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Abstract 

Proteins without a stable tertiary structure are known as intrinsically disordered 

or metamorphic. These proteins denoted as IDPs – or protein domains denoted 

as IDRs – exert crucial roles in cellular signalling, growth and molecular 

recognition events. Due to their high plasticity, IDPs and IDRs are very 

challenging for experimental and computational structural studies. To enable 

these, all-atom molecular dynamics (MD) simulations are used, as they provide 

insight into structure and dynamics at the atomistic level of detail. However, the 

current generalist physical models (protein force fields and solvent models) used 

in MD simulations are unable to generate satisfactory ensembles for IDPs/IDRs 

when compared to existing experimental data. 

This work aimed to improve on the state-of-the-art accuracy for simulations of 

IDPs/IDRs without sacrificing accuracy for folded domains. Herein, the accuracy 

of several different force fields frequently used for simulations of proteins was 

compared, in simulations of both ordered and disordered systems. The results 

showed that each force field has strengths and limitations.  

Given the fact that interactions with the solvent are pivotal for accurate 

simulations of intrinsically disordered proteins, a novel solvation model was 

developed, denoted as Charge-Augmented 3 Point water model for Intrinsically 

disordered Proteins (CAIPi3P). CAIPi3P model was generated through 

systematic scanning of the dipole moment values calculated for the popular 

TIP3P three-point water model. By increasing the dipole magnitude, the 

agreement between experimental and calculated small-angle X-ray scattering 

(SAXS) curves was massively improved for a series of model IDRs. 

To further improve the simulations of proteins containing IDRs, a novel method 

to assemble force field parameters has been developed. Denoted as Hybrid_FF, 

it merges parameters from different established force-fields, performing well for 

structured and disordered regions (AMBER99SB-ILDN and AMBER03ws, 

respectively), parametrising each secondary structure differently. Testing these 

joint parameters for a series of IDR-containing proteins showed that such an 

approach improved the accuracy of the sampled configurations for long 

disordered regions. 
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Finally, a software to estimate and analyse the transition dynamics of intrinsically 

disordered regions has been developed in this work. Named structural quantifier 

of entropy (SQuE), it uses a first-order approximation to the probability distribution 

to assess the structural entropy for protein transitions barriers. It is expected that 

tools developed in this study will generate more accurate IDP/IDR ensembles, 

broadening the range of biologically relevant systems amenable to atomistic 

molecular dynamics simulations. 
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Introduction 

Proteins are the molecular tools used by cells to control processes such as 

proliferation and survival. Usually, these macromolecules require an organized 

scaffold to be functional. Nonetheless, with the improvements in experimental 

assays for biological systems, an increasing number of studies started to focus 

on proteins that can be functional without an organized scaffold. Proteins without 

a said organizational level are known as intrinsically disordered or metamorphic 

proteins. These proteins denoted as IDPs exert crucial roles in cellular signalling, 

growth and molecular recognition events, and are directly related to several 

neurodegenerative diseases.  

IDPs are very challenging for computational studies, such as all-atom molecular 

dynamics (MD) simulations. MD simulations can provide insight into structure and 

dynamics at the atomistic level of detail, which may result in accurate molecular 

models for protein studies and drug-design approaches. However, the current 

generalist physical models (protein force fields and solvent models) used in MD 

simulations are unable to generate satisfactory ensembles for IDPs/IDRs when 

compared to existing experimental data, since they were biased towards 

available structural data, mainly focused on proteins with a high organizational 

level. 

• The development of a water model with a better accuracy regarding 

sampling of IDP ensembles. This led to the development to that charge 

augmented three-point water model (CAIPi3P).  

• A new force field framework to improve the sampling and accuracy of the 

dynamics for intrinsically disordered regions. This set of parameters were 

made by merging both AMBER03ws and AMBER99SB-ILDN, resulting in 

Hybrid_FF force field.  

• A software known as a structural quantifier of entropy (SQuE) was 

developed to analyse the changes caused on loops throughout the 

dynamics.  
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Thesis Structure 

The thesis starts with a concise explanation of protein chemistry and the 

thermodynamic driving force behind protein folding. This lays the groundwork to 

explain the existence of IDPs and their intrinsic characteristics. On the following 

chapter, the theoretical background for molecular dynamics will be given, and a 

literature review of most modern methods of MD  simulations for IDPs will be 

done. The following 3 chapters will discuss the results in depth. 

Chapter 1: Fundaments of protein folding. 

This chapter will be focused on the molecular properties of a protein, such as 

their composition and structure hierarchy. Upon that, the thermodynamics of a 

protein folding event will be explained, and how it affects its function. 

Chapter 2: Disorder in protein biochemistry 

Chapter 2 is focused on IDP biochemistry, with their properties and pathologies 

are discussed in depth. Important examples related to diseases are shown, 

alongside a discussion on why this class is so challenging for experimental 

studies and how computational approaches can mitigate this challenge. 

Chapter 3: Theoretical Background 

The algorithms behind molecular dynamics simulations are explained in detail in 

the first part of this chapter. The second part discusses how we can generate 

new parameters and how can we analyse the generated data. The third part is a 

concise discussion on recent advances for IDPs simulations, 

Chapter 4: Development of the CAIPi3P water model 

This chapter will be focused on the development of the CAIPi3P model and its 

results. This model was tested on IDPs known as benchmarks for new MD 

methods: histatin 5 and R/S peptide. alongside, CAIPi3P has been tested on a 

longer IDP, recently deposited on PDB.  

Chapter 5: Hybrid_FF and intrinsically disordered regions 
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To improve simulations on disordered regions within structured proteins, A new 

force field framework was developed. This approach will be explained in this 

chapter. This set of parameters were made by merging both AMBER03ws and 

AMBER99SB-ILDN, resulting in Hybrid_FF force field, which was tested using a 

series of structures obtained by NMR with terminal IDRs. 

Chapter 6: Stability and long-range effect of disordered loops 

To analyse and quantify the entropic effect caused by IDRs, A software known 

as a structural quantifier of entropy (SQuE) was developed to analyse the 

changes caused on loops throughout the dynamics. This approach is explained 

in this chapter, with the goal was to calculate the upper values of structural 

entropy changes and was tested in two different cases, with astounding accuracy.  

Chapter 7: Conclusions 

This Chapter concludes this works, discussing the improvements and drawbacks 

offered by the methods developed in this work, as well as proposing areas which 

this work can be improved.  
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Chapter 1 - Fundamentals of protein folding  

1.1 Proteins structure and function 

Proteins are tools used by the cell to do most of the necessary process to thrive 

and survive. These macromolecules are the controllers of cellular processes like 

DNA replication, RNA transcription, transport, and many more1. Their chains 

have directionality, i.e. two ends (N- and C) one chemically distinct to the other. 

Each amino acid is joined to the next one, which forms a peptide bond between 

the two building blocks. 

The C-CO-N-C atomic sequence is known as the protein backbone. It is the same 

for all the amino acids that comprise a peptide. The twenty proteinogenic amino 

acids that can be encoded by the human genome are known as standard 

residues. They differ from each other by the side chain (R position in Figure 2). 

All the 20 residues are shown in Figure 1. They are divided into four categories: 

non-polar, positively charged, negatively charged and polar. These 

characteristics, alongside the side chain size, define a substantial amount of 

properties of the residue. The sequence of residues that assembles the peptide 

is called the primary sequence of a protein. 
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Figure 1: The twenty residues that DNA can encode. Commonly, they are divided into four 
classes: negatively charged, positively charged, non-polar and polar. Extracted from 2 

The side chain composition defines the biophysical characterisation of the amino 

acids. Non-polar residues compose most of the protein core since their interaction 

with water is unfavourable. Some of the residues in this category require extra 

attention from a modeller perspective, such as glycine and proline. Glycines are 

the only non-chiral residues, with a sidechain composed only by one hydrogen. 

Hence, the backbone of the glycine is highly flexible in comparison to the other 

19 residues, since there are minimal sidechain steric clashes. However, because 

of the same reason, glycines are considered disorder promoting residues, often 

causing substantial fluctuations within protein dynamics3,4. 

Prolines, on the other hand, are overly rigid. The sidechain closing into a 

pyrrolidine ring with the backbone nitrogen (Figure 1) causes a restriction on 

possible configurations. Consequently, the region that contains the proline often 

suffers significant disruption which affects its structure and dynamics5. 

Another residue type that is important to mention is cysteine. The terminal sulphur 

located at its sidechain confers to it a nucleophilic reactive nature6,7. One of the 

main effects is the formation of disulphide bonds between cysteines. The 

formation of these bonds restrains the protein conformation, directly affecting its 

biophysical traits. Also, cysteines are frequent targets of oxidative stress: they 
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can acquire different protonation states depending on their environment changing 

their structural configuration8–10. 

Polar residues are mainly located on the protein surface, given the fact they 

favourably interact with water. Both categories (negatively and positively polar) 

are essential for modulating interactions, either with ligands or between proteins.  

It is essential to say that the polar/charged classification comes from studies of 

proteins performed in a standard pH of 7. The pH value is crucial when analysing 

and discussing charged residues since they are prone to be hydrogen donators 

or receptors.  

The charged residues are commonly occurring within enzyme catalytic sites. One 

example is the catalytic triad located in chymotrypsin11. The triad is composed of 

a serine, a histidine and an aspartic acid, which attacks peptide bonds, breaking 

proteins in the digestive tract.  

The sidechain protonation states of charged residues may change depending on 

the residue local environment. One of such cases is the protonation on histidine 

imidazole. Since its one of its pKa is the closest to the human natural pH (pKa = 

6), it is prone to change its protonation state. Because of this, several studies 

were made on the proteins containing histidines to the protonation effect on its 

structure12–14, showing how sensitive proteins are to histidine protonation. 

Another vital characteristic of protein residues is the post-translational 

modification (PTM). Common examples of PTMs are glycosylation and 

phosphorylation. They are essential to molecular modifications and cellular 

signalling and happens typically on specific residue sequences15–18. 

1.2 Protein structural hierarchy 

All residues follow the same composition for their backbone, as shown in Figure 

1. The connection between residues is a peptide bond between the carboxylic 

acid carbon to the amino group on the adjacent residue. The next atom on the 

chain is known as the carbon α (Cα).  

Each residue has three bonds that belong within the backbone. The N-C peptide 

bond is non-rotatable, given its partial double bond character1,5. Its dihedral value 
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(known as the ω angles) only accesses two values: 0 degrees (the cis 

configuration) and 180 degrees (the trans configuration). For protein peptide 

bonds, most of the residues are found at the trans configuration, given its lower 

energy in comparison to the cis conformation1. 

The N-Cα and the Cα-C bonds are fully rotatable. These bonds are the key factors 

on protein dynamics since all the backbone motion are related directly to the 

dihedral values ψ for the N- Cα bond and φ for the Cα-C bond. Figure 2 shows a 

representation of both ψ and φ torsional angles located on a protein backbone.  

 

 

Figure 2: The backbone structure and their respective dihedrals. Most of the dynamics of a protein 
happen on its dihedral torsions. These torsions are crucial for stabilisation and folding, being 
unique for each residue. Extracted from 19. 

The possible accessed values for the ψ/φ depend on the residue sidechain 

composition. The steric clash caused by the existence of large sidechains causes 

the significant difference for distribution of said angles. The distributions of ψ/φ 

angles are known as the Ramachandran plot1. They are essential for the analysis 

and studies of the next level of protein scaffold: secondary structure. 

The protein backbone is prone to form hydrogen bonds between the amide 

hydrogen and the oxygen from the carboxamide at different residues. These 

interactions assemble the commonly found secondary structures. 
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Secondary structures can be found in different scaffolds, being the most common 

the helices and sheets. There are several types of helices, such as the π-helix, 

3-10 helix and α-helix, as the latter being by far the most common5. The helical 

scaffold is frequent because it allows systematic intra-chain hydrogen bonding 

(as shown in Figure 3), resulting in a more favourable conformation than the 

unfolded string. 

 

Figure 3: Types of helical structures found on proteins. From these three, the α-helix is by far the 
most common, given its favourable hydrogen bonds and weaker steric clashes. 3-10 helices and 
π -helices are less common and typically are crucial for specific protein functions. Made by the 
author. 

α-helices represents the majority of the helical components in the human 

proteome4,5,20. They have a translational periodicity of 5.4 Å with a residue per 

turn ratio of 3.6. These characteristics result in one hydrogen bond every four 

residues with an average distance of 2Å, with a ψ and φ values of -57° and -47° 

respectively.  In comparison, the 3-10 helix has -49°, and -26° and the π-helix 

has -47° and -70° for their ψ and φ values3, resulting in a tighter and a broader 

helix respectively. 

The ψ/φ in α-helices results in structures containing the lowest degree of steric 

clashes of all three1. However, 3-10 helices occur reasonably frequently (~10%), 

albeit in shorter sequences (usually no more than four residues). The shorter 

hydrogen bonding interactions stabilise this scaffold, but the backbone torsion 

strain makes them unfeasible for long helices. They were first found in essential 

proteins such as haemoglobins21 and myoglobins22.  
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The second most common secondary structure is the β-sheet. Built by connecting 

β-strands, they were first proposed by Willian Ashbury in 19301,4,5. The h-bonds 

forms between each strand, resulting in a pleated sheet. The isomerism 

contained within the residues forces the sheets to be twisted, increasing the 

torsional stress on the strand extreme. This stress limits the length of the β-

sheets23,24.  

The strand-strand complex comes in two different scaffolds: antiparallel β-sheet 

and parallel β-sheet. As shown in Figure 4, the backbone h-bonds created 

between strands are different between the antiparallel and parallel scaffolds: in 

parallel sheets, the h-bonds requires an angle to form, increasing the distance 

between HN-O. However, on antiparallel sheets, the h-bonds are closer and 

parallel between themselves, resulting in a more stable configuration. 

 

Figure 4:  β-sheets configurations. Antiparallel strands result in more favourable inter-strand 
interactions, being more frequent and more stable. Made by the author. 

β-sheets arrangements can be found within several different structural and 

biological functions 5,25,26. Usually, bulky side-chain amino acids (i.e. tyrosine and 

tryptophan) and branched sidechain residues (isoleucine, threonine) are found in 

the middle of β-sheets. It is also common to have prolines on end-caps of β-

strands, to avoid edge-edge interactions27.   

Because of the stable intra-strand organisation, they are directly related to the 

formation of β-fibrils and protein aggregation exclusion bodies. This fibrillation 

and aggregation propensity will be discussed in-depth in chapter 2. 
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Connecting the strands is a structure known as β-turn. This structure is a short 

sequence (between 2-4 residues) that frequently contains glycines and prolines. 

Venkatachalam28 showed in 1968 that are several possible configurations of β-

turns to access. They all differ on the average ψ/φ values of their comprising 

residues, but always have a hydrogen-bond between the first and the last 

residues. These hydrogen bonds are crucial for maintaining the integrity of the 

turn and the strands that it connects, and in case of disruption, often affects the 

protein stability and may result in protein fibrillation29. 

Finally, the residues with no determined secondary structure are often called 

unstructured loops. Usually comprised of more than five residues, these regions 

are challenging for both experimental and computational modelling methods. 

These unstructured yet functional sequences are called intrinsically disordered 

regions (IDRs). Proteins which are only comprised of unstructured residues are 

named intrinsically disordered proteins (IDPs). Examples of IDRs and IDPs will 

be described in Chapter 2.  

The combination of helices, loops and sheets form the tertiary structure of a 

protein. A stable tertiary structure is often its functional form, known as native 

structure, which contains the requirements for its functionalities, such as catalytic 

centre and substrate binding sites.  

Mathematically, the possibility space for a protein to fold is an astronomically 

immense value. For example, a protein with 100 residues contains 99 peptide 

bonds and 198 ψ/φ torsions. If we assume that ψ/φ can assume three stable 

values, the total number of structural possibilities is 3^196. Hence, if this protein 

reaches its native state by sequentially sampling all these configurations, it would 

take longer than the age of existence of the Universe. This is known as the 

Levinthal paradox30–33 since small peptides fold within the microsecond to 

millisecond scale. Therefore, a driving force must exist to guide the folding to its 

right conformation.  

1.3 Water and protein folding 

For a protein to achieve a native conformation, it needs to go through several 

structural changes. The driving force behind these changes is a thermodynamic 
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quantity known as the system free energy. The two most common free energies 

a system may have is the Helmholtz free energy and the Gibbs free energy34. 

The Helmholtz free energy is a thermodynamic potential that measures the useful 

work obtainable from a closed thermodynamic system at a constant temperature 

and volume (isothermal, isochoric). This makes the Helmholtz free energy useful 

for systems held at constant volume.  

The Gibbs free energy (or free enthalpy) is most commonly used as a measure 

of thermodynamic potential (particularly in biochemistry) when it is convenient for 

applications that occur at constant pressure. The Gibbs free energy is 

represented by Eq.1: 

                                     𝐺 = 𝐻 − 𝑇𝑆 = 𝐸 + 𝑃𝑉 − 𝑇𝑆                                        (1) 

Where G is the Gibbs free energy, H is the enthalpy, S is the entropy, T is 

temperature, E is the system internal energy, P is the pressure of the system and 

V is the volume of the system.  

Moreover, the difference between two different thermodynamics i and j states is 

(Eq. 2): 

                      ∆𝐺 = 𝐺𝑗 − 𝐺𝑖 = (𝐻𝑗 − 𝐻𝑖) − 𝑇(𝑆𝑗 − 𝑆𝑖) = ∆𝐻 −  𝑇∆𝑆                  (2) 

 

The variation in Gibbs free energy between states represents how spontaneous 

a thermodynamic event is. When a transformation is exergonic ( ∆𝐺 <0), there is 

an increase in the entropy of the universe; therefore, it is spontaneous1,35–37. 

However, for a system to be spontaneous, a balance between the enthalpic 

changes and the internal entropic changes is required. The spontaneity of an 

event can be tracked using Table 1. 
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Table 1: Free energy and spontaneity 

Enthalpy Entropy Spontaneity Free energy 

∆𝑯 > 0 ∆𝑆 > 0 If temperature is 

high 

Depends on T 

∆𝑯 > 0 ∆𝑆 < 0 Not spontaneous ∆𝐺 > 0 

∆𝑯 < 0 ∆𝑆 > 0 If temperature is 

low 

Depends on T 

∆𝑯 < 0 ∆𝑆 < 0 Spontaneous ∆𝐺 < 0 

 

Based on this, Jose Onuchic coined a concept known as protein folding energy 

funnel38.  As shown in Figure 5, for a protein to achieve its native conformation, 

the unfolded protein navigates through a free energy surface, moving by several 

different local minima. Each of these partially folds the protein, reducing both their 

internal energy and structural entropy39,40.  

From the fully unfolded conformation, which has high entropy and high energy, 

the molecule starts to fold locally. This transition configuration is known as molten 

globule: it starts when the free energy decreases and the local interactions 

assemble in secondary structures. From a molten globular configuration, the 

system continues navigating the funnel, increasing the favourable intra-protein 

interactions and water-solvation interactions to achieve its functional form. 
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Figure 5: The protein folding funnel. The process of folding decreases both the enthalpy of and 
entropy. For a stable native structure, the free energy of the system needs to be reduced as 
well. These three events are only possible by increasing the entropy of the surroundings, while 
decreasing the entropy of the protein, resulting in a negative free energy change. Made by the 
author. 

However, the decrease in structural entropy should be unfavourable, and at first, 

should hinder the folding process. Nonetheless, the folding process is pushed 

forward because there is an increase of entropy in the other component of the 

system: the solvent. 

The water environment plays a crucial role in the process of folding, given the 

diversity of the 20 natural amino acids. When a hydrophobic particle (i.e. apolar 

residue) is submerged in water, the solvent molecules organise themselves 

around the particle, creating a web of hydrogen bonds that surrounds it. Because 

of this coordinated scaffold, there is a decrease in the entropy in the system 

(Figure 5). Upon interaction between these hydrophobic constituents, the 

solvation net is disrupted, resulting in a system entropy increase. Figure 6 shows 

a representation of the increase of entropy when hydrophobic regions interact 
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with each other. Usually, this process occurs throughout the structure, resulting 

in the hydrophobic core of the protein. 

 

Figure 6: Water organisation around hydrophobic regions. The water molecules organise 
themselves around the nonpolar areas, reducing the entropy of the system. When the 
hydrophobic patches interaction free the structured waters, increasing the entropy and decreasing 
the protein enthalpy, resulting in a negative free energy change. Made by the author. 

 

Most of the known proteins assemble around a hydrophobic core. The core 

formation is a crucial factor to stabilise protein folding and often dictates its native 

structure. Consequently, the existence of hydrophobic regions within the primary 

sequence is fundamental to the formation of a globular state.  

Since the folding landscape is uneven, protein folding is not a trivial event. 

Macromolecules may face barriers in the free energy landscape that can create 

deep local minima. These barriers may trap them in conformations far away from 

their native one. One system that safeguards molecules from misfolding is the 

usage of chaperones, such as heat shock protein 90 (Hsp90). These proteins are 

folding catalysts, which guide the protein folding by increasing their free energy 

to overcome energetic barriers41,42.  

This folding funnel concept is qualitatively useful to understand the folding of well-

behaved globular molecules. However, it is estimated that more than 20% of the 

human genome is composed of proteins without a stable tertiary structure43–45. 

Commonly, their primary sequences lack hydrophobic regions, and therefore, 

they lack a folded core. This generates a unique effect on the energy landscape, 

creating an effect known as a reverse energy landscape 46–49 (Figure 7). This 
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effect on the folding landscape emerges from the favourable interaction with the 

aqueous environment, preventing the formation of a hydrophobic core. Another 

effect that arises from the lack of a core is the existence of multiple functional 

states. Several  IDP energy minima may have similar free energy; therefore, 

copies of the same molecule may coexist in heterogeneous conformations44.  

 

Figure 7: The energy landscape of an IDP. This class of proteins navigates in a specific energy 
landscape, with several minima with similar magnitudes, resulting in several possible 
conformations for the IDP to access. 

 

This metamorphism of IDPs is linked to several human diseases.  Similarly, to 

IDPs, IDRs are also affected by this modification in the folding landscape. Both 

IDPs and IDRs and their related diseases will be discussed in-depth in the next 

chapter. 
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Chapter 2 – Disorder in protein biochemistry 

2.1 Biological importance of protein disorder  

In the early 1990s, the abundance of studies on well-defined structured proteins 

kept the importance of protein disorder at bay50. With the emergence of new 

biophysical techniques and bioinformatic studies on the complete genome, the 

scientific community started observing an increased interest in disorder 

sequences within the human proteome51.    

These unstructured proteins are highly relevant to cellular fitness and 

homeostasis51–53.  Known as intrinsically disordered proteins (IDPs), these 

polypeptides are characterised by the lack of bulky hydrophobic residues and low 

sequence complexity.  As explained in Chapter 1, the lack of such residues 

prevents the formation of a hydrophobic core, resulting in a protein structure that 

fluctuates within an ensemble of structures with diverse internal organisation 

levels. Most of the proteins that compose the eukaryotic proteome contains both 

structured and disordered regions, especially within loops between structure 

domains; these loops are named intrinsically disordered regions (IDRs). In this 

work, IDP will be used as a general term for extensively unstructured proteins, 

despite the recent discussions in IDPs classification and nomenclature45. 

Frequently, IDPs function as key hubs within protein interaction networks53,54. 

They regulate crucial pathways, such as transcription, translation, cellular 

signalling, cell cycle and proteostasis. The feature that makes IDPs part of 

several cellular processes is their structural plasticity, which allows them to 

acquire a diverse range of functions, partners and environments effects55,56.  

Regarding IDPs primary sequences, there are certain characteristics that are 

useful for cellular fitness and survival. First, within their sequences, there are 

small recognition elements that fold upon binding to a partner. This attribute is 

vital for the assembly of the eukaryotic macromolecular machinery such as the 

ribosome, performing a function like chaperones57. Second, since IDPs structures 

may fluctuate between partially molten globules and fully unstructured strands, 

they play an essential role in putting together microtubules and coordinate 

transmembrane pore formation58. Third, when unstructured sequences are 
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located within globular functional motifs, they act as “entropic” linkers, which help 

proteins to fold locally with lower entropy59. Fourth, they can be used as 

scavenger peptides, which bind to small ligands to either neutralise or to transport 

them to different cellular compartments. Finally, they can act as display sites for 

specific regions of post-translational modifications,  acting as signalling hubs in 

cellular cascades60.  Figure 8 shows a representation of this classification tree. 

 

Figure 8: Classification of IDPs. Modified from 61 

 

The mechanistic procedure of IDP-partner binding is based on the high specificity 

for its partner, albeit, with a low affinity. Using this characteristic, IDPs can interact 

with a specific partner activating a cellular network, then undergo structural 

modifications and unbinding, releasing the partner molecule in the process. 

Several examples that show IDPs undergoing structural conformational changes 

after partner binding can be cited, like the neurotoxin botulinum serotype A 

(BoNT/A) binding to synaptosome-associated protein 25(SNAP25)62. The 

BoNT/A is a clostridial neurotoxin (CNT), which is a causative agent of botulism. 

It binds to essential proteins called SNAREs, which cleavage is catalysed by the 

CNTs, impairing neuronal functions. 

Another case of IDP structural plasticity being crucial for cellular functions is the 

Smad proteins binding to the Smad anchor for receptor activation (SARA)63. 

Smad mediates the signalling of the transforming growth factor-beta (TGFbeta) 

from the transmembrane kinases to the nucleus. SARA recruits Smad2 to the 

TGFbeta for phosphorylation, allowing it to be transported. The structural 
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conversion of the SARA from an unstructured loop to an α-helix is central for the 

interaction specificity with the Smad2 β-sheet63.  Both examples are shown in 

Figure 9. 

Nonetheless, the unstructured-structure transition is not uniquely necessary for 

IDPs interactions. Sigalov and coworkers showed for  T cell receptor ζ subunit, 

an IDR from the T cell receptor64, dimerises without going through structural 

conformational change. 

 

Figure 9: IDPs bounded to their partners, the PDB code is in parenthesis(A) SNAP‐25 bound to 
BoNT/A (1XTG); (B) SARA SBD domain bound to Smad2 MH2 domain (1DEV). Modified from 61 

To attain this degree of conformational plasticity, IDPs typically have primary 

sequences with a high content of disorder inducing residues (A, R, G, Q, S, P, E 

and K)65. These residues may have a small side chain (A and G), allowing a 

higher rotational degree of freedom, often containing polar sidechains (Q, S). 

Lysines, arginines and glutamic acids (K, R, E) have long polar flexible side 

chains; hence, restraining these residues buried in a structured core is costly for 

both enthalpy and entropy. Prolines are special cases regarding how they induce 

disorder, since the pyrrolidine ring incorporated within proline residues causes 

restraints for the local folding.  

In this context, IDPs have a high net charge and low mean hydrophobicity. These 

attributes mean that water-polypeptide interaction is crucial for a functional 

conformation, and changes in the environmental composition (i.e. pH, free 
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radicals, and ionic concentration) may influence the protein stability, misfolding 

and aggregation propensity66, resulting in a plethora of human diseases. 

2.2 Human diseases related to protein disorder  

Protein misfolding causes a range of human diseases. These pathologies arise 

from the failure of a protein to attain its native structure, losing its function. 

Alongside with that, proteins may aggregate (or assembling in a fibril 

conformations), accumulating in the cytosol or toxic inclusion bodies, such as 

Lewy bodies, within cells67,68.  

Ageing has a direct effect on the in vivo protein aggregation propensity69,70. Since 

the cellular machinery becomes more prone to fail with ageing, impaired 

interactions with endogenous factors (proteins, cellular matrices or small 

molecules) may cause protein dysregulation. Also, acquired point mutations and 

failures on PTMs partners directly affect the degradation and aggregation 

propensity. 

Amyloid fibrils are linked to the largest group of misfolding diseases. These fibrils 

are stable, highly ordered filamentous protein aggregates which originate from 

the conversion of specific proteins71. Subsequentially, these insoluble amyloid 

structures accumulate within different cells types, causing a series of 

impediments for cell cycle and function70. A representation of the formation 

cascade for aggregation in amyloid-like fibrils can be seen in Figure 10. 

 

Figure 10: Aggregation cascade: Destabilised by some external effect, the native protein structure 
may assembly in aggregates, resulting in amyloid fibrillation. Extracted from 72 
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Fibrils with amyloid characteristic have a high β-sheet content. Morphologically, 

they show a core β-sheet structure with a continuous sheet with β-strands running 

perpendicular to the long fibril axis (Figure 10). Even though the different fibrils 

have similar morphology, the peptide that constitutes a single subunit may have 

a acquire different secondary conformations in its native state (β-sheet, α-helix or 

unstructured).  

IDPs are commonly found as proteins that form fibrils.  Since the energy barrier 

required to unfold and refold a protein containing a well-defined hydrophobic core 

is high, stable globular proteins typically do not start pathological fibrils. On the 

other hand, IDPs may readily fold in a partially molten globule, which often is the 

fibril starting point of growth. Nonetheless, IDPs and IDRs in their native 

conformation perform important cellular tasks, and the trigger for these molecules 

to form fibrils from misregulation caused by mutations or misrecognition of their 

binding partner73. 

Several case studies can be discussed as examples of pathogenic IDPs and their 

mechanisms. One compelling case is the relation between tumour suppressor 

p53 and the E3 ubiquitin ligase Mouse double minute 2 homolog (Mdm2)74. 

The p53 protein is a transcription factor that target genes involved with cell cycle 

regulation, i.e. apoptosis. Hence, there is a clear and direct relationship between 

p53 loss of function and cancer 75. The Mdm2 binds to the transcription activation 

domain 76, which has a series of intrinsically disordered regions, blocking the 

interaction with its genes in three ways. First, it hinders the interactions with other 

transcription factors sterically, blocking assembly between p53 and partners. 

Second, Mdm2 acts as a ubiquitin ligase, targeting p53 for degradation. Third, 

Mdm2 contains a nuclear export signal; hence the complex shown in Figure 11 

is transported from the nucleus, preventing its function. 

The p53 is central to an extensive cellular information network, regulating 

signalling cascades critical for cell lifecycle. When Mdm2 disrupts this, the cell 

goes into a malignant transformation. Cancers that have p53 disruption in their 

core are found in colon, lung, oesophagus, breast, liver, brain, reticuloendothelial 

and hemopoietic tissues75. 
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The p53 is composed of 3 domains: An N-terminal transactivation domain, a 

DNA-binding domain (DBD) and a C-terminal regulatory domain77. The analysis 

of the DBD domain shows that both of its terminal regions are intrinsically 

disordered. These areas are responsible for mediating 70% of p53 interactions 

with DNA and protein partners 78. 

 

Figure 11: The structure of p53 domains: A) in yellow the part of the IDR located in the 
transactivation region of the p53, in blue the MDM2 protein (PDB 4HFZ). B) the DNA binding 
domain of the p53 (PDB 1TSR). Made by the author. 

Another condition that IDPs are implicated related is age-dependent Alzheimer 

disease79,80. It often characterised as the accumulation of extracellular amyloid 

deposits, senile plaques and intracellular fibrillary tangles.  

The amyloid β protein (Aβ) is found in high concentration within senile cellular 

plaques, which are a hallmark of neurodegeneration.  Aβ is a 40 – 42 residue 

peptide produced by endoproteolytic cleavage of the amyloid β-protein precursor 

(APP). In its native structure, the Aβ peptide does not show any structured 

regions80. However, upon forming a molten globule-like structure, it increases its 

propensity of fibrillation, hence, partially folded Aβ are indicatives of an early-

stage plaque formation. 
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Figure 12: A) helical conformation of the 1-42 Aβ protein in solution (PDB  1IYT)81. B) amyloid 
fibril structure of the  Aβ protein (PDB 5KK3)82. Made by the author. 

Fibrillar tangles are typically found as paired helical filaments (PHF).  PHFs 

assemble around the protein tau, which includes a family of isoforms that 

associate with microtubules. Interest in tau increased after the discovery made 

by Delacourte and colleagues83 of its aggregation in neuronal cells in the progress 

of AD and several other neurogenerative diseases. The transition from a 

functional tau to a pathological configuration has been linked with several 

structural modifications such as mutations and high concentrations of PTMs, 

mainly phosphorylation84. Like Aβ, tau proteins are unstructured in their native 

conformation; however, they partially fold into a molten globule before 

assembling in fibrils. 

Another known metamorphic IDP related to neurological diseases is α-synuclein. 

Aggregation of these proteins causes a series of pathological conditions known 

as synucleinopathies. Clinically, they are characterised by a chronic and 

progressive decline in motor, cognitive, behavioural, and autonomic functions. 

Nonetheless, the decline of these functions has a significant overlap with similar 

neurological conditions caused by different proteins; therefore, the diagnosis is 

difficult85. 

Common synucleopathies include Parkinson’s disease (PD), dementia with Lewy 

bodies (DLB), Alzheimer’s disease (AD), Down’s syndrome and multiple system 

atrophy (MSA). Synuclein inclusion bodies can be found in neurons, deposit in 
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perikarya, axons or glia. Morphologically diverse, several different inclusion 

bodies are containing α-synuclein (i.e. Lewy body, Lewy neurites and glial 

cytoplasmic inclusions). This characteristic makes the treatment even more 

difficult since the diagnosis and treatment need to be specific to its morphology. 

Since α-synuclein is an IDP, it shows low structure content in physiological 

conditions, being a slightly more compact than expected from a full random-coil 

structure 86.  Using solution NMR, Morar et al. showed that the sequence between 

residue 6 to 37 adopts a helical conformation 86. This structure correlates with the 

finding of Ulmer and colleagues, who resolved the structured of the α-synuclein 

bound to micelles, which shows a highly helical content87. This structure and the 

fibril structure of the α-synuclein can be seen in Figure 13 

 

Figure 13: Representation of the α-synuclein metamorphism. As an example, the native α-
synuclein may fold into a high helical content structure when bound to micelles (PDB 1XQ8)87, 
and different fibril conformations (top structure PDB 2N0A, bottom fibril PDB 6FLT)88,89. 

The α-synuclein is prone to aggregate. Because of its relationship with a series 

of neurological disabilities, it has been extensively studied90. Hence, it became a 

model system for studies of protein metamorphisms caused by environmental 

changes. The conformational behaviour of α-synuclein is directly affected by the 

pH, resulting in fibril like structures on acidic environments70. Also, α-synuclein 

has been shown to form several structurally diverse aggregation complexes, 

ranging from oligomers (spherical or doughnut) to fully amorphous complexes70. 
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Because of the structural diversity of these proteins, Uversky coined the concept 

protein-chameleon91. A protein with such characteristics follows the IDP 

landscape described earlier, so predicting and assessing the presumably toxic 

conformation is a very challenging task. 

2.3 Experimental and computational determination of  IDP 

characteristics 

Several techniques can experimentally determine the molecular characteristic of 

IDPs, yet, all of them have their drawbacks. Typically, the assessment of a protein 

atomic configuration is done by X-ray crystallography, nuclear magnetic 

resonance (NMR), and cryo-electron microscopy (cryo-EM). Several IDP 

characteristics can also be determined using biophysical assays such as circular 

dichroism (CD), small-angle X-ray scattering (SAXS), size-exclusion 

chromatography (SEC), mass spectrometry techniques, and many more. 

For X-ray crystallography, a significant shortcoming is the necessity of a stable 

crystal. Crystals require a unique internal repeating structure to diffract, and 

therefore, IDP-based crystal would lose the information on its possible accessible 

ensemble. Alongside that, the IDP crystal growth would be almost impossible 

given the lower organisation level of IDPs. Hence, for IDPs, X-ray crystallography 

is mostly used to study structured protein – IDP complexes92,93. 

Solution NMR studies of IDPs usually will give more information regarding their 

molecular organisation. NMR nuclear Overhauser effect (NOE) can give an 

internal distance list between labelled atoms, and consequently, a modelled 

dynamical ensemble. Also, chemical exchange NMR studies have been used to 

study residue-solvent accessibility for IDPs, helping to elucidate how dynamics 

within the microsecond time scale work94. IDPs represents a challenging problem 

for NMR techniques: first, the requirement of labelling the sample may affect the 

protein production, and second, NMR samples need to be highly soluble, as 

precipitation into aggregates directly affects the NMR assignment. Another 

pivotal NMR-based technique is the solid-state NMR (SSNMR)95,96. SSNMR is 

especially useful for very large and poorly soluble proteins, such as amyloid 

fibrils. SSNMR uses the magic-angle spinning (MAS) to acquire the inter-atomic 



30 
 

distance list.  While useful, it may require a protein to be fixed to a membrane, 

reducing its applicability. 

Cryo-EM for IDPs faces similar challenges as X-ray crystallography. The sample 

preparation requires the protein to be restrained within an amorphous ice sheet. 

Also, the requirement for several electron micrographs of different aspects of the 

same conformation creates a barrier for the application of Cryo-EM for IDPs. 

However, this technique has been successfully used to assess polymorphisms of 

the amyloid fibrils97. 

SAXS uses the scattering profile of a protein in solution. One of the most exciting 

information that SAXS can give is the internal radial distribution, which can be 

used to model the external molecular surface. Alongside with that, SAXS can be 

used to obtain an accurate measure of the protein hydrodynamic radius; hence it 

is commonly applied to the studies of IDPs. How the data is acquired and 

processed is explained in the next section. 

Another biophysical technique commonly used for IDPs is the circular dichroism 

(CD). In CD, the light polarisation properties of proteins are used to obtain a 

semiquantitative percentage of the secondary structure of a sample. Since the 

protein is in solution, it became a useful method to understand pH and 

temperature effects on disordered systems.  

Amidst all experimental techniques, several computational tools can be used to 

predict disorder and asses its dynamical states. First, there are several curated 

online databases of protein sequences and biophysical information for IDPs, such 

as Disprot98, D2P299, MobiDB100, IDEAL101 and pE-DB102. The latter contains a 

significant amount of structural information as well. Alongside with databases, 

online prediction tools for disordered regions were developed. These methods 

are based either on the mentioned databases or in physicochemical properties of 

the primary sequence. The most known webserver predictors are shown in Table 

2 
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Table 2: List of prediction servers for IDPs and IDRs. 

Server 

name 

Method Prediction Advantages Disadvantages 

DisEMBL103 Machine 

Learning 

Disordered loops and 

high mobile regions. 

Fast, online 

server 

Not clear outputs, 

restricted training 

dataset 

Globplot104 Empirical 

analysis 

Regions with the 

propensity for globularity 

(probability of 

secondary/random coil 

formation) 

Fast, online 

server, 

Prediction of 

IDP-Structural 

effect. 

Empirical approach 

results in a high 

flexibility but does 

has a lower than 

machine learning 

methods. 

Pondr105 Machine 

Learning 

Random coils and molten 

globule regions 

Fast, online 

server, 

Prediction of 

IDP-Structural 

effect, analysis 

of structural 

dynamics. 

Restricted training 

data sets 

FoldIndex106 Empirical 

analysis 

Regions with high net 

charge and low 

hydrophobicity 

Structural 

analysis, 

physical-

chemical 

properties 

calculated 

Inaccurate regarding 

complex motifs.    

IUPred107 Energy 

empirical 

analysis 

Regions that lack 3D 

structures 

Clear output. 

Motif definition, 

domain 

recognition. 

The binary 

classification does 

not allow the 

analysis of possible 

molten-globule 

structures. 

 

None of these web servers can give atomic resolution and information regarding 

intrinsic molecular dynamics. From this point of view, atomistic molecular 

dynamics (MD) simulations offer an advantage over other methods. Using MD 

techniques, the scientific community can acquire information about its protein 

conformational landscape and dynamics.  
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2.4 Experimental techniques for structural studies  

Acquiring atomistic insight of molecules is invaluable for protein science. 

Although many experimental assays give us information with a molecular 

resolution, there are no techniques with zero caveats for IDPs.  

Three main experimental techniques for structure assignment applicable to IDPs 

are X-ray crystallography, nuclear magnetic resonance and transmission cryo-

electron microscopy. Another essential method to assess structural states with 

dynamical data is small-angle X-ray scattering (SAXS). 

2.4.1  X-ray crystallography 

X-ray crystallography counts for 90% of the structures deposited in the Protein 

Databank5. The cornerstone for this technique is the Huygens-Fresnel5 principle 

(Figure 14), which states and predicts how waves behave when diffracting.  

The diffraction phenomena occur when light passes through any slit. As stated 

by the Huygens-Fresnel principle, the incident wavefront should be treated as a 

new punctual wave source. These emerging waves interact with each other 

creating patterns which are unique to their wavelength and the grid structural 

characteristics.  The outcome is a series of constructive and destructive wave 

interferences. 
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Figure 14: The concept of slit diffraction is based on the Huygens-Fresnel principle. After 
interfering with the slit, the light emerges as a new set of waves which interacts with the other 
emerging waves, generating regions of constructive interference 

Given the uniqueness of the diffraction pattern, it is possible to discover the 

internal organization of the diffraction grid by studying the constructive-

destructive interferences obtained in a detector. Biological X-ray crystallography 

uses a crystal of a biomolecule as the grid. The electronic density of this 

biomolecule composes the grid, which can be calculated from the diffraction 

pattern, as shown in Figure 15. The incident light has a wavelength of 0.1 

nanometres, so it results in a molecular model at an atomic scale. This technique, 

although highly successful in determining protein structures, has two known 

caveats: first, it requires a stable crystal and second, its results in a snapshot of 

a crystal component, and may not represent a full picture of the native protein. 
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Figure 15: Workflow for solving a protein structure through x-ray crystallography: After the 
crystallisation, the protein is placed in an x-ray beam, resulting in the diffraction pattern. From the 
diffraction pattern, one can calculate through mathematical methods, the electronic density that 
caused it. Using the obtained density, it is possible to fit the protein residues, given the internal 
restrains, into the density map. 

 

The crystallisation is usually a highly challenging aspect. Typically, it is required 

for the protein to have a stable tertiary structure and a well-defined core. The 

need for a crystal with sufficient size and stability significantly limits the number 

of proteins which can be studied by this technique.  

Because of the X-ray diffraction requires a single crystal to get a successful 

diffraction pattern, X-ray crystallography, it is unable to describe the full dynamics 

of the protein. This static snapshot addresses important questions about the 

backbone structure, the side-chain interactions, and potential small molecule 

binding sites. Nevertheless, it is unable to clarify several characteristics related 

to the dynamics of the macromolecule in water, like conformational changes 

caused by thermal fluctuations5. 

2.4.2  Nuclear magnetic resonance 

The second technique for structure assignment is the solution nuclear magnetic 

resonance (NMR). Solution NMR relies on the nuclear spin, which is an intrinsic 

characteristic of the particles. The nuclear spin interacts with external magnetic 

fields and responds to it in different manners. This response is directly related to 

the microenvironment of the respective residue. Depending on intra- and 

intermolecular interactions, the decay frequency of that atom differs from the 

other atoms in different molecular environments.  
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Experimentally, the solution NMR experiment goes as follows:  first, a sample is 

created using labelled isotopes. For proteins, this requires a bacterial minimal 

culture medium, which contains only compounds labelled with isotopes. After 

expression, the sample is inserted in a powerful parallel magnetic field, which 

aligns the atomic spins. In sequence, the parallel magnetic field is turned off, and 

each atom decays with a different frequency. The decay is captured by detectors 

that surround the sample, obtaining the resultant magnetic field caused by the 

spins. By applying a Fourier transform in the resulting data, one can obtain the 

frequencies that are specific per atoms. 

 

 

Figure 16: External magnetic field effect on atomic spins. When a strong magnetic field is applied 
to the sample, a part of the particles has their spins aligned to the externally applied field. When 
this external field is turned off, the atomic spin relaxation field is acquired by detectors, resulting 
in the resonance frequencies. Extracted from 108. 

Because of the spin-spin coupling, atoms change the magnetic resonance of its 

neighbours. One important effect caused by atomic relaxation is the Nuclear 

Overhauser Effect (NOE)109. With the NOE, the interatomic distances can be 

calculated. 

The structure of the protein can be discovered with the obtained list of distances. 

Given the fact that the list is finite and often incomplete, the structure solving the 

problem via NMR becomes a multi-solution problem. Hence, it allows NMR to 

calculate an ensemble of possible arrangements which gives insight on the 

dynamics of the system, resulting in a representative ensemble of the molecule 

dynamics in water. 
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One of the disadvantages of solution NMR is the upper threshold on molecular 

weight. Since it is based on the spin rotational decay, larger molecules directly 

affect the decay velocity, resulting in NMR spectra with a low resolution. Another 

disadvantage is the difficulties tied with the sample acquirement given the need 

for isotopes, producing NMR proteins can be time and money consuming. 

2.4.3  Cryo-electron microscopy 

The first application of electron microscopy (EM) to biological molecular modelling 

took place in 1968, where electron micrographs were used to reconstruct the T4 

phage tail110. In 50 years, the technique improved significantly, achieving results 

comparable to single-crystal X-ray structure determination 111.  

The basic principle of the EM is based on the scattering properties of electrons. 

This property allows EM to obtain a coherent image of the molecule; however, it 

is needed to prepare the particles in a cryopreservative environment, employing 

an ultra-fast freezing method. Doing so causes the water molecules to freeze in 

an amorphous configuration. Hence, the scattering profile of a coherent electron 

beam generates a series of magnified images of the sample.  

 

Figure 17: CryoEM structure acquiring scheme: The flash freeze of a purified protein sample 
undergoes the electron microscopy procedure, while pictures of different protein orientations are 
taken. Afterwards, the images go through roto translation alignments, resulting in the first model. 
The structure can be found after orientation refinement and new steps of classification. Extracted 
from 108. 



37 
 

After the images are acquired, an alignment algorithm is applied to overlay the 

single-molecule pictures. This organised overlay generates an initial model, 

which is refined by new sets of images with different orientations. Since it does 

not need crystals or isotopes, the generation of functional samples for cryo-EM 

is often more straightforward than the methods previously mentioned. Another 

advantage in comparison to X-ray crystallography is that the final structure should 

be a better representative of the native structure. 

The most significant disadvantage of cryo-EM is the threshold of molecular 

weight. Since it has a reasonable level of noise, the method is limited to bigger 

molecules. This threshold, however, has continuously been lowered by 

equipment modernisation and better software, nowadays, some cryo-EM models 

obtain almost atomic resolution for stable and organised models. 

2.4.4  Small-angle X-ray scattering 

During late 1930, Guinier et. al.112 devised an experiment using the scattering 

profiles of metal pertained within the small-angle region in the X-ray diffraction 

pattern to acquire structural data. Based on this work, methods were devised to 

understand and study colloidal materials. By obtaining the diffraction pattern 

difference between the pure solvent and the colloid, the small-angle profile can 

be calculated, resulting in the internal radial density. This method can help 

understanding protein dynamics in an aqueous solvent since SAXS does not 

require a crystal. 

The internal radial density of the sample results in a model of the molecular 

envelope of the system. Using this, SAXS is a standard tool to study disordered 

and partially disordered systems. However, the SAXS model is not a structure, 

since it is an outcome from a low-resolution analysis of the average envelope. 

Mathematically, the definition of the final atomic envelope model given by SAXS 

is a multi-solution problem. Hence, the final model is the most probable one but 

an incomplete representation of the molecular states. 

As said, the main drawback of this technique is the lack of atomic resolution, in 

comparison to the information obtained via X-ray crystallography, NMR or high-
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resolution cryo-EM. Regardless, it gives crucial dynamical data on disordered 

molecules, which can be challenging for the aforementioned techniques.  

The results obtained from these techniques directly affect molecular mechanics 

methods. On this topic, Chapter 3  explains in detail the MD algorithm and its 

methods, alongside the shortcomings in applications to IDPs and IDRs. 
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Chapter 3 – Theoretical background 
 

Several computational methods have been developed in the second half of the 

twentieth century to study how molecules behave at atomic scales. Some of these 

were focused on biological systems, like proteins and DNA. In this chapter, the 

discussion will be focused on molecular mechanics and all-atom molecular 

dynamics simulations: the principles, key approximations, strengths and 

limitations. 

3.1 Biomolecular simulations 

The molecular dynamics (MD) algorithm is a computational method to study the 

time-dependent changes (e.g. motions, conformational changes) in molecular 

systems. This method started to be developed in the late 1950s113 for applications 

in theoretical physics, but it quickly spread to different areas of science ranging 

from material structures to biomolecular protein studies. 

To be applied within the biomolecular context, the scientific community devised 

several methodologies through the years. Numerous studies use MD calculations 

for a plethora of applications, like the study of conformational states of interest in 

calculating and assessing molecular interactions between different 

molecules113,114.  

Given the high complexity in describing the molecular dynamics through time, no 

direct analytical solution can be calculated. Hence, numerical approaches are 

used to calculate how molecular systems evolve through time. Because MD 

algorithms are stochastic, the sampled system might not represent all possible 

conformations of the system. This is known as the MD sampling problem. 

Regardless of this disadvantage, MD simulations are used to predict macroscopic 

thermodynamic properties. This ability to predict observable biophysical 

characteristics comes from the fact that the MD simulations generate a time-

driven ensemble that follows the ergodic hypothesis35,113–115. This means that the 

sampled molecular states are representatives of the macro-ensemble that it 

belongs to, and its average values should represent the average observables.  
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3.1.1 Molecular dynamics theoretical framework   

The theoretical basis of the MD simulations is that each atom is a hard-sphere. 

This representation is based on the Born-Oppenheimer approximation, which will 

be described in detail in section 4.2.  On these spherical atoms, a Hamiltonian is 

built to describe the potential energy field applied to it. With the energetics 

described, the force exerted on these atoms is calculated via Eq. 3:  

 𝐹𝑖⃗⃗ =  −𝛻⃗ 𝑈𝑖(𝑡, 𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗. 𝑟3⃗⃗  ⃗, … , 𝑟𝑁)⃗⃗⃗⃗⃗⃗  (3) 

 

Where Fi is the resulting force in atom i, Ui is the resulting potential energy in 

atom i, which is a function of all N atoms in the system, and 𝛻⃗  is the gradient 

operator (Eq. 4): 

 
𝛻⃗ = (

𝜕

𝜕𝑥
𝑥̂ +

𝜕

𝜕𝑦
𝑦̂ +

𝜕

𝜕𝑧
𝑧̂) 

(4) 

Using Newton’s second law, the acceleration in atom i can be calculated as Eq. 

5: 

 
𝑎𝑖⃗⃗  ⃗ =  

𝐹𝑖⃗⃗ 

𝑚𝑖
 

(5) 

 

where mi is the mass of the atom i. 

With the acceleration given by Eq. 5, the velocities and the new positions can be 

calculated by Eq. 6 and Eq. 7: 

 
𝑣𝑖⃗⃗⃗  (𝑟𝑖⃗⃗ 𝑡 + ∆𝑡) =  ∫ 𝑎𝑖⃗⃗  ⃗

𝑡+∆𝑡

𝑡

𝑑𝑡 
(6) 

 
𝑟𝑖⃗⃗ (𝑟𝑖⃗⃗ , 𝑡 + ∆𝑡) =  ∫ 𝑣𝑖⃗⃗⃗  𝑑𝑡

𝑡+∆𝑡

𝑡

 
(7) 

 

Where 𝑣𝑖⃗⃗⃗   and 𝑟𝑖⃗⃗  is the velocity and position of atom i in the time (𝑡 + ∆𝑡) 

respectively. 
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With this approach, the algorithm can calculate the evolution in time of the atomic 

positions. This procedure can be repeated for any number of times, as described 

in Figure 18. 

   

Figure 18: Molecular dynamics framework of integration cycles 

These integration cycles are usually calculated by using a leapfrog integration 

method113,114.  This method defines the velocities and the positions as time-

dependent Taylor series, which can be readily integrated to obtain its related 

primitive function. 

Usually, the timestep used in simulations is 2 fs. This value is used because it’s 

higher than the period of vibration for bonds between non-hydrogen atoms (C, N 

S, O).  Because it is higher than the vibration period of bonds containing 

hydrogen, these bonds are restrained throughout the simulation, usually using 

the  LINCS distance restraint algorithm113. 

The cornerstone of the integration cycles is the potential energy function. The set 

of descriptors and the functions required to define a potential is called a force-

field. 

3.1.2 Potential energy description and force fields 

The first thing to be assigned to a system before a simulation is its atomic 

descriptions. A molecular energy potential is required to describe how the inter 
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and intramolecular interactions work. These energy descriptors are called force 

fields (FF).  

AMBER FF is one of the most widely used empirical force fields in biomolecular 

simulations community, and the one used in this work. The potential energy of 

the system can be described by decomposing the potential in two layers:  internal 

and non-bonded potentials (Eq. 7). 

 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 (7) 

 

For the intra-molecular energies, the AMBER model describes the system in a 

series of harmonic oscillators for bond, angle and dihedral vibrations (Eq. 8 and 

Eq. 9):  

 𝐸𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑠 + 𝐸𝑎𝑛𝑔𝑙𝑒𝑠 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 (8) 

 

 𝐸𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = ∑ 𝑘𝑏(𝑟0 − 𝑟𝑖)
2

𝑏𝑜𝑛𝑑𝑠
+ ∑ 𝑘𝑎(𝜙0 − 𝜙𝑖)

2

𝑎𝑛𝑔𝑙𝑒𝑠
 

+∑
1

2
𝑉𝑛[1 + 𝑐𝑜𝑠(𝑛𝜃 + 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠
 

 

(9) 

Where kb is the force constant for the bonds, with equilibrium length r0, ka is the 

angles force constant for the angles, with equilibrium angles of φ0. Vn is the force 

constant for the torsions, with phase value as γ, and n is the torsion multiplicity. 

The bond and angle terms are harmonic oscillators. Both use a quadratic 

potential to emulate the energy well that describes the motion of a specific set of 

atoms. This approximation rises certain drawbacks for MD simulations. One of 

the most crucial disadvantages is the impossibility to simulate the breaking and 

creation of covalent bonds, given the fact that harmonic quadratic potential never 

goes to zero.  

To better describe the torsional values, the dihedral term is a Fourier series for 

the same quartet of atoms. In other words, the same torsional set of atoms (i, j, 

k, l) may contain a series of terms to describe its torsions more accurately. The 
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torsional potential is described as a series because of the different atomic orbital 

hybridisations for the same atom type. Also, some special torsions, such as the 

amine bond in the protein backbone, require an out-of-plane dihedral potential to 

maintain the configuration of non-rotatable bonds. A detailed description of the 

generation of new parameters on bonded potentials is explained in section 4.2. 

The second layer for the potential energy is the non-bonded interaction potential 

𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 . These terms are often described as electrostatic Coulomb potential 

and a 12-6 Lennard-Jones potential (Eq. 10):  

 
𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ ∑

𝐶𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗𝑗𝑖
 + ∑ ∑ 4𝜀(

𝑟𝑚
𝑟𝑖𝑗

12

12

𝑗
−

2𝑟𝑚
6

𝑟𝑖𝑗
6

𝑖
) 

(10) 

 

where C is a unit constant, 𝑞𝑖 is the respective charge of the atom i, 𝜖 is the 

electrostatic permissivity of the medium, 𝑟𝑖𝑗 is the distance between atom i and j, 

𝜀 is the Lennard-Jones well depth and 𝑟𝑚  are the Van der Waals constants for 

the respective atoms. The Coulombic term describes charge-charge interactions. 

It is critical in describing hydrogen bond formation, polar-polar interactions, and 

solvent-protein interactions in polar environments. The Lennard-Jones (LJ) 

potential is an empirical description of how electronic clouds interact. The first r12 

term describes Pauli repulsion due to orbital overlap, and the r6 represents short-

term attraction due to orbital dispersion forces113. The Lennard-Jones potential is 

shown in Figure 19. 

 



44 
 

 

Figure 19: The Lennard-Jones potential: in blue, the repulsive region and in red the attractive part. 

 

One necessary approximation that is taken regarding non-bonded interaction is 

the exclusion list for bonded chains. Mainly, the energetics between bonded 

atoms are primarily at the quantum level. Therefore, the MD algorithm does not 

calculate the non-bonded interaction for connected atoms.  This approximation is 

crucial to reduce the amount of computational power required to simulate the 

system of interest. 

The number of atomic pairs for interactions grows exponentially with the number 

of atoms, as shown in Equation 10. For that, a system decomposition in layers 

needs to be applied to reduce computational requirements. The most common 

approach is to use the Particle Mesh Ewald116 algorithm. 

Particle Mesh Ewald consists of an interpolation grid method in the reciprocal 

space. The interaction potential is divided into two layers (Eq. 11): 

 𝑈𝑇𝑜𝑡𝑎𝑙 = 𝑈𝑠ℎ𝑜𝑟𝑡−𝑟𝑎𝑛𝑔𝑒 + 𝑈𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 (11) 

 

In the short-range layer, the summation of the energy is made directly in the real 

space, calculating the pair-wise interactions one by one, as shown in Eq. 12. 
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 𝑈𝑠ℎ𝑜𝑟𝑡−𝑟𝑎𝑛𝑔𝑒 = ∑ ∑ 𝑈𝐸𝑙𝑒𝑐(𝑟𝑖,𝑗) + 𝑈𝐿𝐽(𝑟𝑖,𝑗)
𝑗𝑖

 (12) 

Using a pair-wise calculation on the whole system would be very demanding 

computationally. Therefore, the long-range term using PME will be (Eq. 13): 

 
𝑈𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 = ∫𝑈̃𝐿𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 ∗ |𝜌̃|2𝑑𝑘 

(13) 

Where Ũlong−range  and ρ̃ are the Fourier transform of the potential and charge 

density, respectively. Both components of the interaction potential converge 

quickly in their own space, resulting in greater accuracy and a reduction of 

computational requirement. The cut-off distance that defined the boundary 

between PME description and pairwise energetic description is system 

dependent. This cut off radius is usually, for simulation in equilibrium, on the nm 

scale.  

The values used in this work (1 nm) comes from the fact that the simulation box 

is created with this distance from the edge of the protein, hence, the surface 

interaction should be calculated in the short-range pairwise method113. 

 Given the periodicity implicit in the Fourier space, this method requires the use 

of periodic boundary conditions (PBC)113.  

The application of PBC in molecular dynamics simulations not only solves the 

periodicity required by PME but also to avoids the appearance of finite-size 

effects113,114. The PBC is exemplified in Figure 20, which emulates the existence 
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of virtual boxes, where a copy of the particle that enters the box wall exits on the 

other side. As such, the number of particles in the box remains constant. 

 

Figure 20: Periodic boundary condition (PBC) representations, within a 3D box, the escaping 
water molecules are placed on the other side of its simulation box, creating in a virtually infinite 
system. Made by the author. 

 In all the work done in this thesis, a cubic box was used centred around the 

protein, but there are several different unitary box types, i.e. triclinic and 

dodecahedral boxes.  

3.1.3 Simulation environment – solvent and ions 

After defining the box and its periodic boundaries, the solvation box and its 

components need to be defined.  In MD, there are two methods to describe how 

the molecular system will be solvated: implicit or explicit solvent. 

Given the limited computational power of early MD studies, implicit solvent 

methods were broadly used. These are based on adding new terms to the system 

Hamiltonian, resulting in the total energy of the system as (Eq. 14): 

 

 𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝐵𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑁𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑆𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 (14) 
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The most popular method to use as an implicit solvent in a molecular dynamics 

simulation is to solve the Poisson-Boltzmann equation117. The computational 

requirement to solve the Poisson-Boltzmann equation is significant, given its high 

amount of integral calculations required to define the electrostatic density and the 

resulting potential. 

A known and popular approximation is the linearised Poisson-Boltzmann, also 

known as Generalized Born (GB). This approximation uses an extra parameter 

known as Born radii, which are specific for each atom, to approximate the PB 

integrals to a linear Coulombic-like interaction potential. However, this requires 

an accurate estimation of Born radii. Several works recently have been published 

using implicit solvent118–120, either GB or PB. Regardless, the number of works 

published with implicit solvent has been decreasing with the rise of more powerful 

computers, development of consumer-range GPUs and increased popularity of 

explicit representation of the solvent. 

Explicit solvent uses solvent models to simulate a more realistic and complete 

environment.  Given the fact that any molecule can be used as the solvent, a 

range of applications have been devised, from solvent-solvent to protein-solvent 

interactions. For the simulations of biomolecules, a solvent model that adequately 

represents a water environment is crucial to model the system accurately. The 

most used water model is the three-site transferable intermolecular potential or 

TIP3P water model. Devised by Jorgensen et al.121 in 1983, it consists of a three 

atoms molecular scaffold of an H2O molecule, using experimentally structural 

parameters.  

Several other water models have been developed122, such as TIP4P123 and 

OPC124. A more in-depth discussion on water models and their applicability will 

be carried out in Section 4.4. 

The biological environment needs to be reflected in the simulation for a more 

accurate picture of protein simulations. Therefore, ions are added to the 

simulation box to neutralise the simulation box and to emulate the free ions in a 

physiological concentration.  
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The addition of ions can vary significantly between applications. Study of ions in 

MD simulations shows that the different concentration and ionic composition does 

affect assessed states throughout the sampling run113.  

Usually, the addition of ions is made by calculating the overall charge distribution 

throughout the box. Upon inspection of the resulting electrostatic potential, a 

particular solvent component of the system, i.e. a specific water molecule, is 

swapped by a cation or an anion in areas which will minimise the electrostatic 

potential. With the ions added to the system, neutralising the simulation box, and 

– most commonly – mimicking physiological concentration of ions, the setup is 

completed. 

3.1.4 Structural energy minimisation procedures 

To assure the structural stability of the system, energy minimisation procedures 

are needed. Despite the method used to acquire the protein structure, 

(experimental procedures or computational modelling), the arrangement might 

have slight atomic overlays, which may result in an unstable molecular dynamic.  

If the total energy is too high, the resulting force vector will have a momentaneous 

high intensity. When such an event occurs, the integration cycle crashes, given 

the fact that the sudden motion created by this force may cause the system box 

to explode. 

The energy minimisation of the system prior to any MD simulations is one 

approach to reduce the probability of a system crash during the equilibration 

cycle. The two most commonly used methods of optimisation to a minimum in 

molecular mechanics are the steepest descent algorithm (also known as gradient 

descent), and the conjugate gradient algorithm. As discussed in Section 2.2, the 

configuration of the system may get trapped in a local energy well, so a more 

robust method of minimisation might be needed to sample closer to the global 

minimum. 

The steepest descent (SD)125 algorithm is a method based on the derivative of 

the variable to be optimised, in this case, the potential energy. As such, for every 

minimisation cycle, the 3N dimension position vector rn+1 can be calculated by Eq. 

15: 
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𝑟𝑛+1 = 𝑟𝑛 +

𝐹𝑛
𝑀𝐴𝑋(𝐹𝑛)

ℎ𝑛 
(15) 

 

Where rn is the starting position, 𝐹𝑛   is the force applied in that atom, 𝑀𝐴𝑋(𝐹𝑛) IS 

the maximum force applied in any atom and ℎ𝑛  is the atomic displacement for that 

cycle. Hence, this calculation goes over all atoms in the system, and the 

convergence criterion is either a predefined number of cycles or an upper 

threshold of the system highest force. 

This method is simple and often quick, but given the fact it requires only 

orthogonal gradients to be calculated, it is prone to get trapped within local 

energetic wells 125. This effect may be attenuated by tuning the parameter h (the 

maximum allowed displacement per cycle), with incremental decreases in a 

series of cycles to improve the final configuration. 

The second approach, conjugate gradients (CG), requires a more complex 

mathematical approach126.  Since SD uses a serial orthogonal approach, it may 

not be as efficient, since it will approach the solution in a zig-zag pattern125,126. 

Conjugate gradients use the fact that the gradient 𝛻 of the function f can be 

described as (Eq. 16): 

 𝛻𝑓(𝑥)  =  𝑄𝑥 −  𝑏 (16) 

 

Where Q is the Hessian matrix and b is the configurational vector where f has its 

critical point. In the case of MD application, f is the potential energy U and 𝛻𝑓(𝑥) 

is the force vector. The criterion of minimisation needs to be that the resulting 

force is a null vector, therefore (Eq. 17): 

 

 

  𝑄𝑥 =  𝑏 (17) 

 

Suppose a solution x* existing for Equation 17. This solution can be described as 

a linear combination of an orthogonal basis d, defined by vectors di, so (Eq. 18): 
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𝑥 ∗ =  ∑𝛼𝑖𝑑𝑖

𝑛

1

 
(18) 

 

At the minimum (Eq. 19): 

 
𝑄𝑥 ∗ =  𝑏 = ∑𝛼𝑖𝑄𝑑𝑖

𝑛

1

 
(19) 

 

Therefore, using the configurations of the system, the basis d can be defined.  

This method, since it scans the minima more efficiently, is more computationally 

demanding and slower than steepest descent. Regardless, it still is a derivative-

based method, since it depends on the Hessian matrix for calculation. Even 

yielding more accurate results than steepest descent on finding the closest 

minimum point, it may still get trapped into deep local minima.  

From the biomolecular standpoint, the configuration that the protein starts is often 

close to the global minimum, since it should be a representative of its native state. 

Regardless, problems with experimental data when resolving structures may 

result in erroneous side chains configurations, which minimisation procedures 

resolve. With the system energetically minimised, the thermodynamic variables 

of the system in question need to be defined.  

3.1.5 Thermodynamic macro variables 

As stated before, given the ergodic status of MD, accurately defining the 

characteristics of the single cell is crucial to predicting macromolecular system 

properties. Hence, the first variable that needs to be resolved is the temperature 

of the system. 

Theoretically, the minimised static model acquired after the minimisation 

procedure has a temperature of 0 K since there is no dynamical atomic motion 

assigned to it. To increase the temperature, one needs to assign a specific 

condition of the experiment.  
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These conditions are macro variables the ensemble will have as constants. For 

a temperature increase of the system (equilibration runs), the NVT (or canonical) 

ensemble is used. 

The NVT ensemble is a statistical ensemble that represents the probability of 

accessible states in a predefined configuration. In this case, the variables set as 

constants are the number of particles (N), the volume of the system (V) and the 

temperature (T). As such, the probabilities assigned to each microstate of the 

system are (Eq. 20): 

 

 

𝜌 =  
𝑒

−𝐸
𝑘𝑇

𝑍
 

(20) 

 

Where k the Boltzmann constant, T is temperature, E is the state energy, and Z 

is the partition function defined in Eq. 21: 

 
𝑍 =  ∑𝑒

−𝐸𝑛
𝑘𝑇

𝑛

1

 
(21) 

 

Since the probabilities in this ensemble do not depend on any other variable, i.e. 

pressure, NVT ensemble can be used for heating of the system in the 

equilibration phase. 

To be assured that the heating will not change nor affect its starting structural 

conformation, position restraints are applied. Often, these restraints are utilised 

via the addition of a harmonic potential on selected protein atoms, i.e. protein 

backbone113. 

Afterwards, a distribution of velocities is applied to the atoms to reach a 

macrostate temperature T in a restrained configuration that follows Eq. 22: 

 
∑

𝑚𝑖|𝑉𝑖|
2

2
⁄

𝑁

𝑖=1

 =  
𝑘𝑇

2
(3𝑁 − 𝑁𝑐) 

(22) 
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 Where mi is the mass and  |𝑉𝑖|  is the average velocity of atom i, N is the total 

number of particles, and Nc is the number of restrained components.  

This is a Boltzmann-Maxwell distribution of velocities which reaches the desired 

temperature127. A thermostat algorithm is applied to the system to update the 

temperature throughout the integration timesteps. The simplest method to 

change the temperature is by rescaling the velocity for every new step to the 

temperature T, so eq. 22 turns into Eq. 23: 

 

 
∑

𝑚𝑖|𝑉𝑖|
2

2
⁄

𝑁

𝑖=1

 →  ∑
𝑚𝑖𝛾|𝑉𝑖|

2

2
⁄

𝑁

𝑖=1

 
(23) 

 

 

Where γ is (Eq. 24): 

 
𝛾 =  √𝑇

𝑇𝑖
⁄  

(24) 

 

and Ti is the temperature of step i.  

Since the temperature rescales directly with the velocity, these methods do not 

allow thermal fluctuations through the system.  Based on velocity scaling, the 

Berendsen thermostat was devised. The idea follows that a weak coupling of the 

system updates the average temperature to a temperature bath. Because of the 

weak coupling, the temperature does not scale directly with the velocity 114,127. 

Therefore the 𝛾 for a Berendsen thermostat is (Eq. 25): 

 

 

𝛾 =  √1 +
∆𝑡

𝜏
(𝑇 𝑇𝑖

⁄ − 1) 

(25) 

 

where 𝜏 is a coupling term called “rise time” This term controls how strongly the 

system ‘feels’ the temperature bath. The problem of scaling methods is the fact 
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that they do not allow stochastic variations on the velocity since they scale it 

directly. Other thermostats address this problem, such as Nosé-Hoover 

thermostat114. Often these thermostats require more computational time but can 

simulate a proper canonical ensemble. A way of reaching a middle ground is to 

use a method called velocity rescaling128. This method, implemented in 

GROMACS, add a Wiener stochastic function to the 𝛾 term. Therefore, the 

velocity scaling becomes randomised, sampling a full canonical ensemble. This 

thermostat was the one used throughout this work, since its faster and generates 

the proper required ensemble. To simulate proper experimental procedures, 

molecular simulations are calculated in room temperature, with average 

temperature values varying within the  298-300K. The rise time is usually on the 

picosecond scale, which was assigned to this work the value of 0.1 ps. This 

means that the temperature should be updated every 50 steps of simulations, 

which allows the atoms to disperse the temperature evenly between their 

neighbour.  

3.1.6 Pressure equilibration and barostats 

After the stage of thermal equilibration, the volume re-configuration needs to be 

set. The reason is the box setup does not change in the NVT ensemble, so it may 

not be the most accurate volume for the box of interest. This arises the need for 

equilibration to set up the remaining macro thermodynamic variables, such as 

pressure. Another reason this next step is required is that, especially for a 

biomolecule, the experiments aimed to be modelled are done at the constant 

pressure environment. Hence, in the second stage of equilibration, we modify the 

variables defined as constants, switching from the NVT to the NPT ensemble (N 

– number of particles, P – pressure and T – temperature, also known as an 

isothermal-isobaric ensemble).   

The system needs to be coupled to a pressure control (barostat) as well as a 

temperature bath (thermostat).  The two most popular ways are the weak 

Berendsen coupling125 and the Parrinello-Rahman barostat129. The Berendsen 

coupling barostat functions similarly to its thermostat since it scales the volume 

of the box though time to attain a predefined pressure.  This barostat belongs to 
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a class called isotropic scaling since it does not change the overall shape of the 

box, just the size equally in all dimensions.  

The Parrinello-Rahman, on the other hand, does an anisotropic scaling and is 

calculated by the scaling differently atomic coordinates throughout the system. 

Again, this comparison between two barostats follows the same parallels for the 

thermostats: the Berendsen barostat, albeit simple, does not allow local 

fluctuations to sample a correct NPT ensemble, which Parrinello-Rahman does. 

Given the requirement to generate proper NPT ensemble, the Parrinelo-Rahman 

barostat is used and regulated to sampled states with a 1 bar pressure with a 2 

ps rescaling time. The rescaling time is the period the system requires to update 

the box characteristics to achieve the reference pressure, which requires a 

reasonable time to equilibrate and reorganize the particles within the box. Hence, 

it is usually 10 times slower than the rise time for the thermostat.  

3.1.7 Production simulations and analysis 

With the thermodynamic macro variables defined and system equilibrated, the 

dynamic ensemble can be calculated. As described before, the integration cycle 

drives the calculations. After the equilibration steps, the atomic harmonic 

restrains are disabled, and the protein can be properly sampled and simulated. 

The parameters and the methods are usually the same as the pressure 

equilibrations, in an NPT configuration, to be able to sample experimental 

properties of the system in question.  

Typically, to ensure that the system has been properly equilibrated, a series of 

metrics are used. The most common one is the root-mean-square deviation 

(RMSD) in the function of time and the root-mean-square fluctuation (RMSF)113. 

3.2 Force fields and parameter development 

A crucial problem in molecular mechanics is the sampling of molecular 

ensembles113.  MD simulations are restrained to a finite amount of time and may 

thus prevent the complete sample of the respective configurational space. This 
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inability also occurs given the fact that the energetic potential functions may be 

inaccurate and may bias the conformations that the system can acquire.  

In this section, it will be discussed the inner workings of the most used 

conventional force fields. 

3.2.1 Development of force-fields: parameters and functions 

There are several ways of decomposing the energetic description of a molecular 

system, given the fact that the classical Hamiltonians have the additive 

property113. The most common way to describe the molecular structure is to 

define a series of characteristics such as: 

• Partial atomic charge 

• Atomic radius and mass 

• Hybridisation and bond configuration 

• Structural energy for angles 

• Torsional energetic landscape  

The partial atomic charge, albeit a useful concept, is not a quantum mechanical 

molecular characteristic. Assigning partial charges is a tool to classically mimic 

the electronic distribution in a molecule caused by the atomic electronegativities. 

There are several ways to calculate the partial atomic charges for the complex 

molecules.  

Quantum mechanical (QM) methods calculate most of these atomic charge 

descriptors. For a better explanation on QM calculations for biomolecular 

simulations, they are usually divided into different layers of complexity: Hartree-

Fock (HF), density functional theory (DFT), and semi-empirical methods (SE).  

Hartree-Fock method (HF) focuses on solving the Schrödinger equation for the 

molecular wave function.  In 1927, D.R. Hartree developed a procedure which he 

called Self-Consistent Field (SCF)130, to approximate the molecular wave function 

by assigning a linear combination of atomic orbitals for the time-independent 

Schrödinger equation. Two approximations that allowed the solution of the 

wavefunction problem is the Born-Oppenheimer and the lack of electron motion 

correlation.  
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The Born-Oppenheimer approximation dictates that the nucleus motion is not 

affected by the electronic movement, given the fact that the nucleus is 1000 times 

heavier than the electron. Therefore, the electron-nucleus motion is decorrelated. 

Hence, the solution of the problem can be narrowed down to electronic motion 

only. Along with that, HF decorrelates the motion between electrons, since the 

cross-motion integrals are analytically unsolvable131. 

These approximations allow us to calculate the electronic distribution of a 

molecule, within a range of accuracy, but the decorrelation approximation brings 

some setbacks: Given the fact that electronic interactions are neglected, there is 

an undervaluation of the emission energetics, and orbital distribution are often 

misplaced131. However, HF has a reasonably accurate charge fitting for organic 

molecules, since they are usually calculated in their electronic ground state and 

omission of the electron correlation effects is not significantly detrimental. 

Density functional theory (DFT) is hailed as a highly accurate method for QM 

calculations. It relies on the concept that the electronic properties of a many-body 

system could be uniquely dependent on its electron density. With the theoretical 

footing based on two Honenberg-Kohn (H-K) theorems, it has been frequently 

used for computational ab initio molecular studies. The first H-K theorem says 

that an electron density yields a unique set of ground-state properties. Hence, the 

ground-state calculations can be done using electron density functions which 

reduces the 3N dimensional problem to a continuous distribution. To couple with 

that, the second H-K theorem says that the ground state can be acquired by 

minimising the energy functional assigned to the molecule131. 

Another way to calculate partial atomic charges is through semi-empirical 

approaches, which often hail a high level of accuracy for biomolecular 

applications (i.e. organic fragments, small molecules of biological interest). 

Semi-empirical calculations use approximations to emulate molecular orbitals. 

John Pople and coworkers introduced these methods during the 1970s132. Their 

work introduced methods such as NDDO (neglect of diatomic differential overlap). 

The goal of these methods was to fit reduced orbitals to ab initio calculations, 

minimising the computational power requirements. Nowadays, these methods 

are often replaced by the second generation semi-empirical QM calculations. 
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Based mainly on the NDDO approach, several improved methods were created, 

such as AM1133, PM3134 and PM6134. The second-generation semi-empirical 

quantum mechanical calculation methods are more accurate, given the 

improvement on computational power, which allows a higher number of 

parameters to be used on said models.  

On a usage point of view for organic molecules, the Austin model 1 (AM1) is one 

of the most used, since it is frequently used for calculations of charges using AM1 

with bond charge correction (AM1-BCC), developed by Jakalian et al. 135. AM1 is 

based on Pople’s work using NDDO by parametrising the repulsion between 

close atoms within the electronic structure. The BCC (bond correction charges) 

is a set of additive terms to correct the AM1 population charges. Given the fact 

the AM1-BCC was trained on a set of organic molecules, it describes the 

electronic behaviour of charges accurately. However, it is not well suited for 

calculation of charges of metal-organic complexes. 

Usage of QM methods allows parametrisation of the valence structure using 

structural optimisation in the ground state. Since throughout an MD simulation, 

the hybridisation configuration does not change, the right structure must be built. 

Optimisation algorithms can use several different QM levels of theory to assess 

the right scaffold of a molecule and to calculate equilibrium bond lengths and 

angles values.  

On classical mechanics, the bonds are modelled using a harmonic oscillator 

potential function, which requires a parameter that represents the strength of the 

said bond. This parameter is called the bond spring constant (k). There are 

several methods to obtain bond k, which does not rely on ab initio QM 

calculations. One of such ways is to use the acquire using solution nuclear 

magnetic resonance113 (NMR) experiments. 

Similar to bonds, the angle energetic functional can be modelled using a 

harmonic potential function as well, assigning a force spring constant k for the 

angle energetics, and a starting angle of equilibrium for the respective 

configuration. The angles force constants can also be calculated similarly to the 

bonds, either via QM or experimental means136. 
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As explained in Section 2.4, the overall structural states accessed in a protein 

structure are mainly caused by the accessible Φ/Ψ backbone torsional dihedrals 

per specific residue. As such, the molecular torsions should be modelled in more 

details, requiring a sophisticated function that can describe its periodicity, as 

shown in Figure 21. Each of the Fourier terms carries a force constant Vn, which 

the strength of that function regarding the other terms. 

 

Figure 21: Example of successive addition on the Fourier series for a description of dihedral 
potential. Made by the author. 

Fourier series is a mathematical method able to describe different torsional 

configurations by using different periodicities. A known way to calculate these 

terms and to parametrise torsions are to scan the torsional landscape using an 

accurate QM theory level and from the obtained surface, calculate the vibrational 

frequencies via Fourier transform. 

Another function that is crucial for the molecular description is the out-of-plane 

(improper) dihedral. Improper dihedrals describe atoms that are required to stay 

within a specific plane (i.e. aromatic rings). This is also vital for protein 

backbones, given the fact that the peptide bond between residues is planar.  

Based on these functions, there are a series of different force fields available to 

the scientific community nowadays. The most popular ones include  AMBER 

(Assisted Model Building with Energetic Refinement)137, OPLS (Optimised 

Potential for Liquids Simulations)138, GROMOS (Groningen Molecular 

Simulation)139, and CHARMM (Chemistry at HARvard Macromolecular 

Mechanics)140.  
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The difference between these forcefields are on how the parameters were 

acquired and to which experimental data they were fitted. An example that will be 

discussed in Sections 4.5 and 6.1 is the differences between AMBER03ws and 

AMBER99SB-ILDN.  

Given the fact that benchmarking of new force fields is biased towards the 

experimental data available to use to evaluate the results, the applicability of 

different force fields varies. The result is a series of force fields for various 

applications. Since the most accessible data for biomolecules are in the 

condensed state (i.e. for proteins, near-native folded conformations) most of the 

force fields are focused on replicating folded protein results. For a time, this 

results in a lack of force fields that can replicate data for different conformational 

states accurately of biomolecules like fibril-like structures, molten globule-like 

conformations, or unfolded configurations 141. 

Alongside with the right protein parametrisation, the accuracy of the results will 

also depend on the capacity of the environment to interact with the solute in a 

satisfactory way. Hence, how the solvent is described is pivotal for a proper 

simulation and to be sure of how reliable the generated data is115.   

3.3 Methods for analysis of molecule dynamics 

3.3.1 Root-mean-square deviation 

Root-mean-square deviation (RMSD) metric is used to analyse the 

conformational changes of a molecular group through time in comparison to a 

reference configuration. RMSD is defined as (Eq. 26): 

  

 

𝑅𝑀𝑆𝐷 (𝑡) = √
1

𝑁
∑(𝑥𝑖(𝑡) − 𝑥𝑖̅)2 + (𝑦(𝑡) − 𝑦𝑖̅)2 + (𝑧𝑖(𝑡) − 𝑧𝑖̅)2

𝑁

𝑖=1

 

(26) 

 

Where N is the number of atoms, and 𝑥𝑖̅, 𝑦𝑖̅ and 𝑧𝑖̅ are the reference positions for 

the atom i.  
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3.3.2 Root-mean-square fluctuation 

Root-mean-square fluctuation (RMSF) is used to analyse the average atomic 

fluctuation in comparison to a reference configuration. It is defined as (Eq. 27): 

  

 

𝑅𝑀𝑆𝐹𝑎𝑡𝑜𝑚 = √
1

𝑇
∑(𝑥𝑖 − 𝑥̅̅̅̅ )2 + (𝑦𝑖 − 𝑦̅̅̅̅ )2 + (𝑧𝑖 − 𝑧̅̅̅̅ )2

𝑇

𝑖=1

 

(27) 

 

Where T is the total number of frames of the trajectory, and 𝑥𝑖̅, 𝑦𝑖̅ and 𝑧𝑖̅ are the 

reference positions for the atom i. RMSFs are often calculated for a group of 

atoms (i.e. residues) for the analysis of local spatial fluctuation. 

3.3.3 Principal component analysis 

To extract the essential dynamics of a molecule in a MD simulation, principal 

component analysis (PCA) can be used. By calculating the 3Nx3N matrix of 

average covariance C, where N is the number of atoms in the molecule (Eq. 

28): 

 𝐶 = 〈(𝑋𝑖 − 𝑋𝑖̅)(𝑋𝑗 − 𝑋𝑗̅)〉 (28) 

 

Upon diagonalisation of matrix C by using an orthonormal transformation R the 

diagonal matrix of eigenvalues can be obtained (Eq. 29): 

 𝑅𝑇𝐶𝑅 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2 …𝜆3𝑁) (29) 

 

Where the columns in R is the eigenvectors and 𝜆𝑖 are the eigenvalues of C, 

respectively. These eigenvectors are known as the principal components (PC) of 

the trajectory, and they represent directions which the molecule had the largest 

correlated motion. The trajectories projection into the PCs can be obtained via 

(Eq. 30): 

 𝑝(𝑡) =  𝑅𝑇(𝑟(𝑡) − 𝑟̅) (30) 
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Where p is a position matrix as a function of time projected into the new basis R. 

3.4 Interaction evaluation methods 

Aside from defining the energetics of molecular dynamics, these energy 

descriptors are used in different applications, such as molecular docking and 

interaction energetics for MD. 

3.4.1 Molecular docking 

Docking methods are used to understand and predict molecular interaction 

between partners.  As a primary application, the interaction between a protein 

receptor and a drug-like organic molecule is calculated using a preselected 

energy scoring function. Commonly, the sum of the intermolecular electrostatic 

component and its Lennard-Jones component between the components is used 

as the scoring function (Eq. 31): 

 

 
𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = ∑ ∑

𝐶𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗𝑗−𝐿𝑖𝑔𝑖−𝑅𝑒𝑐
 ∑ ∑ 4𝜀(

𝑟𝑚
𝑟𝑖𝑗12

12

𝑗−𝐿𝑖𝑔
−

2𝑟𝑚
6

𝑟𝑖𝑗6𝑖−𝑅𝑒𝑐
) 

(31) 

 

However, in Equation 31, the indices i and j are comprised only by the inter-

molecular atoms, resulting in the vacuum interaction energy between two 

components.  Since this calculation can be done fast, they are used for high-

throughput virtual screening of databases of drug-like ligands142. 

The issue with these calculations is the conformational space that both interacting 

components can achieve. Flexible ligands with several rotatable bonds may have 

a substantial amount of conformations which needs to be tested against a 

considerable number of receptor configurations. Usually, these calculations 

consider the receptor rigid to reduce the amount of computational power required. 

For the ligands, which typically is a small organic molecule, the algorithm 

generates a set of rigid conformers, emulating ligand flexibility. Figure 22 

exemplifies this procedure.  
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Figure 22: Molecular docking of molecules into protein receptors – the description of the ligand uses classical 
force-fields, and a set of conformers is generated prior docking, and the best-evaluated conformers are 

selected. Made by the author. 

 

The AMBER scoring function is used by several docking software, like 

Autodock143 and UCSF Dock 6144. Several other docking programs have been 

developed, including open-source (Vina) and commercial such as MOE and 

SeeSAR. SeeSAR uses a knowledge-based scoring function named HYDE145, 

which uses a regression model scoring function to calculate interaction and 

desolvation energy in a fast and reliable way. 

Alongside with the rigid body approximations, molecular docking has another 

drawback: it is a single point calculation. This means that it does not use a 

dynamical ensemble, but a single conformation to a single calculation. Albeit fast, 

molecular docking loses the information on dynamics and it is not considered a 

free energy of binding. One of the simplest methods to calculate the free energy 

of binding is MMPBSA113,146. 

3.4.2  Molecular Mechanics Poisson-Boltzmann surface area (MMPBSA) 

interaction energy 

In MMPBSA framework, two components need to be calculated for a proper 

assessment of the free energy values related to a thermodynamics event: the 

enthalpy change ΔH and the entropy term ΔS (Eq. 32). MMPBSA is a standard 
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method to calculate interaction free energetics in complexes. It decomposes the 

ΔG as: 

 

 ΔG =  ΔH − TΔS =   Δ𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛+Δ𝐸𝑑𝑒𝑠𝑜𝑙𝑣−𝑝𝑜𝑙𝑎𝑟 

                                           +Δ𝐸𝑑𝑒𝑠𝑜𝑙𝑣−𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 + 𝑇Δ𝑆𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒𝑠 

 

(32) 

 

Where Δ𝐸𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the inter-molecular vacuum interaction, Δ𝐸𝑑𝑒𝑠𝑜𝑙𝑣−𝑝𝑜𝑙𝑎𝑟 is the 

polar desolvation energy, Δ𝐸𝑑𝑒𝑠𝑜𝑙𝑣−𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 is the nonpolar desolvation energy 

and Δ𝑆𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒𝑠 entropy calculated via normal modes, and T is the temperature 

of the system. 

To solve the free energy calculation, it uses only the simulation of the complexed 

state. Hence, it is known as an end-point free energy method. Similarly, to the 

molecular docking, MMPBSA calculates the interaction energy between two 

bound molecular entities; however, it does so for all frames of a trajectory. The 

procedure to extract free energy is exemplified in Figure 23. 

 

Figure 23: The thermodynamic cycle used in MMPBSA. Since the binding event is often a 
reversible process, the thermodynamic process can be described in a purely empirical way: the 
complex Is moved from a solvated environment to vacuum. The energetic cost of this 
displacement is the receptor-ligand complex desolvation energy. From the complex vacuum state, 
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the components of the system are dissembled, obtaining the interaction energy between system 
constituents. Finally, the separated pieces are moved back into a solvated box, resulting in the 
solvation energy per component. The sum of all these terms is the overall binding free energy in 
solution. Extracted from 147 

 

To calculate the polar desolvation energy, MMPBSA used the Poisson-

Boltzmann equation (Eq. 33): 

 

 ∇ ⋅ ε(𝑟 )∇ϕ(𝑟 ) = −4πρ(𝑟 ) (33) 

 

where ε(𝑟 ) is a predefined dielectric distribution function for the solvated 

molecular system, ϕ(𝑟 )is the potential distribution function, and ρ(𝑟 )is the fixed 

atomic charge density. This equation is either solved by finite-difference126 

solution or by the Generalised-Born linear approximation148. By solving it, the 

ΔGpolar can be extracted from the electrostatic density and its related energy 

potential. 

Moreover, to calculate the apolar desolvation energy, a linear empirical formula 

is used to emulate the energy cost do solvate-desolvate apolar regions. The most 

common is the accessible surface area calculation (Eq. 34) 

 𝛥𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = 𝛾 ∗ 𝑆𝐴𝑆𝐴 +  𝑏 (34) 

 

SASA is the accessible surface area for a respective atom. The surface tension 

γ and the correction term b are usually set to be constant for all solute molecules; 

for example, these are 0.00542 kcal/mol-Å2 and 0.92 kcal/mol, respectively.  

To obtain the entropy term Δ𝑆𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒𝑠 , an approximative method is used.  

One of the most used methods is the normal modes (NM) approximation.  This 

method is based on calculating the vibration dynamics of the molecule. Each 

vibration is then decomposed as a harmonic one- or two-dimension oscillator. 

With this simplification, the entropy can is calculated using the Boltzmann 

weighted entropy equation (Eq. 35): 
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𝑆 =  −𝑘𝑏 ∫𝜌̃(𝑝, 𝑞)ln (𝜌̃(𝑝, 𝑞)) 𝑑𝑞𝑑𝑝 

(35) 

 

where S is entropy, 𝑘𝑏 is the Boltzmann factor, 𝜌̃(𝑝, 𝑞) is the normalized 

probability of the decomposed system within the momentum and configurational 

phase space.  NM uses a local decomposition for entropy calculations, which may 

result in high fluctuations, slow convergence and inaccurate results.  

Another method used is the quasi-harmonic (QH) approximation. QH uses the 

concept of essential dynamics of sampled trajectory. The ensemble essential 

dynamics are calculated by diagonalizing the interatomic correlation matrix, and 

each of the obtained macro-dynamics is approximated as a harmonic potential.  

From this, the procedure is similar to the earlier method. A representation of each 

method related to the phase space is shown in Figure 24.  

 

Figure 24: Differences between approximations used by normal-mode (NM) and quasi-harmonic 
(QH) methods: NM probes local vibrations within the configurational space, approximating each 
of them as a harmonic oscillator. QH probes the overall extent of the phase space, calculating 
over states that can be accessed for the temperature of the simulation.  

 

MMPBSA has shown success in several different cases119,149,150. However, the 

approximative nature of it results in a relatively inaccurate method for binding free 

energies.  

Another class of methods for calculation binding free energies is by using 

enhanced sampling techniques113,125,151.  Examples of enhanced sampling 



66 
 

techniques are free energy perturbation, metadynamics, adaptative biasing force 

and umbrella sampling. They rely on sets of simulations to scan a predetermined 

potential energy surface. Umbrella sampling was used in this work to study 

ligand-receptor binding energy. 

3.4.3  Umbrella sampling 

Umbrella sampling belongs to a class of enhanced sampling method known as 

bias driven techniques152. Umbrella sampling is defined by generating a biasing 

potential which is a function of a single reaction coordinate, resulting in a system 

Hamiltonian as (Eq. 36): 

 

 𝐸𝑆𝑦𝑠𝑡𝑒𝑚 = 𝐻𝐹𝐹 + 𝜔(ξ) (36) 

 

where 𝐻𝐹𝐹 is the energy of the system and 𝜔(𝛾) is the biasing potential as a 

function of the 𝛾, the reaction coordinate related to the predefined collective 

variable (CV). 

With a sampled reaction coordinate, a series of simulations are carried for each 

sampled window (Figure 25). Hence, the average force exerted per umbrella 

window can be calculated via Eq. 37: 

 

 
〈−∇(E(r))〉 =

∫ exp[−𝛽𝐸(𝑟)]−∇(E(r))𝑑𝑁𝑟

∫ exp[−𝛽𝐸(𝑟)] 𝑑𝑁𝑟
    

(37) 

 

By integrating this average force throughout the reaction coordinate ξ, the PMF 

landscape can be calculated by integrating over the mean forces of the pathway 

(Eq. 38): 

 

 
𝐴(ξ) =  ∫ 〈−∇(E(r))〉𝑑

ξfinal

ξinitial

ξ 
(38) 
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The energy landscape 𝐴(ξ) holds the binding energy information related to this 

process. Figure 25 shows a representation of the sampled windows and a related 

final PMF curve. 

 

Figure 25: PMF representation and its related windows. 

 

Regardless of the method, they all require accurate force fields and solvation 

models to yield meaningful results.  

3.5 Water models compatible with most commonly used force 

fields 

There are several ways to model the effect of the solvent in biomolecular 

simulation, but they can be assigned to two different classes, implicit and explicit 

solvation, as explained in Section 4.2.  

Explicit solvation is the usage of molecular water models that explicitly fill the 

simulation box. These water models can be divided into three main categories: 

empirical, polarizable and ab initio models. These three classes and their 

respective advantages and disadvantages can be seen in the table 
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Table 3 Description of the water models reviewed by Ouyang and Bettens122. 

Class Application Advantages Disadvantages Examples 

Empirical Large systems, such 

as proteins and 

materials for studies 

on atomic scales. 

Fast, simple to 

parametrise, high 

transferability between 

systems 

Inaccurate water-water 

interactions and bulk 

water parameters. No 

changes for electrostatic 

parameters. 

TIP3P, 

TIP4P, 

TIP4P/2005, 

OPC, TIP5P 

Polarizable Smaller molecules, 

such as ligands and 

smaller proteins for 

biological systems. 

Accurate electronic 

distribution and its 

dynamical changes in 

different environments 

Requires a higher 

computational load, 

which constraining the 

maximum size. 

ASP, 

SAPT, 

AMOEBA 

Ab-Initio Water-water 

interactions and full 

analysis of electronic 

distribution of water 

High accurate 

dynamics regarding 

water properties, 

useful for studies of 

quantum properties of 

water. 

Requires an extreme 

amount of 

computational power in 

comparison to the other 

2 models, which does 

not scale for large 

biological systems. 

CC-pol, 

MB-Pol 

 

Empirical models are based on water structural and physicochemical 

characteristics, some of the most known families are the SPC (Single Point 

Charge)153 and the TIPs (Transferable Intermolecular Potential functions)154; 

which would later be modified to TIPnP series ( nP standing for n-Point).  

One of the main characteristics of this class is the fact that the partial charges are 

static. Therefore, there is no momentaneous atomic dipole change. Hence, the 

partial charge is represented by a fixed value, resulting in an inaccuracy of the 

electronic effects which emerges from the water interactions. 

On the other hand, using this class of waters results in a massive reduction in 

computational use for each simulation; therefore, it became the most popular 

class to be used in biomolecular mechanics applications. 

Obtaining water parameters requires structural information such as the H-O-H 

angle, the bond distances and their atomic specifications. The SPC family uses 

an angle of 109.5° and an H-O length of 1Å. These are the theoretical ideal values 

for a single water molecule in vacuum. From the SPC basic model, several 

different models were generated with varying degrees of success, such as the 

SPC/E155 and SPC/Fw156. 
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Figure 26: Representations of 4 scaffolds of water models – TIP3P, TIP4P, TIP5P and SPC. The 
M is the TIP4P dummy atoms, and L represents the 2 extra points in the TIP5P model. 

 

The TIPnP family relies on dummy atoms to represent electronic displacements 

on the water molecule. Similar to SPC, the TIP3P121 models rely on three atoms 

to describe the water structure. However, the structural parameters are different: 

TIP3P uses the average H-O-H angle given by NMR studies of 104.52° with a 

shorter H-O distance of 0.957Å in comparison to the SPC scaffold. Because of 

this agreement, TIP3P gained significant popularity among the computational 

chemistry community.  

Because of this popularity, TIP3P has been modified throughout the years, not 

only in the internal parameters (i.e. TIP3P/Fw156) but also adding dummy atoms 

to represent electronic configurations better, resulting in the TIP4P123 and 

TIP5P157 models. 

The TIP4P water model adds a virtual dummy atom (i.e. a massless point charge, 

or an M-site) within the H-O-H plane (Figure 26). This displaces the negative 

charge position, placing it closer to the hydrogens, reducing the dipole moment. 

From this, a series of models were developed, namely, the TIP4P/2005158, which 

has modifications of the LJ parameters to improve water interactions, TIP4P-

Ew159, which applies another set of modifications to improve on the bulk water 

parameters in comparison to TIP4P/2005.  

Continuing in the TIPnP family, Mahoney and Jorgensen developed the TIP5P.  

This water model uses M-sites to mimic the lone pairs surrounding the oxygen 
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atom in the water (Figure 26). This generated a series of water models such as 

TIP5P-Ew160 and TIP5P-2018161. 

It is essential to discuss the creation of the OPC (optimised placed charge) water 

model124, since the idea behind the parametrization or the OPC charges 

influenced the creation of CAIPi3P. This water model was created on modifying 

the water charge positions to fit the bulk water experimental data better. 

Polarisable models rely on semi-empirical approaches to add the 

induction/polarisation effect. Often, these are incorporated explicitly via dipole-

dipole polarizability, using perturbation theory to treat intermolecular forces. 

Since this class uses a more refined theory level, it requires more computation 

power, setting an upper threshold on the system size. Notable water models 

included in this class is the ASP family162, the SAPT family163, and the AMOEBA 

family164.  

Nowadays, one of the new classes of water models is the ones based on ab initio 

data. Using large datasets of energetic values calculated by QM methods, these 

highly accurate methods require large amounts of computational power, not 

being used often for biomolecular simulations122. 

As a criterion of quality for the model, bulk water parameters are often calculated 

(i.e. density, dipole moment, dielectric constant, the heat of vaporisation, first 

peak radial density distance between oxygen atoms, diffusion coefficient, isobaric 

heat capacity, thermal expansion coefficient, isothermal compressibility). For the 

cited empirical water models, OPC has the best agreement with most of the most 

calculated water parameters124. Regardless, TIP3P is still one of the most used 

water models, even showing significant deviation between experimental bulk 

properties and calculated ones.  

This deviation is a reflection on the static classical structure of the water model, 

which fails to represent the changes in the electronic clouds caused by the 

environment. The TIP4P class fails as well to calculate bulk water parameters 

accurately, nonetheless, shows a significant improvement on the TIP3P and SPC 

bulk water values. 
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Within this paradigm, it is known that the water heavily influences the obtained 

ensembles in MD simulations, since it modulates the overall conformations and 

the final energetic landscape. This is particularly important for the IDP class of 

proteins, given their unique energetic landscape. 

3.6 Recent advances in molecular modelling of IDPs and IDRs 

Given the challenges that intrinsically disordered proteins bring into structural 

biology and biochemistry, computational methods can be crucial, helping 

decipher their molecular configuration at the atomistic level of detail and function. 

However, MD weaknesses get more problematic when applied to proteins with 

less organised structures.  

First, the simulation timescale required to emulate large conformational changes 

in large IDPs is computationally unfeasible. Therefore, methods that enhance 

sampling or change the resolution of the system (i.e. coarse grain113) are crucial 

to understanding the IDPs dynamics within a longer timescale165.  

Regardless of the relative success of IDP molecular studies using MD, using 

different, often simplified methods166, can help to overcome the sampling 

problem, such as Gō models167, metadynamics168 and Monte Carlo ensemble 

generation169. Within this scope, the accuracy and reliability of the generated 

ensembles will be as good as the quality of the mathematical modelling tools 

used to define the quality of molecular states.  

The force field accuracy is the second challenge faced by molecular simulations. 

Their resulting energy landscape is usually inaccurate for simulations of protein 

domains lacking well defined secondary structures. Developments have been 

made on how the system energy is calculated to overcome the biasing problem: 

energetic functions to evaluate generated ensembles and new parameters to 

improve the accuracy of said established force fields. 

Modelling novel energetic functions are very challenging.  Typically, these new 

functions rely on QM approximations or empirical modifications on interactions 

functions. Examples of this are the soft-core interaction potential170, and well 

established but not often used functions like flat-bottom interaction113 and Morse 

potential113. When applied to IDPs, one of the most successful approaches is the 
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grid-based CMAP correction171. When applied to CHARMM and AMBER force 

fields, it yielded exciting results. CMAP is based on applying correction terms to 

backbone φ-ψ torsion calculations. Using this approach, Ye and colleagues 

generated the AMBERFF99idp force-field, which applies CMAP corrections to 

specific residues171. Later, they extended the concept to all residues, creating the 

AMBERFF14idp172. For the case studies used on their work, the results showed 

reasonable improvements, especially for proteins bearing intrinsically disordered 

regions. 

On the other hand, improvement of parameters is often based on the most used 

functions (discussed in Section 4.2). These modifications affect sets of atomic 

and molecular descriptors to improve a specific characteristic of the system.  

The goal of the scientific community regarding molecular mechanical force fields 

is to generate a generalist force field which could accurately sample all kinds of 

proteins; folded and disordered alike. Generalist force fields developed to date 

fail to grasp the dynamics of overly flexible regions. Approaches to solving this 

problem came for different types of force fields. For AMBER, the AMBER03w173 

and AMBER03ws174 force fields are often used to simulate stretched 

conformations of flexible proteins. Mainly, their modifications rely on changing LJ 

parameters, modifying how water-protein interaction happens. Best and 

colleagues achieved a consistent improvement on simulations for IDPs by 

multiplying the well depth parameter ε between the water oxygen the protein 

atoms by a constant factor174. The results are promising for full IDPs, but for 

structured proteins bearing intrinsically disordered regions (IDRs), the secondary 

structure within the structured domains often falls apart, showing inaccuracies for 

highly structured proteins. To overcome this issue, Hybrid-FF force field 

framework was created in this work, which assumes different structural 

parameters between regions containing secondary structures, and regions purely 

comprised by unstructured loops. How it was developed and the benefits it 

generates will be discussed in Chapter 5. 

CHARMM family has its series of force fields tailored for IDPs.  One of the cases 

with the most successful history is the CHARMM36m175. Both AMBER03ws and 

CHARMM36m and force fields were able to generate correct results for IDPs in 

comparison to experimental data. 
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Alongside the accuracy of the force-field parameters, how the solute-solvent 

interactions are parametrized profoundly affect the final ensemble. Therefore, 

several specific water models were created to be used alongside these force 

fields.  

The TIP4P water scaffold is often the basis for generating new models for 

biomolecular MD simulations. Being highly compatible with the scale parameters 

from AMBER03ws, the TIP4P/2005 is frequently used for IDPs simulations. The 

usage of the AMBER03ws+TIP4P/2005 scales the interaction within the order of 

1.1 times the usual water-protein dispersion interaction, resulting in a better 

agreement for the chain dimension of the ACTR174 and used for benchmarking in 

several studies176. 

This model was the basis for the TIP4P-D water model, which restrains the water 

O ε, resulting in better electrostatic interaction between protein-water177. 

Nonetheless, Henriques et. al. showed that TIP4P-D did not yield significant 

improvement for the simulation of histatin5 in comparison with the TIP4P/2005186. 

A drawback of the TIP4P model is the addition of a dummy atom, which increases 

the computational system requirement. Based on the modifications of the force 

fields and the TIP4P models and their specific modifications, CAIPi3P model was 

developed in this study, which does not require a dummy atom and has increased 

electrostatic interaction with the protein. 

In the next chapters, the CAIPi3P model and Hybrid_FF force field will be 

discussed, and their result compared to a series of water models and protein 

force fields. 
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Chapter 4 - Development of the CAIPi3P water model 

As outlined in Chapter 2, intrinsically disordered proteins (IDPs) exert important 

roles in cellular signalling, growth and molecular recognition events. Due to their 

high plasticity and a lack of fixed tertiary structure, IDPs are very challenging for 

experimental structural studies. Hence, all-atom molecular dynamics (MD) 

simulations are widely employed to provide detailed atomic insight in IDPs 

dynamics governing its functional mechanisms. However, the current generalist 

force fields and solvent models are unable to generate satisfactory ensembles 

for IDPs when compared to existing experimental data.  

This chapter describes the development of the Charge-Augmented 3 Point water 

model for Intrinsically disordered Proteins (CAIPi3P). CAIPi3P has been 

generated by performing a systematic scan of partial atomic charges assigned to 

the popular molecular scaffold of the three-point TIP3P water model. The results 

showed that explicit solvent MD simulations employing CAIPi3P solvation 

improved the SAXS scattering profiles considerably for three different IDPs. Not 

surprisingly, this improvement was further enhanced by using CAIPi3P water in 

combination with the protein force field parametrised for IDPs. The work 

presented in this chapter also demonstrated the applicability of CAIPi3P to 

proteins containing globular (structured) as well as intrinsically disordered 

regions/domains, which will be discussed further in Chapter 6. The results 

highlight the crucial importance of solvent effects for generating molecular 

ensembles of IDPs to reproduce the experimental data available. Hence, it is 

concluded that the newly developed CAIPi3P solvation model is a valuable tool 

for molecular simulations of intrinsically disordered proteins and assessing their 

molecular dynamics. 

4.1 MD simulations, solvation effects and IDPs 

Atomistic molecular dynamics (MD) simulations can reliably assess dynamic 

properties in equilibrium structures of molecular systems of interest, given an 

ergodic sampling and an accurate force field. The force field parameters are 

calibrated to reproduce properties measured by experiments or simulations. 

Considering the immense complexity of macromolecular systems, and sensitivity 
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of weak (hydrogen-bonding and dispersion) non-covalent interactions in the liquid 

phase, contributing to intra-solute, solute-solvent and solvent-solvent 

interactions, even minor inaccuracies in models and their parameters can 

adversely impact the results of atomistic molecular simulations, especially of 

challenging systems such as intrinsically disordered proteins (IDPs). IDPs are 

elusive to experimental studies; thus, atomistic simulations are a crucial tool to 

provide detailed insight into their complex structure, dynamics, and function. 

Unfortunately, computational studies of IDPs are often found to disagree with 

experimental data. Free energy landscape of IDPs is inverted compared to the 

structured proteins49, which makes computational studies focusing on IDPs very 

challenging. Discrepancies between theory and experiments are commonly 

attributed to either force field biases178,179 or insufficient sampling. This motivated 

the development of molecular force fields designed to handle IDPs180–182 and to 

apply enhanced sampling techniques183–187 or restraints derived from 

experimental data (e.g. solution NMR) in simulations of IDPs186,188,189.  The 

outcomes of those efforts were successful to various extents. However, IDPs 

simulations still require parameter improvements186,190–193. 

IDPs have disordered structures in aqueous solution, and while either dehydrated 

or interacting with lipid membranes, they exhibit increased amounts of ordered 

secondary structures141. This clearly shows that IDPs are highly sensitive to 

solvation effects194,195 and suggests that focusing on improvement of the water 

models used in the simulations may offer a more accurate yet computationally 

feasible framework for reliable simulations of this class of proteins. 

The complexity of the water properties, combined with multiple possible levels of 

approximation, has led to the proposal of dozens of water models. Simplified 

classical water models, such as widely popular three-point SPC153 and TIP3P121 

models, are currently indispensable components of atomistic MD toolkits. 

Nevertheless, despite several decades of extensive research, these models are 

still far from perfect.  To start, none of them accurately reproduces the critical 

properties of bulk water196. 

In simulations of IDPs, the best-performing water models have a charge 

distribution with a large dipole moment, a significant quadrupole moment, and 

negative charge out of the molecular plane, to give symmetrically ordered 
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tetrahedral hydration197. It has been observed that the dipole moment calculated 

for TIP3P model is too low, resembling of a dipole moment of an isolated water 

molecule in vacuum (2.3 D), rather than of a dipole in the liquid bulk state (~3 D). 

The exact value of the liquid water dipole is still debated; however, in this study 

relied on the results of the most recent first-principles simulations of liquid state 

water. To improve the properties of the TIP3P water model, it seemed crucial to 

adjust the dipole moment by augmenting partial atomic charges of the water 

molecule (Figure 27). The performance of such an improved model denoted as 

Charge-Augmented 3 Point Water model for Intrinsically disordered Proteins 

(CAIPi3P).  

 

Figure 27: Partial charges for TIP3P and CAIPi3P water models. 

 

CAIPi3P model has been subsequently tested on model IDPs: histatin 5, R/S-

peptide, and partially disordered At2g23090 protein from A. thaliana. It has been 

observed that the dipole moment adjustment dramatically improved the 

performance of the model, in terms of reproducibility of experimental data for 

IDPs, without negatively affecting the performance and data reproducibility for the 

folded regions/domains of partially disordered systems or the ‘structured’ globular 

proteins for both lysozyme and ubiquitin, which will be shown in the next section.   

4.2 Methodology 

To assess the role of the solvation effects in reproducing the experimental 

parameters of IDPs, and to evaluate the applicability of CAIPi3P model to studies 

of “mixed” ordered-disordered systems, three models were selected (histatin 5176 

and R/S peptide175) and At2g23090, which is partially disordered. To determine 
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the performance of the model, comparisons were made between CAIPi3P and 

established water models.  

Fully extended conformations of histatin 5 (amino acid sequence: 

DSHAKRHHGYKRKFHEKHHSHRGY)  and R/S-peptide (amino acid sequence: 

GAMGPSYGRSRSRSRSRSRSRSRS) were built using UCSF Chimera198 

package since their experimental atomistic structures were not available. The 

conformational ensemble of A. thaliana At2g23090 (PDB code: 1WVK), obtained 

by solution NMR, was used to calculate the small-angle X-ray scattering (SAXS) 

distribution and radius of gyration. The lowest-energy conformer was selected as 

a starting point for all-atom molecular dynamics (MD) simulations.  

For all systems investigated, missing hydrogen atoms were added, and several 

combinations of protein and water parametrisations were chosen, as summarised 

in Table 4. All simulations were performed using the Gromacs 5.3 suite199. The 

combinations of the force field and water models used are summarised in Table 

4. For each combination, a 1 nm cubic box was centred on the structure.  

The system was solvated with the necessary number of the water molecules to 

fill the protein simulation box. Next, sodium and chloride ions were added to the 

system at a concentration of 0.1 M to neutralise the simulation unit and to mimic 

the “physiological” salt concentration. The bonds were constrained using the 

LINCS algorithm200, setting a 2 fs time step. The electrostatic interactions were 

calculated using particle-mesh Ewald method116, with a non-bonded cut-off set at 

1 nm. All structures were energy minimised using the steepest descent algorithm 

for 20,000 steps. The minimisation was stopped when the maximum force fell 

below 1000 kJ/mol/nm using the Verlet cutoff scheme. This was followed by an 

equilibration run (NVT ensemble) of 20 ps with a time step of 2 fs and position 

restraints applied to the backbone, where the system was heated from 0 to 300 

K; and another equilibration (NPT ensemble) at the constant temperature (300 K, 

20 ps, 2fs step) with backbone position restraints applied, and the constant 

pressure (1 bar). The temperature was set constant at 300 K by using an 

alternative Berendsen128 thermostat (τ = 0.1 ps). The pressure was kept constant 

at 1 bar by using a Parrinelo-Rahman barostat with isotropic coupling (τ = 2.0 ps) 

to a pressure bath201. Finally, three production replica runs (NPT ensemble) of 
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100 ns were run for each system, using every force field – solvation model 

combination. 

Ubiquitin (PDB code: 1UBQ) and lysozyme (PDB code: 253L) were selected for 

comparative runs to assess the effect of CAIPi3P water model on globular 

proteins with no IDRs. The simulation methodology was the same as the one 

described for the IDPs, with the exception that only AMBER99SB-ILDN force field 

was used in combination with either the TIP3P or CAIPi3P solvation model. 

 

Table 4: Systems simulated and their respective force field/solvent combinations 

Protein PDB Code Force Field  Water model 

Histatin5 - AMBER99SB-ILDN202 TIP3P; CAIPi3P 

AMBER03ws173 TIP3P; CAIPi3P; 

TIP4P/2005158 

R/S Peptide - AMBER99SB-ILDN202 TIP3P; CAIPi3P 

AMBER03ws173 TIP3P; CAIPi3P; 

TIP4P/2005 

At2g23090 1WVK AMBER99SB-ILDN202 TIP3P; CAIPi3P 

AMBER03ws173 TIP3P; CAIPi3P; 

TIP4P/2005 

 

CRYSOL203,204 software was used to calculate the SAXS scattering patterns, 

along with the GNOM203 software to calculate radial density distributions. The root 

square difference (RSD) between the experimental density curves and the curves 

extracted from simulations were made using an in-house script. The gmx gyrate 

module from the Gromacs suite was used to calculate the radii of gyration from 

the obtained trajectories. RMSF and RMSD values were calculated using the 

Gromacs suite (gmx rms and gmx rmsf, respectively). 
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4.3 Results 

4.3.1 Parametrisation of CAIPI3P water model 

Unlike globular proteins, intrinsically disordered proteins (IDPs) do not have a 

proper hydrophobic core. As such, long-range electrostatic interactions play an 

important role in defining of IDR behaviour194,195. Therefore, to accurately predict 

the dynamics of IDRs from the atomistic molecular simulations, the protein-water 

interactions need to be re-calibrated. 

A systematic scan for dipole moment magnitude was made using the molecular 

scaffold of the popular TIP3P framework121 as a template. Different dipole 

moments were tested using histatin 5 as a reference system since it’s IDP model 

that has a uniform charge distribution through its structure. The model that 

showed the best agreement with experimental SAXS radial distribution was 

selected for CAIPi3P, and its partial charge values were kept constant throughout 

the other systems. The atomic charges and the value for the dipole moment are 

shown in Table 5. CAIPi3P model has been developed to scale solute-solvent 

interactions through electrostatic interactions. This follows the idea of scaling 

solute-solvent interactions, which was the basis for the creation of 

AMBER03ws174, which has modifications on the LJ parameters for the protein-

water interactions. This force field is tailored for simulations of IDPs, has been 

designed to be fully compatible with the TIP4P/2005 water model.  

Table 5:  Partial atomic charges and resulting dipole moments for CAIPi3P, TIP3P, and 

TIP4P/2005 water models 

 O charge 

(e) 

Dummy atom 

charge (e) 

H charge 

(e) 

Dipole moment 

(D) 

CAIPi3P -0.954 - 0.477 2.69 

TIP3P -0.834205 - 0.417 205 2.36 205 

TIP4P/2005 - -1.128 158 0.5564158 2.30 158 

Experimental -  - 2.5-3205 
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4.3.2 MD simulations of a full-length IDP: histatin 5 

Histatin 5 belongs to the family well characterised antimicrobial peptides secreted 

in human salivary (submandibular) glands176. It is a highly water-soluble IDP that 

has been used as a model in computational studies176,179. Although there is no 

experimental structure of histatin 5 available to date, Henriques et al.176 published 

its SAXS data. In their study, the best agreement between simulations and 

experimental results has been achieved using AMBER03ws force field with the 

TIP4P/2005 water model.  

We found that although usage of AMBER03ws improved the sampling compared 

to AMBER99SB-ILDN (Figure 28.A), combining it with CAIPi3P solvation model 

rather than TIP3P  has achieved an improvement regarding the difference 

between calculated and experimental SAXS curves, resulting in a curve 

significantly closer to the experimental. The combination of AMBER03ws 

(protein) and CAIPi3P (solvent) outperformed AMBER03ws+TIP4P/2005 (RSD = 

0.0110 for AMBER03ws+TIP4P/2005 in comparison to 0,007 for the 

AMBER03ws+CAIPi3P), which has been considered the state-of-the-art176. 

Although the AMBER03ws+CAIPi3P combination has shown the closest 

agreement with the experimental data. The improvement resulting from the 

application of CAIPi3P was apparent regardless of the protein force field used 

(Figure 28.A) since both simulations with CAIPi3P (AMBER99SB-ILDN+CAIPi3P 

and AMBER03ws+CAIPi3P) sample curves closer to the experimental curve. It 

is very encouraging in the context of the transferability of the CAIPi3P model and 

its applicability to studies of intrinsically disordered macromolecules. 
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Figure 28: Small-angle X-ray scattering (SAXS) radial distributions and calculated radii of gyration 
of histatin 5: A) SAXS distributions for five chosen combinations of protein and water 
parametrisations; B) Distributions of the sampled radius of gyration for the combinations shown 
in panel A; the radius experimental interval is highlighted using black dashed lines.  

 

As showed in Figure 28 .B, both AMBER03ws and AMBER99SB-ILDN force 

fields attained reasonable sampling of the experimental radii of gyration, since 

the radius of gyration distribution for both AMBER03ws+TIP4P/2005 and 

AMBER03ws+CAiP3P can sample the within the experimental radius of gyration 

values more than the other combinations (Figure 29.B). The AMBER03ws 

combined with CAIPi3P had its distribution peak around 1.4 nm, sampling more 

expanded conformations than any of the combined sets. 

 

Figure 29: RMSD matrices and their respective clusters obtained by AMBER03ws. A) CAIPi3P 
matrix B) TIP4P/2005 matrix.  The structures and their respective areas in the RMSD matrix are 
coloured similarly. The matrix similarity threshold were 3 angstroms, hence, lower values have a 
white colour and higher values have a black colour. 

 



82 
 

 

Figure 30: Histatin 5 internal potential structural energy in the function of its radius of gyration.  

 

The solute-solvent and solvent-solvent long-range electrostatic interactions play 

a significant role in defining of the conformational landscape of IDPs. The 

solvation model is, therefore, crucial for the sufficient sampling of the IDPs. Figure 

29 shows that two clusters obtained by the simulations using CAIPi3P, calculated 

from the RMSD matrix, are a very similar one to another, as can be seen in their 

respective intersection area in the RMSD matrix. TIP4P/2005, on the other hand, 

sampled two sparse conformations, having the system collapsed on itself for 

nearly half of the simulation time, represented by the TIP4P/2005 blue protein 

cluster. The most compact (self-collapsed) conformation affected the radial 

distribution, which resulted in the ensemble with the radial distribution resembling 

that of a globular protein, which directly affects the calculated sampled, resulting 

in the gaussian-like distribution for the SAXS density (Figure 29).  

The description of solute-solvent interactions increased upon using the CAIPi3P 

model. The internal potential energy for the protein increased, showing that 

protein intramolecular interactions should be disrupted, and the solute-solvent 

interactions should be increased, as can be seen in the energy difference 

between AMBER03ws and AMBER99SB-ILDN clusters in Figure 31. Although 

AMBER03ws can increase the radius of gyration by increasing the solute-solvent 
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contribution, CAIPi3P samples the correct configurations by increasing the 

Coulombic solute-solvent and solvent-solvent interactions, increasing the 

structural potential energy, as can be seen in the red cluster in Figure 30, which 

has both a high value of structural energy and radius of gyration. 

4.3.3 The CAIPi3P effect on the sampling of the charged repeats of R/S-

peptide 

Arginine – serine repeats (R/S repeats) play an essential role in cellular signalling 

since the phosphorylation of the serine residues is crucial for the regulation of 

many enzymes and receptors. Because of the accumulation of highly polar 

arginine and serine residues, intrinsically disordered R/S-peptide is highly polar 

itself. As such, it presents a challenging IDP to be correctly modelled. Several 

studies on its dynamics have been performed, using solution NMR and  

SAXS175,206. 

The calculated SAXS parameters and radii of gyration for the R/S peptide and 

their comparison to the experimental data available are shown in Figure 31. The 

choice of the protein force field played a critical role in reproducing the 

experimental data, as shown in Figure 31.A, where the curves for AMBER03ws 

are shown to be significantly closer to the experimental distribution. Application 

of both TIP4P and CAIPi3P water models reproduced the experimental SAXS 

radial distribution, but the usage of AMBER03ws played a more significant role 

on sampling states similar to the experimental conformations, as shown in the 

Figure 31.A. Nonetheless, simulations performed using the CAIPi3P model 

achieved better sampling than TIP4P ( achieving a 0.007 RSD in comparison to 

the 0.008 difference given by TIP4P/2005). Also, CAIPi3P can sample within the 

experimental range for the radius of gyration, as shown by the calculated density 

curves (Figure 31 .B), on which the black lines represent possible experimental 

values and AMBER03ws+CAIPi3P (red curve) sampled several states within this 

range. 
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Figure 31: Small-angle X-ray scattering (SAXS) radial distributions and calculated radii of gyration 
of R/S-peptide: A) SAXS distributions for five chosen combinations of protein and water 
parametrisations; B) Distributions of sampled radius of gyration for the combinations shown in 
panel A; the radius experimental interval is highlighted using dashed lines.  

  

Regardless of the solvation model used, the R/S peptide simulated with the 

AMBER99SB-ILDN force field collapsed on itself after 30ns of simulation, 

resulting in a very different distribution when compared to the experimental data. 

(difference between calculated and experimental SAXS curves: CAIPi3P 

RSD=0.033 and TIP3P RSD=0.034, respectively; Figure 31 .A). This is likely to 

arise from the differences between force fields, mainly in values of torsion 

parametrisation for bulky residues.  

Employing AMBER03ws force field improved the agreement with the 

experimental data, regardless of the water model (TIP4P/2005 RSD = 0.008, and 

CAIPi3P RSD = 0.007). However, the production trajectories obtained with 

CAIPi3P water show a higher distribution peak in the denoted experimental range 

of the radius of gyration (1.3 nm; Figure 31 .B)., resulting in a predicted radius of 

gyration of 1.3 nm. 

For the R/S peptide sampling assessment, two clusters of each combination of 

protein force field/ water molecule were selected for visual inspection.  CAIPi3P 

clusters remained in an open, extended conformation for approximately 85% of 

the simulation run, as shown in the RMSD matrix in Figure 32, on the white cluster 

shown on the matrix. Both solvent models enabled interactions between the N-

terminal region and the 16 residues R/S repeat region. The modified CAIPi3P 

model shielded the interactions and avoided a collapsed structure for the first 60 

ns of the simulation. In the TIP4P/2005 model, a partial collapse occurred early 
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in the simulation, and it is highlighted by the TIP4P/2005 red ensemble in Figure 

32 (lower panel). 

 

 

Figure 32: RMSD matrices for the R/S peptide and their respective clusters for AMBER03ws. A) 
CAIPi3P matrix B) TIP4P/2005 matrix. R/S repeat is highlighted yellow.  

Since the R/S repeat region is very polar (Figure 32; highlighted regions in 

yellow), it might be expected for this region to interact with favourably with water. 

The glycine residue, which is adjacent to the R/S repeat, acts as a “hinge”, 

partially collapsing the ensemble (blue clusters in Figure 32) in simulations using 

both solvent models. Considering this structural peculiarity, R/S peptide presents 

itself a challenge for modelling and suffers more from the force-field selection 

from the solvation model, since the force-fields are known to be directly affected 

by the accuracy of the calculated charges113. The results show that there are 

improvements still to be made on the AMBER force field and CAIPi3P 

parameters, yet the sampling achieved by the application of CAIPi3P model 

outperformed that of TIP4P/2005, as it was shown with the sampled SAXS 

curves.  
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4.3.4 The effects of CAIPi3P on partially disordered structures 

The solution NMR structure of the partially disordered protein At2g23090 from 

Arabidopsis thaliana has been deposited in the RCSB PDB Data Bank (PDB 

code: 1VWK207). It was used to assess the accuracy of the CAIPi3P water model 

for very flexible and partially disordered proteins since it has a C-terminal globular 

region and a long loop formed by 46 residues. While At2g23090 presents itself 

as a challenging and exciting benchmarking test, the NMR ensemble was used 

to study the possible dynamics. When analysed, the AMBER99SB-ILDN protein 

force field combined with CAIPi3P water model significantly outperformed all the 

other combinations of protein force fields and solvent models (Figure 33 .A),  ith 

an RSD = 0.003 for CAIPi3P+AMBER99SB-ILDN. 

As expected, trajectories obtained with AMBER03ws (Figure 33) showed a 

distribution of sampled radius of gyration with a higher average value.  

 

 
Figure 33: Small-angle X-ray scattering (SAXS) radial distributions and calculated radii of 
gyration of At2g23090 protein: A) SAXS distributions for five chosen combinations of protein 
and water parametrisations; B) Distributions of the sampled radius of gyration for the 
combinations shown in panel A; the radius experimental interval is highlighted using dashed 
lines. 

The AMBER03ws+CAIPi3P combination (Figure 33 .B; red) showed a bimodal 

radial distribution, with the highest peak around 1.7 nm, in a collapsed 

configuration. The protein collapsed on itself, resulting in a Gaussian radial 

distribution with experimental RSD = 0.014, and a dispersed bimodal radial 

density (Figure 33.B) with the highest peak in 1.6 nm, which is lower than the 

range calculated from the solution NMR ensemble.  

In contrast, the application of the TIP4P/2005 model with the AMBER03ws force 

field resulted in the unfolding of the small globular C-terminal domain (Figure 34), 

with a radius of gyration centred around 2.7 nm, which is much higher than the 
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experimental range. This demonstrates the limitations of the applicability of 

AMBER03ws force field in the simulations of multi-domain proteins containing 

globular domains connected by intrinsically disordered regions (IDRs). The C-

terminal domain remained folded in simulations using AMBER99SBN-ILDN 

(Figure 34). The reverse happened for AMBER03ws+TIP4P/2005: the radii of 

gyration were outside of the experimental range, resulting in the average 

conformations that were too stretched in comparison to the experimental data. 

 

 

Figure 34: Average structures for the At2g23090: Highly flexible regions (high per-residue RMSF) 
are coloured red, while more rigid regions with lower per-residue RMSF are coloured blue.  
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Figure 35: At2g23090 structural energy versus radius of gyration. In contrast to Histatin5 
energetics, the At2g23090 requires partial internal interactions. T 

Unfolding of the globular C-terminal domain was coupled with an increase in the 

structural potential energy in AMBER03ws simulations. Figure 35 shows that the 

structural energy obtained for the ensemble in the simulations using 

AMBER99SB-ILDN+CAIPi3P was more favourable. The increase of structural 

energy resulting from AMBER03ws (red and magenta clusters) unfolds the 

structured region, stretching the average configuration. When using 

AMBER99SB-ILDN with CAIPi3P, the energy can be kept within the collapsed 

AMBER99SB-ILDN+TIP3P (blue cluster in Figure 35). The solvent model 

stabilizes the unstructured sequences, and a structured biased force-field holds 

the intra-protein interactions reasonably. This favourable energy which arises 

from the intramolecular interactions retained within the folded C-terminal domain, 

resulting in the cyan cluster in Figure 35, which is an equilibrated cluster between 

both magenta and blue cluster. 

4.3.5  Applicability of CAIPi3P solvation model to globular proteins 

To benchmark the CAIPi3P model, two model globular proteins were simulated; 

lysozyme and ubiquitin, using the same protocol as described for IDPs and 

partially unfolded At2g23090. For lysozyme, the residual root-mean-square 

fluctuations (RMSF) obtained for both water models when applying established 
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AMBER99SB-ILDN force field are shown in Figure 36. Simulations with TIP3P 

resulted in higher RMSF values for most of the residues. In simulations with 

CAIPi3P, stronger electrostatic solvent-solute interactions increased the stability 

of most of the residues, decreasing the overall RMSF.  

 

Figure 36: Lysozyme RMSF per residue. In Blue, the simulation of the lysozyme with the usual 
combination of force-field/water. In purple, the simulation of using CAIPi3P. 

For ubiquitin, the root-mean-square fluctuations (RMSF) per residue obtained for 

both water models when applying established AMBER99SB-ILDN force field are 

shown in Figure 37. Simulations with both water models achieved very similar 

results, with only one region (loop 40-50) with markedly increased RMSF when 

the TIP3P model was applied in comparison to CAIPi3P. Again, this difference 

can be attributed to stronger electrostatic solvent-solute interactions in CAIPi3P, 

which increased the stability of the protein region, decreasing its overall per-

residue RMSF. Yet the effect was much less pronounced for ubiquitin than for 

lysozyme. 
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Figure 37: Ubiquitin RMSF per residue. In Blue, the simulation of the lysozyme with the usual 
combination of force-field/water. In purple, the simulation of using CAIPi3P. 

4.4 Discussion 

This chapter focused on the development of the new solvation model, denoted 

CAIPi3P. Compared to the established and popular TIP3P water model, CAIPi3P, 

which is based on the same framework, considerably improved the sampling of 

intrinsically disordered model peptides. All-atom MD simulations using CAIPi3P 

improved the SAXS scattering profile for two model IDPs: R/S peptide and histatin 

5, and partially disordered At2g23090 from A. thaliana with the central IDR. The 

improvement was evident for all force fields used for the protein, although, the 

selection of the most appropriate force field plays a vital role in the sampling 

improvement. 

For the R/S peptide, the improvement was evident in simulations with 

AMBER03ws force field. Application of the CAIPi3P model resulted in a better 

agreement for the radius of gyration since the framework prevented the artificial 

collapse of the polypeptide chain, which is a common pitfall of atomistic 

simulations of IDPs. CAIPI3P, due to modified electrostatics, maintained the 

generated conformations stretched, which resulted in better agreement with the 

experimental data. 

It is essential to focus on the differences in primary sequence between these two 

model IDPs. Histatin 5 has several polar residues dispersed throughout the length 
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of the peptide, resulting in an overall uniform polar distribution. This 

homogeneous distribution helps the polypeptide chain to maintain favourable 

interactions with the solvent, resulting in the overall expanded structure.  

The R/S peptide is polar and charged, with the charged residues located within 

the 8 C-terminal arginine – serine (R/S) repeats, as shown in Figure 32 

(highlighted regions). The obtained ensemble was affected by the C-terminal 

charge distribution, which facilitated the collapse of the polypeptide chain. Such 

a collapse was markedly reduced when the AMBER03ws force field was applied. 

The sampling was further improved when CAIPi3P water was used since it 

favoured the solute-solvent electrostatic interactions due to increased dipole 

moment of the water molecule. Solvent-solute interactions thus competed with 

excessive intramolecular solute-solute interactions, which lead to the collapse. In 

this part of the work, mainly AMBER forcefields were tested and assessed their 

accuracy. Rauscher and coworkers175 used R/S peptide to assess the accuracy 

of the CHARMM36m, obtaining accurate results for SAXS curve. Nonetheless, 

Rauscher and coworkers did not test AMBER force-fields, therefore, a 

comparison between CHARMM36m and AMBER03ws with CAIPi3P should be 

made in the future. 

For At2g23090, MD simulations showed a good agreement with experimental 

data when using the CAIPi3P water model in combination with AMBER99SB-

ILDN protein force field. Differences between AMBER99SB-ILDN and 

AMBER03ws laid within the side chain charge distribution and the values of 

backbone torsional angles for a specific set of residues174,202. These changes 

affected the solvent-solute interactions. Consequently, in the At2g23090 

simulations, the compact globular C-terminal domain unfolded, increasing the 

interactions with the solvent molecules and the internal structural energy. In 

contrast, AMBER99SB-ILDN force field held the globular domains folded. This 

resulted in a similar radial SAXS distribution between the resulting ensemble and 

the experimental data when used CAIPi3P model. CAIPi3P water molecules 

interacted with the polar regions of the protein, improving the local sampling 

within the intrinsically disordered region and shielding the long-range interactions, 

avoiding the artificial collapse of the polypeptide chain.  
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The average radius of gyration also was closer to the experimental value when 

CAIPi3P was used. Table 6 shows all the calculated and experimental values for 

all tested systems. Given the high structural fluctuations in IDPs, the errors bars 

have a significant intersection. Hence, there is no statistical difference in this 

subject when TIP4P/2005 and CAIPi3P are compared. 

Table 6: Radius of gyration in Å for all molecules with all used combinations. The error values 
are the average standard deviation of the replicas 

 AMBER99SB-

ILDN+TIP3P 

AMBER99SB-

ILDN+CAIPI3P 

AMBER03WS+

TIP3P 

AMBER03WS+

TIP4P/2005 

AMBER03WS+ 

CAIPI3P 

EXP 

HISTATIN5 7±1 12±2 9±2 11±2 12±1 12±0.5 

R/S-PEP 10±1 9±2 9±2 12±1 13±2 13 ±0.5 

ATG 13 ± 3 19 ± 3 17±3 22±4 13±2 20±2 

 

Nonetheless, there is a considerable improvement in the accuracy of the sampled 

conformations when simulations were carried out with CAIPi3P solvation model. 

Table 7 shows that systems simulated with CAIPi3P showed the lowest difference 

between the calculated SAXS distribution curve and the experimental distribution. 

Table 7: Root-mean-square difference between experimental SAXS and calculated SAXS radial 
densities. The RSD was calculated between the average distribution between replicas and the 
experimental curve. 

 AMBER99SB-

ILDN+TIP3P 

AMBER99SB-

ILDN+CAIPi3P 

AMBER03ws+TIP3P AMBER03ws 

+TIP4P/2005 

AMBER03ws 

+CAIPi3P 

Histatin 5 0,0190 0,0064 0,0120 0,0110 0,0064 

R/S peptide 0,0340 0,0330 0,0082 0,0080 0,0070 

At2g23090 0,010 0,003 0,011 0,014 0,014 

 

It is essential to discuss the bulk water parameters calculated for CAIPi3P, which 

are summarised in Table 8. By changing the dipole moment of the TIP3P water 

model (Figure 27), most of the bulk water parameters were improved for CAIPi3P 

in comparison to the standard TIP3P model. However, several significant 

changes need to be addressed, such as the average oxygen-oxygen radial 

density distance (RO-O) and the density. The RO-O distance for CAIPi3P was lower 

than the experimental distance, resulting in a higher density of 1.05 g/cm3. This 

results in a more compact water configuration, increasing the water-water 

correlation and decreasing the overall potential energy of the bulk water. 
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Therefore, the usage of a higher dipole yields higher barriers to reorganise the 

solvent surrounding the solute, which contributes to the better sampling of the 

protein observed in CAIPi3P simulations. 

The differences between experimental and CAiPI3P bulk water parameters 

shows that the latter requires structural changes, as shown in table 7.  These 

modifications may come in tuning the vibrational frequency of the H-O-H angle to 

modify water -water interactions to decrease the hydrogen bonds, which should 

result in better or the position of the charges in the molecular scaffold, following 

the method used in the parametrisation of the OPC model. 

Table 8: Bulk water parameters calculated for CAIPi3P and TIP3P water model. These were 
calculated using the methods explained in Izadi and coworkers124 

 CAIPi3P TIP3P Experimental 

Dipole moment (μ (D)) 2.69 2.34 2.5-3 

Density (g/cm³) 1.05 ± 0.05 0.980 0.997 

∆Hvap[kcal/mol] 10.6 ± 0.005 10.26 10.52 

Isobaric compressability Cp 

(cal/(K.mol)) 

23.7 ± 0.05 18.72 18 

Thermal expansion α[10^−4*K^−1] 5.4 ± +0.1 9.2 2.56 

O-O First peak distance(Å) 2.7 2.77 2.8 

Static dieletric constant (ϵ0) 74.5 ± 1 94 78.4 

Self diffusion coefficient (m²/s) 4.67±0.2 5.5 2.3 

 

To summarise, the reparametrised dipole moment and partial atomic charges for 

the TIP3P water model generated a new solvation model denoted Charge-

Augmented 3 Point Water model for Intrinsically disordered Proteins (CAIPi3P). 

This model is transferrable, robust, and suitable for the atomistic MD simulations 

of IDPs, resulting in ensembles with a considerably better agreement with 

experimental data (SAXS). For the IDP models (histatin 5 and R/S peptide), 

simulations using CAIPi3P resulted in better agreement between calculated 

SAXS radial densities and experimental data. CAIPi3P is also applicable to 

studies of globular proteins and – most importantly – functionally relevant 

multidomain proteins bearing globular domains and intrinsically disordered 

regions.  
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Chapter 5 – Hybrid_FF and intrinsically disordered regions 

Following the improvements that emerged from using CAIPI3P with known force-

fields for IDPs, a framework to parametrise flexible regions in proteins has been 

developed. IDRs are challenging in several different aspects for protein 

biochemistry: their structural plasticity directly affects the dynamics of the 

structured domains, and this long-range effect is difficult to quantify and emulate.  

To improve MD simulations on this aspect, Hybrid_FF was developed. It applies 

AMBER03ws topological parameters into residues without secondary structures, 

and AMBER99SB-ILDN parameters are used for the remaining residues. This 

novel force-field should be directly compatible with CAIPi3P and should be used 

together. This framework was tested on six different proteins, which all had their 

structures solved via solution NMR with a diverse range of secondary structure 

percentage. For proteins containing a shorter terminal IDRs, the difference 

between using an established force field and Hybrid_FF was not substantial. 

Simulations of systems with lower percentages of secondary structure and longer 

loops showed that Hybrid_FF significantly improved the radius of gyration and 

the residual fluctuation. Moreover, the sampled states using CAIPi3P, coupled 

with Hybrid_FF, are in better agreement with the solution NMR data. 

5.1 Disorder within organised systems 

Intrinsically disordered regions (IDRs) are protein sequences that lack a higher 

organisational degree. These regions vary in length and may be functionally 

relevant, i.e. involved in biological roles exerted by the protein, such as signalling 

and molecular recognition. An example is IDRs in the proteins with established 

roles in autophagy. The IDR1 region of the prototypical autophagy receptor p62 

promotes the oligomerisation which is important for the function of the protein in 

autophagy1,10 (Figure 38 A). LC3- and Keap1-interacting regions (LIRs and KIRs) 

of p62 are embedded in IDRs20 and the model of full-length p62 is consistent with 

experimental data available for these functional motifs (Figure 38.B). It has been 

also shown that functional motifs responsible for protein-protein interactions 

within autophagy initiation signalling complex (Atg13, Ulk1), autophagy receptors 

(p62, Smurf1, Nbr1), autophagosome nucleation (Becn1) and expansion complex 

(Atg3) are embedded within multiple IDRs, and the overall architecture resembles 
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“bead on elastic string” model of autophagy proteins (Figure 38.C). Literature 

suggests that these IDRs may serve as interaction hubs for other proteins and 

may adopt diverse conformations upon binding14,20, but the thermodynamics of 

those regions and their influence on the biological function of the adjacent 

domains are currently underexplored.  

 

 

Figure 38: A) Diagram representation of p62 receptor. Structural domains, IDRs, key interactors, 
and functional sequence motifs LIM, LIR and KIR are highlighted. B) All-atom model of p62 IDR2-
IDR3 region in complex with Keap1 (grey; PDB: 3WDZ) and LC3 (pink; PDB: 2K6Q). Relative 
positions of globular domains PB1 (PDB: 4MJS), ZZF (PDB: 5YPC), and UBA (PDB: 2JY7) 
domains are marked by circles. LIR (orange) and KIR (red) motifs are highlighted. C) The “beads 
on the elastic string” model of autophagy proteins containing IDRs. Made by Dr Agnieszka 
Bronowska,  

 

Another class of proteins with IDR linkers connecting globular domains are the 

RNA binding proteins such as the La protein (LaP). Present in eukaryotic cells, 

these proteins bind to nascent RNA molecules, which protect the RNA against 

degradation and help throughout its maturation process. Being comprised of 

several different domains208, LaP has two domains that are directly related to the 

RNA recognition and binding: the RNA recognition motif (RRM) and the La type-

RNA binding motif (LaM). These two domains are linked by a short IDR region 

(12 residues long) that controls the intercommunication between domains.  

Several proteins have similar domains in their sequence, such as the 

polypyrimidine tract binding protein isoform 1 (PTBP1) and the La-related 

proteins (LARPs). PTBP1 is an important regulator of RNA alternative splicing, 

which also affects localisation and stabilisation of the RNA. It is composed of 

several RRM domains, which are linked by IDR regions. Alfano and coworkers209 

440

IDR4IDR1 IDR2 IDR3 LIRKIR

UBAMPB1 ZZF
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structured	domain
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Fig.2 A) Diagram representation of human p62 autophagy receptor. Domains: PB1, zinc finger (ZZF), metamorphic (M), UBA, intrinsically 

disordered regions (IDRs), and key short sequence motifs LIM, LIR and KIR are highlighted. The oligomerisation site is highlighted green and 

key interactors are showed in their positions corresponding to the position in 3D structure B) All-atom model of p62 region spanning from IDR2 to 

IDR3 in complex with Kelch domain of Keap1 (grey; PDB: 3WDZ) and LC3 (pink; PDB: 2K6Q). Relative positions of PB1 (PDB: 4MJS), ZZF 

(PDB: 5YPC), and UBA (PDB: 2JY7) domains are marked by circles. M-domain (green) has been modelled ab initio using i-TASSER. LIR (orange) 

and KIR (brick red) motifs are highlighted. C) Our “beads on elastic string” model of p62 and other autophagy proteins containing IDRs. “Beads” 

(structured domains) correspond to PB1, ZZF, M and UBA domains of p62. IDRs 1-4 of p62 are represented as an elastic string.
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obtained the structures of RRM1 and RRM2 of PTPB1, part of the IDR that 

connects both of them.  

The La related protein (LARP) family contains the La motif and several RNA 

recognition motifs. LARP6 is one of such proteins, on which aside of the 

similarities with LaP, regulates the expression of collagen in the cell.  Martino and 

coworkers210 obtained the structures of both LARP6-RRM and LaM, with terminal 

IDR regions being partially solved. 

Because IDRs are highly disordered, they commonly represent elusive regions 

to study using experimental and computational methods alike. Computational 

studies have proved to be a crucial tool to analyse proteins and their dynamics at 

atomic resolution. However, IDRs simulations often result in discrepancies 

between the obtained data and its experimental counterpart. As discussed in 

section 4.4, these differences are usually attributed to bias towards globular 

structures. This, similarly, to IDPs, causes simulations of IDRs to be problematic 

for MD.  

Typically, force fields are biased towards the formation of stable secondary 

structures, with a high propensity toward α-helices202. Studies have shown how 

these generalist descriptors such as AMBER99SB, AMBER99SB-ILDN 

AMBER14SB drives simulation in the direction of a compact structure211. The 

formation of stable secondary components is controlled by the strong hydrogen 

bonds formed between the polar backbone atoms coupled with dihedral 

parameters that help the helical  distributions to be achieved. This is in 

accordance with most of the available structural data obtained by X-ray 

crystallography. On the other hand, with the increase of structures solved by the 

solution NMR, this paradigm started to shift212. Solution NMR studies enabled 

modelling and description of the dynamics of the flexible region with an atomic 

resolution. Hence, new force fields, such as the AMBER03, AMBER03ws and 

CHARMM36m, were developed. For AMBER03ws, the solution proposed was 

based on the modification of the LJ parameters to increase the water-protein 

interactions.  
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In principle, this should steer the protein towards a more open configuration, 

resulting in a less contracted conformation. As shown in Chapter 5, this is optimal 

for fully disordered proteins, but it facilitates the unfolding of structured domains. 

Residue-specific parameters based on both AMBER99SB-ILDN and 

AMBER03ws were applied to a small curated dataset of six proteins solved using 

solution NMR and containing intrinsically disordered termini of variable lengths. 

Four proteins in this dataset were RNA binding domains, which required their 

termini to be stretched to assist with the future recognition of RNA. Upon the 

application of the Hybrid_FF, a series of improvements were observed. As 

expected, for molecules with shorter termini and higher helical/sheet content, the 

results resembled the results obtained by the simulations with the AMBER99SB-

ILDN force field. When the termini were longer, Hybrid_FF combined with 

CAIPi3P solvation model sampled the protein radius of gyration within the 

experimental range. This resulted from the structural stabilisation caused by the 

application of AMBER99SB-ILDN parameters into the structured core and the 

scaled interaction with water in flexible regions which were parametrised using 

AMBER03ws.  

5.2 Development of Hybrid_FF 

Wei et. al. developed ff99FFIDP, a force field that adds CMAP corrections to 

specific non-structured sequences in a protein213. Influenced by this work and by 

the preliminary data, Hybrid_FF was developed. 

By using DSSP to assign the secondary structure content per residue, Hybrid_FF 

software can assign different parameters per residue. Since previous simulations 

showed that AMBER03ws has a propensity to unfold stable regions and 

AMBER99SB-ILDN forces unstructured regions to a molten globule state, 

applying AMBER99SB-ILDN to structured regions and AMBER03ws to 

unstructured regions should improve local sampling for IDRs.  

The compatibility between AMBER99SB-ILDN and AMBER03ws parameters 

was assured by two factors. First, both force fields have their roots found in the 

same force field family: AMBER96. The most significant difference between these 
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force fields arises from their solute-solvent interactions, given different LJ 

parameters for the water oxygen sigma values. 

5.3 Methodology 

To benchmark Hybrid_FF, a set of RNA binding protein domains with 

experimental structures solved by the solution NMR were selected. The set had 

different lengths of disordered termini and different percentages of structured 

components. The benchmark set is showed in Table 9. 

Table 9: Molecules used to benchmark the accuracy of Hybrid_FF against known force fields. 

Molecule Name PDB code 

PTB1-RRM1 1SJQ 

PTB1-RRM2 1SJR 

LaP-LaM 1S7A 

LaP-RRM 1S79 

LARP6-LaM 2MTF 

LARP6-RRM1 2MTG 

 

Each protein was parametrised with a different combination of the protein force 

fields and the water models, using the following pairs: AMBER99SB-

ILDN+TIP3P, AMBER99SB-ILDN+CAIPi3P, AMBER03ws-ILDN+CAIPi3P, 

AMBER03ws+TIP4P/2005, Hybrid_FF+CAIPi3P, Hybrid_FF+TIP3P, Hybrid_FF 

+TIP4P/2005. For each combination, a 1 nm cubic box was centred on the 

structure. 

Each simulation system was solvated and subsequently, sodium and chloride 

ions were added to the system at a concentration of 0.1 M to mimic the 

“physiological” concentration and to neutralise the simulation box. The bonds 

were constrained using the LINCS algorithm200, setting a 2 fs time step. The 

electrostatic interactions were calculated using particle-mesh Ewald method116, 

with a non-bonded cut-off set at 0.1 nm. All structures were energy minimised 

using the steepest descent algorithm for 20,000 of 0.02 nm steps. The 

minimisation was stopped when the maximum force fell below 1000 kJ/mol/nm 

using the Verlet cutoff scheme. This was followed by an NVT equilibration of 20 
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ps with a time step of 2 fs and positional restraints applied to the protein backbone 

(k = 1000 kJ/mol/nm), and a subsequent NPT equilibration (20 ps, 2 fs time step) 

with backbone positional restraints applied. Finally, the production simulations 

were run for 100 ns in triplicates, for each force field/solvent model combination. 

The temperature was set constant at 300 K by using an alternative Berendsen128 

thermostat (τ = 0.1 ps). The pressure was kept constant at 1 bar by using a 

Parrinelo-Rahman barostat with isotropic coupling (τ = 2.0 ps) to a pressure 

bath201. The results were analysed using GROMACS tools. 

5.4 Results 

5.4.1 Dynamic properties of IDR-containing proteins – PTBP1 RNA 

recognition motif domains 

Two of the benchmark proteins were the RNA recognition motif domain 1 and 2 

of the polypyrimidine tract binding protein isoform 1 (PTBP1-RRM1 and PTBP1-

RRM2, UniProt code: P26599).  

PTBP1 is ~57 kDa (531 residues) protein that plays an important regulatory role 

in pre-mRNA splicing and in the regulation of alternative splicing events. It binds 

to the polypyrimidine tract of introns and may promote RNA looping when bound 

to two separate polypyrimidine tracts in the same pre-mRNA. It contains four 

RNA-recognition motifs (RRM) domains, connected by IDRs of variable lengths. 

PTBP1-RRM1 shows a canonical RRM motif with four β-strands interacting with 

two α-helices. It has a high percentage of IDRs (40%; 60% of the secondary 

structure assignment being alpha-helices and beta-sheets). The C-terminus of 

this domain is comprised of an unstructured motif which is 15 residues long (I84- 

S99). A small pocket formed by the residues forming the central β-sheet (V60, 

L89 and F98) is pivotal for stabilisation of that disordered C-terminus. Therefore, 

it could be expected that the stability of the whole protein should be directly 

correlated with the beta-sheet – loop interactions maintained throughout the 

simulation.  

MD simulations of the PTBP1-RRM1 applying different force fields and water 

models gave very different outcomes. As showed in Figure 39, parametrisation 

with AMBER99SB-ILDN+TIP3P resulted in an inaccurate collapsed structure, 
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reflected by a smaller radius of gyration when compared to the distribution given 

by either AMBER03ws or Hybrid_FF (Figure 39 .A). AMBER99SB-ILDN was 

unable to adequately sample the IDRs, including the C-terminus since its 

parameters were not set to describe highly flexible regions properly. This also 

affected the convergence of the radius of gyration (Figure 39 .B). Given the 

biased nature of the generalist combinations, such as AMBER99SB-ILDN with 

TIP3P, they were unable to sample experimental ranges of the radii of gyration. 

This force field did not reach a reasonable convergence in the simulation time 

scale. However, when AMBER99SB-ILDN or AMBER03ws were combined with 

CAIPi3P, both sampled average values and convergence was markedly 

improved 

 

 

Figure 39: Radii of gyration of the PTBP1-RRM1: A) Radius of gyration distribution for different 
combinations of force field/water model combinations; B) Radius of gyration cumulative 
convergence for different force fields/water models. 

Simulation with AMBER03ws protein parameters with TIP4P/2005 solvation 

model showed the fastest convergence. This was unexpected since 

AMBER03ws is prone to attain expanded conformations with high radial 

fluctuations. Two combinations with the best agreement with experimental data 

were the Hybrid_FF with TIP3P and AMBER03ws with CAIPi3P. The accuracy of 

the first combination can be explained by AMBER03ws assigning higher flexibility 

to the unstructured loops, while CAIPi3P ensuring the structure stability given its 

higher dipole moment. Good agreement between the Hybrid_FF with TIP3P and 
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experimental data can be rationalised by Hybrid_FF being able to assign residue-

specific parameters which can simulate flexible regions adequately and TIP3P, 

which is prone to “collapse” unfolded sequence motifs.  

The C-terminus of the PTBP1-RRM1 is comprised of polar residues. Since 

CAIPi3P is highly polarised, the charge-charge interaction between the solute 

and solvent is increased. This can explain why the structural averages (Figure 

40) of PTBP1-RRM1 simulated using CAIPi3P show the C-terminal region 

extended, resulting in a higher radial distribution.  

 

 

Figure 40: Structural averages for PTBP1-RRM1: A) Experimental average structure; B) 
Hybrid_FF with TIP3P; C) Hybrid_FF with CAIPI3P. The termini were sampled in a closed 
conformation to the experimental conformation when TIP3P was used. CAIPi3P overstretched 
the C-terminus, resulting in a larger radius of gyration.  

 

PTBP1-RRM2 structure shows a spherical, globular core with disordered termini. 

The RRM2 domain is a critical component of the PTB1P-RNA interaction. While 

RRM3 and RRM4 mediate direct RNA-protein interactions, RRM1 and RRM2 

contribute significantly to the allosteric stabilisation of the RNA binding event214.  

PTBP1-RRM2 sequence contains 47% of unstructured residues, which is higher 

than for the RRM1. These unstructured residues concentrate predominantly in 

the region located between residue S121 and K134, which is the longest IDR in 

the whole protein.  
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The force field choice affected heavily the simulation outcomes.  Figure 41 shows 

that the usage of AMBER03ws, regardless of the solvent selection, unfolded the 

protein. For the radius of gyration convergence, five out of seven force field-water 

combinations attained a reasonable converged state in 100 ns time scale.  These 

resulted in the ensemble which was very different from the solution NMR 

ensemble due to AMBER03ws properties that drive the ensemble towards more 

unfolded conformations. This is beneficial in simulations of IDPs, but not 

multidomain proteins, wherein globular domains are connected by with IDRs.  

AMBER99SB-ILDN simulations achieved good agreement with the experimental 

data, which is consistent with the known good performance of AMBER99SB-

ILDN in simulations of globular proteins215.  

 

Figure 41: Radii of gyration for the PTBP1-RRM2: A) Radius of gyration distribution for different 
combinations of force field/water model combinations; B) Radius of gyration cumulative 
convergence for different force fields/water models. PTBP1-RRM2 showed a highly organised 
and globular structure with short loop regions.  

 

Since RRM2 is pivotal for protein-RNA interaction and molecular recognition, it 

has a high concentration of superficial polar residues. This explains a good 

agreement with the experimental radius of gyration when CAIPi3P was used in 

combination with AMBER99SB-ILDN and/or Hybrid_FF. CAIPi3P by itself was 

not able to maintain the internal hydrophobic core collapsed, as could be 

observed when AMBER03ws has been used. Therefore, even though the 

simulation results showed more unfolding, this was not related to the water model 
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used. The Lennard-Jones radius differences between AMBER99SB-ILDN and 

AMBER03ws for the protein atoms affects the electrostatic interactions that hold 

the secondary structures together. This makes the intra-chain solute-solute 

interactions more prone to unfold. This feature is important in simulations of IDPs, 

but it is not suitable for handling folded domains.  

5.4.2  Hybrid_FF retains the dynamics of both core and loop residues – La 

protein RNA binding mediators 

The La protein (LaP) is a phosphoprotein located in the nucleus. Specifically, 

human LaP (Uniprot ID: P05455) is a multidomain protein which mediates the 

interaction with the RNA through its N-terminal domain. Within this region, there 

are two subdomains: La motif (LaP-LaM) and central RRM domain (LaP-RRM), 

both interact directly with RNA strands. Alfano and coworkers209 solved the 

structures of both domains by solution NMR, showing a high percentage of 

residues without assigned secondary structure. 

LaM shows 54% of secondary structure assignment. The N-terminal region of 

LaM shows a high spatial fluctuation of residues N7, E8 and K9 and high 

propensity to an intrinsic disorder. The C-terminal region is comprised of two short 

β-strand sheets spanning residues S75-E103. E78, which is shown to be one of 

the critical residues for the RNA binding event, is located within this region.  

 

 

Figure 42: LaP-LaM simulations and N-terminal stability. A) Structural averages of the obtained 
ensembles: AMBER03ws+TIP4P/2005 (green), Hybrid_FF+TIP4P/2005 (purple), and 
experimental structure (ochre). B) The radii of gyration distributions obtained for different 
combinations of force field/water model tested. AMBER03ws+TIP4P/2005 was unable to maintain 
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scaffold cohesion, unfolding the terminal regions, resulting in a higher average radius distribution. 
Hybrid_FF combined with TIP4P/2005 unfolded the N-terminus, which collapsed towards the 
alpha-helical structure, resulting in a lower radius of gyration. 

 

MD simulations of LaP-LaM using six combinations of force fields and solvation 

models (Figure 42) showed a good agreement with the experimental ensembles. 

This was not unexpected, considering a high secondary structure content of LaP-

LaM. In particular, Hybrid_FF combined with CAIPi3P solvation model, generated 

a configuration with a distribution which showed a good agreement with the 

experimental data (Figure 42). The only combination which yielded results with a 

poor agreement with experimental data was the AMBER03ws+TIP4P/2005. In 

simulations carried out employing AMBER03ws+TIP4P/2005, the C-terminal 

region unfolded (Figure 42.A). This strongly indicated that AMBER03ws was not 

appropriate to simulate globular domains, especially when combined with the 

TIP4P/2005 water model. In the previous study, AMBER03ws+TIP4P/2005 

combination yielded good agreement with experimental data, but that study 

focused on a set of full-length IDPs176. 

Considering the lower content of structured residues in the RRM domain of La 

(48% of structured residues), it was expected that the parametrisation of less 

ordered configurations would yield better agreement with the experimental data. 

Simulations with either AMBER03ws or Hybrid_FF protein force fields and 

TIP4P2005 solvation model over-sampled extended configurations, as shown in 

Figure 43. TIP4P2005 water model was developed to scale the water-protein 

interactions less favourably than the protein-protein interactions, causing a 

deformation of the hydrophobic core. Over-sampling of extended configurations 

occurred also in the Hybrid_FF simulations, even though Hybrid_FF assigns 

AMBER99SB-ILDN parameters to residues in the structured core. Thus, this 

shows that the TIP4P/2005 water model should not be used in simulations of 

multidomain proteins containing IDRs, as it was unable to capture the LaP-RRM 

molecular dynamics accurately. AMBER03w+TIP4P/2005 and 

Hybrid_FF+TIP4P/2005 were unable to maintain the N-terminal experimental 

conformations. When Hybrid_FF was used combined with CAIPi3P solvation 

model, the resulting ensemble reached the distribution which fitted well within the 

experimental range 
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Figure 43: LaP-RRM simulations with different combinations of the protein force field and 
solvation models a) Structural averages of the attained ensembles for the LaP-RRM: 
AMBER99SB-ILDN+TIP3P as grey, Hybrid_FF+CAIPi3P as yellow, AMBER03ws+TIP4P/2005 
as green, and experimental structure as ochre. B) The radius of gyration distribution for the 
investigated force fields/water models combinations C) Convergence of the radii of gyration for 
all different force fields/water models combinations.  

 

In contrast, simulations which employed Hybrid_FF jointly with CAIPi3P sampled 

experimental configurations accurately. These resulted in the best quartile 

distribution of radii values within the experimental values. 

The convergence curves for the LaP-RRM simulations showed a good 

convergence for most of the force field/solvation combinations tested. Similarly, 

to the other RRM domains investigated in this work, CAIPi3P water model 

showed better agreement with the experimental data than the other water 

models. The canonical RRM secondary structural topology showed a mixed α-β 

structure, with the rigid hydrophobic core. This may explain the improvement in 

the experimental agreement for the RRMs since Hybrid_FF assigned 

AMBER99SB-ILDN parameters to structured regions of the protein and CAIPI3P 
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enhanced the stabilisation of the disordered regions and an overall improvement 

of the sampling. 

5.4.3  LARP6-LaM and LARP6-RRM1 

La-related proteins (LARPs) form a large family of RNA-binding eukaryotic 

proteins, involved in cell growth and proliferation primarily through the regulation 

of protein synthesis.  

All LARPs are comprised of seven distinct protein families. Others than LARP6, 

investigated in this chapter, are LARP1, LARP1B, LARP3 (aka genuine La or 

SSB), LARP4A, LARP4B, and LARP7. All LARPs contain the La module, which 

is a conserved domain for RNA binding. The La module is assembled by two 

domains: the RNA recognition motif 1 (RRM1) and the La motif (LaM). Their 

synergistic work regulates the interaction with RNA and the dimer-nucleotide 

configuration. 

Martino and collaborators resolved the structures of both domains of LARP6 

separately using solution NMR. This lowers the structural content of LARP6-LaM 

to 34%, which is the lowest of all domains in this work and among all LARPs. 

LARP6-LaM has the longest solved C-terminal IDR, containing 30 residues 

length IDR located between T70-E90. 

LARP6-RRM1 has two intra-domain short loops: one spanning A199-G206 

residues, and another one between residues Y250 and E257.  Since both RRM 

domains (PTBP1 and LARP6) investigated in this study have a high secondary 

structure content, the overall effect on the protein dynamics should be similar. 

LARP6-RRM1 was less prone to unfold, and it maintained a stable radius of 

gyration in simulations using AMBER03ws combined with CAIPi3P water model, 

as showed in Figure 44. Both AMBER03ws with TIP4P/2005 and the 

Hybrid_FF+TIP3P showed an expanded radius of gyration. Hybrid_FF+TIP3P 

simulations yielded expanded conformations, which showed that Hybrid_FF 

framework works even with the TIP3P water model. The region between A199-

G206 expanded after 60 ns of simulation (Figure 44), which resulted in a more 

extended radius of gyration distribution. The ability to sample open and closed 

conformations for the Hybrid_FF+TIP3P showed that the residues parametrised 
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with AMBER03ws can fluctuate between loop-core and loop-solvation 

interactions even when TIP3P is used. 

 

Figure 44: Cumulative convergence of LaP-RRM1 radius of gyration: Hybrid_FF with CAIPi3P 
converged faster in comparison to AMBER03ws+TIP4P/2005 and AMBER99SB+CAIPI3P. 
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Figure 45: Conformations of LARP6-RRM1 and their respective radius of gyration. A) 
Representative average structures for different simulations of the LARP6-RRM:  Experimental 
structure is coloured ochre, AMBER99SB-ILDN+TIP3P is coloured grey, and AMBER99SB-
ILDN+CAIPi3P is coloured red. The loop between residues A199-G206 is highlighted with dashed 
lines. B) The radius of gyration distributions for different force field/water model combinations. 
The highlighted loop is the region with the highest RMSF between different combinations of force-
field/water models.  

Hybrid_FF with CAIPi3P achieved not only a good distribution of radii of gyration 

within the experimental range but a faster convergence towards an accurate 

value (Figure 45). Interestingly, the ensembles of a loop located between A199-

G206 residues generated by different force fields varied considerably. In 

AMBER99SB-ILDN simulations, the A199 unfolded from the helical conformation, 

forming a series of semi-structured loops (Figure 45 A) for both water models 

tested, which contrast with the open-loop configurations sampled by both 

AMBER03ws and Hybrid_FF. 

LARP6-RRM1 showed a different convergence profile in comparison to the 

PTBP1-RRM2. PTBP1-RRM2 has a lower structural content (44%) in comparison 

to LARP6-RRM1 (53%), but it converged faster compared to LARP6-RRM1, 

particularly in AMBER99SB-ILDN simulations. This strongly indicates the 

erroneous bias applied to flexible regions when using a generalist force field such 

as AMBER99SB-ILDN. In contrast, Hybrid_FF, combined with either TIP3P or 

CAIPi3P, showed an improvement in the convergence, especially in LARP6-

RRM1 simulations. This force field framework impeded a fast collapse, allowing 

the protein to equilibrate in a more extended, near-native ensemble, as shown in 

Figure 45. 
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Figure 46: LARP6-LaM simulation results. A) Ensemble averages: the experimental structure is 
coloured ochre; AMBER99SB-ILDN+TIP3P is coloured grey, AMBER03ws+TIP4P/2005 is 
coloured green, and Hybrid_FF+CAIPi3P is coloured yellow. B) The radii of gyration distribution 
force field/water model combinations C) Convergence of the radii of gyration for all investigated 
combinations of the force field and water models. 

 

All simulations that used CAIPi3P model attained values within the experimental 

range of the radius of gyration. In particular, Hybrid_FF+TIP4P/2005 achieved an 

average value within the experimental radius boundaries (Figure 46 B). The 

disordered residues in the N-terminus were stretched and retained an extended 

conformation (Figure 46.A), without collapsing, in contrast to the structured core, 

which retained the globular conformation expected for proteins parametrised with 

AMBER99SB-ILDN simulations. 
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Figure 47: Ramachandran plots of different areas of LARP6-LaM: Hybrid_FF kept the structured 
core configuration, similar to the TIP3P+AMBER99SB-ILDN, it also improved sampling of the 
disordered region compared to AMBER03ws+TIP4P/2005. 

As shown in Figure 47, the Ramachandran distributions for both structured core 

and unstructured N-terminus are significantly different between force-fields and 

water models. Hybrid_FF+CAIPI3P sampled Φ/Ψ dihedrals similar to 

AMBER99SB-ILDN in the globular core, and similar to  AMBER03ws in the loops, 

which resembled disordered backbone Φ/Ψ distributions212.  

6.4.4  Residual flexibility in comparison to experimental data 

The root-mean-square deviation between simulated and experimental residual 

spatial fluctuation was calculated to assess how the force field/water 

combinations affected the protein residual flexibility. As shown in Figure 48, 

Hybrid_FF+CAIPi3P is the most accurate combination regarding the residual 

fluctuations. For LARP6-LaM, all force fields resulted yielded high values of 

radius of gyration average values, but it is notably higher for the 

AMBER03ws+TIP4P/2005 combination.  
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Figure 48: Spatial fluctuation RMSD [in angstroms] for all proteins using different force field/water 
model combinations. RMSD gradient is colour-coded: highest – red and lowest – white. 
AMBER03ws+TIP4P/2004 shows the highest RMSD fluctuations for all proteins. 
Hybrid_FF+CAIPi3P shows the lowest RMSD fluctuations values.  

 

The parameters for Hybrid_FF applied to disordered regions improved the 

sampling of the system, compared to the AMBER99SB-ILDN force field. Also, 

Hybrid_FF achieved good agreement with experimental data and improved 

sampling when compared to simulations using AMBER99SB-ILDN for proteins 

with low content of disordered residues. Interestingly, CAIPi3P coupled with 

Hybrid_FF obtained results for LAR6-LaM, the domain with the longest 

disordered region. Thus, even with accurate predictions of the radii of gyration, it 

failed to grasp the residual fluctuation in the N-terminus. This can be corrected 

by increasing the length of the simulations, which should result in a better 

sampling of disordered regions. 
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5.5 Discussion 

In this part of work, it has been shown how parametrisation affects the molecular 

dynamics of six RNA-binding proteins with a diverse range of structural disorder. 

The RRM1 and RRM2 domains in PTBP1 showed that AMBER99SB-ILDN 

generalist force field and AMBER03ws force field developed for IDPs were unable 

to sample the correct radius of gyration. The RRM1 domain, with 60% folded 

structural content, achieved the best results when the Hybrid_FF framework was 

applied. Hybrid_FF parametrised a protein ensuring that more flexible, disordered 

regions such as the RRM1 termini do not over-collapse on the protein globular 

core. For more flexible PTBP1-RRM2 domain, Hybrid_FF combined with 

CAIPi3P water model resulted in the most accurate sampling and the best 

agreement with the experimental radii of gyration  

The simulations of LaP-LaM domain yielded the N-terminus region prone to 

partial unfolding. This unfolding characteristic can be observed in simulations 

using the AMBER03ws+TIP4P/2005 combination. As works by Best et. al.174 and 

Henriques et al.176 demonstrated, scaling of solute-solvent interaction through 

modifications of Lennard-Jones parameters diminished solute-solute 

interactions, resulting in a more unfolded configuration for the partially structured 

termini. The application of structure biased force fields prevented the N-terminus 

unfolding, which resulted in the improved agreement with the experimental data 

of the radii of gyration, sampled in simulations using AMBER99SB-ILDN and 

Hybrid_FF. 

The LaP-RRM domain has a long partially unfolded N-terminal region. Due to its 

inherent flexibility, this model proved a challenging test set, given most of the 

force field/water model combinations failed to sample experimental 

conformations correctly. The best outcome was reached by using 

CAIPi3P+Hybrid_FF. This combination sampled conformations that converged 

quickly within the experimental radius of gyration,  

The LARP6-LaM domain has the lowest secondary structure content.  The best 

results were achieved via two protocols: Hybrid_FF+CAIPi3P, and 

Hybrid_FF+TIP4P/2005. Results obtained with CAIPi3P can be explained by the 

favourable solute-solvent interactions, while the Hybrid_FF+TIP4P/2005 can be 
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explained by the AMBER99SB-ILDN parameters applied to the protein core. The 

core was tightly held together as the loops favourably interacted with the solvent, 

given the compatibility between TIP4P/2005 and AMBER03ws. 

 Importantly, Hybrid_FF retained unstructured characteristics of long disordered 

loops without losing the structured characteristics of the hydrophobic core. When 

the results of simulations using AMBER03ws+TIP4P/2005, AMBER99SB-

ILDN+TIP3P and Hybrid_FF+CAIPi3P had their backbone dihedrals compared, 

only the Hybrid_FF+CAIPi3P retained terminal residues within disordered 

dihedral distributions while keeping backbone torsions of the folded core within 

structured values for φ/ψ.  

All macromolecules used in this study are specific domains of RNA binding 

proteins, showing similar fold overall and the variable content of disordered 

residues. Therefore, to further validate the methodology, expanding the dataset 

towards different protein classes will be done. Future works will include LC3- and 

Keap1-interacting regions of p62 autophagy receptor. 

It is important to note that Hybrid_FF requires the definition of structured and 

unstructured regions to be made a priori, similar to ff99FFIDPs213.  Therefore, if 

the initial secondary structure assignment is incorrect, simulation artefacts will be 

very likely observed. This should be minimised by the compatibility between 

AMBER03ws and AMBER99SB-ILDN parameters, but this initial step should 

proceed with caution.  

In summary, two established force fields were tested as benchmarks against a 

hybrid framework built upon their parameters, resulting in the Hybrid_FF force 

field. The Hybrid_FF was showed to be accurate for the simulation of IDRs, 

resulting in an ensemble with a better experimental agreement for the radius of 

gyration, and without losing the globular core cohesion. Hybrid_FF  integrates the 

set of tools designed in this work, which should help to correctly model flexible 

regions of structured and partially structured proteins.  

The source code for Hybrid_FF software can be found at github.com/ammvitor 
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Chapter 6 – Stability and long-range effect of disordered 

loops 

Following the development of the CAIPi3P water model (Chapter 5) and the 

Hybrid_FF (Chapter 6) force field framework to improve sampling in flexible 

regions, the focus shifted towards the assessment of the overall dynamics, 

entropic effects of flexible regions in protein, and their quantification. Recently, 

studies on the entropic force caused by flexible region within protein structures 

have shown that long-range entropic effect may be essential to understand the 

protein dynamics216,217.  

This chapter describes the development of a method for configurational entropy 

calculations using a first-order approximation approach, denoted SQuE 

(Structural Quantifier of Entropy). SQuE is rigorous, computationally efficient, 

robust and numerically reliable for calculating configurational entropy contribution 

to free energy in protein-ligand complexes and other macromolecular 

interactions. It has been validated by the test case of the UDP-glucose 6-

dehydrogenase (UGDH) for benchmarking and a series of PAS-B domains to 

show the applicability and predictive ability of SQuE. 

6.1 Established methods for the configurational entropy 

calculations of macromolecules  

Entropy calculations represent one of the most challenging steps in assessing 

the thermodynamics and obtaining the binding free energy in proteins and their 

complexes, which is a grand challenge in computational biology 218,219. The free 

energy landscape defines all the thermodynamic characteristics of a protein 

system, as the binding affinities of protein-ligand217,220 and protein-protein 

interactions221. It also governs other vital processes such as solvation of small 

molecule ligands222 and enzymatic reactions 223.  

Unfortunately, calculation of absolute entropy by atomistic molecular simulations 

such as molecular dynamics (MD) and Monte Carlo is challenging, if not 

impossible224. This difficulty arises due to entropy being a function of the multi-

dimensional configurational partition function35,114, which is not attainable by this 

simulation methods113. Atomistic simulations are, however, widely used by the 
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computational biology community and considerable attention has been devoted 

to approximating the configurational entropy from the atomistic simulations. 

One of the most popular approaches, which is based on quasiharmonic (QH) 

analysis, has been introduced by Schlitter225. He proposed estimating absolute 

and relative entropies of a macromolecule based on the evaluation of the 

covariance matrix of Cartesian positional coordinates obtainable by atomistic 

molecular dynamics (MD) simulation. Schlitter’s approach requires only a 

calculation of a determinant, which was the reason for its popularity among 

computational biologists. In Schlitter’s framework, the approximation for the 

absolute entropy represents an upper limit for the quantum mechanical 

entropy225, however, it may be slow and may be difficult to converge. Another 

popular and well-established approach is based on the normal mode (NM) 

analysis226. Both methods and their shortcomings were explained in detail in 

chapter 4. 

6.2 Long-range entropy effects: Development of SQuE 

Alternatively to QH approach and NM analysis, entropic force contributed by a 

given IDR can be calculated using Structural Quantifier of Entropy (SQuE) 

approach, developed in this work: from the ensemble obtained by MD simulation, 

one can define an orthogonal basis set K, by finding the linear uncorrelated 

motions. K is comprised of m eigenvectors Ki as such; the ensemble configuration 

can be described as (Eq. 39)227: 

 

 𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅(𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑚) (39) 

 

By definition, the motions in the basis K are uncorrelated. Therefore, the 

probability function per state is uncorrelated as well, hence (Eq. 40): 

 

 𝜌(𝑅(𝑥, 𝑦, 𝑧, 𝑡)) = 𝜌(𝑅(𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑚))

= 𝜌(𝑅(𝑘1))𝜌(𝑅(𝑘2))𝜌(𝑅(𝑘3))…𝜌(𝑅(𝑘𝑚)) 

(40) 
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For this ensemble, one can define Shannon Entropy228 as  Eq. 41: 

 

 𝑆 =  −∫ 𝜌(𝑅(𝑥, 𝑦, 𝑧, 𝑡)) 𝑙𝑛(𝜌𝑖(𝑅(𝑥, 𝑦, 𝑧, 𝑡))𝑑𝑅 (41) 

 

applying equation 34 to equation 35 (Eq. 42): 

 
𝑆 = ∑− ∫ 𝜌(𝑅(𝑘𝑖)) 𝑙𝑛(𝜌(𝑅(𝑘𝑖))𝑑𝑅

𝑚

𝑖=1

 
(42) 

 

so, the entropy per basis will be (Eq. 43): 

 

 𝑆𝑖  =  − ∫ 𝜌(𝑅(𝑘𝑖)) 𝑙𝑛(𝜌(𝑅(𝑘𝑖))𝑑𝑅 (43) 

 

6.3 The importance of intrinsically disordered regions for 

structural entropic compensation 

Initially, the performance of SQuE was tested on UDP-glucose 6-dehydrogenase 

(UGDH), which was recently extensively studied by Keul et. al. 216 and focused 

on the entropic effects of UGDH 30 residues long intrinsically disordered C-

terminus (ID-tail). The study reported that the entropic effect caused by the ID-

tail affected UGDH its function and modulated its allosteric switch.  

UGDH is allosterically regulated by UDP-α-D-xylose, a negative feedback 

system. Unusually, the same active site serves both purposes: the enzyme forms 

an inactive hexamer that can break up into three active dimers, and this switch 

depends on competition between the UDP-α-D-glucose substrate and the UDP-

α-D-xylose allosteric ligand. While the substrate behaviour remained unchanged 

in the absence of the ID-tail, the affinity for the allosteric ligand was tenfold lower. 

The authors of the study tried a whole range of mutations in the ID-tail, including 

switching all lysines to serines, swapping out all the prolines, and introducing 

thirty serines in a row. None of these had any effect on the affinity. Varying the 

length of the ID-tail showed a simple exponential-decay relationship with the 
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UDP-α-D-xylose affinity, with the most favourable length of that tail to be around 

30 residues. ID-tail, regardless of its sequence, seemed to be tied to entropic 

effects.  

To assess this effect at the atomistic level of detail, MD simulations of UGDH 

were performed, followed by configurational entropy calculations. The 

performance of SQuE was compared with configurational entropy calculations 

based on quasiharmonic (QH) analyses. The results showed that SQuE 

outperformed QH approaches in terms of speed of calculations and the 

agreement with experimental data, particularly when the system was 

parametrised with Hybrid_FF framework combined with CAIPi3P solvation 

model.  

As a prediction test of structural entropy barriers, SQuE was then applied to four 

different Per-Arnt-Sim B (PAS-B) domains: nuclear receptor coactivator 1 

(NCOA1), hypoxia-inducible factors HIF-1α and HIF-2α, and aryl hydrocarbon 

receptor (AhR). PAS domains occur in proteins from all kingdoms of life. In 

animals, proteins containing PAS domains are regulating responses to hypoxia 

229,230, circadian rhythms230–232, hormonal stimuli233, synaptic plasticity234, 

memory235, and xenobiotic stress236, exerting their activity as transcription factors 

and nuclear receptor coactivators. The PAS domain is also a part of hERG 

potassium channel237. 

Within the conserved structural scaffold of PAS-B domains, there is a region 

known as loop1. Computational and structural studies have shown that the loop1 

region located in the NCOA1-PASB domain may undergo through substantial 

conformational changes on nanoseconds time scale and adopt helical or partially 

unfolded configurations. This behaviour has implications for NCOA1 modulation 

and related coactivators by small molecule ligands, and we have suggested a 

binding mode for several confirmed NCOA1 binders. These characteristics made 

the PAS-B domains a case study for the predictive capabilities of SQuE. 

Receptor-ligand interaction studies were carried out, via molecular docking, 

umbrella sampling and MMPBSA to provide insight on how the loop dynamics 

would affect the ability of PAS-B domains to bind small molecules 



118 
 

Five known small molecule NCOA1 binders were used to assess the binding 

energy landscape. Alongside it, binding site prediction tools were used on both 

conformations to study the formation of possible transient binding sites resulting 

from this conformation change. 

The proposed framework introduces an intuitive approach to quantification of the 

configurational entropic effect in protein-ligand complexes and other 

macromolecular binding events, and it offers a reliable calculation of the 

configurational entropy per defined region. 

6.4 Methods 

6.4.1 UGDH setup and simulations 

All UGDH simulations were performed using GROMACS 5.13 199,238. The UGDH 

monomer was parametrised with seven different combinations of force fields and 

water models: AMBER03ws239 + TIP4P/2005158, AMBER99SB-ILDN215 + 

CAIPi3P, AMBER99SB-ILDN + TIP3P, AMBER03ws + CAIPi3P, Hybrid_FF + 

CAIPi3P, Hybrid_FF + TIP3P, and Hybrid_FF + TIP4P/2005. All simulated 

systems had the box distance set to 1 nm, and periodic boundary conditions were 

applied. The boxes were solvated with the necessary number of water molecules 

and Na+, and Cl- ions were added to achieve a 0.1 M concentration and maintain 

charge neutrality. The solvated systems were energy minimised and equilibrated. 

The minimisations ran using steepest descent for 1,000 cycles followed by the 

conjugate gradient. Energy step size was set to 0.001 nm, and the maximum 

number of steps was set to 50,000. The minimisation was stopped when the 

maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff scheme.  

Treatment of long-range electrostatic interactions was set to Particle Mesh-Ewald 

(PME), and the short-range electrostatic and van der Waals cutoff set to 1.0 nm.  

After the minimisation, NVT equilibration was performed for 20 ps with a time step 

of 2 fs and positional restraints applied to the backbone, while the system was 

heated from 0 to 300 K. The constraint algorithm used was LINCS, which was 

applied to all bonds and angles in the protein. With the Verlet cutoff scheme and 

the non-bonded short-range interaction, the cutoff was set to 1.0 nm. Long-range 

electrostatics were again set to PME. The temperature coupling was set between 
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the protein and the non-protein entities by using a Berendsen thermostat, with a 

time constant of 0.1 ps and the temperature set to reach 300 K with the pressure 

coupling off. NPT equilibration was then run at 300 K with a Parrinello-Rahman 

pressure coupling on and set to 1 bar, without positional restraints. The 

equilibration trajectories were set to 10 ns (discarded from the analysis), and the 

production MD simulations were performed for 100 ns, carried out in triplicates 

(300 ns cumulative production runs). 

6.4.2  Modelling of disordered and helical conformations of PAS-B 

domains 

In the investigations regarding conformation transitions of loop1 of PAS-B 

domains, alternate models of PAS-B domains of human aryl hydrocarbon 

receptor (AhR), and hypoxia-inducible factors HIF-1α, and HIF-2α, with loop1 

adopting the helical conformation, were generated using the human nuclear 

receptor coactivator 1 (NCOA1) solution NMR structure as a template (PDB code: 

5NWM). The alternate model of NCOA1, with loop1 adopting the partially 

unfolded conformation, has been generated using the human HIF-2α crystal 

structure as a template (PDB code: 5UFP). These models have been generated 

by SWISS-MODEL.  

6.4.3  Conformational transitions of the loop1 within PAS-B domains 

Four pairs of initial conformations of PAS-B domains were used in the analysis of 

the transitions between the loop and helical conformers of the loop1. The 

experimental structures of PAS-B domains with the partially disordered loop1 

conformation of the HIF1-α and HIF2-α (PDB codes 4H6J and 5UFP, 

respectively) were matched with alternative structures, where loop1 adopted α- 

helical conformations. All simulations were performed using GROMACS 5.13. All 

four pairs of PAS-B conformations were parametrised using AMBER-ff03ws43 

force field and simulated with TIP4P-200544 water model. This combination was 

used to improve sampling of disordered protein regions.  

Box distance was set to 1 nm from the edge of the protein, and periodic boundary 

conditions were applied. The box was solvated and Na+, and Cl- ions were added 

to achieve a 0.1M concentration and maintain charge neutrality. The solvated 
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systems were energy minimised and equilibrated. The minimisation ran using 

steepest descent for 1,000 cycles followed by the conjugate gradient. Energy step 

size was set to 0.001 nm, and the maximum number of steps was set to 50,000. 

The minimisation was stopped when the maximum force fell below 1000 

kJ/mol/nm using the Verlet cutoff scheme.  Treatment of long-range electrostatic 

interactions was set to Particle Mesh-Ewald (PME)29, and the short-range 

electrostatic and van der Waals cutoff set to 1.0 nm.  

After the energy minimisation, heating from 0 to 300 K was performed for 20 ps 

with a time step of 2 fs and position restraints applied to the backbone in an NVT 

ensemble. The constraint algorithm used was LINCS, which was applied to all 

bonds and angles in the protein30. With the Verlet cut-off scheme and the non-

bonded short-range interaction, the cut-off was set to 1.0 nm. Long-range 

electrostatics were set to PME. The temperature coupling was set between the 

protein and the non-protein entities by using a Berendsen thermostat, with a time 

constant of 0.1 ps and the temperature set to reach 300 K with the pressure 

coupling off. Pressure equilibration was run at 300 K with a Parrinello-Rahman 

pressure coupling on and set to 1 bar31 in an NPT ensemble. The equilibration 

trajectories were set to 10 ns (discarded from the analysis), and the production 

MD simulations were performed for 3 replicas of 100 ns each (for AhR, HIF-1α, 

HIF-2α and NCOA1).  

For any simulations involving small molecule ligands, the ligands were 

parametrised using ACPYPE240. Partial atomic charges have been calculated 

using AM1-BCC level of theory135 using the DockPrep tool in UCSF Chimera198. 

The equilibration runs were the same as for the apo systems. The production 

trajectories for protein-ligand simulations have been set to 100 ns, run in 

triplicates. 

Analysis of the trajectories was performed using GROMACS tools, including root-

mean-square deviation (RMSD) to assess overall stability, per-residue root-

mean-square fluctuation (RMSF) to assess the local flexibility, solvent-accessible 

surface areas, dihedral angles, and principal component analysis (PCA). The 

coordinates were collected every 10 ps. Per-residue root-mean-square 

fluctuations (RMSFs) were calculated to assess the flexibility per region.  
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6.4.4  Molecular docking and druggable “hot spot” mapping 

The mapping of potential druggable “hot spots”35 was performed using FTMap36 

and Cryptosite37 for a more reliable mapping.  

Molecular docking was performed using the University of California, San 

Francisco DOCK 6.8 suite39 with default grid scoring. For each system, the 

highest-populated cluster has been selected from the MD trajectory and assigned 

as a receptor. The grid spacing was 0.25 Å, and the grid included 12 Å beyond 

the geometric centre of the PAS-B inner cavity. The energy score was the sum 

of electrostatic and van der Waals contributions. The docking has been run for 

known HIF-2α small molecule binders, where the ligand has been re-docked to 

the protein, to check whether the docking procedure reproduced the native 

binding modes, as seen in the crystal structures. After the positive verification, 

the known ligands reported in ChEMBL have been docked to NCOA1 PAS-B sites 

detected by FTMap.  

During the docking calculations, the ligands were subjected to 5,000 cycles of 

molecular mechanics energy minimisation. The number of maximum ligand 

orientations was 50,000. Solvent effects were modelled by implicit solvation 

(distance-dependent dielectric function). The best-scoring poses (ligand-protein 

complexes) were subjected to all-atom MD simulations, and the energetics has 

been assessed by PCA analysis, MMPBSA and umbrella sampling.  

For the MMPBSA end-state interaction energy, the calculation was divided into 

three stages. First, the interaction energy term was calculated using the 

parameters used in the force field for both ligand and receptor. For the polar 

solvation term, the solute dielectric constant was set to 2, with a solvent dielectric 

constant as 80. The solvent probe radius was set to 1.4, with a density of grid 

points per A2 of 10, using a linear Poisson-Boltzmann equation. For the apolar 

solvation term, we used a SASA model with a surface tension of 0.0226 kJ/molA2 

and an offset constant of 3.849 kJ/mol. All calculations were performed at a 

temperature of 300 K. These calculations were made using the Gromacs 

g_mmpbsa43 module. 
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6.4.5  Umbrella sampling of the NCOA1 five best-scoring molecules 

Umbrella sampling simulations were performed for best-scoring ligands binding 

to NCOA1 PAS-B domain to calculate the binding modes and their respective 

energetics more accurately. From the average configuration obtained during the 

three 100 ns simulation of equilibrium ligand-NCOA1 complex, an umbrella 

sampling run was made with a harmonic force applied over the ligand, pulling in 

the Z direction, as shown in Figure 49, increasing the distance from the binding 

site. The force constant was set as 1000 kJ mol-1 nm-2 with a pulling rate of 0.01 

nm ps-1, resulting in 30 windows per complex. The systems were parametrised 

with AMBER99SB-ILDN using the TIP3P solvation model, given it is a well-

established set for free-energy calculations. Each umbrella window had 

restrained pressure equilibration of 10 ps and a 5 ns production length. The errors 

were calculated using a bootstrap methodology implemented in Gromacs.  

 

Figure 49: The black arrow indicates the direction the umbrella pathway took to calculate the 
affinity for NCOA1 ligands. The spheres represent the position of the centre of mass of the ligand 
throughout the pull simulation. 
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6.5 Results 

6.5.1  UGDH ID-tail entropy affects the structured core configuration 

The UGDH monomer was simulated in its truncated configuration (PDB 5W4X) 

and with the 30 residues modelled ID-tail to study the entropic effect of that tail. 

To ensure that the C-terminal ID-tail was properly sampled, configurational 

entropy was calculated from the MD trajectories obtained using seven different 

combinations of force-fields/water models listed in the Methods section and Table 

10 

Table 10: Entropy values calculated for the UGDH monomer 

T(STruncated-STail) 

(kcal/mol) 

SQuE Quasi-harmonic 

AMBER03ws+CAIPi3P 0.5 -0.4 

AMBER03ws+TIP4P/2005 1.1 - - - - - - - - 

AMBER99SB-

ILDN+CAIPi3P 

1.1 -0.1 

AMBER99SB-ILDN+TIP3P -2.6 - - - - - - - - 

Hybrid_FF+CAIPi3P 2.5 -0.14 

Hybrid_FF+TIP3P -1.7 0.08 

Hybrid_FF+TIP4P/2005 0.1 -0.05 

 

In the study by Keul and coworkers218, the calculated "free energy" difference 

between a fully flexible and a rigidified C-terminal tail was 2.5 kcal/mol. As 

showed in Table 9, Hybrid_FF framework combined with CAIPi3P water model 

attained the same value. The quasiharmonic method was not able to calculate 

values for two of the seven combinations of the protein force field and water 

model (AMBER99SB-ILDN+TIP3P and AMBER03ws+TIP4P/2005), and for the 

others, the acquired values were very different from the free energy differences 

reported by Keul et. al. The failure on QH to calculate values resulted from a 

convergence problem for the said systems. 
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The residues within the globular core (residue 1 – 464) of UGDH changed their 

intrinsic flexibility depending on the presence of the C-terminal ID-tail in the 

structure. Figure 50 shows the residual root-mean-square fluctuation (RMSF) and 

the sequential summation of the RMSF curve for the structured core. Most of the 

residues were more flexible in the configuration without the ID-tail in comparison 

with the structure with that tail. This shows entropy-entropy compensation 

between the globular domain and the ID-tail. The entropy generated by the ID-

tail compensated for the lower flexibility of the folded protein core, retaining them 

in a configuration closer to that observed in the crystal structure (Figure 50). The 

overall structured core residual flexibility is reduced on the system with the ID-

tail, with a cumulative difference of 6.6 nm. Each system attained different final 

configurations, which depended on the presence of the ID-tail, which 

compensated for the loss of flexibility by the structured core. 

.  
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Figure 50: Analysis of intrinsic dynamics of the UGDH monomer using Hybrid_FF+CAIPi3P. A) 
RMSF per residue for the structured globular domain (residues 1 – 464). B) RMSF cumulative 
integral for the structured core domain C) RMSD curves for both structured core domains 

6.5.2  The ID-tail directly affects the UGDH monomer allosteric switch 

When calculated the essential dynamics through principal component analysis 

(PCA), it can be observed that the truncation of the ID-tail directly affects the 

allosteric α6 switch. As shown in Figure 51 A, the highlighted helix shifts inwards, 

burying deep into the nearby cavity. When the tail is truncated (Figure 51 B), the 

principal motion related to the switch is the outward movement, reducing the 

interactions between the helix and the remaining core. 
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Figure 51: Porcupine plot of core domain for A) UGDH monomer containing the ID-tail B) 
Truncated UGDH model. The allosteric α6 switch is coloured red. The ID-tail affects the essential 
dynamics of the allosteric switch, which modulates the binding affinity to the allosteric ligand. 

The entropic force that emerges from the ID-tail affects the correlated motions of 

the UGDH monomer. The intramolecular atomic covariance calculated from the 

MD simulation of the full-length UGDH containing the ID-tail was generally lower 

than then its respective calculations for the truncated UGDH configuration. 

Counter-intuitively, the existence of the flexible ID-tail reduced the overall 

flexibility of the protein, and it reduced the correlation between the residue 

motions. This is evidence for the long-range entropic "quake" that the ID-tail 

generates throughout the protein structure, which is consistent with observations 

by Keul and coworkers.  
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Figure 52: Covariance matrix for UGDH monomer A) ID-tail B) Truncated model. The ID-tail 
reduces the overall fluctuation of the core residues, reducing the intrachain atomic correlation for 
the structured residues. 

Remarkably, in both configurations, the region corresponding to the α6 switch 

(Figure 52, atoms 2000-2300) had low intramolecular covariance. Therefore, the 

presence of the ID-tail affected the dynamics of the α6 helix, but the motions 

within the structured core did not correlate directly to the α6 switch moving 

upwards or downwards. 

6.5.3  Conformational transitions within PAS-B domains 

Since intrinsic dynamics are very likely to play an essential role in tuning the 

protein activity, as shown in the previous section. Now, the focus was on the most 

flexible part of the PAS domain, namely the loop1. This loop adopts extended 

and partially unfolded conformation in all PAS-B domains but nuclear receptor 

coactivators (which includes NCOA1), in which it adopts an extended α-helical 

conformation. Both experimental structures of NCOA1 domain reported to date 

solved PAS-B domain it as a complex with the STAT6 peptide, bearing LXXLL 

sequence motif, which defines a conserved nuclear receptor (NR) box241. This 

motif is a short α-helix, so it is plausible that the helical conformation of NCOA1 

loop1 is induced by protein-protein interactions, and removing the interactor 

(herein – STAT6 peptide) may induce significant conformational changes in the 
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loop1 region, shifting the ensemble towards a more unfolded state, similar to that 

observed in other PAS-B domains. 

To address this, an alternative conformation of NCOA1 PAS-B domain was 

modelled, with the loop1 adopting a partially disordered helix-loop-helix 

conformation, as showed in Figure 53.  

The simulation results strongly indicated that NCOA1 may adopt more extended 

conformation of the loop1, typical for other PAS-B domains. Although the helical 

conformation was more stable than the extended loop, the energy difference was 

minor (0.3 kcal/mol, Figure 53). This suggested potential conformational changes 

and the existence of NCOA1 conformations that are “druggable” by small 

molecules.  
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Figure 53: A Conformational change within the loop1 of NCOA1 PAS-B domain. Time-averaged 
structures are shown, indicating loop1 in the α-helix conformation (left panel) and the partially 
disordered conformation (right panel). The backbone is coloured by calculated B-factors: the most 
flexible parts are coloured red, while the less flexible is coloured navy blue. B FTMap scan of the 
NCOA1 PAS-B domain with the loop1 in partially disordered conformation. A “hotspot”, detected 
in the centre of the PAS-B cavity, is rendered as spheres and coloured orange; the transparent 
spheres are the secondary binding areas. C Cryptosite analysis of the NCOA1 PAS-B domain 
with the loop1 in partially disordered conformation. The highest-scoring “hotspot”, detected in the 
centre of the PAS-B cavity, is rendered as spheres and coloured orange. 

 

To date, several small molecule NCOA1 ligands have been reported (Figure 54), 

but their binding sites remained unknown. Compound L1 was selected, deposited 

in ChEMBL, reported to inhibit human NCOA1 in a cell-based assay. The hotspot 

mapping, followed by molecular docking calculations and MD simulation, showed 
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that L1 might bind to the PAS-B domain of NCOA1 once loop1 adopts an 

extended conformation (Figure 53). The binding event induced further 

conformational changes in the domain, preventing the binding to LXXLL peptide 

of STAT6 (Figure 56B). Four other confirmed small molecule NCOA1 ligands with 

related structures (Figure 54) were also docked, their binding mechanics were 

evaluated, and the energy scores correlated with the experimentally determined 

IC50 values (Table 11). 

 

 

Figure 54: Chemical structures of five confirmed ligands of human NCOA1, used in this study. 

 

The binding modes predicted for ligands L1-L5 may explain the observed 

differences in binding energetics. L1 and L3 are close analogues, differing only 

by the heteroatom in the five-membered ring, yet their Interaction energetics are 

markedly different: replacing the thiophene of L1 by furan has decreased the 

binding affinity from mid-nM range to 5.6 µM (Table 10). This decrease can be 

explained by in the desolvation of the oxygen atom O1, and increased desolvation 



131 
 

of the oxygen O2; contributing unfavourably to the binding affinity (Table 11). 

Likewise, compounds L4 and L5 are closely related analogues, and the 

preference of L5 (IC50 = 2.4 µM) over L4 (IC50 = 4.0 µM) can be explained by the 

favourable contribution of the second methoxy group in L5 (atom O2 and C2,  

Figure 56. D).  

 

Table 11: Binding data for compounds L1-L5 

 IC50 [nM] Estimated Ki 

Range** 

Calc. ΔG 

[kcal/mol]# 

Calc. ΔH 

[kcal/mol]$ 

L1 443 Mid/high nm -12±2 -7±2 

L2 1328 High nM to low µM -14±2 -6±2 

L3 5695 Mid µM -4±2 -4±2 

L4 3973 Low/mid µM -11±2 -5±2 

L5 2442 Low/mid µM -13±2 -6±2 

Pearson correlation between IC50 and calculated energy 0.83 0.97 

*CHEMBL1201862 PubChem Bioassay data set 

** Calculated by SeeSAR 

#Calculated by umbrella sampling MD simulation 

$Calculated by MM-PBSA 

 

 

The free energies calculated by umbrella sampling simulations correlated with 

the experimental IC50 values, showing favourable binding energies. L3 showed, 

in both umbrella simulations and MMPBSA calculations, the lowest affinity. This 

was particularly encouraging, considering L3 and L1 structural similarity. A 

reason for these differences may arise from the protein interaction after 0.5 - 0.7 

nm, as shown in Figure 55. This region is the start of the energy barrier for the 

unbound PMF, on which L1 has the lowest barrier, in comparison to the other 

ligands, which may explain the favourable IC50. This, coupled with the desolvation 

effects mentioned earlier, may explain the L3-L1 difference in terms of their 

binding affinity. It was not possible to achieve statistical significance to assess 

the affinity difference between L1, L2, L4 and L5 in respect to their binding free 

energies. 
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Figure 55: Potential of mean forces calculated by umbrella simulations for different ligands for 
NCOA1 PASB in the loop-helix-loop canonical conformation. L3 shows shallow binding energy in 
comparison to the other four ligands. 

 

Given the plateau achieved by L3 (Figure 55, green), it could be concluded that 

a significant part of the binding free energy arose from intrinsic conformational 

effects of the protein. This was supported further by the protein RMSD 

calculations. For the L1, the RMSD of the ligand-protein complex converged to a 

0.25 nm and the RMSD of the loop1 converged to 0.3 nm, while for the L3 

complex RMSD converged to 0.3 nm and the loop1 RMSD converged to 0.35 

nm.  

The difference in their respective final configurations resulted from two effects: 

the thiophene moiety from the L1 bound better at the biding site (as shown by the 

MMPBSA), allowing loop1 to acquire a more stable conformation. This 

configuration was achieved given the thiophene moiety interaction with the loop1 

being unfavourable, which was compensated by the favourable protein intra-side 

chain interactions. 
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Analysis of the pathway differences between L4 and L5 showed that the 

additional methoxyl group of L5 affected how the overall ligand was solvated in 

the unbound state, which can explain more favourable IC50. 

All five ligands showed favourable values of binding energy to the unstructured 

loop1 conformation by all three methods for interaction energy estimating: 

SeeSAR/HYDE, MMPBSA, and umbrella sampling. This indicates that NCOA1 is 

“druggable” by small molecules upon a configurational transition since the 

favourable binding site is found only in the canonical loop-helix-loop 

conformation. The structural entropy for the NCOA1 loop1 can be easily 

compensated by the binding energetics. This is shown in Table 10, as the 

entropic barrier is significantly lower (0.3 kcal/mol) in comparison to the binding 

energetics. Therefore, the results described in this section indicate that the loop1 

of NCOA1 may adopt the “canonical” (disordered helix-loop-helix) conformation, 

which may be targeted by small molecules.  
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These findings are very encouraging for structure-based drug discovery efforts 

targeting steroid receptor coactivators for therapeutic interventions. PAS-B 

domain of NCOA1 has been shown to interact with several proteins linked to 

Figure 56: Binding poses for NCOA1. A) The binding poses for the compound 
L1, docked to the NCOA1 PAS-B domain. Protein is coloured grey, ligand is 
coloured by heteroatom. Residues critical for the binding, are showed and 
labelled. B) Docking of the LXXLL motif of STAT6 (red) to the PAS-B domain 
of NCOA1 with the loop1 in the “druggable” partially disordered conformation 
(grey), compared to the docking of the same motif (green) to the PAS-B domain 
of NCOA1 with the loop1 in the alpha-helical conformation (blue). The 
experimental structure is showed as light blue. C) Predicted binding mode for 
the compound L1, with per-atoms contributions of the ligand are mapped as 
the coronas, calculated by SeeSAR: green signifies favourable contribution, 
red signifies unfavourable contribution, and the magnitude of the contribution 
is proportional to the size of the corona. D) Predicted binding mode for the 
compound L2. E) Predicted binding mode for the compound L5. F) Predicted 
binding mode for the compound L5. 
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cancer, including the transactivation domain of STAT6242. As such, disruption of 

STAT6-NCOA1 complex by targeting the PAS-B domain of NCOA1 could be an 

attractive therapeutic strategy. Also, NR boxes of NCOA1 and other coactivators 

interact with the PAS-B domain of NCOA1, promoting homo- and 

heterodimerisation of NCOA1 and this interaction may also be exploited 

therapeutically243. 

To assess the generality of the conformational behaviour observed for NCOA1, 

the same approach was taken as to other PAS-B domains: the HIF-1α, HIF-2α, 

and AhR; inducing α-helical conformation of the loop1, resembling that of 

NCOA1. The results, shown in Table 12 and Figure 53, indicated that the 

extended conformation of the loop1 was more entropically favourable for all three 

proteins. Therefore, the conformational transitions within these regions, in order 

to occur, must be driven by powerful enthalpic contribution (e.g. arising from 

protein-protein interactions). While this cannot be ruled out completely, 

particularly for AhR, such transitions are less likely for unbound PAS class I 

members, such as HIF-2α than for p160 transcription factors, such as NCOA1 

(Table 12). 

Table 12: Entropy values between unstructured to structured conformations, calculated by 
SQuE 

Protein TΔS [kcal/mol] 

AhR 7.6 

HIF-1α 11.3 

HIF-2α 11.9 

NCOA1 0.3 

 

6.6 Discussion 

In this chapter, the development and validation of SQuE methodology were 

described. An approximate calculation for entropy was devised using a simple 

decomposition of probabilities. A highly encouraging aspect of the SQuE 

approach is how accurate, robust and straightforward it is to both calculate and 

decompose for different regions and principal components. For these reasons, it 
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represents a powerful tool to quantify long-range entropic effects in 

macromolecular ensembles.  

I showed that when using the Hybrid_FF combined with CAIPi3P solvation, the 

quantification of the configurational entropy for UGDH agrees with published 

data. Using SQuE, it was possible to show entropy-entropy compensation in 

UGDH and to demonstrate how the modulation of the allosteric switch functions 

at the atomistic level, when the C-terminal ID-tail of UGDH is truncated, opening 

a new area of understanding on how this molecule works. 

As a prediction test of structural entropy barriers, SQuE was then applied to four 

different PAS-B domains: nuclear receptor coactivator 1 (NCOA1), hypoxia-

inducible factors HIF-α1 and HIF- α2, and aryl hydrocarbon receptor (AhR). 

These PAS-B domains were simulated to quantify the effect of protein 

conformational changes and configurational entropy on their energy landscape. 

NCOA1 PAS-B, in particular, was the subject of a more in-depth study, given that 

its entropic barrier between the canonical loop-helix-loop and the full extended α-

helical conformations showed the lowest value. Interaction studies between five 

reported NCOA1 PAS-B small molecule binders showed that the enthalpic gain 

arising from the binding event overcomes the free energy barrier. 

As an upper limit approximation for smaller systems, SQuE predicts 

configurational entropy values within reasonable accuracy. The usage of principal 

components as the conjoined variables should minimise the problem resulting 

from SQuE using the first-degree approximation, but it may be an inaccurate 

approximation for more complex systems, like systems that require significant 

molecular motion to do they function, such as multi-domain complexes. One way 

to overcome this issue would be to implement a pairwise correlation correction, 

similar to the approach reported by Kilian et. al.227,244. This could be expanded to 

higher degrees of correlation, but it would inevitably increase the computational 

cost.  
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Chapter 7 – Conclusions 

Throughout this work, a series of methods to improve the description of the 

dynamics of intrinsically disordered macromolecules by all-atom molecular 

dynamics simulations was developed and tested. Given the challenges that 

intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) 

face in experimental and computational studies alike, it is very rewarding and 

encouraging to see how simple corrections in the force field parameters and 

approximations used in thermodynamic parameters caused vast improvement in 

the sampled conformations. 

 The application of CAIPi3P solvation model to studies of intrinsically disordered 

systems resulted in a more realistic description of molecular motions in the 

system. CAIPi3P is based on three-point TIP3P framework and has dipole 

moment adjusted, which should favour solute-solvent polar interactions. 

Typically, when a generalist force field such as AMBER99SB-ILDN combined 

with popular TIP3P water model is being used, the protein collapses on itself and 

adopts a molten-globule state, which may not be realistic. CAIPi3P model 

prevents this collapse and helps the simulation to sample more realistic, extended 

configurations, regardless of the protein force field being used. For the histatin5 

simulations, a clear improvement can be seen when CAIPi3P. This is expected, 

however, given the fact that histatin5 is was the parametrization goal used for the 

development of CAIPI3P. For the R/S peptide, a substantial improvement arises 

when AMBER03ws is used with CAIPi3P, showing the accuracy of CAIPi3P for 

IDPS with a higher concentration of polar/charged residues per area. Finally, the 

results for an Atg2 showed that CAIPi3P also improves the sampled states for 

the partially structured proteins, especially when coupled with AMBER99SB-

ILDN. Nonetheless, CAIPi3P solvation model has a room for improvement: the 

parameters have several shortcomings regarding the bulk water properties, such 

as high density and low radial oxygen distance. 

Hybrid_FF was developed as a force field framework to be used combined with 

CAIPi3P, with a goal to improve the sampling of disordered regions in simulations 

of multi-domain proteins, having globular domains connected by intrinsically 

disordered regions. For the test cases simulated, Hybrid_FF+CAIPi3P 
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combination showed an improvement for both sampled configurations and 

predicted radii of gyration, especially for proteins with a longer IDR terminus. 

These improvements have not been systematic throughout the test sets, but it is 

encouraging, nonetheless. Further tests are needed to ensure that desolvation 

energies and overall protein thermodynamics are accurate in comparison to the 

experimental values. More extended simulations should be run (on the 

microseconds to tens of microseconds) to assure structural cohesion. Another 

important point of consideration is the definition of structure-loop per residue: in 

this work, we used DSSP, a widely used algorithm to defines the secondary 

structure of each residue. However, the main parameters used for definition are 

hydrogen bonds with neighbours and backbone dihedrals. This might force loops 

as transition residues, assigning the wrong force-field. Also, the framework needs 

to be systematically tested on more structurally diverse classes of proteins – such 

a systematic study was beyond the scope of this dissertation.  

Structural Quantifier of Entropy (SQuE) was developed to analyse the data 

generated by IDPs/IDRs simulations and extract information on configurational 

entropy. An interesting test case was the analysis of the UGDH enzyme, and the 

entropic force exerted by its intrinsically disordered C-terminus (ID-tail). SQuE 

correctly predicted, calculated and evaluated the configurational entropy changes 

showed how the ID-tail regulated the protein function via entropy-entropy 

compensation. As a case study, the helix-to-loop conformational changes were 

evaluated in several mammalian PAS-B domains, including NCOA1, and it was 

showed how these conformational changes affect the “druggability” of the protein. 

Coupled with docking and free energy techniques, SQuE showed that the helix-

to-loop transition may happen only in specific PAS-B domains, namely NCOA1, 

and not in other proteins that contain this domain, such as HIF-1a transcription 

factor. SQuE uses a simple approximation to calculate the upper estimates of 

entropy, hence, should be used with caution: without the proper basis to define 

the dynamics and with a non-equilibrated system, it may yield inaccurate results. 

To conclude, tools developed in this work are a useful toolset for molecular 

discoveries for IDPs/IDRs which can be transplanted to different areas of 

computational chemistry, biology and biochemistry and maybe even extended for 

different classes of proteins. We do expect that these tools are likely to pave a 
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way to improvements in robust and accurate molecular simulations of challenging 

IDPs/IDRs.  

 

 

 

 

 

 

 

 

 

References   

 

1. Lehninger, A. L., Nelson, D. L. & Cox, M. M. Lehninger principles of 
biochemistry. (W.H. Freeman, 2013). 

2. Amino Acids | BioNinja. Available at: https://ib.bioninja.com.au/standard-
level/topic-2-molecular-biology/24-proteins/amino-acids.html. (Accessed: 
4th January 2020) 

3. Liljas, A. Textbook of structural biology. (World Scientific, 2009). 

4. Voet, D. & Voet, J. G. Biochemistry 4e. Zhurnal Eksperimental’noi i 
Teoreticheskoi Fiziki (2010). 

5. Rupp, B. Biomolecular crystallography: principles, practice, and 
application to structural biology. (Garland Science, 2010). 

6. Poole, L. B. The basics of thiols and cysteines in redox biology and 
chemistry. Free Radical Biology and Medicine 80, 148–157 (2015). 

7. Alcock, L. J., Perkins, M. V. & Chalker, J. M. Chemical methods for 
mapping cysteine oxidation. Chemical Society Reviews 47, 231–268 
(2018). 

8. Rajpal, G. & Arvan, P. Disulfide Bond Formation. in Handbook of 
Biologically Active Peptides 1721–1729 (Elsevier Inc., 2013). 
doi:10.1016/B978-0-12-385095-9.00236-0 



140 
 

9. Wedemeyer, W. J., Welker, E., Narayan, M. & Scheraga, H. A. Disulfide 
Bonds and Protein Folding †. Biochemistry 39, 4207–4216 (2000). 

10. Qin, M., Wang, W. & Thirumalai, D. Protein folding guides disulfide bond 
formation. Proc. Natl. Acad. Sci. U. S. A. 112, 11241–11246 (2015). 

11. Berg, J. M., Tymoczko, J. & Stryer, L. Protein structure , function and 
evolution Recommended reading material • Understanding of biological 
processes at. (2013). 

12. Martin, Y. C. Let’s not forget tautomers. Journal of Computer-Aided 
Molecular Design 23, 693–704 (2009). 

13. Brink, T. Ten & Exner, T. E. Influence of protonation, tautomeric, and 
stereoisomeric states on protein-ligand docking results. J. Chem. Inf. 
Model. 49, 1535–1546 (2009). 

14. Kim, M. O., Nichols, S. E., Wang, Y. & McCammon, J. A. Effects of 
histidine protonation and rotameric states on virtual screening of M. 
tuberculosis RmlC. J. Comput. Aided. Mol. Des. 27, 235–246 (2013). 

15. Varki, A. C. R. D. . E. J. D. . F. H. H. . S. P. . B. C. R. . H. G. W. . E. M. & 
E. Essentials of Glycobiology, 3rd edition. Cold Spring Harbor (NY) (Cold 
Spring Harbor Laboratory Press, 2015). 

16. Pickart, C. M. Mechanisms Underlying Ubiquitination. Annu. Rev. 
Biochem. 70, 503–533 (2001). 

17. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of Proteins 
by Ubiquitin and Ubiquitin-Like Proteins. Annu. Rev. Cell Dev. Biol. 22, 
159–180 (2006). 

18. Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, (2002). 

19. Chapter 2: Protein Structure – Chemistry. Available at: 
https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch450-and-
ch451-biochemistry-defining-life-at-the-molecular-level/chapter-2-protein-
structure/. (Accessed: 9th April 2020) 

20. Alberts, B. Essential cell biology. (Garland Science, 2013). 

21. Perutz, M. F. et al. Structure of Hæmoglobin: A three-dimensional fourier 
synthesis at 5.5-. resolution, obtained by X-ray analysis. Nature 185, 416–
422 (1960). 

22. Kendrew, J. C. et al. Structure of myoglobin: A three-dimensional fourier 
synthesis at 2 . resolution. Nature 185, 422–427 (1960). 

23. Stanger, H. E. et al. Length-dependent stability and strand length limits in 
antiparallel β-sheet secondary structure. Proc. Natl. Acad. Sci. U. S. A. 
98, 12015–12020 (2001). 

24. Qian, H. & Schellman, J. A. Helix-coil theories: A comparative study for 
finite length polypeptides. J. Phys. Chem. 96, 3987–3994 (1992). 

25. Nesloney, C. L. & Kelly, J. W. Progress towards understanding β-sheet 
structure. Bioorganic and Medicinal Chemistry 4, 739–766 (1996). 



141 
 

26. Chothia, C. Conformation of twisted β-pleated sheets in proteins. J. Mol. 
Biol. 75, 295–302 (1973). 

27. Richardson, J. S. & Richardson, D. C. Natural β-sheet proteins use 
negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. 
U. S. A. 99, 2754–2759 (2002). 

28. Venkatachalam, C. M. Stereochemical criteria for polypeptides and 
proteins. V. Conformation of a system of three linked peptide units. 
Biopolymers 6, 1425–1436 (1968). 

29. Dobson, C. M. Principles of protein folding, misfolding and aggregation. in 
Seminars in Cell and Developmental Biology 15, 3–16 (Elsevier Ltd, 
2004). 

30. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 
Physico-Chimie Biol. 65, 44–45 (1968). 

31. Levinthal, C. How to Fold Graciously. Mossbauer Spectrosc. Biol. Syst. 
Proc. a Meet. held Allert. House, Monticello, Illinois 22–24 (1969). 

32. Karplus, M. The Levinthal paradox: Yesterday and today. Fold. Des. 2, 
(1997). 

33. Rooman, M., Dehouck, Y., Kwasigroch, J. M., Biot, C. & Gilis, D. What is 
paradoxical about levinthal paradox? J. Biomol. Struct. Dyn. 20, 327–329 
(2002). 

34. Dill, K. A. & Bromberg, S. Molecular Driving Forces: Statistical 
Thermodynamics in Chemistry and Biology . (Garland Science, 2003). 

35. Reif, F. Fundamentals of statistical and thermal physics. (Waveland 
Press, 2009). 

36. Jacobs, P. W. M. Thermodynamics. (Imperial College Press ; Distributed 
by World Scientific, 2013). 

37. Lawden, D. F. Principles of thermodynamics and statistical mechanics. 
(Dover Publications, 2005). 

38. Leopold, P. E., Montal, M. & Onuchic, J. N. Protein folding funnels: A 
kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. 
Sci. U. S. A. 89, 8721–8725 (1992). 

39. Scheraga, H. A. et al. The Protein Folding Problem. Lect. Notes Comput. 
Sci. Eng. 49, 90–100 (2006). 

40. Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. 
Science 338, 1042–1046 (2012). 

41. Ellis, R. J. Molecular chaperones: assisting assembly in addition to 
folding. Trends in Biochemical Sciences 31, 395–401 (2006). 

42. Mashaghi, A., Kramer, G., Lamb, D. C., Mayer, M. P. & Tans, S. J. 
Chaperone Action at the Single-Molecule Level. Chem. Rev. 114, 660–
676 (2014). 



142 
 

43. Na, J. H., Lee, W. K. & Yu, Y. G. How do we study the dynamic structure 
of unstructured proteins: A case study on nopp140 as an example of a 
large, intrinsically disordered protein. International Journal of Molecular 
Sciences 19, (2018). 

44. Oldfield, C. J. & Dunker, A. K. Intrinsically Disordered Proteins and 
Intrinsically Disordered Protein Regions. Annu. Rev. Biochem. 83, 553–
584 (2014). 

45. Van Der Lee, R. et al. Classification of intrinsically disordered regions and 
proteins. Chemical Reviews 114, 6589–6631 (2014). 

46. Kang, W., Jiang, F., Wu, Y. D. & Wales, D. J. Multifunnel Energy 
Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its 
Mutants. J. Chem. Theory Comput. (2019). doi:10.1021/acs.jctc.9b01042 

47. Röder, K., Joseph, J. A., Husic, B. E. & Wales, D. J. Energy Landscapes 
for Proteins: From Single Funnels to Multifunctional Systems. Adv. Theory 
Simulations 2, 1800175 (2019). 

48. Chebaro, Y., Ballard, A. J., Chakraborty, D. & Wales, D. J. Intrinsically 
disordered energy landscapes. Sci. Rep. 5, (2015). 

49. Granata, D. et al. The inverted free energy landscape of an intrinsically 
disordered peptide by simulations and experiments. Sci. Rep. 5, 15449 
(2015). 

50. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their 
functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005). 

51. Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradović, Z. & Dunker, 
A. K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. 
Mol. Biol. 323, 573–584 (2002). 

52. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular 
signalling and regulation. Nature Reviews Molecular Cell Biology 16, 18–
29 (2015). 

53. Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. & Uversky, 
V. N. Flexible nets: The roles of intrinsic disorder in protein interaction 
networks. FEBS Journal 272, 5129–5148 (2005). 

54. Kim, P. M., Sboner, A., Xia, Y. & Gerstein, M. The role of disorder in 
interaction networks: A structural analysis. Mol. Syst. Biol. 4, 179 (2008). 

55. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 
527–533 (2002). 

56. Tompa, P. & Fersht, A. Structure and function of intrinsically disordered 
proteins. (2009). 

57. Tompa, P. & Csermely, P. The role of structural disorder in the function of 
RNA and protein chaperones. FASEB Journal 18, 1169–1175 (2004). 

58. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. 
Disorder in the nuclear pore complex: The FG repeat regions of 
nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. U. S. A. 100, 



143 
 

2450–2455 (2003). 

59. Trombitás, K. et al. Titin extensibility in situ: Entropic elasticity of 
permanently folded and permanently unfolded molecular segments. J. 
Cell Biol. 140, 853–859 (1998). 

60. Iakoucheva, L. M. et al. The importance of intrinsic disorder for protein 
phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004). 

61. Tompa, P. The interplay between structure and function in intrinsically 
unstructured proteins. FEBS Letters 579, 3346–3354 (2005). 

62. Breidenbach, M. A. & Brunger, A. T. Substrate recognition strategy for 
butulinum neurotoxin serotype A. Nature 432, 925–929 (2004). 

63. Shi, Y. Structural basis of Smad2 recognition by the smad anchor for 
receptor activation. Science (80-. ). 287, 92–97 (2000). 

64. Sigalov, A. B., Zhuravleva, A. V & Orekhov, V. Y. Binding of intrinsically 
disordered proteins is not necessarily accompanied by a structural 
transition to a folded form. Biochimie 89, 419–21 (2007). 

65. Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 
19, 26–59 (2001). 

66. Chaturvedi, S. K., Siddiqi, M. K., Alam, P. & Khan, R. H. Protein 
misfolding and aggregation: Mechanism, factors and detection. Process 
Biochem. 51, 1183–1192 (2016). 

67. Uversky, V. Amyloidogenesis of Natively Unfolded Proteins. Curr. 
Alzheimer Res. 5, 260–287 (2008). 

68. Uversky, V. N. & Fink, A. L. Conformational constraints for amyloid 
fibrillation: the importance of being unfolded. (2004). 
doi:10.1016/j.bbapap.2003.12.008 

69. Groh, N. et al. Age-dependent protein aggregation initiates amyloid-β 
aggregation. Front. Aging Neurosci. 9, (2017). 

70. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Intrinsically Disordered 
Proteins in Human Diseases: Introducing the D 2 Concept. (2008). 
doi:10.1146/annurev.biophys.37.032807.125924 

71. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron 
X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997). 

72. Breydo, L. & Uversky, V. N. Molecular Mechanisms of Protein Misfolding. 
in Bio-nanoimaging: Protein Misfolding and Aggregation 1–14 (Elsevier 
Inc., 2013). doi:10.1016/B978-0-12-394431-3.00001-8 

73. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Showing your ID: Intrinsic 
disorder as an ID for recognition, regulation and cell signaling. Journal of 
Molecular Recognition 18, 343–384 (2005). 

74. Vousden, K. H. & Lu, X. Live or let die: The cell’s response to p53. Nature 
Reviews Cancer 2, 594–604 (2002). 



144 
 

75. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations 
in human cancers. Science (80-. ). 253, 49–53 (1991). 

76. Anil, B., Riedinger, C., Endicott, J. A. & Noble, M. E. The structure of an 
MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-
entropy reduction mutant. Acta Crystallogr.,Sect.D 69, 1358–1366 (2013). 

77. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a 
p53 tumor suppressor-DNA complex: Understanding tumorigenic 
mutations. Science (80-. ). 265, 346–355 (1994). 

78. Uhart, M. & Bustos, D. M. Protein intrinsic disorder and network 
connectivity. The case of 14-3-3 proteins. Front. Genet. 5, (2014). 

79. Simmons, L. K. et al. Secondary structure of amyloid β peptide correlates 
with neurotoxic activity in vitro. Mol. Pharmacol. 45, 373–379 (1994). 

80. Kirkitadze, M. D., Condron, M. M. & Teplow, D. B. Identification and 
characterization of key kinetic intermediates in amyloid β-protein 
fibrillogenesis. J. Mol. Biol. 312, 1103–1119 (2001). 

81. Crescenzi, O. et al. Solution structure of the Alzheimer amyloid β-peptide 
(1-42) in an apolar microenvironment: Similarity with a virus fusion 
domain. Eur. J. Biochem. 269, 5642–5648 (2002). 

82. Colvin, M. T. et al. Atomic Resolution Structure of Monomorphic A beta 42 
Amyloid Fibrils. J.Am.Chem.Soc. 138, 9663–9674 (2016). 

83. Delacourte, A. & Buée, L. Normal and pathological Tau proteins as 
factors for microtubule assembly. International Review of Cytology 171, 
167–224 (1997). 

84. Singh, T. J., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. Non-proline-dependent 
protein kinases phosphorylate several sites found in tau from Alzheimer 
disease brain. Mol. Cell. Biochem. 154, 143–151 (1996). 

85. Mart�, M. J., Tolosa, E. & Campdelacreu, J. Clinical overview of the 
synucleinopathies. Mov. Disord. 18, 21–27 (2003). 

86. Morar, A. S., Olteanu, A., Young, G. B. & Pielak, G. J. Solvent-induced 
collapse of α-synuclein and acid-denatured cytochrome c. Protein Sci. 10, 
2195–2199 (2008). 

87. Ulmer, T. S., Bax, A., Cole, N. B. & Nussbaum, R. L. Structure and 

Dynamics of Micelle-bound Human ␣-Synuclein* □ S. (2004). 

doi:10.1074/jbc.M411805200 

88. Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-
length human alpha-synuclein. Nat.Struct.Mol.Biol. 23, 409–415 (2016). 

89. Guerrero-Ferreira, R. et al. Cryo-EM structure of alpha-synuclein fibrils. 
Elife 7, (2018). 

90. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. 
Perspect. Med. 2, (2012). 



145 
 

91. Uversky, V. N. A protein-chameleon: Conformational plasticity of α-
synuclein, a disordered protein involved in neurodegenerative disorders. 
J. Biomol. Struct. Dyn. 21, 211–234 (2003). 

92. Huber, R. Conformational flexibility in protein molecules. Nature 280, 
538–539 (1979). 

93. DeForte, S. & Uversky, V. N. Resolving the ambiguity: Making sense of 
intrinsic disorder when PDB structures disagree. Protein Sci. 25, 676–688 
(2016). 

94. Tamiola, K. & Mulder, F. A. A. Using NMR chemical shifts to calculate the 
propensity for structural order and disorder in proteins. Biochemical 
Society Transactions 40, 1014–1020 (2012). 

95. Sun, S. et al. Solid-state NMR spectroscopy of protein complexes. 
Methods Mol. Biol. 831, 303–331 (2012). 

96. Ladizhansky, V. Applications of solid-state NMR to membrane proteins. 
Biochimica et Biophysica Acta - Proteins and Proteomics 1865, 1577–
1586 (2017). 

97. Fitzpatrick, A. W. & Saibil, H. R. Cryo-EM of amyloid fibrils and cellular 
aggregates. Current Opinion in Structural Biology 58, 34–42 (2019). 

98. Piovesan, D. et al. DisProt 7.0: A major update of the database of 
disordered proteins. Nucleic Acids Res. 45, D219–D227 (2017). 

99. Oates, M. E. et al. D2P2: Database of disordered protein predictions. 
Nucleic Acids Res. 41, (2013). 

100. Potenza, E., Di Domenico, T., Walsh, I. & Tosatto, S. C. E. MobiDB 2.0: 
An improved database of intrinsically disordered and mobile proteins. 
Nucleic Acids Res. 43, D315–D320 (2015). 

101. Fukuchi, S. et al. IDEAL in 2014 illustrates interaction networks composed 
of intrinsically disordered proteins and their binding partners. Nucleic 
Acids Res. 42, (2014). 

102. Varadi, M. et al. PE-DB: A database of structural ensembles of 
intrinsically disordered and of unfolded proteins. Nucleic Acids Res. 42, 
(2014). 

103. Linding, R. et al. Protein disorder prediction: Implications for structural 
proteomics. Structure 11, 1453–1459 (2003). 

104. Linding, R., Russell, R. B., Neduva, V. & Gibson, T. J. GlobPlot: Exploring 
protein sequences for globularity and disorder. Nucleic Acids Res. 31, 
3701–3708 (2003). 

105. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. 
PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. 
Biochim. Biophys. Acta - Proteins Proteomics 1804, 996–1010 (2010). 

106. Prilusky, J. et al. FoldIndex©: A simple tool to predict whether a given 
protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3438 
(2005). 



146 
 

107. Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: Web server for 
the prediction of intrinsically unstructured regions of proteins based on 
estimated energy content. Bioinformatics 21, 3433–3434 (2005). 

108. Comparison of Crystallography, NMR and EM - Creative Biostructure. 
Available at: https://www.creative-biostructure.com/comparison-of-
crystallography-nmr-and-em_6.htm. (Accessed: 4th January 2020) 

109. Wüthrich, K. The way to NMR structures of proteins. Nat. Struct. Biol. 8, 
923–925 (2001). 

110. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures 
from electron micrographs. Nature 217, 130–134 (1968). 

111. Shoemaker, S. C. & Ando, N. X-rays in the Cryo-Electron Microscopy Era: 
Structural Biology’s Dynamic Future. Biochemistry 57, 277–285 (2018). 

112. Guinier, A. La diffraction des rayons X aux très petits angles : application 
à l’étude de phénomènes ultramicroscopiques. Ann. Phys. (Paris). 11, 
161–237 (1939). 

113. Leach, A. R. Molecular modelling: principles and applications. (Prentice 
Hall, 2001). 

114. Schlick, T. Interdisciplinary Applied Mathematics. 21, (Springer Science 
Business Media, 2010). 

115. Haile, J. M. Molecular dynamics simulation: elementary methods. (Wiley, 
1997). 

116. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N ⋅log( N ) 
method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–
10092 (1993). 

117. Honig, B. & Nicholls,  a. Classical electrostatics in biology and chemistry. 
Science 268, 1144–1149 (1995). 

118. Liu, H. Y., Kuntz, I. D. & Zou, X. Q. Pairwise GB/SA scoring function for 
structure-based drug design. J. Phys. Chem. B 108, 5453–5462 (2004). 

119. Gilson, M. K. & Zhou, H.-X. Calculation of protein-ligand binding affinities. 
Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007). 

120. Qiu, D., Shenkin, P., Hollinger, F. & Still, W. The GB/SA continuum model 
for solvation. A fast analytical method for the calculation of approximate 
Born radii. J. Phys. Chem. A 101, 3005–3014 (1997). 

121. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & 
Klein, M. L. Comparison of simple potential functions for simulating liquid 
water. J. Chem. Phys. 79, 926–935 (1983). 

122. Ouyang, J. F. & Bettens, R. P. A. Modelling water: A lifetime enigma. 
Chimia (Aarau). 69, 104–111 (2015). 

123. Jorgensen, W. L. & Madura, J. D. Temperature and size dependence for 
monte carlo simulations of TIP4P water. Mol. Phys. 56, 1381–1392 
(1985). 



147 
 

124. Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: A 
different approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014). 

125. Jensen, F. Introduction to computational chemistry. (John Wiley & Sons, 
2007). 

126. Press, W. H. Numerical recipes : the art of scientific computing. 
(Cambridge University Press, 1986). 

127. Hünenberger, P. H. Thermostat Algorithms for Molecular Dynamics 
Simulations. in 105–149 (2005). doi:10.1007/b99427 

128. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through 
velocity rescaling. J. Chem. Phys. 126, 014101 (2007). 

129. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A 
molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980). 

130. Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb 
Central Field Part II Some Results and Discussion. Math. Proc. 
Cambridge Philos. Soc. 24, 111–132 (1928). 

131. Levine, I. N. Quantum chemistry. 

132. Pople, J. A. Approximate Molecular Orbital Theory (Advanced Chemistry). 
(Mcgraw-Hill (Tx), 1970). 

133. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. AM1: A 
New General Purpose Quantum Mechanical Molecular Model1. J. Am. 
Chem. Soc. 107, 3902–3909 (1985). 

134. Stewart, J. J. P. Optimization of parameters for semiempirical methods V: 
Modification of NDDO approximations and application to 70 elements. J. 
Mol. Model. 13, 1173–1213 (2007). 

135. Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-
quality atomic charges. AM1-BCC model: II. Parameterization and 
validation. J. Comput. Chem. (2002). doi:10.1002/jcc.10128 

136. Ponder, J. W. & Case, D. A. Force Fields for Protein Simulations. Adv. 
Protein Chem. 66, 27–85 (2003). 

137. Cornell, W. D. et al. A Second Generation Force Field for the Simulation 
of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 
117, 5179–5197 (1995). 

138. Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for 
liquid simulations] potential functions for proteins, energy minimizations 
for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–
1666 (1988). 

139. Van Gunsteren, W. F. & Berendsen, H. J. C. The GROMOS Software for 
(Bio)Molecular Simulation GROMOS87 Groningen Molecular Simulation 
(GROMOS) Library Manual. 

140. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, 
minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 



148 
 

(1983). 

141. Uversky, V. N. A decade and a half of protein intrinsic disorder: biology 
still waits for physics. Protein Sci. 22, 693–724 (2013). 

142. Kuntz, I. D., Meng, E. C. & Shoichet, B. K. STRUCTURE-BASED 
MOLECULAR DESIGN. Acc. Chem. Res. 117–123 (1994). 

143. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and 
accuracy of docking with a new scoring function, efficient optimization, 
and multithreading. J. Comput. Chem. NA–NA (2009). 
doi:10.1002/jcc.21334 

144. Brozell, S. R. et al. Evaluation of DOCK 6 as a pose generation and 
database enrichment tool. J. Comput. Aided. Mol. Des. 26, 749–773 
(2012). 

145. BioSolveIT - SeeSAR. Available at: https://www.biosolveit.de/SeeSAR/. 
(Accessed: 6th January 2020) 

146. Hou, T., Wang, J., Li, Y. & Wang, W. Assessing the Performance of the 
MM / PBSA and MM / GBSA Methods . I . The Accuracy of Binding Free 
Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. 
Inf. Model 51, 69–82 (2010). 

147. Amber Advanced Tutorials - Tutorial 3 - MM-PBSA - Introduction. 
Available at: http://ambermd.org/tutorials/advanced/tutorial3/. (Accessed: 
6th January 2020) 

148. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to 
estimate ligand-binding affinities. Expert Opin. Drug Discov. 0441, 1–13 
(2015). 

149. Lindström, A. et al. Postprocessing of Docked Protein-Ligand Complexes 
Using Implicit Solvation Models. J. Chem. Inf. Model. 51, 267–282 (2011). 

150. Sun, H. et al. Assessing the Performance of MM/PBSA and MM/GBSA 
Methods. 5. Improved Docking Performance by Using High Solute 
Dielectric Constant MM/GBSA and MM/PBSA Rescoring. Phys. Chem. 
Chem. Phys. 16, 22035–22045 (2014). 

151. Mezei, M. & Beveridge, D. L. Free energy simulations. Ann. N. Y. Acad. 
Sci. 482, 1–23 (1986). 

152. Doudou, S., Burton, N. a. & Henchman, R. H. Standard free energy of 
binding from a one-dimensional potential of mean force. J. Chem. Theory 
Comput. 5, 909–918 (2009). 

153. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F. & Hermans, 
J. Intermolecular Forces. (1981). 

154. Jorgensen, W. L. Quantum and statistical mechanical studies of liquids. 
11. Transferable intermolecular potential functions. Application to liquid 
methanol including internal rotation. J. Am. Chem. Soc. 103, 341–345 
(1981). 

155. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in 



149 
 

effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987). 

156. Wu, Y., Tepper, H. L. & Voth, G. A. Flexible simple point-charge water 
model with improved liquid-state properties. J. Chem. Phys. 124, (2006). 

157. Mahoney, M. W. & Jorgensen, W. L. A five-site model for liquid water and 
the reproduction of the density anomaly by rigid, nonpolarizable potential 
functions. J. Chem. Phys. 112, 8910–8922 (2000). 

158. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed 
phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005). 

159. Horn, H. W. et al. Development of an improved four-site water model for 
biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 
(2004). 

160. Rick, S. W. A reoptimization of the five-site water potential (TIP5P) for use 
with Ewald sums. J. Chem. Phys. 120, 6085–6093 (2004). 

161. Khalak, Y., Baumeier, B. & Karttunen, M. Improved general-purpose five-
point model for water: TIP5P/2018. J. Chem. Phys. 149, (2018). 

162. Fellers, R. S., Leforestier, C., Braly, L. B., Brown, M. C. & Saykally, R. J. 
Spectroscopic determination of the water pair potential. Science (80-. ). 
284, 945–948 (1999). 

163. Mas, E. M. et al. Water pair potential of near spectroscopic accuracy. I. 
Analysis of potential surface and virial coefficients. J. Chem. Phys. 113, 
6687–6701 (2000). 

164. and, P. R. & Ponder*, J. W. Polarizable Atomic Multipole Water Model for 
Molecular Mechanics Simulation. (2003). doi:10.1021/JP027815+ 

165. Best, R. B. Computational and theoretical advances in studies of 
intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42, 147–154 
(2017). 

166. Baker, C. M. & Best, R. B. Insights into the binding of intrinsically 
disordered proteins from molecular dynamics simulation. Wiley 
Interdiscip. Rev. Comput. Mol. Sci. 4, 182–198 (2014). 

167. Ueda, Y., Taketomi, H. & G?, N. Studies on protein folding, unfolding, and 
fluctuations by computer simulation. II. A. Three-dimensional lattice model 
of lysozyme. Biopolymers 17, 1531–1548 (1978). 

168. Do, T. N., Choy, W. Y. & Karttunen, M. Accelerating the conformational 
sampling of intrinsically disordered proteins. J. Chem. Theory Comput. 
10, 5081–5094 (2014). 

169. Silvestre-Ryan, J., Bertoncini, C. W., Fenwick, R. B., Esteban-Martin, S. & 
Salvatella, X. Average conformations determined from PRE data provide 
high-resolution maps of transient tertiary interactions in disordered 
proteins. Biophys. J. 104, 1740–1751 (2013). 

170. Ferrari, A. M., Wei, B. Q., Costantino, L. & Shoichet, B. K. Soft docking 
and multiple receptor conformations in virtual screening. J. Med. Chem. 
47, 5076–5084 (2004). 



150 
 

171. Wang, W., Ye, W., Jiang, C., Luo, R. & Chen, H.-F. New Force Field on 
Modeling Intrinsically Disordered Proteins. Chem. Biol. Drug Des. 84, 
253–269 (2014). 

172. Song, D. et al. {iff14IDPs/i force field improving the conformation sampling 
of intrinsically disordered proteins. Chem. Biol. Drug Des. (2016). 
doi:10.1111/cbdd.12832 

173. Best, R. B. & Mittal, J. Protein Simulations with an Optimized Water 
Model: Cooperative Helix Formation and Temperature-Induced Unfolded 
State Collapse. J. Phys. Chem. B 114, 14916–14923 (2010). 

174. Best, R. B., Zheng, W. & Mittal, J. Balanced Protein–Water Interactions 
Improve Properties of Disordered Proteins and Non-Specific Protein 
Association. J. Chem. Theory Comput. 10, 5113–5124 (2014). 

175. Rauscher, S. et al. Structural Ensembles of Intrinsically Disordered 
Proteins Depend Strongly on Force Field: A Comparison to Experiment. J. 
Chem. Theory Comput. 11, 5513–5524 (2015). 

176. Henriques, J., Cragnell, C. & Skepö, M. Molecular Dynamics Simulations 
of Intrinsically Disordered Proteins: Force Field Evaluation and 
Comparison with Experiment. J. Chem. Theory Comput. 11, 3420–3431 
(2015). 

177. Henriques, J., Arleth, L., Lindorff-Larsen, K. & Skepö, M. On the 
Calculation of SAXS Profiles of Folded and Intrinsically Disordered 
Proteins from Computer Simulations. J. Mol. Biol. 430, 2521–2539 (2018). 

178. Smith, M. D., Rao, J. S., Segelken, E. & Cruz, L. Force-Field Induced 
Bias in the Structure of Aβ 21–30 : A Comparison of OPLS, AMBER, 
CHARMM, and GROMOS Force Fields. J. Chem. Inf. Model. 55, 2587–
2595 (2015). 

179. Henriques, J. & Skepö, M. Molecular Dynamics Simulations of Intrinsically 
Disordered Proteins: On the Accuracy of the TIP4P-D Water Model and 
the Representativeness of Protein Disorder Models. J. Chem. Theory 
Comput. 12, 3407–3415 (2016). 

180. Ye, W., Ji, D., Wang, W., Luo, R. & Chen, H.-F. Test and Evaluation of 
ff99IDPs Force Field for Intrinsically Disordered Proteins. J. Chem. Inf. 
Model. 55, 1021–1029 (2015). 

181. Song, D., Luo, R. & Chen, H.-F. The IDP-Specific Force Field ff14IDPSFF 
Improves the Conformer Sampling of Intrinsically Disordered Proteins. J. 
Chem. Inf. Model. 57, 1166–1178 (2017). 

182. Liu, H., Song, D., Lu, H., Luo, R. & Chen, H.-F. Intrinsically disordered 
protein-specific force field CHARMM36IDPSFF. Chem. Biol. Drug Des. 
92, 1722–1735 (2018). 

183. Bernetti, M. et al. Structural and Kinetic Characterization of the 
Intrinsically Disordered Protein SeV N TAIL through Enhanced Sampling 
Simulations. J. Phys. Chem. B 121, 9572–9582 (2017). 

184. Do, T. N., Choy, W.-Y. & Karttunen, M. Binding of Disordered Peptides to 



151 
 

Kelch: Insights from Enhanced Sampling Simulations. J. Chem. Theory 
Comput. 12, 395–404 (2016). 

185. Han, M., Xu, J. & Ren, Y. Sampling conformational space of intrinsically 
disordered proteins in explicit solvent: Comparison between well-
tempered ensemble approach and solute tempering method. J. Mol. 
Graph. Model. 72, 136–147 (2017). 

186. Duong, V. T., Chen, Z., Thapa, M. T. & Luo, R. Computational Studies of 
Intrinsically Disordered Proteins. J. Phys. Chem. B 122, 10455–10469 
(2018). 

187. Cukier, R. I. Generating Intrinsically Disordered Protein Conformational 
Ensembles from a Database of Ramachandran Space Pair Residue 
Probabilities Using a Markov Chain. J. Phys. Chem. B 122, 9087–9101 
(2018). 

188. Salvi, N., Abyzov, A. & Blackledge, M. Multi-Timescale Dynamics in 
Intrinsically Disordered Proteins from NMR Relaxation and Molecular 
Simulation. J. Phys. Chem. Lett. 7, 2483–2489 (2016). 

189. Papaleo, E., Camilloni, C., Teilum, K., Vendruscolo, M. & Lindorff-Larsen, 
K. Molecular dynamics ensemble refinement of the heterogeneous native 
state of NCBD using chemical shifts and NOEs. PeerJ 6, e5125 (2018). 

190. Kang, W., Jiang, F. & Wu, Y.-D. Universal Implementation of a Residue-
Specific Force Field Based on CMAP Potentials and Free Energy 
Decomposition. J. Chem. Theory Comput. 14, 4474–4486 (2018). 

191. Bhattacharya & Lin. Recent Advances in Computational Protocols 
Addressing Intrinsically Disordered Proteins. Biomolecules 9, 146 (2019). 

192. Zerze, G. H., Zheng, W., Best, R. B. & Mittal, J. Evolution of All-Atom 
Protein Force Fields to Improve Local and Global Properties. J. Phys. 
Chem. Lett. 10, 2227–2234 (2019). 

193. Robustelli, P., Piana, S. & Shaw, D. E. Developing a molecular dynamics 
force field for both folded and disordered protein states. Proc. Natl. Acad. 
Sci. 115, E4758–E4766 (2018). 

194. Xie, M., Li, D.-W., Yuan, J., Hansen, A. L. & Brüschweiler, R. Quantitative 
Binding Behavior of Intrinsically Disordered Proteins to Nanoparticle 
Surfaces at Individual Residue Level. Chemistry 24, 16997–17001 (2018). 

195. Mercadante, D., Wagner, J. A., Aramburu, I. V., Lemke, E. A. & Gräter, F. 
Sampling Long- versus Short-Range Interactions Defines the Ability of 
Force Fields To Reproduce the Dynamics of Intrinsically Disordered 
Proteins. J. Chem. Theory Comput. 13, 3964–3974 (2017). 

196. and, P. M. & Nilsson*, L. Structure and Dynamics of the TIP3P, SPC, and 
SPC/E Water Models at 298 K. (2001). doi:10.1021/JP003020W 

197. Niu, S., Tan, M.-L. & Ichiye, T. The large quadrupole of water molecules. 
J. Chem. Phys. 134, 134501 (2011). 

198. Pettersen, E. F. et al. UCSF Chimera - A visualization system for 



152 
 

exploratory research and analysis. J. Comput. Chem. (2004). 
doi:10.1002/jcc.20084 

199. Abraham, M. J. et al. GROMACS: High performance molecular 
simulations through multi-level parallelism from laptops to 
supercomputers. SoftwareX 1–2, 19–25 (2015). 

200. Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular 
Simulation. J. Chem. Theory Comput. 4, 116–122 (2008). 

201. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A 
new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). 

202. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the 
Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010). 

203. Petoukhov, M. V et al. New developments in the ATSAS program 
package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 
342–350 (2012). 

204. Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL – a Program to 
Evaluate X-ray Solution Scattering of Biological Macromolecules from 
Atomic Coordinates. J. Appl. Crystallogr. 28, 768–773 (1995). 

205. Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building Water Models: A 
Different Approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014). 

206. Xiang, S. et al. Phosphorylation Drives a Dynamic Switch in 
Serine/Arginine-Rich Proteins. Structure 21, 2162–2174 (2013). 

207. Tyler, R. C., Tonelli, M., Lee, M. & Markley, J. L. NMR Solution Structure 
of the Partially Disordered Protein At2g23090 from Arabidopsis thaliana. 
TO BE Publ. doi:10.2210/PDB1WVK/PDB 

208. Wolin, S. L. & Cedervall, T. The La Protein. Annu. Rev. Biochem. 71, 
375–403 (2002). 

209. Alfano, C. et al. Structural analysis of cooperative RNA binding by the La 
motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 
11, 323–9 (2004). 

210. Martino, L. et al. Synergic interplay of the La motif, RRM1 and the 
interdomain linker of LARP6 in the recognition of collagen mRNA expands 
the RNA binding repertoire of the La module. Nucleic Acids Res. 43, 645–
60 (2015). 

211. Thompson, E. J., Depaul, A. J., Patel, S. S. & Sorin, E. J. Evaluating 
molecular mechanical potentials for helical peptides and proteins. PLoS 
One 5, (2010). 

212. Duong, V. T., Chen, Z., Thapa, M. T. & Luo, R. Computational Studies of 
Intrinsically Disordered Proteins. J. Phys. Chem. B 122, 10455–10469 
(2018). 

213. Ye, W., Ji, D., Wang, W., Luo, R. & Chen, H.-F. Test and Evaluation of 
ff99IDPs Force Field for Intrinsically Disordered Proteins. J. Chem. Inf. 
Model. 55, 1021–1029 (2015). 



153 
 

214. Simpson, P. J. et al. Structure and RNA interactions of the N-terminal 
RRM domains of PTB. Structure 12, 1631–43 (2004). 

215. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the 
Amber ff99SB protein force field. Proteins Struct. Funct. Bioinforma. NA-
NA (2010). doi:10.1002/prot.22711 

216. Keul, N. D. et al. The entropic force generated by intrinsically disordered 
segments tunes protein function. Nature 563, 584–588 (2018). 

217. de Araujo, A. S., Martinez, L., Nicoluci, R. de P., Skaf, M. S. & Polikarpov, 
I. Structural modeling of high-affinity thyroid receptor-ligand complexes. 
Eur. Biophys. J. with Biophys. Lett. 39, (2010). 

218. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to 
estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 
(2015). 

219. Meirovitch, H., Cheluvaraja, S. & White, R. P. Methods for calculating the 
entropy and free energy and their application to problems involving 
protein flexibility and ligand binding. Curr. Protein Pept. Sci. 10, 229–243 
(2009). 

220. Gilson, M. K. & Zhou, H. X. Calculation of protein-ligand binding affinities. 
Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007). 

221. Wereszczynski, J. & McCammon, J. A. Statistical mechanics and 
molecular dynamics in evaluating thermodynamic properties of 
biomolecular recognition. Q Rev Biophys 45, 1–25 (2012). 

222. Zhou, H. X. & Gilson, M. K. Theory of free energy and entropy in 
noncovalent binding. Chem. Rev. 109, 4092–4107 (2009). 

223. Protein simulations. (Elsevier, 2003). 

224. Head, M., Given, J. & Gilson, M. “Mining Minima”: direct computation of 
conformational free energy. J. Phys. Chem. A 5639, 1609–1618 (1997). 

225. Schlitter, J. Estimation of absolute and relative entropies of 
macromolecules using the covariance matrix. Chem. Phys. Lett. 215, 
617–621 (1993). 

226. Case, D. A. Normal mode analysis of protein dynamics. Curr. Opin. 
Struct. Biol. 4, 285–290 (1994). 

227. killian, B. J., Kravitz, J. Y. & Gilson, M. K. Extraction of configurational 
entropy from molecular simulations via an expansion approximation. J. 
Chem. Phys. 127, (2007). 

228. Leach, A. R. Molecular modelling : principles and applications . (Prentice 
Hall, 2001). 

229. Feng, Z. et al. Modulation of HIF-2α PAS-B domain contributes to 
physiological responses. Proc. Natl. Acad. Sci. 115, 13240–13245 (2018). 

230. Depping, R. & Oster, H. Interplay between environmentally modulated 
feedback loops - hypoxia and circadian rhythms - two sides of the same 



154 
 

coin? FEBS J. 284, 3801–3803 (2017). 

231. Rojas-Pirela, M. et al. Structure and function of Per-ARNT-Sim domains 
and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol. 
Biochem. Parasitol. 219, 52–66 (2018). 

232. Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. 
Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian 
transcription via independent repression of CLOCK and BMAL1 activity. 
Proc. Natl. Acad. Sci. 114, E7516–E7525 (2017). 

233. Culig, Z. & Santer, F. R. Studies on Steroid Receptor Coactivators in 
Prostate Cancer. in 259–262 (2018). doi:10.1007/978-1-4939-7845-8_15 

234. Hartzell, A. L. et al. NPAS4 recruits CCK basket cell synapses and 
enhances cannabinoid-sensitive inhibition in the mouse hippocampus. 
Elife 7, (2018). 

235. Sun, X. & Lin, Y. Npas4: Linking Neuronal Activity to Memory. Trends 
Neurosci. 39, 264–275 (2016). 

236. Harmon, A. C. et al. Particulate matter containing environmentally 
persistent free radicals induces AhR-dependent cytokine and reactive 
oxygen species production in human bronchial epithelial cells. PLoS One 
13, e0205412 (2018). 

237. Tang, X., Shao, J. & Qin, X. Crystal structure of the PAS domain of the 
hEAG potassium channel. Acta Crystallogr. Sect. F Struct. Biol. Commun. 
72, 578–585 (2016). 

238. Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. J. Comput. 
Chem. 26, 1701–1718 (2005). 

239. Best, R. B. & Mittal, J. Protein Simulations with an Optimized Water 
Model: Cooperative Helix Formation and Temperature-Induced Unfolded 
State Collapse. (2010). doi:10.1021/JP108618D 

240. Sousa, A. W. & Vranken, W. F. Open Access ACPYPE - AnteChamber 
PYthon Parser interfacE. 1–8 (2012). 

241. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO Pathway Inhibition 
in Cancer Immunotherapy via Downstream Focus on the Tryptophan–
Kynurenine–Aryl Hydrocarbon Axis. Clin. Cancer Res. 25, 1462–1471 
(2019). 

242. Koper, J. E. B. et al. Polyphenols and Tryptophan Metabolites Activate 
the Aryl Hydrocarbon Receptor in an in vitro Model of Colonic 
Fermentation. Mol. Nutr. Food Res. 63, (2019). 

243. Ge, L., Cui, Y., Cheng, K. & Han, J. Isopsoralen enhanced osteogenesis 
by targeting AhR/ERα. Molecules 23, (2018). 

244. Head, M., Given, J. & Gilson, M. “Mining Minima”: direct computation of 
conformational free energy. J. Phys. … 5639, 1609–1618 (1997). 

 


