiting DER to assist in the capacity market is
another avenue to provide ancillary services for Prosumer to earn rebates or limiting
reliance on the Utility during time of energy crises.

Policies: Benefit-Cost Analysis and Distributed System Implementation Plan [141],
Utility Energy Efficiency Budget and Targets [142], Eligibility Requirements for
Energy Service Companies [143].

4. Comprehending that RDSO aggregator are to be operated in a community transactive
energy framework, initiatives in providing Prosumer with protective measures are
vital to maintain trusting relationship between third-party services and participants.
Protective measures against passive managed decisions and data sharing threads,
notifying and consenting Prosumers’ agreements in real-time. Hence, customer support
services and transparencies on energy billing/trading needs greater accessibility for
Prosumer to attune decision-making tools by interchanging objectives from time-to-
time.

Policies: Cyber-Physical Privacy and Autonomy Issues [144], Utility Rate and Pricing
Structure to Respond to Customer Technology [145].

2.2 Problem Descriptions

Contrarily, the mathematical definition of a Prosumer must not be limited by its power
generation capability but instead, functioning as a proactive energy consumer. Any customer
at the low-voltage level who has the capability to extend communications and legislate active
energy management at Nanogrid PCC based on TE-driven managerial proceedings needs to
be labelled as a Prosumer; ability to contribute in the operation at demand-side reliability and
efficiency [146, 114]. In this sense, customer as Prosumer includes either; (i) subscribe to a
business model offer introduced by independent aggregator to achieve reduced billing and
communal energy sharing experiences, (ii) optimise load scheduling operations (i.e. PHEV,
ES, shiftable loads) based on energy market tariffs or shaving peak demand crisis, (iii) ability



2.2 Problem Descriptions 51

to operate in islanding mode, and (iv) secure load matching and Volt/VAR optimisation to
prevent network failure. Furthermore, aggregator must consider all the customers connected
to that particular feeder to meet communal optimisation problems regardless of the generation
assets availability in respective Nanogrid. It calls for TE managerial schemes that consider
Prosumers’ energy attributes in clustered formation to render viable community services;
(i) ability to sustain as an islanded Microgrid, (ii) optimise operation resiliency and DSR
management using DERs for non-generation customers without burdening the bidding
process in wholesale or capacity market, and (iii) render ancillary services to neighbouring
Prosumer communities to gain higher profit margin.

Hypothetically, re-visitation into devising a TE system model for independent aggregator
that fits mass operational perturbation induced by Prosumers’ management options requires
further reasoning into behavioural economics. Aggregators need to offer optimum supportive
roles, commitments, and market functioning that will empower Prosumers’ as independent
manager. This includes issuing "mandatory" notices to all customers at low-voltage level
to subscribe as Prosumers without intimidating economic discrimination despite minimal
participation with aggregators. However, in view of Prosumers’ expectations in deregulated
REM and decentralise TE operations, aggregators are constantly challenged with entity
identification reconciliation in big and open data that views distributed constraint optimisa-
tion in problem centralisation. Meanwhile, wide-area telecommunication system that uses
centralised cloud computing architecture will face scalability predicaments and conflicts in
data synchronisation due to bottleneck-latency bandwidth issues [104, 147, 148] and cyber
attack vulnerability [149, 150].

Thus, scaling the distribution network into Nanogrid system creates stackable-based
EPS that recognises scalable Prosumer penetration with encased nanotech-energy assets
and independent governing jurisdictions. Innovations in layered middleware architecture
that extends decentralised cloud computing are in-demand to breaks beyond limitations
imposed by centralised cloud networks. Portability, device-to-software cloud service, and
latency efficiency are key features that can bring cloud closer to Prosumers’ smart devices
and allow independent ruling of intelligent services. How will Nanogrid system influences in
macro-managing and defining set of problems against Microgrid environment, developing
stackable control structure with much greater application potentials? Will there be power
system interoperability issues when coupled with Nanogrids?
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2.3 Visualisation of Nanogrid Environment as Sole and Com-
munity Deployment

As consumer’s EPS are no longer passive, viewing distribution network as a single manage-
ment entity has been ruled out. Thus, Nanogrid planning was introduced in the early 2010s
to synthesise smaller EPS jurisdiction [151, 152]. Pilot projects and research efforts exposed
promising impacts on addressing grid-edge complexities into smaller analytical approach
suitable for decentralise optimisation avenues. Bruce Nordman [151] popularised Nanogrid
system as a solution to empower Prosumer’s voice as new energy actor, "Nanogrids offer the

possibility of attaining a critical mass of technology, affordability, and familiarity to enable

Nanogrids(Prosumers), and then Microgrids, to flourish".

2.3.1 Defining Prosumer BTM Energy Mix Environment

Explorations into mathematical modelling of a Prosumer is proposed to comprehend respec-
tive interests environment defined in (2.1)-(2.10). Three peculiar combinations are proposed;
full-pledge, load-only, and Prosumer.

Prosumer( f ull-pledge) = PG∪LD (2.1)

sets are defined as:

PG\LD = {
n

∑
i=1

renewablet
i}∪{

n

∑
i=1

f uel-drivent
i}

LD\PG = {
n

∑
i=1

appliancest
i}

(PG∩LD) = BESS = {
n

∑
i=1

batteryt
i}

(2.2)

constraints s.t.

minPG =


deny, {renewablei : i ∈ I}

deny, {batteryi : i ∈ I}

allow, otherwise

(2.3)



2.3 Visualisation of Nanogrid Environment as Sole and Community Deployment 53

and i f renewable is a proper subset of PG then:

minLD =

deny, {appliancei : i ∈ I}

allow, otherwise
(2.4)

(2.1)-(2.4) denotes a full-pledge Prosumer’s characteristics where PG refers to PSPG system
with size-up battery energy storage system, BESS, and typical load appliances as demand
loads, LD along the timeline, t. Full-pledge configuration gives Prosumer larger energy
trading and utilisation options to facilitate optimisation of individual interests. Nevertheless,
its risks in cost investments are high but greater dominance in enjoying incentives/rebates
from DSO. Uniquely, constraints given in (2.3) and (2.4) dictates ESS element as mandatory
for renewable energy mix to harness full potential of intermittent generation and maintain
efficient flow of power.

Meanwhile, load-only Prosumer solely fixate on load and purchase scheduling man-
agement for reduced electricity billing defined in (2.5)-(2.7). Prosumer may experience
lifestyle discomfort due to tense optimisation load management (e.g. shifting ,shaving) in
DSR participation. Billing outcome is proportional to Prosumer’s operational comfort level.

Prosumer(load-only) = LD\PG (2.5)

sets are defined as:

LD\PG = {
n

∑
i=1

appliancest
i} (2.6)

hence,
PG = { /0}

PG∩LD = { /0}
(2.7)

Subsequently, (2.8)-(2.11) defines storage-load Prosumer that reaps maximum benefits of
ESS installations without PSPG. It aims to exhaust stored energy capacity and exploit elec-
tricity tariff versus demand demographics to optimise participation incentives and increase
local supply-demand resiliency. According to (2.1), Prosumer(storage-load) is rewritten:

Prosumer(storage-load) = (LD\PG)∪ (LD∩PG) (2.8)
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sets are defined as:
PG\LD = { /0}

LD\PG = {
n

∑
i=1

appliancest
i}

(PG∩LD) = BESS = {
n

∑
i=1

batteryt
i}

(2.9)

constraint s.t.

min,maxPG =

allow, {batteryi : i ∈ I}

deny, otherwise
(2.10)

and

min,maxLD =

allow, {∪n
i=1batteryi,∪n

i=1appliancesi}

deny, otherwise
(2.11)

2.3.2 Defining Prosumer in Community Environment

Recognising Prosumers’ diversified operational mix interests, (2.12) defines existence of
clustered Prosumers into respective Community setting recognise by aggregators along the
distribution network. Indeed, engagement of clustering formation approaches [153, 154] can
provide optimal resiliency in DSR long-term planning for aggregators when piloting these
communities based on their energy attributes. Fig. 2.3 illustrates a simplified example in
demarcating Prosumer Communities, (2.12), using feeder line and clustering of Prosumer
Community, (2.13)-(2.14), separated by substation across a typical radial-connected distribu-
tion network.
Assume: A = Prosumer( f ull-pledge); B = Prosumer(load-only); C = Prosumer(storage-load).

Communities(Prosumer) = {communityi : i ∈ I} (2.12)

community(Prosumer) = A∪B∪C

community(Prosumer) = {∀ j ∈ {A1, ...,J},∀k ∈ {B1, ...,K},∀l ∈ {C1, ...,L}} jkl
(2.13)

not limited to:

community(Prosumer) =

deny, { }= /0

allow, {A}or{A,B}or... any combi
(2.14)
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Fig. 2.3 Example of Prosumer environment mix in community setting clustered into respective
energy attributes.

2.3.3 Modelling Distribution Network into Nanogrid Community

Unlike Microgrid, Nanogrid is devised to procure idiosyncratic-bounded EPS suitable to
demarcate Prosumer’s BTM grid connected assets. Nanogrid is best described as an electrical
installation behind a single meter (i.e. AMI) while Microgrid aggregates Nanogrids under
a single or multiple feeder together. Uniquely, it creates an environment for local DERMS
and ADMS designed by Prosumer without the dependencies on central entity. Moreover,
Nanogrid setting is not only limited to low-voltage level Prosumers but it broaden into
medium-voltage DER owner (i.e. VPP investor, Independent Power Producer (IPP)) that

Fig. 2.4 Sectorising distribution network into Nano- and Micro-grid jurisdictions, feeder-
oriented.
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(a) Connecting household and building Nanogrid to distribution network; Prosumer-
configured.

(b) (cream)AC- and (purple)DC-based configured electrical wiring for a Nanogrid.

Fig. 2.5 Definition and visualisation of Nanogrid implementations.
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partakes in TE. Fig. 2.4 presents a multiple integrations of Nanogrids to form Prosumer
Communities. Fig. 2.5a provides structural visualisation in Nanogrid BTM DERs integration
where it comprises at least one load/sink of power, PSPGs, and AMI. While Fig. 2.5b
presents two operating electrical system when designing Nanogrid EPS; AC- or DC-based
wiring installation. (2.15)-(2.20) mathematically defines Nanogrid composition. Firstly, dis-
tinguishment between Microgrid and Nanogrid environment must be established as specified
from (2.15)-(2.17).

NGi = ProsumerIDi = Single Electricity Meter (2.15)

Initialise Microgrid = empty set, /0,

Microgrid = {NG1,NG2,NG3, ...}= {NGi : i ∈ I} (2.16)

s.t.
NGi ⊆Microgrid

Microgrid * NGi

∴ Microgrid ̸= Nanogridi

(2.17)

where NGi is identified as Nanogrid system behind an electricity meter representing a
single Prosumer, ProsumerIDi. Whereas NG1,NG2, ... is a proper superset of Microgrid

acknowledging that every set of NGi is a subset of itself, (NG1 ⊆ NG1), and every element of
Microgrid is not {NG1}. Therefore, we can conclude categorisation of Microgrid and NGi

are contrary. Subsequently, mathematical modelling of Nanogrid to represent IPP, Prosumer,
and consumer EPS set-up are defined. Using (2.18)-(2.19) as the base components for a
Nanogrid environment, (2.20) assigns Prosumer to respective Nanogrid based on configured
operating interests.

NGi = DER∪LD (2.18)

sets are defined as:

ER = DER\LD = {
n

∑
i=1

RESi,
n

∑
j=1

T G j}

BESS = DER∩LD = {
n

∑
i=1

batteryi}

LD\DER = {
n

∑
i=1

appliancei}

(2.19)
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Nanogrid assignments based on Prosumer operating classification:

NGi(IPP) = ER+BESS ̸= Prosumer

NGi(ProX) = LD\DER = Prosumer(load-only)

NGi(ProA) = DER∩LD = Prosumer( f ull-pledge)

NGi(ProS) = BESS+LD\DER = Prosumer(storage-load)

(2.20)

(IPP) denotes independent power provider that entails only generation and energy storage
system. (ProX) represents a typical consumer EPS that omits out DER and ESS installations
whereas, (ProA) connects DER, ESS, and load appliances. (ProS) describes a typical consumer
EPS with an additional ESS operating as load and generation.

2.3.4 Advance Metering and Communication Infrastructure

Pairing IoT technologies with decentralised computing/communication network into tomor-
row’s distribution operations are indeed critical for Prosumer-Aggregator-DSO to perform
transactive electrifications. The engagement of decentralised IoT Hub applications hold great
influence into recognising unique business functions at each node with separate authority
for independent decision-making power while constituting global interactions with other
systems. In this sense, the IoT network able to distribute processing power and workload
functions across multiple independent machines to provide a pool of resources. Moreover,
scaling of network becomes easier due to it modular integrated stackable layers that increases
decentralized computing resources. The issues with centralised IoT Hub or network in
view of Nanogrid deployment are; (i) problems with future scalability plan to accommodate
network expansion against bandwidth bottlenecks, latency response time, and bias in the
estimation of parameters [155, 156], (ii) unable to create autonomy and control over local
resources and computing process needs [157], (iii) risks of single point failure and less
possibility of data backup which serves as critical information for historical data-driven
computation requests [158], and (iv) higher risk in security and privacy breech with complex
solutions in finding the source of thread [159]. There are instances where it is debatable to
use distributed configured network over decentralised. However, in the context of proposed
feeder-based Nanogrid Community configuration, decentralised IoT application will be
suitable as it provides sole edge computing for Nanogrid(s) that corresponds to a centralised
multi-layered IoT Hub synchronised by independent aggregators. Contrarily, predicaments
such as vulnerability from third-party cyber intrusions and protocol authentications breech
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Fig. 2.6 IoT in AMI, extending communication gateways to external energy actors.

exposing non-authorised accessibility are critical malicious adversaries that require special
attention for decentralised network as compared to centralised setting.

Here, the IoT infrastructure is incorporated into AMI for each Nanogrid system. AMI is
a hybridised ICT-SCADA system that handles data storage and sharing gateways, computing
and operating platform, and establish bilateral wide-area communication/command services
integrated under a collective suite [103, 160]. It extends Nanogrid Area Network (NAN)
communication gateway with independent aggregator and serves as a dedicated telecom-
munication layer that connects BTM IoT devices into a single metering system for smart
function features. Its applications involve network encryptions, remote control commands,
and dynamic information routing; a data aggregator that profiles Nanogrid’s energy activities.
Fig. 2.6 presents an overview of wide-area AMI that connects Nanogrid to external energy
actors’ internet gateways.

As the contribution of this dissertation were not focused on internet protocol suite,
explorations into technical aspects of network protocol design is neglected. It assumes
that all connecting appliances are meshed within a single network and interoperability
compliances were observed using client-server or peer-to-peer networking model. However,
this dissertation will briefly delve into big-data management and data flow traffics to facilitate
cloud-based computing services. In this sense, distributed edge computing architecture and
data acquisition point selections with low latency disruptions are reviewed to facilitate peak
computational resources for intelligent system.



60 Nanostructuring Distribution Network into Prosumer-based Ecosystem

(a) Creating NAN, connecting IoT devices.

(b) Structural flow of data communication and device automation for ISO.

Fig. 2.7 Establishing IoT framework of NAN with independent aggregator gateway.
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Fig. 2.8 AMI for wide-area Communication across EPS.

2.3.5 Modelling Nanogrid Area Network

Fig. 2.7a presents the proposed NAN system, creating layered networking domains to
mesh Prosumer’s IoT devices (i.e. BTM DERs and load appliances). The IoT devices
uses dynamic multi-protocol Bluetooth Low Energy (BLE) and Zigbee connectivity, a new
technology developed by Silicon Labs in meshing multiple wireless protocol for device-
to-user-to-device communication & automation, and provide distant control via gateway
[161]. It uses a wireless stack architecture that schedules prioritise-BLE beacons and Zigbee
transmission to ensure simultaneous execution of multiple protocols within a shared radio
access. All interactive appliances including smart meter are then synchronised to an In-
house Central Communication Unit (ICCU) which collects monitoring data and processes
real-time transactive energy solutions before sending decisional control commands using
wireless-enabled handheld devices. Correspondingly, Fig. 2.7b illustrates proposed data flow
and decentralise IoT edge framework interacting with aggregator’s fog server node [162] to
incentivise Prosumer-centric energy governance.

On the contrary, wide-area communication architecture of AMI interconnecting energy
actors’ gateways is shown in Fig. 2.8. Here, respective Nanogrid’s fog computing server (i.e.

edge computing) is then aggregated by Data Concentrator Unit (DCU) attached at strategic
transformer poles or individual substations for DSO to extend data accessibility on a region
of Prosumer Community.

2.3.6 MultiCloud Fogging for Coalition Computing

In view of big data transportations and analytics, on-demand availability of computer system
resources are crucial in providing central remote servers for centralising storage, processing
applications, and intelligences over the internet - “the cloud”. Cloud computing have gained
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Fig. 2.9 Cloud computing architecture for hybrid data access.

full recognition in smart grid applications, designed as a service to give public the accessibility
on computing resources.

Literatures [158, 159] highlighted advantages in adopting cloud computing technology;
(i) govern data storage allotment, (ii) computational tools accessibility, (iii) data privacy
with identity-based cryptography, and (iv) ability to pre-process data in offline or online
computing. A high-level cloud computing platform that hybridises private and public is
proposed in [158]. It is programmed with four cloud models as service option that allow
cloud visitor(s) the freedom to share data/information space and processing tools; software,
platform, infrastructure, and network as shown in Fig. 2.9. Nevertheless, complications
such as data privacy and leakage can expose vulnerability to negative threads. Thus, [159]
introduces Smart-Frame cloud computing framework that provides security features in
parallel to client scalability. The key security feature employs identity-based encryption and
proxy re-encryption schemes as shown in Fig. 2.10.

Fog or fogging computing is designed to perform analytic and management processes
nearer to the point of data origin (metering devices and sensors) suitable for decentralised

Fig. 2.10 Cloud data package authentication security.
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systematisation; enabling accelerated data streaming, reduce bandwidth usage, and boost
time-sensitivity [155, 156]. It opposes to a centralised cloud network where intricacy in data
traffic coordination, single point security or outage failure, and latency versus scalability
impairment are inevitable. Hence, one can view fogging as an extension of cloud that
mediates collective integration of both data sources and devices to boost processing latencies
and security efficiency. [155, 156] emphasised benefits in deploying fog computing nodes in
the IoT mix to perform parallel computing, knowledge processes, and design data storage
assembly at NAN’s edge. As shown in Fig. 2.11, Fig. 2.11a presents the integration of edge
computing in IoT. Meanwhile, Fig. 2.11b proposes fog computing framework that combines
hardware devices and software operating systems for Nanogrid before merging into cloud.

Despite engaging decentralise fog computing for respective Nanogrid EPS, shortest-
reliable data transferring path between fogging-to-DCU-to-cloud or determining optimised
geographical location to place DCU (acquisition point) when serving Prosumer community
require further analyses to address multi-hop communication processes in AMI. [163, 164]
addressed the importance in deploying DCU nodes at effective places across the wide-area
network. It employs optimisation model using near-optimal heuristic algorithm to access
more remote devices with smaller quantity of DCUs considering quality of service require-
ments associated to mission critical and non-critical traffic. Similarly, [164] proposed an
optimisation platform for DCU placement considering reliability requirement for data traffic
and also minimised installation cost. Notably, when engaging matters on data transference

(a) Deploying edge computing for IoT-
based Nanogrid.

(b) Integrating fog and cloud computing refer-
ence architecture.

Fig. 2.11 Edge of IoT: Integrating distributed cloud computing environment.
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latency in AMI, [164] addresses latency issues derived from power line communication
network when communicating with AMI.

2.3.7 Modelling Community Cloud for Decentralise AMI

The deployment of multicloud computing in decentralised AMI is proposed in Fig. 2.12,
employing three layered cloud architectural models servicing Prosumers, independent aggre-
gators, and DSO respectively. Each group of hybrid fog computing is separated into primary
(multiple) and secondary (single) cloud domains where the difference lies on accessibility
features (refer to Fig. 2.9). The Primary Fogging (PF) is a dedicated public cloud assign for
individual Prosumer use in designing personal edge computing algorithms to automate smart
services in NAN. Intelligent service library and computational algorithms are made available
for public access however, critical data sharing remains encrypted between PtP. Hence, cloud
connectivity between Prosumers is not established to prevent data privacy breech and gain
visibility in detecting cloud intrusion. Conclusively, PF cloud computing is integrated with
NAN gateway to direct personalise transactive energy management govern by respective
Prosumer’s subscribed aggregator.

Contrarily, Secondary Fogging (SF) is a private cloud owned by the Utility that commu-
nally monitor and abstract data from respective NANs. The SF computing is interoperated
in parallel with DCU, connecting substation’s monitoring and control devices. It aims to
administrate TE operations and market trading floor overseen by all aggregators, aggregator-
to-aggregator cloud configuration. Ultimately, all fog computing clouds are collected at DSO

Fig. 2.12 Proposed edge cloud computing architecture in decentralised network setting.
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centralise cloud. It is the only cloud service that endorses bilateral data source exchange
with aggregators to procure global optimisation across the distribution network, ciphering
solutions in Prosumer Communities domain.

2.4 Distribution System Assessments and Case Studies:
Problem Identification

The distribution system analysis is divided into three assessments, investigating demand-side
planning between DSO and Prosumers with the absence of independent aggregator. Proposed
testbed Nanogird systems shown in Fig. 2.13a−2.13b for household and commercial building
respectively, and small-scaled distribution network seen in 2.13c (2-feeder system serving
27 Nanogrid Communities with medium-voltage DERs). Each assessment evaluates TE
economics and operational reliability-efficiency, and social consumption behaviour that steers
DSO’s EMS scheduling for DSR and ADMS resiliency when responding to both passive and
active consumers.

1. Supply-demand (i.e load flow) analysis−review Prosumer’s energy transactions in
contra to BTM DERMS augmentation and electricity consumptions. Additionally,
estimating Prosumer’s daily operating costs to discern gross profit index without
the support from incentive policies. Evaluating impacts on DSO’s scheduling EMS
and DSR management in securing supply-demand equilibrium based on respective
operation constraints.

2. System’s power quality and stability−steady-state, transient, and dynamic analyses
were performed to view impacts of BTM DER penetrations on network’s reliability
and efficiency; DSO’s ADMS operation. Determine consequences in voltage or fre-
quency droop/swell and identify corresponding mitigation to regain voltage-frequency
synchronisation. Operation of Nanogrid in islanding mode was also analysed to view
its impacts on local and grid stability under grid-tied configuration.

3. Fault analysis−Investigate upstream and downstream fault interruption crises and how
BTM DER (i.e. PSPG) operates under such conditions. Subsequently, operation under
temporary fault interruption was also introduced to analyse PSPG fault ride-through
transient against new power inverter standard for DER operation, IEEE1457-2018.

The following test case evaluations were discussed solely to address Prosumer’s DERMS
operations and their corresponding contribution towards DSO’s EMS, ADMS, and DSR
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(a) Full-pledge Prosumer−domestic household.

(b) Full-pledge Prosumer−commercial building.

(c) Prosumer communities− joining 27 units of commercial buildings and homes.

Fig. 2.13 Proposed Nanogrid EPS testbed systems for test case studies in MATLAB.
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regulatory-planning. In addition, implementations of non-optimised control intelligences
were adopted to apprehend raw results that can be used for reinforced purposes. The modelled
Nanogrid models in MATLAB were based on popular choice of PSPG systems (i.e. solar
PV, ESS, PHEV, and back-up diesel generator). The simulations were conducted in phasor
analyses domain defined at 60Hz.

2.4.1 Energy Supply-Demand Analysis

Fig. 2.14 serves as the base energy consumption knowledge (24 hours sampling−12am to
12am) of passive customer in both single and community engagements. It provides DSOs
with decisive information to schedule day-ahead unit commitment and anticipates peak or
large demand shift crisis while levelling minimum loading of generation capacity to meet
baseline demand. The data of demand load consumptions can be found in [141].

In view of load consumption profile in household environment shown in Fig. 2.14a, two
peak and lull demand instances are recorded. An incremental of Pdemand shift ≈+∆0.5kW/h

was seen at 6am and ≈+∆0.38kW/h at 4pm, rising to its peak (four times greater) since (t−
1)→ t. Likewise, there are also two demand dip instances that followed closely after every
peak crisis, t→ (t +1). It was recorded at max .Pdemand decremental shift ≈−∆0.75kW/h.
In consequence, the grid’s voltage experienced dipping and swelling due to abrupt increase
and decrease loading of demand capacity respectively. However, the voltage level deviates
within the safe "stay connected" region of +10% mandated by IEEE Std 1547. It also brings
forth no negative impacts when scheduling generation in parallel to generator unit operating
constraints despite unregulated ∆Pdemand , based on the impression of a single Nanogrid
operations against unit-commitment ramping constraints.

Pdemand shi f t =
∆P
∆t

=
P(t0+1)−P(t0)
(t0 +1)− t0

(2.21)

where rate of change in power generation or demand shift due time can be expressed as
non-absolute delta. +∆Pshi f t denotes incremental change and −∆Pshi f t is decremental.

Typically in Community operations, DSOs will perform distribution network optimisation
involving optimal power flow and DSR management based on optimum operating costs while
balancing grid’s constraints through cohesive scheduling of unit commitment and economical
dispatch planning [165–168]. Hence, algorithms like heuristic or stochastic optimization
functions to solve non-convex objective statements are typical avenues to better administrate
demand-side EMS against operating constraints. Fig. 2.14b profiles Community demand load
consumptions for 2 feeders distribution network. In comparisons to single Nanogrid demand
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(a) Single domestic household.

(b) Unit commitment for both Community 1 (Region A) and Commu-
nity 2 (Region B).

Fig. 2.14 24-hours energy consumption profiles based on load-only (passive) Nanogrid
system.
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curve, Community provoked smaller slew rate index for −∆Pshi f t and have better jurisdiction
in scheduling baseline or energy shifts against ramp rate limitations. However, exposure to
one instance peak crisis was recorded in the morning measured at +∆Pdemand >0.735MW/h.
In consequence, DSO suffered major supply-demand imbalance where ordering of large
demand shift at (t0 +1) intervals could not match generator’s ramp rate limits. To overcome
such issue, DSO adopts overforecast biasing on unit commitment that comfortably commits
to large +∆Pshi f t . It sets to mobilise respective generators on standby, (t−1), operating at
spinning reserve to overcome ramp rate limitations during peak demand however, it has
negative impact on operating costs. It can be seen that generator loading activities were seen
at lull demand periods; generating unit 4 had an hour early start-up (operating in spinning
reserve mode) contributing excess generation index of min . 102W/s≈−$2.33.

Contrastively, in the case studies where full-pledge configured Prosumers were engaged,
profiling energy demand trends have turned ambiguous. Based on direct control intelligence
in directing DERMS for Prosumer’s BTM PSPG and demand load, Fig 2.15 illustrates power
exchange activities in both single and Community engagements. Here, the controller is
deliberately programmed to maximise utilisation of battery energy storage charging and
discharging rates. It exhausts maximum stored charge in battery contributed only by solar PV
to serve local demand load while stores remaining generation available into battery within the
State-Of-Charge (SOC) constraint boundaries [169, 170]. In the case if battery has reached
its maximum SOC level, the excess generation will be distributed upstream towards Utility
after meeting the full demand load capacity at time, t. Control algorithm:

PUtility = Pload−PESS−PPV (2.22)

s.t.

PESS =


idle, SOC ≤ 20%

idle, SOC ≥ 80%

ON, otherwise

(2.23)

AND if SOC ≤ 20; remain charge state until SOC = 40% before activating discharging
mode. +PESS denotes charging and vice versa. Meanwhile, +PUtility represents energy flow
downstream and upstream is negative.

Fig. 2.15a justifies Nanogrid’s power exchange activities at PCC based on (2.22)-(2.23)
employing 5kW solar PV system and 8.4kWh ESS (240V -35Ah cascaded battery cells).
Importantly, a negative power ratings was recorded approximately at 3pm to 6pm which
exhibits that ESS have reached maximum SOC and excess generation will be distributed
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(a) Single domestic household.

(b) Prosumer Communities.

Fig. 2.15 24-hours energy consumption profiles based on Prosumer (full-pledge) Nanogrid.
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upstream. Meanwhile, the remaining timespan was measured at 0W downstream which
entails Nanogrid managed to sustain supply-demand equilibrium without purchasing energy
from external source.

In that sense, DSOs are faced with demand-side EMS predicaments where unit commit-
ment for baseload and DSR becomes unregulated when legislating Prosumer in Community
setting. Presented in Fig. 2.15b, the demand curve profile mimics a "duck curve" phenomenon
[171] due to upstream overgeneration from solar PV. The term overgeneration also expresses
baseload commitment crisis where power demand drops below base generation threshold
capacity. Provided that all Prosumer’s DERMS adopt similar control intelligences and ESS
sizes in parallel to solar PV generation capacity, the downstream demand demographics
becomes predictable. It imposes larger +∆Pshi f t in the morning when compared to passive
customer as stored energy in ESS has depleted. Likewise, during solar PV penetration,
large −∆Pshi f t and inferior baseline were presented. Such crises raised alarming concerns
in possible collapse of grid due to generator’s ramp rate limitations and failure to secure
supply-demand equilibrium on time. Furthermore, more possible demand-side setbacks
are yet to be incorporated involving; (i) surpass upstream intrusion where overall system’s
demand is smaller (i.e. generators at swing bus operating as motor or induce more reactive
power), (ii) uncertainty in solar PV generation which resulted in misaligned scheduling
of unit commitment to meet baseload capacity (unperceived day-ahead planning), and (iii)

shifting of peak demand into indefinite time region due to contrasting scheduling of ESS’s
charging and discharging operations, commanding downstream or upstream power exchange
with Utility.

The impact on energy economics reflecting on customer’s consumption billing and PSPG
investments also serves as an influential index when shaping supply-demand demographics.
Events of peak demand or overgeneration could be closely related to electricity tariff patterns.
There are three major electricity pricing categories in contestable/open market; fixed, peak
& non-peak, and market clearing price (wholesale) contracts [173]. Table 2.3 compares
customer’s 24-hours energy consumption against electricity price to view economic benefits
between active and passive consumer without incorporating motivations from government’s
incentive and subsidiary support. Hence, Prosumers are driven to formulate better DERMS
controller to schedule charging and discharging of battery that correlates with electricity
tariffs.



72 Nanostructuring Distribution Network into Prosumer-based Ecosystem

Table 2.3 24Hrs energy billing comparisons between active and passive customer without
policy incentives.

Fixed Price 17.98c/kWh Passive Active
Billing Costs ($) 6.34 -0.88
Investments@10yrs ($) - 4.28
O&M Billing ($) - 2.91
Profit Margin ($) - -0.03
Peak/Off-Peak Price
7am-7pm:18.87c/kWh
7am-7pm:13.48c/kWh
Billing Costs ($) 6.27 -1.06
Investments@10yrs ($) - 4.28
O&M Billing ($) - 2.91
Profit Margin ($) 0.07 0.14
Wholesale Price [172] Passive Active
Billing Costs ($) 6.18 -1.62
Investments@10yrs ($) - 4.28
O&M Billing ($) - 3.32
Profit Margin ($) 0.16 0.2

2.4.2 Power Quality and Stability Analysis

Steady-state, transient, and dynamic stability analyses were conducted closer to individual
Nanogrid, analysing impacts of upstream generation from BTM PSPG and its integrations. It
aims to access Prosumer’s feedback in securing power quality and weigh system reliability
index at PCC. Fig. 2.16 illustrates typical transient responses at PCC for downstream
power exchange. Here, DSO-ADMS governs the power quality supported by Utility (i.e.

isochronous generators) performing Volt/VAR and switching optimisations by injecting
or absorbing reactive power and feeder balancing with minimal power loss respectively.
Such events occur when there is an abrupt shift in demand load capacity (i.e. weak DSR
management) causing voltage to sag/swell or feeder-line overloading . Hence, Volt/VAR
compensation controller and balanced feeder load transfer seen in Fig. 2.16 provide efficient
restoration securing frequency deviation <0.0189 while voltage <10% from nominal level.

Conversely, with BTM PSPG penetrations, the power quality operation shifts towards the
distribution network. In this sense, depending on the percentage of demand load capacity
served by PSPG, the power quality coupling strength in regulating voltage and frequency
level from Utility decreases as DER generation increases higher. Thus, power quality regulat-
ing system transit from grid-following to grid-forming, load following and compensation
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Fig. 2.16 Transient responses of Nanogrid directing passive-based customer.

responses from solar PV’s inverter have a greater role in maintaining operational stability and
quality. Fig. 2.17 provide visual validations in realising the importance of Volt/VAR control
render by Nanogrid’s solar PV inverter against Utility in relation to demand load capacity.
The analyses were separated into 5 regions where different hosting capacity of solar PV, ESS
and grid were initiated. In addition, the solar PV’s inverter adopts PV-Static Synchronous
Compensator (STATCOM) controller [174, 175] for Volt/VAR compensation control. To
view comparative impacts on system stability, weak grid-forming Volt/VAR control was
employed.

The results concluded that if Utility serves more than 70% of the demand load capacity,
the Volt/VAR compensation uses grid-following operation otherwise employ grid-forming
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Fig. 2.17 Volt/VAR transient responses against demand load capacity in a Nanogrid: BTM
PSPG and Utility hosting dependencies.

Volt/VAR controller (i.e. PV-STATCOM). Fig. 2.17 showed region 3 (100% Utility) and 4
(80% Utility), the active and reactive power transients converges with small settling time
and minimal overshoot responses as compared to other regions. In this sense, higher DER
generation distributed on demand load expanses inverter’s role in securing voltage-frequency
quality. Indeed, the voltage and frequency levels are oscillating within the safe region
however, the results only demonstrate engagements of a single Nanogrid operation which yet
to conclude for big-scale deployments. Further investigation showed that negative impact on
system stability was recorded when deploying all 27 Nanogrids (Prosumer Communities).
Moreover, power quality performances dramatically increases on PSPG’s inverter in off-
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grid setting (i.e. islanding mode). Thus, BTM inverter’s role changes into a grid-forming
control operation where the design of Volt/VAR controller adopts droop control mode for
load sharing in parallel-configured generation and existence of isochronous generator is
mandatory which independently held constant with zero generator droop.

Diversely, in view of Prosumer interests for self-sustain electrification through optimum
DERMS scheduling of BTM PSPG and local demand load capacity, Nanogrid can afford to
switch into islanded mode (off-grid configuration) [176]. Islanding mode can be viewed in
two categorises; intentional [177] and unintentional [178]. Intentional islanding serves as a
viable solution during power quality crisis generated upstream which then can propagate into a
prolonged power outage disruptions. Whereas, unintentional islanding are unplanned forming
of Microgrid where power lines are still energised by BTM DERs despite network being
disengaged from the Utility. Unintentional islanding rises much complications in voltage-
frequency control or protection coordination which results in out of phase synchronisation
with grid. Furthermore, with DER inverter’s fault ride-through capability during recloser
operation in circuit breaker can impose risk field personnels working with energised power
lines. Thus, DER inverters must able to reflect formation of an islanding (anti-islanding) for
operators to acknowledge that the feeder is de-energised.

Fig. 2.18 presents voltage-power behaviours of Nanogrid in islanding mode, shutting
down all upstream generators at 0.55secs. As expected, the Volt/VAR support from the
grid has been isolated forcing PV-STATCOM (voltage-oriented control method) to take
full responsibility in compensating both voltage and frequency droop/surge in parallel to
demand load capacity. It manipulates current in the quadratic axis to order reactive power
injection or absorption while direct axis controls the Maximum Power Point Tracking
(MPPT). Alternatively, compensation of frequency droop can be stabilised using Freq/Watt
function by increasing active power using ESS coupled at DC-link and vice versa. However,
the PV-STATCOM has failed to perform full restoration on both voltage and frequency,
generating high index of fluctuation due to larger demand load capacity against available
power generation. The frequency level sags below permissible limit (0.95p.u.) and the
voltage sags by 14% as it losses 30% of power demand capacity. Such phenomenon proved
that in Microgrid setting, DER inverters are able to generate continual power generation while
the demand load continuous to sag further. This rises much concerns for field personnels to
perform power line servicing as excess power generation are distributing upstream.
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Fig. 2.18 Transient responses when Nanogrid operating in islanding mode.

2.4.3 Fault Interruption and Ride-through Analysis

The risks in propagating upstream fault interruptions by BTM PSPG system is inevitable,
inducing power quality issues which can result to distribution network failure. Therefore,
Prosumers need to take greater role in profiling and isolating BTM fault crises that transpires
locally. Conventional circuit breakers are no longer suitable due to high-impedance blind
spot ground faults in solar PV inverter at DC-side hence, new innovation for BTM PSPG
protection coordination is important to detect low current ground faults and likelihood of
nuisance tripping events from leakage current [144]. In addition, cases of temporary fault
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Fig. 2.19 Fault transients in Nanogrid during fault interruptions at primary distribution
transmission.

interruptions [179] can also cause malicious tripping of PSPG due to rigid Low Voltage
Ride-Through (LVRT) requirements.

Fault transient analyses were simulated based on down and upstream, symmetrical and
unsymmetrical, fault current injections to simulate momentary fault interruptions from
primary distribution level and in Nanogrid EPS respectively. Only line-to-ground and
line-to-line fault characteristics were selected as they present suitable corresponding fault
attributes in single phase operations. Fig. 2.19 presents fault transient activities in Nanogrid
with inductive load based on downstream fault current while upstream shown in Fig. 2.20.
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Employment of inductive load in the demand mix presents critical element when analysing
fault transients. It responses closely to phase shift loading in relations to three phase wye-
connected fault angle during single line-to-ground fault. It aims to comprehend phase shift
synchronisation during reactive power compensation. The Nanogrid connects line A (∠0◦)
and B (∠+120◦) of the three phase transmission to create single phase coupling with grid.
Results in Fig. 2.19 depict 3 types of fault interrupted at primary distribution level; (i) Line
A-to-ground, (ii) Line B-to-ground, and (iii) Line A-to-Line B.

i Line A-to-ground−the fault current in phase A introduces hike in other healthy phase
voltages as it finds a return path through the ground leakage capacitances. Thus,
potential of appliance malfunction could surfaced where power at load increases by
17.8%. Power deviation of 11.34 was observed from grid before it settles within
0.1secs. Nevertheless, the Nanogrid able to restore frequency balance rendered by the
grid-following Volt/VAR compensator in PV-STATCOM. The power generation from
solar PV did not suffer any abnormality as the DC-link voltage remains stable.

ii Line B-to-ground−the results should mimic Line A-to-ground fault however, it no-
ticed further hike in voltage level and greater Volt/VAR compensation response. Such
phenomenon was caused due to prior fault event not being cleared and thus, creat-
ing resonance and ferroresonance effects [180] in the leakage ground capacitances.
Therefore swinging the power exchange at PCC to suffer greater deviation index and
propagate back at solar PV’s DC-link which resultant power generation dip. Overall,
the system regained stability with the help from PV-STATCOM Volt/VAR controller.

iii Line A-to-Line B−where both lines are shorted together with low impedance. Com-
prehending that the power generation source is closer to the fault location, solar PV
generation, larger fault current magnitude is expected due to greater impedance be-
tween source and fault which resultant to sudden voltage drop. Likewise, both faulted
voltage’s angles were also affected based on reactance and resistance ratio of 7. The
Nanogrid system collapsed and did not recover.

Contrarily, Fig. 2.20 demonstrates transient responses of Nanogrid based on faulted
solar PV. The analyses focused on the impacts of fault current at DC-link and how it will
affect grid’s stability. Two types of fault were employed; line-to-line (short-circuit) and
line-to-ground (ground fault).

i Line-to-Line−in event of short-circuit at DC-link, the voltage collapsed and thus solar
PV being isolated from inverter. The inverter becomes highly inductive due to high
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Fig. 2.20 Fault transients of Nanogrid during fault interruptions in local PSPG.

fault current consumed by the inverter’s filter. The grid takes control over Volt/VAR
compensation and hike in current was noticed at grid however, it was not sufficient to
trigger tripping sequence. Overall, the system regained stability with a voltage dip of
0.03p.u.

ii Line-to-ground−the operations of solar PV under high fault current went undetected
as abnormality in Nanogrid or at grid were not seen. Typically, due to weak grounding
detection system (<1A), solar PV will remain connected to the grid as DC-link did
retained at least 70% of voltage charge creating a fault current path into PV-STATCOM
inverter. The grid did not suffer any voltage (insignificant) or frequency abnormality.
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Fig. 2.21 Solar PV’s ride-through operation during temporary fault interruption.

Based on new fault ride-through requirements suggested in IEEE Std.1547-2018, trip-
ping thresholds of local PSPG-ESS was redefined in relations to voltage, frequency and
phase angle during abnormal feedbacks. It defines mandatory LVRT boundaries and dis-
connection duration during voltage sag or swell crises. LVRT testing was visualised though
inducing momentary fault from grid and activate autorecloser to clear the fault. Fig. 2.21
presents PV-STATCOM capability during 100millisecs of Line-to-Line fault at primary-side
of distribution network.

Analyses of voltage and frequency ride-through performances were measured against
LVRT requirements mandated in IEEE Std. 1547-2018 report. During the faulted period and
may ride-through or trip ruling, solar PV was remain connected to the grid despite having
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voltage to dip at 0V . Subsequently, after fault being cleared, the voltage level enters into the
permissive region (0.3−0.65p.u.) within 0.16secs and continuously hike with large slew rate
piercing into mandatory region (0.65−0.88p.u.) before the 2secs mark. With the support
of grid-following Volt/VAR control rendered by PV-STATCOM, the system voltage and
frequency transient did not enter into shall or must trip regions and regained stability in
0.45secs. Frequency continuous operation region−within 0.98p.u. to 1.02p.u. and voltage
0.88p.u. to 1.1p.u.

2.4.4 Findings

Learned from the proposed case studies, operative impacts were analysed with respect to
demand-side energy management and how penetration of Prosumers can influences DSO’s
planning in the domain of EMS and ADMS without the engagements of TE framework
nor independent aggregators. It highlights DSR issues at global level due to poor control
intelligence in Prosumer’s DERMS. Likewise, penetrations of DERs at medium-voltage level
(IPP) serves no impact in mitigating DSR or network power quality issues as its market-driven
DERMS is optimised based on high return in investments without factoring in incentives
rendered by government bodies. On the contrary, issues in system interoperability was
investigated to view dynamic stability responses of BTM PSPG integration against Utility
support in power quality coupling (i.e. Volt/VAR optimisation, network loss minimisation
due to fault interruptions). Following discusses more on the technical and operational
impacts in relation to DSO perspective when liberalising network to accommodate Prosumer
penetration:

i Long- and short-term scheduling of unit commitment becomes uncertain due to Pro-
sumers’ ambiguity in BTM DERMS and PSPG generation capacities. Moreover,
generation variability from DERs in distribution network and unique control of ESS
utilisation against market prices will provoke high ramping rate in demand shift. DSOs
are constantly challenged to balance between peak demand and baseload where predic-
tions in profiling consumption curve on daily basis requires advance considerations
with regards to Prosumers’ influential elements. DSO needs to find a socio-economic
solution that can optimally steer power exchange at Prosumer(s) as a Community to
support DSR and power quality management while benefitting their energy billings.
Concerns in Prosumers participation in the wholesale energy market also bring forth co-
ordination and monopolism challenges between retail energy provider and the clearing
prices.
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ii Prosumers must take bigger role in securing BTM PSPG integration to enhance
upstream fault current resiliency and grid-forming capability to reduce propagative
risks in malicious tripping/outage interruptions and support compensation for network’s
power quality respectively. Critical design of Volt/VAR controller in DER inverter can
support/compensate voltage and frequency synchronisation with grid. Fault transient
analyses were investigated by introducing momentary fault interruptions from both
upstream and downstream with reference to Nanogrid PCC. Results verified that ground
fault interruptions were often left undetected especially during solar PV operations
and frequency of malicious tripping are high. Utility requires better ride-through
requirement to accommodate DERs’ initial voltage-current transients and events of
voltage sag/swell during large demand load shift. Likewise, the role in securing power
quality during grid-following and -forming (existence of isochronous generator), and
must be considered when designing DER inverter against regulation standard mandated
by IEEE 1547-2018.

2.5 Summary

From the learned case studies, comparing passive energy customer against Prosumer engage-
ments, they highlight critical demand-side impacts on DSO planning towards reliable EMS
and ADMS. Thus, the concept of grid-edge TE framework is introduced to optimise distribu-
tion managerial structure of Prosumers’ idiosyncratic BTM-DERMS and medium-voltage
DERs (i.e. IPP) into a communal and transactive demand-side coordination. Acknowledging
TE values and their respective beneficiaries, it steers Prosumers with better DSR prognosis
that supports DSO in contingency security planning (i.e. OPF, scheduling unit-commitment,
feeder-balancing). However, direct synchronisation between millions of Prosumer participa-
tions into a centralised DSO sole governance arises coordination issues. Moreover, Prosumers
energy trading interests must be protected and should not bear penalty/compensation fees that
may conflict with DSO’s whole system optimisation requirements. Therefore, the proposed
TE framework introduces independent aggregators to operate on behalf of those subscribed
Prosumers in securing optimal DERMS based on tailored socio-economic business models
based on energy consumption lifestyle. In addition, between aggregators, they are to coor-
dinate and collaborate with DSO to manage potential demand-side conflicts generated by
Prosumer Communities while facilitating Prosumers’ participations in the energy market
(cooperative yet competitive).
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In that sense, Prosumer Nanogrid environment comprising BTM DERs, NAN, nano-
scaled ADMS, and controllable loads are mathematically defined to give aggregators better
planning towards proposing TE business models and system identification for decentralised
optimisation. In subsequent chapters, modelling of cooperative yet competitive intelligent
system is reviewed for both DERMS in the domain of aggregator and asset-oriented Prosumer
based on TE values.





Chapter 3

Cloud Computing Architecture and
Intelligent System for Smart Grid
Control

This chapter seeks to extend further discussion into advance metering and communication in-
frastructures mentioned in Chapter 2.3.4, conceptualising power distribution control software
on a decentralised Cloud computing architecture that synchronises collaborative learning
intelligences between system operators and Prosumer energy needs in the proposed TE
framework. It aims to impart a holistic environment across the distribution network that is
sustainable, cooperative yet competitive, and hospitable towards IoT advancements.

Thus, prepositions were laid upon to push grid computing platform into Cloud based
technology, Smart Grid Cyber-Physical System (SGCPS), unlocking Cloud services for
automation and decision support needs in distribution grid control/management. SGCPS
operates on the basis of AMI and SCADA, extending communication from BTM and provide
the needed interfaces to other energy actor services. It also observes guarantee, efficient,
and low costs data transportation and computing bandwidth based on the intended applica-
tions. However, in a computational grid environment over a single Cloud infrastructure, it
demands for high computational power on the central processing unit to perform calculation
over millions of data streams from participants/IoT devices. Thus, SGCPS expands into a
decentralised and scalable Cloud infrastructure placing computing analytics and data storage
closer to where data are created. A user-oriented MultiAgent System (MAS) on flexi-edge
Cloud framework is proposed to establish decentralised computing platforms assigned to
individual energy actors when synchronises with central Cloud processing unit, managed by
DSO or independent aggregators. Furthermore, Agents of MAS adopts flat organisational
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structure to perform collaborative tasks executed by smart devices/appliances in response to
environment changes.

The objectives are to implement a data-driven Cloud-edge formatted system that employs
MAS suitable for TE-based distribution management−bridging Prosumers, aggregators, and
DSO into a single communal Cloud framework. Subsequently, modelling of intelligent
function modules are fused into Agents of MAS with respective controller bandwidth to
execute smart grid operations in view of TE-values and electricity market optimisation. It
focuses in defining Agent’s learning behaviour that can autonomously attune its competitive
yet cooperative actions against respective operating environment reactions.

3.1 Problem Descriptions

In many literature reviews, the concept of Cloud computing and Agent-based modelling for
modern power distribution operations have been well established due to its natural decen-
tralised settings suited for large-scale data-driven optimisation operations [181–184]. Agents
of MAS in Cloud act as a portable virtual operator that provides full-scale observability
on integrated devices’ performances and electrification interactions, evade from scalability
constraint (flexible towards system’s variability) [185]. Likewise, addressed in the referred
literatures, efforts in modelling device-to-network protocol standardisation and compliance,
creation Cloud platforms, computing intelligence deployment, and MAS content ontology
accelerate interaction securities between device’s responses and user’s control interests. Fig.
3.1 depicts the simplified centralised IoT Cloud architecture and MAS deployment as the
operation coordinator for smart grid applications.

However, revisitation into transitioning grid management platform from wired or secure
private network to public access Cloud network poses cyber-security and controller bandwidth
synchronisation concerns for system operators to guarantee power quality and management
efficiencies at distribution level. Globally, open issues in relation to SGCPS involving [186];
(i) cost-efficient in merging public to private Cloud for exchanging communication and data
in heterogeneous architecture, (ii) delay-free synchronisation of data traffic and controller
bandwidth while adhering to users’ data privacy requirements, (iii) integrating multiple
DERs/participants using Cloud services for large–scale interactive coalition, and (iv) grid
collapse vulnerability and cascading consequences due to single protocol failure (internet as
the weakest link). Meanwhile, locally, existing Long Term Evolution (LTE) in SGCPS also
poses concerns in view of [187]; (i) comprehensive surveillance of physical infrastructure
supported by on–demand virtual data centers, (ii) synchronising functions of virtual SCADA,
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Fig. 3.1 IoT Cloud infrastructure coordinated by Agent of MAS connecting devices and
users.

and controller bandwidth infrastructure in virtual machine, and (iii) coordinating user-privacy
requirements, various Cloud gateway interfaces (i.e. pre–processing, data distribution and
storage, analysis metrics), and self–service portal in a unified computing platform. In this
sense, practicability in utilising Cloud-based smart metering infrastructure (i.e. AMI) for
transmission-distribution services and automation is an unpopular choice yet alone suggesting
edge computing. However, development advancements in Cloud computing technology has
been very well established from Web-based search engines to home automation services thus,
progressive innovation can be well fitted for Cloud-based SGCPS [188].

Despite acknowledging the credibility in Cloud-based SGCPS for power distribution
management, it poses predicaments for big-data scalability/mobility and computational power
limitations with respect to various controller bandwidth in a single Cloud infrastructure.
Moreover, complications in provisioning data policy between multi-Cloud and generating
optimal solution in coalition environment remained a challenge as operating costs increase
exponentially in lieu of data trafficking and privacy optimisation, decreases usefulness for
decentralised grid management. Hence, decisions in selecting suitable end-to-end Cloud
services for SGCPS explores into edge computing in Cloud environment setting where it
partitions the data storage, and the processing between public and private Cloud instances;
offloading data concentration at central Cloud and safeguards direct communication between
private Cloud (system operators) and public Cloud (customers). It deals with personalised
IoT gateway servers for edge computing and contract data sharing platform in hybrid Cloud
environment.
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3.2 Cloud-based Smart Grid Cyber-Physical System

There are still many open questions to what extend Cloud services can serve the demand-side
managements [189]. With the penetrations of independent aggregators as energy service
operator for Prosumers and installation of DERs at both medium- and low-voltage levels,
DSO are challenge with immense societal impact on energy mix security and sustainability.
Existing demand-side management requires human-in-the-loop interventions due to DER
unreliable generation and coupling effects on network’s efficiency and ambiguous Prosumers’
consumption profile. Hence, grid management platform must seek modern solutions to
keep pace with the IoT needs modelled by energy actors at distribution network for better
participation/experience in the liberalised energy market. Without computational and visuali-
sation analytic support from smart meters for automated decision, distribution operators are
ill-equipped to draw insights into the system behaviour and automate optimise control due
weak comprehension of energy pattern dynamics.

Hence, introducing cyber-physical system in Cloud for smart grid applications, SGCPS,
is on-demand; bridging Prosumers, aggregators, and DSO in a unified physical and com-
putational infrastructure for "Big Data" to generate efficient and resilient demand-side
management. It is supported by deployment of measurement infrastructure (i.e. SCADA,
AMI) as the base components, enabling advanced informatics processing and cyber aug-
mentation for complex control and management schemes. Data streaming from millions
of smart meters provide historical and pattern matching between generation and demand
curve within a service area, curtailing management ambiguity and incentivise Prosumer in
a collaborative actions for optimal solution. Moreover, the proposed SGCPS is not only
limited to grid management but also participation in the energy market. A platform where
multi-participant can sell and bid excess energy from local-owned DERs in the wholesale
market and attune local energy consumption based on electricity dynamic and clearing
pricing signals at different time interval. The Cloud-based SGCPS is modelled based on edge
computing in hybrid Cloud environment [190] that links Cloud services (i.e. Software as a
Service (SaaS), Infrastructure as a Service (IaaS), and Platform as a Service (PaaS)) with
independent AMIs to control data-driven demand-side management.

3.2.1 Edge Computing in Hybrid Cloud Environment

On the surface, Cloud computing is an on-demand network access that offers facilities and
shared pool configurable computing resources (i.e. storage, communications, applications,
services, and server gateways). It can be rapidly provisioned and deploy computing resources
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with minimal intervention from service provider. In conventional IoT implementation
standards [157–159], Cloud computing is structured into multiple functional partitions
serving as a reference interface model between IoT device and user interconnectivity as
shown in Fig. 3.2a. Commonly, it involves three to five sequential core function layers
focusing in data management and broadcasting ability between operating environment
and decisional reaction-action states. Nevertheless, centralised Cloud-based management
introduces complications in network degradation services, single point failure due to Cloud
periodic interruption and data transfer congestions, transmission bandwidth limitations in
computation and control feedback responses proportional to storage used, and data mining
affliction when handling sensitive information. In this sense, penetration of edge Cloud
services serves as a viable solution in bringing data processing (e.g. collection, filtering,
feedback computations) closer to sources or control object in decentralised organisation.

Edge server gateway serves as an intermediate layer that interoperates device and Cloud
physical domain shown in Fig. 3.2b. It improves network bandwidth crises and enhance
response feedback performances for local optimisation purposes. However, positioning all
computing processes at the edge Cloud may also induce vertical flooding at central Cloud
[155, 156]. The function of Cloud is much dependent on the resources and system responses
from edge thus, problems such as uniformity can surface due to unsynchronised performances.

(a) Cloud computing. (b) Edge computing.
(c) Flexi-edge com-
puting.

Fig. 3.2 Application and service layer allocation comparisons, linking from IoT devices to
centralised Cloud.
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Fig. 3.3 Proposed Flexi-Edge computing infrastructure using MAS-based framework.

In such, Cloud is resorted to execute proxy functions presuming edge Cloud executions.
Likewise, in the case where insufficient communication bandwidth available between a
Cloud and an edge, the processing duty of Cloud will be taken over by edge temporarily. In
consequence, it is necessary to optimise assignment of computing tasks and roles at Cloud
and respective edge’s domains in response to the dynamic resources based on environmental
situations. However, due to its rigid edge Cloud architecture, it ignores fail-safe design
addressing performance degradation, scalability and latency issues, inhospitable to functional
development, and hostile towards user requests [191].

Taking points from Cloud and edge computing setbacks, improvements were focused in
optimising Cloud and edge tasks assignment by extending candidacy’s autonomy-adaptability
across IoT domains [192, 193]. Fig. 3.2c depicts that the core function, service management
layer, has integrated control regulatory in all three domains (i.e device, edge, Cloud) simulta-
neously. Likewise, the object data abstraction and application layers have broaden its data
visualisation from device sensory to real-time control applications and platforms to network
observability supporting overall response performances, scalability, and user’s quality of ex-
periences. The proposed flexi-edge architecture adopts user orientation ability system where
it provides real-time computing services suitable for user intervention driven by detailed
data information shared across IoT. It pays attention to managerial and autonomous control
behaviours on the operating environment to comprehend user’s intentions and preferences.

Fig. 3.3 illustrates the proposed flexi-edge computing infrastructure that uses Microsoft
Azure IoT edge device framework to implement full-scale IoT implementation. Deployment
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Agents of MultiAgent System (MAS) contract advance coordination between device and
IoT layers, utilising Cloud computing services that can reflect user’s intention and system
responses based on Decentralised Control Framework (DCF) ruling. It aids to broadcast
and exchange optimisation interests and negotiation expectation commands of energy actors
across the distribution network.

User Orientation Ability Environment

User orientation refers to human factor interventions as the prime feedback objective to
provide accordance for user’s quality of experiences. It attunes loop control responses based
on the information generated by user’s IoT devices to embed indeterministic behavioural
into computing processes. In this sense, high consistency of societal cooperative protocols
is imperative to built communal trusts between decision-making tools and users when com-
manding state position changes that adapts stimulating environment. Fig. 3.4 illustrates IoT
computing trajectory towards user-oriented processing and system environment adaptability
responses. The two-plane axis (edge and Cloud) describes the potential adaptability deviation
when balancing between Cloud’s stability as edge computing variation increases. Thus, user-
oriented computing reflects segregated autonomous control services based on user behaviour
without distressing computation scalability and adaptability.

Each STA comprises of multiple Agents classified into respective IoT domain carrying
idiosyncratic control applications. They comply to cooperative protocol and Agent’s privity
contract organisation that dynamically reconfigure to accommodate environment change.
Having a flat organisational structure for MAS, Agents can adapt to any user’s service

Fig. 3.4 IoT environment computing adaptability trajectory: Introducing user-oriented com-
puting.
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requests regardless of edge computing interactions. The user-based Agent in STA acts as a
mediator between user’s objective interests and system’s executions that are closely obliged
to closed-human-loop orientation concept.

Data-Sharing Privacy using COSAP Model

Suggested by Takuo Suganuma and et. al. in [194, 195], Contract-Oriented Sensor-based
Application Platform (COSAP) was proposed to overcome distribution of data privacy-
sensitive provisioning in conventional service configuration models [196]. The risk of data
distribution determined by device owner’s policy is not sufficiently reflected due to task
acquisition conflicts when considering Cloud provider’s policy. As a result, realisation of an
application is limited and data provisioning could be omitted due to mismatch of policies
and changes in environment settings:

• Difficulty in adopting distributed data sensing based on Cloud provider policies−providers
are burdened to defend/protect quality of privacy-sensitive data sharing between users
from accidental exposure that could discriminate user’s identity. On the other hand,
limiting the scope of disclosure can lead to malicious data-sharing processes offering
impotent information leading to peripheral sharing platform.

• Non-adaptive control service based on provider’s policy−it is important to have a
flexible distribution of control services responding to provider’s policy. The quality of
service must meet user’s requests when changing the protocol of distributed data.

COSAP utilises Contract-oriented Information Flow Protocol (CIFP) model that auto-
mates negotiation of Agents to contract distribution of data requests from users to synchronise
with provider’s privacy policy. Participants can freely register personal sensor devices onto
COSAP and create policy instructions (disclosure capacity) as data provider and invoke
sensor-based applications as consumer, transacting fair data sharing and optimising quality
of service in view of user’s interchangeable policies.

In this sense, Cloud service provider can fully block and secure risks of information
leakage exposed to external parties while COSAP extends peer-to-peer data sharing plat-
form among cooperative devices connected with contracts regulated by users themselves as
displayed in Fig. 3.5.
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(a) IoT Cloud model. (b) COSAP model.

Fig. 3.5 Distinguishment of sensor-based data sharing sequence between IoT Cloud and
COSAP to maintain privacy-sensitive contracts.

Hybrid Cloud Setting

There are three services provided by Cloud; Service as a Service (SaaS), Infrastructure as a
Service (IaaS),and Platform as a Service (PaaS) and its architecture can be modelled into
private, public or hybrid Cloud environment instances. Here it is proposed to adopt edge com-
puting in hybrid Cloud environment due to it flexibility, shared metering and communication
applications, and standardisation of data collection. Its unique ability to partition data and
processing between public and private Cloud instances gives superior in creating energy data
management, reporting, and analytics in a standardised, approved, and reliable for multiple
stakeholders. Moreover, it restricts cross access of data and services between Cloud instances
as it mandate security access controls and end-user authentication. Figure 3.6 presents the
proposed Cloud-based SGCPS for demand-side control and management where it highlights
use of hybrid Cloud environment and assigning Cloud setting for respective energy actors and
its corresponding computing services. DSO and independent aggregator uses private Cloud
setting equipped with IaaS and PaaS services, and extend communication through the hybrid
Cloud environment. Meanwhile, a public Cloud is created by aggregators linking to edge
Cloud where it provides SaaS for customer to utilise. The edge Cloud serves as the master to
public Cloud where it has full jurisdiction in running applications and data collection closer
to IoT devices while public supports with function modules and performs interrupt polling
data to minimise traffic congestion, computing latency, and storage limitations.

In view of flexible scaling for DER penetrations and Prosumer participations in Cloud
computing architecture, edge services provides an optimal solution where it relief both
networking pressure and service response time where computing processes and data storage
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(a) Edge computing in hybrid Cloud architecture linking
DSO, aggregators, and customers.

(b) Cloud computing services, providers, and applications in hybrid Cloud environment.
Adapted from ’Thoughts on The Future of Hybrid Cloud IT’ by Zorawar Biri Singh, 2019,
Medium Blog. Retrieved from https://medium.com/@zbirisingh/thoughts-on-the-future-of-
hybrid-cloud-it-1bc0716ae82

Fig. 3.6 Proposed hybrid Cloud-based Smart Grid Cyber-Physical System, SGCPS, for
demand-side control and management.
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is not done at centralised Cloud, but rather at the local edge Cloud of network (closer to IoT
devices). Afterwhich, post-process data will be exchanged to the centralised Cloud at a lower
bandwidth with smaller data package. In this sense, edge Cloud services fit the purpose in
connecting local network area with computing and storage capability, and provide aggregators
with Cloud identification of respective subscribed Prosumers for motoring purposes. Table 3.1
provides a brief summary of respective energy actors’ computing services and applications
in a hybrid Cloud environment for SGCPS.

3.2.2 Computational Power Needs

Big Data computing plays a key part in securing SGCPS services for smart grid applications.
Following discusses existing computing platform and how it fits in SGCPS towards demand-
side managements:

1. Decentralisation−It is ideal to unload computational stress from a centralised domain
and pushing them into edge Cloud where storage and computation processes are closer
to devices/user. Moreover, it eliminates latency and data misinterpretation issues when
performing computation at the edge as compared to over the Cloud; complications in
data traffic congestion and loss of data package may be suffered during transmission. It
uses interrupt polling approach to send selected/compiled data from the edge Cloud to
centralised Cloud using strategic time scheduler to avoid data overlapping with larger
data transfer bandwidth. However, modelling cybersecurity system will be a challenge
for data management and computation glitches where operators has to maintain edge
to Cloud cohesiveness while privatising sensitive information away from public access.

2. Scalability−Increase Cloud flexibility to accommodate large-scale of participant and
connect millions of devices with full visualisation (i.e. SCADA-AMI) and control

Table 3.1 Edge computing in Hybrid Cloud SGCPS model for respective energy actors.

Layers Access Services Management Infrastructure
Delivery User Authenticate Data Analytic Security Framework Storage

Common API Stability Analysis Monitor Resources Computing
Service Register Performance Manage SLA Network

Simulate/Model Load Balancing
DSO Private Private Public Hybrid

Aggregator Public Hybrid Public Public
Prosumer Hybrid Private NIL Private

(Edge)
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during operation. Despite employing autonomous management at the edge, data
dynamic provided by energy provider must be tapped to increase global awareness
such as energy pricing and DSR participation. This includes DERs owned by IPP
integrating into grid operation that requires non-trivial control to keep demand-side
supply and demand equilibrium. In this sense, scalability serves a crucial component
when modelling Cloud application and services for new computational approaches.

3. Time Critical−optimised computational sequence are orchestrated to gain synchronised
loading and unloading of data across the Clouds. Some applications requires real-time
data (i.e. load shedding, storage state) even during momentary offline with Cloud.
Hence, it is best that computation are done at the edge Cloud connecting to wired
controller (i.e. inverter control, VVO) where prediction model can be employed using
existing stored data to estimate the next state. Some studies have shown that SCADA-
AMI malfunction is inevitable despite having stable data or secured Internet standard
like TCP/IP protocols due to unprecedented TCP delays in control flow and data losses.

4. System Virtualisation Consistency−communication consistency in SCADA-AMI sys-
tem is critical when sharing of data across multiple IoT devices within the same
bandwidth. Here, consistency refers to the levelled communication protocol where
command languages and control across measuring devices and data acquisition are
synchronised. It is key to search for bandwidth consistency and real-time guarantees
between edge and Cloud during data replications. The risks of system operator when
momentarily loses their control layers suffered coordination failure thus, SCADA-AMI
solution for the future smart grid needs to have high reliable and maintain communica-
tion consistency.

5. Data Security & Tolerance−exposure to data breech or ill-modified computation
thread events gives a lot of tractions to system operator when operating demand-side
management over the Cloud. Cyber terrorists seek to take advantage of weak firewalls,
seeking opportunities to monopoly the power commodities market. In this sense,
computing power needs at edge and public Clouds will require to reserve greater
resources for security and encryption processes. In addition, computing and data
processing must operate while facing security breech or server malfunction hence,
alternative measures must act upon to secure consistency for time critical services.
Byzantine Fault Tolerance is one of the common solution during such incident due to
it decentralised nature in reaching consensus despite some of the server nodes failed to
respond or responded with falsified information.
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Discussed in [197], it presents case studies on analytic performances of edge computing
processing in hybrid Cloud involving workload parameters, input and output data size ratio
representation, and speed up parameter accessing loading time in Cloud against edge by
measuring communication-to-computation ratio. Comparative results presents quantifica-
tion of computational power and speed comparison when using edge computing in hybrid
Cloud against centralised Cloud architecture. Key distinguishment suggested that application
characteristics (i.e. selectivity and edge bandwidth) affect data processing performances.
Bandwidth measurement between local edge Cloud and centralised were analysed based
on minimum and maximum thresholds to validate communication and computing process-
ing power. Despite acknowledging that Cloud computing is 2 to 5 times faster than edge
Cloud, it is limited due to poor data time transfer which affects the overall performance
when dealing with large data inputs. Moreover, the computation speed may differ subjected
to the application or running services required on the processor where results proved that
edge Cloud have faster processing time than centralised Cloud using similar large-scaled
data set even at greater bandwidth rate. Nevertheless, edge Cloud speed-up have better
processing management despite small bandwidth rate between hardware and software design
where it deviates from system bottleneck. Subsequently, similar processing performance
comparisons between hybrid edge Cloud setups, single and separate cluster configuration,
were analysed using the four MapReduce applications [198]. The results exposes a balanced
time performance tradeoffs due to inter-cluster networking link structures. In single clus-
ter, establishment of peer-to-peer connection across nodes thus, dissemination of data is
intermediate and running of computing tasks is closer to data (reduces shuffling of data).
Meanwhile in separate cluster, it is limited to a maximum bandwidth threshold due to single
link connectivity per edge cluster. The bandwidth limit can be improved by creating more
linkage between Cloud and edge Cloud if there is availability in creating more links and
bandwidth increase proportionally to links employed. However, deployment practicability is
questionable and unstable.

3.2.3 Smart Metering Infrastructure Requirements

Distributed software framework equipped in AMI serves as a medium in facilitating opti-
mum data and control access for demand-side visualisation across multiple energy actor
environment. It aims to foster competitive marketplace in distributed setting, providing new
services to better manage demand-side requirements influenced by Prosumers’ BTM DERs
and private-owned IPP. Hence, coupling emerging IoT technologies with SCADA system
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and AMI software design enables geospatial knowledge on; (i) local energy awareness, (ii)

state estimation, and (iii) demand-side engagements in lieu to distribution power quality
and operation resiliency. Hardware-Software interoperability is key, developing standard-
ise middleware protocols for communication/data processes across heterogeneous actuator
and sensor devices. It is suggested that SCADA-AMI system is linked to the edge Cloud,
enabling real-time data collection and computation through asynchronous communication
(i.e. publish/subscribe activity). The publish/subscribe communication paradigm removes
information interdependencies between operator and consumer which allows developers
to create a distributed and bilateral micro-services that perform send/retrieve data to/from
multiple entities (i.e. software or hardware) respectively. Therefore, employment of REpre-
sentational State Transfer (REST) design principles is proposed to provision micro-services
in data access using open and web-based standard formats that is easy-to-use interfaces and
loosely coupled to IoT devices.

Proposed in [199], a Flexmeter platform is fused into smart metering infrastructure which
integrates diversified technologies and devices with sensitive monitoring and management for
demand-side operations. It is designed with three-layered services in edge Cloud: (i) device
integration layer, (ii) middleware layer and (iii) application layer. In device integration layer,
it uses Device Integration Adapter (DIA) to create a unified communication interoperability
between different default language protocols from wired and wireless IoT devices (i.e. IEEE
802.11, Z-Wave, BLE, or 6LowPan). DIA is a software module that converts measuring data
from devices into Flexmeter formatted data, transcending standard protocols and data sources
of connected hardware technologies which is then pinged to the edge Cloud using message
queuing telemetry transport protocol. In addition, DIA can also integrate real-time digital
simulators into the Flexmeter to gain simulation processes for state estimation purposes.
In middleware later, it consists of stackable software modules operating in asynchronous;
(i) establish active communication with DIAs using MQTT publish/subscribe protocol, (ii)

perform data exchange management (i.e. command instruction, storage, bandwidth), and
(iii) render REST web services for access authentication. It routes all data events and send
command messages to and from the device integration layer managed by inbound and
outbound data traffic pipeline manager. Lastly, the application layer contains communication
protocols that connects to the edge Cloud server gateway and service application for data
interrupt pooling from device to edge Cloud in view of available bandwidth. It offers
tools and APIs, designed for distributed services between edge Cloud gateway and IoT
measuring devices. In addition, cohesive Transport Layer Security (TLS) services for secure
communication channel and access authentication is introduced to enhance data integrity
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during transmission from device to only local edge Cloud. Note that, gateway/data sharing or
scalability is only done through the edge Cloud hence, SCADA-AMI does need multi-tenancy
software infrastructure.

3.3 Modelling Layered Control Concentrator in Edge Com-
puting Hybrid Cloud for Transactive Energy

This sub-chapter reviews the use of edge computing hybrid Cloud environment to impart
layered control features that synchronises for modern demand-side operations. It aims to
facilitate device-to-user interactions at the edge and execute intelligent control services for
demand-side interoperability based on assigned TE functionality at respective layer domain
offered by independent energy aggregators.

A Distributed Control Framework (DCF) is proposed to categorise distribution network
into three layered managerial zones as seen in Fig. 3.7. Each layer is assigned with selected
TE regulatory features to satisfy distributed EMS and ADMS objective functions at global
perspective, which uses Cloud services driven by Agents of MAS to cooperatively inter-
act/reason and execute optimal local actions based on compounded system reactions. In
addition, a bisection edge computing framework is suggested to separate IoT edge device
runtime and IoT Hub gateway; endorsing continual computations and bidirectional com-

Fig. 3.7 Proposed multi-layered DCF interoperating SCADA-AMI and MAS in edge com-
puting hybrid Cloud environment; linking energy actors for demand-side management and
operations.
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munication that are free from centralised Cloud connection issues (i.e. operable in offline
setting).

Modelling includes; (i) assigning control functions and develop computing intelligence
in relation to energy actor’s governing domain to achieve optimum DERMS (i.e. aggregator-
Prosumer), EMS (i.e. DSO), and ADMS operations, (ii) establishing edge-based IoT archi-
tecture with bisection edge gateway component emphasising user-oriented ability system and
edgeHub-to-Cloud connectivity, and (iii) deploy contract-oriented sensor-based application
platform (COSAP) [194] for data-privacy sharing policy specified by user.

3.3.1 Core Control Functions in Distributed Control Framework

The proposed DCF comprises; primary, secondary, and tertiary layers. They perform inde-
pendent computation processes with parallel executions based on synchronised optimisation.

Fig. 3.8 Overview of TE values in DCF against controller bandwidth using edge computing
hybrid Cloud environment.
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Respectively, each layer is defined with unique control characteristics that highlight leading
objective function before establishing a joined maximisation or minimisation expectation of
a state function−increases resiliency and efficiency as a whole system.

The modelled managerial orientation of DCF defines; (i) primary layer focuses on
selecting desired TE services made available for Prosumer in coordinating ESS charging-
discharging operations, energy trading at PCC, and wholesale market participation in real-
time, piloted by the subscribed TE-biased business model proposed by aggregator. Pro-
sumers will benefit from a reduced energy billing influenced by the clearing price reaction
approach and incentives from DSR contributions, (ii) secondary layer is governed by aggre-
gators providing options for TE services and Cloud infrastructure that relays operational
response/request to make necessary projectile corrections at respective scheduled time in-
tervals for global demand-side optimisation (i.e. DERMS, ADMS, DSR), and (iii) tertiary
layer for DSO which oversees the overall power delivery transaction across the distribution
network, governing Utility-side EMS and energy market policies that can steer aggregators
to observe fair-play, cooperative yet competitive environment for Prosumer Community.

The structured objective statement assignments at respective control layers were de-
fined such that distribution network state estimation optimisations and dynamic security
assessments are brought closer to aggregators while DSO focuses in managing grid’s assets
(e.g.transmission line loading, unit commitment, electricity market) and ordering network
equilibrium and efficiency. Fig. 3.8 exhibits control functions in DCF accordance to respec-
tive Cloud layers during networked demand-side management.

Distributed Primary Control Layer

The modelled primary control layer operates as a responsive TE economic mechanisms based
on two-sided market clearing model (energy demand vs. price) and local generation avail-
ability. Correspondingly, decentralised elements remain as focal action-reaction observation
taking policy and TE values [200] as key decisional parameters. The decentralised elements
refer to Prosumers’ unique energy and economic management interests that are intended
for multiple stakeholders to reach common interoperability objectives. The primary control
BTM DER matrix shown in Fig. 3.9 illustrates classification of coordination approach trends
shifting towards emerging distributed decision-making autonomy and yet gained global
optimality.

Primitively, classic top-down switching approach [201] has served to be the simplest
and effective DSR program that focuses on strategic switching of one device group (e.g.

air-condition, thermostats, water heaters) during peak demand crises. However, the control
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Fig. 3.9 Identifying pros and cons in demand-side management using four region matrix.

algorithm executions are much dependant on statistic evaluations where the states of devices
and their responsiveness were unknown. Furthermore, it fails to interoperate human-factor
anatomy and often interrupt consumers’ usage preferences. Ideally, the control function eval-
uations are biased towards worst case scenario assumptions to compensate state estimation
errors−lacks in unlocking full potential performances from IoT devices.

In response, AMI was proposed to gain managerial visibility of consumers’ demand
and supply demographics, and issue optimising dynamics for global executions. Having
the luxury of local information and full device interactions, centralised optimisation control
scheme unlocks direct reaction-action performances of individual devices with high opera-
tional transparencies. However, autonomy issues prevail as top-down switching approach is
still key in directing device’s state-action responses and privacy threads will surface as local
informations are broadly communicated. The centralised data-driven controller is at risks of
single point failure and scalability response issues as network aggrandises.

Emphasis in providing Prosumers’ liberations in making local decisions to transact
personalised power exchange at PCC is admirable in future’s electrifications. Endorsing
precedent price-reaction accession forces local energy management controller to constantly
attune demand load capacities in parallel with wholesale electricity prices to gain economic
optimality. It has greater advantage in providing consumers’ with managerial options when
steering respective reaction-action state responses of online devices. However, due to
its limitation in communication infrastructure, utilities have troubled in profiling suitable
price reaction within the demand-response pool without acknowledging device’s state and
Prosumers’ energy usage preferences.
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Conclusively, the primary control layer aims to coordinate TE values where BTM DER
operations are communicated in a two-way negotiation model based on electricity price
dynamics that are deeply influenced by Prosumers’ energy exchange quantities. Due to
its unique market-based control features [202] that drive uncertain demand responses into
collaborative actions with derived auctioned prices, it somehow triggers a predictable reaction
system. Comprehensively, the primary control layer provides rudimentary coordination for:

1. self-optimisation management between PSPG utilisations and demand load capacity
against distribution locational marginal price for reduced electricity billing (market-
based control response).

2. comprehend ride-through requirements when integrating PSPG at PCC and observe
grid following power quality regulatory functions.

3. non-monopolist electricity market participation and energy sharing schemes (incl.
ancillary services).

4. comprehend operating standards and restoration protocols at respective transacting ele-
ments. In addition, response to peak demand curtailment, load shedding or other similar
programs (e.g. outage, interruptions) that supports feeder-based ADMS operations.

5. interface observable and auditable AMI (plug-and-play) that can encapsulates inter-
active devices, broadcast participant identification with data privacy measures, and
extends geographical status that can influence demand demographics.

6. Partnering with EMA or demand response service providers to formulate a TE value
proposition programs, incentive offerings, and partnership contracts.

Quasi-Centralised Secondary Control Layer

The secondary control layer mimics similar operating functionality when piloting a Microgrid
system, serving as an aggregator for Prosumer Community, and IPPs in response to DSO
demand-side requirements. Here, the control features are separated into two intelligence
domains; relay ADMS and market functions initiated by DSO, and classifying Prosumers
into community formation for optimal DERMS-ADMS. It targets four diversified Prosumers
transactive mode operations and aims to strike operational balance in power exchange
demographics using market-based model [203]; (i) appreciate distributed energy managerial
preferences and concoct global optimisation executions, (ii) facilitate in bilateral wholesale
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market price signal (inclu. price clearing) engagements in response to DSR and available
energy reserve pooling, (iii) offer optimum and flexible TE business models, and (iv) proactive
towards operation resiliency and power quality (feeder-based).

The primary regulatory concept in quasi-centralised facilitates centralised managerial
solutions based on distributed reaction-action responses (regional/community), addressing
compensation or restoration strategies to secure ADMS criterion. Its control features priori-
tise scheduling and dispatching of Prosumer Community BTM DERs for the provision of
grid services in compliance with network constraints or operating requirements (e.g. trans-
mission congestion, load dynamics Volt/VAR compensation, spinning reserve capacity for
peak demand and outage crises). Critically, to facilitate optimal market-based pool strategy
and Prosumers’ controller intelligences, decentralised locational marginal prices (DLMP)
mechanism is employed to allocate energy pricing, payment, and cost settlements in whole-
sale market taking distribution losses and operation costs into consideration. Furthermore,
innovations for real-time incentive policy schemes can encourage Prosumers to assist DSO
in improving DSR and interruption resiliency.

Lastly, decentralised edge Cloud infrastructure regulated by aggregator is established to
interconnect online devices and wide-area operation visuality between communities.

Centralised Tertiary Control Layer

The tertiary control layer focuses on DSO’s operating EMS and ADMS functions, and serves
as the energy market regulator and policy maker while minimally overlooking DERMS
operative status/analysis as a subsidiary governor. In addition, close collaborations with
Cloud service provider to establish networking infrastructure for AMI and communication
with interactive devices. Primitively, adopting centralised computing approaches (top-down
switching), DSOs were burdened with both EMS and DMS roles in both distribution systems
and its affiliated subsystems; not limited to emergency control planning and full coordination
with TSOs to minimise energy losses. However, with DER penetrations and Prosumer
engagements, real-time managerial of DERMS and ADMS have been lifted and disseminated
into primary and secondary control layer. Nevertheless, DSOs of today are required to cope
with Prosumers’ energy interests by modelling new functionalities that can increase system
wide efficiency.

DSO is also responsible in conducting reliability and security analyses to increase
operational resiliency against power outage threads based on interconnecting requests. It too
involves in scheduling of unit commitments with economic dispatch settlements based on
forecasted net load and dispatchable generation trajectories. Conjointly, as a regional market-
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based operator, it secures fair-play environment in buying and selling prices of electricity
(spot-on and clearing), generate incentive and policy programmes for TE engagements, and
market for reserve services. It has an important role in brokering wholesale and retail energy
price signals between Prosumer-IPP and aggregators.

3.3.2 Implementation & Testing of Edge Computing with COSAP

The realisation of proposed multi-layered DCF is broken down into two phases;

1. Modelling of hybrid Cloud environment based on edge computing gateways configuration−employs
a third-party Cloud service by Microsoft, Azure IoT Edge, that provides on-premise
and offline analytics to drive business logic against local online devices. Here, it aims
to use hybrid Cloud infrastructure to correspond with the proposed multi-layered DCF.

2. Employing COSAP-based MAS for peer-to-peer data sharing−using third-party dis-
tributed multi-agent framework, PIAX (peer-to-peer interactive Agent extensions), to
implement data sharing application of sensor-based devices information using CIFP.
Agents of MAS are modelled with contract protocol functions to perform data exchange
management between users and devices.

Developing Flexi-Edge Hybrid Cloud in Microsoft Azure

Using Microsoft’s Azure virtual machine and guidance from Azure IoT Edge documentation,
a simulated IoT services were established to represent the proposed Cloud edge environment
shown in Fig. 3.7. Using the in-built virtual machine tester, it allows users to create multiple
IoT edge devices, IoT Hubs, start the IoT edge runtime on the virtual devices, and remotely
send telemetry information from device modules to IoT Hub. Fig. 3.10 illustrates the
deployment of edge computing hybrid Cloud using Microsoft Azure IoT Edge platform to
built the proposed multi-layered DCF that offers personal computing and data storage domain
that synchronises communication across aggregators.

The concept of edge runtime provides fundamental real-time services in managing
constant connectivity and security for all connected smart devices (local) isolated from
the internet despite various adopted communication protocols. It also have multiplexing
capabilities that creates individual device identity for Cloud and leverage that edge device to
store and forward if the connectivity to Cloud is disrupted. Besides offering these services,
the runtime itself is designed to manage modules which contains chain of instructional
actions and data processing pipeline to solve end-to-end scenario (e.g. converting & filtering
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Fig. 3.10 Implementation of proposed multi-layered DCF environment using Azure IoT
Edge.

of data, built customise algorithms). These modules are then packed by Docker containers in
Azure container registry and distribute across Cloud on various computing operating system.

The Azure IoT edge device processing pipeline is broken down into five sequential data
transactions employing various in-built modules:

1. Protocol ingestion module talks a protocol with unique devices which are not internet
compatible. It ingests data from respective device, translating protocol into a synchro-
nisable language for devices. It also provide data routing information within the Cloud
environment that points to targeted IoT edge.

2. Data formatting module does conversion of the data into binary message for trans-
portation, establishing interaction between Cloud services. The IoT edge runtime is
used to connect distributed clouds and send data up to Azure.

3. Custom algorithm module is established through a process called Cloud offload,
running the Cloud compute services onto the edge. These services are available in
the Cloud (library) which provide various optimisation functions in near real-time
analytics given to solve individual problem statements.

4. Azure IoT Hub configure and monitor each device lifecycle from the Cloud with IoT
edge runtime to gain full control configurability. It configures a workflow from the
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Azure container registry calling specific modules and disseminate them on a targeted
device and run Cloud intelligence on the edge (reducing computational burden on the
Cloud).

5. Azure Container Registry serves as the centralised Cloud system that acts as a con-
tainer repository using Docker engine platform where IoT Hub can fetch functional
modules and send insights of edge. It serves as a library that stores various customise
computational intelligence algorithms and data formatting solutions either provided
locally by the Cloud provider or external parties for mass sharing.

For testing purposes, a singular Azure IoT Edge environment is developed simulating a
single Nanogrid system connecting to a household thermostat simulator device and commu-
nicate with IoT Hub and Azure container registry. The thermostat device reads temperature,
pressure, and humidity of the room. Fig.3.11a demonstrates the creation of Azure IoT plat-
form with subscribed edge modules, extending communication from thermostat sensor to the
Cloud. Subsequently, both data filter and device modules with dependencies were compiled
into an IoT edge docker image by adding .esco extension and published to the docker registry
container shown in Fig. 3.11b. It is also necessary to prepare the routing configuration for
the actual edge runtime in Azure IoT Edge Device to transport output real-time temperature
data reading from sensor module to input filter module which then sends messages upstream
to IoT Hub.

Finally, initiate runtime which connects device’s ID and credentials to the IoT Hub and
start the IoT edge runtime at the local machine. Fig. 3.12 presents the internal communication
logs in Azure IoT portal with command lines. The logs shown in Fig. 3.12a is reading the
configuration, calling the three modules; sensor, filter and edgeHub module. Internally, it
is getting the docker containers from the various configuration registries and execute them.
Fig. 3.12b presents the lists of existing modules running; agent, sensor, filter and the fourth
module, edgeHub−responsible in establishing communication with IoT Hub and does the
routing. Fig. 3.12c displays the real-time data logging traces between temperature sensor
module and messages arriving in the Cloud (flags instances when temperature is above 25
degrees).

Fig.3.13 presents computing performance comparisons on two different Cloud environ-
ment; over the centralised Cloud against decentralised edge architecture (singular IoT Hub).
Performance analytics on data management-transportation and bottleneck computations were
evaluated to comprehend tradeoffs and superiority operations, suited for TE-based NAN
deployments (high penetration of smart appliances/devices). The performance matrices
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(a) Creating IoT Hub and Edge device runtime environment.

(b) Creating data filter module.

Fig. 3.11 Employing Azure IoT edge Cloud services to establish decentralised computing
ability in local environment; closer to device.
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(a) Set-up and start IoT edge device on local machine, creating a docker container to hold all the
necessary function modules.

(b) Lists of modules running/activated in IoT edge device runtime.

(c) Data logs between temperature sensor module and messages retrieved by Cloud.

Fig. 3.12 Bringing Azure IoT edge device online and test communicating system.
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were measured using; (i) Processing delay−time taken to execute and complete the task
assigned including processing element against data load or task length capacity, (ii) Process-
ing costs−the costs incurred for requested computation capacity in CPU per hour rated by
the Azure IoT Cloud services, and (iii) Processing capability−CPU data processing power
required for the Cloud service entity based on millions of instruction per gigahertz. The size
of task length is measured in billions of instructions (BI) packages.

Fig.3.13a reveals that IoT edge device configuration had a superior processing delay in
relation to task length ranges within 10BI to 1000BI (<15 devices) however, deteriorates
as it exponentially increases. Indeed, it is inevitable that the processing delay will increase
in relations to the task length loaded into the Cloud system. However, a distinct delay
curve response was recorded for edge system in case number 11 and above as it enters in
the bottleneck threshold region forcing to consume large task length. Whereas, in Cloud
settings, it managed to keep a small incremental deviations due to its natural large processing
capacities.

In addition, Fig.3.13b investigates into computation delay and data management effi-
ciency to further verify the results attained in Fig.3.13a. It presents a cascading effect in
edge processing delay as computation time required increases due to decremental in data
management efficiency. Hence, concluded that edge architectures are designed to cater
personalised Cloud environment that proffers portability solutions when connecting local
devices with computation processes at edge. Nevertheless, to mitigate processing delay when
assigned with large task length, edge system will require to subscribe multiple IoT Hubs and
divide IoT devices into smaller cluster. However, higher operating costs will be incurred as
shown in Fig. 3.13c.

Fig. 3.13c demonstrates that edge has greater processing power and reduced processing
delay at the expense of higher operating costs to maintain the Cloud services (inclusive of
upstream Cloud container registry). A summarised comparisons between Cloud and edge
computing settings is presented in Table. 3.2.

Extending COSAP for Privacy-Sensitive Data Sharing

The contract-service model proposes three negotiation protocols; basic contract, contract
observation, and contract management. The basic contract protocol governs device sensors
to submit unbiased data flow contracts based on provider’s policy and users relationship. It
also handles data privacy, masking provider’s personal information attached to the sensor
data. Contract observation protocol monitors execution of Agent’s contracts and user’s
context arrangements. Contract management protocol manages modification, establishing
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(a) Comparison of processing delay response between Cloud and edge applications.

(b) Cloud and edge computing comparisons against data management efficiency (DME)
in relations to task length.

(c) Service costs and processing power consumption comparisons in Cloud and edge
configuration (red:Cloud, green:edge Cloud).

Fig. 3.13 Performance comparisons between Cloud and edge computing services.

re-contract of other sensor devices, and cancellations of Agent’s contracts. It also oversees
optimisation of data flow in relations to the changes made in user’s context (requirements).
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Table 3.2 Summary of performance bottleneck between Cloud service efficiency and compu-
tation overhead.

Parameter Cloud Edge
Service Scale & Opera-
tion

Global-based resource plan-
ning.

local directive w/ custom im-
plementations.

Data & Communication
Security

service provider dependency. stackable encryption layers at
local.

Nodes & Bandwidth re-
quirement

internet speed reliance (high
traffic & latency).

wireless gateway/access point
(refined communication to
core hence low latency).

Service Model provides the IoT infrastructure
as a platform & software ser-
vices

offload content & event pro-
cessing, virtualisation of net-
work function & accelerator,
device management.

Operating expenses (de-
vice per server)

High ($1500−3000) Low ($50−200 local gateway
& $1000 for Cloud container
registry)

Hence, automation of function deployment is rearranged to maintain quality of exchange
service.

There are four types of Agent functions modelled in COSAP environment; user, manager,
application, and sensor. The user Agent create an interface and display processed results
between users and device with notifications of provider’s policy and consumer’s specifications.
As a contract governor, manager Agent perform validation of contract and generate privacy
data protocol when sharing information. The application Agent serves as an application
manager controlling sensing data stream, exchanging selected data of user’s components. The
sensor Agent identifies registered devices and makes contracts with application components
based on provider’s policy.

Fig. 3.14 illustrates the COSAP architecture and Agents relationships when creating
the outline contracting policies to ensure privacy-sensitive is achieved when exchanging
sensor data. The COSAP architecture is implemented in PIAX , a third-party multi-agent
platform, utilising the peer-to-peer location aware network system and defining virtual Agent
as users or devices with respective functions. In addition, these Agents must comply with the
proposed contract-service protocols and its contract contents/policies.

Fig. 3.15 describes all three contract-service protocols sequence chart, comprehending
creation of CIFP models delivered by respective Agents in COSAP environment. Fig. 3.15a
demonstrates Agent’s sequence in creating basic contract for consumers to send data request
message to provider. The provider will then validate the contract in comparisons with
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its own performance requirements. The contract contains data type information, sensor
performance, and consumer’s policy. Once all contract are synchronised and agreed upon,
the provider’s content will be sent to manager Agent for publishing. Fig. 3.15b presents
the contract observation protocols for both policy and network change. Here, the manager
Agent takes a leading role in detecting any changes in the requested policy and proceed with
necessary modification to the contract. Fig. 3.15c defines the contract management protocol
sequences for three possible cases; modification, cancellation, and recontract. In component
modifications of contract, the manager Agent send an offer to it corresponding partner
(provider) highlighting intended changes (i.e data quality) in the contract. Sensing data will
only start publishing once the contract is agreed between both manager Agents. Likewise,
in contract cancellation, both manager Agents will remove the contract and exchanging of
data finishes. However, in recontract management, the process restarts from creating the
proposed basic contract and offering to other corresponding Agents. Upon agreeing with the
new contract parameters, manager Agents from both parties will cancel the old contract and
starts exchanging sensing data with its partner based on the specified data quality and sensor.

Using PIAX platform, the proposed COSAP is integrated to view Agents’ responses to
CIFP and sharing of sensing data. By default, the initialisation of contract content and policy
are shown in Fig. 3.16; initialise ApplicationAgent101 and ApplicationAgent102 using

Fig. 3.14 COSAP architecture and Agent components.
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(a) Basic contract protocol sequences.

(b) Contract observation on policy and network change sequences.

(c) Contract management sequences on modification, cancellation, and recontract.

Fig. 3.15 Modelling sequence of contract-oriented information flow protocols.
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(a) Defining Agents and two sensor device units for two participants (users).

(b) Register contracts between Agents and sensor devices.

Fig. 3.16 Registering contracts and initialisation of Agents in PIAX environment based on
two connected sensor devices.

ManagerAgent101, create contract with SensorAgent201 and SensorAgent202. Likewise,
ManagerAgent201 initialise ApplicationAgent201 and ApplicationAgent202 and create
contract with SensorAgent101 or SensorAgent102. Fig. 3.16b verifies that all Agents have
established basic contracts with corresponding partners and both ManagerAgent comprehend
policies managed by contract management.
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Fig. 3.17 Change in contracts.

Subsequently, ApplicationAgent101 and 102 changes its contract policy by requesting
high or low data accuracy. Likewise, SensorAgent101 and 102 also changes its content defi-
nition targeting the data accuracy; high−SensorAgent101 and low−SensorAgent102. Fig.
3.17 displays the processes of Agents changing the contract observation and management
protocols. In contract 1 (id:1674557768), the policy was changed to data quality HIGH using
modify protocol defined by ManagerAgent101. Contract 2 (id:9824754571) protocol was
cancelled and no longer executed by the provider as ApplicationAgent102 changes its policy
to LOW data accuracy. Whereas, contract 3 (id:3685657955) undergone recontract protocol
as the user’s requirement has changed to HIGH data quality from MIDDLE and it synchro-
nised with SensorAgent101 policy content defined as HIGH. Contract 4 (id:8568485688)
remains unchanged as the user’s contracted protocol requested a LOW quality data sensing
and the established policy contract remains at MIDDLE.
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3.4 Multi-Agent System Intelligence

Agents of MAS are programmed with data-driven intelligence, modelling customise com-
putational algorithm modules into Azure container registry Cloud (using Azure artificial
intelligence toolkit as the base function model). Personalised function modules are pro-
grammed to solve holistic energy management solutions and deployed at respective DCF
control layers. The intelligences adhere to cooperative yet competitive executions in electric-
ity market or DSR operations across participating energy actors.

An Agent is only as intelligent as its knowledge. Hence, the key in edge computing lies
within Agent’s ability to autonomously acclimate and learn from its hosting environment.
Through data analyses measurements, intelligent Agents provide close-to estimations on oper-
ational uncertainties and host strategic resolutions in securing either global or local objectives.
Nevertheless, implementations of Agents’ learning behaviours are typically leaned towards
cooperative settings to gain operation equilibrium in real-time (biased management/business
models) [183, 185]. The importance in providing Agents with deceptive behaviour are often
neglected in multi-agent environment, adding hereditary pressure on Agents to generate
policies that are collaborative but yet competitive.

3.4.1 Agent Learning Behaviour

Learning refers to the computational strength in enabling Agents to learn from experience
and adapt autonomously in parallel to its parent environment before making absolute decision.
Importantly, its learning curve is very much dependent on the feedback received from the
computed performance of a system−misaligned data interpretation will only corrupt Agents’
efficiency converging into viable solutions.

Fig. 3.18 Coopeception Learning Agent in layered architecture.
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In addition to learning ability, the concept of deception mechanism [204] proofs to be
an admirable supplement when modelling Agent’s learning behaviour. Deception allows an
Agent to increase its probability of success when competing with others or, instances where
the outcome is interfered, compromise and act cooperatively to earn negotiable outcomes.
In deception operation, Agent will hide its actions, utilities function (level of satisfaction),
and provide decoy actions hoping to deceive overall utility of competing Agents. Hence,
alleviating Agent’s success rate during cooperative bidding processes.

3.4.2 Blending Cooperative and Deceptive Learning Strategy in Agent

Unfortunately, in smart grid applications, implementation of deception approaches were
not favoured as Agents are always resorted to cooperative contracts when propagating
global optimality. In consequence, Agents’ learning elements are constantly resorted to sub-
optimal optimisation at local in distributed environment−limiting Agent’s utility from being
competitive in order to achieve global objectives. Therefore, Coopeception Learning (CDL)
is proposed to blend cooperative and deception attributes into Agent’s learning processes. It
suggests; (i) maintain adaptations of Q-learning [205] strategy to gain best action policy, (ii)

incorporating Nash equilibrium [206] with relaxed decoy actions, (iii) partially disclose local
utility to impart blind evaluation for competing Agents, and (iv) Agent can hide its actions to
minimise competitor’s utility expectations.

Fig. 3.18 presents anatomy of the proposed CDL Agent into three layered framework,
sectorising Agent’s elements. The message interoperability layer includes communication
and networking protocols where incoming and outgoing messages of interacting Agents are
decrypted and encrypted. It coordinates conversations between Agents during exchange
of sensor data or disclose Agent’s performances for knowledge purposes. It also extends
communication with hardware’s control interface to send action commands. The functional
layer consolidates action commands based on the decisional information concluded by Agent
to drive hardware actuators (effector). The actuator will then influence changes on the
environment. Finally, the behavioural layer represents Agent’s intelligences. It closely liaise
with functional layer for new data so as the Agent’s learning and knowledge are constantly
updated.

Following describes working principles of respective element in learning Agent anatomy:

1. Critics−evaluates the environment’s performance based on the previous determined
actions rendered by Agent. The critics uses combination of reward/penalty system
against utility’s ranking list to provide feedback on Agent’s learning process. Accord-
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ingly, critics can suggest new coopeception rate to increase Agent competitive edge in
a cooperative environment (using gradient descent technique to find optimum solution
based on the current environment state).

2. Learning Element−it is responsible in deriving new possible alternatives that may or
may not improve the quality of learning based on the critics given. It updates knowledge
in performance element and collect advisable adjustments for further computations
in an iterative manner. Here, the learning processes will weigh consequences based
on the critic’s decoy intensity and information from knowledge to avoid sub-optimal
solution in global engagements (increase Nash equilibria).

3. Problem Generator−to assist learning element with new possible decoy renditions,
focusing on Agent’s commitments to share actions or utility with others. The objective
is to manipulate contents of percepts and actions to steer other Agents in minimising
their utility. It then submit to performance element for computation.

4. Performance Element−contains Agent’s function that aids in selecting external actions.
Based on the computed solution, it broadcasts a definite action without the considera-
tion of problem generator’s feedbacks and feed to learning element as knowledge.

5. Effector−refers to the control features of the actuator. The actions provided from
performance element will be ciphered into execution commands readable for connected
hardware devices.

3.5 Problem Descriptions in Coopeception Learning

In smart grid operations, cooperative management and adhering to operational constraints
serves as vital components in ensuring reliable and balanced network. Rooms for Agents to
generate coy actions would lead to constant uncompromise resolutions and hence, it imposes
operational risks in finding electrification equilibrium between Prosumer and DSO Agents.
Exposure of critics, knowledges, and problem generations element in CDL Agent are blinded
within its learning domain (i.e. centralised training and policy evaluation). Hence, CDL
lacks in the ability to accentuate collaborative behaviours and act incompetently in coalition
environment.

Q-learning is an off policy learning algorithm that matures from past action experiences,
seeking for superior reward by generating new policy outside the boundary of current
ones. Agents’ policies will change as training progresses which resultant in indeterministic
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environment. This imposes learning process of CDL to constantly deviate away from adhering
new changes in grid operation constraints.

Despite having Nash equilibrium to increase cooperativeness, it creates inferiority on
Q-learning function to search for superior policy as learning and problem generator element
provides knowledges that are Nash equilibria biased (generating sub-optimal reward). In
this sense, the vision is to create centralised learning but optimised execution of actions in
decentralised settings where policies of external Agents can influence Q-learning processing.

3.6 Modelling Reinforcement Learning:
Cooperative yet Competitive Multi-Agent System

Indeed, it is uncommon to infuse information into Q-function during learning process. The
approach in imparting extra useful information into policy design will not be ideal as it creates
ambiguity effects on Q-learning’s initial purpose in searching max . reward and randomness.
Thus, exploiting CDL Agent’s critic element, a reinforced-CDL was proposed by augmenting
policies of other participating Agent into critic element using off-policy gradient methods,
Agent-critic. The objective is to collect percepts and actions of other competing Agent’s
and feed into local critics element to broaden policy options, providing feedbacks in view
of decentralised evaluations. The Agent-critic element is entrusted to conceal policies of
competing Agent from local and create its own policy learning based on the decentralised
learned critics and local knowledges. Subsequently, to improve stability of multi-agent
policies, ensemble approach is employed in the learning process. Fig. 3.19 presents anatomy
of reinforced-CDL Agents incorporating Agent-critic to impart cooperative yet competitive
decisional behaviour and abstained from deceptive consequences.

Subsequent sub-chapters provides preliminary mathematical derivations that defines
reinforced-CDL processes/behaviour. It selects and fused several supervised reinforcement
learning algorithms to create centralised training with decentralised learning designed spe-
cially for multi-agent engagements; (i) Markov Game (MG) to define Agent environment, (ii)

Q-learning as the base learning tool, and (iii) Deep Deterministic Policy Gradient (DDPG)
to procure optimal searching mechanism for best policy. It aims to model reinforcement
learning behaviour framework for multi-agent based on deterministic policy that search for
optimum action-state pair in decentralised settings, Multi-Agent DDPG (MADDPG).
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Fig. 3.19 Adds Agent-critic into CDL to create reinforced-CDL Agent anatomy.

3.6.1 Markov Game

MG is an extension of Markov Decision Process (MDP) that expands from single probabilistic
transition function to multiple adaptive Agents with interacting or competing goals [207].
MG, also known as stochastic game, is defined by a set of states, s ∈ S, correspondent to
set of actions, a ∈ A and percepts, p ∈ P which describes all possible configuration of each
Agent for N Agents. In the process of choosing action, each Agent i uses stochastic policy
(3.1) to estimate the next s controlled by state transition function (3.2) (current s and one a

from each Agent) where PD(s) refers to the set of discrete probability distribution over set s.
Each Agent will then be assigned with reward as a function of s and Agent’s action (3.3) and
receives private observation correlated to state (3.4). Respective Agent aims to maximise its
total discounted reward (3.5) where ri,t+ j refers to the reward awarded to Agent in the future,
t, using j increment and α is the discount factor, α 7→ [0,1].

πθi 7→ [0,1] : pi×ai (3.1)

T : S×a1×a2× ...×aN 7→ PD(s) (3.2)

ri : S×ai 7→ R (3.3)

oi : S 7→ pi (3.4)

T DRt = rt+1 +αrt+2 +α
2rt+2...=

∞

∑
j=0

α
jrt+ j+1 (3.5)
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3.6.2 Q-learning

Q-learning is a model-free algorithm that employs trial and error approach to update learning
knowledge [208]. Its dependent on previous state and action is minimal as it uses off-policy
learning to counter actions obtained from another policy, a∗. The Q-learning algorithm
is modelled based on Bellman equation where optimal decision is concluded by using
state-value function of policy π:

V π(s) = Eπ [T DRt |st = S] (3.6)

The symbol π seen in (3.6) denotes Agent policy function where Agent specify its action, a,
taken in the current state, s, environment while E refers to the probabilistic expectation of
random variable. Representation on how good the state is for the Agent is referred as V π

based on the expected total reward weightage gained from respective states. Depending on
the policy assigned, Agent will perform corresponding actions. The policy function describes
an action to be taken by Agent under specified environment/state. It represents Agent’s
learning behaviour that commands action-state pair at each time intervals, t ∈ T .

π(s) : S→ A

π(s) = a; deterministic

π(a|s) = Pπ [a = A|s = S]; stochastic

(3.7)

To model the dynamics of Agent’s environment and predicts its next state, it uses transition
probability state function, Pa

ss′ . Its affiliated reward gained is calculated using rewards
function, Ra

s :
Pa

ss′ = P[st+1 = s′|st = S,at = A]

Ra
ss′ = E[rt+1|st = S,st+1,at = A]

(3.8)

hence the policy function is rewritten as:

Pπ

ss′ = ∑
a∈A

π(a|s)Pa
ss′

Rπ

ss′ = ∑
a∈A

π(a|s)Ra
ss′

(3.9)

where P symbolises probability and s′ refers to the next state after performing action (S’:S→
A). Value function in (3.6) is rewritten where the first reward is taken out from the sum:
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V π(s) = Eπ [rt+1 +α

∞

∑
j=0

α
jrt+ j+2|st = S] (3.10)

and combining (3.8)− (3.10), the state-value function correspond to Agent policy is expressed
as:

V π(s) = ∑
a∈A

πθ (a|s) ∑
s′∈S

Pa
ss′[R

a
ss′+αV π(s′)] (3.11)

Appendix B proof of value-state function. derivation

Similarly, employing Bellman’s value function, (3.10) can be rewritten as action-value
function that defines Q-value, Qπ(s,a), in Q-learning based on Agent policy, π:

Qπ(s,a) = Eπ [
∞

∑
j=0

α
jtt+ j+1|st = S,at = A]

Qπ(s,a) = ∑
s′∈S

Pa
ss′[R

a
ss′+α ∑

a′∈A
πθ (a′|s′)Qπ(s′,a′)]

(3.12)

However, (3.11) & (3.12) does not depict value function optimality. Among all possible
states and policies, there exist an optimal value function. To determine optimal Agent policy,
apply argument max. function for all states.

V π∗(s) = max
π

V π(s) ∀s ∈ S

π
∗(s) = argmax

π
V π(s) ∀ ∈ S

(3.13)

and similarly for optimal Q-value function yielding Q : S×A→ℜ thus,

Qπ∗(s,a) .
= max

π
Qπ(s,a)

π
∗(a|s) = argmax

π
Qπ(s,a)

(3.14)

Using (3.11)−(3.14) and recursive dynamic programming operation on Q-value function,
it computes the optimal Q-value, Q∗(s,a).Recognising optimal Q-value is probably the
maximum value hence, the action performed, a′, must the largest Q-value (Q-value on the
right-side of equation):

Q∗(s,a) = Ra
s +α ∑

s′∈S
Pa

ss”V
π∗(s′)

Q∗(s,a) = Ra
s +α ∑

s′∈S
Pa

ss′max
a′

Qπ∗(s′,a′)
(3.15)
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since,
V π∗(s) = max

a∈A
[R(s,a)+α ∑

s′∈S
Pa

ss′V
π∗(s′)] (3.16)

Appendix B proof of optimal value-state function. derivation

Finally, using iterative dynamic programming, it performs either value or policy iteration
[209] and updates new improved Q-value until it converges with a deviation error. Once
iteration is terminated, apply argmax function for all states to cipher optimal policy. How-
ever, both iteration method requires knowledge of transition probability function, P, which
typically used only in model-based algorithm. Furthermore, model-based algorithm suffers
scalability problem [209, 210] due to exponential action and state space for learning (more
sample for efficiency).

Intuitively, reverting back to given Q action-value function in (3.12), it rates the learning
quality based on the state-action pair used in the current state. Subsequently, the objective
is to compute the next possible state-action pair and assign reward to improve Q-value and
repeat the sequence until max Q-value is found.

Theoretically, employing value iteration computing method can serve as an alternative
to converge Q-value using optimal action-value function. Hence, value iteration updates
Q-value using all states and action to generate sufficient series of samples that progressively
descents (gradient descent approach) into small deviation error by introducing learning rate,
β (rate of learning approaching goal). In relations to (3.14), updating Q-value:
new Q-value = curr Q-value + LR [R + DF*maxQ’- curr Q-value].

Qi+1(s,a) = Es′[r+α max
a′

Qi(s′,a′)|s,a]

Q(st ,at)← Q(st ,at)+β [rt+1 +α max
a

Q(st+1,a)−Q(st ,at)]
(3.17)

where the next action, a′ is selected to maximise Q-value in the next state instead of using
current policy. Here a greedy approach as a function of Q(s,a) is adopted to indicate
improvement in policy based on action taken in corresponding state:

π(s,a) =

1, i f a = argmax
a

Q(s,a)

0, otherwise
(3.18)

Pseudo of Q-learning function Q : S×A→ℜ:
declarations:
State = {1,2,...,Ns}
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Action = {1,2,...,Na}
Reward = R: S×A→ℜ

Probabilistic transition function = P: S×A→ S

β 7→ [0,1], typically β = 0.1
Discount factor = α 7→ [0,1]
MDP:(S,A,R,T,α ,β )

initialise: Q: S × A→ ℜ

while_loop Q-value not converge (error > tolerance)
Assign state s ∈ S

while_loop s is not complete
Calculate πθ based on current Q, πθ (s)← argmax

a
Q(s,a)

a← πθ (s)

r← R(s,a)

s′← P(s,a)

Q(s′,a)← (1−β )∗Q(s,a)+β (r+α max
a′

Q(s′,a′))

s← s′

end while
err = |Q(s,a)-Q(s’,a)|

end while
The deployment of Q-learning will be allocated in critics element of Agent’s anatomy and
update knowledge to learning element.

3.6.3 Actor-Critic & Off-Policy Gradient

Policy gradient [208] approach is designed to explicit optimise Agent’s policy, πθ , at mod-
elling directly. It is defined with a parametrised function with respect to θ , πθ (s|a). Compre-
hending that performance of Agent’s policy influences the reward function hence, optimising
θ can attune Agent’s actions in a more strategic manner as compared to Q-learning. In policy
gradient method, it defines:

J(θ) = ∑
s∈S

dπθ (s)V πθ (s) = ∑
s∈S

dπθ (s) ∑
a∈A

πθ (a|s)Qπθ (s,a) (3.19)

where dγ(s) refers to the stationary distribution of Markov chain [208] for on-policy state
distribution under πθ . As time progresses where the policy reaches a state where it is
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unchanged, it becomes a stationary probability for πθ :

dπθ (s) = lim
t→∞

P(st = S|s0,πθ ) (3.20)

where probability that st = S starting from s0 follows policy, πθ , for t step intervals. In theory,
policy based approach yields better search optimality optimum in continuous domain as
there are infinite number of actions and/or states. However, in generalized policy iteration,
π0

evaluation−−−−−→ Qπ0
improve−−−−→ π1

evaluation−−−−−→ Qπ1...
improve−−−−→ π∗

evaluation−−−−−→ Qπ∗ , the policy improve-
ment, argmaxa∈A Qπθ (s,a), requires to compute and scan all action spaces which definitely
resultant to "curse of dimensionality".

In this sense, using policy gradient theorem [208], θ can be steered in the direction
suggested by ∇θ J(θ) to search for optimal θ based on highest return policy, πθ . It reforms
the derivative objective function without involving state distribution, dπ(.), as compared to
computing gradient of ∇θ J(θ) where both the action selection (ordained by policy πθ ) and
stationary distribution of states follows the target selection behaviour (indirectly defined by
policy πθ ):

∇θ J(θ) = ∇θ ∑
s∈S

dπθ (s) ∑
a∈A

Qπθ (s,a)πθ (a|s)

∇θ J(θ) ∝ ∑
s∈S

dπθ (s) ∑
a∈A

Qπθ (s,a)∇θπθ (a|s)
(3.21)

Gradient is further written to incorporate episodic and continuing cases of learning trial tasks
proportionality [211]:

∇θ J(θ) = ∑
s∈S

dπθ (s) ∑
a∈A

πθ (a|s)Qπθ (s,a)
∇θ πθ (a|s)

πθ (a|s)

∇θ J(θ) = Es∼dπ ,a∼πθ
[Qπθ (s,a)∇θ lnπθ (a|s)]

(3.22)

Refer Appendix B proof of policy gradient theorem. derivation

where E performs the distribution of both state and action following on-policy.
Unfortunately, conventional policy gradient algorithm (Monte-Carlo or REINFORCE

[212]) suffers high gradient variance. Monte Carlo projects the full trajectory policy distri-
bution and documents corresponding rewards attained. It has no value function and high in
variance due to stochastic policy that have unsynchronised actions and episodes (resets back
to initial state). Hence, in an event where action performed is deviated from planned policy
trajectory, potential divergence can arise due to conflict in awarding rewards (increase and
decrease the log likelihood for same action). Indeed, [212] has proposed baseline approach
to update gradient ascent by subtracting state-value from Q action-value function to reduce
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variance of gradient estimation.

∇θ J(θ) = Es∼dπ ,a∼πθ
[Qπ(s,a)∇θ lnπθ (a|s)]

∇θ J(θ) = Eπ [Gtra j∇θ lnπθ (at |st)]
(3.23)

since
Qπ(st ,at) = Eπ [T DRt |st = S,at = A] = Gtra j (3.24)

where expectation sample is equal to actual gradient and used to update the policy gradient.

Pseudo of Monte-Carlo Policy Gradient function:
initialise policy: Set θ at random.
Compute initial policy trajectory, πθ : s1,a1,r2,s2,a2,r3, ...,sT .
for_loop t++ neq T

compute Gtra j−=V (s)

Update policy θ ← θ +βαtGtra j∇θ lnπθ (at |st)

end for

Alternatively, actor-critic proves to provide better control on the policy’s gradient ascent
as it considers both state-value function and action policy learned [213]. The actor updates
policy parameter, θ , for πθ (a|s) in the gradient direction suggested by critic. While critic
updates the action-value function parameter, ac, in, Qac(s,a).

Pseudo of Actor-Critic Policy Gradient function:
initialise: Set θ ,s,w at random. Set both learning rate βθ , βac

Sample initial policy over action distribution: a∼ πθ (a|s)
for_loop t++ ̸= T

Sample rt ∼ ∑r∈R rt ∑s′∈S Pa
ss′ and s′ ∼ Pa

ss′

Sample next action a′ ∼ πθ (a′|s′)
Update policy parameter: θ ← θ +βθ Qac(s,a)∇θ lnπθ (a|s)
Compute TD error for action-value: ERRt = rt +αQac(s′,a′)−Qac(s,a)

Update action-value function: ac← ac+βacERRt∇acQac(s,a)

Update action, state: a← a′ ; s← s′

end for

Nevertheless, the proposed critic element of reinforced-CDL Agent requires off-policy
approach to generate feedbacks based on decentralised environment. As compared to on-
policy, Off-Policy Gradient (OPG) neglects dependent on full targeted trajectories and uses
experience replay (i.e. samples are drawn randomly in memory and can be reused). In
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this sense, it improves data efficiency, smoother changes in data distribution, and sequence
correlated observations are removed. In addition, unrestricted exploration of behaviour policy
is attained from sample collection.

OPG adopts known behaviour policy, γ(a|s), that collects predefined samples under prior
distribution. The objective function defines the behaviour policy by summing the reward
over state, s, distribution. recognising from (3.21):

J(θ) = ∑
s∈S

dγθ (s) ∑
a∈A

Qπθ (s,a)πθ (a|s) (3.25)

hence:
J(θ) = Es∼dγ [∑

a∈A
Qπ(s,a)πθ (a|s)] (3.26)

where dγ(s) refers to the stationary distribution of Markov chain for behaviour policy γ .
(3.23) depicts that expectation reward state distribution follows the behaviour policy, πγ .
Recall that Qπ is the Q-value function corresponds to action-state pair that relates to target
policy πθ . And dπ(s) = limt→∞ P(st = s|s0,πθ ) is the probability where st = s in the initial
state,s0, and follows policy πθ for t steps (̸= behaviour policy). Having training observations
sampled by a∼ γ(a|s), from (3.23) & (3.26), the gradient is rewritten as:

∇θ J(θ) = ∇θEs∼dγ [∑
a∈A

Qπ(s,a)πθ (a|s)]

∇θ J(θ) = Eγ [
πθ (a|s)
γ(a|s)

Qπ(s,a)∇θ lnπθ (a|s)]
(3.27)

where πθ (a|s)
γ(a|s) refers to the importance weight biasness [214]. Given in OPG setting, adjust-

ment to the policy gradient can be done by introducing weighted sum ratio (importance
weight) to the behaviour policy.

From the algorithms described above, preposition of Agent’s learning behaviour policy,
π , has evolved from indeterministic (random) in Q-learning to on-policy ascent gradient
(directly searching for policy optimality) to off-policy for sampling efficiency with larger
action-state search space. However, the modelled policy function, π(.|s), is always referred
as a probabilistic distribution under action at a given state. To advance further, the policy
exploration for optimality can be shifted from stochastic to deterministic decision.
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3.6.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [215] aggregates Deep-Q network (DQN) with
Deterministic Policy Gradient (DPG) to form an off-policy actor-critic algorithm. It performs
using actor-critic framework in a continuous space with deterministic policy.

DPG [216] models the Agent’s policy as deterministic decision defined in (3.7). It aims
to estimate the policy gradient function based on a single action. To distinguish deterministic
from stochastic policy, subsequent notation for policy is denoted as: a = µ(s).
To recall:
Describing the iterative probability of k steps transitioning from state, s, to next state, s′,
with policy, µθ , the visitation probability function at s′ is ρµ(s→ s′,k) after moving k steps

by policy µ . Therefore, in a recursive procedure travelling to the next state is: s
a∼µθ (.|s)−−−−−→

s′
a∼µθ (.|s′)−−−−−−→ s′′... and when k = 0, then, ρµ(s→ s,k = 0) = 1. If k = 1, the transition probabil-

ities are summed up based on all possible actions, ρµ(s→ s′,k = 1) = ∑a∈A µθ (a|s)Pa
ss′ . The

objective is to travel from state s→ s′ after k+1 step and update iterative visitation probabil-
ity ρµ(s→ x,k+1) = ∑s′∈S ρµ(s→ s′,k)ρµ(s′→ x,1). Lastly, ρµ(s′) denotes the improper
discounted state distribution and it is expressed as

∫
S ∑

∞
k=1 αk−1ρ0(s)ρµ(s→ s′,k)ds. To

optimise objective function for deterministic policy:

J(θ) =
∫

S
ρ

µ(s)Q(s,µθ (s))ds (3.28)

and DPG gradient theorem (using chain rule differentiation,
∫

da,
∫

dθ ):

∇θ J(θ) =
∫

S
ρ

µ(s)Qµ(s,a)∇θ µθ (s)|a=µθ (s)ds

∇θ J(θ) = Es∼ρµ [∇aQµ(s,a)∇θ µθ (s)|a=µθ (s)]
(3.29)

On the other hand, DQN [215] transforms Q-learning from linear to nonlinear function
approximation. It counters Q-learning’s weakness in gaining convergence and policy loss
issues due to restricted action-state pair experiences. The key in DQN’s learning performances
that stabilises Q-learning is governed by two mechanisms: experience reply memory and
target network that periodically updates and freezes. It uses neural network [215] to perform
end-to-end learning that increases search space environment for state-action pair possibilities
and help organise historic Q(s,a) that reduces risks of correlation effect [217]. Hence, it
introduces element of replay memory that stores experience tuples over many episodes,
et = (st ,at ,rt ,st+1,at+1,rt+1, ...,sT ,aT ,rT )→ Dt = e1, ...,et .
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Hence, reverting back to Q-learning action-value iterative function (3.17) that uses
stochastic policy:

Qi+1(s,a) = Es′[r+α max
a′

Qi(s′,a′)|s,a] (3.30)

Rewritten to incorporate weight matrix, w, for neural network’s learning process (intercon-
necting neurons that influences output performance):

Q(s,a,w)≈ Qπ(s,a) (3.31)

and the objective function that defines the Q-value error (mean-square error) and redefined
Q-learning stochastic gradient descent:

L (w) = E[(r+α max
a′

Q(s′,a′,w)−Q(s,a,w))2]

∂L (w)
∂w

= E
[
(r+α max

a′
Q(s′,a′,w)−Q(s,a,w))

∂Q(s,a,w)
∂w

] (3.32)

where ∆(w) denotes the change in neural network weights. Subsequently, infusing the
Q-value error (loss) function into Q-learning:

L (w) = Es,a,r,s′∼U(D)[r+α max
a′

Q(s′,a′,w)−Q(s,a,w)2] (3.33)

where U(D) refers to the uniform distribution over replay memory and Q-learning. In
addition, to avoid policy oscillation, Q-learning fixes parameter w with old value, w−:

L (w) = Es,a,r,s′∼U(D)[(r+α max
a′

Q(s′,a′,w−)−Q(s,a,w))2] (3.34)

where every t interval, fixed parameter, w−, is updated w− ← w. Furthermore, DQN
limits the rewarding system to [−1,+1] to prevent Q-value from aggrandising to large from
uncoordinated policy gradient and misinterpretations.

Since DQN operates with stochastic policy in discrete action space, hybridising DPG’s can
extend its policy into deterministic and learning gradient into continuous domain. Following
breakdowns the process for DDPG conversion where the neural network parameter are
defined as; θ Q−Q network, θ µ−deterministic policy network, θ Q′−target Q network, and
θ µ ′−target policy network:

1. Deterministic policy representation: a = µ(S) with random parameter values θ µ .
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2. Critic estimates action-value of current policy:
∂L (θ Q)

∂θ Q = E[(r+αQ(s′,µ(s′)|θ Q)−Q(s,a|θ Q))∂Q(s,a|θ Q)
∂θ Q ].

3. Actor updates policy to improve Q-value: ∂J(θ µ )
∂θ µ = Es[

∂Q(s,a|θ µ )
∂a

∂ µ(s|θ µ )
∂θ µ ].

4. Critic adds experience replay memory, D, and target network, θ Q′ , in Q action-value
function: ∂L (θ Q)

∂θ Q = Es,a,r,s′∼U(D)[r+αQ(s′,µ(s′)|θ Q′)−Q(s,a|θ Q)∂Q(s,a|θ Q)
∂θ Q ].

5. Actor adds experience replay memory for actor’s policy function:
∂J(θ µ )

∂θ µ = Es,a,r,s′∼U(D)[
∂Q(s,a|θ Q)

∂a
∂ µ(s|θ µ )

∂θ µ ].

6. Add noise, N , to construct better policy exploration: µ ′(st) = µ(st |θ µ

t )+N .

7. introduce interpolation factor,τ , when updating weights for each time interval:
θ

µ,Q
t+1 ← τθ

µ,Q
t +(1− τ)θ

µ,Q
t

Pseudo for DDPG:
Initialise: Random Q-value & policy: Q(s,a|θ Q), µ(s|θ µ), and weight matrix θ Q, θ µ .
Assign initial target network Q′ and µ ′ with weights θ Q′ ← θ Q, θ µ ′ ← θ µ .
Declare buffer replay size, MBR, (1e5).
for_loop episode++ ̸= EPI

Random generate N for action exploration.
Store observation for initial state, s = {o1, ...,oN}.
for_loop t++ ̸= T

Compute action,at , based on current policy with noise, at = µ(st |θ µ)+Nt .
Store in MBR, (st ,at ,rt ,st+1).
Randomly sample a batch of N(64) transition from MBR: (si,ai,ri,si+1)

(Begin backpropagation neural network, one t step):
Compute Q-value based on target network: qi = ri +αQ′(si+1,µ

′(si+1|θ µ ′)|θ Q′)

Update critic gradient to minimise loss (distribution over batch):
loss = 1

N ∑i(qi−Q(si,ai|θ Q))2

Using the sampled policy gradient, update actor’s policy (distribution over batch):
(off-policy) ∇

θ
µ

i
J ≈ 1

N ∑i[∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|s=si]

Update weights for critic and actor:
θ Q′,µ ′ ← τθ Q,µ +(1− τ)θ Q′,µ ′ where τ << 1

(End backpropagation neural network):
end for

end for
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3.6.5 Multi-Agent DDPG

Despite formulating Agent’s model-free learning behaviour to perform action-state value
function that updates policy (deterministic off-policy based) feedback in continuous space, it
lacks the ability to procure emergent behaviour that co-exists with other interacting Agents.
Behavioural elements such as social environment dilemmas, decentralised yet globally
cooperative based on dynamic competitor policies can extend learning pattern optimisation
to better suite environment settings.

In this sense, Multi-Agent DDPG (MADDPG) [218] is an end-to-end learning environ-
ment where it extends Q-learning into incorporating policies of other Agents. Exploiting
actor-critic algorithm, MADDPG endorses centralised learning for critic from decentralised
execution paradigm deduced from actor. Interacting Agents can only share critic (action-
observation) during training while critics will randomly access memory buffer to cipher
local Q action-value, avoiding correlations in action-state pair when learning. Fig. 3.20
presents the architecture of MADDPG, illustrating how joined policies aids in Agent learning
behaviour towards environment.

The problem formulation of MADDPG can be conceptualised using MG in multi-agent
domain. Instantaneously, there are N number of interacting Agents within a set of states, s∈ S.
A set of joined Agents’ actions and state observations, {a1, ...,aN} and s⃗o = {so1, ...,soN}
respectively. Each Agent chooses action based on deterministic policy, µθi : soi → ai =

{µθ1, ...,µθN} where θi is the policy parameter. Centralised critic (Q action-value) function
for the ith Agent is defined as Qµ⃗θ

i (s⃗o,a1, ...,aN) taking actions of all Agents,a1 ∈ A1, ...,an ∈
AN , but learns separately. Therefore, each Q-value from respective Agents will have arbitrary

Fig. 3.20 MADDPG learning architecture.
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Fig. 3.21 Neural network for MADDPG’s learning gradient.

and adverse reward system in competitive perspective, Qµ⃗θ

i where i = 1, ...,N.
The actor updates its deterministic policy gradient:

∇θiJ(θi) = Es⃗o,a∼U(D)[∇aiQ
µ⃗θ

i (s⃗o,a1, ...,aN)∇θi µθi(s⃗o)|ai=µθi(s⃗o)] (3.35)

where U(D) contains tuples abstracted from memory replay buffer, (⃗s,a1, ...,aN ,r1, ...,rN , s⃗′).
Based on Agents, actions, {a1, ...,aN}, and corresponding reward in current observations, s⃗,
before heading to the next observation state, s⃗′. On the other hand, the centralised critic Q
action-value is updated based on the minimised loss function:

target Q-value = ri +αQµ⃗θ
′

i (s⃗o′,a′1, ...,a
′
N)|ai=µθi(s⃗o)

L (θi) = Es⃗o,a1,...,an,r1,...,rN ,s⃗o′[(Q
µ⃗θ

i (s⃗o,a1, ...,aN)− target Q-value)2]
(3.36)

As MADDPG uses perceptron-based neural network, it expands learning behaviour in
continuous domain and predicts gradient policies to enhance future’ Q action-value as shown
in Fig. 3.21. The input for critic element comprises of joined observations to predict Q action-
value and uses minimised loss function to adjust the weight’s gradient (backpropagation).
While actor predicts the policy loss using observations and policy gradient as input. The
neuron uses sigmoid as activation function to restrict output limit to [0,1].

MADDPG for N Agents Pseudo:
for_loop episode++ ̸= EPI

Random generate N for action exploration.
Store observation for initial state, s⃗ = {o1, ...,oN}.
for_loop t++ ̸= T
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Assign action for each agent i w.r.t current policy and noise exploration, ai = µθi(oi)+Nt .
Execute actions a1, ...,aN and monitor reward r1, ...,rN) and new state, s⃗′.
Store in MBR, (⃗s, a⃗,⃗r, s⃗′).
s⃗← s⃗′.
for_loop i++ ̸= N Agent

Abstract random S samples batch from MBR, (s⃗ j, a⃗ j, r⃗ j, s⃗′ j).
Compute q j = r j

i +αQµ ′

i (s⃗′ j,a′1, ...,a
′
N)|a′i=µ ′i (o

j
i )

.

Update critic from the minimised loss function:L (θi) =
1
S ∑ j(q j−Qµ

i (s⃗ j,a j
1, ...,a

j
N))

2.
Update policy gradient:
∇θiJ ≈

1
S ∑ j ∇θi µi(o

j
i )∇aiQ

µ

i (s⃗ j,a j
1, ...,a

j
i , ...,a

j
N)|ai=µi(o

j
i )

.
end for
Update target network:θ ′i ← τθi +(1− τ)θ ′i .

end for
end for

3.6.6 Implementation & Testing and of Reinforcement Learning Agents

In the testing phase, MADDPG reinforcement learning algorithm is modelled using Azure
artificial intelligence module before transferring computational functions to the edge Cloud.
The proposed function module was developed using Azure’s embedded machine learning
tools, utilising Tensor f low callback function in python’s deep learning neural network library.
Having resource (device) deployment limitations, Azure’s advance IoT device simulator
provides a platform to simulate customise device and environment instances. These simulated
device instances uses real-time data sets as input behaviour to represent a realistic operating
environment for testing. Furthermore, creation of other reinforcement learning (i.e. DDPG)
was employed to provide analytical benchmarking of Agents’ learning behaviours.

To analyse Agents’ behaviours towards cooperative and deceptive decorum, a constrained
space/environment representing the playing area with multiple Agents represented as players
were created to execute three distinct tasks and evaluate Agents’ learning experiences.
The investigations involve; (i) analysing Agents’ learning performances and how actor-
critic deterministic policies are autonomously attuned based only on local information (i.e.

observation) at run time, (ii) taking a non-differentiable function model that comprehends
environment’s dynamics without any means of communication between Agents, and (iii)

impart cooperative-competitive mixes in decision making processes (action-state values)
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based on a centralised policy training in continuous space with decentralised actions/execution
in discrete time.

The environment set-up in Azure IoT Cloud system is as follows:

• the IoT edge device will perform as an Agent, operating as a player with reinforced
learning computing ability at the edge. The IoT Hub will then broadcast the real-time
computed coordinates in a single way communication traffic to Azure container registry
to render players’ position in the playing area.

• The Azure container registry creates the playing area environment with specified
coordinates; x-axis: -10 to 10 and y-axis: 10 to -10 (cm) and rendering of other
required object instances. Based on the coordinates provided by IoT Hubs, Agents are
placed in the play area.

• Using COSAP platform, IoT edge device will receive Agents’ aggregated action-value
function, landmark coordinates, actions, and rewards. Respective IoT Hubs will then
compile and synchronises experience replay buffer tuples.

The Agents’ policy set is modelled as a parametrised function with respect to θi,
{µθ1,µθ2,µθ3}. Its expected policy gradient of each Agent under the probabilistic distribution
of memory buffer experience replay, a∼U(D), returns:

∇θiJ(µθi) = Es⃗o,a∼U(D)[∇θi µθi(ai|soi)∇aiQ
µθ

i (s⃗o,a1,a2,a3)|ai=µθi(soi)] ∀i = 1,2,3 (3.37)

while the centralised action-value function is updated using the Lagrangian approach consid-
ering the targeted temporal difference:

L (θi) = Es⃗o,a1,a2,a3,r1,r2,r3,s⃗o′[(Q
µθ

i (s⃗o,a1,a2,a3)− y)2] ∀i = 1,2,3

y = ri +αQµ⃗θ
′

i (s⃗o′,a′1,a
′
2,a
′
3)|ai=µθi(s⃗o)

(3.38)

where the state environment, s, remains stationary despite any changes in Agents’ policies
since; P(s′|s,a1,a2,a3,µθ1 ,µθ2,µθ3) =P(s′|s,a1,a2,a3) =P(s′|s,a1,a2,a3,µ

′
θ1
,µ ′

θ2
,µ ′

θ3
) for

any given µθi ̸= µθ ′i
. In order to gain high communicative responses from Agents, it is

assumed that respective Agent’s state observation and policies are made available instanta-
neously for other Agents during the training phase. However, to consider latency issues in
Cloud or COSAP during data sharing, assumptions on those parameters can be relaxed by
inferring policies based on other observations.
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In the case where Agents’ lacks in conceiving other policies required in (3.38), each Agent
can maintain additional policy approximation factor, µ

Ψ
j
i
, where Ψ is the approximation

parameter of Agent’s true policy µ j. It maximises the log probability of Agent j’s actions
with an entropy regularisation[219]:

L (Ψ
j
i ) =−Eso j,a j [logµ

Ψ
j
i
(a j|so j)+λH(µ

Ψ
j
i
)] ∀i = 1,2,3; j = true policy (3.39)

where H denotes to the entropy in policy distribution and λ refers the Lagrangian multiplier.
In each iterative process, each agent j updates the gradient step Ψi j from the experience
replay buffer before updating the centralised QµΨ

i . Referring to y in (3.38), it can be replaced
by an approximated policy defined as:

yΨ = ri +αQµ ′
Ψ

i (s⃗o′,µ ′
Ψ1

i
(o1),µ

′
Ψ2

i
(o2),µ

′
Ψ3

i
(o3)) (3.40)

where µ ′
Ψ

j
i

refers to the targeted network of approximation policy, µ
Ψ

j
i
. Rather of using

sampling, the log probability actions of each Agent is directly infuse into Q function.

Testing of Agent’s Collaborative and Adversarial Learning Behaviours: Case Study

Respectively, Agents are to broadcast its landmark coordinates in the playing area environ-
ment based on its unique computed policies and observations. All Agents share a maximise
Q-value return to gain high cooperative margin through commutative actions while observing
competitiveness to execute physical behaviour defined by its policies. To test the learning
behaviours responses of Agents, observation cases are as follows:

1. Cooperative communication−it involves an additional Agent serving as a speaker while
the remaining three cooperative Agents acts as listeners. Set-up of the environment
involves two sub-test scenarios distinguished by Agents’ conditions when navigating
towards the targeted objectives; (i) three colour-coded object instances placed in the
playing area and Agents (listeners) are to cooperatively navigate towards each of them
according to the paired sequences dictated by speaker’s communication output. Here,
the listeners has access to the location and colour of the object instances, (ii) Agents
are tasked to cover all three neutral-coloured object instances by taking the shortest
route and restrain from colliding with each other, neglecting speaker’s command. At
each episode, listeners will receive commutative rewards based on the distance covered
to reach its destination.
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2. Cooperative Deception−all three Agents will perform cohesively to accomplish a
common goal (landing on a single targeted landmark). The rule states that only one
of the Agents is required to meet the objective (correct colour-coded object instance)
and receive collective weighted reward value. Hence, Agents are constantly updating
its coordinates from the targeted landmark as reward is proportional to the distance
covered (minimised). To view Agents’ versatility, the environment introduces an
adversary which has similar objective however, does not know the target’s colour code.
In this sense, Agents are spread out attending to all created object instances (regardless
of colour) to deceive Opposer’s intuition on which is the correct targeted instance.
Agents will receive same penalty value relative to Opposer’s distance from target.

3. Chaser versus Evader−the environment adopts a classic tagging game where coop-
erating Agents require to chase and tag a single Evader Agent who has higher speed
velocity. The environment installs obstacles to hinder freedom of manoeuvring. Co-
operative Agents receive a commutative reward whenever the Evader is being tagged
(Evader receives penalty). Agents monitors each other relative position-velocity and
strategically position in the playing area.

Performance comparisons and verifications were analysed between Agents adopting
MADDPG and DDPG for all three test cases mentioned above. The primary objective is to
appreciate the superiority in adopting centralised action-value function where Q-values of all
participating Agents are incorporated during training phase. The employed neural network
uses three-layered multilayer perceptions with rectified linear unit as activation function;
depth: 3-layers; width: 128 neurons hidden layer, 4 neuron output layer. It uses the Adam
optimiser function to perform first-order gradient-stochastic optimisation with learning rate
(β ) of 0.05, discount factor (γ) set to 0.9, and interpolation factor (τ) updating network
weights 0.01. The experience memory buffer replay storage module in Azure container
registry is sized at 1x106 and continually stores experience tuples for every 100 samples. The
batch size of each episode is set to 1024 samples and the weights are trained with random
seed of 10. The neural network was let to train until it reaches convergence (coordinate error
tolerance≤0.4cm).

In cooperative communication, the first scenario dictates that all three Agents are to
comply speaker’s command, specifying pairing sequences between Agent and colour-coded
Landmark, L, (object instance) at each episode. With DDPG, the Agents fails to comply
with speaker’s command and constantly moves to the center of all the observed landmarks
and occasionally reach the targeted landmark by chance. Primarily, such learning behaviour
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responses caused by inconsistency in the Agent’s policy gradient signal. For an instant, as
the listener Agents failed to meet the objective, speaker will receive penalty and it continues
to aggrandise proportional to the number of time steps. Furthermore, at every time step, the
policy gradient of listener Agents learned to reconstruct speaker’s observation which only
implies if initial positioning of Agents and landmarks are fixed. In this sense, deployment
of DDPG involving multi-agents in instantaneous settings are not generalise when dealing
with tasks complexity. Conversely, for MADDPG implementation, listener Agents learned

(a) Agents’ navigation sequences to reach respective landmark.

(b) Agents’ learning curve: reward gained and policy success rate.

Fig. 3.22 Test Case 1: Agents’ comparative performances in cooperative communication
between MADDPG and DDPG.
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to coordinate cohesively due to centralised critic. From the minimised critic loss function,
Agents are able to update respective learning policy gradients and also comprehend speaker’s
policies. Fig. 3.22 validates Agents’ learning performances in cooperative communication
environment in ≤20000 episodes. Fig. 3.22a provides visualisation of Agents’ responding
towards paired landmarks based on speaker’s policies while Fig. 3.22b records the speaker’s
total reward at each episode and Agents’ policies success rate in both MADDPG and DDPG
learning algorithms. Significantly, Agents’ in MADDPG able to hit a minimum of 90%
success rate after 25000 episodes, speaker and listeners are able to contrive cooperative policy
gradient from centralised Q-value at which observations were attuned to match landmark
locations, and Agents are thriving to gain maximum reward by taking shortest path to desired
landmarks (reward exponentially increases ≤18760 episodes).

Contrarily, investigations in the second scenario only focuses on MADDPG implemen-
tation as shown in Fig. 3.23. Recording of distance covered to reach target and Agents’
collision index are presented in Table 3.3 per episode. Agents in MADDPG learned to
compromise with each other by prioritising landmark which is closest to Agent (shortest
path) while other moves away to avoid collision. Agents that were interrupted during the
course of its navigation, will manoeuvre to the closest landmark that is not attended. Whereas,
in DDPG, Agents are frequently to collide with each other; navigating the same landmark
(closest) as Agents are deliberately clustered together at initial position. Correspondingly,

Fig. 3.23 Neural network for MADDPG’s learning gradient.

Table 3.3 Comparison summary of MADDPG versus DDPG in cooperative communication
and navigation.

Agent Reach Target N=3; L=3 N=6; L=6
(µθ ) (%) Travel Dist.(avg.) Collide(#) Travel Dist.(avg.) Collide(#)

MADDPG 83.35 1.546 0.184 3.174 1.387
DDPG 35.18 1.971 0.325 3.577 1.893
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Fig. 3.24 Approximation and true policies: KL divergence index.

analysis on the effects of approximation policy gradient is presented in Fig. 3.24. It presents
that despite lacking in learning listener Agents’ policies by speaker, large Kullback–Leibler
(KL) divergence against true policy, the approximated policies produces consistent success
rate using true policies without comprising rate of convergence.

Subsequently, in cooperative deception settings, the objective is to lure opposing Agent
(blind) towards the decoy landmark while Opposer Agent tries to tail other Agents hoping to
hit targeted landmark by chance. Fig. 3.25 illustrates partial results attained from the analyses
performed. Here, to appreciate the Agents’ policy gradient signal in rendering deception
on the Opposer, Table 3.4 quantifies the Agents’ learning policy success rate performing as
either roles (Agent-Opposer) considering all possible combinations. Likewise, MADDPG
shows superior learning processes regardless in Agents or Opposer role. Despite operating as
a lone Agent, it still able to avoid decoy landmarks due to its centralised training for Q-value
absorbed by other Agents. Unlike DDPG, Agents have weak cooperative behaviour thus,
unable to effectively lure/deceive opposing Agent away from targeted landmark. However,
in the case where both Agents and Opposer adopts MADDPG learning policy gradient, the
success rate being an Opposer hitting the targeted landmark exponentially increases after
17000 episodes and the deceive factor deteriorates. This cycle repeats where the trend for
success rate (higher) will toggle between Agents and Opposer.

Table 3.4 Performance comparisons of MADDPG and DDPG in cooperative deception
environment ≈≤17000 episodes.

N=3 Avg. success N=1 Avg. success
Agents (µθ ) (%) Opposer (µθ ) (%)
MADDPG 91.05 DDPG 44.71

DDPG 63.67 MADDPG 74.80
MADDPG 92.24 MADDPG 66.98

DDPG 54.56 DDPG 66.82
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Fig. 3.25 Effects of Agents learning policy on cooperative deception environment: vice-versa
roles.

Finally, in Chaser versus Evader observations, the results shown in Table. 3.5 has verified
that MADDPG has better policy gradient in mapping Agents’ navigation trajectories within
the playing area. Simulations also displayed MADDPG Agents interoperates deception learn-
ing behaviour which tempers policy loss minimisation in DDPG-based Agent. Furthermore,
in the case where DDPG Agent operates as the Evader, it has a higher tendency of navigating
outside the playing area as the penalty awarded was lesser than being tagged. Nevertheless, a
relatively small observable success and failure rates between MADDPG and DDPG were
recoded and the impact on applying two-speed setting on Evader Agent is rather proportional
to the number of touches attained (insignificant impact on learning policy gradient). The
success and failure rate in-between MADDPG and DDPG becomes less apparent as the
number of Agent, N, increases.

3.6.7 Findings

The technologies rendered by Azure IoT edge Cloud has proved that traditional centralised
based Cloud system is no longer viable in supporting decentralised and transactive energy
operations, endorsing large-scale penetration of participants and sovereignty at low-voltage
level. Furthermore, computational stress and latency issues contribute high impairment
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Table 3.5 Chaser versus Evader: average number of touches made by Chaser per episode
based on Evader’s two-speed setting (vector scaling), decrease 50% and increase 25%.

Chaser Agent Evader Agent avg. tagged # avg. tagged #
(N=3; µθ ) (N=1; µθ ) ↓ 50% ↑ 25%
MADDPG DDPG 13.520 0.614

DDPG MADDPG 11.227 0.389
MADDPG MADDPG 9.268 0.296

DDPG DDPG 6.975 0.523

on managerial efficiencies and thus, costs in maintaining large storage Cloud services
exponentially increases. Hence, Azure IoT edge device (scalable, portable) provides users’
with monitoring and control solutions at respective Cloud domain (edge gateway) suitable for
administrating personalised energy utilisation and computing innovations to curb operating
costs. Correspondingly, DCF was introduced to pave way for cooperative and active responses
in which Prosumer Community, aggregators, and DSO can benefit from (i.e. incentives,
market, DERMS, ADMS) while observing DSR and ADMS administrations.

In addition, COSAP was introduced to serve as a sensor data sharing (peer-to-peer)
platform that adheres to providers’ privacy policies. It is modelled based on serverless
service configuration model that utilises CIFP to negotiate data sharing contract and content
policy between providers. Data distribution path are automated, reflecting both party policies
and data resolutions, to prevent malicious motivations and burden on Cloud providers when
securing data privacy settings. However, solutions in integrating COSAP into Azure IoT
edge Cloud is still an open discussion as Azure has an in-built IoT security architecture. The
proposal involves assigning Azure to focus on hybrid Cloud-to-Cloud security services while
COSAP governs device-to-device sensing paradigm.

Succeedingly, utilising Azure’s artificial intelligence platform, reinforced-CDL reinforced
learning was modelled as a module for edge computing. Its designed algorithm is based
on MADDPG configuration that embraces cooperative and competitive learning behaviour
suitable for decentralised decision-making processes. Agent used a centralised policy gra-
dient algorithm that considers other Agents’ actions and observations in the training phase.
Results have outperformed other conventional reinforcement learning algorithms however,
the approach introduces curse of dimensionality as Q-function grows linearly with respect to
number of Agents deployed. Such crisis can be remedied by disseminating Q-function into
modular, grouping Agents into clusters.
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3.7 Summary

This chapter analyses proof of concept in establishing edge computing hybrid Cloud environ-
ment linking with AMI and system intelligences dedicated to solve decentralised coordination
in future’s distribution network operations. Testing of proposed system was investigated
using several exemplar cases to view their employability for power distribution applications
which will be discussed in subsequent chapters. It focuses on four interdependent solu-
tions; exploiting IoT hybrid Cloud and edge computing applications, securing data-sharing
platform, and imparting system intelligence in Agents of MAS when building suitable trans-
active energy environment. Following describes implementation details for sustainable 5G
commercialisation suitable for demand-side management:

1. connecting a household thermostat device to Azure IoT Edge Cloud system to visualise
and explore edge computing capabilities. It provides a total Cloud solution when
developing personalised connectivity for local devices and programming customise
intelligences (control features) based on users’ preferences. Such platform serves as an
applicable solution to support large-scale Nanogrid penetrations and administrate TE
values; assigning dedicated edge gateway for local devices connectivity and empowers
local decision-making processes. It also resolves latency, computational stress, and
storage sizing issues when employing conventional centralised Cloud system.

2. using layer-structured IoT architecture to model DCF. Each layer is defined with
interdependent objective statement and functions that transforms passive energy actors
into authoritative figures while maintaining demand-side efficiency and reliability.
DCF layered objective functions are defined in modules of Azure IoT edge Cloud and
deployed at respective IoT Hub to execute decentralised control transactions as shown
in Fig. 3.8.

3. flexible data sharing platform (COSAP) to eradicate provider’s dilemmas in provi-
sioning privacy/policies for data distribution and also reduces service control stress
in aligning policy changes (data content and sharing contracts) between consumer
and provider. Here, owners can exchange and monitor sensor-based devices with
neighbouring Nanogrids without relying on the Cloud services.

4. imparting computational intelligences into Agents of MAS at edge. Hence, reinforce-
ment machine learning algorithm is employed to impart cooperative yet competitive
decisional-making behaviour suitable for decentralised settlements. Several reinforce-
ment learning algorithms were proposed (i.e. DDPG, MADDPG, Q-learning,) and
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simulated. The objective is to view Agents’ learning behaviour and policy gradient
relevant for TE control system.



Chapter 4

Realisation of Demand-Side Operations
Governed by Transactive Energy

This chapter explores into deployment realisations of TE structured demand-side manage-
ment using the proposed methodologies and design configurations discussed in Chapter 2
(i.e. nanostruturing the distribution network and introducing aggregators as new energy
service provider), and Chapter 3 (i.e. integrate smart metering and edge computing hybrid
Cloud infrastructure for control intelligence and analysis visualisation in the domain of
network planning and optimisation processes). A proposed Testbed system is simulated
to view Prosumer Community performances in a decentralised TE environment and their
contributions towards power quality and PtP energy trading.

It focuses in creating a TE environment for aggregators when legislating Prosumer-centric
energy management solutions using Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) reinforce learning for joint decision-making processes. Its intelligent system provides
cooperative yet competitive solutions for Prosumer when scheduling PSPG utilisations and
load shedding in response to clearing prices with strategic bidding capability in the wholesale
market−securing minimised local billing while observing DSR and power quality dynamics
globally. Moreover, it identifies the impacts on Prosumers’ energy trading interests at PCC
influenced by TE control mechanisms/policies as key operational parameters when meeting
supply and demand dynamics against subscribed business offers. In this sense, despite
employing diversified DERMS controller that is biased towards high payout incentives and
fast return on investment trajectory, aggregators must gratify optimised core services (e.g.

peak demand & baseload limit prohibitions, Duck-Curve & unit-commitment crises, and
feeder congestions) in support of DSO’s objectives.
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4.1 Intelligences for Transactive Energy Management

In view of the transactive four-quadrant control sequences illustrated in Fig. 3.9, it offers
governing boundaries when scheduling PSPGs and market participations in support of TE
operations. In this sense, aggregators can use these guidelines to model diversified business
offers to steer power exchange demographic (i.e. excess generation capacity and agreed
contracted quantity in real-time) at respective PCC with cooperative yet competitive attributes
during the two-way wholesale market bidding and trading for Prosumer Community engage-
ments. Moreover, contribution towards reserve/ancillary market opportunities must not be
neglected to enhance ADMS core services which further influence scheduling strategies
for installed DERs at both low- and medium-voltage levels. Attributed to clearing price
information, state of IoT devices, and user billing preferences, modelled controllers are to
react cohesively in generating optimised demand-side solutions and yet allowing personalised
governing of BTM DERs. Hence, price-reaction approach serves as a pivotal mechanism for
aggregators in modelling DERMS options, respond correspondingly in the electricity market-
place based on price-quantity bidding transactions−communication between Prosumer and
aggregator in their willingness to pay and produce, respectively. It also provides collaborative
market-based price dynamics as control signal to shift demand responses from uncertainty to
predictable system reaction at a global level while locally, assists Prosumers to strategically
schedule bidding of excess generation capacity in the wholesale. Fig. 4.1 illustrates how

Fig. 4.1 Auction design in power market: Market-based control functions.
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commitments and relationships of electricity market architecture serves as a pivotal driver
when modelling intelligences for DERMS and changing Prosumers’ energy usage behaviour.

When properly implemented, the market bids sent by end users’ can be aggregated
together, and the resulting bid represents preferences of both devices. The message size of
the aggregated bid curve is a simple combination of the individual device bid curves. Using
this property, a highly scalable system can be obtained when bids are aggregated together
in a response cluster. The processing and communication time scaled with height of the
aggregation tree instead of participating device quantity. Furthermore, the approach protects
end users’ privacy as the bidding process communicate only information about energy
quantities and prices. When these bids are aggregated on the level of Prosumer Community,
the information exchanged is comparable to that of a metering system collecting near-real-
time data as described for the price-reaction approach above. And unlike the centralised
optimisation approach, no complicated models of the devices, Prosumer behaviour, or
preferences are exchanged or maintained. In summary, TE provides an avenue to access full
response potential of flexible devices, provide greater certainty about the momentary system
reaction, realize an efficient market with proper incentives payouts, and protect privacy of
the end user whose devices participated in the energy management tasks.

4.1.1 Transactive Values Influenced by Market Operations

The terminology "transactive" implicates that the decisions made are based on a value that can
be analogous to agreements or literally for economic contracts. It uses sequence of economic
and control techniques to enhance operation reliability and efficiency through optimum
scheduling of DERMS and Prosumers’ participation in the market. Hence, development
in market-based alternatives and competitive energy retailing serves as a common physical
coordination (i.e. hourly-ahead or 5mins) between aggregators and DSO for balancing longer
term (i.e. months-ahead) supply-demand matching services that comfortably accommodate
bid and offer auction transactions. It formulates new business and management solutions
that promote BTM integration of energy resource diversities and facilitate new intelligent
load devices at the low-voltage level in response to inadequate grid control crisis when
generation resource variability surpass more than 30% of the total demand load capacity.
When transactive mechanisms are properly aligned to its value streams across all energy
participants, it extends greater proliferation of DERs in rendering service options and custom
solutions for Prosumers in scheduling optimum use of BTM DERs.
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Fig. 4.2 End-to-end market-driven distribution network operations under TE values.

There are two types of organisational model for DSO development currently in the
market; distributed system platform (DSP) and RDSO where both involve in functioning
of market operations and distribution grid management. Here, DSP-configured model is
selected as it is favourable to retain all distribution grid operations within a single unified
environment as compared to RDSO ruling and is responsible for; (i) grid operations, (ii)

stimulate market environment for multi-players, (iii) support in establishing DER integration
platform, and (iv) perform holistic and integrated planning processes. In this sense, DSO
has a role in brokering wholesale and retail, capacity, and reliable energy transactions
from any number of aggregators and independent owners. Effective operations are greatly
influence by the incentives payouts and regulatory framework ruled by Utility, making
DSP indifferent to either traditional or distributed in ensuring distribution network needs.
Overall, DSO is tasked to enhance system reliability focusing on "dynamic" or "adaptive"
Microgrid formation assembled by aggregator (i.e. islanding feeder based on where fault
has occurred and monitor available pooled generation capacity from DERs to serve online
loads) and rendering services from third parties to support voltage level deviations or loading
relief. Meanwhile, aggregators are tasked to empower Prosumers’ BTM DER engagements;
broadcast visibility (communications), and access full control of DER production using
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contracted business offer in real-time to secure integrity of the grid, and facilitate bidding
in the wholesale market for better clearing price (i.e. distribution locational marginal price
(DLMP)) thus higher return on investments.

4.1.2 Monetary Incentive Additive in Market Operations

Aggregators of today are responsible in guiding Prosumers into a holistic yet optimised
scheduling of BTM DERs (PSPG) and energy usage through attractive business offers
that discerns socio-economical aspects. Incentive payouts serves as a critical component
in changing Prosumers’ behaviour towards energy usage in real-time and it was found
that it can be categorised into two energy usage behaviours; efficiency and curtailment.
Efficiency behaviour is referred to a group of Prosumers that focused in financing one-time-
off investment for technologies that can aid in reducing percentage of local demand capacity
and dependency on upstream power generation (i.e. install solar PV, well-insulated premises
to maintain temperature, energy-efficient appliances). It typically produce a long-term effect
and larger energy savings due to one focused effort. Meanwhile, curtailment behaviour
involves consistent commitment and vigilance (i.e. appliances are switched off after use
instead of leaving it on standby) and switching high energy usage when penetration of surplus
renewable resources is abundant to gain reduced energy billing. However, investments on
energy-saving appliances or PSPG installation is limited as compared to efficiency behaviour
Prosumer thus leading to lower energy savings. In this sense, Utility introduces monetary
incentives to motivate aggregators in designing levelled market participation that responses
well to either efficiency or curtailment behaviour change in view of energy usage lifestyle
and billing benefits (i.e. rebound effect [220], intrinsic motivation, undeserving monetary
saving).

The establishment of monetary incentives by policy makers and practitioners serve an
additive in encouraging local creation of sustainable EPS. Subsidy payouts are offered to
customers as financial aid for PSPG investments and appreciation when using electricity
efficiently through competitive scheduling of assets in view of tariff against monetary rewards.
Although respective monetary incentives do have its limitations and negative impacts on
customers behaviour towards payouts exploitations and demand capacity demographics,
some studies [221] have proved to gain greater benefitting outcomes at a global perspective
and serves as an influential optimising tool to reduce fossil-energy consumption at low-
voltage level. It also extend competitive edginess for third-party providers (i.e. aggregator)
when modelling programs that can incentivise customer engagements and PSPG installation
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Fig. 4.3 Studies analysed on the impact of energy and billing saved by different group of
customers who observed monetary incentives and social comparison components.

security for higher incentive payouts. In this sense, aggregators are to find solutions that can
benefit both Prosumer and itself from higher payout issued by Utility and share the profit
margin effectively (i.e. exploit time of use during high payout incentives and portioned out
for maintenance costs and Prosumer’s energy billing).

Contrarily, social comparison feedbacks in Prosumer Community energy usage can
add value in steering curtailment behaviour as seen in Fig. 4.3, a study initiated in Japan
[222]. Prosumers were subscribed into three different programs and view their contributions
towards energy savings; (i) monetary incentive−reward payout of £1.70 for every 1% energy
reduction, (ii) monetary incentive with social comparisons−similar reward payout agreement
and provide energy usage indications against their neighbour to evaluate how they fair
in the efforts toward reduced energy usage, and (iii) no information−serve as a control
group that receives no information on how much they have saved on their energy usage and
corresponding reward payouts.

4.1.3 Negative Impacts of Monetary Incentives

A few studies on practical deployment of monetary incentives packages suggests positive
impact in reducing energy dependency at low-voltage from upstream generation for instant;
monetary incentive combines with full technical support and installation of PSPGs (i.e.

automations, suggest optimum solutions), and monetary incentives in combination with
social comparison feedback regarding energy usage in a Community. However, these package
of supplementary strategies often appears to generate small impact or even negligible as
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it undermines the effectiveness of monetary incentives in reducing energy use. Following
present case studies in which monetary incentives can also deviate Prosumers at low-voltage
from the initial objectives of reducing energy usage as compared to operation benefits (i.e.

investments incurred) and discomfort (i.e. lifestyle).

Rebound Effects

One of the major setback in providing monetary incentive for energy savings is that it
the money saved could be invested on other energy consuming behaviour. For an instant,
investing on energy efficient appliances that leads to lower consumptions gives the intuition
that these equipments can be operated for a longer period. Hence, compelling energy
curtailment behaviour may lead to monetary savings that can spent elsewhere which results in
rebound effect due to increase in energy consumption. Report summarised in [223] revealed
that there is no difference and effectiveness in residential energy consumption savings despite
installing energy-efficient appliances or supporting conservation technology set-ups in homes.
The collected data shows detrimental outcomes where it was estimated to be 13% below the
targeted or potential energy savings during non-summer while in summer deficit by 8-12%.
Lower savings trend was reported due to participants’ behaviour in wanting to gain better
comfortability during seasonal changes with the conception that energy-efficient appliances
can operate at higher operating thresholds to offset with those non-efficient appliances,
assuming that the energy consumptions could be levelled or even reduced.

Efforts Is Not Worth the Incentive Earned

As energy customers’ mindset focuses on the repercussion in investing much money, effort,
and discomfort when subscribing to become Prosumer, the money saved through monetary
incentives requires significant impact on individual energy billings. Small incentive payouts
may not engage customers’ behaviour to partake in such efforts despite realisation on the
benefits they would offer at the global perspective. For instant, installation of the solar
PV would need 8 or more years before Prosumer can earn a profit margins or breakeven
investment and this is only the case if proper regime of energy utilisation is followed.
Research have shown that investors are attracted to fast return on investment (receiving
money now) as compared to the same amount of returns in the far future. Hence, curtailment
behaviour seen as too costly compared to benefits and will be perceived as not worth the effort
even with monetary savings. Conclusively, when quantifying monetary incentive payout that
promotes cost-benefit thinking, consideration on private costs and benefits must be justifiable
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against Prosumers’ lifestyle trade-offs and heavily subsidised monthly subscriptions (i.e.

attractive service packages, unique electricity tariff from non-Prosumer, lifestyle discounts).

Incentive Payout Depresses Positive Intrinsic Motivations

Contrastively, providing substantial monetary incentive payouts for reducing energy con-
sumptions may crowd-out or felt undermined to customers with intrinsic motivations for
sustainable energy behaviour. These group of people are very motivated to save the environ-
ment without receiving monetary incentives thus, pro-active in subscribing for energy saving
programs or switching to green energy providers. On the other hand, monetary incentive can
generate spillover effects on peoples’ behaviour towards being pro-environmental. Meaning,
people are more money driven and motivated to be climate-friendly and has no intentions if
efforts are not incentivised. Hence, to overcome such predicaments, large saving efforts are
required to gain large incentive payouts, deserving at its maximum energy saving capability.

4.2 Contributions

It aims to unveil realisations in bringing demand-side management to Prosumers, preceding
grassroot-based (bottom-up and bilateral) ruling, transacting in-house EMS (TE value) that
allows either idiosyncratic or interdependent assessments. Primarily, it aims to position
aggregators as the neutral market facilitator during energy trading transactions at low-voltage
and response autonomously towards DERMS settlements. The reversed obligatory role
accredit Prosumer(s) to constitute joined scheduling- and bidding-abled decision-making
processes based on resource availability, shaping/shifting demand load profiles, and partici-
pate in the two-way market clearing to bias wholesale electricity tariffs in real-time. In this
sense, control intelligences must be cooperative yet competitive, optimally schedules BTM
DERMS operations and controllable loads at low-voltage to meet individual energy interest
(i.e. high return on investment, reduced energy billing) which prepares aggregators with
greater certainty in planning DSR and resilient towards power quality issues at a Community
level.

The contributions of this chapter is separated into three categorise:

1. to define a small central grid by clustering Nanogrids into Prosumer Community
using Expectation Maximisation-Gaussian Mixture Model (EM-GMM). Identifying
diverseness of Nanogrid’s energy needs/attributes based on socio-economic terms
and distribution priorities. From structured Prosumer Community, complications in
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MADDPG’s policy gradient issues (linear Q-function) and large data stream can be
eradicated.

2. contributing elements and influencing factors that affects local energy billing. In Pro-
sumer decentralised modus operandi, observation on maximum contracted electrical
demand is observed by scheduling local use of shiftable appliances and power ex-
change activities at PCC (utilisation of PSPG). It incorporates constraint relaxations to
accommodate human lifestyle usage factor during intervals of peak demand instances.
In addition, relative to leading consequences on centralised demand-side management
(i.e. Duck-Curve crises, market bidding, unit commitment constraints/competence),
scheduling Prosumer’s PSPG shifts into a cooperative approach to gain larger incentive
payout.

3. modelling of ’one-size-fits-all’ TE management intelligences using MADDPG learning
algorithm to manage local asset utilisations that bridges Prosumer-to-Prosumer (PtP) in
energy trading and market operations across the distribution network. Communication
and hierarchical control functions of MADDPG Agents are directed by the proposed
DCF seen in Fig. 3.7, prioritising parent exigencies while considering other neigh-
bouring Nanogrids’ constraints. Primary tasked to manage power flow exchanges at
PCC are based on in-house engagements to curb operating costs while maximising
competencies in energy usage (i.e. auxiliary for operating reserve, market clearing
price). In addition, implementations of Extreme Learning Machine (ELM) is employed
to assist in forecasting processes to minimise uncertainty, it being power generation or
demand profiles.

The operation control features in Agents of MAS interoperate IEEE 2030.7-2017−IEEE
Standard for the Specification of Microgrid Controller, IEEE 2030-2011−IEEE Guide for
Smart Grid Interoperability of Energy Technology and Information Technology Operation
with the Electric Power System (EPS), End-Use Applications, and Loads, and IEEE 1818-

2017−IEEE Guide for the Design of Low-Voltage Auxiliary Systems for Electric Power
Substations. To test implementations of control functions, a proposed nanostructured distri-
bution network (in Prosumer Community format) comprising four Communities with random
distribution of Prosumer settings (i.e. residential, commercial, and industrial) is modelled
in MATLAB on IoT Azure reference architecture to exploit Azure’s artificial intelligence
platform and machine learning modules.
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4.3 Identification of Prosumer Community: Clustering

Prerequisite in clustering Prosumers into cluster-based structure requires bootstrapping of
data acquired from NAN (Fig. 2.7a) to identify PSPG generation and load demand capacities.
These data are then characterised into Nanogrid’s energy exchange profile at PCC to represent
its social attributes incorporating other meta-data relations (e.g. size of family, average age of
family, nature of commercial/industrial operations). Succeedingly, in the holistic clustering
approach, Prosumer(s) with no access to PSPG is also considered into modelling of Nanogrid
system. Hence, it is separated into two Nanogrid domain−Prosumer type-I (w/ PSPG,
consumer & producer) and Prosumer type-II (w/o PSPG, typical consumer). The Prosumer
Community comprises a group of Prosumer type-I (PT -I) and type-II (PT -II):

{PC}= {Cl1,Cl2, ...,Cln} (4.1)

where
{Cli}= {PT -I1,PT -I2, ...,PT -II}

{Cl j}= {PT -II1,PT -II2, ...,PT -IIJ}
(4.2)

s.t.

{Cl} ̸= {PT -II j, ...,PT -II j+n,PT -Ii, ...,PT -Ii+n} (4.3)

In the case when PSPG could not meet the local demand, the deficit will be drawn
downstream with reference to PCC while excess generation transferred upstream. Negotiation
of energy transfer cannot be exchanged directly between PT -I and PT -II as it would generate
exponential formulation and policy complexities for each pairing transactions. In this sense,
any required communication schemes rendered by Prosumer(s) within a Community will
pass to the Quasi-Centralised Secondary Control Layer (Fig. 3.7-3.8) of DCF managed by
aggregator. Nevertheless, power exchange between aggregator to aggregator is allowed.

4.3.1 Clustering Paradigm & Profiling Prosumer Attributes

The clustering paradigm describes pairing assignments of PT -I’s excess generation with
PT -II in a Community. It relates to the allocation of excess energy generation pool generated
by respective PT -Is during a predefined time interval, {EPT -I

EXS }= {E
PT -I1
EXS ,EPT -I2

EXS , ...,EPT -In
EXS }

and analysing energy acceptance capacity, EPT -IIi
EXC , ordered from PT -IIs to satisfy percentage

of individual energy demand capacity, {EPT -II
DMD } = {E

PT -II1
DMD ,EPT -II2

DMD , ...,EPT -IIn
DMD }. Here, the

accepted energy capacity may or may not equate to EPT -IIi
DMD requirement as allocation priority

policy dictates assignment protocols (i.e. EPT -IIi
EXC < EPT -II j

DMD or EPT -IIi
EXC = EPT -II j

DMD ).
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Fig. 4.4 Characterisation of Prosumer Community into clusters (PT -I and PT -II) based on
energy attributes.

The relations in assigning EPT -Ii
EXS to EPT -IIi

EXC depends on PT -II’s energy attributes and
contribution status in the Community. For an instant, a predefined EPT -Ii

EXS is to be assigned
into EPT -IIn

DMD under a policy which prioritises certain attribute. In the case if Community is not
characterised in view of this attribute then, the status of PT -II is not created. Consequently,
the priority relations among PT -II is left uncertain and the corresponding EPT -IIi

EXC attribute will
not be tallied (i.e. large EPT -IIi

DMD can receive large amount of excess during low inferior-priority
policy).

NGs are characterised into respective clusters which entails unique Prosumer-type and
similar energy attribute trends. The characterisation processes also perform allocation
of EPT -Ii

EXS to designate PT -II based on priority policy (hierarchical) that describes sharing
relations between the pairing clusters. Conclusively, it translates a Prosumer Community into
homogeneous member (cluster) with low energy attribute variance that adheres to priority
policy. The proposed characterisation approach will not mix both PT -I and PT -II in a cluster
but instead clustering were done based on same Prosumer type and attributes as shown in
Fig. 4.4 and defined in (4.1)-(4.3).

To create Prosumer Community homogeneity environment, profiling of energy usage
trends from both PT -I and PT -II are utilised. Preliminarily, the initial categorisation starts
with quantifying PT -I’s potentials in generating energy upstream (excess generations) and
will be segregated from the rest. In continuous domain at time t, the energy deficient and
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excess capacities of individual PT -Is are monitored at Nanogrid PCC defined as EPT -Ii
EXS(t)

and

EPT -Ii
DMD(t)

respectively. Subsequently, to gain close-to estimations of available energy allocation,
considering irregularities in consumption behaviours (e.g. energy usage demographic deviates
from weekday to weekend), PT -I interoperates lifestyle factors (meta-data relations). It aims
to recover convergence (stabilise) in calibrating energy allocations by averaging the energy
attribute over a predefine duration (i.e. weekly, monthly), T , for a single NGPT -Ii given in
(4.4) to minimise large demand shift/deviation episodes.

{EPT -Ii
Att }=

∑
T
t=1 EPT -Ii

DMDt ;GENt ;EXSt

T
(4.4)

where T denotes the total time taken based on the predefined time interval (e.g. T = 168,
t = 1; hourly interval for a week). The average energy attribute itself will not define any
insights neither on its consumptions nor generations behaviour. Hence, comparisons with
other ENGi

Att within the Prosumer Community using clustering approach aids in determining
Nanogrid’s energy deficiency level with respect to others.

4.3.2 Proposed Clustering Analysis & Coordination

Employing Azure Machine Learning Studio, an EM-GMM based clustering module was
created in Azure registry container to classify NGs into affiliated clusters based on respective
Nanogrid’s energy attributes. EM-GMM is an unsupervised machine learning algorithm that
organises each data point into respective unique cluster that has similar properties/features.
In this sense, the clustering distribution defined by EM-GMM algorithm is based on {EPT -I

Att },
EPT -II

Att , and the number of created clusters. Each cluster is characterised by a unique lo-
calise centroids, congregating NGs of the same proximity to the central value. For an
instant, assuming the computed average energy attribute across all NGi over period T is

{EPT -I1
Att

T
}, ...,{EPT -In

Att

T
},EPT -II1

Att

T
, ...,EPT -IIn

Att

T
. After clustering, the Prosumer Community

is define as: {
{ECl-1,1

Att

T
},{ECl-1,2

Att

T
}, ...,{ECl-1,N

Att

T
}
}
⊂ EPC

Att
T

;∀ PT -I{
ECl-2,1

Att

T
,ECl-2,2

Att

T
, ...,ECl-2,M

Att

T
}
⊂ EPC

Att
T

;∀ PT -II
(4.5)
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(a) Two circular cluster of dif-
ferent radius have same mean
value.

(b) Interception clustering
shapes causing deceptive
mean value.

Fig. 4.5 Failure cases when identifying cluster centroid (mean value) using K-Means ap-
proach.

where

ECl-2,m
Att

T
= {ENGi

DMD

T
, ...,ENGI

DMD

T
} ; o f same CATm-Att{

ECl-1,n
Att

T
}
=

{
ENGi

DMD

T
,ENGi

GEN

T
,ENGi

EXS

T
, ...,ENGI

DMD

T
,ENGI

GEN

T
,ENGI

EXS

T
}

; o f same CATn-Att

(4.6)
Note that clustering configuration for PT -I is a set of 3 components, EDMD, EGEN , and EEXS,
while CAT -Att refers to the attribute categories defined by user.

Typically, adaptations of K-Means technique deemed to be a popular avenue to perform
clustering. However, drawback in K-Means is its naive approach in determining mean value
for cluster centroid. Fig. 4.5 illustrates the confusions in K-Means technique when localising
mean value of two groups that are placed close together and also cases where the groups
are not clustered in an uniformed shape. Therefore, EM-GMM provides flexibility than
of K-Means as it distributes data point in Gaussian function. In this sense, it avoids rigid
visualisation of circular-based geometry assumptions when localising mean value; taking
mean and standard deviation parameters to describe the cluster’s shape. Given in the two
dimensional axis (x-y) directions, a single cluster can take an elliptical shape based on the
Gaussian distribution. To find the mean and standard deviation of the Gaussian parameters
for each cluster, Expectation–Maximisation optimisation algorithm is employed. Fig. 4.6
displays the Gaussian distribution being fitted to form respective clusters.

The computing conceptualisation of EM-GMM is as follows;

1. It begins with predefining the number of cluster and randomly initialise the Gaussian
distribution parameters. Comparably, these parameters can also be estimated based on
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the data trends. Nevertheless, both approaches begin with a poor Gaussian inception
but converged quickly.

2. From the Gaussian distribution, compute the probability of each data to which cluster
it belongs to. Those data points that are closer to the respective Gaussian centroid will
be clustered together. Intuitively, employing Gaussian distribution, it is assumed that
most of the data points exist closer to the cluster’s centre.

3. Based on the data probabilities, new set of Gaussian distribution parameters are
computed to maximise likelihood estimation of data points within clusters. Those new
parameters uses mixture weighted sum on the position of data point; where the weights
denote probability assignments of data points to a particular cluster. To visualise
the transition of distribution, refer to the green data points and cluster in Fig. 4.6.
Initially, in first iteration, the distribution is generated randomly despite having the
green data points spreading in the direction of ’top-right’. It then compute the mixture
weighted sum from the probabilities, acknowledging that some green data points are
near the centre while a densely populated data on the right. Hence, naturally the mean
distribution shifts closer to the right forcing to create an ellipse that is fitted by the data
standard deviations (maximising mixture weight sum probability).

4. Repeat Step 2 and 3 iteratively until the distribution converges from one iteration to
the next.

Accordingly, EM-GMM algorithm aids in clustering respective NGs to a cluster member
for every time interval t. Assuming that the cluster members are organised based on energy

attributes exchange at PCC in a hierarchical order of their centroid (e.g. ENGm
Att

T
<50kWh,

Fig. 4.6 Expectation-Maximisation clustering using Gaussian distribution model.
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T = 168, t = 1, assign to cluster-consumption 1 and subsequent cluster-consumption has its
energy attribute increases in value). The absolute difference in distribution between cluster
members and their centroids defines clustering variances. Clusters that attained low variance
depicts close proximity positioning among data points in relations to cluster’s centroid.

4.3.3 Expectation-Maximisation Gaussian Mixture Model Algorithm

The prerequisite in employing EM-GMM assumes familiarity with mixture model, probability
theory (defined in Appendix C), and maximum likelihood estimation (MLE). Taking the
observations of Xi and K components derived from mixture model, (4.7) defines the marginal
probability distribution of Xi:

P(Xi = x) =
K

∑
k=1

πkP(Xi = x|Zi = k) (4.7)

where the mixture proportion,πk, represents the probability in which Xi associates to the
mixture component of kth. While, the latent variable, Zi ∈ {1, ..,K}, denotes the mixture
component (P(Xi|Zi)) for Xi.

Maximum Likelihood Estimation: Normal Distribution

Reviewing on MLE in normal distribution, suppose n number of observations X1, ...,Xn are
sampled from the Gaussian distribution with unknown mean(µ) and variance(σ2). Hence,
finding the MLE for mean requires log-likelihood, ℓ(µ), by taking the derivative in relations
to µ and equates it to zero. (4.8) defines the expression for MLE in normal distribution:

L(µ) =
i=1

∏
n

1√
2πσ2

exp−
(xi−µ)2

2σ2 (4.8)

By applying logarithmic function to the likelihood, it decomposes the product function and
inverses exponential function so that MLE can be solve easily:

ℓ(µ) =
n

∑
i=1

[
log
(

1√
2πσ2

)
− (xi−µ)2

2σ2

]
(4.9)
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and taking the log-likelihood derivative, equate it to zero to achieve MLE, and solve for µ:

d
dµ

ℓ(µ) =
n

∑
i=1

xi−µ

σ2 = 0

µMLE =
1
n

n

∑
i=1

xi

(4.10)

Mixture Model for Gaussian Mixture Model: Expectation-Maximisation

From the mixture model concept, Expectation-maximisation (EM) algorithm is defined in the
context of Gaussian Mixture Model (GMM) implementation−hence contrived EM-GMM.
Let N(mean(µ),variance(σ2)) denotes the distribution probability function for normal
random variable. Here, the conditional distribution, Xi|Zi = k ∼ N(µk.σ

2
k ), so that the

distribution margin of Xi is expressed as:

P(Xi = x) =
K

∑
k=1

P(Zi = k)P(Xi = x|Zi = k) =
K

∑
k=1

πkN(x; µk,σ
2
k ) (4.11)

Likewise, the joint observation probability of Xi = {X1,X2, ...,Xn} is:

P(X1 = x1,X2 = x2, ...,Xn = xn) =
n

∏
i=1

K

∑
k=1

πkN(xi; µk,σ
2
k ) (4.12)

It describes EM algorithm in gaining MLE of πk,µk,andσ2
k when given a set of observation

data, {x1,x2, ...,xn}

Maximum Likelihood Estimation: Gaussian Mixture Model

Using the same concept as normal distribution MLE, subsequent defines MLE in Gaussian
mixture model. Similarly, the unknown parameters; θ = {µ1, ...,µk,σ1, ...,σk,π1, ...,πk} and
the likelihood is defined as:

L(θ |X1, ...,Xn) =
n

∏
i=1

K

∑
k=1

πkN(xi; µk,σ
2
k ) (4.13)

Hence, the log-likelihood is defined as:

ℓ(θ) =
n

∑
i=1

log

(
K

∑
k=1

πkN(xi; µk,σ
2
k )

)
(4.14)
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However the expression in (4.14) shows that the summation of K components impede the
log function from applying normal distribution. Hence assign the derivative of log-likelihood
with respect to µk and equate it to zero:

d
dθ

ℓ(θ) =
n

∑
i=1

πkN(xi; µk,σk)

∑
K
k=1 πkN(xi; µk,σk)

xi−µk

σ2
k

= 0 (4.15)

It can be seen that solving for µk will not be analytically possible as for the latent variables,
Zi, are still unknown. In this sense, if Zi are known, gathered from the sampled Xi such that
k = Zi then, estimation of µk can be done by using (4.10).

Estimating Expectation-Maximisation for Latent Variable (GMM) MLE

Intuitively, the latent variables, Zi, guides in determining MLEs. Hence, initial attempt to
compute posterior probability distribution of Zi given in EM observations is as follows:

P(Zi = k|Xi) =
P(Xi|Zi = k)P(Zi = k)

P(Xi)
=

πkN(µk,σ
2
k )

∑
K
k=1 πkN(µk,σk)

= γZi(k) (4.16)

Substitute (4.16) into (4.15) and perform derivative of log-likelihood and solve for µk.
Despite having µk-dependent for γZi(k), it can be attuned to subconsciously neglect its
relationship and ’approximately/predictively’ solve for µk:

n

∑
i=1

γZi(k)
xi−µk

σ2
k

= 0

∑
n
i=1 γzi(k)xi

∑
n
i=1 γzi(k)

= µ̂k =
1

Nk

n

∑
i=1

γzi(k)xi

(4.17)

s.t.

Nk =
n

∑
i=1

γzi(k) (4.18)

where Nk refers to the number of effective points assigned to k component and µ̂k is the
average weighted data with γzi(k) weights. Likewise, π̂k and σ̂2

k can be similarly computed
using (4.17):

π̂k =
Nk

n

σ̂2
k =

1
N

n

∑
i=1

γzi(k)(xi−µk)
2

(4.19)
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Conditionally, derivations for finding MLE in GMM domain requires two specific observa-
tions; (i) posterior probabilities, γZi(k), can only be computed if parameter θ are known, and
(ii) solving for parameter, θ , requires γZi(k). Motivated by the above mentioned observations,
the EM algorithm pseudo is as follow:

Pseudo of EM:

initialise parameters, θ : µk, σk, πk, ε=1.
compute initial log-likelihood function.
while_loop(ε>1e-5)

Calculate γZi(k) using (4.16).
Calculate estimation of µ̂k, σ̂2

k , π̂k using (4.17)−(4.19).

Assign: πk← π̂k; µk← µ̂k; σk←
√

σ̂2
k .

Assign: log-likelihoodold←log-likelihood and recalculate log-likelihood before
assigning to→log-likelihoodnew.
if log-likelihoodnew < log-likelihoodold

re-initialise parameter θ

set tolerance: ε=1
else

tolerance: ε=|log-likelihoodnew-log-likelihoodold |
end while

It is critical to observe sensitivity when declaring the initial parameters, θ , deeming them to
be ’valid’. This can be verified by monitoring log-likelihood if its value increases after every
iteration.

EM-GMM

Conclusively, relevant quantities of estimate-based EM algorithm is fused into Gaussian
mixture model. The absolute likelihood is expressed as follows:

P(X ,Z|µ,σ ,π) =
n

∏
i=1

K

∏
k=1

π
I(Zi=k)
k N(xi|µk,σk)

I(Zi=k) (4.20)

where I denotes the identity matrix of covariance and the log-likelihood:

log(P(X ,Z|µ,σ ,π)) =
n

∑
i=1

K

∑
k=1

I(Zi = k)(log(πk)+ log(N(xi|µk,σk))) (4.21)



4.3 Identification of Prosumer Community: Clustering 163

The log function acts directly on the standard normal density, leading to non-complex solution
for MLE. As the estimated EM function does not observe latent variables hence, expectation
of log-likelihood with respect to posterior probability of latent variables were considered. In
consequence, the expected (E) log-likelihood value is expressed in (4.22).

EZ|X [log(P(X ,Z|µ,σ ,π))] = EZ|X

[
n

∑
i=1

K

∑
k=1

I(Zi = k)(log(πk)+ log(N(xi|µk,σk)))

]

EZ|X [log(P(X ,Z|µ,σ ,π))] =

[
n

∑
i=1

K

∑
k=1

EZ|X [I(Zi = k)](log(πk)+ log(N(xi|µk,σk)))

]

EZ|X [log(P(X ,Z|µ,σ ,π))] =

[
n

∑
i=1

K

∑
k=1

γZi(k)(log(πk)+ log(N(xi|µk,σk)))

]
(4.22)

where EZ|X [I(Zi = k)]=P(Zi = k|X) and can be defined as γZi(k) given in (4.16). Here,
maximisation of expected log-likelihood with respect to µk, σk, and πk are based on fixed
γZi(k) in order to achieve closed-form resolution.

4.3.4 Integrating Temporal Clustering: Membership & Adaptability

The proposed EM-GMM clustering approach holds characterisation for each Nanogrid’s
energy attribute at a predefined time interval, T . However, based on the expected energy
means and variances during clustering, they are unable to describe energy behaviour for a
longer period of time. For an instant, assuming time interval taken is rated at T =24 and
the clusters offer insights on Nanogrid’s energy exchange at PCC hourly basis for a day.
However, if considering an ideal energy characterisation for a year that observes seasonal
changes and festive periods then, taking the average energy attribute values (T =24hrs) and
perform clustering will not comprehend temporal transition of energy behaviour. In this sense,
temporal changes in profiling energy exchange activities at PCC could not be reproduce
during clustering with shorter time intervals. Hence, clustering adopts weekly basis to smooth
the energy variability across weekday and weekend, and employ temporal metrics involving
temporal membership and adaptability to gain perspective on Nanogrid’s energy attributes
over a year.
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Temporal Metrics

The temporal metrics comprises of two characterisations; (i) cluster membership−a label
that defines Nanogrid’s associated cluster based on specific energy attribute, (ii) cluster
adaptability−where clustered NGs of the same energy attribute transitioned into another
cluster at consecutive T intervals (during clustering periods). Hence, the peripherals of
temporal membership and adaptability provides clustering identity for individual NGs and
observes permutation in Nanogrid’s energy attributes for definite clustering respectively.
For an example, in week n, NGPT -I

1 was assigned to cluster-consumption 1 however, in

week (n+1) it transitioned into cluster-consumption 2; transition adaptability: {ECl-1,1⇒2
Att

T
},

cluster membership: from {ECl-1,1
Att

T
} to {ECl-1,2

Att

T
}.

Using percentage as the reference quantifier, the frequency of NGs undergone cluster
transitioning over a year can be monitored. For a specific clustering scheme, Cl, for NGi (in
general), its temporal membership identity, u, for a year is expressed as follows:

ClNGi
Att,u =

∑
Tmax
T=1ClNGi

Att,u
T

Tmax
∗100%

ClNGi
Att,u

T
=

1, if i member of ClAtt,u

0, otherwise

(4.23)

where Tmax refers to the total sampled duration while T denotes the time intervals, in this
case is weekly. Contrarily, the annual temporal adaptability of NGi transitioning from cluster
to cluster u⇒ (u+n) is defined:

[
ClNGi

Att,u⇒ ...⇒ClNGi
Att,(u±n)

]
z
=

∑
Tmax
T=1

(
ClNGi

Att,u
(T−z)

⇒ ...⇒ClNGi
Att,(u±n)

(T ))
Tmax− z

∗100%

[
ClNGi

Att,u
(T−z)

⇒ ...⇒ClNGi
Att,(u±n)

(T )]
=

1, if transition(s) exist

0, otherwise

(4.24)

s.t. [
ClNGi

Att,u⇒ClNGi
Att,v

]T
=

1, if u ̸= v

0, otherwise
(4.25)
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where z represents the number of transition occurred, relocating to consecutive clusters
during T intervals. The interpretation of temporal adaptability is appraised by z value or its
cluster hop-count−where z = 2 depicts ClNGi

Att,3
T
⇒ClNGi

Att,2
(T+1)

⇒ClNGi
Att,1

(T+2)
.

Moreover, the primary interests in monitoring temporal adaptability suggests how in-
dividual Nanogrid, in terms of energy deficiency and consumptions, is rated among other
NGs. Through cluster membership hierarchical indications, u, the transition from high to low
index regarded as a favourable energy usage outcome that relates reduction in Nanogrid’s
electricity billing. Contrarily, in relations to excess generations from local PSPG, low to high
cluster transition index is considered benefiting as Prosumer have the ability to gain greater
profit margin from. Using both temporal membership and adaptability percentage metrics
over a year, defined as θmem and θad pt limits, NGs are distributed into four regions based on
respective energy attribute and reference to (4.23)−(4.25):

θmem,θad pt =



θ ≤ 25% low

25% < θ ≤ 50% moderate low

50% < θ ≤ 75% moderate high

75% < θ high

(4.26)

Social & Economic Attributes

To comprehend a factual characterisation of Nanogrid’s energy attributes in a Community, the
temporal metric performances are fused with meta-data relations to increase attribute sensi-
tivity and reduce consumption variability. Meta-data relations represent social/human-factor
aspects that can influence utilisation of excess generations and consumptions in Nanogrid
based on economical trajectory. For an example, size of Nanogrid’s building structure, nature
of building’s operations (i.e. industrial machineries, office spaces/shopping centre, hospital),
installation of smart devices that helps to manage energy distribution, occupant’s average
income, number of pax residing. Moreover, government efforts in providing incentive pro-
grammes have driven Prosumer’s behaviour to redesign energy management strategies and
gain monetary incentives. Hence, the above mentioned influencing attributes can be used
as meta-data relations, revealing social impacts and energy behaviour aspects of individual
NGs.

Connecting the meta-data relation factors with the results attained from clustering, the
Prosumer is fully characterised driven by its socio-economic circumstances against other
Prosumers within the Community.
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Fig. 4.7 Clustering of PT -IIs based on 1 week energy consumptions against average income.

4.3.5 Findings and Results for Clustering Prosumer in Community

Using energy profile data collected from [224] and [108], clustering analyses were performed
to create a clustered-based Community. These data sets represent an annual compilation of
energy consumptions and generations from both PT − I and PT − II, a ’living lab’ testbed
Microgrid system in Pecan Street involving more than 1000 volunteered participants (typical
household environment). Among these data, the clustering evaluations select only 180 of
PT -I and 420 PT -II within close proximity (geographical location) to symbolise a Commu-
nity. Based on respective Nanogrid’s energy attributes, clustering algorithm with temporal
metrics were applied to view Nanogrid’s allocation into respective clusters. Note that both
Prosumer-type has each set of clusters as PT -I and PT -II are not mixed together hence, two
independent clustering analyses were performed.

Firstly, it involves clustering of 420 PT -IIs where creation of clusters are more apparent;
energy attribute variable deals only in consumption demographics. From the consumption-
based clusters, temporal membership and adaptability metrics are applied to rate Prosumer’s
energy consumptions and contributions over an extended time period. The temporal metrics
are categorised into 4 regions based on (4.26). Fig. 4.7 illustrates households being clustered
into respective cluster (Cl1 to Cl5) based on only energy consumption attributes gathered for
a week. The clusters are ranked from lowest energy consumption, Cl1, and to the highest
clustered in Cl5 while Fig. 4.8 presents effects of temporal metrics, θmem,ad pt , attributes; T =1
week, Tmax=24 weeks.

In Fig. 4.7, the result illustrates that energy consumption distribution of PT -IIs in week 1
are levelled at high−majority of NGs are clustered in Cl4 and Cl5. The formed clusters were
identified using EM-GMM clustering algorithm where the computed centroids describes level
of consumption in relations to Nanogrid’s average income. Fig. 4.8a presents the cluster’s
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(a) Temporal membership of NGs retained within
the same cluster member.

(b) Temporal adaptability of NGs transitioning into
other cluster member.

Fig. 4.8 Temporal metrics on PT -II consumption attribute based on T =1 week, Tmax=24
weeks.

consumption temporal memberships, θmem, for 24 weeks with an interval of 1 week. Similarly,
Cl1 denotes low energy consumption level and increases proportionately to cluster’s index.
In addition, the position of clusters along the x-axis defines their consumption centroids.
The result shows that 151 PT -Is were clustered in Cl1 with 21 out of which were abled to
maintain its cluster membership throughout Tmax, green coded area securing θmem >75%.
Contrarily, Cl3 has the largest number of NGs to be assigned with low temporal membership
(θmem <25%). This indicates that NGs clustered in Cl3 will transition out into other cluster
index; an episode where Prosumers experience high energy consumptions for a particular
week and subsequently regained normality. Likewise, Cl4 also experienced the same temporal
membership effects as Cl3. Notably, in cluster Cl5, there were 2 NGs maintained in the
highest energy consumption usage region. Fig 4.8b presents temporal adaptability, θad pt ,
results describing transitioning activities of NGs into different clusters. The x-axis exhibits
favourable cluster transition processes where NGs are transferred from high to low cluster
index. The analyses present that the probability of NGs transitioning more than two clusters
(e.g. Cl5→Cl2) are uncommon as such instances demand intense regulation potentials from
PT -IIs. However, 41 NGs have experienced an exceptional case of transitioning from Cl3 to
Cl1 with mass rated at θad pt ≤50%. Survey showed that the household’s average income has
increased and the energy consumption was reduced (i.e. unoccupied during the day). Most
of the NGs had their energy consumptions regulated between clusters 1 to 3 which explains
large assignment of NGs in those clusters as shown in Fig. 4.8a.

Upon analysing PT -IIs’ energy consumption behaviours across 24 week period, interop-
eration of meta-data relations were analysed considering only building structure/size variable
to enhance characterisation accuracy. In Fig. 4.9, three building types/structures were studied
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Fig. 4.9 Meta-data relation involving building type.

in response to their energy consumption in respective temporal membership; townhome
(TH), detached home (DH), and apartment (APT). The results inferred that townhomes
and apartments are typically characterised as low energy consumption habitat, clustered
within Cl1 to Cl3. Surpassing, smaller type buildings (i.e. apartment) deemed to have greater
advantage over consumption level as majority were clustered and preserve in Cl1 rated at
θmem >0.5.

Subsequently, investigations into profiling energy attribute across 180 PT -Is were anal-
ysed based on comparable timespan, interval of 1 week throughout 24 weeks. In relations to
PT -I’s energy attributes, they involved clustering of available excess generations and energy
deficiency exchanged at Nanogrid PCC. The processes in clustering PT -Is avoid dealing with
energy consumption and generation levels as they provide insignificant relations on DSR con-
tributions as compared to energy exchanged levels at Nanogrid PCC gateways. Furthermore,
it also provides better representation of individual PT -I energy attributes when compared
other Prosumers in the Community (i.e. PT -II) and quantification of ESS’s variables can be
neglected.

Fig. 4.10 illustrates clustering outcomes of PT -Is in relation to excess generations
(upstream) generated from PV system against its size and energy deficiency (downstream),
and household’s average income for 168 hours (Tmax = 168) with an hour interval (T =

1). The x-axis demarcates cluster’s centroids which correspond to the intensity level in
respective domains (i.e. Cl1−lowest and Cl5−highest). For an example, for clustering excess
generations, NGs grouped in Cl5 gained the highest beneficiary in view of energy attribute
whereas in the same cluster index for energy deficiency domain, NGs have suffered the
worst due to dominant consumption capacity despite having PSPG. As seen in Fig. 4.10a,
benefitting excess generation clusters, Cl4 and Cl5, comprises of PV systems that are larger
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(a) Excess generation generated by PVs flowing upstream.

(b) Energy deficiency (energy demand flowing downstream).

Fig. 4.10 Clustering of PT -Is based on excess and energy deficiency in view of installed PV
and ESS sizes.

than 3.9kW where the centroid difference from lower tier clusters are rated at 1kWh apart. In
contrast, approximately 68-unit of NGs were clustered in the lower tier, C11 and Cl2, where
their centroids are measured at <500Wh for a week and majority of NGs clustered in Cl1
have zero excess generation availability. Such indication reflects that 40% of PT -I are still
dependent on the grid to balance energy deficiencies due to dominant consumption capacity
on a daily basis. It also signifies that they do not have significant contributions within the
Prosumer Community; by means of supporting PT -II energy demands. In view of clustering
PT -I’s energy deficiency attributes, Fig. 4.10b supports the cluster outcome seen in Fig.
4.10a by having close to half of PT -I population in Cl4 and Cl5. Such phenomenon indicates
a possibility of poor energy management in utilising maximum potential of PV generation
and optimum scheduling of ESS.

Investigating forward into temporal metrics for PT -Is, Fig. 4.11 presents both temporal
membership and adaptability respectively for duration of 24 weeks with 1 week intervals.
For temporal membership shown in Fig. 4.11a, more than 60% of PT -I managed to generate
adequate capacity of excess generation, Cl3 to Cl5, and 30 NGs were able to retained their
cluster membership in Cl3 and Cl4 (yellow regions). The dominant red regions seen in Cl2



170 Realisation of Demand-Side Operations Governed by Transactive Energy

and Cl5, θmem <0.25, describes that most NGs were rarely clustered in those two clusters
which concludes most Nanogrids’ excess generation falls between Cl3 and Cl4. Importantly,
despite having 7 NGs clustered in Cl1, the Cl1’s centroid value is rated at 1.27kWh per week
which is better than the results attained in Fig. 4.10a. Likewise, the temporal adaptability
shown in Fig. 4.11b, interprets that most NGs transitioned from Cl2 to Cl3 and CL3 to Cl4
which justifies the results attained for temporal membership seen in Fig. 4.11a.

Subsequently, Fig. 4.12 displays the temporal metrics for energy deficiency which will
ultimately synchronises with PT -I’s excess generation attributes given in Fig. 4.11. The Cl1
energy deficiency centroid is close to zero where Nanogrids’ are able to sustain and balance
between generation and consumption capacities. Furthermore, 10-unit NGs were able to
regain high temporal membership, θmem> 0.75 proving to have optimum energy management
in ensuring less dependency on the grid (curtailing downstream exchange at PCC). Overall,
all PT -Is had shown low energy deficiency level as there were less clustering occurrences in
Cl4 and Cl5. It also can be validated by Fig. 4.12b where NGs were generally transitioned
into cluster Cl1, Cl2, and Cl3; green portions, θad pt >0.75.

Lastly, investigations into incorporating socio-economic attributes by introducing meta-
data relations such as building size against energy consumption membership and incentive
program enrolment for excess generation were analysed. Fig. 4.13a describes the temporal
membership of energy consumption in view of building size where the result indeed justifies
that the electricity demand grew proportionately to the building size. In comparison with the
energy deficiency seen in Fig. 4.12a, installation of PV system does aid in curtailing DSR
(downstream) and reduces PT -I’s electricity billing, especially those staying in detached
homes that are generally greater than 10k f t2. Having installation of PV system, PT -Is

(a) Nanogrid temporal membership index.
(b) Nanogrid temporal adaptability index; cluster
transition.

Fig. 4.11 Temporal metrics of PT -I’s excess generation attributes based on Tmax = 24weeks,
T = 1week.
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(a) Nanogrid temporal membership index. (b) Nanogrid temporal adaptability index.

Fig. 4.12 Temporal metrics of PT -I’s energy deficiency attributes based on Tmax = 24weeks,
T = 1week.

have the liberty to enrol into incentive programmes/policies provided by the government
to promote effective DSR managements and sustainable efforts. Fig. 4.13b exhibits the
responses in enrolling into different type of incentive programmes and how it does influence
generation of excess energy capacities. Currently, there are 6 type of incentive programmes
adopted by PT -Is; (i) Verizon−program for low-income families in which none were eligible
due to high average income ceiling, (ii) Pricing−focuses on lowering energy consumption
and minimise use of ESS to advocate sharing avenues, (iii) Control−emphasizes on self-
sustaining solutions, (iv) Portal−similar to Pricing plan however, rated at a higher premium
subscription fee with better customer relation reviews, (v) UT Text−regulates and controls
energy consumption levels through penalty fees. In addition, monthly excess generation
capacities must be met based on the contracted policy, and lastly (vi) TextMess−offers better
incentive payouts as compared to others however, the total energy baseline level for fixed
load appliances are capped within a certain threshold. The result has shown that Pricing
program gained much popularity and many benefited by having greater excess generation
capacities due to its energy management efficiency. Following behind it is TextMess program
however, the temporal adaptability of excess generation is mostly less than 0.5 where NGs
rarely crossover to other benefiting clusters. Control program received the least attention
as it focuses much on maximising PV generation for self-sustain solutions which does not
guarantee low energy deficiency level. Hence, it results in less energy exchange (upstream)
for sharing and the incentive gained are at minimal.
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(a) Temporal membership of energy consumption
against Nanogrid building size (sqft).

(b) Excess generation adaptability against incen-
tive programme enrolment.

Fig. 4.13 Temporal metrics of PT -I’ socio-economic behaviour based on Tmax = 24weeks,
T = 1week.

4.3.6 Performance Review on Clustering Prosumer Community

The results attained in Chapter 4.3.5 has shown its advantage in applying clustering algorithm
to characterise Prosumers based on respective energy attributes and contribution domains. It
ciphers excess generation availability against consumption level in a Prosumer Community,
making scheduling of DSR management and modelling REM for bidding more apparent
for DSOs. Utilising clustering algorithm with temporal metrics and meta-data relations,
a complete decentralised energy profile characterisation is created. Furthermore, it also
reflects certainty in Community’s energy needs making DSR jurisdictions more apparent
when allocating excess generation.

Predominantly, collected analyses have shown that socio-economic attributes (i.e. incen-
tive programmes, lifestyles) are pivotal elements in steering Prosumers toward a cooperative
energy sharing paradigm (not limited to consumption curtailments) hoping to achieve re-
duced electricity billing while maximising incentive payouts. Despite having such offered
programmes, Prosumers are not well equipped with optimum EMS solutions and their
involvements in the real-time REM are premature. PT -Is and PT -IIs must co-exist to suc-
cessfully attune the electricity market clearing price and also preserve network reliability
against DSR problems.

Hence, in subsequent sub-chapters, investigations into modelling intelligent transactive
EMS for individual Nanogrid is proposed, programmed to coordinate both DSR objectives
(global) while securing individual interests (decentralised) within the Community.



4.4 Transactive Energy Management 173

4.4 Transactive Energy Management

With the recent liberalisation in the electricity market and integral digitalisation for decen-
tralised energy management infrastructure, scientific communities are constantly resynthesis-
ing stackable-ecotechnological solutions that can radically address Prosumers’ expectations
in maximising PSPG potentials [225, 226]. At the global perspectives, distribution man-
agement methodologies have indeed become a pivotal topic driver for proactive energy
business opportunities where standalone obligations/legislations are endorsed to sanction
individualism while observing levelised administrations across all energy actors. However,
as local management intelligences for greedy executions heightened to meet sole social ob-
jectives, cooperative functionalities such as stabilising clearing price market, commandeering
DSR coordination between transmission and distribution network, and managing of fault
isolation and service restoration due to DER integrations suffer periodic divergences. In this
sense, ill-defined non-linear objective functions and large optimisation search space due to
unconstrained variability becomes fragmented in global framework as local implementation
of standards neglect foreign jurisdictions.

Therefore, TE management is introduced to comprehend the existence of personal owned
DER penetrations and participation in the REM at low-voltage level. Its management pro-
ceeding focuses in ciphering Prosumer-centric solutions that interoperate technical, business,
and social engagements in cooperative-competitive domain.

4.4.1 Related Work and Gaps

Research efforts in decentralised energy management systems at low-voltage level have fo-
cused much dependency on DSOs administrations, limiting Prosumers’ options in purchasing
or selling electricity in real-time. Such restrictions allow DSOs to have better accessibil-
ity and certainty towards supply-demand coordination at distribution level as compared to
peer-to-peer transactions. Its core services addressing unit commitment (economic dispatch)
scheduled for peak demand crises, anticipate uncertainty in DER penetrations and "duck-
curve" effect, and inferior REM participations are critical elements that DSOs-TSOs are not
willing to detach from. They justified that having a reversal role (i.e. low-voltage actors
cooperatively govern DSR management) would compromise the reliability, security, and
safety of the overall network. In this sense, DSOs-TSOs are yet placed as an energy transac-
tion mediator that determines engagements of Prosumer-Retailer-REM where management
solutions could be biased and may not be the greatest value for Prosumers.
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H. Habib and et al. proposed an optimum strategy in coordinating local DER utilisations
based on electricity market price guidance [227]. The management algorithm suggests hierar-
chical control framework coordinated by intelligent Agents of MAS in decentralised domain.
It highlights the impacts on instantaneous scheduling of flexible load capacity and ESS based
on real-time electricity tariff. In addition, mathematical evaluation index in quantifying
energy management merits was proposed to distinguish different engagements in distributed
or centralised control schemes. Correspondingly in [228], P. Almeida and et. al feature recent
innovative projects involving DSO-TSO engagements in optimising peer-to-peer energy
trading. Hence, new business model was proposed, presenting a generic market/trading plat-
form that has complete optimisation tools in providing joined solution. It comprises of line
congestion management, optimal power flow, use of market flexibility, and real-time control
and supervision dedicated for DSO employment in TE commitments. Learning pointers were
comprehended from the proposed test case studies; (i) modular-based/stackable−ability to
expand decision-making protocols and search space based on learned energy management
experiences, (ii) potability−adaptable towards environment in accommodate participants’ do-
main. Other than managerial processes that affiliate with operating costs optimisation, [229]
offers real-time scheduling of available generation resources with uncertainties to attune safe
demand load demographics. Saint-Pierre and Mancarella proposed a novel dual-horizon
rolling framework that regulates optimum power dynamics generated by DER penetration
(upstream). It uses nonlinear programming algorithm to facilitate excess upstream generation
to plan for reserve operation and treat voltage sag crises during large switching of demand
load capacities at different time horizon.

A common decentralised managerial aspect was seen from the above mentioned method-
ologies where it is trivial for those proposed control algorithms to revolve around a centralised
policy that is favourable for energy actors at top of the hierarchical chain but detrimental
for Prosumer(s) as energy traders. Prosumers are seeking new business model (return on
investment) options by taking full potential and ownership when dealing with upstream and
downstream energy transactions at individual Nanogrid PCC. Network operators must realise
that created electricity programmes and incentive policies may not maximise the potentials
of individual interests especially retrofitting local social attributes. Network operators need
to function as a secondary regulator that allows Prosumers to have greater liberation in
conceding utilisation flexibility and PMP participations along the time horizon. Indeed, such
undertakings can propagate predicaments when Prosumer participations starts to escalates;
(i) endangering unsighted operations in times of energy crises for DSOs hence, complex
restoration processes, (ii) monopolism episodes in the energy clearing price (greedy strat-
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egy) and possible obsoletion of energy Retailer(s) due to PtP dependency, (iii) competitive
aggression between Prosumers which overshadow cooperative anatomy thus, jeopardises
distribution network reliability, and (iv) power quality issue expands as higher integration
of DERs beget stronger coupling between grid and inverters, and intermittent intentional
islanding operations.

4.4.2 Significance of Transactive Energy on Demand-side Response Man-
agement

In this sub-chapters, it highlights a list of operational factors that can influence DSR at
global (i.e. distribution network) and local (i.e. Nanogrid) levels. These variables and
constraints will be fused into modelling of multi-objective statements for Prosumer-centric
TE management at low-voltage level.

Estimating Demand Load Demographic

To gain full appreciation of online load profiles in a single Nanogrid, characterisation of
domestic load appliances serves as an indication on Prosumers’ demand capacity baseline.
Considerations in load profile defers based on Nanogrid environment; PT -I and PT -II which
also attributed to f ull-pledge, storage-load, and load-only operating classification defined
in (2.18)−(2.20).

The load demographics for f ull-pledge and load-only environment are relatively straight-
forward. However, uniquely for storage-load based Prosumer is further divided into two
classifications either operating as PT -I or PT -II. As PT -II, it advocates islanding mode
operations periodically and does not schedule to produce any generations upstream. It aims
to utilise ESS for personal gain against real-time electricity tariff and time of energy crises
(e.g. power outage, charging of PHEV).

Projecting the total energy consumptions can be distributed using Gaussian function to
express Prosumer’s lifestyles periodically across the day; partitioning morning and evening
peak loading, midday base loading, and midnight loading as shown in Fig. 4.14. The
Gaussian function for each time period is expressed as:

f (x) = aexp(−(X−b)2

2c2 )+d (4.27)

where the peak height of the curve is denoted as a. It represents the estimated peak load
magnitude in that particular time period based on the Nanogrid environmental dimension
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Fig. 4.14 Hourly load profile of domestic household separated into 4 time periods. The
labelled time demarcations from t1 to t4 describe; t1−first activity (occupant awakes),
t2−vacant (occupants goes off to work), t3−back home (occupants return home), and t4−no
activity (occupants off to bed).

(e.g. square feet size of the building). b refers to the center of peak’s position by averaging
the event where consumption start and end (e.g. occupants wakes up and when they leave the
vicinity). The width factor, c, control the Gaussian bell curve which relates to the number
of occupants and rooms. d specify the function asymptotic converge far from peak, and X

ascribes the time allocation along x-axis. The relations of parameter a, b, c, d, and f (x) can
be viewed in Fig. 4.15.

Using Fig. 4.14 as reference and Gaussian distribution function, Fig. 4.16 verifies the
estimated load demand curve by adding all the Gaussian curve at respective time period
together:

LDt→24 =
M
f (x)+

E1
f (x)+

E2
f (x)+

E3
f (x)+

A
f (x) (4.28)

where M refers to morning peak, E1 to E3 represents the three peak during evening, and
A is the afternoon peak. However, in cases where parameters a, b, and c are unknown,
(4.29)−(4.31) express the mathematical definition in quantifying respective parameter in
relations to Nanogrid energy consumption attributes.

Defining the average peak magnitude parameter a at respective time period of the day
will defer and commonly corresponds to the number of occupants and building size (i.e.

number of rooms). Based on energy consumption behaviour generality reviewed in [230],
discoveries present that; (i) evening peak load is 1.4 times greater than morning load, (ii)

the average evening peak will last for 6 hours whereas morning peak lasted not more than 2
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hours, (iii) The average morning peak magnitude is proportional to the number of rooms in
Nanogrid as shown in Table 4.1, and (iv) The peak loading ratio in the afternoon increases
with number of occupant(s) and room(s).

The peak magnitude in the morning,
M
a equitable to the number of rooms given in Table

4.1. Whereas in midday/afternoon, the peak magnitude,
A
a, fluctuates between a minimum

and maximum scalar of 0.3 and 0.86 times
M
a respectively to denotes weekday and weekend

representation [231, 232]. In addition,
A
a decreases as the number of rooms increases defined

as follow:

A
a = (0.3+(0.7−0.14NR))∗M

a (4.29)

where NR is the number of rooms in a Nanogrid, limited to 5. The value 0.14 is derived
from taking the maximum variation of 0.7

A
a divide by 5 (maximum rooms). Diversely, the

peak magnitude for evening,
E
a is typically 1.4

M
a . Based on meta-data lifestyle relations,

commonly, it can be seen that there are 3 peaks spread across the duration of 6 hours. The

Fig. 4.15 The effects on Gaussian distribution curve from specifying parameters a, b, c, and
d.

Table 4.1 Number of rooms in Nanogrid versus average morning peak demand magnitude.

No. of Room(s) 1 2 3 4 5
Average consumption rating (kW ) 1 1.5 4.5 5.5 6.5
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Fig. 4.16 Modelling of 24 hours demand load profile using Gaussian distribution based on
known parameters.

relationships between peak magnitudes is dependant on number of occupant(s) at respective
time instances.

E
ai =

E
a
√

NO+NR√
10

(4.30)

where NO denotes number of occupants and the total NO+NR is limited to 10.
Subsequently, the positioning of peak magnitude parameter b along the time horizon

describes the daily trends in consumption usage; t1−detecting the first activity in the morning,
t2−last morning activity before occupant(s) vacates the vicinity, t3−resurface of first activity
when occupant returns to vicinity (evening), and t4−signifies occupants goes to bed. Using
Gaussian distribution function as the model, parameter b can be estimated by taking the
center of time period, t1 to t4:

M
b =

t1+ t2
2

A
b =

t3+ t4
2

E
b1 =

t3+ t4
2

E
b2 =

E
b1−2

E
b3 =

E
b1 +2

(4.31)
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Lastly, the width factor parameter c correlates to the number of occupants (NO) and
rooms (NR). The value c is limited within 2 to 8 to achieve smooth bell shaped Gaussian
function curve. The width factor parameter for

M
c and

A
c are similar however,

E
c is reduced by

half to maintain decrease/increase rate of evening average peak as shown in Fig. 4.16. (4.32)
expresses the performance of c in relations to consumption attributes and Gaussian function.

M
c =

A
c =

12√
NO+NP

E
ci =

M
c
2

(4.32)

Demand Load Characterisations

Based on the estimated demand load profile using Gaussian distribution function, the load is
further characterised into 4 classification elements described in (4.33)−(4.34); (i) FX−load
denotes appliances that are critical (e.g. refrigerator, devices for pet living) and needed to be
online throughout the day/year. Due to its fixed consumption profile, it serves as a baseline
load capacity for individual Nanogrid. (ii) SHFT−refers to shiftable loads (e.g. washing
machine, dryer, dish washer). They have the greatest influence in achieving reduced electricity
billing due to flexible ordering of utilisation sequences where operation scheduling can be
specified, (iii) INST−short for instantaneous refers to online loads that are interactive and
have minimal scheduling flexibility based on the restrictions/comfortability factor induced
on Prosumer’s lifestyle (e.g. entertainment devices/consoles, lighting, electric stove), and
lastly (iv) T HRT−are appliances whose energy consumption capacity can be controlled (e.g.

PHEV charging rate, water heater, air condition). If given in a hierarchy level of load critical
intensity, FX appliances will be ranked first, followed by INST , then SHFT and last will be
T HRT .

LD = {FXu;u ∈U,SHFTv;v ∈V, INSTw;w ∈W,T HRTx;x ∈ X} (4.33)

LD(t,day) = ∑
u∈U,v∈V,w∈W,x∈X

(FXu +SHFTv + INSTw +T HRTx)(t) (4.34)

Suggested in [233], the demand loads in typical households can be classified using
combinations of supervised and unsupervised learning techniques; K-means clustering and
K-Nearest Neighbours (KNN) classification respectively. These learning models are trained
to identify appliances’ feature into different classes and determining its operations in steady
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Fig. 4.17 Initialisation and classification processes of demand load appliances.

state. Assisted by current transducer installed at all appliances’ live lines, it abstracts the
current waveform signatures and compared against other without having signals being
overlapped. In this sense, the appliances’ current rating are recorded individually into the
database and rendered into a single current versus time framework. Indeed, some may argue
that utilising the current waveform extracted from Nanogrid’s smart meter will be more cost
effective. However, decomposing a single waveform signature into multiple features based
on number of online appliances at a specified time frame will be complicated/impossible
and also provide no significances when performing clustering avenues. The flowchart shown
in Fig. 4.17 proposes the initialising sequence to establish a database for identification
processes where deployment of hybridise KNN and K-means algorithms profiles the demand
load current waveforms.

Employing the proposed algorithm as suggested in [233], it aims to cluster those low-
voltage online appliances within the time frame t into respective FX , INST , SHFT , and
T HRT classifications. KNN provides identification and labelling of unknown signal elements
in a cluster that has common correlations from its nearest neighbour while K-means computes
the cluster’s centroid determining the system is in steady state. From the labelled clusters,
it then grouped into respective load classification specified in Table 4.2 and compute the
total load consumption capacity. It is important that the extracted current data points are not
normalise reduce metric duplications and enhance segmentation performance.

Load Consumption Minimisation Curve Theorem

The criteria involves strategic scheduling of PSPG and demand load connections (targeting
shift- and throttle-able loads) through load balancing theorem that bridges total load consump-
tions close to the objective curve. It aims to maximise PSPG utilisation that offers economic
benefits by reducing downstream energy exchange at PCC when tariff is high or provide
ancillary services during global peak demand loading at the next time stamp. Hence, the goal
is to minimise online load capacity curve against desired at time t defined in (4.35)−(4.36)
and offers scheduling prepositions (i.e. reschedule or shed) based on generation availability
and electricity tariff (clearing price).
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Table 4.2 Assignment of load classification based on KNN Cluster and K-means centroid.

KNN Cluster Label Centroid Value Load Classification
(mean×var×avar)

Fridge 0.982×0.0289×0.0032
Freezer 0.913×0.0209×0.0011
Water DISP. 0.947×0.0098×0.0065
TELECOM & Digital Network 0.033×0.0127×0.0024 FX
Security % Router Devices 0.099×0.0191×0.0038
Water Pump & Living AUTOM. 2.344×0.0522×0.0137
Washing Mach. 3.478×0.0822×0.0345
Dish Washer 6.521×0.0594×0.0284 SHFT
Dryer 13.043×0.0403×0.0211
Charging Device Port 0.867×0.0377×0.0056
Lighting 0.217×0.0321×0.0156
Entertainment consoles 0.867×0.0455×0.0092 INST
Kitchen appliances 0.146×0.0236×0.0149
Smart LED TV 1.462×0.0317×0.0083
Air-condition 7.234×0.0924×0.0726
PHEV 5.112×0.0598×0.0501 T HRT
Heating Unit 8.457×0.0818×0.0688

min
N

∑
i=1

[Ponline
loadi,t

−POBJ
loadi,t

]2 (4.35)

Ponline
loadt

=
[
PEST

loadt
+
(

Pconnect
loadt

−Pdisconnect
loadt

)]
(4.36)

where POBJ
loadt

and Ponline
loadt

referred to the objective/desirable and actual/measured load con-
sumption capacity at time t respectively. PEST

loadt
is estimated consumption capacity at time

t quantified using Gaussian distribution or any other forecasting technique. The connect

and disconnect are loads that connected and disconnected during the load shifting intervals.
Individually, connect and disconnect are separated into two operating definitions. In connect;
(i) incremental of connected load appliances shifted into current time, t, from previous time
intervals, (t− i), and (ii) relations to the supposed loads that are scheduled to connect at time,
t. (4.37) expresses the definition of connect loads in relation to time frame intervals:

Pconnect
loadt

=
t−1

∑
i=1

D

∑
j=1

A j,it P1, j +
K−1

∑
k=1

t−1

∑
i=1

D

∑
j=1

A j,i(t−1)P(1+k), j (4.37)
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where A j,it denotes the number of appliances type j shifted from time i to t. P1, j and P(1+k), j

are the power consumption ratings at time stamp 1 and (1+ k) respectively for reciprocal
appliance type j. K is the total consumption span for appliance type j.

Likewise, for disconnect loads as expressed in (4.37) defines; (i) the decremented load
capacity at time, t, due for delayed scheduling connection event of appliances that were
supposed to initiate connection at time stamp t, and (ii) load decrement at time t due to
postponement in connection times of appliances that were supposed to start their consumption
at time, (t− i).

Pdisconnect
loadt

=
t+del

∑
i=(t+1)

D

∑
j=1

A jt ,iP1, j +
K−1

∑
k=1

t+del

∑
i=(t+1)

D

∑
j=1

A j(t−1),iP(1+k), j (4.38)

where A jt ,i refers to the number of appliances of type j delayed for connection from time
stamp t to i and del implies maximum allowable time delay (i.e. 30mins).

The minimisation statement is subjected to two constraints in relations to the number
of shifted appliances at time t. First constraint dictates that number of shifted appliances
cannot be a negative value and must select at least one load type; A j,it > 0; ∀i,K, j). Second,
the number of appliances from a time stamp cannot be more than the number of shiftable
appliances at that time stamp;∑N

t=1 A j,it ≤ SHFTi.

Maximum Demand Loading

The term maximum demand (MD) refers to the contracted power consumption level at respec-
tive Nanogrid. Prosumers are to monitor their real-time consumption level as not to exceed
the MD limit as penalties will be incurred into the electricity bill. MD value is the average in-
stantaneous power consumption rating in W or VA during a predefined time interval, typically
rated at 15mins. Through realisation of maximum MD limit and minimise demand factor,
DF , they both can aid in scheduling shaving load sequence during peak demand loading.
There are two approach in determining MD index; (i) Fixed window−computations are
performed 4 times in an hour for intervals of every 15mins, or (ii) Sliding window−compute
MD based on 15minutes and wait for a minute before recomputing the next MD interval. It
will record 1 MD value from the last 15mins period.

The Pconnect
loadt=15mins

will be compared against MD to ensure its consumption capacity is
within the specified limit. In this sense, demand consumption assignment of each categorised
appliance will be specified with Prosumer-defined diversity factor percentage, DivF , before
computing the total MD. Meanwhile assignment of DivF can be based on importance/impact
against Prosumer’s electricity usage lifestyle.
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PMD
loadd

(t) = Pnon-CL
loadd

(t)∗DivFd(t) ∀d = {appliance} (4.39)

maxPtotal
MD (t) =

D

∑
d=1

PMD
loadd

(t) ∀d = non-critical +
C

∑
c=1

PCL
load(t) ∀c = critical (4.40)

minDF(t) =
MD

Ponline
load

(t) (4.41)

where CL and non-CL are critical and non-critical load.

Forecasting of Local Generation (PSPG)

It is inevitable that having PSPG integrated into the EPS, uncertainty element of power
generation can bring forth indeterministic exertions on scheduling downstream energy ex-
changed at Nanogrid PCC. Hence, supervised forecasting technique has become key in
probabilistic quantifications of available local generations that can support energy demand
at local or global level. It also aids in enhancing modelling of local energy management
with better constraint jurisdictions in ordering ESS operations and scheduling for day-ahead
administrations.

Here, it employs Extreme Learning Machine (ELM) algorithm [234, 235] and data
mining processes (analytical information) to train neural network learning behaviour with
regularised ensemble regression to achieve better universal approximation capabilities. The
extracted data from the power generation devices provide analytical information that serves
as some prognostic initiations on neural network learning. These forecasted PSPG generation
data will strategically influence decisional making processes on adjusting non-critical load
capacities and ESS usages to procure benefiting impacts on Prosumers and DSO-TSO.

The ELM architecture is separated into 3 layers; input, hidden, and output. These
layers create a sequential sequence connected by weighted lines, bridging each layer’s
node to another as seen in Fig. 4.18a. Subsequently, it uses an ensemble approach which
combines multiple ELMs as illustrated in Fig. 4.18b to enhance probabilistic consistency
when compared to a single structured ELM performance. The input layer takes in samples of
historical data, generation capacity and other relevant data that can influential the learning
behaviour to achieve better forecast regression. The provided data can be structured in a
multi-dimension matrix formation, taking more than a single variable (i.e. power, weather,
month). The hidden layer, interlinking the input to output layer, transforms data into implicit
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(a) Neural network. (b) Ensembled.

Fig. 4.18 Proposed ELM architecture.

knowledge where linguistic features are refined into correlation representations between
input and output’s objectives. All nodes in the hidden and output layers employ non-linear
activation function to introduce non-linearity during the learning processes. The output layer
produces the estimated/forecasted solution best structured in a single dimension matrix to
avoid divergence.

In view of the weighted lines, they represent the correlation strength between nodes. For
an instant, if weight connecting from node 1 of input layer to node 2 of hidden layer has
larger magnitude than other weights which means node 1 has greater influence over node
2. These weights carry magnitude values that represent best fit estimation of its learning
behaviour. Significantly, ELM performs a single iteration estimations adjusting only the
weights connecting to the output layer. Thus, it reduces computational time as compared to
other machine learning algorithm that requires iterative procedure when training the weights
(e.g. gradient-descent based training schemes). Additionally, regularised factor, I/δ , and
ensemble formation are incorporated to resolve performance inconsistency when dealt with
different input or hidden layer sizes. (4.42) to (4.45) define derivations of ELM:

H[n,z] = X
[
nsample,mvar

]
∗W1[m,zhidden]

z = ((m+1)/2)+
√

n
(4.42)

Y [n,1] = g(H)∗W2[z,1]

g(H) = 1/(1+ e−Hi, j)

W2 = H† ∗Y

(4.43)
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H† = (HT ∗H +(I/δ ))−1 ∗HT

minŶ −Y = (Hout ∗W2)−Y
(4.44)

s.t.

Ŷ =


0, Ŷ < 0

Ymax, Y max≤ Ŷ

Ŷ , otherwise

(4.45)

where W1,n and initial W2,n matrices are a randomly assigned integer (0 < x < 1). g(.)

employs a sigmoid-based activation function. X and Y are input and output matrices that
have equal number of rows. H refers to the nodes in hidden layer matrix structured [n × z].
I in regularised factor represents an identity matrix while δ is a real number proportionate
to z (ideal). Y and Ŷ denotes the actual and estimated output values. The goal is to achieve
minimised Ŷ −Y before stopping the learning process.

Subsequently, ensemble technique is employed by using multiple ELM architecture on the
same input data and concatenate their output to find the average Ŷ . It aims to minimise root
mean square deviation errors, RMSD, and enhance accuracy resolution against actual output,
Y . Virtually, in ensuring forecasted results are not overfitted and data are not misinterpreted
due to "noise" during the learning process, k-fold cross validation is employed. It increases
predictive accuracy by minimising the training and testing sets errors against unseen data.
Suggested in [236], it highlights the advantage in using k-fold approach as it splits predictive
model into size of training and testing sets, and shuffles the data subset selections to gain
interpretation accuracy.

ŶESM =
∑

N
i=1 Ŷi

N
(4.46)

RMSD =

√
∑

N
i=1(Ŷi−Yi)2

N
(4.47)

Ek(λ ) = ∑
i∈kth f old

(Yi− Ŷi
−k
(λ ))2 (4.48)

CV (λ ) =
1
K

K

∑
k=1

Ek(λ ) (4.49)
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Fig. 4.19 Forecasting of 3.5kW PV system against actual data using ELM approach.

where estimated tuning parameter is λ , Ek consolidates the error between actual and estimated
at respective folds which typically set to k=5 or 10. CV (λ ) depicts the cross validation error
during iterative process when changing λ . Fig. 4.19 presents employment of ELM algorithm
in forecasting 3.5kW PV system on a sunny day.

Ordering of Demand Capacity against Unit Commitment

Indeed, in the global aspect of the demand load consumption curve, DSO is responsible
in satisfying EPS’s equality constraint in real-time by scheduling thermal generation unit
(TGU) loadings ahead of time. However, Prosumers can cooperatively manage ordering
of energy downstream by limiting the rate of power capacity change within a specified
time span. There are two methods for Prosumers to adhere/support the ramp-up (UR) and
down-ramp (DR) constraints limited by the upstream TGUs; (i) compute the total maximum
allowable generation from TGUs at time t (typical hourly rating) and equally portion out
to Prosumers in the Community based on the contracted MD or superior bidding price
defined in (4.56)−(4.59), or (ii) calculate the power mismatch at local level in each time
interval and adjust respective TGUs loading capacity proportion to their maximum generation
capacities expressed in (4.60)−(4.62). Meanwhile, TGU’s loading and de-loading generation
operations, it is constrained by ramp rate limits which restricts generation capacity given in a
specified time interval. It also influence in shaping a smooth global demand curve profile that
complies to baseline loading and avoids "Duck Curve" crises induced by local installation of
PSPG-ESSs. Hence, comprehending TGU’s ramp rate limits, Prosumers can better schedule
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respective demand load capacities in parallel with the UR and DR rates (assuming constant
rate of change).

∆PINEQ
T GU,i(t) = Pdemand

load (t)−

(
I

∑
i=1

PT GU,i(t)+
J

∑
j=1

PMAX
ESS, j(t)+

K

∑
k=1

PMAX
RES,k(t)

)
(4.50)


UR, ∆PINEQ

T GU,i(t)> 0

DR, ∆PINEQ
T GU,i(t)< 0

0, otherwise

(4.51)

The UR constraint dictates:

∆PADJ
T GU,i(t) = PSCHD

T GU,i (t)−PTU,i(t−1)≤URi ∀generating units

min
[
PT GU,i(t−1)+URi;PT GU,i(t−1)+∆PADJ

T GU,i(t)
] (4.52)

∆PINEQ
T GU,i(t) =

I

∑
i=1

∆PADJ
T GU,i(t) (4.53)

where URi(t) is the ramp-up rate defined by individual thermal generating unit, i. ∆PINEQ
T GU,i(t)

refers to the global power mismatch between supply and demand which requires upstream
TGUs to compensate.∆PADJ

T GU,i(t) equates to the ordered power compensation rating for
each TGU and PSCHD

T GU,i (t) is the scheduled power rating for each TGU at time, t. Likewise,
derivations of DR limits the ramping down of respective TGU before it suffers losses due to
excess generation against lower demand load capacity:

∆PADJ
T GU,i(t) = PSCHD

T GU,i (t)−PTU,i(t−1)≥ DRi ∀generating units

max
[
PT GU,i(t−1)+DRi;PT GU,i(t−1)+∆PADJ

T GU,i(t)
] (4.54)

∆PINEQ
T GU,i(t) =

I

∑
i=1

∆PADJ
T GU,i(t) (4.55)

The following equations defines the proposed DR and UR limit mitigations at individual
Prosumers:
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PMAX
T GU,total(t) =

I

∑
i=1

(
PT GU,i(t−1)+URi

)
; demand increase

or

PMAX
T GU,total(t) =

I

∑
i=1

(
PT GU,i(t−1)+DRi

)
; demand decrease

(4.56)

Ptol(t) = PMAX
T GU,total(t)−Pdemand

load,global(t−1) (4.57)

∆PNGi
assgn(t) =

Ptol(t)∗RRClass1
1

No.Prosumer
Class1

∆PNGi
assgn(t) =

Ptol(t)∗RRClass2
2

No.Prosumer
Class2

.

.

∆PNGi
assgn(t) =

Ptol(t)∗RRClassN
N

No.Prosumer
ClassN

(4.58)

s.t.

RRClass1
1 +RRClass2

2 + ...+RRClassN
N = 1 (4.59)

where Ptol(t) is the threshold/tolerance of available power capacity at time t based on the
maximum allowable ramp rate limit of all TGUs against the scheduled demand capacity
from (t− 1) to t. ∆PClassi

assgn (t) denotes the available power capacity limit when Prosumer’s
consumption deviates from time (t−1) to t at individual NGs. The intuition for RRClassi

i are
predefined by DSO on how the distribution of total available Ptol(t) should be assigned to
individual Prosumers. Either the assignment can be based on a priority hierarchical structure
based on bidding price, Prosumer type and contribution, or equally portioned based on
building size and its energy consumption trends.

Alternatively, the second approach proposes adjustment of power loading at each TGU
proportional to its maximum generation at time t in relation to unit commitment strategy
suggested in [237]. The decoupled supply from TGUs and demand load consumption of unit
commitment sub-problems for individual Nanogrid are defined as:
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SU(λ t) = max
PT GU

i,t−1 +DR≤PT GU
i,t ≤PT GU

i,t−1 +UR

T

∑
t=1

[
λtPT GU

i,t uT GU
i,t −C(PT GU

i,t ,uT GU
i,t )−S(PT GU

i,t )uT GU
i,t−1

]
(4.60)

where λt reflects marginal cost or clearing price of the electricity produced at time t compute
by using Lagrangian function. uT GU

i,t indicates the unit commitment state of unit at time t,
0-OFF or 1-ON. C(PT GU

i,t ,uT GU
i,t ) expresses the generation cost of each TGU given at that

specific power capacity. The TGU start-up cost of unit i is represented as S(PT GU
i,t ) derived

in [237].

DU(λ t) = max
Pdemand,min

j,t ≤Pdemand
j,t ≤Pdemand,max

j,t

T

∑
t=1

[
U(αdemand

j,t ,Pdemand
j,t )−λtPdemand

j,t

]
(4.61)

where U(α,Pdemand
j ) denotes the Prosumer’s utility function. Using SU(λ t) and DU(λ t),

assignment of power adjustment for respective TGU against individual Nanogrid is as
follows:

∆PNGi
assgn(t) =

PMAX
T GU,i(t)−PSCHD

T GU,i (t)

SU(λ t)−DU(λ t)
∗∑

(
PSCHD

T GU,i (t)−PMEAS
T GU,i (t)

)
(4.62)

where −PMEAS
T GU,i (t) is the actual recorded generation capacity of TGU in real-time, satisfying

the equality constraint of EPS.

Utilisation of Local Energy Storage System

It is inevitable that there will be instances where the global equality constraint between supply
and demand fails to reach equilibrium state. Thus, power generation dependency on Retailers
having to initiate TGUs in spinning reserve mode and overfitted management procured by
DSO still serves as a viable resolution when dealing with TE-based demand curve profile.
In this sense, involvements of ESS at local domain can provide instantaneous support, non-
spinning reserve, on compensating any imbalance operation in EPS. However, utilisation of
ESS requires strategical control measures where Prosumers can regain maximum leverage
on return investments. Substantial reserve power pooling, incentive programme with highest
cost value, and influential on market clearing prices are some avenues that ESS can provide
during DSR operations. Prosumers need to realise that constant maximisation of ESS may
not necessarily be an optimum TE solution.
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PESS
NG,i(t) = PPCC

NG,i(t)−Pdemand
NG,i (t)+PPSPG

NG,i (t) (4.63)

ESS =



charging, PESS
NG > 0

discharging, PESS
NG < 0

idle, PESS
NG > PESS

MAX

idle, PESS
NG < PESS

MIN

(4.64)

PCC =


downstream, PPCC

NG > 0

upstream, PPCC
NG < 0

islanded, PPCC
NG = 0

(4.65)

Conventionally, ordering of ESS’s charging and discharging operations is regulated by
the percentage of State-of-Charge (SOC) level. In addition, it uses to demarcate ESS’s
threshold regions; SOCmin% denotes the Preserve

ESS or spinning reserve and SOCmax% refers
to the maximum allowable charge, Pmax

ESS . The SOC% levels at time t is defined as follows:

SOC%(t) = SOC%(t−1)+(
∫ t

0

1
Cbatt

dt) (4.66)

C(t) =C(t−1)+ [∆t ∗
ηDP

batt
Vbatt(t)

∗ (PPSPG
NG (t)−PESS

NG (t))] (4.67)

s.t.

C(t)|t=0; inital charge

C(t)|t=N ; final charge

Cmin ≤C(t)≤Cmax

(4.68)

where C(t) represent the battery’s charge at time t. ηDP
batt denotes the efficiency of battery

charging and discharging time with depreciation factor over time. Vbatt measures the voltage
level at battery terminal and Cbatt is the electric charge passing through battery express in
ampere an hour.

In gaining optimum utilisation of ESS, charging and discharging operations are synchro-
nised with real-time electricity tariff or clearing prices. It serves as another pivotal mean for
Prosumers to reschedule load consumption capacities in time, t, and PSPG to settle maximum
profit margin.
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maxPro f it(t) = [Revenue−Expenses](t) (4.69)

Pro f it(t) =

(
ET ∗

N

∑
i=1

PT GU
i +ET.PPCC

NG

)
(t)−

(
ET.PPCC

NG +
N

∑
i=1

bid(PT GU
i )

)
(t) (4.70)

where ET reflects the wholesale electricity price and bid(PT GU
i ) is the bidding price in PMP

for respective TGU i at time t. However, utilisation of PSPG requires further exploration
into its credibility towards REM and PMP operations, and Prosumers’ expectations on
clearing market prices when contributing upstream generation. In this sense, DSOs have to
rethink new incentive policy models that will value Prosumers’ contributions toward DSR
engagements.

In the efforts on invigorating TE developments, Feed-in tariff (FiT) policy was proposed
to offer cost-based compensation for PT -Is as energy producers through stable long-term
agreements/contracts (15-25 years period) with DSO. The contract is bounded with fixed
bidding price that helps finance PSPG investments with certainty while adding more in-
centive programmes to fund FiT schemes [238]. Hence, to stimulate Prosumers’ return
investments, (4.71)−(4.74) maximises FiT policy revenue streams by predominating the
wholesale electricity tariff [239].

LCOE =
∑

N
n=0Cn ∗ ( 1+i

1+d )
n

∑
N
n=0 Qn ∗ (1−D)n

(4.71)

max∑
t
[(PPSPG

i ∗ρLCOE)+(Pupstream
PCC ∗ρFiT )− (Pdownstream

PCC ∗ρwholesale)

−(Pcharge
ESS ∗ρwholesale)+(Pdischarge

ESS ∗ρFiT )](∆t)
(4.72)

subjected to:

0≤ Pupstream
PCC (t)≤ Pexcess

PSPG-ESS(t) (4.73)

Pexcess
PSPG-ESS(t) =


(
PPSPG-ESS−Ponline

load

)
(t), PPSPG-ESS(t)> Ponline

load (t)

0, otherwise
(4.74)
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where the investment costs comprises from installations and deployment to maintenance
fees of PSPG denote as Cn. The energy produced by PSPG, Qn, in kilo-Watt hour which
includes efficiency degradation factor, D, in percentage per annum after a year of installation.
N reflects PSPG expected lifespan expressed in years while i and d refers to the inflation and
discount rates offered annually. In (4.72), the profit margin is maximised by incorporating
PSPG into the energy mix during Nanogrid operations. ρLCOE specify the real-time operating
costs of PSPG based on levelised cost of electricity (LCOE). ρFiT is the promised electricity
price offered by FiT policy and ρwholesale is the wholesale electricity prices uniform across
all Prosumers. Pexcess

PSPG corresponds to the upstream power exchange at PCC, absorbed by
the grid. Pcharge

ESS and Pdischarge
ESS refer to the ordered power rating to charges and discharge

ESS respectively. The charging and discharging operations is not restricted to Pexcess
PSPG > 0 or

PPSPG
NG > Pdemand

load .
In view of searching for an economically solution to harness maximum return on invest-

ments and performance index, economic assessment in contrast to the market operations is
appraised. (4.75)−(4.78) further enhanced LCOE index by exploiting PSPG and ESS.

LCOE(PSPG+ESS) =
CE(PSPG+ESS)

E(PSPG+ESS)
(4.75)

CE(PSPG+ESS) = LCOEi ∗Ei; i = {PSPG,ESS} (4.76)

sub (4.76) into (4.75)

LCOE(PSPG+ESS) =
2

∑
i=1

LCOEi ∗αi (4.77)

αi =
βi ∗Pi

β(PSPG+ESS) ∗P(PSPG+ESS)

βi = [
EESS,in

EESS,rated
∗ ηi

1+ηi
]≤ 50% typically

(4.78)

where LCOE(PSPG+ESS) equates the worth of electricity produced both PSPG and ESS in
dollars and CE refers to the energy costs. Both E and αi are energy generated by PSPG while
βi is the capacity factor of available energy storage in parallel to the charging and discharging
rates. ηi reflects the efficiency of both PSPG and ESS.

In the case where high excess power generation from PSPG could be stored in ESS after
compensating the load consumption capacity, Prosumers are resorted to selling surplus power
at bidding price. Due to poor utilisation of ESS during high penetrations of PSPG, DSOs are
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forced to bring the electricity tariff price down as to avoid demand curve hitting below the
baseline. Thus, (4.79)−(4.82) monitors large excess upstream generation during low demand
loading.

Eutilise
PSPG (t) =

(
EPSPG−Eupstream

PCC

)
(t) (4.79)

Echarge
ESS (t) =UI ∗Eutilise

PSPG (t); UI ≤ 1.0 (4.80)

E(PSPG+batt)(t) = (1−UI)∗
(

Edischarge
ESS (t)+

(
Eutilise

PSPG (t)−Echarge
ESS (t)

))
(4.81)

payo f f =

0.0, Eupstream
PSPG (t)> Eupstream

PSPG (t−1)

1.0, otherwise
(4.82)

UI is the scalar factor for charging ESS based on available PSPG generation.

4.4.3 Characterisation of Agents in Nanogrid Area Network

Apart from the proposed flexi-edge computing infrastructure using Microsoft Azure IoT
cloud described in Fig. 3.3 and 3.10, and multi-Agent control framework in proposed multi-
layered DCF shown in Fig. 3.7 and 3.8 of Chapter 3.2, addition Agents are deployed focusing
in NAN environment (Fig. 2.7a). It aims to tag Agents with respective communication
devices and appliances in Nanogrid, and computation modules in Azure IoT Edge Device for
aggregator. Deployment of these Agents will be labelled based on their roles and operational
obligation domains in synchronise with aggregator’s primary control functionalities. It aims
to gain real-time authority and micro-manage individual appliances/devices in NAN using
Agents of MAS provided by Azure IoT Edge Device as shown in Fig. 4.20.

Critical Load (CL) & non-Critical Load (non-CL) Agents

Both CL and non-CL Agents represents identity for all load entities. They are constantly
communicating with PCCM and PCM Agents in governing online load consumption demo-
graphics by ordering scheduling routines at respective time intervals (i.e. shifting, shedding,
throttling). The CL Agent comprises of FX and INST classified loads while non-CL Agents
assigned to SHFT and T HRT . Both CL and non-CL Agents are responsible in logging their
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Fig. 4.20 Addition deployment of Agents in NAN for respective grid-tied appliances/devices.

load coupling status and consumption capacities. These data provide viable information
when modelling local demand curve using Gaussian distribution function and classify them
into respective classes using KNN and K-means clustering technique.

Point of Common Coupling Monitor (PCCM) Agent

PCCM Agent deals with comprehending Prosumer’s energy management interests. It repre-
sents a single Nanogrid identifier within the Prosumer Community, governed by aggregators
to schedule BTM DERs and controllable loads to gain maximum profit and local energy
interests. It officiates all power transactions exchanged at PCC and monitor Nanogrid’s
operational reliability and stability that could affect DSR operations. PCCM Agent also
programmed to interact with neighbouring NGs to initiate cooperative yet competitive man-
agement ruling in the PMP and DSR.

Circuit Breaker Grid (CBG) and Monitor (CBM) Agents

CBG and CBM Agents serve as the primary protection aggregator that aids in isolating
abnormality events that transpired locally. The engagement of CBG Agent administers
island mode operations, primarily executed when fault crises propagated downstream at
PCC. While, CBM Agents coupled to individual grid-tied entities in Nanogrid, isolating
devices/appliances (especially PSPG) if faulted episodes are transpired. Both Agents are
responsible in curbing propagative faulted effects that could collapse the integrity of EPS or
Nanogrid connectivity.
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Power Condition Monitoring (PCM) Agent

Invigilate distribution network operations, securing operation reliability and regulating
demand-supply equilibrium in Prosumer Community domain. PCM Agent functions as an
aggregator that meditates demand-side operations between Prosumer and DSO in coordi-
nating DER, DSR, and REM managements, focusing on modelling policies for efficient TE
transactions. It schedules global load consumption curve ensuring "Duck Curve" crisis and
unit commitment operations are in safe region. It also acquaint energy clearing price and
officiate bidding in PMP by offering incentives and penalties to steer Prosumers towards
fair-play bidding process and reliable EPS.

PSPG Agent

PSPG Agent represents identification for respective local integrated power generation re-
sources (i.e. DC or AC-based technology). It monitors the frequency and voltage level of
the devices, ensuring interoperability is achieved constantly. In the case of abnormality,
instruction message will be transferred to CBM Agent to decouple the system.

Energy Storage/Load Device (ES/LD) Agent

ES/LD Agent represents a dual operating functions, typically ESS, that contributes either
generation upstream or consume energy acting as a load (T HRT ). It monitors state-of-charge
level and observes reserve power pooling capacity through strategic initiation of charging or
discharging switching sequences.

Integrated Assets (IA) Agent

IA Agent is responsible in encapsulating operations of all integrated generation assets, PSPG.
It governs power exchange management between PSPG and ESS by interacting closely with
PCCM Agent. The computation required in IA Agent involves quantifying of generation
availability generated by PSPG using forecasting technique and manage utilisation of ESS
(charging or discharging rate) based on ahead scheduling and electricity tariffs at different
time intervals.

4.4.4 Coordination and Functionality of Agents in NAN

Fig. 4.21a presents a systematised coordination of Agent’s interactions in a collaborative
network while, Table 4.3 describes the dataflow sequences of Agent’s task protocols. The
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tasks involve Prosumer-centric directive commands shared across all online Agents to gain a
cooperative commitments in directing Nanogrid’s operations/managements. Utilising collab-
orative assignments, perceptive on Agent’s ruling obligatory are made visible to neighbouring
Agents in modelling cooperative solution through individual managerial avocations. In this
sense, Agents are constantly broadcasting their individual findings to converge compounding
resolutions before reaching to an agreement. Primitively, all contracted agreements concede
prior settlements with PCCM Agent involving online CL Agent before advancing to other
decision-making processes.

Subsequently, in view of forecasting PSPG generation and estimating load consumption
curve, the Short-term Scheduler (STS) provides time span synchronism between all deployed
Agents based on two-level scheduling approach; day-ahead and real-time scheduler as

(a) Collaborative network: Agents of MAS in NAN.

(b) Time-based allotment for respective Agents in NAN: Short-term scheduling (STS).

Fig. 4.21 Systematised coordination of Agents in collaborative network for NAN engage-
ments.
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Table 4.3 Interaction sequences of Agents and individual task assignments.

1 Record load profile 2,2A Execute power
& notifies state transfer, Store Utility
changes. electricity prices.

3, 3A Display load capacity, 4, 4A Display surplus
Request for power & generation capacity,
bid electricity cost. Offer electricity cost.

5 Accept/Reject 6, 10 Fault detected status,
Proposal. Load Shedding.

13 Instruct ES/LD Agent 8 Update power imparity
to perform charging or call for new assets
discharging operation. management strategy.

9 Provide anticipated 11 Proposed CB switching
load capacities, status operations and update
of coupled CBs. power availability.

12 Request and update 7 Status of CB.
online load capacity.

16 Request for power 15 Display and forecasts
generation. local power generation.

14 Monitor ES/LD SOC 17 Propose load balance
level & suggest storage management (load
operations (charge/ shedding & reserve
discharge). for storage).

18 Renewable power 19 Compile summary of
generation profile, available power
generator’s start-up time generations taking
& storage SOC level. battery storage &

electricity prices into
considerations to
PCM Agent.

shown in Fig. 4.21b. In day-ahead STS resolution, historical data are employed to estimate
the system state. Whereas, real-time STS dictates instantaneous compensating responses,
involving the integrity and efficiency of EPS operations when preserving demand-supply
equilibrium. The approach in sizing STS results must adhere to over- and under-fitting
constraints to avoid scheduling complications.
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Fig. 4.22 Agents’ real-time communication ontologies and control protocols in NAN.

Finally, strategic allocation of ontologies into Agents’ communication directive is mod-
elled to provide communal knowledge on structured commands rendered by Agents in
cooperative domain. Hence, ontologies are coded information exchanged during Agents’
interactions typically packaged with Agent’s ID and a target action. Fig. 4.22 represents the
proposed ’NanogridOntology’ for participating Agents in IoT Azure Device Edge platform.

4.5 Proposed Prosumer-Centric Energy Management

Fig. 4.23 depicts a detailed operational flowchart of the proposed Prosumer-centric EMS
with TE control features for individual Nanogrid. The architecture transacts day-ahead and
real-time asset scheduling capabilities though adaptations of DCF and Agents of MAS to
cooperatively negotiate in decision-making processes. The employed control features at
respective DCF layers defined in Fig. 3.8 is utilised to procure optimal energy management
settings and participation in the PMP based on Prosumer’s interests at different time intervals
(i.e. 60mins based on clearing market operations). The TE control scheme is separated into
two computing domains; optimal scheduling of load consumptions with PSPG engagements,
and joint bidding of market clearing pricing based on load serving entity.

The optimal load consumption scheduling approach employs reinforce Q-learning al-
gorithm. When compared to other reinforcement learning technique (i.e. algorithms that
uses neural network concept), it surfaces complications in solving DSR problems with
multi-objective constraint implications especially satisfying supply-demand equilibrium. In
addition, utilisation of neural network learning approach might have a redundancy effect as
its search space is greatly reduced/restricted due to supply-demand constraint. Note that,
forecasting of PSPG generation and load consumption capacity estimation are performed
externally hence, neural network implementations in learning algorithm is no longer viable.
Even though solving DSR problems requires continuous state or action space, Q-learning can
stimulate such requirement by discretise the state space and have infinite number of states.
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Fig. 4.23 Proposed TE-based energy management scheme in Nanogrid domain to support
global DSR operations.

Hence, it does not commit in maximising over all state actions in order to evaluate a policy
(meeting the operating constraints is the utmost priority).

On the contrary, in relations to PMP participations in bidding for market clearing prices,
MADDPG algorithm is adopted to achieve a joint learning process with other NGs. It
addresses the problem in joint determining of submitted energy bid, wholesale electricity
prices, and electricity charging prices of REM for load consumption serving entity. The
learning processes is in continuous state and action spaces where the energy bid and price
(two actions) shared common objectives. Here, adaptation of neural network is necessary
as it aids in learning the dynamic response of bid and price function from historical data to
model wholesale market and Prosumers’ collective acceptance behaviour correspondingly.
In this sense, these response functions capture the joint temporal correlations of both clearing
price outcomes and Prosumers’ feedback to generate state transition samples without any
cost incurment. Furthermore, the response function can direct choice of state in formulating
Markov Decision Process (MDP).

The architecture and algorithms for both Q-learning and MADDPG have been modelled
and defined in Chapter 3.6.1−3.6.5 to serve as the base model. Therefore, subsequent
modelling focuses on defining MDP’s action and state space, and learning policies.

4.5.1 Reinforce Q-Learning for Load Commitment with PSPG

The consumption load scheduling problem aims to minimise total billing costs consumed
in a day based on various operating constraints. Considering that Prosumer has m number
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of loads and each day has 24 equal time intervals, k, hence, each load is modelled with
five-tuple representation:

LOAD j = (s j, f j, l j,r j,UDC j); j ∈ J (4.83)

where (s j, f j) reflects the operating threshold interval in bringing load j online. l j refers to
the total duration required for load j to remain in ’ON’ state and r j equates to the power
rating in kW . When jth load is brought online at s j, it must remain in the same operating
mode from s j to (s j + l j−1). For an example; LOAD j = (3,7,2,1) specify load j with 4kW

rating is to be brought online any time in-between 3rd to 7th hour time slot for a duration
of 2 hours. It aims to achieve optimal time allocation at which load j must be turn ’ON’,
subjected to other affiliated constraints. UDC j is the unit delay costs introduce to apprehend
usage interruptions in Prosumer’s lifestyle due to ’ON’ delay events. A low UDC j denotes
longer delay intervals which can be imposed to non-critical loads and vice versa.

Considering a Nanogrid transition from state x0 → x1, it reflects an immediate rein-
forcement also known as cost, C0 = g(x0,a0,x1)−generally a random integer value. At any
state, k, the Agent performs an action, ak ∈ A based on the system’s attribute before moving
to state, x(k+1) and the cost incurred is expressed as g(xk,ak,x(k+1)). Hence, defined by
the Markov property, the stochastic function is x(k+1) = f (xk,ak). Despite its model-free
algorithm in Q-learning, its model can be estimated using transition probabilistic perfor-
mance, Pak

xk,x(k+1) . To find the optimal sequence of action-state pairs, it is required to find
maximised function of E ∑

k=1
N−1 γg(xk,ak,x(k+1)) that is assisted by an optimal policy, π∗. In

this sense, such decision-making problems can be solved using Q-learning algorithm despite
having an unknown transition probabilistic. Using Q-value under policy π of Q-learning,
Qπ(x,a), the total expected reinforcement value, E[], under optimal policy is defined as
maxQπ(x,a) = E ∑

T−1
k=0 γg(xk,ak,x(k+1))|x0 = x,a0 = a. Here, ε-greedy algorithm for action

selection is employed to select actions while learning. The greedy action is taken with
probability (1-ε) where probability ε is a random action.

The reinforcement multi-objective Q-learning algorithm for load consumption commit-
ment problem tasks to minimise Prosumer electricity bill considering existence of PSPG,
ESS, and downstream generation exchanged at PCC:

max
uk

j,i

E

[
24

∑
k=1

3

∑
i=1

Ck
i r juk

j,i

]
(4.84)

s.t.
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f j

∑
k=s j

uk
j,i = l j (4.85)

uk
j,i =


0, k < s j

0, k > f j

uk
j,i, otherwise

(4.86)

where i = 1 refers to downstream generation, i = 2 is PV(PSPG), and i = 3 is ESS. uk
j,i

reflects the load status being online or offline, 0=OFF and 1=ON at time slot k. In relation
to the Q-learning states, [x(1),x(2)]; x(1) refers to the present time slot and x(2) is the total
’ON’ state duration for load j. The action set is redefined into: A = {0,1,2,3}. The action
set reflects switching operation of load device; a=0 denotes load j is switched ’OFF’. a=1,2,3
is load brought online and supplied by grid, PV and ESS, respectively. In the case where a=2
or a=3, available power rating from PV and ESS will reduced at that present hour slot, k, and
available power will be updated:

PPV (k) = PPV (k−1)− r j

PESS(k) = PESS(k−1)− r j
(4.87)

The stochastic operation of PV generation is incorporated with a reward function:

g(x,a,xnext) =Ck
i r j; a = 1,a = 2 (4.88)



penalty, if
(
PPV (k)< r j && a = 2

)
penalty, if

(
PESS(k)< r j && a = 3

)
penalty, if ( f = xnext(1) && xnext(2)< l)

UDC jr j, if a = 0

reward, otherwise

(4.89)

The function of state transition is defined as follow:

[
x(k+1)(1),x(k+1)(2)

]
=
[
xk(1)+1,xk(2)+a′

]
(4.90)
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where a′ depicts the next transition action for instant if a′=0 it defined that load j is offline
and a = 0→ a′ = 1 refers to load j being brought online at time interval k taking its supply
from the grid.

In the Q-learning iterative process, Q-values of different action-state pair are analysed
until an optimal value is attained. Before engaging Q-value updates, forecasting of PV
generation is performed based on historical data. Initialisation of each load j in ’OFF’ state
is assign with Q0(x,a) = 0. Initialising from [x(1),x(2)] = [s j,0], the action taken is based
on generation availability of PV or ESS with ε-greedy strategy before transiting into the next
state which updates the Q-value and generation capacities. The process repeats in iterative
approach until Q-value converges to a nearly stagnated value with small deviation error. After
which perform ag = argmaxa∈A Qπ∗(x,a) to retrieve at optimised action-state pair.

In addition to utilising PSPG operations in solving load consumption commitments,
consideration of DSR operation constraints and reward payoff must be incorporated to better
schedule online load capacities discussed in Chapter 4.4.2.

Qπ(xk,ak) = E
T−1

∑
k=0

γg(xk,ak,x(k+1))|x0 = x,a0 = a

Qπ(xk,ak) = Qπ(xk,ak)+
C

∑
c=1

R(xk,ak)

(4.91)

where R(xk,ak) is the newly introduced reward function that sums all payoff(s) from the listed
DSR constraints, c ∈C, based on current state-action pair. Fig. 4.24 illustrates the flowchart
sequence in employing the proposed Q-learning algorithm in solving load commitment
problem.

Payoff for Load Consumption Minimisation Curve

Ptol =
N

∑
i=1

[
Ponline

loadi,t
−POBJ

loadi,t

]2
(4.92)

R(xk,ak) =


reward, Ptol(t)≤ Ptol(t−1)

0, Ptol(t−1)< Ptol(t)< Ptol(t−1)∗1.1

penalty, Ptol(t)≥ Ptol(t−1)∗1.1

(4.93)

where the reward assignment is dependant on how much the total online load capacity
deviates from the objective. Hence, a threshold payoff is defined on based on the deviation



4.5 Proposed Prosumer-Centric Energy Management 203

Fig. 4.24 Solving load commitment problems with PSPG and DSR operating constraints
process flow using Q-learning approach.

intensity. It aims to improve the load consumption offset against desired from time (t−1) to
t based on the state and action pair sequences.

Payoff for Maximum Demand Loading

In MD criterion, assignment of penalty factor will be the greatest when compared to other
constraint’s payoff. Based on the contracted load demand capacity, DSO imposes high
penalty factor into Prosumer’s energy billing fees if DF drop below 1 as it implies Prosumer
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has poor scheduling of load commitment. The severity in DF negligence on DSR operations
can result to ’Duck Curve’ and unit commitment crises.

R(xk,ak) =

penalty, DF(t)< 1.0

reward, DF(t)≥ 1.0
(4.94)

Observing Unit Commitment Ramp Rate Limits

Likewise, in view of unit commitment’s ramp-up and ramp-down limits against ordering
of downstream energy exchanged at PCC, the imposed penalty is much greater due to unit
commitment issues. TGU are resorted to be brought online but not generating any output
power as it is put on spinning reserve mode to support sudden surge in demand curve. Such
operation incurs higher operating costs.

R(xk,ak) =

penalty, ∆PNGi
assign(t−1)→t

< ∆Ponline
load(t−1)→t

reward, ∆PNGi
assign(t−1)→t

≥ ∆Ponline
load(t−1)→t

(4.95)

4.5.2 MADDPG Learning for Cooperative Pricing and Bidding of Load
Serving Entity

Assume that a day has 24 interval, T = {0, ...,T − 1}is decomposed into 1 hour intervals.
The market participation involving buyer and seller need to submit their energy bid/offer
at time, (t − 1), for t. Then, the wholesale market operator will generate the wholesale
electricity price and also compiles energy purchases and sales that are successfully transacted
at respective buyers and sellers, correspondingly. Meanwhile, the Load Serving Entity (LSE)
also referred as the wholesale buyer determines the retail price for time interval t. Those
purchase energy are resold at a different price to its customers in the REM. In response,
Prosumers will adjust their load consumption capacities based on the price signals at time t.

In wholesale market model, let S = {s1, ...,sS} reflects the set of sellers and B =

{b1, ...,bB} set for buyers. Each seller in the set, s ∈ S submits an offer denoted by f s
t (.),

which indicates the minimum price threshold at which seller agrees to sell at time t. Hence,
f s
t (q

s
t ) specifies minimum price at rated energy quantity. Likewise for buyer, b ∈ B, sub-

mits it maximum threshold bidding price expressed as f b
t (q

b
t ). (4.96)−(4.98) defines the

maximisation problem in solving social welfare cleared by ISO on wholesale market prices.
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max
qs1,b1

t ,...,q
sS,bB
t

∑
b∈B

∫ qb
t

0
f b
t (q)dq−∑

s∈S

∫ qs
t

0
f s
t (q)dq (4.96)

s.t.

∑
b∈B

qb
t −∑

s∈S
qs

t = 0⇔ λt (4.97)

(
qs1

t , ...,qsS
t ,qb1

t , ...,qbB
t

)
∈ Qt (4.98)

where λt refers to the interchangeable variable affiliated to (4.97) and it reflects the power
balance equation. Depending on the market clearing prices in time t−1, the feasible decision
variable set is expressed as Qt . For simplicity, qt refers to the total transacted sales/purchases
(i.e. qt = ∑b∈B qb

t = ∑s∈S qs
t ). (4.96)−(4.98) provide a cleared energy sales and purchase, and

also wholesale prices for respective market participants. All are to receive levelised pricing
that linked to λt . In an event of aggressive wholesale market engagements, the dominance of
a single participant typically does not have any repercussions on the clearing price and also
having a low marginal unit. In this sense, given λt , the cleared purchased energy for buyer b

when it is in non-marginal state can be expressed as follows:

qb
t = argmax

qb
qb| f b

t (qb)≥λt
(4.99)

Whereas, in REM model, LSE participates as a buyer in wholesale market and bid for
its purchased energy. Consider LSE is buyer b in wholesale market, it resells the purchased
energy to a set of Prosumer in REM at a regulated price. Let vt reflects the regulated price at
time t interval and the corresponding energy purchased from wholesale is qb

t . The Prosumer
set is denoted as C = {c1, ...,cn} served by LSE in REM. All Prosumers c ∈ C will then
respond to the price vt by adjusting load consumption capacity, dc

t . Hence, the sum of energy
consumed by set of Prosumers at time interval t is expressed as dt = ∑c∈C dc

t . Therefore,
LSE aims to maximise its profit earned between consumption capacity against REM price
defined (4.100) at individual time frame, limited to energy equilibrium constraint.

max
vt ,v(t+1),..∈[v,v]

E
[

∞

∑
τ=t

γ
τ−t
(
(vτ −λτ)dτ −φτ(dτ ,qb

τ)
)]

(4.100)

where E is the expected operation and the discount factor for reduces future profit, γ ∈ [0,1).
A non-negative scalar function, φτ(., .). v,v are upper and lower limit of the price range,
respectively. λt and qb

t are determined in the wholesale market defined in (4.96)−(4.98) while
dτ price is regulated by Prosumers through (4.101) and (4.102). The objective comprises of
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two elements; (i) quantify the profit earned from trading energy with LSE, and (ii) penalty
cost induced when aggregated load consumption capacity diverges from purchased energy.
The actual aggregated load consumption capacity, dτ , only reflects those energies that have
been paid to wholesale market operator and that is acquired from Prosumers.

Lastly, the PMP model receives a regulated price, vt from LSE at each time interval t for
c ∈C. Following, Prosumers will adjust its load consumption capacity to gain maximum
profit return. Let ec

t reflects the energy capacity needs by Prosumer c at time t. Suggested
in [240], the utility maximisation problem defined in (4.101)−(4.102) solves the optimal
Prosumer action.

max
dc

t ∈Dc
t

β
c(ec

t ,d
c
t )− vtdc

t (4.101)

s.t.

ec
(t+1) = ec

t +η
c
t (e

c
t −dc

t )+ξ
c
t (4.102)

where β c(.) refers to the benefit function which benefited Prosumer based on optimised
energy needs and consumption capacity. ηc

t ∈ [0,1] denotes the cache rate representing
percentage of unsatisfied energy need criterion needed to be carried over to the next time
interval. Dc

t represents the set of energy consumption that is feasible and ξ c
t models the new

incremental energy needs by assigning random variable.
Fig. 4.25 proposes the interactions of MADDPG’s actor and critic components in

executing joint learning processes for optimal bidding and pricing in the electricity market.

Fig. 4.25 Overview of critic and actor interactions on operating environment for joint bidding
and pricing processes.
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Dynamic Bidding and Pricing Response Functions

In the LSE domain, it determines the bid, f b
t and price, vt problems at time t. Assume that the

bidding problem is characterised a vector parameter, ωt , and let {λτ ,qτ}(t−1)
(t−n1)

represents the
set of wholesale market clearing price from time (t−n1) to (t−1). The model interactions
between LSE and wholesale market operator is defined through (4.96)−(4.98) using n1-order
bidding response function denoted by ψ(.):

(λt ,qt) = ψ

(
{λτ ,qτ}(t−1)

(t−n1)
,ωt , t%T

)
(4.103)

where t%T is the time modulo for 1 day and the cleared energy price can be computed
using (4.99). Given in the scenario where n1 = 0, the wholesale clearing price is dependent
on LSE’s bidding price at current time t. ωt must have a neutral impact on the clearing
price outcome to procure a competitive wholesale market and hence, (4.103) models the
dynamics of clearing price weightage. It also evolves the clearing price results in wholesale
market to λt ,qt ,qb

t from (t−1) clearing price based on its bid, ωt . To accommodate a large
bidding response from other market participants, n1 needs to be large enough to include
participants’ actions. In consequence, the n1-order bidding response function can comprehend
the wholesale market dynamics. Subsequently, in aggregate energy consumption, dt , n2-order
price response was employed to forgo its reliance on the complete Prosumer model defined
in (4.100) and utilise real-time total consumption data instead. The n2-order response price
function, ϕ(.), characterises joint behaviour of all Prosumer c ∈C as a set of problem in
conjunction to (4.101).

dt = ϕ

(
{dτ ,vτ}(t−1)

(t−n2)
,vt , t%T

)
(4.104)

Similarly, when n2 = 0, the aggregate Prosumers’ demand uses the price at current t interval.
It can be seen that the response function for bidding and pricing are similar and have better
learning capability based on data availability at LSE as compared to those complete wholesale
market and Prosumer models.

Policies for Pricing and Bidding

The objective is to identify the joint bidding and pricing function, and LSE to solve the
optimal bid and price values based on available data. As mentioned before, the parameters
related to the wholesale market operations (i.e. ωτ ,λτ ,qτ ∀ τ ≤ (t − 1)) are to be made
available to LSE at time (t−1) interval. In addition, information made available in view of



208 Realisation of Demand-Side Operations Governed by Transactive Energy

REM domain includes vτ ,dτ ∀ τ ≤ (t−1). Therefore, aggregating the informations, I(t−1),
together is as follows:

I(t−1) = {ωτ ,λτ ,qτ ,vτ ,dτ}; ∀ τ ≤ (t−1) (4.105)

Subsequently, the coupled bid ωt and price vt are required to solve jointly from I(t−1) for time
interval t. In order to procure a competitive but yet uniform pricing market, it is optimal that
the bidding and pricing policies are defined separately before mapping into the joined bid
and price response function, I(t−1)→ [ωτ ,vτ ]. It allows efficient decision-making adversaries
based on common information utilisation.

In the uniform pricing market, the price will be cleared if the bidding price is lower than
λt . Moreover, to gain minimised penalty inducements due to energy mismatch between
purchase capacity and total consumption (aggregated) in real-time, it is wise to bid the exact
amount of energy as the aggregated energy consumption. In a competitive and uniform
pricing market, for any vt , λt will not affect ωt . Hence, qb

τ = dτ is to be defined by finding
the optimal ωt that maximises profit return expressed in (4.100). Eventually, it is essential
to find optimal price vt in REM and establish bid from vt . Hence ,the deterministic pricing
policy, π(.), that maps I(t−1) to vt is give as follows:

vt = π(I(t−1)) (4.106)

and its bidding policy, µ(.), that maps I(t−1) and vt to ωt is:

ωt = µ(I(t−1),vt) (4.107)

where assuming that the bid price, ωt , comprises of two components; bidding price, ωP
t ,

expressed as W/MWh, and bid capacity, ω
q
t , in MWh. Hence, to achieve optimal bidding

policy, µ∗, ωP
t set to vt and ω

q
t equates to the aggregated energy consumption attained from

the price response function, ϕ .

Formulation of Markov Decision Process

Formulation of MDP property is modelled to represent the joined bidding and pricing
problem. First, it defines the state at time interval t:

st =
(
{λτ ,qτ}t−1

(t−n1)
,{dτ ,vτ}t−1

(t−n2)
, t%T

)
(4.108)
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The actions set at time interval t is at = vt . ωt is formed from vt through a set of determin-
istic procedure derived in Chapter 4.5.2. Both action and state spaces are in continuous
domain. Using (4.103) and (4.104), st ,at ,s(t+1) can be determined. Nevertheless, the state
transition probability function remains foreign for LSE as it can only be defined if all market
participants’ parameters are provided. Hence, to mitigate such issue, the pricing and bidding
policies can be redefined as:

vt = π(st) (4.109)

ωt = µ(st ,vt) (4.110)

As the objective in joint bidding and pricing problem is to maximise LSE profit, the reward,
rt , serves as an indication for profit margin received by LSE at time interval t:

rt = (vt−λt)dt−φt(dt ,qb
t ) (4.111)

Subsequently, the Q function under price and bid policy at respective state-action pair can be
modelled to compute the expected return expressed as Qπ,µ(st ,at). Further derivation and
subsequent implementation of MADDPG are already explained in Chapter 3.6.5.

Actor and Critic Neural Network

The supervised actor network is a fully connected feed forward structure comprising two
hidden layer of 100 and 50 neuron nodes, respectively. The nodes employ exponential linear
unit [241] activation function to gain accelerated training process as compared when using
rectified linear unit. Whereas, the output layer has 24 unit nodes programmed with hyperbolic
tangent activation function. The loss function uses mean squared error and also 12 regulariser
with hyper-parameter tuned to 0.1, avoiding over-fitting crisis on training data set. It employs
Adam optimiser to reap its advantage over computation speed and robustness, and also a
learning rate of 0.0001.The neural network is trained under 4000 epochs.

Meanwhile, the critic network takes in two input state space, similar to actor network,
and the other action space from actor network. The output generates a scalar value for every
action-state input pairs. The first hidden layer of actor network is shared with critic’s first
hidden layer of state space input comprising of 100 neuron nodes. It helps in the network’s
training processes as the features extracted from the state space are useful for both actor and
critic network. The second hidden layer comprising of 50 neuron nodes is employed for the
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Fig. 4.26 Solving joint bidding and pricing of LSE in electricity market operations using
MADDPG learning technique.

action space input. An additional hidden layer is introduced comprising of 25 neuron nodes.
The neuron nodes in the hidden layer uses an exponential linear unit as the activation function
while the output layer omits out the use of activation function. Similar to actor network, critic
employs 0.001 learning rate and uses Adam optimiser for training the network’s weights. It
also specify that 12 regulariser with hyper-parameter set to 0.1 is engaged.

Fig. 4.26 illustrates the flowchart sequence in employing MADDPG learning algorithm
in solving joint bidding and pricing in the electricity market.
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4.6 Case Studies: Findings and Results

Investigations were performed in analysing two case studies; (i) deployment of Prosumer-
centric EMS based on TE functions in a single Nanogrid domain, and (ii) operations of multi-
ple NGs in a Prosumer Community environment and analyse their socio-economical impacts
on cooperative-competitive DSR operations and market participations. Both case studies
evaluate Prosumers as primary (lead) energy regulator in the DSR domain−distributing
majority of the managerial processes and intelligences at low-voltage level participants (Pro-
sumer). Such undertaking upgrades distributed energy actors at low-voltage level as RDSOs,
having greater jurisdictions in securing their energy consumption and generation interests
while optimising response in scheduling DSR resources for the provision of grid services.
Moreover, operational and cost benefit analyses for DSO-TSO in TE system implementation
are also reviewed to comprehend transactional business model and value realisations in policy
and wholesale market design and unit-commitment operations for transactive and flexible
DSR engagements.

Analytical analyses are biased towards engagements of PT -Is in Prosumer Community
as to better comprehend TE value which also verifies the proposed reinforced-CDL learning
intelligences for Prosumer-centric EMS. Evaluations involves cooperative yet competitive
bidding operations in PMP and optimal utilisation of PSPG that can influence demand
curve demographics at the global level. In addition, having Prosumers to subscribe into
various transactive value programs/contracts issued by DSO, analyses were conducted to
view Prosumers’ responses toward superior incentive payouts and how it influence energy
exchange at NGs’ PCC (i.e. downstream consumption and upstream generation) and energy
clearing price profiles.

The proposed NGs are modelled in MATLAB simulation environment and connect to
Microsoft Azure in the cloud guided in [241, 242] to utilise Azure’s IoT edge device and
artificial intelligence modules. The MATLAB will be running as a deployment reference ar-
chitecture, a virtual machine in Azure cloud controlling through a remote desktop connection.
However, due to licensing (free), the number of connected interactive devices is limited (1
device). Hence, the simulation uses excel spreadsheet containing real-time performance data
of devices (i.e. load appliances, PSPG). The data are taken from [108] to profile Prosumer’s
energy consumption and generation trends.
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4.6.1 TE Operations of Single Nanogrid System:
Residential

A 24-hours simulation analyses were conducted on a residential environment (single-phase
220VAC, 50Hz, short-circuit current of 71Amps) labelled NG-1 of Prosumer-type I, PT -I,
shown in Fig. 4.27. Here, the PT -I creates a full-pledge Nanogrid system as shown in Fig.
4.27 where it comprises of PV-based PSPG, an ESS that is connected at the PV’s inverter
(DC-link), a PHEV charging point, and a back-up diesel-based generator. The specifications
of listed devices/appliances are given in Table 4.4. The integrated systems’ performance
are sampled at every 5mins intervals. The collected energy consumption and PV power
generation data are recorded during summer.

Fig. 4.27 Residential-base Prosumer, Nanogrid-1, operating in full-pledge mode.

Table 4.4 Listing of appliances/device ratings in NG-1 coupled to the grid.

Device System Ratings Model
PV 3.5kWh PV Panel: ABB PVI-3.6kW

Inverter: ABB UNO DM
ESS 48V 6.6kW ,10Ah ABB: REACT 2
PHEV 10Ah−half charge 0.5-1HR Hyundai IONIQ Electric
Charc. Pt (PHEV) 800VDC−fast charging Delphi SiC Inverter
Back-up diesel gen. 2.2kW , 10Ah PowerFriend
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First, Fig. 4.28a presents the results attained from forecasting PV available generation
against the actual data. Using the proposed ELM algorithm with an ensemble approach and
day-ahead historical data of actual output generation for the past year, it can be seen that the
day-ahead forecasted generation is much underrated. The ELM’s learning behaviour was
deliberately attuned with under-fit regularisation index to reduce the risk of overgeneration
prediction that may have negative influence on other scheduling processes. From the result,

(a) 3.5kW PV system output power generation: forecasted versus actual.

(b) Energy consumption of online critical load: forecasted versus actual.

Fig. 4.28 Performance in forecasting available PV generation and critical load consumption
capacities sampled at 5mins intervals.
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it also deduce that the demand side response will have a large power dip at noon due to
large PV generation penetration (bell-shaped curve). Therefore, phenomenon such as ’Duck
Curve’ crises is transpired which create unit commitment issues and demand curve dipping
below baseline requirement.

On the contrary, Fig. 4.28a exhibits results in forecasting day-ahead energy consumptions
profile with over-fit regularisation criterion. In DSO point of view, overfitting regression
model is well suited in forecasting total consumption capacity as power deviations rendered
by instantaneous load could be represented along the time domain. However, in Prosumer
perspective, the load consumption profile requires an additional load classification segregation
to identify non-critical loads for scheduling purposes using the proposed clustering and
identifying algorithms (KNN & K-means). After which ELM algorithm is employed to
forecast respective load classes. In relation to the Gaussian distribution function approach in
estimating load consumption profile, it is incorporated into the ELM’s training set to serve
as a viable influence during the testing phase. Notably, the critical load capacity can also
used to recognise network’s baseline load. Table 4.5 presents the 24-hours forecasted load
consumption (30mins interval) in Nanogrid-1 ciphered into critical and non-critical load
classes.

Table 4.5 Forecasted results of load consumption capacity consumed by Nanogrid-1 separated
into critical and non-critical load (30mins intervals).

(HRS) (Wh) (HRS) (Wh) (HRS) (Wh)
Time non-crit. crit. Time non-crit. crit. Time non-crit. crit.
00:00 - 213 524 08:00 - 223 561 16:00 - 1077 2335
01:00 302 665 09:00 155 306 17:00 452 892
01:00 - 217 596 09:00 - 1550 3994 17:00 - 190 375
02:00 507 1127 10:00 1197 2822 18:00 960 2054
02:00 - 969 2211 10:00 - 409 882 18:00 - 749 1759
03:00 384 857 11:00 1022 2391 19:00 297 727
03:00 - 111 246 11:00 - 397 919 19:00 - 203 519
04:00 224 517 12:00 239 520 20:00 358 734
04:00 - 141 377 12:00 - 404 846 20:00 - 264 755
05:00 251 485 13:00 1173 2837 21:00 225 470
05:00 - 64 178 13:00 - 1213 3007 21:00 - 404 911
06:00 189 480 14:00 1397 3096 22:00 760 1954
06:00 - 188 448 14:00 - 1585 4018 22:00 - 2306 5082
07:00 211 477 15:00 1099 2690 23:00 897 2158
07:00 - 90 226 15:00 - 649 1454 23:00 - 403 959
08:00 503 1051 16:00 851 1747 23:59 924 2237
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ELM forecasting technique is also employed in estimating the electricity price tariff for
Prosumers, PMP, in relations to wholesale and LSE electricity market. Here, the regression
model employs neither over- nor under-fit regularisation to gain optimal curve fitting between
actual and forecasted. It aids in scheduling day-ahead charging and discharging operations
of ESS SOC% level to better accommodate shifting of load consumption capacities into
low price tariffs regions or supported by ESS during peak tariffs. Table 4.6 presents the
performance index of ELM algorithm based on a 2 years training and 1 year testing datasets.
In addition, STS Agent will retrieve all forecasted data and generate a timed-based predica-
ment report seen in Table 4.7, suggesting plausible alarming or abnormal exposures during
operations defined by Prosumer.

Fig. 4.29a exhibits the energy profile exchanged at PCC against load consumption and
PV generation of Nanogrid-1. Here, Prosumer does not employ any means of intelligent
scheduling, neither shifting of non-critical load nor charging and discharging sequences
for ESS. Nevertheless, an unambiguous governance of energy transactions between PV
generation and ESS; (i) charge ESS from PV’s excess generation provided that SOC is less
than 90% limited to power ramp-rate constraint, (ii) exhaust ESS to meet load consumption
capacity with PV generation when SOC is greater than 10% limited to power ramp-rate
constraint. Here, the initial SOC of ESS is set at 0% and due to optimal sizing of ESS

Table 4.6 Forecasting performance index.

Agent Accuracy (RMSE) Std. Deviation (σ )
STS Elec. Price: 2.162 0.134
2e10.8 < δ < 2e11.05 ES Capacity: 2.044 0.062
15 < ESM < 25 Load Profiling: 4.135 1.088
Computing Time: 0.323s

non-CL (over-fit) Load Capacity: 3.091 0.119
2e8.1 < δ < 2e8.7 Large ∆Pshi f t 0.038
15 < ESM < 25 Detection: 2.523
Computing Time: 0.177s
GS (under-fit) Generation 0.065
2e12.7 < δ < 2e13.1 Availability: 2.337
15 < ESM < 25
Computing Time: 0.525s
@PCC Reserve Capacity: 2.061 0.078
2e10.8 < δ < 2e11.05 Gen. Pooling: 1.915 0.111
15 < ESM < 25
Computing Time: 0.318s
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Table 4.7 Alarm Report generated by STS Agent: forecasting alarming events or operation
violations.

∆Pshi f t PV Op. max MD Batt. Charge Elec. Price
01:20-02:10 Sunny 02:05-02:10 08:30-08:55 Tier 1
08:55-09:00 ClearSky 08:55-09:00 09:55-10:30 00:10-08:25
09:30-09:45 Sunrise: 09:20-09:40 10:55-11:00 Base:$1.086e-4
10:40-11:00 06:10 10:45-10:50 11:15-12:25 00:30-00:55(EX)
12:30-12:35 High PEN.: 12:30-12:35 Tier 2
13:00-13:20 09:30-13:40 13:05-13:15 08:30-14:20
13:50-14:10 Sunset: 13:50-13:55 Base:$1.102e-4
14:25-14:40 18:05 14:10-14:35 09:30-10:25(EX)
15:00-15:15 15:05-15:10 14:00-14:15(EX)
15:30-15:55 16:20-16:25 Tier 3
16:10-16:40 17:50:17:55 14:20-00:00
17:40-17:50 21:55-22:30 Base:$1.246e-4
19:30-19:35 23:25-23:35 20:00-21:25(EX)
22:10-22:25
23:30-23:45

against PV installation and demand load, exchange of upstream generation at PCC was not
necessary. There are three instances where Nanogrid was operating in islanded operation
(0W downstream energy exchange at PCC); 0811−0849, 1024−1041, and 1123−1212. The
analyses also profiles the electricity and fixed LCOE tariffs to view Prosumer’s online load
contributions during peak price period.

From the load consumption profile seen in Fig. 4.29a, Fig. 4.29b identifies large down-
stream energy deviation instances exchanged at PCC which interjects unit commitment issues
for PGRs when dealing with TGUs (ramping rate limit). Moreover, the load consumption
curve is compared against the maximum MD limit. Overall, the results have shown poor
energy management performance as Nanogrid-1 contributes; (i) Duck Curve phenomenon
to transpire and the global demand curve falls below baseline at noon, (ii) utilisation of
PSPG is not optimal as large percentage of load consumption capacity throughout the day
falls in the high electricity price tariff region, (iii) events of large power demand shift were
seen during the two peak period where PV generation is inactive and ESS is depleted, (iv)

plausible divergence in supply-demand equilibrium as ramping rate limits could not match
Prosumer’s large load consumption shift within time t, (v) high operating costs was induced
due to unitary dependency on downstream energy exchange after 1720hrs at which electricity
prices is at highest throughout the day, (vi) multiple violations of maxMDtotal were exposed
hence, penalties will be imposed to Prosumer at a large fee.
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(a) Unambiguous scheduling of PSPG to meet load consumption curve.

(b) Identifying MD violations and large power demand shift.

Fig. 4.29 Overview of Nanogrid-1 energy transactions using ’dumb’ management control
scheme and its impact on DSR based on 5mins intervals.

In contrast, subsequent results depict energy transactions of Nanogrid-1 governed by the
proposed Prosumer-centric EMS that observes TE value and functions. Similarly, perfor-
mance evaluations are appraised based on its ability to learn and cipher optimal managerial
response for Prosumer’s electrification interests and demand-side management regulatory.
Using the same PV generation and load consumption profiles, Fig. 4.30 and 4.31 present the
impact on Prosumer’s load consumption curve being shed at respective time t and shifted
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to another time period and management of ESS charging and discharging sequences with
an initial 0% SOC. The learning algorithm abled to maintain at least 75% of Prosumer’s
non-critical load at respective time intervals and secure a minimal baseline load by ordering
a minimum downstream power exchange of 1.2kW . Fig. 4.32 shows the learning regression
response and Agent’s search space in locating optimality when solving DSR constraints and
minimise Prosumer’s operating costs.

(a) Power exchange transactions at PCC and scheduling of non-critical loads.

(b) Identifying MD violations and large downstream power deviations.

Fig. 4.30 Profiling power exchange at Nanogrid-1 PCC based on Prosumer-centric EMS
intelligence that observes TE function and DSR constraints based on 5mins intervals.
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Fig. 4.30a demonstrates the impact on online load consumption curve upon performing
load shifting and shedding of non-critical loads at time t. An interval rate of half-an-hour
was imposed on the shifting sequence search space to limit redistribution of shiftable loads
into another time frame−maintain integrity of Prosumer’s energy usage interests. Such
constraints promote low shedding percentage and protect Prosumer’s serviceability on non-
critical load and yet rendered a bargained electricity billing. In this sense, exploitation
of load shedding solutions or rescheduling beyond the time-stamp threshold (30mins) is
minimised resulting in sub-optimal operating costs and plausible violations in response to
DSR constraints. The results spotted two instances where non-critical load consumption was
shed for a duration of 10 and 5mins, respectively (highlighted with red line). Almost 600Wh

of the non-critical load capacity was shed despite after performing load shifting and atone
ESS at maximum discharging rate, primarily to curb ordering of downstream energy capacity
below the maxMD limit.

Meanwhile, Fig. 4.30b focuses on the responses of energy exchange at PCC to meet
supply-demand equilibrium in NG1. A significant improvements was redeemed in securing
∆EDeviate(t) capping at less than 170Wh at time t to (t +1) intervals, advocating levelised
demand shift deviations in correspond to the upstream generator’s (TGUs) ramp-rate limits.
Such undertaking allows DSO to have greater flexibility in addressing unit commitment issues
and evade from overestimated spinning reserve dilemma that could incur high operating
costs. Moreover, the energy consumption ordered from the grid complies religiously with
the maxMD limit and baseline load criterion. However, significance in mitigating Duck
Curve crisis was minimal as the learning trajectory was biased towards local managerial
interests−directed to ordain reduced energy billing and shift peak consumption levels to low
tariff regions. Greedy-based load scheduling and allocation administrations were recognised
when ordering charging and discharging sequence of ESS. Likewise, shiftable load are
constantly shifted to the next or previous allowable (30mins) time frame which result in
constant energy backlog or advance scheduling, respectively. In consequence, Prosumer may
face higher operating costs at time t as larger load consumption than the supposed capacity
was introduce into a more expensive electricity tariff as compared to (t−1). It was recorded
that Prosumer has to pay 3% more despite adding incentives for preserving maxMD level
and ∆EDeviate(t) thresholds.

Fig. 4.31 depicts the operations of ESS with a 184Wh charging and 180Wh discharging
rate for every 5mins with 0% SOC at initial state. Supported by the Alarm Report generated
by STS Agent seen in Table 4.7, ESS is programmed to anticipate charging and discharging
operations to gain optimal operating costs at time, (t + 1) interval. Utilisation fo ESS
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Fig. 4.31 Charging & discharging sequence of ESS using Prosumer-centric intelligence and
TE functions at fixed LCOE, 1.22e-4 $/Wh.

correspond in parallel with the electricity tariff curve (a 3-tier price regions), allocation of PV
excess generation, and peak load consumption episodes. Dominantly, the operations of ESS
are to compensate large inclination or declination of ∆PDeviate

grid capacities, and support ordering
of downstream energy exchange at PCC below maxMD limit. Moreover, the assigned ES
Agent limits excess utilisation of ESS by limiting a minimum SOC level threshold at 15%
for spinning reserve operation. However, it can be seen that there were two episodes where
ESS’s SOC% drops below the defined threshold at 0550hrs and 2200hrs. The ES Agent
is granted to bypass the constraint, only if two of these conditions were met; (i) discharge
energy to accommodate large PV generation, and (ii) to evade from day highest electricity
tariff by reducing ordering of downstream energy and increase ESS generation to support
load consumption. Nevertheless, both instances did not raise any alarming concerns in
regards to operating reserve as the network has a back-up generator to be brought online if
islanding is required to recover from service interruption. Furthermore, the load consumption
capacity at time (t +1) declined towards the baseline load level allowing maximum ordering
energy from grid.

Through incentive programmes for MD regulation, Prosumer are rewarded with com-
pensated electricity billing that can help to offset losses when having higher load capacity
than supposed being shifted into high tariff regions. As compared to conventional energy
management proceedings [201, 243, 122, 173], the managerial intelligence focuses on load
shedding and shifting into spotted regions where tariffs are low, depriving Prosumers from
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Table 4.8 Operating cost comparisons based on 91kWh energy consumption.

Constraints 24hrs Operating Costs (Inclu. LCOE)
(≈$, Std. Dev.<0.087)

Propose max MD 10.108
W/O max MD 8.776
W/O max MD W/ Penalty 9.918
Propose W/ max MD W/ Incentives 9.519
∆ Pshift > 250kWh W/ Penalty 10.203
∆ Pshift < 150kWh W/ Incentive 9.931
Proposed ∆ Pshift W/ Incentive 9.702
Propose ES Size: 2.2kWh 9.479
(LCOE: $1.20e-4)
ES Size: 3.0kWh 9.221
(LCOE: $1.636e-4)
ES Size: 3.8kWh 9.914
(LCOE: $2.072e-4)
ES Size: 2.0kWh 9.765
(LCOE: $1.090e-4)

increasing load consumptions during peak periods. However, such innovation may not be
pragmatic as Prosumers are forced to restrict its daily electricity usage and peak demand
profile will shift which results in high electricity tariff at the shift time interval. Therefrom,
imposing higher penalty premium for maxMD violators can curb smooth demand curve
trajectory at (t +1) which then assists DSO in better scheduling of unit commitments. The
penalty payouts can be portioned out as incentive for maxMD abider as seen in Table 4.8.

Supplementarily, finding the optimal sizing for ESS installation against PV system and
load consumption trends can influence Nanogrid’s operating cost. From the results seen in
Fig. 4.31, there are instances where ESS is charged through ordering of energy from grid
and the corresponding tariff it is not deterministically cheap. Therefore, bidding strategy
for charging/discharging sequence gets complicated when taking ESS size constraints into
consideration for optimal scheduling of ESS utilisation. Alternatively, such crises can be
rectified by monitoring Agent’s cooperative reward responses where penalty assignment
are posed when IA Agent is forced to exhaust ESS during low electricity tariff to contain
high PV penetration at time (t + 1) or restricted discharge rate when servicing peak load
consumptions. These are some indications that the ESS size is not accustom to the energy
attributes of Nanogrid system. In addition, economic evaluation on LCOE for excess PSPG
generation to be sold upstream may not be able to compensate the investments made in
maintaining PSPG (oversized). Therefore, optimal sizing of PSPG proof to be a viable aspect
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in striking a balance between engaging an oversized ESS to gain maximum incentive but
provoke very low return on investment while undersized ESS has high return on investment
ratio but lose out on all the incentive payouts or worst penalties as seen in Table 4.8.

The Agents’ Q-Learning probabilistic regression in localising optimal operating costs in
cooperative tendency is presented in Fig. 4.32a based on predefined learning parameters listed
in Table 4.9. Its objective is to attune Agents’ learning curve to achieve optimal energy billing
for Prosumer by cooperatively addressing all TE functions in DCF and operation of PSPG

(a) Converging Q-value.

(b) Individual Agent’s reward unit.

Fig. 4.32 Q-Learning in DCF learning regressions and reward assignments.
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Table 4.9 Parameters for Q-learning Reward System.

Constants Tuned values

ε 0.25
α 0.76
β 0.03

Agent Rewarding System
Initialise each Agent & QL-DCF Reward = 0;
IF:Agent satisfy constraint = +2;
ELSE IF:Agent fall in-between the constraint’s threshold = 0;
ELSE IF:Agent fails to satisfy constraint = -3;
ELSE IF:Participating Agents converged a solution)

-Agents complied Cooperative Tendency in DCF = +2;)
-Agents neglected Cooperative Tendency in DCF = 0;)

ELSE: Reward = -1;

against DSR constraints. In the Agents’ auctioning processes, penalty and reward values
were assigned to respective Agents’ state-action pair sequences and indeed, cooperative
tendency based on centralised critic has better energy management response as compared to
unambiguous administrations for a single Nanogrid operations. The results also showed that
a three tier reward function should be employed to avoid stagnation in the Agents’ learning
trajectories. Through assignments of penalty with a negative value and reward with positive,
the consolidated result could not provide a descriptive quantification on Agents’ learning
performance and sometime misleading. Hence, a three tier reward structure is introduced to
represent degree of severity; positive value for reward, within a specified threshold with is 0,
and penalty with a negative value. Such implementation helps Prosumer to view respective
Agent’s negotiation learning performances in the cooperative state-action pair assignments.
The results exhibits a successful learning process where the Q-value able to converge and
locate uniform global minima for Nanogrid’s operating costs. As expected, the learning
search space improves in proportionate to the number of iterations conducted. Thus, to
reduce computational intensive and time in recognising solution-optimality, it suggests to
run iteration order between 7 and 9 is sufficient.

Fig. 4.32b presents the Agents’ reward payoffs during cooperative tendency. The payoffs
uses positive, neutral, and negative rewards on the action-state pair in searching for optimal
Nanogrid’s energy billing and DSR mitigations. The reward unit provide information on
which Agent(s) is being compromised (trade-off) to gain optimal resolution in cooperative
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tendency environment. However, using three tier reward function, the small learning rate is
needed to provide bidding relaxation on Q-value regression and reach convergence.

4.6.2 TE Operations of Prosumer Community:
Commercial & Residential

In this section, operations of four aggregated NGs were modelled, NG-1−NG-4, as shown
in Fig. 4.33 involving residential- and commercial-based buildings. It aims to analyse
performances of cooperative energy management strategies on trading and market operations
in view of TE functions. The Agents’ learning search space is now extended will larger scaled
serviceability constraints, extending managerial processes with respect to other neighbouring
NGs. Thus, reliance on electricity pool market for DSO and PCM Agent is no longer
restricted to a single bonded PCCM Agent. PCM Agent required to interact closely with all
PCCM Agents to gain information from IA Agent in recognising excess generation flowing
upstream that is ready for disposal at time (t + 1), excluding available operating reserve
capacity. Hence, modelling of spinning reserve market model is also ventured to ensure
DSR is stable during energy interrupted crises. The Prosumer-centric EMS employs the
proposed MADDPG for joint bidding in the electricity market using decentralised critic
function. Respective Nanogrid will then perform Q-learning technique using the regulated
critic function to cipher local state-action pair sequences.

The electricity tariff oriented PCM Agents is separated into two authorities; (i)) classical
marginal pricing (MP) determined by DSO Agent during any electrification transactions
occurs between wholesale and REM/LSE operators, (ii) bid-as-request (BAR) pricing where
forward bilateral contracts are negotiated between Prosumers in PMP. Fig. 4.34 profiles
the energy prices of wholesale and retail in summer under MADDPG reinforce learning
algorithm based on 30mins intervals. An observation was concurred that the price curves
for both market domains have similar trends due to the cumulative reward which is much
dependent on the price difference. Subsequently, bidding quantities and the load consumption
capacity of aggregated NGs through MADDPG reinforce learning and baseline policies are
presented in Fig. 4.35. The baseline policy has a constant electricity tariff of $35MWh. Here,
Prosumers in PMP have direct access to the wholesale market assuming that LSE neglects
profiteering avenues and furthermore, compliance for electricity pool policies were involved
in view of Market Rules for competing regulations and codes of practices.

Two observations were performed where first LSE seek to profit from Prosumers which
results in higher electricity price tariff for REM when compared against wholesale price. It
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Fig. 4.33 Electrical network configuration and PSPG installation of NG-1 to NG-4 coupled to
22kVAC medium-voltage distribution network. (a) NG-1−Single-phase Residential network
operating at 220VAC, 50Hz, pole mounter XFMR, (b) NG-3−Three- and single-phase Com-
mercial Building (Hospital) network operating 415VAC and 220VAC, 50Hz network system,
respectively coupled to a lone distribution MV sub-station, (c) NG-2−Single-phase Residen-
tial network network operating at 220VAC, 50Hz, pole mounter XFMR, (d) NG-4−Three-
and single-phase Commercial Building (Industrial) network operating 415VAC and 220VAC,
50Hz network system, respectively coupled to a shared distribution MV sub-station.

aims to maximise it profit margin but yet a reduced load consumptions profile generated by
the aggregated NGs was observed as compared to the scenario where Prosumers have direct
access to wholesale market. Second, in reference to the baseline load consumption policy,
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Fig. 4.34 Typical energy prices in retail and wholesale market under MADDPG policy during
summer.

(a) Bidding of energy quantity Bid in summer under MADDPG rein-
force learning policy, a baseline policy that endorses constant price of
$35MWh, and direct access into wholesale market.

(b) Total aggregated energy consumptions in summer under MADDPG
reinforce learning policy, a baseline policy that endorses constant price
of $35MWh, and direct access into wholesale market.

Fig. 4.35 Wholesale electricity price tariff under different learning policies.
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Fig. 4.36 Cumulative reward profile based on two sets of discount factor.

the aggregated Nanogrid’s energy consumption capacity rendered by MADDPG reinforce
learning has lower variance which maps a smoother demand curve.

Mentioned earlier, considerations in long-term behaviour has better influence on the
decision-making processes as compared to short-term in which future reward is neglected. To
comprehend better, comparisons were conducted on the cumulative reward using MADDPG
reinforce learning with γ = 0.9 and, γ = 0 for short-term learning policy as shown in Fig. 4.36.
The results demonstrates that learning policy set with γ = 0.9 has superior reward unit which
justifies successful modelling of joint bidding and pricing algorithm as Markov Decision
Process problem.

Subsequently, based on the bid quantities and aggregated load consumption capacity,
Prosumers have to cooperatively manage the global demand curve by performing strategic
load scheduling at individual Nanogrid. In addition, Prosumers must observe TE function
constraints that will add value during DSR operations and impede Duck Curve crisis. Here,
assuming that the bidding and selling of excess energy can be transacted between PtP, Fig.
4.37 presents auctioning processes at time t; limited to energy transactions listed in Table
4.10. Fig. 4.37a records Nanogrid’s excess generations that is ready to be deployed upstream
while Fig. 4.37b displays successful bidding and selling of excess generation between PtP
at respective time t. All selling electricity prices are rated similar to the electricity tariff
in REM. Figure 4.37c profiles the Utility’s energy generation managed by DSO where its
constraints were bounded by a baseline load of 8.2kWh, maxMD capped at 62.8kWh, and
preserved ∆PDeviate less than 3.5kWh.

In relations to the energy attributes at respective NGs, various self-driven trading models
conspired by Prosumers were observed during the bidding and selling of excess energy among
PtP. The characteristics of these trading functions are user-specified conditions, generally
influenced by Prosumers’ expectancies in TE value which allows better profit margins
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(a) Excess energy capacity available for selling or buying between PtP or
DSO.

(b) Completed energy sharing transactions between PtP or selling back to
Grid.

(c) Aggregated load consumption capacity ordered from grid (downstream
energy supply).

Fig. 4.37 Exchange of excess energy between PtP in Prosumer Community.
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Table 4.10 PtP Permissible energy transaction engagements: read row then column.

Residential Commercial DSO
Residential no no yes
Commercial yes yes yes

DSO yes yes nil

through wholesale market operation and prices. For instances, the operational objectives for
respective NGs is as follows:

1. NG-3−targets to model a discharge scheduling strategy from ESS to service peak
demand period during high electricity price tariff. It aims to take market dominance by
auctioning a marginal cheaper price to lure PCCM Agents’ of other neighbouring NGs
to opt their purchase of energy from Retailers.

2. NG-4−prioritises operations of global TE function that helps DSOs in scheduling
better DSR operations. It suppresses Duck Curve crisis and rectifying confrontations of
large energy deviation stress that could violate supply-demand in gaining equilibrium
and unit commitment issues at upstream. Hence, it employs a relaxed auctioning
strategy at the lowest price rate threshold and hopes to gain return on investment by
wagering on incentives payouts.

3. NG-2−adopts an oversized PSPG accompanied with intense load shedding criterion
motivated to drive energy usage sustainability and averts from participating in the
bidding processes (<islanding).

4. NG-1−active participant in the PMP market, seeking opportunities for PtP energy
trading sequences. Adopts an undersized PSPG and steep load consumption demo-
graphics.

From the above energy management behaviour, DSO spotted the need for policy im-
plementation in market monopolism is important to secure bilateral trading at minimal. In
consequence, liberations in PtP energy trading yet to receive great attentions, restricting
Residential(s) engaging in direct bidding processes and also discourage NGs from setting-up
large PSPG that could impose safety threads in living community. Hence, in practice, DSO
and EMO dominate the DSR and market operation, serving as mediators when coordinating
PtP energy trading. Whereas, Commercial-based Prosumers are contracted to sell power
level at min−max thresholds of <1MW and >10MW , asserting generation certainty for DSO
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Table 4.11 Comparisons of earned profit margin between single-bounded and aggregated
energy management approach.

Single EM ($ per day) Joint EM ($ per day)
NG-1 9.479 8.725
Incentives Payout 0.482 0.351
LCOE losses 0.028 0.019
NG-2 9.257 8.873
Incentives Payout 0.385 0.401
LCOE losses 0.244 0.181
NG-3 88.646 86.158
Incentives Payout 1.273 2.706
LCOE losses 1.599 1.233
NG-4 85.691 85.829
Incentives Payout 2.572 3.932
LCOE losses 1.828 4.720

to positively schedule unit-commitment problem and constraints to anticipate peak- and
off-peak demand loading.

Table 4.11 provides comparative analyses on Nanogrid’s profit margins earned based
on above mentioned auctioning strategies. NG-3 received favourable profit margin and
low operating costs through profiteering from other bidders during the trading processes.
Whereas, NG-4 experienced small marginal losses based on small and fixed incentive payouts
rated at $0.03kWh across all TE services. NG-2 managed to reach at a break-even point
despite limited contributions in the bidding process and rely energy exchange from grid
to compensate LCOE from its PSPG. NG-1 gained superior profit margin as compared
to other NGs encompassing incentive payouts and successfully schedule/bid its peak load
consumption at low electricity tariff.

4.6.3 Comparisons with other Reinforcement Learning Approach

To evaluate the proposed Prosumer-centric EMS, performance comparisons for Prosumer
Community engagements were presented to view managerial superiority in addressing DSR
operations and maximising TE values. Despite unique modelling of energy management
strategies (i.e. unparalleled problem and objective statements), aspirations to trim Prosumer’s
operating costs based on optimal scheduling of PSPG demand curve curtailment are in
common. Prosumers’ are driven to gain profiteering incentive payouts and perform shift-
ing/shedding of load consumption capacity into low electricity tariff region while adhering to
DSR constraints in real-time. Accordingly, to appraised individual control performances, four
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evaluation indices are proposed; Market Clearing Incentives (MCI), Penalty Costs imposed
on grid participant (PC), Operation Costs Consistency (OCC), and Load Shifting Factor
(LSF).

MCI =
∑

10
i=1(Pro f itbid + Incentivegrid)(t, i)

10
(4.112)
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∑

10
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10
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)
∗100% (4.115)

where i refers to the number of iterations performed by the discrete computation at time,
t. OCC quantifies solution consistency by weighing operating costs standard deviation at
respective time t intervals. PC computes the total costing for penalties (violations) submitted
by Utility at time t. LSF measures the load consumption capacity shifted at time t1hr for an
hour. Smaller LSF depicts greater conservation of Prosumer(s) energy usage lifestyle, and
MCI evaluates the total of profit margin and incentives received at time t (including PSPG
LCOE revenues).

Hierarchical Energy Management System

Peigen Tian [244] proposes an energy management system based on hierarchical status
(HEMS). It conducts a two-level hierarchical optimisation approach at distribution level
to administrate Prosumer Community operations. The hierarchy is separated into two
phase optimisation; (i) forecast day-ahead PSPG output generation, schedules charging and
discharging power capacity for ESS, and load demand curve based on 1hr time intervals.
In addition, optimal power exchanged at PCC were deduced, monitoring power generated
from upstream generators and Community’s PSPGs. (ii) perform mixed-integer linear
programming (MILP) to solve multi objective TE functions defined in Chapter 4.4.2 and
4.5.1 with demand-side constraints. Linearised approximation is fused into modelling the
objective function to achieve operating constraints that are implicit.
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Table 4.12 Performances of different EM methodologies against proposed on DSR operations.

Proposed
NG-1 NG-2 NG-4 NG-3

Ops. Costs ; OCC $8.725 ; 1.591 $8.873 ; 1.858 $85.829 ; 2.267 $86.158 ; 1.772
PC ; OCC $0.019 ; 0.661 $0.181 ; 0.348 $4.720 ; 0.369 $1.233 ; 0.535
LSF 5.629% 4.138% 5.038% 3.812%
MCI ; OCC $0.773 ; 1.032 $0.565 ; 0.579 $4.582 ; 1.265 $3.721 ; 1.186

HEMS [244]
NG-1 NG-2 NG-4 NG-3

Ops. Costs ; OCC $8.943 ; 4.104 $9.004 ; 3.726 $86.117 ; 3.883 $86.749 ; 3.274
PC ; OCC $0.397 ; 3.161 $0.541 ; 2.926 $4.828 ; 3.374 $5.162 ; 3.145
LSF 21.736% 15.288% 19.638% 16.825%
MCI ; OCC $0.894 ; 2.590 $0.726 ; 2.342 $3.638 ; 2.689 $4.221 ; 2.911

SSEMS[245]
NG-1 NG-2 NG-4 NG-3

Ops. Costs ; OCC $8.842 ; 1.240 $9.047 ; 1.536 $86.265 ; 1.219 $86.769 ; 1.681
PC ; OCC $0.054 ; 0.728 $0.318 ; 0.819 $4.669 ; 0.743 $1.382 ; 0.725
LSF 6.522% 4.614% 4.895% 4.254%
MCI ; OCC $0.704 ; 0.811 $0.497 ; 0.725 $3.884 ; 0.870 $3.176 ; 1.132

Scenario-based Stochastic Energy Management System

Jingshuang Shen [245] proposes a scenario-based stochastic energy maangemtnt system
(SSEMS) for Prosumer Community operations. It utilises and consider electricity pool
market when scheduling its shiftable loads to maximise profit margin. A two level stochastic
optimisation approach was employed to mitigate uncertainties and risk-constrained elements
instigated from integrated PSPGs. The first level gathers historical information on economic
operation scheme based on the forecasted data using deviation compensator. While, the
second level solves scheduling of shiftable load units in real-time using Monte Carlo scenario-
based. It also suggests to infuse risk management into formulating objective functions using
conditional values to reduce risks of misinterpreted profit margin. The formulation in
defining maximum profit margin during operation defined in (4.69)−(4.70) will be replaced
in accordance to [245].

Performance Evaluation Results

Table 4.12 compares the energy management performance between the proposed Prosumer-
centric maximising TE value against HEMS and SSEMS.
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Results attained in using HEMS shown detrimental impacts in solving optimal operating
costs due to weak competencies in containing large multi-constraints based on discrete-time
search space when using MILP. Furthermore, in LSF , the results has shown unsatisfactory
value as the algorithm focuses on elevating operating cost at an expense of shedding high
percentage of online shiftable loads. It provides sub-optimal solutions in rescheduling
shiftable loads given at a larger timespan of 1hr causing its load capacity to recede. The
proposed MILP shows weakness in cooperative optimisation which impose high penalty
when mitigating demand-side constraints. It fails to adhere ramping rate limit constraint,
∆Edeviate, and Duck Curve crisis becomes apparent causing propagative violations in other TE
functions. Nevertheless, to improve performance index, author could introduce cooperative
strategies into MILP as suggested in [246] where predictive control model is incorporated to
better solve DSR operations using rewarding schemes.

In view of SSEMS performances, the attained results are comparable against proposed due
to its large continual search space in generating numerous scenarios for uncertain parameter
representations. It employs Latin hypercube sampling technique which reduces algebraic
computation time without compensating resolution of the optimised results. However, the
suggested risk management model proposed a heavily penalised factor on electricity price
market to compensate weak forecasting of uncertainties under the normal distribution curve.
In consequence, quantification of profit margin is guaranteed despite changes in variability.

4.7 Findings

A proposed clustering technique, expectation-maximisation Gaussian mixture model, ciphers
Prosumer(s) in a Community based on their energy attributes. The algorithm has successfully
provide informative information for Prosumer(s) in monitoring their energy contributions
in the distribution network and how they fair against others. Likewise, aggregators also
gained better jurisdictions in scheduling clusters’ with high excess generation and high load
consumption capacity to compensate each other. Aggregator is tasked to serve as a secondary
DERMS operator at a Community level, where its energy management intelligences are fixed
based on a specified energy attribute. Aggregator required to identify partnering clusters and
procure a communal solution that could benefit Prosumers in respective cluster.

In the TE management, a self-directed nano-biased Prosumer-centric EMS is proposed
to facilitate optimal utilisation of Prosumers’ PSPG against load consumption capacity and
electricity price tariffs. It fuses decentralised demand-side operating constraints into local TE
function while interoperating Prosumers’ energy usage interests. Furthermore, Prosumer’s in-
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volvements in the REM is also considered when modelling the proposed control intelligences.
Here, the Prosumer-centric EMS employs Q-learning reinforcement learning approach to
solve for optimum scheduling of PSPG and power exchange capacities, and provides BTM
BERMS solution for Prosumer at low-voltage level based on individual subscribed business
proposal and services. The Q-learning algorithm, centralised critic policy, ciphers local
energy attribute based on strategic scheduling of PSPG operations and local controllable load.
Whereas, in the joined bidding and pricing of electricity price in REM, it uses MADDPG due
to its decentralised critic policy that provides CDL relations. Results deliver positive and com-
parable energy management performances when benchmarked against other methodologies
based on the proposed aggregated Prosumer Community network.

4.8 Summary

In this chapter, realisations in Prosumer Community engagements for transactive manage-
rial proceedings serve as a viable concoction when employing aggregators to deal with
decentralised demand-side operating constraints and meeting Prosumers’ energy business
model and PSPG utilisation interests. Having high penetrations of DERs at low-voltage
level, generation companies are exponentially faced with unit-commitment uncertainties
which causes difficulties in coordinating demand-supply equilibrium. The demand load
curve profiles are no longer predictive and upstream energy generations from distribution
network are constantly causing Duck Curve and baseline load crises. Hence, to mitigate such
predicaments in securing power quality, DERMS, and DSR operations while maximising TE
values, Prosumers are offered with BTM DERMS proposal governed by aggregators to bring
DSR managements and optimum local operating costs closer to the low-voltage level. Such
proposal relief DSO-TSO from orchestrating nano-manage avenues for individual Prosumer
and focuses more as a policy maker that relaxes competitive-playing electricity market and
establish congestion management.

DSO-Aggregators need to rethink new innovations that allow managerial proceeding to be
conducted from the top (primary-side distribution network) and yet having full appreciation
on Prosumers’ energy attributes. Therefore, this chapter proposes two avenue in gaining full
access into demand-side management despite liberating Prosumers in attuning their energy
attributes based on individual socio-economical interests. It involves clustering of Prosumers
into a Community based on their energy attributes for better demand curve jurisdiction
and designing a Prosumer-centric EMS that comprehends operating constraints and also
maximising TE values.
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However, potentials in energy market monopolism can arise during bidding in REM. Pro-
sumer(s) are liberalised to model their constraints requirements based on individual interests
causing MADDPG learning processes to be blinded and lead to ill-defined competition rules.
Hence, DSO-TSO as policy maker, need to revise Market Ruling in REM by introducing
new policies and regulatory to ensure Prosumer’s interests when auctioning is transparent to
create a competitive trading environment for all energy actors.





Chapter 5

Local Protection Relay System for
Low-Voltage DER Installation

This chapter proposes a real-time solution for in-house OMS that diagnose and isolate fault
interruptions materialised from local PSPG. The idea is to bring outage analysis closer
into the low-voltage level where high penetration of BTM DERs are installed. Rather than
being used as a management function, it serves more as an outage protection system for
local use (i.e. Nanogrid EPS domain) that can help aggregators in Prosumer Community
power distribution planning. The proposed controller is not only limited to detect local fault
intrusions but also isolating Nanogrid to operate in island mode when fault transpired from
upstream (i.e. Utility). Such implementation provides an add-on service into existing ADMS
for low profile building operators to monitor on-going isolation processes targeting a specific
faulted PSPG autonomously. It relieves RDSO from ADMS complications and intense search
space computations when pinpointing fault source contributed by BTM PSPG.

5.1 Problem Descriptions

Having BTM DER installations at low-voltage level, service interruption due to weak ride-
through compliance or undetected high-impedance fault crisis can propagate distribution
network to collapse. Hence, despite maturity in modelling TE system and management,
efficient DSR operations and power quality ancillary services, and reserve & wholesale mar-
ket participation, realisation towards accrediting early detection by localising and profiling
fault crises in Nanogrid need further recognitions. It is advantageous to both Prosumers
and aggregator to adopt decentralised Outage Management System (OMS) with early fault
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detection capability to isolate PSPG in times of fault crises before it propels upstream and
affects the integrity of distribution network even during blackstart.

Favourable methodologies in relations to diagnosing fault interruptions transpired in
the distribution network have shown significant advancements. Superior control features
in repressing fault crises and method in profiling fault attributes using heuristic algorithms
are common avenues in transacting restoration and isolation proceedings as suggested in
[220–222]. However, employment of such approach may not be suitable when dealing
with a search space that aggrandises proportionally to Prosumer existences. Worst, it could
potentially developed into malicious unified modelling of objective statements that will
conceive divergence [223, 247]. Therefore, encompassing fault managements in Nanogrid
perspective provides better jurisdiction towards preceding fault interruptions as it relieves
aggregator and accredit Prosumer to coordinate local fault episodes locally.

5.2 Contributions

Prosumers can contribute into the ADMS operations (i.e. OMS) by adopting the proposed
fault protection relay system designed to mitigate fault events that could transpire frequently
when operating these BTM DERs. Fault infiltrations are inevitable when dealing with
PSPG−inverter malfunction causing frequency synchronisation issue at PCC or fault mishaps
induced by anomalous current or voltage transients [248, 249]. The classical approach in
detecting fault current is commonly expressed through predetermining the phase current
magnitude threshold and assessing its phase-shift deviation factor using Phasor Measurement
Unit (PMU). These fault qualities are commonly referred as fault level described in MVA

(nominal voltage into fault current ratings) or short-circuit current, ISC (current rating at
secondary-side divide network impedance). The advantage in adopting MVA method; (i) does
not need to recalculate impedance ratings for one voltage to another, (ii) forgoes the need to
select and convert a common MVA base, (iii) uses whole number when doing computation
hence providing a more deterministic identification in fuzzy system (avoid transitional zone).
Till to date, prepositions for fault diagnostic analysis involves detecting, identifying and
locating fault transients. With technological advancement, fault analysis have exploits various
technique such as follows:

• Signal processing & feature extraction techniques to amplify accuracy resolution and
accelerate sampling rate capabilities.
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• Utilising novel recording and sensory devices to measure factual data collections and
remote monitoring.

• Deploy wide-area coverage communication network & Cloud data storage for data
transfer and computational.

• Adopting Heuristic algorithm, them being supervised or unsupervised techniques to
cipher multi-objective domains in decentralised or centralised architecture.

• Increase awareness in special class fault; High-impedance or arc-fault.

From synthesising above-mentioned pointers, a customised Nanogrid fault diagnostic al-
gorithm is proposed uniquely for Prosumers engagements. A revised Directional Overcurrent
Current Relay (DOCR) devise is redesigned to serve as a protection mechanism in resolving
fault interruptions developed locally or externally in reference to PCC. It innovates to exploit
Fuzzy Logic (FL) intelligent system and create knowledge from line-current magnitude
transients, symmetrical-sequence components, and network’s relative phase angle deviations
to interpret fault synopsis.

5.3 Proposed Fault Diagnostic Framework

Fig. 5.1 illustrates the workflow of proposed Fuzzy Logic Directional Overcurrent Current
Relay (FL DOCR) in diagnosing fault attributes. The FL DOCR control operations is divided
into four phases: (i) initiate communication and data acquisition with Frequency Disturbance
Recorders (FDR) which is coupled before the circuit breaker of each individual PSPG and
devise coupled at Nanogrid PCC, (ii) compute the six Conditional Correlate Coefficients
(COC), δ0-δ5, and assigned to FL as inputs for fuzzification and create FL expert knowledge
library, (iii) execute FL decision builder to decompose input into output report stating fault
identity and current directional flow, and (iv) trigger respective circuit breakers to isolate
faulted region.

5.3.1 Data Acquisition and Feature Extraction Processes

The engagement of FL DOCR is heavily dependent on data acquisition processes involving
rate of sampling and resolution of data sensitivity. It is a data driven operating model where
the output performances in profiling fault attributes synchronises with data acquisition from
PMU and FDR. Utilising the proposed Nanogrid Area Network mentioned in Chapter 2.4.3
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Fig. 5.1 Workflow of the proposed control sequences for FL DOCR.

and Azure IoT edge device, PMU and FDR communication connection will be established
seen in Fig. 5.2. It aims to create a single client host communication between Frequency
Monitoring Network (FNET) [250] and Azure IoT cloud to create a FL DOCR module that
exchange real-time data logging and send command control to actuators (circuit breaker)
for execution. FNET is a separate cloud domain that is to design at a low cost generally
to serve as a deployable wide-area frequency measurement system with high dynamic
accuracy. It employs high resolute e-corder sampler to perform definite preprocessing
aptitudes when decoding sampled signals into digital. When dealing sensitive frequency-
based data acquisition sampling rate, such as signal processing exertions, FNET deemed to
have greater superiority in extending into a wide-area network system when compared to
Azure IoT cloud. Despite running FL DOCR operations in two separate wide-area domains
(Azure IoT and FNET), efforts in integrating them at shared cloud point is proposed to create
as single host client that is stackable for other wide-area systems under the compliance to
IEEE C37.118 communication standards. FNET is programmed to record measurements of
line current magnitudes, and phasor readings at respective symmetrical components to cipher
phase-shift angles and frequency deviations in sync with GPS-synchronised timestamps.
PMU is solely designed to have greater sampling rate and enhanced filtering ability that
enables higher order harmonics measurements as compared to FDRs (up to 49th order).



5.3 Proposed Fault Diagnostic Framework 241

Fig. 5.2 Hybridised FNET & Azure IoT cloud for wide area network with low recording
discrepancies and high sampling rate.

Fig. 5.3 GPS-based timing subsystem.

The design architecture of FDR and PMU are typically equipped with a Digital Signal
Processor (DSP) rated with very high oscillator frequency, serve as the computational building
blocks in sampling and converting analogue signals into digital (ADC) interpretations.
In addition, a field programmable gate array (timing module architecture), is coupled to
execute precision sampling timestamps that synchronises with the received data between
GPS and ADC signals. Fig. 5.3 demonstrates the framework of GPS-based timing subsystem
programmed to sample 1 pulse per second (1PPS). The 1PPS signal is then distributed to
time microprocessor in propagating trigger pulses for ADC.

Subsequently, the ADC signals are quantise using Discrete Fourier Transform (DFT)
algorithm to recast into continuous-time signals−equally sampled discrete-frequency data
sets using moving average algorithm. The resultant magnitude and phase angle signals
estimation is as follows:

f (t) =
a0

2
+

∞

∑
n=1

an cos(nωt)+bn sin(nωt) (5.1)
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2
T
∫ t

t−T f (t)sin(nωt)dt and T = 1
f undemental f req.

The execution commands for circuit breakers will be controlled by Azure IoT Edge
device.

5.3.2 Fuzzy Logic Architecture

To highlight deployment applicability for industrial-based controller, FL implementation
serve as a promising solution in deciphering and apprehending fault interruptions during
Nanogrid operations. Here, modelled FL DOCR algorithm ensure versatility in detecting
fault interruptions for both DC-based or AC-based PSPG operations. Fig. 5.4 presents the
Fuzzy Interface System that is equipped with fuzzy reasoning algorithm. Furthermore, an
aerial perspective of the fault’s attributes contains autonomous diagnostical commands to aid
Nanogrid regain its stability.

Fig. 5.4 Architecture of the engaged Fuzzy Logic controller.

In reference to Fig. 5.4, the Fuzzy Inference System (FIS) comprises of three sequential
computations; fuzzification, fuzzy rule evaluation, and defuzzification. Following explains
each of their processes.

Fuzzification

Fuzzification is a processes that translates crisp inputs (real integer) of FL input into fuzzy
input, ordained by the membership function peculiarity. By reserving descriptive labelling
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Fig. 5.5 Designing of fuzzy sets and respective complements.

and compositional dimensions for respective Membership Functions (MF), labelled fuzzy
input sets are joined based on the relativity construe of individual crisp input in contrast to
respective MF’s domain. Using overlap trapezoidal-shaped MFs as shown in Fig. 5.5, the
crisp input’s degree of truth is weighed against its bearing peculiarity along the Universe
Of Discourse, UOD. UOD is strategically modelled with predefined demarcations that sets
regional regions using multi-level MFs to associate corresponding representations. Each
of the multi-level MFs will infer affiliated 3φ short-circuit current magnitudes. Following
suggests guidelines in defining input MFs of a fuzzy set:

overlap ratio =
overlap scope
ad j.MF scope

≤ 1 (5.3)

overlap robustness =
∫ Y

X (µ1+µ2)dx
2(Y −X)

≤ 1 (5.4)

Fuzzy Rule Evaluation

With fuzzified input sets, decision-making processes are then administered by employing
Mamdani fuzzy rule-based system defined in (5.5). Fuzzy evaluation can be regarded as
the expert knowledge that able to perceive any applied applications. Having the fuzzified
input set and labelled MFs, the system then proceed in mapping out respective linguistic
terms based on the fittest active rule. Each of the active rules contains ’if-else’ conditional
statement as knowledge embodiment providing reasoning evaluations to infer degree of
truth. Based on the intensity of truth, the input sets are assigned into respective labels.
The ’if’ statement is referred as the elastic condition that captures knowledge while ’then’
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Fig. 5.6 Employing fuzzy rule evaluation on the fuzzy input sets.

proffer a conclusive linguistic variable. The labelled input sets undergoes valuation processes
that employs Boolean operator AND to infer consequence through weighing the minimum
intersection defined as follows:

MAMD(x,y) =
n∨

i=1

(Ai(x)&Bi(y)) (5.5)

where x is A1 or A2 and y is B1 or B2, ....

µA
⋂

B = min(µA(x),µB(x)) (5.6)

where µ(A,B) is the intersection points from 2MFs.

Defuzzification

In the defuzzification process, it transpose fuzzy output/consequent into crisp output sets. It
suggests Center of Gravity COG approach when averaging out a single crisp output value
from the aggregated MFs. The output MFs are assigned to being singleton, decreasing
computational intensity on the micro-processor. (5.7) and Fig.5.6 demonstrates how the
singleton-based COG computes the crisp output value.

COG = (
n

∑
i=1

xi ∗µ(xi))/
n

∑
i=1

µ(xi) (5.7)
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5.3.3 Formulating Conditional Correlation as Crisp Inputs

Computation of linguistic crisp inputs, δ , are defined to represent the fault interruption
attributes based on the measurements recorded by PMU. The formulated crisp inputs are de-
signed to engender fault uniqueness between symmetrical and unsymmetrical fault paradigm.
Customarily, in Shunt fault events creates a low impedance path causing high inrush current
at respective affected lines. Furthermore, as FL DOCR is installed at low-voltage network, a
uniform fault level is made suitable for all NGs regardless of its PSPG installation size as the
short-circuit current is governed by pole transformer at full load. Therefore, the proposed
correlation coefficients, δ0-δ4, expresses fault current magnitude and amplify various fault
discreteness in relations to the sampled single-phase current profile. Similarly, in a three-
phase Nanogrid network connecting to the medium-voltage level, the short-circuit current
can be measured based on the sub-station transformer operating at full load. δ s in equations
(5.8) and (5.12) addresses individual tasks in segregating fault composites into detection and
classifications.

δ0 =


1, MVAgrid ≥ Vnorm ∗ I f ault (surge)

1, ≤ 0.7∗ Ire f (sag)

0, otherwise

(5.8)

δ1 =
Ia− Ib

max(Ia, Ib, Ic)
(5.9)

δ2 =
Ib− Ic

max(Ia, Ib, Ic)
(5.10)

δ3 =
Ic− Ia

max Ia, Ib, Ic
(5.11)

δ4 =
0.333[Ia + Ib + Ic]

0.333(Ia +[exp j2π/3 ∗Ib]+ [(exp j2π/3)2 ∗ Ic])
(5.12)

where: Ia, Ib, Ic is the single phase current magnitude
δ0 denotes the presence of fault being detected [0,1] in the electrical network. δ1-δ3

expresses which of the three-phase lines (i.e. LA, LB, and LC) is faulted or any other line
combinations. Based on the magnitude intensity contributed by the respective coefficients, it
flags faulted lines. δ4 reveals the existence of line to ground fault through sequence compo-
nents interpretations. Subsequently, using Fortescue theorem, it estimates the fault current
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directional flow/migration (i.e. upstream or downstream). The polarity of shifted phase angle
induced by fault can be acquired using synchrophasor−current potential differences at the
installed busbar. In reverse or upstream fault, Frev, the fault current, Irev, flows from the grid
to the lowest potential point:

Irev =Vgrid/VG_F (5.13)

where G_F denotes grid to fault point. Likewise, for downstream or forward fault, Ff wd , fault
current, I f wd , flows from source to the lowest potential point:

I f wd =Vgrid/VS_F (5.14)

where S_F expresses generation source to fault. In practise, impedance ratings of ZG_F

and ZS_F are not known. Hence, taking the assumptions that transmission lines are purely
inductive, the impedance value found in (5.13)−(5.14) are typically negative imaginary
values in the current phasor diagram [251]. Therefore, pre-fault current, Ipre_F , is expressed
as follows:

Ipre_F = (VS−Vgrid)/ZS_G (5.15)

where S_G refers generation source to grid and therefore, the pre-fault current detected by
circuit breaker, CB, with reference to Irev is:

CBtrigger = Ipre_CB,rev = Ipre_F − (Vgrid/ZG_F) (5.16)

and pre-fault current with respect to I f wd is:

CBtrigger = Ipre_CB, f wd = Ipre_F +(Vgrid/ZS_F) (5.17)

On the contrary, current phasor diagram, Ipre_CB,rev, contributes a positive magnitude
whereas, Ipre_CB, f wd , yields a negative magnitude defined in (5.16)−(5.17). An additional
crisp input, δ5, is introduced to apprehend fault current directional flow using phase shift
deviation defined in (5.18). A negative δ5 is reverse fault direction and vice versa.

δ5 = θF −θpre_F (5.18)
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Table 5.1 Crisp inputs for input membership functions, δ0−δ5.

Fuzzy Set: δ0

MFj Label j A B C
1 No Fault -0.1 0.0 0.1
2 Fault 0.9 1.0 1.1

Fuzzy Set: δ1−δ3

MFj Label j A B C
1 Low -1 -0.56 -0.1
2 Medium -0.15 0.125 0.4
3 High 0.1 0.55 1.0

Fuzzy Set: δ4

MFj Label j A B C
1 Low -2.0 0.1 1.0
2 High -0.01 1.0 3.0

Fuzzy Set: δ5

MFj Label j A B C
1 Negative -180 -90 0
2 Positive -1e-1 90 180

5.3.4 Modelling of Input Membership Functions and Decision Rules

The modelled MFs that are strategically placed along UOD spectrum, demarcated into
sections to represents fault levels, MVA, of Nanogrid. Individual MFs will then be labelled
to characterise fault current intensities which later used to correlate the calculated COCs

during the fuzzification process. Subsequently, development the expert fuzzy-knowledge is
proposed to detect fault interruptions and provide definite categorisation of fault genres based
on the truth values of input membership. Details given in Table 5.1, mixtures of dual- and
triplet-level fuzzifiers were employed into designing the input MFs for respective crisp input.

Subsequently, those fuzzified antecedents undergoes a decisional evaluation processes
to generate a single consequent which corresponds to an output MF. The fuzzy rule uses
AND-type fuzzy operator for all fuzzified input sets and ’if-then’ conditional statement to
verify the entire fuzzy set as a successful candidate. Table 5.2 and 5.3 are listed predefined
fuzzy rules to cipher fault peculiarity and determine fault current migrations based on the
calculated crisp input sets.

If the fuzzified input lingers in-between MF’s boundaries (transitional zone), fuzzy
overlay reasoning will be activated to cipher fittest assignment to a distinct MF. Therefore, a
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Table 5.2 Fuzzy rule evaluations for fault current migrations.

No. δ5 Fault Current Migration
1 Positive Forward
2 Negative Reverse

Table 5.3 Fuzzy rule evaluations for fault classification.

No. δ0 δ1 δ2 δ3 δ4 Fault Type
1 Fault High Medium Low High LA−G
2 Fault Low High Medium High LB−G
3 Fault Medium Low High High LC−G
4 Fault Medium Medium Low Low LA−LB
5 Fault Low Medium Medium Low LB−LC
6 Fault Medium Low Medium Low LC˘LA
7 Fault Medium Medium Low High LA˘LB−G
8 Fault Low Medium Medium High LB˘LC−G
9 Fault Medium Low Medium High LC˘LA−G
10 Fault Medium Medium Medium Low LA˘LB˘LC
11 High Medium Medium Medium High LA˘LB˘LC−G

triangular-based pivotal MF is opted to coordinate graphical depiction of fault level capacity
expressed by the normalised fault currents, IA, IB, IC or I0, I1, and also the angle deviations,
θt , θt−1 from (t−1) to t (t = time when fault is detected).

5.3.5 Proposed Output Membership Function and Defuzzification

The COG-based defuzzification processes transpose fuzzy output into crisp values containing
fault type and fault current directional flow information. Meanwhile, separated into two
output fuzzy sets, the output membership functions provide details on fault attributes and
fault current migration. Similar to input, the output MFs undergoes AND-type implication
method to cipher valid/true consequents.

Whereas, Table 5.4 equates respective crisp output magnitudes for affiliate fault identities
while Table 5.5 ordained the directional fault current consequents. To achieve better segre-
gation accuracies, stringent axioms is implemented when designing the output MFs; (i) use
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Table 5.4 Output membership functions, fault classifier fuzzy set.

MFj label j A B C

1 LA−G 6.5 7 7.5
2 LB−G 4.5 5 5.5
3 LC−G 2.5 3 3.5
4 LA−LB 63.5 64 64.5
5 LB−LC 65.5 66 66.5
6 LC−LA 60 60.5 61
7 LA−LB−G 76.57 76.87 77.57
8 LB−LC−G 96.5 97 97.5
9 LC−LA−G 94.5 95 95.5

10 LA−LB−LC 73.5 74 74.5
11 LA−LB−LC 82 82.5 83

Table 5.5 Output membership functions, fault current migrations.

MFj Labelj A B C

1 Reverse -180 -90 -1.00E-05

2 Forward 1.00E-06 90 180

triangular-based MF for steady response, (ii) have small overlap ratios, and (iii) limit UOD

spectrum boundaries to reduce data processing glitches. Afterwards, the output fuzzy sets
are truncated using min function to trim output MFs to align itself with the degree of truth.

5.3.6 Locating Faulted Region & Circuit Breaker Operation

The computation in localising and isolating faulted regions requires strategical countermea-
sures as to maximise its appreciations in casting the exact fault location. Extracting faulted
current directional flow data at targeted FDRs and PMU, deterministic triggering of specific
circuit breakers can be initiated to isolate faulted region as shown in Fig. 5.7. The proposed
CB algorithm only implies if the buses of Nanogrid electrical is numbered in a sequential
order from left to right. Given its credibility, it is safe to suggest that the Nanogrid PCC will
serve as the referencing point against other busbars.
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Fig. 5.7 Triggering of circuit breaker to regain network stability.

Fig. 5.8 Testbed model of the 7-BUS Nanogrid system, PARKROYAL Hotel, modelled in
MATLAB.
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Fig. 5.9 Distribution of communication & networking infrastructure in PARKROYAL Hotel.

5.4 Proposed Testbed Model and Operation Results

A proposed Nanogrid testbed system inspired from Singapore’s first eco-friendly hotel,
PARKROYAL, presented in Fig. 5.8. The building’s demand load consumptions are estimated
to consume 30.4% lesser energy as compared against the Environment Sustainability of
Building requirements. In the day, having high humidity index, its demand was recorded with
an average of 0.85kWh/m2 [252]. Table 5.6 lists the installed PSPG in Nanogrid coupled
to the 22kV distribution network. The demand loads are characterised into two categories;
single-phase domestic appliances rated at 230VAC, and three-phase rated at 400VAC for
operating heavy rotatory machines (i.e. lift, escalator, washing machine).

Fig. 5.9 exhibits the CB control system and communication framework established
in Nanogrid. While, Fig. 5.10 displays the overview operational sequence of FL DOCR
deployed at every busbar. These two coexisted systems are managed centrally in Azure
client server to mitigate fault interruptions and generate a single optimal solution to regain
network’s stability. The three-phase medium-voltage distribution network is rated at 22kVAC,
50Hz, and short-circuit ratio (X/R) of 7. The voltage is then stepped down to 400VAC at
Nanogrid PCC busbar which then connects PSPG. All PSPG elements are coupled to the
three-phase busbar and regulated by individual power inverter−synchronising at 50Hz. In
relations to the single-phase installations, an earthing transformer (zig-zag grounding banks)
is coupled. It provides a grounding system for connected appliances with ground current
isolation source for zero sequence current.
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Fig. 5.10 Propose FL DOCR model.

Table 5.6 Equipment ratings and specifications.

Component Ratings

Grid 2500MVA S.C. level X/R=7; 22kVAC(RMS); 50Hz
Y-Y Grid XRMR (T1) 1MVA; 50Hz; 400V/22kV
Grounding XRMR 50kVA; 50Hz; 400VAC(RMS)
Photovoltaic System 100kW; 500VDC; 45deg; 1000W/m2
CHP Microturbine 250kVA; 50Hz; 8poles; 575VAC(RMS)
EV Traction Dry Cell Battery 10x24VDC; 150Ah
1x 3-p Load 500kW; 400VAC(RMS); 50Hz
3x 1-p Load 3x10kW; 230VAC(RMS)

5.4.1 Case Study: In Normal Condition

The performance of FL DOCR during Nanogrid operation in normal condition has shown
full synchronicity at PCC and respective busbars. The results seen in Table 5.7 presents
the readings collected from the proposed FL DOCR system during no fault interruption.
Having Nanogrid running at full load capacity and PSPG generating at 0% loading, the short
circuit (SC) current, IF , is rated approximately at 1850A. The short-circuit level serves as a
guideline for aggregator to ensure network is not overloaded. Thus, subsequent case studies
are programmed to operated at 50% loading of load consumptions.
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Table 5.7 Results generated by FL DOCR controller in normal condition diagnosis.

Readings abstracted @ PCC Busbar 4

Instn. Volt. (VRMS) t<0.162s: 360VAC ; t>0.163s:400VAC
THD (%) 1.134
Exported Power (kW) 389.39 < PDER < 390.13
Symm. Cmpnent. (A) +Seq: 975, -Seq: 0.5, 0Seq: 3.09e-7
Line Magnitude (A) LineA: 975, LineB: 975, LineC: 975
Phase Angle (deg) LineA: +30.13, LineB: -89.93, LineC: +150.08
Crisp Inputs δ0: 0, δ1: 0, δ2: 0, δ3: 0, δ4: 0, δ5: 0
Crisp Output 50
Fault Migration (deg) Phase Shift: 0deg
Fault Report Alarm Flagged: None
CB Triggered None

5.5 Nanogrid Operations in Faulted Conditions

To investigate proposed FL DOCR credibility and performances in providing fault diagnosis
proceedings, three proposed case studies were presented. The objective is to analyse FL
DOCR responses in early detection during fault interruptions. First, analyses were conducted
in detecting and categorising all 11-types of fault intrusions autonomously. Second, random
fault injections were generated along Nanogrid electrical network to appraise FL DOCRs’
efficiency in localising fault origins. Third, review on optimal placement of FL DOCR units
were discussed to curtail installation costs against operational reliability.

5.5.1 Detecting & Classifying Fault Intrusions

Fault injections were introduced at the 22kVAC distribution network, inferring that an ex-
ternal fault crisis in generated. Moreover, to address dynamic fault interruptions transpired
for operations in coupling AC- and DC-based PSPG, analyses on low and high impedance
fault ratings were too executed to ensure versatility in FL DOCRs’ performance. In addition,
interjections of external noise amplifications were interpolated, simulating data misinter-
pretations during communication between measuring devices and cloud server. The results
presented in Table 5.8−5.11 are observations gathered based on a single deployment of
FL DOCR system (both PMU and FDR) embedded at PCC busbar while the remaining
busbars were FDR-based FL DOCR. The Nanogrid system was simulated for 10sec with
fault initiated at 1.8sec (regain stability after 0.3secs due to initial transient) without circuit
breaker operations.
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Table 5.8 Fault detection and classification for single line-to-ground.

Fault LA−G LB−G LC−G

Ground ohm 0.001 - 0.01

Crip Inputs δ0: 1 δ0: 1 δ0: 1
Fault 0.1ohms δ1: 0.515 δ1: -0.832 δ1: 0.375
Std.Deviation: δ2: 0.27 δ2: 0.457 δ2: -0.831
0.183 δ3: -0.865 δ3: 0.375 δ3: 0.458

δ4: 0.395 δ4: 1.6 δ4: 1.6
δ5: -15.8 δ5: -10.56 δ5: -10.52
t=14.3◦ t=19.6◦ t=19.6◦

(t-1)=30.1◦ (t-1)=30.1◦ (t-1)=30.1◦

Reverse Reverse Reverse

Crip Inputs δ0: 1 δ0: 1 δ0: 1
Fault 0.1ohms δ1: 0.417 δ1: -0.78 δ1: 0.265
Std.Deviation: δ2: 0.275 δ2: 0.52 δ2: -0.78
0.212 δ3: -0.693 δ3: 0.265 δ3: 0.515

δ4: 2.29 δ4: 0.395 δ4: 0.395
δ5: -0.83 δ5: -0.25 δ5: -0.2
t=29.8◦ t=29.75◦ t=29.9◦

(t-1)=30.1◦ (t-1)=30◦ (t-1)=30.1◦

Reverse Reverse Reverse

Crisp Output 7.25 5.35 3.45
Detection 0.0244-0.0325s 0.0217-0.0381s 0.0358-0.0382s
Classify 0.0692-0.0820s 0.0630-0.0785s 0.0736-0.0801s
Accuracy 97.89-98.25% 98.59-99.1% 98.88-99.25%
∆freq. 3.286-6.822Hz 9.176-14.678Hz 10.254-15.14Hz

Conclusively, FL DOCR has acquired 100% success rate in profiling all 11-types of fault
genres and also comprehend the fault current migration at PCC busbar. Having identification
accuracy resolution begins at 96.67%, with signal-to-noise ratio of approximately 50, FL
DOCR conceived the status of fault interruptions within 120ms or less. Noticeably, at high
impedance fault paradigm, the attained frequency deviations were at minimal. It concludes
that those proposed fault detection algorithms that solely depends on frequency response
will fail when deploying into a DC-based PSPG. Expectedly, the migration of fault current
dictates in reverse orientation where fault current discharges from the grid to PCC busbar.
Overall, respective fault peculiarities have reached convergence predefined by FL’s expert
knowledge and the permutations offered by crisp input magnitudes.
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Table 5.9 Fault detection and classification for two line-to-ground fault.

Fault LA−LB−G LB−LC−G LC−LA−G

Ground ohm 0.001 - 0.01

Crisp Inputs δ0: 1 δ0: 1 δ0: 1
Fault 10ohms δ1: 0.319 δ1: -0.434 δ1: 0.114
Std.Deviation: δ2: 0.114 δ2: 0.319 δ2: -0.433
0.189 δ3: -0.434 δ3: 0.114 δ3: 0.319

δ4: 1.1 δ4: 1.1 δ4: 1.1
δ5: -29.5 δ5: -29.5 δ5: -29.5

t=2.3◦ t=2.3◦ t=2.3◦

(t-1)=31.8◦ (t-1)=31.8◦ (t-1)=31.8◦

Reverse Reverse Reverse

Crisp Inputs δ0: 1 δ0: 1 δ0: 1
Fault 10ohms δ1: 0.189 δ1: -0.355 δ1: 0.092
Std.Deviation: δ2: 0.092 δ2: 0.189 δ2: -0.355
0.257 δ3: -0.355 δ3: 0.092 δ3: 0.189

δ4: 0.902 δ4: 0.902 δ4: 0.902
δ5: -0.41 δ5: -0.41 δ5: -0.41
t=31.39◦ t=31.39◦ t=31.39◦

(t-1)=31.8◦ (t-1)=31.8◦ (t-1)=31.8◦

Reverse Reverse Reverse

Crisp Outputs 25.08 33.15 71.4
Detection 0.02440-0.00320s 0.0218-0.0323s 0.0352-0.0388s
Classify 0.0749-0.0822s 0.0692-0.0768s 0.0776-0.0812s
Accuracy 96.67-97.1% 97.9-98.73% 97.98-98.12%
∆freq. 6.286-6.822Hz 10.176-14.678Hz 11.254-15.14Hz

5.5.2 Locating Faulted Region & Triggering of Circuit Breakers

Besides detecting and profiling fault’s attributes, second case study offers realisations in
employing fault current orientations at relevant busbars to command triggering operations
of CBs suggested in Chapter 5.3.6. Two distinctive locations were introduced with fault as
shown in Fig. 5.11.

Subsequently, integrations of 6 more FDR devices were installed at other busbars to
localise fault current directional migrations centered at the PCC busbar. Line-to-ground and
line-to-line fault paradigms were the selected, induced at two separate regions, Fault 1 locate
at PV system [F1 (PV)] and Fault 2 at 3-phase load [F2 (3Ø Load)]. The motives are to
validate FL DOCR system in locating fault origins and trigger relevant CBs autonomously in
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Table 5.10 Fault detection and classification for line-to-line fault.

Fault LA−LB LB−LC LC−LA

Ground ohm 0.001 - 0.01

Crip Inputs δ0: 1 δ0: 1 δ0: 1
Fault 0.1ohms δ1: 0.352 δ1: -0.626 δ1: 0.275
Std.Deviation: δ2: 0.275 δ2: 0.351 δ2: -0.626
0.223 δ3: -0.626 δ3: 0.275 δ3: 0.351

δ4: 1.7−8 δ4: 1.1−8 δ4: 2.7−8

δ5: -25.9 δ5: -25.9 δ5: -25.9
t=5.9◦ t=5.9◦ t=5.9◦

(t-1)=31.8◦ (t-1)=31.8◦ (t-1)=31.8◦

Reverse Reverse Reverse

Crip Inputs δ0: 1 δ0: 1 δ0: 1
Fault 10ohms δ1: 0.277 δ1: -0.457 δ1: 0.152
Std.Deviation: δ2: 0.152 δ2: 0.277 δ2: -0.457
0.283 δ3: -0.457 δ3: 0.152 δ3: 0.277

δ4: 0.9−4 δ4: 0.9−4 δ4: 0.9−4

δ5: -0.45 δ5: -0.45 δ5: -0.45
t=31.35◦ t=31.35◦ t=31.35◦

(t-1)=31.8◦ (t-1)=31.8◦ (t-1)=31.8◦

Reverse Reverse Reverse

Crisp Output 63.01 64.50 60.13
Detection 0.0341-0.00388s 0.0348-0.0405s 0.0312-0.0346s
Classify 0.0692-0.0820s 0.0630-0.0785s 0.0736-0.0801s
Accuracy 97.9-98.3% 97.2-99.1% 97.98-98.75%
∆freq. 2.316-5.571Hz 8.18-12.276Hz 2.988-10.19Hz

correspond to the fault’s current directional flow seen in Fig. 5.11. Assisted by the FDR’s
synchrophasor at busbars, fault current migration using phase-shift deviations at t (t= fault
detected) is broadcast and isolation proceeding is executed. In the following analyses, all
fault occurrences are introduced at 1.8sec of the simulation time. Results displaying FL
DOCR’s time responses in triggering selected CB defined by delegated FDR’s synchrophasor
and its post-fault transient riposte.

Based on both test case studies in locating fault origins, F1 (PV) and F2 (3Ø Load), Table
5.12 and 5.13 have displayed decisive results in contrasting fault current migrating upstream
or downstream. Furthermore, spot-on CB triggering was rendered, isolating faulted busbar.
Indeed, there are instances where FL DOCR generates false interpretations of the fault’s
attribute right after CB is triggered. Such instances caused by transitional transient (frequency
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Table 5.11 Fault detection and classification for three line-to-line and to-ground fault.

Fault LA−LB−LC LA−LB−LC−G

Ground ohm 0.001 - 0.01

Crisp Inputs δ0: 1 δ0: 1
Fault 0.1ohms δ1: 1.01−3 δ1: 0.98−2

Std.Deviation: δ2: 0.86−3 3.22−3

0.257 δ3:0.78−3 δ3:1.2−3

δ4: 7.5−9 δ4: 1.73
δ5: -46.14 δ5: -64.44
t=16.04◦ t=32.34◦

(t-1)=30.1◦ (t-1)=30.1◦

Reverse Reverse

Crisp Inputs δ0: 1 δ0: 1
Fault 10ohms δ1:0.25−2 1.22−4

Std.Deviation: δ2: 1.32−4 δ2: 2.16−5

0.223 δ3: -5−3 δ3: 4.21−4

δ4: 5.52−8 δ4:0.886
δ5: -0.68 δ5: -0.48
t=29.42◦ t=29.62◦

(t-1)=30.1◦ (t-1)=30.1◦

Reverse Reverse

Crisp Outputs 73.97 82.37
Detection 0.0434-0.0472s 0.0451-0.0496s
Classify 0.0677-0.0829s 0.0693-0.0822s
Accuracy 97.15-97.59% 97.33-98.04%
∆freq. 9.45-11.25Hz 12.95-14.25Hz

Fig. 5.11 Testbed system with 2 interjected fault locations.
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Table 5.12 Fault current directional flow and circuit breaker operation for F1.
Fault at Location 1, F1 (PV System)

LA−G Fault Std. Deviation 0.211

Busbar 4 PCC (PMU) CB Activated Busbars (FDRs)
Line Current Mag. (A) Busb. 1 Busb. 2 Busb. 3

LA:1.074; LB:2755; LC:620 Fault Fault Fault
0Seq.:3035; +Seq.:4580 Direc.: Direc.: Direc.:

δ0:1, δ1:0.74, δ2:0.20 Forward Reverse Reverse
δ3:-0.94, δ4:0.71, δ5:133.4◦ δ5:169.65◦ δ5:-11.6◦ δ5:-3.53◦

Detected Direction Forward CB Open - -
t:163.8◦, (t-1):30.4◦; 6.2ms 6.65ms

Accuracy: 99.27% Regain stability: 75.3ms

LA−LB−LC Fault Std. Deviation 0.142

Busbar 4 PCC (PMU) CB Activated Busbars (FDRs)
Line Current Mag. (A) Busb. 1 Busb. 2 Busb. 3

LA:1.84; LB:1.84; LC:1.84 Fault Fault Fault
0Seq.:653; +Seq.:1.274 Direc.: Direc.: Direc.:

δ0:1, δ1:1.1−4, δ2:0.94−4 Forward Reverse Reverse
δ3:0.9−4, δ4:0.0514, δ5:108.14◦ δ5:125.8◦ δ5:-46.7◦ δ5:-28.9◦

Detected Direction Forward CB Open - -
t:138.54◦, (t-1):30.4◦; 4.982ms 8.83ms

Accuracy: 97.62% Regain stability: 89.77ms

and voltage) picked up during triggering of CB to isolating fault. In this sense, it forces FL
DOCR to coincidently pick up other fault criterion during shedding of load or generation
before settling towards nominal operating current level (steady-state). Nevertheless, FL
DOCR algorithm did not diverge and regain 100% accuracy through rapid detection of phase
shift deviations defined by δ5. Elected CBs were activated within less than 10ms shown in Fig.
5.12. Comprehensively, FL DOCR and Circuit Breaker algorithms provide comprehensive
fault diagnosis for Nanogrid operations. Nanogrid is able to regain stability within a time
span of 100ms from fault interventions.

5.6 Challenges in Minimising use of FDRs

Inherently, it is trivial to install FDR and PMU units on all existing busbars for large cascaded
distribution network as costing will be an issue. In opposition, taking compromising measures
in instrumenting a single monitoring FDR unit installed only at PCC busbar propagate much
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Table 5.13 Fault current directional flow and circuit breaker operation for F2.
Fault at Location 2, F2 (3Ø Load)

LA−G Fault Std. Deviation 0.209

Busbar 4 PCC (PMU) CB Activated Busbars (FDRs)
Line Current Mag. (A) Busb. 5 Busb. 6 Busb. 7

LA:3172; LB:1720; LC:635 Fault Fault Fault
0Seq.:1760; +Seq.:1004 Direc.: Direc.: Direc.:
δ0:1, δ1:0.475, δ2:0.324 Forward Reverse Reverse

δ3:-0.8, δ4:1.753, δ5:-10.75◦ δ5:-19.54◦ δ5:7.88◦ δ5:31.06◦

Detected Direction Reverse CB Open - -
t:19.05◦, (t-1):29.8◦; 4.87ms 7.51ms

Accuracy: 98.79% Regain stability: 78.23ms

LA−LB−LC Fault Std. Deviation 0.168

Busbar 4 PCC (PMU) CB Activated Busbars (FDRs)
Line Current Mag. (A) Busb. 5 Busb. 6 Busb. 7
LA:883; LB:884; LC:886 Fault Fault Fault

0Seq.:884.2; +Seq.:884.0 Direc.: Direc.: Direc.:
δ0:1, δ1:-3.9−3, δ2:2.1−3 Forward Reverse Reverse

δ3:2.4−3, δ4:1.0, δ5:-44.95◦ δ5:-39.43◦ δ5:39.52◦ δ5:16.65◦

Detected Direction Reverse CB Open - -
t:-15.2◦, (t-1):29.75◦; 6.2ms 7.68ms

Accuracy: 97.67% Regain stability: 81.15ms

turmoil in navigating the exact faulted region. Some may argue that implementations of
heuristic or unsupervised learning algorithm can aid in solving collective problem statement
with multi-dimensional constraints during fault interventions effectively. However, such
implementations impose high risk of divergence when PSPG integrations are not accounted
for, creating uncertainty in the search space domain. Furthermore, centralised learning
approach for whole distribution network could not possibly provide early detection services
for particular Nanogrid at low-voltage level.

Design solely for Nanogrid engagements, it is acceptable for FL DOCR system to max-
imise installation of FDRs at all busbars due to its affordability as compared to PMU. It also
provide absolute control in rendering fault diagnostical proceedings centrally. Nevertheless,
studies on optimal placement of FDR units and minimising its quantity are still an open
research problem till to date.
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Fig. 5.12 FL DOCR transient from fault intervened to CB operation, LA−LB−LC fault.

5.7 Benchmarking & Discussions

To appraise performances of FL DOCR, analytical comparisons were made against; (i)
continuous hidden markov model (CHMM) [253], (ii) phasor-measurement-unit-based state
estimation processes (PMU-based state estimation) [254], and (iii) simple current-based
directional relay (CDR) [255]. To render fair assessment, same test cases were adopted when
testing respective fault diagnostic algorithms; detecting, classifying and locating fault crisis
interrupted during grid-tied operations.

H. Jiang introduces CHMM approach to diagnose fault interventions using machine learn-
ing and signal decomposition algorithms in a grid level perspective. A hybrid computational
algorithm that descries frequency and voltage variation features through matching pursuit
Gaussian atom dictionary while contouring maps of faulted area using machine learning
signal repository were proposed.

Subsequently, M. Pignati focuses on exhibiting unique time determinism and high refresh
rate during time-critical to boost PMU’s synchronisation accuracy in appraising faulted line
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Table 5.14 Efficiency in fault detection and classification performance rates.

Method Detection Classify Accuracy
@SNR 40dB

CHMM 100% 99.1%
900ms (detect, profiled & locate faulted region)

PMU-based 100% 84.65%
122ms (detect & profiled)

CDR 100% 95%
15ms (discern fault direction)
218ms (detect & profiled)

FL DOCR 100% 97.04-99.5%
5ms (fault detected)
10ms (discern fault direction)
82ms (fault profiled)
92.8ms (grid regain stability)

empathies. A parallel synchrophasor-based state estimator was suggested to characterize
different augmented topology to seize floating bus fault scenarios. Decisions in setting
appropriate state estimator provides accurate metric solutions which computes sum of the
weighted measurement residual.

Finally, H.J. Ashtiani addresses the flaws in adopting existing directional relays which
fails to provide factual interpretations on the current directional flow status during fault
interventions. Implementing of fault direction discrimination through exploiting sign of
imaginary part of post-fault current profile was enforced. Utilisation of moving data window
and DFT, high estimation resolutions are attained to cipher post-fault current phasor unit.

Table 5.14 summaries the results of four different approaches in detecting and classifying
fault genres. Surpassingly, all methods abled to preserve sufficient tolerance percentage
in providing credible solutions even in low SNR situations. Furthermore, all proposed
algorithms adopted signal decomposition technique which filtrates undesirable noises and
preserves signal’s attributes. In relations to early detection or time response (average), the
results had shown that FL DOCR may not be as responsive (lag by 13.8ms) when compared
to PMU-based approach. However, when dealing with cost and computation efforts/stress,
FL DOCR employ primitive learning algorithm that will in-turn have cheaper computation
costs. Moreover, PMU-based only provide detection and profiling of fault attributes hence
justifies for having faster response time.
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Table 5.15 Consistency assessment in comprehending faulted location.

CHMM 100%
PMU-based state estimation 96.28%
CDR 99%
FL DOCR 100%

Likewise, Table 5.15 lists the consistency performances of respective approaches when
generating a comprehensive fault synopsis report. Evaluations were weighed based on per-
centage of accuracy given at 100th sets of solutions based on arbitrary fault assertions at
random locations. The proposed algorithm has rendered positive results against other schemes
however, such comparisons may bring forth biasness as the size of network implementation
differs from each other. Regardless, in the near future, monopolism in decentralised con-
ceptions are trending for high penetration of distributed generations at low-voltage level.
Hence, fault detection and restoration could adopt decentralised administrations, relieving
aggregator and liberalising nano-managing frameworks. Imminently, centralised control
algorithm in regulating large bus network evokes divergences, high computational stress, or
data misalignments issues. Thus, endorsing FL DOCR in Nanogrid administrations proffers
Prosumers to self-contain and officiate fault crisis independently. Such undertaking bridges
cohesiveness between aggregator and Prosumers in mitigating fault crisis from escalating
upstream. Nevertheless, all mentioned methodologies have common objectives and intents
towards modelling fault diagnostic schemas.

5.8 Summary

This chapter highlights potential in fault interruptions transpired by Prosumers’ PSPG during
operations. Moreover, due to alarming responses in integrating DERs at low-voltage level,
the operational integrity of distribution network is exposed to upstream fault current. In this
sense, due to generation uncertainty and mismatch of supply-demand equilibrium induced
by high excess energy generations from NGs flowing upstream, unsynchronised frequency
levels will enact and operating voltage at Nanogrid PCC will exponentially swell. Therefore,
aggregator is constantly challenged when tasks to micro-manage individual Prosumer’s PSPG
when localising fault interruptions.

In conjunction to personalised ruling of EMS proceedings for Nanogrid operations,
OMS can also be liberated onto Prosumers without the interventions of aggregator. The
proposed FL DOCR is solely designed to provide Prosumer’s PSPG with early fault detection
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and isolation protocols that could save EPS’s integrity from cascading failure effect (even
with blackstart if fault is not isolated). The intelligence in FL DOCR uses fuzzy logic
algorithm and current magnitude attributes at Nanogrid PCC to generate fault diagnostic
with its objective to isolate the faulted region/PSPG autonomously. Moreover, dependency
of time synchronisation between FDR and FL DOCR are unaffiliated therefore, it assert
portability for any Nanogrid operations. Whereas, FL DOCR and FNET provide supportive
fault localising information when external fault is detected. Aggregators can exploit FNET
to map those decentralised FL DOCRs which flagged external fault and pinpoint towards the
saturate faulted region along the distribution network before dispatching restoration protocol.

As FL DOCR adopts a data driven intelligence system, its performances was evaluated
based on low signal-to-noise ratio acquisition to simulate external disturbances when record-
ing measurements. Surpassingly, FL DOCR demonstrates high fault detection accuracy
index with 1

4 of a cycle in response time. It also provide comprehensive analyses of the fault
interruption; detection of fault, nature of fault, origin of fault, and perform isolation of the
fault. Additionally, FL DOCR’s comprehensiveness in assenting stacking problem statement
for other provisional operations in ADMS can be augmented to solve post-fault problems
such as execution of restoration or operations in islanded mode.





Chapter 6

Conclusions and Future Works

6.1 Conclusions

This dissertation discusses penetration of PSPGs at low-voltage level and maturity in EMS
and ADMS for Transactive Energy managerial suite. Power grid operators, policy makers,
industrial partners, and investors are working closely to formulate viable solutions that
can maximise TE values in view of market policies and operational Standards for secured
demand-side and power quality managements. However, devising a laudable and effective
TE system and control, initiated trajectories must reach common consensus on the decisions
and actions taken.

Therefore, decentralised intelligent systems and information & communications technol-
ogy infrastructure were proposed to create a safe Prosumer-centric energy trading environ-
ment that observes levelled playing field benefitting for all participating actors. The major
contributions are summarised as follows:

1. Chapter 2−Nanostructuring distribution network to mathematical model Nanogrid
system. Nanogrid models are introduced with PSPG and simulation was validated to
critic system interoperability. Based on Prosumers’ Community settings, investigations
were conducted to analyse PSPG impacts on load demand consumption curve and how
they have influence DSR operations based on ineffective control proceedings. Results
have shown detrimental effect on grid’s integrity where violations in unit-commitment
scheduling and Duck Curve crises were trivial. Moreover, Prosumers suffered very
low return on investment and PSPG operations had a negative impact on its daily
energy billing (higher) due to poor scheduling of charging and discharging of ESS.
In this chapter, it also models NAN and MultiCloud fogging for coalition computing
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capability in a decentralised environment. The aim it to impart edge computing ability
at respective Nanogrid, where intelligent system can execute individualism when
managing Prosumer’s energy usage interests while apprehending operating constraints
of external parties at a global level (DSR ruling).

2. Chapter 3−Focuses in distributed control organisation intelligent computing coordi-
nation in distribution network. A multi-layered DCF was proposed to assign energy
actors with corresponding control functions at respective layer. The DCF is encapsulate
by an IoT cloud infrastructure, Microsoft Azure, that has edge computing capability.
Hence, a flexi-edge computing configuration is proposed to fused COSAP and Azure as
the comprehensive IoT edge device. It observes data-sharing privacy and security, and
employ modular-based intelligence that is stackable for Prosumer while establishing
communication with other actors in the distribution network. In addition, modelling
of intelligent system using reinforcement learning was proposed. The objective is
to create an algorithm that provoke cooperativeness but yet competitive when exe-
cuting decision-making processes. Testing of the AMI and system intelligent were
validated to serve as a proof of concept for TE management deployment. Results have
shown comprehensive performance in various test cases where Prosumers are able to
cooperate in meeting optimal global objectives with competitive edge to satisfy local
interests.

3. Chapter 4−Proposes two avenues in which Aggregator-Prosumer can gain full access
in DSR management despite liberating Prosumers in attuning their energy attributes
based on individual socio-economical interests. It involves clustering of Prosumers
into a Community based on their energy attributes for better demand curve jurisdiction.
A proposed clustering technique, EM-GMM, ciphers Prosumer(s) in a Community
based on their energy attributes. The algorithm has successfully provide informative
information for Prosumer(s) in monitoring their energy contributions in the distribution
network and how they fair against others. Likewise, aggregator also gained better juris-
dictions in scheduling clusters’ with high excess generation and high load consumption
capacity to compensate each other. These clusters are to find corresponding partners
to procure a communal solution that could benefit Prosumers in respective cluster.
A self-directed nano-biased Prosumer-centric EMS is proposed to facilitate optimal
utilisation of Prosumers’ PSPG against load consumption capacity and electricity
price tariffs. It redefines the complex decentralised DSR operating constraints into
local TE function while interoperating Prosumers’ energy usage interests. Here, the
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Prosumer-centric EMS employs Q-learning reinforcement learning approach to model
Prosumer’s energy control system. The Q-learning algorithm, centralised critic policy,
is employed to solve local energy attribute based on strategic scheduling of PSPG
operation and demand load. Whereas, in the joined bidding and pricing of electricity
price in REM, it uses MADDPG due to its decentralised critic policy that provides CDL
relations. Results deliver positive and comparable energy management performances
when benchmarked against other methodologies based on the proposed aggregated
NGs network. However, potentials in energy market monopolism can arise during
bidding in REM. Hence, DSO-TSO as policy maker, need to revise Market Ruling in
REM by introducing new policies and regulatory to ensure Prosumer’s interests when
auctioning is transparent to create a competitive trading environment for all energy
actors.

4. Chapter 5−Highlights potential in fault interruptions transpired by Prosumers’ PSPG
during operations. Moreover, due to alarming responses in integrating DERs at low-
voltage level, the operational integrity of distribution network is exposed to upstream
fault current. In conjunction to personalised ruling of EMS proceedings for Nanogrid
operations, protection relay system as an add-on service to OMS can also be liberated
onto Prosumers. The proposed FL DOCR is solely designed to provide Prosumer’s
PSPG with early fault detection and isolation protocols that could save EPS’s integrity
from cascading failure effect (even with blackstart if fault is not isolated). As FL
DOCR adopts a data driven intelligence system, its performances was evaluated
based on low signal-to-noise ratio acquisition to simulate external disturbances when
recording measurements. Surpassingly, FL DOCR demonstrates high fault detection
accuracy index with 1

4 of a cycle in response time. It also provide comprehensive
analyses of the fault interruption; detection of fault, nature of fault, origin of fault,
and perform isolation of the fault. Additionally, FL DOCR’s comprehensiveness in
assenting stacking problem statement for other provisional operations in ADMS can be
augmented to solve post-fault problems such as execution of restoration or operations
in islanded mode.

6.2 Future Works

The proposed future directions for this research involves two prepositions that can be mod-
elled into a unified monitoring and control system:
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1. Power converter design to secure interoperability regulations involving frequency/voltage
ride-through and support at low-voltage level for PSPG integrations.

2. Islanding operation intelligence where control features involve PSPG operating in
isochronous mode and conduct load shedding protocols to secure Nanogrid supply-
demand equilibrium when islanded.

In view of higher penetration level in DERs, it expands stronger coupling between
grid Power Quality (PQ) and inverter role. In this sense, the role of inverter in regulat-
ing/supporting PQ exponentially increase in islanding applications or experiencing zero
ordering of energy generation from upstream−from grid-following to grid-forming. Without
the support or strength from the grid to maintain voltage and frequency, inverter regulating
control capabilities, and transient & load following responses have greater impact in influ-
encing PQ. Thus, initiative for inverter with control features that resolves; (i) low-voltage
ride-through, (ii) voltage and frequency support, and (iii) ramp rates, can minimise negative
impact in providing stability compensation. The inverter’s controller aims to take isochronous
and droop operation mode regulating at fixed output, voltage and frequency. These control
features were designed to accommodate the newly revised IEEE Standard for interconnection
and interoperability of DERs with associated EPS interfaces, IEEE 1547-2018. Investigations
and proposed ride-through controls have been explored and published listed in the publication
section labelled "other papers". These works are still in the early stage of implementation
and on-going hence, not included in the dissertation.

Meanwhile, in islanding operations, Prosumers are able to self-sustain by meeting local
load consumption capacities using local PSPG or neighbouring Nanogrids. Such intentional
islanding can introduce benefitting operations in securing system resiliency. However, unin-
tentionally islanding too can be formed if neighbouring NGs or primary-side of distribution
network consist of grid-following DERs and loads in isolation by a circuit breaker. Hence,
uncoordinated protection (voltage/frequency) control may deviate out of phase with grid
thus creating risk of asynchronous reclosure. In addition, it may also operate without the
awareness of network operator posing risks to personnels who are working on the field.
Therefore, islanding detection methods (i.e. passive inverter-resident, active inverter-resident,
and non-inverter-resident [256]) can aid in resolving such issues. Likewise, preliminary
research have been conducted however not comprehensively conclusive. Published work can
be referred to the publication section labelled "other papers".

The above listed research directions/areas do have promising contributions in lieu of
Transactive Energy applications that focuses activities at the low-voltage level.



Appendix A

System Design, Specifications,
Performance Analyses for Chapter 2

Taking reference to the Nanogrid systems seen in Fig. 2.13, further explorations into
modelling of BTM DERs and corresponding inverters in the household and commercial
building environment were analysed to view operational behaviour and data specification
respectively in MATLAB. Here, it assumes that all Prosumers adopts identical BTM DER
configuration and sizes installed at respective Nanogrid for modelling simplicity. However,
power generation responses/performances for solar PV will differ based on geographical
location and weather input. In this sense, it also will influence available energy storage at
respective ESS.

A.1 Nanogrid: Domestic Household

In this section, it reveals system modelling and responses of BTM DER assets in the domain
of full-pledge Prosumer; solar PV (5kW ), ESS (240V , 35Ah, 8.4kWh), and PHEV (375V ,
248.1Ah, 100kWh) system. The solar PV system adopts grid-tied configuration where it
has its independent inverter system (non-hybrid) decoupled from battery storage to gain
better flexibility in retrofitting storage size considering PHEV and Utility energy exchange
operations. Moreover, ESS can extend its utilisation for other ancillary services at distribution
level (feeder-based) rather than focused only for local Nanogrid usage.

Figure A.1a presents the BTM solar PV system coupled to the LV distribution network. It
uses total of 15 SunPower 305E PV panels that are connected in array; 3 parallel by 5 series.
It uses buck-boost converter with MPPT Fractional Open Circuit Voltage (MPPT-FOCV)
controller [257, 258] to secure "near" maximum active power transference from PV and held
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output voltage constant at 500V . Meanwhile, a Full Bridge Neutral Point Clamped (FB-NPC)
inverter with SPWM Linear Current Control Loop (SPWM-LCCL) controller [259, 260]
is coupled to the single-phase LV network with synchronised voltage-frequency attributes.
Fig. A.2 presents solar PV system performance under a controlled environment coupled to
the LV distribution network where it receives constant 1000W/m2 at 32deg. Overall, the
solar PV system efficiency is measured at 90.26%AV E as losses induced by both converters,
output active power comparison between solar PV MPPT and generation at grid. Likewise,
to simulate deployment practicability, the input data for irradiance and temperature of solar
PV is imported from PVOutput.org where it has an archive of many live solar PV across
countries sampled at 5mins intervals for 24 hours as shown in Fig. A.3. Moreover, the
proposed testbed distribution network uses three type of PV power generation efficiency in
view of weather conditions for respective Prosumers. It is assigned based on feeder/region to
simulate geographical distribution of PV performances.

Meanwhile, detailed modelling of independent inverter BTM ESS coupled to the LV
distribution network is presented in Fig. A.4. Here, conventional bidirectional buck-boost
and full-bridge inverter were employed to legislate two-way energy transfer from and to
battery. The lithium-ion battery cell operates at 24V with 35Ah rated current capacity and
set to have 38% of initial SOC. Its charging voltage ranges from 17-22V with maximum
charging current of 18.9A@20V and discharging voltage of 12-20V with maximum discharge
current at 23.3A@14V . Fig. A.4b illustrates the battery response curve of a single cell
with respect to time. Here, a passive battery management controller is designed based on
measured SOC level against power difference between demand load capacity and solar PV
generation: P(ESS) = P(LOAD) - P(PV) subject to 20%<SOC<80% else charging/discharging
at idle state. If P(ESS) is positive, battery is operating in discharging mode limited to its
maximum discharging current rate and vice versa when P(ESS) is negative. Any excess
energy unattended by battery with be absorbed by or supplied to Utility. Lastly, Fig. A.4c
presents the battery charging and discharging performances through switching from load to
power source. The overall ESS efficiencies are rated at 96.61%AV E and 91.37%AV E during
charging/discharging respectively, measured between battery storage and energy trading at
grid.

A.2 Nanogrid: Commercial Building

Similar solar PV and ESS design configurations were adopted for commercial building
Nanogrid environment. The differences are; solar PV and ESS have larger generation and
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storage capacity, and the control design for Voltage Source Converter (VSC) at grid-side
uses Virtual Oscillator Controller (VOC) [261, 262] suitable for 3-phase grid-following
operation and is coupled to the 3-phase 415Vac, 50Hz LV distribution network. Figures
A.5-A.6 presents the performances of solar PV and ESS, under the same observations made
in Chapter A.1. The solar PV system efficiency is measured at 91.08%AV E as losses induced
by both converters, output active power comparison between solar PV MPPT and generation
at grid. The lithium-ion battery cell operates at 24V with 20Ah rated current capacity and set
to have 38% of initial SOC. Here, total of 70 battery cells were configured in 10 rows (series)
by 7 column (parallel) connection to generate 336kWh, 1.4kAh ESS. Its charging voltage
ranges from 15-20V with maximum charging current of 11.8A@18V and discharging voltage
of 12-16V with maximum discharge current at 14.1A@14V . The overall ESS efficiencies
are rated at 90.77%AV E and 91.03%AV E during charging/discharging respectively, measured
between battery storage and energy trading at grid.
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(a) 5kW solar PV system coupled to the 230VAC, 50Hz, single-phase LV network.

(b) P-V and V-I characteristics of PV in array configuration, 3 parallel by 5 series.

Fig. A.1 Proposed BTM 5kW solar PV system for domestic household.
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(a) Responses at DER-side, DC-DC boost converter with
MPPT control.

(b) Responses at grid-side, DC-AC VSC with SPWM-LCCL
control.

Fig. A.2 BTM 5kW solar PV system grid-following performances in controlled environment.
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(a) Cloudy.

(b) Sunny.

(c) Moving clouds.

Fig. A.3 5kW solar PV power generation under different weather conditions.
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(a) 10x 24V , 35Ah battery cells series connected coupled to the 230VAC, 50Hz, single-phase
LV network.

(b) Response curve of a single battery cell, 24V , 35Ah.

(c) Charging and discharging rates of 8.4kWh ESS; 240V ,
35Ah.

Fig. A.4 Proposed BTM 8.4kWh ESS for domestic household.
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(a) 100kW solar PV system coupled to the 415VAC, 50Hz, three-phase LV network.

(b) P-V and V-I characteristics of PV in array configuration, 66 parallel by 5
series.

Fig. A.5 Proposed BTM 100kW solar PV system for commercial building.
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(a) Responses at DER-side, DC-DC boost converter with
MPPT control.

(b) Responses at grid-side, DC-AC VSC with VOC control.

Fig. A.6 BTM 100kW solar PV system grid-following performances in controlled environ-
ment.
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(a) 10 series and 7 parallel 24V , 20Ah battery cells configuration coupled to the
415VAC, 50Hz, three-phase LV network.

(b) Response curve of a single battery cell, 24V , 20Ah.

(c) Charging and discharging rates of 336kWh ESS; 240V ,
1.4kAh.

Fig. A.7 Proposed BTM 336kWh ESS for commercial building.
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Proof-of-Lemma for Chapter 3

B.1 Derivation of State-Value Function

Given the state, s, and policy, π , the value is:

V pi(s) = E

[
∞

∑
k=0

α
krt+k+1|st = s

]
(B.1)

Using Bellman concept, expression for V state-value function:

V π(s) = ∑
a∈A

π(a|s) ∑
s′∈S

P(s′|s,a)
[
R(s,a,s′)+αV π(s′)

]
(B.2)

Proving Bellman equation:

V π(s) = Eπ

[
∞

∑
k=0

α
krt+k+1|st = s

]
(B.3)

V π(s) = Eπ

[
rt+1 +α

∞

∑
k=0

α
krt+k+2|s+ t = s

]
(B.4)

V π(s) = ∑
a∈A

π(at = a|st = s) ∑
s′∈S

P(st+1 = s′|st = s,at = a)

×

(
R(s,a,s′)+α

∞

∑
k=0

αrt+k+2|st = s,at = a,at+1 = s′
) (B.5)

V π(s) = ∑
a∈A

π(a|s) ∑
s′∈S

P(s′|s,a)
[
R(s,a,s′)+αV π(s′)

]
(B.6)
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V π(s) = ∑
a∈A

π(a|s) ∑
s′∈S

P(s′|s,a)
[
R(s,a)+αV π(s′)

]
(B.7)

Redefine from V to Q function:

Qπ(s,a) = ∑
s′∈S

P(s′|s,a)
[
R(s,a,s′)+αV π(s′)

]
(B.8)

Therefore, the Bellman equation of Q action-value function is:

Qπ(s,a) = ∑
s′∈S

P(s′|s,a)

[
R(s,a,s′)+α ∑

a′∈A
π(a′|s′)Qπ(s′,a′)

]
(B.9)

B.2 Optimal Action-Value Function of State-Value Func-
tion

Similarly, the optimal Q action-value function is defined by searching optimum policy:

Q∗(s,a) = max
π

Qπ(s,a) (B.10)

s.t.

Q∗(s,a) = E [rt+1 +αV ∗(st+1)|st = s,at = a] (B.11)

V ∗(s) = max
a∈A

Q∗(s,a) (B.12)

Proof:

V ∗(s) = max
a

Eπ∗

[
∞

∑
k=0

α
krt+k+1|st = s,at = a

]
(B.13)

V ∗(s) = max
a

Eπ∗

[
rt+1 +α

∞

∑
k=0

α
krt+k+2|st = s,at = a

]
(B.14)

V ∗(s) = maxaEπ∗ [rt+1 +αV ∗(st+1)|st = s,at = a] (B.15)

V ∗(s) = max
a ∑

s′∈S
P(s′|s,a)

[
R(s,a,s′)+αV ∗(s′)

]
(B.16)
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Q∗(s,a) = E
[

rt+1 +α max
a′

Q∗(st+1,a′)|st = s,at = a
]

(B.17)

Q∗(s,a) = ∑
s′∈S

P(s′|s,a)
[
R(s,a,s′)+α max

a
Q∗(s′,a′)

]
(B.18)

For any Markov Decision Processes the existence of an optimal policy:

π
∗ ≥ π; ∀ π (B.19)

However, there could be multiple of optimal policies and all gained optimal value
function:

V π∗(s) =V ∗(s); ∀ s (B.20)

Qπ∗ = (s,a) = Q∗(s,a); ∀ s,a (B.21)

Nevertheless, there is always a deterministic optimal policy for any Markov Decision
Process problem.

B.3 Derivation of Policy Gradient Theorem

Computation of policy gradient is dependent on the actions determined by policies, πθ , and
the state stationary distribution which follows the target selection behaviour (determined
indirectly by πθ ). Being that the state is unknown, it is difficult to estimate its impact on the
state distribution based on the updated policy.

Thus, policy gradient theorem provides a reformation on object derivative function and
avoid derivative of the state distribution dπ(.). The gradient computation,∇θ J(θ), isgreatly
simplified:

∇θ J(θ) = ∇θ ∑
s∈S

dπ(s) ∑
a∈A

Qπ(s,a)π +θ(a|s) (B.22)

∇θ J(θ) ∝ ∑
s∈S

dπ(s) ∑
a∈A

Qπ(s,a)∇θ πθ (a|s) (B.23)

Proof of theorem starts with finding the derivative of state value function:
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∇θV π(s) = ∇θ

(
∑
a∈A

πθ (a|s)Qπ(s,a)

)
(B.24)

∇θV π(s) = ∑
a∈A

(∇θ πθ (a|s)Qπ(s,a)+πθ (a|s)∇θ Qπ(s,a)) (B.25)

∇θV π(s) = ∑
a∈A

(
∇θ πθ (a|s)Qπ(s,a)+πθ (a|s)∇θ ∑

s′,r
P(s′,r|s,a)(r+V π(s′))

)
(B.26)

∇θV π(s) = ∑
a∈A

(
∇θ πθ (a|s)Qπ(s,a)+πθ (a|s)∑

s′,r
P(s′,r|s,a)∇θV π(s′))

)
(B.27)

∇θV π(s) = ∑
a∈A

(
∇θ πθ (a|s)Qπ(s,a)+πθ (a|s)∑

s
P(s′|s,a)∇θV π(s′)

)
(B.28)

Perform iteration for future state V π(s′). To rewrite the above equations that excludes
Q-value function, ∇θ Qπ(s,a) by assigning it into the objective function, J(θ). Starting from
a random state:

∇θ J(θ) = ∇θV π(s0) (B.29)

Let η(s) = ∑
∞
k=0 ρ(s0→ s,k):

∇θ J(θ) = ∑
s

∞

∑
k=0

ρ
π(s→ s,k)φ(s) = ∑

s
η(s)φ(s) (B.30)

Then normalise η(s),s ∈ S to be a probability distribution:

∇θ J(θ) =
(

∑
s

η(s)
)

∑
s

η(s)
∑s η(s)

φ(s) (B.31)

Set ∑s η(s) constant:

∇θ J(θ) ∝ ∑
s

η(s)
∑s η(s)

φ(s) (B.32)



B.3 Derivation of Policy Gradient Theorem 283

∇θ J(θ) = ∑
s

dπ(s)∑
a

∇θ πθ (a|s)Qπ(s,a) (B.33)

where dπ(s) = η(s)
∑s η(s) is stationary distribution.





Appendix C

Proof-of-Lemma for Chapter 4

C.1 Mixture Model

The approach in mixture model is to provide modelling assumptions of an analysed data set
to have multimodal distribution. Typically, using a uni-model distribution (i.e. Gaussian)
technique, a set of data can be modelled assuming that only one specified observation
is analysed. After which maximum likelihood estimation is used to estimate distribution
parameters; mean and variance. However, taking the assumption of that each sample come
from the same distribution is too rigid and dose not provide intuitive sense about the sample.

Therefore, a multi-model distribution also known as mixture model provides a conscien-
tious avenue when designing complex structured data. Assuming that a collective of data
X , {X1,X2, ...,Xn} and each sample, Xi is taken from K mixture component. Associated to
a random variable, Xi, is a label of Zi ∈ {1, ...,K} where Xi come from. Zi’s are sometimes
referred as latent variables. Hence, using the concept in law of total probability, the marginal
probability of Xi is as follows:

p(Xi = x) =
K

∑
k=1

P(Xi = x|Zi = k)P(Zi = k) (C.1)

s.t.

πk = P(Zi = k) (C.2)

where πk is referred as mixture weights which represents the probability in which Xi belong
to in the K mix. Mixture proportions are absolute integer values where the sum of πk equates
to 1:
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K

∑
k=1

πk = 1 (C.3)

Meanwhile, the mixture component expressed as P(Xi|Zi = k) represents distribution of
Xi with the assumption that Xi was extracted from k.

In the case of discrete random variables, the mixture component can be denote as any
Probability Mass Function (PMF), p(.|Zk). Whereas for random variable in continuous, it
uses Probability Density Function (PDF), f (.|Zk). (C.4) and (C.5) defines both the corre-
sponding PMF and PDF for mixture model.

p(x) =
K

∑
k=1

πk p(x|Zk) (C.4)

fx(x) =
K

∑
k=1

πk fx|Zk
(x|Zk) (C.5)

Based on the observed independent sample of X1, ...,Xn from mixture k and the mixture
proportion vector, π = (π1, ...,πK) therefore, the likelihood can be expressed as follow:

L(π) =
n

∏
i=1

P(Xi|π) =
n

∏
i=1

K

∑
k=1

P(Xi|Zi = k)πk (C.6)

C.2 Validate Performance of Proposed Testbed Systems us-
ing Existing Methodologies

Prior operational validations of existing methods on simulated Microgrid testbed system
are presented to ensure credibility when performing comparative studies. Two existing
methodologies were selected to analyse socio-economic superiority and setbacks in respective
proposed energy management system; hierarchical [244] and scenario-based stochastic [245].
Fig. C.1 represents the simulation environment, consisting of 5 Nanogrids, where the
component ratings are approximately modelled close-to the proposed systems in [244] and
[245] to validate methodology synchronisation. On a side note, the modelled VPP-NG5 (IPP)
uses hybrid inverter that integrates ESS and solar PV farm at the DC-link before coupling to
the VSC-based inverter.
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Fig. C.1 Proposed Prosumer Community Microgrid Testbed System consisting 2 residential
homes (NG1, NG2), office commercial building (NG4), hospital commercial building (NG3),
and IPP solar PV farm (NG5).

C.2.1 Hierarchical Energy Management System

Modelling of each component (i.e. DER capacity size, operation characteristics) in respective
Nanogrids are based on the specifications suggested by [244] (Microgrid settings) hence,
rationality of Nanogrid operating environment and BTM DER sizes may not be logical.
However, it presents comparative simulated environment between the proposed and [244]
for methodology validation purposes. Table C.1 lists the operating conditions of respective
components that correspond to [244] and note that the installed isochronous generator at
individual feeders will not be utilised as it is assumed that DERs are in grid-following mode.
The objective is to deploy hierarchical EMS control architecture for Nanogrid engagements
proposed in Fig. C.2b by scaling down Microgrid operation suggested in [244], Fig. C.2a. To
synchronise operating attributes between Nanogrid and Microgrid Community, matching of
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(a) Microgrid Community environment.

(b) Proposed Nanogrid Community environment.

Fig. C.2 Scaling down Microgrid Community control architecture for Nanogrid Community
operations using hierarchical EMS methodology.

available power generation and demand load profile trends are validated as shown in Fig. C.3.
Figure C.3a visualises the total DER power generation and consumption of the Nanogrid
Community, monitored at distribution grid PCC, while Fig. C.3b scopes down into respective
Nanogrids. Likewise, a similar trend was recorded where energy surplus and shortage was
high during the day and nightfall respectively. The PV generation from Nanogrid 1, 2, and 4
exceeded the load consumption capacity due to it oversized ESS as compared to Nanogrid 3.
Following presents the impact on using hierarchical EMS at respective Nanogrids and profiles
their power exchange at PCC. There are two-part investigation processes for hierarchical
EMS realisation as suggested; lower and upper level optimisation.
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Lower Level EMS

The lower level schedules the local usage of ESS in the Nanogrid domain based on the
constraints of available PV generation, maintenance cost coefficient, and power price. It then
determines the required downstream or upstream power exchanged at PCC as seen in Fig.
C.4a. A positive power rating implies that the Nanogrid need to purchase purchases power
from upstream to meet local demand capacity, it being from other Nanogrids or Utility, while
negative value expresses available excess power ready to be sold. A trend was observed

Table C.1 Installed DER ratings and performance index for respective Nanogrid.

Nanogrid NG1 Resd. NG2 Resd. NG3 Comm. NG4 Comm. NG5 IPP.
(full-pledge) (full-pledge) (hospital) (office) (VPP)

ESS (kWh) 57 71 75 91 200
Conv. config. indept. indept. indept. indept. hybrid
DC-DC buck-boost buck-boost buck-boost buck-boost buck-boost
Controller (BMS-Volt.) (BMS-Volt.) (BMS-Volt.) (BMS-Volt.) (BMS-Volt.)
DC-AC FBI FBI VSI VSI shared PV
Controller (hysterisis) (hysterisis) (VOC-DQ0) (VOC-DQ0) −
CH/DCH -50,50 -50,50 -50,50 -50,50 -200,200
limit (kW )
SOC limit 20-80% 20-80% 20-80% 20-80% 20-80%
SOC init. 50% 50% 50% 50% 50%
Time-of-use Price 0.35 0.55 0.85
power price Time 24:00 ∼ 0600 11:00 ∼ 13:00 07:00 ∼ 10:00
(yuan/kWh) 17:00 ∼ 18:00 14:00 ∼ 16:00

21:00 ∼ 23:00 19:00 ∼ 20:00
Maintenance kess=0.027 kess=0.027 kess=0.027 kess=0.027 kess=0.027
cost coeff.
(yuan/kWh)
ON & OFF TON=1hr (strt) TON=1hr (strt) TON=1hr (strt) TON=1hr (strt) TON=1hr (strt)
time (repeat) TOFF=1hr TOFF=1hr TOFF=1hr TOFF=1hr TOFF=1hr
PV (kW ) 5 5 30 30 100
Conv. config. indept. indept. indept. indept. hybrid
DC-DC buck-boost buck-boost buck-boost buck-boost shared ESS
Controller MPPT-FOCV MPPT-FOCV MPPT-FOCV MPPT-FOCV −
DC-AC FBI FBI VSI VSI VSI
Controller (linear curr.) (linear curr.) (VOC-DQ0) (VOC-DQ0) (VOC-DQ0)
Maintenance kPV =0.016 kess=0.016 kess=0.016 kess=0.016 kess=0.016
cost coeff.
(yuan/kWh)
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(a) Total PV generation and demand load capacity (5 Nanogrids).

(b) Power difference between available generation (i.e. ESS + PV) and demand load capacity.

Fig. C.3 Profiling DER contributions against consumptions in Nanogrid Community.

during the day where all Nanogrids have scheduled to sell excess power upstream to minimise
operational cost and higher return on investments.

Table C.2 presents the results attained from respective Nanogrids using three performance
quantifiers, in lieu to Fig. C.4a; (i) total amount of energy exchanged at PCC, (ii) the costs
gained/incurred for the amounted exchanged energy, and (iii) operating costs in a day (24hrs

operation). The total earning solely represents the amount of money obtained from selling
the surplus energy upstream (negative value) or paid for the exchanged energy to meet its
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Table C.2 Total operation costs & profit margins gained from the scheduled exchanged
energy.

Nanogrid NG1 NG2 NG3 NG4
Total exchanged energy (|kWh|) 23 40 59 92
Earning from exchanged energy (RMB yuan) -22.4 -27.7 129.4 -195.86
Paid operating costs (RMB yuan) 10.7 16.3 28.1 15.9
Profit/Loss margin (RMB yuan) -11.7 -11.4 157.5 -179.9

local demand consumption capacity (positive value), excluding the operational costs incurred
when utilising local DERs. The results shown a decreased in profit when compared to [244]
as the proposed testbed system considers transmission losses and efficiency of inverters for
DERs. Meanwhile, Fig. C.4b presents operation of ESS charging/discharging capacity for
Nanogrid 3 and 4. Despite Nanogrid 3 is supported by ESS, it can be seen that majority of the
duration is dependent on other Nanogrids or Utility to satisfy its load capacity as compared
to Nanogrid 4. Mark at approximately 10:00-12:00 and 22:00-24:00, the algorithm suggests
to charge ESS in order to reach normal range of SOC. Moreover, to gain maximum profit
margin, ESS was discharged at 10:00–11:00 and 15:00–17:00 to sell excess power upstream
as the electricity tariff was all time high. Similar power exchange and ESS operations is
scheduled for Nanogrid 4 where from 10:00–12:00, ESS is charging to reach healthy SOC
level however, it has larger contribution towards upstream generation due to its oversized
ESS and low load consumption capacity unlike Nanogrid 3.

Upper Level EMS

Indeed investigations in [244] highlighted four Microgrid configuration modes and opti-
misation strategy however, following present results gathered for Microgrid operating in
scenario 1 as it assumes Nanogrid operates in grid-following mode; Nanogrids does not
operate in islanded and total demand consumptions will be supported by Utility. In this
sense it is assumed that Microgrid operations will not be interrupted by fault and isochronous
generators will not be considered in the upper level EMS.

For upper level EMS, analyses were focused into Nanogrid 5 (IPP) providing demand
load support to Nanogrid 1 to 4 and view its power exchange and ESS charging/discharging
power reference to meet demand capacity and SOC charge level of ESS as shown in Fig.
C.5a. At 00:00-06:00, ESS in Nanogrid 5 purchases power from Utility to maintain ESS SOC
level. The resulted EMS shown that Nanogrid 5 also delivers excess generation upstream due
to high penetration of solar PV between 14:00-16:00 and benefited from the high electricity
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(a) Power exchanged, upstream and downstream.

(b) Nanogrid 3 & 4 power exchange and ESS charging/discharging capacity.

Fig. C.4 Scheduled ESS and power exchange using lower level EMS algorithm for local
optimum operating costs.

tariff for greater return on investments. Furthermore, Fig. C.5b presents the SOC curve index
of Nanogrid 5 ESS in a day where it is limited to between 0.2–0.8 for charging/discharging
operations. Moreover, the upper level EMS constraint defined that the ESS SOC index level
must levelled above 0.5 at the end of day to contribute demand capacity from 00:00-06:00.
Nanogrid 5 gained a profit of -318RMB yuan in selling surplus energy to Utility before
distributing power back to the Nanogrids.
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(a) Power exchange and ESS power contribution at PCC.

(b) SOC index level.

Fig. C.5 Scheduled ESS and power exchange in Nanogrid 5 for global optimum operating
costs using upper level EMS.

Findings

The results attained from the proposed hierarchical EMS showed similar trends as presented
in [244] however, the obtained optimised operating costs depreciated by approximately 13%
due to; (i) consideration to transmission line losses when transporting power upstream, (ii)
non-ideal power inverter efficiencies thus, experiencing depreciated power rating harvested
from solar PV and charging/discharging power reference from ESS, and (iii) transmission
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charges which reduces received incentive payout. Moreover, optimised management in
battery utilisation was rigid as it was programmed to sequentially discharge and charge power
upon reaching maximum and minimum limit of SOC level and performed full charging or
discharging operations without considering subsequent ESS state at (t + i). Consequently,
such operations can increase maintenance costs and depreciate battery state of health at an
alarming speed.

Meanwhile, several observations were noticed when using hierarchical EMS against
demand-side planning optimisation and unit commitment problem based on DER penetration
in low-voltage level. Suggested in [244], the hierarchical EMS focuses in minimising
operating costs where the lower level maximises operations of ESS and selling surplus
energy upstream to gain greater return on investment while the upper level has similar
objective but constrained to respective Nanogrids EMS interests which supports further
operating costs curtailment at global level. Indeed, the results showed positive operating
costs index where the EMS algorithm promotes upstream power exchange. However, it
poses complications at DSO perspective where Duck Curve crisis, power level falling below
the baseload criterion (overgeneration), and uncertainty in unit-commitment problem is
guaranteed. Such predicaments can be solved through several prepositions; (i) employ
Nanogrid 5 (IPP) to render ancillary services by storing these excess power into its local
ESS and maximise power contribution during peak period, (ii) DSO needs to anticipate
with optimum scheduling of unit-commitments for possible zero generation, (iii) greater
incentives for participation in the (N +1) redundancy (reserve) market for system resiliency
to reduce upstream generation, (iv) promote peer-to-peer power trading based on profiling
power consumption demographic of neighbouring Nanogrids and model optimum EMS
operations accordingly, and (v) and local EMS must participate in DSR and load shedding to
support unit-commitment and Duck-Curve problems.

C.2.2 Scenario-based Stochastic Energy Management System

In [245], the authors proposes a novel EMS method for a Microgrid operation which schedules
DER-ESS and controllable loads based on generation uncertainty to minimise its operating
costs/billings. It also assumes that the Microgrid takes part in the pool market and actively
respond to electricity prices for maximum profit margin. A risk-constrained scenario-based
stochastic programming framework using conditional value at risk method is suggested to
address various uncertainties generated by RES, market prices, and customers’ load con-
sumption profiles. The algorithm is modelled in a double layered stochastic optimisation; (i)
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Fig. C.6 Proposed Microgrid testbed system comprising aggregated controllable loads, solar
PV, ESS, and wind turbine system.

first layer−submit hourly optimum bidding to the day-ahead market based on the forecasted
data (economic operation), and (ii) second layer−optimally schedule uncertain resources
using scenario-based stochastic from their data (maximise profit). It aims to provide DER
management services benefitting to customers, aggregators, and VPP owners. In addition,
it acknowledge that the calculated profit margin will be at risk due to significant resource
uncertainty in scenario-based stochastic programs hence, introduce risk management in the
proposed objective functions.

The proposed optimisation algorithm focused at the global perspective of energy manage-
ment, aggregator as energy service provider (Microgrid), which accumulates all DERs-ESSs
resources and load where the power exchange trading and market participation transacts
between Microgrid as a single EPS entity and Utility. In this sense, Fig. C.6 presents the
testbed Microgrid system involving a 100kW solar PV, 200kWh ESS, 300kW wind turbine,
and all-types loads (i.e fixed and controllable). It is assumed that the controllable load is not
more than 50% of the total demand load at any time suggested in [263] as a rule of thumb.
Meanwhile, the solar PV, wind turbine generation, and total demand load capacity for 24hr
duration (1hr intervals) is forecasted based on [264] as shown in Fig. C.7a. Likewise, the fore-
casted electricity prices seen in Fig. C.7b is also adopted from [263]. The power generation
profiles seen in Fig. C.7 are based on a ratio estimated solar PV irradiance and wind speed for
the testbed system to gain similar power generation tends as suggested in [245]. Moreover, it
specifies several operation constraints; (i) ESS charging/discharging ramp rates are limited to
50kW for each hour intervals, (ii) the maximum power exchange upstream/downstream is
capped to 800kW , (iii) the expected operation profit includes risk management limits, (iv)
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(a) WT, solar PV, and total demand load capacity profiles.

(b) Day-ahead electricity prices.

Fig. C.7 24Hrs forecasted data of resources defined in testbed system.

power converter configuration and efficiency for respective resources will adopt ratings listed
in Table C.1, and (v) the maximum profit objective function do includes the sum of mainte-
nance costs defined by a constant coefficient for solar PV:kPV = 0.027 ,WT: kWT = 0.013
,and ESS: kESS = 0.027, ∑OM(P) = ki ∗P.
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Schedule Day-Ahead Microgrid Operations using Forecasted Data

Fig. C.8 illustrates the day-ahead scheduled resources for DERMS and controllable load
consumptions driven by price-incentive model based on the forecasted power generation data
of PV and WT, demand load capacity, and electricity tariff without considering stochastic
optimisation for uncertainties. The trends in scheduling DERMS, load shifting, and power
exchange between Utility pivoted on the electricity prices by identifying high and low regions
for each hour intervals to meet the desired total 24Hrs demand load capacity.

The results highlights three scheduling performances; (i) power exchanged capacity to
Microgrid where positive indicates downstream (i.e. purchase) and negative is upstream (i.e.

sell), (ii) ESS power exchanged at PCC where positive value depicts the power discharging
capacity and vice versa for negative, and lastly (iii) load transfer defines the increase/decrease
in demand power shifted into that particular time stamp where negative value represents
increase in load capacity by that much while positive value decreases. Observations showed
that the power exchange from Utility fluctuates severely. Such trend is typical for a price-
driven EMS model as it purchases large power capacity from Utility during low or medium
electricity price regions seen at 06:00-10:00 and 16:00-18:00 and reduces load consumption
capacities during high price seen at 08:00-12:00 and 14:00-15:00 where it maximises use of
local resources to support the reduced load capacity (i.e. load shifting).

Fig. C.8 Scheduling day-ahead DERMS and controllable load capacity based on price-
incentive model and forecasted data.
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Bidding and Selling Strategies based on Scenario-based Electricity Prices

Similar scheduling investigations as Chapter C.2.2 were performed using the forecasted data
however, the algorithm includes several scenarios representing the uncertainty parameters
generated by Monte Carlo simulation into profiling PV, WT, load, and electricity price
trends. Using Monte Carlo Latin Hypercube Sampling (LHS) approach, we generated 2000
scenarios and deployed scenario-based stochastic programming to solve optimum Microgrid

(a) Price standard deviation effects.

(b) Expected price mean value effects.

Fig. C.9 Power exchange management responses between Utility using scenarios-based to
generate uncertainties.
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Table C.3 Effects of price standard deviations on profit and CVaR.

Price Std. Deviation Profit ($) CVaR ($)
0.05 644.567 311.345
0.1 660.352 311.108
0.15 681.478 308.234
0.2 693.360 311.948
0.25 728.775 302.122

operations (i.e. maximum profit) that considers uncertainty circumstances. It is assumed
that the forecasted electricity price errors are distributed normally with standard deviation
ranges from 5% to 25% hence, Fig. C.9a presents the results of power exchange with Utility.
It aimed to reduce power exchange fluctuations as compared to results attained in Fig. C.8.
Likewise, less fluctuation index was recorded for standard deviations are less than 15% and
power exchange rating decrease dramatically as standard deviation increases more than 25%.

Meanwhile, Fig. C.9b presents scheduled power purchase and sale strategy based on
the expected electricity price mean values against standard deviation of 15%. Minimal
power deviation were observed during 01:00-06:00 and 20:00-24:00 regardless of increase
or decease in the expected electricity price mean value. Table C.3 compiles the profit and
conditional value at risk based on price standard deviations.

Lastly, investigations into available percentage for load shifting to enhance demand
response management was discussed to view impacts on scheduling strategy for power

Fig. C.10 Scheduled power exchange responses against controllable load percentage available
for shifting.
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Table C.4 Effects of available controllable load percentages on Microgrid profit & CVaR.

Controllable Load/Total demand (%) Profit ($) CVaR ($)
0% 622.699 286.611
10% 645.502 291.188
20% 659.141 310.774
30% 674.272 328.948

exchange between Utility. The result seen in Fig. C.10 depicts that as the percentage for
controllable load increases, the power exchange has greater power fluctuations however, it
improves DSR crises by reducing load consumption during peak periods (i.e. 10:00-15:00)
and increases during non-peak periods (i.e. 01:00-06:00). In this sense, Microgrid can gain
better profit margin by shifting controllable load to other periods during peak and provide
surplus power upstream at high electricity prices. Table C.4 presents the relationship between
profit and CVaR against percentage of available controllable load capacity.

Findings

The results have shown similar performance trends when using the proposed testbed system
seen in Fig. C.6 against the scenario-based stochastic EMS proposed in [245]. It analysed
Microgrid operations that considered risk management to deal with uncertainty resources (i.e.

DER, demand load capacity) and electricity prices in real-time. It proposed using forecasted
data for day-ahead scheduling that involves controllable load management to address DSR
crisis and strategic power exchange with Utility to maximise its profit margin. Moreover,
it uses Monte Carlo LHS simulation to generate several scenarios to represent uncertain
parameters and takes forecast errors into consideration. Indeed, the attained results showed
lower profit and CVaR values due to several factors; (i) power converter efficiency for DERs
are approximately 92% whereas [245] only considered battery efficiency, (ii) power losses
(i.e. 10% loss) in the AC transmission line hence, power exchanged capacities are lower, and
(iii) the proposed objective function for maximum profit includes maintenance costs of DERs
(i.e. kESS, kPV , kWT ).

Contrarily, the suggested optimisation approach for EMS serves at a Microgrid level,
suitable for aggregators in gaining optimised DERMS. However, it lacks considerations
in Prosumer engagements and securing individual energy business model interests as a
constraint. How can scenario-based stochastic EMS serves at a Nanogrid level which
latter used to render global yet cooperative solutions? Moreover, the uncertainty in DSR
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management and profit margin can be improved if Microgrid participates in the reserve
market, supporting power quality management for DER penetrations.





Appendix D

Proof-of-Lemma for Chapter 5

D.0.1 Fault Level MVA

Calculation for fault MVA and current in steady-state condition:
Per unit short circuit current;

ISC
p.u. =

P.U.voltage at fault location
P.U.Xequiv.

(D.1)

Fault level per unit (MVA);

√
3P.U.fault current×P.U.source voltage (D.2)

Fault MVA =
base MVA
P.U.Xequiv.

MVA (D.3)

ISC =
base MVA×103
√

3×base kV
(D.4)
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(a) Instantaneous voltage (RMS).

(b) Frequency (Hz).

(c) THD%.

Fig. D.1 Instantaneous voltage and current transient at PCC busbar 4.
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Fig. D.2 Power flow distribution at PCC (kW).

Fig. D.3 Crisp inputs for fuzzy inference system.

Fig. D.4 Crisp outputs from fuzzy inference system.
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Fig. D.5 FL DOCR fault diagnostic report.

Fig. D.6 PMU voltage (left) and current (right) measurement at Busbar_4 during LA-G fault
interruption.

Fig. D.7 Crisp inputs (COCs) for fuzzy inference system, LA-G.
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Fig. D.8 Fuzzy inference crisp outputs, LA-G fault interruption.

Fig. D.9 FL DOCR fault diagnostic report, LA-G.

Fig. D.10 PMU voltage (left) and current (right) measurement at Busbar_4 during LA-LB-LC
fault interruption.
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Fig. D.11 Crisp inputs (COCs) for fuzzy inference system, LA-G.

Fig. D.12 FL DOCR fault diagnostic report, LA-G.
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