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Abstract

Auslander-Reiten theory plays an important role in the study of abelian and triangulated

categories (in classic homological algebra) and in their higher analogues (in the more recent

higher homological algebra). The classic setup studies module categories of the form mod Λ

and their bounded derived categories Db(mod Λ), where Λ is a finite dimensional algebra

over a field k and mod Λ is the category of finitely generated (right) Λ-modules.

If gldim Λ ≤ 1, Brüning proved there is a bijection between the wide subcategories of

the abelian category mod Λ and those of the triangulated category Db(mod Λ). When

T is a suitable triangulated category, Jørgensen described Auslander-Reiten triangles in

the extension closed subcategories of T . If X ⊆ mod Λ is a precovering extension closed

subcategory, Kleiner proved that any indecomposable not Ext-projective X ∈ X appears

as the end term of an Auslander-Reiten sequence in X and he further described the case

when EndΛ(X) modulo the morphisms factoring through a projective is a division ring.

Letting d be a positive integer, we study higher homological algebra and higher Auslander-

Reiten theory. Geiss, Keller and Oppermann generalised triangulated categories to (d+2)-
angulated categories and Jasso likewise generalised abelian categories to d-abelian cate-

gories. Note that the case d = 1 recovers classic homological algebra. Assuming there is a

d-cluster tilting subcategory F ⊆ mod Λ , consider

F ∶= add{ΣidF ∣ i ∈ Z} ⊆ Db(mod Λ).

Then F is d-abelian and plays the role of a higher mod Λ having for higher derived category

the (d + 2)-angulated category F . With this in mind, we generalise Brüning, Jørgensen

and Kleiner’s results for higher values of d.

We also use higher Auslander-Reiten theory to generalise results on Grothendieck groups

of a suitable triangulated category T . We present “higher cluster tilting” versions of

results by Xiao and Zhu and by Palu and a “higher angulated” version of Palu’s result.

Our results express K0(T ) as a quotient of the split Grothendieck group of higher-cluster

tilting subcategories of T .

We prove analogues of results by Kleiner on subcategories of mod Λ in the corresponding

setup of subcategories of a suitable triangulated category T with a precovering extension

closed subcategory C. In particular, we introduce indecomposable Ext-projective objects

C in C, show that such a C appears in what we call a left-weak Auslander-Reiten triangle in

C and prove how these objects are related to the concept of Iyama and Yoshino’s mutation.
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Chapter 1

Introduction

Homological algebra, that is the study of abelian and triangulated categories, arose from

algebraic topology in the early twentieth century and it has since found many applications

in different areas of mathematics, such as combinatorics and representation theory. Fixing

a field k and a finite dimensional k-algebra Λ, the classic setup studies the abelian cate-

gory of finitely generated (right) Λ-modules, denoted by mod Λ, and its bounded derived

category, denoted by Db(mod Λ), which is a triangulated category. Auslander-Reiten the-

ory is a widely used tool to study homological algebra. Auslander-Reiten sequences in

mod Λ are non-splitting short exact sequences of the form 0 → A
αÐ→ B

βÐ→ C → 0 that are

“as close as possible” to split exact sequences. They collect important information about

both the building blocks of the objects of mod Λ, that is indecomposable modules, and

the building blocks of the morphisms of mod Λ, that is irreducible morphisms. Auslander

and Reiten later extended this theory to general abelian categories and Auslander and

Smalø to the study of Auslander-Reiten sequences in their subcategories in [7]. Moreover,

Happel developed the corresponding theory of Auslander-Reiten triangles in triangulated

categories in [20] and then Jørgensen defined and studied Auslander-Reiten triangles in

their non-triangulated subcategories in [37].

Higher homological algebra was first introduced by Iyama in 2007, see [28], as a higher

dimensional generalisation of the above theory, and it is currently a very active area

of research. Let d ≥ 1 be an integer. Jasso generalised abelian categories to d-abelian

categories in [34], where kernels and cokernels are replaced by complexes of d + 1 objects

and short exact sequences by d-exact sequences, which are complexes of d+2 objects. In the

same fashion, Geiss, Keller and Oppermann generalised triangulated categories to (d+2)-
angulated categories in [19], where triangles are replaced by complexes of d+2 objects. Note

that the base case d = 1 recovers classic homological algebra. As for homological algebra,

higher Auslander-Reiten theory plays a crucial role in the study of higher homological
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Chapter 1. Introduction

algebra. Higher Auslander-Reiten sequences were first introduced by Iyama in [28] and

Auslander-Reiten (d + 2)-angles by Iyama and Yoshino in [32]. If we further assume

that the global dimension of mod Λ is at most d and that mod Λ has a d-cluster tilting

subcategory F , we can introduce the higher case corresponding to the classic setup of

mod Λ and Db(mod Λ). In this setup, F is d-abelian,

F ∶= add{ΣidF ∣ i ∈ Z} ⊆ Db(mod Λ)

is (d+2)-angulated and F and F play the roles of a higher mod Λ and its higher bounded

derived category respectively. Note that the classic case is recovered when d = 1 as mod Λ

is the only 1-cluster tilting subcategory of itself.

Outline of thesis

The structure of this thesis is as follows. Chapter 2 introduces the background material

that will be used in the rest of the thesis. We start by giving an overview on categories and

subcategories. Then, we recall some definitions and results on homological algebra, includ-

ing the functor Ext, Auslander-Reiten theory and the classic case of mod Λ and Db(mod Λ)
mentioned above. The third and last part of the chapter consists of an introduction to

higher homological algebra. We define d-abelian and (d + 2)-angulated categories and

present a series of results that will be widely used to prove the main results in this thesis.

Moreover, in Remark 2.3.44, we describe the generalised higher mod Λ and its higher de-

rived category mentioned above. When introducing higher Auslander-Reiten theory, we

give an alternative proof for the d-Auslander-Reiten duality, first proved by Iyama in [28],

see Theorem 2.3.26.

Chapter 3 presents three examples of the categories defined in Chapter 2. These are

presented at this stage to give examples of the categories defined in Chapter 2, but they

will be also used in later chapters to give applications of the main results of this thesis.

The first is a classic example of a triangulated category: the cluster category of Dynkin

type An, which we denote by CAn . The second one is the triangulated q-cluster category

of Dynkin type An, denoted by Cq(An) and it is a generalisation of CAn . The third is a

class of examples first defined by Vaso, see [55], and it is an example of the higher mod Λ

and its higher derived category.

In the same setup as above, further assume that k is algebraically closed. When d = 1,

Brüning proved in [10] that there is a bijection between the wide subcategories of mod Λ

and those of Db(mod Λ). In Chapter 4, assuming mod Λ has a d-cluster tilting subcategory

F , we prove the higher version of Brüning’s result.Moreover, when T is a suitable trian-

gulated category, Jørgensen described Auslander-Reiten triangles in the extension closed
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Chapter 1. Introduction

subcategories of T in [37]. We prove a generalised version of his result. We conclude

this chapter by applying the two main results to Vaso’s class of examples introduced in

Chapter 3.

Chapter 5 presents a higher version of Kleiner’s results from [43] on Auslander-Reiten

sequences in precovering extension closed subcategories X of mod Λ. In particular, Kleiner

proved that any indecomposable not Ext-projective X ∈ X appears as the end term of an

Auslander-Reiten sequence in X and he further described the case when EndΛ(X) modulo

the morphisms factoring through a projective is a division ring. Assuming mod Λ has a

d-cluster tilting subcategory F , we prove the higher version of these results and apply our

results to an example.

Chapter 6 gives a way to express the Grothendieck group of a suitable triangulated cate-

gory C as a quotient of the split Grothendieck group of a higher-cluster tilting subcategory

of C. The results proved in this chapter are a “higher cluster tilting” version of Xiao and

Zhu’s result from [57] and a “higher angulated” version of Palu’s theorem from [50]. We

illustrate the higher cluster tilting result in the example Cq(An) introduced in Chapter 3

and the higher angulated result in another example.

Finally, Chapter 7 proves analogues of results by Kleiner on mod Λ from [43] in triangulated

categories. In particular, we prove that if T is a suitable triangulated category with a

precovering extension closed subcategory C, then any Ext-projective object C in C appears

in something very similar to an Auslander-Reiten triangle in C, that is an essentially unique

triangle in T of the form

X → B → C → ΣX.

Moreover, under some extra assumptions, we show that the process of removing the inde-

composable C from C and replacing it with X coincides with the classic mutation described

by Iyama and Yoshino in [32]. Finally, we apply these results to the example CAn intro-

duced in Chapter 3.

Work in this thesis has been in part covered by the following papers: Chapter 4 is based

on [15]; Chapter 5 is based on [16]; Chapter 6 is based on [17]; Chapter 7 is based on [14].
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Chapter 2

Background

This chapter presents the background material needed in the thesis.

2.1 Categories, functors and subcategories

In this section, we give an overview on categories and subcategories, see [46, Chapter

I] for more details. We also introduce some definitions and results on left (and right)

almost split morphisms that we will widely use for the study of Auslander-Reiten theory

in homological and higher homological algebra in later sections. Some of these definitions

are typically presented in the setup of a more specific category, such as an abelian or a

triangulated one, but they still make sense for a general category A.

2.1.1 Categories

Definition 2.1.1. A category is a triple A = (ObA,HomA, ○), where ObA is called the

class of objects of A, HomA, which is the union of the sets HomA(A,B), is called the

class of morphisms of A, ○ is a partial binary operation on HomA and the triple satisfies

the following.

(a) We associate to each pair A,B ∈ ObA the set of morphisms from A to B, denoted

by HomA(A,B), such that if (A,B) ≠ (C,D), then HomA(A,B)∩HomA(C,D) = ∅.

(b) For each triple A, B, C ∈ ObA the operation

○ ∶ HomA(B,C) ×HomA(A,B)→ HomA(A,C), given by (β,α)↦ β ○ α

is defined (we call it the composition of α and β) and has the following properties.
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Chapter 2. Background

• Associativity: γ ○ (β ○ α) = (γ ○ β) ○ α for every triple α ∈ HomA(A,B), β ∈
HomA(B,C), γ ∈ HomA(C,D) and

• Existence of the identity morphism 1A: for each A ∈ ObA, there exists 1A ∈
HomA(A,A) such that for every α ∈ HomA(A,B) and γ ∈ HomA(C,A) we have

α ○ 1A = α and 1A ○ γ = γ.

Notation 2.1.2. We often write α ∶ A → B instead of α ∈ HomA(A,B). Moreover, we

often write A A in diagrams to mean 1A.

Example 2.1.3. Abelian groups together with group homomorphisms and their usual

composition form a category, which we denote by Ab.

Some important categories

Most of the categories we will study in this thesis have some extra structure. In particular,

we will almost always assume our categories are k-linear additive categories for some field

k. In addition, we will also often assume some of the following: they are skeletally small,

they have split idempotents, their Hom spaces are finite dimensional over the given field

k. We recall here the relevant definitions.

Definition 2.1.4. Let k be a field. A category A is called a k-linear category if for each

pair of objects A, B in A, the set HomA(A,B) is equipped with a k-vector space structure

such that the composition of morphisms in A is a k-bilinear map.

Definition 2.1.5. A category A is an additive category if the following conditions are

satisfied.

(a) For any finite set of objects A1, A2, . . . , An in A, there exists a direct sum A1⊕A2⊕
⋅ ⋅ ⋅ ⊕An.

(b) For each pair of objects A, B in A, the set HomA(A,B) is equipped with an abelian

group structure.

(c) For each triple of objects A, B, C in A, the composition

○ ∶ HomA(B,C) ×HomA(A,B)→ HomA(A,C)

is bilinear.

(d) There exists an object 0 in A, called the zero object, such that 10 is the element zero

of the abelian group HomA(0,0).

5



Chapter 2. Background

Remark 2.1.6. If A is a k-linear additive category, then the k-linear and additive struc-

tures have the same addition of morphisms, denoted by “+”.

Definition 2.1.7 ([46, Chapter VIII.2]). Let A be a category. A biproduct diagram for

two objects A and B in A is a diagram of the form

A
ι

++ C
π

kk
π′

33 B,
ι′

ss (2.1)

where π ○ ι = 1A, π′ ○ ι′ = 1B and ι ○ π + ι′ ○ π′ = 1C . By [46, Theorem VIII.2], two objects

A, B in A have a product if and only if they have a biproduct diagram (2.1) if and only

if they have a coproduct, or a direct sum, and in this case C = A⊕B. Specifically, given a

biproduct diagram (2.1), the object C together with ι and ι′ is a coproduct of A and B,

while C together with π and π′ is a product of A and B. Conversely, each coproduct C

of A and B with inclusions ι and ι′ can be augmented to a biproduct diagram and so can

each product of A and B with projections π and π′. Note that if A is additive, then any

two objects have a product, a coproduct and a biproduct diagram.

We recall the definition of (Jacobson) radical of an additive category, see [42, Lemma 6].

Definition 2.1.8. Let A be an additive category. The (Jacobson) radical of A is the two

sided ideal radA in A defined by the formula

radA(A,B) = {α ∶ A→ B ∣ 1A − β ○ α is invertible for any β ∶ B → A},

for all objects A and B in A.

Definition 2.1.9. A category A is said to be skeletally small if the collection of isomor-

phism classes of objects is a set.

Definition 2.1.10. Let A be a category and A be an object in A. A morphism e ∈
HomA(A,A) is called an idempotent if e2 = e ○ e = e. We say that the category A has split

idempotents if for any object A in A and any idempotent e ∈ HomA(A,A), there is an

object B in A and morphisms π ∶ A→ B and ι ∶ B → A such that ι ○ π = e and π ○ ι = 1B.

Definition 2.1.11. Let A be an additive category. We say that an object A ∈ A is

indecomposable if when written as a direct sum of the form A = A1 ⊕ A2, we have that

either A1 = 0 or A2 = 0.

Remark 2.1.12. Let k be a field and A be a skeletally small, k-linear additive category

with split idempotents and finite dimensional Hom spaces over k. By [45, Corollary 4.4], we

have that A is a Krull-Schmidt category, in the sense that for each object A in A, there is a

6



Chapter 2. Background

finite direct sum decomposition of the form A = A1⊕ ⋅ ⋅ ⋅ ⊕An, where Ai is indecomposable

for each i = 1, . . . , n. Note that this is equivalent to HomA(Ai,Ai) being a local ring for

each i. Moreover, by [45, Theorem 4.2] the objects A1, . . . , An are determined uniquely

up to isomorphism.

2.1.2 Functors

We recall the definition of functors, which are maps between categories that send objects

to objects and morphisms to morphisms.

Definition 2.1.13. A covariant functor F ∶ A → B between two categories A and B is

defined by assigning to each A ∈ ObA some F (A) ∈ ObB and to each α ∶ A→ A′ in HomA
some F (α) ∶ F (A)→ F (A′) in HomB such that the following conditions hold.

(a) For every A ∈ ObA, F (1A) = 1F (A).

(b) For each pair of morphisms α ∶ A→ A′ and α′ ∶ A′ → A′′ in HomA we have F (α′○α) =
F (α′) ○ F (α).

A contravariant functor G ∶ A→ B between two categories is defined by assigning to each

A ∈ ObA some G(A) ∈ ObB and to each α ∶ A→ A′ in HomA some G(α) ∶ G(A′)→ G(A)
in HomB such that the following hold.

(a) For every A ∈ ObA, G(1A) = 1G(A).

(b) For each pair of morphisms α ∶ A→ A′ and α′ ∶ A′ → A′′ in HomA we have G(α′○α) =
G(α) ○G(α′).

Note that covariant functors preserve the direction of the arrows while contravariant func-

tors reverse it.

Definition 2.1.14. We say that a covariant functor F ∶ A→ B is a full functor if for any

objects A and A′ in A, the map

FAA′ ∶ HomA(A,A′)→ HomB(F (A), F (A′)),

sending a morphism α to F (α) is surjective. Similarly, if the map FAA′ is injective for any

objects A and A′ in A, then we say that F is a faithful functor.

Definition 2.1.15. Let A be a category. Then 1A ∶ A → A sending each object and

each morphism to itself is a covariant functor called the identity functor of A. A functor

F ∶ A → A is an automorphism if there exists a functor F−1 ∶ A → A such that F ○ F−1 =
1A = F −1 ○ F .
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Chapter 2. Background

Definition 2.1.16. A functor F ∶ A → B between two additive categories is called an

additive functor if F (α + β) = F (α) + F (β) when this equation makes sense. Note that

additive functors preserve finite coproducts.

We will use the following result in later sections.

Lemma 2.1.17. Let A and B be additive categories and A have split idempotents. Sup-

pose F ∶ A→ B is a full additive functor, then F (A) is closed under direct summands.

Proof. Let A ∈ A satisfy F (A) =X ⊕ Y . Then, we have a biproduct diagram:

X
i ,,

F (A)
p

kk
q

33 Y,
j

rr
(2.2)

where p ○ i = 1X and q ○ j = 1Y . Also, e = i ○ p and 1F (A) − e = j ○ q are idempotents in

EndB(F (A)). Now, as F is full, there is an idempotent e′ in EndA(A) such that F (e′) = e,
and F (1A − e′) = 1F (A) − e. Since A has split idempotents, we get a biproduct diagram:

X ′
i′

++ A
p′

kk
q′

33 Y ′,
j′

ss

where p′ ○ i′ = 1X′ , q′ ○ j′ = 1Y ′ , i′ ○ p′ = e′ and j′ ○ q′ = 1A − e′. Applying F to this, we get:

F (X ′)
F (i′)

,,
F (A)

F (p′)

mm
F (q′)

11 F (Y ′).
F (j′)

rr

We show that F (p′) ○ i ∶ X → F (X ′) and p ○ F (i′) ∶ F (X ′) → X are mutually inverse

isomorphisms, so that F (X ′) ≅X. First note that

i ○ p = e = F (i′) ○ F (p′), and F (p′) ○ F (i′) = F (p′ ○ i′) = F (1X′) = 1F (X′).

Then, recalling also that p ○ i = 1X , we have that

(F (p′) ○ i) ○ (p ○ F (i′)) = F (p′) ○ (i ○ p) ○ F (i′) = F (p′) ○ F (i′) ○ F (p′) ○ F (i′) = 1F (X′),

(p ○ F (i′)) ○ (F (p′) ○ i) = p ○ (F (i′) ○ F (p′)) ○ i = p ○ i ○ p ○ i = 1X .

Hence X ≅ F (X ′) and similarly, Y ≅ F (Y ′).

We omit a description of the theory of algebras and modules in this thesis, see [2, Chapter

I] for example for details.
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Chapter 2. Background

Notation 2.1.18. Let k be a field and Λ a finite dimensional associative k-algebra. Unless

otherwise specified, we assume that Λ-modules of any k-algebra Λ are right Λ-modules.

Right (respectively left) Λ-modules together with their module morphisms form a category,

denoted by Mod Λ (respectively Mod Λop). Moreover, the category of finitely generated

right Λ-modules is denoted by mod Λ and the one of finitely generated left Λ-modules is

denoted by mod Λop.

Example 2.1.19. Let k be a field and Λ be an associative algebra over k. Let M be a right

Λ-module and note that for any right Λ-module N , we have that the set of morphisms from

M to N , denoted by HomΛ(M,N) is a k-vector space and Mod Λ is a k-linear category.

(a) Consider HomΛ(M,−) ∶ Mod Λ→Modk, that is the map sending a right Λ-module N

to the k-vector space HomΛ(M,N) and a module morphism f ∶ N → L to the k-linear

map HomΛ(M,f) ∶ HomΛ(M,N) → HomΛ(M,L) given by HomΛ(M,f)(g) = f ○ g,

for g ∈ HomΛ(M,N). Then HomΛ(M,−) is a covariant functor.

(b) Consider HomΛ(−,M) ∶ Mod Λ→Modk, that is the map sending a right Λ-moduleN

to the k-vector space HomΛ(N,M) and a module morphism f ∶ N → L to the k-linear

map HomΛ(f,M) ∶ HomΛ(L,M) → HomΛ(N,M) given by HomΛ(f,M)(g) = g ○ f .

Then, HomΛ(−,M) is a contravariant functor.

Definition 2.1.20. Let A and B be categories and F, G ∶ A → B be functors, say both

covariant. Let η = {ηA}A∈ObA be a family of morphisms in B such that for each A ∈ ObA,

we have that ηA ∈ HomB(F (A),G(A)). We say that η is a functorial morphism, also

known as a natural transformation, if for each A, A′ ∈ ObA and each α ∈ HomA(A,A′)
the following diagram commutes

F (A) ηA //

F (α)
��

G(A)
G(α)
��

F (A′) ηA′ // G(A′).

If in addition ηA is an isomorphism for each A ∈ ObA, we say that η is a functorial

isomorphism, also known as a natural equivalence.

Definition 2.1.21. We say that a covariant functor F ∶ A → B is an equivalence of

categories if there is a functor G ∶ B → A and functorial isomorphisms ψ ∶ F ○ G ≃Ð→ 1B

and φ ∶ G ○ F ≃Ð→ 1A. In this case we say that G is a quasi-inverse of F and A and B are

equivalent categories (and write A ≅ B).

Definition 2.1.22. We say that a contravariant functor F ∶ A→ B is a duality of categories

if there is a functor G ∶ B → A and functorial isomorphisms ψ ∶ F ○G ≃Ð→ 1B and φ ∶ G○F ≃Ð→
1A. In this case, we say that G is a quasi-inverse of F .

9



Chapter 2. Background

Example 2.1.23. Let k be a field and Λ be a finite dimensional associative k-algebra.

Finitely generated right, respectively left, Λ-modules together with module morphisms

form a category, denoted by mod Λ, respectively by mod Λop. Let D(−) = Homk(−, k) ∶
mod Λ → mod Λop be the contravariant functor which assigns to each M in mod Λ the

dual k-vector space D(M) = Homk(M,k) together with left Λ-module structure given

by (af)(m) = f(ma) for any f ∈ Homk(M,k), a ∈ Λ and m ∈ M ; and to each h ∈
HomΛ(M,N), the dual k-homomorphism D(h) = Homk(h, k) ∶ D(N) → D(M) given by

D(h)(ϕ) = ϕ ○ h. Then D(−) is a duality of categories, called the standard k-duality with

quasi-inverse D(−) = Homk(−, k) ∶ mod Λop →mod Λ defined similarly.

We end this section by introducing the Serre functor. This functor plays an important

role in Auslander-Reiten theory and we will widely use it in later sections and chapters of

this thesis.

Definition 2.1.24. Let k be a field and A be a k-linear additive category with finite

dimensional Hom spaces over k. An additive functor S ∶ A → A is called a Serre functor

if it is an auto-equivalence and there are isomorphisms

HomA(A,B) ≅D ○HomA(B,SA),

functorial in A, B ∈ ObA, where D(−) = Homk(−, k).

2.1.3 Some important morphisms

We define isomorphisms, monomorphisms and epimorphisms and what it means for monomor-

phisms and epimorphisms to split. We also introduce irreducible morphisms and left and

right almost split morphisms, which we will widely use in later sections.

Definition 2.1.25. Let A be a category and A, B be objects in A. A morphism α ∶ A→ B

is called an isomorphism if there exists a morphism β ∶ B → A such that α ○ β = 1B and

β ○ α = 1A. In this case, the morphism β is uniquely determined by α, it is called the

inverse of α and it is denoted by α−1. Moreover, we say that A and B are isomorphic

and write A ≅ B. A morphism of the form α ∶ A → A is called an endomorphism and we

define EndA(A) ∶= HomA(A,A). An endomorphism that is also an isomorphism is called

an automorphism.

Definition 2.1.26. Let A be a category and A, B be objects in A. A morphism α ∶
A → B is called a monomorphism if for each object C in A and each pair of morphisms

γ, γ′ ∈ HomA(C,A) such that α ○ γ = α ○ γ′, we have that γ = γ′. Dually, a morphism

α ∶ A→ B is called an epimorphism if for each object C in A and each pair of morphisms

β,β′ ∈ HomA(B,C) such that β ○ α = β′ ○ α, we have that β = β′.

10
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Definition 2.1.27. Let A be a category and A, B be objects in A. A morphism α ∶ A→ B

is called a split monomorphism (or section) if there exists a morphism β ∶ B → A such that

β ○ α = 1A. Dually, a morphism β ∶ B → A is called a split epimorphism (or retraction) if

there exists a morphism α ∶ A→ B such that β ○ α = 1A.

Remark 2.1.28. Note that a split monomorphism is a monomorphism and a split epi-

morphism is an epimorphism.

Definition 2.1.29. Let A be a category and A, B be objects in A. A morphism α ∶ A→ B

is called an irreducible morphism if

(a) α is neither a split monomorphism nor a split epimorphism,

(b) whenever α = α2 ○ α1 for some object C ∈ A and morphisms α1 ∶ A → C and

α2 ∶ C → B, then either α1 is a split monomorphism or α2 is a split epimorphism.

We define left (and right) minimal morphism, see for example [2, Definition 1.1, Chapter

IV].

Definition 2.1.30. A morphism α ∶ A → B in a category A is left minimal if each

morphism η ∶ B → B which satisfies η ○ α = α is an isomorphism. Dually, α is right

minimal if each morphism ϕ ∶ A→ A which satifies α ○ ϕ = α is an isomorphism.

Definition 2.1.31. Let A be a category and A, B and C be objects in A.

(a) A morphism α ∶ A→ B is left almost split in A if it is not a split monomorphism and

for every A′ in A, every morphism α′ ∶ A → A′ which is not a split monomorphism

factors through α, i.e. there exists a morphism B → A′ such that the following

diagram commutes:

A
α //

α′ ##

B.

∃{{
A′

(b) A morphism β ∶ B → C is right almost split in A if it is not a split epimorphism

and for every C ′ in C, every morphism γ ∶ C ′ → C which is not a split epimorphism

factors through β, i.e. there exists a morphism C ′ → B such that the following

diagram commutes:

B
β // C.

C ′∃

cc
γ

;;

11
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Definition 2.1.32. A morphism in a category A is minimal left almost split in A if it

is both left minimal and left almost split in A. Similarly, a morphism is minimal right

almost split in A if it is both right minimal and right almost split in A.

Notation 2.1.33. If the category A we are working in is clear, we sometimes omit it and

just say that a morphism is (minimal) left or right almost split.

Lemma 2.1.34. Let A be a category and A be an object in A.

(a) Suppose there exists a minimal left almost split morphism α ∶ A → B in A. Then α

is unique up to isomorphism in the sense that if α′ ∶ A → B′ is another minimal left

almost split morphism in A, then there exists an isomorphism ϕ ∶ B → B′ such that

ϕ ○ α = α′.

(b) Suppose there exists a minimal right almost split morphism γ ∶ C → A in A. Then

γ is unique up to isomorphism in the sense that if γ′ ∶ C ′ → A is another minimal

right almost split morphism in A, then there exists an isomorphism ψ ∶ C → C ′ such

that γ′ ○ ψ = γ.

Proof. We only prove (a) as (b) follows by a dual argument. Since α and α′ are left almost

split in A, there are morphisms ϕ ∶ B → B′ and ϕ′ ∶ B′ → B such that ϕ ○ α = α′ and

ϕ′ ○ α′ = α. Then α = ϕ′ ○ ϕ ○ α and α′ = ϕ ○ ϕ′ ○ α′. By left minimality of α and α′, it

follows that ϕ ○ ϕ′ and ϕ′ ○ ϕ are isomorphisms and so ϕ is an isomorphism.

2.1.4 Subcategories

In this thesis, we will often work with subcategories and we will usually assume these

subcategories are full.

Definition 2.1.35. Let A be a category. A category X is called a subcategory of A if the

following are satisfied.

(a) The class ObX is a subclass of the class ObA.

(b) If X, Y are objects in X , then HomX (X,Y ) ⊆ HomA(X,Y ).

(c) The composition of morphisms in X is the same as in A.

(d) For each object X in X , the identity morphism in HomX (X,X) coincides with the

identity morphism in HomA(X,X).

If, in addition, we have that HomX (X,Y ) = HomA(X,Y ) for all objects X, Y in X , then

X is called a full subcategory of A.

12
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Example 2.1.36. Let k be a field and Λ a finite dimensional associative k-algebra. Fol-

lowing Notation 2.1.18, we have that mod Λ ⊆ Mod Λ and mod Λop ⊆ Mod Λop are full

subcategories.

We will also often assume that subcategories are precovering and/or preenveloping. We

hence recall the definitions of precovers, covers, precovering subcategories and their dual

notions, see for example [37, Definition 1.4].

Definition 2.1.37. Let A be a category and X a full subcategory of A. An X -precover

(or right X -approximation) of an object A in A is a morphism of the form ξ ∶X → A with

X ∈ X such that every morphism ξ′ ∶X ′ → A with X ′ ∈ X factorizes as:

X ′ ξ′ //

∃ ##

A.

X
ξ

;;

An X -cover (or minimal right X -approximation) of A is an X -precover of A which is also

a right minimal morphism.

An X -preenvelope (or left X -approximation) of an object A in A is a morphism of the

form η ∶ A → Y with Y ∈ X such that every morphism η′ ∶ A → Y ′ with Y ′ ∈ X factorizes

as:

A
η′ //

η ""

Y ′.

Y
∃

;;

An X -envelope (or minimal left X -approximation) of A is an X -preenvelope of A which is

also a left minimal morphism.

Definition 2.1.38. The full subcategory X of A is called precovering (or contravariantly

finite) if every object in A has an X -precover. Dually, it is called preenveloping (or

covariantly finite) if every object in A has an X -preenvelope. If X is both precovering

and preenveloping, it is called functorially finite in A.

Often, subcategories of additive subcategories will be assumed to be additive subcategories

in the following sense.

Definition 2.1.39. Let A be an additive category. An additive subcategory of A is a full

subcategory which is closed under direct sums, direct summands and isomorphisms in A.

An important example of an additive subcategory we will often use is the following.

13
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Definition 2.1.40. Let A be an additive category and A be an object in A. Then add (A)
is defined to be the additive subcategory of A whose objects are direct summands of direct

sums of copies of A.

2.2 Homological algebra

Auslander-Reiten theory plays an important role in the study of abelian and triangulated

categories and their higher analogues. In this section, we work in the setup of classic

homological algebra, with abelian and triangulated categories.

2.2.1 Abelian categories

We first define general abelian categories and we then focus on module categories.

Definition 2.2.1. Let A be an additive category and α ∶ A → B be a morphism in A. A

kernel of α is an object Kerα in A together with a morphism ι ∶ Kerα → A satisfying the

following two conditions:

(a) α ○ ι = 0,

(b) for any object C of A and any morphism γ ∶ C → A such that α ○ γ = 0, there exists

a unique morphism γ′ ∶ C → Kerα such that the following diagram commutes

C
γ //

γ′ ##

A
α // B.

Kerα
ι

;;

A cokernel of α is an object Cokerα in A together with a morphism π ∶ B → Cokerα

satisfying the following two conditions:

(a) π ○ α = 0,

(b) for any object C of A and any morphism β ∶ B → C such that β ○α = 0, there exists

a unique morphism γ ∶ Cokerα → C such that the following diagram commutes

A
α // B

β //

π $$

C.

Cokerα
γ

99

Remark 2.2.2 ([2, pp 408, Appendix A.1]). Let A be an additive category such that

each morphism in A admits a kernel and a cokernel. For any morphism α ∶ A → B in

14



Chapter 2. Background

A, by Definition 2.2.1, there exists a unique morphism α such that the following diagram

commutes

Kerα
ι // A

α //

π′

��

B
π // Cokerα.

Coker ι
α
// Kerπ

ι′

OO

Moreover, the object Kerπ is called the image of α and it is denoted by Imα.

Definition 2.2.3. A category A is called an abelian category if

(a) A is additive,

(b) each morphism α ∶ A → B in A admits a kernel ι ∶ Kerα → A and a cokernel

π ∶ B → Cokerα and the induced morphism α ∶ Coker ι → Kerπ from Remark 2.2.2

is an isomorphism.

Definition 2.2.4. Let A be an abelian category. We say that a sequence

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯

of objects and morphisms in A is a chain complex if αi ○ αi+1 = 0 for all i. A chain map

between two chain complexes A and B over A is a collection of morphisms f = {fi ∶ Ai →
Bi} such that the following diagram commutes:

⋯ // Ai+1
αi+1 //

fi+1

��

Ai
αi //

fi
��

Ai−1
//

fi−1

��

⋯

⋯ // Bi+1
βi+1

// Bi
βi
// Bi−1

// ⋯.

Chain complexes together with chain maps form an abelian category, denoted by C(A),
see [56, Chapter 1, Theorem 1.2.3].

Definition 2.2.5. Let A be an abelian category and consider a chain complex

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯

in A. The ith homology of A is defined to be

Hi(A) ∶= Coker(Imαi+1
ϕÐ→ Kerαi),

where ϕ is the morphism induced by αi+1 and αi. Note that if f ∶ A → B is a chain map,

then f induces a morphism Hi(f) ∶ Hi(A) → Hi(B) for every i and Hi(−) ∶ C(A) → A

15
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is a well-defined covariant functor. We say that A is an exact sequence if each morphism

ϕ ∶ Imαi+1 → Kerαi is an isomorphism, or equivalently Hi(A) ≅ 0, for all i. An exact

sequence of the form

0→ A
αÐ→ B

βÐ→ C → 0

is called a short exact sequence.

Remark 2.2.6. Let k be a field and Λ a finite dimensional k-algebra. Then the category

of right Λ-modules, denoted by Mod Λ, is abelian. Consider a chain complex

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯

in Mod Λ. We have that αi ○αi+1 = 0 implies that Imαi+1 is isomorphic to a submodule of

Kerαi and the ith homology of A is the quotient module Hi(A) = Kerαi/ Imαi+1. Then, for

any integer i, the ith homology functor is the covariant functorHi(−) ∶ C(Mod Λ)→Mod Λ

sending a chain complex

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯

to the module Hi(A) = Kerαi/ Imαi+1 and a chain map

A =
f
��

⋯ // Ai+1
αi+1 //

fi+1

��

Ai
αi //

fi
��

Ai−1
//

fi−1

��

⋯

B = ⋯ // Bi+1
βi+1

// Bi
βi
// Bi−1

// ⋯

to the morphism

Hi(f) ∶Hi(A)→Hi(B) ∶ (a + Imαi+1 ↦ fi(a) + Imβi+1),

see [25, Definition 7.1].

Notation 2.2.7. If instead of subscripts and descending indices, we use superscripts and

ascending indices for our sequences, then we talk about cochain complexes in A of the

form

A = ⋯→ Ai−1 αi−1

ÐÐ→ Ai
αi

Ð→ Ai+1 → ⋯

and cochain maps. Moreover, in this case we use the ith cohomology of A, denoted by

H i(A) instead of the homology.

Definition 2.2.8. Let A and B be two abelian categories and F ∶ A → B be a covariant,

16



Chapter 2. Background

additive functor. We say that F is left exact (respectively right exact) if for every short

exact sequence 0 → A
αÐ→ B

βÐ→ C → 0, the sequence 0 → F (A) F (α)ÐÐÐ→ F (B) F (β)ÐÐÐ→ F (C)
(respectively F (A) F (α)ÐÐÐ→ F (B) F (β)ÐÐÐ→ F (C)→ 0) is exact.

Similarly if F ∶ A→ B is a contravariant functor, F is left exact (respectively right exact)

if for every short exact sequence 0 → A
αÐ→ B

βÐ→ C → 0, the sequence 0 → F (C) F (β)ÐÐÐ→
F (B) F (α)ÐÐÐ→ F (A) (respectively F (C) F (β)ÐÐÐ→ F (B) F (α)ÐÐÐ→ F (A)→ 0) is exact.

A covariant or contravariant functor which is both left and right exact is called an exact

functor.

Example 2.2.9. Let A be an abelian category. Then for any object A in A, the covariant

functor HomA(A,−) and the contravariant functor HomA(−,A) are left exact.

Derived functors and Ext

In this section we fix an abelian category A and we define derived functors.

Definition 2.2.10. An object P in A is called a projective object if the covariant func-

tor HomA(P,−) is exact. Dually, an object I in A is called an injective object if the

contravariant functor HomA(−, I) is exact.

Definition 2.2.11. A projective presentation of an object A in A is a short exact sequence

in A of the form

0→K → P → A→ 0,

where P is a projective object. If every object in A has a projective presentation, we say

that A has enough projectives.

Dually, one can define injective presentations of objects and A having enough injectives.

Definition 2.2.12. A projective resolution of an object A in A is a chain complex in A
consisting of projective objects of the form

P = ⋯→ P2 → P1 → P0 → 0,

such that H0(P ) ≅ A and Hi(P ) = 0 for i ≥ 1.

Remark 2.2.13. Assume that A has enough projectives and let A be an object in A.
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Then we can construct a commutative diagram of the form

K2

##
⋯ // P2

π2 ;;
π2 // P1

π1
""

π1 // P0
π0 // A,

K1

<<

where, fixing K0 = A, we have that 0 → Ki+1 → Pi
πiÐ→ Ki → 0 is a projective presentation

of Ki for i ≥ 0. Then

P = ⋯→ P2
π2Ð→ P1

π1Ð→ P0 → 0

is a projective resolution of A.

If instead of having enough projectives, the category A has enough injectives, then one

can construct an injective presentation of a given object using a dual construction.

Definition 2.2.14 ([56, Section 2.4]). Let A and B be an abelian categories, A have

enough projectives and F ∶ A → B be an additive functor. For each object A in A, we fix

a projective resolution P (A) of A. Note that a morphism α ∶ A → A′ in A can be lifted

to a morphism P (α) ∶ P (A) → P (A′) of the projective resolutions, that is a a chain map

such that H0(P (α)) = α.

If F is a covariant functor, we define the left derived functors of F to be LiF (−) ∶=
Hi(F (P (−))) for i ≥ 0. Note that if F is right exact, then L0F (A) ≅ F (A). If F

is a contravariant functor, we define the right derived functors of F to be RiF (−) ∶=
H i(F (P (−))) for i ≥ 0. Note that if F is left exact, then R0F (A) ≅ F (A). Note that,

as pointed out in [56, Lemma 2.4.1], the choice of the projective resolutions and how

morphisms are lifted do not matter.

Dually, if instead of having enough projectives, the category A has enough injectives, then

one can define left derived functors of a contravariant functor and right derived functors

of a covariant functor using injective resolutions.

We introduce an important example of right derived functors that we will often use in

later sections, that is the Ext-functors.

Definition 2.2.15. Let A be an abelian category with enough projectives and enough in-

jectives and letA andB be objects inA. For i ≥ 1, we define ExtiA(−,B) ∶= RiHomA(−,B),
that is the right derived functors of the contravariant, left exact, additive functor HomA(−,B)
using projective resolutions. Similarly, we define ExtiA(A,−) ∶= RiHomA(A,−), that is the

right derived functors of the covariant, left exact, additive functor HomA(A,−), using in-

jective resolutions. Note that the two definitions give natural equivalent functors, see [56,
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Theorem 2.7.6].

Auslander-Reiten theory in module categories

We now focus on some module categories and we give an overview of Auslander-Reiten

theory for these abelian categories. We follow Notation 2.1.18.

Setup 2.2.16. Let k be a field and Λ a finite dimensional k-algebra.

Definition 2.2.17. A short exact sequence of the form

0→ A
αÐ→ B

βÐ→ C → 0 (2.3)

in mod Λ is called an Auslander-Reiten sequence if α is a left almost split morphism in

mod Λ and β is a right almost split morphism in mod Λ.

The following result presents equivalent definitions to the one of Auslander-Reiten se-

quence, see [2, Theorem IV.1.13] and [5, Proposition V.1.14].

Theorem 2.2.18. Let 0 → A
αÐ→ B

βÐ→ C → 0 be a short exact sequence in mod Λ. The

following are equivalent:

(a) the sequence is an Auslander-Reiten sequence,

(b) A is indecomposable and β is right almost split,

(c) C is indecomposable and α is left almost split,

(d) α is minimal left almost split,

(e) β is minimal right almost split,

(f) A and C are indecomposable and α and β are irreducible.

Remark 2.2.19. Let 0 → A
αÐ→ B

βÐ→ C → 0 be an Auslander-Reiten sequence. Then, by

[5, Theorem V.5.3], the components of α are, up to isomorphism and scalar multiple, all

the irreducible morphisms starting at A and the components of β are, up to isomorphism

and scalar multiple, all the irreducible morphisms ending at C.

Hence Auslander-Reiten sequences collect important information both about the building

blocks of objects in mod Λ, that is indecomposable modules, and about the building blocks

of morphisms in mod Λ, that is irreducible morphisms. It is now natural to ask when it

is possible to construct an Auslander-Reiten sequence ending (or starting) at a given

indecomposable in mod Λ. This question has been answered, and there is also a recipe to

find the other end term of such an Auslander-Reiten sequence.
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Definition 2.2.20. Let proj Λ be the full subcategory of mod Λ whose objects are the

finitely generated projective modules. Considering the module Λ in mod Λ, note that

proj Λ = add (Λ), where add is defined in Definition 2.1.40. Moreover, note that proj Λ is a

precovering subcategory. Let C be an object in mod Λ. A minimal projective presentation

of C is a sequence P1
π1Ð→ P0

π0Ð→ C where π0 is a proj Λ-cover of C and π1 factors as

P1
π1 //

π1 ##

P0,

Kerπ0

ι

::

where ι is the kernel of π0 and π1 is a proj Λ-cover of Kerπ0.

Definition 2.2.21. Let C be a module in mod Λ and P1
π1Ð→ P0

π0Ð→ C be a minimal

projective presentation of C. The transpose of C is defined to be

Tr(C) ∶= Coker(HomΛ(P0,Λ) HomΛ(π1,Λ)ÐÐÐÐÐÐÐ→ HomΛ(P1,Λ)) ∈ mod Λop.

The Auslander-Reiten translation of C and the inverse Auslander-Reiten translation of C

are τ(C) ∶= D ○ Tr(C) and τ−1(C) = Tr ○D(C) respectively, where D(−) ∶= Homk(−, k) ∶
mod Λ→mod Λop is the standard k-duality.

Remark 2.2.22. By definition, if P is an indecomposable projective module in mod Λ,

then it cannot appear as the last term of an Auslander-Reiten sequence. In fact all

epimorphisms ending at P split. Similarly, if I is an indecomposable injective module in

mod Λ, then it cannot appear as the first term of an Auslander-Reiten sequence. As pointed

out in the following result, these are the only cases for which there is no Auslander-Reiten

sequence ending (respectively starting) at a given indecomposable module in mod Λ.

Theorem 2.2.23 ([5, Proposition V.1.14 and Theorem V.1.15]). (a) If C is an inde-

composable non-projective module in mod Λ, then there is an Auslander-Reiten se-

quence in mod Λ of the form 0→ τ(C)→ B → C → 0.

(b) If A is an indecomposable non-injective module in mod Λ, then there is an Auslander-

Reiten sequence in mod Λ of the form 0→ A→ B → τ−1(A)→ 0.

We end this section by recalling stable categories and the Auslander-Reiten duality, see

for example [2, Theorem IV.2.13], linking Hom spaces in stable categories and Ext1, see

Definition 2.2.15. We will also see a higher version of this in a later section of this chapter,

see Theorem 2.3.26.

Definition 2.2.24. For A and B in mod Λ, we define P(A,B) to be the subset of

HomΛ(A,B) consisting of morphisms factoring through a projective Λ-module. Note that
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this defines an ideal P in mod Λ, see [2, p. 109]. We define the projectively stable category

to be the quotient category

mod Λ ∶= mod Λ/P.

The objects of mod Λ are the same as the objects of mod Λ and, for A, B ∈ mod Λ, we

define

HomΛ(A,B) = Hommod Λ(A,B) = HomΛ(A,B)/P(A,B),

with the composition of morphisms induced from the one in mod Λ.

The injectively stable category mod Λ is defined dually and the morphism space between

A, B ∈ mod Λ is denoted by HomΛ(A,B).

Theorem 2.2.25 ([2, Theorem IV.2.13]). For all A and B in mod Λ, there are functorial

isomorphisms

Ext1
Λ(A,B) ≅D ○HomΛ(τ−1(B),A) ≅D ○HomΛ(B, τ(A)).

2.2.2 Triangulated categories

We start by recalling the definition of a triangulated category.

Definition 2.2.26 ([22, Definition in I.1]). A triangulated category is a triple (T ,Σ,∆),
where

• T is an additive category,

• Σ ∶ T → T is an automorphism, called suspension, (with inverse denoted by Σ−1),

• ∆ is a class of diagrams in T of the form A→ B → C → ΣA called triangles,

satisfying the following axioms.

(TR1) • Each morphism A
αÐ→ B in T is part of a triangle (A αÐ→ B → C → ΣA) ∈ ∆.

• For each object A, the following is a triangle: A
1AÐ→ A→ 0→ ΣA.

• For each commutative diagram as below, with vertical arrows isomorphisms,

A

≀f
��

// B //

≀

��

C

��

//

≀

��

ΣA

Σf ≀

��
A′ // B′ // C ′ // ΣA′,

if the top row is a triangle, then so is the bottom row.
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(TR2) (A αÐ→ B
βÐ→ C

γÐ→ ΣA) ∈ ∆ if and only if (B βÐ→ C
γÐ→ ΣA

−ΣαÐÐ→ ΣB) ∈ ∆.

(TR3) For every diagram as below, where the rows are triangles and f , g are such that

the left square is commutative, there is a morphism h making the other two squares

commute:

A

f
��

// B //

g
��

C //

∃h
��

ΣA

Σf
��

∈ ∆

A′ // B′ // C ′ // ΣA′ ∈ ∆.

(TR4) Octahedral axiom: for any two morphisms α ∶ A→ B and β ∶ B → C in T , there is a

commutative diagram of the form

A

1A
��

α // B //

β
��

C ′ //

��

ΣA

1ΣA

��
A

β○α //

��

C //

��

B′ //

��

ΣA

��
0

��

// A′ 1A //

��

A′ //

��

0

��
ΣA // ΣB // ΣC ′ // Σ2A,

where each row and each column is a triangle.

We recall two lemmas proven by Krause about left and right minimal morphisms. Note

that we prove the higher version of the first one in Lemma 2.3.36 and the second one is a

consequence of Lemma 2.3.34 in the case when d = 1.

Lemma 2.2.27 ([44, Lemma 2.4]). Let α ∶ A → B be a non-zero morphism in a triangu-

lated category T . If B has local endomorphism ring, then α is left minimal and if A has

local endomorphism ring, then α is right minimal.

Lemma 2.2.28 ([44, Lemma 2.5]). Let A
αÐ→ B

βÐ→ C
γÐ→ ΣA be a triangle in a triangulated

category T . Then β is right minimal if and only if γ is left minimal.

Important functors between triangulated categories are the triangulated functors.

Definition 2.2.29 ([48, Definition 2.1.1]). Let (T ,Σ,∆) and (T ′,Σ′,∆′) be triangulated

categories. A triangulated functor from (T ,Σ,∆) to (T ′,Σ′,∆′) is a pair (F,ϕ), where

F ∶ T → T ′ is an additive functor and ϕ ∶ F ○Σ → Σ′ ○ F a natural equivalence, such that
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if A
αÐ→ B

βÐ→ C
γÐ→ ΣA is in ∆, then

F (A) F (α)ÐÐÐ→ F (B) F (β)ÐÐÐ→ F (C) F (γ)ÐÐÐ→ Σ′F (A)

is in ∆′.

We will work in the following setup.

Setup 2.2.30. Let k be a field, T be a skeletally small k-linear triangulated category

with split idempotents in which each Hom space is finite dimensional over k. Note that

this implies that T is a Krull-Schmidt category by Remark 2.1.12.

The bounded derived category of mod Λ

Let k be a field and Λ be a finite dimensional k-algebra. An important example of a

triangulated category satisfying Setup 2.2.30 is the bounded derived category of Mod Λ.

In this section, we give an overview of this category, see for example [25, Section 7] or [56,

Chapter 10] for more details.

Recall the category of chain complexes of an abelian category A and the homology of a

chain complex, see Definitions 2.2.4 and 2.2.5. Here we fix A = Mod Λ, see Remark 2.2.6.

Definition 2.2.31 ([25, Definition 7.4]). A chain map f ∶ A→ B in C(Mod Λ) is called a

quasi-isomorphism if Hi(f) ∶Hi(A)→Hi(B) is an isomorphism for all i.

Definition 2.2.32 ([25, Definition 1.6]). Let

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯,

B = ⋯→ Bi+1
βi+1ÐÐ→ Bi

βiÐ→ Bi−1 → ⋯

be chain complexes in C(Mod Λ) and f, g ∶ A → B be chain maps. We say that f and g

are homotopic and write f ∼ g if there are morphisms si ∶ Ai → Bi+1 in Mod Λ such that

fi−gi = βi+1 ○si+si−1 ○αi for all i. In the case when g = 0, we say that f is null-homotopic.

Note that ∼ is an equivalence relation.

The homotopy category K(Mod Λ) is then defined to be the category with the same ob-

jects as C(Mod Λ) and whose morphisms are the equivalence classes of the morphisms in

C(Mod Λ) modulo homotopy, that is for A, B ∈K(Mod Λ), we have

HomK(Mod Λ)(A,B) ∶= HomC(Mod Λ)(A,B)/ ∼ .

Lemma 2.2.33 ([25, Proposition 7.3]). Let f and g be chain maps in C(Mod Λ) such
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that f ∼ g. Then Hi(f) =Hi(g) for all i. As a consequence, the homology functors induce

well-defined homology functors on the category K(Mod Λ).

Definition 2.2.34 ([25, Definition 6.1]). We define an automorphism Σ ∶ C(Mod Λ) →
C(Mod Λ) sending

• a chain complex

A = ⋯→ Ai+1
αi+1ÐÐ→ Ai

αiÐ→ Ai−1 → ⋯,

to the chain complex

Σ(A) = ⋯→ Ai
−αiÐÐ→ Ai−1

−αi−1ÐÐÐ→ Ai−2 → ⋯,

that is the chain complex with (Σ(A))i = Ai−1 and (Σα)i = −αi−1;

• a chain map

A =
f
��

⋯ // Ai+1
αi+1 //

fi+1

��

Ai
αi //

fi
��

Ai−1
//

fi−1

��

⋯

B = ⋯ // Bi+1
βi+1

// Bi
βi
// Bi−1

// ⋯

to the chain map Σ(f) ∶ Σ(A)→ Σ(B), where (Σ(f))i = fi−1.

Definition 2.2.35 ([25, Definitions 6.3 and 6.6]). Let

A =
f
��

⋯ // Ai+1
αi+1 //

fi+1

��

Ai
αi //

fi
��

Ai−1
//

fi−1

��

⋯

B = ⋯ // Bi+1
βi+1

// Bi
βi
// Bi−1

// ⋯

be a chain map in C(Mod Λ). Then the mapping cone of f is the chain complex

M(f) = ⋯→ Ai ⊕Bi+1

(
−αi 0
fi βi+1

)

ÐÐÐÐÐÐ→ Ai−1 ⊕Bi
(
−αi−1 0
fi−1 βi

)

ÐÐÐÐÐÐ→ Ai−2 ⊕Bi−1 → ⋯.

Then, we have a short exact sequence in C(Mod Λ) of the form

0→ B
(0

1 )ÐÐ→M(f) (1 0 )ÐÐÐ→ Σ(A)→ 0.
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Viewed as a sequence in K(Mod Λ), then

A
fÐ→ B

(0
1 )ÐÐ→M(f) (1 0 )ÐÐÐ→ Σ(A)

is called a standard triangle in K(Mod Λ).

Proposition 2.2.36 ([25, Theorem 6.7]). The category K(Mod Λ) is triangulated with

suspension Σ as defined in Definition 2.2.34 and triangles as diagrams that are isomorphic

to standard triangles as described in Definition 2.2.35.

We now introduce the derived category D(Mod Λ), which is obtained by inverting the

quasi-isomorphisms in K(Mod Λ). The process to build D(Mod Λ) is called localisation of

K(Mod Λ) with respect to the quasi-isomorphisms, for more details on the construction

of this category see for example [25, Sections 7.2 and 7.3].

Theorem 2.2.37 ([25, Theorems 7.10 and 7.18]). There exists a category D(Mod Λ),

called the derived category of Mod Λ, which has the same objects as K(Mod Λ) and is

equipped with a functor L ∶K(Mod Λ)→ D(Mod Λ) with the following properties.

(a) For every quasi-isomorphism q in K(Mod Λ), then L(q) is an isomorphism in D(Mod Λ).

(b) If D is a category and F ∶K(Mod Λ)→ D is a functor sending all quasi-isomorphisms

to isomorphisms, then there is a unique functor F ′ ∶ D(Mod Λ) → D making the

following diagram commutative

K(Mod Λ) L //

F
��

D(Mod Λ).

F ′
wwD

Then D(Mod Λ) is a triangulated category, where triangles are the isomorphism closure

of L applied to triangles in K(Mod Λ) and so L is a triangulated functor in the sense of

Definition 2.2.29.

Remark 2.2.38. The functor G ∶ Mod Λ → D(Mod Λ) obtained by composing the inclu-

sion of Mod Λ into K(Mod Λ) with the functor L ∶K(Mod Λ)→ D(Mod Λ) from Theorem

2.2.37, is full and faithful in the sense of Definition 2.1.14. Moreover, for a positive integer

i, we have an equivalence

ExtiMod Λ(−,−) ≅ HomD(Mod Λ)(G(−),ΣiG(−)),
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see [22, Section I.6]. The functor G sends a short exact sequence 0 → A
αÐ→ B

βÐ→ C → 0

corresponding to the class ε ∈ Ext1
Mod Λ(C,A), to a triangle

G(A) G(α)ÐÐÐ→ G(B) G(β)ÐÐÐ→ G(C) G(ε)ÐÐ→ ΣG(A)

in D(Mod Λ).

Instead of working with D(Mod Λ), we will usually work with the full subcategory mod Λ ⊆
Mod Λ of finitely generated right Λ-modules and the following full subcategory of the

derived category.

Definition 2.2.39. The bounded derived category, denoted by Db(mod Λ) is the full sub-

category of D(Mod Λ) whose objects are bounded chain complexes of finitely generated

Λ-modules, that is chain complexes of the form

A = ⋯→ 0→ ⋯→ 0→ Ai
αiÐ→ Ai−1 → ⋯→ Aj+1

αj+1ÐÐ→ Aj → 0→ ⋯→ 0→ ⋯.

Auslander-Reiten theory in triangulated categories

In this section, we study Auslander-Reiten triangles in triangulated categories satisfying

Setup 2.2.30. These were first studied by Happel, see [21, Section I.4], but we present

some of the results as stated by Krause in [44].

Definition 2.2.40 ([21, Definition I.4.1]). A triangle in T of the form

A
αÐ→ B

βÐ→ C
γÐ→ ΣA

is an Auslander-Reiten triangle in T if the following are satisfied:

(a) the morphism γ is non-zero,

(b) the morphism α is left almost split in T ,

(c) the morphism β is right almost split in T .

Remark 2.2.41. Note that in the above definition, condition (a) is implied by both of

the other two conditions.

Lemma 2.2.42 ([44, Lemma 2.3]). (a) Let β ∶ B → C be right almost split in T , then

C is indecomposable.

(b) Let α ∶ A→ B be left almost split in T , then A is indecomposable.

26



Chapter 2. Background

The following lemma presents equivalent definitions to the one of Auslander-Reiten trian-

gle. Note that its dual is also true.

Lemma 2.2.43 ([44, Lemma 2.6]). Let ε ∶ A αÐ→ B
βÐ→ C

γÐ→ ΣA be a triangle in T and

suppose that β is right almost split. Then the following are equivalent:

(a) A in indecomposable,

(b) β is right minimal,

(c) α is left almost split,

(d) ε is an Auslander-Reiten triangle.

Like in the abelian setup, the Ext-functor plays an important role in triangulated categories

and it will often be used in this thesis. We have seen in Remark 2.2.38 that in the special

case when our triangulated category is D(mod Λ), then for A, B ∈ mod Λ and a positive

integer i, we have that

HomD(mod Λ)(A,ΣiB) ≅ Extimod Λ(A,B),

where we dropped the functor G ∶ mod Λ → D(mod Λ) because it can be viewed as an

inclusion. We now define Ext for a more general triangulated category satisfying our

setup.

Definition 2.2.44. Let i be a positive integer. We define

ExtiT (A,B) ∶= HomT (A,ΣiB),

for objects A, B in T . If the triangulated category we are working in is clear, we sometimes

omit the subscript T and simply write Exti(A,B).

We will often assume that T has a Serre functor, see Definition 2.1.24, since this implies

the existence of Auslander-Reiten triangles in T .

Definition 2.2.45. Suppose that T has a Serre functor S ∶ T → T . Then the functor

τ ∶= S ○Σ−1 ∶ T → T is called Auslander-Reiten translation and it is invertible with inverse

τ−1 = S−1 ○Σ.

The following was first proved in [52, Theorem I.2.4] with the extra assumption that k is

an algebraically closed field. The result for a general field k corresponds to the case n = 1

of [32, Theorem 3.10], as the only 1-cluster tilting subcategory of T is T itself.
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Theorem 2.2.46. Suppose that the category T has a Serre functor S ∶ T → T . Then T has

Auslander-Reiten triangles, in the sense that if X is an indecomposable in T , then there

exists an Auslander-Reiten triangle in T starting at X and one ending at X. Moreover,

these Auslander-Reiten triangles in T have the form

X → Y → τ−1X → ΣX and τX → Z →X → Σ(τX).

Sometimes, we also assume that T has a Serre functor with some extra property.

Definition 2.2.47. Assume that the category T has a Serre functor S. If for some integer

n ≥ 2, we have that S ≅ Σn, then T is called an n-Calabi-Yau category .

2.3 Higher homological algebra

In this section, we introduce the generalisation of homological algebra, that is higher

homological algebra. Let d be a positive integer. Jasso generalised abelian categories

to d-abelian categories in [34], where kernels and cokernels are replaced by complexes of

d + 1 objects, called d-kernels and d-cokernels respectively, and short exact sequences by

complexes of d+2 objects, called d-exact sequences. In [19], Geiss, Keller and Oppermann

likewise generalised triangulated categories to (d+2)-angulated categories, where triangles

are replaced by complexes consisting of d + 2 objects.

Note that the base case d = 1 recovers classic homological algebra as 1-abelian categories

are abelian categories and 3-angulated categories are triangulated categories.

2.3.1 d-abelian categories

Let d be a fixed positive integer. In this section we present the definitions of d-abelian

categories and d-cluster tilting subcategories of the category of finitely generated right

Λ-modules and we present some of their properties.

Definition 2.3.1 ([34, Definitions 2.2, 2.4 and 2.9]). Let A be an additive category.

(a) A sequence of objects and morphisms in A of the form

A0 // A1 // A2 // ⋯ // Ad−1 // Ad

is a d-kernel of a morphism Ad // Ad+1 if

0 // HomA(B,A0) // ⋯ // HomA(B,Ad) // HomA(B,Ad+1)
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is an exact sequence for each B in A.

(b) A sequence of objects and morphisms in A of the form

A1 // A2 // ⋯ // Ad−1 // Ad // Ad+1

is a d-cokernel of a morphism A0 // A1 if

0 // HomA(Ad+1,B) // ⋯ // HomA(A1,B) // HomA(A0,B)

is an exact sequence for each B in A.

(c) A d-exact sequence is a sequence of objects and morphisms in A of the form

0 // A0 α0
// A1 // A2 // ⋯ // Ad−1 // Ad

αd
// Ad+1 // 0,

such that A0 α0
// A1 // A2 // ⋯ // Ad−1 // Ad is a d-kernel of αd and

A1 // A2 // ⋯ // Ad−1 // Ad
αd
// Ad+1 is a d-cokernel of α0.

(d) A morphism of d-exact sequences is a commutative diagram of the form:

0 // A0 //

��

A1 //

��

A2 //

��

⋯ // Ad−1 //

��

Ad //

��

Ad+1 //

��

0

0 // B0 // B1 // B2 // ⋯ // Bd−1 // Bd // Bd+1 // 0,

in which each row is a d-exact sequence.

Definition 2.3.2 ([34, Definition 3.1]). A d-abelian category is an additive category F
which satisfies the following axioms:

(A0) The category F has split idempotents.

(A1) Each morphism in F has a d-kernel and a d-cokernel.

(A2) If α0 ∶ A0 // A1 is a monomorphism and A1 // A2 // ⋯ // Ad+1 is a

d-cokernel of α0, then

0 // A0 α0
// A1 // A2 // ⋯ // Ad−1 // Ad // Ad+1 // 0

is a d-exact sequence.
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(A2op) If αd ∶ Ad // Ad+1 is an epimorphism and A0 // ⋯ // Ad−1 // Ad is a

d-kernel of αd, then

0 // A0 // A1 // A2 // ⋯ // Ad−1 // Ad
αd
// Ad+1 // 0

is a d-exact sequence.

Setup 2.3.3. Let d be a fixed positive integer and F be a d-abelian category.

In [34], Jasso generalised the idea of pushout to d-pushout of a d-exact sequence along

a morphism from its first term. We recall Jasso’s definition and see how these higher-

pushouts can be used to construct morphisms of d-exact sequences in F .

Definition 2.3.4 ([34, Definition 2.11]). Consider a complex in F of the form

A ∶ A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

and a morphism f0 ∶ A0 → B0 in F . A d-pushout diagram of A along f0 is a cochain map

A ∶
ϕ

��

A0 α0
//

f0

��

A1 α1
//

f1

��

A2 //

f2

��

⋯ // Ad−1 αd−1
//

fd−1

��

Ad

fd

��
B ∶ B0

β0
// B1

β1
// B2 // ⋯ // Bd−1

βd−1
// Bd

(2.4)

with B1, . . . , Bd in F such that in the mapping cone

C(ϕ) ∶ A0 γ−1

// A1 ⊕B0 γ0

// A2 ⊕B1 // ⋯ // Ad ⊕Bd−1 γd−1

// Bd,

the sequence (γ0, . . . , γd−1) is a d-cokernel of γ−1, where we define

γi =
⎛
⎝
−αi+1 0

f i+1 βi
⎞
⎠
∶ Ai+1 ⊕Bi → Ai+2 ⊕Bi+1,

for i = −1,0, . . . , d − 1 and where B−1 and Ad+1 are fixed to be zero. The concept of

d-pullback diagram is defined in a dual way.

Remark 2.3.5. By [34, Theorem 3.8], for a complex in F of the form:

A ∶ A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

and a morphism f0 ∶ A0 → B0 in F , there is always a d-pushout diagram of A along f0 of

the form (2.4). Moreover, if α0 is a monomorphism, then β0 is a monomorphism.
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The next lemma follows from the dual of [36, Proposition 2.12].

Lemma 2.3.6. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0

and a morphism f0 ∶ A0 → B0 in F . Then there is a d-pushout diagram of

A0 α0
// ⋯ αd−1

// Ad

along f0 and it induces a morphism of d-exact sequences of the form:

δ ∶
f

��

0 // A0 α0
//

f0

��

A1 α1
//

f1

��

A2 //

f2

��

⋯ // Ad−1 αd−1
//

fd−1

��

Ad

fd

��

αd
// Ad+1 // 0

ε ∶ 0 // B0

β0
// B1

β1
// B2 // ⋯ // Bd−1

βd−1
// Bd

βd
// Ad+1 // 0.

(2.5)

Lemma 2.3.7. Consider a morphism h of d-exact sequences in F of the form:

δ ∶

h

��

0 // A0 α0
//

h0

��

A1 α1
//

h1

��s1~~

A2 //

h2

��s2~~

⋯ // Ad−1 αd−1
//

hd−1

��

Ad

hd

��

αd
//

sd||

Ad+1

hd+1

��

//

sd+1||

0

ε ∶ 0 // B0

β0
// B1

β1
// B2 // ⋯ // Bd−1

βd−1
// Bd

βd
// Bd+1 // 0.

Then, the following are equivalent.

(a) There is a morphism sd+1 ∶ Ad+1 → Bd such that βd ○ sd+1 = hd+1.

(b) There is a morphism s1 ∶ A1 → B0 such that s1 ○ α0 = h0.

(c) The morphism h ∶ δ → ε is null-homotopic, that is there are morphisms si ∶ Ai → Bi−1

such that hi = βi−1 ○ si + si+1 ○αi for i = 0, . . . , d + 1 and where B−1 and Ad+2 are set

to be zero.

Proof. It is clear that (c) implies both (a) and (b). Assume (a) holds. By the definition

of d-kernel, applying HomF(Ad,−) to ε, we obtain the exact sequence:

HomF(Ad,Bd−1) βd−1
∗ // HomF(Ad,Bd) βd

∗ // HomF(Ad,Bd+1).
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Note that

βd∗(hd − sd+1 ○ αd) = βd ○ hd − βd ○ sd+1 ○ αd = βd ○ hd − hd+1 ○ αd = 0,

so that hd−sd+1○αd is in Kerβd∗ = Imβd−1
∗ . So there exists a morphism sd ∶ Ad → Bd−1 such

that βd−1 ○sd = hd−sd+1 ○αd. Inductively, for i = d−1, d−2, . . . , 1, we obtain si ∶ Ai → Bi−1

such that hi = βi−1 ○ si + si+1 ○ αi. Then,

β0 ○ s1 ○ α0 = h1 ○ α0 − s2 ○ α1 ○ α0 = h1 ○ α0 = β0 ○ h0.

Since β0 is a monomorphism, it follows that s1 ○α0 = h0. So (b) and (c) hold. Dually, (b)

implies both (a) and (c).

The special case when δ = ε and h is the identity on δ in Lemma 2.3.7 gives the following.

Corollary 2.3.8. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

The following are equivalent:

(a) α0 is a split monomorphism,

(b) αd is a split epimorphism,

(c) the identity on δ is null-homotopic.

Definition 2.3.9. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

If any, and so all, of the conditions in Corollary 2.3.8 hold, we say that δ is a split d-exact

sequence.

Given two d-exact sequences in F , we see that it is possible to complete partial morphisms

between them to morphisms of d-exact sequences. Recall the notion of radical of the

category F from Definition 2.1.8.

Lemma 2.3.10. Suppose there are d-exact sequences δ and ε in F and, for some 0 ≤ i <
j ≤ d, there are morphims f i, f i+1, . . . , f j such that βl ○ f l = f l+1 ○ αl for i ≤ l ≤ j − 1, i.e.
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the following diagram commutes:

δ ∶ 0 // A0 α0
//

f0

��

⋯ // Ai−1 αi−1
//

f i−1

��

Ai
αi
//

f i

��

⋯ αj−1
// Aj

αj
//

fj

��

Aj+1α
j+1
//

fj+1

��

⋯ αd
// Ad+1

fd+1

��

// 0

ε ∶ 0 // B0

β0
// ⋯ // Bi−1

βi−1
// Bi

βi
// ⋯

βj−1
// Bj

βj
// Bj+1

βj+1
// ⋯

βd
// Bd+1 // 0.

Then, for 0 ≤ l ≤ i − 1 and j + 1 ≤ l ≤ d + 1, there exist morphisms f l ∶ Al → Bl completing

f i, f i+1, . . . , f j to a morphism of d-exact sequences.

Proof. The existence of the morphisms f l for 0 ≤ l ≤ i − 1 follows from the fact that

0 // B0 β0

// B1 // ⋯ βd−1

// Bd

is a d-kernel of βd ∶ Bd → Bd+1. The existence of the morphisms f l for j + 1 ≤ l ≤ d + 1,

follows from the fact that

A1 α1
// A2 // ⋯ αd

// Ad+1 // 0

is a d-cokernel of α0 ∶ A0 → A1.

Lemma 2.3.11. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

For i = 1, . . . , d, we have that αi is right minimal if and only if αi−1 is in radF .

Proof. Suppose that αi is right minimal. For any f ∶ Ai → Ai−1, we have

αi ○ (1Ai − αi−1 ○ f) = αi − αi ○ αi−1 ○ f = αi.

Since αi is right minimal, it follows that 1Ai − αi−1 ○ f is invertible and hence αi−1 is in

radF .

Suppose now that αi−1 is in radF and let h ∶ Ai → Ai be such that αi ○ h = αi. Then

αi ○ (h − 1Ai) = 0 and, since the first part of δ is a d-kernel of αd, there exists a morphism

g ∶ Ai → Ai−1 such that h − 1Ai = αi−1 ○ g. Hence h = 1Ai + αi−1 ○ g and, since αi−1 ∈ radF ,

it follows that h is invertible.

Lemma 2.3.12. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0,
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with α0, . . . , αd−1 in radF and a morphism of d-exact sequences:

δ ∶
f

��

0 // A0 α0
//

f0

��

A1 α1
//

f1

��

A2 //

f2

��

⋯ // Ad−1 αd−1
//

fd−1

��

Ad
αd
//

fd

��

Ad+1 // 0

δ ∶ 0 // A0

α0
// A1

α1
// A2 // ⋯ // Ad−1

αd−1
// Ad

αd
// Ad+1 // 0,

where fd is an isomorphism. Then f0, . . . , fd−1 are all isomorphisms.

Proof. First note that, by Lemma 2.3.11, since α0, . . . , αd−1 are in radF then α1, . . . , αd

are right minimal. Since fd is invertible, αd ○ fd = αd implies that αd = αd ○ (fd)−1. Then,

using Lemma 2.3.10, we can construct a commutative diagram of the form:

δ ∶
f

��

0 // A0 α0
//

f0

��

A1 α1
//

f1

��

A2 //

f2

��

⋯ // Ad−1 αd−1
//

fd−1

��

Ad
αd
//

fd

��

Ad+1 // 0

δ ∶
g

��

0 // A0 α0
//

g0

��

A1 α1
//

g1

��

A2 //

g2

��

⋯ // Ad−1 αd−1
//

gd−1

��

Ad
αd
//

(fd)−1

��

Ad+1 // 0

δ ∶ 0 // A0

α0
// A1

α1
// A2 // ⋯ // Ad−1

αd−1
// Ad

αd
// Ad+1 // 0.

Hence αd−1 = αd−1 ○ gd−1 ○ fd−1 and as αd−1 is right minimal, it follows that gd−1 ○ fd−1 is

an isomorphism. Similarly, looking at f ○g we conclude that fd−1 ○gd−1 is an isomorphism

and hence fd−1 is an isomorphism. Letting hd−1 ∶= (gd−1 ○ fd−1)−1, we can construct a

commutative diagram of the form:

δ ∶
g○f

��

0 // A0 α0
//

g0○f0

��

A1 α1
//

g1○f1

��

⋯ // Ad−2 αd−2
//

gd−2○fd−2

��

Ad−1 αd−1
//

gd−1○fd−1

��

Ad
αd
// Ad+1 // 0

δ ∶
h
��

0 // A0 α0
//

h0

��

A1 α1
//

h1

��

⋯ // Ad−2 αd−2
//

hd−2

��

Ad−1 αd−1
//

hd−1

��

Ad
αd
// Ad+1 // 0

δ ∶ 0 // A0

α0
// A1

α1
// ⋯ // Ad−2

αd−2
// Ad−1

αd−1
// Ad

αd
// Ad+1 // 0.

Then

αd−2 = hd−1 ○ gd−1 ○ fd−1 ○ αd−2 = αd−2 ○ hd−2 ○ gd−2 ○ fd−2,

and, as αd−2 is right minimal, we have that hd−2 ○gd−2 ○fd−2 is an isomorphism. Similarly,

gd−2○fd−2○hd−2 is an isomorphism. Then gd−2○fd−2 is an isomorphism. Since also fd−1○gd−1

is an isomorphism, by a similar argument we have that fd−2 ○ gd−2 is an isomorphism.

Hence fd−2 is an isomorphism. Proceeding by induction, we conclude that f1, . . . , fd−2
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are all isomorphisms. Then also f0 is forced to be an isomorphism, because α0 is a

monomorphism.

We focus on some d-abelian categories that arise as subcategories of module categories,

namely d-cluster tilting subcategories.

Definition 2.3.13 ([28, Definition 2.2]). Let k be a field, Λ a finite dimensional k-algebra

and F be a full subcategory of mod Λ. We say that F is a d-cluster tilting subcategory of

mod Λ if:

(a) F = {A ∈ mod Λ ∣ Ext1 ... d−1
Λ (F ,A) = 0} = {A ∈ A ∣ Ext1 ... d−1

Λ (A,F) = 0},

(b) F is functorially finite in mod Λ.

Theorem 2.3.14. Let k be a field and Λ a finite dimensional k-algebra. If F ⊆ mod Λ is

d-cluster tilting, then it is a d-abelian category. Moreover, a diagram in F of the form

0 // A0 // A1 // A2 // ⋯ // Ad−1 // Ad // Ad+1 // 0

is a d-exact sequence in F if and only if it is an exact sequence in mod Λ.

Proof. The subcategory F is d-abelian by [34, Theorem 3.16]. The second part of the

theorem follows combining [34, Theorem 3.16 and Proposition 3.18].

For the rest of this section, we work in the following setup.

Setup 2.3.15. Let d be a fixed positive integer, k a field, Λ a finite dimensional k-algebra

and F ⊆ mod Λ a d-cluster tilting subcategory.

We introduce Yoneda equivalence on exact sequences in mod Λ and its connection with

ExtdΛ, see [24, Chapter IV.9].

Definition 2.3.16. Consider two exact sequences in mod Λ with the same end terms:

ε ∶ 0 // B // C1 // C2 // ⋯ // Cd−1 // Cd // A // 0,

ε′ ∶ 0 // B // D1 // D2 // ⋯ // Dd−1 // Dd // A // 0.

We say that ε and ε′ satisfy the relation ε // ε′ if there exists a commutative diagram
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of the form:

ε ∶

��

0 // B // C1 //

��

C2 //

��

⋯ // Cd−1 //

��

Cd //

��

A // 0

ε′ ∶ 0 // B // D1 // D2 // ⋯ // Dd−1 // Dd // A // 0.

We say that ε and ε′ are Yoneda equivalent if there exists a chain of exact sequences of

the above form ε = ε0, ε1, . . . , εt = ε′ with

ε0 // ε1 ε2oo // ⋯ εt.oo

We denote the equivalence class of ε by [ε] and the set of all equivalence classes of exact

sequences of the above form by YextdΛ(A,B).

Remark 2.3.17. Note that YextdΛ(A,B) has an abelian group structure, see [24, Chapter

IV.9]. Moreover, by [24, Theorem IV.9.1], there is a functorial isomorphism of set-valued

bifunctors YextdΛ(−,−) ≅ ExtdΛ(−,−). By [28, Appendix A], if A, B ∈ F , then each equiva-

lence class in YextdΛ(A,B) contains a d-exact sequence in F of the form:

0 // B // F 1 ϕ1

// F 2 ϕ2

// ⋯ ϕd−2

// F d−1 ϕd−1

// F d // A // 0,

with ϕ1, . . . , ϕd−1 in radF , called almost minimal, which is unique up to isomorphism. So,

from now on, we will talk about equivalence classes of d-exact sequences in ExtdΛ-groups.

Proposition 2.3.18. Let A0, Ad+1 ∈ F , then every element in ExtdΛ(Ad+1,A0) is given by

a d-exact sequence in F . Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

(a) We have that [δ] = 0 in ExtdΛ(Ad+1,A0) if and only if δ is a split d-exact sequence.

(b) Given a morphism f0 ∶ A0 → B0 in F , we can look at the morphism

ExtdΛ(Ad+1, f0) ∶ ExtdΛ(Ad+1,A0)→ ExtdΛ(Ad+1,B0)

in terms of d-exact sequences in F . For δ as above, f0 ⋅ δ ∶= ExtdΛ(Ad+1, f0)(δ) is

given by extending a d-pushout diagram as in (2.5) from Lemma 2.3.6:

δ ∶
f
��

0 // A0 α0
//

f0

��

A1 α1
//

f1

��

A2 //

f2

��

⋯ // Ad−1 αd−1
//

fd−1

��

Ad

fd

��

αd
// Ad+1 // 0

f0 ⋅ δ ∶ 0 // B0

β0
// B1

β1
// B2 // ⋯ // Bd−1

βd−1
// Bd

βd
// Ad+1 // 0.
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Dually, for gd+1 ∶ Bd+1 → Ad+1 in F , we have that δ ⋅ gd+1 ∶= ExtdΛ(gd+1,A0)(δ) ∈
ExtdΛ(Bd+1,A0) is given by a d-pullback diagram.

Proof. First note that by Remark 2.3.17 every element in ExtdΛ(Ad+1,A0) is given by a

d-exact sequence in F .

(a) If [δ] = 0 in ExtdΛ(Ad+1,A0), then δ is a split d-exact sequence by [33, Lemma 1.6].

The other direction follows by a simple argument.

(b) This construction can be seen in the d = 1 case in [24, Section III.1 and Theorem

III.2.4]. The case for general d ≥ 1 follows by methods similar to those used in [24,

Section IV.9].

Lemma 2.3.19. Any d-exact sequence in F of the form:

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0,

induces the exact sequences

0 // (B,A0) // ⋯ // (B,Ad) // (B,Ad+1) // ExtdΛ(B,A0) // ExtdΛ(B,A1),

0 // (Ad+1,B) // ⋯ // (A1,B) // (A0,B) // ExtdΛ(Ad+1,B) // ExtdΛ(Ad,B),

for any B in F and where we used the notation (−,−) ∶= HomF(−,−).

Proof. See [36, Proposition 2.2].

Lemma 2.3.20. Consider a d-exact sequence in F of the form

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0

and a morphism f0 ∶ A0 → B0 in F . Let f ∶ δ → f0 ⋅ δ be as described in Proposition

2.3.18(b). Suppose there is a morphism of d-exact sequences of the form:

δ ∶
g

��

0 // A0 α0
//

g0=f0

��

A1 α1
//

g1

��

A2 //

g2

��

⋯ // Ad−1 αd−1
//

gd−1

��

Ad

gd

��

αd
// Ad+1 // 0

ε′ ∶ 0 // B0

γ0
// C1

γ1
// C2 // ⋯ // Cd−1

γd−1
// Cd

γd
// Ad+1 // 0.

Then [f0 ⋅ δ] = [ε′] in ExtdΛ(Ad+1,B0).
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Proof. Note that f0 ⋅ δ as described in Proposition 2.3.18(b) is obtained by extending a

d-pushout diagram. The result then follows using [34, Proposition 4.8].

Higher Auslander-Reiten theory

In [28, Section 3], Iyama introduced a higher analogue of Auslander-Reiten sequences in

module categories, namely d-Auslander-Reiten sequences in d-cluster tilting subcategories

F of module categories. The main result in [28, Section 3] is the proof of the existence

of these sequences. An important property of these sequences is that their end terms

are indecomposables determining each other, in the same way as in the classic module

category setup.

In this section we recall Iyama’s result, focusing on the right end term of d-Auslander-

Reiten sequences in F . Moreover, in [28, Theorem 1.5], Iyama also proved a higher

version of the Auslander-Reiten duality, called d-Auslander-Reiten duality. We also recall

this result and give an alternative proof for it.

Definition 2.3.21. We say that a d-exact sequence in F of the form

ε ∶ 0 // A0 α0
// A1 α1

// ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0,

is a d-Auslander-Reiten sequence in F if the morphism α0 is left almost split in F , the

morphism αd is right almost split in F and, when d ≥ 2, also α1, . . . , αd−1 ∈ radF .

Remark 2.3.22. Note that if ε as above is a d-Auslander-Reiten sequence in F , then

EndΛ(A0) and EndΛ(Ad+1) are local and α0, αd are in radF .

The following lemma presents equivalent definitions to the one of d-Auslander-Reiten

sequence in F . Instead of proving it here, we will later prove the more general Lemma

5.2.7, where the case X = F corresponds to the following.

Lemma 2.3.23. Consider a d-exact sequence in F of the form:

ε ∶ 0 // A0 α0
// A1 α1

// ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

The following are equivalent:

(a) ε is a d-Auslander-Reiten sequence in F ,

(b) α0, α1, . . . , αd−1 are in radF and αd is right almost split in F ,

(c) α1, . . . , αd−1, αd are in radF and α0 is left almost split in F .
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Definition 2.3.24 ([28, 1.4.1]). Let M ∈ mod Λ and consider an augmented minimal

projective resolution of M of the form:

⋯→ P2 → P1 → P0 →M → 0.

The dth transpose of M is Trd(M) ∶= Coker (HomΛ(Pd−1,Λ) → HomΛ(Pd,Λ)). The dth

Auslander-Reiten translation of M and the inverse dth Auslander-Reiten translation of

M are τd(M) ∶= D ○ Trd(M) and τ−1
d (M) ∶= Trd ○D(M) respectively, where D(−) ∶=

Homk(−, k) ∶ mod Λ→mod Λop is the standard k-duality from Example 2.1.23.

Proposition 2.3.25 ([28, Theorem 3.3.1]). For each non-projective indecomposable ob-

ject Ad+1 in F , there exists a d-Auslander-Reiten sequence in F of the form:

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

Moreover, if δ is a d-Auslander-Reiten sequence in F , then A0 = τd(Ad+1).

We now give an alternative proof for the d-Auslander-Reiten duality, first proved in [28,

Theorem 1.5]. This alternative proof is the higher analogue of Schiffler’s proof of the

Auslander-Reiten duality presented in [53, Theorem 7.18].

Theorem 2.3.26. For all M and N in F there are functorial isomorphisms

ExtdΛ(M,N) ≅DHomΛ(τ−1
d (N),M) ≅DHomΛ(N, τd(M)),

where HomΛ(−,−), respectively HomΛ(−,−), denote Hom-spaces in the projectively, re-

spectively injectively, stable category of mod Λ, see Definition 2.2.24.

Proof. We only prove that ExtdΛ(M,N) ≅ DHomΛ(τ−1
d (N),M), the second isomorphism

follows by a dual argument. Without loss of generality, assume that N has no injective di-

rect summands, so that N = τd(L) for some A-module L, by [28, Theorem 1.4.1]. Consider

an augmented projective resolution of L:

⋯→ Pd
pdÐ→ Pd−1

pd−1ÐÐ→ ⋯ p2Ð→ P1
p1Ð→ P0

p0Ð→ L→ 0. (2.6)

As Pd−1
pd−1ÐÐ→ ⋅ ⋅ ⋅ → P1

p1Ð→ P0
p0Ð→ L → 0 is a d-cokernel of pd in F , writing (−)∗ =

HomΛ(−,Λ), we get the exact sequence:

0→ L∗ → P ∗
0 → P ∗

1 → ⋯→ P ∗
d−1 → P ∗

d → Trd(L)→ 0. (2.7)
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Applying the exact functor D(−) to (2.7), we then obtain the exact sequence:

0→ τd(L)→ νPd → νPd−1 → ⋯→ νP1 → νP0 → νL→ 0,

where ν = D ○ HomΛ(−,Λ) is the Nakayama functor and νPd, . . . , νP0 are injective Λ-

modules. In particular, we have an injective resolution of N = τd(L) which starts:

0 // τd(L) // νPd // νPd−1
// ⋯ // νP1

// νP0
p //

!! !!

Id+1.

νL
. �

ι

<<

Using the notation HomΛ(−,−) = (−,−), let pi ∶= (M,νpi) for i = 0, . . . , d. In order to

compute ExtdΛ(M,N), we look at the complex:

(M,νP1)
p1 // (M,νP0)

(M,p) //

p0 &&

(M,Id+1).

(M,νL)
+ � (M,ι)

88

Note that, as ι is injective and (M,−) is left exact, then (M, ι) is injective and Ker(M,p) =
Kerp0. Hence

ExtdΛ(M,N) = Ker(M,p)/ Imp1 = Kerp0/ Imp1. (2.8)

Using again the fact that Pd−1
pd−1ÐÐ→ ⋅ ⋅ ⋅ → P1

p1Ð→ P0
p0Ð→ L → 0 is a d-cokernel of pd in F ,

and as M ∈ F , we have the exact sequence:

0→ (L,M)→ (P0,M)→ (P1,M)→ ⋯→ (Pd−1,M)→ (Pd,M).

Applying the exact functor D(−) to it, we obtain the exact sequence:

D ○ (Pd,M) p̃d // D ○ (Pd−1,M) p̃d−1 // ⋯ p̃1 // D ○ (P0,M) p̃0 // D ○ (L,M) // 0,

where p̃i ∶=D ○ (pi,M), for i = 0, . . . , d.

From now on, the proof proceeds as the proof of [53, Theorem 7.18]. Using [53, Lemma
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7.22], we get the commutative diagram:

D ○ (P1,M) p̃1 //

ω
P1
M≅
��

D ○ (P0,M) p̃0 //

ω
P0
M≅

��

D ○ (L,M) //

ωL
M
��

0

(M,νP1)
p1

// (M,νP0)
p0

// (M,νL),

where the top row is exact, the bottom row is a complex, and the two vertical maps on

the left are isomorphisms since P1 and P0 are projective modules. Define a morphism

Ψ = p̃0 ○ (ωP0
M )−1 ∣Kerp0 ∶ Kerp0 →D ○ (L,M).

Claim 1: Ker Ψ = Imp1.

We first show Ker Ψ ⊆ Imp1. Let x ∈ Ker Ψ, then (ωP0
M )−1(x) is in Ker p̃0 = Im p̃1. Hence

there is some ỹ ∈D ○ (P1,M) such that p̃1(ỹ) = (ωP0
M )−1(x). So that

x = ωP0
M ○ p̃1(ỹ) = p1 ○ ωP1

M (ỹ)

and x is in Imp1.

In order to show the other inclusion, let x ∈ Kerp0 be such that x = p1(y) for some y in

(M,νP1). Then

Ψ(x) = Ψ ○ p1(y) = p̃0 ○ (ωP0
M )−1 ○ p1(y) = p̃0 ○ p̃1 ○ (ωP1

M )−1(y) = 0,

so that x ∈ Ker Ψ.

Claim 2: Im Ψ = KerωLM .

Note that if x ∈ Kerp0, then ωLM ○ Ψ(x) = ωLM ○ p̃0 ○ (ωP0
M )−1(x) = p0(x) = 0 and so

Im Ψ ⊆ KerωLM .

Now suppose that ũ is in KerωLM . Since p̃0 is surjective, there exists some x̃ in D○(P0,M)
such that ũ = p̃0(x̃) = Ψ○ωP0

M (x̃) ∈ Im Ψ. Note that the last equality makes sense as ωP0
M (x̃)

is in Kerp0 since

p0ω
P0
M (x̃) = ωLM ○ p̃0(x̃) = ωLM(ũ) = 0.

Now, using [53, Lemma 7.22], our two claims, the first isomorphism theorem and (2.8),

we have that

D ○HomΛ(L,M) = KerωLM = Im Ψ ≅ Kerp0/Ker Ψ = Kerp0/ Imp1 = ExtdΛ(M,N).
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2.3.2 (d + 2)-angulated categories

In this section, we introduce (d + 2)-angulated categories and some of their properties.

Definition 2.3.27 ([19, Definition 1.1]). Let M be an additive category and Σd be an

automorphism of M with inverse Σ−d. A Σd-sequence is a sequence of morphisms in M
of the form

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0. (2.9)

A morphism of Σd-sequences is given by a sequence of morphisms ϕ = (ϕ0, . . . , ϕd+1) such

that the following diagram commutes:

ε ∶
ϕ

��

X0 ξ0

//

ϕ0

��

X1 ξ1

//

ϕ1

��

X2 //

ϕ2

��

⋯ // Xd ξd //

ϕd

��

Xd+1 ξd+1

//

ϕd+1

��

ΣdX0

Σd(ϕ0)
��

ε′ ∶ Y 0

η0
// Y 1

η1
// Y 2 // ⋯ // Y d

ηd
// Y d+1

ηd+1
// ΣdY 0.

Definition 2.3.28 ([19, Definition 1.1]). A (d+2)-angulated category is a triple (M,Σd,D),
whereM and Σd are as above and D is a collection of Σd-sequences, called (d+ 2)-angles,

satisfying the following axioms.

(N1) The collection D is closed under isomorphisms, direct sums and direct summands

and, for every X ∈M, the trivial Σd-sequence

ε ∶ X
1X // X // 0 // ⋯ // 0 // 0 // ΣdX

is in D. For each morphism ξ0 ∶ X0 → X1 in M, there is a (d + 2)-angle in D of the

form (2.9).

(N2) A Σd-sequence (2.9) is in D if and only if so is its left rotation:

X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0 (−1)dΣd(ξ0) // ΣdX1.
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(N3) Each commutative diagram of solid arrows, with rows in D

X0 ξ0

//

ϕ0

��

X1 ξ1

//

ϕ1

��

X2 //

ϕ2

��

⋯ // Xd ξd //

ϕd

��

Xd+1 ξd+1

//

ϕd+1

��

ΣdX0

Σd(ϕ0)
��

Y 0

η0
// Y 1

η1
// Y 2 // ⋯ // Y d

ηd
// Y d+1

ηd+1
// ΣdY 0,

can be completed as indicated to a morphism of Σd-sequences.

(N4) In the situation of (N3), the morphisms ϕ2, . . . , ϕd+1 can be chosen such that

X1 ⊕ Y 0
(
−ξ1 0

ϕ1 η0 )

// X2 ⊕ Y 1 // ⋯ // ΣdX0 ⊕ Y d+1
(
−Σd(ξ0) 0

Σ(ϕ0) ηd+1 )

// ΣdX1 ⊕ΣdY 0

belongs to D.

Setup 2.3.29. Let d be a fixed positive integer and M be a (d + 2)-angulated category.

Remark 2.3.30. Note that by [19, Proposition 2.5(a)], any (d + 2)-angle in M of the

form

X0 // X1 // X2 // ⋯ // Xd // Xd+1 // ΣdX0,

is such that the induced sequence

⋯ //M(−,Σ−dXd+1) //M(−,X0) // ⋯ //M(−,Xd+1) //M(−,ΣdX0) // ⋯

is exact, where we used the notation HomM(−,−) =M(−,−). Moreover, note that the

dual of the above is also true by [19, Remark 2.2(c) and Proposition 2.5(a)].

Lemma 2.3.31. Any two consecutive morphisms in a (d + 2)-angle compose to zero.

Proof. By (N2), it is enough to prove ξ1○ξ0 = 0. By (N3), we have a commutative diagram

of the form:

X0
1X0 // X0 //

ξ0

��

0 //

��

⋯ // 0 //

��

0
ξd+1

//

��

ΣdX0

X0

ξ0
// X1

ξ1
// X2 // ⋯ // Xd

ξd
// Xd+1

ξd+1
// ΣdX0.

In particular, ξ1 ○ ξ0 = 0.

The following two lemmas are reformulations of Remark 2.3.30.
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Lemma 2.3.32. Consider

A

α
��}}

0

!!
ε ∶ X0

ξ0
// X1

ξ1
// X2 // ⋯ // Xd+1

ξd+1
// ΣdX0,

where ε is a (d + 2)-angle in M. Then ξ1 ○ α = 0 if and only if there exists a morphism

δ ∶ A→X0 such that ξ0 ○ δ = α.

Lemma 2.3.33. Consider

ε ∶ X0 ξ0

// X1 // ⋯ // Xd ξd //

0
""

Xd+1 ξd+1

//

ϕ

��

ΣdX0,

zz
A

where ε is a (d + 2)-angle in M. Then ϕ ○ ξd = 0 if and only if there exists a morphism

φ ∶ ΣdX0 → A such that φ ○ ξd+1 = ϕ.

The following lemmas are well-known in the triangulated case. Here we present and prove

their higher-angulated analogues. In the first one, we use the radical of the category M,

see Definition 2.1.8.

Lemma 2.3.34. Consider a (d + 2)-angle of the form

X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0.

Then:

(a) ξ1 is right minimal if and only if ξ0 ∈ radM,

(b) ξd is left minimal if and only if ξd+1 ∈ radM.

Proof. We only prove (a), then (b) follows by a similar argument. Suppose that ξ1 is right

minimal. Then, for any α ∶X1 →X0, we have

ξ1 ○ (1X1 − ξ0 ○ α) = ξ1 − ξ1 ○ ξ0 ○ α = ξ1,

where the last step follows from Lemma 2.3.31. Then, as ξ1 is right minimal, we have that

1X1 − ξ0 ○ α is invertible and so ξ0 is in radM.

Suppose now that ξ0 is in radM. Given ϕ ∶ X1 → X1 such that ξ1 ○ ϕ = ξ1, we have

ξ1 ○(ϕ−1X1) = 0. Then, by Lemma 2.3.32, there exists a morphism δ ∶X1 →X0 such that
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ξ0 ○ δ = ϕ − 1X1 . Hence, since ξ0 ∈ radM, we have that ϕ = 1X1 + ξ0 ○ δ is invertible and so

ξ1 is right minimal.

Lemma 2.3.35. Consider a (d + 2)-angle of the form

X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0.

The following are equivalent:

(a) ξd+1 = 0,

(b) ξd is a split epimorphism,

(c) ξ0 is a split monomorphism.

Proof. Suppose (a) holds and consider the morphism of (d + 2)-angles:

Σ−dXd+1 0 //

��

X0 ξ0

// X1 ξ1

//

δ
��

X2 //

��

⋯ // Xd ξd //

��

Xd+1

��
0 // X0

1X0 // X0 // 0 // ⋯ // 0 // 0.

Then, δ ○ ξ0 = 1X0 and (c) holds.

Suppose now that (c) holds. Hence there exists a morphism δ ∶ X1 → X0 such that

δ ○ ξ0 = 1X0 and we have morphism of (d + 2)-angles:

X0 ξ0

// X1 ξ1

//

δ
��

X2 //

��

⋯ // Xd ξd //

��

Xd+1

��

ξd+1

// ΣdX0

X0
1X0 // X0 // 0 // ⋯ // 0 // 0 // ΣdX0.

Hence 1ΣdX0 ○ ξd+1 = 0 and so ξd+1 = 0, that is (a) holds.

By a dual argument, (a) and (b) are equivalent.

Lemma 2.3.36. Let α ∶ A → B be a non-zero morphism in M. If B has local endomor-

phism ring, then α is left minimal and if A has local endomorphism ring, then α is right

minimal.

Proof. Suppose that End(B) is a local ring and let ϕ ∶ B → B be a morphism such that

ϕ○α = α. Consider the finitely generated End(B)-module M ∶= End(B)○α ⊆ Hom(A,B).
If ϕ ∈ radM, then ϕ ○ α = α ∈ radM and M ⊆ radM ○M . Then, by Nakayama’s Lemma,

see [1, Corollary 15.13], we have that M = 0. This is a contradiction to α being non-zero.
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Hence ϕ is not in radM and, since End(B) is local, we have that ϕ is an isomorphism

by [45, Section 4] and α is left minimal. The rest of the lemma is true by a similar

argument.

For the rest of this section, we work in the following setup.

Setup 2.3.37. Let d be a fixed positive integer and k a field. Let M be a skeletally

small k-linear Hom-finite (d + 2)-angulated category with split idempotents. Note that

this implies that M is Krull-Schmidt by Remark 2.1.12.

In the case when d = 1, so in the case of a triangulated category, a morphism can be

extended to a triangle in a unique way up to isomorphism. On the other hand, for

d > 1, a morphism can be extendend to a (d + 2)-angle in different non-isomorphic ways.

However, we still have a unique “minimal” (d + 2)-angle extending any given morphism.

The following was first proven in [49, Lemma 5.18], but we present here a detailed proof.

Lemma 2.3.38. Let d > 1 and δ ∶ M ′′ → ΣdM ′ be a morphism in M. Then, up to

isomorphism, there exists a unique (d + 2)-angle of the form

M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′,

with ξ1, . . . , ξd−1 in radM.

We present some lemmas that will then be used in the proof of Lemma 2.3.38.

Lemma 2.3.39. A (d + 2)-angle of the form

ε ∶ A⊕X0
(

1A β

α ξ0 )

// A⊕X1 (ψ, ξ
1)// X2 ξ2

// ⋯ // Xd ξd // Xd+1
(
ϕ

ξd+1 )

// Σd(A⊕X0)

is isomorphic to the direct sum of the two (d + 2)-angles

A
1A // A // 0 // ⋯ // 0 // 0 // ΣdA and

X0 ξ0
// X1 ξ1

// X2 ξ2

// ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0,

where ξ0 = −α ○ β + ξ0.
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Proof. It is easy to check that the following are isomorphisms of (d + 2)-angles:

ε ∶ A⊕X0
(

1A β

α ξ0 )

// A⊕X1 (ψ, ξ1) //

(
1A 0
−α 1X1

)

��

X2 ξ2

// ⋯ // Xd+1
(
ϕ

ξd+1 )

// Σd(A⊕X0)

ε′ ∶ A⊕X0
(

1A β

0 −α○β+ξ0 )

//

(
1A β
0 1X0

)

��

A⊕X1 (0, ξ1) // X2 ξ2

// ⋯ // Xd+1
(
ϕ

ξd+1 )

// Σd(A⊕X0)

(
1

ΣdA
Σd(β)

0 1
ΣdX0

)

��
ε′′ ∶ A⊕X0

(
1A 0
0 −α○β+ξ0 )

// A⊕X1

(0, ξ1)

// X2

ξ2
// ⋯ // Xd+1

(
0

ξd+1 )

// Σd(A⊕X0).

So ε ≅ ε′′ and ε′′ is clearly isomorphic to the direct sum of the two given (d+2)-angles.

Lemma 2.3.40. Let δ ∶M ′′ → ΣdM ′ be any morphism inM and consider a (d+ 2)-angle

extending it:

M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′.

Then ξ1, . . . , ξd−1 are in radM if and only if for i = 1, . . . , d − 1 there is no A /≅ 0 in M
such that

ξi ≅
⎛
⎝

1A β

α ξi

⎞
⎠
∶ A⊕Xi → A⊕Xi+1.

Proof. Suppose first that ξ1, . . . , ξd−1 are in radM. Then, for i = 1, . . . , d−1, we have that

each component of ξi is in radM by [2, Lemma A.3.4(b)] and so for every A ∈M, we have

ξi /≅
⎛
⎝

1A β

α ξi

⎞
⎠
,

as 1A is not in radM.

Suppose now that for every i = 1, . . . , d − 1 there is no A /≅ 0 in M such that

ξi ≅
⎛
⎝

1A β

α ξi

⎞
⎠
∶ A⊕Xi → A⊕Xi+1.

Suppose that for some i, we have ξi not in radM. Then, there is a component η of ξi, from

an indecomposable direct summand Y i of Xi to an indecomposable direct summand Y i+1

of Xi+1, that is not in radM. Then, η is an isomorphism, and without loss of generality
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we may assume it is 1Y i . So

ξi ≅
⎛
⎝

1Y i β

α ξi

⎞
⎠
∶ Y i ⊕Xi → Y i ⊕Xi+1,

contradicting our initial assumption. Hence ξi ∈ radM for all i = 1, . . . , d − 1.

We present a lemma that will be useful to prove uniqueness of the (d + 2)-angle from

Lemma 2.3.38.

Lemma 2.3.41. Consider (d + 2)-angles and morphisms in M of the form:

A0 α0
//

ϕ0

��

A1 α1
//

ϕ1

��

A2 //

ϕ2

��

⋯ // Ad
αd
//

ϕd

��

Ad+1 αd+1
//

ϕd+1

��

ΣdA0,

Σd(ϕ0)
��

B0 β0

//

θ0

��

B1 β1

//

θ1

��

B2 //

θ2

��

⋯ // Bd βd

//

θd
��

Bd+1 βd+1

//

θd+1

��

ΣdB0,

Σd(θ0)
��

A0 α0
// A1 γ1

// C2 // ⋯ // Cd
γd // Cd+1 γd+1

// ΣdA0.

Suppose that θ0 ○ ϕ0 = 1A0 and α1 is in radM, then θ1 ○ ϕ1 is an isomorphism.

Proof. Since α1 ∈ radM, by Lemma 2.3.34 it follows that α0 is left minimal. Then, since

θ1 ○ ϕ1 ○ α0 = α0 ○ θ0 ○ ϕ0 = α0 ○ 1A0 = α0,

we have that θ1 ○ ϕ1 is an isomorphism.

Proof of Lemma 2.3.38. We first discuss the existence of such a (d + 2)-angle. By (N1)

and (N2), it is possible to extend δ to a (d + 2)-angle of the form

ε ∶ M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′.

If for some i = 1, . . . , d − 1, there is a direct summand A of Xi isomorphic to a direct

summand of Xi+1, then without loss of generality we have

ξi =
⎛
⎝

1A β

α ξi

⎞
⎠
∶ A⊕Xi → A⊕Xi+1.
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By Lemma 2.3.39, ε is isomorphic to the direct sum of a rotation of

A
1A // A // 0 // ⋯ // 0 // 0 // ΣdA and

ε′ ∶M ′ ξ0

// X1 ξ1

// ⋯ // Xi−1 ξi−1

// Xi
ξi // Xi+1 // ⋯ //M ′′ δ // ΣdM ′.

Now, starting from ε′, repeat this process. By Lemma 2.3.40, we will eventually end up

with a (d + 2)-angle with the required properties.

We now prove that such a (d + 2)-angle is unique up to isomorphism. Suppose that

ε ∶M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′,

ε′ ∶M ′ η0

// Y 1 η1

// Y 2 // ⋯ // Y d−1 ηd−1

// Y d ηd //M ′′ δ // ΣdM ′

are (d + 2)-angles of the desired form. By (N3), we obtain the following two morphisms

ε ∶
ψ
��

M ′ ξ0

// X1 ξ1

//

ψ1

��

X2 //

ψ2

��

⋯ // Xd−1 ξd−1

//

ψd−1

��

Xd ξd //

ψd

��

M ′′ δ // ΣdM ′

ε′ ∶
φ

��

M ′ η0

// Y 1 η1

//

φ1

��

Y 2 //

φ2

��

⋯ // Y d−1 ηd−1

//

φd−1

��

Y d ηd //

φd

��

M ′′ δ // ΣdM ′

ε ∶ M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′.

By Lemma 2.3.41, we have that φ1 ○ψ1 is an isomorphism. Using (φ1 ○ψ1)−1 and (N3) we

obtain the following morphism θ:

ε ∶
θ

��

M ′ ξ0

// X1 ξ1

//

(φ1○ψ1)−1

��

X2 //

θ2

��

⋯ // Xd−1 ξd−1

//

θd−1

��

Xd ξd //

θd
��

M ′′ δ //

θd+1

��

ΣdM ′

ε ∶ M ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //M ′′ δ // ΣdM ′.

Applying Lemma 2.3.41 to ε
φ○ψÐÐ→ ε

θÐ→ ε and ε
θÐ→ ε

φ○ψÐÐ→ ε, we have that θ2 ○ (φ2 ○ ψ2) and

(φ2 ○ ψ2) ○ θ2 are isomorphisms. Hence φ2 ○ ψ2 is an isomorphism. The same argument

can be repeated to prove that

φ3 ○ ψ3, . . . , φd−2 ○ ψd−2, φd−1 ○ ψd−1

are isomorphisms. Since ξd−1 ∈ radM, by Lemma 2.3.34(a) we have that ξd is right minimal

and so ξd = ξd○φd○ψd implies that φd○ψd is an isomorphism. Hence φ○ψ is an isomorphism
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in M. By a dual argument, we have that ψ ○ φ is an isomorphism in M. Hence ψ and φ

are isomorphisms in M and the (d + 2)-angles ε and ε′ are isomorphic.

We now present some special (d + 2)-angulated categories, arising from d-cluster tilting

subcategories of module categories. In a similar way to d-cluster tilting subcategories of

mod Λ, we can define d-cluster tilting subcategories of a triangulated category T .

Definition 2.3.42 ([32, Section 3]). A d-cluster tilting subcategory of a triangulated cat-

egory T is a functorially finite, full subcategory C of T satisfying

C = {X ∈ T ∣ Ext1...d−1
T (C,X) = 0} = {X ∈ T ∣ Ext1...d−1

T (X,C) = 0}.

We see how some of these categories can be used to construct (d+2)-angulated categories.

The following is a result by Geiss, Keller and Opperman, see [19, Theorem 1].

Theorem 2.3.43. Let D be a triangulated category with suspension functor Σ. Let C ⊆ D
be a d-cluster tilting subcategory satisfying Σd(C) ⊆ C. Then (C,Σd,D) is a (d+2)-angulated

category, where D constists of the Σd-sequences of the form

C0 γ0

Ð→ C1 γ1

Ð→ C2 → ⋯→ Cd
γdÐ→ Cd+1 γd+1

ÐÐ→ ΣdC0

coming from diagrams in D of the form

C1

��

γ1

// C2

��

// ⋯ // Cd−1 γd−1

//

��

Cd

γd

��
C0

γ0

CC

X1oo

BB

X2oo ⋯ Xd−2

??

Xd−1oo

AA

Cd+1.oo

(2.10)

In the above, by X // Y , we mean a morphism X → ΣY and the composition of all

the wavy arrows is γd+1. Each oriented triangle is a triangle in D and each non-oriented

triangle is commutative.

Remark 2.3.44. Let Λ be a finite dimensional k-algebra with global dimension at most

d. By [29, Theorem 1.6], if mod Λ has a d-cluster tilting subcategory, then this is unique

and it is

F = add{τ jd(I) ∣ I is injective in mod Λ and j ≥ 0}.

Moreover, Iyama proved in [29, Theorem 1.21] that

F ∶= add{ΣdiF ∣ i ∈ Z} ⊆ Db(mod Λ)
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is d-cluster tilting in Db(mod Λ). Then, since Σd(F) ⊆ F , we have that F is a (d + 2)-
angulated category by Theorem 2.3.43. Note that this is the only known example of a

d-abelian category F embedded into a (d + 2)-angulated category F where

Extdi
F
(A,B) ≅ Hom

F
(A,ΣdiB),

for A, B ∈ F and i ∈ Z.

In this situation, the d-abelian category F plays the role of a higher mod Λ and the (d+2)-
angulated category F of a higher derived category of F .

Remark 2.3.45. In the situation of Remark 2.3.44, we have that any d-exact sequence

in F induces a (d + 2)-angle in F . In fact, any d-exact sequence in F :

0 // C0 // C1 // ⋯ // Cd // Cd+1 // 0,

can be decomposed into short exact sequences which correspond to triangles in Db(mod Λ).
Hence, we obtain a diagram of the form (2.10), and so a (d + 2)-angle in F of the form

C0 // C1 // ⋯ // Cd // Cd+1 // ΣdC0.

Higher-angulated Auslander-Reiten theory

The definition of Auslander-Reiten (d + 2)-angles was first introduced by Iyama and

Yoshino in [32, Definition 3.8]. In this thesis, we use a modified definition since we force

the end terms of any Auslander-Reiten (d+2)-angle to be indecomposable, or equivalently

to have local endomorphism rings as pointed out in Lemma 2.3.47. This change has been

made to match with the classic homological algebra theory. In fact, the end terms of an

Auslander-Reiten triangle are always indecomposable objects, see Definition 2.2.40 and

Lemma 2.2.42.

We do not prove the results presented in this section now. Instead, we will later prove

the more general Lemmas 4.4.4, 4.4.6 and 4.4.7. In these more general lemmas, W will

be an additive subcategory of M closed under d-extensions and the case W = M will

respectively give us Lemmas 2.3.47, 2.3.49 and 2.3.50.

Definition 2.3.46. A (d + 2)-angle in M of the form

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0

is an Auslander-Reiten (d + 2)-angle if ξ0 is left almost split, ξd is right almost split and,

when d ≥ 2, also ξ1, . . . , ξd−1 ∈ radM.
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Lemma 2.3.47. (a) Let ξ0 ∶ X0 → X1 be left almost split, then End(X0) is local and

ξ0 ∈ radM.

(b) Let ξd ∶W d →W d+1 be right almost split, then End(Xd+1) is local and ξd ∈ radM.

Remark 2.3.48. Suppose ε as in Definition 2.3.46 is an Auslander-Reiten (d + 2)-angle.

When d = 1, we have ξ0 and ξd in radM, so that ξd is right minimal and ξ0 is left minimal.

When d ≥ 2, since ξd−1 ∈ radM, by Lemma 2.3.34 we have that ξd is right minimal and

similarly ξ0 is left minimal.

We now give equivalent definitions for Auslander-Reiten (d + 2)-angles.

Lemma 2.3.49. Let

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0

be a (d + 2)-angle. Then the following are equivalent:

(a) ε is an Auslander-Reiten (d + 2)-angle,

(b) ξ0, ξ1, . . . , ξd−1 are in radM and ξd is right almost split,

(c) ξ1, . . . , ξd−1, ξd are in radM and ξ0 is left almost split.

The following lemma is the generalisation of Lemma 2.2.43 to (d + 2)-angles.

Lemma 2.3.50. Consider a (d + 2)-angle of the form

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0,

and suppose that ξd is right almost split and, if d ≥ 2, also that ξ1, . . . , ξd−1 are in radM.

Then the following are equivalent:

(a) End(X0) is local,

(b) ξd+1 is left minimal,

(c) ξ0 is in radM,

(d) ε is an Auslander-Reiten (d + 2)-angle.
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Some examples

In this chapter, we introduce some examples of the categories defined in Chapter 2. These

examples will also be used in later chapters to show applications of our results.

The first two examples are triangulated categories. In the first, we introduce the cluster

category of Dynkin type An, denoted by CAn , and describe its Auslander-Reiten triangles.

Our second example is a generalisation of the first one: the triangulated q-cluster category

of Dynkin type An, denoted by Cq(An), where in the case q = 1 we have C1(An) = CAn .

Finally, we introduce a class of examples defined by Vaso. These are d-abelian categories

and (d + 2)-angulated categories arising from d-cluster tilting subcategories of module

categories constructed as described in Remark 2.3.44.

3.1 The cluster category of Q

Let k be a field, Q a finite quiver with no loops and cycles and kQ its path algebra. We

describe the cluster category CQ, see [11, pp 577] for more details.

Let DQ ∶= Db(modkQ) be the derived category of bounded complexes of right modules

over kQ, with suspension Σ, see Theorem 2.2.37 and Definition 2.2.39. Let M and N be

objects in modkQ and i ∈ Z, then we have that

HomDQ
(M,ΣiN) ≅ ExtikQ(M,N)

by Remark 2.2.38.

The category DQ has a Serre functor, denoted by S. Then, as in Definition 2.2.45, we can

define the Auslander-Reiten translation τ = S ○Σ−1 ∶ DQ → DQ, with inverse τ−1 = S−1 ○Σ.
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Definition 3.1.1. The cluster category of Q is the orbit category

CQ = DQ/(τ−1Σ)Z = DQ/(S−1Σ2)Z.

Hence CQ is the category with the same objects as DQ and, for X,Y objects in CQ,

HomCQ(X,Y ) =⊕
p∈Z

HomDQ
(X, (τ−1Σ)p(Y )).

Note that objects of DQ that are in the same orbit of τ−1Σ become isomorphic in CQ. It

is possible to turn CQ into a k-linear triangulated category with finite dimensional Hom-

spaces, see [41]. Moreover, CQ has Serre functor S, suspension Σ and Auslander-Reiten

translation τ induced by the ones in DQ and CQ is 2-Calabi-Yau, see Definition 2.2.47.

Then it follows that in CQ we have

Σ2 ≅ S ≅ τΣ,

and hence Σ ≅ τ .

3.1.1 The cluster category of Dynkin type An

We focus on the case Q = An, i.e.

Q ∶ 1●←Ð2●←Ð ⋯←Ðn−1● ←Ðn●,

where n is a fixed positive integer.

The Auslander-Reiten quiver of DAn is the infinite quiver illustrated in Figure 3.1, see [20].

Note that X stands for the kAn-module X viewed as a complex concentrated in degree

zero, and we can apply the suspension to it to obtain the complex ΣX concentrated in

homological degree one. As usual with Auslander-Reiten quivers, τX is drawn in the same

row and one step to the left of X, so for example τI(2) = P (n − 1).

In CAn , objects in the same (τ−1Σ)-orbit are isomorphic. For example P (1) and τ−1ΣP (1) =
ΣM are isomorphic. Then, from the infinite quiver in Figure 3.1, we obtain the finite

quiver in Figure 3.2, representing the Auslander-Reiten quiver of CAn . Note that this can

be drawn on a Möbius strip.

We study CAn through a geometric realisation of it. Let P be the regular polygon with

n + 3 vertices. The following can be proved using the results in [13].
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P (1)

P (2)

●

P (n−1)

P (n)

M

N ●

●

I(2)

●

I(n−1)

I(n)

ΣP (1)

ΣP (2)

ΣM

ΣN

●●

ΣP (n−1)

ΣP (n)

ΣI(2)

Σ2P (1)

Σ2P (2)

Σ−1P (n)

Σ−1I(2)

●

Σ−1I(n−1)

Σ−1I(n)

Figure 3.1: Auslander-Reiten quiver of DAn .

P (1)

P (2)

●

P (n−1)

P (n)

M

N ●

●

I(2)

●

I(n−1)

I(n)

ΣP (1)

ΣP (2)

ΣM≅P (1)

ΣN≅P (2)

●●

ΣP (n−1)

ΣP (n)

ΣI(2)≅P (n−1)

Σ2P (1)≅P (n)

Figure 3.2: Auslander-Reiten quiver of CAn .

(I) There is a bijection

⎧⎪⎪⎨⎪⎪⎩

diagonals in P between

non-neighbouring vertices

⎫⎪⎪⎬⎪⎪⎭
↔

⎧⎪⎪⎨⎪⎪⎩

isomorphism classes of

indecomposables in CAn

⎫⎪⎪⎬⎪⎪⎭
,

where IndCAn is the full subcategory of DAn whose objects are the indecomposable

objects. We identify IndCAn and the diagonals of P , so given an indecomposable

x ∈ CAn it makes sense to write x = {x0, x1}, for x0, x1 its endpoints as a diagonal in

P .

(II) Let the diagonals a, c correspond respectively to the indecomposables a, c under the

bijection from (I). Then

dimk(Ext1(a, c)) = dimk(Hom(a,Σc)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if a, c cross,

0 otherwise,

where we say that two diagonals cross if they intersect in the interior of P (so

excluding the endpoints).

(III) If a ∈ Ind CAn corresponds to the diagonal a = {a0, a1}, then Σa corresponds to the

55



Chapter 3. Some examples

a1

a0

a−1

a−0

Figure 3.3: a = {a0, a1} and Σa = {a−0 , a−1} .

c1

c0

a1

a0

b1

b2

s1

s2

Figure 3.4: There are triangles a→ b1 ⊕ b2 → c→ and c→ s1 ⊕ s2 → a→ Σc in CAn .

diagonal {a−0 , a−1} obtained by moving the endpoints of a by one clockwise step, see

Figure 3.3.

(IV) In (II), suppose a, c cross, so dimk(Hom(a,Σc)) = dimk(Hom(c,Σa)) = 1. Then we

can complete the non-zero morphisms c→ Σa and a→ Σc to obtain the two triangles

a→ b1 ⊕ b2 → c→ Σa

c→ s1 ⊕ s2 → a→ Σc,

where b1, b2, s1 and s2 are the indecomposables corresponding to the diagonals b1,

b2, s1 and s2 respectively in Figure 3.4. If si or bi corresponds to an edge of P , then

it is zero in T .

(V) Of the triangles from (IV), the Auslander-Reiten triangles are exactly those in which

either a = Σc or c = Σa. For example, if a = Σc, then we have an Auslander-Reiten

triangle and a trivial triangle, respectively

Σc→ b1 ⊕ b2 → c→ Σ2c and c→ 0→ Σc
≅Ð→ Σc.

Note that in this case s1, s2 are edges of P and hence zero in CAn .
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{0,2}

{0,3}

●

{0,n}

{0,n+1}

{1,3}

{1,4} ●

●

{1,n+1}

●

{n−2,n+1}

{n−1,n+1}

{1,n+2}

{2,n+2}

{0,2}

{0,3}

●●

{n−1,n+2}

{n,n+2}

{0,n}

{0,n+1}

Figure 3.5: Auslander-Reiten quiver of CAn .

(VI) Labelling the vertices of P from 0 to n + 2 anticlockwise and using (I)-(V), the

Auslander-Reiten quiver of CAn is as shown in Figure 3.5. For a diagonal a, we have

that Σa is placed in the same row and to the left of a and the Auslander-Reiten

triangle Σa→ s1 ⊕ s2 → a→ Σ2a corresponds to the mesh:

s1

  
Σa

==

!!

a.

s2

>>

(VII) We can define a cyclic order on the vertices of P as follows. Given three vertices

u, v,w of P , we write u < v < w if they appear in the order u, v,w when going through

the vertices of P in the positive (= anticlockwise) direction. Moreover, if we choose

two distinct vertices u and v, we can consider the interval of vertices [u, v] and in

this “<” is a total order.

(VIII) Let x = {x0, x1} ∈ Ind CAn . Then, by [27, Lemma 2.4.2], we have that y = {y0, y1} ∈
Ind CAn is such that Hom(x, y) ≠ 0 if and only if y has one endpoint in each of the

intervals [x0, x
−−
1 ] and [x1, x

−−
0 ], i.e. the blue arcs in Figure 3.6.

Moreover, for such a y, the indecomposables s = {s0, s1} such that the morphism

x→ y factors through s are exactly those having one endpoint in each of the intervals

[x0, y0] and [x1, y1], i.e. the two red arcs in Figure 3.6.

(IX) Let x = {x0, x1} ∈ Ind CAn . Then, by [27, Lemma 2.4.2], we have that z = {z0, z1} ∈
Ind CAn is such that Hom(z, x) ≠ 0 if and only if z has one endpoint in each of the

intervals [x++0 , x1] and [x++1 , x0], i.e. the two green arcs in Figure 3.7.

Moreover, for such a z, the indecomposables s = {s0, s1} such that the morphism
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x0

x1

x−0

x−1

x−−0

x−−1

y0

y1

s0

s1

Figure 3.6: There is a non-zero morphism x = {x0, x1} → {y0, y1} = y if and only if y has one
endpoint below each blue arc. Moreover, x→ y factors through s = {s0, s1} if and only if s has an
endpoint below each red arc.

z → x factors through s are exactly those having one endpoint in each of the intervals

[z0, x1] and [z1, x0], i.e. the two red arcs in Figure 3.7.

3.2 The q-cluster category of Dynkin type Ap

Let k be a field and p and q be fixed positive integers. We describe the triangulated

q-cluster category of Dynkin type Ap, denoted by Cq(Ap) and first defined in [54], and its

geometric realisation, see [47] and [8] for more details.

Remark 3.2.1. The properties we present in this section express the fact that the

Auslander-Reiten quiver of Cq(Ap) has a certain shape and do not rely on k being al-

gebraically closed. Hence, even if [47] and [8] assume that k is an algebraically closed

field, we remove this assumption and work with a general field k, as done in [54].

Consider the coordinate system on the translation quiver ZAp illustrated in Figure 3.8.

Definition 3.2.2 ([47, Remark 2.3]). Define the following automorphisms on ZAp:

Σ ∶ ZAp → ZAp, (i, j)↦ (j − 1, i + (p + 1)q + 1),
τ ∶ ZAp → ZAp, (i, j)↦ (i − q, j − q),
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x0

x1

x+0

x+1 x++0

x++1

z0

z1

s1

s0

Figure 3.7: There is a non-zero morphism z = {z0, z1} → {x0, x1} = x if and only if z has one
endpoint below each green arc. Moreover z → x factors through s = {s0, s1} if and only if s has an
endpoint below each red arc.

●

��

(−q, (p − 1)q + 1)

��

(0, pq + 1)

��

(q, (p + 1)q + 1)

��

(2q, (p + 2)q + 1)

��(−q, (p − 2)q + 1)

��

??

(0, (p − 1)q + 1)

��

??

(q, pq + 1)

��

??

(2q, (p + 1)q + 1)

??

��

●

⋰

??

⋰

??

⋰

??

⋰

?? ??

. . . . . . ⋰

??

⋰

??

⋰

??

⋰

??

. . . . . .

(−q,2q + 1)

??

��

(0,3q + 1)

??

��

(q,4q + 1)

??

��

(2q,5q + 1)

??

��(−q, q + 1)

??

��

(0,2q + 1)

??

��

(q,3q + 1)

??

��

(2q,4q + 1)

??

��

●

(−q,1)

??

(0, q + 1)

??

(q,2q + 1)

??

(2q,3q + 1)

??

●

??

Figure 3.8: Coordinate system on ZAp.

and let τq+1 = τ ○Σ−q.

Note that (ZAp, τ) is a translation quiver in the sense of [47, Definition 2.2]. Hence there

exists a mesh category associated to it. The objects of this category are the vertices of

ZAp and the morphisms are linear combinations of paths in ZAp subject to the mesh

relations. For each arrow α ∶ x → y, let σ(α) be the unique arrow σ(α) ∶ τ(y) → x. The
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●
a

●

((s−1)q, sq+1)

● ((s−1)q, (r+p)q+1)

●
(rq, (r+p)q+1)

●
((s−p)q, sq+1)

●((s−p)q, (r+1)q+1)

H+(a)H−(a)

●

(rq, (r+1)q+1)

Figure 3.9: The regions H+(a) and H−(a) for a = (rq, sq + 1).

mesh relations are given by

∑
α∶x→y

ασ(α) = 0,

for each vertex y in ZAp.

Definition 3.2.3. Let a = (rq, sq + 1) be a vertex in ZAp, for r and s integers such that

r + 1 ≤ s ≤ r + p. We denote by

• H+(a) the set of vertices of ZAp of the form (iq, jq + 1) for integers r ≤ i ≤ s− 1 and

s ≤ j ≤ r + p;

• H−(a) the set of vertices of ZAp of the form (iq, jq + 1) for integers s− p ≤ i ≤ r and

r + 1 ≤ j ≤ s.

Note that the sets of vertices H−(a) and H+(a) are those in the “hammocks” spanned

from a, see Figure 3.9.

Remark 3.2.4. By [47, Remark 2.3], the regions H−(a) and H+(a) describe the set of

vertices from which (respectively, to which) there is a non-zero morphism in the mesh

category associated to ZAp.

Remark 3.2.5 ([47, Section 2]). As in the previous section, let DAp ∶= Db(modkAp).
The Auslander-Reiten quiver of DAp is isomorphic, as a stable translation quiver, to ZAp.
The automorphisms Σ and τ from Definition 3.2.2 are the action of the suspension and

the Auslander-Reiten translation in DAp respectively, expressed in terms of the coordinate

system from Figure 3.8. Moreover, the mesh category k(ZAp) is equivalent to IndDAp ,

i.e. the full subcategory of DAp whose objects are the indecomposable objects.
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●

(0,q+1)

● ● ● ● ● ●

τ−1
q+1(0,pq+1)

≡(0,pq+1)

●

(0,pq+1)

● ● ● ● ●

τ−1
q+1(0,q+1)≡(0,q+1)

1 2 q

Figure 3.10: The quotient translation quiver ZAp/⟨τq+1⟩ when q is odd.

The quotient translation quiver ZAp/⟨τq+1⟩ is obtained by identifying the vertices and

arrows of ZAp with their τq+1-shifts. It is the Auslander-Reiten quiver of

Cq(Ap) ∶= DAp/τ ○Σ−q,

the triangulated q-cluster category of Dynkin type Ap. Figure 3.10 shows the identification

on ZAp when q is odd. Note that in this case, the quiver can be drawn on a Möbius strip.

Moreover, by [47, Remark 2.12] we have that Cq(Ap) is a category whose Hom-spaces

between indecomposables are either zero or one dimensional over k and by [8, Introduction]

it is (q + 1)-Calabi-Yau, that is it has a Serre functor that is isomorphic to Σq+1, see

Definition 2.2.47.

We present a geometric realisation of ZAp/⟨τq+1⟩. Let N = (p+ 1)q + 2 and P be a regular

convex N -gon. Label the vertices of P from 0 to N − 1 in an anticlockwise direction. We

denote the diagonal joining vertices i and j by {i, j}.

Definition 3.2.6 ([47, Definition 2.5]). A q-allowable diagonal in P is a diagonal joining

two non-adjacent boundary vertices which divides P into two smaller polygons which can

themselves be subdivided into (q + 2)-gons by non-crossing diagonals. Note that these are

the diagonals of P spanning 1 + lq vertices, for l a positive integer.

Proposition 3.2.7 ([47, Proposition 2.9]). There is a bijection

⎧⎪⎪⎨⎪⎪⎩

isomorphism classes of indecomposables in Cq(Ap)
(= vertices of ZAp/⟨τq+1⟩)

⎫⎪⎪⎬⎪⎪⎭
Ð→

⎧⎪⎪⎨⎪⎪⎩

q-allowable diagonals

in P

⎫⎪⎪⎬⎪⎪⎭

given by (i, j)↦ {i (modN), j (modN)}.

From now on, q-allowable diagonals in P and indecomposable objects in Cq(Ap) are iden-

tified. Hence it makes sense to talk about morphisms between two q-allowable diagonals.
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b0

b1

b−1
0

b−1
1

b−2
0

b−2
1

a0=b
iq
0

a1=b
jq
1

Figure 3.11: There is a non-zero morphism b = {b0, b1}→ {a0, a1} = a.

Notation 3.2.8. Given a vertex v of P and an integer r, we denote by vr its rth successor

in the anticlockwise direction if r is positive and its (−r)th successor in the clockwise

direction if r is negative. We also use the convention v0 = v.

Remark 3.2.9. We can define a cyclic order “<” on the vertices of P as described in

(VII) and for any two distinct vertices u and v, we have that “<” is a total order in the

interval of vertices [u, v].

The next two lemmas follow by describing the H+(b), respectively H−(b), region from

Definition 3.2.3 in terms of q-allowable diagonals in P .

Lemma 3.2.10. Consider a q-allowable diagonal b = {b0, b1} in P . Then a q-allowable

diagonal a is such that Hom(b, a) ≠ 0 if and only if there are some non-negative integers

i, j such that a = {a0, a1} for

a0 = biq0 ∈ [b0, b−2
1 ] and a1 = bjq1 ∈ [b1, b−2

0 ].

See Figure 3.11.

Lemma 3.2.11. Consider a q-allowable diagonal b = {b0, b1} in P . Then a q-allowable

diagonal a is such that Hom(a, b) ≠ 0 if and only if there are some non-negative integers

i, j such that a = {a0, a1} for

a0 = b−iq0 ∈ [b21, b0] and a1 = b−jq1 ∈ [b20, b1].
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b0

b1

b10

b11
b20

b21

a1=b
−jq
1

a0=b
−iq
0

Figure 3.12: There is a non-zero morphism a = {a0, a1}→ {b0, b1} = b.

See Figure 3.12.

The following is a consequence of [47, Proposition 2.9].

Lemma 3.2.12. Two q-allowable diagonals a and b in P cross if and only if there exists

an integer 1 ≤ i ≤ q such that Exti(a, b) ≠ 0.

3.2.1 Triangles in Cq(Ap)

In this section, we describe all the triangles in Cq(Ap) with indecomposable end terms in

terms of q-allowable diagonals in P . In order to do this, we use a similar method to the

one used by Pescod in [51, Chapter 4]. The following two lemmas are inspired by [51,

Lemmas 4.1.1 and 4.1.2]

Lemma 3.2.13. Consider a triangle in Cq(Ap) of the form

∆ = a→ e→ b→ Σa,

with a and b indecomposable. If c is an indecomposable in Cq(Ap) such that there exists

an integer 1 ≤ i ≤ q with Exti(c, e) ≠ 0, then at least one of Exti(c, a) and Exti(c, b) is

non-zero.

In terms of q-allowable diagonals in P , we have that if c crosses a direct summand of e,

then c crosses at least one of a and b.
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Proof. The triangle ∆ induces the exact sequence:

Exti(c, a)→ Exti(c, e)→ Exti(c, b).

Since Exti(c, e) ≠ 0, it follows that at least one of Exti(c, a) and Exti(c, b) is non-zero.

Lemma 3.2.14. Let a and b ∈ Cq(Ap) be indecomposable and assume that Ext1(b, a) ≠ 0.

Let

∆ = a αÐ→ e
εÐ→ b

βÐ→ Σa

be the ensuing non-split triangle. Then

Ext1...q(e, a) = Ext1...q(b, e) = 0.

In terms of q-allowable diagonals in P , there is no direct summand of e crossing a or b.

Proof. Note that the identification on ZAp to obtain ZAp/⟨τq+1⟩ ≅ Cq(Ap) is such that

H+(Σ−qb), H+(Σ−q+1b), . . . , H+(Σ−2b), H+(Σ−1b)

are all disjoint. See Figure 3.10 for ZAp/⟨τq+1⟩ when q is odd; the case when q is even is

similar. By Remark 3.2.4, we have that at most one of

Hom(Σ−qb, a), Hom(Σ−q+1b, a), . . . , Hom(Σ−2b, a), Hom(Σ−1b, a)

is non-zero. Equivalently, at most one of

Extq(b, a), Extq−1(b, a), . . . , Ext2(b, a), Ext1(b, a)

is non-zero. Since Ext1(b, a) is non-zero by assumption, we have that Ext2...q(b, a) = 0.

Consider the following exact sequence induced by ∆:

Hom(b, b) β∗Ð→ Hom(b,Σa) (−Σα)∗ÐÐÐÐ→ Hom(b,Σe)→ Hom(b,Σb).

Since b does not cross itself, by Lemma 3.2.12, we have that Hom(b,Σib) = 0 for any

1 ≤ i ≤ q. Moreover, as Hom(b, b) is non-zero and β ≠ 0, we have that β∗ ≠ 0. Hence

Hom(b,Σa) is one-dimensional over k and β∗ is surjective, so that (−Σα)∗ = 0. Then

Ext1(b, e) = Hom(b,Σe) = 0. For 2 ≤ i ≤ q, consider the following exact sequence induced
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by ∆ ∶

Hom(b,Σia)→ Hom(b,Σie)→ Hom(b,Σib) = 0.

For 2 ≤ i ≤ q, we have

0 = Exti(b, a) = Hom(b,Σia),

and so Exti(b, e) = Hom(b,Σie) = 0 for 2 ≤ i ≤ q.

A similar argument shows that Ext1...q(e, a) = 0.

Note that the results from [51, Chapter 4.2] are valid in Cq(Ap) since this is a k-linear,

Hom-finite, Krull-Schmidt triangulated category. We state them again for convenience of

the reader.

Lemma 3.2.15 ([51, Lemmas 4.2.1 and 4.2.2]). Let b ∈ Cq(Ap) be indecomposable. As-

sume there exists a non-split triangle

a
αÐ→ e

εÐ→ b→ Σa,

then each row of the matrix α has a non-zero entry and each column of the matrix ε has

a non-zero entry.

Remark 3.2.16. Note that since in this setup Hom-spaces between indecomposables in

Cq(Ap) are either zero or one dimensional over k, we can state [51, Lemma 4.2.3] as follows.

Lemma 3.2.17. For a and b indecomposables in Cq(Ap), let

a→ e→ b→ Σa

be a triangle in Cq(Ap). Then, e has no repeated indecomposable summands.

Lemma 3.2.18 ([51, Lemma 4.2.4]). For a and b indecomposables in Cq(Ap), let

a→ e→ b→ Σa

be a triangle in Cq(Ap). Then

Ext1(Σa, ei) ≠ 0 and Ext1(ei,Σ−1b) ≠ 0,

for each indecomposable summand ei of e.
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Lemma 3.2.19. Consider two crossing q-allowable diagonals a = {a0, a1} and b = {b0, b1}
in P , where b0 < a0 < b1 < a1. Then {a0, b0} is q-allowable or an edge if and only if {a1, b1}
is q-allowable or an edge.

Proof. Since a and b are q-allowable diagonals, there are positive integers r, t such that

a1 = a1+rq
0 and b1 = b1+tq0 .

Assume that {a0, b0} is q-allowable or an edge in P . Then a0 = b1+sq0 for some integer s ≥ 0,

see Figure 3.13. We have

a1 = a1+rq
0 = b2+(r+s)q0 = b2+(r+s)q−1−tq

1 = b1+(r+s−t)q1 ,

where r+s ≥ t. Hence {a1, b1} is q-allowable or an edge in P . The other direction is proved

in a similar way.

b0

b1

a1

a0

1+tq

1+sq

1+rq

Figure 3.13: The diagonals {a0, a1} and {b0, b1} are q-allowable and {a0, b0} is either q-allowable
or an edge.

Proposition 3.2.20. Consider two crossing q-allowable diagonals a = {a0, a1} and b =
{b0, b1} in P , where b0 < a0 < b1 < a1.

• There exists exactly one integer 0 ≤ l ≤ q − 1 such that Hom(b,Σl+1a) ≠ 0. Then the

non-split triangle extending β ∶ b→ Σl+1a is

∆ = Σla→ e→ b
βÐ→ Σl+1a,

where e = e1 ⊕ e2 for e1 = {a−l0 , b0} and e2 = {b1, a−l1 }.

• If 0 ≤ i ≤ q − 1 is an integer such that {a−i0 , b0} is a q-allowable diagonal or an edge

in P , then i = l.
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b0

b1

a1

a0

a−l1

a−l0
e1

e2

e3

e4

Figure 3.14: The triangle Σla→ e1 ⊕ e2 → b
βÐ→ Σl+1a.

Proof. Assume that ∆ is a non-split triangle and let e be a direct summand of the middle

term e. By Lemma 3.2.14, we have that e does not cross Σla or b. Moreover, if c is a

q-allowable diagonal crossing e, by Lemma 3.2.13, we have that c crosses at least one of

Σla and b. Hence the only possibilities for e are the diagonals

e1 = {a−l0 , b0}, e2 = {b1, a−l1 }, e3 = {a−l0 , b1}, e4 = {b0, a−l1 },

see Figure 3.14. By Lemma 3.2.18, we have that

Ext1(Σl+1a, e) ≠ 0 and Ext1(e,Σ−1b) ≠ 0.

Hence e crosses both Σl+1a and Σ−1b, which implies that e3 and e4 must be excluded from

the possible summands of e. Moreover, e has no repeated summands by Lemma 3.2.17,

and so

e ∈ {0, e1, e2, e1 ⊕ e2}.

We claim that e = e1 ⊕ e2. We prove this claim by dealing with the cases e1 = e2 = 0, one

of e1, e2 zero and e1, e2 both non-zero separately. First, note that if b = Σl+1a, then

∆ = Σla→ 0→ Σl+1a
≅Ð→ Σl+1a.

Note that in this case b10 = a−l0 and b11 = a−l1 so that e1 = e2 = 0 and e = e1 ⊕ e2 = 0. Assume

now that b is not Σl+1a, so that e ≠ 0. Note that if e1 (respectively e2) is zero, then

e = e1 ⊕ e2 = e2 (respectively e = e1) is the only option and we are done. Moreover, since

e ≠ 0, we have that at least one of e1, e2 is q-allowable or an edge in P . But then, by

Lemma 3.2.19, we have that e1 and e2 are both q-allowable diagonals or edges in P . The

last case to deal with is when e1 and e2 are both non-zero, i.e. they both are q-allowable
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diagonals in P . Suppose for a contradiction that e = e1. Consider the triangle

e→ b→ Σl+1a→ Σe,

and set c = {a−l0 , b
1
1}. Note that b1 < b11 < a−l1 since e2 ≠ 0. Since Σla and e2 are q-allowable

diagonals, there are integers s > r > 0 such that

a−l1 = a−l+1+sq
0 = b1+rq1 .

Hence b11 = a
−l+1+(s−r)q
0 and so c is q-allowable. So c is a q-allowable diagonal crossing b but

not crossing neither e = e1 nor Σl+1a, see Figure 3.15, contracting Lemma 3.2.13. Then

e ≠ e1.

b0

b1

b11

a−l1

a−l0
e1

c

Figure 3.15: The q-allowable diagonal c crosses b but does not cross neither e1 nor Σl+1a.

By a similar argument, assuming that e = e2 leads to a contradiction. Hence we have that

e = e1 ⊕ e2.

We now prove the second part of the proposition. Assume 0 ≤ i ≤ q − 1 is an integer such

that {a−i0 , b0} is a q-allowable diagonal or an edge in P . Then there are integers r, s ≥ 0

such that

a−i0 = b1+sq0 and a−l0 = b1+rq0 .

Then b1+rq0 = a−l0 = b1+sq+i−l0 . So i − l = (r − s)q.

If 0 ≤ l ≤ i ≤ q−1, then r ≥ s ≥ 0. Note that 0 ≤ i− l ≤ q− l−1 < q, so i = l is the only option.

If 0 ≤ i ≤ l ≤ q − 1, then s ≥ r ≥ 0. Note that 0 ≤ l − i ≤ q − i − 1 < q, so i = l is again the only

option.
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3.3 A class of examples by Vaso

In this section, we present a class of examples due to Vaso. We summarise results from

[55, Section 4] and [23, Section 7].

Definition 3.3.1. Let d ≥ 2, l ≥ 2, m ≥ 3 be integers such that d is even and

m − 1

l
= d

2
.

Let Q = Am be the quiver

m→m − 1→ ⋯→ 2→ 1,

k be a field and set Λ ∶= kQ/(radkQ)l. In other words, Λ is the path algebra of the quiver

Q with the relation that l consecutive arrows compose to zero.

As representations of the quiver Q, the indecomposable projectives and injectives in mod Λ

are the following:

f1 = 0→ 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ k,

f2 = 0→ 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ k → k,

⋮
fl−1 = 0→ 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ k → ⋯→ k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l−1

,

fl = 0→ 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ k → k → ⋯→ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l

,

fl+1 = 0→ 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ k → k → ⋯→ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l

→ 0,

⋮
fm−1 = 0→ k → k → ⋯→ k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l

→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ 0,

fm = k → k → ⋯→ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l

→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ 0,

fm+1 = k → ⋯→ k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l−1

→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ 0,

⋮
fm+l−2 = k → k → 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ 0,

fm+l−1 = k → 0→ 0→ 0→ 0→ 0→ ⋯→ 0→ 0→ 0→ 0→ 0→ 0,
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where each morphism k → k is the identity on k. The indecomposable projectives are fi

for 1 ≤ i ≤ m and the indecomposable injectives are fi for l ≤ i ≤ m + l − 1. Moreover, we

set fi = 0 for i ≤ 0 and i ≥m + l. These modules appear in the Auslander-Reiten quiver of

mod Λ as follows.

fl

��

fl+1

��

⋯ fm−1

��

fm
��

fl−1

��

??

●
��

??

● ⋯ ●
��

??

●
��

??

fm+1

��
⋰
??

��

⋰

??

��

⋰

??

��

⋱

??

��

⋱
??

��

⋱
��

f2

??

��

●

??

��

●

??

��

● ⋯ ●

??

��

●

??

��

●

??

��

fm+l−2

��
f1

??

●

??

●

??

●

??

●

??

●

??

●
??

fm+l−1.

It can be checked that gldimΛ ≤ d and mod Λ has a d-cluster tilting subcategory

F = add(Λ⊕DΛ) = add{fi ∣ 1 ≤ i ≤m + l − 1},

which is unique by Remark 2.3.44. Recall that, by Theorem 2.3.14, we have that F is a

d-abelian category. We have that

dimkF(fi, fj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 0 ≤ j − i ≤ l − 1,

0 otherwise.

Moreover, if i ≤ r ≤ j, then each morphism of the form fi → fj factors through fr. The

quiver of F is then

f1 → f2 → f3 → ⋯→ fm+l−3 → fm+l−2 → fm+l−1,

where the composition of l consecutive arrows is zero.

Consider now

F = add{ΣidF ∣ i ∈ Z} ⊆ Db(mod Λ).

By Remark 2.3.44 this is a (d + 2)-angulated category. Moreover, F has quiver

⋯Σ−df1 → ⋯→ Σ−dfm+l−1 → f1 → ⋯→ fm+l−1 → Σdf1 → ⋯, (3.1)

where the composition of l consecutive arrows is zero, see [39, Proposition A.11].

We conclude this section by describing some d-exact sequences in F and the corresponding

(d + 2)-angles in F .
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Remark 3.3.2. For any non-zero morphism µ ∶ fi → fj , where i ≠ j, there is an exact

sequence of the form:

⋯→ fj−2l → fi−l → fj−l → fi
µÐ→ fj → fi+l → fj+l → fi+2l → ⋯. (3.2)

This sequence terminates both on the right and on the left giving a d-exact sequence

containing µ:

0→ fx → ⋯→ fj−l → fi
µÐ→ fj → fi+l → ⋯→ fy → 0.

Note that the cases when fi+l = 0 (or fj−l = 0) are allowed and correspond to fi being

injective non-projective (or fj being projective non-injective, respectively). In these cases,

µ is surjective (or injective, respectively).

By Remark 2.3.45, the d-exact sequence (3.2) gives a (d + 2)-angle in F of the form:

fx → ⋯→ fj−l → fi
µÐ→ fj → fi+l → ⋯→ fy → Σdfx.

Note that we can rotate this (d + 2)-angle to make fj the end-term on the right.
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Auslander-Reiten (d + 2)-angles in

subcategories and a

(d + 2)-angulated generalisation of

a theorem by Brüning

4.1 Introduction

Let d be a fixed positive integer, k an algebraically closed field and Λ a finite dimensional

k-algebra with global dimension at most d. As in previous chapters, the category of

finitely generated right Λ-modules is denoted by mod Λ and its bounded derived category

by Db(mod Λ), with suspension functor Σ. Moreover, for an additive subcategory C of

mod Λ, we define an additive subcategory

C ∶= add{ΣidC ∣ i ∈ Z} ⊆ Db(mod Λ).

For d ≥ 2, suppose there is a d-cluster tilting subcategory F ⊆ mod Λ. Then F plays the

role of a higher mod Λ and F of a higher derived category of F , see Remark 2.3.44.

We generalise Brüning’s result on wide subcategories of Db(mod Λ) and Jørgensen’s result

on Auslander-Reiten triangles in extension closed subcategories of triangulated categories

to higher homological algebra.
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4.1.1 Classic background (d = 1 case).

In the case d = 1, the global dimension of Λ is at most 1, that is mod Λ is hereditary. So

[10, Theorem 1.1] can be stated as follows in this case.

Theorem (Brüning). There is a bijection

⎧⎪⎪⎨⎪⎪⎩

wide subcategories

of mod Λ

⎫⎪⎪⎬⎪⎪⎭
→

⎧⎪⎪⎨⎪⎪⎩

wide subcategories

of Db(mod Λ)

⎫⎪⎪⎬⎪⎪⎭

sending a wide subcategory W of mod Λ to W.

Happel introduced Auslander-Reiten triangles in triangulated categories in [21, Chapter

I.4] and Jørgensen studied Auslander-Reiten triangles in their extension closed subcate-

gories in [37]. WheneverM is a skeletally small Hom-finite k-linear triangulated category

with split idempotents and W ⊆M is an additive subcategory closed under extensions,

[37, Theorem 3.1] states the following.

Theorem (Jørgensen). Let W be in W and suppose that there exists U ′ in W and a

non-zero morphism W → ΣU ′. Let

X // Y //W // ΣX

be an Auslander-Reiten triangle in M. Then the following are equivalent.

(a) X has a W-cover of the form U →X,

(b) there is an Auslander-Reiten triangle in W of the form

U // V //W // ΣU.

Note that the above theorem can be applied to any wide subcategory of the triangulated

category Db(mod Λ). So, given a wide subcategory of mod Λ, one can find a wide sub-

category W of Db(mod Λ) using the theorem by Brüning and then use the theorem by

Jørgensen to find Auslander-Reiten triangles in W.

4.1.2 This chapter (d ≥ 1 case).

We now allow d to be bigger than 1 and work in higher homological algebra, see Section 2.3.

Suppose mod Λ has a d-cluster tilting subcategory F , see Definition 2.3.13. By Remark

2.3.44, we have that F is d-cluster tilting in Db(mod Λ) and F is a (d + 2)-angulated

category. Note that the d-abelian category F plays the role of a higher mod Λ and F of a

higher derived category of F .
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Keeping in mind the above, we generalise the theorem by Brüning to higher homological

algebra as follows.

Theorem 4.3.2. There is a bijection

⎧⎪⎪⎨⎪⎪⎩

functorially finite

wide subcategories

of F

⎫⎪⎪⎬⎪⎪⎭
→

⎧⎪⎪⎨⎪⎪⎩

functorially finite

wide subcategories

of F

⎫⎪⎪⎬⎪⎪⎭

sending a wide subcategory W of F to W.

In the above, by a wide subcategory of a d-abelian category, we mean an additive subcat-

egory closed under d-kernels and d-cokernels, and such that every d-exact sequence with

end terms in the subcategory is Yoneda equivalent, in the sense of Defintion 2.3.16, to a

d-exact sequence having all terms in the subcategory. By a wide subcategory of a (d+ 2)-
angulated category with automorphism Σd, we mean an additive subcategory closed under

d-extensions and Σ±d.

Iyama and Yoshino defined Auslander-Reiten (d+2)-angles in (d+2)-angulated categories

in [32, Definition 3.8] and we proposed a modified definition, see Definition 2.3.46. Here,

we define Auslander-Reiten (d + 2)-angles in additive subcategories of (d + 2)-angulated

categories closed under d-extensions, an example of which are wide subcategories. We

generalise the theorem by Jørgensen as follows.

Theorem 4.5.5. LetM be a skeletally small Hom-finite k-linear (d+2)-angulated category

with split idempotents. Let W be an additive subcategory of M closed under d-extensions.

Let W be in W and suppose that there exists U0 in W and a non-zero morphism γd+1 ∶
W → ΣdU0. Let

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd //W
ξd+1

// ΣdX0

be an Auslander-Reiten (d + 2)-angle in M. Then the following are equivalent:

(a) X0 has a W-cover of the form ϕ ∶W 0 →X0,

(b) there is an Auslander-Reiten (d + 2)-angle in W of the form

ε′ ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W

ωd+1
// ΣdW 0.

Note that for d = 1, the above becomes exactly the theorem by Jørgensen.

Remark. We will apply Theorems 4.3.2 and 4.5.5 to the class of examples introduced in
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Section 3.3. For positive integers m, l and d such that (m − 1)/l = d/2, consider

Λ = kAm/(radkAm)l.

There is a unique d-cluster tilting subcategory F of mod Λ with Auslander-Reiten quiver

f1
// f2

// ⋯ // fl // ⋯ // fm // ⋯ // fm+l−2
// fm+l−1,

where f1, . . . , fm are the indecomposable projectives and fl, . . . , fm+l−1 the indecomposable

injectives in mod Λ. The wide subcategories of F are fully described in [23]. We consider

the (d + 2)-angulated category F . We give a full description of the wide subcategories of

F , using Theorem 4.3.2, and a recipe to construct Auslander-Reiten (d+2)-angles in these

subcategories, using Theorem 4.5.5.

In this chapter, we will use many of the results presented in 2.3.2. The chapter is organised

as follows. Section 4.2 introduces our setup and defines wide subcategories. Section 4.3

proves Theorem 4.3.2. Section 4.4 studies Auslander-Reiten (d + 2)-angles in W. Section

4.5 proves Theorem 4.5.5. Finally, Section 4.6 is an application of Theorems 4.3.2 and

4.5.5 to the class of examples from [55], presented in Section 3.3.

4.2 Setup and definition of wide subcategories

In this section, we present the setup we will be working in and the definition of wide

subcategories in this setup.

Setup 4.2.1. Let k be a field and M be a skeletally small k-linear Hom-finite (d + 2)-
angulated category with split idempotents. Note that this implies thatM is Krull-Schmidt

by Remark 2.1.12.

Definition 4.2.2. LetW be an additive subcategory ofM. We say thatW is closed under

d-extensions if given any morphism in M of the form δ ∶W ′′ → ΣdW ′ with W ′, W ′′ ∈W,

there is a (d + 2)-angle in M of the form

W ′ //W 1 // ⋯ //W d //W ′′ δ // ΣdW ′

with W i ∈W for any i ∈ {1, . . . , d}.

Remark 4.2.3. Let W ⊆M be closed under d-extensions. Note that when d > 1, for a

(d + 2)-angle in M of the form

W ′ ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd //W ′′ δ // ΣdW ′,
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with W ′, W ′′ in W, it is not necessarily true that X1, . . . , Xd are in W. However, if

ξ1, . . . , ξd−1 are in radM, then X1, . . . , Xd are in W.

Definition 4.2.4. An additive subcategoryW of a (d+2)-angulated categoryM is called

wide if it is closed under d-extensions and satisfies Σd(W) ⊆W and Σ−d(W) ⊆W.

4.3 Functorially finite wide subcategories of F and F

The aim of this section is to prove Theorem 4.3.2. Note that we assume that the field k is

algebraically closed because our arguments rely on results from [23], where this assumption

is made. We start by presenting the setup we will be working in this section and stating

the theorem.

Setup 4.3.1. Let d be a fixed positive integer, k an algebraically closed field and Λ a finite

dimensional k-algebra with global dimension at most d. Assume that there is a d-cluster

tilting subcategory F ⊆ mod Λ, see Definition 2.3.13.

Note that F is d-cluster tilting in Db(mod Λ), see Definition 2.3.42, and so it is (d + 2)-
angulated, see Remark 2.3.44. So, using the notation in Setup 4.2.1, in this section we

have M = F .

Theorem 4.3.2. There is a bijection

⎧⎪⎪⎨⎪⎪⎩

functorially finite

wide subcategories

of F

⎫⎪⎪⎬⎪⎪⎭
→

⎧⎪⎪⎨⎪⎪⎩

functorially finite

wide subcategories

of F

⎫⎪⎪⎬⎪⎪⎭

sending a wide subcategory W of F to W.

We build the proof of Theorem 4.3.2 by first proving a more general bijection, then proving

this bijection respects “functorially finite”. Proving Theorem 4.3.2 will then amount to

proving the bijection respects “wide”.

Lemma 4.3.3. There is a bijection

⎧⎪⎪⎨⎪⎪⎩

additive subcategories

of F

⎫⎪⎪⎬⎪⎪⎭
→

⎧⎪⎪⎨⎪⎪⎩

additive subcategories

of F
closed under Σ±d

⎫⎪⎪⎬⎪⎪⎭

sending an additive subcategory W of F to W.
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Proof. Let W ⊆ F be an additive subcategory of F , then W ⊆ F is clearly additive and

closed under Σ±d.

Suppose now that X ⊆ F is an additive subcategory closed under Σ±d. Let x be an

indecomposable in X , then x = Σidf for some f ∈ F and integer i. Since X is closed under

Σ±d and under direct summands, then

add{Σidf ∣ i ∈ Z} ⊆ X .

Take W ∶= F ∩X and note that, by the above, we have add{ΣidW ∣ i ∈ Z} ⊆ X . Moreover,

if x is an indecomposable in X , say x = Σidf , then Σ(−i)dx = f ∈ X and so f ∈W. Hence

x ∈ add{ΣidW ∣ i ∈ Z} and W = add{ΣidW ∣ i ∈ Z} = X .

Lemma 4.3.4. The bijection from Lemma 4.3.3 respects “functorially finite”.

Proof. Suppose first that W is functorially finite in F and take any f ∈ F . Then, there

is a W-precover of f of the form ω ∶ w → f . Since f is a complex concentrated in degree

zero, then we may assume w = w0⊕Σ−dw−d for some w0, w−d ∈W, as any other summand

of w would have zero Hom space to f . Then,

ω = (ω0, ω−d) ∶ w0 ⊕Σ−dw−d → f.

Let w ∈W and α ∶ w → f . Since W ⊆W, there is a morphism γ ∶ w → w0 ⊕Σ−dw−d such

that ω ○ γ = α. Since there are no non-zero maps of the form w → Σ−dw−d, then

α = ω ○ γ = (ω0, ω−d) ○
⎛
⎝
γ0

0

⎞
⎠
= ω0 ○ γ0.

Hence ω0 is a W-precover of f and W is precovering in F . Dually, W is preenveloping in

F .

Suppose now that W is functorially finite in F . Note that, in order to prove that W is

precovering in F , it is enough to find a W-precover of any f ∈ F . We have that W ⊆ F is

functorially finite, F ⊆ mod Λ is functorially finite since F is d-cluster tilting in mod Λ and

mod Λ ⊆ Db(mod Λ) is functorially finite by [29, Theorem 5.1]. Hence W ⊆ Db(mod Λ) is

functorially finite. Moreover, for any integer i, applying the automorphism Σi to

W ⊆ F ⊆ mod Λ ⊆ Db(mod Λ),

we conclude that ΣiW ⊆ Db(mod Λ) is functorially finite. For f ∈ F , note that the only

non-zero morphisms from W to f are from objects in W ⊕Σ−dW. Take a W-precover of
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f , say ω0 ∶ w0 → f , and a Σ−dW-precover of f , say ω−d ∶ Σ−dw−d → f . Consider

ω ∶= (ω0, ω−d) ∶ w0 ⊕Σ−dw−d → f.

Given any v in W and ν ∶ v → f , without loss of generality, let v = v0 ⊕ Σ−dv−d for some

v0, v−d ∈W. So

ν = (ν0, ν−d) ∶ v0 ⊕Σ−dv−d → f.

Then, there are γ0 ∶ v0 → w0 and γ−d ∶ Σ−dv−d → Σ−dw−d such that ν0 = ω0 ○ γ0 and

ν−d = ω−d ○ γ−d. Hence

ω ○
⎛
⎝
γ0 0

0 γ−d

⎞
⎠
= (ω0 ○ γ0, ω−d ○ γ−d) = ν

and ω is a W-precover of f . Dually, W is preenveloping in F .

Lemma 4.3.5. Suppose we have an exact sequence with terms in F of the form:

0 // f0 ϕ0

// f1 ϕ1

// ⋯ ϕd−2

// fd−1 ϕd−1

// fd
ϕd

// fd+1. (4.1)

Then

0 // f0 ϕ0

// f1 ϕ1

// ⋯ ϕd−2

// fd−1 ϕd−1

// fd

is a d-kernel in F of ϕd.

Proof. Using the notation F(−,−) = HomF(−,−) and applying F(f,−) to (4.1), for any f

in F , we obtain:

0 // F(f, f0) ϕ0∗
// F(f, f1) ϕ1∗

// ⋯ ϕd−1∗
// F(f, fd) ϕd∗

// F(f, fd+1). (4.2)

First, note that this is a complex, since ϕi ○ ϕi−1 = 0 for all i = 1, . . . , d. Moreover, since

F(f,−) is left exact, ϕ0∗ is injective. It remains to show that Ker(ϕi∗) ⊆ Im(ϕi−1∗) for all

i = 1, . . . , d.

We have a splitting of (4.1) into short exact sequences:

0 // f0 � � ϕ
0

// f1

π1 �� ��

ϕ1

// f2

π2 �� ��

// ⋯ // fd−1

πd−1 �� ��

ϕd−1

// fd

πd �� ��

ϕd

// fd+1.

k2
2�
ι2
DD

k3 kd
2�
ιd
DD

kd+1
/� ιd+1

@@
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For α ∶ f → f1 in Ker(ϕ1∗), since Kerϕ1 = f0, there is a morphism β ∶ f → f0 such that

α = ϕ0 ○ β = ϕ0∗(β). So we may assume i = 2, . . . , d. We have exact sequence

⋅ ⋅ ⋅→ F(f, f i−1) πi−1∗
ÐÐÐ→ F(f, ki)→ Ext1(f, ki−1),

induced by the short exact sequence 0 → ki−1 → f i−1 → ki → 0. We show that πi−1∗ is

surjective by showing that Ext1(f, ki−1) = 0. The case i = 2 is trivial, since k1 = f0 ∈ F
and F is d-cluster tilting. So assume i > 2.

The short exact sequences in the splitting of (4.1) induce the following exact sequences:

Ext1(f, f i−2) // Ext1(f, ki−1) // Ext2(f, ki−2)

Ext2(f, f i−3) // Ext2(f, ki−2) // Ext3(f, ki−3)

⋮ ⋮ ⋮

Exti−3(f, f2) // Exti−3(f, k3) // Exti−2(f, k2)

Exti−2(f, f1) // Exti−2(f, k2) // Exti−1(f, f0).

Since i − 1 ≤ d − 1 and F is d-cluster tilting, all the objects in the left column and

Exti−1(f, f0) are zero. Note that this forces all the objects in the middle column to

be zero and in particular Ext1(f, ki−1) = 0. Hence πi−1∗ is surjective.

Take α ∶ f → f i ∈ Ker(ϕi∗). Then, by definition of kernel, there is a morphism γ ∶ f → ki

such that α = ιi ○ γ. Since πi−1∗ is surjective, there is a morphism β ∶ f → f i−1 such that

πi−1 ○ β = γ. Then,

α = ιi ○ γ = ιi ○ πi−1 ○ β = ϕi−1 ○ β = ϕi−1∗(β).

Hence Ker(ϕi∗) ⊆ Im(ϕi−1∗) for all i = 1, . . . , d as we wished to prove.

Lemma 4.3.6. Let D and D′ be triangulated categories with suspension functors Σ and

Σ′ respectively. Suppose there are d-cluster tilting subcategories C ⊆ D and C′ ⊆ D′ such

that Σd(C) ⊆ C and (Σ′)d(C′) ⊆ C′. Suppose F ∶ D → D′ is a triangulated functor, see

Definition 2.2.29, such that F (C) ⊆ C′. Then F sends (d + 2)-angles in C to (d + 2)-angles

in C′.

Proof. First note that (C,Σd) and (C′, (Σ′)d) are (d+2)-angulated categories by Theorem

2.3.43. Take any (d + 2)-angle in C, say

c0 // c1 // ⋯ // cd // cd+1 γ // Σdc0.
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This comes from a diagram in D of the form

c1

��

// c2

��

// ⋯ // cd−1 //

��

cd

��
c0

EE

x1oo

DD

x2oo ⋯ xd−2

AA

xd−1oo

BB

cd+1,oo

(4.3)

where by x // y , we mean a morphism x → Σy and the composition of all the wavy

arrows is γ. Each oriented triangle is a triangle in D and each non-oriented triangle is

commutative. Applying the functor F to (4.3), we get the diagram:

F (c1)

��

// F (c2)

��

// ⋯ // F (cd−1) //

  

F (cd)

��
F (c0)

BB

F (x1)oo

BB

F (x2)oo ⋯ F (xd−2)

>>

F (xd−1)oo

@@

F (cd+1),oo

where each non-oriented triangle is commutative, and since F is triangulated, each oriented

triangle is a triangle in D′ and by F (x) // F (y) we mean a morphism F (x)→ F (Σy) =
Σ′F (y). Then, by Theorem 2.3.43, we obtain a (d + 2)-angle in C′:

F (c0) // F (c1) // ⋯ // F (cd) // F (cd+1) F (γ) // (Σ′)dF (c0).

Using the above lemmas and [23, Theorem A], we prove there is a bijection between func-

torially finite wide subcategories of F as defined in [23, Definition 2.11], and functorially

finite wide subcategories of F as defined below.

Definition 4.3.7 ([23, Section 1]). Let Γ be a finite dimensional k-algebra and G ⊆ mod Γ

be a d-cluster tilting subcategory. We say that (Γ,G) is a d-homological pair.

If λ ∶ Λ → Γ is a homomorphism of algebras, then we denote by λ∗ ∶ mod Γ → mod Λ the

functor given by restriction of scalars from Γ to Λ. Moreover, if λ is an epimorphism of

algebras such that λ∗(G) ⊆ F and TorΛ
d (Γ,Γ) = 0, then we say that λ ∶ (Λ,F) → (Γ,G) is

a d-pseudoflat epimorphism of d-homological pairs.

Remark 4.3.8. In the situation of Definition 4.3.7, we also denote by λ∗ the induced

functor on the level of bounded derived categories:

λ∗ ∶ Db(mod Γ)→ Db(mod Λ).

This is full, faithful and triangulated, since λ is a homological epimorphism by [23, Propo-

sition 5.8]. Note that, since λ∗ is triangulated, it commutes with Σ. Moreover, by Lemma
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2.1.17, λ∗(G) is closed under direct summands. Hence

λ∗(G) = λ∗(add(ΣZdG)) = add(ΣZd(λ∗(G))) = λ∗(G).

Proof of Theorem 4.3.2. We start by showing that if W ⊆ F is a functorially finite wide

subcategory of F , then W is a functorially finite wide subcategory of F . By [23, Theorem

A], there is a d-pseudoflat epimorphism of d-homological pairs λ ∶ (Λ,F) → (Γ,G) such

that λ∗(G) =W. Then, by Remark 4.3.8, we have

λ∗(G) = λ∗(G) =W ⊆ F .

Note that λ∗(G) is functorially finite in F by Lemma 4.3.4. Then, to complete the first

part of the proof, it remains to show that λ∗(G) is closed under d-extensions. Take any

morphism δ ∶ λ∗(g) → λ∗(g′) in λ∗(G). Since λ∗ is full and faithful, then δ = λ∗(g
γÐ→ g′),

for some morphism γ in G. As G is (d + 2)-angulated, we can extend γ to a (d + 2)-angle

in G of the form:

Σ−d(g′) // g1 // ⋯ // gd // g
γ // g′.

Then, by Lemma 4.3.6, we obtain a (d + 2)-angle in F with objects from W:

Σ−dλ∗(g′) // λ∗(g1) // ⋯ // λ∗(gd) // λ∗(g) δ // λ∗(g′).

Hence λ∗(G) is closed under d-extensions.

Now let X ⊆ F be a functorially finite wide subcategory. Then, by Lemmas 4.3.3 and

4.3.4, we have that X = V for some functorially finite subcategory V ⊆ F . It remains to

show that V ⊆ F is wide, in the sense of [23, Definition 2.11]. Let ν ∶ v → v′ be a morphism

in V. Since X ⊆ F is wide, there is a (d + 2)-angle in F with objects from X of the form:

Σ−dv′ // x1 ξ1

// x2 ξ2

// ⋯ ξd−1

// xd
ξd // v

ν // v′. (4.4)

Note that v, v′ are chain complexes concentrated in degree zero since they are in V. Also,

as X = V, any x ∈ X is isomorphic to a complex with zero differentials and so H(x) ≅ x.

For i = 1, . . . , d, let vi and νi be the components at degree zero of xi and ξi respectively,

and note that vi ∈ V.

Note that H0(−) = HomDb(Λ,−). Since Λ is a projective module in mod Λ, then Λ ∈ F .

Applying H0(−) = Hom
F
(Λ,−) to (4.4), by [19, Proposition 2.5] we obtain the exact
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sequence:

0 // v1 ν1
// v2 ν2

// ⋯ νd−1
// vd

νd // v
ν // v′,

where we have used the fact that H0(Σ−dv′) = 0, since v′ is concentrated in degree zero.

Then, by Lemma 4.3.5, we conclude that

0 // v1 ν1
// v2 ν2

// ⋯ νd−1
// vd

νd // v

is a d-kernel of ν in F with objects from V. The existence of a d-cokernel of ν in F with

objects from V follows by a dual argument.

Consider a d-exact sequence in F of the form:

0 // v′
ϕ0

// f1 ϕ1

// ⋯ ϕd−2

// fd−1 ϕd−1

// fd
ϕd

// v // 0,

with v and v′ in V. Then, by Remark 2.3.45, there is a (d + 2)-angle in F of the form:

v′
ϕ0

// f1 ϕ1

// f2 ϕ2

// ⋯ ϕd−2

// fd−1 ϕd−1

// fd
ϕd

// v
α // Σdv′.

Since X is closed under d-extensions and v, v′ ∈ X , there is a (d + 2)-angle in F with

objects from X :

v′
ξ0

// x1 ξ1

// x2 ξ2

// ⋯ ξd−2

// xd−1 ξd−1

// xd
ξd // v

α // Σdv′. (4.5)

For i = 0, . . . , d, let vi and νi be the components at degree zero of xi and ξi respectively, and

note that vi ∈ V. Applying H0(−) = Hom
F
(Λ,−) to (4.5), we obtain the exact sequence:

0 // v′
ν0
// v1 ν1

// v2 ν2
// ⋯ νd−1

// vd
νd // v // 0.

By Lemma 4.3.5 and its dual, this is a d-exact sequence. Moreover, by axiom (N3) from

Definition 2.3.28, we have the morphism of (d + 2)-angles in F :

v′
ϕ0

// f1 ϕ1

//

ζ1

��

f2 ϕ2

//

ζ2

��

⋯ ϕd−1

// fd
ϕd

//

ζd

��

v
α // Σdv′

v′
ξ0
// x1

ξ1
// x2

ξ2
// ⋯

ξd−1
// xd

ξd
// v α

// Σdv′.
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Applying H0(−) to the above, we obtain the commutative diagram:

0 // v′
ϕ0

// f1 ϕ1

//

ψ1

��

f2 ϕ2

//

ψ2

��

⋯ ϕd−1

// fd
ϕd

//

ψd

��

v // 0

0 // v′
ν0
// v1

ν1
// v2

ν2
// ⋯

νd−1
// vd

νd
// v // 0.

Hence, the first and second row in the above diagram are two Yoneda equivalent d-exact

sequences, and the second row has objects in V.

4.4 Auslander-Reiten (d + 2)-angles in W

Setup 4.4.1. Let us go back to Setup 4.2.1 and let W be an additive subcategory of M
closed under d-extensions.

We have seen the Definition of Auslander-Reiten (d+2)-angulated categories in Definition

2.3.46. In this section, we introduce and study Auslander-Reiten (d + 2)-angles in the

subcategory W.

Definition 4.4.2. A (d + 2)-angle in M of the form

ε ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W d+1 ωd+1

// ΣdW 0,

with W 0, W 1, . . . , W d+1 in W is an Auslander-Reiten (d+ 2)-angle in W if the morphism

ω0 is left almost split in W, the morphism ωd is right almost split in W and, when d ≥ 2,

also ω1, . . . , ωd−1 are in radW .

Remark 4.4.3. Note that since W is a full subcategory ofM, then radW is equal to the

restriction of radM to W.

Lemma 4.4.4. (a) Let ω0 ∶W 0 →W 1 be left almost split in W, then End(W 0) is local

and ω0 ∈ radW .

(b) Let ωd ∶ W d → W d+1 be right almost split in W, then End(W d+1) is local and

ωd ∈ radW .

Proof. We only prove (a), the proof for (b) is then dual. Suppose ω0 ∶ W 0 → W 1 is left

almost split in W. Let µ, ν ∶W 0 →W 0 be morphisms that are not split monomorphisms.

Then there are morphisms µ′, ν′ ∶ W 1 → W 0 such that µ = µ′ ○ ω0 and ν = ν′ ○ ω0. By

[1, Proposition 15.15], in order to prove that End(W 0) is local, it is enough to prove that

µ + ν is not a split monomorphism.
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Suppose for a contradiction that µ+ν is a split monomorphism. Hence there is a morphism

γ ∶W 0 →W 0 such that γ ○ (µ + ν) = 1W 0 . Then

γ ○ (µ′ + ν′) ○ ω0 = γ ○ (µ + ν) = 1W 0 .

Hence ω0 is a split monomorphism, contradicting our initial assumption. So End(W 0) is

local.

Since End(W 0) is local, it follows that W 0 is indecomposable. SinceM is Krull-Schmidt,

there are indecomposable objects W1, . . . , Wt such that

W 1 =W1 ⊕⋯⊕Wt.

Moreover, W1, . . . , Wt are in W since W is closed under summands. Then we have

ω0 = (
ω0

1
⋮

ω0
t

) ∶W 0 →W1 ⊕⋯⊕Wt.

Suppose there is some i ∈ {1, . . . , t} such that ω0
i ∶W 0 →Wi is not in radW . Then, since

W 0 and Wi are both indecomposable, it follows that ω0
i is invertible. Hence

( 0 ⋯ 0 (ω0
i )
−1 0 ⋯ 0 ) ○ ω0 = (ω0

i )−1 ○ ω0
i = 1W 0 ,

contradicting the fact that ω0 is not a split monomorphism. Hence such an i does not

exist and ω0 ∈ radW .

Lemma 4.4.5. Let

ε ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W d+1 ωd+1

// ΣdW 0

be a (d+2)-angle with W 0, W 1, . . . , W d+1 in W. If ωd is right almost split in W and ωd+1

is left minimal, then ω0 is left almost split in W.

Proof. Since ωd is not a split epimorphism, Lemma 2.3.35 implies that ω0 is not a split

monomorphism. Let φ0 ∶W 0 → V 0 be a morphism inW that is not a split monomorphism.

Extend Σd(φ0) ○ωd+1 to a (d+ 2)-angle and consider the following commutative diagram,

built using axiom (N3) from Definition 2.3.28:

W 0 ω0
//

φ0

��

W 1 ω1
//

φ1

��

W 2 //

φ2

��

⋯ //W d ωd
//

φd

��

W d+1 ωd+1
// ΣdW 0

Σd(φ0)
��

V 0

η0
// V 1

η1
// V 2 // ⋯ // V d

ηd
//W d+1

Σd(φ0)○ωd+1
// ΣdV 0,
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where, as V 0 and W d+1 are in W, which is closed under d-extensions, we can choose

V 1, . . . , V d in W.

Suppose for a contradiction that η0 is not a split monomorphism. Then ηd is not a split

epimorphism by Lemma 2.3.35. As ωd is right almost split in W and ηd ∶ V d →W d+1 is a

morphism in W, then there is a morphism ψd ∶ V d → W d such that ηd = ωd ○ ψd. So we

can construct a commutative diagram of the form:

V 0 η0

//

ψ0

��

V 1 //

ψ1

��

⋯ // V d−1 ηd−1

//

ψd−1

��

V d ηd //

ψd

��

W d+1 Σd(φ0)○ωd+1

// ΣdV 0

Σd(ψ0)
��

W 0

ω0
//W 1 // ⋯ //W d−1

ωd−1
//W d

ωd
//W d+1

ωd+1
// ΣdW 0.

Hence we have

Σd(ψ0 ○ φ0) ○ ωd+1 = Σd(ψ0) ○Σd(φ0) ○ ωd+1 = ωd+1.

Since ωd+1 is left minimal, then Σd(ψ0 ○ φ0) is an isomorphism, and so also ψ0 ○ φ0 is an

isomorphism, contradicting our assumption that φ0 is not a split monomorphism. Hence

η0 is a split monomorphism and there is a morphism γ ∶ V 1 → V 0 such that γ ○ η0 = 1V 0 .

Then

γ ○ φ1 ○ ω0 = γ ○ η0 ○ φ0 = 1V 0 ○ φ0 = φ0,

and so ω0 is left almost split in W.

Lemma 4.4.6. Let

ε ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W d+1 ωd+1

// ΣdW 0

be a (d+2)-angle inM with W 0, W 1, . . . , W d+1 in W. Then the following are equivalent:

(a) ε is an Auslander-Reiten (d + 2)-angle in W,

(b) ω0, ω1, . . . , ωd−1 are in radW and ωd is right almost split in W.

(c) ω1, . . . , ωd−1, ωd are in radW and ω0 is left almost split in W.

Proof. Note that (a) implies both (b) and (c) by Lemma 4.4.4 and Definition 4.4.2. Sup-

pose now that (b) holds. Since ω0 is in radW and so in radM, then so is (−1)dΣd(ω0) and

ωd+1 is left minimal by Lemma 2.3.34. Then, by Lemma 4.4.5, it follows that ω0 is left

almost split in W, so (c) holds as ωd ∈ radM by Lemma 4.4.4.
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The fact that (c) implies (b) follows by a dual argument and so it is now clear that they

both imply (a).

Lemma 4.4.7. Consider a (d + 2)-angle of the form

ε ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W d+1 ωd+1

// ΣdW 0,

with W 0, W 1, . . . , W d+1 inW and suppose that ωd is right almost split inW and, if d ≥ 2,

also that ω1, . . . , ωd−1 are in radW . Then the following are equivalent:

(a) End(W 0) is local,

(b) ωd+1 is left minimal,

(c) ω0 is in radW ,

(d) ε is an Auslander-Reiten (d + 2)-angle in W.

Proof. (a)⇒(b). Suppose End(W 0) is local. By Lemma 2.3.35, since ωd is not a split

epimorphism, it follows that ωd+1 is non-zero. Then, as End(W 0) ≅ End(ΣdW 0) is local,

it follows that ωd+1 is left minimal by Lemma 2.3.36.

(d)⇒(a). Suppose ε is an Auslander-Reiten (d + 2)-angle in W. Then ω0 is left almost

split in W and by Lemma 4.4.4, we have that End(W 0) is local.

(c)⇒(d). Suppose ω0 is in radW . Then, by Lemma 4.4.6, it follows that ε is an Auslander-

Reiten (d + 2)-angle in W.

(b)⇒(c). Suppose ωd+1 is left minimal. Lemma 2.3.34 implies that (−1)dΣd(ω0) ∈ radM,

so ω0 ∈ radM and ω0 ∈ radW by Remark 4.4.3.

4.5 W-covers and Auslander-Reiten (d + 2)-angles in W

In this section, we generalise [37, Theorem 3.1] to any d ≥ 1, see Theorem 4.5.5. To do so,

we start by proving the higher version of [37, Lemmas 2.2 and 2.3] and another lemma.

We work in Setup 4.4.1.

Lemma 4.5.1. Consider an Auslander-Reiten (d + 2)-angle in M of the form

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd // Xd+1 ξd+1

// ΣdX0.

View the abelian group Hom(Xd+1,ΣdX0) as an End(Xd+1)-right-module via composition

of morphisms. The socle of this module is simple and equal to the submodule generated

by ξd+1.
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Proof. Let M be a non-zero submodule of Hom(Xd+1,ΣdX0) and pick a non-zero element

µ ∶Xd+1 → ΣdX0 in M . Extend µ to a (d + 2)-angle:

X0 η0

// Y 1 η1

// Y 2 // ⋯ // Y d ηd // Xd+1 µ // ΣdX0.

Since µ is non-zero, then η0 is not a split monomorphism by Lemma 2.3.35. Then, as

ξ0 is left almost split, there is a morphism ψ1 ∶ X1 → Y 1 such that ψ1 ○ ξ0 = η0. So,

by axiom (N3) from Definition 2.3.28, there exist morphisms ψ2, . . . , ψd+1 making the

following diagram commutative:

X0 ξ0

// X1 ξ1

//

ψ1

��

X2 //

ψ2

��

⋯ // Xd ξd //

ψd

��

Xd+1 ξd+1

//

ψd+1

��

ΣdX0

X0

η0
// Y 1

η1
// Y 2 // ⋯ // Y d

ηd
// Xd+1

µ
// ΣdX0.

In particular, we have µ ○ ψd+1 = ξd+1. So, in the End(Xd+1)-module Hom(Xd+1,ΣdX0),
the element ξd+1 is a multiple of µ. So ξd+1 is in M and the non-zero submodule of

Hom(Xd+1,ΣdX0) generated by ξd+1 is contained in M . Then, the socle of the End(Xd+1)-
module Hom(Xd+1,ΣdX0) is the submodule generated by ξd+1.

Note that End(Xd+1) is local, as ε is an Auslander-Reiten (d + 2)-angle. Since the socle

of Hom(Xd+1,ΣdX0) is generated by the single element ξd+1, it follows that it is simple

if it is annihilated by the Jacobson radical of End(Xd+1). Let ρ ∶ Xd+1 → Xd+1 be in the

radical of End(Xd+1), then by the dual of [1, Proposition 15.15(e)], we have that ρ has no

right inverse. Hence ρ is not a split epimorphism and, since ξd is right almost split, there

is a morphism ρ′ ∶Xd+1 →Xd such that ρ = ξd ○ ρ′. Then, by Lemma 2.3.31 we have

ξd+1 ○ ρ = ξd+1 ○ ξd ○ ρ′ = 0 ○ ρ′ = 0,

as we wished to prove.

Definition 4.5.2 ([38, Section 0]). For an additive subcategory U ⊆M, we define

U-exact =
⎧⎪⎪⎨⎪⎪⎩

M1 → ⋯→Md

is a complex in M

RRRRRRRRRRR

0→ HomM(U,M1)→ ⋯→ HomM(U,Md)→ 0

is exact for each U ∈ U

⎫⎪⎪⎬⎪⎪⎭
.

Lemma 4.5.3. Let W be in W and let

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd //W
ξd+1

// ΣdX0

be an Auslander-Reiten (d+ 2)-angle inM. Suppose ν ∶ V →X0 is a W-cover. Then V is
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either zero or indecomposable.

Proof. Suppose V is non-zero and recall thatM is Krull-Schmidt. Let Vi be an indecom-

posable direct summand of V , let ιi ∶ Vi → V be the inclusion of Vi into V and νi ∶= ν ○ ιi.
Extend Σd(νi) to a (d + 2)-angle:

X0 η0

// Y 1 η1

// Y 2 // ⋯ // Y d ηd // ΣdVi
Σd(νi)// ΣdX0.

Since ν is aW-cover, then νi is non-zero and so Σd(νi) is non-zero. Hence η0 is not a split

monomorphism by Lemma 2.3.35 and, as ξ0 is left almost split, there exists a morphism

ψ1 ∶ X1 → Y 1 such that ψ1 ○ ξ0 = η0. Then, by axiom (N3) from Definition 2.3.28, there

are morphisms ψ2, . . . , ψd+1 making the following diagram commutative:

X0 ξ0

// X1 ξ1

//

ψ1

��

X2 //

ψ2

��

⋯ // Xd ξd //

ψd

��

W
ξd+1

//

ψd+1

��

ΣdX0

X0

η0
// Y 1

η1
// Y 2 // ⋯ // Y d

ηd
// ΣdVi

Σd(νi)

// ΣdX0.

In particular, we have Σd(νi) ○ψd+1 = ξd+1. Then, letting ϕ ∶= Σ−d(ψd+1) ∶ Σ−dW → Vi, we

have νi ○ ϕ = Σ−d(ξd+1). As ξd+1 is non-zero, it follows that ϕ is non-zero.

Hence every indecomposable direct summand Vi of V permits a non-zero morphism Σ−dW →
Vi. We complete the proof by showing that at most one indecomposable direct summand

of V can permit such a morphism.

Extend ν to a (d + 2)-angle of the form

V
ν // X0 ω0

// Z1 ω1
// Z2 // ⋯ // Zd−1 ωd−1

// Zd
ωd
// ΣdV.

Consider the exact sequence

Hom(W,Zd−1) ω̃d−1

ÐÐ→ Hom(W,Zd) ω̃d

Ð→ Hom(W,ΣdV ) φÐ→ Hom(W,ΣdX0),

where, for a morphism η we use the notation η̃ ∶= Hom(W,η) and φ ∶= ̃(−1)dΣd(ν) for

readability. Note that Z1 → ⋅ ⋅ ⋅ → Zd is in W-exact by [38, Lemma 2.1]. Hence ω̃d−1 is

surjective, so that ω̃d is the zero map and φ is injective. Viewing φ as a homomorphism

of finite dimensional right modules over the finite dimensional k-algebra End(W ), the

target Hom(W,ΣdX0) has simple socle by Lemma 4.5.1. Hence the image is either zero or

indecomposable. Since φ is injective, then the same is true for the source Hom(W,ΣdV ).
So, if V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vt, there can be at most one i ∈ {1, . . . , t} such that Hom(W,ΣdVi) ≅
Hom(Σ−dW,Vi) is non-zero.
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Hence, as we claimed, there is at most one indecomposable summand Vi of V permitting

a non-zero morphism Σ−dW → Vi.

Lemma 4.5.4. Consider an Auslander-Reiten (d + 2)-angle in M of the form

Y 0 η0

// Y 1 η1

// Y 2 // ⋯ // Y d ηd //W
ηd+1

// ΣdY 0,

and any U0 ∈M.

(a) For every non-zero morphism δ ∶ ΣdU0 → ΣdY 0, there is a morphism φ ∶W → ΣdU0

such that δ ○ φ = ηd+1.

(b) For every non-zero morphism φ ∶W → ΣdU0, there is a morphism δ ∶ ΣdU0 → ΣdY 0

such that δ ○ φ = ηd+1.

Proof. (a) Extend δ to a (d + 2)-angle of the form

Y 0 δ0
//M1 δ1

//M2 // ⋯ //Md δd // ΣdU0 δ // ΣdY 0.

Since δ is non-zero, then δ0 is not a split monomorphism by Lemma 2.3.35, so there

is φ1 ∶ Y 1 → M1 such that δ0 = φ1 ○ η0. So, by axiom (N3) from Definition 2.3.28,

there exist morphisms φ2, . . . , φd+1 making the following diagram commutative:

Y 0 η0

// Y 1 η1

//

φ1

��

Y 2 //

φ2

��

⋯ // Y d ηd //

φd

��

W
ηd+1

//

φd+1

��

ΣdY 0

Y 0

δ0
//M1

δ1
//M2 // ⋯ //Md

δd
// ΣdU0

δ
// ΣdY 0.

Then φ ∶= φd+1 is such that δ ○ φ = ηd+1.

(b) Follows by a dual argument.

Theorem 4.5.5. LetM be a skeletally small Hom-finite k-linear (d+2)-angulated category

with split idempotents. Let W be an additive subcategory of M closed under d-extensions.

Let W be in W and suppose that there exists U0 in W and a non-zero morphism γd+1 ∶
W → ΣdU0. Let

ε ∶ X0 ξ0

// X1 ξ1

// X2 // ⋯ // Xd ξd //W
ξd+1

// ΣdX0

be an Auslander-Reiten (d + 2)-angle in M. Then the following are equivalent:
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(a) X0 has a W-cover of the form ϕ ∶W 0 →X0,

(b) there is an Auslander-Reiten (d + 2)-angle in W of the form

ε′ ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W

ωd+1
// ΣdW 0.

Proof. We first prove that (a) implies (b). Suppose ϕ ∶ W 0 → X0 is a W-cover. Extend

the non-zero morphism γd+1 to a (d + 2)-angle:

U0 γ0

// U1 γ1

// U2 // ⋯ // Ud
γd //W

γd+1

// ΣdU0,

where we can choose U1, . . . , Ud in W. Note that γd is not a split epimorphism by

Lemma 2.3.35. Since ξd is right almost split, there is a morphism ψd ∶ Ud →Xd such that

γd = ξd○ψd. Then, by axioms (N2) and (N3) from Definition 2.3.28, there exist morphisms

ψ0, . . . , ψd−1 making the following diagram commutative:

U0 γ0

//

ψ0

��

U1 γ1

//

ψ1

��

⋯ // Ud−1 γd−1

//

ψd−1

��

Ud
γd //

ψd

��

W
γd+1

// ΣdU0

Σd(ψ0)
��

X0

ξ0
// X1

ξ1
// ⋯ // Xd−1

ξd−1
// Xd

ξd
//W

ξd+1
// ΣdX0.

In particular, we have Σd(ψ0) ○ γd+1 = ξd+1. Since ϕ ∶ W 0 → X0 is a W-cover, there

is a morphism ν ∶ U0 → W 0 such that ϕ ○ ν = ψ0. Consider a (d + 2)-angle extending

Σd(ν) ○ γd+1:

ε′ ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ ωd−1
//W d ωd

//W
Σd(ν)○γd+1

// ΣdW 0,

where, as W, W 0 ∈ W, we can choose W 1, . . . , W d in W and by Lemma 2.3.38, when

d ≥ 2, we can also choose ω1, . . . , ωd−1 in radM and so in radW . We will show that ε′ is

an Auslander-Reiten (d + 2)-angle in W.

By Lemma 4.5.3, we have that W 0 is either zero or indecomposable. Since

0 ≠ ξd+1 = Σd(ψ0) ○ γd+1 = Σd(ϕ ○ ν) ○ γd+1 = Σd(ϕ) ○Σd(ν) ○ γd+1, (4.6)

it follows that Σd(ν) ○ γd+1 is non-zero. Then ΣdW 0 is non-zero and so W 0 is non-zero,

hence it is indecomposable, so End(W 0) is local.

Now, by Lemma 4.4.7, in order to prove that ε′ is an Auslander-Reiten (d + 2)-angle in

W, it is enough to prove that ωd is right almost split in W.
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Extend ϕ ∶W 0 →X0 to a (d + 2)-angle:

W 0 ϕ // X0 δ0
// Y 1 // ⋯ δd−1

// Y d δd // ΣdW 0.

Since Σd(ν) ○ γd+1 is non-zero, Lemma 2.3.35 implies that ωd is not a split epimorphism.

By (4.6), we have that ϕ○ν ○Σ−d(γd+1) = Σ−d(ξd+1) and so there are morphisms α1, . . . , αd

making the following diagram commutative:

Σ−dW
(−1)dΣ−d(ξd+1) //

(−1)dν○Σ−d(γd+1)
��

X0 ξ0

// X1 //

α1

��

⋯ ξd−1

// Xd ξd //

αd

��

W

(−1)dΣd(ν)○γd+1

��
W 0

ϕ
// X0

δ0
// Y 1 // ⋯

δd−1
// Y d

δd
// ΣdW 0.

(4.7)

For any W ′ in W, consider the exact sequence

Hom(W ′, Y d−1) δ̃d−1

ÐÐ→ Hom(W ′, Y d) δ̃dÐ→ Hom(W ′,ΣdW 0)
̃(−1)dΣd(ϕ)ÐÐÐÐÐÐ→ Hom(W ′,ΣdX0),

where, for a morphism η we use the notation η̃ ∶= Hom(W ′, η) for readability. Note that

Y 1 → ⋅ ⋅ ⋅ → Y d is in W-exact by [38, Lemma 2.1]. Hence δ̃d−1 is surjective, so δ̃d is the

zero map and ̃(−1)dΣd(ϕ) is injective.

Let φ ∶ W ′ → W be a morphism in W which is not a split epimorphism. As ξd is right

almost split, there exists a morphism η ∶W ′ →Xd such that φ = ξd○η. Consider δd○αd○η ∈
Hom(W ′,ΣdW 0) and note that

̃(−1)dΣd(ϕ)(δd ○ αd ○ η) = (−1)dΣd(ϕ) ○ δd ○ αd ○ η = 0 ○ αd ○ η = 0,

where (−1)dΣd(ϕ) ○ δd = 0 by Lemma 2.3.31. Then, by injectivity of ̃(−1)dΣd(ϕ), we

conclude that δd ○ αd ○ η = 0.

By commutativity of (4.7), we have

0 = δd ○ αd ○ η = (−1)dΣd(ν) ○ γd+1 ○ ξd ○ η = (−1)dΣd(ν) ○ γd+1 ○ φ.

Then we obtain a commutative diagram:

W ′

(−1)dφ
��

0

''

∃β′

ww
W 0

ω0
//W 1

ω1
//W 2 // ⋯ //W d

ωd
//W

Σd(ν)○γd+1
// ΣdW 0,

where β′ ∶ W ′ → W d exists by Lemma 2.3.32. Letting β ∶= (−1)dβ′, we have φ = ωd ○ β.
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Hence ωd is right almost split in W as we wished and (a) implies (b).

We now prove that (b) implies (a). Suppose that we have an Auslander-Reiten (d+2)-angle

in W of the form

ε′ ∶ W 0 ω0
//W 1 ω1

//W 2 // ⋯ //W d ωd
//W

ωd+1
// ΣdW 0.

Since ωd is not a split epimorphism and ξd is right almost split, there is a morphism

ϕd ∶W d →Xd such that ξd ○ϕd = ωd. Then there are morphisms ϕ0, . . . , ϕd−1 making the

following diagram commutative:

Σ−dW
(−1)dΣ−d(ωd+1)//W 0 ω0

//

ϕ0

��

W 1 //

ϕ1

��

⋯ //W d−1 ωd−1
//

ϕd−1

��

W d ωd
//

ϕd

��

W

Σ−dW
(−1)dΣ−d(ξd+1)

// X0

ξ0
// X1 // ⋯ // Xd−1

ξd−1
// Xd

ξd
//W.

(4.8)

We show that ϕ0 ∶ W 0 → X0 is a W-cover. First note that commutativity of (4.8) and

the fact that ξd+1 is non-zero implies that ϕ0 is non-zero. Moreover, by Lemma 4.4.7, we

know that End(W 0) is local. Hence, by Lemma 2.2.27, it follows that ϕ0 is right minimal.

So it remains to show that ϕ0 is a W-precover.

Suppose that U0 in W and a morphism γ0 ∶ U0 → X0 are given. We want to prove that

γ0 factors through ϕ0. The case U0 = 0 is trivial, so suppose that U0 is non-zero.

Take a linear map ψ ∶ Hom(Σ−dW,X0)→ k with ψ(Σ−d(ξd+1)) ≠ 0. Define a bilinear map

q ∶ Hom(Σ−dW,U0) ×Hom(U0,W 0)→ k,

q(φ,α) = ψ(ϕ0 ○ α ○ φ).

We show that if φ ≠ 0, then there exists an α such that q(φ,α) ≠ 0. Let φ ∈ Hom(Σ−dW,U0)
be non-zero and extend Σd(φ) to a (d + 2)-angle of the form

U0 ν0
// U1 ν1

// U2 // ⋯ // Ud
νd //W

Σd(φ) // ΣdU0,

where, since W, U0 are inW, we can choose U1, . . . , Ud inW. Note that, as Σd(φ) is non-

zero and by Lemma 2.3.35, then νd is not a split epimorphism. So there is ηd ∶ Ud →W d

such that νd = ωd ○ ηd. Hence ωd+1 ○ νd = ωd+1 ○ ωd ○ ηd = 0 by Lemma 2.3.31. Then we
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have a commutative diagram:

U0 ν0
// U1 ν1

// U2 // ⋯ // Ud
νd //

0 ''

W
Σd(φ) //

ωd+1

��

ΣdU0,

Σd(η0)vv
ΣdW 0

where Σd(η0) exists by Lemma 2.3.33. Note that η0 ○ φ = Σ−d(ωd+1). Then the element

η0 in Hom(U0,W 0) is such that

q(φ, η0) = ψ(ϕ0 ○ η0 ○ φ) = ψ(ϕ0 ○Σ−d(ωd+1)) = ψ(Σ−d(ξd+1)) ≠ 0,

so we have established the desired property of q.

Consider the linear map

ϕ ∶ Hom(Σ−dW,U0)→ k,

ϕ(φ) = ψ(γ0 ○ φ).

By [37, Lemma 2.5], there is an element α ∈ Hom(U0,W 0) such that ϕ(−) = q(−, α). Then,

by the definitions of ϕ and q, for any φ ∈ Hom(Σ−1W,U0), we have

ψ(γ0 ○ φ) = ψ(ϕ0 ○ α ○ φ). (4.9)

Since ε is an Auslander-Reiten (d+2)-angle inM, then so is ε ∶= (−1)dΣ−d(ε). By Lemma

4.5.4, we conclude that the bilinear map

p ∶ Hom(Σ−dW,U0) ×Hom(U0,X0)→ k,

p(φ, δ) = ψ(δ ○ φ)

is non-degenerate. Hence (4.9) implies that γ0 = ϕ0 ○ α, that is γ0 factors through ϕ0 as

we wished.

4.6 A class of examples

In this section, we further study the class of examples by Vaso that we introduced in

Section 3.3, adding the extra assumption that k is an algebraically closed field in order to

be able to apply Theorem 4.3.2. So let d ≥ 2, l ≥ 2 and m ≥ 3 be integers such that

m − 1

l
= d

2
,
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Q = Am and F be the unique d-cluster tilting subcategory of mod Λ for Λ = kQ/(radkQ)l.

We first give a full description of the wide subcategoriesW of the (d+2)-angulated category

F = add{ΣidF ∣ i ∈ Z}, using Theorem 4.3.2. We then apply Theorem 4.5.5 to find the

Auslander-Reiten (d + 2)-angles in these subcategories W.

Lemma 4.6.1. Let 1 ≤ j ≤ m + l − 1. Then there is an Auslander-Reiten (d + 2)-angle in

F ending at fj of the form:

Σ−dfl → Σ−dfl+1 → ⋯→ Σ−dfm → Σ−dfm+l−1
µÐ→ f1 → fl if j = 1; (a)

Σ−dfj+l−1 → Σ−dfj+l → ⋯→ fj−1
µÐ→ fj → fj+l−1 if 2 ≤ j ≤m; (b)

fj−m → fj+1−m → ⋯→ fj−l → fj−1
µÐ→ fj → Σdfj−m if j ≥m + 1. (c)

Proof. First note that in any case, the complex is a (d + 2)-angle in F by Remark 3.3.2.

In fact, we can extend and rotate µ in cases (b) and (c) and f1 → fl in case (a).

Moreover, since any morphism between two non-isomorphic indecomposable objects is in

rad
F

, all the morphisms of each (d + 2)-angle are in rad
F

.

In cases (b) and (c), we have µ ∶ fj−1 → fj . This is not a split epimorphism as the only

morphism of the form fj → fj−1 is the zero morphism. Let f ∈ F and α ∶ f → fj be a

non-zero morphism which is not a split epimorphism. Without loss of generality, assume

that f is indecomposable. Note that, since α is not an isomorphism, then f ≠ fj . Hence

f is an object to the left of fj in the quiver (3.1) and α factors through µ. Similarly, in

case (a), we have that µ ∶ Σ−dfm+l−1 → f1 is not a split epimorphism and any morphism

in F ending at f1 that is not a split epimorphism factors through µ.

Hence in any case, µ is right almost split and the (d + 2)-angle is an Auslander-Reiten

(d + 2)-angle by Lemma 4.4.6.

Example 4.6.2. Let us fix d = 4, l = 4 and m = 9. Using Lemma 4.6.1, the following are

Auslander-Reiten 6-angles in F :

Σ−4f4 → Σ−4f5 → Σ−4f8 → Σ−4f9 → Σ−4f12
µÐ→ f1 → f4, where j = 1; (a)

Σ−4f8 → Σ−4f9 → Σ−4f12 → f1 → f4
µÐ→ f5 → f8, where j = 5; (b)

f1 → f2 → f5 → f6 → f9
µÐ→ f10 → Σ4f1, where j = 10. (c)

Lemma 4.6.3. Let V ⊆ F be a wide subcategory. Then, V =W = add{ΣidW ∣ i ∈ Z} for

some wide subcategory W of F . Moreover,

(a) W is semisimple if and only if for all distinct fi, fj in W, we have l ≤∣ i − j ∣≤m − 1;
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(b) W is non-semisimple if and only if it is l-periodic, i.e. 0 ≠ fq ∈W implies fq+rl ∈W
for all r ∈ Z.

Proof. The fact that V = W follows from Theorem 4.3.2. The rest of the lemma follows

from [23, Section 7].

Lemma 4.6.4. LetW ⊆ F be a wide subcategory, whereW ⊆ F is semisimple. Let fj ∈W
and suppose f is the initial object of the Auslander-Reiten (d + 2)-angle in F ending at

fj . Then

Σ−dfj → 0→ ⋯→ 0→ fj
1fjÐÐ→ fj

is an Auslander-Reiten (d + 2)-angle in W and Σ−dfj → f is a W-cover.

Proof. We claim that the only non-zero morphisms inW are scalar multiples of the identity

morphisms. If fi, fk are two distinct objects in W, then

W(fi, fk) = 0 since l ≤∣ i − k ∣ .

Suppose for a contradiction that W(fi,Σdfk) is non-zero. Then, since the composition of

l consecutive arrows in diagram (3.1) is zero, we must have k < i and there is a sequence

of at most l objects of the form:

fi → fi+1 → ⋯→ fm+l−2 → fm+l−1 → Σdf1 → Σdf2 → ⋯→ Σdfk−1 → Σdfk.

But then, as there are at most l−1 arrows in the above sequence, we have that m+l−i+k ≤ l
and so m − 1 < i − k, contradicting the fact that i − k ≤m − 1. Hence we proved our claim

and so 0→ fj is right almost split in W. Then

Σ−dfj → 0→ ⋯→ 0→ fj
1fjÐÐ→ fj

is an Auslander-Reiten (d + 2)-angle in W and Σ−dfj → f is a W-cover, by Theorem

4.5.5.

Lemma 4.6.5. Let W ⊆ F be a wide subcategory, where W ⊆ F is non-semisimple. Let

fj ∈ W and suppose f is the initial object of the Auslander-Reiten (d + 2)-angle in F
ending at fj .

Starting from f and moving left in the quiver (3.1), let w be the first object found which

is in W. Then there is a W-cover w → f , and we have an Auslander-Reiten (d + 2)-angle

95



Chapter 4. Auslander-Reiten (d + 2)-angles in subcategories

in W of the form:

w → ⋯→ fj → Σdw.

Remark 4.6.6. Note that f is described in cases (a), (b), (c) of Lemma 4.6.1 for all

possible values of j. In cases (b) and (c), so f = Σ−dfj+l−1, we have w = Σ−dfp, for

p ∶= max{n ∈ Z>0 ∣ n ≤ j + l − 1, fp ∈W}.

In case (a), so f = fj−m, then w can be either of the form fp or Σ−dfq.

Moreover, once w is found, Remark 3.3.2 can be used to find the Auslander-Reiten (d+2)-
angle inW. Note that the latter has half of its objects equal to the ones in the Auslander-

Reiten (d + 2)-angle in F ending at fj , i.e. fj and every second of the terms to its left.

The remaining objects are obtained by replacing f with w and, at every step, shifting by

l objects in diagram (3.1).

Proof of Lemma 4.6.5. Given any object g in (3.1), the indecomposable objects in F hav-

ing non-zero morphism into g are exactly g and the l − 1 objects to its left in the quiver.

Consider g = f and note that, since W ≠ 0 is l-periodic, then at least one of these l objects

is in W. Hence w can be chosen as described in Lemma 4.6.5 with w → f non-zero.

Moreover, δ ∶ w → f is a W-cover since all other morphisms from W to f factor through

δ. The last part of the lemma follows from Theorem 4.5.5.

Example 4.6.7 (Continuing Example 4.6.2). Let W = add{f1, f2, f5, f6, f9, f10}. Note

this is 4-periodic and hence W ⊆ F is wide. Consider the 6-angle (a) from Example 4.6.2,

where f1 ∈ W. Here, f = Σ−4f4 has W-cover w = Σ−4f2 → Σ−4f4. Then, we obtain the

Auslander-Reiten 6-angle in W:

Σ−4f2 → Σ−4f5 → Σ−4f6 → Σ−4f9 → Σ−4f10 → f1 → f2.

Similarly, starting from the 6-angle (b) from Example 4.6.2, we obtain the Auslander-

Reiten 6-angle in W:

Σ−4f6 → Σ−4f9 → Σ−4f10 → f1 → f2 → f5 → f6.

Finally, note that since all the objects in the 6-angle (c) in Example 4.6.2 are in W, then

f1 → f2 → f5 → f6 → f9
µÐ→ f10 → Σ4f1

is also an Auslander-Reiten 6-angle in W.
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d-Auslander-Reiten sequences in

subcategories

5.1 Introduction

Let d be a fixed positive integer, k a field and Λ a finite dimensional k-algebra. As in

previous chapters, let mod Λ denote the category of finitely generated right Λ-modules.

5.1.1 Classic background (d = 1 case).

We have introduced Auslander-Reiten sequences in mod Λ in Section 2.2.1. As stated in

Theorem 2.2.23, if M ∈ mod Λ is an indecomposable non-projective module, then there is

an Auslander-Reiten sequence in mod Λ of the form:

0 // τM // N //M // 0,

where τM =D ○TrM is the Auslander-Reiten translation of M .

Let X ⊆ mod Λ be a full subcategory closed under summands and extensions, in the sense

that if 0→X → Y → Z → 0 is a short exact sequence in mod Λ with X,Z ∈ X , then Y ∈ X .

Auslander and Smalø introduced the notion of almost split sequences in subcategories and,

in [7, Theorem 2.4], showed a weaker version of the following theorem introduced later by

Kleiner in [43, Corollary 2.8].

Theorem A (Kleiner). Assume X is precovering in mod Λ and let X be an indecom-

posable in X .

(a) There exists a right almost split morphism W →X in X .
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(b) If Ext1
Λ(X,X ) is non-zero, there is an Auslander-Reiten sequence in X , see Defini-

tion 5.2.4 with d = 1 and so F = mod Λ, of the form:

0 // ζX // X1 // X // 0,

where ζX is the unique indecomposable direct summand of the X -cover of τX such

that Ext1
Λ(X,ζX) ≠ 0.

For M ∈ mod Λ, let EndΛ(M) denote the factor ring of EndΛ(M) modulo the ideal of

morphisms M → M that factor through a projective module. Then, Auslander, Reiten

and Smalø’s argument in [5, proof of Corollary V.2.4] can be easily modified to prove the

following.

Theorem B. Assume X is precovering in mod Λ. Let X ∈ X be an indecomposable such

that EndΛ(X) is a division ring. For a short exact sequence of the form

δ ∶ 0 // ζX // X1 // X // 0,

with ζX, X1 and X in X , the following are equivalent:

(a) δ is an Auslander-Reiten sequence in X ,

(b) δ does not split.

As a corollary of the above, one can prove the following result by Kleiner, see [43, Propo-

sition 2.10].

Corollary C (Kleiner). Assume X is precovering in mod Λ. Let g ∶ Y → τX be an

X -cover, where X is an indecomposable in X with EndΛ(X) a division ring. Consider a

non-split short exact sequence with terms in X of the form

0 // Y // Y 1 η // X // 0.

Then the bottom row of the pushout diagram

0 // Y //

��

Y 1 η //

��

X // 0

0 // τX // N // X // 0

is an Auslander-Reiten sequence in mod Λ and η is right almost split in X .
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5.1.2 This chapter (d ≥ 1 case).

Assume now that there is a d-cluster tilting subcategory F ⊆ mod Λ, see Definition 2.3.13.

As seen in Section 2.3.1, Jasso generalised abelian categories to d-abelian categories in

[34]: kernels and cokernels are replaced by complexes of d objects, called d-kernels and

d-cokernels respectively, and short exact sequences by complexes of d + 2 objects, called

d-exact sequences, see Definition 2.3.1. By Theorem 2.3.14, we have that F is a d-abelian

category and it plays the role of a higher version of the abelian category mod Λ. Note that

for d = 1, the only possible choice is F = mod Λ.

In [28], Iyama generalised Auslander-Reiten sequences in mod Λ to d-Auslander Reiten

sequences in F . Moreover, as seen in Proposition 2.3.25, he proved that if Ad+1 is an

indecomposable non-projective in F , then there exists a d-Auslander-Reiten sequence in

F , see Definition 2.3.21, of the form:

0 // τd(Ad+1) // A1 // A2 // ⋯ // Ad−1 // Ad // Ad+1 // 0,

where τd is the d-Auslander-Reiten translation. Let X ⊆ F be an additive subcategory in

the sense of Definition 2.1.39 that is closed under d-extensions, see Definition 5.2.1. We

define d-Auslander-Reiten sequences in X , see Definition 5.2.4, and prove a higher version

of Theorem A.

Theorem 5.3.13. Assume X is precovering in F and let X be an indecomposable in X .

(a) There exists a right almost split morphism W →X in X .

(b) If ExtdΛ(X,X ) is non-zero, there is a d-Auslander-Reiten sequence in X of the form:

0 // σX
ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0,

where σX is the unique indecomposable direct summand of the X -cover of τd(X)
such that ExtdΛ(X,σX) ≠ 0.

We prove a higher version of Theorem B.

Theorem 5.4.4. Assume X is precovering in F . Let X be an indecomposable in X such

that EndΛ(X) is a division ring. Let

δ ∶ 0 // σX
ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0

be a d-exact sequence with terms in X and such that ξ1, . . . , ξd−1 are in radX when d ≥ 2.

Then the following are equivalent:
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(a) δ is a d-Auslander-Reiten sequence in X ,

(b) δ is not a split d-exact sequence, see Definition 2.3.9.

As we have seen in Definition 2.3.4 and Lemma 2.3.6, in [34] Jasso generalised the idea of

pushout to d-pushout of a d-exact sequence along a morphism from its first term. Using

these, we obtain a higher version of Corollary C as a corollary of Theorem 5.4.4.

Corollary 5.4.5. Assume X is precovering in F . Let g ∶ Y → τd(X) be an X -cover,

where X is an indecomposable in X with EndΛ(X) a division ring. Consider a non-split

d-exact sequence with terms in X of the form:

ε ∶ 0 // Y
η0

// Y 1 η1

// ⋯ // Y d ηd // X // 0,

where, if d ≥ 2, we also have η1, . . . , ηd−1 ∈ radX . Consider a morphism induced by a

d-pushout diagram:

ε ∶

��

0 // Y
η0

//

g

��

Y 1 η1

//

g1

��

⋯ // Y d

gd

��

ηd // X // 0

δ ∶ 0 // τd(X)
α0
// A1

α1
// ⋯ // Ad

αd
// X // 0,

where, if d ≥ 2, we have that α1, . . . , αd−1 ∈ radF . Then δ is a d-Auslander-Reiten sequence

in F and ηd is right almost split in X .

We illustrate Theorem 5.3.13 in the following example with d = 2. Let Λ be the algebra

defined by the following quiver with relations:

10

  
9

>>

  

8

��
7

@@

��

6

>>

  

5

��
4

@@

3

>>

2

@@

1.

The Auslander-Reiten quiver of the unique 2-cluster tilting subcategory F of mod Λ is

shown in Figure 5.1 on page 118. Choosing a subcategory X ⊆ F satisfying our setup,

namely add of the vertices coloured red in Figure 5.1, we use Theorem 5.3.13 to describe

the 2-Auslander-Reiten sequences in X .

This chapter is organised as follows. Section 5.2 studies d-Auslander-Reiten sequences in

X . Section 5.3 proves higher analogues to some of Kleiner’s results from [43, Section 2],

including Theorem 5.3.13. Section 5.4 proves Theorem 5.4.4 and Corollary 5.4.5. Finally,
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Section 5.5 illustrates an example of Theorem 5.3.13.

5.2 d-Auslander-Reiten sequences in X

We aim to study additive subcategories of F closed under d-extensions. We define these

subcategories using the notion of Yoneda equivalence, see Definition 2.3.16.

Definition 5.2.1. Let F ⊆ mod Λ be d-cluster tilting. We say that an additive subcategory

X ⊆ F is closed under d-extensions if each d-exact sequence in F of the form:

0 // X0 // A1 // A2 // ⋯ // Ad−1 // Ad // Xd+1 // 0,

with X0, Xd+1 in X is Yoneda equivalent to a d-exact sequence in F ,

0 // X0 // X1 // X2 // ⋯ // Xd−1 // Xd // Xd+1 // 0,

with all terms in X .

Setup 5.2.2. Let d be a fixed positive integer, k a field, Λ a finite dimensional k-algebra

and F ⊆ mod Λ a d-cluster tilting subcategory. Then F is d-abelian by Theorem 2.3.14.

Moreover, let X ⊆ F be an additive subcategory closed under d-extensions.

Remark 5.2.3. By Remark 2.3.17, in every Yoneda equivalence class, there is a unique

almost minimal sequence up to isomorphism. Consider a d-exact sequence in F of the

form:

δ ∶ 0 // X0 // A1 // A2 // ⋯ // Ad−1 // Ad // Xd+1 // 0,

with X0, Xd+1 in X . The almost minimal sequence in the equivalence class [δ] has all

the terms in X . In fact, since X is closed under d-extensions, we know there is a d-exact

sequence with all terms in X in [δ], and dropping extra direct summands of the form

X
∼Ð→X in the middle terms of this, we obtain the unique almost minimal sequence in [δ],

say

δ′ ∶ 0 // X0 // X1 // X2 // ⋯ // Xd−1 // Xd // Xd+1 // 0,

with all terms in X . Note that dropping extra direct summands of the form A
∼Ð→ A in the

middle terms of δ, we also obtain an almost minimal sequence

ε ∶ 0 // X0 // A1 // A2 // ⋯ // Ad−1 // Ad // Xd+1 // 0.
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By uniqueness, δ′ ≅ ε and so ε has all terms in X . Note that [δ] = [ε] and, since Ai is a

direct summand of Ai for any i = 1, . . . , d, there are morphisms of d-exact sequences ε→ δ

and δ → ε.

We introduce d-Auslander-Reiten sequences in the subcategory X and give equivalent

definitions. Note that the case X = F will give the corresponding results in the ambient

category F .

Definition 5.2.4. We say that a d-exact sequence in F with all terms from X of the form

ε ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // Xd+1 // 0,

is a d-Auslander-Reiten sequence in X if the morphism ξ0 is left almost split in X , the

morphism ξd is right almost split in X and, when d ≥ 2, also ξ1, . . . , ξd−1 ∈ radX .

The following is a well known result, see [5, Lemma V.1.7]. Recall that for a module in

mod Λ, having local endomorphism ring is equivalent to being indecomposable.

Lemma 5.2.5. Let ξ0 ∶ X0 → X1 be left almost split in X . Then EndΛ(X0) is local and

ξ0 is in radX .

Remark 5.2.6. Note that if ε is a d-Auslander-Reiten sequence in X , Lemma 5.2.5 and

its dual imply that EndΛ(X0) and EndΛ(Xd+1) are local and ξ0, ξd are in radX .

Lemma 5.2.7. Consider a d-exact sequence in F with all terms in X of the form:

ε ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // Xd+1 // 0.

The following are equivalent:

(a) ε is a d-Auslander-Reiten sequence in X ,

(b) ξ0, ξ1, . . . , ξd−1 are in radX and ξd is right almost split in X ,

(c) ξ1, . . . , ξd−1, ξd are in radX and ξ0 is left almost split in X .

Proof. By Lemma 5.2.5 and its dual, it is clear that (a) implies both (b) and (c). Suppose

now that (b) holds. By the dual of Lemma 5.2.5, it follows that ξd ∈ radX . Let f0 ∶X0 → Y 0

be a morphism in X that is not a split monomorphism. By Lemma 2.3.6, there is a
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morphism of d-exact sequences of the form:

ε ∶
f

��

0 // X0 ξ0

//

f0

��

X1 ξ1

//

f1

��

⋯ // Xd−1 ξd−1

//

fd−1

��

Xd

fd

��

ξd // Xd+1 // 0

δ ∶ 0 // Y 0

η0
// Y 1

η1
// ⋯ // Y d−1

ηd−1
// Y d

ηd
// Xd+1 // 0,

where we may assume Y 1, . . . , Y d are in X by Remark 5.2.3. Suppose for a contradiction

that η0 is not a split monomorphism. Then ηd is not a split epimorphism by Corollary

2.3.8 and, since ξd is right almost split in X , then there exists gd ∶ Y d → Xd such that

ξd ○ gd = ηd. By Lemma 2.3.10, there is a morphism of d-exact sequences of the form:

δ ∶
g

��

0 // Y 0 η0

//

g0

��

Y 1 η1

//

g1

��

⋯ // Y d−1 ηd−1

//

gd−1

��

Y d ηd //

gd

��

Xd+1 // 0

ε ∶ 0 // X0

ξ0
// X1

ξ1
// ⋯ // Xd−1

ξd−1
// Xd

ξd
// Xd+1 // 0.

Note that ξd ○ gd ○ fd = ξd and, since Lemma 2.3.11 implies that ξd is right minimal, it

follows that gd ○ fd is an isomorphism. Hence, Lemma 2.3.12 implies that g0 ○ f0 is an

isomorphism. so that f0 is a split monomorphism, contradicting our assumption. So η0 is

a split monomorphism and there is a morphism µ ∶ Y 1 → Y 0 such that µ ○ η0 = 1Y 0 . Then

µ ○ f1 ○ ξ0 = µ ○ η0 ○ f0 = f0,

so ξ0 is left almost split in X and we have proved (c). Dually, (c) implies (b) and it is

hence clear that both (b) and (c) imply (a).

5.3 X -covers and the left end term of a d-Auslander-Reiten

sequence in X

In this section, we generalise the results in [43, Section 2] on mod Λ to its higher analogue

F . Iyama proved in [28, Theorem 3.3.1] that if Ad+1 ∈ F is an indecomposable non-

projective, then there exists a d-Auslander-Reiten sequence in F ending at Ad+1 and

starting at τd(Ad+1), see Proposition 2.3.25. The idea is to give an analogue of this result

for d-Auslander-Reiten sequences in X . Consider an indecomposable X in X that admits

non-split d-exact sequences ending at it with terms in X . We “approximate” τd(X) with

an indecomposable σX in X . We show there is a d-Auslander-Reiten sequence in X ending

in X and that this sequence is forced to start at σX.
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Recall the definition of X -cover from Definition 2.1.37. Note that the duals of all the

results presented in this section are also true.

Lemma 5.3.1. Let A ∈ F and g ∶X → A be an X -cover. Then,

ExtdΛ(−, g) ∣X ∶ ExtdΛ(−,X) ∣X Ð→ ExtdΛ(−,A) ∣X

is a monomorphism of contravariant functors.

Proof. Consider a d-exact sequence in F of the form

δ ∶ 0 // X
ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd // Xd+1 // 0,

where Xd+1 is in X . Since X is closed under d-extensions, we may assume that X1, . . . ,Xd

are also in X . Consider the morphism of d-exact sequences in F obtained as in Proposition

2.3.18(b):

δ

��

0 // X
ξ0

//

g

��

X1 ξ1

//

g1

��

⋯ // Xd

gd

��

ξd // Xd+1 // 0

g ⋅ δ ∶ 0 // A
α0
// A1

α1
// ⋯ // Ad

αd
// Xd+1 // 0.

Suppose that g ⋅ δ splits, i.e. [g ⋅ δ] = 0. By Proposition 2.3.18(a), we want to prove that

also δ splits so that ExtdΛ(−, g) ∣X is a monomorphism. By Proposition 2.3.18(a), there

exists a morphism γ ∶ A1 → A such that γ ○ α0 = 1A. Then

g = γ ○ α0 ○ g = γ ○ g1 ○ ξ0.

Moreover, since X1 is in X and g is an X -cover, there is a morphism η ∶X1 →X such that

g ○ η = γ ○ g1. Then, we have

g = γ ○ g1 ○ ξ0 = g ○ η ○ ξ0.

As g is right minimal, it follows that η ○ ξ0 is an isomorphism. This implies that ξ0 is a

split monomorphism and so δ splits, i.e. [δ] = 0 in ExtdΛ(Xd+1,X).

Lemma 5.3.2. Let X in X be an indecomposable such that ExtdΛ(X,X ) is non-zero.

Suppose τd(X) has an X -cover of the form g ∶ Y → τd(X). Then, for any non-split d-exact
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sequence in F of the form

δ ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0,

with all terms in X , there is a morphism h ∶ X0 → Y such that h ⋅ δ is a non-split d-exact

sequence in F . In particular, ExtdΛ(X,Y ) ≠ 0.

Proof. First note that such a δ exists since ExtdΛ(X,X ) ≠ 0. Moreover, by Proposition

2.3.25, there is a d-Auslander-Reiten sequence in F of the form:

ε ∶ 0 // τd(X) α0
// A1 α1

// ⋯ // Ad−1 αd−1
// Ad

αd
// X // 0.

Since ξd is not a split epimorphism and αd is right almost split in F , there is a morphism

fd ∶Xd → Ad such that αd○fd = ξd. Then, by Lemma 2.3.10, we can construct a morphism

of d-exact sequences of the form:

δ ∶
f

��

0 // X0 ξ0

//

f0

��

X1 ξ1

//

f1

��

⋯ // Xd−1 ξd−1

//

fd−1

��

Xd

fd

��

ξd // X // 0

ε ∶ 0 // τdX
α0
// A1

α1
// ⋯ // Ad−1

αd−1
// Ad

αd
// X // 0.

Since g is an X -cover, there is a morphism h ∶X0 → Y such that f0 = g○h. Then, applying

ExtdΛ(X,−), we obtain the commutative diagram:

ExtdΛ(X,X0)
ExtdΛ(X,f

0)
//

ExtdΛ(X,h) ''

ExtdΛ(X,τd(X)).

ExtdΛ(X,Y )
ExtdΛ(X,g)

66
(5.1)

Considering the morphism δ → f0 ⋅ δ obtained as in Proposition 2.3.18(b) and f ∶ δ → ε,

Lemma 2.3.20 implies that 0 ≠ [ε] = [f0 ⋅δ] in ExtdΛ(X,τd(X)), so that f0 ⋅δ is non-split by

Proposition 2.3.18(a). Then, in diagram (5.1), we have ExtdΛ(X,g ○h)(δ) = g ○h ⋅ δ = f0 ⋅ δ
is non-split and so [h ⋅ δ] ≠ 0, i.e. h ⋅ δ is non-split. In particular ExtdΛ(X,Y ) ≠ 0.

The following is a higher version of [5, proof of Proposition V.2.1]. Recall that modules are

assumed to be right-modules. Instead of proving it here, we later prove the more general

Lemma 5.4.1. The case X = F in the latter, corresponds to the following.

Lemma 5.3.3. Let A be an indecomposable non-projective in F . Then ExtdΛ(A, τd(A)),
as an EndΛ(A)-module, has a simple socle generated by a d-Auslander-Reiten sequence
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in F of the form

δ ∶ 0 // τd(A) α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// A // 0.

Proposition 5.3.4. (a) Let X in X be an indecomposable such that ExtdΛ(X,X ) is

non-zero. If τd(X) has an X -cover of the form g ∶ Y → τd(X), then Y = Z ⊕ Z ′,

where Z is an indecomposable such that ExtdΛ(X,Z) ≠ 0 and ExtdΛ(X,Z ′) = 0. The

module Z is unique up to isomorphism.

(b) In the setting of (a), a non-split d-exact sequence of the form

ε ∶ 0 // Y
η0

// Y 1 η1

// Y 2 η2

// ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0

is isomorphic to the direct sum of the split d-exact sequence:

0 // Z ′
1Z′ // Z ′ // 0 // ⋯ // 0 // 0 // 0 // 0

and a non-split d-exact sequence of the form

0 // Z
ζ0

// V
ζ1

// Y 2 η2

// ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0.

Proof. (a) Let Y = Z1 ⊕ ⋅ ⋅ ⋅ ⊕ Zm be the indecomposable decomposition of Y . By Lemma

5.3.1, we have a monomorphism:

ExtdΛ(X,g) ∶ ExtdΛ(X,Y ) Ð→ ExtdΛ(X,τd(X)),

which is also a monomorphism of EndΛ(X)-modules. Hence Im ExtdΛ(X,g) is an EndΛ(X)-
submodule of ExtdΛ(X,τd(X)) isomorphic to

ExtdΛ(X,Y ) ≅
m

⊕
j=1

ExtdΛ(X,Zj).

Since ExtdΛ(X,X ) ≠ 0, it follows that X is not projective in mod Λ. Then, viewed as an

EndΛ(X)-module, ExtdΛ(X,τd(X)) has simple socle by Lemma 5.3.3. Hence Im ExtdΛ(X,g)
is either zero or an indecomposable EndΛ(X)-module. So there is at most one j ∈
{1, . . . , m} such that ExtdΛ(X,Zj) is non-zero. Note that ExtdΛ(X,Y ) is non-zero by

Lemma 5.3.2. Hence there is exactly one j ∈ {1, . . . , m} such that ExtdΛ(X,Zj) is non-

zero.
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(b) By Lemma 2.3.6, there is a morphism of d-exact sequences of the form:

ε ∶

��

0 // Z ′ ⊕Z η0=(ξ′,ξ) //

(1,0)
��

Y 1 η1

//

��

Y 2 η2

//

��

⋯ ηd−1

// Y d ηd //

��

X // 0

ε ∶ 0 // Z ′

ω0
//W 1

ω1
//W 2

ω2
// ⋯

ωd−1
//W d

ωd
// X // 0.

(5.2)

Since ExtdΛ(X,Z ′) = 0, the bottom row is a split d-exact sequence by Proposition 2.3.18(a).

Hence, we have that ε is isomorphic to:

0 // Z ′
(

1Z′
0
)
// Z ′ ⊕W 1

(0,γ) //W 2 ω2
// ⋯ ωd−1

//W d ωd
// X // 0.

Then the morphism (5.2) is isomorphic to the morphism:

ε ∶

��

0 // Z ′ ⊕Z (ξ′,ξ) //

(1,0)
��

Y 1 η1

//

(µ
′
µ )
��

Y 2 η2

//

��

⋯ ηd−1

// Y d ηd //

��

X // 0

ε ∶ 0 // Z ′

(
1Z′
0
)

// Z ′ ⊕W 1
(0,γ)

//W 2

ω2
// ⋯

ωd−1
//W d

ωd
// X // 0.

In particular, µ′ ○ ξ′ = 1Z′ and so Y 1 = Z ′ ⊕ V and ε isomorphic to a d-exact sequence of

the form:

ε ∶ 0 // Z ′ ⊕Z
(

1Z′ 0

0 ζ0 )

// Z ′ ⊕ V (0,ζ1) // Y 2 η2

// ⋯ ηd−1

// Y d ηd // X // 0.

Clearly, this is isomorphic to the direct sum of the two d-exact sequences we wanted, where

the one starting at Z does not split since ε does not split.

Definition 5.3.5. Suppose that X is precovering in F and let X be an indecomposable

in X . If ExtdΛ(X,X ) = 0 we put σX = 0. Otherwise, letting g ∶ Y → τd(X) be an X -

cover, we denote by σX the unique indecomposable direct summand Z of Y such that

ExtdΛ(X,Z) ≠ 0.

Corollary 5.3.6. Let X be precovering in F and let

δ ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0

be a d-Auslander-Reiten sequence in X . Then X0 ≅ σX.

Proof. Note that the existence of δ implies that ExtdΛ(X,X ) is non-zero. As X is precov-
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ering in F , there is an X -cover g ∶ Y → τd(X). Then, by Lemma 5.3.2, there is a morphism

of non-split d-exact sequences in F of the form:

δ ∶

��

0 // X0 ξ0

//

h

��

X1 ξ1

//

h1

��

⋯ // Xd−1 ξd−1

//

hd−1

��

Xd

hd

��

ξd // X // 0

h ⋅ δ ∶ 0 // Y
η0
// Y 1

η1
// ⋯ // Y d−1

ηd−1
// Y d

ηd
// X // 0.

Since ηd is not a split epimorphism, Lemma 2.3.7 implies that h does not factor through

ξ0. As ξ0 is a left almost split morphism in X , it follows that h is a split monomorphism.

Hence X0 is an indecomposable direct summand of Y such that ExtdΛ(X,X0) ≠ 0 and

Proposition 5.3.4(a) implies that X0 ≅ σX.

Notation 5.3.7. For A and B in F , we use the notation (A,B) ∶= HomF(A,B).

Definition 5.3.8 ([36, Definition 3.1]). Consider a d-exact sequence in F of the form:

δ ∶ 0 // A0 α0
// A1 α1

// A2 // ⋯ // Ad−1 αd−1
// Ad

αd
// Ad+1 // 0.

We define δ∗, the contravariant defect of δ on F , by the exact sequence of functors

(−,Ad)→ (−,Ad+1)→ δ∗(−)→ 0.

Dually, we define δ∗, the covariant defect of δ on F , by the exact sequence of functors

(A1,−)→ (A0,−)→ δ∗(−)→ 0.

Remark 5.3.9. By Lemma 2.3.19, we have that δ∗(−) is a subfunctor of ExtdΛ(−,A0) ∣F
and δ∗(−) is a subfunctor of ExtdΛ(Ad+1,−) ∣F .

Lemma 5.3.10. Consider a d-exact sequence in F with all terms in X of the form:

δ ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // Xd+1 // 0

and an X -cover g ∶X → A for some A ∈ F . The k-linear map (X0, g) ∶ (X0,X)→ (X0,A)
induces an isomorphism of k-vector spaces:

δ∗(g) ∶ δ∗(X) ∼Ð→ δ∗(A).

In particular, dimk(δ∗(X)) = dimk(δ∗(A)).
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Proof. By Definition 5.3.8, we have

δ∗(g) ∶ (X0,X)/ Im(ξ0,X)→ (X0,A)/ Im(ξ0,A).

Note that since g ∶X → A is an X -cover, the map (X0, g) is surjective. Hence it is enough

to show that Im(ξ0,X) is the full preimage of Im(ξ0,A) under (X0, g). It is clear that

(X0, g)(Im(ξ0,X)) ⊆ Im(ξ0,A).

It remains to show that if h ∶X0 →X is such that g ○ h ∶X0 → A factors through ξ0, then

h factors through ξ0. Consider the following morphisms of d-exact sequences:

δ

��

0 // X0 ξ0

//

h

��

X1 ξ1

//

��

��

⋯ // Xd−1 ξd−1

//

��

Xd

��

ξd // Xd+1 //

��

0

h ⋅ δ ∶

��

0 // X //

g

��

Y 1 //

��

⋯ // Y d−1 //

��

Y d //

��

Xd+1 // 0

gh ⋅ δ ∶ 0 // A // A1 // ⋯ // Ad−1 // Ad // Xd+1 // 0.

Since g ○h factors through ξ0, Lemma 2.3.7 implies that the bottom row splits. Hence, we

have that [ExtdΛ(Xd+1, g)(h ⋅ δ)] = 0. Since ExtdΛ(Xd+1, g) is a monomorphism by Lemma

5.3.1, it follows that the middle row splits. Hence h factors through ξ0 by Lemma 2.3.7.

Remark 5.3.11. Let X ∈ X be indecomposable and assume that τd(X) has an X -cover,

say g ∶ Y → τd(X). Given any d-exact sequence with terms in X of the form

δ ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // Xd+1 // 0,

we have that

dimk(δ∗(Y )) = dimk(δ∗(τd(X))) = dimk(δ∗(X)),

where the first equality holds by Lemma 5.3.10 and the second by [36, Theorem 3.8].

Proposition 5.3.12. Assume X is precovering in F . Let X ∈ X be an indecomposable

such that ExtdΛ(X,X ) ≠ 0 and g ∶ Y → τd(X) be an X -cover. Then there is a d-exact

sequence with terms in X of the form:

ε ∶ 0 // Y
η0

// Y 1 η1

// Y 2 η2

// ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0,

with ηd right almost split in X .
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Proof. Since ExtdΛ(X,X ) ≠ 0, there exists a non-split d-exact sequence with terms from X
of the form:

δ ∶ 0 // X0 ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0.

As not every endomorphism of X factors through ξd, we have that dimk(δ∗(X)) ≠ 0. By

Remark 5.3.11, we have that

dimk(δ∗(Y )) = dimk(δ∗(τd(X))) = dimk(δ∗(X)) ≠ 0.

So ExtdΛ(X , Y ) is non-zero by Remark 5.3.9 and there is a non-split d-exact sequence with

terms in X of the form:

ζ ∶ 0 // Y
ζ0

// Z1 ζ1

// ⋯ // Zd−1 ζd−1

// Zd
ζd // Zd+1 // 0.

Since not every endomorphism of Y factors through ζ0, then dimk(ζ∗(Y )) is non-zero and

so, by Remark 5.3.11, we have

0 ≠ dimk(ζ∗(Y )) = dimk(ζ∗(τd(X))) = dimk(ζ∗(X)).

Hence not every morphism of the form X → Zd+1 factors through ζd. So there is a

morphism t ∶ X → Zd+1 such that its image in ζ∗(X) = (X,Zd+1)/ Im(X,ζd) generates a

simple EndΛ(X)-module. Thus, by the dual of Proposition 2.3.18(b), we have a morphism

of d-exact sequences in F of the form:

ζ ⋅ t ∶

��

0 // Y
η0

// Y 1 η1

//

t1

��

⋯ // Y d−1 ηd−1

//

td−1

��

Y d

td

��

ηd // X

t
��

// 0

ζ ∶ 0 // Y
ζ0
// Z1

ζ1
// ⋯ // Zd−1

ζd−1
// Zd

ζd
// Zd+1 // 0,

where we can assume Y 1, . . . , Y d are in X by Remark 5.2.3. We claim that ε ∶= ζ ⋅ t is

such that ηd is right almost split in X . First note that since t does not factor through

ζd, then ε is not a split d-exact sequence by Lemma 2.3.7. In particular, ηd is not a split

epimorphism. Suppose that s ∶W →X in X is not a split epimorphism. We need to show

that s factors through ηd. Consider the morphism obtained by the dual of Proposition
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2.3.18(b):

ε ⋅ s ∶

��

0 // Y
ω0
//W 1 ω1

//

s1

��

⋯ //W d−1 ωd−1
//

sd−1

��

W d

sd

��

ωd
//W

s

��

// 0

ε ∶ 0 // Y
η0
// Y 1

η1
// ⋯ // Y d−1

ηd−1
// Y d

ηd
// X // 0.

By Lemma 2.3.7, we have that s factoring through ηd is equivalent to ε ⋅ s splitting. Note

that if every morphism r ∶X →W factors through ωd, then (ε ⋅s)∗(X) = 0 and, by Remark

5.3.11, we have that (ε ⋅ s)∗(Y ) = 0, that is (ω0, Y ) is surjective and ε ⋅ s splits. Hence it

is enough to show that every morphism r ∶X →W factors through ωd.

Note that since s is not a split epimorphism, s ○ r ∶X →X is not an isomorphism. Hence,

t○s○r ∶X → Zd+1 is in t○EndΛ(X)○radEndΛ(X). Since the image of t○EndΛ(X) in ζ∗(X)
is a simple module, it follows that t○s○r projects to zero in ζ∗(X). In other words, t○s○r
factors through ζd, so there is a morphism α ∶X → Zd such that ζd ○α = t○s○r. Consider:

ε ⋅ sr ∶

��

0 // Y
µ0

// U1 µ1

//

r1

��

��

⋯ // Ud−1 µd−1

//

rd−1

��

Ud

rd

��

µd // X

r

��

//

��

0

ε ⋅ s ∶

��

0 // Y
ω0
//W 1 ω1

//

t1○s1

��

⋯ //W d−1 ωd−1
//

td−1○sd−1

��

W d

td○sd

��

ωd
//W

t○s
��

// 0

ζ ∶ 0 // Y
ζ0
// Z1

ζ1
// ⋯ // Zd−1

ζd−1
// Zd

ζd
// Zd+1 // 0.

Then, by Lemma 2.3.7, there is a morphism α1 ∶ U1 → Y such that α1 ○ µ0 = 1Y . Hence

the top row of the above diagram splits. So there is a morphism φ ∶ X → Ud such that

µd ○ φ = 1X . Note that

ωd ○ rd ○ φ = r ○ µd ○ φ = r.

Hence r factors through ωd as we wished to prove.

Theorem 5.3.13. Assume X is precovering in F and let X be an indecomposable in X .

(a) There exists a right almost split morphism W →X in X .

(b) If ExtdΛ(X,X ) is non-zero, there is a d-Auslander-Reiten sequence in X of the form:

0 // σX
ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0. (5.3)

Proof. (a) This follows from [6, Proposition 3.10].
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(b) Let g ∶ Y → τd(X) be an X -cover. Then, by Proposition 5.3.12, there exists a d-exact

sequence with terms in X of the form

ε ∶ 0 // Y
η0

// Y 1 η1

// Y 2 η2

// ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0,

with ηd right almost split in X . By Proposition 5.3.4, ε has a non-split d-exact sequence

with terms in X of the form

δ ∶ 0 // σX
ζ0

// V
ζ1

// Y 2 η2

// ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0

as a direct summand. If d ≥ 2, we may also assume that ζ1, η2, . . . , ηd−1 are in radX .

Moreover, since σX is indecomposable and ζ0 is not a split monomorphism, it follows

that ζ0 is in radX . Hence, by Lemma 5.2.7, we conclude that δ is a d-Auslander-Reiten

sequence in X .

5.4 More on d-Auslander-Reiten sequences in X

In this section, we study the case when, for an indecomposable X ∈ X , the factor ring

of EndΛ(X) modulo the morphisms factoring through a projective is a division ring.

Generalising [5, Corollary V.2.4], we prove that an almost minimal d-exact sequence with

terms in X ending at X is a d-Auslander-Reiten sequence if and only if it does not split.

As a consequence of this result, we prove a higher version of [43, Proposition 2.10].

The argument from [5, proof of Proposition V.2.1] can be modified to prove the following

result, we present here the argument for convenience of the reader. Note that this differs

from the original result in two ways: it is a higher version and we work in the subcategory

X . The condition on an indecomposable C in mod Λ to be non-projective is hence sub-

stituted with the condition on an indecomposable X ∈ X to be such that ExtdΛ(X,X ) ≠ 0

and τC with σX.

Lemma 5.4.1. Assume that X is precovering in F and let X be an indecomposable in

X such that ExtdΛ(X,X ) ≠ 0. Then Extd(X,σX), as an EndΛ(X)-module, has a simple

socle generated by a d-Auslander-Reiten sequence in X of the form

δ ∶ 0 // σX
ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0.

Proof. By Theorem 5.3.13, there is a d-Auslander-Reiten sequence in X of the form

δ ∶ 0 // σX
ξ0

// X1 ξ1

// X2 // ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0.
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Consider a non-zero element in the EndΛ(X)-socle of ExtdΛ(X,σX) of the form

ε ∶ 0 // σX
η0

// Y 1 η1

// Y 2 // ⋯ // Y d−1 ηd−1

// Y d ηd // X // 0.

We prove that radEndΛ(X) annihilates δ. Let h ∈ radEndΛ(X), and note that since X

is indecomposable, EndΛ(X) is local, so this is the same as saying that h is not an

isomorphism by [45, Section 4]. Applying ExtdΛ(h,σX) to δ, we get a morphism of d-exact

sequences dual to the one from Proposition 2.3.18(b):

δ ⋅ h ∶

��

0 // σX
ζ0

// Z1 ζ1

//

h1

��

Z2 //

h2

��

⋯ // Zd
ζd //

hd
��

X //

h
��

0

δ ∶ 0 // σX
ξ0
// X1

ξ1
// X2 // ⋯ // Xd

ξd
// X // 0.

Since h is not a split epimorphism and ξd is right almost split in X , there exists a morphism

sd+1 ∶ X → Xd such that ξd ○ sd+1 = h. Then, by Lemma 2.3.7, there is a morphism

s1 ∶ Z1 → σX such that s1○ζ0 = 1σX . This means that δ ⋅h splits, so radEndΛ(X) annihilates

δ. Hence δ is in the socle. Moreover, since δ is a d-Auslander-Reiten sequence in X and ε

is non-split, there exists a morphism t1 ∶X1 → Y 1 such that t1 ○ ξ0 = η0. Then, by Lemma

2.3.10, we have a morphism of d-exact sequences:

δ ∶

��

0 // σX
ξ0

// X1 ξ1

//

t1

��

X2 //

t2

��

⋯ // Xd−1 ξd−1

//

td−1

��

Xd

td

��

ξd // X

t∶=td+1

��

// 0

ε ∶ 0 // σX
η0
// Y 1

η1
// Y 2 // ⋯ // Y d−1

ηd−1
// Y d

ηd
// X // 0.

By the dual of Lemma 2.3.20, we have that [δ] = [ε ⋅t] in ExtdΛ(X,σX). Then, as ε is in the

EndΛ(X)-socle of ExtdΛ(X,σX), then t is not in radEndΛ(X) and so it is an isomorphism

by [45, Section 4]. Hence [ε] = [δ ⋅ t−1] in ExtdΛ(X,σX). Then, the EndΛ(X)-socle is cyclic

and hence simple and generated by δ.

Lemma 5.4.2. Assume X is precovering in F . Let X be an indecomposable in X such

that ExtdΛ(X,X ) ≠ 0. Consider a non-split d-exact sequence of the form:

δ ∶ 0 // σX
ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0,

with X1, . . . , Xd in X and, when d ≥ 2, also ξ1, . . . , ξd−1 in radX . Then, the following are

equivalent:

(a) δ is a d-Auslander-Reiten sequence in X ,
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(b) ξd is right almost split in X ,

(c) Im(X,ξd) = radEndΛ(X),

(d) δ∗(X) is a simple EndΛ(X)-module.

Proof. By Definition 5.2.4, we have that (a) implies (b). Assume now that (b) holds and

note that since X is indecomposable, then EndΛ(X) is local. Consider

(X,ξd) ∶ (X,Xd)→ (X,X) ∶ α ↦ ξd ○ α.

Assume β ∶ X → X is in radEndΛ(X).Then, since X is indecomposable, it follows that β is

not an isomorphism and so β is not a split epimorphism. As ξd is right almost split in X ,

there exists a morphism α ∶X →Xd such that

β = ξd ○ α = (X,ξd)(α),

and so β ∈ Im(X,ξd). Assume now that β ∶ X → X is in Im(X,ξd), i.e. β = ξd ○ α for

some α ∈ (X,X). Then, since ξd is not a split epimorphism, it follows that β is not an

isomorphism and so β is in radEndΛ(X). Hence (b) implies (c).

Recall that δ∗(X) = (X,X)/ Im(X,ξd). Assume (c) holds. Then we have that δ∗(X) =
EndΛ(X)/ radEndΛ(X) and this is simple as radEndΛ(X) is the maximal ideal of the algebra

EndΛ(X). So (c) implies (d).

Assume now that (d) holds. Then, δ∗(X) is generated by the image of 1X , and this image

is sent to δ as an element of ExtdΛ(X,σX). Moreover, by Lemma 5.4.1, we have that

δ∗(X) is the socle of ExtdΛ(X,σX) as an EndΛ(X)-module and so, as δ generates δ∗(X),
Lemma 5.4.1 implies that δ is a d-Auslander-Reiten sequence in X . So (d) implies (a).

Notation 5.4.3. For a module A in F , we denote by P(A) the ideal of all morphisms

of the form A → A that factor through a projective module. The factor ring of EndΛ(A)
modulo P(A) is then denoted by EndΛ(A).

Theorem 5.4.4. Assume X is precovering in F . Let X be an indecomposable in X such

that EndΛ(X) is a division ring. For a d-exact sequence of the form:

δ ∶ 0 // σX
ξ0

// X1 ξ1

// ⋯ // Xd−1 ξd−1

// Xd ξd // X // 0,

with terms in X and, when d ≥ 2, also ξ1, . . . , ξd−1 in radX , the following are equivalent:

(a) δ is a d-Auslander-Reiten sequence in X ,

(b) δ does not split.

114



Chapter 5. d-Auslander-Reiten sequences in subcategories

Proof. Note that as ξd is an epimorphism, Im(X,ξd) contains P(X). Since EndΛ(X) =
EndΛ(X)/P(X) is a division ring, it is simple as an EndΛ(X)-module. Then P(X)
is a maximal submodule of EndΛ(X) and, as EndΛ(X) is local, we have that P(X) =
radEndΛ(X). Hence, maximality and

radEndΛ(X) = P(X) ⊆ Im(X,ξd) ⊆ EndΛ(X),

imply that we have the following two cases:

1. Im(X,ξd) = radEndΛ(X), i.e. δ∗(X) is a simple EndΛ(X)-module, in which case δ is

non-split as 1X /∈ Im(X,ξd);

2. Im(X,ξd) = EndΛ(X), i.e. δ∗(X) = 0 is not a simple EndΛ(X)-module, in which

case δ splits as 1X ∈ Im(X,ξd).

Hence δ∗(X) is a simple EndΛ(X)-module if and only if δ does not split. Then, by Lemma

5.4.2, we conclude that δ does not split if and only if δ is a d-Auslander-Reiten sequence

in X .

Corollary 5.4.5. Assume X is precovering in F . Let g ∶ Y → τd(X) be an X -cover, where

X is an indecomposable in X with EndΛ(X) a division ring. Consider a non-split d-exact

sequence with terms in X of the form:

ε ∶ 0 // Y
η0

// Y 1 η1

// ⋯ // Y d ηd // X // 0,

where, if d ≥ 2, we also have η1, . . . , ηd−1 ∈ radX . Consider a morphism induced by a

d-pushout diagram:

ε ∶

��

0 // Y
η0

//

g

��

Y 1 η1

//

g1

��

⋯ // Y d

gd

��

ηd // X // 0

δ ∶ 0 // τd(X)
α0
// A1

α1
// ⋯ // Ad

αd
// X // 0,

where, if d ≥ 2, we have that α1, . . . , αd−1 ∈ radF . Then δ is a d-Auslander-Reiten sequence

in F and ηd is right almost split in X .

Proof. First note that in a d-pushout diagram of ε along g, the middle morphisms α1, . . . ,

αd−1 are not necessarily in radF . However, dropping extra direct summands of the form

A
≅Ð→ A, we obtain a d-pushout diagram with middle morphisms in radF .

Considering Theorem 5.4.4 in the case when X = F , so that σX = τd(X), we have that

δ is a d-Auslander-Reiten sequence in F if it does not split. Suppose for a contradiction
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that δ is a split d-exact sequence. Then Lemma 2.3.7 implies that there is a morphism

h ∶ Y 1 → τd(X) such that h ○ η0 = g. Moreover, since Y 1 ∈ X and g is an X -cover, there is

a morphism φ ∶ Y 1 → Y such that h = g ○ φ. Hence

g = h ○ η0 = g ○ φ ○ η0,

and φ ○ η0 is an isomorphism as g is right minimal. But this implies that η0 is a split

monomorphism, contradicting our initial assumption. So δ does not split.

By Proposition 5.3.4(b), we have that ε is isomorphic to the direct sum of a split d-exact

sequence:

0 // Y ′
1Y ′ // Y ′ // 0 // ⋯ // 0 // 0 // 0

and a non-split d-exact sequence:

ζ ∶ 0 // σX
ζ0

//W
ζ1

// Y 2 η2

// ⋯ ηd−1

// Y d ηd // X // 0,

where, for d ≥ 2, we have that ζ1, η2, . . . , ηd−1 are in radX . Note that, by Theorem 5.4.4,

we have that ζ is a d-Auslander-Reiten sequence in X and in particular ηd is a right almost

split morphism in X .

5.5 Example

In this section, we illustrate the results from Section 5.3 for a 2-representation finite algebra

Λ. Here we assume that Λ is an algebra over an algebraically closed field k in order to be

able to apply [23, Theorem B].

Definition 5.5.1 ([30, Definition 2.2]). The algebra Λ is called d-representation finite if

gldimΛ ≤ d and Λ has a d-cluster tilting object.

Let Λ be the algebra defined by the following quiver with relations:

10

  
9

>>

  

8

��
7

@@

��

6

>>

  

5

��
4

@@

3

>>

2

@@

1.
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Remark 5.5.2. Note that the algebra Λ is 2-representation finite by [29, Theorem 1.18].

Moreover, by Remark 2.3.44, we have that mod Λ has the unique 2-cluster tilting subcat-

egory

F = add{τ j2(i) ∣ i injective in mod Λ and j ≥ 0}.

Denoting the indecomposable modules in mod Λ by their radical series, we find the Auslander-

Reiten quiver of F is as illustrated in Figure 5.1, see [49, Theorems 3.3 and 3.4], where

the dashed arrows show the action of τ2. We will use [23, theorem B] to find an additive

subcategory X ⊆ F closed under 2-extensions. Using Theorem 5.3.13, we will then describe

the 2-Auslander-Reiten sequences in X .

Theorem 5.5.3 ([23, Theorem B]). Let X ⊆ F be a full subcategory closed under isomor-

phisms in F . Let s ∈ X be a module. Set Γ = EndΛ(s) so s acquires the structure ΓsΛ.

Assume the following:

(i) the projective dimension satisfies projdim(sΛ) <∞,

(ii) Ext≥1
Λ (s, s) = 0,

(iii) each x ∈ X permits an exact sequence 0→ pm → ⋅ ⋅ ⋅→ p1 → p0 → x→ 0 in mod Λ with

pi ∈ add(s),

(iv) G ∶= HomΛ(s,X ) ⊆ mod Γ is d-cluster tilting.

Then X is a wide subcategory of F , i.e. an additive subcategory closed under d-extensions

such that every morphism in X has a d-kernel and a d-cokernel in F consisting of objects

from X .

Consider the full subcategory of F closed under isomorphisms in F :

X ∶= add{ 1 ,
8
5
1
,

10
8
5
1
,

9
10 6

8 2
5
,

4
7
9
10
,

6
2 8

5
, 6

2 ,
9
6
2
,

4
7
9
, 4

7},

i.e. add of the vertices coloured red in Figure 5.1. Using the following module in X :

s ∶= 1 ⊕ 8
5
1
⊕

10
8
5
1
⊕

9
10 6

8 2
5

⊕
4
7
9
10
⊕ 6

2 8
5
,

let Γ ∶= EndΛ(s). We check that the conditions (i)-(iv) from Theorem 5.5.3 hold.

(i) Since Λ has finite global dimension, then s has finite projective dimension.

(ii) As s is projective in mod Λ, it follows that Ext≥1
Λ (s, s) = 0.
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10
8
5
1

��
8
5
1

??

��

9
10 6

8 2
5
��

��

5
1

??

��

6
2 8

5

??

��

��

7
3 9

6 10
8

��

��

1

??

2
5

??

��

3
6
8

??

��

4
7
9
10

��

9
6
2

��

ii

6
2

??

��

ii

7
3 9

6

��

��

VV

2

??

UU

3
6

??

��

VV

4
7
9

��

ii

7
3

��

ii

3

??

UU

4
7

��

VV

4

UU

Figure 5.1: The Auslander-Reiten quiver of F .
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(iii) When x ∈ X is a direct summand of s, we have a trivial exact sequence. Moreover,

we have the following exact sequences:

0 // 1 // 85
1

// 6
2 8

5
// 6
2

// 0,

0 // 1 //
10
8
5
1

//
9

10 6
8 2

5

// 96
2

// 0,

0 // 85
1

//
10
8
5
1

//
4
7
9
10

// 47
9

// 0,

0 // 6
2 8

5
//

9
10 6

8 2
5

//
4
7
9
10

// 4
7

// 0,

so (iii) is satisfied.

(iv) Consider G ∶= HomΛ(s,X ) ⊆ mod Γ. In addition to the idempotents in Γ corresponding

to the identity morphisms, we have the following irreducible morphisms of add (s):

α ∶
9

10 6
8 2

5
→

4
7
9
10
, β ∶ 6

2 8
5
→

9
10 6

8 2
5
, γ ∶ 8

5
1
→ 6

2 8
5
, δ ∶ 1 → 8

5
1
,

ε ∶
10
8
5
1
→

9
10 6

8 2
5
, ζ ∶ 8

5
1
→

10
8
5
1
, β ○ γ = ε ○ ζ ∶ 8

5
1
→

9
10 6

8 2
5
,

with α ○ β = 0 and γ ○ δ = 0. Then, using [2, Theorem 3.7, Chapter II], we have that Γ is

isomorphic to the algebra Ψ defined by the following quiver with relations:

f
ζ

��
e

ε AA

β ��

d
δ

��
c

α AA

b
γ

@@

a.

We look at G in terms of quiver representations, using [2, Theorem 1.6, Chapter III]. So

for example, using again the radical series notation, we have

HomΛ (s,
9

10 6
8 2

5
) =

e
b f
d
.

Similarly, we find the radical series of HomΛ(s, x) for each indecomposable x ∈ X . Then,

using these, it is easy to see that the Auslander-Reiten quiver of G is as shown in Figure

5.2. By [39, Remark B.5], we conclude that, viewed in terms of quiver representations, G
is the unique 2-cluster tilting subcategory of mod Ψ. Hence G ⊆ mod Γ is 2-cluster tilting.
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f
d
a

��
d
a

??

��

e
b f
d

��

��

a

??

b
d

??

��

c
e
f

��

e
b

��
b

??

c
e

��
c

Figure 5.2: The Auslander-Reiten quiver of G.

So (i)-(iv) from Theorem 5.5.3 hold and we have that X is a wide subcategory of F in the

sense of [23, Definition 2.11]. In particular, X ⊆ F is an additive subcategory closed under

2-extensions.

Looking at the Auslander-Reiten quiver of F , we see that the following are the 2-Auslander-

Reiten sequences in F with right end term in X :

0 // 85
1

// 6
2 8

5
⊕

10
8
5
1

// 6
2 ⊕

9
10 6

8 2
5

// 96
2

// 0 (a)

0 // 5
1

// 2
5 ⊕

8
5
1

// 2 ⊕ 6
2 8

5
// 6
2

// 0, (b)

0 // 36
8

// 3
6 ⊕

7
3 9

6 10
8

// 7
3 9

6
⊕

4
7
9
10

// 47
9

// 0, (c)

0 // 3
6

// 3 ⊕ 7
3 9

6
// 7
3 ⊕

4
7
9

// 4
7

// 0. (d)

Note that all the terms in (a) are in X , so (a) is also a 2-Auslander-Reiten sequence in X .
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Moreover, the following are X -covers:

1 → 5
1 ,

6
2 8

5
→ 3

6
8
, 6

2 → 3
6 .

Then, using these covers, (b), (c), (d), Theorem 5.3.13 and the fact that the relevant

Ext2-spaces are one dimensional by [49, Theorem 3.6], we find the 2-Auslander-Reiten

sequences in X :

0 // 1 // 85
1

// 6
2 8

5
// 6
2

// 0, (b’)

0 // 6
2 8

5
//

9
10 6

8 2
5

⊕ 6
2

// 96
2
⊕

4
7
9
10

// 47
9

// 0, (c’)

0 // 6
2

// 96
2

// 47
9

// 4
7

// 0. (d’)
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Chapter 6

Grothendieck groups of

triangulated categories via cluster

tilting subcategories

6.1 Introduction

Let k be a field and C be a k-linear, Hom-finite triangulated category with split idempotents

and suspension functor Σ. We denote the split Grothendieck group of an additive category

A by Ksp
0 (A) and the Grothendieck group of an abelian or triangulated category B by

K0(B).

We first present two previous results, one by Xiao and Zhu and the other one by Palu

that in some sense are the base case of the results we present in this chapter. Note that

both Xiao and Zhu and Palu assume that k is an algebraically closed field. However, this

assumption is not needed for our higher versions and k is a general field in our setup.

Previous results. In [57, Theorem 2.1], Xiao and Zhu presented triangulated analogues

of results of Auslander [4, Theorems 2.2 and 2.3] and Butler [12, Theorem in introduction].

Theorem (Xiao and Zhu). Let C be a triangulated category of finite type, then

K0(C) ≅Ksp
0 (C)/⟨−[A] + [B] − [C] ∣ C ∈ IndC with Auslander-Reiten triangle A→ B → C ⟩.

We can think of the C appearing on the right side as the only possible 1-cluster tilting

subcategory of C. In this chapter, we are interested in higher-cluster tilting subcategories.

The first higher case occurs when C has a (2-)cluster tilting subcategory. Palu studied this

case, in a more specific setup, in [50]. In fact, Palu assumes that C is the stable category
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of a Frobenius k-linear category with split idempotents, and that C is 2-Calabi-Yau with

a (2-)cluster tilting subcategory T .

Given an indecomposable M in T , let T̃ be the additive subcategory of T whose indecom-

posables are the same as T , excluding those isomorphic to M . Then, up to isomorphism,

there is a unique indecomposable M∗ /∈ T such that add(T̃ ∪M∗) ⊆ C is (2-)cluster tilting.

Moreover, M and M∗ appear in two triangles with certain properties, called exchange

triangles, of the form:

M∗ → BM →M → ΣM∗ and M → BM∗ →M∗ → ΣM,

where BM and BM∗ are in T̃ . Palu proved the following in [50, Theorem 10].

Theorem (Palu). We have that K0(C) ≅Ksp
0 (T )/⟨[BM∗] − [BM ]⟩M .

Note that if the Auslander-Reiten quiver of T has no loops, then the indecomposable

M ∈ T has Auslander-Reiten 4-angle M → BM∗ → BM →M in the sense of [32, Theorem

3.8]. So Palu’s theorem is a higher version of Xiao and Zhu’s theorem.

We present “higher cluster tilting” versions of Xiao and Zhu and Palu’s results. Moreover,

we present a “higher angulated” version of Palu’s result.

Higher-cluster tilting versions. Let n ≥ 2 be an integer and assume that C has a Serre

functor S and an n-cluster tilting subcategory T , see Definition 2.3.42. Let IndT be a full

subcategory of T containing precisely one object from each isomorphism class of indecom-

posables in T and assume that IndT is locally bounded, see Definition 6.4.2. Recall that

the functor Sn ∶= SΣ−n and Auslander-Reiten (n + 2)-angles in T were introduced in [32,

Section 3].

Theorem 6.4.9. We have that K0(C) is isomorphic to

Ksp
0 (T )/⟨ −[M] + (−1)n[Sn(M)]+

∑n−1
i=0 (−1)i[Ti]

RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

Sn(M)→ Tn−1 → ⋅ ⋅ ⋅→ T0 →M → S(M)
⟩.

The arguments we use to prove Theorem 6.4.9 rely on n ≥ 2. However, note that when k

is an algebraically closed field, the case n = 1 is still true and it is an instance of Xiao and

Zhu’s theorem.

If we add the extra assumptions that n is even and C is n-Calabi-Yau, we obtain the

following because Sn ≅ 1C .
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Corollary 6.4.11. We have that

K0(C) ≅Ksp
0 (T )/⟨

n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

M → Tn−1 → ⋅ ⋅ ⋅→ T0 →M → ΣnM
⟩.

When n = 2 and the Auslander-Reiten quiver of T has no loops, then Corollary 6.4.11 and

Palu’s theorem coincide.

Higher-angulated version. Let d ≥ 1 be an integer and assume that C has a d-cluster

tilting subcategory S such that ΣdS = S. Note that S is a (d + 2)-angulated category

with d-suspension Σd, by Theorem 2.3.43. Similarly to the way K0(C) is defined, one can

define the Grothendieck group of the (d + 2)-angulated category S as

K0(S) ∶=Ksp
0 (S)/⟨

d+1

∑
i=0

(−1)i[Si] ∣ Sd+1 → ⋅ ⋅ ⋅→ S0 → ΣdSd+1 is a (d + 2)-angle in S⟩,

see [9, Definition 2.1]. We prove that this is isomorphic to the Grothendieck group of C.

Theorem 6.5.7. We have that K0(C) ≅K0(S).

Let n = 2d. We now add the assumptions that C has a Serre functor S and that there

is an n-cluster tilting subcategory T ⊆ C such that T ⊆ S and IndT is locally bounded.

By [49, Theorem 5.26], we have that T ⊆ S is an Oppermann-Thomas cluster tilting

subcategory, i.e. the corresponding concept in a (d + 2)-angulated category of a cluster

tilting subcategory in a triangulated category. Theorems 6.4.9 and 6.5.7 have the following

immediate consequence.

Theorem 6.6.4. We have that K0(C) ≅K0(S) and

K0(S) ≅Ksp
0 (T )/⟨ −[M] + [Sn(M)]+

∑n−1
i=0 (−1)i[Ti]

RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

Sn(M)→ Tn−1 → ⋅ ⋅ ⋅→ T0 →M → S(M)
⟩.

If we add the extra assumption that C is n-Calabi-Yau, we obtain the following.

Corollary 6.6.5. We have that

K0(S) ≅Ksp
0 (T )/⟨

n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

M → Tn−1 → ⋅ ⋅ ⋅→ T0 →M → ΣnM
⟩.

When d = 1, we have that S = C is a triangulated category with (2-)cluster tilting sub-

category T and, adding the extra assumption that the Auslander-Reiten quiver of T has
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no loops, Corollary 6.6.5 becomes Palu’s theorem. For higher values of d, Corollary 6.6.5

proves a higher angulated version of Palu’s theorem.

We conclude this chapter by illustrating our results in two examples: one for each of the

higher versions of Palu’s theorem. Let q and p be integers and q be odd. Consider the

triangulated q-cluster category of Dynkin type Ap, denoted by Cq(Ap) and introduced in

Section 3.2, and note that this is a (q + 1)-Calabi-Yau category. Since q + 1 is even by

assumption, we can apply Corollary 6.4.11 to show that

K0(Cq(Ap)) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if p is even,

Z, if p is odd.

We then consider a higher Auslander algebra A2
3 of Dynkin type A and its Amiot cluster

category C4(A2
3), to find an example of categories

T ⊆ O(A2
3) ⊆ C4(A2

3),

such that C4(A2
3) is triangulated and 4-Calabi-Yau, O(A2

3) is closed under Σ2 and 2-

cluster tilting in C4(A2
3) and T is 4-cluster tilting in C4(A2

3). Applying Theorem 6.5.7 and

Corollary 6.6.5 to this example, we find that

K0(C4(A2
3)) ≅ Z⊕Z.

This chapter is organised as follows. Section 6.2 recalls some definitions and results and

presents our setup. Section 6.3 introduces some morphisms between Grothendieck groups

that will be useful in the rest of the chapter. Section 6.4 proves Theorem 6.4.9. Section

6.5 proves Theorem 6.5.7. Section 6.6 presents Corollary 6.6.5. Finally, Sections 6.7 and

6.8 illustrate our two examples.

6.2 Setup and definitions

Definition 6.2.1. Let A be an essentially small additive category and G(A) be the

free abelian group on isomorphism classes [A] of objects A ∈ A. We define the split

Grothendieck group of A to be

Ksp
0 (A) ∶= G(A)/⟨[A⊕B] − [A] − [B]⟩.
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When A is abelian or triangulated, we can also define the Grothendieck group of A as

K0(A) ∶=Ksp
0 (A)/⟨[A] − [B] + [C] ∣ 0→ A→ B → C → 0 is a short exact sequence in A⟩ or

K0(A) ∶=Ksp
0 (A)/⟨[A] − [B] + [C] ∣ A→ B → C → ΣA is a triangle in A⟩,

respectively.

In a similar way, one can define the Grothendieck group of a (d+ 2)-angulated category S
as follows.

Definition 6.2.2. Let d be a positive integer. The Grothendieck group of a (d + 2)-

angulated category S with d-suspension functor Σd is defined to be

K0(S) ∶=Ksp
0 (S)/⟨

d+1

∑
i=0

(−1)i[Si] ∣ Sd+1 → ⋅ ⋅ ⋅→ S0 → ΣdSd+1 is a (d + 2)-angle in S⟩.

Remark 6.2.3. The definition of the Grothendieck group of a (d+2)-angulated category

S we just introduced is different from the original one, see [9, Definition 2.1], however the

two definitions are equivalent. In fact, since we define K0(S) as a quotient of Ksp
0 (S), the

relation [0] = 0 holds. On the other hand, in [9], K0(S) is defined as a quotient of the free

abelian group on the set of isomorphism classes of objects in S and the relation [0] = 0

has to be manually added when d is even.

Recall the concept of m-cluster tilting subcategory U of a triangulated category C, see

Definition 2.3.42.

Remark 6.2.4. Consider the case of a 1-cluster tilting subcategory U of C, then the

conditions Ext1...1−1
C (U ,C) = 0 and Ext1...1−1

C (C,U) = 0 are empty and C = U is the only

possible 1-cluster tilting subcategory.

Setup 6.2.5. Let m ≥ 2 be an integer and U an m-cluster tilting subcategory of C.

Definition 6.2.6 ([32, Definition 2.9]). A U-module is a contravariant k-linear functor of

the form G ∶ U →Modk. Then U-modules form an abelian category denoted ModU . We

say that G ∈ ModU is coherent if there exists an exact sequence of the form

U(−, U1)→ U(−, U0)→ G(−)→ 0,

for some U1, U0 ∈ U . We denote by modU the full subcategory of ModU consisting of

coherent U-modules.

Definition 6.2.7. There is a homological functor

FU ∶ C →modU , C ↦ C(−,C)∣U .
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Remark 6.2.8. Note that a priori the target of FU should be ModU . However, since

C = U ∗ΣU ∗ ⋅ ⋅ ⋅ ∗Σm−1U by [32, Theorem 3.1], any object C ∈ C appears in a triangle of

the form

Σ−1B → A→ C → B,

where A ∈ U ∗ΣU and B ∈ Σ2U ∗ ⋅ ⋅ ⋅ ∗Σm−1U . Applying FU to this triangle, we obtain the

exact sequence

0→ FU(A) ≅Ð→ FU(C)→ 0,

where FU(A) ∈ modU by [32, Proposition 6.2(3)] and so FU(C) ∈ modU .

Definition 6.2.9. If A and B are full subcategories of C, then

A ∗ B = {C ∈ C ∣ there is a triangle A→ C → B → ΣA with A ∈ A, B ∈ B}.

We will often use towers of triangles, as defined below. These were first introduced in [32,

Notation 3.2], see also [40, Definition 3.1].

Definition 6.2.10. A tower of triangles in C is a diagram of the form

Cl−1

��

// Cl−2

��

// ⋯ // C2
//

��

C1

��
Cl

??

Xl−2
oo

??

Xl−3
oo ⋯ X2

??

X1
oo

??

C0,oo

where l ≥ 1 is an integer, a wavy arrow X // Y signifies a morphism X → ΣY , each

oriented triangle is a triangle in C and each non-oriented triangle is commutative.

Definition 6.2.11 ([40, Definition 3.3]). By [32, Corollary 3.3], for C ∈ C there is a tower

of triangles in C of the form

Um−2
µm−2

��

// Um−3
µm−3

��

// ⋯ // U1
//

µ1

��

U0
µ0

��
Um−1

??

Xm−2
oo

??

Xm−3
oo ⋯ X2

??

X1
oo

??

C,oo

where Ui ∈ U and µi is a U-cover for each i. In particular, the Ui are determined up to

isomorphism. The index of C with respect to U is the following element of the Grothendieck

group Ksp
0 (U):

indexU(C) =
m−1

∑
i=0

(−1)i[Ui].
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Remark 6.2.12. Note that indexU ∶ Obj(C)→Ksp
0 (U) induces a homomorphismKsp

0 (C)→
Ksp

0 (U) which we also denote by indexU .

Remark 6.2.13. Note that we work in a more general setup than [40], as we dropped the

assumption that U = add U for some U ∈ C, or in other words that U has finitely many

indecomposables up to isomorphism. The arguments from [40] can be easily adjusted

in this more general setup and the main results still hold. In particular, we state the

corresponding definition of the homomorphism θ from [40, Definition 4.1] and [40, Theorem

4.5] in our setup.

Definition 6.2.14. There is a homomorphism

θU ∶K0(modU)→Ksp
0 (U),

defined by

θU([FUN]) = indexU(Σ−1N) + indexU(N)

for N ∈ U ∗ΣU .

Remark 6.2.15. Note that the fact that θU from Definition 6.2.14 is well-defined can be

proved using the equivalence of categories (U ∗ΣU)/[ΣU] ≅ modU from [32, Proposition

6.2(3)] and the general versions of [40, Lemmas 4.3, 4.4], see [40, Remark 4.2].

As mentioned in Remark 6.2.13, the argument proving [40, Theorem 4.5] can be adjusted

to prove the same result in our setup. We state it here for the convenience of the reader.

Proposition 6.2.16 ([40, Theorem 4.5]). If A
αÐ→ B

βÐ→ C
γÐ→ ΣA is a triangle in C, then

indexU(B) = indexU(A) + indexU(C) − θU(ImFU(γ)).

6.3 Morphisms between Grothendieck groups

Definition 6.3.1. There are surjective homomorphisms given by the quotient maps

πC ∶Ksp
0 (C)Ð→K0(C), πU ∶Ksp

0 (U)Ð→Ksp
0 (U)/ Im θU ,

and injective homomorphisms given by the inclusions

ιC ∶ KerπC →Ksp
0 (C), ιU ∶ KerπU →Ksp

0 (U) and jU ∶Ksp
0 (U)→Ksp

0 (C).

128



Chapter 6. Grothendieck groups of triangulated categories via cluster tilting
subcategories

Remark 6.3.2. Consider the diagram:

KerπC� _

ιC

��

KerπU� _

ιU

��
Ksp

0 (C)
indexU

,,

πC

����

Ksp
0 (U)

jU

ll

πU

����
K0(C)

fU
--
Ksp

0 (U)/ Im θU .

∃ gU ?

ll

(6.1)

It is clear that indexU ○ jU = 1Ksp
0 (U)

and so πU ○ indexU ○ jU = πU . We will show that

πC ○ jU ○ indexU = πC and that there exists a morphism fU ∶ K0(C) → Ksp
0 (U)/ Im θU such

that

fU ○ πC = πU ○ indexU .

Moreover, adding some assumptions on C and/or U , we will prove that there exists a

morphism

gU ∶Ksp
0 (U)/ Im θU →K0(C)

such that gU ○ πU = πC ○ jU . In this case, fU and gU become inverse isomorphisms. In

the next sections, we consider different sets of extra assumptions under which such a gU

exists.

Lemma 6.3.3. We have that πC ○ jU ○ indexU = πC .

Proof. Given any object C ∈ C, consider the tower of triangles from Definition 6.2.11. We

have that

indexU(C) =
m−1

∑
i=0

(−1)i[Ui].

Using the relations in K0(C) corresponding to the triangles in the tower, we have that

πC ○ jU ○ indexU([C]) = πC
⎛
⎝
m−1

∑
i=0

(−1)i[Ui]
⎞
⎠
= [C] = πC([C]).

Since this is true for arbitrary C ∈ C, we conclude that πC ○ jU ○ indexU = πC .
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Lemma 6.3.4. There is a homomorphism fU ∶K0(C)→Ksp
0 (U)/ Im θU such that

fU ○ πC = πU ○ indexU .

Proof. There exists a homomorphism fU with the desired property if and only if πU ○
indexU ○ ιC = 0. Note that

KerπC = ⟨[A] − [B] + [C] ∣ A→ B → C
γÐ→ ΣA is a triangle in C⟩.

For any generator [A]− [B]+ [C] of KerπC corresponding to a triangle A→ B → C
γÐ→ ΣA

in C, we have that

πU ○ indexU ○ ιC([A] − [B] + [C]) = πU(indexU(A) − indexU(B) + indexU(C))
= πU(θU([ImFU(γ)])) = 0,

where the second equality is obtained by Proposition 6.2.16. Hence πU ○ indexU ○ ιC = 0 as

desired.

Proposition 6.3.5. Suppose there exists a homomorphism gU ∶ Ksp
0 (U)/ Im θU → K0(C)

such that gU ○ πU = πC ○ jU . Then fU and gU are mutually inverse and

Ksp
0 (U)/ Im θU ≅K0(C).

Proof. Using Lemmas 6.3.3 and 6.3.4 and gU with the stated property, we have

fU ○ gU ○ πU = fU ○ πC ○ jU = πU ○ indexU ○ jU = πU = 1Ksp
0 (U)/ Im θU

○ πU ,

gU ○ fU ○ πC = gU ○ πU ○ indexU = πC ○ jU ○ indexU = πC = 1K0(C) ○ πC .

Since πU and πC are surjective, and hence right cancellative, we have

fU ○ gU = 1Ksp
0 (U)/ Im θU

and gU ○ fU = 1K0(C).

6.4 C with Serre functor and n-cluster tilting subcategory

T

Notation 6.4.1. We use the notation C(−,−) ∶= HomC(−,−).
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Definition 6.4.2 ([35, Section 1.1]). Let T ⊆ C be a full subcategory and IndT be

a full subcategory of T containing precisely one object from each isomorphism class of

indecomposable objects in T . We say that IndT is locally bounded if for every object

T ∈ IndT , there are only finitely many objects V ∈ IndT such that C(U,V ) ≠ 0 and only

finitely many objects W ∈ IndT such that C(W,U) ≠ 0.

Setup 6.4.3. Assume that C has a Serre functor S. Let n ≥ 2 be an integer and let T ⊆ C
be an n-cluster tilting subcategory such that Ind T is locally bounded.

Remark 6.4.4. Using the same notation as in [32, Section 3], we define the functor

Sn ∶= S ○Σ−n on C. Let M be an indecomposable in T . By [32, Theorem 3.10], there is an

Auslander-Reiten (n+ 2)-angle in T , as defined in [32, Definition 3.8], given by a tower of

triangles in C of the form:

Tn−1
τn−1

��

// Tn−2
τn−2

��

// ⋯ // T1
//

τ1

��

T0
τ0

��
Sn(M)

??

Xn−1
ξn−1

oo

??

Xn−2
ξn−2

oo ⋯ X2

??

X1
ξ1

oo

??

M.
ξ0

oo
(6.2)

Note that M, Sn(M), T0, . . . , Tn−1 ∈ T .

Lemma 6.4.5. Let M ∈ T be an indecomposable with Auslander-Reiten (n+ 2)-angle as

in (6.2). Then FT (ξi) = 0 for any i = 1, . . . , n − 1.

Proof. By [32, Definition 3.8], τi ∶ Ti →Xi is a T -cover of Xi. Hence, for every object T ∈ T
and every morphism τ ∈ C(T ,Xi), there is a morphism τ ′ ∶ T → Ti such that τ = τi ○ τ ′.
Then,

((FT (ξi))(T ))(τ) = ξi ○ τ = ξi ○ τi ○ τ ′ = 0,

where ξi ○ τi = 0 because two consecutive morphisms in a triangle compose to zero. Since

this is true for arbitrary T ∈ T and τ ∈ C(T ,Xi), we conclude that FT (ξi) = 0 for any

i = 1, . . . , n − 1.

Lemma 6.4.6. Let M ∈ T be an indecomposable and consider diagram (6.2). Then, as

an element in Ksp
0 (T ), we have

−[M] + (−1)n[Sn(M)] + [T0] − [T1] + ⋅ ⋅ ⋅ + (−1)n−1[Tn−1] = −θT ([SM ]),

where SM is the simple in modT that is the top of C(−,M)∣T , the projective in modT
corresponding to M .
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Proof. Consider the exact sequence induced by the rightmost triangle in (6.2):

C(−, T0)∣T
FT (τ0)ÐÐÐÐ→ C(−,M)∣T

FT (ξ0)ÐÐÐÐ→ C(−,ΣX1)∣T → C(−,ΣT0)∣T .

Note that C(−,ΣT0)∣T = 0 and so ImFT (ξ0) = CokerFT (τ0) = C(−,ΣX1)∣T . By [32, Defi-

nition 3.8], we have that τ0 ∶ T0 → M is minimal right almost split in T and so using [3,

Corollary 2.5], we have that

SM = C(−,ΣX1)∣T

is the simple in modT that is the top of C(−,M)∣T . Then, by Proposition 6.2.16, we have

[T0] = indexT (T0) = [M] + indexT (X1) − θT ([SM ]). (6.3)

Moreover, since τ1, . . . , τn−1 are T -covers, by Definition 6.2.11 we have

indexT (X1) =
n−1

∑
i=1

(−1)i−1[Ti] + (−1)n−1[Sn(M)].

Substituting this into (6.3), we conclude that

−[M] + (−1)n[Sn(M)] + [T0] − [T1] + ⋅ ⋅ ⋅ + (−1)n−1[Tn−1] = −θT ([SM ]).

Remark 6.4.7. Note that Lemma 6.4.6 can be applied to any indecomposable in T .

Moreover, since Ind T is locally bounded, then each object in modT has finite length and

K0(modT ) is generated by the equivalence classes of the simples in modT . Since any

simple object in modT has the form SM for some indecomposable M ∈ T , see [18, Sections

3.1 and 3.2], we have

Im θT = ⟨ −[M] + (−1)n[Sn(M)] +
n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten

(n + 2)-angle (6.2)
⟩.

Lemma 6.4.8. There is a morphism gT ∶Ksp
0 (T )/ Im θT →K0(C) such that

gT ○ πT = πC ○ jT .

Proof. Consider diagram (6.1) with U = T . A morphism gU with the desired property
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exists if and only if πC ○ jT ○ ιT = 0. By Remark 6.4.7, we have

KerπT = ⟨ −[M] + (−1)n[Sn(M)] +
n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten

(n + 2)-angle (6.2)
⟩.

Then, for any generator −[M] + (−1)n[Sn(M)] +∑n−1
i=0 (−1)i[Ti] of KerπT corresponding

to the Auslander-Reiten (n + 2)-angle (6.2), we have

πC ○ jT ○ ιT ( − [M] + (−1)n[Sn(M)] +
n−1

∑
i=0

(−1)i[Ti]) = −[M] + (−1)n[Sn(M)] +
n−1

∑
i=0

(−1)i[Ti]

= 0,

where all the terms cancel because of the relations in K0(C) corresponding to the triangles

in the tower (6.2). Hence πC ○ jT ○ ιT = 0 as desired.

Theorem 6.4.9. We have that K0(C) is isomorphic to

Ksp
0 (T )/⟨ −[M] + (−1)n[Sn(M)]+

∑n−1
i=0 (−1)i[Ti]

RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

Sn(M)→ Tn−1 → ⋅ ⋅ ⋅→ T0 →M → S(M)
⟩.

Proof. By Lemma 6.4.8, there exists a homomorphism gT ∶ Ksp
0 (T )/ Im θT → K0(C) such

that gT ○ πT = πC ○ jT . Then, by Proposition 6.3.5, we have that K0(C) ≅ Ksp
0 (T )/ Im θT

and, by Remark 6.4.7, this completes the proof.

Remark 6.4.10. Note that our argument does not apply to the case when n = 1 as it uses

some results, such as Proposition 6.2.16, that rely on n ≥ 2. However, in the case when k

is an algebraically closed field and n = 1, Theorem 6.4.9 is an instance of the triangulated

analogue by Xiao and Zhu of results of Auslander, see [4, Theorems 2.2 and 2.3], and

Butler, see [12, Theorem in introduction], on certain module categories. In this case, the

only choice of 1-cluster tilting subcategory is C = T and the tower of triangles (6.2) is an

Auslander-Reiten triangle in C of the form

δ ∶ SΣ−1(M)→ T0 →M → ΣSΣ−1(M).

Note that, since IndT is locally bounded, we have that C = T is of finite type. Then, by

[57, Theorem 2.1], we have that K0(C) is isomorphic to the quotient of Ksp
0 (C) by the

elements [δ] ∶= −[M] + [T0] − [SΣ−1(M)], where δ runs through all the Auslander-Reiten

triangles in C.

Corollary 6.4.11. Assume that n ≥ 2 is an even integer, C is n-Calabi-Yau and that there
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is a T ⊆ C as in Setup 6.4.3. We then have that

K0(C) ≅Ksp
0 (T )/⟨

n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

M → Tn−1 → ⋅ ⋅ ⋅→ T0 →M → ΣnM
⟩.

Proof. Since C is n-Calabi-Yau, it has Serre functor S = Σn so this situation is a special

case of Setup 6.4.3. Note also that in this case Sn = S ○Σ−n is the identity functor on C.
Hence, since n is even, we have that −[M] + (−1)n[Sn(M)] = −[M] + [M] = 0 and the

result follows from Theorem 6.4.9.

Remark 6.4.12. Note that when n = 2 and the Auslander-Reiten quiver of T has no loops,

Corollary 6.4.11 coincides with [50, Theorem 10]. In this case, if M is an indecomposable

direct summand of T , then its Auslander-Reiten 4-angle is M → BM∗ → BM →M → Σ2M ,

where BM , BM∗ are defined as in [50, p. 1444]. However, if we do not assume that the

Auslander-Reiten quiver of T has no loops, some of the Auslander-Reiten 4-angles in T
do not come from Palu’s exchange triangles and Corollary 6.4.11 and [50, Theorem 10]

are different.

6.5 A Σd-stable, d-cluster tilting subcategory S ⊆ C

Setup 6.5.1. Let d ≥ 1 be an integer and S ⊆ C be a d-cluster tilting subcategory. Assume

also that ΣdS = S. Then, by Theorem 2.3.43, we have that S is a (d+2)-angulated category

with d-suspension functor Σd.

Lemma 6.5.2. Consider a (d + 2)-angle in S of the form

Sd+1
// Sd // ⋯ // S2

// S1
// S0

// ΣdSd+1.

By Theorem 2.3.43, it corresponds to a tower of triangles in C:

Sd
σd

��

// Sd−1
σd−1

��

// ⋯ // S3
//

σ3

��

S2
σ2

��

// S1

��
Sd+1

??

Yd−1ηd−1

oo

??

Yd−2ηd−2

oo ⋯ Y3

??

Y2η2

oo

??

Y1η1

oo

??

S0.η0

oo

(6.4)

This tower satisfies FS(ηl) = 0 for any integer 1 ≤ l ≤ d − 1.

Proof. Let Yd ∶= Sd+1. In order to prove that FS(ηl) = 0, we prove that its target FS(ΣYl+1)
is zero. More generally, we prove that FS(ΣiYd−j) = 0 for any integers 0 ≤ j ≤ d − 2 and

1 ≤ i ≤ d − j − 1.
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First note that for j = 0, we have FS(ΣiYd) = 0 for any 1 ≤ i ≤ d − 1, since Yd = Sd+1 ∈ S.

Suppose that for some 0 ≤ j ≤ d − 2, we proved that

FS(ΣiYd−r) = 0 for any 0 ≤ r ≤ j and 1 ≤ i ≤ d − r − 1. (†)

If j = d − 2, then we are done. So assume j ≤ d − 3. We need to prove that

FS(Σi′Yd−(j+1)) = 0 for any 1 ≤ i′ ≤ d − j − 2.

Given any 1 ≤ i′ ≤ d − j − 2, the triangle Sd−j → Yd−(j+1) → ΣYd−j → ΣSd−j induces the

exact sequence:

FS(Σi′Sd−j)→ FS(Σi′Yd−(j+1))→ FS(Σi′+1Yd−j).

Note that FS(Σi′Sd−j) = 0 since Sd−j ∈ S and 1 ≤ i′ < d−1. Moreover, FS(Σi′+1Yd−j) = 0 by

(†) with r = j and as 1 < i′ +1 ≤ d− j −1. Hence FS(Σi′Yd−(j+1)) = 0 for any 1 ≤ i′ ≤ d− j −2

as we wished to show.

Remark 6.5.3. Consider a (d + 2)-angle in S of the form

Sd+1
// Sd // ⋯ // S2

// S1
// S0

// ΣdSd+1.

By Theorem 2.3.43, it corresponds to a tower of triangles in C of the form (6.4). By

Lemma 6.5.2, we have that FS(ηl) = 0 for any integer 1 ≤ l ≤ d − 1. Hence σl+1 ∶ Sl+1 → Yl

is an S-precover. If it is not right minimal, then Sl+1 ≅ Sl+1 ⊕ S′l+1 and σl+1 is isomorphic

to a morphism of the form (0, σ′l+1) ∶ Sl+1 ⊕ S′l+1 → Yl, where σ′l+1 is an S-cover of Yl. It is

then easy to check that Sl+1 appears as a summand of Sl+2 and so it gets cancelled when

computing [Sl+1] − [Sl+2]. Hence, the morphisms σl do not need to be S-covers for using

the tower (6.4) to compute indexS(Y1). In other words,

indexS(Y1) =
d+1

∑
i=2

(−1)i[Si].

Proposition 6.5.4. When d ≥ 2, we have that

Im θS = ⟨
d+1

∑
i=0

(−1)i[Si] ∣ Sd+1 → ⋅ ⋅ ⋅→ S0 → ΣdSd+1 is a (d + 2)-angle in S⟩.

Proof. We prove this by proving that the two inclusions hold.
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(⊆). Given any Y ∈ S ∗ΣS, there is a triangle in C of the form

S0
η0 // Y // ΣS1

// ΣS0,

where S0, S1 ∈ S. Letting Y1 ∶= Σ−1Y ∈ C, we obtain a triangle in C of the form

∆ ∶ Y1
// S1

// S0
η0 // ΣY1.

Since S is d-cluster tilting in C, by [32, Corollary 3.3], we can construct a tower of triangles

in C of the form

Sd

��

// Sd−1

��

// ⋯ // S3
//

��

S2

��
Sd+1

??

Yd−1ηd−1

oo

??

Yd−2ηd−2

oo ⋯ Y3

??

Y2η2

oo

??

Y1,η1

oo

where S2, . . . , Sd+1 are in S. Putting this together with triangle ∆, we obtain the tower

of triangles (6.4) in C, which corresponds to the (d + 2)-angle in S:

Sd+1
// Sd // ⋯ // S2

// S1
// S0

// ΣdSd+1.

By Proposition 6.2.16, we have that in Ksp
0 (S):

[S1] = indexS(Y1) + [S0] − θS([ImFS(η0)]).

Moreover, since FS(ΣS1) = 0, we have that FS(η0) is surjective and so

[S1] = indexS(Y1) + [S0] − θS([FS(ΣY1)]).

We have that indexS(Y1) = ∑d+1
i=2 (−1)i[Si] and so

d+1

∑
i=0

(−1)i[Si] = θS([FS(ΣY1)]) = θS([FS(Y )]).

(⊇). Given a (d + 2)-angle in S of the form

Sd+1
// Sd // ⋯ // S2

// S1
// S0

// ΣdSd+1,

consider the corresponding tower (6.4) of triangles in C. By Remark 6.5.3, we have that

indexS(Y1) = ∑d+1
i=2 (−1)i[Si]. Using Proposition 6.2.16 on the rightmost triangle in tower
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(6.4), namely Y1 → S1 → S0
η0Ð→ ΣY1, we conclude that

d+1

∑
i=0

(−1)i[Si] = θS([ImFS(η0)]) ∈ Im θS .

Remark 6.5.5. By Proposition 6.5.4 and Definition 6.2.2, for d ≥ 2, we have that

K0(S) =Ksp
0 (S)/ Im θS .

Suppose now that IndS is locally bounded and C has a Serre functor S. By [32, Theorem

3.10], for every indecomposable M in S, there is an Auslander-Reiten (d + 2)-angle in S
of the form

Sd(M) // Sd−1
// ⋯ // S1

// S0
//M // ΣdSd(M), (6.5)

where Sd = S ○Σ−d. Then, by Remark 6.4.7, we have that K0(S) is equal to

Ksp
0 (S)/⟨ −[M] + (−1)d[Sd(M)] +

d−1

∑
i=0

(−1)i[Si]
RRRRRRRRRRR

M ∈ IndS with Auslander-Reiten

(d + 2)-angle (6.5)
⟩.

This result agrees with [58, Theorem 3.7]. Note that there are two differences between

ours and Zhou’s result. The first one is that we do not assume that d is odd, and the

second one is that Zhou’s (d+2)-angulated category is not assumed to arise as a d-cluster

tilting subcategory of a triangulated category.

Lemma 6.5.6. When d ≥ 2, there is a morphism gS ∶ K0(S) = Ksp
0 (S)/ Im θS → K0(C)

such that

gS ○ πS = πC ○ jS .

Proof. Consider diagram (6.1) with U = S. Note that a morphism gS with the desired

property exists if and only if πC ○ jS ○ ιS = 0. Note that, by Proposition 6.5.4, the group

KerπS is generated by elements of the form

d+1

∑
i=0

(−1)i[Si],

for some (d + 2)-angle in S of the form Sd+1 → ⋅ ⋅ ⋅ → S0 → ΣdSd+1. Such a (d + 2)-angle
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corresponds to a tower of triangles in C of the form (6.4). Then, we have

πC ○ jS ○ ιS(
d+1

∑
i=0

(−1)i[Si]) = [S0] − ([S0] + [Y1]) +⋯ + (−1)d([Yd−1] + [Sd+1]) + (−1)d+1[Sd+1]

= 0,

where we have used the relations in K0(C) corresponding to the triangles in the tower

(6.4), for instance [S1] = [S0] + [Y1]. Hence πC ○ jS ○ ιC = 0 as desired.

Theorem 6.5.7. We have that

K0(C) ≅K0(S).

Proof. If d = 1, then S = C and the result is clear. So assume d ≥ 2. By Lemma 6.5.6,

there exists a homomorphism gS ∶ Ksp
0 (S)/ Im θS → K0(C) such that gS ○ πS = πC ○ jS .

Then, by Proposition 6.3.5, we have that K0(C) ≅ Ksp
0 (S)/ Im θS and, by Remark 6.5.5,

this completes the proof.

6.6 The case when n = 2d and T ⊆ S ⊆ C

Setup 6.6.1. Let d ≥ 1 be an integer and n = 2d. Assume that C has a Serre functor S
and T ⊆ S ⊆ C are such that T is an n-cluster tilting subcategory in C such that IndT is

locally bounded and S is a d-cluster tilting subcategory in C such that ΣdS = S. Then S
is a (d + 2)-angulated category with d-suspension Σd.

Definition 6.6.2 ([49, Definition 5.3]). A functorially finite, full subcategory T ⊆ S is an

Oppermann-Thomas cluster tilting subcategory if:

(a) S(T ,ΣdT ) = 0,

(b) for each S′ ∈ S, there is a (d + 2)-angle Td → ⋅ ⋅ ⋅→ T0 → S′ → ΣdTd in S with Ti ∈ T .

Remark 6.6.3. The subcategory T ⊆ S from Setup 6.6.1 is an Oppermann-Thomas

cluster tilting subcategory by [49, Theorem 5.25]. Note that in [49, Definition 5.3 and

Theorem 5.25] T is assumed to have finitely many indecomposables up to isomorphism.

We are not restricting to this case and it can be easily checked that the proof of [49,

Theorem 5.25] still goes through without this restriction.

Theorem 6.6.4. We have K0(C) ≅K0(S) and

K0(S) ≅Ksp
0 (T )/⟨ −[M] + [Sn(M)]+

∑n−1
i=0 (−1)i[Ti]

RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

Sn(M)→ Tn−1 → ⋅ ⋅ ⋅→ T0 →M → S(M)
⟩.
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Proof. This follows by combining Theorem 6.4.9 and Theorem 6.5.7, and noting that

[Sn(M)] = (−1)n[Sn(M)] since n = 2d is even.

Corollary 6.6.5. If in Setup 6.6.1 we also have that C is n-Calabi-Yau, then

K0(S) ≅Ksp
0 (T )/⟨

n−1

∑
i=0

(−1)i[Ti]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (n + 2)-angle

M → Tn−1 → ⋅ ⋅ ⋅→ T0 →M → ΣnM
⟩.

Proof. Since C is n-Calabi-Yau, it has Serre functor S = Σn. Then Sn is the identity functor

on C and the result follows from Theorem 6.6.4.

Remark 6.6.6. When d = 1, we have that S = C is a triangulated category with cluster

tilting subcategory T and, adding the extra assumption that the Auslander-Reiten quiver

of T has no loops, Corollary 6.6.5 becomes [50, Theorem 10] by Palu. For higher values

of d, Corollary 6.6.5 is a higher angulated version of Palu’s theorem.

6.7 The Grothendieck group associated to Cq(Ap) for q odd

In this section, we compute the Grothendieck group of the triangulated q-cluster category

of Dynkin type Ap for q odd. Recall that we introduced this category and its geometric

realisation in Section 3.2. Using the described geometric realisation, we can fully describe

the (q + 1)-cluster tilting objects in Cq(Ap).

Definition 6.7.1. A (q + 2)-angulation of the N -gon P , where N = (p + 1)q + 2, is a

maximal collection of non-crossing q-allowable diagonals.

Proposition 6.7.2 ([47, proposition 2.14]). There is a bijection

⎧⎪⎪⎨⎪⎪⎩

(q + 2)-angulations

of P

⎫⎪⎪⎬⎪⎪⎭
Ð→

⎧⎪⎪⎨⎪⎪⎩

(q + 1)-cluster tilting objects

in Cq(Ap)

⎫⎪⎪⎬⎪⎪⎭

sending a (q + 2)-angulation T = {T0, . . . , Tp−1} to the (q + 1)-cluster tilting object T0 ⊕
⋅ ⋅ ⋅ ⊕ Tp−1.

Proposition 6.7.3. Assume that q is odd. We have that

K0(Cq(Ap)) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if p is even,

Z, if p is odd.

Proof. Consider the (q + 2)-angulation T = T0, . . . , Tp−1, where

T0 = (0, q + 1) and Ti = (N − i, (1 + i)q + 1 − i), for 1 ≤ i ≤ p − 1,
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see Figure 6.1. Note that by Proposition 6.7.2, this corresponds to the (q + 1)-cluster

tilting object T0 ⊕ ⋅ ⋅ ⋅ ⊕ Tp−1. Let T ∶= add(T0 ⊕ ⋅ ⋅ ⋅ ⊕ Tp−1) ⊆ Cq(Ap) be the corresponding

(q + 1)-cluster tilting subcategory. We want to find the Auslander-Reiten (q + 3)-angle

0

N−1

N−2

N−p+1

q+12q

3q−1

pq−p+2

⋮

T0

T1

T2

Tp−1

Figure 6.1: The (q + 2)-angulation T .

starting and ending at Ti for 0 ≤ i ≤ p − 1.

Consider i = 0. By Lemma 3.2.11 there are no non-zero morphisms Ti → T0 for i ≠ 0,

so that τ0 ∶ 0 → T0 is a right almost split morphism in T . Consider −q + 2 ≤ j ≤ −1.

Note that, since ΣjT0 = {−j, q + 1 − j}, Lemma 3.2.10 can be used to check that for all

indecomposables Ti in T , we have that Hom(Ti,ΣjT0) = 0. Hence τ−j ∶ 0 → ΣjT0 is a T -

cover for any −q+2 ≤ j ≤ −1. Moreover, by Lemma 3.2.11, we have that τq−1 ∶ T1 → Σ−q+1T0

is a T -cover. Using Proposition 3.2.20, the morphism τq−1 extends to the non-split triangle

ΣT0 → T1
τq−1ÐÐ→ Σ−q+1T0 → Σ2T0.

Applying Lemma 3.2.11 to ΣT0 = {N − 1, q}, we see that Hom(T ,ΣT0) = 0. Hence τq ∶ 0→
ΣT0 is a T -cover. The Auslander-Reiten (q + 3)-angle starting and ending at T0 is then

the one corresponding to the following tower of triangles:

0
τq

��

// T1 τq−1

��

// 0
τq−2

��

// ⋯ // 0 //
τ1
��

0
τ0
��

T0

??

ΣT0
oo

??

Σ−q+1T0
oo

??

Σ−q+2T0
oo ⋯ Σ−2T0

??

Σ−1T0
oo

??

T0.oo

In a similar way, we can find the remaining Auslander-Reiten (q + 3)-angles. These are
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the ones corresponding to the following towers of triangles:

0
τq

��

// Ti+1
τq−1

��

// 0
τq−2

��

// ⋯ // 0 //
τ2
��

Ti−1
//

τ1
��

0
τ0

��
Ti

??

ΣTioo

??

Aioo

??

ΣAioo ⋯ Σq−4Ai

??

Σq−3Aioo

??

Σ−1Tioo

??

Ti,oo

where Ai ∶= {(i + 2)q − i, (i + 1)q − i − 1}, for 1 ≤ i ≤ p − 2, and

0
τq

��

// 0
τq−1

��

// ⋯ // 0 //
τ2
��

Tp−2
//

τ1
��

0
τ0

��
Tp−1

??

ΣTp−1
oo

??

Σ2Tp−1
oo ⋯ Σq−2Tp−1

??

Σq−1Tp−1
oo

??

Σ−1Tp−1
oo

??

Tp−1.oo

Recall that by Corollary 6.4.11, we have that

K0(Cq(Ap)) ≅Ksp
0 (T )/⟨

q

∑
i=0

(−1)i[T i]
RRRRRRRRRRR

M ∈ IndT with Auslander-Reiten (q + 3)-angle

M → T q → ⋅ ⋅ ⋅→ T 0 →M → Σq+1M
⟩.

Using the Auslander-Reiten (q+3)-angles found and the fact that q is odd, we obtain that

in the quotient group on the right hand side, we have

[T1] = [Tp−2] = 0 and [Ti−1] = [Ti+1] for 1 ≤ i ≤ p − 2.

This implies that

• if p is even, then [Ti] = 0 for all 0 ≤ i ≤ p − 1,

• if p is odd, then 0 = [T1] = . . . [Tp−2] and 0 ≠ [T0] = ⋅ ⋅ ⋅ = [Tp−1].

Hence

K0(Cq(Ap)) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if p is even,

Z if p is odd.

6.8 A higher angulated cluster category of type A

Let p and d be positive integers. We denote by Adp the (d−1)-st higher Auslander k-algebra

of linearly oriented Ap, see [49, Section 3]. This is a d-representation finite algebra, in

the sense that it has a d-cluster tilting module and gldim(Adp) ≤ d, see [31, Definition

2.19]. Note that, using this notation, A1
p = kAp is the usual path algebra of Ap with linear
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orientation. Let modAdp be the category of finitely generated Adp-modules and Db(modAdp)
be its bounded derived category. We denote by S its Serre functor and by Σ its suspension

functor.

Definition 6.8.1 ([49, Construction 5.13]). For δ ≥ d, the δ-Amiot cluster category of Adp

is defined to be

Cδ(Adp) = triangulated hull of Db(modAdp)/(Sδ),

where Sδ ∶= S ○Σ−δ.

Remark 6.8.2. The category Cδ(Adp) is a triangulated category containing the orbit

category Db(modAdp)/(Sδ). We do not give a formal definition of triangulated hull here.

Note that, by [49, Theorem 5.14], we have that if δ > d, then Cδ(Adp) is Hom-finite and

δ-Calabi-Yau.

Remark 6.8.3. Let M be the unique d-cluster tilting object in modAdp. Then

U ∶= add{ΣidM ∣ i ∈ Z} ⊆ Db(modAdp)

is a d-cluster tilting subcategory by Remark 2.3.44.

Definition 6.8.4 ([49, Definition 5.22]). The (d + 2)-angulated cluster category of Adp is

defined to be the orbit category

O(Adp) = U/(S2d)

Remark 6.8.5. Note that O(Adp) comes with an inclusion into

Db(modAdp)/(S2d) ⊆ C2d(Adp).

Moreover, by [49, Theorem 5.24], we have that O(Adp) ⊆ C2d(Adp) is d-cluster tilting and

O(Adp) is (d + 2)-angulated.

Notation 6.8.6. Let Z be a cyclically ordered set with p+ 2d+ 1 elements. We can think

of Z as marked points on a circle labeled 1 to p + 2d + 1 in the anticlockwise direction.

Given three points u, v,w, we write u < v < w if they appear in the order u, v,w when going

through the points in the anticlockwise direction. Moreover, given two distinct points u

and v, we can consider the interval of points [u, v] and in this “<” is a total order.

For a point v, we denote by v+ its successor and by v− its predecessor in the anticlockwise

direction. We say that two points are neighbours if one is the successor of the other.
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Lemma 6.8.7 ([49, Proposition 6.10]). There is a bijection

IndO(Adp)←→ {X = {x0, . . . , xd} ⊂ Z ∣X contains no neighbouring points}.

We will use it to identify the indecomposable objects of O(Adp) with the sets X. For

X = {x0, . . . , xd} ∈ IndO(Adp), we have that

ΣdX = SdX = {x−0 , . . . , x−d}.

Definition 6.8.8. For X, Y ∈ IndO(Adp), we say that X intertwines Y if we can write

X = {x0, . . . , xd} and Y = {y0, . . . , yd} such that

x0 < y0 < x1 < ⋅ ⋅ ⋅ < yd−1 < xd < yd < x0.

Note that in this case also Y intertwines X.

Lemma 6.8.9 ([49, proposition 6.1]). Given X and Y in IndO(Adp), we have that

Extd
O(Ad

p)
(X,Y ) ≠ 0

if and only if X intertwines Y . In this case, Extd
O(Ad

p)
(X,Y ) is one-dimensional over k.

Lemma 6.8.10 ([49, Proposition 6.11]). Let X = {x0, . . . , xd} and Y = {y0, . . . , yd} ∈
IndO(Adp) be such that

x0 < y0 < x1 < ⋅ ⋅ ⋅ < yd−1 < xd < yd < x0,

so X intertwines Y . Then there is a (d + 2)-angle in O(Adp) of the form

X Ð→ Ed Ð→ . . .Ð→ E1 Ð→ Y Ð→ ΣdX with Er = ⊕
I⊆{0,...,d}
∣I ∣= r

{xi ∣ i ∈ I} ∪ {yj ∣ j /∈ I},

where {xi ∣ i ∈ I} ∪ {yj ∣ j /∈ I} is interpreted as zero if it contains neighbouring points.

Lemma 6.8.11. We have that T ⊆ O(Adp) is Oppermann-Thomas cluster tilting if and

only if IndT is a maximal set of non-intertwining elements in O(Adp) of cardinality

⎛
⎝
p + d − 1

d

⎞
⎠
.

Proof. By [49, Theorem 6.4], we have that T ⊆ O(Adp) is Oppermann-Thomas cluster

tilting if and only if it corresponds to a triangulation of C(p + 2d + 1,2d), in the notation

of Oppermann and Thomas, see [49, Page 2]. Moreover, by [49, Theorems 2.3 and 2.4]

143



Chapter 6. Grothendieck groups of triangulated categories via cluster tilting
subcategories

such triangulations are precisely maximal sets of non-intertwining elements in O(Adp) of

cardinality

⎛
⎝
p + d − 1

d

⎞
⎠
.

Remark 6.8.12. Note that, by [49, Theorem 5.25], an object T ∈ O(Adp) is Oppermann-

Thomas cluster tilting if and only if it is 2d-cluster tilting when seen as an object in

C2d(Adp).

Hence, if we can find T = add(T ) ⊆ O(Adp) Oppermann-Thomas cluster tilting, we have

T ⊆ O(Adp) ⊆ C2d(Adp),

where C2d(Adp) is triangulated and 2d-Calabi-Yau, O(Adp) is closed under Σd and d-cluster

tilting in C2d(Adp) and T is 2d-cluster tilting in C2d(Adp). That is, we are in the situation

of Setup 6.6.1 with S = O(Adp) and C = C2d(Adp). We now choose specific values for d and

p and, using our results, we find K0(C2d(Adp)) for these values. The following result will

be widely used for the computations in our example.

Proposition 6.8.13 ([40, Theorem 5.9]). If sd+1 → ⋅ ⋅ ⋅→ s0
γÐ→ Σdsd+1 is a (d+ 2)-angle in

S, then

d+1

∑
i=0

(−1)iindexT (si) = θT ([ImFT (γ)]).

Example 6.8.14. Let p = 3 and d = 2, so that ∣Z ∣ = p+ 2d+ 1 = 8. For simplicity, we write

the indecomposable {x0, x1, x2} as x0x1x2. We have

IndO(A2
3) = {135,136,137,146,147,157,246,247,248,257,258,268,357,358,368,468}.

Moreover, the object T = 135 ⊕ 136 ⊕ 137 ⊕ 146 ⊕ 147 ⊕ 157 ∈ O(A2
3) is such that its

indecomposable direct summands are a maximal set of non-intertwining elements in O(A2
3)

of the overall maximal size ( 3+2−1
2 ) = ( 4

2 ) = 6. So T = add(T ) ⊂ O(A2
3) is Oppermann-

Thomas cluster tilting.

Using some 4-angles in O(A2
3) obtained as described in Lemma 6.8.10 and [40, Lemma

5.6], we find the index of the indecomposables in O(A2
3) with respect to T . For example,

considering X = 135 and Y = 246, by Lemma 6.8.10 we have a 4-angle in O(A2
3) of the
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form

135→ 136→ 146→ 246
γÐ→ Σ2135.

Note that, since 135 ∈ T , by [40, Lemma 5.6], we have that

indexT (246) = indexT (146) − indexT (136) + indexT (135) = [146] − [136] + [135].

The other indices can be computed in a similar way, see Table 6.1. Brackets [−] for classes

in Ksp
0 (T ) are omitted both in the table and in the rest of this example.

s ∈ O(A2
3) indexT (s)

135 135
136 136
137 137
146 146
147 147
157 157
246 146 − 136 + 135
247 147 + 135 − 137
248 135
257 157 − 137 + 136
258 136
268 137
357 157 − 147 + 146
358 146
368 147
468 157

Table 6.1: The index of objects of O(A2
3) with respect to T .

Consider the endomorphism algebra Γ ∶= EndO(A2
3)
(T ). The indecomposable projective

Γ-modules are Px ∶= HomO(A2
3)
(T,x), for x ∈ T indecomposable. The simple top of Px is

then denoted by Sx. We compute θT ([S]) for every simple Γ-module S. In order to do

this, we choose some morphisms γ in T , extend them to 4-angles in O(A2
3) using Lemma

6.8.10, and compute θT ([ImFT (γ)]) using Proposition 6.8.13 and Table 6.1, see Table

6.2. For example, consider γ ∶ 135 → 136, then we can find ImFT (γ) as a representation
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s3 → s2 → s1 → s0
γÐ→ Σ2s3 [ImFT (γ)] ∈K0(mod Γ) θT ([ImFT (γ)])

247→ 257→ 357→ 135
γÐ→ 136 [S135] 136 − 146

257→ 357→ 135→ 136
γÐ→ 146 [S136] −135 + 137 + 146 − 147

258→ 358→ 135→ 137
γÐ→ 147 [S136] + [S137] −135 − 136 + 137 + 146

258→ 268→ 468→ 146
γÐ→ 147 [S136] + [S146] −136 + 137 + 146 − 157

268→ 468→ 146→ 147
γÐ→ 157 [S137] + [S147] −137 − 146 + 147 + 157

268→ 0→ 0→ 157
γÐ→ 157 [S137] + [S147] + [S157] −137 + 157

Table 6.2: Evaluation of θT at some useful values.

of the following quiver with relations:

137

��
136

??

��

147

��
135

??

146

??

157.

Note that HomO(A2
3)
(T,135) is 1-dimensional over k and generated by the morphism

whose only non-zero component from T is the identity on 135. So we use the notation

HomO(A2
3)
(T,135) = ⟨id135⟩ and similarly HomO(A2

3)
(T,136) = ⟨γ, id136⟩ is 2-dimensional

over k. Then, we have that

FT (γ) ∶ ⟨id135⟩→ ⟨γ, id136⟩

and ImFT (γ) = ⟨γ⟩ = S135, the simple Γ-module at 135. Moreover, note that Σ2247 = 136

and, using Lemma 6.8.10 we find the 4-angle

247→ 257→ 357→ 135
γÐ→ Σ2247.

By [40, Theorem 5.9] and Table 6.1, we have that

θT ([S135]) = θT ([ImFT (γ)]) = 135 − indexT (357) + indexT (257) − indexT (247)
= 136 − 146.

Since θT is additive, we can compute θT at the simple Γ-modules using Table 6.2, see Table

6.3. Note that ⟨θT ([S]) ∣ S is a simple Γ − module⟩ generates Im θT since K0(mod Γ) is

generated by the classes of the simple Γ-modules. Hence, using Table 6.3, inKsp
0 (T )/ Im θT
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[Sx] ∈K0(mod Γ) θT ([Sx])
[S135] 136 − 146
[S136] −135 + 137 + 146 − 147
[S137] −135 + 137 + 146 − 147
[S146] 135 − 136 + 147 − 157
[S147] 136 − 137 − 146 + 157
[S157] 146 − 147

Table 6.3: Evaluation of θT at the simple Γ-modules Sx.

we have that

136 = 146 = 147 and 137 = 135 = 157.

By Remark 6.4.7, Theorem 6.5.7 and Corollary 6.6.5, we conclude that

K0(C4(A2
3)) ≅K0(O(A2

3)) ≅K
sp
0 (T )/ Im θT ≅ Z⊕Z.
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Chapter 7

Almost split morphisms in

subcategories of triangulated

categories

7.1 Introduction

In Chapter 2, we introduced Auslander-Reiten sequences in abelian categories of the

form mod Λ and Auslander-Reiten triangles in triangulated categories T . The theory

of Auslander-Reiten sequences has been extended to the study of Auslander-Reiten se-

quences in subcategories of mod Λ by Auslander and Smalø in [7]. In the same fashion,

Jørgensen extended Happel’s theory on Auslander-Reiten triangles in triangulated cate-

gories to the study of Auslander-Reiten triangles in their non-triangulated subcategories

in [37].

Let k be a field and T a skeletally small k-linear Hom-finite triangulated category with

split idempotents having a Serre functor S. Let C ⊆ T be a full subcategory closed under

summands and extensions. As seen in Theorem 2.2.46, any indecomposable object X in

T has an Auslander-Reiten triangle in T of the form

τX → Z →X → ΣτX,

where τX = S ○ Σ−1X. The main theorem in [37] shows that, if C is an indecomposable

in C such that Hom(C,ΣC) is non-zero, then there is an Auslander-Reiten triangle in C of

the form

A→ B → C → ΣA
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if and only if there is a C-cover A→ τC.

Here we focus on the objects for which this theorem cannot be applied, i.e. the objects C

in C with Hom(C,ΣC) = 0, which we call Ext-projectives. Similarly, the objects for which

the dual of the above theorem cannot be applied are called Ext-injectives. Some of the

results we prove about these objects and the triangles they appear in are inspired by the

ones on Ext-projective (and Ext-injective) modules and the properties of the short exact

sequences they appear in, proven by Kleiner in [43].

Note that an Ext-projective object C cannot appear in an Auslander-Reiten triangle in C
of the form

A→ B → C
γÐ→ ΣA,

since γ = 0 would be forced, contradicting Definition 7.2.4 below. However, as shown in

the following theorem, for a suitable subcategory C, we can find something quite similar

to an Auslander-Reiten triangle in C.

Theorem 7.2.6. Let β ∶ B → C be a minimal right almost split morphism in C with C

Ext-projective.

(a) The triangle

∆ ∶X ξÐ→ B
βÐ→ C → ΣX

is such that X is an indecomposable object not in C and ξ is a C-envelope of X.

(b) In part (a), the end terms X and C determine each other. That is, suppose β′ ∶ B′ →
C ′ is another minimal right almost split morphism in C with C ′ Ext-projective and

extend it to a triangle: X ′ → B′ β
′

Ð→ C ′ → ΣX ′. Then C ′ ≅ C if and only if X ′ ≅X.

For their similarity with Auslander-Reiten triangles, we call the triangles of the form ∆

left-weak Auslander-Reiten triangles in C. Note that β ∶ B → C, and hence ∆, exist in

fairly general circumstances, for example if C is indecomposable and C is functorially finite

in T , see [32, Propositions 2.10 and 2.11].

For an algebra Λ and a finitely generated Λ-module M , we can construct an injective

resolution of M using monomorphisms into injectives and their cokernels:

µM � r

$$
M �
� // I0

:: ::

// I1

## ##

// I2 // ⋯.

µ2M
- 
;;
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In a similar way, whenever C has C-envelopes, one can construct a minimal right C-
resolution of any object Z in T , see Remark 7.3.1. Our second theorem gives us a way to

find the Ext-projectives when C has both C-precovers and C-preenvelopes.

Theorem 7.3.2. Assume C is functorially finite, let C ∈ C be indecomposable. Then C is

Ext-projective if and only if C is a direct summand of C1, for some Z in T with minimal

right C-resolution

Z → C0 → C1 → ⋯,

constructed as described in Remark 7.3.1.

In [32], Iyama and Yoshino defined the mutation of a subcategory of T with respect

to a rigid subcategory D of T . Under some assumptions, mutating an extension closed

subcategory C of T with respect to a rigid D ⊆ C, gives a new extension closed subcategory

of T , see [59, Theorem 3.3]. We introduce a similar process to this and show how, in

some cases, removing the third term of a left-weak Auslander-Reiten triangle ∆ in C and

replacing it with the first term of ∆, gives a new extension closed subcategory of T . Let X
be an additive subcategory of T , let IndX denote a maximal set of pairwise non-isomorphic

indecomposable objects in X .

Theorem 7.4.4. Assume C is functorially finite in T and C ∈ C is an indecomposable

Ext-projective. Then there is a left-weak Auslander-Reiten triangle in C of the form

X
ξÐ→ B

βÐ→ C
γÐ→ ΣX.

Let C̃ be the additive subcategory with Ind C̃ = Ind (C) ∖C and define C′ ∶= add (C̃ ∪X).

(a) If X is Ext-injective and Ext-projective in C′, then C′ is closed under extensions.

(b) If End(X) ≅ End(C) ≅ k and C′ is closed under extensions, then X is Ext-injective

in C′.

Moreover, we show that in some cases this process and the classic mutation from [32]

coincide.

Theorem 7.5.4. In the setup of Theorem 7.4.4, suppose that T is 2-Calabi-Yau, C
has finitely many indecomposables and X is Ext-projective in C′. Let D be the additive

subcategory generated by the Ext-projectives in C̃ and µ(C;D) be the classic (backward)

D-mutation of C. Then, we have

µ(C;D) = C′,

and this is a subcategory of T closed under extensions.
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Remark. We apply our results to CAn , the cluster category of Dynkin type An, introduced

in Section 3.1.1. By [26], a subcategory C ⊆ CAn is closed under extensions and direct

summands if and only if it corresponds to a so-called Ptolemy diagram of the regular

(n + 3)-gon P . Moreover, we show that indecomposable Ext-projectives in such a C are

dissecting diagonals in the corresponding Ptolemy diagram, i.e. those diagonals dividing

P into cells.

We apply [37, Theorem 3.1] to this example to give a full description of the Auslander-

Reiten triangles in C and Theorem 7.2.6 to give a complete description of the left-weak

Auslander-Reiten triangles in C. We show that Theorem 7.4.4 can be applied to an inde-

composable Ext-projective C in C if and only if C borders two empty cells in the Ptolemy

diagram corresponding to C. Moreover, note that CAn is 2-Calabi-Yau and it has finitely

many indecomposables. Hence, whenever C ∈ C corresponds to a dissecting diagonal bor-

dering two empty cells, Theorem 7.5.4 implies that C′ is the subcategory obtained by

mutating C with respect to the additive subcategory of C generated by all the indecom-

posable Ext-projectives in C̃.

The chapter is organized as follows. In Section 7.2 we present Ext-projectives and prove

Theorem 7.2.6. In Section 7.3 we prove Theorem 7.3.2 and in Section 7.4 we prove Theorem

7.4.4. In Section 7.5 we recall the classic mutation and prove Theorem 7.5.4. Finally,

Section 7.6 is an application of our results to CAn .

In this chapter, we work in the following setup, where, following Definition 2.1.39, additive

subcategory means full subcategory closed under isomorphisms, sums and summands.

Setup 7.1.1. Let k be a field, T be a skeletally small k-linear triangulated category with

split idempotents in which each Hom space is finite dimensional over k. Note that this

implies that T is a Krull-Schmidt category by Remark 2.1.12. Assume that T has a

Serre functor S, see Definition 2.1.24, and note that by Theorem 2.2.46, this implies the

existence of Auslander-Reiten triangles in T . Also, let C be an additive subcategory of T
that is closed under extensions, in the sense that if A → B → C → ΣA is a triangle in T
with A and C in C, then B is also in C.

7.2 Ext-projectives and weak Auslander-Reiten triangles in

C

In this section we introduce Ext-projective (respectively Ext-injective) objects in C. We

study the properties of the triangles they appear in, that we will call left-weak (respectively

right-weak) Auslander-Reiten triangles in C.

Recall that for X and Y in T and i a positive integer, we have that Exti(X,Y ) =
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HomT (X,ΣiY ) by Definition 2.2.44.

Definition 7.2.1. An object C ∈ C is called Ext-injective if Ext1(A,C) = 0 for all A ∈ C.
An object D ∈ C is called Ext-projective if Ext1(D,A) = 0 for all A ∈ C.

Lemma 7.2.2. (a) Let C ∈ C be an indecomposable Ext-projective object. For any

non-split triangle X
ξÐ→ B

βÐ→ C
γ≠0ÐÐ→ ΣX with B ∈ C, the morphism ξ is a C-envelope

of X. If β is a right minimal morphism, then X is indecomposable.

(b) Let A ∈ C be an indecomposable Ext-injective object. For any non-split triangle

A
αÐ→ B

βÐ→ Z
ζ≠0ÐÐ→ ΣA with B ∈ C, the morphism β is a C-cover of Z. If α is a left

minimal morphism, then Z is indecomposable.

We present a lemma that we will use to prove Lemma 7.2.2.

Lemma 7.2.3. Suppose ξ = (ξ′, ξ′′) ∶ X ′ ⊕X ′′ → Y is a right minimal morphism in T .

Then ξ′ ∶X ′ → Y is right minimal.

Proof. Consider ϕ′ ∶X ′ →X ′ such that ξ′ ○ ϕ′ = ξ′. Taking

ϕ ∶=
⎛
⎝
ϕ′ 0

0 1X′′

⎞
⎠
∶X ′ ⊕X ′′ →X ′ ⊕X ′′,

we have

ξ ○ ϕ = (ξ′ ○ ϕ′, ξ′′ ○ 1X′′) = (ξ′, ξ′′) = ξ.

As ξ is right minimal, then ϕ is an isomorphism and hence ϕ′ is also an isomorphism,

meaning that ξ′ is right minimal.

Proof of Lemma 7.2.2. (a) Let D ∈ C and apply HomT (−,D) to the triangle Σ−1C
−Σ−1γÐÐÐ→

X
ξÐ→ B

βÐ→ C to obtain the exact sequence:

HomT (B,D) HomT (ξ,D)ÐÐÐÐÐÐ→ HomT (X,D)→ HomT (Σ−1C,D).

Since C is Ext-projective in C, then HomT (C,ΣD) = 0 and hence HomT (Σ−1C,D) = 0.

Then, HomT (ξ,D) is surjective and so every η ∈ HomT (X,D) factors as η = ε ○ ξ for some

ε ∈ HomT (B,D). Since this is true for every D ∈ C, it follows that ξ is a C-preenvelope of

X.

We can write β = (β1, . . . , βt) ∶ B = B1⊕⋅ ⋅ ⋅⊕Bt → C, where B1, . . . , Bt are indecomposable.

As C is also indecomposable, by [45, Section 4], each βi is either an isomorphism or it is

in radT . Since the triangle extending ξ does not split, then β is not a split epimorphism
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and each βi is in the radical. Hence β is in the radical. This implies that ξ is left minimal

and hence it is a C-envelope of X.

Suppose now that β is a right minimal morphism and let X = X1 ⊕ ⋅ ⋅ ⋅ ⊕ Xr be the

indecomposable decomposition of X. Note that ξ is the direct sum of C-envelopes ξi ∶Xi →
Bi, for i = 1, . . . , r. In fact, by [43, Section 1], C-envelopes are unique up to isomorphism, so

the direct sum of C-envelopes of Xi’s has to be isomorphic to ξ. Then, for each i = 1, . . . , r

we have commutative diagram

Xi
ξi //

ιi
��

Bi

ιi
��

X
ξ // B,

where ιi, ιi are the inclusions. Completing ξi to a triangle, we get a commutative diagram

Xi
ξi //

ιi
��

Bi
δi //

ιi
��

Zi
ζi //

ηi
��

ΣXi

Σιi
��

X
ξ // B

β // C
γ // ΣX,

(7.1)

where ηi exists by the axioms of triangulated categories. Note that the direct sum for

i = 1, . . . , r of triangles of the first row of (7.1) is isomorphic to the triangle in the second

row. In particular, C ≅ Z1 ⊕ ⋅ ⋅ ⋅ ⊕ Zr, and since C is indecomposable, without loss of

generality we have C ≅ Z1 and Zi = 0 for i ≠ 1.

Note that since β is right minimal, by Lemma 7.2.3 so is its restriction to Bi, say βi ∶ Bi →
C. For i ≠ 1, we then have βi = β ○ ιi = ηi ○ δi = 0 right minimal and so Bi = 0. But then,

as ξi is an isomorphism, it follows that Xi = 0 and hence X ≅X1 is indecomposable.

(b) This is proven in a similar way.

In Definition 2.2.40, we have seen the definition of Auslander-Reiten triangles in T . We

now look at Auslander-Reiten triangles in the subcategory C of T .

Definition 7.2.4 ([37, Definition 1.3]). A triangle in T of the form

A
αÐ→ B

βÐ→ C
γÐ→ ΣA

with A,B,C ∈ C is an Auslander-Reiten triangle in C if the following are satisfied:

(a) the morphism γ is non-zero,

(b) the morphism α is left almost split in C,
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(c) the morphism β is right almost split in C.

We prove the result corresponding to Lemma 2.2.42 in C.

Lemma 7.2.5. (a) Let β ∶ B → C be right almost split in C, then C is indecomposable.

(b) Let α ∶ A→ B be left almost split in C, then A is indecomposable.

Proof. (a) In order to prove that C is indecomposable, it is enough to prove that EndC,

the endomorphism ring of C, is local. Let γ0, γ1 ∶ C → C be elements in EndC without

right inverses, i.e. γ0, γ1 are not split epimorphisms. Then there are γ′0, γ
′
1 ∶ C → B such

that γi = β ○ γ′i for i = 0,1 and we get γ0 + γ1 = β ○ (γ′0 + γ′1). If γ0 + γ1 had a right inverse

δ, then

1C = (γ0 + γ1) ○ δ = β ○ (γ′0 + γ′1) ○ δ,

so that β would also have a right inverse, this is a contradiction. Hence the set of elements

of EndC without right inverses is closed under addition and so EndC is local by [1,

Proposition 15.15].

(b) This follows by a similar argument.

Theorem 7.2.6. Let β ∶ B → C be a minimal right almost split morphism in C with C

Ext-projective.

(a) The triangle

X
ξÐ→ B

βÐ→ C
γÐ→ ΣX (7.2)

is such that X is an indecomposable not in C and ξ is a C-envelope of X.

(b) If β′ ∶ B′ → C ′ is a minimal right almost split morphism in C with C ′ Ext-projective,

then C ′ ≅ C if and only if X ′ ≅ X, where X ′ ξ′Ð→ B′ β′Ð→ C ′ γ′Ð→ ΣX ′ is the triangle

obtained by extending β′.

Proof. (a) Note that since β is right almost split in C, then C is indecomposable by Lemma

7.2.5. If X was in C, as C is Ext-projective, we would have Ext1(C,X) = Hom(C,ΣX) = 0

and hence γ = 0 and the triangle (7.2) splitting, contradicting β being right almost split.

Hence X /∈ C and γ ≠ 0. Then, by Lemma 7.2.2, it follows that ξ is a C-envelope of X and,

since β is right minimal, X is indecomposable.
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(b) Assume now that β′ ∶ B′ → C ′ is a minimal right almost split morphism in C with C ′

Ext-projective, and extend it to a triangle:

X ′ ξ
′

Ð→ B′ β
′

Ð→ C ′ γ
′

Ð→ ΣX ′.

By the argument above, X ′ /∈ C is indecomposable and ξ′ is a C-envelope of X ′.

Suppose first that C ′ ≅ C, say that ϕ ∶ C → C ′ is an isomorphism. Since β′ and ϕ ○ β are

minimal right almost split morphisms with codomain C ′, it follows from Lemma 2.1.34(b)

that there is an isomorphism ψ ∶ B → B′ with β′ ○ψ = ϕ○β. By the axioms of triangulated

categories, there is a morphism ρ ∶X →X ′ making the following diagram commutative:

X
ξ //

ρ
��

B
β //

ψ
��

C
γ //

ϕ
��

ΣX

Σρ
��

X ′ ξ′ // B′ β′ // C ′ γ′ // ΣX ′.

By the 5-Lemma [56, Exercise 10.2.2], it follows that ρ is an isomorphism, so that X ≅X ′.

Suppose now that X ≅ X ′, say that ρ ∶ X → X ′ is an isomorphism. Since a C-envelope

of X is unique up to isomorphism and ξ, ξ′ ○ ρ both are C-envelopes of X, there exists

an isomorphism ψ ∶ B → B′ such that ψ ○ ξ = ξ′ ○ ρ. Then, by the axioms of triangulated

categories and the 5-Lemma, there is an isomorphism ϕ between C and C ′.

We state, without proof, the dual of Theorem 7.2.6.

Theorem 7.2.7. Let α ∶ A → B be a minimal left almost split morphism in C with A

Ext-injective.

(a) The triangle

A
αÐ→ B

βÐ→ Z
ζÐ→ ΣA

is such that Z is an indecomposable not in C and β is a C-cover of Z.

(b) If α′ ∶ A′ → B′ is a minimal left almost split morphism in C with A′ Ext-injective,

then A′ ≅ A if and only if Z ′ ≅ Z, where A′ α′Ð→ B′ β′Ð→ Z ′ ζ′Ð→ ΣA′ is the triangle

obtained by extending α′.

Note that, even though the second morphism in the triangles from Theorem 7.2.6 is min-

imal right almost split in C, these are not Auslander-Reiten triangles in C since the first

object in them is not in C. Because of this “weakness” they have, we use the following

terminology.
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Definition 7.2.8. Let C ∈ C be an indecomposable Ext-projective. If there exists a

minimal right almost split morphism in C of the form β ∶ B → C, then the triangle (7.2)

from Theorem 7.2.6 is called a left-weak Auslander-Reiten triangle in C.

Dually, for A ∈ C indecomposable Ext-injective, if there is a minimal left almost split

morphism α ∶ A→ B in C, the triangle from Theorem 7.2.7 is called a right-weak Auslander-

Reiten triangle in C.

Remark 7.2.9. Suppose C is functorially finite in T . Then, by [32, Propositions 2.10 and

2.11] for any indecomposable object C in C there is a minimal right almost split morphism

in C ending at it and a minimal left almost split morphism in C starting at it. Hence, by

Theorems 7.2.6 and 7.2.7, there is a left-weak Auslander-Reiten triangle in C ending at C

and a right-weak Auslander-Reiten triangle in C starting at C.

We end this section by giving equivalent definitions to Ext-projectivity in the case when

C is precovering in T .

Proposition 7.2.10. Assume C is precovering in T . Let C ∈ C be indecomposable and

α ∶ A→ τC be a C-cover. Then, the following are equivalent:

(a) C is Ext-projective in C,

(b) A = 0,

(c) Ext1(C,A) = 0.

Proof. Note that (a) implies (c) by definition of Ext-projectivity, since A ∈ C. The fact

that (b) implies (c) is also clear.

To prove that (c) implies (a), assume that C is not Ext-projective. By [37, Theorem 3.1],

since α ∶ A→ τC is a C-cover, there is an Auslander-Reiten triangle in C of the form

A→ B → C
≠0Ð→ ΣA.

Hence Ext1(C,A) = Hom(C,ΣA) ≠ 0.

To prove that (c) implies (b), note that C = τ−1(τC). Letting D(−) = Homk(−, k), we

have

0 = Ext1(C,A) = Hom(C,ΣA) = Hom(τ−1(τC),ΣA) ≅ Hom(τC, τ ○ΣA)
≅ Hom(τC,SA) ≅DHom(A, τC).

Then, Hom(A, τC) = 0 and in particular α = 0. Since α is right minimal, it follows that

A = 0.

156



Chapter 7. Almost split morphisms in subcategories of triangulated categories

The dual of the above follows in a similar way. Here we state it without proof.

Proposition 7.2.11. Assume C is preenveloping in T . Let A ∈ C be indecomposable and

ζ ∶ τ−1A→ C be a C-envelope. Then, the following are equivalent:

(a) A is Ext-injective in C,

(b) C = 0,

(c) Ext1(C,A) = 0.

7.3 C-resolutions and Ext-projectives

In this section, we use a similar idea to injective resolutions of finitely generated modules

in module categories to describe Ext-projectives in C. We also state the dual result for

Ext-injectives in C.

Remark 7.3.1. Suppose C is preenveloping. Then, in a similar way to the one used to

construct injective resolutions of finitely generated modules over algebras, we can construct

a minimal right C-resolution of any object Z in T . We start by taking a C-envelope of

Z, say ζ0 ∶ Z → C0 and complete it to a triangle: Z → C0 → σZ → ΣZ. Then we take a

C-envelope of σZ, say ζ1 ∶ σZ → C1 and complete it to a triangle. We repeat this process

to obtain the minimal right C-resolution:

σZ
ζ1

$$
Z

ζ0

// C0

::

// C1

##

// C2 // ⋯.

σ2Z ζ2

;;

Theorem 7.3.2. Assume C is functorially finite, let C ∈ C be indecomposable. Then C is

Ext-projective if and only if C is a direct summand of C1, for some Z in T with minimal

right C-resolution

Z → C0 → C1 → ⋯,

constructed as described in Remark 7.3.1.

Proof. First note that, as T has a Serre functor S ∶ T → T , by Theorem 2.2.46 there exists

an Auslander-Reiten triangle in T of the form τC
ζÐ→ Y

εÐ→ C
γÐ→ Σ(τC), where τ = S ○Σ−1.

Suppose that C is Ext-projective and consider a C-precover ϕ ∶ A → Y of Y . Completing
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ε ○ ϕ to a triangle, we obtain a commutative diagram:

Z
ζ′ //

φ
��

A
ε○ϕ //

ϕ

��

C
γ′ // ΣZ

Σφ
��

τC
ζ
// Y ε

// C γ
// Σ(τC),

where φ exists by the axioms of triangulated categories. Note that since Σφ ○ γ′ = γ ≠ 0,

then γ′ ≠ 0 and so the triangle in the top row does not split. Hence the triangle in the

top row is a non-splitting triangle with C indecomposable Ext-projective and A ∈ C, so by

Lemma 7.2.2, it follows that ζ ′ is a C-envelope of Z. Then, as C ∈ C, we have a minimal

right C-resolution of Z:

Z
ζ′Ð→ A

ε○ϕÐÐ→ C → 0→ 0→ . . . ,

where, following the notation of Remark 7.3.1, we have C1 = C.

Suppose now that C is a direct summand of C1 for some Z in T with minimal right

C-resolution:

σZ
ζ1

$$
Z

ζ0

// C0

γ ::

// C1 // ⋯

constructed as in Remark 7.3.1. By the dual of the Triangulated Wakamatsu’s Lemma,

see [37, Lemma 2.1], we have Hom(Σ−1(σZ),B) = 0 for every B ∈ C. Consider

Hom(Σ−1ζ1,B) ∶ Hom(Σ−1C1,B)→ Hom(Σ−1(σZ),B).

This is injective by the dual of the proof of [37, Lemma 2.1], and since Hom(Σ−1(σZ),B) =
0, it follows that Hom(Σ−1C1,B) = 0 and so Ext1(C1,B) = Hom(C1,ΣB) = 0. Since this

is true for every B ∈ C, it follows that C1 is Ext-projective. Since C is a direct summand

of C1, then C is also Ext-projective.

We present without proof the dual of Theorem 7.3.2.

Remark 7.3.3. Suppose C is precovering. Dualizing Remark 7.3.1, we can construct a

minimal left C-resolution of any object X in T :

ω2X

%%
⋯ // C2

γ2 99

// C1

γ1
##

// C0
γ0 // X,

ωX

;;
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where, for i ≥ 0, we have that γi is a C-cover and ωi+1(X) is the first object of the triangle

with second morphism γi.

Theorem 7.3.4. Assume C is functorially finite, let A ∈ C be indecomposable. Then A is

Ext-injective if and only if it is a direct summand of C1, for some X in T with minimal

left C-resolution

⋅ ⋅ ⋅→ C1 → C0 →X,

constructed as described in Remark 7.3.3.

Example 7.3.5. We illustrate Theorem 7.3.4 in the case that C is cluster-tilting. We say

that the full subcategory C of T is cluster-tilting if:

(a) C = {X ∈ T ∣ Hom(C,ΣX) = 0} = {X ∈ T ∣ Hom(X,ΣC) = 0},

(b) C is functorially finite.

Note that when T = Db(mod Λ) for some finite dimensional k-algebra Λ, this coincides

with the case d = 2 in Definition 2.3.42.

If C is cluster-tilting, then it is closed under extensions and direct summands, so it satisfies

our setup. It is immediate to see from the definition that every object in such a C is Ext-

injective, however we present a proof of this using Theorem 7.3.4.

Let C be an object in C. Note that, since Hom(C,ΣC) = 0, then 0 → ΣC is a C-cover of

Z ∶= ΣC. Expanding this, we get the triangle in T :

C → 0→ ΣC
1ΣCÐÐ→ ΣC,

and, as C
1CÐ→ C is a C-cover, it follows from Theorem 7.3.4 that C = C1 is Ext-injective.

7.4 Extension closed subcategories from weak Auslander-

Reiten triangles in C

In this section, we show how, in some cases, it is possible to construct a new extension

closed subcategory C′ ⊆ T modifying C using the objects that appear in a left-weak (or a

right-weak) Auslander-Reiten triangle in C. The idea of how this is done is similar to the

mutation from [32].

Definition 7.4.1. For an additive subcategory X of T , we denote by IndX a maximal

set of pairwise non-isomorphic indecomposable objects in X .
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Lemma 7.4.2. Assume C is functorially finite in T . Let C ∈ C be an indecomposable

object such that End(C) ≅ k. Let X in T be an indecomposable object. Let C̃ be the

additive subcategory of T with Ind C̃ = Ind (C) ∖C and set C′ ∶= add (C̃ ∪X). Then C′ is

functorially finite in T .

Proof. We show that C′ is preenveloping in T , the proof for C′ ⊆ T precovering is then dual.

By [32, Propositions 2.10, 2.11], there exists a left almost split morphism in C of the form

η ∶ C →D. Since End(C) ≅ k, then every endomorphism of C is either an isomorphism or

it is the zero morphism. Hence C is not a direct summand of D and D ∈ C̃. For any Z in

T , consider a C-preenvelope ζ ∶ Z → Cn ⊕ C̃, for some non-negative integer n and C̃ ∈ C̃.
Consider

Z
ζÐ→ Cn ⊕ C̃

⎛
⎜
⎜
⎝

G 0

0 1C̃

⎞
⎟
⎟
⎠

ÐÐÐÐÐÐ→Dn ⊕ C̃,

where G is the n × n matrix having η in the diagonal entries and zero elsewhere. Any

morphism ϕ ∶ Z → C̃ ′, where C̃ ′ ∈ C̃, factors through ζ. So there exists a morphism

γ = (γ1, . . . , γn, γ̃) ∶ Cn ⊕ C̃ → C̃ ′ such that γ ○ ζ = ϕ. Note that, since C is not a

direct summand of C̃ ′, then γi is not a split monomorphism for i = 1, . . . , n. Hence,

since η is left almost split in C, there exists δi ∶ D → C̃ ′ such that δi ○ η = γi. Let

δ = (δ1, . . . , δn, γ̃) ∶Dn ⊕ C̃ → C̃ ′. Then

ϕ = γ ○ ζ = δ ○ ζ ′, for ζ ′ ∶=
⎛
⎝
G 0

0 1C̃

⎞
⎠
ζ.

Hence ζ ′ ∶ Z →Dn⊕C̃ is a C̃-preenvelope. Adding some copies of X to Dn⊕C̃ if necessary,

we then obtain a C′-preenvelope of Z.

Definition 7.4.3. Let X ⊂ T be an additive subcategory. The additive subcategory of

X consisting of all the Ext-injective (respectively Ext-projective) objects in X is denoted

I(X ) (respectively P (X )).

Theorem 7.4.4. Assume C is functorially finite in T and C ∈ P (C) is an indecomposable.

Then there is a left-weak Auslander-Reiten triangle in C of the form

X
ξÐ→ B

βÐ→ C
γÐ→ ΣX. (7.3)

Let C̃ ⊆ T be the additive subcategory with Ind C̃ = Ind (C)∖C and define C′ ∶= add (C̃ ∪X).

(a) If X ∈ P (C′) ∩ I(C′), then C′ is closed under extensions.
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(b) If End(X) ≅ End(C) ≅ k and C′ is closed under extensions, then X ∈ I(C′).

Proof. First note that (7.3) exists by Remark 7.2.9.

(a) Suppose X is Ext-injective and Ext-projective in C′. Consider first a triangle with end

terms C̃ ′′, C̃ ′ in C̃:

C̃ ′′ → A→ C̃ ′ → ΣC̃ ′′.

Since C is closed under extensions and C̃ ⊂ C, then A ∈ C. We prove that C is not a direct

summand of A, so that A ∈ C̃ ⊂ C′. Suppose for a contradiction that A ≅ A ⊕C for some

A ∈ C. Note that any morphism C̃ → C with C̃ ∈ C̃ ⊂ C is not a split epimorphism, so it

factors through β since β is right almost split in C. Hence, by the axioms of triangulated

categories, we obtain a morphism of triangles of the form

C̃ ′′ //

��

A⊕C α //

(0,1)
��

C̃ ′ //

δ
��

ΣC̃ ′′

��
B

β
// C γ

// ΣX
−Σξ
// ΣB.

Since X is Ext-injective in C′ and C̃ ′ ∈ C′, then δ = 0. Hence

0 = δ ○ α = γ ○ (0,1) = (0, γ),

contradicting the fact that γ is non-zero. So A ∈ C̃ ⊂ C′.

Consider now a triangle with end terms in C′, say ε ∶ C ′′ → A→ C ′ → ΣC ′′. Then, denoting

the direct sum of i copies of X by Xi for a positive i, we have

ε ∶Xt ⊕ C̃ ′′ → A→Xs ⊕ C̃ ′
γ′Ð→ ΣXt ⊕ΣC̃ ′′,

for some non-negative integers s, t and some C̃ ′′, C̃ ′ ∈ C̃. Note that since X is Ext-injective

and Ext-projective in C′, we have

γ′ = ( 0 0
0 γ′ ) ∶X

s ⊕ C̃ ′ → ΣXt ⊕ΣC̃ ′′.

Hence ε is the direct sum of triangles of the form

Xt 1Ð→Xt → 0→ ΣXt, 0→Xs 1Ð→Xs → 0 and C̃ ′′ → A→ C̃ ′
γ′Ð→ ΣC̃ ′′.

Note that, as C̃ ′′, C̃ ′ ∈ C̃, then A ∈ C̃ and so A ∈ C′. Hence C′ is closed under extensions.

(b) Suppose now that End(X) ≅ End(C) ≅ k and C′ is closed under extensions. Suppose
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for a contradiction that X is not Ext-injective in C′. By Theorem 2.2.46, there is an

Auslander-Reiten triangle in T of the form:

X → Y → τ−1X → ΣX.

Also, since C ⊆ T is functorially finite, then C′ ⊆ T is preenveloping by Lemma 7.4.2. Let

τ−1X → D be a C′-envelope. Then, by [37, Theorem 3.2], there is an Auslander-Reiten

triangle in C′ of the form:

X
ξ′Ð→ E

εÐ→D
δÐ→ ΣX.

Since End(X) ≅ k, then every endomorphism of X is either an isomorphism or it is the

zero morphism. Then, since ξ′ is not a split monomorphism, we have that X is not a direct

summand of E and so E ∈ C̃ ⊂ C. As ξ ∶ X → B is a C-envelope, there exists a morphism

ϕ ∶ B → E such that ϕ ○ ξ = ξ′. Then, by the axioms of triangulated categories, we obtain

a morphism of triangles of the form:

X
ξ // B

β //

ϕ

��

C
γ //

φ
��

ΣX

X
ξ′
// E ε

// D
δ
// ΣX.

Since End(X) ≅ k and ξ is not a split monomorphism, we have that B ∈ C̃ ⊂ C′. Then,

since ξ′ ∶X → E is left almost split in C′, there is a morphism η ∶ E → B such that η○ξ′ = ξ.
By the axioms of triangulated categories, we obtain a morphism of triangles of the form:

X
ξ′ // E

ε //

η

��

D
δ //

ν
��

ΣX

X
ξ
// B

β
// C γ

// ΣX.

Consider the composition of these two triangle morphisms. As ξ′ is left minimal and

ξ′ = ϕ ○ η ○ ξ′, it follows that ϕ ○ η ∶ E → E is an isomorphism. Then, by the 5-Lemma, see

[56, Exercise 10.2.2], we have that φ○ν ∶D →D is an isomorphism. In particular, ν ∶D → C

is a split monomorphism and D is a direct summand of C. As C is indecomposable, this

means that D ≅ C, contradicting the fact that D is in C′ while C is not. Hence X is

Ext-injective.

Remark 7.4.5. If T is 2-Calabi-Yau, and recalling that D(−) = Homk(−, k), for any

X, Y ∈ T , we have that Ext1(X,Y ) = Hom(X,ΣY ) ≅ D ○Hom(Y,ΣX) = D ○ Ext1(Y,X).
Hence Ext-projective and Ext-injective objects coincide in additive subcategories of T .

162



Chapter 7. Almost split morphisms in subcategories of triangulated categories

Corollary 7.4.6. In the setup of Theorem 7.4.4, suppose that T is 2-Calabi-Yau and

End(X) ≅ End(C) ≅ k.

Then C′ is closed under extensions if and only if X ∈ I(C′).

Proof. Since T is 2-Calabi-Yau, we have that Ext-injective and Ext-projective objects in

C′ coincide by Remark 7.4.5. The result then follows directly from Theorem 7.4.4.

We state, without proof, the duals of Theorem 7.4.4 and Corollary 7.4.6.

Theorem 7.4.7. Assume C is functorially finite in T and A ∈ I(C) is indecomposable.

Then there is a right-weak Auslander-Reiten triangle in C of the form

A
αÐ→ B

βÐ→ Z
ζÐ→ ΣA.

Let C be the additive category with IndC = Ind (C) ∖A and C′′ ∶= add (C ∪Z).

(a) If Z ∈ P (C′′) ∩ I(C′′), then C′′ is closed under extensions.

(b) If End(Z) ≅ End(A) ≅ k and C′′ is closed under extensions, then Z ∈ P (C′′).

Corollary 7.4.8. In the setup of Theorem 7.4.7, suppose that T is 2-Calabi-Yau and

End(Z) ≅ End(A) ≅ k.

Then C′′ is closed under extensions if and only if Z ∈ P (C′′).

7.5 Subcategories of the form C′ and mutations of C

As mentioned before, the idea of how to construct C′ from C, by removing the third term

of a left-weak Auslander-Reiten triangle ∆ in C and replacing it with the first term of ∆, is

similar to the classic mutation from [32]. In general, these two constructions are different.

However, they coincide under some extra assumptions, as we show in this section.

Definition 7.5.1 ([59, Definition 3.1]). Let D ⊆ C be an additive functorially finite rigid

subcategory. For any object C ∈ C, let δ ∶D → C be a D-cover and complete it to a triangle

of the form µD(C) → D
δÐ→ C → ΣD. Then µD(C) is the backward D-mutation of C and

the backward D-mutation of C is

µ(C;D) ∶= add ({µD(C) ∣ C ∈ C} ∪D).
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Lemma 7.5.2. Assume that T is 2-Calabi-Yau and let C̃ ⊆ T be an additive subcategory

closed under extensions which has finitely many indecomposable objects. Letting D =
P (C̃), we have that

µ(C̃;D) = C̃.

Proof. First note that since C has finitely many indecomposable objects, both C and C̃
are functorially finite in T . Then, since C̃ is an extension closed subcategory functorially

finite in T , by the dual of [32, Proposition 2.3(1)], there exists a cotorsion pair of the form

(X , C̃). Since D = P (C̃), by the dual of [59, Proposition 3.7(3)], we have that µ(C̃;D) ⊆ C̃.
Moreover, by the dual of [59, Proposition 3.7(1)], there is a bijection between Ind C̃ and

Indµ(C̃;D) and, since these are finite sets, we conclude that µ(C̃;D) = C̃.

Lemma 7.5.3. In the setup of Theorem 7.4.4, suppose that T is 2-Calabi-Yau, X ∈
P (C′) and End(C) ≅ k. Let D ⊆ T be the additive subcategory generated by all the

indecomposable Ext-projectives in C apart from C and note that D is rigid. Assume D is

functorially finite in C. Then X ≅ µD(C).

Proof. Consider the triangle (7.3) from Theorem 7.4.4. Let δ ∶ D → C be a D-cover and

note that δ is not a split epimorphism since C is not in D. Then, since β is right almost

split in C and D ∈ D ⊆ C, it follows that δ factors through β and we obtain a morphism of

triangles of the form:

µD(C) //

η

��

D
δ //

ϕ

��

C // ΣµD(C)

��
X

ξ
// B

β
// C γ

// ΣX,

where η exists by the axioms of triangulated categories. For A ∈ C, consider the exact

sequence:

Hom(C,ΣA)→ Hom(B,ΣA)→ Hom(X,ΣA), (‡)

and note that Hom(C,ΣA) = 0 since C is Ext-projective in C. Without loss of generality,

assume that A is indecomposable. If A ∈ C̃ ⊂ C′, then Hom(X,ΣA) = 0 since X is Ext-

projective in C′. Then, exactness of (‡) forces Hom(B,ΣA) = 0. If A /∈ C̃, then A = C
and since C is Ext-injective in C, then Hom(B,ΣA) = 0. Hence Ext1(B,A) = 0 for any A

in C and so B is Ext-projective in C. Since End(C) ≅ k, we have that C is not a direct

summand of B and so B ∈ D. Note that as δ is a D-cover, then β factors through δ and,
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by the axioms of triangulated categories, we obtain a morphism of triangles of the form:

X
ξ //

ν
��

B
β //

φ
��

C // ΣX

��
µD(C) // D

δ
// C // ΣµD(C).

Then δ = δ ○ φ ○ ϕ and, as δ is right minimal, then φ ○ ϕ ∶ D → D is an isomorphism.

By the 5-Lemma, see [56, Exercise 10.2.2], it follows that ν ○ η ∶ µD(C) → µD(C) is an

isomorphism. Hence η is a split monomorphism and µD(C) is a direct summand of X.

Since X is indecomposable, it follows that X ≅ µD(C).

Theorem 7.5.4. Assume C has finitely many indecomposables and C ∈ P (C) is an inde-

composable. Then there is a left-weak Auslander-Reiten triangle in C of the form

X
ξÐ→ B

βÐ→ C
γÐ→ ΣX.

Let C̃ ⊆ T be the additive subcategory with Ind C̃ = Ind (C)∖C and define C′ ∶= add (C̃ ∪X).

Suppose, moreover, that T is 2-Calabi-Yau and X ∈ P (C′). Then, letting D = P (C̃), we

have

µ(C;D) = C′,

and this is a subcategory of T closed under extensions.

Proof. First note that, since T is 2-Calabi-Yau and X ∈ P (C′), we have that X ∈ P (C′) ∩
I(C′) by Remark 7.4.5. Then, the proof of Theorem 7.4.4 shows that C̃ is closed under

extensions. By Lemma 7.5.2, we have that µ(C̃;D) = C̃. Moreover, we have that IndP (C) =
IndP (C̃)∪{C}, that is P (C) is the additive category generated by all the indecomposable

Ext-projectives in C̃ plus the indecomposable C. In fact, if D is an indecomposable Ext-

projective in C, then either D = C or D ∈ C̃. In the latter case, we have that Ext1(D, C̃) = 0

since Ext1(D,C) = 0 and C̃ ⊂ C and so D is an indecomposable Ext-projective in C̃. On the

other hand, if D̃ is an indecomposable Ext-projective in C̃, we have that Ext1(D̃, C̃) = 0

and, since C is Ext-injective in C, also Ext1(D̃,C) = 0 so that Ext1(D̃,C) = 0.

Hence D is rigid in C and we can mutate C with respect to D. Since C has finitely many

indecomposables, then D ⊆ C is functorially finite. Then, by Lemma 7.5.3, we have that

µD(C) ≅ X, where X is the first term of the triangle (7.3) from Theorem 7.4.4. Hence,

we conclude that

µ(C;D) = add (µ(C̃;D) ∪ µD(C)) = add (C̃ ∪X) = C′,
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and this subcategory of T is closed under extensions by Theorem 7.4.4.

We present the definition of forward D-mutation and state, without proof, the dual of

Theorem 7.5.4.

Definition 7.5.5 ([59, Definition 3.1]). Let D ⊆ C be an additive functorially finite rigid

subcategory. For any object A ∈ C, let α ∶ A → D be a D-envelope and complete it to a

triangle of the form A
αÐ→ D → µ−1

D (A) → ΣA. Then µ−1
D (A) is the forward D-mutation of

A and we define the forward D-mutation of C to be

µ−1(C;D) ∶= add ({µ−1
D (A) ∣ A ∈ C} ∪D).

Theorem 7.5.6. In the setup of Theorem 7.4.7, suppose that T is 2-Calabi-Yau, C has

finitely many indecomposables and Z ∈ I(C′′). Then, letting D = I(C), we have

µ−1(C;D) = C′′,

and this is a subcategory of T closed under extensions.

7.6 Example: cluster category of Dynkin type An

In this section, we fix a positive integer n and study CAn , that is the cluster category of

Dynkin type An introduced in Section 3.1.1. Note that T ∶= CAn satisfies Setup 7.1.1 and

it is 2-Calabi-Yau. We give a full description of the additive subcategories C of T that

are closed under extensions. For such a subcategory C, we describe the Auslander-Reiten

triangles in C and apply our results to this example.

7.6.1 Subcategories arising from Ptolemy diagrams

The additive subcategories of T closed under extensions are precisely those arising from

Ptolemy diagrams in our regular (n + 3)-gon P .

Definition 7.6.1 ([26, Definition 2.1]). A Ptolemy diagram is a set S of diagonals of a

finite polygon such that if the set contains crossing diagonals a and b, then it also contains

all the diagonals connecting the endpoints of a and b.

Note that if we take S to be the empty set, then this is a Ptolemy diagram, called an

empty cell. The set of all diagonals in a given polygon is also a Ptolemy diagram, called

a clique.
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Figure 7.1: Example of a Ptolemy diagram.

Remark 7.6.2 ([26, Theorem A(ii)]). Each Ptolemy diagram can be obtained by gluing

empty cells and cliques. So, for our polygon P , a Ptolemy diagram is constructed by first

choosing a set of pairwise non-crossing diagonals, called dissecting diagonals, that divide

P in cells, and then deciding whether each cell is empty or a clique.

Example 7.6.3. For example, in Figure 7.1 we have chosen the three green diagonals to

be the dissecting diagonals and, going left to right, the first and third cells are empty and

the second and fourth are cliques.

Recall that by (I) from Section 3.1.1, indecomposables in T correspond to diagonals in

P . From now on let C be a subcategory of T corresponding to a Ptolemy diagram S
of P , that is C is the additive subcategory of T generated by the indecomposables in T
corresponding to the diagonals in S. The following result is the reason why this choice

satisfies Setup 7.1.1.

Proposition 7.6.4. Ptolemy diagrams of P correspond to the additive subcategories of

T closed under extensions.

Proof. This follows from [26, Theorem A(i) and Proposition 2.3].

7.6.2 Auslander-Reiten triangles in C

In this section, we apply a result by Jørgensen, see [37, Theorem 3.1], to this example in

order to describe the Auslander-Reiten triangles in C. We first recall the theorem.

Theorem 7.6.5 ([37, Theorem 3.1]). Let c be in C and suppose that it is not Ext-projective.
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Let

x→ y → c→ Σx

be an Auslander-Reiten triangle in T . Then the following are equivalent:

(a) x has a C-cover of the form α ∶ a→ x,

(b) there is an Auslander-Reiten triangle in C of the form

a→ b→ c→ Σa.

Note that, as proved in [37], the above theorem is not only valid for T = CAn and C a

subcategory of CAn corresponding to a Ptolemy diagram of P , but also for any T and C
satisfying Setup 7.1.1.

We aim to find for which choices of c ∈ IndC we can apply the above theorem, and what

the Auslander-Reiten triangles in (b) look like.

Proposition 7.6.6. An indecomposable c in C is Ext-projective if and only if it is a

dissecting diagonal.

Proof. Suppose c is a dissecting diagonal, so there is no diagonal in C crossing it. Hence for

every a ∈ C, we have dimk(Ext1(c, a)) = 0 by (II) from Section 3.1.1 and c is Ext-projective.

Suppose now that c is not a dissecting diagonal and let P ′ be the clique it belongs to.

Then there are vertices of P ′ lying on both sides of c. Joining any two vertices of P ′ lying

on different sides of c, we obtain a diagonal a′ in C crossing c and hence Ext1(c, a′) ≠ 0 by

(II) from Section 3.1.1. So c is not Ext-projective.

Note that Proposition 7.6.6 affirms that we can apply Theorem 7.6.5 to c ∈ IndC if and

only if c is not a dissecting diagonal of the Ptolemy diagram corresponding to C.

Lemma 7.6.7. Let c ∈ C be an indecomposable which is not a dissecting diagonal. Let

P ′ be the clique to which c belongs and the vertices of P ′ be v1 < v2 < ⋅ ⋅ ⋅ < vm−1 < vm (for

some 4 ≤m ≤ n+ 3). Then c = {vi, vj} for certain i and j, and a ∶= {vi−1, vj−1} is a C-cover

of Σc = {v−i , v−j }, where v0 ∶= vm.

Proof. Since c is a clique diagonal, the choice of a is such that a and c cross, so that

dimk Hom(a,Σc) = 1. Also, as a is indecomposable, the non-zero morphism α ∶ a → Σc is

right minimal by Lemma 2.2.27. Hence we only need to prove that α is a C-precover of
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vj

vi

v−j

v−i

vj−1

vi−1 vk

vl

d

Σc

Figure 7.2: Green vertices are in P ′ and green diagonals are edges of P ′; diagonals with one
endpoint in each of the two red arcs are those through which d→ Σc factors.

Σc, i.e. for every d = {vk, vl} in C and every morphism δ ∶ d→ Σc, we have a factorization

of the form

d
δ //

∃ε ��

Σc.

a
α

== (7.4)

First note that if d and c do not cross, then Hom(d,Σc) = 0 and we have factorization

(7.4) with δ = ε = 0. So we may assume that d and c cross and vk < vi < vl < vj . Note

that since d ∈ C crosses c, then d is a diagonal in P ′ and so it cannot cross {vi, vi−1} and

{vj , vj−1}, as these are edges of P ′. We then have

vk ≤ vi−1 < vi < vl ≤ vj−1 < vj .

Moreover, we have vi−1 ≤ v−i < vi and vj−1 ≤ v−j < vj and so

vk ≤ vi−1 ≤ v−i ≤ v−−l < vl ≤ vj−1 ≤ v−j ≤ v−−k ,

see Figure 7.2. Hence, by (VIII) from Section 3.1.1, there exists a factorization of the form

(7.4).

Theorem 7.6.8. Let c ∈ C be an indecomposable which is not a dissecting diagonal. Let

P ′ be the clique to which c belongs and the vertices of P ′ be v1 < v2 < ⋅ ⋅ ⋅ < vm−1 < vm (for

some 4 ≤m ≤ n + 3). Then c = {vi, vj} for certain i and j, and, taking a = {vi−1, vj−1}, we
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vj

vi

vj−1

vi−1

a

c b2

b1

Figure 7.3: The Auslander-Reiten triangle a→ b1 ⊕ b2 → c→ Σa in C.

obtain the Auslander-Reiten triangle in C:

a→ b1 ⊕ b2 → c→ Σa,

where b1 = {vi, vj−1} and b2 = {vj , vi−1}, see Figure 7.3. In the above, v0 ∶= vm.

Proof. By Proposition 7.6.6, c is not Ext-projective. Recall that, by (V) from Section

3.1.1, we have an Auslander-Reiten triangle in T of the form

Σc→ s1 ⊕ s2 → c→ Σ2c,

where s1, s2 are obtained as in Figure 7.4. By Lemma 7.6.7, our choice of a is such that

a → Σc is a C-cover. Hence by Theorem 7.6.5 there is an Auslander-Reiten triangle in C
of the form a → b → c → Σa. The only possible such triangle is the one with b = b1 ⊕ b2,

where b1 = {vi, vj−1} and b2 = {vj , vi−1}, see Figure 7.3.

Remark 7.6.9. As seen in (V) from Section 3.1.1, for a given indecomposable c ∈ T , we

have an Auslander-Reiten triangle in T of the form

Σc→ s1 ⊕ s2 → c→ Σ2c,

see Figure 7.4. Geometrically, the first term of this triangle, namely Σc, is obtained by

rotating the endpoints of the diagonal c by one clockwise step in P . Moreover, s1, s2 are

the non-edges of P connecting the endpoints of Σc to the endpoints of c.

Now assume c ∈ C is not a dissecting diagonal and we follow the same geometrical process
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c

Σc

s1

s2

Figure 7.4: Auslander-Reiten triangle Σc→ s1 ⊕ s2 → c→ Σ2c in T .

but looking at the clique P ′ as an m-gon. The operation of rotating the endpoints of

the diagonal c by one clockwise step in P ′ gives the diagonal a defined in Theorem 7.6.8.

Moreover, if b1 and b2 are the non-edges of P ′ connecting the endpoints of a to the

endpoints of c, see Figure 7.3, Theorem 7.6.8 says that we have an Auslander-Reiten

triangle in C of the form

a→ b1 ⊕ b2 → c→ Σa.

7.6.3 Right almost split morphisms in C ending at Ext-projectives

Note that since C ⊆ T has finitely many indecomposables, it is functorially finite and

we can apply Theorem 7.2.6. We described the indecomposable Ext-projectives in C in

Proposition 7.6.6. Given any indecomposable Ext-projective in C, we give a way to find a

minimal right almost split morphism in C ending at it and the left-weak Auslander-Reiten

triangle in C completing this morphism.

Setup 7.6.10. Let C correspond to a Ptolemy diagram and c ∈ C be Ext-projective and

indecomposable. Then c is a dissecting diagonal by Proposition 7.6.6. Let the vertices of

the two cells bordered by c be v1 < v2 < ⋯ < vm and c = {vi, vj}. Set v0 ∶= vm.

Choose vp maximal in [v+i , v−j ] such that b0 ∶= {vi, vp} ∈ C and vq maximal in [v+j , v−i ] such

that b1 ∶= {vj , vq} ∈ C. An example is shown in Figure 7.5.

Remark 7.6.11. Note that the choice of vp depends on whether c borders a clique or an

empty cell in [vi, vj]. In the first case we have vp = vj−1 while in the second vp = vi+1. Note

that in the case when c borders an empty cell with vi+1 = v+i , then b0 = {vi, v+i } = 0. The

vertex vq is determined in a similar way, looking at the interval [vj , vi].
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c

v3=vi

v2=vq

v1

v4=vp

v5

v6=vj

b0

b1

Figure 7.5: Example of Setup 7.6.10 in a Ptolemy diagram of a 12-gon. Green diagonals are
dissecting diagonals, with c = {v3, v6}. On the left, c borders an empty cell, so vp = v3+1 and on
the right it borders a clique, so vq = v3−1. Then b0 and b1 are the red dashed diagonals.

Proposition 7.6.12. In the situation of Setup 7.6.10, let

β = (β0, β1) ∶ b0 ⊕ b1 → c,

where β0, β1 are non-zero morphisms (unless b0 or b1 are zero). Then β is a minimal right

almost split morphism in C and

x
ξ=(

ξ0
ξ1
)

ÐÐÐÐ→ b0 ⊕ b1
β=(β0,β1)ÐÐÐÐÐ→ c→ Σx (†)

is a triangle in T with x = {vp, vq} indecomposable not in C and ξ a C-envelope of x. In

other words, (†) is a left-weak Auslander-Reiten triangle in C.

Remark 7.6.13. In the example illustrated in Figure 7.5, we have x = {v4, v2}. Note that

x crosses the dissecting diagonal c and so it is not in C.

Proof of Proposition 7.6.12. Consider an indecomposable d ∈ C. By (IX) from Section

3.1.1, HomT (d, c) ≠ 0 if and only if d has one endpoint in each of the intervals [v++i , vj]
and [v++j , vi]. Since d ∈ C and c is a dissecting diagonal, d is not allowed to cross c. Hence

d = {vi, t} for t ∈ [v++i , vj] or d = {vj , s} for s ∈ [v++j , vi]. Note that, whenever they are

non-zero, our choices of b0, b1 satisfy this condition and so dimk HomT (bi, c) = 1.

We prove β is right almost split in C. Take a morphism γ′ ∶ c′ → c in C that is not a split

epimorphism. If γ′ = 0, then γ′ clearly factorizes through β, so assume γ′ is non-zero and
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without loss of generality assume that c′ is indecomposable. Note that γ′ being not a split

epimorphism forces c′ ≠ c. By the above, we have either c′ = {vi, t} for t ∈ [v++i , vj−1] or

c′ = {vj , s} for s ∈ [v++j , vi−1]. In the first case, note that such a non-zero c′ would not exist

if b0 = 0. Hence vp ≠ v+i and by maximality of vp in [v+i , v−j ] such that b0 = {vi, vp} ∈ C, we

have t ≤ vp < vj . Then, by (IX) from Section 3.1.1, we have that γ′ factors through β0.

Similarly, in the second case we have s ≤ vq < vi and γ′ factors through β1. Hence β is

right almost split.

We now show that β is right minimal. Note that b1 = {vj , vq} and Σ−1b0 = {v+i , v+p } do not

cross. In fact we have

vi < v+i < v++i < v+p < vj < v++j ≤ vq.

Similarly, b0 and Σ−1b1 do not cross. Then any morphism ϕ ∶ b0⊕b1 → b0⊕b1 has the form

ϕ =
⎛
⎝
α01b0 0

0 α11b1

⎞
⎠
∶ b0 ⊕ b1 → b0 ⊕ b1,

where α0, α1 ∈ k. If ϕ is such that β ○ ϕ = β, then we must have α0 = α1 = 1, so that ϕ is

an isomorphism. Hence β is a minimal right almost split morphism in C. The rest of the

proposition follows from (IV) from Section 3.1.1 and Theorem 7.2.6.

Remark 7.6.14. In the situation of Proposition 7.6.12, by Theorem 7.2.6(b) we also have

that if β′ ∶ b′ → c′ is a minimal right almost split morphism in C with c′ Ext-projective,

then c′ ≅ c if and only if x′ ≅ x, where x′
ξ′Ð→ b′

β′Ð→ c′ → Σx′ is the triangle obtained by

extending β′.

We now apply Corollary 7.4.6 to this example.

Remark 7.6.15. Note that, by the dimension of Hom spaces over k, we have that

End(z) ≅ k for every indecomposable z in T . Moreover, since T is 2-Calabi-Yau, by

Remark 7.4.5, we have that Ext-projective and Ext-injective objects coincide in additive

subcategories of T .

Proposition 7.6.16. In the situation of Setup 7.6.10, consider the triangle (†) ∶ x →
b0 ⊕ b1 → c → Σx from Proposition 7.6.12. Let C̃ ⊆ T be the additive subcategory with

Ind C̃ = Ind (C) ∖ c and C′ ∶= add (C̃ ∪ x). Then C′ ⊆ T is closed under extensions if and

only if c borders two empty cells in the Ptolemy diagram corresponding to C.

Proof. Suppose first that c borders two empty cells in C. Then, using the notation in Setup

7.6.10, the only diagonals in C′ that x = {vp, vq} crosses are from the set of diagonals of

the form {vs, vt} with s, t ∈ {1, . . . ,m} that are in C̃. However, since c borders two empty
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cells, such diagonals {vs, vt} do not belong to C̃ ⊂ C′. Hence c crosses no diagonals in C′,
so that Ext1(x,C′) = 0 and x is Ext-projective in C′, and so also Ext-injective in C′ by

Remark 7.6.15. By Corollary 7.4.6, we then have that C′ is closed under extensions.

Suppose now that one of the cells bordered by c is a clique with at least four vertices. Using

the notation in Setup 7.6.10, without loss of generality say that the cell vj < vj+1 < ⋅ ⋅ ⋅ <
vi−1 < vi is a clique with at least four vertices. Then, x = {vp, vi−1} and, since the clique

has at least four vertices, we have vj < vj+1 < vi−1 < vi. Then the diagonal c̃ ∶= {vj+1, vi} ∈ C̃
crosses x since

vi < vi+1 ≤ vp ≤ vj−1 < vj < vj+1 < vi−1.

Then Ext1(x, c̃) ≠ 0 so that x is not Ext-projective, and so also not Ext-injective, in C′.
By Corollary 7.4.6, we have that C′ is not closed under extensions.

Example 7.6.17. In the example illustrated in Figure 7.5, we have that the dissecting

diagonal c borders an empty cell and a clique with four vertices. Then, by Proposition

7.6.16, the subcategory C′ obtained by removing c and substituting it with x = {v4, v2} is

not closed under extensions. In fact, it is easy to see that this does not correspond to a

Ptolemy diagram.

However, if the cell to the right of c was empty, then the subcategory obtained by removing

c and substituting it with x = {v1, v4} would correspond to a Ptolemy diagram and so it

would be closed under extensions.

Remark 7.6.18. Recall that CAn is 2-Calabi-Yau and it has finitely many indecompos-

ables. Hence, whenever C ∈ C corresponds to a dissecting diagonal bordering two empty

cells, Proposition 7.6.16 and Theorem 7.5.4 imply that C′ is equal to µ(C;D), i.e. the sub-

category obtained by mutating C with respect to the additive subcategory of C generated

by all the indecomposable Ext-projectives in C apart from C.

7.6.4 Left almost split morphisms in C starting at Ext-injectives

For completeness we state the corresponding results on Ext-injectives. These can be proven

using similar arguments to the ones in Section 7.6.3.

Proposition 7.6.19. An indecomposable a in C is Ext-injective if and only if it is a

dissecting diagonal.

Proof. This follows from Proposition 7.6.6 and Remark 7.4.5.

We present the setup and the dual of Proposition 7.6.12.
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Setup 7.6.20. Let C correspond to a Ptolemy diagram and a ∈ C be Ext-injective and

indecomposable. Then a is a dissecting diagonal by Proposition 7.6.19. Let the vertices

of the two cells bordered by a be v1 < v2 < ⋯ < vm and a = {vr, vs}. Set v0 ∶= vm.

Choose vp minimal in [v+r , v−s ] such that b0 ∶= {vs, vp} ∈ C and vq minimal in [v+s , v−r ] such

that b1 ∶= {vr, vq} ∈ C.

Proposition 7.6.21. In the situation of Setup 7.6.20, let

α = (α0
α1 ) ∶ a→ b0 ⊕ b1,

where α0, α1 are non-zero morphisms (unless b0 or b1 are zero). Then α is a minimal left

almost split morphism in C and

a
α=(

α0
α1
)

ÐÐÐÐ→ b0 ⊕ b1
ν=(ν0,ν1)ÐÐÐÐÐ→ z → Σa (‡)

is a triangle in T with z = {vp, vq} indecomposable not in C and ν a C-cover of z. In other

words, (‡) is a right-weak Auslander-Reiten triangle in C.

Proposition 7.6.22. In the situation of 7.6.20, consider the triangle a→ b0⊕b1 → z → Σa

from Proposition 7.6.21. Let Let C be the additive category with IndC = Ind (C) ∖ a and

C′′ ∶= add (C ∪ z). Then C′′ ⊆ T is closed under extensions if and only if a borders two

empty cells in the Ptolemy diagram corresponding to C.
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