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Abstract

Auslander-Reiten theory plays an important role in the study of abelian and triangulated
categories (in classic homological algebra) and in their higher analogues (in the more recent
higher homological algebra). The classic setup studies module categories of the form mod A
and their bounded derived categories D°(mod A), where A is a finite dimensional algebra

over a field k and mod A is the category of finitely generated (right) A-modules.

If gldim A < 1, Briining proved there is a bijection between the wide subcategories of
the abelian category mod A and those of the triangulated category D’(modA). When
T is a suitable triangulated category, Jorgensen described Auslander-Reiten triangles in
the extension closed subcategories of 7. If X € mod A is a precovering extension closed
subcategory, Kleiner proved that any indecomposable not Ext-projective X € X appears
as the end term of an Auslander-Reiten sequence in X and he further described the case

when Endj (X) modulo the morphisms factoring through a projective is a division ring.

Letting d be a positive integer, we study higher homological algebra and higher Auslander-
Reiten theory. Geiss, Keller and Oppermann generalised triangulated categories to (d+2)-
angulated categories and Jasso likewise generalised abelian categories to d-abelian cate-
gories. Note that the case d = 1 recovers classic homological algebra. Assuming there is a

d-cluster tilting subcategory F € mod A , consider
F:=add{X¥F |ieZ} c D’(mod A).

Then F is d-abelian and plays the role of a higher mod A having for higher derived category
the (d + 2)-angulated category F. With this in mind, we generalise Briining, Jorgensen

and Kleiner’s results for higher values of d.

We also use higher Auslander-Reiten theory to generalise results on Grothendieck groups
of a suitable triangulated category 7. We present “higher cluster tilting” versions of
results by Xiao and Zhu and by Palu and a “higher angulated” version of Palu’s result.
Our results express Ko(7) as a quotient of the split Grothendieck group of higher-cluster
tilting subcategories of T .

We prove analogues of results by Kleiner on subcategories of mod A in the corresponding
setup of subcategories of a suitable triangulated category 7 with a precovering extension
closed subcategory C. In particular, we introduce indecomposable Ext-projective objects
C in C, show that such a C' appears in what we call a left-weak Auslander-Reiten triangle in

C and prove how these objects are related to the concept of Iyama and Yoshino’s mutation.
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Chapter 1

Introduction

Homological algebra, that is the study of abelian and triangulated categories, arose from
algebraic topology in the early twentieth century and it has since found many applications
in different areas of mathematics, such as combinatorics and representation theory. Fixing
a field k£ and a finite dimensional k-algebra A, the classic setup studies the abelian cate-
gory of finitely generated (right) A-modules, denoted by mod A, and its bounded derived
category, denoted by Db(mod A), which is a triangulated category. Auslander-Reiten the-
ory is a widely used tool to study homological algebra. Auslander-Reiten sequences in
mod A are non-splitting short exact sequences of the form 0 - A 5B 5 C — 0 that are
“as close as possible” to split exact sequences. They collect important information about
both the building blocks of the objects of mod A, that is indecomposable modules, and
the building blocks of the morphisms of mod A, that is irreducible morphisms. Auslander
and Reiten later extended this theory to general abelian categories and Auslander and
Smalg to the study of Auslander-Reiten sequences in their subcategories in [7]. Moreover,
Happel developed the corresponding theory of Auslander-Reiten triangles in triangulated
categories in [20] and then Jgrgensen defined and studied Auslander-Reiten triangles in

their non-triangulated subcategories in [37].

Higher homological algebra was first introduced by Iyama in 2007, see [28], as a higher
dimensional generalisation of the above theory, and it is currently a very active area
of research. Let d > 1 be an integer. Jasso generalised abelian categories to d-abelian
categories in [34], where kernels and cokernels are replaced by complexes of d + 1 objects
and short exact sequences by d-exact sequences, which are complexes of d+2 objects. In the
same fashion, Geiss, Keller and Oppermann generalised triangulated categories to (d+2)-
angulated categories in [19], where triangles are replaced by complexes of d+2 objects. Note
that the base case d = 1 recovers classic homological algebra. As for homological algebra,

higher Auslander-Reiten theory plays a crucial role in the study of higher homological
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algebra. Higher Auslander-Reiten sequences were first introduced by Iyama in [2§] and
Auslander-Reiten (d + 2)-angles by Iyama and Yoshino in [32]. If we further assume
that the global dimension of mod A is at most d and that mod A has a d-cluster tilting
subcategory F, we can introduce the higher case corresponding to the classic setup of
mod A and D?(mod A). In this setup, F is d-abelian,

F = add{X“F|iecZ} c D’(mod A)

is (d+2)-angulated and F and F play the roles of a higher mod A and its higher bounded
derived category respectively. Note that the classic case is recovered when d =1 as mod A

is the only 1-cluster tilting subcategory of itself.

Outline of thesis

The structure of this thesis is as follows. Chapter [2] introduces the background material
that will be used in the rest of the thesis. We start by giving an overview on categories and
subcategories. Then, we recall some definitions and results on homological algebra, includ-
ing the functor Ext, Auslander-Reiten theory and the classic case of mod A and D°(mod A)
mentioned above. The third and last part of the chapter consists of an introduction to
higher homological algebra. We define d-abelian and (d + 2)-angulated categories and
present a series of results that will be widely used to prove the main results in this thesis.
Moreover, in Remark we describe the generalised higher mod A and its higher de-
rived category mentioned above. When introducing higher Auslander-Reiten theory, we

give an alternative proof for the d-Auslander-Reiten duality, first proved by Iyama in [28],
see Theorem [2.3.26

Chapter [3| presents three examples of the categories defined in Chapter These are
presented at this stage to give examples of the categories defined in Chapter [2, but they
will be also used in later chapters to give applications of the main results of this thesis.
The first is a classic example of a triangulated category: the cluster category of Dynkin
type Ap, which we denote by C4,,. The second one is the triangulated ¢-cluster category
of Dynkin type A, denoted by C;(Ay) and it is a generalisation of C4,. The third is a
class of examples first defined by Vaso, see [55], and it is an example of the higher mod A
and its higher derived category.

In the same setup as above, further assume that k is algebraically closed. When d = 1,
Briining proved in [I0] that there is a bijection between the wide subcategories of mod A
and those of D’(mod A). In Chapter 4| assuming mod A has a d-cluster tilting subcategory
F, we prove the higher version of Briining’s result.Moreover, when 7 is a suitable trian-

gulated category, Jorgensen described Auslander-Reiten triangles in the extension closed
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subcategories of T in [37]. We prove a generalised version of his result. We conclude
this chapter by applying the two main results to Vaso’s class of examples introduced in

Chapter

Chapter [5| presents a higher version of Kleiner’s results from [43] on Auslander-Reiten
sequences in precovering extension closed subcategories X' of mod A. In particular, Kleiner
proved that any indecomposable not Ext-projective X € X appears as the end term of an
Auslander-Reiten sequence in X' and he further described the case when Endy (X)) modulo
the morphisms factoring through a projective is a division ring. Assuming mod A has a
d-cluster tilting subcategory F, we prove the higher version of these results and apply our

results to an example.

Chapter [0] gives a way to express the Grothendieck group of a suitable triangulated cate-
gory C as a quotient of the split Grothendieck group of a higher-cluster tilting subcategory
of C. The results proved in this chapter are a “higher cluster tilting” version of Xiao and
Zhu’s result from [57] and a “higher angulated” version of Palu’s theorem from [50]. We
illustrate the higher cluster tilting result in the example C,(Ay;) introduced in Chapter

and the higher angulated result in another example.

Finally, Chapterproves analogues of results by Kleiner on mod A from [43] in triangulated
categories. In particular, we prove that if T is a suitable triangulated category with a
precovering extension closed subcategory C, then any Ext-projective object C' in C appears
in something very similar to an Auslander-Reiten triangle in C, that is an essentially unique

triangle in 7 of the form
X->B->(C-XX.

Moreover, under some extra assumptions, we show that the process of removing the inde-
composable C from C and replacing it with X coincides with the classic mutation described
by Iyama and Yoshino in [32]. Finally, we apply these results to the example C4, intro-
duced in Chapter

Work in this thesis has been in part covered by the following papers: Chapter [ is based
on [15]; Chapter [5is based on [16]; Chapter[6is based on [17]; Chapter [7]is based on [14].



Chapter 2
Background

This chapter presents the background material needed in the thesis.

2.1 Categories, functors and subcategories

In this section, we give an overview on categories and subcategories, see [46, Chapter
I] for more details. We also introduce some definitions and results on left (and right)
almost split morphisms that we will widely use for the study of Auslander-Reiten theory
in homological and higher homological algebra in later sections. Some of these definitions
are typically presented in the setup of a more specific category, such as an abelian or a

triangulated one, but they still make sense for a general category A.

2.1.1 Categories

Definition 2.1.1. A category is a triple A = (Ob.A, Hom A, o), where Ob A is called the
class of objects of A, Hom A, which is the union of the sets Hom4(A, B), is called the
class of morphisms of A, o is a partial binary operation on Hom A4 and the triple satisfies

the following.

(a) We associate to each pair A, B € Ob.A the set of morphisms from A to B, denoted
by Hom 4(A, B), such that if (A, B) # (C, D), then Hom 4(A, B)nHom4(C, D) = @.

(b) For each triple A, B, C € Ob A the operation
o:Homy(B,C) x Hom4(A, B) - Homy4 (A, C), given by (5,a) —» fo«

is defined (we call it the composition of a and [3) and has the following properties.
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e Associativity: yo (Boa) = (yo ) o« for every triple a € Homy(A, B), 8 €
Homy(B,C), v € Homy4(C, D) and

e Existence of the identity morphism 14: for each A € Ob A, there exists 14 €
Hom 4 (A, A) such that for every o € Hom 4(A, B) and v € Hom4(C, A) we have
aolg=aand 140y =7.

Notation 2.1.2. We often write o : A - B instead of a € Hom4(A, B). Moreover, we

often write A== A in diagrams to mean 14.

Example 2.1.3. Abelian groups together with group homomorphisms and their usual

composition form a category, which we denote by Ab.

Some important categories

Most of the categories we will study in this thesis have some extra structure. In particular,
we will almost always assume our categories are k-linear additive categories for some field
k. In addition, we will also often assume some of the following: they are skeletally small,
they have split idempotents, their Hom spaces are finite dimensional over the given field

k. We recall here the relevant definitions.

Definition 2.1.4. Let k be a field. A category A is called a k-linear category if for each
pair of objects A, B in A, the set Hom 4(A, B) is equipped with a k-vector space structure

such that the composition of morphisms in A is a k-bilinear map.

Definition 2.1.5. A category A is an additive category if the following conditions are
satisfied.

(a) For any finite set of objects Ay, Ag,..., A, in A, there exists a direct sum A; ® A @
e ® An'

(b) For each pair of objects A, B in A, the set Hom 4(A, B) is equipped with an abelian

group structure.

(c¢) For each triple of objects A, B, C' in A, the composition
o:Hom4(B,C)xHom4(A, B) > Hom4(A,C)

is bilinear.

(d) There exists an object 0 in A, called the zero object, such that 1y is the element zero

of the abelian group Hom 4(0,0).
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Remark 2.1.6. If A is a k-linear additive category, then the k-linear and additive struc-

tures have the same addition of morphisms, denoted by “+”.

Definition 2.1.7 ([46, Chapter VIII.2]). Let A be a category. A biproduct diagram for

two objects A and B in A is a diagram of the form

L Vv

A=~ o= =B 21)

™ 7.‘./

where Tor=1y4, 7’0t/ =1g and tom+ o’ = 1¢. By [46, Theorem VIIIL.2|, two objects
A, B in A have a product if and only if they have a biproduct diagram if and only
if they have a coproduct, or a direct sum, and in this case C' = A® B. Specifically, given a
biproduct diagram , the object C together with ¢ and ¢’ is a coproduct of A and B,
while C together with m and 7’ is a product of A and B. Conversely, each coproduct C
of A and B with inclusions ¢ and ¢’ can be augmented to a biproduct diagram and so can
each product of A and B with projections m and 7’. Note that if A is additive, then any

two objects have a product, a coproduct and a biproduct diagram.

We recall the definition of (Jacobson) radical of an additive category, see [42], Lemma 6].

Definition 2.1.8. Let A be an additive category. The (Jacobson) radical of A is the two
sided ideal rad 4 in A defined by the formula

radg(A,B) ={a:A—> B|1s- o« is invertible for any §: B - A},

for all objects A and B in A.

Definition 2.1.9. A category A is said to be skeletally small if the collection of isomor-

phism classes of objects is a set.

Definition 2.1.10. Let A be a category and A be an object in A. A morphism e €
Hom 4 (A, A) is called an idempotent if e? = eoe = e. We say that the category A has split
idempotents if for any object A in A and any idempotent e € Hom4(A, A), there is an
object B in A and morphisms 7: A - B and ¢: B — A such that tomr=e and wov = 1p.

Definition 2.1.11. Let A be an additive category. We say that an object A € A is
indecomposable if when written as a direct sum of the form A = A; ® A5, we have that
either A1 =0 or Ay =0.

Remark 2.1.12. Let k be a field and A be a skeletally small, k-linear additive category
with split idempotents and finite dimensional Hom spaces over k. By [45, Corollary 4.4], we

have that A is a Krull-Schmidt category, in the sense that for each object A in A, there is a
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finite direct sum decomposition of the form A= Ay &---& A,, where A; is indecomposable
for each i = 1,..., n. Note that this is equivalent to Hom 4(A;, A;) being a local ring for
each i. Moreover, by [45, Theorem 4.2] the objects Aq,..., A, are determined uniquely

up to isomorphism.

2.1.2 Functors

We recall the definition of functors, which are maps between categories that send objects

to objects and morphisms to morphisms.

Definition 2.1.13. A covariant functor F : A - B between two categories A and B is
defined by assigning to each A € Ob .4 some F(A) € ObB and to each a: A - A" in Hom A
some F(a): F(A) > F(A’) in Hom B such that the following conditions hold.

(a) For every Ae ObA, F(14) = 1p(a)-.

(b) For each pair of morphisms av: A - A" and o’ : A" > A” in Hom A we have F(a/o«) =
F(a') o F(a).

A contravariant functor G : A — B between two categories is defined by assigning to each
A€ ObAsome G(A) e ObB and to each a: A > A" in Hom A some G(«) : G(A") - G(A)
in Hom B such that the following hold.

(a) For every Ae ObA, G(14) = 1g(4)-

(b) For each pair of morphisms «: A — A" and o/ : A" > A” in Hom A we have G(a/oar) =
G(a) o G(d)).

Note that covariant functors preserve the direction of the arrows while contravariant func-

tors reverse it.

Definition 2.1.14. We say that a covariant functor F': A — B is a full functor if for any
objects A and A’ in A, the map

FAA’ : HOHIA(A,A,) - HomB(F(A)vF(A,))?

sending a morphism « to F'(«) is surjective. Similarly, if the map F4 4/ is injective for any
objects A and A" in A, then we say that F' is a faithful functor.

Definition 2.1.15. Let A be a category. Then 14 : A - A sending each object and
each morphism to itself is a covariant functor called the identity functor of A. A functor
F:A— Ais an automorphism if there exists a functor F~' : A - A such that F o I~ =
ly=F1oF.
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Definition 2.1.16. A functor F : A - B between two additive categories is called an
additive functor if F(a+ ) = F(«) + F(f) when this equation makes sense. Note that

additive functors preserve finite coproducts.

We will use the following result in later sections.

Lemma 2.1.17. Let A and B be additive categories and A have split idempotents. Sup-

pose F': A — B is a full additive functor, then F(A) is closed under direct summands.

Proof. Let A e A satisfy F(A) = X @Y. Then, we have a biproduct diagram:

J

D e V) — (2.2)
p q

where poi =1x and goj =1y. Also, e =itop and 1p4) — € = j o g are idempotents in
Endg(F(A)). Now, as F is full, there is an idempotent e’ in End 4(A) such that F(e') = e,
and F(14-¢€') = 1p(a) —e. Since A has split idempotents, we get a biproduct diagram:

. -/

7 J
— = -~
X’vA\JY,7
P’ q

where p'oi' =1x/, ¢ 0oj' =1yr, i’ op’ =€’ and j' oq' =14 —€’. Applying F to this, we get:

F(i") F(@")
F(A)
F(p') F(q")

F(X") F(Y").

We show that F(p')oi: X - F(X') and po F(i') : F(X') - X are mutually inverse
isomorphisms, so that F(X’) 2 X. First note that

iop=e=F(i")o F(p'), and F(p') o F(i') = F(p'0i') = F(1x/) = 1p(x)-
Then, recalling also that poi=1x, we have that

(F(p')oi)o(poF(i'))=F(p')o(iop)o F(i') = F(p') o F(i") o F(p') o F(i') = 1p(x7),
(pOF(iI))O(F(p’)oi):po(F(i’)oF(p'))oi:poiopoi:1X_

Hence X 2 F(X') and similarly, Y = F(Y"). O

We omit a description of the theory of algebras and modules in this thesis, see [2, Chapter

I] for example for details.
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Notation 2.1.18. Let k be a field and A a finite dimensional associative k-algebra. Unless
otherwise specified, we assume that A-modules of any k-algebra A are right A-modules.
Right (respectively left) A-modules together with their module morphisms form a category,
denoted by Mod A (respectively Mod A°?). Moreover, the category of finitely generated
right A-modules is denoted by mod A and the one of finitely generated left A-modules is
denoted by mod A°P.

Example 2.1.19. Let k be a field and A be an associative algebra over k. Let M be a right
A-module and note that for any right A-module N, we have that the set of morphisms from

M to N, denoted by Homp (M, N) is a k-vector space and Mod A is a k-linear category.

(a) Consider Homy (M, -) : Mod A — Mod k, that is the map sending a right A-module N
to the k-vector space Homy (M, N) and a module morphism f : N - L to the k-linear
map Homy (M, f) : Homp (M, N) - Homy (M, L) given by Homy (M, f)(g) = fog,
for g e Homy (M, N). Then Homp (M, -) is a covariant functor.

(b) Consider Homp (-, M) : Mod A - Mod k, that is the map sending a right A-module N
to the k-vector space Homp (N, M) and a module morphism f : N - L to the k-linear
map Homy (f, M) : Homp (L, M) - Homp (N, M) given by Homp (f,M)(g) =go f.

Then, Homy (-, M) is a contravariant functor.

Definition 2.1.20. Let A and B be categories and F, G : A — B be functors, say both
covariant. Let 1 = {n4}4con .4 be a family of morphisms in B such that for each A € Ob A,
we have that n4 € Homp(F(A),G(A)). We say that 7 is a functorial morphism, also
known as a natural transformation, if for each A, A’ € Ob.A and each o € Hom 4(A, A")

the following diagram commutes

F(4) 2+ G(A)
F(a)j LG(Q)
F(A) 2 GA).

If in addition 74 is an isomorphism for each A € Ob.A, we say that n is a functorial

isomorphism, also known as a natural equivalence.

Definition 2.1.21. We say that a covariant functor F' : A — B is an equivalence of
categories if there is a functor G : B - A and functorial isomorphisms ¢ : F o G = 15
and ¢ : Go F = 14. In this case we say that G is a quasi-inverse of F' and A and B are

equivalent categories (and write A = ).

Definition 2.1.22. We say that a contravariant functor F' : A - B is a duality of categories
if there is a functor G : B > A and functorial isomorphisms ¢ : FoG = 1g and ¢ : Go F =

14. In this case, we say that G is a quasi-inverse of F.
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Example 2.1.23. Let k be a field and A be a finite dimensional associative k-algebra.
Finitely generated right, respectively left, A-modules together with module morphisms
form a category, denoted by mod A, respectively by mod A°?. Let D(-) = Homg(—, k) :
mod A - mod A°? be the contravariant functor which assigns to each M in mod A the
dual k-vector space D(M) = Homy (M, k) together with left A-module structure given
by (af)(m) = f(ma) for any f € Homy(M,k), a € A and m € M; and to each h €
Homp (M, N), the dual k-homomorphism D(h) = Homg(h,k) : D(N) - D(M) given by
D(h)(¢) = @oh. Then D(-) is a duality of categories, called the standard k-duality with
quasi-inverse D(-) = Homy (-, k) : mod A’ - mod A defined similarly.

We end this section by introducing the Serre functor. This functor plays an important
role in Auslander-Reiten theory and we will widely use it in later sections and chapters of
this thesis.

Definition 2.1.24. Let k£ be a field and A be a k-linear additive category with finite
dimensional Hom spaces over k. An additive functor S : A - A is called a Serre functor

if it is an auto-equivalence and there are isomorphisms
Homyu (A, B) @ D o Homy(B,SA),

functorial in A, B € Ob.A, where D(-) = Homy (-, k).

2.1.3 Some important morphisms

We define isomorphisms, monomorphisms and epimorphisms and what it means for monomor-
phisms and epimorphisms to split. We also introduce irreducible morphisms and left and

right almost split morphisms, which we will widely use in later sections.

Definition 2.1.25. Let A be a category and A, B be objects in A. A morphism a: A - B
is called an isomorphism if there exists a morphism 5 : B — A such that ao 8 =15 and
Boa =14. In this case, the morphism £ is uniquely determined by «, it is called the

inverse of a and it is denoted by o'

Moreover, we say that A and B are isomorphic
and write A ¥ B. A morphism of the form a: A - A is called an endomorphism and we
define End4(A) := Hom4(A, A). An endomorphism that is also an isomorphism is called

an automorphism.

Definition 2.1.26. Let A be a category and A, B be objects in A. A morphism « :
A — B is called a monomorphism if for each object C in A and each pair of morphisms
v,v" € Hom4(C, A) such that a oy = @ 0o4’, we have that v = 4'. Dually, a morphism
a: A — B is called an epimorphism if for each object C in A and each pair of morphisms
B, 8" € Hom 4(B,C) such that Soa = ' o«a, we have that §=/'.

10



Chapter 2. Background

Definition 2.1.27. Let A be a category and A, B be objects in A. A morphism a: A > B
is called a split monomorphism (or section) if there exists a morphism [ : B - A such that
foa=14. Dually, a morphism : B - A is called a split epimorphism (or retraction) if

there exists a morphism «: A - B such that foa =14.

Remark 2.1.28. Note that a split monomorphism is a monomorphism and a split epi-

morphism is an epimorphism.

Definition 2.1.29. Let A be a category and A, B be objects in A. A morphism a: A - B

is called an irreducible morphism if

(a) « is neither a split monomorphism nor a split epimorphism,

(b) whenever o = g o a1 for some object C' € A and morphisms «; : A - C and

g : C'—> B, then either o is a split monomorphism or «s is a split epimorphism.

We define left (and right) minimal morphism, see for example [2, Definition 1.1, Chapter
Iv].

Definition 2.1.30. A morphism « : A - B in a category A is left minimal if each
morphism 7 : B - B which satisfies n o a = « is an isomorphism. Dually, « is right

minimal if each morphism ¢ : A - A which satifies a0 ¢ = a is an isomorphism.

Definition 2.1.31. Let A be a category and A, B and C' be objects in A.

(a) A morphism a: A - B is left almost split in A if it is not a split monomorphism and
for every A’ in A, every morphism o’ : A - A’ which is not a split monomorphism
factors through a, i.e. there exists a morphism B — A’ such that the following

diagram commutes:

(b) A morphism g : B — C is right almost split in A if it is not a split epimorphism
and for every C’ in C, every morphism v : C’ - C which is not a split epimorphism
factors through f, i.e. there exists a morphism C’ - B such that the following

diagram commutes:

11
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Definition 2.1.32. A morphism in a category A is minimal left almost split in A if it
is both left minimal and left almost split in A. Similarly, a morphism is minimal right

almost split in A if it is both right minimal and right almost split in .A.

Notation 2.1.33. If the category A we are working in is clear, we sometimes omit it and

just say that a morphism is (minimal) left or right almost split.

Lemma 2.1.34. Let A be a category and A be an object in A.
(a) Suppose there exists a minimal left almost split morphism a: A - B in A. Then «
is unique up to isomorphism in the sense that if o’ : A - B’ is another minimal left

almost split morphism in A, then there exists an isomorphism ¢ : B - B’ such that

poa=a

(b) Suppose there exists a minimal right almost split morphism v : C' - A in A. Then
~ is unique up to isomorphism in the sense that if 4’ : C' — A is another minimal
right almost split morphism in A, then there exists an isomorphism 1 : C' - C’ such
that " o) = 1.

Proof. We only prove (a) as (b) follows by a dual argument. Since a and o are left almost
split in A, there are morphisms ¢ : B - B’ and ¢’ : B - B such that poa = o’ and
p'oa =a. Then a = ' opoa and ' = pop’oa’. By left minimality of o and o/, it

follows that ¢ o ¢’ and ¢’ o ¢ are isomorphisms and so ¢ is an isomorphism. O

2.1.4 Subcategories

In this thesis, we will often work with subcategories and we will usually assume these

subcategories are full.

Definition 2.1.35. Let A be a category. A category X is called a subcategory of A if the

following are satisfied.

(a) The class Ob X is a subclass of the class Ob A.
(b) If X, Y are objects in X, then Homy (X,Y") € Hom4(X,Y).
(c) The composition of morphisms in & is the same as in A.

(d) For each object X in X, the identity morphism in Homy (X, X) coincides with the
identity morphism in Hom 4(X, X).

If, in addition, we have that Homy (X,Y) = Hom4(X,Y") for all objects X, Y in X, then
X is called a full subcategory of A.

12
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Example 2.1.36. Let k be a field and A a finite dimensional associative k-algebra. Fol-
lowing Notation [2.1.18] we have that mod A € Mod A and mod A°? ¢ Mod A°? are full

subcategories.

We will also often assume that subcategories are precovering and/or preenveloping. We
hence recall the definitions of precovers, covers, precovering subcategories and their dual

notions, see for example [37, Definition 1.4].

Definition 2.1.37. Let A be a category and X a full subcategory of A. An X -precover
(or right X -approzimation) of an object A in A is a morphism of the form £ : X — A with
X € X such that every morphism &' : X' - A with X’ € X' factorizes as:

An X -cover (or minimal right X -approximation) of A is an X-precover of A which is also

a right minimal morphism.

An X-preenvelope (or left X -approximation) of an object A in A is a morphism of the
form n: A > Y with Y € X such that every morphism n' : A - Y’ with Y € X’ factorizes

as:

An X-envelope (or minimal left X -approzimation) of A is an X-preenvelope of A which is

also a left minimal morphism.

Definition 2.1.38. The full subcategory X of A is called precovering (or contravariantly
finite) if every object in A has an X-precover. Dually, it is called preenveloping (or
covariantly finite) if every object in A has an X-preenvelope. If X is both precovering

and preenveloping, it is called functorially finite in A.

Often, subcategories of additive subcategories will be assumed to be additive subcategories

in the following sense.

Definition 2.1.39. Let A be an additive category. An additive subcategory of A is a full

subcategory which is closed under direct sums, direct summands and isomorphisms in A.

An important example of an additive subcategory we will often use is the following.

13



Chapter 2. Background

Definition 2.1.40. Let A be an additive category and A be an object in A. Then add (A)
is defined to be the additive subcategory of A whose objects are direct summands of direct

sums of copies of A.

2.2 Homological algebra

Auslander-Reiten theory plays an important role in the study of abelian and triangulated
categories and their higher analogues. In this section, we work in the setup of classic

homological algebra, with abelian and triangulated categories.

2.2.1 Abelian categories

We first define general abelian categories and we then focus on module categories.

Definition 2.2.1. Let A be an additive category and o : A - B be a morphism in A. A
kernel of v is an object Ker v in A together with a morphism ¢ : Ker « — A satisfying the

following two conditions:

(a) aor=0,

(b) for any object C' of A and any morphism ~: C' > A such that awo~y =0, there exists

a unique morphism 7' : C' - Ker a such that the following diagram commutes

T A > . B

C
AN
AN /
')/, EN L

Ker o

A cokernel of o is an object Coker « in A together with a morphism 7 : B — Coker

satisfying the following two conditions:

(a) Toa =0,

(b) for any object C of A and any morphism [ : B - C such that o« =0, there exists

a unique morphism ~ : Coker &« - C such that the following diagram commutes

A—> . .0

.~
7
x //'7

Coker «

Remark 2.2.2 ([2] pp 408, Appendix A.1]). Let A be an additive category such that

each morphism in A admits a kernel and a cokernel. For any morphism a: A - B in

14
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A, by Definition there exists a unique morphism @ such that the following diagram

commutes

Ker o —+ A @ B —"— Cokera.

Cokert —— Ker 7
(e}

Moreover, the object Ker 7 is called the image of o and it is denoted by Im c.

Definition 2.2.3. A category A is called an abelian category if

(a) A is additive,

(b) each morphism a : A - B in A admits a kernel ¢ : Kera - A and a cokernel
7w : B - Coker a and the induced morphism @ : Coker: - Ker 7 from Remark

is an isomorphism.

Definition 2.2.4. Let A be an abelian category. We say that a sequence
Az Aj =25 A, 25 Ay —

of objects and morphisms in A is a chain complex if a; o c;41 =0 for all i. A chain map
between two chain complexes A and B over A is a collection of morphisms f = {f;: A; -

B;} such that the following diagram commutes:

Qi1
Ain A;

lful lf@' lfiq

i+1 B; B; 1
Biv1

B

Chain complexes together with chain maps form an abelian category, denoted by C(.A),
see [56, Chapter 1, Theorem 1.2.3].

Definition 2.2.5. Let A be an abelian category and consider a chain complex
Az Ay 225 A 25 Ay - e
in A. The " homology of A is defined to be

H;(A) := Coker(Im av;11 % Kerq;),

where ¢ is the morphism induced by «a;.1 and «;. Note that if f: A - B is a chain map,
then f induces a morphism H;(f) : H;(A) — H;(B) for every i and H;(-) : C(A) - A

15



Chapter 2. Background

is a well-defined covariant functor. We say that A is an exact sequence if each morphism
¢ : Ima;1 — Kerqy is an isomorphism, or equivalently H;(A) = 0, for all 7. An exact

sequence of the form
0-4%5B2% 050

is called a short exact sequence.

Remark 2.2.6. Let k be a field and A a finite dimensional k-algebra. Then the category
of right A-modules, denoted by Mod A, is abelian. Consider a chain complex

i1 @
A= 5> Aj) —> Aj — Ajg — -

in Mod A. We have that «; o ;41 = 0 implies that Im ;1 is isomorphic to a submodule of
Ker a; and the i** homology of A is the quotient module H;(A) = Ker o;/Im az41. Then, for
any integer i, the i'® homology functor is the covariant functor H;(-) : C(Mod A) - Mod A

sending a chain complex
Ayl (673
A= 5> Aj) —> Aj — Ajg — -

to the module H;(A) = Ker ;/ Im ;41 and a chain map

A= A T A Ay
jf lfz‘ﬂ Lfi lfil
B = Bin Bi+1 B Bi Bia

to the morphism
Hi(f): Hi(A) » Hi(B): (a+Ima;1 = fi(a) +ImBq),

see [25, Definition 7.1].

Notation 2.2.7. If instead of subscripts and descending indices, we use superscripts and
ascending indices for our sequences, then we talk about cochain complexes in A of the

form

. i—1 . U .
Az AT L L AT 2, g+l L

and cochain maps. Moreover, in this case we use the i cohomology of A, denoted by
Hi(A) instead of the homology.

Definition 2.2.8. Let A and B be two abelian categories and F : A — B be a covariant,

16
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additive functor. We say that F' is left exact (respectively right exact) if for every short

« F(a F
exact sequence 0 > A — B Lo 0, the sequence 0 — F'(A) ), F(B) o, F(C)

(respectively F'(A) LN F(B) o, F(C) - 0) is exact.

Similarly if F': A - B is a contravariant functor, F' is left exact (respectively right exact)

F
if for every short exact sequence 0 - A 5% B 5 C — 0, the sequence 0 - F(C) ﬂ

F(B) 2 P(4) grespectively F(C) 2% p(B) 2% P(4) - 0) is exact.

A covariant or contravariant functor which is both left and right exact is called an exact

functor.
Example 2.2.9. Let A be an abelian category. Then for any object A in A, the covariant

functor Hom 4 (A, -) and the contravariant functor Hom_4(—, A) are left exact.

Derived functors and Ext

In this section we fix an abelian category A and we define derived functors.

Definition 2.2.10. An object P in A is called a projective object if the covariant func-
tor Hom4(P,-) is exact. Dually, an object I in A is called an injective object if the

contravariant functor Hom 4(-, I) is exact.

Definition 2.2.11. A projective presentation of an object A in A is a short exact sequence
in A of the form

0-K->P->A-0,

where P is a projective object. If every object in A has a projective presentation, we say

that A has enough projectives.

Dually, one can define injective presentations of objects and A having enough injectives.

Definition 2.2.12. A projective resolution of an object A in A is a chain complex in A

consisting of projective objects of the form
P=-sP,—> P - F -0,

such that Ho(P) 2 A and H;(P) =0 for i > 1.

Remark 2.2.13. Assume that A has enough projectives and let A be an object in A.

17
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Then we can construct a commutative diagram of the form

where, fixing Ky = A, we have that 0 - K;,1 - P; I, K; - 0 is a projective presentation
of K; for i >0. Then

P=vsP 2P P50

is a projective resolution of A.

If instead of having enough projectives, the category A has enough injectives, then one

can construct an injective presentation of a given object using a dual construction.

Definition 2.2.14 ([56, Section 2.4]). Let A and B be an abelian categories, A have
enough projectives and F': A — B be an additive functor. For each object A in A, we fix
a projective resolution P(A) of A. Note that a morphism «: A - A’ in A can be lifted
to a morphism P(«) : P(A) - P(A’) of the projective resolutions, that is a a chain map
such that Hy(P(«)) = a.

If F is a covariant functor, we define the left derived functors of F to be L;F(-) :=
H;(F(P(-))) for i > 0. Note that if F' is right exact, then LoF(A) = F(A). If F
is a contravariant functor, we define the right derived functors of F to be R'F(-) :=
HY(F(P(-))) for i > 0. Note that if F is left exact, then ROF(A) = F(A). Note that,
as pointed out in [56, Lemma 2.4.1], the choice of the projective resolutions and how

morphisms are lifted do not matter.

Dually, if instead of having enough projectives, the category A has enough injectives, then
one can define left derived functors of a contravariant functor and right derived functors

of a covariant functor using injective resolutions.

We introduce an important example of right derived functors that we will often use in

later sections, that is the Ext-functors.

Definition 2.2.15. Let A be an abelian category with enough projectives and enough in-
jectives and let A and B be objects in A. For ¢ > 1, we define Extil(—, B) := R"Homy(-, B),
that is the right derived functors of the contravariant, left exact, additive functor Hom 4 (-, B)
using projective resolutions. Similarly, we define Extf4(A, -):= R"Homy (A, -), that is the
right derived functors of the covariant, left exact, additive functor Hom 4(A, ), using in-

jective resolutions. Note that the two definitions give natural equivalent functors, see [50,

18



Chapter 2. Background

Theorem 2.7.6].

Auslander-Reiten theory in module categories

We now focus on some module categories and we give an overview of Auslander-Reiten
theory for these abelian categories. We follow Notation [2.1.18

Setup 2.2.16. Let k be a field and A a finite dimensional k-algebra.

Definition 2.2.17. A short exact sequence of the form
0-4a5BLcso (2.3)

in mod A is called an Auslander-Reiten sequence if « is a left almost split morphism in

mod A and [ is a right almost split morphism in mod A.

The following result presents equivalent definitions to the one of Auslander-Reiten se-
quence, see [2, Theorem IV.1.13] and [5, Proposition V.1.14].

Theorem 2.2.18. Let 0 > A > B R C - 0 be a short exact sequence in mod A. The

following are equivalent:

(a) the sequence is an Auslander-Reiten sequence,

(b) A is indecomposable and B is right almost split,

(¢) C is indecomposable and « is left almost split,

(d) « is minimal left almost split,

(e) B is minimal right almost split,

(f) A and C are indecomposable and o and [ are irreducible.

Remark 2.2.19. Let 0 > 4 5 B 5, C — 0 be an Auslander-Reiten sequence. Then, by
[5, Theorem V.5.3], the components of « are, up to isomorphism and scalar multiple, all
the irreducible morphisms starting at A and the components of 5 are, up to isomorphism

and scalar multiple, all the irreducible morphisms ending at C.

Hence Auslander-Reiten sequences collect important information both about the building
blocks of objects in mod A, that is indecomposable modules, and about the building blocks
of morphisms in mod A, that is irreducible morphisms. It is now natural to ask when it
is possible to construct an Auslander-Reiten sequence ending (or starting) at a given
indecomposable in mod A. This question has been answered, and there is also a recipe to

find the other end term of such an Auslander-Reiten sequence.
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Definition 2.2.20. Let projA be the full subcategory of mod A whose objects are the
finitely generated projective modules. Considering the module A in mod A, note that
proj A = add (A), where add is defined in Deﬁnition Moreover, note that proj A is a
precovering subcategory. Let C be an object in mod A. A minimal projective presentation

. ™ ™0 . .
of C' is a sequence P — Py — C where 7 is a proj A-cover of C' and 7 factors as

1

>~ A

Ker g

P

P07

where ¢ is the kernel of my and 7 is a proj A-cover of Ker 7.

Definition 2.2.21. Let C' be a module in mod A and P, —> Py ™% C be a minimal

projective presentation of C'. The transpose of C' is defined to be

Hompy (m1,A)
5

Tr(C') := Coker(Homp (Po, A) Homy (Py,A)) € mod AP,

The Auslander-Reiten translation of C and the inverse Auslander-Reiten translation of C'
are 7(C) == Do Tr(C) and 7 1(C) = TroD(C) respectively, where D(-) := Homg(-, k) :
mod A -» mod A°? is the standard k-duality.

Remark 2.2.22. By definition, if P is an indecomposable projective module in mod A,
then it cannot appear as the last term of an Auslander-Reiten sequence. In fact all
epimorphisms ending at P split. Similarly, if I is an indecomposable injective module in
mod A, then it cannot appear as the first term of an Auslander-Reiten sequence. As pointed
out in the following result, these are the only cases for which there is no Auslander-Reiten

sequence ending (respectively starting) at a given indecomposable module in mod A.

Theorem 2.2.23 ([5, Proposition V.1.14 and Theorem V.1.15]). (a) If C is an inde-
composable non-projective module in mod A, then there is an Auslander-Reiten se-
quence in mod A of the form 0 - 7(C) - B - C - 0.

(b) If A is an indecomposable non-injective module in mod A, then there is an Auslander-
Reiten sequence in mod A of the form 0 - A - B —» 771(A) - 0.

We end this section by recalling stable categories and the Auslander-Reiten duality, see
for example [2, Theorem IV.2.13], linking Hom spaces in stable categories and Ext!, see
Definition We will also see a higher version of this in a later section of this chapter,
see Theorem

Definition 2.2.24. For A and B in modA, we define P(A, B) to be the subset of
Hompy (A, B) consisting of morphisms factoring through a projective A-module. Note that
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this defines an ideal P in mod A, see [2, p. 109]. We define the projectively stable category
to be the quotient category

mod A := mod A/P.

The objects of mod A are the same as the objects of mod A and, for A, B € mod A, we
define

IIOJA(AaB) = HomMA(A’B) = HOHIA(A,B)/P(A,B),

with the composition of morphisms induced from the one in mod A.

The injectively stable category mod A is defined dually and the morphism space between
A, B e mod A is denoted by Homp (A, B).

Theorem 2.2.25 ([2, Theorem IV.2.13]). For all A and B in mod A, there are functorial

isomorphisms

Ext) (A, B) = D oHom, (77 *(B),A) 2 D o Homy (B, 7(A)).

2.2.2 Triangulated categories

We start by recalling the definition of a triangulated category.
Definition 2.2.26 ([22, Definition in I.1]). A triangulated category is a triple (7,3, A),

where
e 7 is an additive category,
e ¥: 7 - T is an automorphism, called suspension, (with inverse denoted by X1,
e A is a class of diagrams in T of the form A - B - C — X A called triangles,
satisfying the following axioms.

(TR1) e Each morphism A = B in 7T is part of a triangle (A > B - C' - $A) € A.
e For each object A, the following is a triangle: A 14, A—->0-> XA

e For each commutative diagram as below, with vertical arrows isomorphisms,

A B C YA

T

A B’ c A,

if the top row is a triangle, then so is the bottom row.
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(TR2) (A5 B2 sAa)eAifandonly it (BS54 =% 5B) ¢ A

(TR3) For every diagram as below, where the rows are triangles and f, g are such that
the left square is commutative, there is a morphism A making the other two squares

commute:

A B C YA e A

1

4
A’ B’ o YA e A.

(TR4) Octahedral aziom: for any two morphisms a: A - B and f: B — C in T, there is a

commutative diagram of the form

A—2 B o4 YA
1a B8 1xa
AL o B’ A
0 A A 0

A Y B ! %24,

where each row and each column is a triangle.

We recall two lemmas proven by Krause about left and right minimal morphisms. Note
that we prove the higher version of the first one in Lemma [2.3.36] and the second one is a
consequence of Lemma in the case when d = 1.

Lemma 2.2.27 ([44, Lemma 2.4]). Let a: A — B be a non-zero morphism in a triangu-
lated category T. If B has local endomorphism ring, then « is left minimal and if A has

local endomorphism ring, then « is right minimal.

Lemma 2.2.28 ([44, Lemma 2.5]). Let A = B L clsAbea triangle in a triangulated
category T. Then $ is right minimal if and only if v is left minimal.

Important functors between triangulated categories are the triangulated functors.

Definition 2.2.29 ([48, Definition 2.1.1]). Let (7,%,A) and (77,%’, A’) be triangulated
categories. A triangulated functor from (T,%,A) to (T',%',A’) is a pair (F, ), where

F:T - T'is an additive functor and ¢ : FF'o ¥ — ¥/ o F' a natural equivalence, such that
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ifASBL C2SAisin A, then

FA) 2 pBy 22, peoy 29 srpa)

is in A/,
We will work in the following setup.

Setup 2.2.30. Let k£ be a field, T be a skeletally small k-linear triangulated category
with split idempotents in which each Hom space is finite dimensional over k. Note that

this implies that 7 is a Krull-Schmidt category by Remark [2.1.12

The bounded derived category of mod A

Let k be a field and A be a finite dimensional k-algebra. An important example of a
triangulated category satisfying Setup [2.2.30] is the bounded derived category of Mod A.
In this section, we give an overview of this category, see for example [25, Section 7] or [56),

Chapter 10] for more details.

Recall the category of chain complexes of an abelian category A and the homology of a

chain complex, see Definitions and Here we fix A = Mod A, see Remark

Definition 2.2.31 (25, Definition 7.4]). A chain map f: A — B in C(ModA) is called a
quasi-isomorphism if H;(f): H;(A) - H;(B) is an isomorphism for all i.

Definition 2.2.32 ([25], Definition 1.6]). Let

i1 @

A=o > Aj) —5 A =5 Ajq > -,
Bi+1 Bi

B=-> Bjy1 —> B; =5 Bj_1 — -

be chain complexes in C(Mod A) and f, g : A - B be chain maps. We say that f and g
are homotopic and write f ~ g if there are morphisms s; : A; - B;y+1 in Mod A such that
fi—gi = Bir108;+s;-10q; for all . In the case when g = 0, we say that f is null-homotopic.

Note that ~ is an equivalence relation.

The homotopy category K(ModA) is then defined to be the category with the same ob-
jects as C'(Mod A) and whose morphisms are the equivalence classes of the morphisms in
C'(Mod A) modulo homotopy, that is for A, B € K(ModA), we have

Hom g (vod a) (A, B) == Home(voa ay (A, B)/ ~

Lemma 2.2.33 ([25, Proposition 7.3]). Let f and g be chain maps in C(ModA) such

23



Chapter 2. Background

that f ~g. Then H;(f) = H;(g) for all i. As a consequence, the homology functors induce
well-defined homology functors on the category K (ModA).

Definition 2.2.34 ([25, Definition 6.1]). We define an automorphism ¥ : C'(Mod A) —
C'(Mod A) sending

e a chain complex

Qg+1 (677
A= Ajyg — Ay — Aj — -,

to the chain complex

—Q—-1

S(A) = > Ay —> Ayg — Ajg — o,

that is the chain complex with (32(A)); = A;—-1 and (Xa); = —a—1;

e a chain map

A= e A A S A ——
jf lfiu lfi lfil
b= Bin Bi+1 Bi Bi Bioy ==

to the chain map X(f): X(A) - X(B), where (X(f))i = fi-1-

Definition 2.2.35 (|25, Definitions 6.3 and 6.6]). Let

A= Aj - A A
jf lfﬂl Lfi lfil
B = Bin Bis1 B Bi Bia

be a chain map in C(Mod A). Then the mapping cone of f is the chain complex

(7o) (75 2)

Then, we have a short exact sequence in C'(Mod A) of the form

0
OQBQ»M(f)ME(A)—»O.
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Viewed as a sequence in K (ModA), then

ALB@M(f)ﬂ)E(A)

is called a standard triangle in K (ModA).

Proposition 2.2.36 (|25, Theorem 6.7]). The category K(ModA) is triangulated with
suspension X as defined in Definition [2.2.34] and triangles as diagrams that are isomorphic
to standard triangles as described in Definition [2.2.35

We now introduce the derived category D(Mod A), which is obtained by inverting the
quasi-isomorphisms in K (Mod A). The process to build D(Mod A) is called localisation of
K(Mod A) with respect to the quasi-isomorphisms, for more details on the construction

of this category see for example [25, Sections 7.2 and 7.3].

Theorem 2.2.37 ([25, Theorems 7.10 and 7.18]). There exists a category D(Mod A),
called the derived category of Mod A, which has the same objects as K(ModA) and is
equipped with a functor L : K(Mod A) - D(Mod A) with the following properties.

(a) For every quasi-isomorphism q in K(ModA), then L(q) is an isomorphism in D(Mod A).

(b) If D is a category and F' : K(Mod A) — D is a functor sending all quasi-isomorphisms
to isomorphisms, then there is a unique functor F' : D(ModA) — D making the

following diagram commutative

K (Mod A) —2= D(Mod A).

-

Then D(Mod A) is a triangulated category, where triangles are the isomorphism closure

of L applied to triangles in K(Mod A) and so L is a triangulated functor in the sense of
Definition [2.2.29.

Remark 2.2.38. The functor G : Mod A - D(Mod A) obtained by composing the inclu-
sion of Mod A into K(Mod A) with the functor L : K(Mod A) - D(Mod A) from Theorem
is full and faithful in the sense of Definition Moreover, for a positive integer

1, we have an equivalence

Extigoqa (= —) 2 Homped ) (G(-), 5'G(-)),
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see [22, Section 1.6]. The functor G sends a short exact sequence 0 - A % B LA -0

corresponding to the class € € Extl; ;. (C, A), to a triangle

c(4) £ q) 29 qo) £9 saa)

in D(Mod A).

Instead of working with D(Mod A), we will usually work with the full subcategory mod A
Mod A of finitely generated right A-modules and the following full subcategory of the

derived category.

Definition 2.2.39. The bounded derived category, denoted by D?(mod A) is the full sub-
category of D(Mod A) whose objects are bounded chain complexes of finitely generated

A-modules, that is chain complexes of the form

A:“‘—>0—>'“—>0—>Aiﬂ>Ai—1—>"‘—>Aj+1L>Aj—>0—>"'—>0—>"'

Auslander-Reiten theory in triangulated categories

In this section, we study Auslander-Reiten triangles in triangulated categories satisfying
Setup [2.2.30L These were first studied by Happel, see [21, Section 1.4], but we present

some of the results as stated by Krause in [44].

Definition 2.2.40 ([2I], Definition 1.4.1]). A triangle in 7 of the form
A5Bhc2lsa
is an Auslander-Reiten triangle in T if the following are satisfied:

(a) the morphism + is non-zero,
(b) the morphism « is left almost split in T,
(¢) the morphism f is right almost split in 7.

Remark 2.2.41. Note that in the above definition, condition (a) is implied by both of

the other two conditions.

Lemma 2.2.42 ([44, Lemma 2.3]). (a) Let §: B - C be right almost split in 7, then

C' is indecomposable.

(b) Let a: A — B be left almost split in 7, then A is indecomposable.
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The following lemma presents equivalent definitions to the one of Auslander-Reiten trian-

gle. Note that its dual is also true.

Lemma 2.2.43 ([44, Lemma 2.6]). Let e: A > B 202 SAbea triangle in 7 and
suppose that g is right almost split. Then the following are equivalent:

(a) A in indecomposable,
(b) B is right minimal,
(c¢) « is left almost split,

(d) €is an Auslander-Reiten triangle.

Like in the abelian setup, the Ext-functor plays an important role in triangulated categories
and it will often be used in this thesis. We have seen in Remark [2.2.38[ that in the special
case when our triangulated category is D(mod A), then for A, B € mod A and a positive

integer 7, we have that
HomD(mod A) (A7 EZB) = EthnodA(Aa B)7

where we dropped the functor G : mod A - D(modA) because it can be viewed as an
inclusion. We now define Ext for a more general triangulated category satisfying our

setup.

Definition 2.2.44. Let ¢ be a positive integer. We define
Ext’-(A, B) := Hom7(4,%'B),

for objects A, B in T. If the triangulated category we are working in is clear, we sometimes
omit the subscript 7 and simply write Ext(A, B).

We will often assume that 7 has a Serre functor, see Definition [2.1.24] since this implies

the existence of Auslander-Reiten triangles in 7.

Definition 2.2.45. Suppose that 7 has a Serre functor S : 7 — 7. Then the functor

7:=SoX 1T - T is called Auslander-Reiten translation and it is invertible with inverse
-1 -1

T =802

The following was first proved in [52, Theorem 1.2.4] with the extra assumption that k is

an algebraically closed field. The result for a general field k corresponds to the case n =1
of [32], Theorem 3.10], as the only 1-cluster tilting subcategory of 7 is T itself.
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Theorem 2.2.46. Suppose that the category T has a Serre functor S : T — T. Then T has
Auslander-Reiten triangles, in the sense that if X is an indecomposable in T, then there
exists an Auslander-Reiten triangle in T starting at X and one ending at X. Moreover,

these Auslander-Reiten triangles in T have the form

XV ->7'X>3X and 7X > Z - X - 2(7X).

Sometimes, we also assume that 7 has a Serre functor with some extra property.

Definition 2.2.47. Assume that the category 7 has a Serre functor S. If for some integer
n > 2, we have that S 2 X", then T is called an n-Calabi- Yau category .

2.3 Higher homological algebra

In this section, we introduce the generalisation of homological algebra, that is higher
homological algebra. Let d be a positive integer. Jasso generalised abelian categories
to d-abelian categories in [34], where kernels and cokernels are replaced by complexes of
d + 1 objects, called d-kernels and d-cokernels respectively, and short exact sequences by
complexes of d+2 objects, called d-exact sequences. In [19], Geiss, Keller and Oppermann
likewise generalised triangulated categories to (d+2)-angulated categories, where triangles

are replaced by complexes consisting of d + 2 objects.

Note that the base case d = 1 recovers classic homological algebra as 1-abelian categories

are abelian categories and 3-angulated categories are triangulated categories.

2.3.1 d-abelian categories

Let d be a fixed positive integer. In this section we present the definitions of d-abelian
categories and d-cluster tilting subcategories of the category of finitely generated right

A-modules and we present some of their properties.

Definition 2.3.1 ([34], Definitions 2.2, 2.4 and 2.9]). Let A be an additive category.
(a) A sequence of objects and morphisms in 4 of the form

A0 Al A2 . Ad-1 Ad

is a d-kernel of a morphism A% —— A% if

0 — Homy(B, A’) —— - —— Homy (B, AY) —— Hom (B, A1)
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is an exact sequence for each B in A.

(b) A sequence of objects and morphisms in 4 of the form

Al A2 Adfl Ad Ad+1

is a d-cokernel of a morphism A? —— A' if
0 —— Hom (A% B) —— ... ——= Hom4(A', B) — Hom4(A°, B)

is an exact sequence for each B in A.

(¢) A d-exact sequence is a sequence of objects and morphisms in A of the form

0 A0 af Al A2 Ad-1 Ad at Ad+1 0,
such that A° o Al A? Ad-1 A% is a d-kernel of o and
Al A2 A1 Al of AL s a d-cokernel of af.

(d) A morphism of d-exact sequences is a commutative diagram of the form:

0 A0 Al A2 .. Ad—l Ad Ad+1 0
0 BO Bl BZ Bd—l Bd Bd+1 O,

in which each row is a d-exact sequence.

Definition 2.3.2 ([34, Definition 3.1]). A d-abelian category is an additive category F

which satisfies the following axioms:

(A0) The category F has split idempotents.
(A1) Each morphism in F has a d-kernel and a d-cokernel.

(A2) If o® : A° — = A' is a monomorphism and A! A? A% s g

d-cokernel of o, then

0

0 AO o Al A2 Ad—l Ad Ad+1 0

is a d-exact sequence.
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(A2°P) If a?: A? ——= A%™! is an epimorphism and A —= ... — = ATl 49 is a

d-kernel of a?, then

d

0 AO Al A2 Ad—l Ad [od Ad+1 0

is a d-exact sequence.

Setup 2.3.3. Let d be a fixed positive integer and F be a d-abelian category.

In [34], Jasso generalised the idea of pushout to d-pushout of a d-exact sequence along
a morphism from its first term. We recall Jasso’s definition and see how these higher-

pushouts can be used to construct morphisms of d-exact sequences in F.
Definition 2.3.4 ([34, Definition 2.11]). Consider a complex in F of the form

0 1

Y PR ARGy U L DR — T

and a morphism f°: A% - BY in F. A d-pushout diagram of A along f° is a cochain map

A: AO a? Al al AQ Ad—lﬂ_Ad
lso lfo lfl lfQ lf‘“ lf‘l (2.4)
. 0 1 2 d-1 d

with B',..., B% in F such that in the mapping cone

v ~° Fd-1
the sequence (77, ..., v41) is a d-cokernel of y~!, where we define

o [=att 0 . . . .
’}/Z _ ) ' :Az+1 ® B - Az+2 ® BHI,
fz+1 /87,

for i = -=1,0,...,d - 1 and where B™' and A% are fixed to be zero. The concept of
d-pullback diagram is defined in a dual way.

Remark 2.3.5. By [34, Theorem 3.8], for a complex in F of the form:

0 1 ad—l

A: AO « Al « A2 Ad_1—>Ad

and a morphism f°: A% - B? in F, there is always a d-pushout diagram of A along f° of
the form (2.4). Moreover, if a” is a monomorphism, then £° is a monomorphism.
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The next lemma follows from the dual of [36, Proposition 2.12].

Lemma 2.3.6. Consider a d-exact sequence in F of the form

0 1 d-1 d

5 0 Ly Ad-1 o’ Ad @ pd+l 0

and a morphism f°: A° - B® in F. Then there is a d-pushout diagram of

0 d-1
A0 X pd

along fY and it induces a morphism of d-exact sequences of the form:

5 0 A0 a® Al ol A2 Ad-1 adl Ad ad Ad+1 0
tf lfo lfl le lfd—l lfd
. 0 1 2 d-1 d d+1
¢ 0—=B"—>B'—>B e BT e B AT 0.
(2.5)

Lemma 2.3.7. Consider a morphism A of d-exact sequences in F of the form:

5 0 AO a® Al at AQ Ad—l ad! Ad a? Ad+1 0
h ho v/ g hl v/ 7 h2 phd-1 - d hd P 7 ha+1
#/51 #/52 ;/sd g
€ 0 BY B! B? B! B B! 0.
60 61 ﬂd71 Bd

Then, the following are equivalent.
(a) There is a morphism s%!: A% B such that 8% o s4*1 = po*1,
(b) There is a morphism s!: A - B? such that s' o a® = h°.

(c) The morphism h : 6 — € is null-homotopic, that is there are morphisms s : A* » B!
such that k' = Bt os’ + s o’ for i =0,..., d+ 1 and where B~ and A%*? are set

to be zero.

Proof. 1t is clear that (c) implies both (a) and (b). Assume (a) holds. By the definition

of d-kernel, applying Hom (A%, ) to €, we obtain the exact sequence:

d-1 d
Homz (A4, BT1) LN Homz (A%, BY) N Homz(A?, B*1).
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Note that
6f(hd_8d+1oad):6dohd_/8dosd+loadzﬁdohd_hdﬂoad:()’

so that h¥—s™1oad is in Ker 8¢ = Im 84!, So there exists a morphism s% : A? - B%! such
that S Tos? = b — s o, Inductively, for i =d—-1, d-2,..., 1, we obtain s* : A > B*"!

such that h' = 571 o s® + s'*! o o', Then,
ﬂoosloao=hloa0—320aloa0=hloa0=ﬁooh0.

Since 3° is a monomorphism, it follows that s' o a® = k. So (b) and (c) hold. Dually, (b)

implies both (a) and (c). O

The special case when § = € and h is the identity on  in Lemma [2.3.7| gives the following.

Corollary 2.3.8. Consider a d-exact sequence in F of the form

0 1 d-1

5 0 A0 XAl @ A2 Ad-1 @

d

At s i 0.

The following are equivalent:

(a) a is a split monomorphism,
(b) a?is a split epimorphism,
(c) the identity on ¢ is null-homotopic.

Definition 2.3.9. Consider a d-exact sequence in F of the form

d

Ad «a Ad+1 0.

0 1 d-1

5 0 AV Al @ g2 Adl 2

If any, and so all, of the conditions in Corollary hold, we say that ¢ is a split d-ezxact

sequence.

Given two d-exact sequences in F, we see that it is possible to complete partial morphisms
between them to morphisms of d-exact sequences. Recall the notion of radical of the

category F from Definition [2.1.8

Lemma 2.3.10. Suppose there are d-exact sequences é and € in F and, for some 0 <7 <
j < d, there are morphims f?, f*', ..., f7 such that f'o f' = ffl ool fori<i<j-1, i.e.
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the following diagram commutes:

50— A0 D gt on gi ol 0T gy ggeiel ol A%
| | | |
| fO | pimt lfi lfj | g+t | pd+1
\ \ Y Y
€:0 BY B! B —.. B —pBitl .. pit! 0.
,30 Bz—l 62 5]—1 6J ﬁ]+1 ,Bd

Then, for 0<l<i-1and j+1<1<d+1, there exist morphisms f': A" - B! completing

fi fi*L .., 7 to a morphism of d-exact sequences.
Proof. The existence of the morphisms f! for 0 <1 <i -1 follows from the fact that

,80 . ﬁd—l

0 BY B! B

is a d-kernel of 3% : B* - B%*! The existence of the morphisms f! for j+1<1<d+1,
follows from the fact that

Al o A2 ol Ad+1 0

is a d-cokernel of a¥: A% - Al O
Lemma 2.3.11. Consider a d-exact sequence in F of the form

0 1 d-1 d

5 0 AV Al @ g2 AL & pd > pdil 0.

Fori=1,...,d, we have that o is right minimal if and only if a/~! is in radz.

Proof. Suppose that o' is right minimal. For any f: A® - A""!, we have

alo(ly-atof)=a'—aloa o f=al

Since o is right minimal, it follows that 1,4 — o' o f is invertible and hence o~! is in

radr.

Suppose now that o' is in rads and let h : A* > A® be such that o’ o h = a’. Then
oo (h—-1,4:) =0 and, since the first part of § is a d-kernel of a?, there exists a morphism
g: A" - A1 such that h— 14 = ' ' og. Hence h =14 +a’ ! o g and, since a'! e radz,
it follows that A is invertible. O

Lemma 2.3.12. Consider a d-exact sequence in F of the form

0 1 d-1 d

5 0 A0 ALl @ 42 Ad-1 o™ Ad > pd+l 0,
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with Y, ..., a® ! in rads and a morphism of d-exact sequences:
R E | Fy U C Iy} Py — ey U Ny TS B
Lf lfo lfl LJ& lfd_l lf‘i
5 0 A0 —~ Al — A2 Ad-1 — Ad — Ad+1 0,
where f? is an isomorphism. Then f°,..., f&! are all isomorphisms.

Proof. First note that, by Lemma [2.3.11] since o, ..., a® ! are in rads then o!,..., a?
are right minimal. Since f? is invertible, a? o f¢ = o implies that a? = a®o (f%)"!. Then,

using Lemma [2.3.10] we can construct a commutative diagram of the form:

5 0 AO ol Al ol A2 . Ad—l ad! Ad ad Ad+1 0
Lf lfo lfl L‘}tﬂ lfdl lfd
5 0 AO ol Al ol A2 . Ad—l ad! Ad ad Ad+1 0
Lg lgo lgl LgQ lgd—l l,(fd)l
. 0 1 2 d-1 d d+1
R L L b= (R SV L}
d-1 d-1

Hence a® ! = a4 1o g% o f&1 and as a?! is right minimal, it follows that ¢4 ' o f¢ 1 is
an isomorphism. Similarly, looking at fog we conclude that f% o g% is an isomorphism
and hence f¢! is an isomorphism. Letting h%! := (¢ ' o & 1)~ we can construct a

commutative diagram of the form:

5 0 A0 o Al ol Ad-2 ad—2 Ad—1£>Ad_ad>Ad+1_>0
jgof lgoofo Lglofl lngOfdQ lgdlofdl
a® 1 ot d-2 a2 441 ot g« d+1
J: 0 A° A A% At = s AT s A o)
| | |
jh I RO IRt I pd-2 lhdl H
¥ y ¥
) 0 1 d-2 d-1 d d+1
(5- 0 A ao A al A ad’2 A FA 714 —>O

Then

a2 = pd-l o gd=1 o pi=1 o gd-2 = o 42 o pd=2 o gd=2  pd-2

Y

d-2 d-2 fd72

is right minimal, we have that h%2og
d—2ofd—2

and, as « is an isomorphism. Similarly,

is an isomorphism. Since also f4 togd~!

g% %0 f420h%2 is an isomorphism. Then g
is an isomorphism, by a similar argument we have that f% 2o ¢% 2 is an isomorphism.

Hence f%2 is an isomorphism. Proceeding by induction, we conclude that f',..., f42
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are all isomorphisms. Then also f© is forced to be an isomorphism, because o is a

monomorphism. O

We focus on some d-abelian categories that arise as subcategories of module categories,

namely d-cluster tilting subcategories.

Definition 2.3.13 ([28] Definition 2.2]). Let k be a field, A a finite dimensional k-algebra
and F be a full subcategory of mod A. We say that F is a d-cluster tilting subcategory of
mod A if:

(a) F={AemodA |Exti~T1(F, A) =0} ={Adec A|Exti~9 (A, F)=0},
(b) F is functorially finite in mod A.

Theorem 2.3.14. Let k be a field and A a finite dimensional k-algebra. If F € mod A is

d-cluster tilting, then it is a d-abelian category. Moreover, a diagram in F of the form

0 AO Al A2 Ad—l . Ad o Ad+1 )

s a d-exact sequence in F if and only if it is an exact sequence in mod A.

Proof. The subcategory F is d-abelian by [34, Theorem 3.16]. The second part of the
theorem follows combining [34) Theorem 3.16 and Proposition 3.18]. t

For the rest of this section, we work in the following setup.

Setup 2.3.15. Let d be a fixed positive integer, k a field, A a finite dimensional k-algebra
and F € mod A a d-cluster tilting subcategory.

We introduce Yoneda equivalence on exact sequences in mod A and its connection with
Extjl\, see [24, Chapter IV.9].

Definition 2.3.16. Consider two exact sequences in mod A with the same end terms:

We say that € and €' satisfy the relation € ~~> ¢’ if there exists a commutative diagram
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of the form:

€: 0 B c! C? 1 ok A 0
€ 0 B D! D2 D1 D4 A 0.

We say that € and € are Yoneda equivalent if there exists a chain of exact sequences of

the above form € = €, €1,..., ¢ = € with
€) ~> €] T €9 N s e €

We denote the equivalence class of € by [e] and the set of all equivalence classes of exact

sequences of the above form by Yext4 (4, B).

Remark 2.3.17. Note that Yext% (A, B) has an abelian group structure, see [24, Chapter
IV.9]. Moreover, by [24, Theorem IV.9.1], there is a functorial isomorphism of set-valued
bifunctors Yextj{(—, -)= ExtdA(—, -). By [28, Appendix A], if A, B € F, then each equiva-
lence class in Yextj{(A, B) contains a d-exact sequence in F of the form:

1 2 d—

2 d-1
0 B Fl- 2.2 %, . % pil? . pd A 0,

with !, ..., god_l in radz, called almost minimal, which is unique up to isomorphism. So,

from now on, we will talk about equivalence classes of d-exact sequences in Extjl\—groups.

Proposition 2.3.18. Let A, A%! ¢ F, then every element in Extfl\(Ad”, A%) is given by

a d-exact sequence in F. Consider a d-exact sequence in F of the form

0 1 d-1 d

5 0 AV Al @ g2 AL & pd > pdil 0.

(a) We have that [§] =0 in Ext (A%, A%) if and only if § is a split d-exact sequence.

(b) Given a morphism f°: A% - B? in F, we can look at the morphism
Ext4 (A%, f9) : Extd (A9, A%) - Extd (491, BY)

in terms of d-exact sequences in F. For ¢ as above, 0§ = Extd (A%, f9)(9) is
given by extending a d-pushout diagram as in (2.5)) from Lemma [2.3.6

5 0 A0 o Al ol A2 Ad-1 ad-l Ad ad Ad+l 0
lf lfo lfl sz lfdl lfd
fO .5 0 BO Bl B2 Bd—l - Bd > Ad+1 —0.

BO Bl Bd—

B
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Dually, for ¢! : B#*! » A% in F, we have that ¢ - g%+ := Extjl\(gd“,AO)((S) €
Ext% (B%1, A%) is given by a d-pullback diagram.

Proof. First note that by Remark [2.3.17| every element in Ext‘[ix(Ad”,AO) is given by a

d-exact sequence in F.

(a) If [0] = 0 in Ext4 (A%, A%), then 6 is a split d-exact sequence by [33, Lemma 1.6].

The other direction follows by a simple argument.

(b) This construction can be seen in the d = 1 case in [24, Section III.1 and Theorem
I11.2.4]. The case for general d > 1 follows by methods similar to those used in [24],
Section IV.9].

O
Lemma 2.3.19. Any d-exact sequence in F of the form:
5 0 A0 a® Al o' A2 Ad—l ad! Ad a? Ad+1 0

induces the exact sequences

0—(B,A%) — ..~ (B, A?) — (B, AT™!) — Ext¢ (B, A%) — Ext4 (B, A"),

0— (A% B) - ...~ (A', B) — (A°, B) — Ext% (49!, B) — Ext4 (A%, B),
for any B in F and where we used the notation (-, -) := Homg(—,-).
Proof. See [36, Proposition 2.2]. O

Lemma 2.3.20. Consider a d-exact sequence in F of the form

0 1 d-1 d

5 0 AO a Al e AQ Ad—l o™ Ad a Ad+1 0

and a morphism fY: A° - B%in F. Let f:6 — f°-0 be as described in Proposition
2.3.18(b). Suppose there is a morphism of d-exact sequences of the form:

5 0 A0 a® Al a! A2 Adfl ad-l Ad ad Ad+1 0

jg gozfol jg1 jg2 lgdl jgd

¢ 0 B —— ' —=(C? CH! —— 0 —— A% 0.
Y vy a v

Then [f°-6] = [¢] in Extd (A%, BO).
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Proof. Note that f°-§ as described in Proposition [2.3.18(b) is obtained by extending a
d-pushout diagram. The result then follows using [34, Proposition 4.8]. O

Higher Auslander-Reiten theory

In [28, Section 3], Iyama introduced a higher analogue of Auslander-Reiten sequences in
module categories, namely d-Auslander-Reiten sequences in d-cluster tilting subcategories
F of module categories. The main result in [28, Section 3] is the proof of the existence
of these sequences. An important property of these sequences is that their end terms
are indecomposables determining each other, in the same way as in the classic module

category setup.

In this section we recall Iyama’s result, focusing on the right end term of d-Auslander-
Reiten sequences in F. Moreover, in [28, Theorem 1.5|, Iyama also proved a higher
version of the Auslander-Reiten duality, called d-Auslander-Reiten duality. We also recall

this result and give an alternative proof for it.

Definition 2.3.21. We say that a d-exact sequence in F of the form

0 1 d-1

€:0 P/ Ad1 2

d

Ad L pd+l 0,

is a d-Auslander-Reiten sequence in F if the morphism o is left almost split in F, the

d Ozd_l

morphism o is right almost split in F and, when d > 2, also o', ..., eradr.

Remark 2.3.22. Note that if € as above is a d-Auslander-Reiten sequence in F, then

End (A%) and Endp (A%1) are local and o, o are in radg.

The following lemma presents equivalent definitions to the one of d-Auslander-Reiten
sequence in F. Instead of proving it here, we will later prove the more general Lemma
where the case X = F corresponds to the following.

Lemma 2.3.23. Consider a d-exact sequence in F of the form:

0 1 d-1 d

€:0 AV Al > ATl X pd @ g+l 0.

The following are equivalent:

(a) € is a d-Auslander-Reiten sequence in F,
(b) a® ol,..., o are in rads and o is right almost split in F,

(c) a',..., a% 1 a? are in rads and a° is left almost split in F.
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Definition 2.3.24 ([28, 1.4.1]). Let M € modA and consider an augmented minimal

projective resolution of M of the form:
> Py P> P> M -0.

The dth transpose of M is Try(M) := Coker (Homp (Py—1,A) — Homy(Py,A)). The dth
Auslander-Reiten translation of M and the inverse dth Auslander-Reiten translation of
M are 74(M) := Do Trg(M) and 7; (M) := TrgoD(M) respectively, where D(-) :=
Homyg (-, k) : mod A - mod AP is the standard k-duality from Example

Proposition 2.3.25 (|28, Theorem 3.3.1]). For each non-projective indecomposable ob-

ject A1 in F, there exists a d-Auslander-Reiten sequence in F of the form:

0 1 d-1

5 0 A0 2% g1 ot g2 Ad-1 Tl g ot g 0.

Moreover, if § is a d-Auslander-Reiten sequence in F, then A° = 75(A9*1).

We now give an alternative proof for the d-Auslander-Reiten duality, first proved in [28]
Theorem 1.5]. This alternative proof is the higher analogue of Schiffler’s proof of the
Auslander-Reiten duality presented in [53, Theorem 7.18].

Theorem 2.3.26. For all M and N in F there are functorial isomorphisms
Ext4 (M, N) = DHom , (7;"(N), M) 2 DHomy (N, 74(M)),

where Hom, (-, —), respectively Homp(—,—), denote Hom-spaces in the projectively, re-
spectively injectively, stable category of mod A, see Definition [2.2.2/).

Proof. We only prove that Ext$ (M, N) = DHom, (7;(N), M), the second isomorphism
follows by a dual argument. Without loss of generality, assume that N has no injective di-
rect summands, so that N = 7;(L) for some A-module L, by [28, Theorem 1.4.1]. Consider

an augmented projective resolution of L:

s p X p LB p P p B . (2.6)
Pd-1 P o . . . .
As Ppy — -+ > P — Py — L — 0 is a d-cokernel of pg in F, writing (-)* =

Homp (-, A), we get the exact sequence:

0 L* > B » P} > Pl — P} > Try(L) - 0. (2.7)
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Applying the exact functor D(-) to (2.7]), we then obtain the exact sequence:
0->74(L)>vPj—>vPy 1> —>vP >vPy—>vL -0,

where v = D o Homp (-, A) is the Nakayama functor and vPy,..., vPy are injective A-

modules. In particular, we have an injective resolution of N = 74(L) which starts:

vP, b
vL

Using the notation Homy(—,-) = (-,-), let p; :== (M,vp;) for i = 0,...,d. In order to
compute Extd (M, N), we look at the complex:

Id+ 1

0——=74(L) vPy vPy_4q vP

P (M,p)

(M,vpP) —2 (M,vR) (M, T4,
7o Af
(M,vL)

Note that, as ¢ is injective and (M, —) is left exact, then (M, ) is injective and Ker(M,p) =

Kerpg. Hence
Ext4 (M, N) = Ker(M, p)/ Imp7 = Kerpg/ Im By (2.8)

Using again the fact that Py LR NN P 2, Py 2, L - 0 is a d-cokernel of pg in F,

and as M € F, we have the exact sequence:
0 (L, M)~ (Po,M) > (P, M) — = (Pg-1, M) > (Pyg, M).
Applying the exact functor D(-) to it, we obtain the exact sequence:
Do (P M) Do (Pyy, M) PEe oo P Do (P, M)~ Do (I, M) — 0,

where p; := Do (p;, M), for i =0,..., d.

From now on, the proof proceeds as the proof of [53, Theorem 7.18|. Using [53, Lemma
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7.22], we get the commutative diagram:

Do (P, M) "~ Do(Py, M) 2~ Do(L,M)—>0

Py L
ZIILwM lele le

(M,vPy) (M,vP) (M,vL),

where the top row is exact, the bottom row is a complex, and the two vertical maps on

the left are isomorphisms since P; and Py are projective modules. Define a morphism

W =pgo (wM) |kerpg: Kerpo - Do (L, M).

Claim 1: Ker ¥ =Impj.

We first show Ker U c Impy. Let = € Ker ¥, then ((.u]}\';‘[))_1 (%) is in Kerpp = Imp;. Hence
there is some 5 € D o (P, M) such that p1(7) = (wfj’)‘l(f). So that

T=wtl o 51 (7) = p1owiH(Y)

and 7 is in Impy.

In order to show the other inclusion, let T € Kerpg be such that = = p1(y) for some 7 in
(M,vPy). Then

U(T) = opi(y) =poo (wyy) " opi(F) =boopio (wy) () =0,

so that T € Ker W.
Claim 2: ImVW¥ = Kerw]{y.

Note that if # € Kerpy, then wh o W(T) = wk, o pp o (wﬁ))‘l(f) = po(Z) = 0 and so
Im ¥ c Ker wﬁ,.

Now suppose that 7 is in Ker w]@. Since Py is surjective, there exists some T in Do (Py, M)
such that @ = pg(T) = ¥ owi‘} (%) e Im ¥. Note that the last equality makes sense as wﬁ}’ (7)

is in Kerpg since
owM 1 (T) = WM o po(Z) = WM(U) 0.

Now, using [53, Lemma 7.22], our two claims, the first isomorphism theorem and (2.8)),

we have that

D oHom, (L, M) = Kerw}; = Im ¥ = Kerpg/ Ker ¥ = Ker g/ Im 1 = Ext} (M, N).
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2.3.2 (d+2)-angulated categories

In this section, we introduce (d + 2)-angulated categories and some of their properties.

Definition 2.3.27 ([19, Definition 1.1]). Let M be an additive category and ¢ be an
automorphism of M with inverse ¥™¢. A X%-sequence is a sequence of morphisms in M

of the form

0 & 1 & o2 d_ & yar1 £ w0

€: X X X X X == 34X, (2.9)
A morphism of 2%-sequences is given by a sequence of morphisms ¢ = (¢°, ..., ¢?*1) such
that the following diagram commutes:

€: XO ¢° Xl ¢ X2 Xd ¢ Xd+1 gt ZdXO

LLP l¢0 llpl j¢2 lvd l¢d+1 lzd(WO)
e - YO - Yl - Y2 Yd - Yd+1 — Edyo‘
n n n n

Definition 2.3.28 ([19, Definition 1.1]). A (d+2)-angulated category is a triple (M, £4, 0),
where M and X% are as above and O is a collection of X%-sequences, called (d +2)-angles,

satisfying the following axioms.

(N1) The collection O is closed under isomorphisms, direct sums and direct summands

and, for every X € M, the trivial X%-sequence

e XX x 0 0 0 sdx

is in 0. For each morphism ¢°: X% - X! in M, there is a (d + 2)-angle in O of the
form ([2.9)).

(N2) A N-sequence (2.9) is in O if and only if so is its left rotation:

Xl ¢ X2 Xd ¢ Xd+1 g EdXO M_ EXm.
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(N3) Each commutative diagram of solid arrows, with rows in ©

0 &€ 1 & o2 d_ & var1 & wdyo
X X X X Xott = s 34X
| | |
l(po chl I(p2 | ng | ¢d+1 lzd(SDO)
\ Y Y
Yo - y1 - Y?2 Yd - Yd+1 — EdYO,
n n n n

can be completed as indicated to a morphism of Y% sequences.

N4) In the situation of (N3), the morphisms ¢?,..., ¢**! can be chosen such that
( ¥ ¥
(—51 0 ) (—Ed(éo) 0 )
501 ,,70

1 .10 2 1 dy0 o vdi1\ @) 0T dy 0
X' oY XY — . —=3¥X"p Y4 ——— >N X 0 XY

belongs to O.
Setup 2.3.29. Let d be a fixed positive integer and M be a (d + 2)-angulated category.

Remark 2.3.30. Note that by [19, Proposition 2.5(a)], any (d + 2)-angle in M of the

form

X0 x1 X2 Xd Xd+1 ZdXO
is such that the induced sequence
'--—>M(—,E_dXd+l)—>M(—7XO)—>"'—>M(—,Xd+1)—>M(—,EdXO)—>---

is exact, where we used the notation Homp(-,-) = M(-,-). Moreover, note that the
dual of the above is also true by [19, Remark 2.2(c) and Proposition 2.5(a)].

Lemma 2.3.31. Any two consecutive morphisms in a (d + 2)-angle compose to zero.

Proof. By (N2), it is enough to prove ¢! 0£% = 0. By (N3), we have a commutative diagram

of the form:
1 d+1
X0 X% x0 0 0 0— o ydx0
I I I
0 I I I
| e A
XO 50 Xl 51 X2 Xd gd Xd+1 gdﬂ ZdXO
In particular, &' o €9 = 0. 0

The following two lemmas are reformulations of Remark [2.3.30
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Lemma 2.3.32. Consider

A
/s
TN
Y «
Y
€: XO Xl X2 Xd+1 ZdXO,
gO fl €d+1

where € is a (d + 2)-angle in M. Then &' o o = 0 if and only if there exists a morphism
§:A— XY such that €06 = a.

Lemma 2.3.33. Consider

£O

€: X0 x1 Xd Xd+1 ZdXO,
\@l -
~
A

where € is a (d + 2)-angle in M. Then @ o &% = 0 if and only if there exists a morphism
¢:24X% > A such that ¢o&d! = .

The following lemmas are well-known in the triangulated case. Here we present and prove
their higher-angulated analogues. In the first one, we use the radical of the category M,
see Definition [2.1.§]

Lemma 2.3.34. Consider a (d + 2)-angle of the form

XO £O Xl ¢ X2 Xd gd Xd+l §d+1 EdXO.

Then:
(a) ¢! is right minimal if and only if €0 € rada,

(b) &4 is left minimal if and only if £€%*! e rad .

Proof. We only prove (a), then (b) follows by a similar argument. Suppose that ¢! is right

minimal. Then, for any o : X! - X°, we have
go(lxi-¢oa)=¢'-¢'ot’0a=¢,

where the last step follows from Lemma [2.3.31] Then, as &' is right minimal, we have that

1y1 — &% o v is invertible and so £ is in rad .

Suppose now that £° is in rady. Given ¢ : X' — X! such that &' o ¢ = ¢!, we have
€lo(p—1x1) =0. Then, by Lemma[2.3.32] there exists a morphism § : X! - X such that
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€208 = p—1y1. Hence, since €2 € rad g, we have that ¢ = 11 +£% 04 is invertible and so

¢! is right minimal. O
Lemma 2.3.35. Consider a (d + 2)-angle of the form

XO £ Xl ¢ X2 Xd éd Xd+1 édﬂ ZdXO.

The following are equivalent:

(a) §d+1 — 07
(b) ¢ is a split epimorphism,

(c) €Y is a split monomorphism.

Proof. Suppose (a) holds and consider the morphism of (d + 2)-angles:

Z_dXd+1 0 XO £ Xl ¢ X2 Xd éd Xd+1
| | |
j H TR |
1 v ¥ y

0 X0 X% x0 0 0 0.

Then, 60 &% = 1y0 and (c) holds.

Suppose now that (c) holds. Hence there exists a morphism ¢ : X' - X such that

§0&% =10 and we have morphism of (d + 2)-angles:

o & 1 & o yd & yder &7 sdyo
I P I I |
X0 X% 0 0 0 0 O CH
Hence 1sayo 0441 =0 and so ¢9*! = 0, that is (a) holds.
By a dual argument, (a) and (b) are equivalent. O

Lemma 2.3.36. Let a: A - B be a non-zero morphism in M. If B has local endomor-
phism ring, then « is left minimal and if A has local endomorphism ring, then « is right

minimal.

Proof. Suppose that End(B) is a local ring and let ¢ : B - B be a morphism such that
woa = a. Consider the finitely generated End(B)-module M := End(B) o« € Hom(A, B).
If o e radpg, then o = @ € radpyg and M ¢ radpagoM. Then, by Nakayama’s Lemma,

see [1, Corollary 15.13], we have that M = 0. This is a contradiction to o being non-zero.
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Hence ¢ is not in radp, and, since End(B) is local, we have that ¢ is an isomorphism
by [45, Section 4] and « is left minimal. The rest of the lemma is true by a similar

argument. O

For the rest of this section, we work in the following setup.

Setup 2.3.37. Let d be a fixed positive integer and k a field. Let M be a skeletally
small k-linear Hom-finite (d + 2)-angulated category with split idempotents. Note that
this implies that M is Krull-Schmidt by Remark 2.1.12]

In the case when d = 1, so in the case of a triangulated category, a morphism can be
extended to a triangle in a unique way up to isomorphism. On the other hand, for
d > 1, a morphism can be extendend to a (d + 2)-angle in different non-isomorphic ways.
However, we still have a unique “minimal” (d + 2)-angle extending any given morphism.

The following was first proven in [49, Lemma 5.18], but we present here a detailed proof.

Lemma 2.3.38. Let d > 1 and 6 : M” — %M’ be a morphism in M. Then, up to

isomorphism, there exists a unique (d + 2)-angle of the form

M 50 Xl 51 X2 Xd—l £d71 Xd gd M 4

YN’
with €, ..., €% in rady.

We present some lemmas that will then be used in the proof of Lemma [2.3.38

Lemma 2.3.39. A (d + 2)-angle of the form

la B 2
0 1 2 d d+1
e:A@Xo(a—g)mél@Xl W) x2 & xd ¢ Xd+1(€—>)2d(A€BX0)
is isomorphic to the direct sum of the two (d + 2)-angles
A—2s 4 0 0 0 274 and

£ ¢! ¢

0 1 2 d_ & vdn £ wdyo
X X X X X DIRD. G

where €0 = —avo 8+ &0,
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Proof. Tt is easy to check that the following are isomorphisms of (d + 2)-angles:

(&) &) oy € (%)
€: Ao X' — > "> Ao X! : X2 X2 _Jyd(Ae X0)
1 0
( glxl)
(4 o) ooy o ()
¢ A X' ——— A0 X! ’ X2 X2 Syd(Ae X0)
14 B lya, S4B)
( OA 1x0) ( EOdA 12dx0)
. 0 1 2 d+1 d 0
e’ Ao X o Ao X o) X o X o (Ao X7).
(s —ao5+s°) ’ (éd“)

So e 2 €' and €” is clearly isomorphic to the direct sum of the two given (d+2)-angles. [J

Lemma 2.3.40. Let 6 : M" - %%M’ be any morphism in M and consider a (d +2)-angle

extending it:

X2 Xd—l gd_l Xd gd M// 0 EdM,.

Then &4, ..., €71 are in rady if and only if for i = 1, ..., d — 1 there is no A ¢ 0 in M
such that

) 1
e (A ﬁ) AeXi > Ao X,
a &

Proof. Suppose first that ¢!, ..., €% are in rad 4. Then, for i = , d—1, we have that
each component of ¢ is in rad by [2, Lemma A.3.4(b)] and so for every A € M, we have

1a B
u(a §Z)

Suppose now that for every i = , d—1 there is no A #0 in M such that

as 14 is not in rad .

a &

. 1
3= (A ﬁ) Ao Xi—> Ao Xitl,

Suppose that for some i, we have £ not in rad . Then, there is a component 7 of £, from
an indecomposable direct summand Y of X* to an indecomposable direct summand Y+

of X! that is not in rady. Then, n is an isomorphism, and without loss of generality
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we may assume it is 1yi. So

¢ i B yigxioyi ® Xt
a &
contradicting our initial assumption. Hence ¢* erady for all i=1,...,d - 1. O

We present a lemma that will be useful to prove uniqueness of the (d + 2)-angle from

Lemma 2.3.38

Lemma 2.3.41. Consider (d + 2)-angles and morphisms in M of the form:

A0 a® Al o A2 Ad a? Ad+1 a®t! EdAO,
lwo l(pl 1@2 j@d j¢d+1 lzd(WO)
BY B Bl B B2 Bd Bl Bd+1 g EdBO,
leo lm lez lod ladﬂ lgd(QO)
0 1 d d+1
AO o Al 2l 02 Cd 2 Cd+1 2 ZdAO.

Suppose that %o ¢¥ =1 40 and ! is in rady, then 6! o o' is an isomorphism.

Proof. Since o' e radyy, by Lemma [2.3.34] it follows that o is left minimal. Then, since

010¢1oa0=a00900¢0:a001Ao=a0,

we have that 6% o ! is an isomorphism. O

Proof of Lemma[2.3.38 We first discuss the existence of such a (d + 2)-angle. By (N1)
and (N2), it is possible to extend § to a (d + 2)-angle of the form

€: Ml 50 Xl 51 X2 Xd—l 51171 Xd 5d MII 0 EdM,.

If for some i = 1,...,d -1, there is a direct summand A of X? isomorphic to a direct

summand of X!, then without loss of generality we have

«

. 1 —_— _—
52:( A g):A@XZ»AeaX”l.

48



Chapter 2. Background

By Lemma [2.3.39] € is isomorphic to the direct sum of a rotation of

A4 4 0 0 0 s94  and

oL xr & x1 & X X M Sy,

Now, starting from €', repeat this process. By Lemma [2.3.40, we will eventually end up
with a (d + 2)-angle with the required properties.

We now prove that such a (d + 2)-angle is unique up to isomorphism. Suppose that

&t ¢l P

. / £0 1 2 d-1 §d71 d " darr
€e: M X X X X M XM,

1 d-1 d

6/ - M’ 770 Yl n Y2 Yd—l n Yd n M 0 EdM,

are (d+ 2)-angles of the desired form. By (N3), we obtain the following two morphisms

€ M 0 51 X2 del gd_l gd Mll J EdM/
ol L - o l |
e n' y?2 yd-1 ! 0 M J »d g
¢ H I Tl o l | ]
51 gd—l
e M x1 X2 xd-1 M J g

By Lemma [2.3.41] we have that ¢! o' is an isomorphism. Using (¢!o4!)™! and (N3) we

obtain the following morphism 6:

€: Ml 50 Xl 51 X2 . Xd—l €d71 Xd gd MII g EdM,
\9 H l(dﬂowl)‘ll# ledl jed led“ H

51 édfl gd 5
€: Ml Xl X2 Xd—l Xd MII EdM,.

o 2] 2] o
Applying Lemma [2.3.41| to € 2V el cand e b e 24 ¢, we have that 2 o (¢? 0 4?) and

(¢% 0 1?) 0 62 are isomorphisms. Hence ¢? o 4)? is an isomorphism. The same argument

can be repeated to prove that
¢3 o ws’ ey ¢d_2 o wd_2’ ¢d_1 o ¢d_1
are isomorphisms. Since £€%7! € rad v, by Lemma 2.3.34(a) we have that ¢4 is right minimal

and so €4 = £%o0¢%0rp? implies that ¢?o1)? is an isomorphism. Hence ¢o) is an isomorphism
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in M. By a dual argument, we have that 1 o ¢ is an isomorphism in M. Hence 1 and ¢

are isomorphisms in M and the (d + 2)-angles € and € are isomorphic. O

We now present some special (d + 2)-angulated categories, arising from d-cluster tilting
subcategories of module categories. In a similar way to d-cluster tilting subcategories of

mod A, we can define d-cluster tilting subcategories of a triangulated category T .

Definition 2.3.42 ([32], Section 3]). A d-cluster tilting subcategory of a triangulated cat-
egory T is a functorially finite, full subcategory C of T satisfying

C={XeT|BExt:"1(C,X) =0} = {X e T| Ext:-4"1(X,C) = 0}.

We see how some of these categories can be used to construct (d+2)-angulated categories.

The following is a result by Geiss, Keller and Opperman, see [19, Theorem 1].

Theorem 2.3.43. Let D be a triangulated category with suspension functor . Let C ¢ D
be a d-cluster tilting subcategory satisfying $4(C) € C. Then (C, %%, 0) is a (d+2)-angulated

category, where O constists of the X%-sequences of the form

0 1 d d+1
CO 7_) Cl 7_) 02 NN Cd l) Cd+1 7_) ch«ﬂ

coming from diagrams in D of the form

d-1

1 oa 2 d-1__ 7 d
C C —.C C (2.10)
CO x1 X2 . xd-2 Xd—l Cd+1 )

In the above, by X ~~=Y | we mean a morphism X — XY and the composition of all
the wavy arrows is Y. Each oriented triangle is a triangle in D and each non-oriented

triangle is commutative.

Remark 2.3.44. Let A be a finite dimensional k-algebra with global dimension at most
d. By [29] Theorem 1.6], if mod A has a d-cluster tilting subcategory, then this is unique

and it is
F =add {7‘5([) | I is injective in mod A and j > 0}.
Moreover, Iyama proved in [29, Theorem 1.21] that

Fi=add{2¥F|ieZ} c D’(modA)
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is d-cluster tilting in D’(modA). Then, since X¢(F) ¢ F, we have that F is a (d + 2)-
angulated category by Theorem Note that this is the only known example of a
d-abelian category F embedded into a (d + 2)-angulated category F where

ExtZ(A, B) = Homz(A, 2" B),

for A, Be F and i € Z.

In this situation, the d-abelian category F plays the role of a higher mod A and the (d+2)-
angulated category F of a higher derived category of F.

Remark 2.3.45. In the situation of Remark [2.3.44] we have that any d-exact sequence

in F induces a (d + 2)-angle in F. In fact, any d-exact sequence in F:

0 CO Cl Cd Cvd+1 . 0’

can be decomposed into short exact sequences which correspond to triangles in Db(mod A).
Hence, we obtain a diagram of the form 1D and so a (d + 2)-angle in F of the form

CO Cl Cd Cd+1 cho'

Higher-angulated Auslander-Reiten theory

The definition of Auslander-Reiten (d + 2)-angles was first introduced by Iyama and
Yoshino in [32, Definition 3.8]. In this thesis, we use a modified definition since we force
the end terms of any Auslander-Reiten (d+2)-angle to be indecomposable, or equivalently
to have local endomorphism rings as pointed out in Lemma This change has been
made to match with the classic homological algebra theory. In fact, the end terms of an
Auslander-Reiten triangle are always indecomposable objects, see Definition [2.2.40] and
Lemma [2.2.42)

We do not prove the results presented in this section now. Instead, we will later prove
the more general Lemmas [£.4.4] [£.4.6] and [£.4.7 In these more general lemmas, W will

be an additive subcategory of M closed under d-extensions and the case W = M will

respectively give us Lemmas [2.3.47}, [2.3.49] and [2.3.50]

Definition 2.3.46. A (d +2)-angle in M of the form

€° ¢!

. 0 1 2 d_ & var1 £ wdyo
€: X X X X X YAX

is an Auslander-Reiten (d + 2)-angle if £€° is left almost split, ¢4 is right almost split and,
when d > 2, also &',..., &% eradpy.
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Lemma 2.3.47. (a) Let £°: XY —» X! be left almost split, then End(X") is local and
€% erad .

(b) Let &4: W7 - W' be right almost split, then End(X%*!) is local and &7 € rad .

Remark 2.3.48. Suppose € as in Definition [2.3.46 is an Auslander-Reiten (d + 2)-angle.
When d = 1, we have £€° and ¢ in rad y, so that £ is right minimal and £° is left minimal.
When d > 2, since €971 € rad, by Lemma [2.3.34] we have that £¢ is right minimal and

similarly £ is left minimal.

We now give equivalent definitions for Auslander-Reiten (d + 2)-angles.
Lemma 2.3.49. Let

€ XO ¢° Xl ¢! X2 Xd £d Xd+1 €d+1 EdXO

be a (d+ 2)-angle. Then the following are equivalent:

(a) €is an Auslander-Reiten (d + 2)-angle,
(b) €0, ¢b, ..., €71 are in rad g and &4 is right almost split,

(c) €',..., €971 ¢ are in rad g and €0 is left almost split.

The following lemma is the generalisation of Lemma [2.2.43|to (d + 2)-angles.

Lemma 2.3.50. Consider a (d + 2)-angle of the form

€: XO £ Xl ¢! X2 Xd gd Xd+1 €d+

: nd x0

and suppose that &2 is right almost split and, if d > 2, also that ¢!,..., €71 are in rad .

Then the following are equivalent:

(a) End(X?) is local,
(b) €91 is left minimal,
(c) €% 1is in raday,

(d) e is an Auslander-Reiten (d + 2)-angle.
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Chapter 3
Some examples

In this chapter, we introduce some examples of the categories defined in Chapter |2l These

examples will also be used in later chapters to show applications of our results.

The first two examples are triangulated categories. In the first, we introduce the cluster
category of Dynkin type A,, denoted by C4, , and describe its Auslander-Reiten triangles.
Our second example is a generalisation of the first one: the triangulated g-cluster category

of Dynkin type A, denoted by C,(A;), where in the case ¢ =1 we have C;1(A,) =Ca,.

Finally, we introduce a class of examples defined by Vaso. These are d-abelian categories
and (d + 2)-angulated categories arising from d-cluster tilting subcategories of module
categories constructed as described in Remark [2.3.44]

3.1 The cluster category of ()

Let k£ be a field, ) a finite quiver with no loops and cycles and k(@ its path algebra. We
describe the cluster category Cq, see [11], pp 577] for more details.

Let Dg := Db(mod kQ) be the derived category of bounded complexes of right modules
over k), with suspension 3, see Theorem [2.2.37 and Definition [2.2.39] Let M and N be
objects in mod kQ and i € Z, then we have that

Homp,, (M, 'N) = Extjo (M, N)

by Remark [2.2.38

The category Dg has a Serre functor, denoted by S. Then, as in Definition [2.2.45, we can
define the Auslander-Reiten translation 7= SoX7!: Dg — Dg, with inverse rl=8"1ox.

93



Chapter 3. Some examples

Definition 3.1.1. The cluster category of @ is the orbit category
Cq =Dq/(77'E)" = Do/(57'5%)".
Hence Cq is the category with the same objects as D¢ and, for X,Y objects in Cq,

Home, (X,Y) = @Home(X, (T IE)P(Y)).

Note that objects of Dg that are in the same orbit of 771% become isomorphic in Co. It
is possible to turn Cg into a k-linear triangulated category with finite dimensional Hom-
spaces, see [41]. Moreover, Cg has Serre functor S, suspension ¥ and Auslander-Reiten
translation 7 induced by the ones in Dy and Cg is 2-Calabi-Yau, see Definition
Then it follows that in Cg we have

Y2827y,

and hence X = 7.

3.1.1 The cluster category of Dynkin type A,

We focus on the case @) = A4, i.e.

1 2 n—1 n
Q:o0c—e0c—— . —— o e,

where n is a fixed positive integer.

The Auslander-Reiten quiver of D4, is the infinite quiver illustrated in Figure see [20)].
Note that X stands for the kA,-module X viewed as a complex concentrated in degree
zero, and we can apply the suspension to it to obtain the complex XX concentrated in
homological degree one. As usual with Auslander-Reiten quivers, 7.X is drawn in the same

row and one step to the left of X, so for example 71(2) = P(n—-1).

In C4, , objects in the same (771 %)-orbit are isomorphic. For example P(1) and 77X P(1) =
XM are isomorphic. Then, from the infinite quiver in Figure we obtain the finite
quiver in Figure 3.2} representing the Auslander-Reiten quiver of C4,,. Note that this can

be drawn on a Mobius strip.

We study C4, through a geometric realisation of it. Let P be the regular polygon with

n + 3 vertices. The following can be proved using the results in [13].
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v (n) P(n) TP(1) <M
SN SN NN
b /1(751) P/(n—l) 1(2) EP(2) N e
NN /\
71(2) P(2) N e (n-1) S P(n-1) 2I1(2) 22P(2)
SN NS NN NN
S1P(n) P(1) M e o I(n) S P(n) %2P(1)

Figure 3.1: Auslander-Reiten quiver of D4, .

P(n) $P(1) SM=P(1)
SN NN
P(n-1) 1(2) ZP(%) ZN;P\(2)

\ \ \

RN /\/\/\

P(2) N eeeens I(n-1) YP(n-1) XI(2)zP(n-1)
7N \ SN NN
P(1) M e I(n) SP(n) »2P(1)2P(n)

Figure 3.2: Auslander-Reiten quiver of Cy4,, .

(I) There is a bijection

{ diagonals in P between } { isomorphism classes of }
<>

. . . . . )
non-neighbouring vertices indecomposables in C4,,

where IndCy,, is the full subcategory of D4, whose objects are the indecomposable
objects. We identify IndC4, and the diagonals of P, so given an indecomposable
x € C4, it makes sense to write x = {xg, 1}, for xg,z; its endpoints as a diagonal in
P.

(IT) Let the diagonals a, ¢ correspond respectively to the indecomposables a, ¢ under the
bijection from Then

) 1 ) 1 if a,c cross,
dimg (Ext" (a,c)) = dimg(Hom(a, Xc)) =
0 otherwise,

where we say that two diagonals cross if they intersect in the interior of P (so

excluding the endpoints).
(IIT) If @ € Ind C4,, corresponds to the diagonal a = {ag, a1}, then Ya corresponds to the
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ao

Figure 3.3: a = {ag,a1} and ¥a = {ag,a7} .

ao

0

co

ai

Figure 3.4: There are triangles a - b1 @by > c—>and c > s1® sy >a— XcinCy,, .

diagonal {ag, a7} obtained by moving the endpoints of a by one clockwise step, see

Figure [3.3

In ((II), suppose a,c¢ cross, so dimy(Hom(a,Xc)) = dimg(Hom(¢,¥a)) = 1. Then we

can complete the non-zero morphisms ¢ - ¥a and a — Y.c to obtain the two triangles

a—>bi®by > c—Xa

c—> 81 ® 80— a— X,

where by, by, s; and sy are the indecomposables corresponding to the diagonals by,
bo, 51 and sy respectively in Figure If s; or b; corresponds to an edge of P, then

it is zero in T.

Of the triangles from |[(IV)} the Auslander-Reiten triangles are exactly those in which
either a = Yc¢ or ¢ = Ya. For example, if a = X¢, then we have an Auslander-Reiten

triangle and a trivial triangle, respectively
Ec—>b1€Bb2—>c—>220 and ¢ > 0 > Ye 5 Ye.

Note that in this case s1,52 are edges of P and hence zero in Cy,,.
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{0,n+1} {1,n+2} {0,2}

SN N N

{0,n} {1,n+1} {2,n+2} {0,3}

\ \ \

/\/\/\

{0,3} {14} eeeeee (n-2,n+1}  {n-1,n+2} {0.n}
SN S \ SONN N
{0,2} 13 e {n-1,n+1} {n,n+2} {0.n+1}

Figure 3.5: Auslander-Reiten quiver of Cy4,, .

(VI) Labelling the vertices of P from 0 to n + 2 anticlockwise and using |(I)H(V)| the
Auslander-Reiten quiver of Cy4,, is as shown in Figure For a diagonal a, we have
that Xa is placed in the same row and to the left of a and the Auslander-Reiten

triangle Ya - s1 ® s2 > a — Y2a corresponds to the mesh:

(VII) We can define a cyclic order on the vertices of P as follows. Given three vertices
u, v, w of P, we write u < v < w if they appear in the order u, v, w when going through
the vertices of P in the positive (= anticlockwise) direction. Moreover, if we choose
two distinct vertices u and v, we can consider the interval of vertices [u,v] and in

this “<” is a total order.

(VIII) Let z = {xg,x1} € Ind Cy4,. Then, by [27, Lemma 2.4.2], we have that y = {yo,y1} €
Ind Cg4, is such that Hom(x,y) # 0 if and only if y has one endpoint in each of the
intervals [zg, 277 ] and [z1,257], i.e. the blue arcs in Figure

Moreover, for such a y, the indecomposables s = {sg, s1} such that the morphism
x — y factors through s are exactly those having one endpoint in each of the intervals

[x0,%0] and [z1,y1], i.e. the two red arcs in Figure

(IX) Let x = {zg,x1} € Ind C4,. Then, by [27, Lemma 2.4.2], we have that z = {z0,21} €
Ind Cy4,, is such that Hom(z,z) # 0 if and only if z has one endpoint in each of the

intervals [z§",x1] and [z]",x¢], i.e. the two green arcs in Figure

Moreover, for such a z, the indecomposables s = {sg, s1} such that the morphism
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Figure 3.6: There is a non-zero morphism z = {zg,z1} = {yo,y1} = y if and only if y has one
endpoint below each blue arc. Moreover, x — y factors through s = {sg, 1} if and only if s has an
endpoint below each red arc.

z — x factors through s are exactly those having one endpoint in each of the intervals

[20,21] and [21, 0], i.e. the two red arcs in Figure

3.2 The g-cluster category of Dynkin type A,

Let k be a field and p and ¢ be fixed positive integers. We describe the triangulated
g-cluster category of Dynkin type A, denoted by C,(A,) and first defined in [54], and its

geometric realisation, see [47] and [§] for more details.

Remark 3.2.1. The properties we present in this section express the fact that the
Auslander-Reiten quiver of C4(A,) has a certain shape and do not rely on k being al-
gebraically closed. Hence, even if [47] and [§] assume that k is an algebraically closed
field, we remove this assumption and work with a general field &, as done in [54].
Consider the coordinate system on the translation quiver ZA, illustrated in Figure
Definition 3.2.2 ([47, Remark 2.3]). Define the following automorphisms on ZA,:

X LAy > LAy, (i,7) > (G-Li+(p+1)g+1),

T:ZAP_)ZA}N (laj)'_)(l_q7]_q)7

o8



Chapter 3. Some examples

Figure 3.7: There is a non-zero morphism z = {z9,21} - {zo,z1} = « if and only if z has one
endpoint below each green arc. Moreover z — x factors through s = {sg, s1} if and only if s has an
endpoint below each red arc.

(-¢,(p-1)g+1) (0,pg +1) (¢, (p+1)g+1) (2q,(p+2)g+1)

SN SN SN S

g+1) (0,(p-1)g+1) (¢,pg+1) (2¢,(p+1)g+1)

/\/\/\/\/
/

(-¢,2¢+1) (0,3¢+1) (q.4q+1) (24,5 +1)
NN NN
-q,q+1) (0,2¢+1) (g,3¢+1) (2¢,49+1) .
SN NN SN S
(=a,1) (0,g+1) (¢,2q+1) (2,3q+1) .

Figure 3.8: Coordinate system on ZA,.

and let 7441 =70 X%

Note that (ZA,,7) is a translation quiver in the sense of [47, Definition 2.2]. Hence there
exists a mesh category associated to it. The objects of this category are the vertices of
ZA, and the morphisms are linear combinations of paths in ZA, subject to the mesh

relations. For each arrow a : z — y, let o(a) be the unique arrow o(a) : 7(y) - z. The
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((s-p)g,sq+1) (rq, (r+p)g+1)

((s=p)g, (r+1)g+1) ((s-1)g, (r+p)g+1)

(rq, (r+1)q+1) ((s-1)g,sq+1)

Figure 3.9: The regions H*(a) and H™ (a) for a = (rq,sq+1).

mesh relations are given by

> ao(a) =0,

O[I:D—)y
for each vertex y in ZA,.

Definition 3.2.3. Let a = (rq,sq + 1) be a vertex in ZA,, for r and s integers such that
r+1<s<r+p. We denote by

e H"(a) the set of vertices of ZA, of the form (ig, jg+1) for integers r <i<s-1 and
§<J<r+p;

e H™(a) the set of vertices of ZA,, of the form (ig, jg+1) for integers s —p <i <r and
r+1<j5<s.

Note that the sets of vertices H™(a) and H*(a) are those in the “hammocks” spanned

from a, see Figure 3.9

Remark 3.2.4. By [47, Remark 2.3|, the regions H (a) and H"(a) describe the set of
vertices from which (respectively, to which) there is a non-zero morphism in the mesh

category associated to ZA,.

Remark 3.2.5 ([47, Section 2]). As in the previous section, let D4, = D’(mod kA4,).
The Auslander-Reiten quiver of D4, is isomorphic, as a stable translation quiver, to ZA,,.
The automorphisms ¥ and 7 from Definition [3.2.2] are the action of the suspension and
the Auslander-Reiten translation in D, respectively, expressed in terms of the coordinate
system from Figure Moreover, the mesh category k(ZA,) is equivalent to Ind Dy,

i.e. the full subcategory of D4, whose objects are the indecomposable objects.
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(0,pg+1) 7,4 (0,g+1)=(0,q+1)
A\Z/ ...... /\\
(0,g+1) 7411 (0,pg+1)
=(0,pg+1)

Figure 3.10: The quotient translation quiver ZA,/(74:+1) when ¢ is odd.

The quotient translation quiver ZA,/(74+1) is obtained by identifying the vertices and

arrows of ZA, with their 7,,-shifts. It is the Auslander-Reiten quiver of
Cq(Ap) :=Da,[To X7,

the triangulated g-cluster category of Dynkin type Ap. Figure shows the identification

on ZA, when ¢ is odd. Note that in this case, the quiver can be drawn on a Mdbius strip.

Moreover, by 47, Remark 2.12] we have that C4(A,) is a category whose Hom-spaces
between indecomposables are either zero or one dimensional over k and by [8 Introduction]
it is (¢ + 1)-Calabi-Yau, that is it has a Serre functor that is isomorphic to X7+,

Definition [2.2.47]

see

We present a geometric realisation of ZA,/(74+1). Let N = (p+1)¢+2 and P be a regular
convex N-gon. Label the vertices of P from 0 to N — 1 in an anticlockwise direction. We

denote the diagonal joining vertices ¢ and j by {i,75}.

Definition 3.2.6 ([47, Definition 2.5]). A g-allowable diagonal in P is a diagonal joining
two non-adjacent boundary vertices which divides P into two smaller polygons which can
themselves be subdivided into (g + 2)-gons by non-crossing diagonals. Note that these are

the diagonals of P spanning 1 + lq vertices, for [ a positive integer.

Proposition 3.2.7 (J47, Proposition 2.9]). There is a bijection

isomorphism classes of indecomposables in C4(A4,) g-allowable diagonals
(= vertices of ZAp/(Tq4+1)) in P

given by (i,7) ~ {i (mod N),j (mod N)}.

From now on, g-allowable diagonals in P and indecomposable objects in C4(A,) are iden-

tified. Hence it makes sense to talk about morphisms between two g-allowable diagonals.
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Figure 3.11: There is a non-zero morphism b = {bg, b1} - {ag,a1} = a.

Notation 3.2.8. Given a vertex v of P and an integer r, we denote by v" its r*" successor
in the anticlockwise direction if r is positive and its (—r)" successor in the clockwise

direction if 7 is negative. We also use the convention v° = v.

Remark 3.2.9. We can define a cyclic order “<” on the vertices of P as described in
(VII)| and for any two distinct vertices u and v, we have that “<” is a total order in the

interval of vertices [u,v].

The next two lemmas follow by describing the H*(b), respectively H~(b), region from
Definition in terms of g-allowable diagonals in P.

Lemma 3.2.10. Consider a g-allowable diagonal b = {bg,b1} in P. Then a g-allowable
diagonal a is such that Hom(b,a) # 0 if and only if there are some non-negative integers

i, j such that a = {ag, a1} for
ap = b € [bo, b1?] and a1 = b}% € [by, by?].

See Figure [3.17]

Lemma 3.2.11. Consider a g-allowable diagonal b = {by,b1} in P. Then a g-allowable
diagonal a is such that Hom(a,b) # 0 if and only if there are some non-negative integers

i, j such that a = {ag, a1} for

ag = by' € [b3,bo] and ay = b7 € [b2,b1].
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Figure 3.12: There is a non-zero morphism a = {ag, a1} — {bo,b1} =b.

See Figure [3.12

The following is a consequence of [47, Proposition 2.9].

Lemma 3.2.12. Two g-allowable diagonals a and b in P cross if and only if there exists
an integer 1 <i < ¢ such that Ext’(a,b) # 0.

3.2.1 Triangles in C,(A,)

In this section, we describe all the triangles in C,(A,) with indecomposable end terms in
terms of g-allowable diagonals in P. In order to do this, we use a similar method to the
one used by Pescod in [5I, Chapter 4]. The following two lemmas are inspired by [51],
Lemmas 4.1.1 and 4.1.2]

Lemma 3.2.13. Consider a triangle in C;(A4,) of the form
A=a—>e—>b— Xa,

with a and b indecomposable. If ¢ is an indecomposable in Cq(A,) such that there exists
an integer 1 < i < ¢ with Ext’(c,e) # 0, then at least one of Ext’(c,a) and Ext’(c,b) is

non-zero.

In terms of g-allowable diagonals in P, we have that if ¢ crosses a direct summand of e,

then ¢ crosses at least one of a and b.
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Proof. The triangle A induces the exact sequence:
Ext’(c,a) - Ext'(c,e) - Ext'(c,b).

Since Ext’(c, e) # 0, it follows that at least one of Ext’(c, a) and Ext(c,b) is non-zero. [

Lemma 3.2.14. Let a and b € C,(4,) be indecomposable and assume that Ext'(b,a) # 0.
Let

A=aSeSh 2 Ya
be the ensuing non-split triangle. Then
Ext'(e,a) = Ext'9(b,e) = 0.
In terms of g-allowable diagonals in P, there is no direct summand of e crossing a or b.
Proof. Note that the identification on ZA, to obtain ZA,/(74+1) = C4(Ap) is such that

H*(X7%), H*(X™), ..., HY(X7?b), H*(X7'b)

are all disjoint. See Figure for ZAp,[(74+1) when ¢ is odd; the case when ¢ is even is
similar. By Remark [3.2.4] we have that at most one of

Hom (X9, a), Hom(X"7b,a), ..., Hom(X72b,a), Hom(X b, a)
is non-zero. Equivalently, at most one of
Ext?(b,a), Ext?™(b,a), ..., Ext*(b,a), Ext' (b, a)

is non-zero. Since Ext!(b,a) is non-zero by assumption, we have that Ext?(b,a) = 0.

Consider the following exact sequence induced by A:

Hom(b, b) 2 Hom(b, Da) )

Hom(b, Xe) - Hom(b, 3b).

Since b does not cross itself, by Lemma [3.2.12] we have that Hom(b,X') = 0 for any
1 <i < q. Moreover, as Hom(b,b) is non-zero and  # 0, we have that 5, # 0. Hence
Hom(b,>a) is one-dimensional over k and f, is surjective, so that (-X«a), = 0. Then

Ext!(b,e) = Hom(b, Xe) = 0. For 2 <i < g, consider the following exact sequence induced
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by A
Hom(b, X'a) - Hom(b, X’e) - Hom(b, X'b) = 0.
For 2 <i < ¢q, we have
0 = Ext’(b,a) = Hom(b, ¥'a),

and so Ext’(b,e) = Hom(b, %) = 0 for 2<i<q.

A similar argument shows that Ext!?(e,a) = 0. O

Note that the results from [5I, Chapter 4.2] are valid in C4(A,) since this is a k-linear,
Hom-finite, Krull-Schmidt triangulated category. We state them again for convenience of

the reader.

Lemma 3.2.15 (|51, Lemmas 4.2.1 and 4.2.2]). Let b e C;(Ap) be indecomposable. As-

sume there exists a non-split triangle
aSeSh Ya,

then each row of the matrix o has a non-zero entry and each column of the matrix € has

a non-zero entry.

Remark 3.2.16. Note that since in this setup Hom-spaces between indecomposables in

Cq4(Ay) are either zero or one dimensional over k, we can state [51, Lemma 4.2.3] as follows.

Lemma 3.2.17. For a and b indecomposables in C4(A)), let
a—e—>b—3Ya

be a triangle in C;(A,). Then, e has no repeated indecomposable summands.

Lemma 3.2.18 ([51, Lemma 4.2.4]). For a and b indecomposables in C,;(A4,), let
a—e—->b-3a
be a triangle in C4(Ap). Then
Ext'(Za,e;) # 0 and Ext!(e;, X71b) # 0,

for each indecomposable summand e; of e.
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Lemma 3.2.19. Consider two crossing g-allowable diagonals a = {ag,a;} and b= {bo, b1}
in P, where by < ag < by < ay. Then {ag, by} is g-allowable or an edge if and only if {a1,b;}

is g-allowable or an edge.
Proof. Since a and b are g-allowable diagonals, there are positive integers r, ¢t such that
al = aé”q and by = b[1)+tq.

Assume that {ag, bg} is g-allowable or an edge in P. Then ag = b(1)+sq for some integer s > 0,
see Figure We have

1 2+(r+ 2+(r+s)g-1-t 1+(r+s-t
ay =al™ = b} (r S)qzb1 (r+s)q 7= p) (r+s—t)q

)

where r+s > t. Hence {ay,b;} is g-allowable or an edge in P. The other direction is proved

in a similar way. O

1+tq

ai

Figure 3.13: The diagonals {ag, a1} and {bg,b1} are g-allowable and {ag,bp} is either g-allowable
or an edge.

Proposition 3.2.20. Consider two crossing g-allowable diagonals a = {ag,a1} and b =

{bo,bl} in P, where b(] <ap < b1 <aj.

e There exists exactly one integer 0 <1 < g — 1 such that Hom(b, ©!*'a) # 0. Then the

non-split triangle extending :b — X*1q is
AzElaeeangl“a,

where e = e1 @ €5 for €1 = {aal,bo} and eg = {bl,aIl}.

e [f 0 <i<qg-1is an integer such that {aai, bo} is a g-allowable diagonal or an edge
in P, then 7 = 1.
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Figure 3.14: The triangle X'a - e; @ ey — b 5 nitlg,

Proof. Assume that A is a non-split triangle and let € be a direct summand of the middle
term e. By Lemma [3.2.14] we have that € does not cross X'a or b. Moreover, if ¢ is a
g-allowable diagonal crossing €, by Lemma [3.2.13] we have that ¢ crosses at least one of

Y'a and b. Hence the only possibilities for € are the diagonals
e1={ag',bo}, ea = {b1,a7'}, es = {ag', b1}, es = {bo,a;'},
see Figure By Lemma we have that
Ext!(2!*1a,€) 2 0 and Ext!(e, 27'b) # 0.

Hence € crosses both ¥*1q and ¥7'b, which implies that es and e4 must be excluded from
the possible summands of e. Moreover, e has no repeated summands by Lemma [3.2.17]

and so
ee{0,e1,ez,61 ®ea}.

We claim that e = e; ® es. We prove this claim by dealing with the cases e; = e3 = 0, one

of e1, es zero and eq, e both non-zero separately. First, note that if b = ©*1qa, then
A=Yla—0-XHg 5 v,

Note that in this case b(l) = aal and b% = aIl so that e; =ea =0 and e = e; ® €3 = 0. Assume
now that b is not X*!a, so that e # 0. Note that if e; (respectively es) is zero, then
e =e] ®eg = eg (respectively e = e1) is the only option and we are done. Moreover, since
e # 0, we have that at least one of e1, e is g-allowable or an edge in P. But then, by
Lemma [3.2.19] we have that e; and ey are both g-allowable diagonals or edges in P. The

last case to deal with is when e; and es are both non-zero, i.e. they both are g-allowable
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diagonals in P. Suppose for a contradiction that e = e;. Consider the triangle
e—>b-Y"g o e,

and set ¢ = {ag',b}}. Note that by < b} < a7’ since ez # 0. Since X!a and ey are g-allowable

diagonals, there are integers s > r > 0 such that

-l _  —l+l+sq _ ;1+rq
aj’ = ay =b .

Hence b% = aaHH(S_r)q and so ¢ is g-allowable. So ¢ is a g-allowable diagonal crossing b but
not crossing neither e = e; nor ©*'a, see Figure contracting Lemma [3.2.13] Then

e+eq.

Figure 3.15: The g-allowable diagonal ¢ crosses b but does not cross neither e; nor ©*'a.

By a similar argument, assuming that e = es leads to a contradiction. Hence we have that

e=e1 ®Deg.

We now prove the second part of the proposition. Assume 0<i < ¢ -1 is an integer such
that {ag’, b} is a g-allowable diagonal or an edge in P. Then there are integers 7, s > 0
such that

—i _ 114sq -l _ ;1l+rq
ag' =by " and ay” = by 7.

Then b(l)wq =ap! = bé“q”_l. Soi—-1=(r-s)gq.

If0<l<i<qg-1,thenr>s>0. Notethat 0<i-1<q-1-1<g, soi=11is the only option.
[fO0<i<l<qg-1,then s>r>0. Note that 0<l-i<qg—-1-1<gq, soi=1[1is again the only
option. O
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3.3 A class of examples by Vaso

In this section, we present a class of examples due to Vaso. We summarise results from
[55, Section 4] and [23] Section 7].

Definition 3.3.1. Let d > 2,1 > 2, m > 3 be integers such that d is even and

Let Q = A,,, be the quiver
m-m-1—---->2->1,

k be a field and set A := kQ/(radyg)". In other words, A is the path algebra of the quiver

() with the relation that [ consecutive arrows compose to zero.

As representations of the quiver (), the indecomposable projectives and injectives in mod A

are the following;:

f1i=0-0-0-0-0-0-:-->0-0-0-0->0-F,
fo=0-0-0-0-0-0---->0-0-0-0—-k—=k,

fl—l:0_>0_>0_>0_>0_>0_>"'_>O_>O_>O_>k_>"'_>k7

fis1=0-0-0-0-0-0->->0->k—>k—->-->k->0,
[ S —
l

fm-1=0-k-k—->->k->0---->0-0-0-0-0-0,
l
fm=k-k->-+-->k-0-0---->0-0-0-0-0-0,
l
fos1=k—>+->k->0-0->0->->0->0->0->0->0-0,
N

-1

foit2=k=>k>0->050-0--->0>0-0->0-0-0,
frsie1 =k >0505050>0->->0->0->0-0->0-0,
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where each morphism k — k is the identity on k. The indecomposable projectives are f;
for 1 <4 < m and the indecomposable injectives are f; for [ <¢ < m+1—-1. Moreover, we
set f; =0 for ¢ <0 and ¢ > m +[. These modules appear in the Auslander-Reiten quiver of

mod A as follows.

B fm
LTONS N NN

SN\ NSNS
NN N SN NN

f/\/\/\/”'\/\/\?$“

It can be checked that gldimA < d and mod A has a d-cluster tilting subcategory
=add(A® DA) =add{f;|1<i<m+1-1},

which is unique by Remark [2.3.44] Recall that, by Theorem [2.3.14] we have that F is a
d-abelian category. We have that

ifO<j—i<i-1,

otherwise.

1
dimy F(fi, f;) = {0

Moreover, if i« < r < j, then each morphism of the form f; — f; factors through f,.. The

quiver of F is then

fi—=fo—= f3=> = fru-3 = fisi—2 = fm+i-1,

where the composition of [ consecutive arrows is zero.

Consider now
F =add{X“F|ieZ} c D’(mod A).
By Remark this is a (d + 2)-angulated category. Moreover, F has quiver
X e s T i > Lo o e > B0 > (3.1)

where the composition of [ consecutive arrows is zero, see [39, Proposition A.11].

We conclude this section by describing some d-exact sequences in F and the corresponding
(d + 2)-angles in F.
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Remark 3.3.2. For any non-zero morphism g : f; — f;, where 7 # j, there is an exact

sequence of the form:
m
= fico = fict = fimi = fi = fi = fivi = fje = fivo = (3.2)

This sequence terminates both on the right and on the left giving a d-exact sequence

containing pu:

0 fo = fiog > fi > fj = fir > = fy > 0.

Note that the cases when f;;; = 0 (or fj_; = 0) are allowed and correspond to f; being
injective non-projective (or f; being projective non-injective, respectively). In these cases,

( is surjective (or injective, respectively).

By Remark [2.3.45] the d-exact sequence 1' gives a (d + 2)-angle in F of the form:

foo> oo fio = fi B fy = fur = = fy > B

Note that we can rotate this (d + 2)-angle to make f; the end-term on the right.
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Chapter 4

Auslander-Reiten (d + 2)-angles in
subcategories and a
(d + 2)-angulated generalisation of

a theorem by Briuning

4.1 Introduction

Let d be a fixed positive integer, k an algebraically closed field and A a finite dimensional
k-algebra with global dimension at most d. As in previous chapters, the category of
finitely generated right A-modules is denoted by mod A and its bounded derived category
by D’(mod A), with suspension functor X. Moreover, for an additive subcategory C of

mod A, we define an additive subcategory
C:=add{X¥C|ieZ} c D’(mod A).

For d > 2, suppose there is a d-cluster tilting subcategory F € mod A. Then F plays the
role of a higher mod A and F of a higher derived category of F, see Remark [2.3.44

We generalise Briining’s result on wide subcategories of Db(mod A) and Jgrgensen’s result
on Auslander-Reiten triangles in extension closed subcategories of triangulated categories

to higher homological algebra.

72



Chapter 4. Auslander-Reiten (d + 2)-angles in subcategories

4.1.1 Classic background (d =1 case).

In the case d = 1, the global dimension of A is at most 1, that is mod A is hereditary. So

[10, Theorem 1.1] can be stated as follows in this case.

Theorem (Briining). There is a bijection

wide subcategories wide subcategories
of mod A of D*(mod A)

sending a wide subcategory W of mod A to W.

Happel introduced Auslander-Reiten triangles in triangulated categories in [2I, Chapter
I.4] and Jgrgensen studied Auslander-Reiten triangles in their extension closed subcate-
gories in [37]. Whenever M is a skeletally small Hom-finite k-linear triangulated category
with split idempotents and W ¢ M is an additive subcategory closed under extensions,
[37, Theorem 3.1] states the following.

Theorem (Jgrgensen). Let W be in W and suppose that there exists U’ in W and a

non-zero morphism W — XU’. Let

X Y w X

be an Auslander-Reiten triangle in M. Then the following are equivalent.

(a) X has a W-cover of the form U - X,

(b) there is an Auslander-Reiten triangle in W of the form

U V w XU.

Note that the above theorem can be applied to any wide subcategory of the triangulated
category D’(modA). So, given a wide subcategory of mod A, one can find a wide sub-
category W of DP(mod A) using the theorem by Briining and then use the theorem by
Jgrgensen to find Auslander-Reiten triangles in W.

4.1.2 This chapter (d>1 case).

We now allow d to be bigger than 1 and work in higher homological algebra, see Section [2.3]
Suppose mod A has a d-cluster tilting subcategory F, see Definition By Remark
we have that F is d-cluster tilting in D’(modA) and F is a (d + 2)-angulated
category. Note that the d-abelian category F plays the role of a higher mod A and F of a
higher derived category of F.

73



Chapter 4. Auslander-Reiten (d + 2)-angles in subcategories

Keeping in mind the above, we generalise the theorem by Briining to higher homological

algebra as follows.

Theorem [4.3.2 There is a bijection

wide subcategories

of F

wide subcategories

{functorz'ally ﬁnite} {functorially ﬁmte}
of F

sending a wide subcategory W of F to W.

In the above, by a wide subcategory of a d-abelian category, we mean an additive subcat-
egory closed under d-kernels and d-cokernels, and such that every d-exact sequence with
end terms in the subcategory is Yoneda equivalent, in the sense of Defintion 2.3.16] to a
d-exact sequence having all terms in the subcategory. By a wide subcategory of a (d +2)-
angulated category with automorphism %%, we mean an additive subcategory closed under

d-extensions and Y*.

Iyama and Yoshino defined Auslander-Reiten (d+2)-angles in (d+2)-angulated categories
in [32] Definition 3.8] and we proposed a modified definition, see Definition Here,
we define Auslander-Reiten (d + 2)-angles in additive subcategories of (d + 2)-angulated
categories closed under d-extensions, an example of which are wide subcategories. We

generalise the theorem by Jgrgensen as follows.

Theorem Let M be a skeletally small Hom-finite k-linear (d+2)-angulated category
with split idempotents. Let W be an additive subcategory of M closed under d-extensions.

Let W be in W and suppose that there exists U° in W and a non-zero morphism ~* :
W — X4U°. Let

£O 51 £d+1

d
€: XO Xl X2 Xd 3 %% EdXO

be an Auslander-Reiten (d + 2)-angle in M. Then the following are equivalent:
(a) X° has a W-cover of the form ¢ : W% — X0

(b) there is an Auslander-Reiten (d +2)-angle in W of the form

0 1 d d+1

€ wo s w2 s w2 wid s 1y L s ndpy0,

Note that for d = 1, the above becomes exactly the theorem by Jgrgensen.
Remark. We will apply Theorems and to the class of examples introduced in
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Section For positive integers m, [ and d such that (m — 1)/l = d/2, consider
A = kA, /(radga, ).
There is a unique d-cluster tilting subcategory F of mod A with Auslander-Reiten quiver

f1 fo fi Im Jmst-2 —= fm+i-1,

where f1, ..., fin are the indecomposable projectives and fj, ..., fm+—1 the indecomposable
injectives in mod A. The wide subcategories of F are fully described in [23]. We consider
the (d + 2)-angulated category F. We give a full description of the wide subcategories of
F, using Theorem m and a recipe to construct Auslander-Reiten (d+2)-angles in these
subcategories, using Theorem

In this chapter, we will use many of the results presented in[2.3.2] The chapter is organised
as follows. Section [4.2] introduces our setup and defines wide subcategories. Section [4.3
proves Theorem Section studies Auslander-Reiten (d + 2)-angles in . Section
proves Theorem [4.5.5. Finally, Section 4.6 is an application of Theorems and
to the class of examples from [55], presented in Section

4.2 Setup and definition of wide subcategories

In this section, we present the setup we will be working in and the definition of wide

subcategories in this setup.

Setup 4.2.1. Let k be a field and M be a skeletally small k-linear Hom-finite (d + 2)-
angulated category with split idempotents. Note that this implies that M is Krull-Schmidt

by Remark

Definition 4.2.2. Let W be an additive subcategory of M. We say that W is closed under
d-extensions if given any morphism in M of the form 6 : W — SW’ with W/, W" e W,
there is a (d + 2)-angle in M of the form

§

W/ Wl . Wd WII Edwl

with W% e W for any i€ {1,..., d}.

Remark 4.2.3. Let W ¢ M be closed under d-extensions. Note that when d > 1, for a
(d +2)-angle in M of the form

WI 50 Xl 61 X2 Xd—l gd WII 0

YW,
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with W', W' in W, it is not necessarily true that X',..., X¢ are in W. However, if
€L, .., €7 are in rad g, then X1, ..., X% are in W.

Definition 4.2.4. An additive subcategory W of a (d+2)-angulated category M is called
wide if it is closed under d-extensions and satisfies X¢(W) ¢ W and L-¢(W) c W.

4.3 Functorially finite wide subcategories of F and F

The aim of this section is to prove Theorem Note that we assume that the field k is
algebraically closed because our arguments rely on results from [23], where this assumption
is made. We start by presenting the setup we will be working in this section and stating

the theorem.

Setup 4.3.1. Let d be a fixed positive integer, k an algebraically closed field and A a finite
dimensional k-algebra with global dimension at most d. Assume that there is a d-cluster
tilting subcategory F € mod A, see Definition [2.3.13

Note that F is d-cluster tilting in D’(mod A), see Definition [2.3.42] and so it is (d + 2)-
angulated, see Remark So, using the notation in Setup in this section we
have M = F.

Theorem 4.3.2. There is a bijection

wide subcategories wide subcategories

{functorially ﬁnite} {functorially ﬁm’te}
of F of F

sending a wide subcategory W of F to W.

We build the proof of Theorem by first proving a more general bijection, then proving
this bijection respects “functorially finite”. Proving Theorem will then amount to

proving the bijection respects “wide”.
Lemma 4.3.3. There is a bijection

of F

{additive subcategories
closed under »*¢

additive subcategories
s }

sending an additive subcategory W of F to W.
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Proof. Let W ¢ F be an additive subcategory of F, then W ¢ F is clearly additive and

closed under X*¢.

Suppose now that X ¢ F is an additive subcategory closed under £*¢. Let x be an
indecomposable in X, then z = X f for some f € F and integer i. Since X is closed under

¥*? and under direct summands, then
add {S¥f |ieZ) c X,

Take W := F n X and note that, by the above, we have add{¥¥W |i e Z} c X. Moreover,
if  is an indecomposable in X, say z = X f, then (9 = f ¢ X and so f € W. Hence
zeadd{SW |ieZ} and W = add{Z9W |ieZ} = X. O

Lemma 4.3.4. The bijection from Lemma [4.3.3] respects “functorially finite”.
Proof. Suppose first that W is functorially finite in F and take any f € F. Then, there
is a W-precover of f of the form @:w — f. Since f is a complex concentrated in degree

zero, then we may assume W = wy ® X %w_g for some wy, w_g € W, as any other summand

of w would have zero Hom space to f. Then,
@ = (wo, w_q) : wo ® X" "w_g > f.

Let we W and a: w — f. Since W € W, there is a morphism 7 : w — wy ® X "%w_4 such

that @ o~ = a. Since there are no non-zero maps of the form w - 2 ~%w_g, then

_ Yo
0‘=W°'7=(W07w—d)°(0)=W0°'70-

Hence wqg is a W-precover of f and W is precovering in F. Dually, W is preenveloping in

F.

Suppose now that W is functorially finite in F. Note that, in order to prove that W is
precovering in , it is enough to find a W-precover of any f € F. We have that W ¢ F is
functorially finite, F € mod A is functorially finite since F is d-cluster tilting in mod A and
mod A € D°(mod A) is functorially finite by [29, Theorem 5.1]. Hence W ¢ D®(mod A) is

functorially finite. Moreover, for any integer i, applying the automorphism % to
WS FcmodA c D’(modA),

we conclude that LW ¢ D’(mod A) is functorially finite. For f € F, note that the only

non-zero morphisms from W to f are from objects in W & X"4W. Take a W-precover of
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f, say wo:wo — f, and a " W-precover of f, say w_q: N %w_g - f. Consider
@ = (wo, w_g) :wo ® X Yw_g — f.

Given any 7 in W and 7 : T — f, without loss of generality, let T = vy & X% _y for some

Vo, V—_(d € W. So
U= (I/o, V_d) tU @ Zidv_d - f.

Then, there are 7o : vg — wp and vy_g : ¥~ %_g - Y ™%w_4 such that vy = wy o 4y and

V_g=w_qo7y_4. Hence

_ [ O
° = (woovo, wfdo’)/fd) =V
0 ~vq

and @ is a W-precover of f. Dually, W is preenveloping in F. O

Lemma 4.3.5. Suppose we have an exact sequence with terms in F of the form:

0 1 d-2

0 fO ¥ fl ¥ ¥ fd—l ‘pd_l fd ‘pd fd+1- (41)

Then

0 1 d-2

d-1
0 fO ¥ fl ¥ ¥ fd—l ¥ fd

is a d-kernel in F of ¢

Proof. Using the notation F(-,-) = Homz(—,-) and applying F(f,-) to (4.1)), for any f

in F, we obtain:

0 CPO* 1 <P1* (pd—l* d Spd* del
First, note that this is a complex, since ¢’ o ™! =0 for all i = 1,..., d. Moreover, since

F(f,-) is left exact, ©°* is injective. It remains to show that Ker(¢®*) ¢ Im(p*1*) for all
i=1,....d.

We have a splitting of (4.1]) into short exact sequences:

T \/i#\/\;f
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For a: f — f! in Ker(¢'), since Kerp! = f9, there is a morphism 3 : f — f9 such that

a=¢’oB=¢"(B). So we may assume i =2,..., d. We have exact sequence
i1 P . 1 i1
o F(OLT) —— F(fE) = Ext (f,E7),

induced by the short exact sequence 0 - k! — f=! - k! - 0. We show that 7%~ 1* is
surjective by showing that Ext!(f, k1) = 0. The case i = 2 is trivial, since k' = f0 ¢ F

and F is d-cluster tilting. So assume i > 2.

The short exact sequences in the splitting of (4.1]) induce the following exact sequences:

Ext'(f, f?) — Ext'(f, k") —— Ext*(f,k"?)

Ext?(f, f73) — Ext?(f,k"?) —— Ext3(f,k3)

Ext3(f, f?) — Ext™3(f, k%) —— Ext"2(f,k?)

Ext'?(f, f') — Ext2(f,k?) — Ext'" ' (f, ).

Since i — 1 < d -1 and F is d-cluster tilting, all the objects in the left column and
Ext(f, f°) are zero. Note that this forces all the objects in the middle column to
be zero and in particular Ext!(f, k1) = 0. Hence 7*~* is surjective.

Take o : f - fi € Ker(¢%*). Then, by definition of kernel, there is a morphism 7 : f — k!

1—1%

such that o = ¢* o y. Since 7 is surjective, there is a morphism §: f - f*~! such that

71 o B =. Then,
a=toy=itor o= o= (B).

Hence Ker(p™*) ¢ Im(¢*1*) for all i =1,..., d as we wished to prove. O

Lemma 4.3.6. Let D and D’ be triangulated categories with suspension functors ¥ and
Y respectively. Suppose there are d-cluster tilting subcategories C ¢ D and C’ € D’ such
that X4(C) ¢ C and (X)%(C’) c C'. Suppose F : D - D' is a triangulated functor, see
Definition such that F(C) cC’. Then F sends (d + 2)-angles in C to (d + 2)-angles

in C’.

Proof. First note that (C,%¢) and (C’, (X")?) are (d+2)-angulated categories by Theorem
2.3.43, Take any (d + 2)-angle in C, say

’Y
CO Cl cd cd+1 cho.
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This comes from a diagram in D of the form

¢l 4 (4.3)

AVANWAWAS

where by  ~~~>y, we mean a morphism x — Yy and the composition of all the wavy
arrows is 7. Each oriented triangle is a triangle in D and each non-oriented triangle is
commutative. Applying the functor F' to (4.3)), we get the diagram:

F(ch) F(?) — — F(cth F(ch)
LN N ot N
F(zb) F(z?) - 2-2) F(a® 1) F(c™),

where each non-oriented triangle is commutative, and since F' is triangulated, each oriented
triangle is a triangle in D" and by F(z) ~~> F(y) we mean a morphism F(z) - F(Xy) =
Y'F(y). Then, by Theorem [2.3.43| we obtain a (d + 2)-angle in C":

F(v)

F(") —=F(c!) — -+ ——= F(¢*) — F(¢™) —= (2")?F(").

O]

Using the above lemmas and [23, Theorem A], we prove there is a bijection between func-
torially finite wide subcategories of F as defined in [23], Definition 2.11], and functorially

finite wide subcategories of F as defined below.
Definition 4.3.7 ([23], Section 1]). Let I" be a finite dimensional k-algebra and G € mod T’
be a d-cluster tilting subcategory. We say that (T',G) is a d-homological pair.

If A: A - T is a homomorphism of algebras, then we denote by A, : modI" - mod A the
functor given by restriction of scalars from I' to A. Moreover, if A is an epimorphism of
algebras such that \.(G) ¢ F and Tor}(I',T") = 0, then we say that A : (A, F) - (I',G) is

a d-pseudoflat epimorphism of d-homological pairs.

Remark 4.3.8. In the situation of Definition we also denote by A, the induced

functor on the level of bounded derived categories:
A : D’ (modT) — D’ (mod A).

This is full, faithful and triangulated, since A is a homological epimorphism by [23], Propo-

sition 5.8]. Note that, since A, is triangulated, it commutes with X. Moreover, by Lemma
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A*(E) is closed under direct summands. Hence
A (G) = A (add(£79G)) = add(S7(A(G))) = A (9).

Proof of Theorem[{.3.2 We start by showing that if W ¢ F is a functorially finite wide
subcategory of F, then W is a functorially finite wide subcategory of F. By [23, Theorem
A], there is a d-pseudoflat epimorphism of d-homological pairs A : (A, F) — (I',G) such
that A\.(G) =W. Then, by Remark we have

M(G)=A(G)=WC F.

Note that )\, (G) is functorially finite in F by Lemma Then, to complete the first
part of the proof, it remains to show that \,(G) is closed under d-extensions. Take any
morphism 6 : A\, (7) = A (¢’) in A\, (G). Since A, is full and faithful, then § = A\, (g R q),
for some morphism 7 in G. As G is (d + 2)-angulated, we can extend ~ to a (d + 2)-angle
in G of the form:

g —= gl —— gl ——g—>¢.
Then, by Lemma we obtain a (d + 2)-angle in F with objects from W:
— — . -3 _ 6 [—
E7A(g) —= Au(gh) — = Aulg?) —= A () —= Ae(9).

Hence )\*(a) is closed under d-extensions.

Now let X ¢ F be a functorially finite wide subcategory. Then, by Lemmas [4.3.3 and
we have that X =V for some functorially finite subcategory V ¢ F. It remains to
show that V € F is wide, in the sense of [23, Definition 2.11]. Let v : v — v’ be a morphism
in V. Since X ¢ F is wide, there is a (d + 2)-angle in F with objects from & of the form:

2 d-1 d
> dy! ! o B M. L S L ) (4.4)

Note that v, v" are chain complexes concentrated in degree zero since they are in V. Also,
as X =V, any x € X is isomorphic to a complex with zero differentials and so H(z) = x.
Fori=1,...,d, let v* and v* be the components at degree zero of z* and &' respectively,
and note that v’ € V.

Note that H°(-) = Homps (A, -). Since A is a projective module in mod A, then A € F.
Applying H°(-) = Hom#(A,-) to 1 , by [19, Proposition 2.5] we obtain the exact
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sequence:

where we have used the fact that H°(X %') = 0, since v’ is concentrated in degree zero.

Then, by Lemma {4.3.5, we conclude that

is a d-kernel of v in F with objects from V. The existence of a d-cokernel of v in F with

objects from V follows by a dual argument.

Consider a d-exact sequence in F of the form:

0 1 d-2 d-1 d
¥ 1 ¥ ¥ 1 ¥ ¥
0 v’ f e e v 0,

with v and v’ in V. Then, by Remark [2.3.45| there is a (d + 2)-angle in F of the form:

/ ¢° fl ‘pl fZ ‘pZ ‘pd72 fd—l (pd% fd ? @ Zdvl

v v

Since X is closed under d-extensions and v, v’ € X, there is a (d + 2)-angle in F with

objects from X:

0 1 2 d-2 d-1 d
o gt g2 S St B a & o wdy (4.5)

Fori=0,...,d, let v' and v* be the components at degree zero of z* and ¢° respectively, and
note that v’ € V. Applying H(-) = Hom==(A, -) to 1) we obtain the exact sequence:

By Lemma and its dual, this is a d-exact sequence. Moreover, by axiom (N3) from
Definition [2.3.28] we have the morphism of (d + 2)-angles in F:

0 1 2 d-1 d
¥ » ® ® ®
o' fl f2 fd v o Ed’Ul
[ [ [
I¢t I¢2 I¢d
Y Y Y
/ 1 2 d d,r
v o x a T o £d—1$ = v—> X%,
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Applying H°(-) to the above, we obtain the commutative diagram:

0 1 2 d-1 d
©
0 v —2 s f1 LA S 0
lwl luﬂ jwd
/ 1 2 d
0 Vv vt — = gl iraaks 0

Hence, the first and second row in the above diagram are two Yoneda equivalent d-exact

sequences, and the second row has objects in V. O

4.4 Auslander-Reiten (d +2)-angles in W

Setup 4.4.1. Let us go back to Setup and let W be an additive subcategory of M

closed under d-extensions.

We have seen the Definition of Auslander-Reiten (d+2)-angulated categories in Definition
2.3.46, In this section, we introduce and study Auslander-Reiten (d + 2)-angles in the
subcategory W.

Definition 4.4.2. A (d+ 2)-angle in M of the form

0 1

€: WO w Wl w W2 Wd w? Wd+1 wt! Zdwﬂ

with WO, W, ..., W™ in W is an Auslander-Reiten (d +2)-angle in W if the morphism
W is left almost split in W, the morphism w? is right almost split in W and, when d > 2,

1 wd—l

also w™,..., are in rady.

Remark 4.4.3. Note that since W is a full subcategory of M, then radyy is equal to the
restriction of radyg to W.

Lemma 4.4.4. (a) Let w®: W° - W! be left almost split in W, then End(W?) is local
and w® € radyy.

(b) Let w? : W¢ —» W9 be right almost split in W, then End(W9*!) is local and
d

w® € radyy.
Proof. We only prove (a), the proof for (b) is then dual. Suppose w®: W° - W1 is left
almost split in W. Let u, v: W° - W be morphisms that are not split monomorphisms.
Then there are morphisms p/, v/ : W' - WO such that p = ¢/ ow® and v = v/ 0w, By
[T, Proposition 15.15], in order to prove that End(W?) is local, it is enough to prove that

W+ v is not a split monomorphism.
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Suppose for a contradiction that p+v is a split monomorphism. Hence there is a morphism
v : WY » W0 such that o (u+v) = Iyyo. Then

Yo (i +v') o = yo (j1+v) = Liye.

0

Hence w is a split monomorphism, contradicting our initial assumption. So End(W?°) is

local.

Since End(W?) is local, it follows that W9 is indecomposable. Since M is Krull-Schmidst,
there are indecomposable objects W1,..., W; such that

Wl=w @& W,.

Moreover, W1,..., W, are in W since W is closed under summands. Then we have
o_ [« 0
w=:]|:W -Wy -0 W,.
Wi
Suppose there is some i € {1,..., t} such that w : WY - W; is not in radyy. Then, since

WY and W; are both indecomposable, it follows that w? is invertible. Hence

0

(00 @1 00) 00 = () ouf = Ly,

contradicting the fact that w® is not a split monomorphism. Hence such an i does not

exist and w € radyy. ]

Lemma 4.4.5. Let

0 1

€: WO w Wl w W2 Wd w Wd+1 wt! Edwo

be a (d+2)-angle with WO, W1 ..., W1 in W. If w? is right almost split in W and w?*!

is left minimal, then w° is left almost split in W.

Proof. Since w? is not a split epimorphism, Lemma implies that w° is not a split
monomorphism. Let ¢°: W — V' be a morphism in W that is not a split monomorphism.
Extend L¢(¢°) 0w to a (d +2)-angle and consider the following commutative diagram,
built using axiom (N3) from Definition

WO w? Wl w! W2 Wd w? Wd+l wdt! Edwo
| | |
Ld»o It l¢? | gt lzd(w)
A \i A
VO Vl V2 . Vd Wd+1 Ede
n° nt nd 24($0)owd+1 ’
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where, as V0 and W1 are in W, which is closed under d-extensions, we can choose
Vi .., Viinw.

Suppose for a contradiction that n° is not a split monomorphism. Then n? is not a split
epimorphism by Lemma [2.3.35] As w? is right almost split in W and n¢: V¢ > W1 is a
morphism in W, then there is a morphism 1? : V¢ - W9 such that n¢ = w? o % So we

can construct a commutative diagram of the form:

VO 770 Vl Vdfl nd_l Vd nd Wd+1 Ed(¢0)owd+l Ede
| | | |
| ,17[)0 | q/)l | ,l/)d—l jwd | Ed(wO)
A \ Y \
WO - Wl Wdfl — Wd - Wd+1 — Zdwo.
w w w w

Hence we have
Ed(wo ° ¢0) Owd+1 — Ed(wﬂ) ° Ed(¢0) Owd+1 — (.Ud+1.

d+

Since w*! is left minimal, then X%(4)° o ¢°) is an isomorphism, and so also 1?0 ¢° is an

isomorphism, contradicting our assumption that ¢° is not a split monomorphism. Hence

n° is a split monomorphism and there is a morphism 7 : V! — V¥ such that o 7% = 1.

Then
yop'ow’=y0n’0¢’ =1y00¢" =¢°,

and so w? is left almost split in W. O

Lemma 4.4.6. Let

0 1 d d+

€: WO w Wl w W2 Wd w Wd+1 wh! Edwo

be a (d+2)-angle in M with WO W1, ..., W% in W. Then the following are equivalent:

(a) € is an Auslander-Reiten (d + 2)-angle in W,
(b) W0, w,..., w? ! are in radyy and w? is right almost split in W.

(c) wh,..., wi !, w? are in radyy and w? is left almost split in W.

Proof. Note that (a) implies both (b) and (¢) by Lemma and Definition Sup-
pose now that (b) holds. Since w® is in radyy and so in rady, then so is (=1)?%4(w°) and
w1 is left minimal by Lemma [2.3.34. Then, by Lemma it follows that w® is left

almost split in W, so (c) holds as w? € rady¢ by Lemma m
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The fact that (c) implies (b) follows by a dual argument and so it is now clear that they
both imply (a). O

Lemma 4.4.7. Consider a (d + 2)-angle of the form

€: wo Wl Y W2 Wd w? Wd+1 wit! ZdWO,

with WO, Wt ..., W' in W and suppose that w? is right almost split in W and, if d > 2,

wd—l

also that w',..., are in radyy. Then the following are equivalent:

(a) End(W?) is local,
(b) w™! is left minimal,
(c) w° is in radyy,

)

(d) e is an Auslander-Reiten (d + 2)-angle in W.

Proof. (a)=(b). Suppose End(W?) is local. By Lemma [2.3.35 since w? is not a split
epimorphism, it follows that w?*! is non-zero. Then, as End(W?) = End(X?W?) is local,
it follows that w?*! is left minimal by Lemma [2.3.36

(d)=(a). Suppose € is an Auslander-Reiten (d + 2)-angle in W. Then w° is left almost
split in W and by Lemma we have that End(W?) is local.

(c)=(d). Suppose w" is in radyy. Then, by Lemmam7 it follows that € is an Auslander-
Reiten (d + 2)-angle in W.

(b)=(c). Suppose w*! is left minimal. Lemma [2.3.34] implies that (~1)?%%(w?) € radpy,
so w” erad and w € radyy by Remark O

4.5 W-covers and Auslander-Reiten (d + 2)-angles in W

In this section, we generalise [37, Theorem 3.1] to any d > 1, see Theorem To do so,

we start by proving the higher version of [37, Lemmas 2.2 and 2.3] and another lemma.

We work in Setup
Lemma 4.5.1. Consider an Auslander-Reiten (d + 2)-angle in M of the form

{0 EI fd €d+

€: XO Xl X2 Xd Xd+1 ! ZdXO.
View the abelian group Hom(X 9!, %4 X0) as an End(X%*!)-right-module via composition

of morphisms. The socle of this module is simple and equal to the submodule generated
by £d+1.
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Proof. Let M be a non-zero submodule of Hom(X %!, £¢X°) and pick a non-zero element
p: X 5 v4xX0in M. Extend u to a (d +2)-angle:

0 1

XO n Yl n Y2 Yd nd Xd+1 H EdXO.

Since 1 is non-zero, then n° is not a split monomorphism by Lemma [2.3.35. Then, as
€0 is left almost split, there is a morphism ' : X' - Y such that ¢! 0 €% = 5%, So,
by axiom (N3) from Definition [2.3.28] there exist morphisms 2,..., ¥%! making the

following diagram commutative:

X() 3 Xl ¢! X2 Xd gd Xd+1 §d+1 EdXO
| | |
H l/zpl 2 | yd |+l ‘
N N Y
XO - Yl - Y2 Yd Xd+1 ZdXO.
n n n? ’

In particular, we have o = ¢4 So, in the End(X%*!)-module Hom (X! »4x0),
the element £%1 is a multiple of . So é%*! is in M and the non-zero submodule of
Hom (X!, %9X0) generated by £€%*! is contained in M. Then, the socle of the End(X?*1)-
module Hom(X %! 29X0) is the submodule generated by %1

Note that End(X9*!) is local, as € is an Auslander-Reiten (d + 2)-angle. Since the socle
of Hom(X 9!, %9X0) is generated by the single element £%*1, it follows that it is simple
if it is annihilated by the Jacobson radical of End(X%*1). Let p: X! » X% be in the
radical of End(X 1), then by the dual of [I, Proposition 15.15(e)], we have that p has no
right inverse. Hence p is not a split epimorphism and, since £? is right almost split, there
is a morphism p': X% - X% such that p = %o p’. Then, by Lemma we have

£d+1op:§d+1ogdoplzooplzo’

as we wished to prove. O

Definition 4.5.2 ([38, Section 0]). For an additive subcategory U € M, we define

{ Ml S .o e O—>H0mM(U,M1)—>"'—>H0mM(UaMd)_>O}
U-exact = '

is a complex in M is exact for each U e U

Lemma 4.5.3. Let W be in W and let

e x0 & x1 &y x? &y & saxo

be an Auslander-Reiten (d +2)-angle in M. Suppose v: V — X is a W-cover. Then V is
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either zero or indecomposable.

Proof. Suppose V is non-zero and recall that M is Krull-Schmidt. Let V; be an indecom-
posable direct summand of V, let ¢; : V; > V be the inclusion of V; into V and v; :=v o ;.
Extend X%(1;) to a (d + 2)-angle:

0 1 d Ed(ui)

X0 T oyt T y? yd 1. wdy »ax0,

Since v is a W-cover, then v; is non-zero and so £%(1;) is non-zero. Hence n° is not a split
monomorphism by Lemma [2.3.35 and, as £ is left almost split, there exists a morphism
Yl X1 - Y1 such that ! o€ = Y. Then, by axiom (N3) from Definition [2.3.28| there

are morphisms 12, ..., **! making the following diagram commutative:
0 1 d d+1
X0 S xt S y2 L xd & gy & wdxo
| | [
H jwl | ¢2 | ’L[Jd | wd-ﬁ—l ‘
Y Y Y
X0 v! Y2 yd 24V »ix0.
n° n* n? 24 (vi)

In particular, we have 2%(1;) 0 @1 = ¢%*1. Then, letting ¢ := Z~4 (1) : 29 -V, we

have v; 0 @ = 274 1). As €71 is non-zero, it follows that ¢ is non-zero.

Hence every indecomposable direct summand V; of V permits a non-zero morphism LW —
Vi. We complete the proof by showing that at most one indecomposable direct summand

of V' can permit such a morphism.

Extend v to a (d + 2)-angle of the form

Vs X0 gt s 72 A

Consider the exact sequence
a1 a
Hom(W, 241 ““ Hom(W, 2%) “ Hom(W, 24V) % Hom(W, £2X°),

where, for a morphism 7 we use the notation 7 := Hom(W,n) and ¢ := (—1W(V) for
readability. Note that Z! — .- - Z% is in W-exact by [38, Lemma 2.1]. Hence w1 is
surjective, so that wi is the zero map and ¢ is injective. Viewing ¢ as a homomorphism
of finite dimensional right modules over the finite dimensional k-algebra End(W), the
target Hom(W, 2% X?) has simple socle by Lemmam Hence the image is either zero or
indecomposable. Since ¢ is injective, then the same is true for the source Hom (W, £V").
So, if V = Vi @--- @V}, there can be at most one i € {1,...,t} such that Hom(W, 2%V;) =
Hom (X™9W, V;) is non-zero.
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Hence, as we claimed, there is at most one indecomposable summand V; of V' permitting

a non-zero morphism LW - V;.
Lemma 4.5.4. Consider an Auslander-Reiten (d + 2)-angle in M of the form

0 1 d d+1

yo_ oyt Ty yd T oy yndy0

and any UY € M.

(a) For every non-zero morphism ¢ : 24U > £9Y0 there is a morphism ¢ : W — 24U°

such that § o ¢ = nd*1,

(b) For every non-zero morphism ¢ : W — £2U°, there is a morphism ¢ : 2¢U° - 24y

such that § o ¢ = nd*1,

Proof. (a) Extend § to a (d + 2)-angle of the form

Yot 0 a2 M 8% yd0 3 ydy0,

Since § is non-zero, then ¢° is not a split monomorphism by Lemma [2.3.35] so there
is ¢! : Y1 - M! such that 6 = ¢! on°. So, by axiom (N3) from Definition [2.3.28

there exist morphisms ¢2, ..., ¢! making the following diagram commutative:
yo oy1 1y yd 1y 1 sy
[ [ [
H l¢1 I 2 |¢d |¢d+1 ‘
y Y y
\ & M! M? M 20— »ndy 0,
50 5t 5 1)

Then ¢ := ¢%*! is such that ¢ o ¢ = n™*1L.

(b) Follows by a dual argument.

Theorem 4.5.5. Let M be a skeletally small Hom-finite k-linear (d+2)-angulated category

with split idempotents. Let W be an additive subcategory of M closed under d-extensions.

Let W be in W and suppose that there exists U° in W and a non-zero morphism %' :

W — 2400, Let

0 1 d
¢ xo S x1 & x xS w

be an Auslander-Reiten (d + 2)-angle in M. Then the following are equivalent:

89



Chapter 4. Auslander-Reiten (d + 2)-angles in subcategories

(a) X° has a W-cover of the form ¢: W% — X9
(b) there is an Auslander-Reiten (d + 2)-angle in W of the form

0 1 d+1

¢ Wwo sl e 2 wd <ty @ sdppo,

Proof. We first prove that (a) implies (b). Suppose ¢ : WY - X is a W-cover. Extend

the non-zero morphism y4*! to a (d + 2)-angle:

0 1 d d+

Ul L2 vd L ow

i »ay0

where we can choose U',..., U? in W. Note that 7% is not a split epimorphism by
Lemma [2.3.350 Since &% is right almost split, there is a morphism % : U¢ - X such that
7% = ¢dorpd. Then, by axioms (N2) and (N3) from Definition [2.3.28] there exist morphisms

Y0, ..., %1 making the following diagram commutative:
UO ,YO Ul ’Yl Ud—l ’Yd_l Ud 'Yd W ’Yd+1 ZdUO
[ [ [ [
IwO Idfl de—l jwd H Izd(wO)
i ¥ ¥ ¥
0 1 d-1 d d 0
X o X a X prm X = W g XV,

In particular, we have 2% (%) o 441 = ¢ Since ¢ : W° - X9 is a W-cover, there
is a morphism v : UY - WO such that pov = ¢°. Consider a (d + 2)-angle extending
Ed(l/) ° 7d+13

0 1 d-1 54 (1) oyd+1

¢ wo gt el gy @y SO,

where, as W, W% € W, we can choose W',..., W% in W and by Lemma [2.3.38] when
1 d-1
w

d > 2, we can also choose w", ..., in rady and so in radyy. We will show that € is

an Auslander-Reiten (d + 2)-angle in W.
By Lemma we have that W0 is either zero or indecomposable. Since

0+ §d+1 _ Zd(wo) o 7d+1 = Ed((p ov)o Pydﬂ = Ed((P) ° Ed(’/) °© 'Yd+1a (4.6)

it follows that X%(v) o y¥*! is non-zero. Then X490 is non-zero and so W is non-zero,

hence it is indecomposable, so End(W?) is local.

Now, by Lemma in order to prove that € is an Auslander-Reiten (d + 2)-angle in
W, it is enough to prove that w? is right almost split in W.
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Extend ¢ : W% - X0 to a (d + 2)-angle:

60 6d71 (Sd

wo 2. x0 vl yd »A0,

Since X4(v) o 49*! is non-zero, Lemma [2.3.35| implies that w? is not a split epimorphism.

By (4.6)), we have that orvoX~%(44*1) = £79(£%*1) and so there are morphisms o', ..., a?

making the following diagram commutative:

(71)d2—d(£d+1) ‘ gd—l {d

S-dw X0, x1 x4 W (4.7)
| |
L(—l)duoz-d(vd“) H o o j(—l)dzd(umd“
0 0 1 d dyr/0
W . X0y e Y — e I,

For any W' in W, consider the exact sequence

(-1)42%(p)

sd-1 sd
Hom (W', Y% 1) 22 Hom(W’, Y?) 25 Hom(W', 54w ) Hom(W’, £9Xx9),

where, for a morphism 7 we use the notation 7 := Hom(W', ) for readability. Note that
Yt - ... > Y4 is in W-exact by [38, Lemma 2.1]. Hence §9-! is surjective, so ¢ is the

zero map and (—1)4%9(¢p) is injective.

Let ¢ : W’ — W be a morphism in W which is not a split epimorphism. As &% is right
almost split, there exists a morphism 7 : W’ - X% such that ¢ = ¢%on. Consider §%oa®on €
Hom (W', £4W°) and note that

(-1)a2d(p) (6% 0 a?on) = (-1)'£(p) 06?0 aton=00aton =0,

where (-1)%%(p) 0 6¢ = 0 by Lemma [2.3.31, Then, by injectivity of (-1)4%d(y), we
conclude that §% o aon = 0.

By commutativity of , we have
0=0%0a%on = (-1)'T () 01 o ehop = (-1)'T(v) 07 0 6.

Then we obtain a commutative diagram:

WI
SO
0 1 2 d”“ dyy70
w WO w Wl w w W Zd(y)o,derlEW’

where 3’ : W' - W9 exists by Lemma [2.3.32, Letting 8 := (-1)?3’, we have ¢ = w?o .
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d

Hence w® is right almost split in VW as we wished and (a) implies (b).

We now prove that (b) implies (a). Suppose that we have an Auslander-Reiten (d+2)-angle
in W of the form

0 d+1

¢ wo <l gt @l 2 wd <y @t sdppo.

4 is not a split epimorphism and &7 is right almost split, there is a morphism

Since w
©?: W - X% such that €% o ¢? = w?. Then there are morphisms ¢°, ..., %! making the

following diagram commutative:

sy T Do w0y Wt @ ppd @ty (4.8)
| | |
0 Lt lpd-1 leod H
d Yo ! ; 1 d
2 W/&_l)dzfd(gdel) X 50 X X £d71 X gd W

We show that " : W% — X0 is a W-cover. First note that commutativity of (4.8) and
the fact that €' is non-zero implies that ¢° is non-zero. Moreover, by Lemma, we
know that End(W?) is local. Hence, by Lemma [2.2.27] it follows that ¢ is right minimal.

So it remains to show that ¢° is a W-precover.

Suppose that UY in W and a morphism % : UY - X are given. We want to prove that

7° factors through ¢". The case U° = 0 is trivial, so suppose that U is non-zero.

Take a linear map ¢ : Hom(X9W, X°) — k with (279(¢%1)) # 0. Define a bilinear map
¢ : Hom(Z™ W, U%) x Hom(U°, W) > k,
a(9,0) = (¢ cac ).

We show that if ¢ # 0, then there exists an « such that g(¢, «) # 0. Let ¢ ¢ Hom(X W, U°)
be non-zero and extend L4(¢) to a (d + 2)-angle of the form

o VY Ul v! U2 Ue v? Wzd((’b) Ed(]O7

where, since W, U are in W, we can choose U', ..., U% in W. Note that, as Ed(¢>) is non-
zero and by Lemma [2.3.35] then v is not a split epimorphism. So there is ¢ : U¢ - W¢
such that v = w? o n?. Hence w™! ov? = w0 wdon? = 0 by Lemma [2.3.31] Then we

92



Chapter 4. Auslander-Reiten (d + 2)-angles in subcategories

have a commutative diagram:

Uo VY Ul v U? Ud v? w =(¢) EdUO,
\ lderl _ _ —
0 d0 e s4(n%)
YW

where X9(n°) exists by Lemma [2.3.33l Note that 7° o ¢ = 2~%(w?*!). Then the element
n° in Hom(U°, W?) is such that

a(6,1°) = (9" 0’0 ¢) = (¢’ 0 (W™ )) = (U ET)) = 0,

so we have established the desired property of ¢.

Consider the linear map

¢ : Hom(X™9W,U°) - k,
p(9) = (7" 0 9).

By [37, Lemma 2.5], there is an element o € Hom(U?, W) such that ¢(-) = ¢(-, ). Then,
by the definitions of ¢ and ¢, for any ¢ € Hom (X 'W,U?), we have

(%0 ¢) =v(¢’ oo g). (4.9)

Since € is an Auslander-Reiten (d+2)-angle in M, then so is € := (-1)?2"%(¢). By Lemma
we conclude that the bilinear map

p: Hom(Z™4W,U%) x Hom(U®, X°) - ,
p(9,0) =¢(509)

is non-degenerate. Hence (4.9)) implies that 7° = ¢ o o, that is 7" factors through ¢° as

we wished. OJ

4.6 A class of examples
In this section, we further study the class of examples by Vaso that we introduced in

Section adding the extra assumption that k is an algebraically closed field in order to
be able to apply Theorem [£.3.2] So let d >2, 1 >2 and m > 3 be integers such that
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Q@ = A,, and F be the unique d-cluster tilting subcategory of mod A for A = kQ/ (rade)l.

We first give a full description of the wide subcategories W of the (d+2)-angulated category
F = add{Z¥F | i € Z}, using Theorem We then apply Theorem to find the
Auslander-Reiten (d + 2)-angles in these subcategories W.

Lemma 4.6.1. Let 1 < j <m+1-1. Then there is an Auslander-Reiten (d + 2)-angle in
F ending at fj of the form:

IR D S (TR BT ey AN S IS S if j=1; (a)
E_dfj+1—1 - E_dfj+l == fig 5 fi = fisi1 if 2<j<m; (b)
Fiom = fietom == = fia = = 5 f5m ifjem+l (o)

Proof. First note that in any case, the complex is a (d + 2)-angle in F by Remark

In fact, we can extend and rotate p in cases (b) and (c) and f; — f; in case (a).

Moreover, since any morphism between two non-isomorphic indecomposable objects is in

radz, all the morphisms of each (d +2)-angle are in rad.

In cases (b) and (c), we have p: fj_1 — f;. This is not a split epimorphism as the only
morphism of the form f; - f;_1 is the zero morphism. Let feFanda: f - f;j be a
non-zero morphism which is not a split epimorphism. Without loss of generality, assume
that f is indecomposable. Note that, since a is not an isomorphism, then f # fj. Hence
f is an object to the left of fj in the quiver and « factors through p. Similarly, in
case (a), we have that p: X7, ;1 — f1 is not a split epimorphism and any morphism

in F ending at f; that is not a split epimorphism factors through .
Hence in any case, u is right almost split and the (d + 2)-angle is an Auslander-Reiten

(d +2)-angle by Lemma [4.4.6] O

Example 4.6.2. Let us fix d=4, [ =4 and m = 9. Using Lemma [£.6.1] the following are

Auslander-Reiten 6-angles in F:

S s N s s Y s s N o s S e B f, where j = 1; (a)
S S oo N o> fio f1 D f5 o S where j=5;  (b)
fiofa=fs = fo = fo s fio > =4, where j=10.  (c)

Lemma 4.6.3. Let V ¢ F be a wide subcategory. Then, V = W = add{Z¥W | i € Z} for

some wide subcategory W of F. Moreover,
(a) W is semisimple if and only if for all distinct f;, f; in W, we have [ <|i—j [<m-1;
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(b) W is non-semisimple if and only if it is [-periodic, i.e. 0 # f, € W implies for € W
for all r € Z.

Proof. The fact that V = W follows from Theorem The rest of the lemma follows
from [23), Section 7. O

Lemma 4.6.4. Let W ¢ F be a wide subcategory, where W ¢ F is semisimple. Let fiew
and suppose f is the initial object of the Auslander-Reiten (d + 2)-angle in F ending at
fj' Then

15,
E_dfj—>0—>---—>0—>fj—]>fj

is an Auslander-Reiten (d + 2)-angle in W and $7¢ fj = f is a W-cover.

Proof. We claim that the only non-zero morphisms in W are scalar multiples of the identity

morphisms. If f;, fi are two distinct objects in W, then
W(fi, fx) =0 since I <|i—k|.

Suppose for a contradiction that W(f;, £%f;) is non-zero. Then, since the composition of
[ consecutive arrows in diagram (3.1)) is zero, we must have k < i and there is a sequence

of at most [ objects of the form:

fio fior == fovi = frric > 51 > S fa > 5 2 5> D

But then, as there are at most [—1 arrows in the above sequence, we have that m+[—i+k <
and so m — 1 <1 -k, contradicting the fact that ¢ — k < m — 1. Hence we proved our claim

and so 0 — f; is right almost split in W. Then

15,
Z_dfj—>0—>---—>0—>fj——J>fj

is an Auslander-Reiten (d + 2)-angle in W and £7¢ i = f is a W-cover, by Theorem
4.5.9) ]

Lemma 4.6.5. Let W ¢ F be a wide subcategory, where W ¢ F is non-semisimple. Let
fj € W and suppose f is the initial object of the Auslander-Reiten (d + 2)-angle in F
ending at f;.

Starting from f and moving left in the quiver (3.1)), let w be the first object found which

is in W. Then there is a W-cover w — f, and we have an Auslander-Reiten (d + 2)-angle
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in W Of the form:
d

Remark 4.6.6. Note that f is described in cases (a), (b), (c) of Lemma for all
possible values of j. In cases (b) and (c), so f = E_dfj+l_1, we have w = Z_dfp, for

pr=max{neZ|n<j+i-1, f,e W}.

In case (a), so f = fj-m, then w can be either of the form f, or Z‘dfq.

Moreover, once w is found, Remark can be used to find the Auslander-Reiten (d+2)-
angle in W. Note that the latter has half of its objects equal to the ones in the Auslander-
Reiten (d + 2)-angle in F ending at fj, i.e. f; and every second of the terms to its left.

The remaining objects are obtained by replacing f with w and, at every step, shifting by
[ objects in diagram (3.1]).

Proof of Lemmal[{.6.9. Given any object ¢ in (3.1)), the indecomposable objects in F hav-

ing non-zero morphism into g are exactly ¢ and the [ — 1 objects to its left in the quiver.

Consider g = f and note that, since W # 0 is [-periodic, then at least one of these [ objects
is in W. Hence w can be chosen as described in Lemma with w — f non-zero.
Moreover, § : w — f is a W-cover since all other morphisms from W to f factor through
d. The last part of the lemma follows from Theorem O

Example 4.6.7 (Continuing Example [4.6.2). Let W = add{f1, f2, f5, f6, fo, fio}. Note
this is 4-periodic and hence W ¢ F is wide. Consider the 6-angle (a) from Example
where fi € W. Here, f = ¥ f, has W-cover w = X% f, > ©7f,. Then, we obtain the
Auslander-Reiten 6-angle in W:

Sy = N s ST e > X g > X7 fig > f1 - fa

Similarly, starting from the 6-angle (b) from Example we obtain the Auslander-
Reiten 6-angle in W:

s =2 o = S o= fr > fa = S5 fo
Finally, note that since all the objects in the 6-angle (c) in Example are in W, then
= fo = fs > fo = fo > fro > ZHi

is also an Auslander-Reiten 6-angle in W.
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Chapter 5

d-Auslander-Reiten sequences in

subcategories

5.1 Introduction

Let d be a fixed positive integer, k a field and A a finite dimensional k-algebra. As in
previous chapters, let mod A denote the category of finitely generated right A-modules.

5.1.1 Classic background (d =1 case).

We have introduced Auslander-Reiten sequences in mod A in Section As stated in
Theorem [2.2.23], if M € mod A is an indecomposable non-projective module, then there is

an Auslander-Reiten sequence in mod A of the form:

0 ™ N M 0,

where 7M = D o Tr M is the Auslander-Reiten translation of M.

Let X € mod A be a full subcategory closed under summands and extensions, in the sense
that if 0 > X - Y - Z — 0 is a short exact sequence in mod A with X, Z € X, then Y € X.
Auslander and Smalg introduced the notion of almost split sequences in subcategories and,
in [7, Theorem 2.4], showed a weaker version of the following theorem introduced later by
Kleiner in [43, Corollary 2.8].

Theorem A (Kleiner). Assume X is precovering in mod A and let X be an indecom-

posable in X.

(a) There exists a right almost split morphism W — X in X.
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(b) If Ext/l\(X, X)) is non-zero, there is an Auslander-Reiten sequence in X, see Defini-
tion with d =1 and so F =mod A, of the form:

0 (X X! X 0,

where (X is the unique indecomposable direct summand of the X -cover of TX such
that Ext} (X,(X) #0.

For M € modA, let End, (M) denote the factor ring of End (M) modulo the ideal of
morphisms M — M that factor through a projective module. Then, Auslander, Reiten
and Smalg’s argument in [5, proof of Corollary V.2.4] can be easily modified to prove the

following.

Theorem B. Assume X is precovering in mod A. Let X € X be an indecomposable such

that End, (X)) is a division ring. For a short exact sequence of the form

§: 0 (X X! X 0,
with (X, X' and X in X, the following are equivalent:

(a) 0 is an Auslander-Reiten sequence in X,

(b) 0 does not split.

As a corollary of the above, one can prove the following result by Kleiner, see [43, Propo-
sition 2.10].

Corollary C (Kleiner). Assume X is precovering in modA. Let g : Y — 7X be an
X -cover, where X is an indecomposable in X with End,(X) a division ring. Consider a

non-split short exact sequence with terms in X of the form

0 Y yi 1. x 0.

Then the bottom row of the pushout diagram

0 Y yvi 1. x 0
0 X N X 0

s an Auslander-Reiten sequence in mod A and n is right almost split in X.
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5.1.2 This chapter (d >1 case).

Assume now that there is a d-cluster tilting subcategory F ¢ mod A, see Definition
As seen in Section Jasso generalised abelian categories to d-abelian categories in
[34]: kernels and cokernels are replaced by complexes of d objects, called d-kernels and
d-cokernels respectively, and short exact sequences by complexes of d + 2 objects, called
d-exact sequences, see Definition [2.3.1] By Theorem we have that F is a d-abelian
category and it plays the role of a higher version of the abelian category mod A. Note that
for d = 1, the only possible choice is F = mod A.

In [28], Iyama generalised Auslander-Reiten sequences in mod A to d-Auslander Reiten
sequences in F. Moreover, as seen in Proposition he proved that if A%! is an
indecomposable non-projective in F, then there exists a d-Auslander-Reiten sequence in
F, see Definition of the form:

0 Td(Ad+1) Al A2 Adfl Ad Ad+1 O,

where 74 is the d-Auslander-Reiten translation. Let X € F be an additive subcategory in
the sense of Definition that is closed under d-extensions, see Definition We
define d-Auslander-Reiten sequences in X, see Definition and prove a higher version
of Theorem A.

Theorem [5.3.13] Assume X is precovering in F and let X be an indecomposable in X .

(a) There exists a right almost split morphism W — X in X.

(b) If Extd (X, X) is non-zero, there is a d-Auslander-Reiten sequence in X of the form:

0 ox 2o x1 & X1 &7 ya €

X 0,

where o X is the unique indecomposable direct summand of the X -cover of T4(X)
such that Extd (X,0X) #0.

We prove a higher version of Theorem B.

Theorem Assume X is precovering in F. Let X be an indecomposable in X such
that End (X)) is a division ring. Let

0 1 d-1 d
5:0 ox S x1 8 xi1 & xd £y 0

be a d-ezact sequence with terms in X and such that £',..., €71 are in rady when d > 2.

Then the following are equivalent:
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(a) 0 is a d-Auslander-Reiten sequence in X,

(b) & is not a split d-exact sequence, see Definition .

As we have seen in Definition and Lemma in [34] Jasso generalised the idea of
pushout to d-pushout of a d-exact sequence along a morphism from its first term. Using
these, we obtain a higher version of Corollary C as a corollary of Theorem

Corollary Assume X is precovering in F. Let g :Y — 14(X) be an X-cover,
where X is an indecomposable in X with End, (X) a division ring. Consider a non-split

d-exact sequence with terms in X of the form:

(0] 1 d
€ 0 y syt = yi 1o x 0,
where, if d > 2, we also have n', ..., 77d_1 € rady. Consider a morphism induced by a
d-pushout diagram:
0 1 d
€: 0 y —L -yl 1. vi 1o x 0
| A
. 1 d
0: 0——19(X) " A > A — X 0,
where, if d > 2, we have that o, ..., a® ' eradr. Then § is a d-Auslander-Reiten sequence

in F and n® is right almost split in X.
We illustrate Theorem [5.3.13] in the following example with d = 2. Let A be the algebra

defined by the following quiver with relations:

4 i 3 i D i 1.

The Auslander-Reiten quiver of the unique 2-cluster tilting subcategory F of mod A is
shown in Figure [5.1] on page [[I8 Choosing a subcategory X ¢ F satisfying our setup,
namely add of the vertices coloured red in Figure [5.1] we use Theorem [5.3.13| to describe

the 2-Auslander-Reiten sequences in X.

This chapter is organised as follows. Section [5.2] studies d-Auslander-Reiten sequences in
X. Section proves higher analogues to some of Kleiner’s results from [43], Section 2],
including Theorem [5.3.13] Section [5.4] proves Theorem [5.4.4] and Corollary Finally,
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Section [5.5] illustrates an example of Theorem [5.3.13

5.2 d-Auslander-Reiten sequences in X
We aim to study additive subcategories of F closed under d-extensions. We define these
subcategories using the notion of Yoneda equivalence, see Definition [2.3.16]

Definition 5.2.1. Let F < mod A be d-cluster tilting. We say that an additive subcategory

X ¢ F is closed under d-extensions if each d-exact sequence in F of the form:

0 XO Al A2 Ad—l Ad Xd+1 0,
with X0, X9 in X is Yoneda equivalent to a d-exact sequence in F,

0 XU Xl X2 Xd—l . Xd . Xd+1 . 0’

with all terms in X.

Setup 5.2.2. Let d be a fixed positive integer, k a field, A a finite dimensional k-algebra
and F € mod A a d-cluster tilting subcategory. Then F is d-abelian by Theorem

Moreover, let X € F be an additive subcategory closed under d-extensions.

Remark 5.2.3. By Remark in every Yoneda equivalence class, there is a unique
almost minimal sequence up to isomorphism. Consider a d-exact sequence in F of the

form:

S 0 XO Al A2 Ad—l Ad Xd+1 0’

with X0, X%! in X. The almost minimal sequence in the equivalence class [6] has all
the terms in X'. In fact, since X is closed under d-extensions, we know there is a d-exact
sequence with all terms in X in [J], and dropping extra direct summands of the form
X 5 X in the middle terms of this, we obtain the unique almost minimal sequence in [0],

say

5 0 XO Xl X2 Xd—l Xd Xd+1 O,

with all terms in X. Note that dropping extra direct summands of the form A = A in the

middle terms of §, we also obtain an almost minimal sequence

€: 0 X0 Al A2 Ad-1 Ad xd+l 0.
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By uniqueness, 8’ = ¢ and so € has all terms in X. Note that [6] = [¢] and, since A7 is a
direct summand of A’ for any i = 1,..., d, there are morphisms of d-exact sequences € — §

and § — €.

We introduce d-Auslander-Reiten sequences in the subcategory X and give equivalent
definitions. Note that the case X = F will give the corresponding results in the ambient

category F.

Definition 5.2.4. We say that a d-exact sequence in F with all terms from X of the form

c:0 X0 ¢’ x! ¢ xd-1 ¢! xd ¢ xd+l 0,

is a d-Auslander-Reiten sequence in X if the morphism £° is left almost split in X, the

morphism ¢¢ is right almost split in X and, when d > 2, also £',..., €% ! erady.

The following is a well known result, see [5, Lemma V.1.7]. Recall that for a module in

mod A, having local endomorphism ring is equivalent to being indecomposable.

Lemma 5.2.5. Let £: X% - X! be left almost split in X. Then Ends (X?) is local and

€% is in rady.

Remark 5.2.6. Note that if € is a d-Auslander-Reiten sequence in X, Lemma and
its dual imply that Endy (X°) and Enda (X9*!) are local and £°, ¢4 are in rady.

Lemma 5.2.7. Consider a d-exact sequence in F with all terms in X of the form:

€:0 x0 & x1 & x1 £ & yan 0.

The following are equivalent:
(a) €is a d-Auslander-Reiten sequence in X',
(b) €0, ¢b, ..., €71 are in rady and €7 is right almost split in X,

(c) €',..., €971 ¢ are in rady and €0 is left almost split in X'

Proof. By Lemma and its dual, it is clear that (a) implies both (b) and (c). Suppose
now that (b) holds. By the dual of Lemmal/5.2.5} it follows that ¢? € rady. Let f0: X0 - y©
be a morphism in X that is not a split monomorphism. By Lemma there is a
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morphism of d-exact sequences of the form:

c: 0 X0 ¢’ X! & xd-1 £t xd ¢ X
jf jfo lfl lfd—l lfd
S 0 YO - Yl - Yd—l — Yd y Xd+1 o 0’
n n n n
where we may assume Y',..., Y% are in X by Remark |5.2.3] Suppose for a contradiction

that n° is not a split monomorphism. Then n¢ is not a split epimorphism by Corollary
and, since &7 is right almost split in X, then there exists ¢¢ : Y¢ - X% such that
€40 g% =n? By Lemma[2.3.10] there is a morphism of d-exact sequences of the form:

S 0 YO n° Yl n Yd—l et Yd n Xd+1é0
k o o PR
€ 0 X0 & X! T X+t pre; X pr X —0.

Note that €% 0 g% o f¢ = €% and, since Lemma [2.3.11| implies that &¢ is right minimal, it
follows that g% o f¢ is an isomorphism. Hence, Lemma [2.3.12] implies that ¢° o f0 is an
isomorphism. so that fY is a split monomorphism, contradicting our assumption. So 7" is

a split monomorphism and there is a morphism s : Y!' - Y such that pon® = 1y0. Then
po frog®=pon’o fO=f°

so €Y is left almost split in X and we have proved (c). Dually, (c) implies (b) and it is
hence clear that both (b) and (c) imply (a). O

5.3 X-covers and the left end term of a d-Auslander-Reiten

sequence in X

In this section, we generalise the results in [43], Section 2] on mod A to its higher analogue
F. Iyama proved in [28, Theorem 3.3.1] that if A% ¢ F is an indecomposable non-
projective, then there exists a d-Auslander-Reiten sequence in F ending at A%! and
starting at 7,(A9*1), see Proposition The idea is to give an analogue of this result
for d-Auslander-Reiten sequences in X'. Consider an indecomposable X in X that admits
non-split d-exact sequences ending at it with terms in X. We “approximate” 74(X) with
an indecomposable ¢ X in X. We show there is a d-Auslander-Reiten sequence in X ending

in X and that this sequence is forced to start at o X.
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Recall the definition of X-cover from Definition 2.1.371 Note that the duals of all the

results presented in this section are also true.

Lemma 5.3.1. Let Ae F and g: X - A be an X-cover. Then,
Ext% (-, 9) |x: Exth (-, X) |x — Exth (-, A) |x
is a monomorphism of contravariant functors.

Proof. Consider a d-exact sequence in F of the form

5 0 x oy &y X1 &7 ya ¢

Xd+1 0’

where X% is in X. Since X is closed under d-extensions, we may assume that X', ..., X¢

are also in &'. Consider the morphism of d-exact sequences in F obtained as in Proposition

2.3.18(b):

0 1 d
5 0 x—Stox1 S, xd o xd
L jg lgl Lgd
g-o: 0 A— Al e Al y p g —)
[0 (e} (073

Suppose that g -4 splits, i.e. [g-d] = 0. By Proposition [2.3.18(a), we want to prove that
also ¢ splits so that Extf{(—,g) |+ is a monomorphism. By Proposition [2.3.18|(a), there
exists a morphism ~: A - A such that yoa® =1,4. Then

g=v0a’og=yog'og’

Moreover, since X' is in X and g is an X-cover, there is a morphism n: X' - X such that

gomn=~yogl. Then, we have
g=v0g'og’=gonogl

As g is right minimal, it follows that 70 £° is an isomorphism. This implies that 0 is a
split monomorphism and so § splits, i.e. [§] =0 in Ext?l\(Xd”,X). O

Lemma 5.3.2. Let X in X be an indecomposable such that Ext}(X,X) is non-zero.
Suppose 74(X) has an X-cover of the form ¢g:Y — 74(X). Then, for any non-split d-exact

104



Chapter 5. d-Auslander-Reiten sequences in subcategories

sequence in F of the form

0 1 d—-1 d
5:0 X0 x1 ¢t xd1 S xd & x 0,

with all terms in X, there is a morphism h: X - Y such that & -§ is a non-split d-exact

sequence in F. In particular, Ext‘fx(X, Y)=+0.

Proof. First note that such a § exists since Extf{(X ,X) # 0. Moreover, by Proposition
2.3.25 there is a d-Auslander-Reiten sequence in F of the form:

1 d-1

630—>Td(X) af Al a Ad—l a®”

d

A2 o X 0.

Since €4 is not a split epimorphism and a? is right almost split in F, there is a morphism
f%: X% - A4 such that a®o f% = ¢%. Then, by Lemma[2.3.10, we can construct a morphism

of d-exact sequences of the form:

5: 0 x0_ & x1 & xa1 &7 ya &% 0
\f lfo jfl Lfdl lfd H

: X Al Al Al X )
€ O Td aO 041 ad—l ad 0

Since g is an X-cover, there is a morphism h : X - Y such that f = goh. Then, applying

Extj{(X ,—), we obtain the commutative diagram:

Extd (X, f0
Extd (X, X0) BT Extd (X, 74(X)).

\ / (5.1)
Ext4 (X,h) Ext{ (X,9)

Ext4(X,Y)

Considering the morphism § - f-§ obtained as in Proposition [2.3.18(b) and f: 6 — e,
Lemma [2.3.20|implies that 0 # [¢] = [f°-0] in Ext% (X, 74(X)), so that f°-§ is non-split by

Proposition [2.3.18{(a). Then, in diagram 1) we have Extji\(X,g oh)(0)=goh-6=f0-§
is non-split and so [k -] # 0, i.e. h-d is non-split. In particular Ext(X,Y) # 0. O

The following is a higher version of [5 proof of Proposition V.2.1]. Recall that modules are
assumed to be right-modules. Instead of proving it here, we later prove the more general
Lemma The case X = F in the latter, corresponds to the following.

Lemma 5.3.3. Let A be an indecomposable non-projective in F. Then Ext4 (A, 74(A)),

as an Endj(A)-module, has a simple socle generated by a d-Auslander-Reiten sequence
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in F of the form

1 d-1

(5: OéTd(A) OCO Al a A2 Ad—l a””

d

A2 o A 0.

Proposition 5.3.4. (a) Let X in X be an indecomposable such that Ext}(X,X) is
non-zero. If 74(X) has an X-cover of the form g : Y — 74(X), then Y = Z @ 7/,
where Z is an indecomposable such that Ext4 (X, Z) # 0 and Ext4(X,Z’) =0. The

module Z is unique up to isomorphism.

(b) In the setting of (a), a non-split d-exact sequence of the form

0 1 2 d

d-1
€: 0 y 1oyt oy T yd1 T yd T x 0

is isomorphic to the direct sum of the split d-exact sequence:

1,

0 z' A 0 0 0 0 0

and a non-split d-exact sequence of the form

d

0] 1 2 d-1
0 7Sy _Soy2 T yi1 T yd Ty 0.

Proof. (a) Let Y =Z; ®--- & Z,, be the indecomposable decomposition of Y. By Lemma
[(.3.1] we have a monomorphism:

Extf (X, g) : Ext}(X,Y) — Ext§ (X, 74(X)),

which is also a monomorphism of End, (X )-modules. Hence Im Ext4 (X, g) is an Endy (X )-
submodule of Ext$ (X, 74(X)) isomorphic to

m
Ext(X,Y) 2 @Ext} (X, Z)).
j=1

Since Extf\(X ,X) %0, it follows that X is not projective in mod A. Then, viewed as an
End (X)-module, Ext$ (X, 74(X)) has simple socle by Lemmam Hence Im Ext$ (X, g)
is either zero or an indecomposable Endy(X)-module. So there is at most one j ¢
{1,..., m} such that Ext{(X,Z;) is non-zero. Note that Ext$(X,Y) is non-zero by
Lemma Hence there is exactly one j € {1,..., m} such that Extjl\(X, Z;) is non-

Zero.
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(b) By Lemma there is a morphism of d-exact sequences of the form:

O_ (¢t 1 2 d-1 d
. 07 a7 n°=(£',€) yl_m _y2 " " yd " x 0
oo | |
_ 1 2 d
€ 0 A = w = w R w —~ X 0.
(5.2)

Since Ext4 (X, Z') = 0, the bottom row is a split d-exact sequence by Proposition [2.3.18)(a).

Hence, we have that € is isomorphic to:

1,
0 Z, ( (Z) ) Z’@W (0,7) W2 w? wd-1 Wd w? X 0
Then the morphism ([5.2)) is isomorphic to the morphism:

’ 1 2 d-1 d
: 0 Z o7 (€8 vl n y2_"r yd " x 0
l L(LO) L(ﬁi) L j H
€: 0 zZ' Z'e W1 w2 we X 0.
€ ( 15, ) @ (07,},) w2 wd—l wd

In particular, ' o0& =1z and so Y = Z' @ V and e isomorphic to a d-exact sequence of

the form:

1, 0
0 0’1 2 d-1 d
(OC) Z’@V(C)YQW m yvd " x 0.

e:0—=7'07

Clearly, this is isomorphic to the direct sum of the two d-exact sequences we wanted, where

the one starting at Z does not split since € does not split. O

Definition 5.3.5. Suppose that X is precovering in F and let X be an indecomposable
in X. If Ext{(X,X) = 0 we put 0X = 0. Otherwise, letting g : ¥ — 74(X) be an X-
cover, we denote by ¢X the unique indecomposable direct summand Z of Y such that
Ext{(X,Z) # 0.

Corollary 5.3.6. Let X be precovering in F and let

0 1 d-1 d
Coxt xo1 & xd £y 0

§:0 X0
be a d-Auslander-Reiten sequence in X. Then X° = 0 X.
Proof. Note that the existence of § implies that Extﬁl\(X ,X') is non-zero. As X is precov-
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ering in F, there is an X-cover g: Y — 74(X). Then, by Lemma there is a morphism

of non-split d-exact sequences in F of the form:

0 1 d-1 d
5: 0 xo_Sox1 S i1 & xd £ x 0
T TR
. 1 d-1 d
hes: 0 Y Ve Y e ¥ X 0.

Since n? is not a split epimorphism, Lemma implies that h does not factor through
€0 As €9 is a left almost split morphism in X, it follows that h is a split monomorphism.
Hence X is an indecomposable direct summand of Y such that Extjl\(X , X% # 0 and
Proposition m(a) implies that X° = o X. O

Notation 5.3.7. For A and B in F, we use the notation (4, B) := Homz (A, B).
Definition 5.3.8 ([30, Definition 3.1]). Consider a d-exact sequence in F of the form:

0 1 d-1 d

5 0 AV Al @ g2 AL & pd @ pdil 0.

We define §*, the contravariant defect of § on F, by the exact sequence of functors
(=AY = (=, AT 5 6% (=) ~ 0.
Dually, we define §., the covariant defect of 6 on F, by the exact sequence of functors
(A=) > (A% =) > 6.(-) > 0.

Remark 5.3.9. By Lemma [2.3.19, we have that 6*(-) is a subfunctor of Ext} (-, A%) |#
and 6, () is a subfunctor of Extg (A% -) |£.

Lemma 5.3.10. Consider a d-exact sequence in F with all terms in X of the form:

§:0 XO 50 Xl ’51 Xd—l 5d_1 Xd Ed Xd+1 0

and an X-cover g: X — A for some A € F. The k-linear map (XY, g): (X% X) — (XY, A)

induces an isomorphism of k-vector spaces:
8.(9) 1 0.(X) = 6. (A).

In particular, dimg (0,(X)) = dimg(d.(A4)).
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Proof. By Definition [5.3.8] we have
8.(g) (X%, X)/Tm(%, X) - (X7, 4)/Tm(¢°, A).

Note that since g : X - A is an X-cover, the map (X, g) is surjective. Hence it is enough
to show that Tm(£°, X) is the full preimage of Im(¢°, A) under (X©,g). It is clear that

(X?,9)(Im(¢%, X)) € Im(¢", A).

It remains to show that if h: X° - X is such that goh: X? > A factors through £°, then

h factors through £°. Consider the following morphisms of d-exact sequences:

5 0 X0 ¢’ x! ¢ xd-1 gt xd ¢ xd+l 0
| |/l L

h-6: 0 X y! yd-1 yd % xdl 0
AT

gh-6: 0 A Al A1 Ady X+l 0.

Since g o h factors through ¢°, Lemma implies that the bottom row splits. Hence, we
have that [Ext4 (X9, g)(h-6)] = 0. Since Ext} (X!, g) is a monomorphism by Lemma
it follows that the middle row splits. Hence h factors through ¢° by Lemma O

Remark 5.3.11. Let X € X be indecomposable and assume that 74(X) has an X-cover,

say g:Y - 74(X). Given any d-exact sequence with terms in X of the form

5:0 X0 ¢’ x1 ¢ xd-1 ¢t xd ¢ xd+ 0,

we have that
dimg (. (Y)) = dimy (6. (74(X))) = dimy (6™ (X)),

where the first equality holds by Lemma [5.3.10[ and the second by [36, Theorem 3.8].

Proposition 5.3.12. Assume X is precovering in F. Let X € X be an indecomposable
such that Ext?(X,X) # 0 and g : Y — 74(X) be an X-cover. Then there is a d-exact

sequence with terms in X of the form:

0 1 2 d

d-1
€: 0 y Loyl Toy2 T ydl L o yd T x 0,

with n¢ right almost split in X.
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Proof. Since Extf\(X ,X) # 0, there exists a non-split d-exact sequence with terms from X

of the form:

0 1 d-1 d
5:0 xo £, x1_¢ xi1 & xd £ x 0.

As not every endomorphism of X factors through ¢, we have that dimy(6*(X)) # 0. By
Remark [5.3.11} we have that

dimy (8, (Y)) = dimy, (8, (r4(X))) = dimy,(5* (X)) # 0.

So Extj{(?( ,Y') is non-zero by Remark |5.3.9[and there is a non-split d-exact sequence with

terms in X of the form:

0 1 d-1
¢ 0 v ¢ e

Zd— Zd Cd Zd+1 Y

Since not every endomorphism of Y factors through ¢°, then dimy,(¢,(Y')) is non-zero and

so, by Remark we have
0+ dimy (G, (V) = dinng (G (ra(X))) = dimng (¢ (X)),

Hence not every morphism of the form X — Z%! factors through ¢¢. So there is a
morphism ¢ : X - Z%1 such that its image in ¢*(X) = (X, Z%1)/Im(X, (%) generates a
simple Endy (X)-module. Thus, by the dual of Proposition [2.3.18|(b), we have a morphism

of d-exact sequences in F of the form:

(0] 1 d-1 d
Cot: 0 y Loyl 1o ydl L syd T L x 0
L H ltl jtdl Ltd lt
. 1 d-1 d d+1

where we can assume Y, ..., Y are in X by Remark We claim that ¢ := (-t is
such that ¢ is right almost split in X. First note that since ¢ does not factor through
¢%, then e is not a split d-exact sequence by Lemma In particular, n? is not a split
epimorphism. Suppose that s: W — X in X is not a split epimorphism. We need to show
that s factors through n?. Consider the morphism obtained by the dual of Proposition
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5.3.18(b):
€ s 0 y <o et -1 T yypd et gy 0
l H lsl lsd_l lsd ls
. 1 d-1 d
¢: 0 Y ¥V e Yyl e X 0.

By Lemma we have that s factoring through n? is equivalent to € - s splitting. Note
that if every morphism 7 : X — W factors through w?, then (e-8)*(X) =0 and, by Remark
5.3.11, we have that (e-s).(Y) =0, that is (wp,Y) is surjective and € - s splits. Hence it

is enough to show that every morphism r: X — W factors through w?.

Note that since s is not a split epimorphism, sor: X — X is not an isomorphism. Hence,
tosor: X — Z% 1 is in toEndy (X) oradgyq, (x)- Since the image of toEnd (X) in ¢*(X)
is a simple module, it follows that tosor projects to zero in (*(X). In other words, tosor

factors through (¢, so there is a morphism « : X - Z% such that (?oa = tosor. Consider:

d

d-1
o 0 y Lopt Ao gt b opd M L x 0

- S
l lrdl lrd /lr
s 0>y owt @t @ i oy 0
| R T R
C 14

. 1 d-1 d d+1
: 0 Y o A a Z o= A o A 0.
Then, by Lemma there is a morphism o' : U' - Y such that o' o u° = 1y. Hence
the top row of the above diagram splits. So there is a morphism ¢ : X - U? such that
pudo¢=1x. Note that

€

~
~
~
-
3
—

€

wlorlog=roplop=r.

Hence r factors through w? as we wished to prove. O

Theorem 5.3.13. Assume X is precovering in F and let X be an indecomposable in X .

(a) There exists a right almost split morphism W — X in X.

(b) If Extd (X, X) is non-zero, there is a d-Auslander-Reiten sequence in X of the form:

0 1
0 ox o x1 £

a-1 &7 yd &
X X X 0. (5.3)
Proof. (a) This follows from [6l, Proposition 3.10].
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(b) Let g: Y — 74(X) be an X-cover. Then, by Proposition [5.3.12} there exists a d-exact

sequence with terms in X of the form

0 1 2 d

d-1
€:0 y Loyt Toy2 T, ydt D oyd T x 0,

with 7¢ right almost split in X. By Proposition € has a non-split d-exact sequence

with terms in X of the form

¢ ¢t n? n?

d-1
5:0 oX 174 y?2 yd-1 1 __yd

X 0

as a direct summand. If d > 2, we may also assume that ¢!, 5?,..., %! are in rady.
Moreover, since 0 X is indecomposable and ¢ is not a split monomorphism, it follows
that (% is in rady. Hence, by Lemma we conclude that ¢ is a d-Auslander-Reiten

sequence in X. O

5.4 More on d-Auslander-Reiten sequences in X

In this section, we study the case when, for an indecomposable X € X', the factor ring
of Endj(X) modulo the morphisms factoring through a projective is a division ring.
Generalising [5, Corollary V.2.4], we prove that an almost minimal d-exact sequence with
terms in X ending at X is a d-Auslander-Reiten sequence if and only if it does not split.

As a consequence of this result, we prove a higher version of [43, Proposition 2.10].

The argument from [5, proof of Proposition V.2.1] can be modified to prove the following
result, we present here the argument for convenience of the reader. Note that this differs
from the original result in two ways: it is a higher version and we work in the subcategory
X. The condition on an indecomposable C' in mod A to be non-projective is hence sub-
stituted with the condition on an indecomposable X € X’ to be such that Extji\(X ,X)#0
and 7C' with ¢ X.

Lemma 5.4.1. Assume that X is precovering in F and let X be an indecomposable in
X such that Ext}(X,X) # 0. Then Ext?(X,0X), as an Ends(X)-module, has a simple

socle generated by a d-Auslander-Reiten sequence in X of the form

0 1 d-1 d
5: 0 oX o xS, x? xi1 £ xd Y x 0.

Proof. By Theorem [5.3.13] there is a d-Auslander-Reiten sequence in X of the form

0 1 d-1 d
5: 0 oX o xS, x2 xi1 & xd £ x 0.
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Consider a non-zero element in the Endy (X )-socle of Ext? (X,oX) of the form

0 1 d

d-1
€ 0 oX Loyl 1. y? yd1 T yd T x 0.

We prove that radgnq,(x) annihilates 6. Let h € radg,q,(x), and note that since X
is indecomposable, Endj(X) is local, so this is the same as saying that h is not an
isomorphism by [45] Section 4]. Applying Extj{(h, 0X) to 0, we get a morphism of d-exact
sequences dual to the one from Proposition [2.3.18|(b):

0 1 d
5 h: 0 oX Sl S g 74 < x 0
5 0 cX X1 X2 xd X 0.
€0 I g

Since h is not a split epimorphism and £? is right almost split in X, there exists a morphism
s X — X9 such that €% o0 s%! = h. Then, by Lemma [2.3.7, there is a morphism
s': Z' 5 ¢ X such that s'o(® = 1,x. This means that 6-h splits, so radgpq, (x) annihilates
0. Hence ¢ is in the socle. Moreover, since ¢ is a d-Auslander-Reiten sequence in X and €
is non-split, there exists a morphism t' : X' - Y such that t! 0 £ = n°. Then, by Lemma

[2:3.10 we have a morphism of d-exact sequences:

0] 1 d— d
5 0 oX o x1 S, x? xi1 £ xd S x 0
l H ltl ltg ltd_l ltd lt::tdﬂ
. 1 2 d-1 d
¢: 0 X Y Y Yy X 0.

By the dual of Lemma we have that [§] = [e-t] in Ext4 (X,0X). Then, as € is in the
Endp (X)-socle of Ext‘;{(X, 0X), then ¢ is not in radg,q, (x) and so it is an isomorphism
by [45, Section 4]. Hence [¢] = [§-t'] in Ext} (X, X). Then, the End, (X )-socle is cyclic
and hence simple and generated by §. O

Lemma 5.4.2. Assume X is precovering in F. Let X be an indecomposable in X such
that Ext/d\(X ,X) #0. Consider a non-split d-exact sequence of the form:

¢° ¢!

5:0 ocX X!

d-1 d
xi1 & xd £ x 0,

with X',..., X% in X and, when d > 2, also &!,..., £€* ! in rady. Then, the following are

equivalent:
(a) 0 is a d-Auslander-Reiten sequence in X,
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(b) €% is right almost split in X,

(¢) Im(X,&%) =radgpa, (x)

(d) 6*(X) is a simple End (X )-module.

Proof. By Definition we have that (a) implies (b). Assume now that (b) holds and

note that since X is indecomposable, then End (X)) is local. Consider
(X6 (X, X) > (X, X) rar oa

Assume f: X — X is in radgyq, (x)-Then, since X is indecomposable, it follows that 3 is
not an isomorphism and so 8 is not a split epimorphism. As &% is right almost split in X,

there exists a morphism « : X - X% such that

B=toa=(X,(a),

and so 8 € Im(X,&%). Assume now that 8: X - X is in Im(X, &%), ive. = €90 for
some a € (X, X). Then, since £7 is not a split epimorphism, it follows that £ is not an

isomorphism and so 3 is in radgyq, (x). Hence (b) implies (c).

Recall that 6*(X) = (X, X)/Im(X,£%). Assume (c) holds. Then we have that §*(X) =
Endj (X)/radgng, (x) and this is simple as radgyq, (x) is the maximal ideal of the algebra
End, (X). So (c) implies (d).

Assume now that (d) holds. Then, §*(X) is generated by the image of 1y, and this image
is sent to & as an element of Ext}(X,0X). Moreover, by Lemma we have that
6*(X) is the socle of Ext4(X,0X) as an Enda (X)-module and so, as § generates 6*(X),
Lemma [5.4.1)implies that ¢ is a d-Auslander-Reiten sequence in X. So (d) implies (a). O

Notation 5.4.3. For a module A in F, we denote by P(A) the ideal of all morphisms
of the form A — A that factor through a projective module. The factor ring of Enda(A)
modulo P(A) is then denoted by End, (A).

Theorem 5.4.4. Assume X is precovering in F. Let X be an indecomposable in X such
that End (X)) is a division ring. For a d-exact sequence of the form:

£° ¢!

5:0 cX x!

d-1 d
xS xd £ x g
with terms in X and, when d > 2, also &', ..., €471 in rady, the following are equivalent:

(a) 0 is a d-Auslander-Reiten sequence in X,

(b) 0 does not split.
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Proof. Note that as ¢? is an epimorphism, Im(X, &%) contains P(X). Since End, (X) =
Endx(X)/P(X) is a division ring, it is simple as an Endj(X)-module. Then P(X)
is a maximal submodule of Endj(X) and, as Enda(X) is local, we have that P(X) =

radppq, (x)- Hence, maximality and
radg,d, (x) = P(X) ¢ Im(X, %) ¢ End, (X),
imply that we have the following two cases:

1. Im(X,¢9) = radgnq, (x), i-e. 6*(X) is a simple End, (X )-module, in which case ¢ is
non-split as 1x ¢ Im(X,&9);

2. Im(X,¢%) = Endp(X), i.e. 6*(X) =0 is not a simple Ends (X)-module, in which
case § splits as 1x € Im(X,£9).

Hence 6*(X) is a simple End (X )-module if and only if § does not split. Then, by Lemma
we conclude that § does not split if and only if § is a d-Auslander-Reiten sequence
in X. O

Corollary 5.4.5. Assume X' is precovering in F. Let g: Y — 74(X) be an X-cover, where
X is an indecomposable in X with End, (X) a division ring. Consider a non-split d-exact

sequence with terms in X of the form:

0 1 d

€ 0 ) (L, 7o yi Lo x 0,
where, if d > 2, we also have n',..., n®! € rady. Consider a morphism induced by a
d-pushout diagram:
0 1 d
€ 0 y — >yl 1. vi 1o x 0
. 1 d
0: 0 ——149(X) " A o A " X 0,
where, if d > 2, we have that o, ..., a® ! eradz. Then 6 is a d-Auslander-Reiten sequence

in F and n? is right almost split in X.

Proof. First note that in a d-pushout diagram of € along g, the middle morphisms o', ...,

a® 1 are not necessarily in radz. However, dropping extra direct summands of the form

AS A, we obtain a d-pushout diagram with middle morphisms in rad.

Considering Theorem in the case when X = F, so that 0 X = 74(X), we have that

0 is a d-Auslander-Reiten sequence in F if it does not split. Suppose for a contradiction
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that ¢ is a split d-exact sequence. Then Lemma implies that there is a morphism
h:Y! - 75(X) such that hon® = g. Moreover, since Y! € X and g is an X-cover, there is
a morphism ¢:Y"! - Y such that h = g o ¢. Hence

g=hon’=gogon’,

and ¢ on® is an isomorphism as ¢ is right minimal. But this implies that n° is a split
monomorphism, contradicting our initial assumption. So é does not split.

By Proposition m(b), we have that e is isomorphic to the direct sum of a split d-exact

sequence:

0 Yy Yy 0 0 0 0

and a non-split d-exact sequence:

Cl 2 d-1 d

0
¢ 2l Toyd Ty L),

C: 0 oX w

where, for d > 2, we have that ¢', n?,...,n% ! are in rady. Note that, by Theorem m
we have that ¢ is a d-Auslander-Reiten sequence in X’ and in particular n? is a right almost

split morphism in X. ]

5.5 Example

In this section, we illustrate the results from Section[5.3|for a 2-representation finite algebra
A. Here we assume that A is an algebra over an algebraically closed field &k in order to be
able to apply [23] Theorem B].

Definition 5.5.1 ([30, Definition 2.2]). The algebra A is called d-representation finite if
gldimA < d and A has a d-cluster tilting object.

Let A be the algebra defined by the following quiver with relations:
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Remark 5.5.2. Note that the algebra A is 2-representation finite by [29] Theorem 1.18].
Moreover, by Remark we have that mod A has the unique 2-cluster tilting subcat-

egory

F= add{Tg(i) | i injective in mod A and j > 0}.

Denoting the indecomposable modules in mod A by their radical series, we find the Auslander-
Reiten quiver of F is as illustrated in Figure see [49, Theorems 3.3 and 3.4], where
the dashed arrows show the action of 7. We will use [23] theorem B] to find an additive
subcategory X ¢ F closed under 2-extensions. Using Theorem[5.3.13] we will then describe

the 2-Auslander-Reiten sequences in X.

Theorem 5.5.3 ([23] Theorem B]). Let X € F be a full subcategory closed under isomor-
phisms in F. Let s € X be a module. Set T' = Endp(s) so s acquires the structure psp.

Assume the following:
(i) the projective dimension satisfies projdim(sy) < oo,
(i) Ext3(s,s) =0,

(iii) each x € X permits an exact sequence 0 — py, - --- > p1 = pg > = — 0 in mod A with
p; € add(s),

(iv) G :=Homp(s,X) € modT is d-cluster tilting.

Then X is a wide subcategory of F, i.e. an additive subcategory closed under d-extensions
such that every morphism in X has a d-kernel and a d-cokernel in F consisting of objects

from X.

Consider the full subcategory of F closed under isomorphisms in F:

9 4
6 9 4
10 6 7 6 4
2. 8 67 57 7}7

8
‘X::add{l,§, 8527 %7 59020 5

=S

i.e. add of the vertices coloured red in Figure[5.1I] Using the following module in X

—_

0

9 4
s=1050 00,0, 07 @02 s,
1 10

= U100

let " := Endp (s). We check that the conditions (i)-(iv) from Theorem hold.
(i) Since A has finite global dimension, then s has finite projective dimension.

(ii) As s is projective in mod A, it follows that Ext3'(s,s) = 0.
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Figure 5.1: The Auslander-Reiten quiver of F.
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(iii) When z € X is a direct summand of s, we have a trivial exact sequence. Moreover,

we have the following exact sequences:

8
0 1 ? 2 8—>g—>0,
10 9
0 1 : 0.6 .,
1 5 2
10 4
8 4
8 7
0 ? 5 9 ! 0,
1 10
6 10 6 7 4
0—>258—> P 190 7 0,

so (iii) is satisfied.

(iv) Consider G := Homp (s, X)) € modI'. In addition to the idempotents in I' corresponding
to the identity morphisms, we have the following irreducible morphisms of add (s):

)

.10 6 7 .6 10°6 .8 6 )
a: PPy =g, B2 8> V0, yi5 52 8, 01—
5 10 5 5 1 5

= U100

106 s ¥ 8 107
- 8527 C:?_’ 51)7 5°7=€°C:?_’ 8 29

»—ACHOOE

with a0 =0 and o =0. Then, using [2, Theorem 3.7, Chapter II], we have that T" is
isomorphic to the algebra W defined by the following quiver with relations:

We look at G in terms of quiver representations, using [2, Theorem 1.6, Chapter III]. So
for example, using again the radical series notation, we have
H 10 0 6 b ¢ f
oma (5,1928) =1
Similarly, we find the radical series of Homy (s, z) for each indecomposable x € X'. Then,
using these, it is easy to see that the Auslander-Reiten quiver of G is as shown in Figure

m By [39, Remark B.5], we conclude that, viewed in terms of quiver representations, G

is the unique 2-cluster tilting subcategory of mod W. Hence G € mod I is 2-cluster tilting.
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N
NN

AV

Figure 5.2: The Auslander-Reiten quiver of G.

So (i)-(iv) from Theorem hold and we have that X is a wide subcategory of F in the
sense of [23] Definition 2.11]. In particular, X ¢ F is an additive subcategory closed under
2-extensions.

Looking at the Auslander-Reiten quiver of F, we see that the following are the 2- Auslander-
Reiten sequences in F with right end term in X

10
8 6 9
0—s5—>2 80t ——§010.,6, —56—s0 (a)
1 5 3 5 2
5 2 4 8
0 7 2o ——202 8 ——=§——=0, (b)
1
4
4
0—=6—=2@3,%9,——=3 90 —=7—>0, (c)
10 9
4
0—=3——=3@3 9 geag & 0 (d)

Note that all the terms in (a) are in X, so (a) is also a 2-Auslander-Reiten sequence in X.
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Moreover, the following are X-covers:

Then, using these covers, (b), (c), (d), Theorem [5.3.13| and the fact that the relevant
Ext2-spaces are one dimensional by [49, Theorem 3.6], we find the 2-Auslander-Reiten

sequences in X'

8
0 1 5 28 g 0, (b")
4
0——2 8—>10862€Bg—>g®g—>7—>0, (c)
10
9 4 4
0— 3§ : : — (@)
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Chapter 6

Grothendieck groups of
triangulated categories via cluster

tilting subcategories

6.1 Introduction

Let k£ be a field and C be a k-linear, Hom-finite triangulated category with split idempotents
and suspension functor . We denote the split Grothendieck group of an additive category
A by K "(A) and the Grothendieck group of an abelian or triangulated category B by
Ky(B).

We first present two previous results, one by Xiao and Zhu and the other one by Palu
that in some sense are the base case of the results we present in this chapter. Note that
both Xiao and Zhu and Palu assume that k is an algebraically closed field. However, this

assumption is not needed for our higher versions and k is a general field in our setup.

Previous results. In [57, Theorem 2.1], Xiao and Zhu presented triangulated analogues

of results of Auslander [4, Theorems 2.2 and 2.3] and Butler [12, Theorem in introduction)].

Theorem (Xiao and Zhu). Let C be a triangulated category of finite type, then
Ko(C) 2 KJP(C)/{-[A] +[B] - [C] | C € IndC with Auslander-Reiten triangle A - B — C').

We can think of the C appearing on the right side as the only possible 1-cluster tilting

subcategory of C. In this chapter, we are interested in higher-cluster tilting subcategories.

The first higher case occurs when C has a (2-)cluster tilting subcategory. Palu studied this

case, in a more specific setup, in [50]. In fact, Palu assumes that C is the stable category

122



Chapter 6. Grothendieck groups of triangulated categories via cluster tilting
subcategories

of a Frobenius k-linear category with split idempotents, and that C is 2-Calabi-Yau with
a (2-)cluster tilting subcategory T .

Given an indecomposable M in T, let T be the additive subcategory of T whose indecom-
posables are the same as T, excluding those isomorphic to M. Then, up to isomorphism,
there is a unique indecomposable M* ¢ T such that add(7 uM*) c C is (2-)cluster tilting,
Moreover, M and M™ appear in two triangles with certain properties, called exchange

triangles, of the form:
M* - By —-M-—-YXM"and M - By - M* - XM,

where By and By are in 7. Palu proved the following in [50, Theorem 10].
Theorem (Palu). We have that Ko(C) = K;*(T)/{[Bum+] - [Bum])m

Note that if the Auslander-Reiten quiver of 7 has no loops, then the indecomposable
M €T has Auslander-Reiten 4-angle M — By~ - Byy — M in the sense of [32, Theorem

3.8]. So Palu’s theorem is a higher version of Xiao and Zhu’s theorem.

We present “higher cluster tilting” versions of Xiao and Zhu and Palu’s results. Moreover,

we present a “higher angulated” version of Palu’s result.

Higher-cluster tilting versions. Let n > 2 be an integer and assume that C has a Serre
functor S and an n-cluster tilting subcategory 7T, see Definition Let Ind 7 be a full
subcategory of T containing precisely one object from each isomorphism class of indecom-
posables in T and assume that Ind T is locally bounded, see Definition [6 Recall that
the functor S, := S¥™ and Auslander-Reiten (n + 2)-angles in 7 were introduced in [32]
Section 3].

Theorem [6.4.9L We have that Ko(C) is isomorphic to

K ]+ ( 1)"[8 (M)]+ | M eInd T with Auslander-Reiten (n + 2)-angle
Ko'(T)
(-1)Y[T3] Sp(M)—>Typq—--—>Ty—>M—>S(M)

The arguments we use to prove Theorem rely on n > 2. However, note that when k
is an algebraically closed field, the case n =1 is still true and it is an instance of Xiao and

Zhu’s theorem.

If we add the extra assumptions that n is even and C is n-Calabi-Yau, we obtain the

following because S, = 1¢.
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Corollary [6.4.11]. We have that

M e IndT with Auslander-Reiten (n+ 2)-angle

n—-1 .
Ko©) =) [ 'Sy | M T At R €09

When n = 2 and the Auslander-Reiten quiver of T has no loops, then Corollary [6.4.11] and

Palu’s theorem coincide.

Higher-angulated version. Let d > 1 be an integer and assume that C has a d-cluster
tilting subcategory S such that ¢S = S. Note that S is a (d + 2)-angulated category
with d-suspension ¥¢, by Theorem Similarly to the way Ky(C) is defined, one can
define the Grothendieck group of the (d + 2)-angulated category S as

d+1 .
Ko(S) = KSP(S)/< Y (-1)'[Si] ] Sge1 = -+ > So — 2951 is a (d +2)-angle in S),
i=0

see [9, Definition 2.1]. We prove that this is isomorphic to the Grothendieck group of C.

Theorem We have that Ko(C) = Ko(S).

Let n = 2d. We now add the assumptions that C has a Serre functor S and that there
is an n-cluster tilting subcategory T < C such that 7 ¢ S and Ind 7 is locally bounded.
By [49, Theorem 5.26], we have that 7 ¢ S is an Oppermann-Thomas cluster tilting
subcategory, i.e. the corresponding concept in a (d + 2)-angulated category of a cluster
tilting subcategory in a triangulated category. Theorems and[6.5.7 have the following

immediate consequence.

Theorem We have that Ko(C) 2 Ko(S) and

—[M]+[Sn(M)]+
i (-1)'[T]

M eInd T with Auslander-Reiten (n + 2)-angle
Sh(M)—>Tyq—-—>Ty—>M—>S(M)

Ko(S) 2 K3(T) / (

If we add the extra assumption that C is n-Calabi-Yau, we obtain the following.

Corollary We have that

M € IndT with Auslander-Reiten (n + 2)-angle

n—1 .
o) 2 (7 [{ S cayga | TR A e (7%

When d = 1, we have that S = C is a triangulated category with (2-)cluster tilting sub-
category T and, adding the extra assumption that the Auslander-Reiten quiver of 7 has
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no loops, Corollary becomes Palu’s theorem. For higher values of d, Corollary

proves a higher angulated version of Palu’s theorem.

We conclude this chapter by illustrating our results in two examples: one for each of the
higher versions of Palu’s theorem. Let ¢ and p be integers and ¢ be odd. Consider the
triangulated g¢-cluster category of Dynkin type A, denoted by C,(A4,) and introduced in
Section and note that this is a (¢ + 1)-Calabi-Yau category. Since ¢ + 1 is even by
assumption, we can apply Corollary to show that

0, if pis even,

Z, if pis odd.

Ko(Cq(Ap)) =

We then consider a higher Auslander algebra A% of Dynkin type A and its Amiot cluster
category C*(A2), to find an example of categories

T O(A3) cCH(43),

such that C*(A2) is triangulated and 4-Calabi-Yau, O(A2) is closed under ¥% and 2-
cluster tilting in C*(A3%) and T is 4-cluster tilting in C*(A42). Applying Theorem and
Corollary to this example, we find that

Ko(C*'(A3)) 2Z e 7.

This chapter is organised as follows. Section [6.2 recalls some definitions and results and
presents our setup. Section [6.3]introduces some morphisms between Grothendieck groups
that will be useful in the rest of the chapter. Section proves Theorem Section

proves Theorem Section presents Corollary Finally, Sections [6.7] and
illustrate our two examples.

6.2 Setup and definitions

Definition 6.2.1. Let A be an essentially small additive category and G(.A) be the
free abelian group on isomorphism classes [A] of objects A € A. We define the split
Grothendieck group of A to be

K (A) = G(A)/([Ae B] - [A] - [B]).
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When A is abelian or triangulated, we can also define the Grothendieck group of A as

Ko(A) =K"(A)/([A] - [B]+[C]|0 > A— B~ C — 0is a short exact sequence in A) or
Ko(A) =K"(A)/([A] - [B]+[C]|A—> B - C - XA s a triangle in A),

respectively.

In a similar way, one can define the Grothendieck group of a (d + 2)-angulated category S

as follows.

Definition 6.2.2. Let d be a positive integer. The Grothendieck group of a (d + 2)-

angulated category S with d-suspension functor ¢ is defined to be

d+1 )
Ko(S) = KSP(S)/< Y (-1)'[Si]| Sge1 = - = So — $95,,1 is a (d + 2)-angle in S).
i=0

Remark 6.2.3. The definition of the Grothendieck group of a (d + 2)-angulated category
S we just introduced is different from the original one, see [9), Definition 2.1], however the
two definitions are equivalent. In fact, since we define K(S) as a quotient of K;’(S), the
relation [0] = 0 holds. On the other hand, in [9], K¢(S) is defined as a quotient of the free
abelian group on the set of isomorphism classes of objects in S and the relation [0] =0

has to be manually added when d is even.

Recall the concept of m-cluster tilting subcategory U of a triangulated category C, see

Definition 2.3.421

Remark 6.2.4. Consider the case of a 1-cluster tilting subcategory U of C, then the
conditions Ext;~!1"(U,C) = 0 and Exts~171(C,U) = 0 are empty and C = U is the only

possible 1-cluster tilting subcategory.
Setup 6.2.5. Let m > 2 be an integer and U an m-cluster tilting subcategory of C.

Definition 6.2.6 ([32, Definition 2.9]). A U-module is a contravariant k-linear functor of
the form G : U - Mod k. Then U-modules form an abelian category denoted ModU. We

say that G e ModU is coherent if there exists an exact sequence of the form
U(-,U01) >U(-,Uy) > G(-) =0,

for some Uy, Uy € U. We denote by modU the full subcategory of ModU consisting of

coherent U/-modules.

Definition 6.2.7. There is a homological functor

Fy:C—>modU, CwC(-,C)|y.
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Remark 6.2.8. Note that a priori the target of F;; should be Modi. However, since
C=UxXUx*---% X" U by [32, Theorem 3.1], any object C € C appears in a triangle of

the form
>1!'B>A-C- B,

where A el » XU and B € X°U % --- % ¥ Y. Applying Fy, to this triangle, we obtain the

exact sequence
0~ Fy(A) = Fu(C) ~ 0,

where Fy/(A) e modU by [32, Proposition 6.2(3)] and so Fy;(C') € modU.

Definition 6.2.9. If A and B are full subcategories of C, then

A B={C €C|there is a triangle A > C - B - XA with Ae A, B e B}.

We will often use towers of triangles, as defined below. These were first introduced in [32]
Notation 3.2], see also [40), Definition 3.1].

Definition 6.2.10. A tower of triangles in C is a diagram of the form

Cr1 Cig — Co Cq
SN N NN
C X2 X3 Xo X1 Co

where [ > 1 is an integer, a wavy arrow X ~~~>Y signifies a morphism X — XY, each

oriented triangle is a triangle in C and each non-oriented triangle is commutative.

Definition 6.2.11 ([40, Definition 3.3]). By [32] Corollary 3.3], for C € C there is a tower

of triangles in C of the form

Un-3— Ur Uo
/ \“/ \'"3 S NN
e~ X Xy X, C,

where U; € U and p; is a U-cover for each ¢. In particular, the U; are determined up to
isomorphism. The index of C with respect to U is the following element of the Grothendieck
group K" (U):

m—1 .
indexy (C') = Z{; (-1)'[Ui]
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Remark 6.2.12. Note that index, : Obj(C) - K;”(U) induces a homomorphism K3*(C) -
KP(U) which we also denote by indexy.

Remark 6.2.13. Note that we work in a more general setup than [40], as we dropped the
assumption that U = add U for some U € C, or in other words that ¢/ has finitely many
indecomposables up to isomorphism. The arguments from [40] can be easily adjusted
in this more general setup and the main results still hold. In particular, we state the
corresponding definition of the homomorphism 6 from [40)], Definition 4.1] and [40, Theorem

4.5] in our setup.

Definition 6.2.14. There is a homomorphism
Ou  Ko(modU) — Kg"(U),
defined by
0 ([FyN]) = indexy (X' N) + indexy (N)

for Neld »XU.

Remark 6.2.15. Note that the fact that 6;; from Definition [6.2.14]is well-defined can be
proved using the equivalence of categories (U * XU)/[XU] 2 modU from [32), Proposition
6.2(3)] and the general versions of [40, Lemmas 4.3, 4.4], see [40, Remark 4.2].

As mentioned in Remark [6.2.13] the argument proving [40, Theorem 4.5] can be adjusted

to prove the same result in our setup. We state it here for the convenience of the reader.

Proposition 6.2.16 ([40, Theorem 4.5)). If A % B LolsAisa triangle in C, then

indexy(B) = indexy (A) + indexy (C) — Oy (Im Fyy(7)).

6.3 Morphisms between Grothendieck groups

Definition 6.3.1. There are surjective homomorphisms given by the quotient maps
e KgP(C) — Ko(C), my : Kg"(U) — K" (U)/Tm by,
and injective homomorphisms given by the inclusions

e Kerme — K (C), wi: Kermy — KgP(U) and jy : KiP(U) - K;P(C).
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Remark 6.3.2. Consider the diagram:

Kerjrc Kel"r\ﬂ'u

lc u

indexyy

Ky (C) Ko (U)

(6.1)

e ™

T
Ko(C)<\\‘ ”KSP(U)/IHIGU

It is clear that indexy o 5y = 1 KPU) and so my o indexy o jiy = 7. We will show that
¢ © jy o indexy = m¢ and that there exists a morphism fi; : Ko(C) - KgP(U)/Im 6y such
that

fu o me = my o indexy.

Moreover, adding some assumptions on C and/or U, we will prove that there exists a

morphism
gu + K" (U) [/ Tm by — Ko(C)

such that gy o my = me o jyy. In this case, fi; and gy become inverse isomorphisms. In
the next sections, we consider different sets of extra assumptions under which such a gy

exists.

Lemma 6.3.3. We have that m¢ o ji; o indexy = mc.

Proof. Given any object C € C, consider the tower of triangles from Definition [6.2.11} We
have that

m—1

indexy (C) = > (-1)'[U:].

=0

Using the relations in Ky(C) corresponding to the triangles in the tower, we have that

m-1 .
7c © ju o indexy ([C]) = 7Tc( > (—1)Z[Ui]) = [C] =mc([C]).
i=0
Since this is true for arbitrary C € C, we conclude that 7¢ o ji; o indexy, = me. O
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Lemma 6.3.4. There is a homomorphism fi, : Ko(C) - K" (U)/Im 6y such that
fu o me = my o indexy.

Proof. There exists a homomorphism f;; with the desired property if and only if my o
indexys o t¢ = 0. Note that

Kerme = ([A]-[B]+[C]|A->B->C LYAisa triangle in C).

For any generator [A]-[B]+[C] of Ker m¢ corresponding to a triangle A - B - C 5L yA

in C, we have that

7y © indexyy o e ([A] = [B] + [C]) = my(indexy (A) — indexy (B) + indexy (C))
= mu (O ([Im Fy(7)])) = 0,

where the second equality is obtained by Proposition |6.2.16] Hence 7, o indexy; o t¢ =0 as
desired. O

Proposition 6.3.5. Suppose there exists a homomorphism gy : K7 (U)/Im 6y - Ko(C)

such that gy o my = ¢ o jyy. Then fi; and gy are mutually inverse and
KP(U)/Im 6y = Ko(C).
Proof. Using Lemmas and and gy with the stated property, we have

fZ/{ oOguyoTy = fL{ o T Oju =Ty OindeXu Oju =Ty = IKSP(U)/ImHU oY,

gu © Ju © e = gy o my o indexy = m¢ o jy o indexy = ¢ = 1 (¢) © Te-

Since my; and 7e are surjective, and hence right cancellative, we have

fuogu =1k mme, and guo fu =1k ()

6.4 C with Serre functor and n-cluster tilting subcategory

T

Notation 6.4.1. We use the notation C(-,-) := Home (-, -).
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Definition 6.4.2 ([35, Section 1.1]). Let 7 < C be a full subcategory and Ind7 be
a full subcategory of T containing precisely one object from each isomorphism class of
indecomposable objects in 7. We say that IndT is locally bounded if for every object
T € Ind T, there are only finitely many objects V' € Ind T such that C(U,V') # 0 and only
finitely many objects W € Ind T such that C(W,U) # 0.

Setup 6.4.3. Assume that C has a Serre functor S. Let n > 2 be an integer and let 7 ¢ C
be an n-cluster tilting subcategory such that Ind 7 is locally bounded.

Remark 6.4.4. Using the same notation as in [32, Section 3|, we define the functor
Sp:=SeX™™ on C. Let M be an indecomposable in 7. By [32, Theorem 3.10], there is an
Auslander-Reiten (n +2)-angle in T, as defined in [32], Definition 3.8], given by a tower of

triangles in C of the form:

Tpo—= T Ty
/ \\T" 1 / \7—"_2 / \Q / Q (62)
Sn(M) ?Tv En-2 n-2 X2 & X1 o M.

Note that M, S, (M), Ty, ..., Tp-1 € T.

Lemma 6.4.5. Let M €T be an indecomposable with Auslander-Reiten (n + 2)-angle as
n (6.2). Then Fr(§)=0foranyi=1,...,n-1.

Proof. By [32, Definition 3.8], 7; : T; - X is a T-cover of X;. Hence, for every object T € T
and every morphism 7 € C(T, X;), there is a morphism 7’ : T — T} such that 7 = 7; 0 7.
Then,

(PrEN@M) (1) =&oT=&omor =0,

where &; o 7; = 0 because two consecutive morphisms in a triangle compose to zero. Since
this is true for arbitrary 7' € 7 and 7 € C(T, X;), we conclude that Fy (&) = 0 for any
i=1,...,n-1. O

Lemma 6.4.6. Let M € T be an indecomposable and consider diagram (6.2)). Then, as

an element in K;"(7), we have

~[M]+ ()" [Sa(M)] + [To] = [Ti] + -+ (-1)" [T ] = =07 ([Su]),

where Sy is the simple in mod 7 that is the top of C(-, M )|y, the projective in mod T

corresponding to M.
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Proof. Consider the exact sequence induced by the rightmost triangle in (6.2)):

Fr(70) T(§0)

—— C(=,XX1)|r = C(-, ZTo)l7-

C(=To)lr C(= M)lr

Note that C(—,¥Tp)|7 = 0 and so Im Fr (&) = Coker Fr(19) = C(—,XX1)|r. By [32, Defi-
nition 3.8|, we have that 7 : Ty - M is minimal right almost split in 7 and so using [3,
Corollary 2.5], we have that

Sv=C(-,XX1)|1

is the simple in mod 7 that is the top of C(-, M)|7. Then, by Proposition |6.2.16| we have

[To] = indeXT(To) = [M] + indeXT(Xl) - 97’([51\/[]) (6.3)
Moreover, since 71, ..., To—1 are T -covers, by Definition [6.2.11| we have

index7(X1) = Z( DT + (1) [Sa(M)].
Substituting this into (6.3)), we conclude that

~[M]+ ()" [Sa(M)] + [To] = [Ta] + -+ (-1)" [T ] = =07 ([Su])-
O

Remark 6.4.7. Note that Lemma [6.4.6] can be applied to any indecomposable in T.
Moreover, since Ind 7 is locally bounded, then each object in mod 7™ has finite length and
Ko(modT) is generated by the equivalence classes of the simples in mod 7. Since any
simple object in mod 7 has the form Sy, for some indecomposable M € T, see [I8, Sections
3.1 and 3.2], we have

M e Ind ith Auslander-Reit
Tm by = | [M]+ (~1)"[Sn(M)] + Z( 1) eInd7T wi uslander-Reiten )

(n +2)-angle 1|
Lemma 6.4.8. There is a morphism g7 : K;'(7T)/Im67 - Ko(C) such that
gromT =mcoJT-

Proof. Consider diagram (6.1) with &4 = 7. A morphism ¢g;; with the desired property
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exists if and only if m¢ o j7 o 17 = 0. By Remark we have
n-l ; M €Ind T with Auslander-Reiten
Kermy = ~[M] + (~1)"[S,(M)] + ¥ (-1)'[T3]
P (n+2)-angle (6.2)

Then, for any generator —[M]+ (=1)"[S,(M)] + ' (~=1)![T;] of Ker w7 corresponding
to the Auslander-Reiten (n + 2)-angle (6.2)), we have

nc o g our( - [M]+ (-1)"[Sa (M)] + z< (L)) = -[M] + (-1)"[S.(M)] + 2( T,

=0,

where all the terms cancel because of the relations in Ky(C) corresponding to the triangles
in the tower (6.2)). Hence m¢ o j7 oty =0 as desired. O

Theorem 6.4.9. We have that Ky(C) is isomorphic to

KSp('T)/< [M] +( D™[Sp(M)]+ | M eIndT with Auslander-Reiten (n + 2)-angle
(-1)'[T3] Sn(M) > Ty > - > To > M - S(M)

Proof. By Lemma there exists a homomorphism g7 : K;’(7T)/Im67 - K(C) such
that g7 o my = m¢ o j7. Then, by Proposition we have that Ko(C) = KP(T)/Im 67
and, by Remark this completes the proof. O

Remark 6.4.10. Note that our argument does not apply to the case when n =1 as it uses
some results, such as Proposition that rely on n > 2. However, in the case when k
is an algebraically closed field and n = 1, Theorem is an instance of the triangulated
analogue by Xiao and Zhu of results of Auslander, see [4, Theorems 2.2 and 2.3], and
Butler, see [I2], Theorem in introduction], on certain module categories. In this case, the
only choice of 1-cluster tilting subcategory is C =7 and the tower of triangles is an

Auslander-Reiten triangle in C of the form
§:SYH M) - Ty - M - BSEH(M).

Note that, since Ind T is locally bounded, we have that C = T is of finite type. Then, by
[57, Theorem 2.1], we have that Ky(C) is isomorphic to the quotient of K;’(C) by the
elements [6] := ~[M] + [Ty] - [SE71(M)], where 6 runs through all the Auslander-Reiten

triangles in C.

Corollary 6.4.11. Assume that n > 2 is an even integer, C is n-Calabi-Yau and that there
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isa T cC as in Setup We then have that

M € IndT with Auslander-Reiten (n + 2)-angle

n—-1 .
Ko©) =7 [ 'Sy | ST Ao et 07

Proof. Since C is n-Calabi-Yau, it has Serre functor S = X" so this situation is a special
case of Setup Note also that in this case S,, =S o X" is the identity functor on C.
Hence, since n is even, we have that —[M] + (-1)"[S,(M)] = =[M] + [M] = 0 and the
result follows from Theorem [6.4.91 O

Remark 6.4.12. Note that when n = 2 and the Auslander-Reiten quiver of 7 has no loops,
Corollary coincides with [50, Theorem 10]. In this case, if M is an indecomposable
direct summand of T, then its Auslander-Reiten 4-angle is M — By« - By - M — $2M,
where By, By~ are defined as in [50, p. 1444]. However, if we do not assume that the
Auslander-Reiten quiver of 7 has no loops, some of the Auslander-Reiten 4-angles in T
do not come from Palu’s exchange triangles and Corollary and [50, Theorem 10]

are different.

6.5 A Yd-stable, d-cluster tilting subcategory S cC

Setup 6.5.1. Let d > 1 be an integer and S € C be a d-cluster tilting subcategory. Assume
also that $4S = S. Then, by Theorem [2.3.43] we have that S is a (d+2)-angulated category

with d-suspension functor ©%.

Lemma 6.5.2. Consider a (d + 2)-angle in S of the form

Sa+1 Saq Sa S1 So 29851

By Theorem it corresponds to a tower of triangles in C:

S Sq-1 — S, S Si

3 2

SN SN SN SN SN
Sart =5~ Yo =500~ Yo2 Y3 2 Y2 m " 70 So-
(6.4)

This tower satisfies Fis(n;) =0 for any integer 1 <1< d- 1.

Proof. Let Yy := S441. In order to prove that Fs(n;) = 0, we prove that its target Fs(3Y,1)
is zero. More generally, we prove that Fs(X'Y,_;) = 0 for any integers 0 < j < d -2 and
l<i<d-j-1.

134



Chapter 6. Grothendieck groups of triangulated categories via cluster tilting
subcategories

First note that for j = 0, we have Fs(X%Yy) =0 for any 1 <i <d -1, since Yy = Sgy1 € S.
Suppose that for some 0 < j < d -2, we proved that

Fs(X'Yy,)=0 forany 0<r<j and 1<i<d-7r-1. (1)
If j =d -2, then we are done. So assume j < d - 3. We need to prove that
Fs(2"Y, (ja1y) =0 forany 1<i'<d-j-2.

Given any 1 <4’ < d-j -2, the triangle Sy_; — Ya-(j+1) = XY4-; = XS4 induces the

exact sequence:
Fs(2"S4-5) = Fs(" Yy (1)) » Fs(E"1Yay).

Note that Fg(Zi'Sd_j) =0 since Sy_j € S and 1 <4’ <d-1. Moreover, Fg(Ei’”Yd_j) =0 by
() with 7 = j and as 1 <#’+1 <d-j-1. Hence Fs(X"Y, ;1)) =0 for any 1 <i' <d—j-2

as we wished to show. O

Remark 6.5.3. Consider a (d + 2)-angle in S of the form

Sd+1 Sa Sa S1 So DA

By Theorem it corresponds to a tower of triangles in C of the form . By
Lemma we have that Fs(n;) = 0 for any integer 1 <[ <d-1. Hence o041 : 5111 = Y]
is an S-precover. If it is not right minimal, then Sj,1 = Si.1 @ S/, and o041 is isomorphic
to a morphism of the form (0,07, ,) 1S @ S/.1 = Y1, where o}, is an S-cover of Y. It is
then easy to check that S appears as a summand of S;,5 and so it gets cancelled when

computing [S;41] — [Si+2]. Hence, the morphisms o; do not need to be S-covers for using
the tower (6.4) to compute indexs(Y1). In other words,
d+1 .
indexs(Y1) = 3 (=1)"[Si].
i=2
Proposition 6.5.4. When d > 2, we have that
d+1 )
Imfs = Z(—l)l[si] | Sge1 = -+ = So — Y451 is a (d+ 2)-angle in S).
i=0

Proof. We prove this by proving that the two inclusions hold.
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(). Given any Y € S » 38, there is a triangle in C of the form

So—2sy £S5 ¥,
where Sp, S1 € S. Letting Y7 := ¥7'Y € C, we obtain a triangle in C of the form

A Y S, So—Lo 2y,

Since § is d-cluster tilting in C, by [32], Corollary 3.3], we can construct a tower of triangles

in C of the form

Sq Sg-1—= S3 So
Sart =g~ Yg1 =~ Ygp 0 V3 Yy o 1
where Ss,..., Sg.1 are in S. Putting this together with triangle A, we obtain the tower

of triangles (6.4]) in C, which corresponds to the (d + 2)-angle in S:

Sa+1 Saq Sa S1 So 29851

By Proposition we have that in K;”(S):
[51] = indexs (Y1) + [So] = Os ([Im Fss (10)])-
Moreover, since Fis(XS57) =0, we have that Fs(rg) is surjective and so
[51] = indexs (Y1) + [So] - Os([F5(EY1)]).

We have that indexs(Y7) = S%) (-1)/[S;] and so
=2

d+1

Z(:)(_l)i[si] = 0s([Fs(EY1)]) = 0s([Fs(Y)])-

(2). Given a (d+ 2)-angle in S of the form

Sa+1 Sa So S1 So 29801,

consider the corresponding tower (6.4]) of triangles in C. By Remark we have that
indexs (Y1) = X3} (~1)’[S;]. Using Proposition [6.2.16/ on the rightmost triangle in tower
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1 , namely Y7 - 571 = Sy n, >Y1, we conclude that
d+1 )
>, (=1)'[Si] = 6s([Tm Fs(10)]) € Tm fs.
i=0
O

Remark 6.5.5. By Proposition and Definition for d > 2, we have that
Ko(S) = KP(S)/Imbs.

Suppose now that Ind S is locally bounded and C has a Serre functor S. By [32, Theorem
3.10], for every indecomposable M in S, there is an Auslander-Reiten (d + 2)-angle in S

of the form

Sa(M) Sa-1 Sy So M 2ISa(M), (6.5)
where Sy =S o X% Then, by Remark we have that Ky(S) is equal to

P M e Ind S with Auslander-Reiten
K (8) M)+ (=1)"[Sa(M)] + Z( 1)’
(d +2)-angle 1|

This result agrees with [58, Theorem 3.7]. Note that there are two differences between
ours and Zhou’s result. The first one is that we do not assume that d is odd, and the
second one is that Zhou'’s (d+2)-angulated category is not assumed to arise as a d-cluster

tilting subcategory of a triangulated category.
Lemma 6.5.6. When d > 2, there is a morphism gs : Ko(S) = K;'(S)/Imbs - Ko(C)
such that

gs O TS =T © js.

Proof. Consider diagram (6.1)) with & = S. Note that a morphism gs with the desired
property exists if and only if 7¢ o js o ts = 0. Note that, by Proposition the group

Ker s is generated by elements of the form

d+1

(DS
i=0

for some (d +2)-angle in S of the form Sy, — --- - Sy - %%9S4,1. Such a (d + 2)-angle
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corresponds to a tower of triangles in C of the form (6.4). Then, we have
d+1 ) d dil
ne o js ors( 2 ((1[8) = [So] - ([S0] # [Vi]) # =+ (-1 ([Yaa] + [Saa]) + (-1)*[S1]
i=0

:()7

where we have used the relations in Ky(C) corresponding to the triangles in the tower
(6.4), for instance [S1] = [So] + [Y1]. Hence 7¢ o jsoic =0 as desired. O

Theorem 6.5.7. We have that
Ko(C) = Ko(S).

Proof. If d = 1, then § = C and the result is clear. So assume d > 2. By Lemma [6.5.6
there exists a homomorphism gs : K;’(S)/Imfs - Ky(C) such that gsoms = m¢ o js.
Then, by Proposition we have that Ko(C) =2 K;"(S)/Im6s and, by Remark
this completes the proof. O

6.6 The case when n=2d and 7T cSc(C

Setup 6.6.1. Let d > 1 be an integer and n = 2d. Assume that C has a Serre functor S
and 7 € S € C are such that T is an n-cluster tilting subcategory in C such that Ind 7 is
locally bounded and S is a d-cluster tilting subcategory in C such that %S = S. Then S
is a (d + 2)-angulated category with d-suspension 3.

Definition 6.6.2 (|49, Definition 5.3]). A functorially finite, full subcategory 7 ¢ S is an

Oppermann-Thomas cluster tilting subcategory if:
(a) S(T,2T) =0,
(b) for each S’ € S, there is a (d + 2)-angle Ty — --- - Ty - S" - 2T, in S with Tj e T

Remark 6.6.3. The subcategory 7 € S from Setup is an Oppermann-Thomas
cluster tilting subcategory by [49, Theorem 5.25]. Note that in [49, Definition 5.3 and
Theorem 5.25] T is assumed to have finitely many indecomposables up to isomorphism.
We are not restricting to this case and it can be easily checked that the proof of [49,
Theorem 5.25] still goes through without this restriction.

Theorem 6.6.4. We have Ko(C) = Ko(S) and

~[M]+[Sp(M)]+ | M eIndT with Auslander-Reiten (n + 2)-angle
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Proof. This follows by combining Theorem [6.4.9] and Theorem [6.5.7, and noting that
[Sp(M)] = (-1)"[S,(M)] since n = 2d is even. O

Corollary 6.6.5. If in Setup we also have that C is n-Calabi-Yau, then

M € IndT with Auslander-Reiten (n + 2)-angle

n-1 .
Koy 2 k) [ 't T T A s

Proof. Since C is n-Calabi-Yau, it has Serre functor S = X". Then S,, is the identity functor
on C and the result follows from Theorem [6.6.4. O

Remark 6.6.6. When d = 1, we have that § = C is a triangulated category with cluster
tilting subcategory T and, adding the extra assumption that the Auslander-Reiten quiver
of 7 has no loops, Corollary becomes [50), Theorem 10] by Palu. For higher values
of d, Corollary is a higher angulated version of Palu’s theorem.

6.7 The Grothendieck group associated to C,(A,) for ¢ odd

In this section, we compute the Grothendieck group of the triangulated g-cluster category
of Dynkin type A, for ¢ odd. Recall that we introduced this category and its geometric
realisation in Section Using the described geometric realisation, we can fully describe
the (g + 1)-cluster tilting objects in C4(A4,).

Definition 6.7.1. A (q + 2)-angulation of the N-gon P, where N = (p+1)g+2, is a

maximal collection of non-crossing g-allowable diagonals.

Proposition 6.7.2 (J47, proposition 2.14]). There is a bijection

(q + 2)-angulations (g + 1)-cluster tilting objects
of P in Cy(A,)

sending a (g + 2)-angulation T = {Tp, ..., T)-1} to the (¢ + 1)-cluster tilting object Tp @
e ® Tp—1~

Proposition 6.7.3. Assume that ¢ is odd. We have that

0, if pis even,
Ko(Cq(Ap)) = o
Z, if pis odd.

Proof. Consider the (g + 2)-angulation T =Ty, ..., T)-1, where

To=(0,g+1)and T; = (N —i,(1+i)g+1-14), for 1<i<p-1,
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see Figure Note that by Proposition this corresponds to the (g + 1)-cluster
tilting object To @ ---® Tp—1. Let T :=add(Tp @ -- & T)-1) € Cy(Ap) be the corresponding
(g + 1)-cluster tilting subcategory. We want to find the Auslander-Reiten (g + 3)-angle

2 q+1

3q-1

N-1
N-2

N-p+1

Figure 6.1: The (g + 2)-angulation T'.

starting and ending at T; for 0<i<p-1.

Consider 7 = 0. By Lemma there are no non-zero morphisms 7T; - Ty for ¢ # 0,
so that 75 : 0 = T is a right almost split morphism in 7. Consider —g +2 < j < —-1.
Note that, since /Ty = {~j,¢ + 1 - j}, Lemma can be used to check that for all
indecomposables T; in 7, we have that Hom(7},%/Ty) = 0. Hence T7_;:0—> YTy is a T-
cover for any —g+2 < j < —1. Moreover, by Lemma we have that 7,1 : 17 — Y-l
is a T-cover. Using Proposition the morphism 7,_1 extends to the non-split triangle

STy —» Ty —5 s79*iy & 527,

Applying Lemma [3.2.11| to ¥Tp = {N -1, ¢}, we see that Hom(7,XTp) = 0. Hence 7,:0 —
¥Tp is a T-cover. The Auslander-Reiten (¢ + 3)-angle starting and ending at Ty is then

the one corresponding to the following tower of triangles:

0 0
/! \Tq / \T“/ N SN N

YTy <~~~ X <« 72T oo N72T <~ X7 < T

Th

In a similar way, we can find the remaining Auslander-Reiten (g + 3)-angles. These are
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the ones corresponding to the following towers of triangles:

0 Tiiq 0
SN NN SN N N
T, ST; A; SA4;

YA <~ DIBA <~~~ 27T T;,
where A; :={(i+2)q—i,(i+1)g—i-1}, for 1 <i<p-2, and
0 Tp_2 0
ST, 1w22Tp 1o X, e BT e ST, < Ty,
Recall that by Corollary we have that
Ko(Cy(A KP 1 _ _ .
o€ 2 P [ Sy | M T A en (40 et

Using the Auslander-Reiten (¢ +3)-angles found and the fact that ¢ is odd, we obtain that

in the quotient group on the right hand side, we have
[T1] = [Tp-2] =0 and [Tj-1]=[Ti+1] for 1<i<p-2.
This implies that
e if pis even, then [T;]=0forall0<i<p-1,
e if pisodd, then 0=[T1]=...[Tp—2] and 0 # [Tp] =--- = [Tp-1].
Hence

0 if pis even,

Ko(Cq(4p)) = o
Z if p is odd.

6.8 A higher angulated cluster category of type A

Let p and d be positive integers. We denote by Ag the (d—1)-st higher Auslander k-algebra
of linearly oriented A,, see [49, Section 3]. This is a d-representation finite algebra, in
the sense that it has a d-cluster tilting module and gldim(Ag) < d, see [31, Definition
2.19]. Note that, using this notation, A;,lJ = kA, is the usual path algebra of A, with linear
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orientation. Let mod Ag be the category of finitely generated Ag—modules and D°(mod Ag)
be its bounded derived category. We denote by S its Serre functor and by ¥ its suspension

functor.

Definition 6.8.1 ([49, Construction 5.13]). For 6 > d, the 0-Amiot cluster category of A;,l
is defined to be

C°(AY) = triangulated hull of D’(mod A%)/(Sy),

where S :=So X7,

Remark 6.8.2. The category C‘;(Ag) is a triangulated category containing the orbit
category D°(mod Ag) /(Ss). We do not give a formal definition of triangulated hull here.
Note that, by [49, Theorem 5.14], we have that if § > d, then C‘;(Ag) is Hom-finite and
0-Calabi-Yau.

Remark 6.8.3. Let M be the unique d-cluster tilting object in mod Ag. Then
U :=add{"M |ieZ} c D’(mod AY)

is a d-cluster tilting subcategory by Remark [2.3.44

Definition 6.8.4 ([49, Definition 5.22]). The (d + 2)-angulated cluster category of Ag is
defined to be the orbit category

O(AD) =U/(S2q)
Remark 6.8.5. Note that (’)(Ag) comes with an inclusion into
D’(mod A)/(S2q) € C**(AD).
Moreover, by [49, Theorem 5.24], we have that O(Ag) c C2d(Ag) is d-cluster tilting and
O(Ag) is (d + 2)-angulated.

Notation 6.8.6. Let Z be a cyclically ordered set with p+2d+ 1 elements. We can think
of Z as marked points on a circle labeled 1 to p + 2d + 1 in the anticlockwise direction.
Given three points u, v, w, we write u < v < w if they appear in the order u, v, w when going
through the points in the anticlockwise direction. Moreover, given two distinct points u

and v, we can consider the interval of points [u,v] and in this “<” is a total order.

For a point v, we denote by v* its successor and by v~ its predecessor in the anticlockwise

direction. We say that two points are neighbours if one is the successor of the other.
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Lemma 6.8.7 ([49, Proposition 6.10]). There is a bijection
Ind(’)(Ag) «— {X ={xg, ..., x4} ¢ Z | X contains no neighbouring points}.

We will use it to identify the indecomposable objects of O(Ag) with the sets X. For
X ={zo,...,xq} € IndO(Ag), we have that

YIX =SqX = {zg, ..., x5}

Definition 6.8.8. For X, Y ¢ Ind(’)(AZ), we say that X intertwines Y if we can write
X ={x0, ..., zq} and Y ={yo, ..., yq} such that

To<Yo <T1 < <Yqg-1 <Tg <Yqg <Xg.

Note that in this case also Y intertwines X.

Lemma 6.8.9 ([49, proposition 6.1]). Given X and Y in Ind(’)(Ag), we have that
d

if and only if X intertwines Y. In this case, Extdo( Ad)(X ,Y') is one-dimensional over k.
P
Lemma 6.8.10 ([49, Proposition 6.11]). Let X = {zq, ..., 24} and Y = {yo, ..., ya} €
Ind(’)(Ag) be such that
To <Yo <T1 < <Yd-1 < T4 <Yd < To,

so X intertwines Y. Then there is a (d + 2)-angle in (’)(Ag) of the form

X—Ej—...—E —Y —YX with E,= @ {a;|icl}u{y|j¢I},
1<{0,...,d}
7] =r
where {x;|ieI}u{y;|j¢I} is interpreted as zero if it contains neighbouring points.

Lemma 6.8.11. We have that 7 ¢ (’)(Ag) is Oppermann-Thomas cluster tilting if and

only if Ind7 is a maximal set of non-intertwining elements in O(Ag) of cardinality

()

Proof. By [49] Theorem 6.4], we have that T ¢ (’)(Ag) is Oppermann-Thomas cluster
tilting if and only if it corresponds to a triangulation of C'(p + 2d + 1,2d), in the notation
of Oppermann and Thomas, see [49, Page 2|. Moreover, by [49, Theorems 2.3 and 2.4]
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such triangulations are precisely maximal sets of non-intertwining elements in O(Ag) of

()

Remark 6.8.12. Note that, by [49, Theorem 5.25], an object T € (’)(Ag) is Oppermann-
Thomas cluster tilting if and only if it is 2d-cluster tilting when seen as an object in

(A%

cardinality

O]

Hence, if we can find 7 = add(T") ¢ (’)(Ag) Oppermann-Thomas cluster tilting, we have
T c O(AY) cc*(AY),

where C2d(Ag) is triangulated and 2d-Calabi-Yau, (’)(Ag) is closed under ¥ and d-cluster
tilting in CQd(AZ) and T is 2d-cluster tilting in CQd(Ag). That is, we are in the situation
of Setup with § = (’)(Ag) and C = C2d(AZ). We now choose specific values for d and
p and, using our results, we find KO(CZd(Ag)) for these values. The following result will

be widely used for the computations in our example.

Proposition 6.8.13 ([40, Theorem 5.9]). If sg41 = -+ = sp 2R Yes4.1 is a (d+2)-angle in
S, then

d+1

;(—UiindeXT(Si) = 07 ([Im Fr-(7)]).

Example 6.8.14. Let p =3 and d = 2, so that |Z| = p+2d+1 = 8. For simplicity, we write

the indecomposable {xg,x1,z2} as xgrix2. We have
IndO(Ag) ={135,136,137,146, 147,157, 246,247, 248,257, 258, 268, 357, 358, 368, 468} .

Moreover, the object T = 135 @ 136 @ 137 @ 146 ® 147 ® 157 € O(A3) is such that its
indecomposable direct summands are a maximal set of non-intertwining elements in O( A3)
of the overall maximal size (**371) = (4) = 6. So 7 = add(T) c O(A?%) is Oppermann-
Thomas cluster tilting.

Using some 4-angles in O(A3) obtained as described in Lemma |6.8.10] and [40, Lemma

5.6, we find the index of the indecomposables in O(A%) with respect to 7. For example,
considering X = 135 and Y = 246, by Lemma [6.8.10| we have a 4-angle in O(A3) of the
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form
135 — 136 - 146 — 246 - ¥2135.
Note that, since 135 € T, by [40, Lemma 5.6], we have that
index7(246) = index7(146) — index7(136) + index7(135) = [146] — [136] + [135].

The other indices can be computed in a similar way, see Table Brackets [—] for classes
in K;”(T) are omitted both in the table and in the rest of this example.

seO(A3) index7(s)

135 135
136 136
137 137
146 146
147 147
157 157

246 146 - 136 + 135
247 147 + 135 - 137

248 135
257 157 -137+ 136
258 136
268 137
357 157 - 147 + 146
358 146
368 147
468 157

Table 6.1: The index of objects of O(A%) with respect to T

Consider the endomorphism algebra I' := Endy A%)(T)' The indecomposable projective
I-modules are P, := Homg Ag)(T,:r), for x € T indecomposable. The simple top of P, is
then denoted by S,. We compute 67 ([S]) for every simple I-module S. In order to do
this, we choose some morphisms 7 in 7, extend them to 4-angles in O(A3%) using Lemma

6.8.10, and compute 67 ([Im F7(v)]) using Proposition [6.8.13 and Table see Table
For example, consider v : 135 - 136, then we can find Im F7(v) as a representation
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S3 = 89 > 81 > 50 > 283 [Im Fr(v)] € Ko(modT) O ([Im Fr(7v)])
9247 - 257 — 357 — 135 - 136 [S135] 136 — 146
257 > 357 — 135 > 136 - 146 [S136] ~135+ 137 + 146 — 147
258 - 358 — 135 — 137 > 147 [Si36] + [S137] ~135-136 + 137 + 146
258 - 268 — 468 — 146 > 147 [S136] + [S146] ~136 + 137 + 146 — 157
268 — 468 — 146 - 147 > 157 [S137] + [S147] ~137 — 146 + 147 + 157
268 - 0 - 0 —> 157 - 157 [Si37] + [S1a7] + [S157] ~137 + 157

Table 6.2: Evaluation of 6+ at some useful values.

of the following quiver with relations:

Note that Homg Ag)(T, 135) is 1-dimensional over k and generated by the morphism
whose only non-zero component from 7' is the identity on 135. So we use the notation
HomO(Ag)(T, 135) = (idi35) and similarly HomO(Ag)(T, 136) = (7,id136) is 2-dimensional

over k. Then, we have that

Fr(v) : (id13s) = (7, id136)

and Im Fr(7) = () = S135, the simple I'-module at 135. Moreover, note that %2247 = 136
and, using Lemma [6.8.10| we find the 4-angle

247 - 257 - 357 — 135 5 12247,
By J40, Theorem 5.9] and Table we have that

9’7’([5135]) = QT([IHI FT(’}/)]) =135 - indeXT(357) + indexT(257) - indeXT(247)
=136 — 146.

Since 67 is additive, we can compute 67 at the simple I'-modules using Table[6.2] see Table
Note that (07 ([S]) | S is a simple I" — module) generates Im 6 since Ko(modT") is
generated by the classes of the simple I'-modules. Hence, using Table in Ko7 (T)/Im 67
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[S:] € Ko(modT) 07([S:])

[S135] 136 — 146

[S136] ~135+ 137 + 146 — 147

[Si37] —135+ 137 + 146 — 147

[S146] 135 — 136 + 147 — 157

[S1a7] 136 — 137 — 146 + 157

[S157] 146 — 147

Table 6.3: Evaluation of 6+ at the simple I'-modules S, .

we have that
136 =146 = 147 and 137 =135 =157.
By Remark Theorem [6.5.7] and Corollary we conclude that

Ko(C*(A3)) 2 Ko(O(A3)) 2 KJ/(T)/Imbr = Z & Z.
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Chapter 7

Almost split morphisms in
subcategories of triangulated

categories

7.1 Introduction

In Chapter we introduced Auslander-Reiten sequences in abelian categories of the
form mod A and Auslander-Reiten triangles in triangulated categories 7. The theory
of Auslander-Reiten sequences has been extended to the study of Auslander-Reiten se-
quences in subcategories of mod A by Auslander and Smalg in [7]. In the same fashion,
Jgrgensen extended Happel’s theory on Auslander-Reiten triangles in triangulated cate-
gories to the study of Auslander-Reiten triangles in their non-triangulated subcategories
in [37].

Let k be a field and T a skeletally small k-linear Hom-finite triangulated category with
split idempotents having a Serre functor S. Let C € T be a full subcategory closed under
summands and extensions. As seen in Theorem [2.2.46] any indecomposable object X in

T has an Auslander-Reiten triangle in 7 of the form
TX > Z->X->X7X,

where 7X = S oY1 X. The main theorem in [37] shows that, if C is an indecomposable
in C such that Hom(C, XC) is non-zero, then there is an Auslander-Reiten triangle in C of

the form

A-B-C-%XA
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if and only if there is a C-cover A - 7C.

Here we focus on the objects for which this theorem cannot be applied, i.e. the objects C'
in C with Hom(C, XC) = 0, which we call Ext-projectives. Similarly, the objects for which
the dual of the above theorem cannot be applied are called Ext-injectives. Some of the
results we prove about these objects and the triangles they appear in are inspired by the
ones on Ext-projective (and Ext-injective) modules and the properties of the short exact

sequences they appear in, proven by Kleiner in [43].

Note that an Ext-projective object C' cannot appear in an Auslander-Reiten triangle in C

of the form
A->B-CLyA,

since v = 0 would be forced, contradicting Definition below. However, as shown in
the following theorem, for a suitable subcategory C, we can find something quite similar

to an Auslander-Reiten triangle in C.

Theorem Let B: B —» C be a minimal right almost split morphism in C with C

Ext-projective.
(a) The triangle
3 B
A:X5>B—->C->Y%XX

is such that X is an indecomposable object not in C and & is a C-envelope of X.

(b) In part (a), the end terms X and C' determine each other. That is, suppose 3’ : B" —

C" is another minimal right almost split morphism in C with C' Ext—pmjectwe and
extend it to a triangle: X' - B’ 20" 52X Then C' = C if and only if X' =

For their similarity with Auslander-Reiten triangles, we call the triangles of the form A
left-weak Auslander-Reiten triangles in C. Note that §: B — (', and hence A, exist in
fairly general circumstances, for example if C' is indecomposable and C is functorially finite
in T, see [32, Propositions 2.10 and 2.11].

For an algebra A and a finitely generated A-module M, we can construct an injective

resolution of M using monomorphisms into injectives and their cokernels:

uM
Mc ﬂ/7 Q\ﬂ I?
N S
M
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In a similar way, whenever C has C-envelopes, one can construct a minimal right C-
resolution of any object Z in T, see Remark Our second theorem gives us a way to

find the Ext-projectives when C has both C-precovers and C-preenvelopes.

Theorem Assume C is functorially finite, let C € C be indecomposable. Then C is
Ext-projective if and only if C is a direct summand of C, for some Z in T with minimal

right C-resolution
Z-0">C >

constructed as described in Remark|7.5.1|

In [32], Iyama and Yoshino defined the mutation of a subcategory of 7 with respect
to a rigid subcategory D of 7. Under some assumptions, mutating an extension closed
subcategory C of T with respect to a rigid D ¢ C, gives a new extension closed subcategory
of T, see [59, Theorem 3.3]. We introduce a similar process to this and show how, in
some cases, removing the third term of a left-weak Auslander-Reiten triangle A in C and
replacing it with the first term of A, gives a new extension closed subcategory of 7. Let X
be an additive subcategory of T, let Ind X denote a maximal set of pairwise non-isomorphic

indecomposable objects in X.

Theorem Assume C is functorially finite in T and C € C is an indecomposable

Ext-projective. Then there is a left-weak Auslander-Reiten triangle in C of the form

x5l olex

Let C be the additive subcategory with IndC = Ind(C) ~ C and define C' := add (Cu X).

(a) If X is Ext-injective and Ext-projective in C', then C' is closed under extensions.

(b) If End(X) 2 End(C) 2 k and C' is closed under extensions, then X is Ext-injective

in C'.

Moreover, we show that in some cases this process and the classic mutation from [32]

coincide.

Theorem In the setup of Theorem [7.4.4), suppose that T is 2-Calabi-Yau, C
has finitely many indecomposables and X is Ext-projective in C'. Let D be the additive
subcategory generated by the Ext-projectives in C and u(C;D) be the classic (backward)

D-mutation of C. Then, we have
u(C;D) =C',
and this is a subcategory of T closed under extensions.
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Remark. We apply our results to C4,, , the cluster category of Dynkin type A,,, introduced
in Section By [26], a subcategory C < Cg, is closed under extensions and direct
summands if and only if it corresponds to a so-called Ptolemy diagram of the regular
(n+3)-gon P. Moreover, we show that indecomposable Ext-projectives in such a C are
dissecting diagonals in the corresponding Ptolemy diagram, i.e. those diagonals dividing

P into cells.

We apply [37, Theorem 3.1] to this example to give a full description of the Auslander-
Reiten triangles in C and Theorem to give a complete description of the left-weak
Auslander-Reiten triangles in C. We show that Theorem [7.4.4] can be applied to an inde-
composable Ext-projective C' in C if and only if C' borders two empty cells in the Ptolemy
diagram corresponding to C. Moreover, note that C4, is 2-Calabi-Yau and it has finitely
many indecomposables. Hence, whenever C € C corresponds to a dissecting diagonal bor-
dering two empty cells, Theorem implies that C’ is the subcategory obtained by
mutating C with respect to the additive subcategory of C generated by all the indecom-

posable Ext-projectives in C.

The chapter is organized as follows. In Section we present Ext-projectives and prove
Theorem|[7.2.6] In Section [7.3]we prove Theorem and in Section[7.4] we prove Theorem
[.44 In Section we recall the classic mutation and prove Theorem Finally,
Section is an application of our results to C4,,.

In this chapter, we work in the following setup, where, following Definition [2.1.39] additive

subcategory means full subcategory closed under isomorphisms, sums and summands.

Setup 7.1.1. Let k be a field, T be a skeletally small k-linear triangulated category with
split idempotents in which each Hom space is finite dimensional over k. Note that this
implies that 7 is a Krull-Schmidt category by Remark [2.1.12] Assume that 7 has a
Serre functor S, see Definition and note that by Theorem this implies the
existence of Auslander-Reiten triangles in 7. Also, let C be an additive subcategory of T
that is closed under extensions, in the sense that if A > B - C' - XA is a triangle in T
with A and C in C, then B is also in C.

7.2 Ext-projectives and weak Auslander-Reiten triangles in

C

In this section we introduce Ext-projective (respectively Ext-injective) objects in C. We
study the properties of the triangles they appear in, that we will call left-weak (respectively
right-weak) Auslander-Reiten triangles in C.

Recall that for X and Y in 7 and i a positive integer, we have that Ext’(X,Y) =
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Hom7 (X, YY) by Definition [2.2.44

Definition 7.2.1. An object C € C is called Ext-injective if Ext!(A,C) = 0 for all A €C.
An object D €C is called Ext-projective if Ext'(D, A) =0 for all AeC.

Lemma 7.2.2. (a) Let C' € C be an indecomposable Ext-projective object. For any
0
non-split triangle X iR B 5 ¢ % v X with BeC , the morphism £ is a C-envelope
of X. If 8 is a right minimal morphism, then X is indecomposable.

(b) Let A € C be an indecomposable Ext-injective object. For any non-split triangle

AS B 5, Z <, YA with B € C, the morphism ( is a C-cover of Z. If « is a left

minimal morphism, then Z is indecomposable.

We present a lemma that we will use to prove Lemma [7.2.2

Lemma 7.2.3. Suppose & = (¢/,¢") : X' @ X" - Y is a right minimal morphism in 7.
Then £ : X’ - Y is right minimal.

Proof. Consider ¢’ : X’ - X' such that & o ¢’ = ¢’. Taking

@ = " Y ) X ex" s X e x”
0 1x» ’

we have

fop=(§ 0y " 0lxn)=(£,€")=¢

As ¢ is right minimal, then ¢ is an isomorphism and hence ¢’ is also an isomorphism,
meaning that £’ is right minimal. O

_y»-1
Proof of Lemma[7.2.3. (a) Let D € C and apply Hom7(-, D) to the triangle ¥71C SEaINEN
X 5 B R C to obtain the exact sequence:

Hom7(§,D)
_

Hom(B, D) Hom7(X, D) - Homp(X7'C, D).

Since C' is Ext-projective in C, then Hom7(C,XD) = 0 and hence Hom7(X71C, D) = 0.
Then, Homy (&, D) is surjective and so every n € Homy (X, D) factors as n = eo & for some
e € Hom7 (B, D). Since this is true for every D € C, it follows that £ is a C-preenvelope of
X.

We can write 8 = (f1,..., ft) : B=B1®---@B; - C, where By, ..., B, are indecomposable.
As C' is also indecomposable, by [45, Section 4], each 3; is either an isomorphism or it is

in rady. Since the triangle extending £ does not split, then 3 is not a split epimorphism
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and each (; is in the radical. Hence f is in the radical. This implies that £ is left minimal

and hence it is a C-envelope of X.

Suppose now that (§ is a right minimal morphism and let X = X; & --- @ X, be the
indecomposable decomposition of X. Note that £ is the direct sum of C-envelopes &; : X; —
B;, fori=1,...,r. In fact, by [43, Section 1], C-envelopes are unique up to isomorphism, so
the direct sum of C-envelopes of X;’s has to be isomorphic to £&. Then, for eachi=1,...,r
we have commutative diagram

G o

XZ K3

- B
o
X—*.p

)

where 1, ; are the inclusions. Completing &; to a triangle, we get a commutative diagram

& b Gi

X, B; 7 o, (7.1)
|

lti le (R0 jEAi
\

x—~.p-t.c 2 ¥x,

where 7; exists by the axioms of triangulated categories. Note that the direct sum for
i=1,...,r of triangles of the first row of (7.1)) is isomorphic to the triangle in the second
row. In particular, C' = Z1 & --- ® Z,, and since C is indecomposable, without loss of

generality we have C ~ Z; and Z; =0 for ¢ # 1.

Note that since f is right minimal, by Lemma[7.2.3]so is its restriction to B;, say 3; : B; —
C. For i # 1, we then have §8; = fo7; = n; o §; = 0 right minimal and so B; = 0. But then,

as &; is an isomorphism, it follows that X; = 0 and hence X 2 X; is indecomposable.

(b) This is proven in a similar way. O

In Definition [2.2.40, we have seen the definition of Auslander-Reiten triangles in 7. We

now look at Auslander-Reiten triangles in the subcategory C of T.

Definition 7.2.4 ([37, Definition 1.3]). A triangle in 7 of the form
A5Blc2lsa
with A, B,C € C is an Auslander-Reiten triangle in C if the following are satisfied:
(a) the morphism + is non-zero,

(b) the morphism « is left almost split in C,
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(c) the morphism g is right almost split in C.

We prove the result corresponding to Lemma in C.
Lemma 7.2.5. (a) Let 8: B — C be right almost split in C, then C' is indecomposable.

(b) Let a: A — B be left almost split in C, then A is indecomposable.

Proof. (a) In order to prove that C' is indecomposable, it is enough to prove that End C,
the endomorphism ring of C, is local. Let 7g,71 : C' = C be elements in End C' without
right inverses, i.e. 79,71 are not split epimorphisms. Then there are 7(,~] : C' > B such
that v; = S0~/ for i =0,1 and we get v +v1 = B0 (7, +71). If v+~ had a right inverse
§, then

lo=(+m)ed=Bo(y+m)00,

so that 8 would also have a right inverse, this is a contradiction. Hence the set of elements
of EndC without right inverses is closed under addition and so EndC' is local by [,
Proposition 15.15].

1s follows a similar argument.
(b) This follows by a similar arg O

Theorem 7.2.6. Let 8 : B - C be a minimal right almost split morphism in C with C

Ext-projective.

(a) The triangle

x&SBlcolyx (7.2)

is such that X is an indecomposable not in C and & is a C-envelope of X.

(b) If B’ : B - C" is a minimal right almost split morphism in C with C' Ext-projective,
then C" = C if and only if X' = X, where X' S Lo 2osX! s the triangle
obtained by extending 3.

Proof. (a) Note that since £ is right almost split in C, then C'is indecomposable by Lemma
If X was in C, as C is Ext-projective, we would have Ext!(C, X) = Hom(C,XX) = 0
and hence v = 0 and the triangle splitting, contradicting £ being right almost split.
Hence X ¢ C and v # 0. Then, by Lemma it follows that £ is a C-envelope of X and,

since f is right minimal, X is indecomposable.
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(b) Assume now that 8’ : B’ - C’ is a minimal right almost split morphism in C with C’

Ext-projective, and extend it to a triangle:
x'5Sp oty

By the argument above, X’ ¢ C is indecomposable and ¢’ is a C-envelope of X'.

Suppose first that C’ = C, say that ¢ : C — C’ is an isomorphism. Since 3’ and p o 3 are
minimal right almost split morphisms with codomain C”, it follows from Lemma [2.1.34(b)
that there is an isomorphism v : B — B’ with 3’01 = oo 3. By the axioms of triangulated

categories, there is a morphism p: X — X’ making the following diagram commutative:

x—.p P o2 vy
| |
Ip ld) l#’ I3p
Y E’ /B/ ’Y, v
X' B’ c’ SX.

By the 5-Lemma [56], Exercise 10.2.2], it follows that p is an isomorphism, so that X = X'.

Suppose now that X = X', say that p: X - X’ is an isomorphism. Since a C-envelope
of X is unique up to isomorphism and &, £ o p both are C-envelopes of X, there exists
an isomorphism v : B — B’ such that ¢ o & = £ o p. Then, by the axioms of triangulated

categories and the 5-Lemma, there is an isomorphism ¢ between C' and C’. O

We state, without proof, the dual of Theorem [7.2.6

Theorem 7.2.7. Let o : A - B be a minimal left almost split morphism in C with A

Ext-injective.

(a) The triangle

A5BE 75%4

is such that Z is an indecomposable not in C and B is a C-cover of Z.

(b) If &' + A" > B’ is a minimal left almost split morphism in C with A" Ext-injective,
then A’ = A if and only if Z' = Z, where A’ %> B’ B 70 S S A s the triangle

obtained by extending .

Note that, even though the second morphism in the triangles from Theorem is min-
imal right almost split in C, these are not Auslander-Reiten triangles in C since the first
object in them is not in C. Because of this “weakness” they have, we use the following

terminology.
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Definition 7.2.8. Let C € C be an indecomposable Ext-projective. If there exists a
minimal right almost split morphism in C of the form 5 : B — C, then the triangle (7.2))
from Theorem is called a left-weak Auslander-Reiten triangle in C.

Dually, for A € C indecomposable Ext-injective, if there is a minimal left almost split
morphism « : A - B in C, the triangle from Theorem[7.2.7)is called a right-weak Auslander-

Reiten triangle in C.

Remark 7.2.9. Suppose C is functorially finite in 7. Then, by [32, Propositions 2.10 and
2.11] for any indecomposable object C in C there is a minimal right almost split morphism
in C ending at it and a minimal left almost split morphism in C starting at it. Hence, by
Theorems and there is a left-weak Auslander-Reiten triangle in C ending at C
and a right-weak Auslander-Reiten triangle in C starting at C.

We end this section by giving equivalent definitions to Ext-projectivity in the case when

C is precovering in T.

Proposition 7.2.10. Assume C is precovering in 7. Let C' € C be indecomposable and

a:A— 7C be a C-cover. Then, the following are equivalent:
(a) C is Ext-projective in C,
(b) A=0,
(c) Ext}(C, A) = 0.

Proof. Note that (a) implies (c) by definition of Ext-projectivity, since A € C. The fact
that (b) implies (c) is also clear.

To prove that (c) implies (a), assume that C' is not Ext-projective. By [37, Theorem 3.1],

since a: A - 7C is a C-cover, there is an Auslander-Reiten triangle in C of the form
A->B-C23A

Hence Ext'(C, A) = Hom(C,$A) # 0.
To prove that (c) implies (b), note that C' = 77}(7C). Letting D(-) = Homy(-, k), we

have

0 = Ext'(C, A) = Hom(C,XA) = Hom(7 ! (7C), Y A) = Hom(7C, 7 0 X A)
~ Hom(7C,SA) 2 DHom(A,7C).

Then, Hom(A,7C') = 0 and in particular o = 0. Since « is right minimal, it follows that
A=0. O
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The dual of the above follows in a similar way. Here we state it without proof.

Proposition 7.2.11. Assume C is preenveloping in 7. Let A € C be indecomposable and

¢:7 YA - C be a C-envelope. Then, the following are equivalent:
(a) A is Ext-injective in C,
(b) C =0,

(c) Ext!(C,A)=0.

7.3 (C-resolutions and Ext-projectives

In this section, we use a similar idea to injective resolutions of finitely generated modules
in module categories to describe Ext-projectives in C. We also state the dual result for

Ext-injectives in C.

Remark 7.3.1. Suppose C is preenveloping. Then, in a similar way to the one used to
construct injective resolutions of finitely generated modules over algebras, we can construct
a minimal right C-resolution of any object Z in T. We start by taking a C-envelope of
Z, say (" : Z - C% and complete it to a triangle: Z - C° - ¢Z - £Z. Then we take a
C-envelope of 07, say (' : 07 - C' and complete it to a triangle. We repeat this process

to obtain the minimal right C-resolution:

o/ 1

Theorem 7.3.2. Assume C is functorially finite, let C' € C be indecomposable. Then C' is
Ext-projective if and only if C is a direct summand of C*, for some Z in T with minimal

right C-resolution
Z-0">Ct >
constructed as described in Remark|7.5.1).

Proof. First note that, as 7 has a Serre functor S: 7 — T, by Theorem [2.2.46] there exists
an Auslander-Reiten triangle in 7 of the form 7C SySscl Y(7C), where 7= So X1,
Suppose that C' is Ext-projective and consider a C-precover ¢ : A - Y of Y. Completing
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€0 to a triangle, we obtain a commutative diagram:

7S o4 0T vy
| |
' j@ H s
\ Y

TC . Y ——C—=3%(70),

where ¢ exists by the axioms of triangulated categories. Note that since Ygpo~' =~ 0,
then 4" # 0 and so the triangle in the top row does not split. Hence the triangle in the
top row is a non-splitting triangle with C' indecomposable Ext-projective and A € C, so by
Lemma [7.2.2] it follows that ¢’ is a C-envelope of Z. Then, as C € C, we have a minimal

right C-resolution of Z:

ZiAﬂCﬁOeO—)...,

where, following the notation of Remark we have C! = C.

Suppose now that C is a direct summand of C! for some Z in 7 with minimal right

C-resolution:

CO 7/1 \

constructed as in Remark By the dual of the Triangulated Wakamatsu’s Lemma,
see [37, Lemma 2.1], we have Hom(X ! (02), B) = 0 for every B e C. Consider

Hom(X ¢!, B) : Hom(x™'C*, B) > Hom(X (¢ Z), B).

This is injective by the dual of the proof of [37, Lemma 2.1], and since Hom(X"!(c2), B) =
0, it follows that Hom(X™'C?, B) = 0 and so Ext'(C*, B) = Hom(C',XB) = 0. Since this
is true for every B e C, it follows that C! is Ext-projective. Since C is a direct summand
of C!, then C is also Ext-projective. O

We present without proof the dual of Theorem [7.3.2]

Remark 7.3.3. Suppose C is precovering. Dualizing Remark we can construct a

minimal left C-resolution of any object X in T:

AN
CQ Cl CO i X7

N
wX
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where, for i > 0, we have that 7; is a C-cover and w®**(X) is the first object of the triangle

with second morphism ~;.

Theorem 7.3.4. Assume C is functorially finite, let A € C be indecomposable. Then A is
Ext-injective if and only if it is a direct summand of Cy, for some X in T with minimal

left C-resolution
g Ol - CO - X7

constructed as described in Remark|[7.3.5

Example 7.3.5. We illustrate Theorem in the case that C is cluster-tilting. We say
that the full subcategory C of T is cluster-tilting if:

(a) C={X eT |Hom(C,XX)=0}={X €T |Hom(X,XC) =0},
(b) C is functorially finite.

Note that when T = D’(mod A) for some finite dimensional k-algebra A, this coincides
with the case d = 2 in Definition [2.3.42]

If C is cluster-tilting, then it is closed under extensions and direct summands, so it satisfies
our setup. It is immediate to see from the definition that every object in such a C is Ext-

injective, however we present a proof of this using Theorem [7.3.4]

Let C be an object in C. Note that, since Hom(C,XC') = 0, then 0 — XC' is a C-cover of
Z = %C. Expanding this, we get the triangle in T

C-0-%02% v,

and, as C % Cisa C-cover, it follows from Theorem that C = C] is Ext-injective.

7.4 Extension closed subcategories from weak Auslander-

Reiten triangles in C

In this section, we show how, in some cases, it is possible to construct a new extension
closed subcategory C’ ¢ T modifying C using the objects that appear in a left-weak (or a
right-weak) Auslander-Reiten triangle in C. The idea of how this is done is similar to the

mutation from [32].

Definition 7.4.1. For an additive subcategory X of T, we denote by Ind X a maximal

set of pairwise non-isomorphic indecomposable objects in X.
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Lemma 7.4.2. Assume C is functorially finite in 7. Let C' € C be an indecomposable
object such that End(C) = k. Let X in 7 be an indecomposable object. Let C be the
additive subcategory of 7 with IndC = Ind (C) ~ C and set C’ := add (Cu X). Then C’ is
functorially finite in 7.

Proof. We show that C’ is preenveloping in 7, the proof for C’ ¢ T precovering is then dual.
By [32, Propositions 2.10, 2.11], there exists a left almost split morphism in C of the form
n:C — D. Since End(C) 2 k, then every endomorphism of C' is either an isomorphism or
it is the zero morphism. Hence C is not a direct summand of D and D € C. For any Z in

T, consider a C-preenvelope (: Z - C" & C, for some non-negative integer n and CeC.

)

where G is the n x n matrix having 7 in the diagonal entries and zero elsewhere. Any

Consider

75" el D" e C,

morphism ¢ : Z - C’, where C' € C, factors through (. So there exists a morphism
vy = (", sTn,7) : C” @ C — C' such that yo ¢ = ¢. Note that, since C is not a
direct summand of C’, then ~; is not a split monomorphism for ¢ = 1,...,n. Hence,
since n is left almost split in C, there exists d; : D — C’ such that 6;om = . Let
6=(01,...,60,7): D"®C - C". Then

, , (G o
¢=VOC=50<7f0rC-—(O 15)6

Hence ¢': Z — D"&C is a C-preenvelope. Adding some copies of X to D"@C if necessary,

we then obtain a C’-preenvelope of Z. O

Definition 7.4.3. Let X ¢ T be an additive subcategory. The additive subcategory of
X consisting of all the Ext-injective (respectively Ext-projective) objects in X" is denoted
I(X) (respectively P(X)).

Theorem 7.4.4. Assume C is functorially finite in T and C' € P(C) is an indecomposable.

Then there is a left-weak Auslander-Reiten triangle in C of the form
X>B>(0- XX (7.3)
Let C < T be the additive subcategory with IndC = Ind(C)~ C' and define C' = add (CuX).

(a) If X € P(C")nI(C"), then C" is closed under extensions.
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(b) If End(X) 2 End(C) 2 k and C’ is closed under extensions, then X € I(C').

Proof. First note that (7.3) exists by Remark

(a) Suppose X is Ext-injective and Ext-projective in C’. Consider first a triangle with end

terms C”, C" in C-
C">A-C'—»xC".

Since C is closed under extensions and C c C, then A € C. We prove that C is not a direct
summand of A, so that A € C ¢ C'. Suppose for a contradiction that A ¥ A @ C for some
A € C. Note that any morphism C > C with C e C cCis not a split epimorphism, so it
factors through g since  is right almost split in C. Hence, by the axioms of triangulated

categories, we obtain a morphism of triangles of the form

0" ——=A0C 20" >C"
|

l l(o,l) 16 l
Y

B——s>C—5>5X —>3B.

Since X is Ext-injective in ¢’ and C” € C’, then § = 0. Hence
0=doa=v0(0,1)=(0,7),

contradicting the fact that v is non-zero. So AeC cC'.

Consider now a triangle with end terms in C’, say e : 0" - A - C" - X C". Then, denoting

the direct sum of i copies of X by X' for a positive i, we have
e X'el">A->X0C L X oxC”,

for some non-negative integers s, t and some C”, C" € C. Note that since X is Ext-injective

and Ext-projective in C’, we have

00 -7 77
v=(35): X0 » X' 0 £C7.

Hence ¢ is the direct sum of triangles of the form

XA X5 055X 05 X° 5 X0 and 07 > A7 L 207,

Note that, as C”, C" € C, then A € C and so A € C’. Hence C’ is closed under extensions.

(b) Suppose now that End(X) ¥ End(C) = k and C’ is closed under extensions. Suppose
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for a contradiction that X is not Ext-injective in C’. By Theorem [2.2.46] there is an

Auslander-Reiten triangle in 7 of the form:
XY 71X > %X

Also, since C € T is functorially finite, then C’ € T is preenveloping by Lemma Let
771X — D be a C’-envelope. Then, by [37, Theorem 3.2], there is an Auslander-Reiten
triangle in C’ of the form:
xS ESpSyx

Since End(X) 2 k, then every endomorphism of X is either an isomorphism or it is the
zero morphism. Then, since £ is not a split monomorphism, we have that X is not a direct
summand of E and so E€C cC. As £: X — B is a C-envelope, there exists a morphism
¢ : B - E such that po & =¢’. Then, by the axioms of triangulated categories, we obtain

a morphism of triangles of the form:

x—*.p-f .o " vx
|
Y
X E D DX
EI € 5

Since End(X) 2 k and £ is not a split monomorphism, we have that B € C c C'. Then,
since £’ : X — F is left almost split in C’, there is a morphism 7 : E - B such that no¢’ = £.

By the axioms of triangulated categories, we obtain a morphism of triangles of the form:

x-S.p_c.p_d.vx
|

| o
Y

X —~B—>C—>3X

Consider the composition of these two triangle morphisms. As ¢’ is left minimal and
& =ponol, it follows that pon: F — FE is an isomorphism. Then, by the 5-Lemma, see
[56, Exercise 10.2.2], we have that ¢ov : D — D is an isomorphism. In particular, v: D - C
is a split monomorphism and D is a direct summand of C. As C' is indecomposable, this
means that D = C, contradicting the fact that D is in C’ while C' is not. Hence X is

Ext-injective. [

Remark 7.4.5. If T is 2-Calabi-Yau, and recalling that D(-) = Homy (-, k), for any
X,Y €T, we have that Ext'(X,Y) = Hom(X,XY) = D o Hom(Y,XX) = D o Ext' (Y, X).

Hence Ext-projective and Ext-injective objects coincide in additive subcategories of T .
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Corollary 7.4.6. In the setup of Theorem [7.4.4] suppose that 7 is 2-Calabi-Yau and
End(X) 2 End(C) 2 k.
Then C’ is closed under extensions if and only if X € I(C’).

Proof. Since T is 2-Calabi-Yau, we have that Ext-injective and Ext-projective objects in
C' coincide by Remark The result then follows directly from Theorem O

We state, without proof, the duals of Theorem and Corollary

Theorem 7.4.7. Assume C is functorially finite in T and A € I(C) is indecomposable.
Then there is a right-weak Auslander-Reiten triangle in C of the form

A58l 75 va

Let C be the additive category with IndC = Ind(C) N A and C" := add (Cu Z).

(a) If Z € P(C")nI(C"), then C" is closed under extensions.
(b) If End(Z) 2 End(A) 2 k and C" is closed under extensions, then Z € P(C").

Corollary 7.4.8. In the setup of Theorem suppose that 7 is 2-Calabi-Yau and
End(Z) 2 End(A) = k.

Then C” is closed under extensions if and only if Z € P(C").

7.5 Subcategories of the form C’ and mutations of C

As mentioned before, the idea of how to construct C’ from C, by removing the third term
of a left-weak Auslander-Reiten triangle A in C and replacing it with the first term of A, is
similar to the classic mutation from [32]. In general, these two constructions are different.

However, they coincide under some extra assumptions, as we show in this section.

Definition 7.5.1 ([59, Definition 3.1]). Let D c C be an additive functorially finite rigid
subcategory. For any object C € C, let § : D — C be a D-cover and complete it to a triangle

of the form up(C) - D % ¢ > %D. Then pup(C) is the backward D-mutation of C' and
the backward D-mutation of C is

1(C;D) = add ({up(C) | C eC}uD).
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Lemma 7.5.2. Assume that 7 is 2-Calabi-Yau and let C € 7 be an additive subcategory
closed under extensions which has finitely many indecomposable objects. Letting D =
P(C), we have that

u(C;D) =C.

Proof. First note that since C has finitely many indecomposable objects, both C and C
are functorially finite in 7. Then, since C is an extension closed subcategory functorially
finite in 7, by the dual of [32, Proposition 2.3(1)], there exists a cotorsion pair of the form
(X,C). Since D = P(C), by the dual of [59, Proposition 3.7(3)], we have that ;(C; D) c C.
Moreover, by the dual of [59, Proposition 3.7(1)], there is a bijection between IndC and
Ind ;(C; D) and, since these are finite sets, we conclude that u(C;D) =C. O

Lemma 7.5.3. In the setup of Theorem [7.4.4] suppose that 7 is 2-Calabi-Yau, X €
P(C') and End(C) 2 k. Let D ¢ T be the additive subcategory generated by all the
indecomposable Ext-projectives in C apart from C and note that D is rigid. Assume D is
functorially finite in C. Then X 2 up(C).

Proof. Consider the triangle (7.3) from Theorem Let 6 : D - C be a D-cover and
note that § is not a split epimorphism since C is not in D. Then, since 3 is right almost
split in C and D € D c C, it follows that § factors through 8 and we obtain a morphism of

triangles of the form:

pp(C) pD—2-C Sup(C)
|

|
1mn l%@ H |
Y Y

X B ¥X
3 ﬂC v ’

where 71 exists by the axioms of triangulated categories. For A € C, consider the exact

sequence:
Hom(C,¥A) - Hom(B,XA) - Hom(X,XA), (1)

and note that Hom(C,XA) = 0 since C is Ext-projective in C. Without loss of generality,
assume that A is indecomposable. If A € C c €', then Hom(X,XA) = 0 since X is Ext-
projective in C’. Then, exactness of (i) forces Hom(B,%XA) = 0. If A ¢ C, then A = C
and since C' is Ext-injective in C, then Hom(B,XA) = 0. Hence Ext!(B, A) = 0 for any A
in C and so B is Ext-projective in C. Since End(C') 2 k, we have that C' is not a direct
summand of B and so B € D. Note that as § is a D-cover, then [ factors through § and,
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by the axioms of triangulated categories, we obtain a morphism of triangles of the form:

x—*.p . ¢ DX
| |
lv ) |
Y A
i0(C) —= D —— C —— Sp(C).

Then § = § o p o v and, as J is right minimal, then ¢ o ¢ : D — D is an isomorphism.
By the 5-Lemma, see [56, Exercise 10.2.2], it follows that v on : up(C) - pp(C) is an
isomorphism. Hence 7 is a split monomorphism and up(C) is a direct summand of X.
Since X is indecomposable, it follows that X = up(C). O]

Theorem 7.5.4. Assume C has finitely many indecomposables and C' € P(C) is an inde-

composable. Then there is a left-weak Auslander-Reiten triangle in C of the form

x&BLolwx
Let C < T be the additive subcategory with IndC = Ind(C)~ C' and define C' = add (CuX).
Suppose, moreover, that T is 2-Calabi-Yau and X € P(C'). Then, letting D = P(C), we

have
u(C;D) =C',
and this is a subcategory of T closed under extensions.

Proof. First note that, since T is 2-Calabi-Yau and X € P(C"), we have that X € P(C") n
I(C") by Remark Then, the proof of Theorem shows that C is closed under
extensions. By Lemma we have that 1(C; D) = C. Moreover, we have that Ind P(C) =
Ind P(C)u{C?}, that is P(C) is the additive category generated by all the indecomposable
Ext-projectives in C plus the indecomposable C. In fact, if D is an indecomposable Ext-
projective in C, then either D = C or D € C. In the latter case, we have that Ext'(D,C) =0
since Ext!(D,C) =0 and C c C and so D is an indecomposable Ext-projective in C. On the
other hand, if D is an indecomposable Ext-projective in C, we have that Ext'(D,C) = 0
and, since C' is Ext-injective in C, also Extl(IN),C’) =0 so that Extl(f),C) =0.

Hence D is rigid in C and we can mutate C with respect to D. Since C has finitely many
indecomposables, then D c C is functorially finite. Then, by Lemma [7.5.3] we have that
up(C) = X, where X is the first term of the triangle (7.3)) from Theorem Hence,

we conclude that

p(C;D) =add (u(C; D) U pp(C)) =add (CuX)=C’,
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and this subcategory of T is closed under extensions by Theorem [7.4.4] O

We present the definition of forward D-mutation and state, without proof, the dual of

Theorem [7.5.4

Definition 7.5.5 ([59, Definition 3.1]). Let D c C be an additive functorially finite rigid
subcategory. For any object A € C, let a«: A -» D be a D-envelope and complete it to a
triangle of the form A % D — pp (A) > SA. Then up'(A) is the forward D-mutation of
A and we define the forward D-mutation of C to be

p ' (C;D) = add ({up (A)| AeC}uD).

Theorem 7.5.6. In the setup of Theorem suppose that T is 2-Calabi-Yau, C has
finitely many indecomposables and Z € I(C"). Then, letting D = I(C), we have

M_I(C,D) _ C”,

and this is a subcategory of T closed under extensions.

7.6 Example: cluster category of Dynkin type A,

In this section, we fix a positive integer n and study Cj4,,, that is the cluster category of
Dynkin type A, introduced in Section Note that T :=C4, satisfies Setup and
it is 2-Calabi-Yau. We give a full description of the additive subcategories C of T that
are closed under extensions. For such a subcategory C, we describe the Auslander-Reiten

triangles in C and apply our results to this example.

7.6.1 Subcategories arising from Ptolemy diagrams

The additive subcategories of 7 closed under extensions are precisely those arising from

Ptolemy diagrams in our regular (n + 3)-gon P.

Definition 7.6.1 ([26, Definition 2.1]). A Ptolemy diagram is a set S of diagonals of a
finite polygon such that if the set contains crossing diagonals a and b, then it also contains

all the diagonals connecting the endpoints of a and b.

Note that if we take S to be the empty set, then this is a Ptolemy diagram, called an
empty cell. The set of all diagonals in a given polygon is also a Ptolemy diagram, called

a clique.
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Figure 7.1: Example of a Ptolemy diagram.

Remark 7.6.2 ([26, Theorem A(ii)]). Each Ptolemy diagram can be obtained by gluing
empty cells and cliques. So, for our polygon P, a Ptolemy diagram is constructed by first
choosing a set of pairwise non-crossing diagonals, called dissecting diagonals, that divide

P in cells, and then deciding whether each cell is empty or a clique.

Example 7.6.3. For example, in Figure [7.I] we have chosen the three green diagonals to
be the dissecting diagonals and, going left to right, the first and third cells are empty and

the second and fourth are cliques.

Recall that by from Section indecomposables in T correspond to diagonals in
P. From now on let C be a subcategory of 7 corresponding to a Ptolemy diagram S
of P, that is C is the additive subcategory of T generated by the indecomposables in T
corresponding to the diagonals in §. The following result is the reason why this choice
satisfies Setup [7.1.1]

Proposition 7.6.4. Ptolemy diagrams of P correspond to the additive subcategories of

T closed under extensions.

Proof. This follows from [26, Theorem A(i) and Proposition 2.3]. O

7.6.2 Auslander-Reiten triangles in C

In this section, we apply a result by Jorgensen, see [37, Theorem 3.1], to this example in

order to describe the Auslander-Reiten triangles in C. We first recall the theorem.

Theorem 7.6.5 ([37, Theorem 3.1]). Let ¢ be in C and suppose that it is not Ext-projective.
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Let
T—>Yy—>c—>2x
be an Auslander-Reiten triangle in T. Then the following are equivalent:

(a) x has a C-cover of the form a:a — x,

(b) there is an Auslander-Reiten triangle in C of the form

a—>b—-c— Xa.

Note that, as proved in [37], the above theorem is not only valid for 7 = C4, and C a
subcategory of C4, corresponding to a Ptolemy diagram of P, but also for any 7 and C

satisfying Setup [7.1.1]

We aim to find for which choices of ¢ € IndC we can apply the above theorem, and what
the Auslander-Reiten triangles in @ look like.

Proposition 7.6.6. An indecomposable ¢ in C is Ext-projective if and only if it is a

dissecting diagonal.

Proof. Suppose c is a dissecting diagonal, so there is no diagonal in C crossing it. Hence for
every a € C, we have dimy (Ext!(c,a)) = 0 by from Section and c is Ext-projective.

Suppose now that ¢ is not a dissecting diagonal and let P’ be the clique it belongs to.
Then there are vertices of P’ lying on both sides of ¢. Joining any two vertices of P’ lying

on different sides of ¢, we obtain a diagonal a’ in C crossing ¢ and hence Ext!(c,a’) # 0 by

from Section So ¢ is not Ext-projective. O

Note that Proposition [7.6.6] affirms that we can apply Theorem to ¢ € IndC if and

only if ¢ is not a dissecting diagonal of the Ptolemy diagram corresponding to C.

Lemma 7.6.7. Let ¢ € C be an indecomposable which is not a dissecting diagonal. Let
P’ be the clique to which ¢ belongs and the vertices of P’ be vy < vy <+ < V-1 < vy, (for
some 4 <m <n+3). Then ¢ = {v;,v;} for certain i and j, and a = {v;_1,v;_1} is a C-cover

of ¥c = {v;, v} }, where vy = vUpp,.

Proof. Since c¢ is a clique diagonal, the choice of a is such that a and ¢ cross, so that
dimg Hom(a, Xc) = 1. Also, as a is indecomposable, the non-zero morphism « : a - Xc is

right minimal by Lemma [2.2.27, Hence we only need to prove that « is a C-precover of

168



Chapter 7. Almost split morphisms in subcategories of triangulated categories

Vj-1

Figure 7.2: Green vertices are in P’ and green diagonals are edges of P’; diagonals with one
endpoint in each of the two red arcs are those through which d — ¢ factors.

Ye, i.e. for every d = {vg,v;} in C and every morphism ¢ : d — Y¢, we have a factorization

of the form

d—2  + e (7.4)

First note that if d and ¢ do not cross, then Hom(d,Xc) = 0 and we have factorization
(7.4) with 6 = € = 0. So we may assume that d and ¢ cross and v, < v; < v; < v;. Note
that since d € C crosses ¢, then d is a diagonal in P’ and so it cannot cross {v;,v;_1} and

{vj,vj-1}, as these are edges of P’. We then have
Vi S V-1 <V; <V £ V-1 <Vj.

Moreover, we have v;_1 <v; <v; and v;_1 < v; < and so

U U1 <0 LU <Up <o S

<,

see Figure Hence, by |(VIII)| from Section there exists a factorization of the form
) 0

Theorem 7.6.8. Let c € C be an indecomposable which is not a dissecting diagonal. Let
P’ be the clique to which ¢ belongs and the vertices of P’ be vy < vy < -+ < U1 < Uy (for

some 4<m<n+3). Then ¢ ={v;,v;} for certain i and j, and, taking a = {vi_1,vj_1}, we
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vj

Vj-1

Figure 7.3: The Auslander-Reiten triangle a - b1 ® by - ¢ - Xa in C.
obtain the Auslander-Reiten triangle in C:
a—b®by > c— Xa,
where by = {v;,vj_1} and by = {vj,vi_1}, see Figure . In the above, vy = vpy,.
Proof. By Proposition ¢ is not Ext-projective. Recall that, by from Section
B.I.1] we have an Auslander-Reiten triangle in 7 of the form
Yc—> 81 @ s —>c—>22c,

where s1, so are obtained as in Figure By Lemma [7.6.7] our choice of a is such that
a — Yc is a C-cover. Hence by Theorem there is an Auslander-Reiten triangle in C
of the form a - b - ¢ — Ya. The only possible such triangle is the one with b = by & b,
where by = {v;,v;-1} and by = {vj,v;_1}, see Figure O

Remark 7.6.9. As seen in from Section for a given indecomposable ¢ € T, we

have an Auslander-Reiten triangle in 7 of the form
Yc—> 51 ® 89 —>c—>22c,

see Figure [T.4 Geometrically, the first term of this triangle, namely Ye, is obtained by
rotating the endpoints of the diagonal ¢ by one clockwise step in P. Moreover, s1, so are

the non-edges of P connecting the endpoints of Yc to the endpoints of c.

Now assume c € C is not a dissecting diagonal and we follow the same geometrical process

170



Chapter 7. Almost split morphisms in subcategories of triangulated categories

Figure 7.4: Auslander-Reiten triangle Yc — 51 ® 55 - ¢ - X3¢ in T.

but looking at the clique P’ as an m-gon. The operation of rotating the endpoints of
the diagonal ¢ by one clockwise step in P’ gives the diagonal a defined in Theorem
Moreover, if by and by are the non-edges of P’ connecting the endpoints of a to the
endpoints of ¢, see Figure [7.3] Theorem says that we have an Auslander-Reiten

triangle in C of the form

a—>b; ®by > c— Xa.

7.6.3 Right almost split morphisms in C ending at Ext-projectives

Note that since C € T has finitely many indecomposables, it is functorially finite and
we can apply Theorem We described the indecomposable Ext-projectives in C in
Proposition [7.6.6] Given any indecomposable Ext-projective in C, we give a way to find a
minimal right almost split morphism in C ending at it and the left-weak Auslander-Reiten

triangle in C completing this morphism.

Setup 7.6.10. Let C correspond to a Ptolemy diagram and c € C be Ext-projective and
indecomposable. Then c is a dissecting diagonal by Proposition Let the vertices of

the two cells bordered by ¢ be vy < vy <+ < vy, and ¢ = {v;,v;}. Set vg := vyy,.

Choose v, maximal in [v], v} ] such that by := {v;,v,} € C and vy maximal in [v]

that by := {vj,v4} € C. An example is shown in Figure [7.5

,v; | such

Remark 7.6.11. Note that the choice of v, depends on whether ¢ borders a clique or an
empty cell in [v;,v;]. In the first case we have v, = v;_1 while in the second vy, = vi+1. Note
that in the case when ¢ borders an empty cell with v = v, then by = {v;,v] } = 0. The

vertex v, is determined in a similar way, looking at the interval [v;,v;].
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V3=0;

V6=V

Figure 7.5: Example of Setup [7.6.10| in a Ptolemy diagram of a 12-gon. Green diagonals are
dissecting diagonals, with ¢ = {vs,v6}. On the left, ¢ borders an empty cell, so v, = vs41 and on
the right it borders a clique, so v4 = v3_1. Then by and b, are the red dashed diagonals.

Proposition 7.6.12. In the situation of Setup [7.6.10] let

B = (Bo, 1) : bo ® b1 - c,

where fy, f1 are non-zero morphisms (unless by or by are zero). Then £ is a minimal right
almost split morphism in C and

5:(g(l)) B=(Bo,B1)
r —>s — T 5S¢

bo ® by

- X (t)

is a triangle in 7 with z = {v,,v,} indecomposable not in C and £ a C-envelope of z. In

other words, (1) is a left-weak Auslander-Reiten triangle in C.

Remark 7.6.13. In the example illustrated in Figure we have x = {vg,v2}. Note that

x crosses the dissecting diagonal ¢ and so it is not in C.

Proof of Proposition[7.6.13 Consider an indecomposable d € C. By from Section
Homy(d,c) # 0 if and only if d has one endpoint in each of the intervals [v; ™", v;]
and [v;",v;]. Since d € C and c is a dissecting diagonal, d is not allowed to cross c. Hence
d = {v;,t} for t € [v[7,v5] or d = {vj,s} for s € [v]",v;]. Note that, whenever they are

non-zero, our choices of by, by satisfy this condition and so dimy Homy(b;,¢) = 1.

We prove f3 is right almost split in C. Take a morphism 7' : ¢’ - ¢ in C that is not a split

epimorphism. If v/ =0, then ' clearly factorizes through 3, so assume ~' is non-zero and
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without loss of generality assume that ¢’ is indecomposable. Note that v being not a split

epimorphism forces ¢’ # ¢. By the above, we have either ¢’ = {v;,t} for t € [v}*

P Ujfl] or

' ={vj,s} for s € [v;",v;_1]. In the first case, note that such a non-zero ¢’ would not exist
if by = 0. Hence vy, # v; and by maximality of v, in [v;",v; ] such that by = {v;,vp} € C, we
have ¢ < v, < vj. Then, by [(IX)| from Section we have that ' factors through .

Similarly, in the second case we have s < v, < v; and 7' factors through ;. Hence § is

right almost split.

We now show that /3 is right minimal. Note that by = {v;,v,} and £ 'bg = {v], v

+
1 p

} do not

cross. In fact we have

v <v; <v T <y <vj <] <vg

Similarly, by and Y715, do not cross. Then any morphism ¢ : by ® by — bg ® by has the form

1 0
Y= @0 b 1o ® by = by @ by,
0 allbl

where «q, a1 € k. If ¢ is such that 5o ¢ = 3, then we must have ag = a1 = 1, so that ¢ is

an isomorphism. Hence ( is a minimal right almost split morphism in C. The rest of the

proposition follows from from Section and Theorem O

Remark 7.6.14. In the situation of Proposition|7.6.12) by Theorem [7.2.6(b) we also have
that if 8’ : b’ - ¢/ is a minimal right almost split morphism in C with ¢’ Ext-projective,
then ¢’ = ¢ if and only if 2’ = z, where 2’ Sy Lo oosa s the triangle obtained by

extending 3.

We now apply Corollary to this example.

Remark 7.6.15. Note that, by the dimension of Hom spaces over k, we have that
End(z) 2 k for every indecomposable z in 7. Moreover, since T is 2-Calabi-Yau, by
Remark we have that Ext-projective and Ext-injective objects coincide in additive

subcategories of T .

Proposition 7.6.16. In the situation of Setup [7.6.10, consider the triangle (f) : z —
bo ® by - ¢ - Y from Proposition [7.6.12] Let C ¢ T be the additive subcategory with
IndC = Ind (C) ~ ¢ and €’ := add (Cu ). Then C’ ¢ T is closed under extensions if and

only if ¢ borders two empty cells in the Ptolemy diagram corresponding to C.

Proof. Suppose first that ¢ borders two empty cells in C. Then, using the notation in Setup
7.6.10] the only diagonals in C’ that x = {vp,v,} crosses are from the set of diagonals of

the form {v,,v;} with s,¢ € {1,...,m} that are in C. However, since ¢ borders two empty
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cells, such diagonals {vs,v¢} do not belong to C c C'. Hence ¢ crosses no diagonals in C’,
so that Ext!(z,C") = 0 and z is Ext-projective in C’, and so also Ext-injective in C’ by
Remark [7.6.15] By Corollary we then have that C’ is closed under extensions.

Suppose now that one of the cells bordered by cis a clique with at least four vertices. Using
the notation in Setup without loss of generality say that the cell v; < vj1 <--- <
vj—1 < v; is a clique with at least four vertices. Then, x = {vp,v;—1} and, since the clique
has at least four vertices, we have v; < vj.1 <wvi—1 <v;. Then the diagonal €:= {vj,1,v;} € C

crosses x since
V; < Vi1 € Vp S Vj-1 <Vj <Vji1 < Vj-1.

Then Extl(:L',E) # 0 so that z is not Ext-projective, and so also not Ext-injective, in C’.
By Corollary we have that C’ is not closed under extensions. O

Example 7.6.17. In the example illustrated in Figure we have that the dissecting
diagonal ¢ borders an empty cell and a clique with four vertices. Then, by Proposition
the subcategory C’ obtained by removing ¢ and substituting it with @ = {vg,v2} is
not closed under extensions. In fact, it is easy to see that this does not correspond to a

Ptolemy diagram.

However, if the cell to the right of ¢ was empty, then the subcategory obtained by removing
¢ and substituting it with x = {v1,v4} would correspond to a Ptolemy diagram and so it

would be closed under extensions.

Remark 7.6.18. Recall that C4, is 2-Calabi-Yau and it has finitely many indecompos-
ables. Hence, whenever C € C corresponds to a dissecting diagonal bordering two empty
cells, Proposition and Theorem imply that C’ is equal to u(C; D), i.e. the sub-
category obtained by mutating C with respect to the additive subcategory of C generated
by all the indecomposable Ext-projectives in C apart from C.

7.6.4 Left almost split morphisms in C starting at Ext-injectives

For completeness we state the corresponding results on Ext-injectives. These can be proven

using similar arguments to the ones in Section [7.6.3]

Proposition 7.6.19. An indecomposable a in C is Ext-injective if and only if it is a

dissecting diagonal.
Proof. This follows from Proposition [7.6.6] and Remark O

We present the setup and the dual of Proposition
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Setup 7.6.20. Let C correspond to a Ptolemy diagram and a € C be Ext-injective and
indecomposable. Then a is a dissecting diagonal by Proposition Let the vertices

of the two cells bordered by a be vy < vy <+ < vy, and a = {v,,vs}. Set vg = vy,
Choose v, minimal in [v;}, v; ] such that by := {vs,v,} € C and v, minimal in [v], v, ] such

that by := {v,,v4} €C.

Proposition 7.6.21. In the situation of Setup let
a=(g?)2a—>b0@b1,

where ag, a1 are non-zero morphisms (unless by or b are zero). Then « is a minimal left
almost split morphism in C and
a=(89) 0

is a triangle in 7 with 2z = {vp, v,} indecomposable not in C and v a C-cover of z. In other

words, (1) is a right-weak Auslander-Reiten triangle in C.

Proposition 7.6.22. In the situation of[7.6.20], consider the triangle a — by ® by - z - Xa
from Proposition [7.6.21} Let Let C be the additive category with IndC = Ind (C) \ a and
C" :=add (Cuz). Then C"” ¢ T is closed under extensions if and only if a borders two

empty cells in the Ptolemy diagram corresponding to C.
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