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Abstract 

 

To date, genome-wide association studies (GWAS) have been successful at 

identifying associations between common genetic variants and complex traits. 

However, little is known about the mechanisms by which trait-associated variants 

identified through GWAS affect the traits. One method developed to address this 

problem is the transcriptome-wide association study (TWAS), in which known 

relationships between genotypes and gene expression are leveraged to impute gene 

expression levels into GWAS samples. These imputed gene expression levels are 

then tested for association with traits to identify potentially causal trait-associated 

genes. Here, I investigated a number of ways of improving TWAS to enable the 

detection of more trait-associated genes, before extending the TWAS approach to 

investigate other omics measurements. First, to identify the best software for 

conducting TWAS, a range of packages were compared through application to data 

from the Geuvadis and Wellcome Trust Case Control Consortium projects. Overall, 

the investigated packages predicted gene expression with similar accuracy and 

detected similar expression-trait associations, although some tested a broader set of 

genes, so were preferable. Following this, the accuracy with which gene expression 

could be predicted from genotype data was investigated by comparing different 

statistical modelling approaches using data from the Geuvadis project. Overall, the 

expression of most genes could not be predicted accurately using any approach, but 

the best estimates were achieved when using approaches that assumed sparsity. 

Furthermore, prediction accuracy was improved by increasing sample size and by 

carefully matching training and testing data in terms of ancestry and tissue. Finally, 

the TWAS approach was extended to investigate the prediction of other omics 

measurements from genotype data. By generating prediction models for these omics 

measurements and applying these models to publicly available GWAS data, many 

associations between omics measurements and complex traits were detected, 

improving understanding of the mechanisms underlying GWAS risk loci. 
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Chapter 1. Introduction 

 

1.1 Interpreting the results of genome-wide association studies 

Over the last 15 years, the genome-wide association study (GWAS) has become the 

gold-standard for investigating the relationship between common genetic variation at 

single nucleotide polymorphisms (SNPs) and complex disease. In this approach, 

individuals are genotyped at a set of SNPs across the genome, and at each SNP, 

genotypes are tested for association with a measured phenotype, typically using 

either linear or logistic regression (depending on the phenotype), to identify genomic 

risk regions for disease. This approach has been highly successful in identifying risk 

regions for many complex traits, and has even led to therapeutic advances in a 

number of diseases, such as the repurposing of drugs targeting the IL-23 pathway to 

treat psoriasis (Hueber et al., 2010; Visscher et al., 2017). 

In the early days of GWAS, just performing the analysis was a major challenge. For 

example, consider the seminal Wellcome Trust Case Control Consortium 1 

(WTCCC1) study (Wellcome Trust Case Control Consortium, 2007), which conducted 

case-control GWAS for 7 traits using 2000 cases for each disease and 3000 shared 

controls. As one of the first large-scale GWAS to be conducted, this study faced a 

number of challenges, including the design and development of custom genotyping 

arrays, the development of suitable quality control procedures and data analysis 

software to handle the large amounts of genotype data, and the gathering of enough 

samples to obtain sufficient statistical power to detect small genotypic effects on 

disease. However, in recent years, a number of developments have made GWAS 

easier to conduct. First, the availability of large population-based resources with 

matched genotype and deep phenotype data, such as UK Biobank (Bycroft et al., 

2018), has allowed recent GWAS to utilise extremely large sample sizes, providing 

sufficient statistical power to detect even the smallest SNP effects on disease. 

Second, the development of resources with high quality, high-density genotype data 

such as the 1000 Genomes Project (Auton et al., 2015) and the Haplotype Reference 

Consortium (McCarthy et al., 2016) has allowed for imputation of genotypes at 

millions of variants across the genome, making it easier to combine multiple GWAS 

together in a genome-wide meta-analysis, further increasing sample sizes. Third, 
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data analysis methods and software, as well as the computational power available for 

the data analysis, have rapidly improved in recent years, allowing complex analyses 

to be performed quickly. Together, these factors have allowed for well-powered 

GWAS to be rapidly performed for a wide variety of traits, resulting in the 

identification of many associations between genotype and phenotype. This can be 

seen in the EBI GWAS catalogue (which acts as a repository for GWAS results), 

where over 175,000 associations between genetic variants and complex traits are 

currently listed (Buniello et al., 2019). However, despite this rapid improvement in the 

ability to detect associations through GWAS, comparatively little functional follow-up 

analysis of GWAS findings has been performed (Gallagher and Chen-Plotkin, 2018). 

This means that the mechanism by which the majority of genetic variants at GWAS 

risk loci affect their associated phenotype still remains unknown. 

There are two main mechanisms by which genetic variation can act on a phenotype. 

The first, and perhaps most intuitive manner, is through a direct change to a protein. 

This could be the result of a genetic variant changing the DNA code in a coding 

sequence of a gene, introducing an amino acid substitution, insertion, deletion or 

frameshift, changing the amino acids that form the protein. Alternatively, a variant 

may introduce or remove a DNA splice site, resulting in an exon being included or 

skipped where it should not be, altering the protein produced. Regardless of the 

specific mechanism, if the change to the protein occurs in a region important in its 

function or structure, this could cause a gain or loss of protein function, resulting in a 

phenotypic change. This is the mechanism by which variants act in many Mendelian 

diseases (Amberger et al., 2019), and is also thought to explain some associations 

between common genetic variation and complex diseases, especially those with 

large effect sizes, such as the effects of variants in HLA genes on autoimmune 

diseases (Jorgenson et al., 2016; Darlay et al., 2018). 

The second mechanism by which genetic variation can affect a phenotype is through 

altering the regulation of gene expression, leading to an increase or decrease of the 

level of a geneôs mRNA, and subsequently the levels of the corresponding protein, 

leading to a phenotypic change. Common genetic variation at SNPs has repeatedly 

been shown to affect expression of genes, especially those genes in close proximity 

to the SNPs in question (Lappalainen et al., 2013; GTEx Consortium, 2015). These 

genetic loci at which SNP genotypes are associated with gene expression levels are 

termed expression quantitative trait loci (eQTLs). Most genetic variants that have 
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been identified as associated with a complex disease through GWAS are located in 

non-coding regions of the genome (Maurano et al., 2012). Furthermore, it has also 

been shown that eQTLs, as well as other markers of the regulation of gene 

expression such as DNAse I hypersensitivity sites, are enriched near complex 

disease risk loci identified through GWAS (Nicolae et al., 2010; Maurano et al., 

2012). Thus, it is thought that most common genetic variation that acts on complex 

diseases does so through this second mechanism, and so the integration of GWAS 

results with gene expression data has become a popular post-GWAS approach to 

improve the understanding of the mechanisms underlying GWAS findings. 

A simplistic approach to the integration of GWAS data with gene expression data that 

was adopted in early GWAS was to search for overlaps between regions of the 

genome containing eQTLs, and regions of the genome containing SNPs associated 

with the phenotype of interest (identified through GWAS). While this approach can be 

a simple way of easily identifying some potential disease genes, it has a number of 

drawbacks. First, this approach lacks a formal statistical framework and does not 

provide information on the effect size and significance of gene expression on the 

phenotype of interest. Second, the overlaps between eQTL and GWAS signals that 

are identified with this method are not necessarily indicative of either a causal or 

pleiotropic relationship between the gene expression and phenotype, but may be 

induced by linkage disequilibrium (LD) between two separate, independent SNPs, 

one of which regulates gene expression and the other of which affects the 

phenotype. These seemingly LD-induced relationships between gene expression and 

phenotype that this approach is vulnerable to detecting are not suitable for 

therapeutic intervention, and so are of much less biological interest than true causal 

relationships between genotype, gene expression and disease. Third, the approach 

of searching for overlaps between eQTL and GWAS signals only makes use of one 

SNP at a time within any given genomic locus. However, studies have found that the 

expression of many genes is regulated by multiple independent SNPs (Battle et al., 

2017), and so by using only one SNP at a time, the effects of the other regulatory 

SNPs on the phenotype are missed. This means that this approach is likely to have 

less ability to detect potential disease genes than an approach that could make use 

of multiple SNPs simultaneously.  

In an attempt to solve some of these problems, a number of more sophisticated 

methods of integrating gene expression data with GWAS data were developed. One 
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such family of methods approached the problem of integrating GWAS and gene 

expression data as a problem of colocalisation, attempting to test whether gene 

expression and the phenotype of interest are regulated by the same causal SNP. 

This family of methods includes the Bayesian colocalisation (Giambartolomei et al., 

2014), eCAVIAR (Hormozdiari et al., 2016) and SHERLOCK (He et al., 2013) 

software packages. These methods can identify instances where gene expression 

and the phenotype of interest are regulated by separate causal SNPs, and so should 

not be vulnerable to detecting LD-induced relationships between gene expression 

and phenotype, solving one of the problems of the approach discussed previously. 

However, these methods are still mostly limited by assumptions that there is only one 

causal SNP within a given locus, meaning that they will also have less power than a 

method that could make use of multiple SNPs at the same time. In addition, the 

relationships detected could represent pleiotropic effects (whereby a SNP acts 

independently on gene expression and on phenotype) rather than the arguably more 

interesting mechanism of a SNP acting on phenotype through altering gene 

expression. 

Another family of methods developed to solve some of these problems was the 

transcriptome imputation, or transcriptome-wide association study (TWAS) method. 

These methods approach the problem of integration of gene expression data with 

GWAS data using a two-stage regression framework. Briefly, using genotype and 

expression data measured in the same set of individuals, gene expression is 

regressed on genotypes at multiple SNPs proximal to genes simultaneously to 

develop gene expression prediction models. These prediction models are then used 

to impute expression into GWAS samples, for which genotype and phenotype have 

been measured, but gene expression has not. Finally, the phenotype is regressed on 

the imputed gene expression values to test the association between imputed gene 

expression and phenotype. This family of methods includes the PrediXcan (Gamazon 

et al., 2015), MetaXcan (Barbeira et al., 2018), and FUSION (Gusev et al., 2016) 

software packages.  

These methods have a number of advantages over the simplistic approach of 

searching for overlaps between GWAS and eQTL signals. Firstly, these methods use 

a familiar regression framework that is well understood and produces estimates of 

the effect size and significance of the association of gene expression on phenotype. 

Second, by creating prediction models by regressing gene expression on genotypes 
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at multiple SNPs simultaneously, these methods allow for multiple SNPs to affect 

gene expression, potentially giving these approaches more power than the single-

SNP approaches (in scenarios where multiple SNPs do indeed affect the expression 

of a gene). However, it should be noted that these approaches are not perfect and 

have their own drawbacks. For example, these approaches are still vulnerable to 

detecting LD-induced relationships between gene expression and phenotype, and so 

are not suitable to detect a sequence of causal relationships between genotype, 

gene expression and phenotype. However, connections between these approaches 

and two-stage least squares linear regression approaches for Mendelian 

Randomization (Burgess et al., 2017) mean that, under certain assumptions, one 

could infer the existence of a causal relationship between gene expression and 

phenotype. 

Given the relative advantages and the ease with which this method can be applied, 

and despite the drawbacks of the approach, it has become very popular. Since the 

approach was first proposed (Gamazon et al., 2015), it has received over 150 

citations in Pubmed, and has been widely used as a post-GWAS approach in many 

recent GWAS. This TWAS approach will be discussed in further detail throughout this 

thesis.  

 

1.2 Transcriptome-wide association studies 

The first step of TWAS is to fit a set of gene expression prediction models, which can 

later be used to impute gene expression levels into samples for which SNP genotype 

data and phenotype data have been measured (usually as part of a GWAS), but for 

which gene expression has not been measured.  

However, prior to fitting gene expression prediction models, the set of genetic 

variants to use for predicting gene expression must first be determined. Attempting to 

fit a gene expression prediction model using all variants across the genome would 

not only be computationally intractable (especially when done for each of the tens of 

thousands of genes in the genome), but would also not reflect the current 

understanding of the mechanisms driving the genetic regulation of gene expression, 

as only a small proportion of genetic variants are thought to affect the expression of 

each gene (Wheeler et al., 2016). As a result, gene expression prediction models are 
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not fitted using all variants across the genome but are instead fitted using only a 

subset of genetic variants. These variants are selected based on two main factors ï 

their proximity to genes, and their type.  

First, considering proximity ï eQTL studies have consistently found that the SNPs 

nearest to the transcription start site (TSS) of a gene tend to have the strongest 

effects on its expression (Lappalainen et al., 2013). For this reason, a proximity 

window is imposed around each gene, with only the SNPs within this window used to 

fit the gene expression prediction model. The exact size of the window used varies 

between different software packages that perform TWAS analysis. For example, 

prediction models from the PrediXcan package were fitted using SNPs within 1 

megabase (Mb) of gene transcription start and end sites, while the models from the 

FUSION package were fitted using SNPs within 500 kilobases (Kb). This enables 

only the genetic variants with the strongest effects on gene expression to be used to 

fit the prediction models.  

The second aspect of variant selection is selection based on variant type. Ultimately, 

the gene expression prediction models will be applied to GWAS data to impute the 

gene expression of GWAS samples. Typically, only common, biallelic SNPs are 

analysed in GWAS, with rare SNPs (those with a low minor allele frequency) and 

more complex variants such as insertions, deletions and structural variants excluded 

from analysis. Thus, to ensure compatibility between prediction models and GWAS 

data, prediction models are typically fitted using only common biallelic SNPs.  

Having determined which variants to use for modelling, the next step is to fit the gene 

expression prediction models. In all current implementations of TWAS, it is assumed 

that the expected gene expression is a linear additive combination of weighted SNP 

genotypes (with the weights corresponding to the effect of a given SNP on gene 

expression). Thus, the gene expression prediction models take the form: 

ώ  ͯ ὼ‍  ‐  

where yig is the expression of gene g in individual i, xil is the effect allele count (0, 1 or 

2) of SNP l in individual i, ɓlg is the weight of SNP l on gene g, p is the total number of 

SNPs in the prediction model and Ůig is an error term that includes all non-genetic 

effects on expression. This simple model is easily interpretable, and only requires 
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SNP genotypes to predict gene expression. However, it should be noted that a model 

such as this that only includes SNP genotypes as predictors of gene expression is 

unlikely to predict expression accurately, as it is known that a range of other non-

genetic factors such as age (Yang et al., 2015) and sex (Jansen et al., 2014) 

influence gene expression levels. The issue of how accurately models of this form 

can predict gene expression will be discussed later. 

These linear prediction models are fitted by regressing gene expression on the 

genotypes at the chosen set of SNPs. However, even after excluding distal, rare and 

complex genetics variants, thousands of genetic variants may remain. As most data 

sets used for prediction model fitting have only hundreds of samples, this results in a 

classic ñlarge p, small nò problem, for which a standard ordinary least squares 

regression would be inappropriate (Iain and Titterington, 2009). Furthermore, both 

eQTL studies (GTEx Consortium, 2015) and more complex multivariate modelling 

efforts (Wheeler et al., 2016) have consistently shown that gene expression is 

regulated by a few SNPs, each with a large effect size. This indicates that the genetic 

architecture of gene expression is likely to be sparse, rather than polygenic. As an 

ordinary least squares regression would use all chosen SNPs for prediction model 

fitting (so would be polygenic), it would also be inappropriate for this reason.  

Instead, other methods that can overcome the problems described above are used to 

fit models. The specific method used to fit the gene expression prediction models 

differs between software packages. For example, prediction models from the 

PrediXcan software package were fitted using the elastic net (Zou and Hastie, 2005), 

a form of penalised regression that assumes that only a small proportion of SNPs 

actually affect gene expression. Similarly, some of the prediction models from the 

FUSION package were also fitted using elastic net, while others were fitted using a 

variety of methods including Least Absolute Shrinkage and Selection Operator 

(LASSO) (Tibshirani, 1996), another form of penalised regression similar to the 

elastic net, the Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou et al., 2013), 

another method that assumes sparsity, and the Best Linear Unbiased Predictor 

(BLUP) (de Los Campos et al., 2013). While each of these methods make slightly 

different assumptions, they all fit linear models of the form shown above. 

Although not strictly a necessary step in TWAS, the next step typically taken 

following prediction model fitting is to evaluate how accurately the prediction models 
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can predict gene expression from SNP genotypes. The prediction models that show 

poor predictive ability are typically discarded at this stage, while the remaining 

prediction models that can predict gene expression with sufficient accuracy (usually 

measured by correlating the predictions with measured expression measures) are 

then taken forward and applied to SNP genotype data from GWAS samples to 

impute their expression.  

Finally, having imputed expression into the GWAS samples, the last step is to test for 

association between predicted expression values and the measured phenotype of 

interest. Depending on the structure of this phenotype, this is typically done using 

either linear or logistic regression. From this regression, the genes whose predicted 

expression is associated with the trait can be identified.  

Many different software packages for TWAS have been developed, each broadly 

following the procedure described above but with slight methodological differences. 

The first publicly available TWAS software package was PrediXcan (Gamazon et al., 

2015). For this package, gene expression prediction models were fitted using the 

elastic net method, using data from the GTEx project (Battle et al., 2017). Using this 

package, these prediction models are then applied to individual level genotype data 

from GWAS to impute expression levels, which are tested for association with the 

phenotype. This package is one of the most popular packages for TWAS, with over 

100 PubMed citations since its release. 

Shortly after PrediXcan, the FUSION package (Gusev et al., 2016) was released. 

Similar to PrediXcan, this package also performs TWAS using prediction models 

trained with GTEx data. However, there are a number of methodological differences 

between FUSION and PrediXcan. The major difference is that FUSION uses GWAS 

summary statistics (estimates of effect sizes of SNP genotypes on phenotype, and 

the associated standard error) alongside gene expression prediction models to 

directly impute results of the test of association between predicted expression and 

phenotype, rather than imputing the gene expression and then separately testing its 

association with phenotype. Additionally, this package uses prediction models trained 

with different methods to elastic net, uses only SNPs within 500 Kbs of genes when 

fitting gene expression prediction models, and deals with missing data in a different 

way to PrediXcan, all of which could result in the FUSION package achieving 
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different results to PrediXcan. FUSION is also one of the most popular software 

packages for TWAS, with over 100 PubMed citations since its release. 

Soon after FUSION was released, the developers of PrediXcan released a new 

version of their software named MetaXcan (later renamed S-PrediXcan) that, like 

FUSION, could conduct the test of association between predicted gene expression 

and phenotype by using GWAS summary statistics (instead of individual-level 

genotype and phenotype data) and pre-calculated gene expression prediction 

models (Barbeira et al., 2018). This software uses the exact same prediction models 

as PrediXcan, although a number of assumptions were made to allow summary 

statistics to be used, which could lead to differences between PrediXcan and 

MetaXcan. While the manuscript describing the software was not published until 

2018, an early version of the MetaXcan software was available online in early 2016 

(along with an associated manuscript on BioRXiv). Like PrediXcan and FUSION, it is 

also a popular software package with over 75 citations on PubMed since its release. 

Finally, another package that conducts TWAS analysis is the Summary Mendelian 

Randomisation (SMR) package (Zhu et al., 2016). This method approaches TWAS 

analysis using Mendelian Randomisation principles. By using Mendelian 

Randomisation to combine the effect size of a SNP on gene expression (determined 

through eQTL studies) and the effect size of a SNP on phenotype (determined 

through GWAS), the effect size of gene expression on the phenotype of interest can 

be determined. This approach is analogous to a TWAS in which the gene expression 

prediction models each consist of only a single SNP. By using only a single SNP for 

analysis, this method is different to those methods described above, and so could 

achieve different results. Like the packages described above, this approach has also 

been popular, with over 100 citations on Pubmed since its release.  

While each of these packages perform TWAS analysis, there are a number of slight 

methodological differences in the way the TWAS analysis is conducted. However, 

prior to the work conducted here, there had been no direct comparison on the 

software packages, so it was unclear which package would be better. In Chapter 3, I 

aim to address this problem by comparing PrediXcan, MetaXcan, FUSION and SMR 

by applying each of them to GWAS data from WTCCC1 studies of type 1 diabetes 

and Crohnôs disease, and comparing the results. 



10 
 

 

1.3 Prediction accuracy of gene expression prediction in TWAS 

An important consideration in TWAS is the accuracy with which gene expression can 

be predicted from SNP genotypes. The power to detect association between 

predicted gene expression and a phenotype of interest in TWAS relies at least in part 

on the accuracy with which the gene expression can be predicted. This is analogous 

to the relationship between genotype imputation accuracy and statistical power in a 

GWAS of imputed genotypes, where lower genotype imputation accuracy is 

correlated with reduced power in the GWAS (Das et al., 2018). Given this, gene 

expression prediction accuracy should be maximised to allow the detection of as 

many associations between gene expression and complex traits as possible. 

Despite the importance of this issue, it has received relatively little attention in the 

literature. Prior to the development of the TWAS framework and the PrediXcan 

software package, (Manor and Segal, 2013) first investigated the prediction of gene 

expression from SNP genotypes using a number of methods, including elastic net 

and a K-nearest neighbours approach. Overall, a small number of genes with high 

prediction accuracy were identified, although the average prediction accuracy over all 

genes examined was poor, suggesting that the prediction accuracy for the 

expression of most genes was low. However, these estimates were achieved using a 

sample size of only 210 individuals, and the gene expression prediction models were 

fitted using only SNPs within 100 Kbs of genes, which is far smaller than the typical 

proximity window of 1 Mb used by the PrediXcan package. There may be a number 

of SNPs located further than 100 Kbs but closer than 1 Mb from genes that could 

affect gene expression, the inclusion of which in the gene expression prediction 

models would likely improve prediction accuracy. Thus, the estimates achieved by 

Manor and Segal may not be fully reflective of those achievable in current TWAS 

using larger sample sizes and proximity window sizes. Further investigation using 

more samples and a larger proximity window may give a better estimate of the levels 

of gene expression prediction accuracy achievable in TWAS. 

The issue of prediction accuracy was later explored in the manuscript detailing the 

PrediXcan software package, in which the authors used a cross-validation procedure 

to test prediction accuracy. Again, while highlighting a number of genes with 
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seemingly high prediction accuracy estimates, the reported average prediction 

accuracy estimate achieved was poor, providing further evidence that the expression 

of most genes cannot be accurately predicted from only SNP genotypes. Moreover, 

these reported prediction accuracy estimates may have been inflated due to a 

methodological error. In (Gamazon et al., 2015), the same cross-validation was used 

to tune the model parameters of the elastic net prediction model as was used to 

evaluate the prediction accuracy of the models, likely leading to an overestimation of 

model prediction accuracy and suggesting that the true prediction accuracy of gene 

expression may be lower than reported in (Gamazon et al., 2015). Further 

investigation using a nested cross-validation approach (in which the prediction model 

tuning procedure is separated from the evaluation of prediction model accuracy) is 

required to obtain a true, unbiased reflection of the prediction accuracy achievable in 

TWAS.  

Although the prediction accuracy estimates reported in the literature are poor, it is 

possible that some methodological changes to the TWAS procedure may help to 

improve these estimates. First, prediction accuracy may be improved by changing 

how parameter tuning is performed when fitting the prediction models. In (Gamazon 

et al., 2015), elastic net was used to fit gene expression prediction models. The 

elastic net uses two tuning parameters ï ɚ (a regularisation parameter) and Ŭ (which 

determines the sparsity of the fitted model). While cross-validation was performed to 

determine an appropriate value for ɚ for each prediction model, the value of Ŭ was 

set to 0.5 for all prediction models. The reason for this was unclear, as the authors 

did not demonstrate that the best prediction accuracy was achieved by setting Ŭ to 

0.5. Instead, cross-validation could have been performed to select the value of Ŭ at 

which the maximum prediction accuracy was achieved, which would likely lead to an 

overall improvement in prediction accuracy estimates.  

Another factor that could affect accuracy is the method used to train models. A 

number of different methods have been used for fitting gene expression prediction 

models, including elastic net (Zou and Hastie, 2005), LASSO (Tibshirani, 1996), 

BSLMM (Zhou et al., 2013) and BLUP (de Los Campos et al., 2013). To date, there 

has only been one systematic comparison of methods for prediction of gene 

expression. This study compared the ability of four approaches (elastic net, LASSO, 

BSLMM and linear mixed model) to predict gene expression from SNP genotypes, 

finding that the elastic net, LASSO and BSLMM all performed similarly, while all 
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outperforming the linear mixed model approach (Zeng et al., 2017). This study did 

not include a number of other methods that have been shown to be successful in the 

prediction of other complex traits from SNP genotypes, such as ridge regression 

(Hoerl and Kennard, 2000) and Random Forests (Breiman, 2001; Sarkar et al., 

2015), which may also be successful at predicting gene expression. A more 

comprehensive comparison that includes these other methods may identify a better 

method to use when fitting gene expression prediction models.  

An additional factor that could affect prediction accuracy estimates is the 

ancestry/population of the samples used to train and evaluate prediction models. The 

first set of gene expression prediction models from the PrediXcan package were 

trained using data from version 6 of GTEx, which contained samples with a range of 

ancestries, including European, African-American and Asian-American. All samples, 

regardless of ancestry, were used to generate the gene expression prediction 

models, and no attempt was made to account for population stratification, which is 

known to strongly affect genetic associations with complex traits (Serre et al., 2008). 

However, the effect that this has specifically on the prediction of gene expression is 

unknown. Insight into the effect of ancestry on TWAS can be gained from the field of 

polygenic scores. Similarly to TWAS, in polygenic scores one data set is used to 

estimate the effect sizes of SNP genotypes on a phenotype of interest. These effect 

sizes are then combined into a score, which is then used to predict phenotypic values 

(typically disease risk) for a second data set. A number of studies have found that 

polygenic scores generated using effect sizes estimated using data with samples of 

one ancestry often perform more poorly when applied to samples of an alternative 

ancestry (Martin et al., 2017; Duncan et al., 2019; Martin et al., 2019). Thus, it may 

be expected that gene expression prediction accuracy may suffer when the ancestry 

of the gene expression prediction model training and testing data sets are different.  

Another factor that is likely to have an impact on the accuracy with which gene 

expression can be predicted from SNP genotypes is the sample size of the data set 

used to fit the gene expression prediction models. Studies examining the prediction 

of other complex traits from SNP genotypes have consistently shown the accuracy 

with which the phenotype can be predicted is directly related to the sample size of 

the data set used to estimate the SNP effect sizes on the phenotype (Dudbridge, 

2013; Wei et al., 2013; Wray et al., 2013). Thus, it may be expected that increasing 

the sample size of the data set used to fit gene expression prediction models for 
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TWAS would lead to improved prediction accuracy. However, no formal investigation 

of this has been conducted to date, and so further study is required to understand 

this. 

Finally, an issue more specific to the prediction of gene expression is prediction 

across tissues. It may not always be possible to measure gene expression in the 

tissue of interest as the tissue may be inaccessible. In these instances, gene 

expression prediction models for the tissue of interest may not be available. Instead, 

prediction models fitted using gene expression data gathered an alternative tissue 

may be used instead. The relevance of the results from these ñproxy tissueò 

prediction models to the true tissue of interest depends on how accurately the 

prediction models fitted using the proxy tissue data can predict gene expression in 

the true tissue of interest. To date, there has been little study of how well prediction 

models fitted using data from one tissue are able to predict gene expression of 

another tissue. In the original manuscript describing PrediXcan, prediction models 

trained using gene expression data from whole blood measured in the DGN cohort 

were tested through application to data from nine GTEx tissues, with the best 

prediction accuracy achieved for GTEx whole blood, and poorer accuracy achieved 

for the other eight GTEx tissues (Gamazon et al., 2015). However, this study only 

considered a limited number of tissues, and further insight may be gained by 

examining the broader range of tissues that are currently available.  

In Chapter 4, I investigate some of the factors affecting the accuracy of gene 

expression prediction using data from Geuvadis. I perform a 10-fold nested cross-

validation using a range of different statistical methods to identify which method is 

able to predict gene expression with the greatest accuracy, before focussing on how 

sample size, ancestry and tissue all affect how accurately gene expression can be 

predicted from SNP genotypes. 

 

1.4 Predicting omics other than gene expression 

To date, the TWAS methodology has mainly been used to investigate the role of 

gene expression in complex traits, although the approach could theoretically be used 

to investigate the role that any intermediate trait on the causal pathway from 

genotype to phenotype plays, as long as that intermediate trait is under genetic 
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regulation. Indeed, the TWAS approach has been adapted to investigate how DNA 

splicing (Gusev et al., 2019) and endophenotypes derived from brain imaging (Xu et 

al., 2017) act on complex phenotypes, showing the flexibility of the TWAS approach.     

One intermediate trait of particular interest is DNA methylation, in which a methyl (-

CH3) group is added or removed from cytosine residues at cytosine-guanine (CpG) 

dinucleotides. CpG methylation is especially interesting for a number of reasons. 

First, aberrant methylation at CpG sites has been implicated as a potential disease 

mechanism in a number of complex diseases (Dhana et al., 2018; Story Jovanova et 

al., 2018; Xu et al., 2018), and so may act as a potential mechanism in other complex 

traits. Second, CpG methylation is known to regulate the expression of genes 

proximal to CpG sites. The most well-known mechanism by which DNA methylation 

regulates gene expression is through promoter methylation, with increased 

methylation of CpG sites within promoter regions typically associated with a decrease 

in gene expression. However, there are additional mechanisms by which CpG 

methylation acts on gene expression, although these are more complex, and are 

often time- and context- dependent (Luo et al., 2018).  

Similarly to gene expression, DNA methylation is known to be under genetic 

regulation. Twin and family-based studies have identified a significant heritable 

component of CpG methylation, with estimates of heritability ranging from 16% to 

20% (Bell et al., 2012; Grundberg et al., 2013; van Dongen et al., 2016; Hannon et 

al., 2018). Studies estimating CpG methylation heritability using SNPs have also 

found a significant heritable component, although estimates vary depending on which 

SNPs are used. For example, a large study using SNPs across the whole genome 

found an estimate of 19% (van Dongen et al., 2016), similar to estimates from twin 

studies, whereas studies focussing on heritability attributable to SNPs proximal to 

CpG sites generated smaller estimates (Quon et al., 2013; Rowlatt et al., 2016). In 

addition, studies have consistently identified relationships between CpG methylation 

and genotypes at individual SNPs, termed methylation quantitative trait loci (mQTLs) 

(Gaunt et al., 2016; Richardson et al., 2016; Volkov et al., 2016). The presence of 

these mQTLs and the non-zero heritability estimates of CpG methylation indicate that 

it may be possible to predict methylation from SNP genotypes. Thus, training models 

that can predict CpG methylation from SNP genotypes and applying these prediction 

models to GWAS data in a TWAS-like framework may be a powerful method for 

identifying associations between CpG methylation and complex traits, which could 
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help improve understanding of the role that CpG methylation may play in complex 

traits. 

Prior to the investigation conducted in this thesis, only one study had examined how 

accurately CpG methylation could be predicted from SNP genotypes. This study 

used a linear mixed modelling approach to generate CpG methylation prediction 

models, before using these prediction models in a TWAS-like framework to identify 

associations between brain methylation and Parkinsonôs disease (Rawlik et al., 

2016). At the CpG sites examined, the authors found that methylation could be 

predicted accurately, with an average prediction accuracy of 0.27. However, the 

prediction accuracy was examined only at the set of ~1800 CpG sites which showed 

a heritability estimate that was significantly different from zero (at p<0.05), and so it 

would be expected that these CpG sites would show good prediction accuracy. Thus, 

this estimate of the average prediction accuracy is unlikely to be reflective of the true 

average of CpG methylation prediction accuracy that includes CpG sites with low 

heritability estimates. Further study using all CpG sites (regardless of heritability) 

would be required to determine this.  

There may also be opportunities to improve on the prediction seen by Rawlik et al. 

First, the authors used a linear mixed modelling method to generate their CpG 

methylation prediction models. To date, there has been no comparison of different 

methods for the prediction of CpG methylation from proximal SNP genotypes. 

However, a comparison of methods for prediction of gene expression from proximal 

SNP genotypes showed that the linear mixed model performed less well than 

methods that made assumptions of sparsity, such as LASSO and elastic net (Zeng et 

al., 2017). In addition to this, mQTL studies have often found that CpG sites are each 

regulated by genotypes at a small number of SNPs, each of which has a large effect 

size on CpG methylation, which is indicative of a sparse genetic architecture of CpG 

methylation (Gaunt et al., 2016). A comparison of a number of methods for the 

prediction of CpG methylation from SNP genotypes would be useful, as it would 

identify the method at which maximum prediction accuracy could be achieved. 

Second, the data used to examine prediction accuracy in this study were small, both 

in terms of sample size and the number of CpG sites measured. This study used 

data from 150 samples to train prediction models. More recent data sets such as 

those from the Accessible Resource for Integrated Epigenomics Studies (ARIES) 

(Relton et al., 2015) have measured methylation data in far more people, and so 
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using these larger sample sizes for prediction model training may improve the 

prediction accuracy estimates achieved. Additionally, this study used methylation 

data measured on the 27K chip, which was an early chip that measured methylation 

at ~27,000 CpG sites. More recently gathered data sets have used the 450K and 

EPIC chips to measure methylation at ~450,000 and ~850,000 CpG sites 

respectively. Using these data sets, the prediction accuracy at more CpG sites 

across the genome may be examined, which could allow for the testing of more CpG 

sites in downstream analysis.  

I attempt to address these issues in Chapter 5 by training and testing CpG 

methylation prediction models using a number of different methods. After identifying 

an optimal method for the prediction of CpG methylation from SNP genotypes, I then 

train and validate a set of CpG methylation prediction models using data from the 

ARIES and Understanding Society projects, which have much larger sample sizes 

and methylation measurements at many more CpG sites than data used in previous 

studies. I then follow up this analysis in Chapter 6, in which I conduct a methylome 

wide association study (MWAS) by applying these validated CpG methylation 

prediction models to publicly available GWAS summary statistics for 30 complex 

traits. In addition to the MWAS, I also conduct a TWAS, and use colocalisation and 

Mendelian Randomisation methods to integrate the results of the MWAS and TWAS 

to identify potentially causal relationships between CpG methylation, gene 

expression and complex traits. 

In addition to DNA methylation, there are a number of other intermediate traits on the 

causal pathway from genotype to phenotype. One such trait is protein levels. 

Following transcription of DNA to mRNA, mRNA is then translated to proteins, which 

then carry out the vast majority of key functions in the human body. As proteins are 

so vital in human biology, it is likely that a change in protein levels could directly lead 

to phenotypic change and could play a causal role in complex disease biology.  

Like gene expression and DNA methylation, protein levels are known to be under 

genetic regulation. To date, a number of studies have identified SNPs that regulate 

the expression levels of proteins, both proximally and distally (Battle et al., 2015; Sun 

et al., 2018). Thus, it may be possible to use SNP genotypes to predict protein levels. 

However, to date there has been no previous study of the prediction of protein levels 

using SNP genotypes. Likewise, there has also been no prior application of protein 
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level prediction models to GWAS data in a TWAS-like framework. Thus, there is an 

opportunity to use the TWAS methodology to explore the role of protein levels in 

complex traits. 

I address this in Chapter 7, in which I use a nested cross-validation approach to 

investigate how accurately serum protein levels can be predicted from SNP 

genotypes using data from two sources ï the INTERVAL study, and matched 

genotype and proteomics data from a group of primary biliary cholangitis (PBC) 

patients. Following this, I then conduct a proteome-wide association study (PWAS) 

(using protein level prediction models fitted using the INTERVAL and PBC patients 

data), an MWAS (using CpG methylation prediction models fitted using data from 

ARIES) and a TWAS (using gene expression prediction models fitted using data from 

GTEx), before using multi-trait colocalisation to integrate the results of these three 

approaches and to identify potentially causal relationships between PBC, gene 

expression, CpG methylation and serum protein levels.  
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Chapter 2. Methods and materials 

 

This chapter will describe the data used throughout the thesis, and the quality control 

procedures applied to these data. Additionally, the methodology of transcriptome 

imputation and other methods used throughout this thesis will be described here. 

Methodology that is more specific to one specific chapter will be described in the 

relevant chapter. 

 

2.1 Data used in the thesis 

2.1.1 Wellcome Trust Case Control Consortium 1 (WTCCC1) GWAS data 

The WTCCC1 data set is used in Chapter 3 for the comparison of transcriptome 

imputation software packages, as well as in Chapter 4 for a comparison of gene 

expression prediction models trained using different statistical methods. These data 

were used in (Gamazon et al., 2015), so using these data here allowed comparison 

of the results with those in (Gamazon et al., 2015). These data were well 

characterised, having been studied many times in the last 10 years, and had 

undergone considerable quality control, making them an ideal data set to use early in 

the project. 

These data have been described in much detail in (Wellcome Trust Case Control 

Consortium, 2007). To summarise briefly, the WTCCC1 performed GWAS for seven 

common and complex conditions (bipolar disorder, Crohnôs disease, coronary artery 

disease, hypertension, type 1 diabetes, type 2 diabetes and rheumatoid arthritis) 

prevalent in the UK. For each disease, approximately 2000 cases were recruited, in 

addition to 3000 samples from the UK Blood Service and the 1958 British Birth 

Cohort to be used as controls in the GWAS for each disease. All samples were 

genotyped at approximately 500,000 variants using the Affymetrix GeneChip 500k 

Mapping Array Set. Genotypes were called using CHIAMO and underwent standard 

genotype quality control procedures.  

Only data for Crohnôs disease (CD) and type 1 diabetes (T1D) were chosen for study 

in this thesis, as multiple significant associations were identified for each of these 

phenotypes in the original PrediXcan paper. Data for the remaining 5 complex 
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diseases were not used in this thesis. Initial quality control and removal of SNPs 

failing the WTCCC automated quality control procedures was done by Heather 

Cordell using PLINK, before PLINK genotype files for the 1,748 Crohnôs disease 

cases, the 1963 type 1 diabetes cases and the 2938 shared controls were sent over 

to me for subsequent analysis. 

Extensive quality control had been carried out a part of the original WTCCC1 study 

and by Heather Cordell (prior to the data being sent to me), so little extra quality 

control was required. To that end, SNPs with minor allele frequency (MAF)<0.01 and 

SNPs with abnormal genotyping cluster plots were removed. All remaining SNPs and 

samples were taken forward for imputation. For each disease, cases and controls 

were combined into a single VCF file and were imputed together, as was done in 

(Gamazon et al., 2015). Imputation was done using the Michigan Imputation Server 

(Das et al., 2016) using the 1000 Genomes Phase 1 reference panel (all ancestries) 

with ShapeIT used to phase genotypes. After downloading the imputed genotypes, 

insertions, deletions, SNPs with imputation quality R2 < 0.8 and SNPs with MAF < 

0.01 were removed.  

 

2.1.2 Geuvadis data 

Data from the Geuvadis project (Lappalainen et al., 2013) are briefly used in Chapter 

3 for a comparison of gene expression predicted using popular transcriptome 

imputation packages with measured gene expression. The data are used heavily in 

Chapter 4, where they are used for a comparison of gene expression prediction 

models trained using seven different statistical methods.  

The Geuvadis project was designed to conduct early transcriptome sequencing via 

RNA-seq in individuals from a range of populations across Europe and Africa, most 

of whom had already been genotyped as part of the 1000 Genomes project. These 

data were used alongside genotype data to characterise the relationship between 

genotype and expression through identification of eQTLs across the genome. The 

relatively large samples size (compared to other reference panels available at the 

time such as GTEx), multi-ethnic nature of the data and the public availability of 

these data made them ideal for investigating factors affecting the prediction of gene 

expression from SNP genotypes. 
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The sample collection, genotyping and imputation procedures are described in detail 

in (Lappalainen et al., 2013). Briefly, the project used data from 465 samples of 

Northern and Western European (CEU), Finnish (FIN), British (GBR), Tuscan (TSI) or 

Yoruba (YRI) ancestry. These samples had all been genotyped as part of either 

Phase 1 or Phase 2 of the 1000 Genomes project. 421 of the 465 Geuvadis samples 

were genotyped at approximately 38 million variants across the genome using whole 

genome sequencing, exome sequencing and SNP genotyping (through SNP chips) 

as part of Phase 1, while the remaining Geuvadis samples were genotyped on an 

Omni 2.5M array as part of Phase 2. The genotype data for the samples measured 

as part of Phase 2 of the 1000 Genomes project were then imputed using the entire 

1000 Genomes Phase 1 data set as a reference panel. Measured genotypes for the 

421 samples from Phase 1 and imputed genotypes for the samples from Phase 2 

were then combined into a single set of 22 VCF files (one per chromosome). 

After downloading these VCF files, some genotype quality control was conducted by 

myself. Three samples with genotype data but without gene expression data were 

removed, leaving a total of 462 samples. These samples were split into two groups - 

one containing the 89 YRI samples, and the other group containing the 373 samples 

of CEU, FIN, GBR and TSI ancestries. Within each group, genotype quality control 

was conducted on a per-variant level. Insertions, deletions, SNPs with a MAF<0.01, 

SNPs with imputation quality < 0.8 and SNPs with missing data in any of the samples 

were removed from each group. Data at the remaining variants and samples were 

taken forward for analysis.  

In addition to details of the genotype data, full details of the gene expression data 

from Geuvadis are also provided in (Lappalainen et al., 2013). Briefly, RNA 

sequencing was conducted on 462 individuals that had been genotyped in 1000 

Genomes. RNA was extracted from Epstein Barr Virus (EBV) transformed 

lymphoblastoid cell lines (LCL) generated from 462 samples. Paired-end sequencing 

was then conducted using the Illumina HiSeq 2000. Reads were mapped using the 

GEM pipeline, and RPKM quantifications were calculated. Read count quantifications 

were normalised to the median number of well-mapped reads, and PEER 

normalisation was used to account for technical variation. These processed data 

were downloaded from the Geuvadis website and were used as-is for the 

downstream data analysis, with no additional processing. 
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2.1.3 ARIES data 

Data from the Accessible Resource for Integrated Epigenomics Studies (ARIES) are 

used in Chapter 5 for investigating the prediction of CpG methylation data using SNP 

genotype data. The CpG methylation prediction models derived from these data are 

then used in Chapter 6 to investigate the role of genetically-regulated CpG 

methylation in complex traits.  

The ARIES study measured methylation in approximately 1000 pairs of mothers and 

children for which genotype data had already been measured as part of the Avon 

Longitudinal Study of Parents and Children (ALSPAC) project. At the time of study, 

this was one of the largest data sets with matched measures of genotype and CpG 

methylation, making it ideal for this investigation. 

All samples were genotyped as part of the larger ALSPAC project. Children were 

genotyped on the Illumina Human Hap 550-quad array, and mothers were genotyped 

separately on the Illumina human660W-quad array. For both groups, genotypes were 

called using Illumina Studio. Quality control and imputation were done at the 

ALSPAC cohort-wide level by the central ALSPAC team. Mothers and children 

underwent quality control separately. In each group, samples showing sex mismatch, 

high missingness, abnormal heterozygosity, non-European ancestry (determined by 

multidimensional scaling analysis) or a high degree of relatedness were excluded. At 

the variant level, SNPs showing a high degree of missingness, low MAF and low 

HWE p-value were removed. Genotype data from mothers and children were then 

combined at SNPs that passed QC in both groups and underwent imputation 

together. Samples were phased together using ShapeIT v2 and imputed to the 1000 

Genomes phase 1 version 3 reference panel using Impute v2.2.2. Post-imputation 

genotypes were then provided to us. 

Post-imputation quality control was then conducted by myself. Insertions, deletions, 

SNPs with imputation quality (determined via the INFO score) < 0.8, SNPs with MAF 

< 0.01, and A/T and C/G SNPs which could show strand ambiguity were removed.  

Following this, PLINK files were then generated for the mothers for whom 

methylation was measured at the ñantenatalò time point. Then, a genetic relationship 

matrix (GRM) was generated using HapMap3 SNPs. Pairs of samples showing 
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genetic relatedness > 0.05 in the GRM were identified, and one of each pair was 

removed, until no such pairs remained within the data for each time point. Genotype 

data for the remaining samples were taken forward. 

Methylation for ARIES mothers and children was measured on the Illumina Infinium 

HumanMethylation450 BeadChip using bisulphite-converted DNA extracted from 

whole blood. For children, methylation was measured at 3 time points ï birth, 

childhood and adolescence. For mothers, methylation was measured at 2 time points 

ï at an antenatal clinic, and a follow-up clinic approximately 15 years after childbirth.  

Processing, normalisation and initial quality control of the methylation data was done 

by the ARIES team. Raw IDAT files were read into R using the ñmeffilò package. 

Quality control was then performed at the per-sample and per-CpG level. At the 

sample level, samples showing genotype mismatches, sex mismatches, abnormal 

methylation intensities, dye bias, low bead number or more than 10% of probes being 

undetected were excluded. At the per-CpG level, CpG sites showing low bead 

number and CpG sites undetected in more than 10% of samples were excluded. For 

the remaining CpGs, meffil was used to conduct technical normalisation, which aims 

to account for batch variables, as well as performing dye bias and background signal 

corrections and correcting for the top 10 PCs in the methylation data. 

After receiving the processed, normalised data, some additional quality control was 

performed by myself. CpG sites mapping to multiple regions in the genome, CpG 

sites at SNPs, and those with a SNP within the probe-binding sequence of the CpG 

site were all excluded.  

Following this, methylation data for the mothers at the ñantenatalò time point were 

extracted and were chosen to take forward. Any samples with missing covariate data 

were excluded, and samples that were earlier excluded during the genotype QC due 

to high relatedness with other samples were also excluded. A quality control report 

sent over by the ARIES team showed that top principal components of the 

normalised, post-processed methylation data were still associated with the batch 

variable ñBCD_plateò, a categorical variable detailing the number of the plate used for 

DNA bisulfite conversion for each sample. To account for this, and other covariates, 

linear regression was used. At each CpG site, normalised methylation values were 

regressed on age, the ñBCD_plateò variable, and the six estimated white blood cell 
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proportions. Residuals from these regressions were taken forward and used as 

methylation values in downstream analysis.  

Overall, this left matched methylation and genotype data for 841 samples to be taken 

forward for analysis.  

 

2.1.4 Understanding Society data 

Matched genotype and CpG methylation data from the UK Household Longitudinal 

Study (also known as Understanding Society) are used in Chapter 5 to generate 

models that predict CpG methylation from SNP genotype data. These prediction 

models are used in Chapters 5 and 6 for the investigation of CpG methylation in a 

range of complex traits.  

Approximately 10,000 samples from Understanding Society were genotyped using 

the Illumina Infinium HumanCoreExome BeadChip. The HumanCoreExome chip 

genotypes individuals at over 500,000 variants across the genome, with 

approximately 250,000 of those as genome-wide tagging SNPs and approximately 

250,000 of these as rare, exonic variants. Genotypes were called using the gencall 

algorithm in Illumina GenomeStudio. Genotype data for the 1175 samples for which 

methylation was also measured were sent over by the Understanding Society team.  

After I received the genotype data from the Understanding Society team, PLINK was 

used to identify and exclude SNPs with MAF<0.01, SNPs with per-SNP missingness 

Ó 0.05, SNPs with a Hardy-Weinberg equilibrium test p value < 1e-05, SNPs located 

on sex chromosomes and to identify and exclude samples with missingness Ó 0.05. 

To account for relatedness, a GRM was constructed using the SNPs that passed the 

quality control procedure. 51 pairs of samples with a genetic relatedness Ó 0.05 were 

identified, and one from each pair was removed until no such pairs existed in the 

data set using PLINK with the ïrel-cutoff function. Genotypes at the remaining SNPs 

were then taken forward for genotype imputation.  

Genotype imputation was then performed using the Michigan Imputation Server. 

Genotypes were imputed to the 1000 Genomes Phase 1 reference panel, with 

ShapeIT used for phasing. Following imputation, indels, variants with imputation 

quality < 0.8, variants with MAF < 0.01 and A/T and C/G variants (which could show 

strand ambiguity) were removed. Additionally, samples with incomplete methylation 
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covariate data were removed. The remaining imputed genotypes were taken forward 

for analysis. 

Genome-wide CpG methylation levels were measured in approximately 1,200 

individuals (with matched genotype data) from the Understanding Society study. 

Measurement, data processing and quality control were all performed by the 

Understanding Society team. DNA from each sample was bisulfite-treated, before 

CpG methylation was using the Illumina Infinium HumanMethylationEPIC BeadChip. 

Generated IDAT files were processed in R using the wateRmelon and bigmelon 

package and converted to beta values. Outlier samples were identified and removed 

using the outlyx function in wateRmelon, and poor quality samples showing less than 

85% of DNA bisulfite converted were identified and removed using the bscon function 

in wateRmelon. The dasen function in wateRmelon was then used to normalise 

betas, and the qual function was used to identify and remove samples showing a 

large difference in beta values between the pre-normalisation and post-normalisation 

betas. The pfilter function was then applied to remove probes with low bead count 

and poor detection p values. Overall, methylation data at 857,071 CpG sites in 1,175 

samples passed this quality control. The original pre-normalised data for these 

857,071 CpG sites and 1,175 samples were then extracted, and were normalised 

using the dasen function. These normalised data were then sent over to myself. 

Alongside the normalised beta values, I also received a number of covariates for the 

methylation data. These included standard covariates, such as age and sex, as well 

as two batch variables and six estimates of white blood cell proportions per 

individual. Samples with incomplete covariate data were excluded at this stage. 

Following this, linear regression was used to adjust for covariates. For each CpG site, 

normalised beta values were regressed on age, sex (as a factor), the six estimated 

white blood cell proportions, and two batch variables. Residuals from linear 

regression were then taken forward for analysis. 

Following this, problematic CpG sites were identified and removed. Supplementary 

tables downloaded from (McCartney et al., 2016) were used to determine whether 

CpG sites mapped to multiple locations in the genome, and whether CpG sites were 

located at or near SNPs. CpG sites located on the sex chromosomes, CpG sites 

located at SNPs, CpG sites with SNPs with MAF>0.01 in the 1000 Genomes EUR 

population that were located in the probe-binding sequence, and CpG sites that 

mapped to multiple genomic regions were identified and removed. Additionally, the 
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samples removed from the genotype data due to high relatedness with other samples 

were also removed from the methylation data at this stage. 

Overall, this left matched genotype and CpG methylation data at 787,334 CpG sites 

for 1,120 individuals to be taken forward for analysis. 

 

2.1.5 INTERVAL data: 

Matched genotype and proteomics data from the INTERVAL study are used in 

Chapter 7 to investigate prediction of protein levels from SNP genotypes. Protein 

level prediction models generated with these data are then used to investigate 

factors contributing to PBC in Chapter 7. This study had a large sample size, and 

analysis in (Sun et al., 2018) implied that there were many effects of SNP genotypes 

on protein levels that could be modelled, making these data ideal for this section of 

work. 

Genotyping, pre-imputation quality control and imputation were conducted as part of 

the INTERVAL study, and are described in detail in (Astle et al., 2016). 

Approximately 50,000 INTERVAL participants were genotyped using the Affymetrix 

Axiom UK Biobank array. Following genotyping, sample-level QC was conducted to 

remove duplicates, samples showing low call rate, high heterozygosity, sex 

mismatch, highly related samples and samples of non-European ancestry, as 

determined by multidimensional scaling. Per-SNP QC was also conducted, removing 

SNPs on sex chromosomes, non biallelic SNPs, SNPs with a low call rate and SNPs 

not in Hardy-Weinberg equilibrium. Following quality control, imputation to a 

combined UK10K-1000 Genomes phase 3 reference panel was conducted using the 

Sanger Imputation Server.  

Following imputation, some quality control was then performed by (Sun et al., 2018), 

who also carried out the proteomics measurements. They removed imputed variants 

with imputation quality < 0.7, variants with minor allele count < 8, variants with Hardy-

Weinberg equilibrium p value < 5e-6, and where duplicate variants had the same 

position and alleles, the variant with the lowest imputation quality was removed. This 

results in imputed genotypes for 10,572,788 variants in 3301 samples that also had 

proteomics measures. These genotype data were then sent to us. 



26 
 

To ensure a high quality data set was used for modelling, additional post-imputation 

variant filtering was conducted by myself. The ïsummary_stats_only function in 

SNPTEST was used to identify indels, A/T and C/G SNPs, SNPs showing imputation 

quality < 0.8 and SNPs with MAF < 0.01 and SNPs without an RS number. These 

variants were then removed using bgenix. No samples were removed at this stage.  

Proteomics measurements and quality control were conducted by (Sun et al., 2018). 

150ul aliquots of plasma were taken from 3301 individuals, and plasma protein levels 

were measured using the microarray-based assay SOMAscan. Proteins were 

measured using 4,034 unique SOMAmers.  

Control probes were used to calculate hybridisation scale factors which were used to 

normalise data for within-run variation, while control samples were used to calculate 

calibration scale factors, which were used to normalise data for between-run 

variation. Samples showing extreme hybridisation scale factors and SOMAmers 

showing extreme calibration scale factors (compared to the median) were excluded. 

In addition, SOMAmers binding to non-human targets and SOMAmers showing 

coefficient of variation below 20% were excluded, leaving 3283 SOMAmers to be 

taken forward. Protein levels were adjusted for age, sex, batch variables and the top 

3 principal components (from multi-dimensional scaling) using linear regression, with 

residuals taken forward for analysis).  

Post-QC protein levels were then sent over to myself. Uniprot IDs were mapped to 

Ensembl gene IDs using the Uniprot website, and chromosome and TSS of these 

genes were identified using Gencode v27. Proteins mapping to multiple genes, and 

proteins mapping to genes on sex chromosomes were removed, leaving 3,106 

SOMAmers for downstream analysis.  

 

2.1.6 PBC cases proteomics data 

Genotyping and imputation of PBC cases was conducted as part of a larger ongoing 

PBC meta-analysis from which summary statistics are used. DNA extracted from 

blood samples from PBC cases of UK ancestry was genotyped. Following genotype 

calling, per-variant and per-sample QC were performed by Heather Cordell. The 

genotypes of the 418 samples with matched proteomics data were then extracted, 

and further QC was carried out on the post-imputation genotypes by myself. SNPs 



27 
 

with MAF < 0.01, A/T and C/G SNPs and SNPs showing missingness in any samples 

were excluded from further analysis. 

The concentrations of 368 proteins in 630 blood serum samples taken from PBC 

cases were measured using the Olink assay (Lundberg et al., 2011). Proteins were 

measured on 4 panels - Cardiovascular II, Cardiovascular III, Inflammation and 

Oncology II. In-house data processing, quality control and data normalisation was 

done by the Olink team, who provided protein measures as NPX (normalised protein 

expression).  

Uniprot protein IDs of the 368 proteins (provided by Olink) were matched to Ensembl 

gene IDs using the Uniprot website, and the chromosome and transcription start site 

of these genes were identified using Gencode v27. One protein mapped to multiple 

gene IDs and 8 proteins mapped to genes located on the X chromosome, so were 

excluded. As recommended by Olink, protein measures for which a sample failed 

their internal QC thresholds and protein measures below the limit of detection were 

considered to be missing. 18 proteins for which 50% or more of samples showed 

missing data were excluded. This left 341 proteins to be taken forward for 

downstream analysis.  

8 duplicate samples were identified among the 630 samples. The sample in each 

duplicate pair showing the most missing data was removed. In addition, samples that 

failed Olink QC on multiple panels were also excluded, leaving 403 samples to be 

taken forward for downstream analysis.  

In total, there were matched genotype and protein level data for 403 samples, which 

was the maximum sample size available for modelling. However, as there were some 

missing protein data, a slightly reduced sample size was used for modelling most 

proteins.  

 

2.1.7 GWAS summary data used in the thesis 

Publicly available summary statistics from GWAS of a wide range of complex traits 

are used throughout this thesis.  

CD data from (Liu et al., 2015a) and T1D data from (Cooper et al., 2017) are first 

used to conduct a TWAS of CD and T1D in Chapter 3 in an attempt to detect more 
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associations than detected just using the WTCCC CD and T1D data. These summary 

data were used as-is, with no additional processing. 

30 sets of GWAS summary statistics are used to conduct the MWAS, TWAS, 

colocalisation and Mendelian Randomisation analyses in Chapter 6. The details of 

these summary statistics are given in Table 2.1. Note that the T1D data shown in 

Table 2.1 are the same as those used in Chapter 3, while the CD data are derived 

from a more recent GWAS.  
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Complex trait Abbreviation Reference 

Age at menarche AAM http://www.nealelab.is/uk-biobank 

ALS ALS van Rheenen et al. (2016) 

Asthma Asthma http://www.nealelab.is/uk-biobank 

Body mass index BMI http://www.nealelab.is/uk-biobank 

Basal metabolic rate BMR http://www.nealelab.is/uk-biobank 

Bipolar disorder BP http://www.nealelab.is/uk-biobank 

Crohn's disease CD de Lange et al. (2017) 

Chronic heart 
disease 

CHD http://www.nealelab.is/uk-biobank 

Diastolic blood 
pressure 

DBP http://www.nealelab.is/uk-biobank 

Forced vital capacity FVC http://www.nealelab.is/uk-biobank 

Glaucoma Glaucoma http://www.nealelab.is/uk-biobank 

Hayfever, allergic 
rhinitis or eczema 
diagnosed by a 
doctor 

HAE http://www.nealelab.is/uk-biobank 

Hand grip strength HGS http://www.nealelab.is/uk-biobank 

Heel bone mineral 
density 

HBMD http://www.nealelab.is/uk-biobank 

High-density 
lipoprotein 

HDL http://www.nealelab.is/uk-biobank 

Height Height http://www.nealelab.is/uk-biobank 

Inflammatory bowel 
disease 

IBD de Lange et al. (2017) 

Low-density 
lipoprotein 

LDL http://www.nealelab.is/uk-biobank 

Pulse rate Pulse http://www.nealelab.is/uk-biobank 

Red blood cell count RBCCount http://www.nealelab.is/uk-biobank 

Recurrent 
depressive disorder 

RDD http://www.nealelab.is/uk-biobank 

Systolic blood 
pressure 

SBP http://www.nealelab.is/uk-biobank 

Schizophrenia SCZ http://www.nealelab.is/uk-biobank 

Type 1 diabetes T1D (Cooper et al., 2017) 

Type 2 diabetes T2D (Scott et al., 2017) 

Total cholesterol TC http://www.nealelab.is/uk-biobank 

Triglycerides TG http://www.nealelab.is/uk-biobank 

Ulcerative colitis UC de Lange et al. (2017) 

Weight Weight http://www.nealelab.is/uk-biobank 

White blood cell 
count 

WBCCount http://www.nealelab.is/uk-biobank 

Table 2.1. 30 sets of publicly available GWAS summary data used for MWAS and TWAS analyses in 

Chapter 6 

 

For the summary statistics from the GWAS of UK Biobank data conducted by Ben 

Nealeôs group, a list of SNPs that were found to fail standard GWAS quality control 

procedures by Ben Nealeôs group were removed from the summary statistics prior to 
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any downstream analysis. For the other sets of GWAS summary data that were not 

conducted by Ben Nealeôs group, no additional quality control or data processing was 

performed, and the summary statistics were used as-is in downstream analyses.  

Summary statistics from a recent meta-analysis of PBC are used in multiple analyses 

in Chapter 7. These summary statistics were generated by Heather Cordell and are 

as yet unpublished (manuscript in preparation).  

 

2.1.8 QTL summary data used in the thesis 

In addition to the GWAS summary data described above, QTL summary statistics are 

also used in this thesis. Summary statistics from cis-eQTL analysis are used for 

colocalisation analysis in Chapters 6 and 7. The eQTL analysis used to generate 

these summary statistics was performed by the GTEx team and is described in detail 

on the GTEx portal website. Briefly, using data from GTEx version 7, normalised 

whole blood gene expression levels were regressed on genotypes at SNPs with MAF 

> 0.01 within 1 Mb of the gene transcription start and end sites, with top genotype 

principal components, PEER factors, sex and genotyping platform included as 

covariates, using linear regression implemented in FastQTL. The summary statistics 

for all tests performed in this analysis were downloaded from the GTEx portal. No 

additional processing or quality control was done to these summary statistics, which 

were used as-is.  

Self-generated cis-mQTL summary statistics are used for colocalisation analysis in 

Chapter 6. For each CpG site, CpG methylation was regressed on genotypes of 

SNPs within 3 Mbs of the CpG site. This analysis was carried out using PLINK.  

Summary statistics from published cis-mQTL analysis are used for colocalisation 

analysis in Chapter 7. These mQTL summary data were taken from (Gaunt et al., 

2016). Briefly, using matched genotype data and DNA methylation data measured at 

the antenatal time point from the ARIES study, methylation at each CpG site was 

regressed on genotypes at SNPs across the genome, with age, sex, top genotype 

principal components, CpG methylation batch variables and blood cell proportion 

estimates used as covariates. Summary statistics for the tests with a p value < 1 x 

10-7 were downloaded. No additional processing or quality control were performed 

after downloading these data, which were then used as-is. 
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Summary statistics from published cis-pQTL analysis are used for colocalisation 

analyses in Chapter 7. These pQTL summary data were taken from (Sun et al., 

2018). Briefly, using data from the INTERVAL study, protein levels were regressed 

on genotypes at SNPs using the SNPTEST program. No additional processing or 

quality control were performed after downloading these data, which were then used 

as-is in the colocalisation analysis. 

 

2.2 Evaluating prediction accuracy of gene expression, CpG methylation and 

protein levels 

2.2.1 Comparison of seven different statistical approaches for predicting gene 

expression from SNP genotypes 

In Chapter 4.2 the ability of seven different statistical methods to predict gene 

expression from SNP genotypes is compared using a nested cross-validation 

approach. A nested cross-validation approach was chosen for this analysis because 

some of the statistical approaches being compared required their model parameters 

to be tuned, but using the same cross-validation to select appropriate values for 

model tuning parameters and to estimate prediction accuracy is thought to lead to 

overestimation of prediction accuracy. By using a nested cross-validation, the model 

tuning and prediction accuracy evaluation steps are performed separately, avoiding 

this inflation of prediction accuracy estimates. The details of the seven methods 

being compared are described in detail in Chapter 4.1. 

A nested cross-validation consists of an outer cross-validation loop, which is used to 

evaluate prediction accuracy and inner cross-validation loops, which are used to tune 

model parameters. First, the samples are split into ten groups of near-equal size that 

are used for the outer cross-validation loop. For each fold of the outer cross-

validation loop, one of the ten sample groups is assigned as the outer model testing 

group, and the other nine groups of samples are combined together and assigned as 

the outer model training group. After assigning the training and testing sets within the 

fold of the outer loop, the inner cross-validation loop is then conducted to allow for 

parameter tuning. A range of potential values is defined for the parameter of interest. 

The outer model training group is then itself split into ten groups of near-equal size. 

For each parameter value in the list, a prediction model is then trained using nine of 

these groups (the inner training set) and is applied to data from the remaining group 
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(the inner test set). This process is then repeated another nine times, each time 

using a different group of samples as the inner test set, and so that each sample that 

is used in the inner loop is part of the inner test set once and only once. This gives an 

estimate of prediction accuracy for each of the parameter values tested. The 

parameter value at which the maximum correlation between the predicted and 

observed values is then chosen as the optimal parameter value.  

Following this, a prediction model is then trained using all samples from the outer 

training group, using the optimal parameter value chosen via the inner cross-

validation loop. This prediction model is then applied to the outer testing group, and 

the correlation between predicted and observed values is estimated. This whole 

procedure is then performed another nine times, each time using a different group of 

samples as the outer testing group, and so that each sample is used in the outer 

testing group once and only once. The overall prediction accuracy estimate from the 

10-fold nested cross-validation is taken as the mean of the ten correlations between 

predicted and observed values obtained from the outer loop. 

This approach is used in Chapter 4.2 to evaluate the prediction accuracy achieved by 

seven different statistical approaches. These approaches were LASSO (Tibshirani, 

1996), ridge regression (Hoerl and Kennard, 2000), two forms of elastic net (Zou and 

Hastie, 2005), BSLMM (Zhou et al., 2013), BLUP (de Los Campos et al., 2013) and 

Random Forests (Breiman, 2001). These approaches are described in further detail 

in Chapter 4.1. For the LASSO, ridge regression, and elastic net (with alpha = 0.5) 

approaches, the inner cross-validation was used to tune the lambda parameter (a 

tuning parameter). For the elastic net (with alpha determined by cross-validation), the 

inner cross-validation was used to tune both the lambda and alpha parameters 

(where lambda is the tuning parameter and alpha determines the sparsity of the 

model). For BSLMM, BLUP and Random Forests, the inner loop was not performed. 

The BSLMM and BLUP approaches use Markov chain Monte Carlo (MCMC) to 

estimate their hyperparameters, so the inner loop was not required. Although the 

Random Forests approach has parameters that could have been tuned using the 

inner loop, tuning these parameters is computationally demanding and time 

consuming, and so the default parameter values were used and the inner loop was 

not required.   
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2.2.2 Examining the effect of sample size on gene expression prediction 

accuracy 

In Chapter 4.4 the effect of the sample size of the reference panel used to train gene 

expression prediction models on gene expression prediction accuracy is investigated 

using a similar nested cross-validation approach. The 10-fold nested cross-validation 

procedure described above is repeated, but in each fold of the outer loop of cross-

validation, only one of the ten groups was used as the prediction model training set, 

with the other nine groups combined and used as the testing set. The rest of the 

nested cross-validation procedure remained unchanged. These gene expression 

prediction models were trained using the elastic net method, with the alpha 

parameter set to 0.5 and the lambda parameter tuned via the inner 10-fold cross-

validation, with the value of lambda chosen as that at which the maximum correlation 

between the predicted and observed gene expression was observed in the inner 10-

fold cross-validation. The prediction accuracy was calculated as the mean of the ten 

correlations between predicted and observed expression obtained from the outer 

cross-validation loop. The prediction accuracy estimates obtained from this nested 

cross-validation approach using the reduced training set sample size were then 

compared with the estimates obtained in Chapter 4.2. Following this, the nested 

cross-validation was repeated a further seven times, each time using a different 

proportion of the samples to train the gene expression prediction models (20% of 

samples in the first repeat, 30% of samples in the second repeat, up to 80% of 

samples in the seventh repeat). For each repeat, the prediction accuracy was 

calculated as the mean of the ten correlations between predicted and observed 

expression obtained from the outer cross-validation loop. The prediction accuracy 

estimates obtained from these nested cross-validations were also compared with the 

estimates obtained in Chapter 4.2.  

 

2.2.3 Examining the effect of ancestry on gene expression prediction accuracy 

In Chapter 4.5 the effect of the ancestry of the gene expression prediction model 

training and testing data sets on gene expression prediction accuracy is examined. 

First, the ability of gene expression prediction models trained using data from 

European (EUR) samples to predict the gene expression of Yoruban (YRI) samples 

was investigated. To do this, gene expression prediction models were trained using 
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the whole set of 373 EUR samples. These gene expression prediction models were 

trained using the elastic net method, with the alpha parameter set to 0.5 and the 

lambda parameter tuned via 10-fold cross-validation, with the value of lambda 

chosen as that at which the maximum correlation between the predicted and 

observed gene expression was observed in the 10-fold cross-validation. These 

prediction models were then applied to the 89 YRI samples, and predictive 

performance was evaluated as the correlation between gene expression predicted by 

the EUR-trained prediction models and the measured gene expression of the YRI 

samples. These prediction accuracy estimates were then compared with those 

obtained from the 10-fold nested cross-validation conducted using only EUR samples 

in Chapter 4.2.  

Then, to examine the ability of gene expression prediction models trained using data 

from YRI samples to predict the gene expression of EUR samples, gene expression 

prediction models were trained using data from the 89 YRI samples. These gene 

expression prediction models were trained using the elastic net method, with the 

alpha parameter set to 0.5 and the lambda parameter tuned via 10-fold cross-

validation, with the value of lambda chosen as that at which the maximum correlation 

between the predicted and observed gene expression was observed in the 10-fold 

cross-validation. These prediction models were then applied to the 373 EUR 

samples, and the correlation between the gene expression predicted by the models 

trained using the YRI data and the measured expression of the EUR samples was 

calculated. In addition, a 10-fold nested cross-validation was performed on the 89 

YRI samples using the same procedure as used for the 10-fold nested cross-

validation on EUR samples. The prediction accuracy estimates from the application 

of the YRI-trained prediction models to the EUR samples were then compared with 

the prediction accuracy estimates obtained from the 10-fold nested cross-validation 

on the 89 YRI samples.  

Following this, a combined analysis was performed. The 373 EUR and 89 YRI 

samples were combined into a single group of 462 samples, and down-sampled to 

373 samples, keeping the relative proportion of EUR and YRI samples the same as 

in the larger group of 462 samples. A 10-fold nested cross-validation was performed 

on this mixed group of 373 samples, using the procedure as described above. These 

gene expression prediction models were trained using the elastic net method, with 

the alpha parameter set to 0.5 and the lambda parameter tuned via 10-fold cross-
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validation, with the value of lambda chosen as that at which the maximum correlation 

between the predicted and observed gene expression was observed in the 10-fold 

cross-validation. The prediction accuracy estimates obtained from this were then 

compared with the prediction accuracy estimates obtained from the 10-fold nested 

cross-validation on the 373 EUR samples.  

 

2.2.4 Examining the effect of tissue on gene expression prediction accuracy 

In Chapter 4.6 the ability of prediction models to predict across tissues is examined. 

In this analysis, gene expression prediction models trained using data from version 6 

of GTEx were used. These prediction models were trained by the developers of the 

PrediXcan software and were downloaded from predictdb.org. In total, 48 sets of 

gene expression prediction models were used, each of which was trained using gene 

expression data from a different tissue. Each set of prediction models was applied to 

genotype data from the EUR samples from the Geuvadis project to predict gene 

expression. The correlation between these predicted gene expression values and the 

measured Geuvadis gene expression values was then calculated. The prediction 

accuracy estimates achieved by the different sets of gene expression prediction 

models were then compared. 

 

2.2.5 Comparison of three methods for predicting CpG methylation from SNP 

genotypes 

In Chapter 5.1 a comparison of three methods (LASSO, elastic net (with the alpha 

tuning parameter set to 0.5) and ridge regression) for training CpG methylation 

prediction models is performed. Using each method, CpG methylation prediction 

models were trained using a training set that comprised 50% of the samples from 

ARIES at the antenatal time point. For each method, the lambda parameter was 

determined by a 10-fold cross-validation on the training set. Any values of lambda 

that produced a final prediction model that did not contain any SNPs were excluded. 

Of the remaining values of lambda, the value at which the minimum mean squared 

error between predicted and observed methylation was achieved in the cross-

validation was then selected. A prediction model was then trained on the whole 

training set using this optimal value of lambda. This prediction model was then 
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applied to a testing set that consisted of 20% of ARIES samples, and the correlation 

between the predicted and observed methylation values in this test set was 

calculated.  

 

2.2.6 Comparison of five window sizes for predicting CpG methylation from 

SNP genotypes 

In Chapter 5.2 a comparison of five window sizes is performed. These five window 

sizes were 250Kb, 500Kb, 1Mb, 2Mb and 3Mb. For each window size, CpG 

methylation prediction models were trained using the training set consisting of 50% of 

ARIES samples. CpG methylation prediction models were trained using the elastic 

net method, with the alpha parameter set to 0.5, and the lambda parameter 

determined by the same cross-validation procedure as described above for Chapter 

5.1. For each window size, the CpG methylation prediction models were trained 

using all SNPs within the specified distance from the CpG site. CpG methylation 

prediction models were then applied to the test set that consisted of 20% of ARIES 

samples, and the correlation between the predicted and observed methylation was 

calculated. The optimal window size was then determined as the window size at 

which the maximum correlation between predicted and measured methylation was 

observed. 

 

2.2.7 Evaluating CpG methylation prediction accuracy at the optimal method 

and window size 

In Chapter 5.3, having determined the optimal method and window size for the 

prediction of CpG methylation, I investigate the prediction accuracy of the procedure. 

Prediction models were trained using the optimal method and window size. Here, the 

training set consists of 70% of samples (the previous 50% training set and 20% 

testing set combined into a single group), while the testing set comprises the 

remaining 30% of samples that have not been used at any point prior to this. Again, 

the prediction models were trained using the elastic net method, with the alpha 

parameter set to 0.5, and the lambda parameter determined by the same cross-

validation procedure as described above for Chapter 5.1. Prediction models were 
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trained using CpG-specific window sizes that had been determined as optimal in 

Chapter 5.2. 

 

2.2.8 Evaluating protein level prediction accuracy  

In Chapter 7, protein level prediction models are trained and tested to determine how 

accurately protein levels can be predicted from SNP genotypes. To do this, a 10-fold 

nested cross-validation approach was used. This approach was highly similar to the 

approach described in Chapter 2.2.1 that was used to examine prediction accuracy 

for gene expression, although there were some differences. 

When examining the prediction accuracy of protein levels using INTERVAL data, the 

same procedure described in Chapter 2.2.1 was used, but with one difference. In the 

inner cross-validation, the value of lambda was not selected as that at which the 

maximum correlation between predicted and measured values was observed. 

Instead, the value of lambda was selected by excluding any values of lambda at 

which the prediction model did not contain any SNPs, and then of the remaining 

values of lambda, selecting the value at which the minimum mean squared error was 

observed in the inner cross-validation. 

When examining the prediction accuracy of protein levels using the PBC cases data, 

the same procedure described in Chapter 2.2.1 was used, but with two key 

differences. First, as there was some missing proteomics data in the PBC cases 

data, the data were split into the 10 groups used for the outer cross-validation on a 

protein-by-protein basis. For each protein, any samples with missing proteomics data 

were excluded, and the remaining samples were randomly split into 10 groups of 

near equal size. Second, lambda was tuned not by selecting the value at which the 

maximum correlation between predicted and measured values was observed in the 

inner cross-validation. Instead, lambda was chosen by first excluding any values of 

lambda at which the prediction model did not contain any SNPs, and then of the 

remaining values of lambda, selecting the value at which the minimum mean squares 

error was observed in the inner cross-validation. 

In both of these 10-fold nested cross-validation analyses, protein level prediction 

models were fitted by regressing protein levels on genotypes of SNPs within 1 Mb of 

the transcription start site of the proteinôs corresponding gene. As the protein level 
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prediction models were eventually intended to be applied only to the PBC summary 

data, only those SNPs which were present in both the PBC summary data and in the 

proteomics genotype data were used. The prediction models were fitted using elastic 

net, with the alpha parameter set to 0.5.  

 

2.3 Transcriptome wide association study (TWAS) and similar methods 

The TWAS method is used many times throughout the thesis as a method for 

investigating the role of gene expression in complex traits. The general principle of 

TWAS will be described here.  

The first step in TWAS analysis is to train a set of gene expression prediction models 

using matched genotype and gene expression data. These prediction models are 

usually trained by regressing gene expression on genotypes of SNPs proximal to the 

gene. These prediction models take the form: 

 

ώ  ͯ ὼ‍  ‐  

where yig is the expression of gene g in individual i, xil is the effect allele count (0, 1 or 

2) of SNP l in individual i, ɓlg is the weight of SNP l on gene g, p is the total number of 

SNPs in the prediction model and Ůig is an error term that includes all non-genetic 

effects on expression.  

Following on from this, the prediction models are then applied to GWAS genotype 

data to impute gene expression for the GWAS samples. Finally, the GWAS 

phenotype is then regressed on the predicted gene expression levels to obtain 

estimates of the effect size of gene expression on the phenotype, and the associated 

standard error, z score and p value.  

Alternatively, the same results of a TWAS can be derived using the gene expression 

prediction models and summary statistics (betas and standard errors) from a GWAS, 

without actually doing the gene expression imputation and the regression. This 

summary statistics based approach does not require individual level genotype and 

phenotype data from the GWAS. This approach is taken by the MetaXcan and 

FUSION software packages. The equations used to derive TWAS z scores from 
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prediction models and GWAS summary data are specific to each software package 

and are given in Chapter 3.1. 

 

2.3.1 Comparison of TWAS results using gene expression prediction models 

trained using seven different statistical methods 

TWAS analysis is used in Chapter 4.4. First, gene expression prediction models were 

trained using seven different statistical approaches. The details of the seven methods 

are described in detail in Chapter 4.1. Each prediction model was trained using data 

from all 373 EUR samples from the Geuvadis project, using the genotypes of all 

SNPs within 1 Mb of the gene transcription start site. Following this, the gene 

expression prediction models were then applied to WTCCC1 T1D GWAS data using 

the PrediXcan package. Finally, the results were compared. 

 

2.3.2 TWAS and MWAS of 30 complex traits 

TWAS is used in Chapter 6, where it is applied to publicly available GWAS summary 

data for 30 complex traits using the MetaXcan software package to identify 

associations between predicted gene expression and the complex traits. 

The prediction models used here were trained by the developers of the PrediXcan 

and MetaXcan packages. These prediction models were trained by regressing whole 

blood gene expression data on the genotypes of all SNPs within 1 Mb of the gene 

transcription start site, using elastic net (with alpha set to 0.5, and lambda 

determined by 10-fold cross-validation). These prediction models were trained using 

data from GTEx version 7. The prediction models were downloaded from 

predictdb.org and were applied to 30 sets of publicly available GWAS summary data, 

using the MetaXcan software package.  

In addition to this, the TWAS method is adapted and used to conduct a methylome 

wide association study (MWAS) in Chapter 6, in which CpG methylation prediction 

models were applied to the same 30 sets of publicly available GWAS summary data 

to detect associations between predicted CpG methylation and the complex traits. 

The CpG methylation prediction models were trained using either all samples from 

ARIES, or all samples from Understanding Society. Prediction models were only 

trained for those CpG sites where a prediction accuracy Ó 0.1 was achieved in the 
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training and testing procedure when using the optimal method and window size 

(described in Chapter 2.2.7). The CpG methylation prediction models were trained by 

regressing CpG methylation on genotypes of all SNPs within a CpG-specific distance 

(the procedure for determining this distance is described in Chapter 2.2.6) using 

elastic net, with the alpha parameter set to 0.5 and the lambda parameter determined 

by a 10-fold cross-validation. Any values of lambda that produced a final prediction 

model that did not contain any SNPs were excluded. Of the remaining values of 

lambda, the value at which the minimum mean squared error between predicted and 

observed methylation was achieved was then selected.   

 

2.3.3 TWAS, MWAS and PWAS of PBC  

In Chapter 7, a TWAS is conducted by applying gene expression prediction models 

to PBC meta-analysis summary data using the MetaXcan package. 48 sets of gene 

expression prediction models, each trained using data from a different GTEx tissue, 

were downloaded from the predictdb.org repository and applied to the PBC GWAS 

summary data using MetaXcan.  

In addition, an MWAS is also conducted by applying CpG methylation prediction 

models to PBC summary data using the MetaXcan package. The same set of CpG 

methylation prediction models described in Chapter 2.3.2 are used here.  

Finally, a PWAS is also conducted by applying protein level prediction models to the 

same PBC summary data using the MetaXcan package. Protein level prediction 

models were trained only for those proteins for which a prediction accuracy Ó 0.1 was 

achieved in the 10-fold nested cross-validation (described in Chapter 2.2.8). For each 

of these proteins, protein level prediction models were fitted by regressing protein 

levels on genotypes of SNPs within 1 Mb of the transcription start site of the proteinôs 

corresponding gene. As the protein level prediction models were eventually intended 

to be applied only to the PBC summary data, only those SNPs which were present in 

both the PBC summary data and in the proteomics genotype data were used. The 

protein level prediction models were fitted using elastic net, with the alpha parameter 

set to 0.5, and with the lambda parameter determined by the inner cross-validation, 

with the value of lambda chosen as that at which the minimum mean squared error 

was achieved in the inner cross-validation.  
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2.4 Heritability estimation 

The heritability of a trait is equivalent to the upper bound of the accuracy with which 

the trait can be predicted using only genetic information. In this thesis, gene 

expression and CpG methylation are predicted using only SNP genotype data. 

Estimating the heritability of these two traits provides an estimate of the prediction 

accuracy values that could be expected were the prediction operating perfectly.  

The aim of the heritability estimation was to obtain values for the upper bound of 

prediction accuracy that could then be compared with the actual prediction accuracy 

values that were obtained from training and testing prediction models. These actual 

prediction accuracy estimates were obtained by training prediction models using only 

the SNPs proximal to the genes (or CpG sites) of interest. So, to obtain estimates of 

the heritability of gene expression (or CpG methylation) attributable to the same set 

of proximal SNPs (that would be comparable with the prediction accuracy estimates), 

the GCTA method was used to estimate heritability in this thesis.  

GCTA fits the effects of SNPs on phenotype using the following linear mixed model: 

◐ ╧♫ ▌  ‐ 

╥ ═„ ╘„  

═ ╦╦Ⱦὔ 

Where y is a vector of phenotype measures (in this thesis, either gene expression of 

CpG methylation), X is a vector of covariates such as age and sex, ɓ is a vector of 

fixed effects, g is a vector of the total genetic effects of the individuals, Ů is an error 

term, V is the variance of the phenotype y, A is a genetic relationship matrix (GRM) 

between individuals, W is a genotype matrix, N is the number of SNPs used to 

construct the GRM, „ is the variance explained by all SNPs, I is an identity matrix 

and „  is the residual variance.  

For each gene or CpG site of interest, W was restricted to be only the set of SNPs 

proximal to the gene/CpG of interest. By constructing the GRM using only the SNPs 

proximal to the gene/CpG, only the portion of heritability attributable to the SNPs 

proximal to the gene could be estimated. When estimating the heritability of gene 

expression in Chapter 4, the GRM for each gene was constructed using genotypes at 
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all SNPs within 1 Mb of the gene start or end site (the same set of SNPs used to 

generate gene expression prediction models in the 10-fold cross-validation 

procedure). When estimating the heritability of CpG methylation in Chapter 5, the 

GRM for each CpG site was constructed using genotypes at all SNPs within a CpG-

specific distance from the CpG site. The procedure used to determine this CpG-

specific distance is described in Chapter 2.2.6. 

After constructing the GRM, restricted maximum likelihood analysis was implemented 

in GCTA to estimate the heritability. In this thesis, prediction accuracy was estimated 

as the correlation between predicted and observed gene expression (or CpG 

methylation). Squaring this correlation gives the R-squared estimate for a gene, 

which is the proportion of variance of the measured gene expression explained by 

the predicted gene expression (the value that is directly comparable with the 

heritability estimate). As this R-squared value is the square of a value bounded 

between -1 and 1, the R-squared estimate itself must fall within the [0,1] range. As 

the intention of heritability estimation was to compare the heritability estimates with 

the prediction accuracy estimates obtained from training and testing prediction 

models, heritability estimates from GCTA were restricted to fall within the [0,1] range. 

 

2.5 Bayesian multi-trait colocalisation analysis 

One of the vulnerabilities of the TWAS framework is that associations between 

predicted gene expression and phenotype can be caused by linkage disequilibrium 

(LD) between two different genetic variants, one of which affects gene expression 

and the other which affects the phenotype. These LD-induced associations are less 

biologically interesting than the associations that reflect true causality (or pleiotropy), 

and so identifying which associations have been induced by LD is important. To 

determine whether MWAS and TWAS associations detected in Chapter 6 had been 

induced by LD, a Bayesian colocalisation approach was taken. As there were more 

than two traits in each run of the colocalisation analysis, the multi-trait Bayesian 

colocalisation (Giambartolomei et al., 2018) method was used.  

Briefly, the approach aims to estimate the posterior probability (PPA) that multiple 

traits share the same causal SNP. Summary association statistics (betas and 

standard errors) from tests of associations between SNP genotypes and traits are 

used to compute approximate Bayes Factors. These Bayes Factors are then used to 
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estimate the posterior probability of a range of potential hypotheses for the sharing of 

causal SNPs between traits. Full details on how Bayes Factors are estimated and 

used to estimate posterior probabilities are given in (Giambartolomei et al., 2018).  

 

2.5.1 Colocalisation of CpG methylation, gene expression and complex traits 

Multi-trait colocalisation (moloc) analysis was used in Chapter 6 to test for 

colocalisation between CpG methylation, gene expression and complex traits. Prior 

to colocalisation analysis, MWAS and TWAS were used to identify associations 

between CpG methylation, gene expression and complex traits. The colocalisation 

analysis was then used to identify which of these associations had been induced by 

LD.  

To perform the analysis, per-SNP summary data (beta, standard error, sample size 

and MAF) from regression of CpG methylation, gene expression, and complex traits 

on genotypes of SNPs were required. Here, whole blood eQTL data downloaded 

from the GTEx portal, a self-generated set of mQTL summary data generated using 

ARIES and Understanding Society data, and the 30 sets of publicly available GWAS 

data were used. The sources for these summary data are outlined in Chapter 2.1.8.  

For each trio of a CpG site, gene and complex trait, moloc analysis was carried using 

the moloc.test function implemented using the moloc package in R. The default 

options and priors were used for all moloc analyses conducted here. A hypothesis 

was considered to be strongly supported if the moloc analysis gave it a posterior 

probability >= 0.8. 

 

2.5.2 Colocalisation of CpG methylation, gene expression, protein levels and 

PBC 

Moloc analysis was used in Chapter 7 to test for colocalisation between CpG 

methylation, gene expression, protein levels and PBC. Here, moloc was not used to 

test a specific hypothesis, as done in Chapter 6, but was used in a more agnostic, 

broad scanning approach to detect as many colocalisations between PBC and omics 

traits as possible. Furthermore, this analysis was conducted using publicly available 

mQTL summary data, rather than the mQTL summary data generated by myself that 

were used in the moloc analysis in Chapter 6. These publicly available mQTL 
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summary data only contained SNPs that were significantly associated with CpG 

methylation, rather than all SNPs tested. As a result of these factors, a slightly 

different approach to conducting the moloc analysis was taken here.  

First, 3 sets of pairwise colocalisation analyses were conducted, each between PBC 

and one of the omics traits (i.e. PBC and gene expression, PBC and methylation, 

PBC and proteomics). These pairwise colocalisation analyses were conducted using 

the R package coloc. The results for which at least 50 SNPs were used for 

colocalisation analysis, and which showed a posterior probability >= 0.8 for the 

hypothesis in which PBC colocalised with the omic trait were taken forward.  

Following this, each possible multi-trait colocalisation involving PBC and two 

intermediate traits (PBC-expression-methylation, PBC-expression-protein, PBC-

methylation-protein) was tested using moloc. This analysis was conducted using the 

moloc.test function implemented using the moloc package in R. Results in which at 

least 50 SNPs were used, which showed strong evidence of colocalisation between 

all 3 traits (PPA >= 0.8), and in which each of the two intermediate traits showed 

strong evidence of colocalisation in the previous pairwise test were taken forward.  

Finally, multi-trait colocalisation involving PBC and all 3 intermediate traits was tested 

using moloc. This analysis was conducted using the moloc.test function implemented 

using the moloc package in R. Results in which at least 50 SNPs were used, which 

showed strong evidence of colocalisation between all 4 traits (PPA >= 0.8), and in 

which each of the three intermediate traits showed strong evidence of colocalisation 

in the previous pairwise tests were taken forward.  

 

2.6 Mendelian Randomisation 

Mendelian Randomisation is a form of instrumental variable analysis that is used to 

test for a causal relationship between an exposure and an outcome of interest. In 

Chapter 6, two-step Mendelian Randomisation analysis is performed to test for a 

causal effect of CpG methylation on gene expression, and a subsequent causal 

effect of gene expression on complex traits (Relton and Davey Smith, 2012). This 

analysis was carried out for each of the trios where CpG methylation, gene 

expression and the complex trait of interest were all found to colocalise to the same 
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causal SNP with a posterior probability >= 0.8 using the moloc analysis. The same 

per-SNP summary data used for moloc analysis were also used for MR.  

Two step MR requires two independent instruments to work. To select independent 

instruments, the following algorithm was used:  

1. Select all SNPs associated with methylation at the CpG site in question at 

p<5x10-8 (from the previously determined ARIES or Understanding Society 

mQTLs) as step 1 instruments 

2. Remove step 1 instruments where effect sizes and standard errors on gene 

expression are not available in GTEx data 

3. Select all SNPs associated with gene expression at the gene in question at 

p<5x10-8 (from GTEx eQTLs) as step 2 instruments 

4. Remove step 2 instruments where effect sizes and standard errors on the 

complex trait of interest are not available in the GWAS data 

5. Remove step 1 instruments in strong LD (r2 > 0.01) with all potential step 2 

instruments 

6. Select the strongest remaining (lowest p value) step 1 instrument and take 

forward for MR analysis 

7. Remove any step 2 instruments in strong LD (r2 > 0.01) with this selected step 

1 instrument as determined using European samples from 1000 Genomes 

Phase 1 

8. Select the strongest remaining (lowest p value) step 2 instrument and take 

forward for MR analysis 

After selecting independent instruments for both steps, the MR analysis was carried 

out using the TwoSampleMR R package. MR analysis was only carried out where a 

valid instrument was taken forward for both step 1 and step 2. After identifying valid 

instruments, the Mendelian Randomisation analysis was carried out using the Wald 

ratio test. 

 

2.7 Enrichment testing 

2.7.1 Gene set enrichment testing 
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Gene set enrichment testing is used in Chapter 4 to test whether a common 

function/role exists among the set of genes for which gene expression could be 

predicted well from SNP genotypes. 

The gene set enrichment analysis was conducted using the ñgene2funcò option in the 

FUMA software (Watanabe et al., 2017). This software tests a list of input gene 

against curated sets of genes (e.g. Gene Ontology gene sets, GWAS catalogue gene 

sets) taken from MSigDB and WikiPathways using hypergeometric tests. Here, the 

list of genes for which a prediction accuracy estimate >= 0.5 was achieved in the 10-

fold nested cross-validation with data from the 373 Geuvadis samples of European 

ancestry was used as the input for this test, and the default set of background genes 

were used. Genes in the MHC regions were not excluded from this analysis. The 

gene sets with a Benjamini-Hochberg adjusted p value < 0.05 were reported as 

significantly enriched.  

 

2.7.2 CpG site enrichment testing 

Enrichment testing is also used in Chapter 5 to test whether a common role/feature 

exists among the set of CpG sites for which methylation could be predicted well from 

SNP genotypes. CpG sites were considered well predicted if the correlation between 

their predicted methylation and their measured methylation was greater than or equal 

to 0.5. Similarly, enrichment testing is also used in Chapter 6 to test for a common 

feature among the set of CpG sites associated with complex disease. 

Here, the enrichment tests were conducted using annotations taken from in the 

Illumina manifest files. As the annotations listed in the 450k chip and EPIC chip 

manifest files were slightly different, separate enrichment tests were performed for 

the results obtained using the ARIES data and the results obtained using the 

Understanding Society data.  

For each CpG site, annotations were defined in the following way:  

¶ Genic ï The CpG site was tagged to a gene in the manifest file;  

¶ Island ï The CpG site was tagged to a CpG island in the manifest file;  

¶ Promoter ï The CpG had either the ñPromoter_Associatedò or the 

ñPromoter_Associated_Cell_type_specificò annotation in the 

ñRegulatoryFeatureGroupò column;  
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¶ Enhancer ï The ñEnhancerò column (450k chip) or the ñPhantom5_Enhancersò 

column (EPIC chip) were not empty for the given CpG site;  

¶ DHS ï The ñDHSò column (450k chip) or the ñDNase_Hypersensitivity_NAMEò 

column (EPIC chip) were not empty for the given CpG site. 

In Chapter 5, enrichment of CpG sites with each of the five annotations listed above 

among the set of well-predicted CpG sites was tested using a two-sided Fisherôs 

exact test, using the background set of all CpG sites that passed quality control. In 

Chapter 6, enrichment of CpG sites with each of the five annotations listed above 

among the set of trait-associated CpG sites identified through MWAS was tested 

using a two-sided Fisherôs exact test, using the background set of CpG sites that 

were tested in the MWAS. Odds ratios, 95% confidence intervals and p values were 

reported for all enrichment tests. 
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Chapter 3. Comparison of Transcriptome Wide Association Study 

Software Packages 

 

Since the release of the first TWAS software package, PrediXcan (Gamazon et al., 

2015) in 2015, a number of other similar software packages have been released. 

While these packages enable the user to conduct TWAS analysis, each package 

conducts the analysis in a slightly different way. Additionally, there has been no 

formal comparison of these packages on the same data, so the extent to which the 

slight methodological differences between packages impact the results of TWAS 

analysis is unclear. In this chapter, I address this problem by applying four TWAS 

software packages (PrediXcan, MetaXcan, FUSION and SMR) to GWAS data for CD 

and T1D from WTCCC1, and comparing the results obtained. 

The results described in this chapter are an updated version of those presented in 

(Fryett et al., 2018). 

The WTCCC data and Geuvadis data used to perform this analysis are described in 

detail in Chapter 2.  

 

3.1 TWAS software packages used in the comparison 

Details of the general TWAS analysis procedure are given in Chapter 2. Descriptions 

of the software packages and the prediction models used to perform TWAS are given 

below: 

3.1.1 PrediXcan 

PrediXcan analysis consists of two stages. The first stage is the derivation of gene 

expression prediction models from matched SNP genotype and gene expression 

data. For each gene, gene expression measures are regressed on genotypes at all 

SNPs within 1 Mb of either the gene transcription start site or the gene transcription 

end site using elastic net. The elastic net model is fitted using the R package glmnet, 

with the model tuning parameter Ŭ set to 0.5, and the model tuning parameter ɚ 

determined by performing a 10-fold cross-validation procedure on the training data, 
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and choosing the value of ɚ at which the minimum mean squared error is achieved. 

This gives a model of the form:  

ώ  ͯ ὼ‍  ‐  

where yig is the expression of gene g in individual i, xil is the effect allele count (0, 1 or 

2) of SNP l in individual i, ɓlg is the weight of SNP l on gene g, p is the total number of 

SNPs in the prediction model and Ůig is an error term that includes all non-genetic 

effects on expression.  

During the model training procedure, a cross-validation is performed on the model 

training data to evaluate how accurately the prediction model predicts gene 

expression. Prediction models where the correlation between predicted expression 

and measured expression is significant at a false discovery rate (FDR) of less than 

5% were taken forward, with other prediction models discarded.  

The prediction models are then applied to the GWAS data to impute gene expression 

levels into the GWAS samples for which genotype and phenotype have been 

measured, but gene expression has not. Finally, for each gene, the GWAS 

phenotype is regressed on the predicted gene expression values, using either simple 

linear regression (for continuous GWAS phenotypes) or simple logistic regression (for 

binary GWAS phenotypes), giving an effect size, standard error and p value of 

predicted expression on phenotype. 

Two sets of prediction models were used in the analysis here, both of which were 

generated by the developers of the PrediXcan software using their standard 

approach as described on the previous page. The first set of models was derived 

from matched imputed SNP genotype data (at the set of SNPs present in HapMap2) 

and normalised gene expression data for 922 individuals from the Depression and 

Genes Network (DGN) project (Battle et al., 2014). After elastic net regression and 

cross-validation to determine prediction accuracy, the set of prediction models where 

correlation between predicted and observed expression was significant at an FDR of 

5% were uploaded to predictdb.org. I then downloaded these models and used them 

in this analysis.  
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The second set of models was derived from matched imputed SNP genotype data (at 

the set of SNPs present in 1000 Genomes phase 1) and normalised gene expression 

data from version 6p of the GTEx project (Battle et al., 2017). 48 sets of gene 

expression prediction models were generated, each using gene expression data from 

a different GTEx tissue. After elastic net regression and cross-validation to determine 

prediction accuracy, the set of prediction models where correlation between 

predicted and observed expression was significant at an FDR of 5% were uploaded 

to predictdb.org. I then downloaded these models and used them in this analysis. 

 

3.1.2 MetaXcan 

MetaXcan is a summary statistics level adaptation of PrediXcan, which aims to 

impute the association statistics (beta, standard error, z score and p value) between 

predicted expression and phenotype that would be produced by PrediXcan, using 

only GWAS summary statistics and gene expression prediction models. The equation 

for deriving the association between predicted expression and phenotype as 

implemented in the MetaXcan package takes the form: 

ὤ  ύ
„

„
 
‍

ίὩ‍
  

where ὤ is the z score for the association between the phenotype and the predicted 

expression of gene g, ύ  is the effect size of SNP l on gene g, „ and „ are the 

estimated variances of SNP l and the predicted expression of gene g respectively, ‍ 

is the estimated effect size of SNP l on the phenotype of interest, ίὩ‍  is the 

standard error of this beta, and p is the total number of SNPs in the gene expression 

prediction model.  

The values used for these parameters are derived from two main sources. The 

weights of SNPs on gene expression (ύ ) are taken from the gene expression 

prediction models trained on the reference panel. The estimated effect size (‍) and 

standard error (ίὩ‍ ) of SNPs on phenotype are taken from GWAS summary 

statistics for the phenotype of interest. The estimated SNP variances („) are 

calculated from the reference data used to train prediction models. The estimated 

predicted expression variance („) is estimated as follows: 
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„  ╦ ῲ╦  

where ╦  is the vector of SNP weights (wlg) on the expression of gene g and ῲ is 

the sample covariance of Xg, the matrix of genotypes of SNPs that have weights in 

the prediction models. This matrix is calculated from samples in the model training 

set. 

In attempting to modify the PrediXcan approach to work with GWAS summary 

statistics rather than individual level genotype and phenotype data, the developers 

made a number of simplifications. One such simplification was the removal of a term 

in the calculation of the MetaXcan z score. When the equation for calculating the 

MetaXcan z score is derived in full, it takes the form: 

ὤ  ύ
„

„
 
‍

ίὩ‍

ρ Ὑ

ρ Ὑ
 

where the ὤ, ύ , „, „, ‍, ίὩ‍  and p terms are as previously described, Ὑ  is the 

proportion of the variance of the phenotype explained by SNP l, and Ὑ  is the 

proportion of the variance of the phenotype explained by predicted expression of 

gene g. The authors of MetaXcan state that correct estimation of Ὑ  and Ὑ  would 

require information not usually available in GWAS summary data. So to get around 

this, the  term is replaced with the value 1, and so is in effect dropped from the 

equation. This could theoretically cause MetaXcan to give slightly different results to 

PrediXcan, although the authors of the method state that they anticipate this 

approximation would have little effect on the estimated z score.  

Another such simplification comes from using linear regression properties to derive 

the MetaXcan formula. The MetaXcan effect size and standard error of predicted 

gene expression on the phenotype are derived by using known properties of linear 

regression. This means that even when the phenotype being studied with MetaXcan 

is binary (and would normally be studied using logistic regression), the estimation of 

MetaXcan effect size and standard error is done using linear regression properties. 

Linear and logistic regression typically give similar results when the proportion of 

cases and controls are similar, yet give increasingly divergent results as the ratio of 

cases to controls (or vice-versa) increases. In many recent GWAS, such as those 
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using large population-based biobanks, the numbers of cases and controls are often 

highly discordant, and so in these situations it could be expected that MetaXcan 

would give incorrect results. However, given that WTCCC1 data (which have similar 

number of cases and controls) are used here, this is unlikely to affect the results too 

much, but it is worth noting as a potential cause of differences.  

Here, MetaXcan version 0.5 was used for analysis, using the exact same set of gene 

expression prediction models derived from GTEX data that were used with 

PrediXcan.  

 

3.1.3 FUSION 

The primary purpose of FUSION is (like MetaXcan) to impute the association 

statistics between predicted gene expression and a phenotype of interest using only 

gene expression prediction models and GWAS summary data.  

As with PrediXcan and MetaXcan, the first step in the FUSION analysis is the training 

of gene expression prediction models. For each gene, gene expression data is 

regressed on genotypes at all SNPs within 500 Kbs of the gene using four methods ï 

BSLMM, BLUP, Elastic net and LASSO. When developing their prediction models, 

the FUSION developers implemented elastic net using the R package glmnet, with 

the model tuning parameter Ŭ set to 0.5, and the model tuning parameter ɚ 

determined by performing a 5-fold cross-validation procedure on the training data, 

and choosing the value of ɚ at which the minimum mean squared error is achieved. 

LASSO was implemented using the ïlasso option in PLINK. The BSLMM was 

implemented using the GEMMA package, with the default number of MCMC burn-in 

and sampling iterations, and default priors used. The BLUP was also implemented 

using GEMMA, with default options used. 

A 5-fold cross-validation is then performed on the model training data using each of 

the four models, and the squared correlation (and a corresponding p value) between 

predicted and observed expression is calculated.  

Following this, the narrow-sense heritability of gene expression attributable to the 

SNPs within 500 Kbs of the gene is estimated by fitting a genetic relationship matrix 

and using restricted maximum likelihood analysis as implemented in GCTA. Gene 
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expression prediction models are then discarded for genes with non-significant 

(p>0.05) heritability.  

The final step is the application of gene expression prediction models to GWAS 

summary data. For each gene, the prediction model (LASSO, elastic net, BSLMM or 

BLUP) that achieved the lowest p value in the 5-fold cross-validation stage is taken 

forward as the model for application. After the best performing model is chosen, 

SNPs in the prediction model are matched up with the SNPs in the GWAS summary 

data, and the ImpG-summary algorithm (Pasaniuc et al., 2014) is used to impute 

GWAS summary statistics at any SNPs that are present in the gene expression 

prediction model but are missing from the GWAS summary data. Following this, the 

FUSION test statistic is calculated as: 

ᾀ  
╦ὤ

╦ВὫ╦
 

Where ᾀ is the z score for the association between predicted expression of the gene 

of interest and the phenotype of interest, ╦ is a vector of the effect sizes of the SNPs 

in the prediction model on expression of the gene of interest, ╩ is a vector of z scores 

of SNPs in the prediction model on the phenotype of interest (taken from GWAS 

summary data), and ВὫ is the covariance between SNPs in the prediction model 

(estimated using data from the model training set). 

Here, FUSION version 0.6 was used to conduct analysis. The prediction models 

used were generated by the FUSION developers from matched imputed SNP 

genotype data and normalised gene expression data from the GTEX project version 

6.  

 

3.1.4 SMR 

The SMR method approaches TWAS from the perspective of two-sample Mendelian 

Randomisation, in which genetic variants are used as instrumental variables to test 

for a causal relationship between an exposure of interest and an outcome. In the 

case of SMR, gene expression is used as the exposure, and the user-defined 

phenotype is used as the outcome.  
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SMR derives its ɢ2 test statistic as: 

Ὕ  
ᾀ ᾀ

ᾀ  ᾀ
  

Where, ᾀ  is the z score (ɓ divided by its standard error) of association between 

SNP and gene expression (taken from eQTL studies) and ᾀ  is the z score (ɓ 

divided by its standard error) of association between SNP and phenotype of interest 

(taken from GWAS summary statistics). 

In practice, this analysis is akin to performing a TWAS in which the gene expression 

prediction model contains only one SNP, with its weight on gene expression 

equivalent to the effect size of the SNP as estimated from regressing expression on 

SNP genotype in an eQTL study.  

Here, SMR version 1.03 was used to conduct analysis. eQTL summary statistics and 

SNP annotation information for GTEx version 6p were downloaded from the GTEx 

portal website and converted to the SMR BESD file format, before being used in 

analysis here. The default settings of the package were used. 

 

3.2 Replication of PrediXcan findings from Gamazon et al. 

The WTCCC1 data used here for the comparison of software packages underwent 

similar quality control procedures to the data used in Gamazon et al. (2015). To 

establish that these data were clean and ready to be used, some of the analyses 

performed in Gamazon et al. (2015) were repeated here, and results were compared 

to those of the original analyses in Gamazon et al. (2015). To do this, PrediXcan was 

applied to the WTCCC CD and T1D GWAS data using gene expression prediction 

models trained with DGN whole blood data. The original DGN-trained gene 

expression prediction models used in Gamazon et al. (2015) were not available, so a 

more recently updated version of these models was used. 

Overall, similar results were achieved here as in Gamazon et al. (2015) (Table 3.1). 

Of the 8 genes reported to be significantly associated with CD by Gamazon et al. 

(2015), 6 also reached a Bonferroni-corrected significance threshold (p<5.61x10-6) 

here, while the BSN and GPX1 genes just missed this threshold. Of the 29 genes 
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reported to be significantly associated with T1D by Gamazon et al. (2015), 21 also 

reached a Bonferroni-corrected significance threshold (p<5.61x10-6) here, indicating 

broad agreement between the results observed here and the results found in 

Gamazon et al. (2015), and suggesting that TWAS results can be similar despite 

small differences in data QC. 

Gene Phenotype p value in 
Gamazon et al. 

p value in this 
analysis 

ATG16L1 CD 1.94E-10 2.97E-10 

IL23R CD 1.74E-07 2.11E-08 

APEH CD 2.77E-07 2.23E-07 

ZNF300 CD 6.29E-07 4.86E-07 

NKD1 CD 8.91E-07 4.15E-06 

BSN CD 2.89E-06 9.54E-06 

GPX1 CD 3.87E-06 6.11E-06 

SLC22A5 CD 5.75E-06 4.86E-06 

DCLRE1B T1D 4.34E-15 2.25E-15 

ZNF165 T1D 2.92E-13 1.80E-12 

ERBB3 T1D 1.01E-11 8.55E-12 

EGFL8 T1D 2.52E-10 3.77E-05 

C6orf136 T1D 2.52E-10 1.71E-03 

HCG27 T1D 2.52E-10 3.99E-04 

GTF2H4 T1D 2.52E-10 1.59E-13 

DDR1 T1D 2.52E-10 2.54E-12 

AGER T1D 2.52E-10 1.37E-05 

POU5F1 T1D 2.52E-10 3.22E-05 

ATP6V1G2 T1D 2.52E-10 4.96E-08 

TUBB T1D 2.52E-10 9.58E-04 

AIF1 T1D 2.52E-10 4.19E-06 

CYP21A2 T1D 2.52E-10 8.27E-44 

LSM2 T1D 2.52E-10 5.82E-16 

VARS2 T1D 2.52E-10 1.43E-09 

APOM T1D 2.52E-10 1.57E-30 

DDAH2 T1D 2.52E-10 3.73E-17 

NCR3 T1D 2.52E-10 4.21E-31 

ZSCAN16 T1D 7.37E-10 4.77E-10 

ZKSCAN4 T1D 7.73E-10 8.39E-10 

PTPN22 T1D 5.41E-09 5.58E-10 

RPS26 T1D 6.00E-09 1.67E-08 

GDF11 T1D 9.11E-09 3.45E-08 

SUOX T1D 4.49E-08 4.00E-08 

BTN3A2 T1D 3.30E-07 2.87E-07 

PRSS16 T1D 1.34E-06 4.24E-05 

FAM109A T1D 1.94E-06 6.46E-07 

SH2B3 T1D 3.05E-06 5.92E-06 

Table 3.1. P values for genes significantly associated with CD or T1D from Gamazon et al., and 

their p values in this analysis.  
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3.3 Comparison of TWAS software packages using Geuvadis data 

To establish which of the TWAS software packages most accurately predicted gene 

expression from SNP genotypes, gene expression prediction models from the 

PrediXcan and FUSION packages were applied to data from the Geuvadis project. 

While the expected input for FUSION is GWAS summary data, the developers of 

FUSION provide an R script that allows the FUSION gene expression prediction 

models to be applied to individual level genotype data to obtain predicted gene 

expression values. As the MetaXcan and SMR packages can only use GWAS 

summary data as its input, they were not included in this analysis. For each package, 

prediction models trained using gene expression data from LCLs were applied to 

Geuvadis genotype data to predict gene expression. The squared correlation 

between the predicted expression levels and the measured levels was then 

calculated for each gene. 

Prediction accuracy (squared correlation) estimates achieved by prediction models 

from the two software packages were highly correlated and concordant (Figure 3.1), 

indicating that both packages predicted gene expression with similar accuracy. For 

many genes, the prediction accuracy achieved by each package was poor, indicating 

that these methods do not predict gene expression well for many genes. This point 

will be explored further in Chapter 4.  
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Figure 3.1. Comparison of PrediXcan and FUSION from application to Geuvadis data. Each point 

represents a single gene, and displayed are the squared Pearson correlation coefficients between 

measured Geuvadis expression and expression predicted by PrediXcan prediction models (x axis) and 

the squared Pearson correlation coefficient between measured Geuvadis expression and expression 

predicted by FUSION prediction models (y axis). The dotted line is the line of equality, and the solid 

red line is a best fit line. The correlation between x and y values and the slope of the best fit line are 

shown in the bottom right corner. 

 

3.4 Comparison of TWAS software packages using WTCCC1 data 

To compare how the different TWAS software packages performed at detecting 

associations between predicted expression and phenotype, the packages were next 

applied to GWAS data for CD and T1D from WTCCC1. For PrediXcan, individual 

level genotype and phenotype data were used as the input to the package. For the 

remaining packages, GWAS summary statistics were used as the input. To create 

GWAS summary statistics for the WTCCC1 data, a GWAS of each phenotype was 

conducted using the SNPTEST software package, using the ïfrequentist 1 ïmethod 

score options to conduct logistic regression under an additive genetic model. As the 

genotype and phenotype data used for input to the PrediXcan software package 
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were not adjusted for any covariates, no covariates were used in the GWAS of the 

WTCCC1 CD and T1D data to avoid differences in the input for the different software 

packages. The resulting summary statistics for each SNP were then used as input for 

the MetaXcan, FUSION and SMR software packages. The z scores for the 

association between predicted gene expression and phenotype produced by each of 

the TWAS packages were then compared.  

When applied to CD data, the software packages produced broadly similar results 

(Figure 3.2). Both PrediXcan and MetaXcan identified associations on chromosomes 

3, 5 and 17, while the FUSION and SMR packages identified associations 

approaching significance on chromosomes 3 and 5. However, the genes identified as 

significant were not the same for each software package. For example, on 

chromosome 5 the PrediXcan and MetaXcan packages both identified significant 

associations between CD and predicted expression of IRGM (PrediXcan p = 2.77x10-

8, MetaXcan p = 2.83x10-8), while the result for this gene from the SMR package did 

not reach significance (SMR p = 1.41x10-4), and this gene was not tested by the 

FUSION package, as there was no prediction model for this gene available in the 

FUSION package. In total, 6160 genes were tested by the PrediXcan and MetaXcan 

packages, 3293 genes were tested by SMR and 2041 genes were tested by 

FUSION, indicating that the PrediXcan and MetaXcan packages tested the broadest 

range of genes. 
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Figure 3.2. Comparison of results from applications of four TWAS methods to imputed 

WTCCC1 CD data. Manhattan plots showing p values of associations between predicted expression 

and CD from applications of PrediXcan, MetaXcan, FUSION and SMR to imputed WTCCC1 CD data 

using prediction models trained in GTEx whole blood data. P values are plotted against the 

transcription start site for each gene. The red line on each plot shows the Bonferroni-corrected 

significance threshold at 6.87Ĭ 10ī6. 

 

Again, similar results were achieved by all packages when applied to the T1D data. 

All software packages identified associations in the same regions on chromosomes 6 

and 12, while the PrediXcan and MetaXcan packages detected an additional 

association on chromosome 16 that was not found by either the FUSION or SMR 

package (Figure 3.3). As observed in the analysis of CD data, some of these 

differences were because each software package tested a different set of genes. For 

example, both PrediXcan and MetaXcan found a significant association between T1D 

and predicted expression of CLEC16A on chromosome 16 (PrediXcan p = 1.57x10-7; 

MetaXcan p = 1.46x10-7), but this gene was not tested by either the FUSION or the 

SMR package. 

 

 

Figure 3.3. Comparison of results from applications of four TWAS methods to imputed 
WTCCC1 T1D data. Manhattan plots showing p values of associations between predicted expression 
and T1D from applications of PrediXcan, MetaXcan, FUSION and SMR to imputed WTCCC1 T1D 
data using prediction models trained in GTEx whole blood data. P values are plotted against the 
transcription start site for each gene. The red line on each plot shows the Bonferroni-corrected 
significance threshold at 6.87Ĭ 10ī6. 



60 
 

 

For the set of genes tested by all four software packages, the z scores produced by 

the packages were highly correlated in both the CD (Figure 3.4) and T1D (Figure 3.5) 

analyses, indicating broad agreement between methods. As expected, PrediXcan 

and MetaXcan produced near-identical results, while the FUSION and SMR 

packages produced similar, but slightly more different results to those from 

PrediXcan and MetaXcan. Despite the broad similarity, there were some genes for 

which the different packages obtained strongly discordant results. One such gene 

was HLA-DQA1, the predicted expression of which was found to be significantly 

associated with T1D by all four software packages, but for which PrediXcan and 

MetaXcan found strongly positive z scores (PrediXcan z score = 7.80; MetaXcan z 

score = 7.04), while SMR and FUSION obtained strongly negative z scores (SMR z 

score = -6.49; FUSION z score = -17.34). Interestingly, the 20 genes for which the 

largest pairwise difference between results of the different packages were achieved 

in the T1D analysis were all located in the MHC region. 
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Figure 3.4. Comparison of results for genes tested by all four TWAS packages when applied to 

WTCCC1 CD data. Lower panels show scatter plots of z scores obtained for the genes tested by all 

four packages when applied to WTCCC CD GWAS data. The red line is a best fit line, and the blue 

dashed line is the line of equality (y=x). Upper panels show the pairwise Pearson correlation 

coefficients between the z scores obtained by the four packages for the set of genes. 
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Figure 3.5. Comparison of results for genes tested by all four TWAS packages when applied to 

WTCCC1 T1D data. Lower panels show scatter plots of z scores obtained for the genes tested by all 

four packages when applied to WTCCC T1D GWAS data. The red line is a best fit line, and the blue 

dashed line is the line of equality (y=x).  Upper panels show the pairwise Pearson correlation 

coefficients between the z scores obtained by the four packages for the set of genes. 

 

One methodological difference between the packages that could cause differences in 

their results is the way in which missing SNP data is dealt with. For the PrediXcan 

and MetaXcan packages, SNPs that are present in a gene expression prediction 

model but not in the GWAS data (for which expression is being predicted) are 

considered missing and are not used for prediction. Conversely for the FUSION 

method (when using summary level GWAS data as input), GWAS summary data are 

imputed at the SNPs present in the prediction model but missing from the GWAS 

data using the ImpG-summary algorithm, and these imputed summary statistics are 

used for prediction. To examine whether the observed z score differences across the 

genes tested by all methods may have been influenced by SNP missingness in the 

PrediXcan and MetaXcan analyses, the proportion of each MetaXcan gene 
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expression prediction modelôs SNPs that were missing from the WTCCC1 genotype 

data was calculated. Genes were then sorted according to the difference between 

their MetaXcan and FUSION z scores and placed into ten bins of equal size, with 

genes showing the largest difference placed into bin ten, and those with the smallest 

difference placed into bin one. For each bin, the average proportion of the SNPs in 

the MetaXcan prediction models that were missing from the WTCCC1 genotype data 

was then calculated. Overall, the bin corresponding to genes with the greatest z 

score differences also showed the highest average SNP missingness (Figure 3.6), 

indicating that SNP missingness may have caused some of the differences observed 

here.  

 

 

Figure 3.6. SNP missingness versus bin (denoting difference between MetaXcan and FUSION z 

scores) for MetaXcan prediction models when applied to the WTCCC1 CD data.  

 

 

3.5 Comparison of TWAS analysis results across different tissues 

The developers of the TWAS software packages tested here have each released 

sets of prediction models trained using data from different GTEx tissues. To compare 

how the prediction models derived from data from different tissues perform, the 

PrediXcan software package was applied to the WTCCC1 GWAS data for CD and 

T1D using gene expression prediction models for a range of tissues. For CD, 

prediction models trained using data from GTEx whole blood, GTEx EBV-

transformed lymphocytes and GTEx sigmoid colon tissue were applied. For T1D, 
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prediction models trained using data from GTEx whole blood, GTEx EBV-

transformed lymphocytes and GTEx pancreas tissues were applied. These sets of 

gene expression prediction models were chosen for their relevance to the trait 

studied. 

Overall, the gene expression prediction models trained using data from different 

GTEx tissues produced similar results when applied to the WTCCC CD GWAS data 

(Figure 3.7). While there were few associations detected at a Bonferroni-corrected 

significance threshold in any tissue, prediction models from all three tissues identified 

suggestive associations on chromosomes 3 and 6. For the set of genes for which a 

prediction model was available for all three GTEx tissues tested here, the resulting z 

scores showed a mildly positive correlation (all pairwise correlations between 0.49 

and 0.56) (Figure 3.8). Despite these similarities, there were some observable 

differences between the results from application of models for the different tissues. 

As seen in the comparison of different software packages, many of the differences 

between the results for different tissues were related to the set of genes tested for a 

given tissue. For example, association between SLC22A5 predicted expression and 

CD approached significance when using models trained with data from GTEx whole 

blood (p = 3.07Ĭ10ī6) and GTEx EBV-transformed lymphocytes (p = 3.85Ĭ10ī5), yet 

there was no prediction model available for this gene in GTEx sigmoid colon, 

explaining why no suggestive association was detected on chromosome 5 by the 

GTEx sigmoid colon models. 

 

 

Figure 3.7. Results from applications of PrediXcan to WTCCC CD data using prediction models 

based on 3 tissues. Manhattan plots showing p values of associations between predicted expression 

and CD from applications of PrediXcan to imputed WTCCC1 CD data, using prediction models trained 
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in GTEx data for different tissues. P values are plotted against the transcription start site for each 

gene. The red line on each plot shows the Bonferroni-corrected significance threshold at (a) 5.78 x 10-

6. 

 

 

 

Figure 3.8. Comparison of results for genes tested in all three tissues from application of 

PrediXcan to WTCCC1 CD GWAS data. Lower panels show scatter plots of z scores obtained for the 

genes tested in all three GTEx tissues when applied to WTCCC CD GWAS data. The red line is a best 

fit line, and the blue dashed line is the line of equality (y=x).  Upper panels show the pairwise Pearson 

correlation coefficients between the z scores obtained for the three tissues. 

 

As with the application to CD data, gene expression prediction models trained using 

data from different GTEx tissues produced similar results when applied to the 

WTCCC T1D data (Figure 3.9), with all tissues detecting significant associations on 

chromosomes 6 and 12. For the genes tested in all three tissues, z scores from each 

tissue were positively correlated, with all pairwise tissue-tissue correlations between 

0.56 and 0.60 (Figure 3.10). The largest difference between results from different 
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tissues were for genes located in the MHC region. Other differences were again 

related to which set of genes was tested for each tissue. For example, a significant 

association between T1D and predicted expression of CLEC16A on chromosome 16 

was detected using prediction models trained with GTEx whole blood data (p = 

1.57x10-7), yet there was no prediction model available for this gene for either the 

GTEx EBV-transformed lymphocytes or the GTEx pancreas, meaning that only GTEx 

whole blood models detected an association on chromosome 16. 

 

 

Figure 3.9. Results from applications of PrediXcan to WTCCC T1D data using prediction 

models based on 3 GTEx tissues. Manhattan plots showing p values of associations between 

predicted expression and T1D from applications of PrediXcan to imputed WTCCC1 T1D data, using 

prediction models trained in GTEx data for different tissues. P values are plotted against the 

transcription start site for each gene. The red line on each plot shows the Bonferroni-corrected 

significance threshold at (a) 5.51 x 10-6. 
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Figure 3.10. Comparison of results for genes tested in all three tissues from application of 

PrediXcan to WTCCC1 T1D GWAS data. Lower panels show scatter plots of z scores obtained for 

the genes tested in all three GTEx tissues when applied to WTCCC T1D GWAS data. The red line is a 

best fit line, and the blue dashed line is the line of equality (y=x).  Upper panels show the pairwise 

Pearson correlation coefficients between the z scores obtained for the three tissues. 

 

 

3.6 Comparison of TWAS analysis results with those from GWAS 

While TWAS methods have been suggested as a complementary approach to 

GWAS, they can theoretically discover additional risk loci not found through GWAS. 

To investigate how these two approaches compare with respect to detection and 

localisation of associations, a GWAS was conducted with each of the imputed 

WTCCC1 CD and T1D datasets. As expected, most of the significantly associated 

genes found through TWAS analysis (Figures 3.7 and 3.9) were located in the same 

genomic loci as the observed GWAS hits (GWAS Bonferroni significance threshold 

p<5x10-8) (Figure 3.11), with only 2 loci significantly associated with predicted 
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expression not identified through GWAS. In contrast, 9 of the 14 loci that attained 

genome-wide significance for either CD or T1D through GWAS showed no significant 

association signal for predicted expression, implying that TWAS may not be as 

powerful for the discovery of new associations as GWAS, and reinforcing its role as 

being complementary to (rather than a replacement for) GWAS. 

 

 

Figure 3.11. Manhattan plots of GWAS of (a) WTCCC CD data and (b) T1D data, with the 

Bonferroni-corrected significance threshold at (a) 9.12 x 10-9 for CD and (b) 9.11 x 10-9 for T1D. 

 

 

3.7 Application of MetaXcan to more recent CD and T1D genome-wide meta-

analysis data 

So far, GWAS data from WTCCC1 have been used to perform most of the 

comparisons between the different TWAS software packages. However, these data 

are now approximately fifteen years old and their sample sizes are relatively small 

compared to those used in more recent GWAS, meaning that novel associations are 

unlikely to be detected using these data. In an attempt to find more novel 

associations between predicted expression and phenotypes, TWAS was next 

performed using publicly available summary statistics from more recent, better 

powered GWAS of CD (Liu et al., 2015a) and T1D (Cooper et al., 2017). 
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In the comparisons performed so far, the TWAS software packages performed 

similarly at prediction of gene expression and at detection of associations between 

predicted expression and phenotype. However, as the PrediXcan and MetaXcan 

packages tested more genes than the other software packages, and because the 

imputation of missing GWAS summary data by FUSION could result in uncertainty in 

the gene expression prediction, for the analyses in this section, the MetaXcan 

package was chosen to take forward.  

Thus, MetaXcan was applied to summary statistics from a recent meta-analysis of 

CD comprising 5,956 CD cases and 14,927 controls using three sets of gene 

expression prediction models, each trained using a different GTEx tissue ï GTEx 

whole blood, GTEx EBV-transformed lymphocytes and GTEx sigmoid colon.  

In total, 54 significant associations between predicted expression and CD were 

detected at a Bonferroni-corrected significance threshold of p<5.15x10-6 (Figure 

3.12). This included 31 associations with predicted whole blood expression, 13 

associations with predicted EBV-transformed lymphocyte expression and 10 

associations with predicted sigmoid colon expression. Of these 54 significant 

associations, 45 were for genes that had previously been suggested as disease-

relevant in previous CD GWAS and meta-analyses, 7 were for genes located in CD 

risk loci identified in earlier CD GWAS, but had not been suggested as potential 

effector genes, and 2 (NPIPB6 and NPIPB7) were in a previously undiscovered CD 

risk locus. 

 

 

Figure 3.12. Application of MetaXcan to summary statistics from a meta-analysis of CD using 

prediction models for three tissues. Manhattan plots showing p values of associations between 
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predicted expression and CD from applications of MetaXcan to summary statistics from a CD meta-

analysis using prediction models trained in a GTEx whole blood data, b GTEx EBV-transformed 

lymphocytes and c GTEx sigmoid colon. P values are plotted against the transcription start site for 

each gene. The red line on each plot shows the Bonferroni-corrected significance threshold at 

5.15 Ĭ 10ī6 

 

MetaXcan was also applied to summary statistics from a recent meta-analysis of T1D 

comprising 5,913 T1D cases and 8,829 controls using three sets of gene expression 

prediction models, each trained using a different GTEx tissue - GTEx whole blood, 

GTEx EBV-transformed lymphocytes and GTEx pancreas. 

In total, 154 significant associations between predicted expression and T1D were 

detected at a Bonferroni-corrected significance threshold of p<5.01x10-6 (Figure 

3.13). This included 63 associations with predicted whole blood expression, 47 

associations with predicted EBV-transformed lymphocyte expression and 44 

associations with predicted pancreas expression. Most of the significant associations 

were located in risk loci previously implicated in T1D through GWAS, including the 

MHC region (in which 119 of the 154 associations were located) and 12q13, showing 

how important these regions are in T1D. 

 

 

Figure 3.13. Application of MetaXcan to summary statistics from a meta-analysis of T1D using 

prediction models for three tissues. Manhattan plots showing p values of associations between 

predicted expression and T1D from applications of MetaXcan to summary statistics from a T1D meta-

analysis using prediction models trained in a GTEx whole blood data, b GTEx EBV-transformed 

lymphocytes and c GTEx pancreas. P values are plotted against the transcription start site for each 

gene. The red line on each plot shows the Bonferroni-corrected significance threshold at 5.01Ĭ 10ī6. 
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3.8 Discussion 

Overall, the software packages tested here predicted Geuvadis gene expression with 

similar accuracy and identified associations between predicted gene expression and 

phenotype in the same genomic regions when applied to the WTCCC1 GWAS data, 

indicating broad similarity between packages. 

Despite the packages tending to identify associations in similar regions of the 

genome, these associations were not necessarily for the same genes. In fact, most of 

the differences between the results from each software packages were due to each 

of the software packages testing a different set of genes. This may be related to the 

manner in which the developers of each package selected which genes to use in 

their analysis. PrediXcan/MetaXcan prediction models were created for all genes for 

which expression was measured in GTEx, but only models where the correlation 

between predicted and observed expression (as determined by a cross-validation 

procedure) was significant at a false discovery rate of less than 5% were made 

available. FUSION prediction models were created and uploaded for all genes where 

the heritability of gene expression attributable to SNPs local to the gene in question 

was significant (at p<0.05). In this application of SMR, the default settings of the 

package were used which resulted in the package testing only the genes for which 

there was a significant eQTL (at p<5x108) in the GTEx data. Given that these are all 

measures of the strength of the relationship between genotype and expression, it is 

perhaps slightly concerning that they result in such different sets of genes being 

made available. Nevertheless, there existed a set of genes that were tested by all 

methods, and which could be used for comparative purposes.  

When looking at the set of genes tested by all methods, all methods performed 

similarly to each other, with z scores highly correlated and concordant between all 

methods in both the CD and T1D analyses. Reassuringly, PrediXcan and MetaXcan 

showed near perfect concordance, corroborating the result shown in (Barbeira et al., 

2018). This is unsurprising, given that the same set of gene expression prediction 

models are used for the two packages, and also given that the differences between 

PrediXcan and MetaXcan would be unlikely to manifest when applied to the WTCCC 

data. It is possible that if the packages were applied to data for a case/control 
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phenotype with a more unequal ratio of cases to controls, greater differences 

between the packages might be expected. Results for these genes were also similar 

for the FUSION and SMR packages, again corroborating the results shown in 

(Barbeira et al., 2018) and suggesting that software users would obtain similar results 

regardless of which package was chosen.  

However, despite these similarities, the packages obtained discordant results for 

some genes. One factor that could have caused this is the way in which missing SNP 

data is treated by the different software packages. For the PrediXcan and MetaXcan 

packages, SNPs that are in the gene expression prediction models but that are 

missing from the GWAS data are ignored during prediction. However, the FUSION 

package imputes the GWAS summary statistics at these missing SNPs using the 

ImpG-summary algorithm and then uses them for gene expression prediction. 

Indeed, some of the largest differences were observed in instances where more 

SNPs were missing from the PrediXcan and MetaXcan models. While it may seem 

attractive to impute missing data, the reason the data were missing was because the 

SNPs were poorly imputed in the genotype imputation of WTCCC data, and were 

excluded in the subsequent quality control. As this feature could not be switched off, 

PrediXcan and MetaXcan seemed more compelling as their predictions used only the 

most reliable SNPs. It is worth noting that since this analysis was performed, 

additional sanity checks related to the use of the Imp-G summary algorithm have 

been added to the FUSION package. This includes a summary statistics imputation 

quality filter, and a filter that removes genes where more than a given proportion 

(usually 50%) of the gene expression prediction modelôs SNPs are missing. These 

additional filters may help to mitigate some of the issues identified here. 

Another factor that may have resulted in the discordances observed here was the 

location of the genes. The largest discordances were observed for tests of 

association between T1D and predicted expression of genes located in the MHC 

region. As there are known to be strong effects of variants located in the MHC on 

T1D, it is possible that the strength of these effects amplified the differences between 

the packages, making them larger than would otherwise be expected.  

Following the comparison of TWAS software packages, a TWAS was performed 

using gene expression prediction models for different GTEx tissues. As with the 

comparison of software packages, many differences between the results for different 
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tissues were attributable to a different set of genes being tested for each tissue. For 

the set of genes tested in all tissues examined here, TWAS results were strongly 

correlated. Given that genetic effects on gene expression are known to be similar 

across the GTEx tissues (Mele et al., 2015) (Battle et al., 2017), this is unsurprising. 

This suggests that associations can be detected even when not using the true causal 

tissue of interest for the trait. For those genes tested across multiple tissues, it also 

raises the possibility of multivariate testing using known correlations between 

expression from different tissues, as implemented in the MultiXcan package 

(Barbeira et al., 2019).  

Although TWAS has sometimes been sold as a method for the discovery of new 

genetic risk loci not identified through GWAS alone, due to the reduced multiple 

testing burden and the summing of multiple SNPs within a single test, application of 

TWAS to the WTCCC data here found only two loci missed by GWAS, and did not 

identify many of the loci found through GWAS. This is to be expected, as TWAS 

should only identify associations where SNPs act on the phenotype by affecting gene 

expression, whereas GWAS should identify both these associations and those at 

which a SNP changes the protein code. Notably, the two ñnewò loci found through 

TWAS contained SNPs that reached a suggestive significance threshold of p<1e-05 

in the GWAS. This reinforces the role of TWAS as complementary to, rather than a 

replacement for, GWAS, and suggests that the real utility of TWAS is not necessarily 

the discovery of new risk loci, but the identification of the potential risk genes within 

previously known loci. Theoretically, TWAS has more power to detect an association 

than GWAS when multiple SNPs affecting the expression of the same gene (with the 

same direction of effect) are each independently associated with the phenotype. 

From the results observed here, there were no obvious instances of this occurring in 

regions that would not be identified through GWAS. It is possible that instances of 

this could be detected in other phenotypes not considered here, or in CD or T1D if 

larger sample sizes were used in the GWAS analysis.  

In an attempt to identify more associations than were detected using the WTCCC1 

GWAS data, TWAS was applied to summary statistics from larger, more recent 

GWAS of CD and T1D. For CD, 54 associations between predicted gene expression 

and disease status were identified, including at genes that have been previously 

suggested to be involved in CD (SLC22A5, IRGM and ATG16L1), reinforcing the role 

of these genes in CD. Additionally, some genes that have never previously been 
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suggested were identified (NPIPB6 and NPIPB7), although the role of these genes is 

unknown, and further research will be required to determine if they truly play a role in 

CD. Among the other interesting associations identified were ETS2 and ICAM1, of 

which the gene expression has been implicated in CD (van der Pouw Kraan et al., 

2009; de Lange et al., 2017). Interestingly, an application of FUSION to the same 

GWAS summary data identified similar results to those found here (Mancuso et al., 

2017), giving additional confidence to the results found here and suggesting that the 

similarities between TWAS software packages that we observed when using the 

WTCCC1 data hold true when using data other than the WTCCC1 data. For T1D, 

154 associations were identified, mostly in regions known to be heavily involved in 

T1D risk. Further investigation will be required to identify the true causal genes within 

these risk regions.  

I conclude by drawing attention to some caveats of this analysis. It is worth noting 

that most of this analysis was performed in 2016 and 2017, and a number of other 

TWAS software packages that are not included in this comparison have since been 

released. These packages include TIGAR (Nagpal et al., 2019), CoMM (Yang et al., 

2019a) and its summary statistics based extension CoMM-S2 (Yang et al., 2019b) 

and SLINGER (Vervier and Michaelson, 2016). However, neither the TIGAR nor 

CoMM software packages make any of their prediction models, or the data that could 

be used to train prediction models, publicly available. As the aim of this project was 

to compare the software packages using their publicly available prediction models, 

and no such models were provided for these packages, they could not be included. 

Additionally, the developers of the SLINGER package only developed and released 

prediction models trained using data from the DGN project, which would not have 

been suitable for comparison with the other software packages, and so SLINGER 

was not included in the comparison. These packages may be worth revisiting in the 

future if gene expression prediction models trained using data from the GTEx project 

are released in the future. 

Another caveat of this analysis is that real GWAS data were used to compare the 

methods, meaning the true effects of gene expression on the phenotype are 

unknown. This means there is no guarantee that the associations detected by each 

method are real, and that it cannot be determined which method identified the most 

ñcorrectò set of associations. Indeed, the associations in the MHC region identified by 

all the methods seem unlikely to be true, as it is widely thought that variation at 
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coding SNPs is responsible for the effects of genes in the MHC on autoimmune 

disease observed in this genomic region. Due to the high levels of linkage 

disequilibrium observed across the MHC, it is possible that genotypes at SNPs 

affecting the expression of genes in the MHC region are highly correlated with 

genotypes at coding SNPs, resulting in TWAS associations being detected.  
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Chapter 4. Investigation of Factors Affecting Prediction Accuracy in 

Transcriptome Imputation 

 

A crucial aspect of TWAS that has received little attention in the literature is the issue 

of prediction accuracy. As seen in Chapter 3, the accuracy with which gene 

expression can be predicted from SNP genotype data appears to be low for many 

genes. As the accuracy with which gene expression can be predicted from SNP 

genotypes is related to the power in the subsequent test of association between 

predicted expression and phenotype, this issue is important. To investigate this issue 

further, here I carry out a 10-fold nested cross-validation experiment using seven 

different statistical approaches to identify the best approach for model building. I then 

investigate how a number of factors related to the data used to train and test gene 

expression prediction models can affect the accuracy of gene expression prediction. 

The results described in this chapter are those described in (Fryett et al., 2020) 

 

4.1 Description of statistical methods being compared 

The ability of seven different statistical approaches for the prediction of gene 

expression from local SNP genotype data was compared. These different methods 

are described below: 

 

4.1.1 Ridge regression 

Ridge regression (Hoerl and Kennard, 2000) allows for coefficients in the prediction 

model to be shrunk by applying an L2 penalty. When using ridge regression, 

coefficients can be shrunk to near zero, but not to exactly zero, meaning that no 

variable selection is performed and that a polygenic model (where many SNPs each 

have a small effect) is produced. 

Ridge regression aims to minimise: 
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 ώ ὢ‍  ‗ ‍  

where y is the gene expression, X is a matrix of SNP genotypes, ɓ represents 

regression coefficients, and ɚ is the regularisation parameter. Here, ridge regression 

was implemented using the cv.glmnet function in the glmnet package, with the value 

of ɚ determined by 10-fold cross-validation. 

 

4.1.2 LASSO 

The LASSO (Tibshirani, 1996) allows for coefficients in the prediction model to be 

shrunk by applying an L1 penalty when fitting the model. When using LASSO, the 

model coefficients can be shrunk to exactly zero, which means that LASSO tends to 

produce a sparse model in which there are relatively few SNPs with non-zero effect 

sizes, but that these effect sizes tend to be quite large. The LASSO aims to minimise: 

ώ ὢ‍  ‗ ȿ‍ȿ 

Where y, X, ɓ and ɚ are defined in the same way as for ridge regression in section 

4.1.1. Here, LASSO was implemented using the cv.glmnet function in the glmnet R 

package, with the value of ɚ determined by 10-fold cross-validation.  

 

4.1.3 Elastic net 

The elastic net (Zou and Hastie, 2005) is a mixture model that uses both the L1 and 

L2 penalties that are used by LASSO and ridge regression respectively. The degree 

of mixture between these two penalties is determined by the value of the Ŭ 

parameter, and so the degree of shrinkage applied to the model coefficients and the 

sparsity of the model depends on the value chosen for Ŭ. The elastic net aims to 

minimise:  

 ώ ὢ‍  ‗
ρ

ς
ρ ‌ ‍  ‌ ȿ‍ȿ 
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Where y, X, ɓ and ɚ are defined in the same way as for ridge regression in section 

4.1.1, and Ŭ determines the degree of mixture between the L1 and L2 penalties. 

Here, elastic net was used in two different ways. In the first instance, the Ŭ parameter 

was set to 0.5, and the ɚ parameter was determined by 10-fold cross-validation. In 

the second instance, the values of Ŭ and ɚ were both determined by 10-fold cross-

validation. 

 

4.1.4 BSLMM 

The BSLMM (Zhou et al., 2013) combines the standard linear mixed model (LMM) 

with a Bayesian variable selection regression (BVSR) model. The BSLMM assumes 

that all SNPs each have a small effect on the phenotype, and so is in a sense 

polygenic, but also assigns a small group of SNPs an additional large effect on the 

phenotype, and so can also be considered to have sparse properties. The model is 

defined as: 

ώ  ρ‘ ὢ‍ ό ‐ 

‍ ͯ “ὔπȟ„† ρ “‬ 

ό ͯ ὓὠὔπȟ„† ὑ  

‐ ͯ ὓὠὔπȟ† Ὅ  

where µ is the mean value of expression, ɓ is a vector of fixed effects, u is a vector of 

random effects, Ů is a vector of errors, “ is the proportion of variants assigned a non-

zero fixed effect, Ű-1 is the residual variance, ůa is the magnitude of non-zero fixed 

effects, ŭ0 is a point mass at zero , ůb is the magnitude of the random effects, K is a 

variance-covariance matrix of genotypes, and In is an identity matrix.  

In practice, the model is re-parameterised in terms of PVE (ɟ), which is the proportion 

of variance explained by the fixed and random effects together, and PGE (h), which 

is the proportion of variance explained by only the fixed effects. ɟ and h are model 

hyperparameters estimated through Markov chain Monte Carlo (MCMC). Here, 

BSLMM was implemented using GEMMA, with 1,000 burn-in iterations and 10,000 

iterations used for the MCMC settings. Additionally, I tested the BSLMM using 10,000 
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burn-in iterations and 100,000 MCMC iterations for 250 genes on chromosome 18 

(Figure 4.1), although as the prediction accuracy estimates observed with this longer 

run were nearly identical to those observed with the shorter run, I chose to use the 

shorter run for the full analysis in the interest of time. 

 

 

 

Figure 4.1. Comparison of BSLMM performance at two different MCMC lengths. R estimates 

from 10-fold cross-validation on EUR Geuvadis samples using BSLMM with an MCMC length of 10000 

(x axis) and an MCMC length of 100000 (y axis) are shown for each gene on chromosome 18. The 

line of equality (dashed black) and a best fit line (solid red) are also shown. 

 

 

4.1.5 BLUP 

The Best Linear Unbiased Predictor (BLUP) is derived from a standard random 

effects regression model: 

ώ  ό  ‐ 
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where yi is the phenotype of individual i, ui is a random effect representing the genetic 

effect summed over all loci in individual i and Ůi is the residual. These are assumed to 

follow a normal multivariate distribution:  

◊
Ⱡ
◐
 ͯὓὠὔπȟ

╖„ π ╖„

π ╘„ ╘„

╖„ ╘„ ╖„ ╘„

 

╖ ╧╧Ⱦὴ 

where G is a genetic relationship matrix (GRM) defined using genotypes of SNPs 

within 1 Mb of the gene, p is the number of SNPs used to generate the GRM, and I is 

an identity matrix. This model produces a polygenic solution, where all SNPs have a 

small effect on the phenotype of interest. Further details on the model can be found 

in (de Los Campos et al., 2013). Here, the BLUP model was implemented using 

GEMMA. 

 

4.1.6 Random Forests 

Random Forests is a tree-based machine learning method proposed by (Breiman, 

2001). The first step in the standard Random Forests algorithm consists of bagging, 

which consists of randomly splitting the data to create many different training data 

sets from the initial data. Each of these data sets is then used to construct a decision 

tree. When constructing a tree, feature bagging is also performed, meaning for each 

tree a different random subset of the covariates (SNPs) is used to construct the tree. 

This procedure is performed for all the training data sets, resulting in a ñforestò of 

decision trees. The mean of the predictions from each tree in the forest is then used 

as the overall prediction from the Random Forests approach. Here, Random Forests 

were implemented using the R package ranger. 

 

4.2 Comparison of statistical methods for the prediction of gene expression 

from SNP genotype data through 10-fold nested cross-validation 

Gene expression prediction models used in TWAS can be (and have been) 

constructed using a range of statistical methods. The ability of a method to predict 



81 
 

gene expression from SNPs will depend (at least in part) on how well the methodôs 

assumptions match the genetic architecture of gene expression. To date, there has 

been limited comparison of different methods on the same data to establish which 

gives the most accurate predictions. To address this, a comparison of seven different 

model training methods was performed. These methods were LASSO, elastic net 

(with Ŭ = 0.5), elastic net (with Ŭ determined by cross-validation), ridge regression, 

BSLMM, BLUP and Random Forests. For each of the seven different methods, 10-

fold nested cross-validation was performed for each gene in the Geuvadis data set. 

For each gene, prediction accuracy was calculated as the mean of the 10 estimates 

of correlation between predicted and observed expression from each of the outer 

folds of the nested cross-validation.  

Prediction accuracy estimates were obtained by all seven methods for 22,218 genes. 

On average the BSLMM performed the best across these 22,218 genes, achieving a 

mean R = 0.0743 (Table 4.1). Behind the BSLMM, the Random Forests and the 

penalised regression approaches that assumed sparsity (LASSO and elastic net) 

outperformed the more polygenic approaches (BLUP and ridge regression). 

 

Method Mean R (across 22,218 genes) 

Ridge regression 0.0587 

Elastic net (Ŭ=0.5) 0.0634 

Elastic net (Ŭ tuned by cross-validation) 0.0656 

LASSO 0.0626 

BSLMM 0.0743 

BLUP 0.0608 

Random Forests 0.0641 

Table 4.1. Mean R estimates across 22,218 genes from 10-fold nested cross-validation 
using 7 different statistical methods. 

 

Overall, estimates of prediction accuracy achieved by each of the seven methods 

were highly correlated with each other (Figure 4.2). As expected, the greatest 

pairwise correlations were observed between pairs of sparse methods (e.g. elastic 

net and LASSO) or pairs of polygenic methods. Despite these high correlations 

between the results from different methods, for some specific genes the results 

achieved by the methods were quite different. One such gene was HSPA12B, which 
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showed R = 0.877 with elastic net (Ŭ = 0.5) and R = 0.885 with LASSO, but only R = 

0.425 with ridge regression.  

 

 

 

Figure 4.2. Correlation between R estimates from 7 different modelling approaches. In the lower 

panels, each point represents a single gene, and the R estimate obtained from the 2 corresponding 

methods are shown on the x and y axes. Also shown are the line of equality (blue dashed line) and a 

best fit line between x and y (red solid line). In the upper panels, Pearson correlation coefficients 

between the R estimates from pairs of methods are shown. 

 

While the BSLMM appears to perform the best of all methods tested here, closer 

inspection of its MCMC chain revealed that it often showed a failure to converge. For 

each run of the BSLMM, the mixture of the Markov chain was evaluated by 

calculating the autocorrelation between Markov chain states. For each chain, good 

mixing was considered to be achieved when the autocorrelation at lag 100 was 

between -0.1 and 0.1, while chains showing autocorrelation values outside this range 
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were considered to have mixed poorly. Of the 225,170 BSLMM models generated as 

part of the 10-fold cross-validation, only 16,468 (7.31%) showed consistent 

convergence of all six hyperparameters, indicating a lack of reliability. An example of 

the MCMC chains of the six hyperparameters for the PARP4P3 gene is given in 

Figure 4.3, and is representative of the MCMC chains observed for most genes.  

 

 

 

Figure 4.3. Convergence of hyperparameters for BSLMM. This plot shows convergence of BSLMM 

hyperparameters for the PARP4P3 gene. Each row contains plots for one of the BSLMM 

hyperparameters (h, pve, rho, pge, pi, n_gamma). The leftmost graphs show trace plots for these 

hyperparameters, showing the values of the hyperparameter selected in each step of the MCMC. The 

central plots show autocorrelation. The rightmost plots show the density of hyperparameter values 

chosen across the MCMC. It is expected that a hyperparameter should show a trace that travels 

across the parameter space but hovers around a mean, and autocorrelation that quickly approaches 

zero. 
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When looking at results on a gene-by-gene basis, it was clear that the expression of 

most genes could not be accurately predicted by any of the methods (Figure 4.4), 

with distributions of R from all methods heavily skewed towards zero, and many 

genes showing a negative correlation between predicted and observed expression. 

Despite this, there existed a subset of genes for which expression could be 

reasonably well predicted from SNP genotypes. A total of 480 genes achieved R Ó 

0.5 with any of the 7 methods, and these genes were subsequently defined as ñwell-

predictedò.  

 

 

 

Figure 4.4. Boxplots of gene expression prediction accuracy estimates from 7 methods. Each 

boxplot shows the distribution of R estimates (between predicted and observed expression) for 22218 

genes from 10-fold nested cross-validation for 1 statistical method. The central line within the box 

represents the median, with the upper and lower quartiles shown as the hinges.  

 

When looking at only these well-predicted genes, the difference between the sparse 

methods and the polygenic methods was more stark, with the sparse method 

outperforming the polygenic methods even more strongly (Figure 4.5). 
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Figure 4.5. Boxplots of gene expression prediction accuracy estimates from 7 methods for 

well-predicted genes. Each boxplot shows the distribution of R estimates (between predicted and 

observed expression) for 480 genes from 10-fold nested cross-validation for 1 statistical method. 

These genes had R Ó 0.5 from at least one of the 7 methods. The central line within the box 

represents the median, with the upper and lower quartiles shown as the hinges.  

 

To investigate these genes further, a gene set enrichment analysis was conducted 

using the FUMA software. In total, 11 gene sets were significantly enriched (Table 

4.2). Most of these gene sets related to immune functions, potentially due to the 

immune nature of the LCLs in which Geuvadis expression was measured. 
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Category Gene set 

Number of 

genes in 

set 

Number of well 

predicted 

genes in set p 

Bonferroni 

adjusted p 

GO_bp GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_ENDOGENOUS_PEPTIDE_
ANTIGEN 

14 5 3.87E
-07 

0.00284711
2 

GO_bp GO_INTERFERON_GAMMA_MEDIATED_SIGNALING_PATHWAY 88 9 9.30E
-07 

0.00341840
5 

GO_bp GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN 186 12 2.18E
-06 

0.00425796
8 

GO_bp GO_ANTIGEN_PROCESSING_AND_PRESENTATION 221 13 2.32E
-06 

0.00425796
8 

GO_bp GO_ANTIGEN_PROCESSING_AND_PRESENTATION_OF_ENDOGENOUS_ANTIGEN 21 5 3.68E
-06 

0.00541080
1 

GO_bp GO_RRNA_METHYLATION 27 5 1.38E
-05 

0.01688659
2 

GO_bp GO_RESPONSE_TO_INTERFERON_GAMMA 194 11 1.95E
-05 

0.02048283
1 

GWAScatal
og 

Myositis 15 7 1.66E
-10 

1.77E-07 

GWAScatal
og 

Pneumonia 9 6 1.98E
-10 

1.77E-07 

GWAScatal
og 

Lymphoma 16 7 2.92E
-10 

1.77E-07 

GWAScatal
og 

Response to hepatitis B vaccine 22 7 4.10E
-09 

1.86E-06 

Table 4.2. Gene set enrichment analysis on 480 well-predicted genes.
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4.3 Comparison of prediction accuracy estimates with heritability estimates 

In TWAS, gene expression is predicted using only genetic variants. The upper bound 

of the accuracy with which gene expression can be predicted using only genetic 

information is equal to the heritability of gene expression. To examine how close the 

prediction accuracy estimates were to this upper bound, the heritability of Geuvadis 

gene expression was estimated using GCTA. The heritability of gene expression was 

estimated using only SNPs within 1Mb of each gene (the same SNPs used to predict 

gene expression in the 10-fold cross-validation). The prediction accuracy estimates 

obtained from 10-fold nested CV were then compared with these heritability 

estimates.  

Reassuringly, prediction accuracy estimates from elastic net (Ŭ =0.5) were highly 

correlated with point estimates of local heritability obtained using GCTA (Figure 4.6), 

although there was a set of genes with large point estimates of heritability but poor 

estimates of prediction accuracy. On average, the prediction accuracy estimates 

tended to be slightly smaller than the heritability estimates, suggesting there may be 

some room for improvement in prediction accuracy. 
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Figure 4.6. Comparison of prediction accuracy estimates with heritability. Each point shows the 

estimate of the heritability of gene expression attributable to SNPs within 1Mb of the gene obtained 

using GCTA (x axis) and the prediction accuracy estimate from the 10-fold nested cross-validation 

using elastic net (Ŭ=0.5) (y axis). In this plot, prediction accuracy is shown as R2 rather than R, as the 

heritability is the upper bound on the estimate of R2. Also shown are the line of equality (black dashed) 

and a line of best fit (red).  

 

 

4.4. Comparison of statistical methods through application to WTCCC1 data 

To examine how gene expression prediction models trained using the different 

statistical approaches compared at detection of predicted expression ï trait 

associations, gene expression prediction models were trained using all European 

ancestry Geuvadis samples using each of the 7 methods, and were applied to T1D 

GWAS data from WTCCC1.  

The seven methods detected associations between predicted gene expression and 

T1D in the same genomic regions (Figure 4.7), including the MHC on chromosome 6, 

and at 12q13 and 12q24 on chromosome 12, all of which are known T1D risk loci 
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that have been previously identified in T1D GWAS. Z scores achieved by all seven 

approaches were highly correlated with each other (Figure 4.8), and no approach 

achieved a greater average z score than another, indicating further similarity between 

the methods.  

 

 

 

Figure 4.7. Manhattan plots from application of gene expression prediction models to WTCCC 

T1D GWAS data. Each plot shows the results of a TWAS on WTCCC T1D data using gene 

expression prediction models trained with a different statistical method. In each plot, each point 

represents a gene, plotted by its genomic position (defined by the TSS) on the x axis, and its p value 

in the TWAS on the y axis. The red lines indicate Bonferroni-corrected significance thresholds.  
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Figure 4.8. Correlation between z scores from TWAS on WTCCC T1D data using 7 different 

modelling approaches. In lower panels, each point shows a single gene, with the z scores from 

TWAS using models trained with 2 different statistical approaches shown on the x and y axes. Also 

shown are the line of equality (blue dashed line) and a best fit line between x and y (red solid line). 

Upper panels show Pearson correlation estimates between z scores from TWAS using the 2 

corresponding methods.  

 

4.5. Investigation of the effect of sample size on prediction accuracy 

To investigate how the sample size of the reference panel used to train gene 

expression prediction models affects prediction accuracy in TWAS, the 10-fold 

nested cross-validation was repeated using 10% of samples as the training set and 

the remaining 90% as the test set in each fold. Elastic net with Ŭ set to 0.5 was used 

for this analysis. Estimates of prediction accuracy from this analysis were compared 

with those from the cross-validation using the larger training set. 
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Prediction accuracy estimates tended to be smaller when using fewer samples to 

train gene expression prediction models (Figure 4.9). Of the 22,490 genes for which 

gene expression prediction accuracy could be estimated in this analysis and the 

previous analysis, 14,019 (62.3%) showed reduced prediction accuracy in the 

analysis using the smaller training set, with genes showing higher prediction 

accuracy in the analysis using the smaller training set tending to have low prediction 

accuracy in both analyses. However, the prediction accuracy estimates achieved at 

the reduced sample size were still highly correlated (r = 0.79) with those achieved 

using the larger sample size. Furthermore, many genes for which large R estimates 

were reached in the 90% training set analysis also reached similarly large R 

estimates at the reduced sample size. One such gene was RPS26, which achieved 

prediction accuracy R = 0.913 in the 90% training set analysis and prediction 

accuracy R = 0.888 in the 10% training set analysis. Another gene, AC008957.1 

showed prediction accuracy R = 0.915 when using the larger training set, and R = 

0.889 when using the smaller training set. For genes such as these where local SNP 

genotypes have strong enough effects on gene expression, it seems that small 

sample sizes are sufficient for constructing models that can predict expression well. 
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Figure 4.9. Comparison between prediction accuracy estimates at large and small samples 

sizes. Each point represents a gene, with its R estimate from 10-fold nested cross-validation using 

90% of EUR samples as the model training set on the x axis, and the R estimate from 10-fold nested 

cross-validation using 10% of EUR samples as the model training set on the y axis. All R estimates 

were obtained using elastic net with Ŭ = 0.5. Also shown are the line of equality (black dashed) and a 

line of best fit (red solid), with the correlation between x and y and the slope of the best fit line shown 

in the bottom right corner.  

 

Following this, 10-fold nested cross-validation was repeated a further 7 times, each 

time using a different proportion of the samples as the gene expression prediction 

model training set. The proportions used for prediction model training in each 

analysis were 20%, 30%, 40%, 50%, 60%, 70% and 80%. Overall, a clear 

improvement in average prediction accuracy was observed with increasing sample 

size used for prediction model training (Figure 4.10A). Additionally, there was no 

plateau to the average prediction accuracy increase at the sample sizes tested here, 

indicating that larger average prediction accuracy estimates could be achieved by 

increasing the sample size further. However when examining this on a gene-by-gene 

basis, a plateau was observed for some individual genes, with no increase in 

prediction accuracy beyond a certain sample size (Figure 4.10B). For these genes, it 

is possible that the limit on prediction accuracy imposed by the heritability of gene 

expression attributable to the local SNP genotypes had been reached. 
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Figure 4.10. Prediction accuracy estimates at a range of samples sizes. Prediction models were 

trained using 10%, 20%, 30% é of EUR samples, and tested on the remaining samples. In plot A, 

each point shows the mean R across genes (y axis) and the sample size at which models were trained 

(x axis). The red line indicates a best fit line between x and y. There is a clear increase in average 

prediction accuracy with increasing sample size. In plot B, each point shows the prediction accuracy 

estimate (y axis) achieved for the specified gene, and the sample size at which this prediction 

accuracy estimate was obtained (x axis). For some of the genes, the prediction accuracy estimates do 

not continue to increase with increasing sample size. 

 

4.6. Investigation of the effect of ancestry on prediction accuracy 

To investigate how accurately prediction models trained using data from samples of 

one ancestry were able to predict the gene expression of samples of a different 

ancestry, prediction models were trained using all 373 EUR Geuvadis samples using 

elastic net (with Ŭ = 0.5) and were applied to genotype data for 89 YRI Geuvadis 

samples.  

On average, prediction models tended to perform more poorly when predicting 

expression of samples of a different ancestry than those used to train the prediction 

model (Figure 4.11A). Across the genes for which prediction accuracy estimates 

were available from both analyses, the average prediction accuracy obtained from 

10-fold cross-validation using only EUR samples (mean R = 0.0625) was greater 

than the average prediction accuracy from application of prediction models trained 

with EUR samples to YRI samples (mean R = 0.0332). However, when looking on a 

gene-by-gene basis there was no consistent pattern to the results, with some genes 

showing greater R from application of EUR models to YRI samples than from the 10-

fold nested cross-validation.  
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Figure 4.11. Comparison of prediction accuracy estimates when EUR-trained models are 

applied to EUR and YRI populations.  On both plots, each point represents a gene, and shown are 

the R estimate from 10-fold nested cross-validation within EUR samples (x axis), and the R between 

expression predicted using models trained on EUR samples and applied to YRI samples, and 

measured YRI expression (y axis). Plot (A) corresponds to the analysis where sample sizes of the 

model training and testing sets used for the within-EUR analysis was not the same as the sample 

sizes used in the across-ancestries analysis. Plot (B) corresponds to the analysis where the sample 

sizes of the model training and testing sets was the same in both the within-EUR and across-

ancestries analyses. Also shown are the line of equality (black dashed) and a line of best fit (red solid), 

with the correlation between x and y and the slope of the best fit line shown in the bottom right corner.  

 

As shown previously, the sample size of the prediction model training data set is 

known to have an effect on prediction accuracy. However, this was not accounted for 

in the above analysis in Figure 4.11A. To account for sample size differences 

between the 10-fold cross-validation on EUR samples and the application of EUR 

prediction models to YRI samples, EUR prediction models were re-trained using 90% 

of the EUR samples and were applied to 37 YRI samples, matching the sample sizes 

used for the prediction model training and testing sets used for one fold of the 10-fold 

nested cross-validation on EUR samples. Again, average prediction accuracy from 

application of the EUR trained models to YRI samples was smaller than average 

prediction accuracy from the 10-fold nested cross-validation on EUR samples (Figure 

4.11B), although there was no consistent pattern to the results on a gene-by-gene 

basis. It is worth noting that there was higher variation in the prediction accuracies 

observed from this reduced sample analysis (compared with the prediction 
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accuracies achieved when using all available samples). This is likely reflective of the 

smaller sample size used for the model testing set. 

Following this, the reverse analysis was performed by training gene expression 

prediction models using the 89 YRI samples and applying them to the EUR samples. 

A 10-fold nested cross-validation was also performed using the 89 YRI samples, and 

the prediction accuracy estimates from this were compared with those from 

application of YRI-trained models to EUR samples. Overall, the average prediction 

accuracy from 10-fold cross-validation on YRI samples (mean R = 0.0317) was 

slightly greater than the average accuracy from application of YRI-trained models to 

EUR samples (mean R = 0.0184) (Figure 4.12A). As above, to account for the 

difference in sample sizes between analyses, the analysis was repeated by training 

prediction models on 90% of YRI Geuvadis and applying them to 9 EUR samples, 

matching the sample sizes to one fold of the 10-fold cross-validation on the 89 YRI 

samples. Again, the average prediction accuracy was poorer when predicting across 

populations (Figure 4.12B). It is worth noting that the prediction accuracy estimates 

obtained from this repeated analysis showed much variation, likely reflecting the 

smaller sample sizes used for both prediction and testing.  

 

 

 

Figure 4.12. Comparison of prediction accuracy estimates when YRI-trained models are applied 

to EUR and YRI populations.  On both plots, each point represents a gene, and shown are the R 

estimate from 10-fold nested cross-validation within YRI samples (x axis), and the R between 

expression predicted using models trained on YRI samples and applied to EUR samples, and 
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measured EUR expression (y axis). Plot (A) corresponds to the analysis where sample sizes of the 

model training and testing sets used for the within-YRI analysis was not the same as the sample sizes 

used in the across-ancestries analysis. Plot (B) corresponds to the analysis where the sample sizes of 

the model training and testing sets was the same in both the within-YRI and across-ancestries 

analyses. Also shown are the line of equality (black dashed) and a line of best fit (red solid), with the 

correlation between x and y and the slope of the best fit line shown in the bottom right corner.  

 

Finally, the EUR and YRI samples were combined into a single group of 462 

samples. This group was then down-sampled to a group of 373 samples, with the 

relative proportions of EUR and YRI samples kept the same as in the larger group of 

462 samples. Using this mixture of EUR and YRI samples, a 10-fold nested cross-

validation was performed using elastic net (with Ŭ = 0.5). The prediction accuracy 

estimates achieved with this mixed sample were highly correlated (r = 0.780) with 

those achieved from 10-fold nested cross-validation using only the 373 EUR samples 

(Figure 4.13). The average prediction accuracy estimate obtained from this mixed 

sample 10-fold cross-validation (mean R = 0.0609) was similar to, but marginally 

smaller than the average prediction accuracy estimate obtained from 10-fold cross-

validation on EUR samples (mean R = 0.0625). This demonstrates that even when 

the population contains samples from different ancestries, the prediction accuracy 

can be similar to that achieved using a single ancestry, as long as the composition of 

the training population matches that of the testing population. 
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Figure 4.13. Comparison of prediction accuracy estimates when using an EUR-ancestry 

population and a population of mixed ancestry. Each point represents a gene, and shown are the 

R estimate from 10-fold nested cross-validation within EUR samples (x axis), and the R from 10-fold 

nested cross-validation using the EUR and YRI samples combined into a single group (y axis). Also 

shown are the line of equality (black dashed) and a line of best fit (red solid), with the correlation 

between x and y and the slope of the best fit line shown in the bottom right corner.  

 

4.7. Prediction using models trained with data from GTEx 

All analyses conducted up to this point have been performed by splitting the 

Geuvadis data into training and testing sets, and then using prediction models trained 

with samples from one set to predict gene expression in another set. While this is a 

convenient way of conducting the analysis, it is likely to be over-optimistic as the 

different subsets of Geuvadis data were collected and processed in the same way, 

and so are highly similar. It does not necessarily reflect a more realistic application of 

TWAS methods, in which the data sets used for model training and for application 

may be quite different to one another. To investigate a more realistic scenario, gene 

expression prediction models trained using GTEx EBV-transformed LCL gene 

expression data were downloaded from predictdb.org and were applied to the 373 

Geuvadis EUR samples. The prediction accuracy achieved by these models was 
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then calculated as the Pearson correlation coefficient between their predicted 

expression and measured Geuvadis expression. 

Prediction accuracy estimates achieved by the prediction models trained using GTEx 

LCL data were highly concordant with those from the 10-fold nested cross-validation 

using the 373 EUR Geuvadis samples with elastic net (Ŭ=0.5) (Figure 4.14). This was 

especially the case for the well-predicted genes, including RPS26, which achieved 

prediction accuracy R = 0.905 from application of the GTEx LCL gene expression 

prediction model to Geuvadis, and prediction accuracy R = 0.913 from 10-fold nested 

cross-validation using EUR Geuvadis samples. On average, the prediction accuracy 

estimates achieved by the GTEx-trained models (mean R = 0.188) were slightly 

smaller than those achieved by the 10-fold nested cross-validation (mean R = 0.199), 

indicating that Geuvadis-informed models were able to predict Geuvadis expression 

marginally better than GTEx informed models.  

 

 

 

Figure 4.14. Comparison of Geuvadis-trained models and GTEx-trained models at predicting 

Geuvadis expression. Each point represents a gene, and shown are the R estimates from 10-fold 
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nested cross-validation within EUR samples on Geuvadis data (x axis), and R between measured 

Geuvadis expression and expression predicted using GTEx-trained models. Also shown are the line of 

equality (black dashed) and a line of best fit (red solid), with the correlation between x and y and the 

slope of the best fit line shown in the bottom right corner.  

 

 

4.8. Investigation of the effect of tissue on prediction accuracy 

Gene expression prediction models trained using GTEx data from a range of tissues 

were next applied to the Geuvadis data to examine the portability of prediction 

models across tissues. In total, 47 sets of gene expression prediction models 

downloaded from predictdb.org, each trained using GTEx data from a tissue other 

than LCLs (in which Geuvadis expression was measured). These 47 sets of gene 

expression prediction models were applied to the Geuvadis data. The prediction 

accuracy achieved by these sets of prediction models was then estimated as the 

Pearson correlation coefficient between the expression they predicted and the 

measured Geuvadis gene expression. The average level of prediction accuracy 

achieved by prediction models for each of the non-LCL GTEx tissues was lower than 

that achieved (average R=0.188) with the GTEx LCL prediction models (Table 4.3), 

indicating that correct tissue matching leads to more accurate prediction of gene 

expression.  

 

 

GTEx tissue Number of genes 
with predicted 
tissue expression 
and measured 
Geuvadis 
expression 

Average 
correlation 
between 
predicted tissue 
expression and 
measured 
Geuvadis 
expression 

Adipose_Subcutaneous 6623 0.0886 

Adipose_Visceral_Omentum 5228 0.0985 

Adrenal_Gland 3748 0.0971 

Artery_Aorta 5415 0.0898 

Artery_Coronary 2802 0.1045 

Artery_Tibial 6758 0.0809 

Brain_Amygdala 1846 0.0882 
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Brain_Anterior_cingulate_cortex_BA24 2586 0.0886 

Brain_Caudate_basal_ganglia 3233 0.0877 

Brain_Cerebellar_Hemisphere 3773 0.0716 

Brain_Cerebellum 4852 0.0666 

Brain_Cortex 3383 0.0832 

Brain_Frontal_Cortex_BA9 2765 0.0868 

Brain_Hippocampus 2189 0.0926 

Brain_Hypothalamus 2195 0.0915 

Brain_Nucleus_accumbens_basal_gang
lia 

2778 0.0885 

Brain_Putamen_basal_ganglia 2505 0.0882 

Brain_Spinal_cord_cervical_c-1 1974 0.0877 

Brain_Substantia_nigra 1581 0.0903 

Breast_Mammary_Tissue 4241 0.1037 

Cells_EBV-transformed_lymphocytes 2737 0.1878 

Cells_Transformed_fibroblasts 6226 0.0983 

Colon_Sigmoid 4211 0.0991 

Colon_Transverse 4406 0.1098 

Esophagus_Gastroesophageal_Junctio
n 

4275 0.1000 

Esophagus_Mucosa 6672 0.0907 

Esophagus_Muscularis 6290 0.0890 

Heart_Atrial_Appendage 4811 0.0932 

Heart_Left_Ventricle 4393 0.0916 

Liver 2708 0.0926 

Lung 6186 0.0959 

Minor_Salivary_Gland 1770 0.1075 

Muscle_Skeletal 6263 0.0782 

Nerve_Tibial 7440 0.0746 

Ovary 2379 0.0961 

Pancreas 4328 0.0942 

Pituitary 3655 0.0893 

Prostate 2453 0.1070 

Skin_Not_Sun_Exposed_Suprapubic 6034 0.0867 

Skin_Sun_Exposed_Lower_leg 7142 0.0814 

Small_Intestine_Terminal_Ileum 2443 0.1202 

Spleen 3712 0.1136 

Stomach 3853 0.1089 

Testis 5844 0.0634 

Thyroid 7481 0.0772 

Uterus 1923 0.1007 

Vagina 1857 0.1090 

Whole_Blood 5376 0.0959 

Table 4.3. Mean R estimates from application of 48 sets of GTEx-trained prediction models to 
Geuvadis data. 
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The prediction accuracy achieved by models trained using data from each of the 47 

GTEx non-LCL tissues was then directly compared with the accuracy achieved by 

models trained in the GTEx LCL data. To do this, only genes for which a prediction 

model was present for both GTEx LCL and in the non-LCL GTEx tissue of interest 

were used. When looking at the results of this comparison on a gene-by-gene basis, 

for many genes the prediction models trained using data from a GTEx non-LCL 

tissue could predict Geuvadis expression with similar accuracy to the prediction 

model trained using GTEx LCL data (Figure 4.15). 53.3% of the prediction accuracy 

estimates achieved by non-LCL prediction models trained using GTEX data from a 

non-LCL tissue were within 0.05 of the corresponding prediction accuracy estimate 

achieved for the same gene by the prediction model trained using GTEx LCL data. 

This indicated that in many instances, a gene expression prediction model trained 

using data from one tissue could proxy quite well for another tissue. However, there 

existed a set of genes for which the prediction model trained using GTEx LCL data 

strongly outperformed the prediction model trained using GTEx data from a non-LCL 

tissue. In total, 10.3% of prediction accuracy estimates achieved by non-LCL 

prediction models were at least 0.2 less than that achieved by the LCL model for the 

same gene. One example of this was NDUFAF1, for which the GTEx LCL model 

achieved a prediction accuracy estimate of 0.686, whereas the GTEx transverse 

colon model achieved an estimate of 0.128. In instances such as this, the LCL 

models clearly outperformed the non-LCL models, showing that correct tissue 

matching is important for some genes. 
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Figure 4.15. Comparison of prediction accuracy achieved by GTEx LCL-trained models and 

GTEx non-LCL-trained models. In each plot, the x axis shows the R between measured Geuvadis 

expression and expression predicted using models trained with GTEx LCL expression data. The y axis 

in each plot shows the R between measured Geuvadis expression and expression predicted using 

models trained with GTEx data from a tissue other than LCLs (the tissue is given in the plot sub-

heading). Each point represents a gene.  

Tissues are: adipose subcutaneous (ADI_S), adipose visceral omentum (ADI_V), adrenal gland 

(ADR_G), artery aorta (ART_A), artery coronary (ART_C), artery tibial (ART_T), brain ï amygdala 

(BR_A), brain ï anterior cingulate cortex (BR_ACC), brain ï caudate basal ganglia (BR_CBG), brain ï 

cerebellar hemisphere (BR_CH), brain ï cerebellum (BR_CE), brain ï cortex (BR_CO), brain ï frontal 

cortex (BR_FC), brain ï hippocampus (BR_HI), brain ï hypothalamus (BR_HY), brain ï nucleus 

accumbens basal ganglia (BR_NABG), brain ï putamen basal ganglia (BR_PBG), brain ï spinal cord 

cervical c-1 (BR_SCC), brain ï substantia nigra (BR_SN), breast ï mammary tissue (B_MT), cells ï 

LCLs (C_ETL), cells ï transformed fibroblasts (C_TF), colon ï sigmoid (CO_S), colon ï transverse 

(CO_T), esophagus ï gastroesophageal junction (E_GJ), esophagus ï mucosa (E_MUC), esophagus 

ï muscularis (E_MUS), heart ï atrial appendage (H_AA), heart ï left ventricle (H_LV), liver (LIV), lung 

(LU), minor salivary gland (MSG), muscle ï skeletal (MUS), nerve ï tibial (N_T), ovary (OV), pancreas 

(PAN), pituitary (PIT), prostate (PRO), skin ï not sun exposed suprapubic (S_NSES), skin ï sun 

exposed lower leg (S_SELL), small intestine ï terminal ileum (SI_TI), spleen (SPL), stomach (STO), 

testis (TES), thyroid (THY), uterus (UT), vagina (VA), whole blood (W_B). 
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4.9. Discussion 

In this chapter, a range of different statistical approaches for the prediction of gene 

expression from SNP genotypes were compared, with the methods that assumed 

sparsity performing slightly better on average than those that assumed polygenicity, 

reinforcing similar findings from an earlier, more limited comparison of four statistical 

approaches (Zeng et al., 2017). These differences between the sparse and polygenic 

methods were the greatest for the genes where expression could be predicted quite 

well (prediction accuracy Ó 0.5) from SNP genotypes. Given that the genetic 

architecture of gene expression at SNPs proximal to genes is thought to be sparse 

(Wheeler et al., 2016), and given that the gene expression prediction models here 

were trained by regressing gene expression on genotypes at SNPs most proximal to 

each gene, this result is perhaps unsurprising. In addition to the local architecture of 

gene expression, it is known that many distal SNPs act on the expression of genes, 

usually with much weaker effects than those observed for the proximal SNPs (Liu et 

al., 2019). This is indicative that there is a more polygenic distal genetic architecture 

of gene expression, and so if these distal SNPs were to be used for gene expression 

prediction model training, it is possible that the more polygenic methods would 

outperform the more sparse methods. Further investigation would be required to 

determine if this is indeed the case. 

On average, the best performing method here was the BSLMM, which showed a 

marginally higher average prediction accuracy than other methods including the 

Random Forests, both flavours of elastic net and LASSO. Currently, the most popular 

TWAS software packages (PrediXcan, MetaXcan and FUSION) use the elastic net 

(with the Ŭ parameter set to 0.5) to train their gene expression prediction models. 

Based on the results observed here, it seems that there could potentially be a slight 

gain in average prediction accuracy by fully tuning the Ŭ parameter of the elastic net, 

or by switching to Random Forests or the BSLMM.  

However, there would be a number of issues with switching the methods. First, 

switching to the BSLMM would seem inappropriate given that major convergence 

issues were observed when using the BSLMM. These convergence issues imply that 

the parameters and hyperparameters used by BSLMM may not be correctly 
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estimated from the data, which raises concerns about the use of this method for the 

prediction of gene expression. Second, switching to the Random Forests approach 

would only work when performing a TWAS using individual level data, and would not 

be appropriate for use in a summary statistics based approach (such as MetaXcan). 

This is because the Random Forests approach does not produce estimates of the 

coefficients of SNP genotypes on gene expression, but instead produces a ñforestò of 

prediction trees that require individual level genotype data as the input. Given that 

most TWAS conducted now use a summary statistics based method such as 

MetaXcan or FUSION, use of the Random Forests method would be inconvenient. 

Third, switching to tuning the Ŭ parameter in the elastic net would increase the time 

and computational resources required to train the gene expression prediction model. 

Given that the increased prediction accuracy achieved by tuning the parameter 

(compared to that achieved by setting to 0.5) was only marginal, the gain in TWAS 

power would likely only be marginal, and so it may not be worth doing this. The 

choice of whether or not to tune this parameter would likely come down to the size of 

the dataset used to train models and the computational resources available for the 

project.  

A crucial observation from the results obtained here is that the prediction accuracy 

for many of the genes examined here was very low, with many genes showing a 

cross-validation R near 0, and some genes showing an R below 0. Similar results 

were shown in Chapter 3 of this thesis and in (Gamazon et al., 2015; Wheeler et al., 

2016), suggesting that the prediction values observed here are realistic. As the 

accuracy with which gene expression can be predicted is related to the subsequent 

power for that gene in a test of association between predicted expression and 

phenotype, these results suggest that the TWAS power for many genes would be 

quite low. However, the power to detect an association between predicted expression 

and phenotype in a TWAS relies not only on the prediction accuracy of gene 

expression, but also on the sample size of the GWAS data being used. Thus, an 

association can still be detected for genes where expression cannot be predicted 

accurately, if the GWAS data being used has a sufficient sample size. Given that the 

sample sizes used in GWAS are ever-increasing, more and more associations for 

poorly predicted genes will likely be detected in the future.  

One reason that the prediction accuracy estimates may be so low is that there is not 

much variation in gene expression attributable to the SNPs used for generating 
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prediction models. Indeed, the prediction accuracy estimates found here were mostly 

concordant with, although marginally smaller than, estimates of gene expression 

heritability calculated with GCTA, suggesting that the gene expression prediction 

models were performing nearly as well as could be expected. On average, the 

prediction accuracy estimates were smaller than the estimates of heritability, 

suggesting there may be room for improvement to the prediction accuracy estimates 

observed here. It is also worth noting that GCTA assumes that every SNP has an 

effect on the phenotype when estimating heritability, and so is polygenic. Given that 

the local architecture of gene expression is thought to be sparse, it is possible that 

GCTA is in fact underestimating the heritability, which would suggest that there is 

more room for improvement to the prediction accuracy estimates observed here. 

Further investigation using a heritability estimation model better suited to the data 

would be required to determine this.  

Following the examination of prediction accuracy itself, the role of a number of 

factors on prediction accuracy was examined. The first to be examined was sample 

size. Unsurprisingly, the average prediction accuracy observed from 10-fold cross-

validation increased as the sample size used to train the gene expression prediction 

models increased. Similar results have been found when examining the prediction of 

other complex traits (Wei et al., 2013; Guo et al., 2016). This highlights the need for 

development of reference panels with larger sample sizes to allow the training of 

more accurate gene expression prediction models.  

Currently, the most popular TWAS software packages mostly use GTEx as the 

reference panel for prediction model training. Although GTEx has matched genotype 

and expression data for many tissues, the sample size available in GTEx is often 

quite small, meaning that the TWAS power in many tissues is small. By increasing 

the sample sizes available in GTEx, gene expression prediction models would be 

able to predict expression with greater accuracy, improving TWAS power. 

Additionally, this increase in prediction accuracy would likely increase the number of 

genes that could be examined in a TWAS. For example, consider the PrediXcan 

package, which only makes gene expression prediction models that are able to 

predict gene expression with accuracy above a certain threshold publicly available. 

By increasing sample size and thus prediction accuracy, more genes would likely 

pass this threshold and be included in the set of publicly available prediction models, 

allowing greater gene discovery in future TWAS.  
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A further reason to increase the sample size of reference panels is that it will allow 

for the inclusion of more distal SNPs in gene expression prediction models. The 

sample size currently available in reference panels such as GTEx prohibits the 

inclusion of SNPs across the whole genome in gene expression prediction models, 

so the effects of SNPs distal to the gene on expression are missed. Given that these 

distal SNPs are known to have effects on gene expression (Brynedal et al., 2017), 

and many of these distal effects are thought to be key drivers of SNP - disease 

associations (Westra et al., 2013; Kirsten et al., 2015), their inclusion in prediction 

models would likely facilitate additional gene discovery through TWAS. Thus, 

increasing sample size to the point where these effects can be modelled would seem 

beneficial. However it is worth considering that because many of these distal effects 

act on multiple genes simultaneously (Brynedal et al., 2017), their inclusion in gene 

expression prediction models also increases the likelihood of co-prediction of multiple 

genes by a single prediction model. This could lead to the identification of spurious 

TWAS associations, and so would lead to difficulty in interpretation of TWAS results.  

The next factor to be examined was ancestry. Overall, a reduction in the average 

prediction accuracy was observed when using gene expression prediction models 

trained using data from samples of one ancestry to predict into samples of a different 

ancestry (compared to within-population prediction). This corroborates findings from 

(Mogil et al., 2018) and (Mikhaylova and Thornton, 2019), and suggests that correct 

population matching will lead to better prediction accuracy and improve TWAS 

power. This reduction in average prediction accuracy may have been caused by a 

number of factors, including differences in linkage disequilibrium between the 

different populations, differences in data processing between the samples from 

different populations, differences in the SNPs used for prediction, or differences in 

allele frequencies between the populations as suggested by (Mogil et al., 2018). 

GTEx, the most popular resource used to generate gene expression prediction 

models, consists primarily of samples of European descent. Using resources such as 

this may lead to inaccurate prediction of gene expression for samples of non-

European ancestry, and even the detection of spurious TWAS associations due to 

mismatched linkage disequilibrium. While some effort has been made to create 

prediction models using data from non-European populations (Mogil et al., 2018), 

more population-specific reference panels (especially with gene expression data 
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gathered from tissues other than whole blood) will need to be developed to allow 

better TWAS in populations of non-European ancestry. 

Predictions accuracy estimates from 10-fold cross-validation were then compared 

with those achieved by the prediction models from the PrediXcan software package. 

Overall, the prediction accuracy estimates achieved by the prediction models from 

PrediXcan were highly similar, although on average slightly smaller than those 

achieved by 10-fold nested cross-validation. This may have been the result of slight 

differences in data collection and processing between the Geuvadis data and the 

GTEx data used to train PrediXcan models, or may have been caused by SNP 

missingness between the models and the Geuvadis data. Regardless of the reason, 

the result suggests that using data as similar as possible to the intended ñtestò data 

for the training of gene expression prediction models would likely give more accurate 

predictions. This may be a realistic prospect for large consortia where gene 

expression has been measured in a subset of the samples. However, even in 

circumstances such as these, it would still be important to consider the potential 

trade-off between using data as similar as possible to the intended test data, and 

using gene expression prediction models potentially trained using a larger sample 

size (which may be achieved by using a standard reference panel such as GTEx).  

Finally, the issue of prediction of gene expression across tissues was examined. The 

average prediction accuracy was at its greatest when the data used to train the gene 

expression prediction models was derived from the same tissue as the data used to 

test the gene expression prediction models, corroborating similar findings in 

(Gamazon et al., 2015). Although, when digging a bit deeper, for many genes the 

prediction models trained using data from a non-LCL tissue were able to predict 

Geuvadis gene expression with similar accuracy to the prediction models trained 

using LCL expression data. Given that many eQTLs show evidence of concordance 

of effects across many different tissues (GTEx Consortium, 2015), this result is 

perhaps not surprising. However, it is reassuring, as it implies that for some genes 

using gene expression prediction models from the ñwrongò tissue can still provide a 

similar degree of prediction accuracy as if the ñcorrectò tissue were used, meaning 

that TWAS power is likely to be similar. Despite this, there was a group of genes 

where the prediction models trained using data from a non-LCL tissue clearly 

performed more poorly than the models trained using LCL data. In these instances, 

using gene expression prediction models trained in the wrong tissue may result in 
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poorer prediction accuracy and reduced power in TWAS. Given this result, and 

considering that it would not be known a priori whether any given gene would be one 

that could proxy well or not, ideally it would be best to attempt to carefully match the 

tissue of the prediction model to the intended test data. The best publicly available 

resource for this would seem to be GTEx, which currently has data available for over 

50 tissues, allowing the training of many tissue-specific sets of gene expression 

prediction models. Continuing improvements to GTEx by gathering more samples, 

especially those from non-EUR ancestry, and data from tissues not currently 

collected by GTEx would make this resource even better. 

It is worth noting that this analysis is biased in a number of ways. The gene 

expression prediction models downloaded from predictdb.org and used in this 

analysis were a filtered set of gene expression prediction models that all showed 

prediction accuracy above a certain threshold in the model training phase. Thus, 

genes where expression could not be predicted with sufficient accuracy were not 

included in this analysis. These poorly predicted genes that were not tested here may 

behave differently to those well-predicted genes that were examined here. Further 

study with more data would be required to determine this. Furthermore, the Geuvadis 

LCL data were used to test the ability of all these prediction models to predict into 

another tissue. Thus, inference can only be made regarding how well these models 

predict into LCL data, not into data from other tissues.  

In conclusion, this chapter has demonstrated that methods with assumptions of 

sparsity tend to achieve the best gene expression prediction accuracy estimates, 

although for the majority of genes these estimates are still low. This chapter has also 

demonstrated that increases to sample size and matching of ancestry and tissue 

between the data used to generate prediction models and the prediction model 

testing data improves the prediction accuracy. Further increases in the sample size 

of reference panels and gathering of samples from multiple ancestries and tissues 

will help to improve gene expression prediction accuracy, and thus improve the 

power of future TWAS. 
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Chapter 5. Investigation of Prediction of CpG methylation From SNP 

Genotypes 

 

Although the TWAS methodology has mainly been used to explore the role of gene 

expression in complex traits, the same methodology can theoretically be used to 

explore the role that any other intermediate trait plays in complex traits, provided that 

trait is under genetic regulation. One such trait is DNA methylation, which is known to 

regulate gene expression and has been shown to affect complex traits. The power to 

detect associations between predicted DNA methylation and complex traits in a 

TWAS-like approach would depend partially on how accurately DNA methylation 

could be predicted from SNP genotypes. In this chapter, I investigate how accurately 

DNA methylation can be predicted by training and testing DNA methylation prediction 

models using data from ARIES and Understanding Society.  

The ARIES and Understanding Society data sets used in this chapter are described 

in detail in Chapter 2.  

 

5.1 Comparison of statistical methods for prediction of CpG methylation levels 

from SNP genotypes 

First, the ability of three penalised regression approaches to predict CpG methylation 

from local SNP genotypes was compared. These three approaches were: LASSO, 

elastic net (with Ŭ set to 0.5) and ridge regression. Although the elastic net with alpha 

determined by cross-validation outperformed these methods for prediction of gene 

expression from SNP genotypes in Chapter 4, this method was not used here due to 

time constraints. To compare the three approaches, 50% of ARIES samples were 

designated as the prediction model training set, and 20% as the test set. For each 

CpG site, CpG methylation prediction models were trained using samples from the 

training set, using each of the three methods, using all SNPs within 1 Mb of the CpG 

site. For each of the three methods, the lambda parameter was determined by 10-

fold cross-validation within the training set. Only values of lambda at which the final 

prediction model contained at least one SNP were considered, and the value of 

lambda was chosen as that at which the minimum mean squared error was achieved 

in the 10-fold cross-validation. The prediction models were then applied to the test 
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set, and the Pearson correlation coefficient (R) between predicted and observed 

methylation levels was calculated.  

Overall, LASSO and elastic net performed highly similarly to each other, while both 

marginally outperformed ridge regression (Figure 5.1A). Across the CpG sites that 

were successfully modelled with all three methods, higher average prediction 

accuracy estimates were achieved with LASSO (mean R = 0.0973) and elastic net 

(mean R = 0.0975) than with ridge regression (mean R = 0.0799). In addition, 

estimates from all three methods were highly correlated (Figure 5.1B), with all 

pairwise correlations greater than 0.86.  

 

 

Figure 5.1. Comparison of penalised regression approaches for predicting CpG methylation. 

(A) Box plots of prediction accuracy estimates (R) from training and testing prediction models using 3 

forms of penalised regression (ridge regression, elastic net, LASSO) on ARIES data. The line within 

the box represents the median, with the edges of the box the upper and lower quartiles. (B) 

Correlation plots between prediction accuracy estimates achieved using the 3 penalised regression 

approaches. In the lower panels, each point represents a CpG site, with the R achieved by 2 methods 

displayed on the axes. Also shown are the line of equality (green dashed line) and a best fit line 

between x and y (red solid line). Upper panels show the pairwise correlations between the R values 

achieved using the 3 methods. 

 

When looking at the results on a CpG-by-CpG basis, methylation could not be 

predicted accurately at most CpG sites examined here, with only 10,004 CpG sites 

showing a prediction accuracy estimate greater than 0.5 from any of the three 

methods. When looking at these 10,004 CpGs for which an R estimate Ó 0.5 was 

achieved by any of the 3 methods, the difference between the sparse methods and 

the polygenic method was clear, with the sparse methods outperforming the 
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polygenic methods even more strongly than observed previously (Figures 5.2A and 

5.2B).  

 

 

Figure 5.2. Comparison of penalised regression approaches for predicting CpG methylation for 

well predicted CpG sites. Displayed are CpGs that achieved R estimates of 0.5 or greater from any 

of the 3 penalised regression approaches. (A) Box plots of prediction accuracy estimates (R) from 

training and testing prediction models using 3 forms of penalised regression (ridge regression, elastic 

net, LASSO) on ARIES data. The line within the box represents the median, with the edges of the box 

the upper and lower quartiles. (B) Correlation plots between prediction accuracy estimates achieved 

using the 3 penalised regression approaches. In the lower panels, each point represents a CpG site, 

with the R achieved by 2 methods displayed on the axes. Also shown are the line of equality (green 

dashed line) and a best fit line between x and y (red solid line). Upper panels show the pairwise 

correlations between the R values achieved using the 3 methods. 

 

5.2 Comparison of window sizes for prediction of CpG methylation levels from 

SNP genotypes 

In the (Gaunt et al., 2016) paper in which the ARIES data is described, the authors 

identified a number of trans-mQTLs, where SNPs distal to a CpG site are associated 

with its methylation levels. To investigate whether incorporating SNPs more distal to 

CpG sites into methylation prediction models could improve their prediction accuracy, 

CpG methylation prediction models were trained using a number of different window 

sizes (the distance from the CpG by which SNPs are selected for modelling). To do 

this, CpG methylation prediction models were trained by regressing CpG methylation 

on genotypes of all SNPs within either 250Kb, 500Kb, 1Mb, 2Mb or 3Mb upstream or 

downstream of the CpG site. This analysis was conducted using elastic net with 
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alpha set to 0.5 and with lambda determined by 10-fold cross-validation as in section 

5.1. This analysis also used the same training and testing sets as used in section 5.1. 

Overall, the prediction accuracy estimates obtained at the five window sizes were 

highly correlated with one another (Figures 5.3A and 5.3B), with all pairwise 

correlations greater than 0.78. On average, slightly greater prediction accuracy 

estimates were achieved at the smaller window sizes (Table 5.1), although when 

looking at the results on a CpG-by-CpG basis, no clear pattern was observed. 

Indeed, some CpG sites showed greater prediction accuracy at the larger window 

sizes, while other CpG sites showed greater prediction accuracy at the smaller 

window sizes. This indicates that the optimal window size for training CpG 

methylation prediction models appears to be CpG-specific. 

 

 

 

Figure 5.3. Comparison of window sizes for predicting CpG methylation. (A) Box plots of 

prediction accuracy estimates (R) from training and testing prediction models using elastic net with 

SNPs selected using 5 window sizes (250Kb, 500Kb, 1Mb, 2Mb and 3Mb) on ARIES data. The line 

within the box represents the median, with the edges of the box the upper and lower quartiles. (B) 

Correlation plots between prediction accuracy estimates achieved using the 5 window sizes. In the 

lower panels, each point represents a CpG site, with the R achieved at the 2 window sizes displayed 

on the axes. Also shown are the line of equality (green dashed line) and a best fit line between x and y 

(red solid line). Upper panels show the pairwise correlations between the R values achieved at the 5 

window sizes. 
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Window size Average prediction accuracy 

250Kb 0.0548 

500Kb 0.0525 

1Mb 0.0502 

2Mb 0.0481 

3Mb 0.0467 

Table 5.1. Average prediction accuracy estimates achieved when training and testing CpG 

methylation prediction models using five different window sizes.  

 

When focussing on the set of CpG sites at which a prediction accuracy estimate of 

0.5 had been achieved with at least one of the window sizes tested, a similar 

conclusion was reached. Overall, the prediction accuracy estimates tended to be 

similar for the majority of CpG sites, although there was a set of CpG sites where 

prediction accuracy was clearly better at some window sizes than others, further 

indicating that the optimal window size for training CpG methylation prediction 

models is a CpG-specific quantity (Figures 5.4A and 5.4B). Interestingly, when 

considering these well-predicted CpG sites, while the same trend in the average 

prediction accuracy was observed as when considering all CpG sites, the differences 

between the average prediction accuracy estimates were far smaller than when 

considering all CpG sites, regardless of prediction accuracy (Table 5.2).  

 

 

Figure 5.4. Comparison of window sizes for predicting CpG methylation for well-predicted CpG 

sites. Displayed are CpGs that achieved R estimates of 0.5 or greater from any of the 5 window sizes. 

(A) Box plots of prediction accuracy estimates (R) from training and testing prediction models using 
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elastic net with SNPs selected using 5 window sizes (250Kb, 500Kb, 1Mb, 2Mb and 3Mb) on ARIES 

data. The line within the box represents the median, with the edges of the box the upper and lower 

quartiles. (B) Correlation plots between prediction accuracy estimates achieved using the 5 window 

sizes. In the lower panels, each point represents a CpG site, with the R achieved at the 2 window 

sizes displayed on the axes. Also shown are the line of equality (green dashed line) and a best fit line 

between x and y (red solid line). Upper panels show the pairwise correlations between the R values 

achieved at the 5 window sizes. 

 

 

Window size Average prediction accuracy 

250Kb 0.6279 

500Kb 0.6286 

1Mb 0.6276 

2Mb 0.6267 

3Mb 0.6256 

Table 5.2. Average prediction accuracy estimates achieved when training and testing CpG 

methylation prediction models using five different window sizes, focussing on CpG sites at which a 

prediction accuracy estimate of greater than 0.5 was achieved at one or more of the window sizes.  

 

Having determined that the optimal window size for predicting CpG methylation was 

CpG-specific, the same comparison of five window sizes was performed on the 

Understanding Society data to identify optimal window sizes for those CpG 

methylation measurements. A random 50% of the Understanding Society samples 

were designated as the prediction model training set, with a random 20% of samples 

assigned to the testing set. This analysis was conducted using elastic net with alpha 

set to 0.5 and with lambda determined by 10-fold cross-validation as in section 5.1.  

As observed when using data from ARIES, prediction accuracy estimates at the five 

window sizes were highly correlated with one another (Figure 5.5), with all pairwise 

correlations greater than 0.87. Again, some CpG sites showed greater prediction at 

larger window sizes, while others showed greater accuracy at the smaller window 

sizes, reinforcing the conclusion that the optimal window size for CpG methylation 

prediction model training is CpG-specific.  
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Figure 5.5. Comparison of window sizes for predicting CpG methylation using data from 

Understanding Society. (A) Box plots of prediction accuracy estimates (R) from training and testing 

prediction models using elastic net with SNPs selected using 5 window sizes (250Kb, 500Kb, 1Mb, 

2Mb and 3Mb) on ARIES data. The line within the box represents the median, with the edges of the 

box the upper and lower quartiles. (B) Correlation plots between prediction accuracy estimates 

achieved using the 5 window sizes. In the lower panels, each point represents a CpG site, with the R 

achieved at the 2 window sizes displayed on the axes. Also shown are the line of equality (green 

dashed line) and a best fit line between x and y (red solid line). Upper panels show the pairwise 

correlations between the R values achieved at the 5 window sizes. 

 

When considering only the CpG sites where methylation was well predicted using at 

least one of the window sizes, the same conclusion was reached, with some CpG 

sites clearly showing much greater prediction accuracy at the smaller window sizes, 

while others showed a much greater accuracy when using a larger window size 

(Figure 5.6). 

 

 



116 
 

 

Figure 5.6. Comparison of window sizes for predicting CpG methylation for well-predicted CpG 

sites using data from Understanding Society. Displayed are CpGs that achieved R estimates of 0.5 

or greater from any of the 5 window sizes. (A) Box plots of prediction accuracy estimates (R) from 

training and testing prediction models using elastic net with SNPs selected using 5 window sizes 

(250Kb, 500Kb, 1Mb, 2Mb and 3Mb) on ARIES data. The line within the box represents the median, 

with the edges of the box the upper and lower quartiles. (B) Correlation plots between prediction 

accuracy estimates achieved using the 5 window sizes. In the lower panels, each point represents a 

CpG site, with the R achieved at the 2 window sizes displayed on the axes. Also shown are the line of 

equality (green dashed line) and a best fit line between x and y (red solid line). Upper panels show the 

pairwise correlations between the R values achieved at the 5 window sizes. 

 

 

For both the ARIES and Understanding Society data, the optimal window size for 

each CpG was then determined as the window size at which the maximum 

correlation between predicted and measured methylation was observed in the test 

set. 

 

5.3 Evaluation of CpG methylation prediction accuracy using the optimal 

method and window size 

Having identified an optimal method (elastic net) and window size for prediction 

model training, CpG methylation prediction models were next trained using the 

ARIES data and the Understanding Society data sets. The 50% of samples that had 

been used as a prediction model training set and the 20% that had been used for 

prediction model testing in Chapter 5.1 were combined, and were then used as the 

prediction model training set here. The remaining 30% of samples that had not been 


