
Newcastle University, Biosciences Institute 
Framlington Place, Newcastle upon Tyne NE2 4HH 

 

 

 

Computational modelling and 

experimental investigation of 

retinal tissue self-organisation 

Thesis submitted for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

Supervised by Dr. Roman Bauer and Prof. Evelyne Sernagor 

Jean de Montigny 
3 year Full time PhD 

Submitted in May 2020





i 
 

Abstract 

Individual retinal cell types exhibit semi-regular spatial patterns called retinal 

mosaics. These mosaics could enable uniform sampling of visual information and are 

formed to varying degrees across cell types. Retinal ganglion cells (RGC) and 

amacrine cells are notably known to exhibit such layouts. RGCs dendritic arbours 

also form organised structures, laminating at different levels and exhibiting specific 

morphologies depending on the considered type. 

Mechanisms responsible for the formation of such organised structures and their 

requirements are still not well understood. Mosaic formation follows three main 

theories: (1) homotypic cells prevent nearby cells from adopting the same type, (2) 

cell tangential migration, with homotypic cell repulsion, (3) cell death (with RGCs 

exhibiting high rates of apoptosis). 

Here, we use BioDynaMo, an agent-based simulation framework, to build a detailed 

and mechanistic model of mosaic formation. In particular, we investigate the 

implications of the three theories. We report that the cell migration mechanism yields 

the most regular mosaics. We also found that cell death can create regular mosaics 

only if the death rate is kept below 30%, after which cell death have a negative 

impact on mosaic regularity. We also investigate the implication of intrinsic and 

extrinsic factors in the development of RGC dendritic tree morphologies. 

Waves of spontaneous activity sweep across the RGC layer from postnatal day (P) 0-

10 and may drive the development of some cellular features (mosaic, dendritic 

lamination). Using a combination of immunohistochemistry and pan-retinal activity 

recording, we report transient clusters of auto-fluorescent cells around the optic disc 

during the period of cholinergic waves. They migrate towards the periphery between 

P2-9 and then disappear, coincidentally with the switch from Stage II to stages III 

waves. Waves origin follow a similar centre-to-periphery developmental pattern. We 

propose here that these clusters represent activity hotspots and are the sites for 

wave initiation.  
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Chapter 1. Introduction 

The central nervous system (CNS) is a vast and complex assembly of neurons 

responsible for information integration, resulting in an astonishing variety of 

phenotypic responses. This highly complex structure emerges from a few progenitor 

cells that self-organize through precise local developmental rules. Chemical guidance 

cues and local interactions (including neural activity) interact with genetically 

encoded rules to regulate this complex assembly and to give rise to the appropriate 

structure. Many of these mechanisms remain to be fully understood. Using 

experimental work on neonatal mouse retinas and computational simulations, we 

address here some of these important points. 

This chapter will introduce general knowledge about the retina (its different cell types 

and its development) and computational modelling of neural development. More 

precise information about stage II retinal waves, retinal mosaics formation, dendritic 

development, and the various mechanisms that could be involved to give rise to a 

coherent retina will also be discussed. 

1.1 The Mammalian Retina 

As part of the CNS, the retina originates from the same embryonic tissue: the neural 

tube. During development, out-pocketing structures emerge bilaterally from the 

neural tube (more precisely from the diencephalon), forming the optic vesicles. The 

optic vesicle invaginates to form the optic cup. The inner part of this cup forms the 

neural retina, while the outer part forms the pigment epithelium. During this process, 

the optic nerve reaches the diencephalon, forming connectivity between the retina 

and the brain. The retina is the only part of the CNS that is non-invasively accessible 

and thus represents an ideal region for studying neural function. Originating from the 

same progenitors and governed by the same developmental principles as the rest of 

the CNS, it represents an ideal organ for developmental studies as well. 

1.1.1 Retinal structure and function 

The retina is the light sensitive neural tissue lining the back of the eye. It represents a 

hollowed sphere of around 40mm in diameter in human, and 3mm in mouse. Light 

hits the cornea, where it is diffracted, and penetrates the eye through the pupil. It is 

then diffracted further by the lens, eventually generating an inverted two-dimensional 

image of the visual world on the retina. Seen through an ophthalmoscope the retina 

presents several distinctive features. First, a large yellowish disc, the optic disc, or 
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optic nerve head, where all axonal fibres originating from the retina gather together to 

form the optic nerve which carries impulses from the retina to the central visual 

areas. It also contains most of the blood vessels irrigating the retina. The other 

distinct feature is a dark area devoid of blood vessels called the fovea, located 

approximatively 16 degrees more nasal than the optic nerve and is the place where 

high acuity vision is generated (Kolb 1995). This 0.35 mm diameter disc in human 

contains the highest density of retinal cells and almost half of the optic nerve fibres. 

Retinal organisation is notably well-preserved across species (fish, reptiles, birds, 

mammals), even if some anatomical particularities differ between species (Erskine 

and Herrera 2014). This allows animal models to be particularly relevant, including 

for developmental studies (Baker 2013). 

 

Figure 1: From Berne & Levy Physiology, figure 8-2: Layers of the retina. Light 
impinging on the retina comes from the top of the figure and passes through all 
superficial layers to reach the photoreceptors rods and cones. (Koeppen and Stanton 
2014). 
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As the rest of the CNS, the retina is characterised by a complex organisation and 

connectivity comprising six cellular classes: photoreceptors, bipolar cells, horizontal 

cells, amacrine cells, ganglion cells (RGCs) and Muller cells. These cells are 

organised in three nuclear layers and two synaptic (plexiform) layers (see Figure 1). 

Cell bodies and synaptic connections are strictly laminated. 

As represented in Figure 1, photoreceptors cell bodies are located in the outer 

nuclear layer which establish synaptic connections with bipolar and horizontal cells in 

the outer plexiform layer (OPL). Bipolar, horizontal and amacrine cell bodies are 

located in the inner nuclear layer (INL), while the inner plexiform layer (IPL) is where 

bipolar, RGCs and amacrine cells establish their synaptic connections. More 

precisely, the IPL itself can be subdivided into two distinct sub-layers, the On and Off 

sub-laminae. On bipolar cells are depolarised by an increase of light and establish 

connections with On RGCs in the On layer while Off bipolar cells are depolarised by 

a decrease of light and establish connections with Off RGCs in the Off layer. The ON 

layer is closer to the RGC layer (Kolb 1995). Finally, RGC bodies (and some 

displaced amacrine cell bodies) are located in the ganglion cell layer (GCL). RGCs 

axons form the optic nerve. They project mainly to the lateral geniculate nucleus of 

the thalamus and to the superior colliculus. 

Photoreceptors 

The retina comprises two types of photoreceptors, cones and rods, both with a 

specialised inner and outer segment involved in phototransduction. The proportion of 

these two types varies depending on the retinal eccentricity, the centre being rich 

with cones in species that have a fovea, and the periphery being rich with rods. Rods 

are specialized in low-light vision, and so are very sensitive (a single photon is able 

to activate a rod) but have a very low spatial resolution. Cones are less sensitive (a 

cone needs around 100 photons to respond), but deliver faster responses (better 

temporal resolution) with a better spatial resolution (Fu and Yau 2007). The presence 

of more than one type of cone is responsible for the perception of different colours. 

The photoreceptors inner segment is rich in mitochondria (due to the important 

energy consumption of photoreceptors), and is connected to the outer segment by a 

thin cilium. The outer segment is composed of discs containing the visual pigments 

molecules that will migrate along the outer segment. After 12 days, used discs reach 

the photoreceptor tip, and, pushed out by more recent incoming discs, are detached 

from the photoreceptor (Purves et al. 2008). Visual pigments are light sensitive and 
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responsible for phototransduction in photoreceptors. Contrary to other sensory 

systems, the activation of a receptor does not set off an action potential, but rather 

induces a slow, gradual change in membrane potential. Moreover, light will not 

depolarise the cell, but hyperpolarise it. Indeed, in the dark, there is a constant 

cationic current (dark current) flowing through Cyclic guanosine monophosphate 

(cGMP-gated) channels that depolarises the membrane to -40 mV. Upon activation 

of the photopigments by light, these channels close, resulting in membrane 

hyperpolarisation to around -65 mV. This is the process of phototransduction (Purves 

et al. 2008). So, in the dark, photoreceptors are depolarised and release glutamate 

onto second order neurons. Once triggered by light, they hyperpolarise, resulting in a 

sharp drop in glutamate release. 

Horizontal cells 

Horizontal cells are connected specifically with photoreceptors, and respond to them 

with an inhibitory feedback. They are present in all vertebrates, and have usually two 

distinct types (Masland 2012b). Those two types present differences both in 

morphological and molecular features, and can be useful for studying cell type 

formation. Some types of horizontal cells seem to connect preferentially either to rods 

or to cones (Boije et al. 2016). Horizontal cells take part in both short and long 

interactions between photoreceptors, by giving them inhibitory feedback, providing 

the first level of signal integration. This inhibitory mechanism is crucial for a better 

perception of contrast and colour opponency (Twig, Levy, and Perlman 2003). 

Indeed, because horizontal cells widely spread processes, they receive and average 

the luminosity over a significant area of the retina. If this region receives a lot of light, 

it will create a strong feedback to the surrounding photoreceptors, inhibiting their 

response. Because of that, objects surrounding a bright object will have their signal 

reduced, and so will be less well perceived (Masland 2012b). This mechanism will 

participate in the creation of the centre-surround receptive fields in the retina. 

Bipolar cells 

Bipolar cells are glutamatergic neurons, and can be divided into two types depending 

on the photoreceptor type they connect to. One connects preferentially to rods (rod 

bipolar cells), and the other, to cones (cone bipolar cells). It is important to note that 

bipolar cells must also be separated into two functional types, ON-bipolar cells and 

OFF-bipolar cells. The first type will depolarise in a situation of increased brightness, 

the second will hyperpolarise. Rod bipolar cells are solely ON-bipolar, while cone 
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bipolar cells can be either ON-bipolar or OFF-bipolar (Hoon et al. 2014). With those 

types, three distinct parallel visual information pathways are created at an early stage 

of the signal processing (cones ON; cones OFF; rods ON). Up to fifteen types of 

bipolar cells have been identified (Shekhar et al., 2016), having a different response 

to the photoreceptor input, depending on temporal or structural properties. In this 

way, each bipolar cell type is able to transmit a different type of information from the 

photoreceptor to their postsynaptic partners (Masland 2012b). 

Amacrine cells 

Amacrine cells interconnect bipolar and RGCs, providing inhibition to RGCs and to 

other amacrine cells. They receive their excitatory input from the bipolar cells. Their 

main role is to modulate the vertical information pathway (photoreceptors → bipolar 

cells → RGCs). They integrate, modulate and interpose a temporal domain to the 

visual message presented to the RGCs (Kolb 1995). Even if the majority of amacrine 

cells are inhibitory, at least one excitatory type exists, the cholinergic starburst 

amacrine cell (SAC). 

Despite being the more abundant inhibitory neuronal class of the retina, amacrine 

cells remain one of the most poorly understood retinal cell class (Jacoby et al. 2015). 

Nowadays, the role of only few amacrine cells in retinal functional circuitry has been 

fully described, as in the case with the implication in colour-coding (Chen and Li 

2012) or steady illumination (Jacoby et al. 2015). Amongst all retinal cell classes, 

amacrine cells are the most diverse, as illustrated in Figure 2, with more than 30 

subpopulations in mammals (Kunzevitzky et al. 2013) complicating the understanding 

of this heterogeneous cell population. Their morphologies vary from short and thin to 

long and bushy dendritic tree, having a drastic impact on retinal information 

processing. The functional necessity of such a huge diversity of amacrine cells 

remains an open question (Masland 2012a). Amacrine cells can be divided into four 

categories, depending on their morphology and their dendritic tree size, narrow-field 

(30-150 µm), small-field (150-300 µm), medium-field (300-500 µm) and wide-field 

(>500 µm) (Kolb 1995). However, another anatomical and functional criterion is the 

neurite level of stratification inside the IPL. The stratification level of amacrine cells is 

thus an important clue for functional classification. 

Ganglion cells 
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RGCs receive and process information form bipolar cells and amacrine cells. They 

play a primary role, as they are the final retinal cell to receive information, and the 

only one sending an output from the retina to the brain. They also are the only retinal 

neurons that generate action potentials, encoding the information into spike trains 

(Kolb, Fernandez, and Nelson 2016). RGCs can be divided into three basic functional 

groups, ON, OFF and ON-OFF cells. ON cells receive input from ON-bipolar cells in 

the ON layer of the IPL and respond to an increase of brightness. OFF cells connect 

with OFF-bipolars in the OFF layer of the IPL, responding to a decrease in light 

intensity. ON-OFF cells are bi-stratified, having connections in both ON and OFF IPL 

layers, and so, responding to both increase and decrease of brightness. However, as 

well as the amacrine cells, RGCs show a great morphological (see Figure 2) and 

functional diversity, with over twenty types well identified so far (numerically, 

morphologically, molecularly and functionally). Every RGC type is believed to carry 

information about a different visual feature, even if only a few of these types have 

been fully functionally understood so far (Baden et al. 2016). In any case, RGCs 

appear to respond particularly well to contrast. 

Using multi-electrode array recording from the RGC layer, studies have been able to 

functionally classify RGCs into more than thirty groups, depending on the stimuli they 

respond to (Farrow and Masland 2011; Sanes and Masland 2015a). However, more 

RGC types are still to be discovered (Sanes and Masland 2015; Reese and Keeley 

2015; Baden et al. 2016). The fact that some RGCs will respond to a specific 

stimulus (motion, motion direction, etc) reflects the upstream processing of visual 

signals. 
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Figure 2: From Masland 2001, figure 1: The major neuronal populations of a 
generic mammalian retina. Only a subset of the wide-field amacrine and ganglion 
cells are shown; the total number of cells in the illustration is 49. (R. H. Masland 
2001). 

Visual pathway 

Retinal vertical synaptic connectivity is excitatory (using glutamate), going from 

photoreceptors to RGCs via bipolar cells. This vertical pathway is modulated by 

horizontal connections, established by interneurons (horizontal cells and amacrine 

cells). Those connections use GABA (horizontal and amacrine cells), glycine 

(amacrine cells), acetylcholine (amacrine cells) and dopamine (amacrine cells) (as 

well as a whole array of other signalling molecules). 

Different cell types are not distributed randomly across the retinal plane, but rather 

arranged in semi-regular patterns, forming retinal mosaics between homotypic cells. 

These mosaics concern cells of the same type, and are independent of other cell 

types (Hoon et al. 2014). Both cell bodies and dendritic fields obey mosaic 

distribution rules. While the dendritic trees of different cell types frequently overlap, 

those of same type tile avoiding each other. The formation of mosaics patterns 
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concerns every cell type within their respective layer (Nguyen-Ba-Charvet and 

Chédotal 2014). Retinal mosaics could ensure smooth and even coverage across the 

retina, preventing the formation of perceptual blind spots. 

The process of visual information can be divided into three main stages (Masland 

2012b). Firstly, rods and cones information is decomposed into more than twelve 

parallel pathways of information. Secondly, those information pathways are 

connected to specific RGCs, each RGC type carrying specific visual information. 

Finally, the modulation of this second stage by bipolar and amacrine cells creates the 

great diversity and specificity of visual information encoding that is sent to the brain. 

1.1.2 Murine retinal development 

To generate such a complex layered structure capable of encoding specific visual 

information, the development of the retina is governed by complex and dynamic 

mechanisms. All the different retinal cell types arise from the same progenitors, which 

rely on intrinsic factors to give rise to the correct cell type (Byerly and Blackshaw 

2009). Cell type birth and differentiation occurs at different but overlapping times 

during development. Thus, RGCs are the first to be born, followed by horizontal cells, 

cones, amacrine cells, rods, bipolar cells and finally Muller cells (Rapaport et al. 

2004). This sequence of differentiation and the establishment of connectivity is 

common is all vertebrate species, mainly varying in terms of gestation length (from 

hours in zebra-fish to several weeks or months in reptiles and mammals) (Morgan 

and Wong 2005). 

The mouse retina is a widely used model to study retina function and development 

because it is so amenable to genetic manipulations (Baker 2013), even though there 

are differences compared with the human retina (mainly in rod/cone proportion and 

the lack of a fovea, mice being nocturnal). The basic organisation and developmental 

process are very similar between these species. In addition, and in contrast to 

primates, rodents (including pups) are born with an immature retina, providing an 

ideal model for developmental studies. 

Cellular differentiation, organisation and dendritic development 

RGCs are the first cell class to differentiate in the immature retina, generated in the 

ventricular zone then migrating to the GCL, where they start extending dendrites 

towards the IPL. This dendritic growth depends on both intrinsic (genetically 

encoded) and extrinsic (environmental) factors (Montague and Friedlander 1989; 
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1991; Hoon et al. 2014). After cell generation and dendritic tree growth, synaptic 

connections have to be refined. For instance, On-Off pathways require electrical 

stimulation to become functional (Bodnarenko and Chalupa 1993; Tian and 

Copenhagen 2003). Indeed, depending on the nature of the input they receive, some 

bi-stratified RGCs will become mono-stratified (either in the On or Off layer). By this 

mechanism, bi-stratified cells, representing 65% of RGCs in immature retina, will only 

represent about 30% in the adult retina (Landi et al. 2007). It is important to note that 

light deprivation during development leads to a loss of a dendritic pruning mechanism 

(Tian and Copenhagen 2003; Mehta and Sernagor 2006). Moreover, RGCs are the 

only cell class notably more numerous in the immature retina compared to the adult 

retina. Indeed, around 60% of newly born RGCs undergo programmed cell death 

(apoptosis) during the perinatal period (Farah 2006). Interestingly, not much is known 

yet about the impact of RGC apoptosis on the maturation of retinal circuitry and 

visual pathways. 

The differentiation of RGCs is closely followed by amacrine cells. Their progenitors 

are born close to the pigment epithelium and then migrate close to RGCs where they 

differentiate into amacrine cells (Chow et al. 2015). We still do not know whether the 

huge amacrine cell diversity seen in the adult retina is predetermined by intrinsic 

factors (nature), by the external environment (nurture) or by a combination of both 

(Kunzevitzky et al. 2013). Yet, there is some evidence that both nurture (Godinho et 

al. 2005), and nature (Kunzevitzky et al. 2013) mechanisms are involved. During the 

formation of amacrine cells dendritic arbours, dendrites will preferentially innervate 

either the On or the Off part of the IPL, even if initially their arborisation is diffuse 

across the entire IPL (Godinho et al. 2005). Importantly, even in the absence of 

RGCs, amacrine cells are able to laminate correctly into On and Off IPL layers, 

indicating that cues needed for proper lamination of their dendrites could be 

independent of RGCs (Godinho et al. 2005; Hoon et al. 2014). However, interactions 

between amacrine cells alone appear to be sufficient to explain the formation of the 

IPL sub-laminae (Kay et al. 2004). 

RGCs and amacrine cells are the first cells to develop a dendritic arbour and to 

establish connections in the future IPL. During wiring of the developing IPL, amacrine 

cell dendrites are believed to provide important developmental cues for the 

stratification of other cell types (Kay et al. 2004). Around Postnatal day (P) 14, the 

IPL already exhibits all its sub-laminae, demonstrating its functional maturation 

(Nguyen-Ba-Charvet and Chédotal 2014). 
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Horizontal cells are also one of the first cell classes to differentiate. Their progenitors 

are born close to the pigment epithelium and later migrate to the inner part of the INL 

(close to RGCs) where they differentiate into horizontal cells. Then, they migrate 

back to their laminar location, on the outer edge of the INL, close to the OPL (Chow 

et al. 2015) where they will establish their connections with photoreceptors. In the 

absence of amacrine cells, horizontal cells seem unable to do their retrograde 

migration (Boije et al. 2016) indicating a developmental cue from amacrine cells. In 

the absence of amacrine cells, horizontal cells adopt morphologies close to amacrine 

cells, without adopting their functional properties. A retinal model without 

photoreceptors exhibits horizontal cells sprouting in the ONL, thus showing the key 

role of photoreceptors in the establishment of the OPL. 

In rodents, as in other mammals, photoreceptors are the third cell class to be born 

(Rapaport et al. 2004). However, they establish their connections later in 

development, first with horizontal cells, forming the OPL (Hoon et al. 2014). Their 

connections to bipolar cells arise later on in development. In mouse, the OPL 

formation starts around P4 (Nguyen-Ba-Charvet and Chédotal 2014). After their 

proliferation phase, photoreceptor’s outer segment does not change diameter later 

on, but they elongate rapidly toward the pigment epithelium from P11-17, reaching 

their adult length around P19-25 (Fu and Yau 2007). Photoreceptors can already 

transduce light into electrical signals before eye-opening (at P12 in mouse), but 

responses to light will gain in robustness as development progresses after eye-

opening (Hilgen et al. 2017). 

Bipolar cells are the last neuronal cell class to differentiate. They interconnect 

between the outer and inner retina, making connections both in the OPL and IPL. 

These excitatory cells require the presence of photoreceptors to laminate in the 

correct synaptic layer, suggesting a strong developmental cue from photoreceptors 

(Nguyen-Ba-Charvet and Chédotal 2014). However, they are able to laminate 

correctly even in the absence of RGCs and amacrine cells (Hoon et al. 2014). 

Figure 3 illustrates the temporal steps of cell differentiation and vertical (apico-basal) 

migration. The precise timing and location of proliferation and differentiation play an 

important role in the molecular and morphological properties of newly born cells. 

Thereby, correct cellular lamination during development is mandatory to grow a 

functional retina (Hoon et al., 2014). 
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Figure 3: From Chow et al. 2015, figure 10: Model of retinal inhibitory neuron 
(RIN) migration. All RIN types migrate via bipolar morphologies away from the apical 
surface before transitioning to multipolar morphology. They gather as a single 
population in the middle of the retina until the IPL starts to form. Horizontal cells 
(HCs) then migrate apically and divide en route to, or at, the outer plexiform layer 
(OPL). HCs sometimes migrate into the outer nuclear layer (ONL) before taking on 
mature morphology in the inner nuclear layer (INL). Inner nuclear layer amacrine 
cells (iACs) stabilize processes at the apical side of the bipolar cell (BC) plexus, 
whereas displaced amacrine cells (dACs) preferentially localize processes to the 
interface between BC axons and retinal gangion cells (RGC) dendrites before moving 
into the ganglion cell layer (GCL). AS, apical surface; BS, basal surface; PRP 
photoreceptor progenitor; PR, photoreceptor. The model shown takes into account 
results from chow et al. 2015 and previous studies (Choi et al. 2010; He et al. 2012; 
Mumm et al. 2006; Randlett et al. 2013; Suzuki et al. 2013; Weber et al. 2014). 

Molecular guidance 

Chemical (molecular) guidance is known to play a key role during retinal 

development (Erskine and Herrera 2007; Huberman et al. 2008). In particular, it 

concerns both cells body migration and neurites growth. 

In the retina, cells all emerge from the same pool of progenitors, in a stereotypic 

order. Mechanisms exist to allow cell proliferation at correct proportions and at 

precise developmental stages. Such mechanisms use either intrinsic factors (internal 

clock) (Alsio et al. 2013; Saurat et al. 2013; La Torre, Georgi, and Reh 2013) or 

extrinsic molecular guidance. For the latter, several proteins influencing either the cell 

birth or the differentiation timing have been identified (X. M. Zhang and Yang 2001; 

Rodriguez et al. 2012; Kohwi and Doe 2013). 
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In addition to temporal guidance (cell differentiation), molecular cues could also be 

implicated in spatial guidance (cellular migration). Such mechanism has been 

demonstrated in mouse cortex (Tissir and Goffinet 2003), where the Reelin protein 

plays a key role for cells to reach their proper location at the end of their migration 

pathway. This molecular cue diffuses through the extracellular space and is captured 

by two receptors of the lipoprotein receptor family. The Reelin protein could act as a 

stop signal during cellular migration, allowing cells to laminate in the appropriate 

stratum (Tissir and Goffinet 2003). As previously stated, progenitor cells and newly 

born retinal cell types migrate vertically (mono or bi-directional migration, see Figure 

3) in order to reach their specific laminar location. Molecular guidance plays a role in 

cellular migration and final location in the retina as well. Hence, in mouse, the laminin 

receptor β1-Integrin is mandatory for RGCs to reach their appropriate apico-basal 

location (Riccomagno et al. 2014). Deletion of this integrin results in cellular 

misplacement, RGC somata continuing their migration after reaching their supposed 

lamination level (Edwards et al. 2010; Pinzón-Duarte et al. 2010). Thus, this 

molecular cue seems to act as a stop signal for RGCs migration. 

Furthermore, chemical guidance plays a role in tangential migration in the retina. 

Indeed, the spacing of SAC and horizontal cell bodies depends on the signal initiated 

by two trans-membrane proteins, MEGF10 and MEGF11 (Kay, Chu, and Sanes 

2012). This molecular cue acts as a repellent for homotypic cells, thus triggering fine 

tangential repositioning of their somata. 

In order to establish functional connectivity, axonal terminals have to target the 

appropriate postsynaptic targets (dendrites, cell body). As previously mentioned, 

molecular guidance influences the regulation of dendrite growth in the brain 

(Valnegri, Puram, and Bonni 2015). More precisely, several families of extrinsic 

factors have been identified, being either secreted cues or contact-mediated 

regulators. While the former can influence dendritic morphologies at a distant range, 

the latter requires physical contact between the dendrite and another cellular 

element. Secreted cues particularly includes neurotrophins, semaphorins and ephrins 

(Valnegri, Puram, and Bonni 2015). Neurotrophins are a family of secreted proteins 

comprising notably neurotrophin-nerve growth factor, brain-derived neurotrophic 

factor and neurotrophins 3 and 4 (Huang and Reichardt 2003). In rodent cortex, they 

promote dendritic growth and arborisation (McAllister, Lo, and Katz 1995). 

Semaphorins are secreted proteins known to control neurite guidance, notably in the 

olfactory system (Komiyama et al. 2007) and hippocampal CA1 pyramidal neurons 
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(F. Nakamura et al. 2009). They can act as inhibitory signals, preventing axons from 

growing in inappropriate regions and establish connections to irrelevant neurons, or 

as dendritic growth promoter (Shelly et al. 2011). Finally, ephrins can act as guidance 

for dendritic growth (Clifford et al. 2014) and they are implicated in dendrite pruning 

mechanisms and synaptic formation (N.-J. Xu et al. 2011). 

In the retina, several studies provide evidence that molecular guidance cues regulate 

appropriate stratification of neurites into the IPL or OPL, via either an attractive or 

repulsive mechanism. This has been found across vertebrate species (Yamagata 

and Sanes 2008; Matsuoka et al. 2011). Thus, even if previous studies have shown 

the role of intrinsic factors in the development of RGC dendritic tree morphologies 

(Montague and Friedlander 1989; 1991, 1), it is now clear that intrinsic mechanisms 

alone are not enough to explain how RGC dendrites grow and remodel (Hoon et al. 

2014). Specifically, the neurotrophin family regulates RGC dendritic arborisation 

(Cohen-Cory and Lom 2004). Likewise, trans-membrane semaphorins play a crucial 

role in controlling the laminar stratification within the IPL (Matsuoka et al. 2011). 

Thereby, amacrine cell dendrites are believed to give stratification cues to RGCs 

while they grow and branch, in order for RGC dendrites to laminate at the correct 

location and establish relevant connections (Kay et al. 2004; Huberman, Clandinin, 

and Baier 2010; Matsuoka et al. 2011). Interestingly, RGCs provide some lamination 

cues during development of amacrine cell dendrites as well (Matsuoka et al. 2011). 

This effect can be repulsive for the dendrites of some amacrine type. In particular, 

this could explain why some amacrine cells laminate inside the Off IPL sub-layer 

rather than the On sub-layer. On the contrary, the dendritic tree of other amacrine 

types are significantly less sensitive to these semaphorins (Matsuoka et al. 2011), 

thus allowing dendritic stratification closer to RGCs. The vast diversity of amacrine 

cell types at the molecular level — and thus with different sensitivities to chemical 

clues — could in part explain the observed diversity of amacrine cells morphologies. 

Despite the importance of molecular guidance for dendritic arborisation and 

lamination, it is important however to remember that not all cells express high 

sensitivity to these cues, with different neuronal groups adopting different dendritic 

growth strategies. Hence, while some RGCs seems to target more directly their sub-

lamina, other RGCs exhibit preferentially an exploratory behaviour, with extension 

followed by retraction of misplaced dendrites (Hoon et al. 2014). 
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1.1.3 Retinal waves 

Maturation and refinement of neural networks through activity is a well-established 

mechanism in cortex (Luhmann et al. 2016). Spontaneous activity in the CNS before 

sensory input is believed to play a key role in this process. In the developing mouse 

retina, this spontaneous activity emerges long before eye-opening and is manifested 

by waves of spikes spreading across the RGC layer (Meister et al. 1991). The link 

between this early activity and development of visual connectivity has also been 

previously demonstrated (Huberman et al. 2008; Assali et al. 2014). Retinal waves 

have also been shown to be implicated in the refinement of retinal projections 

(Torborg and Feller 2005) and the establishment of retinal receptive fields (Sernagor 

et al. 2001). The advent of population recording using either imaging or multi-

electrode array (MEA) electrophysiology allows the simultaneous recording of a large 

portion (if not the totality) of the retina, thus facilitating the characterisation of retinal 

waves, as illustrated in Figure 4 (from (Maccione et al. 2014). 

 

Figure 4: From Maccione et al., 2014, Figure 1: A, the Active Pixel Sensor MEA 
chip. The red dotted line demarcates the active area of the 4096 electrodes on the 
chip (64x64 configuration, 41 µm electrode pitch). Top inset, scanning electron 
micrograph illustrating the topography of individual electrodes on the chip. Bottom 
inset, magnification of the active area of the chip with a retina positioned on the 
electrodes. B, spike raster plot of spontaneous episodes of activity in a P11 retina. C, 
raw signals on four sampled channels from the same recording. D, two-dimensional 
time-lapse (every 1 s for 10 s) view of the activity. The s.d. of the voltage is estimated 
in 10 ms bins and plotted using an exponential colour coding scheme to emphasize 
large deviations and effectively threshold small deviations. Bottom row: same 
episode after downsampling the resolution to a simulated 8 × 8 array with an 
electrode pitch of 334 μm. (Maccione et al. 2014). 
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Three distinct stages of waves follow one another, characterised by specific 

propagation patterns and underlying mechanisms (Maccione et al. 2014). The first 

one (stage I) is mediated by gap junctions and occurs during late gestation (Catsicas 

et al. 1998; Syed et al. 2004). Due to the very early retinal developmental stage at 

which these waves occur, not much is known about stage I retinal waves precise 

dynamic and characteristics. Stage II waves occur between birth and P9-10, 

characterised by slow, but very large propagating events. Their initiation points are 

reported to be random, as well as their trajectories. They are mediated by cholinergic 

synaptic transmission (Sernagor et al. 2000; Zhou and Zhao 2000; Sernagor et al. 

2003), but wave modulation by GABAergic signalling emerges around P5 (Zhang et 

al. 2006; Hennig et al. 2011). In the first period of stage II waves (P2-5) GABA 

signalling depolarises RGCs while at later stages, it switches to mature inhibition. At 

P7, a decrease in wave size is observed, as a result of this shift in GABAergic 

signalling effect. Stage II activity density (how many RGCs are recruited per unit area 

within waves) stays low until P6-7, where it substantially increases (Maccione et al. 

2014) to reach its highest value when activity shifts to stage III at P10. Stage III 

waves are mediated by glutamate signalling originating from bipolar cells (Zhou and 

Zhao 2000; Blankenship et al. 2009). They are characterised by short, fast and 

repetitive events that tile the entire retina. 

Changes in waves dynamic between P2-12 are summarised in Figure 5 (from 

Maccione et al., 2014). 
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Figure 5: From Maccione et al., 2014, Figure 5: A, examples of waves at postnatal 
day (P) 5, P9 and P12. Each plot shows a raster of detected bursts, and two-
dimensional projections of selected waves, as indicated by arrows. B–E, median 
wave centre of activity trajectory (CAT) length (B), area (C), propagation speed (D) 
and activity density (E) for all waves at all developmental stages [postnatal day (P) 2: 
one retina, 106 waves; P3: two retinas, 191 waves; P4: four retinas, 204 waves; P5: 
four retinas, 188 waves; P6: five retinas, 99 waves; P7: three retinas, 72 waves; P8: 
four retinas, 232 waves; P9: eight retinas, 659 waves; P10: seven retinas, 631 
waves; P11: six retinas, 945 waves; P12: four retinas, 718 waves]. Error bars 
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indicate interquartile ranges. F, rasters of burst activity recorded at P13 and P15. No 
propagating activity can be seen at these ages. (Maccione et al., 2014). 

1.2 Computational Modelling of Neural Development 

In the past decades, mathematics and computer modelling (referred as 

computational modelling, or in-silico) have been increasingly used, alone or 

complementary to biological experiments. They consist of representing a particular 

aspect of the biology in the form of mathematical equations or series of basic 

functions. They are used in a wide range of fields, including functional modelling (for 

instance in epilepsy (Wendling et al. 2016)) and anatomical modelling (for instance in 

tumour growth (Vavourakis et al. 2017; de Montigny et al. 2020) or neural branching 

structures (Cuntz et al. 2010)). Of course, models that incorporate several simulation 

aspects (for example anatomical and functional) also exist. 

Providing it is biologically inspired and conscientiously and rigorously built, 

computational modelling can represent a powerful tool. More specifically, it can: 

1. Provide a reasoning aid. As biological functions are complex dynamic systems, the 

consequences derived from a hypothesis influence a large amount of interacting 

elements. All these consequences are particularly difficult to comprehend, but can be 

investigated using simulations. Modelling can also allow access to direct measures 

and quantities where biological experiments can only offer indirect measures or 

quantities. This allows detection and analysis of interactions, or impact of 

modifications, within a complex system, that would have not been noticed otherwise. 

2. Remove ambiguity from biological theories. Assumptions verbalised through a 

biological theory can entail some hidden vagueness. Formalisation of a theory can 

help to remove ambiguity by ensuring that the assumptions it carries are explicit, 

coherent and consistent. By this way, some biological hypotheses have been proved 

wrong when they failed to be implemented in a computer modelling (Abbott 2008). In 

addition, predictions resulting from a computational model are unambiguous and can 

be reproduced very easily, for verification or further investigation, simply by running 

the simulation again. Nonetheless, succeeding in modelling a working hypothesis can 

help to strengthen it. 

3. Explain a large system by small simple elements. As previously stated, biological 

systems are particularly complex and incorporate many interacting elements. 

Understanding and explaining observed complex functions (for instance cognition or 
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local neuronal activity) can be difficult. Likewise, explaining the precise implication of 

smaller elements (like independent neurons) in this function can be arduous. Dividing 

a single convoluted, hardly resolvable, problem into smaller simpler ones can be of 

great help to solve it. This is especially well suited for computational modelling where 

each small element and their interactions can be simulated, while their impact and 

implication on the whole system is observed. This allows verifying the implication of 

small elements in the emergence of a higher level function. 

4. In some cases, replace or minimise the use of animal experimentation. This point 

has to be examined in regard to the 3Rs rule for animal experimentation: 

Replacement, Reduction and Refinement. In addition, and in view of the increasing 

financial and ethical difficulties of experimental research, modelling can represent an 

interesting alternative, being usually cheaper and less time-consuming than in-vivo or 

in-vitro experiments. Experimental work is still crucial, but computer simulations can 

be used to verify preliminary assumptions and so, reduce the number of plausible 

outcomes. They can be used to build promising predictions that can later be tested in 

an animal or cellular model. In addition, they can be used to identify potential 

biological features, for instance an electrophysiological property that can be used as 

an epileptogenesis biomarker (Wendling et al. 2016). In addition, computational 

modelling presents the advantage of precisely controlling all parameters, which is 

obviously not possible in experiments. By modifying various parameters, it becomes 

possible to develop an understanding of the role of these parameters in biological 

processes. All these points are only possible if the constructed model is especially 

robust. 

Two main branches of biological computational simulation co-exist: continuum-based 

and agent-based (AB) models. Rather than being antagonist, they are 

complementary, usually answering different questions. 

Continuum-based simulations (one category of mathematical simulations) are the 

description of a system by mathematical functions and concepts, in which objects are 

represented in a continuous manner. They can take several forms, including 

dynamical systems (description of time dependence of a point or flow in a 

geometrical space) or differential equations (relation between unknown functions and 

their successive derivatives). In most cases, they describe the dynamic of a system 

or an object, by representing physical quantities (temperature, volume, voltage, etc.). 

This approach is well-suited to perform equation-based simulations and is overall 



19 
 

efficient. However, modelling independent cell behaviour is more challenging using 

continuum-based simulations. Indeed, cellular populations are usually represented by 

equations as an aggregate rather than individual objects. Likewise, they are less 

suited to model emergence, a phenomenon in which the properties of a high-level 

system emerge from the interactions of lower level sub-systems. In addition, being 

based on continuous equations, this approach usually needs a discretization process 

before being numerically evaluated. This can be carried out by several methods, 

being either exact (negligible discretization error), or an approximation (for instance 

the Euler's method). Exact discretization can sometime be intractable (involvement of 

integral operations and heavy matrix exponential), and so an approximation of the 

solution is preferable. Approximation also presents the advantage of being less 

resource-demanding. Finally, they are usually built with a global supervisor that 

orchestrates the whole simulation, and that has access to all parameters and 

variables values. This last point in particular has to be taken into account carefully in 

order to build biologically realistic simulations. 

On the other hand, Agent Based (AB) simulations are built on the principle of 

agents. Agents are tangible and explicitly represented objects in the simulation 

space. They are characterised by attributes, describing either their anatomy (size, 

shape, etc.), physical properties (weight, electrical charge, conductivity, etc.) or 

status. More importantly, their behaviour in response to particulars external or 

internal stimuli is stipulated. The environment in which these agents exist can also be 

specified, for instance by its physical properties (extracellular matrix, fluid flow, etc.) 

or by the presence of chemical substances and their diffusions. These properties can 

then influence the behaviour of agents, that in turn can influence the environment. 

Importantly, each agent is independent and autonomous, without any central control 

with access to all agents. Furthermore, they only have access to local information, 

either from the environment or from other agents in their vicinity. Simulations are built 

by placing one or several of these independent objects and simulating their 

interactions, with the environment and other agents, according to their internally 

encoded rules. This simulation approach is particularly well suited for the emergence 

phenomenon, where complex systems emerge by using only simple AB local rules. 

For this reason, AB approach is especially relevant for modelling cells self-

organisation during development, allowing the generation of complex structures, like 

neural tissues. However, simulating autonomous agents gives rise to considerable 

demands in computer resources, especially for large scale models where millions of 
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agents coexist. Contrary to continuum-based approach, AB models also present the 

characteristic of being discretized by nature. Indeed, simulations are run step by 

step, with agents and environment characteristics being updated from one step to 

another. 

Of course, the appropriate modelling approach and characteristics depend on the 

specific scientific question. Thus, the simulation depends on the desired level of 

analysis and detail. The level of analysis represents the physical scale of the 

simulation, for instance, simulation at the ion channels level, or at the whole nervous 

system level. This level of analysis is the main parameter determining the 

construction of the model. Multi-scale simulations also exist, concerning both 

physical and temporal scales, where several levels of analysis co-exist. They offer 

the advantage of incorporating the precise co-influence of mechanisms of different 

scales, for instance modelling molecular dynamics with precise information of every 

individual atoms and their co-influences. However, multi-scale simulations generally 

require an important amount of computation resources to run efficiently. The decision 

of what mechanism should be included and what mechanism can be neglected is left 

to the modeller, depending on the relevance of each mechanism with regard to the 

scientific question. For illustration, it seems irrelevant to model every gas atom in a 

weather forecasting simulation, modelling air flows at a higher level being more 

appropriate. For its part, the level of detail determines the precision of a modelled 

phenomenon, for example if an action potential is described as a square signal or if 

the precise shape through time of the impulse is modelled. Thereby, the more 

precise the simulation, the more resources are required to run it. Similar to the level 

of analysis, the modeller has to decide if a mechanism should be precisely 

implemented (for example if the precise dynamic of an action potential is important) 

or simplified (for example if just the presence/absence of an action potential is 

important). 

As building a biological simulation (either continuum-based or AB) requires expertise 

in both biology and computer science, each model represents an important 

investment of resources. Computational models are complex programs that need 

time before being validated and robust enough to build assumptions or verify 

biological hypotheses. In addition, simulations face an even more problematic 

limitation, as they are so specialized to answer a scientific problematic, that they 

usually cannot be used for another scientific question without undergoing heavy re-

factoring. For this reason, modelling frameworks start to emerge, proposing a flexible 
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platform to build simulations. They usually consist in series of generic tools and 

functions, allowing the modular development of simulations, but also simplifying data 

manipulations and visualisations. Several frameworks for neural development 

already exist, providing various functionalities (see Table 1 for an overview of existing 

modelling frameworks and their characteristics). 

 

Table 1: Comparison of current frameworks for biological dynamics 
simulations. 

However, most frameworks are not able to account for cell body dynamics (cell 

growth, division, migration, etc.), neurite growth and mechanical interactions (objects 

cannot overlap). The only listed one (Cx3D) is however not able to take full 

advantage of modern hardware, in particular it is not parallelised and so cannot use 

multi-core CPU efficiently. In addition, existing parallelised and scalable frameworks 

(meaning that the more computer resources are added to the system, the more work 

they can process) are not designed to be user-friendly and thus require advance 

knowledge in both computer science in general and the considered framework in 

particular. Another major issue of simulation frameworks is the code availability. Few 

major frameworks are open-source, thus drastically limiting their possible usage. 

Hence, novel solutions are required to combine software performance, flexibility, 

open-source and ease of use. For this reason, the BioDynaMo project has been 

created by a collaboration between Newcastle University and CERN openlab 

(Breitwieser et al. 2020), aiming to develop a novel, flexible and powerful simulation 

framework. The BioDynaMo framework is already available and free for use. 

1.3 Aims of Investigation 

Despite continual advances in the field of retinal development, many mechanisms 

are still to be fully understood. Thus, some questions remain unanswered concerning 
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the emergence of stage II waves, but also concerning cellular organisation. Thus, 

primary goals here are to: 

1. Analyse potential mechanisms underlying cholinergic hyperactivity generating 

stage II waves. 

2. Analyse mechanisms underlying retinal mosaics self-organisation. In particular, the 

biological requirements and the effect of individual mechanisms generating these 

cellular patterns will be investigated. In addition, an investigation of the requirements 

for normal dendritic development will be conducted. 

1.4 State of the Art 

1.4.1 Stage II retinal waves initiation 

As mentioned, different mechanisms mediate the various waves stages: first gap 

junctions, then cholinergic activity (with GABAergic modulation from P5), and finally 

glutamate signalling. 

Stage II waves are particularly interesting as they have been reported to be a key 

feature in visual pathway circuit elaboration, both within the retina, and between the 

retina and its projections to the brain (Mrsic-Flogel 2005; Burbridge et al. 2014; H.-P. 

Xu et al. 2016). They are believed to be mediated by a network of SACs, the only 

reported cholinergic cells in the retina, initiating waves that are then propagated to 

RGCs. Indeed, evidence of acetylcholine release in the vicinity of neighbouring SACs 

and RGCs have been reported (Zheng, Lee, and Zhou 2004). This neurotransmitter 

release propagates hyper-excitability across SAC and RGC populations. In addition, 

SACs make direct homotypic connections at these early developmental stages, 

facilitating lateral propagation of activity across their network (Zheng, Lee, and Zhou 

2006; Ford, Felix, and Feller 2012). Theoretical studies have also been conducted, 

suggesting that SACs play a fundamental role in wave dynamics (Butts et al. 1999; 

Hennig et al. 2009; Matzakos-Karvouniari et al. 2019). In particular, they are believed 

to drive both wave initiation and their propagation pattern. Active SACs have also 

been reported to impose a refractory period, creating boundaries for activity 

propagation and controlling wave frequency (Ford et al. 2012). It is important to point 

out that some studies concluded to the existence of a transient network of directly 

interconnected SACs that would be responsible for cholinergic bursting activity 

(Zheng et al. 2006; Ford et al. 2012). Thus, according to this proposed mechanism, 

the hyper-activity responsible for cholinergic wave initiation would only be present 
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during the first ten days after birth in mouse, before disappearing with the switch from 

cholinergic to glutamatergic driven waves (stage III waves). 

Despite being the most characterised waves, mechanisms underlying stage II retinal 

waves generation remain to be fully elucidated. In particular, clear evidence of the 

precise mechanism responsible for the SACs hyper-excitability and spontaneous 

depolarisation is not fully understood. Likewise, no clear information exists about the 

dynamics of wave initiation locations. 

1.4.2 RGCs, mosaics formation and dendritic development 

Mosaic formation 

Retinal mosaics are a key feature of retinal cells' organisation, and are observed 

within all retinal nuclear layers. Regular spacing between homotypic cells enables 

homogeneous processing of the light signals, leaving no perceptual holes within our 

visual field. In particular, sub-groups of RGCs and SACs are known to form regular 

mosaics and both cell types are widely used to study mosaic organisation. As 

previously stated, RGCs can be divided into more than 30 types (Sanes and Masland 

2015; Reese and Keeley 2015; Baden et al. 2016), each having different functional 

and anatomical characteristics. At present, a group of RGCs has to fulfil four criteria 

in order to be considered a RGC type (Sanes and Masland 2015): 1. Morphological 

homogeneity (dendritic tree shape), as used for the original RGC classification by 

Cajal using Golgi staining in 1892. 2. Identical physiological properties 

(electrophysiological response to light). 3. Similar gene expression (molecular 

signature). 4. To exhibit regular spacing. Thus, being organised in mosaics also 

represents an important feature of each RGC type. It is important however to point 

out that recent studies question this last criteria, with evidence of at least three RGC 

types (W3, Jam-B and Drd4) that do not exhibit regular spacing (Keeley et al., 2020). 

Even if the total number of types is estimated to more than forty, only nineteen have 

been fully characterised (cellular density, morphology, molecular signature and 

functions) (Sanes and Masland, 2015). These types comprise four On-Off 

directionally selective RGCs (DSGC), three On DSGC, one On-Off local edge 

detector (LED), one On Alpha, two Off Alpha, three On Melanopsin (M2, M4 and M5), 

one Off Melanopsin (M1), one On-Off Melanopsin (M3) and three Off J-RGC (J-RGC, 

mini-J-RGC and midi-J-RGC). 
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On-OFF DSGC represents a coherent group, exhibiting similar morphologies 

between the four groups, with a large dendritic tree stratifying in the On and Off IPL. 

In addition, an exclusive molecular signature is observed, with the expression of the 

neuropeptide cocaine and amphetamine regulated transcript (CART) distinguishing 

them from other RGCs (J. N. Kay et al. 2011). However, physiological differences 

can be observed between the four On-Off DSGC groups, with strong response to a 

single preferred direction of motion, upward, downward, backward or forward (Elstrott 

et al. 2008). Likewise, different molecular signatures characterise each of the four 

On-Off DSGC groups (Kay et al. 2011). Finally, four distinct mosaics are observed 

(Devries and Baylor 1997), indicating the existence of four distinct On-Off DSGC 

groups. 

On DSGC groups characteristics are very similar to On-Off DSGCs, with the 

exception that they stratify only in the On IPL. Thus, they express homogeneity in 

their dendritic tree shape, but differences in their molecular signatures, physiological 

responses to light and they form distinct, separate mosaics. 

LED RGCs exhibit a narrow (approximately 100 µm) but extensively branched 

dendritic tree, with the particularity of a large stratification level, from the Off level to 

the centre of the IPL, despite responding to Off stimulus (van Wyk, Taylor, and 

Vaney 2006; Russell and Werblin 2010). LED are particularly numerous in retina, 

representing around 13% of all RGCs in mouse (Y. Zhang et al. 2012). This can be 

surprising as LEDs respond specifically to one visual feature, which is a small 

stimulus falling entirely within a single LED receptive field. It has been proposed that 

this particularity is well suited for the detection of small mammal’s predators, such as 

a bird in the sky (Zhang et al. 2012). 

Alpha RGC are characterised by a large dendritic tree and the production of more 

neurofilament than other RGCs (for this reason, a SMI-32 staining marks these cells 

particularly well). They also exhibit a specific molecular signature, with the expression 

of spp1 (encoding the secreted phosphoprotein osteopotin) and kcng4 (encoding a 

voltage-gated potassium channel subunit) (Duan et al. 2015). However, they can be 

divided into three groups, one On and two Off, based on the IPL level they laminate 

in, but also based on their physiological responses to light and specific molecular 

signatures (Kim et al. 2010; Huberman et al. 2008; Estevez et al. 2012). In addition, 

they form independent mosaics. 
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Melanopsin RGCs represent a particular RGC category as they are the only known 

non photoreceptor (rods, cones) light sensitive cells in the retina. They can be 

divided into five sub-groups (M1-M5), depending on their physiology, molecular 

signature, and the independent mosaics they form (Berson et al. 2010; Hu et al. 

2013). Their dendritic arbour is known to be large but sparsely branched. 

J-RGCs respond exclusively to Off stimuli and are characterised by a notable 

preference in their dendritic tree direction, resulting in a very strong asymmetry of 

their dendritic arborisation. They however can be divided into three more coherent 

groups, J-RGC, mini-J-RGC and midi-J-RGC, depending on their specific molecular 

signatures, dendritic morphology and the independent mosaics they form. Indeed, 

despite all exhibiting strongly asymmetric dendritic arbours, mini-J-RGC and midi-J-

RGC are characterised by a smaller dendritic tree (Sanes and Masland, 2015). 

More RGC types are known to exist, but are incompletely characterised, such as 

suppressed-by-contrast cells or chromatically sensitive RGCs. 

Importantly, advances in single-cell transcriptome sequencing (scRNA-seq) recently 

brought a new light to neuronal cell-type classification (zeng and Sanes, 2017). This 

technic represents a new and unique opportunity to precisely describe individual cells 

and so to classify them based on their expression profiles. It represents a useful tool 

to better understand already described cell types, but also to discover new types. 

This is particularly true when the existence of additional types was suspected, but the 

demonstration of their existence impossible in the absence of specific markers 

(molecular). Thanks to scRNA-seq, it could be possible to classify every RGC in the 

retina, and so to obtain a close estimation of the number of RGC types and their 

corresponding cellular density. It could also benefit mosaic studies, as each type 

could be independently investigated. More, by performing sequencing in early 

development, it could be possible to study retinal cellular organisation and 

development of independent types (or their progenitors) before electrophysiological 

or molecular markers are available. This could help study mosaic formation but more 

generally better understand retinal self-organisation. 

The existence of such a vast diversity or RGCs gave rise to two different hypotheses 

to explain it. The first one, proposed by Jerome Lettvin, is the feature detection 

hypothesis, in which each cell type exists to extract one precise relevant feature 

(Lettvin et al. 1959). Thus, the more types exist, the more features the retina is able 

to extract from a visual scene. The second one is the efficient coding hypothesis 
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(Atick and Redlich 1990; Gollisch and Meister 2010), in which the diversity of RGCs 

helps to code visual information into an efficient form, minimising the number of 

spikes needed to transmit a signal to the brain. In this second hypothesis, the variety 

of RGC type simply helps to reduce the signal processing within the retina, while in 

the first one, each RGC type exist to detect a specific visual feature. 

Despite being an important feature of retinal organisation, retinal mosaics' formation 

is not fully understood yet. In particular, three mechanisms are believed to potentially 

take part in their development: cell-fate determination, programmed cell death and 

tangential migration (Eglen 2006; Reese and Keeley 2015). 

Cell-fate determination 

Cell-fate determination is a process in which a cell of a certain type will prevent the 

emergence of same type cells at its vicinity (McCabe, Gunther, and Reh 1999). 

Emerging from a pool of progenitors, cells are for a time undifferentiated and later 

choose their type depending on intrinsic and extrinsic factors. More precisely, after 

passing through an intrinsically determined state, retinal progenitors are still left in an 

undifferentiated state, but are now only capable of giving rise to a limited subset of 

cell types. The precise type the cells choose to differentiate into depends on extrinsic 

signals (Livesey and Cepko 2001). These extrinsic signals, consisting of chemical 

cues, may be delivered by an already differentiated retinal cell, in order to block 

neighbouring undifferentiated cells to differentiate into the same cell type. This 

mechanism has been demonstrated in the retina (Livesey and Cepko 2001) and is 

believed to be ubiquitous in the developing CNS. 

Programmed cell death 

RGCs exhibit a very high rate of programmed death, or apoptosis (60-80% of the 

initial population (Finlay and Pallas 1989)) during normal development. Other cell 

classes also exhibit programmed cell death, like amacrine cells (Young 1984), but in 

notably smaller proportions. As creating cells that will rapidly die requires substantial 

energy consumption, death has to play an important role in order for this energy 

consumption not to be a waste. Thus, this mechanism is believed to be implicated in 

the selection of relevant cells in order to build a functional retina. Following this 

principle, cellular death has been proposed to be a consequence of RGCs not being 

able to establish correct axonal connection in the lateral geniculate nucleus (Jeffery, 

1984). RGC cell death has also been shown to depend on neighbouring cells' 
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electrical activity (Jeyarasasingam et al. 1998; Eglen and Willshaw 2002). Creating 

competition between homotypic cells (either spatial or functional competition) could 

lead to the formation or refinement of mosaics. The importance of programmed cell 

death upon mosaic formation seems however to vary between cell classes, due to 

major differences in death rate, but also within a cell class (between types). Thus, the 

implication of cell death in SACs mosaic formation has been suggested (Hoon et al. 

2014), the suppression of this mechanism on the SAC population leading to irregular 

mosaic patterns. However, this result has not been demonstrated for other amacrine 

cell types. 

Tangential migration 

All retinal cells undergo migration during retinal development, both vertical (from one 

layer to another) and tangential (horizontal migration within the same layer). Cells 

can move between 20 and 100 µm tangentially from their initial location (B. E. Reese, 

Harvey, and Tan 1995; B. E. Reese et al. 1999). Furthermore, cellular tangential 

migration and mosaic regularity are correlated, hence, this mechanism is believed to 

be implicated in mosaic formation. This has been precisely demonstrated for SACs 

mosaic formation, where cells move tangentially away from cells of their own type 

(Galli-Resta et al. 1997). Mechanisms responsible for tangential migration are not 

fully understood, even if chemical cues seem to play a key role, such as in the case 

of SACs (Kay, Chu, and Sanes 2012). Thus, diffusible signals or contact-mediated 

interactions between homotypic cells may be responsible for mosaic formation 

(Reese and Galli-Resta 2002). It is important to note that mosaics appear, partially or 

completely, before extensive dendritic growth (Galli-Resta 2002; Nguyen-Ba-Charvet 

and Chédotal 2014) and thus without contact-mediated interactions. However, other 

studies point out the importance of dendritic growth upon tangential migration (Galli-

Resta 2002; Huckfeldt et al. 2009; Kay, Chu, and Sanes 2012). In all cases, cell-cell 

interaction seems to be a mandatory mechanism for tangential migration. 

Of course, it is likely that the formation of mosaic patterns is due to combinations of 

those three mechanisms (Nguyen-Ba-Charvet and Chédotal 2014). Previous 

modelling of mosaic development have been conducted in order to investigate 

mechanisms responsible for mosaic creation (Eglen and Willshaw 2002; Eglen 

2006). These studies were based on simple yet realistic biological rules. They 

notably participated in showing that a minimal exclusion zone is enough to ensure 

regular mosaics, and demonstrating that homotypic tangential migration is the most 
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appropriate mechanism to create this exclusion zone, compared to cell-fate and cell 

death mechanisms. 

Previous mathematical simulations of retinal mosaic formation have been conducted 

(Eglen and Willshaw 2002; Eglen 2006). These studies investigated the involvement 

of the CF, CD and CM mechanisms, suggesting a central role for the CM 

mechanism. However, these studies do not always follow the principle of locally 

available information, and are limited to a 2D physical space. The later prevents the 

implementation and investigation of several mechanisms, such as cellular vertical 

migration (for instance during RGC layer collapse) or realistic dendritic development. 

No model of mosaic formation in 3D space following the AB principles currently 

exists. 

Dendritic development 

In addition to cell body mosaics, RGC dendritic arbours are known to exhibit 

homotypic self-avoidance (competition for space). While RGCs of dissimilar types 

exhibit overlap of their dendritic arbours (Gauthier et al. 2009), RGCs of the same 

type do not overlap, but instead they tile. This phenomenon has been shown for 

various RGCs (Dacey 1993; Vaney 1994). RGC arbours exhibit dendritic field limited 

to around half the distance to their homotypic neighbours. In other words, dendritic 

field sizes are comparable to the voronoi domain areas defined by their homotypic 

neighbours (Reese and Keeley 2015). This strongly suggests the existence of an 

interaction mechanism between dendrites of the same type for the establishment of 

their respective dendritic arbours. This assumption is supported by studies where 

cellular density is increased, resulting in a reduction of their dendritic arbour size 

(Kirby and Chalupa 1986). In addition, RGC dendrites have been shown to grow 

preferentially towards dendrite-depleted regions of the retina (Perry and Linden 

1982). This dendritic self-avoidance is believed to be mediated by contact-mediated 

interactions between homotypic dendritic arbours (Hoon et al. 2014). 

Homotypic interactions however are not the only mechanism influencing dendritic 

development. Indeed, both intrinsic and extrinsic factors play a role in the final arbour 

shape. For instance, some amacrine cells have intrinsic cues dictating their dendritic 

morphology, enabling them to laminate correctly even in the absence of RGCs 

(Günhan-Agar, Kahn, and Chalupa 2000; Kay et al. 2004). On the contrary, and as 

previously discussed, chemical guidance plays a key role in dendritic development. 

Thus, amacrine cells provide critical developmental cues for RGCs dendritic 
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development. Indeed, amacrine cell dendrites have been reported to be targeted by 

RGC dendrites (Galli-Resta et al. 2008). Along these lines, some RGC types are 

known to especially target other dendritic arbours, such as the On DSGC dendrites 

stratifying precisely with On SACs or the On-Off DSGC stratifying with On and Off 

SACs (Sanes and Masland, 2015). Another illustration of RGCs using amacrine cells’ 

dendrites as a developmental cue is given by Matsuoka et al., 2011. Using a mouse 

model with non-functional semaphorin (Sema6A) receptors (PlexA4), they showed 

that the gene deletion responsible for these proteins results in misplaced lamination 

depth of dopaminergic amacrine cells. More interestingly, they showed that 

melanopsin RGCs (M1) dendrites still target the misplaced dopaminergic amacrine 

cells’ dendrites, as they usually do in normal development. This demonstrates that 

amacrine cells can give strong chemical guidance for RGCs dendritic development. 

However, there is also evidence that some RGCs appear to be less driven by 

chemical guidance, and target more directly their correct sub-laminae (Hoon et al., 

2014). 

Previous computational studies have investigated the requirements for realistic 

neurite growth or morphologies (Nowakowski, Hayes, and Egger 1992; Torben-

Nielsen and De Schutter 2014; Kassraian-Fard, Pfeiffer, and Bauer 2020). These 

studies follow AB rules and yield realistic dendritic development and final cellular 

morphology. However, the majority of AB computational simulations of dendritic 

development are focusing on cortical neurons, and few to no AB simulations of RGC 

dendritic growth has been conducted, raising the need for such simulations. Here, we 

apply the same AB development principle to simulate RGCs dendritic growth. 

In conclusion, the impact and implications of all mechanisms involved in mosaic 

formation (cell-fate, cell death, tangential migration) and dendritic development 

(intrinsic, extrinsic factors) are not fully understood, and much remains to be done in 

order to establish the detailed mechanisms governing mosaic formation and dendritic 

growth. 

 

In this work we will investigate potential mechanisms underlying hyperactivity 

generating stage II retinal waves, using a combination of immunocytochemistry and 

large-scale electrophysiological recordings. We will also investigate mechanisms 

underlying retinal mosaics formation and dendritic development, using agent-based 

computational modelling.  
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Chapter 2. Experimental Investigations: Cellular Populations 

evolution, Transient Clusters of Cells and Retinal Waves 

Waves of spontaneous activity spread across the RGC layer from birth to eye-

opening. They are driven by interconnected cholinergic SACs from P0-10 (Stage II 

waves), followed by waves driven by glutamatergic bipolar cells (Stage III waves) 

(Maccione et al., 2014). This chapter reports the discovery of a transient population 

of cellular clusters during Stage II waves, gradually migrating from the optic nerve 

head to the periphery of the retina. Using a combination of immunocytochemistry and 

large-scale, high-density multielectrode array recordings from the RGC layer, this 

study shows that these cellular clusters may be the pacemakers of Stage II waves, 

and discusses their potential role in guiding retinal angiogenesis. 

2.1 Methods 

2.1.1 Immunohistochemistry 

Retinal sections 

To obtain retinal sections, eye cups from postnatal day (P) 3 to P9 mouse pups were 

fixed for 45 minutes using 4% paraformaldehyde (PFA), incubated in 30% sucrose in 

0.1M phosphate buffer solution (PBS) for at least 12 hours, then embedded in 

Optimal Cutting Temperature (OCT) cryo embedding compound and frozen at -20°C. 

Eye-cups were sliced as 28µm thick sections using a cryostat (Model : OTF5000, 

Bright Instruments), washed with PBS to remove OCT, and incubated in blocking 

solution for 1 hour (5% secondary antibody host species serum with 0.5% Triton X-

100 in PBS) prior to staining with antibodies. 

Primary antibodies used were: ChAT (AB144P, goat polyclonal, Merck Millipore), 

VAChT (PA5-77386, rabbit polyclonal, ThermoFisher Scientific) and Caspase 3 

(Cleaved Caspase-3 (Asp175), polyclonal rabbit, cat number 9661, cell signaling). 

Secondary antibodies used were: Donkey anti rabbit Alexa 568 (A10042, Invitrogen), 

Donkey anti goat Dylight 488 (SA5-10086, ThermoFisher Scientific). 

Two different immunostaining combinations were used: 

(1) Primary antibodies' solution: 0.5% Triton X-100 with VAChT (1:500) and ChAT 

(1:500) in PBS. Secondary antibodies’ solution: 0.5% Triton X-100 with Donkey anti 

rabbit Alexa 568 (1:500) and donkey anti goat Dylight 488 (1:500) in PBS. 
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(2) Primary antibodies' solution: 0.5% Triton X-100 with Caspase 3 (1:400) and ChAT 

(1:500) in PBS. Secondary antibodies’ solution: 0.5% Triton X-100 with Donkey anti 

rabbit Alexa 568 (1:500) and donkey anti goat Dylight 488 (1:500) in PBS. 

Retinal sections were incubated with the primary antibodies’ solution for 12 hours at 

4°C. Sections were washed with PBS, followed by incubation with fluorescent 

secondary antibodies' solution for 1 hour at room temperature. Finally, slices were 

washed with PBS and embedded with OptiClear refractive-index homogenisation 

solution. OptiClear solution consists of 20% w/v N-methylglucamine, 25% w/v 2,2’-

Thiodiethanol, 32% w/v Iohexol, pH 7-8. The solution is clear and colourless, with a 

refractive index of 1.47-1.48. Sections were imaged using the Zeiss LSM 800 

confocal microscope. Regions of interests were selected by looking for ChAT 

expression in order to localise clusters. 

Retinal wholemounts 

Retinal wholemounts were prepared from mouse pups aged P2-P11, flattened on 

nitrocellulose membrane filters and fixed for 45 min in 4% PFA. Retinas were then 

incubated in blocking solution (5% secondary antibody host species serum with 0.5% 

Triton X-100 in PBS) for 1 hour. 

Primary antibodies used were: ChAT (AB144P, goat polyclonal, Merck Millipore), 

RBPMS (1830-RBPMS, rabbit polyclonal, Phosphosolutions), Sox2 (MAB2018, 

mouse monoclonal, R&D Systems), Ki67 (polyclonal rabbit, Abcam) and Olig2 

(AB9610, rabbit polyclonal, Merck). 

Secondary antibodies used were: Donkey anti rabbit Alexa 568 (A10042, Invitrogen), 

Donkey anti goat Dylight 488 (SA5-10086, ThermoFisher Scientific) and Rabbit anti 

mouse FITC (315-095-003, Jackson ImmunoResearch). 

Three different immunostaining combinations were used: 

(1) Primary antibodies' solution: 0.5% Triton X-100 with RNA-binding protein with 

multiple slicing (RBPMS) (1:500) and ChAT (1:500) in PBS. Secondary antibodies’ 

solution: 0.5% Triton X-100 with donkey anti rabbit Alexa 568 (1:500) and donkey 

anti goat Dylight 488 (1:500) in PBS. 

(2) Primary antibodies' solution: 0.5% Triton X-100 with Ki67 (1:200) and ChAT 

(1:500) in PBS. Secondary antibodies’ solution: 0.5% Triton X-100 with donkey anti 

rabbit Alexa 568 (1:500) and donkey anti goat Dylight 488 (1:500) in PBS. 
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(3) Primary antibodies’s solution: 0.5% Triton X-100 with Olig2 (1:500) and ChAT 

(1:500) in PBS. Secondary antibodies' solution: 0.5% Triton X-100 with donkey anti 

rabbit Alexa 568 (1:500) and donkey anti goat Dylight 488 (1:500) in PBS. 

Retinas were incubated with the primary antibody solution for 3 days at 4°C, then 

washed with PBS and incubated with the secondary antibody solution for 1 day at 

4°C. Finally, retinas were washed with PBS and embedded with OptiClear. 

Zeiss AxioImager with Apotome processing and the Zeiss LSM 800 confocal 

microscope were used to image the retinas. High-resolution of the whole retinal 

surface was achieved by imaging multiple individual adjacent areas. Individual 

images were subsequently stitched back together to view the entire retinal surface. 

To compensate for variability in retinal thickness, several focus points were set 

across the retinal surface in order to keep sharp focus on the desired cell layer. Each 

individual picture was then acquired at all wavelengths at 20x magnification, and with 

10% overlap between neighbouring areas. This overlap is used to correctly align and 

stitch together all pictures using the Zen Pro software (Zeiss). In addition, three to six 

mid peripheral regions of interest were selected per retinal wholemount, as illustrated 

by blue squares in Figure 6. These regions were used to perform RGC and SAC 

count and cells position extraction. 

Z-stacks of images at 40x magnification were also acquired at regions of interest to 

visualise cells in 3D. Z-stacks consisted of images taken every 1 µm from the RGC 

layer to below the INL. These regions of interests were selected by using the ChAT 

staining in order to localise clusters, as illustrated by white squares in Figure 6. 

To calculate the relative position of the cell clusters between the optic disc and 

periphery, lines were traced and measured from the middle of the optic disc to the 

middle of a cluster (D1) and then from the same point in the cluster to the periphery 

of the retina (D2). D1/D2 represents the relative position of the clusters. One-way 

ANOVA was used on all 233 ratio values for all eight groups. Tukey post-hoc test 

was used to identify significant changes in cluster positions between consecutive 

developmental days. 

Pups aged P2 (N=18 retinas), P3 (N=19), P4 (N=19), P5 (N=19), P6 (N=16), P7 

(N=13), P8 (N=10), P9 (N=10), P10 (N=4) and P11 (N=4) were used for 

immunohistochemistry. 
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Figure 6: P5 pup retinal wholemount stained with RBPMS (red) and ChAT 
(green). Blue squares illustrate regions of interest used for RBPMS positive cell 
count, taken with a 20x magnification. White squares illustrate regions of interest 
used for clusters and re-imaged at 40x magnification. Scale bar: 500µm. 

 

2.1.2 Electrophysiology 

Retinas from mouse pups (P2 (N=4 retinas), P3 (N=4), P4 (N=5), P5 (N=6), P6 

(N=3), P7 (N=2), P8 (N=2), P9 (N=2), P10 (N=2), P11 (N=2), P12 (N=1), P13 (N=1) 

were extracted and flattened, RGC layer facing down onto a Multi Electrode Array 

(MEA). They were maintained stable by placing a small piece of polyester membrane 

filter (Sterlitech, Kent, WA, USA) on the retina followed by a home-made anchor. The 
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retina was kept in constant darkness at 32°C with an in-line heater (Warner 

Instruments, Hamden, CT, USA) and continuously perfused using a peristaltic pump 

(~1 ml/min) with artificial cerebrospinal fluid containing the following (in mM): 118 

NaCl, 25 NaHCO3, 1 NaH2 PO4, 3 KCl, 1 MgCl2, 2 CaCl2, and 10 glucose, 

equilibrated with 95% O2 and 5% CO2. Retinas were left to settle for 2 hours before 

recording, allowing sufficient time for spontaneous activity to reach steady-state 

levels. 

High resolution extracellular recordings of spontaneous waves were performed as 

described in Maccione et al. (2014). In brief, the BioCam4096 platform with APS 

MEA chips type HD-MEA Stimulo (3Brain GmbH, Switzerland) were used, providing 

4096 square microelectrodes of 21µm x 21µm in size on an active area of 5.12 x 5.12 

mm, with an electrode pitch of 81 µm. Raw signals were visualised and recorded at 7 

kHz sampling rate with BrainWaveX (3Brain GmbH, Switzerland). Each dataset 

consisted of 30 minutes of continuous recording of retinal waves. 

Retinas were photographed on the MEA at the end of the recording session to 

ensure we document the precise orientation of the retina with respect to the array of 

electrodes. Burst and wave detection was done in Matlab (Mathworks) as described 

in Maccione et al. (2014), using the analysis protocol of Hennig et al. (2009). In brief, 

bursts were detected by taking into account the inter-spike interval and spike count in 

a fixed time window, but also using a two threshold criterion based on the mean firing 

rate on each electrode. The end of a burst was determined as the time of the spike 

where the spike count first dropped below half of the onset threshold (Hennig et al. 

2009). Waves were detected as temporally overlapping groups of bursts. A maximum 

duration was imposed on burst to avoid the overlap of temporally separated waves 

(Hennig et al. 2009). The x, y coordinates of wave origins were plotted on the MEA 

and overlaid with the retina itself in the appropriate orientation with respect to the 

MEA. The outline of the retina was drawn for each preparation and overlaid with the 

array of wave origins. An ellipse was drawn to delimit the retina outline while a 

second concentric ellipse with half the dimension of the outer ellipse was drawn to 

divide the retina into central and peripheral areas. Wave origins were then classified 

as either central or peripheral and numbers were used to calculate the 

periphery/centre ratio of wave origins. 
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2.2 Results 

2.2.1 Immunohistochemistry 

RGCs density through development 

Using RBPMS staining in P2 to P10 mouse pup retinas, we performed a manual cell 

count of RGCs on selected retinal areas (see Figure 6 for an illustration). Counting 

RGCs allows us to deduct the average RGC density for each developmental day 

(see Figure 7A). The density value of 3537 cells/mm2 measured at P10, the end point 

of the developmental period used in this study, is in agreement with the literature, 

reporting similar RGC density for mid-peripheral retina location (Sanes and Masland 

2015a). As expected, an important decrease of RGC density is observed from P2 to 

P10, diminishing from 6979 cells/mm2 (standard deviation of ±270) to 3537 cells/mm2 

(±132), corresponding to a decrease of about 49%. 

However, this density decrease does not provide a direct measure of CD as the 

retinal surface itself stretches through development, as shown by Figure 7B. Indeed, 

pup retinas are far from mature at birth, undergoing progressive and profound 

anatomical and functional changes from birth until eye-opening around P13 and even 

beyond. Thereby, the retinal surface significantly expands by about 35% between P2 

and P10, increasing from 11.36mm2 (±0.73) to 15.05mm2 (±1.75). Such mere surface 

growth has a significant inherent impact on cell density, independently of 

programmed CD during the same period. By accounting for this surface expansion, 

we estimated changes in RGC population through development. More precisely, the 

estimated total RGC population of a given retina is calculated by multiplying the 

averaged RGC density (obtained from 3-6 sample areas per retina) by its 

corresponding retinal surface. These individual measurements are then averaged for 

each developmental day to give an estimation of the total RGC population from P2 to 

P10, as shown in Figure 7C. Taking the retinal stretching factor into consideration, it 

is then possible to calculate the corresponding RGC death more accurately through 

development, as illustrated in Figure 7D. In detail, the RGC population measured on 

day D+1 is subtracted from the RGC population measured on day D to measure the 

amount of CD between day D and D+1. The amount of apoptosis measured between 

two consecutive days is then averaged to calculate the daily death rate from P3 to 

P10. CD measurements indicate that the overall RGC population diminishes by 38% 

between P2 and P10. As RGC death during normal development begins shortly after 

birth (based on previous studies, notably by Braunger et al., 2014), we can estimate 
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the total CD rate to be between 60 and 70%. Considering a final death rate of 65%, 

we can estimate that the population measured at P2 represents only 56% of the 

initial RGC population. By using this surface corrected CD estimation, we also 

observe that about 92% of CD is achieved at P5, and 99.5% at P6. It is thus 

imperative to take retinal surface growth into consideration for these calculations, as 

measurements that consider only cell density indicate the end of RGC death at P8. 

In addition to RGC population size estimation, RBPMS staining also allowed us to 

measure the relative RGC layer thickness during retinal development, revealing 

significant thinning from P3 to P9, decreasing from 11.8% (±0.7) to 9.5% (±0.1) of the 

total thickness of the retina. These results corroborate previous findings, reflecting 

RGC apoptosis and the collapse of a multi-cellular RGC layer into a mono-cellular 

layer around P7, once programmed CD is over. In parallel, we measured an average 

RGC diameter increase from 7.3µm (±0.67) at P3 to 12.4µm at P9 (±0.67), with no 

significant increase afterwards. 
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Figure 7: In-vitro RGC population characteristics through development. A: Cell 
density over time. B: Retinal surface over time. C: Estimated RGC population over 
time. D: cell death over time. Error bars represent the standard deviation. P2: n=16; 
P3: n=18; P4: n=14; P5: n=15; P6: n=14; P7: n=12; P8: n=10; P9: n=9; P10: n=10 for 
A, C and D. P2: n=7; P3: n=7; P4: n=8; P5: n=8; P6: n=6; P7: n=6; P8: n=6; P9: n=6; 
P10: n=5 for B. 

RBPMS staining enables to determine the precise position of individual RGCs as 

well, allowing us to measure changes in RI for the global RGC population throughout 

development. As shown by Figure 8, RI increases from P2 to P5 (p = 0.004 using a 

T-test for two independent samples, n = 16 and 15 for P2 and P5 respectively), 

followed by a decrease or plateau between P5 and P6 (no significant differences), 

and then it rises again until P10. Overall, RI increases from 2.39 (±0.2) at P2 to 4.88 

(±0.55) at P10, resulting in more regular RGC organisation at P10 (p < 0.001 using a 

T-test for two independent samples). 
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Figure 8: RI measure for the global RGC population from P2 to P10. Error bars 
represent standard deviation. P2: n=16; P3: n=18; P4: n=14; P5: n=15; P6: n=14; P7: 
n=12; P8: n=10; P9: n=9; P10: n=10. 

 

SACs characteristics through development 

Population analysis has been conducted for another retinal cell type known to exhibit 

mosaics, the SAC. However, immunocytochemical ChAT expression is not strong 

enough before P4 to allow a reliable cell counting and position extraction of SAC in 

the GCL and INL. Therefore, RI and cell density measures have been conducted 

from P4 to P10. No significant differences are observed in SAC density from P4 to 

P10, both for the GCL and INL populations (p=0.27 and p=0.32 respectively with a 

one way ANOVA test), as shown in Figure 9A. Likewise, no significant differences 

can be noted in RI score for both GCL and INL populations from P4 to P10, as shown 

by Figure 9B. 



39 
 

 

Figure 9: In-vitro SAC population characteristics through development. SACs in 
the CGL population are represented in blue, and the INL population is represented in 
orange. A: Cell density over time. B: Regularity index over time. Error bars represent 
the standard deviation. P4: n=14; P5: n=15; P6: n=14; P7: n=12; P8: n=10; P9: n=9; 
P10: n=10. 

As GCL and INL SAC mosaics are independent, SAC populations in the GCL and the 

INL only moderately overlap (Rockhill et al., 2000 Kay et al. 2012; Chow et al. 2015). 

An illustration of SAC mosaics at the INL and GCL levels is shown in Figure 10. 
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Figure 10: ChAT immunostaining on a P9 pup retina. A: GCL level. B: INL level. 
C: overlap of GCL (red) and INL (green) levels. GCL and INL level images are taken 
at the same x,y position, but at different depth focus. Regular SACs positioning can 
be observed in each cellular layer. Few cell overlaps between GCL and INL levels 
are noted. 

A measure of populations’ exclusion has then been conducted, showing no 

significant difference from P4 to P10, as shown by Figure 11. The exclusion factor is 
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based, for two distinct populations, on a count of cells from the first population that 

are located within a determined distance (exclusion diameter) from cells of the 

second population. This score is then normalised, to give an exclusion factor 

between 0 and 1. 1 denotes a perfect exclusion, meaning that all cells of the first 

population are located at a distance greater than the exclusion diameter from all cells 

of the second population. By consequence, only exclusion factors calculated with an 

identical exclusion diameter can be compared. Naturally, if the exclusion diameter is 

not appropriately chosen (either too large or too small), it is not possible to correctly 

discern differences between different conditions. For this reason, a unique exclusion 

diameter of 32µm has been chosen here. This distance allows a good discrimination 

between our different mosaics. 

 

Figure 11 : GCL and INL SAC population exclusion. A score of 1 denotes two 
mosaics with a perfect exclusion and a score of 0 a total overlap of mosaics. 
Exclusion diameter of 32µm. Error bars represent standard deviation. P4: n=14; P5: 
n=15; P6: n=14; P7: n=12; P8: n=10; P9: n=9; P10: n=10. No differences are to be 
noted between P4 and P10. 

 

Clusters of auto-fluorescent cells 
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Whole mount imaging of retinas during stage-2 waves (P2-P10) revealed clusters of 

auto-fluorescent cells in the RGC layer (marked with the RGC-specific RBPMS 

immunostaining, red in Figure 12). These cells are characterised by a strong auto-

fluorescence (green dots in Figure 12), and are not homogeneously distributed 

across the retinal surface, but are organised as tight clusters forming an annulus at 

the proximity of the optic disc at P2. This annulus expands during development, 

reaching the retinal periphery around P6-P7 (see Figure 12), then starts to 

disintegrate and completely disappears by P10. 

 

Figure 12: Auto-fluorescent cell clusters expanding from centre to periphery. 
Mouse retinal whole mounts stained for RBPMS (red) and imaged at the RGC-layer 
level. Clusters of strongly auto-fluorescent cells appear in green. Scale bar: 500 µm. 

Their disappearance coincides with the switch from Stage-2 to Stage-3 waves. A 

quantification of clusters’ relative distance from the optic disk shows that the majority 
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of the annulus expansion occurs between P3 and P6 (see figure 13A, B), with an 

expansion of 33.1% between P2-P3, 63.7% between P3-P4, 24.6% between P4-P5 

and 25.7% between P5-P6. No significant evolution is observed after P6, with 

expansion of 3.5%, 4.8% and 6.8% for P6-7, P7-8 and P8-9 respectively. This 

phenomenon has been observed on all whole mount retinas (n=78 from P2 to P9). 

 

 

Figure 13: Clusters expansion from centre to periphery during the first 
postnatal week. A: Method for calculating the relative position of clusters between 
the optic disc (small black circle in the middle) and periphery. Cluster cells are 
represented by red dots. D1: distance from centre of optic disc to centre of cluster. 
D2: distance between centre of cluster to periphery. B: Box plot showing 
developmental changes in D1/D2 ratio. Each box illustrates the median (horizontal 
line) and interquartile range, with minimum and maximum values (whiskers). 
Asterisks indicate significant changes between consecutive days (One-way ANOVA 
with post-hoc Tukey test). The red dashed line illustrates the percentage difference in 
mean values between consecutive days, showing peak difference between P3 and 
P4 and no further significant changes from P6 onwards. 

Closer inspection of clusters’ cells revealed a cell diameter significantly bigger than 

RGCs (cells diameters of 13.09µm ±1.56 and 9.86µm ±0.53 respectively at P5, n=50 

for each group, p<0.01 with an unpaired T-test). This difference can be observed in 

Figure 14 left panel, where some clusters cells are illustrated in white boxes and 

RGCs are stained in red. In addition, they are exclusively located in the RGC layer, 

(see Figure 14, left panel), but are absent from the INL, (see Figure 14, right panel). 
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Figure 14: Clusters of auto-fluorescent cells located in the GCL. P5 cluster 
viewed at the ganglion cell layer (GCL, left) level and at the INL level (right). Red: 
RBPMS. At the GCL level, auto-fluorescent clusters cells exhibit bright green 
fluorescence (examples marked within white boxes). SACs are also marked in green 
(ChAT staining; examples marked with asterisks). At the INL level, there are only 
SACs. 

Vesicular Acetyl Choline Transport (VAChT) expression is also found on the short 

processes of these clusters, suggesting the presence of cholinergic synaptic 

terminals (see Figure 15). SACs also express VAChT, in the classical double lamina 

pattern in IPL, flanked by cell bodies on both sides. VAChT is known to be 

responsible for acetylcholine transport into presynaptic vesicles, thus being a marker 

of both cholinergic neurons and neuronal activity. This suggests that these cells have 

established connectivity with cholinergic cells and are particularly active. 
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Figure 15: Cluster cells hyperconnectivity identified with VAChT 
immunolabeling. Retinal sections showing clusters auto-fluorescence (green and 
red in the left column), ChAT (green) and VAChT (red) expression within a cluster 
(P4 left column) and in an area without clusters (P5, right column). Cluster cells show 
strong VAChT expression on their processes, exhibiting a strong double laminar 
expression in the IPL flanked by cell bodies in the INL and GCL. SACs express 
VAChT as well, exhibiting the typical double laminar expression in the IPL (ChAT 
expression is weak in SACs at that age, increasing with development). In areas 
devoid of clusters, only the SAC expression pattern can be seen. 

In order to investigate the clusters’ role in the developing retina, Olig2 and ki67 

staining has been conducted. Olig2 is a transcription factor expressed in embryonic 

and postnatal retina, involved in maintaining progenitor cells in an undifferentiated 

state (Nakamura et al. 2006; Hafler et al. 2012) while ki67 is a proliferation marker in 

embryonic and postnatal retina (Scholzen and Gerdes 2000). No expression of Olig2 

and ki67 by cluster cells is observed. To investigate if clusters cells annulus 

expansion (P2-P6) and disappearance (P9-P10) are linked to programmed cell 

death, samples were stained for Caspase3, a hallmark of apoptosis. Likewise, no 

expression of Caspase3 is observed during clusters’ development. 

2.2.2 Electrophysiology 

As stated previously, auto-fluorescent cells clusters are present only during the 

period of Stage-2 waves, following a centre to periphery expansion pattern between 

P2 to P6. Previous studies have shown that Stage II wave sizes increase from P2 to 

P6 (Maccione et al. 2014). Moreover, clusters disappear at P10, coinciding with the 
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switch from Stage-2 to Stage-3 waves. These coincidental events suggest that there 

may be a link between clusters and wave generation. If so, we can predict that wave 

origins would also follow a centre to periphery pattern from P2 to P6. 

To investigate this possibility, we recorded waves from P2 to P13 using a MEA, large 

enough to span the entire retinal surface (recording surface of 5.12 mm2). Figure 16A 

illustrates the electrical activity recording of a P5 retina, and allows us to see the 

entire retinal surface covered by the MEA (retina outline can be discerned at the 

boundaries of the MEA chip). A retinal wave can be noted in this figure (top right), 

corresponding to the arc of high activity (green to red trace). A sample of electrode 

traces is displayed in Figure 16B. Traces corresponding to electrode recording 

bursting activity during waves display a high firing rate while other electrodes remain 

relatively silent. 

 

Figure 16: Spontaneous activity recording of a P5 retina. A: Retina activity 
overview, each pixel corresponds to an electrode. Colours correspond to the voltage 
ratio, between minimum and maximum voltage, computed over 100 ms. The outline 
of the retina can be discerned. B: Selection of 4 electrodes displaying 1 second of 
recording. Cells spiking can be noted, corresponding to bursting activity during wave. 
The four traces correspond to the electrodes delineated with small black squares in A 
(top right). 

Following data processing, wave origins were aligned with the outline of the 

corresponding retina and used to calculate the periphery/centre ratio of wave origins 

as described in the Methods and as shown in Figure 17. 
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Figure 17: Retinal waves origin periphery/centre ratio quantification. A: 
Photograph of a P4 retina on the MEA, taken immediately at the end of the recording 
session. Wave origins (green dots) are overlaid on the photograph. B: outlines of 
retinal whole mounts (black lines) photographed on the MEA immediately after 
recording and overlaid with waves origins (red dots) detected during 30 minutes 
recording. Large grey dotted ellipses: encompass the whole retina. The smaller 
concentric ellipses (50% smaller than the large ones) indicate the central area. 

Figure 18 shows changes in periphery/centre ratio of wave origins during 

development. For each retina, the periphery and centre areas’ surface are measured 

in order to normalise waves origin count of each area by it’s corresponding surface. 

Indeed, as the circle delimiting the centre of the retina has a diameter twice smaller 

that the circle delimiting the periphery of the retina, this peripheral area exhibits a 

theoretical surface three time bigger than the central area. Thus, in the case of a 

random distribution of retinal waves origin across the retinal surface, the peripheral 

area would contain three time more wave origins than the central area. Thus, after 

normalizing wave origin counts by their area surface (periphery or centre), a ratio of 1 

denotes a random distribution. This wave origin random distribution scenario 

corresponds to the null hypothesis, and has been added for each developmental day 

in Figure 18 (red dots). Wave origins expand towards periphery between P2 and P6, 
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with maximum change between P3 to P5, similarly to the locations of cholinergic 

clusters. Once clusters disappear and waves switch to Stage III, the periphery-to-

center ratio drops below 0.5, corroborating previous finding that glutamatergic waves 

are small activity hotspots that tile the entire retina (Maccione et al., 2014). 

 

Figure 18: Normalised retinal waves origin ratio expansion toward periphery. 
Boxplot illustrating the normalised ratio between the numbers of wave origins in the 
periphery versus those in the central area. Control values, corresponding to a 
randomised spatial distribution of waves origin for each retina are displayed in red 
(error bars represent standard deviation). Wave origins expand from centre to 
periphery between P2 and P5-6, similar to the clusters themselves. Statistical 
analysis was not possible in this case due to the small numbers of values in each 
group (one ratio value per retina). 

2.3 Discussion 

RGCs density through development 

Using RBPMS staining, we have been able to investigate the evolution of the RGC 

population during retinal development. By estimating the RGC population during 

development using a cell count, we have been able to investigate RGC death rate. 

Our measures are in agreement with the literature, reporting a total RGC population 

decrease from around 76,000 cells to around 48,000 cells. This cell population 
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decrease corresponds to a death rate of about 65% of the initial population, with 

99.5% of this cellular death being achieved by P6. Importantly, we showed that it is 

imperative to take retinal surface growth into account for cellular death rate 

calculation. Indeed, if the RGC population is estimated through a cell density 

measure without taking retinal surface stretching into consideration, the 

corresponding death rate is calculated at the higher value of around 75%, with the 

end of cellular death at P8. The estimation of RGC population during retinal 

development could also have been conducted by counting the number of axons in 

the optic nerve (Jeon et al., 1998). Indeed, as RGCs are the only retinal cell type to 

establish connections to the brain, and as each RGC projects only one axon, 

counting the number of axons in the optic nerve provides a direct measure of the 

number of RGCs in the retina. This method has the advantage of providing a direct 

and precise measure of the number of RGCs, instead of an approximation of the 

population. However, due to the early developmental stage of these retinas and the 

resulting fragility of their optic nerve, such a measure would have been particularly 

difficult to conduct, and the resulting cell count would have been unreliable. 

RBPMS staining also allowed us to precisely extract the position of each RGC and 

thus to calculate the RI evolution of the whole RGC population during retinal 

development. We found a global increase from P3 to P10, with a decrease or plateau 

between P5 and P6 (see Figure 8). It is important to note that no mosaic formation at 

the whole RGC population level has been reported (Sanes and Masland 2015a), 

mosaics concerning only sub-populations of homotypic RGCs (On-Off DSGC, 

Melanopsin M1, sustained On ɑRGC, etc.). However, as pointed out by Reese and 

Keeley (2015), regularity measures are strongly linked to cell density in a minimal-

distance spacing rule case, such as in the vertebrate retina. To further investigate 

this relationship between regularity and density, we used simple simulations of the RI 

measure with a minimal-distance spacing rule in various conditions of initial cell 

density and layer organisation. These simulations demonstrate that in a mono-layer 

configuration, the regularity is directly dependent on cell density. In other words, the 

denser cells are, the higher the RI score. Indeed, at a cellular density of 3000 

cells/mm2, the RI score is 5.18 (±0.11), which is considered very regular. Of course, 

the cell diameters (or in other words the minimal-distance spacing value) has a 

significant impact on the regularity as well. For a fixed density, increasing the 

minimal-distance spacing results in cells being more densely packed, thereby 

increasing the measured regularity. The effect of the minimal-distance spacing and 
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the cell density upon RI diminish for independent cell types as the number of cell 

types composing the total cell population increases. More precisely, RI values 

measured for each cell type composing the cell population are below what is 

considered a regular mosaic RI value, if the population is composed of more than five 

cell types. By consequence, a RI of 2.3 (±0.09) has been measured for a total cell 

population density of 7000 cells/mm2 and composed of six cell types. In a bi-layer 

configuration, the cell density impact on regularity measures is less significant, never 

reaching a RI value above 3.3, regardless of the cell density or the number of cell 

types. When a bilayer collapses into a single layer without CD, RI values gradually 

increase due to the cell density increase induced by the layer collapse. However, as 

this layer collapse is the result of a cell density reduction, this simplistic scenario 

does not reproduce RGC organisation evolution. So, if CD is added we note that RI 

initially increases, corresponding to the density effect described above (minimal-

distance spacing), then subsequently decreases, corresponding to the effect of CD. 

As the involvement of CD in mosaic formation only concerns independent cell types, 

CD would appear as a random mechanism at the global population level. Thus, the 

death mechanism implemented in this preliminary simulation is random as well, and 

set at 65% of the initial population. This phenomenon could explain the RI decrease 

measured at the global RGC population level. As cell growth continues after the 

completion of CD, the observed RI increase in the global RGC population from P7 to 

P10 could be explained by the increase in cell diameter, which mechanically 

augments the minimal-distance spacing value, thus increasing the regularity. 

SACs characteristics through development 

In addition to RGCs, in-vitro experiments allowed us to investigate another retinal cell 

type known to exhibit regular spacing, the SAC population. This cell population has 

the particularity of being divided into the GCL and the INL. Each SAC layer forms a 

mosaic, and both mosaics are reported to be independent (Rockhill et al., 2000 Kay 

et al. 2012; Chow et al. 2015). By using ChAT staining, we have been able to 

measure the cell density for both the GCL and INL population. These cell densities 

do not vary between P3-4 (shortly after GCL and INL separation) and the end of 

retinal development (see Figure 9A), indicating an absence of cell death during this 

period. This ChAT staining also allowed us to measure mosaic regularity of GCL and 

INL SACs populations during development. Interestingly, no RI variation was 

observed from P3-4 (see Figure 9B), indicating that these two SACs populations 

have already created their mosaics by P3-4, hence shortly after SACs migration into 
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their respective cellular layer. This is notably different from RGCs, which express 

small tangential migration later on, a phenomenon believed to relate to mosaic 

refinement. In addition, we also observed that the calculated exclusion factor does 

not vary. This factor measures how GCL and INL mosaics exclude, or complement, 

each other, without vertical overlapping of their cell's positions. This also supports the 

assumption of early SACs mosaics establishment. Moreover, the few observed 

overlap of GCL and INL mosaics may indicates an absence of interactions between 

these two SAC populations during their cellular organisation, before they migrate to 

their respective layer. However, investigating this hypothesis in-vitro or in-vivo is 

particularly complex as SACs do not express ChAT strongly before P4. Moreover, no 

specific molecular signature - that could be used to determine in advance what 

cellular layer each cell will migrate to - have been reported between their GCL and 

INL populations. Thus, other experiments, using different techniques, are required in 

order to investigate further mosaic creation in the GCL and INL SAC populations. 

Clusters of auto-fluorescent cells 

In this chapter we reported for the first time a transient population of auto-fluorescent 

cells, present only during the Stage-2 waves period. They appear near the optic disk 

at P2 and migrate to the periphery by P7, before disappearing at P10, coinciding with 

the switch to Stage-3 waves. The precise nature of these cells remains however 

unknown and will require single cell gene sequencing in future studies to determine 

their genetic identity. 

Our experimental observations suggest that these tight cellular clusters may 

generate strong neural activity during the period of Stage-2 waves. The strong 

VAChT staining observed at the cells' vicinity could also suggests high activity, as 

this protein is known to be directly linked to cholinergic activity, transporting 

acetylcholine from the cytoplasm to the synaptic vesicles (Oda, 1999). Thus, this 

strong VAChT expression could suggests strong connectivity between the cluster 

cells and cholinergic retinal neurons, as the presence of VAChT indicates synaptic 

terminals. Such strong connectivity and hyperactivity could suggest the presence of 

hyper-excitable hubs of cells capable of triggering activity in neighbouring SACs and 

RGCs. The auto-fluorescence of these clusters cells could be caused by an 

accumulation of mitochondrial Nicotinamide Adenine Dinucleotide reduced (NADH), 

which exhibits strong fluorescence at high concentration (Blinova et al., 2005). 
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Interestingly, this high concentration of mitochondrial NADH could denote 

hyperactivity in these auto-fluorescent cells. 

Moreover, wave origin location dynamics support the hypothesis that these 

hyperactive clusters could be responsible for stage II retinal waves initiation. Indeed, 

wave origins follow a similar pattern of spatial and temporal dynamics across 

development, establishing a link between clusters and waves initiation locations. 

Additional analysis has also been conducted by F. Rozenblit, from the Gollisch lab in 

the University Medical Center Göttingen, using electrical imaging from MEA 

recordings (Litke et al. 2004; Petrusca et al. 2007; Zeck, Lambacher, and Fromherz 

2011; Greschner et al. 2016). This technique has been used to visualise wave-

related electrical activity using either the MEA used for pan-retinal recording, or a 

high resolution MEA composed of square microelectrodes of 21µm x 21µm in size on 

an active area of 2.67 x 2.67 mm, with an electrode pitch of 42 µm. The second MEA 

is significantly more precise than the first one, with double electrode density. 

Moreover, activity was recorded with a newer system, at much higher sampling rate 

(17.855 kHz), which yields much better temporal resolution for the responses. 

Electrical imaging analysis is conducted independently for each electrode by first 

averaging the electrical activity over all electrodes surrounding the time of spikes in 

that electrode (spike-triggered average, STA). Then, for each active electrode, a 

window of -5 to +5 ms of raw MEA signal around wave-related detected spike is 

selected. By averaging the obtained recording snippets, it is then possible to 

visualise electrical activity in the spatiotemporal vicinity of spikes. 
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Figure 19: Electrical imaging of retinal waves. A: STAs for two trigger channels 
showing signals averaged over -5 to +5 ms relative to spikes on the trigger channel 
(in red) for 11x11 surrounding recording channels. Recording channels with dipole 
activity (with maximal positive deflections with z score>5 occurring before the 
maximal negative deflection) are marked with the green mask. Channel 1643 has a 
marked area with dipole signals near the trigger channel. The single traces on the 
right side of the electrode grid show the full size of the spike on the trigger channel 
(blue asterisk) and maximal positive deflection (red asterisk), emphasizing the fact 
that the amplitude of the dipole signals is significantly smaller than spikes, suggesting 
that they may represent slow, graded potentials. (P4 retina, 60 min recording). B: 
Time-lapse images taken from movies of the averaged activity for both channels 
illustrated in A. The precise time of each image is indicated in the bottom left corner 
of each frame (in ms). Time 0.0 (time of the spikes used for STA) is indicated in red. 
For Channel 1643, clear dipole signals are seen from the earliest time frame (-
0.5ms). Such signals are absent in Channel 1782. 

In some cases, a dipole activity was observed where positive deflections emerged 

simultaneously with the expected negative deflections of a spike, followed by a 

negative deflection. Although negative deflections smaller than the spike used for 
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spike-triggered averaging (STA) were detected around most STA channels, 

presumably reflecting wave-related activity propagation (as in Channel 1782, Figure 

19A and 19B), on some channels there are conspicuous positive signals emerging 

simultaneously with the negative spike signal (Channel 1643, Figure 19A). These 

signals were significantly smaller (red asterisk) than the STA spikes (blue asterisk), 

but easily distinct from baseline activity. 

Overall, when combining the activity footprint from all channels exhibiting such 

positive-negative “dipole” behaviour (Figure 20), these areas form clusters in 

proximity with wave origins (green dots in Figure 20). However, when plotting all 

maximal projections, regardless of whether they have a positive deflection or not 

(Figure 20, bottom row), the activity is more spread out over MEA channels, with less 

clear co-localization with the wave origins. The clustered layout of the dipole areas 

suggests that these signals may reflect activity originating from the cholinergic cell 

clusters. 

 

Figure 20: Recomposed electrical imaging of retinal waves. Maximal projections 
for signals with pre-STA spike signals with larger positive than negative deflections 
(top row) and for all maximal projections (bottom row) over the entire MEA. Maps are 
shown for two P4 and two P5 retinas, each with one example recorded on an array 
with 42 µm electrode pitch, and for another array with 81 µm pitch. Wave origins 
(green dots) are overlaid on the electrical signals 

In summary, electrical imaging analysis reveals the presence of activity clusters 

characterized by simultaneous positive and negative small signals in proximity with 

wave origins, suggesting that these clusters may represent activity related to the 

cluster cells. 
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In addition to auto-fluorescent clusters electrical activity, we investigated their 

potential implication in retinal cellular proliferation. The absence of Olig2 signature 

suggests that these cells clusters are not undifferentiated progenitors' cells. Indeed, 

Olig2 is a transcription factor whose expression is observed only during early 

development and is known to be implicated in cellular differentiation and replication 

sustainment. Likewise, the absence of ki67 signature, known to be a cellular marker 

for proliferation (Scholzen and Gerdes, 2000), confirms that the clusters are not 

implicated in cellular proliferation. 

One characteristic of the described population is its spatial evolution during 

development, with a displacement from the centre to the periphery in a brief period, 

from P2 to P7-8. However, this annulus “migration” cannot be explained by cellular 

displacement. The corresponding distance to travel and its associated cellular 

migration velocity would be too important. It would indeed imply a cellular 

displacement of about 1500µm in five days, corresponding to an average cellular 

migration speed of about 300µm per day during five days, far above the maximal 

30µm tangential migration observed for both SACs and RGCs (Nguyen-Ba-Charvet 

and Chédotal, 2014). 

As spatial migration cannot reasonably explain the centrifugal movement of the 

clusters, we looked into other potential mechanisms. One potential mechanism might 

be cellular death of more internal cells, and emergence of new more superficial cells. 

However, no caspase3 expression was detected in these cells from P2 to P10. As 

caspase3 is well-known to be implicated in the molecular cascade of cell apoptosis 

(Nicholson 1999), its absence here could suggest that these cells do not die through 

programmed cell death. Such non-apoptotic cellular death mechanism has been 

reported during retinal development, where microglia accumulate around astrocytes 

and exhibit phagocytic activity, leading to astrocytic death (Puñal et al. 2019). A 

similar mechanism could be implicated here and could be experimentally tested. 

Very interestingly, a parallel can be established between clusters location evolution, 

and the dynamics of mouse retinal angiogenesis. As retinal vascularisation occurs 

after birth, conducting precise studies about its developmental dynamic has been 

possible. Thus, it has been documented that the superficial retinal vascularisation, at 

the RGC layer level, starts around P1, with the first blood vessels emerging from the 

optic nerve head, then expanding toward the retinal periphery (Dorrell and 

Friedlander 2006). This developmental pattern is very consistent, both spatially and 
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temporally, and strictly regulated. It is important to note however that this temporal 

course of development varies considerably depending on the considered mouse 

strains (Aguilar et al. 2008). The widely used C57Bl/6 mouse (the model used in this 

study) exhibits superficial angiogenesis starting at P1, reaching the periphery around 

P8 (see Figure 16 from (Stahl et al. 2010)). This vascular developmental pattern 

precisely matches the one observed for clusters location. This could indicate a direct 

link between clusters emergence and vascularity development. In addition, and as 

clusters are hyperactive cells, they need an important supply of both nutrients and 

oxygen, strengthening the link between clusters location evolution and this observed 

angiogenesis pattern. 

 

Figure 21: From Stahl et al., 2010, Figure 1: Development of the superficial 
vascular plexus in C57Bl/6 mouse retinas. Retinal whole mounts from postnatal 
day (P)1 to P8 were stained for endothelial cells with isolectin B4-Alexa 594 (red). N 
(normoxia) signifies normal development, as opposed to the hyperoxia time course 
(shown in Figures 4 and 5 of Stahl et al., 2010). At P1N, the mouse retina is almost 
completely devoid of blood vessels. The superficial vascular plexus can be seen 
originating from the optic nerve head. During the first week of postnatal development, 
the superficial plexus extends radially from the optic nerve head into the surrounding 
tissue, reaching the retinal periphery at ∼P8N. 

This however does not indicate the direction of this causality, meaning whether 

clusters hyperactivity drives the vascularity, or whether the newly created vascularity 

allows the emergence of these clusters with high metabolic needs. 

Interestingly, it has been previously shown in the retina that hypoxia caused by 

neuronal activity induces angiogenesis (Stone et al. 1995), mediated by up-regulation 

of vascular endothelial growth factor (VEGF), in response to hypoxia. More recently, 
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cholinergic neural activity has been demonstrated to play a direct role in 

angiogenesis of the deeper blood vessels, during the second postnatal week (Weiner 

et al. 2019). Blocking cholinergic activity results in a reduction of VEGF expression 

that in turn reduces retinal angiogenesis. However, these manipulations have no 

effect on the superficial blood vessels, during the first postnatal week, when cluster 

cells are present. It should also be pointed out that SACs are already present across 

all the retinal surface from P2. Thus, blood vessels expansion does not follow SACs 

development, but rather follows clusters location evolution. If the clusters cells are 

indeed hyper-active, as suggested by our results, they may generate more hypoxic 

surrounding, leading to angiogenesis in their vicinity. 

Very interestingly, new observations obtained from E. Sernagor’s lab show a 

collocation of clusters and the vascularisation edge during development, as shown in 

Figure 22. A collocation of clusters and expression of HIF-1, a transcription factor 

activated in hypoxic condition, has also been shown. 

 

Figure 22: Collocation of auto-fluorescent clusters and vascularisation edge. 
Red: isolectin B4; cyan: RBPMS; white: clusters. In addition of endothelial cells, 
some microglial cells are also marked by isolectin B4 in the P3 retina. 

In addition, when RGCs activity is chronically enhanced using pharmacogenetics, 

between P1 and P6 (thus during stage II waves and vascularisation), both clusters 

and blood vessels migration is arrested, barely reaching the middle retina. Moreover, 

the blood vessels exhibit excessive branching, especially around the clusters, which 

can denote a stronger hypoxia around the clusters, due to excessive neural activity. 

This also suggests that neural activity in the RGC layer (including from the clusters) 

P3 P5 



58 
 

plays a crucial role for angiogenesis and blood vessel migration. This is in 

accordance with previous studies, reporting impaired vascularisation in the absence 

of RGCs in the Math5-/- mouse retina (Edwards et al. 2012). 

Thus, we propose that the transient population of the cluster cells described here 

actively participates in angiogenesis and elaboration of retinal vascularity through 

activity-induced hypoxia. By consequence, disturbing the normal development of this 

new population (exclusively, thus without impacting SACs) or inhibiting this cellular 

population activity should result in abnormal vascularisation. 

Our findings are in agreement with the hypothesis of a transient network of cells that 

are responsible for waves initiation (Zheng, Lee, and Zhou 2006; Ford, Felix, and 

Feller 2012). However, instead of a transient network of hyper-connected SACs, we 

propose here that waves are initialised by a transient population of hyper-connected 

specialised cells in the RGC layer. This transient population is organised in tight 

clusters, with evidence of hyper-excitability. Once generated, waves travel across the 

retinal surface via the SAC network, as well documented. In addition, we propose 

here that this hyper-active population is an essential component for the 

establishment of retinal vascularity, by driving angiogenesis. 

While a transient population of hyper-active cells has never been reported in the 

retina, developing cortical areas exhibit such a transient population of subplate 

neurons that are highly active and synaptically connected to other developing 

neurons (Luhmann, Kirischuk, and Kilb 2018). The presence of transient, electrically 

active neurons during early development is thus not a new concept, suggesting a 

universal mechanism mediating hyper-excitability in developing CNS networks during 

the critical period for brain wiring.  
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Chapter 3. BioDynaMo 

To be able to conduct my simulations, I took an active part in the development of 

BioDynaMo, an open-source agent based simulation framework (Breitwieser et al., 

2020). During this collaboration, I had the chance to join an active development team 

and to implement, test or correct several mechanisms – such as mechanical 

interactions and chemical diffusion – but also to build demonstration cases. The 

BioDynaMo framework has been developed to address the need for a general-

purpose and high-performance platform for biological simulations. Thus, it can be 

used for numerous applications, including tumour growth simulations, bacterial 

proliferation or neural development. In addition, the BioDynaMo engine was designed 

with high performances in mind. To this goal, it takes advantage of the latest 

developments in computing hardware, being fully parallelised and able to offload 

computation to hardware accelerators. This enables a single server to run large-scale 

simulations composed of more than one billion simulation objects (cells, for instance). 

However, as most biologists do not easily have access to high-performance servers, 

BioDynaMo is also able to run complex simulations on classic desktop computers or 

laptops. In this case, simulations are limited to using approximatively ten million 

objects. 

This chapter will present the BioDynaMo framework and agent based simulation 

concepts for readers who are unfamiliar with this approach. Other readers can 

directly read Chapter 4. A cancer simulation showcase will also be presented in this 

chapter, illustrating the potential and flexibility of BioDynaMo. 

3.1 Simulation Concepts 

Each object in BioDynaMo is denoted as a simulation object, and possesses its own 

characteristics, such as its 3D geometry (sphere or cylinder, diameter), mass, 

adherence and position in space. Three generic objects are implemented, cell, 

neuron soma and neurite element. Specific methods are implemented to access 

objects attributes or modify them (such as diameter and cylinder length changes or 

object migration in space). Generic objects can be extended by adding custom 

attributes and methods. During a simulation, new object creation (for example due to 

cell division) can take place and is denoted in BioDynaMo as an event. Each event is 

triggered by a single simulation object but can create multiple new objects. Attributes 

transmission from the object that triggered the event to the newly created object can 

be defined by the user, as well as attributes value attribution. 



60 
 

A core concept is that biology modules can be attached to simulation objects. A 

biology module describes a simulation object behaviour at each simulation time step. 

It can for example be substance secretion, cell migration or axon extension. The user 

clearly defines the instructions inside a specific method, and can chose if this biology 

module will be copied in the case of an event. For instance, the user can decide if the 

daughter created during a cell division event will inherit its mother biology module or 

not. As previously stated BioDynaMo is agent based, meaning that each simulation 

object is independent, without a central organisation unit that orchestrates the 

behaviour of all simulation objects. Thus, for their biology modules simulation objects 

only have access to their micro-environment, which consists of other simulation 

objects and chemical substances of the extracellular matrix in their proximity. To 

create micro-environments, simulation space is divided into uniform voxels, and 

simulation objects are assigned to a specific voxel depending on their centre of mass 

location. The micro-environment is then defined as a sphere with a volume of 27 

voxels. The voxel size is chosen to be equal to the largest object in simulation, to 

ensure all mechanical interactions are taken into consideration. 

BioDynaMo is able to take into account physical interactions between all simulation 

objects such that they cannot overlap, but mechanically repulse each other. To do 

so, the engine examines if two simulation objects collide with each other at every 

time step. Only the micro-environment is considered for possible collision search in 

order to minimise calculations and to ensure AB rules are applied. In the case of a 

collision detection, mechanical forces acting on both objects are calculated based on 

the approach taken by CX3D (Zubler and Douglas 2009), such that for two spheres 

(Equation 1) , where m is the sphere mass, k is the 

repulsion coefficient, γ the attraction coefficient, ri and rj the radii of the spheres, δ the 

overlap, and ê the unitary vector pointing from the centre of sphere i in direction of 

sphere j. If the resulting force exceeds the adherence between the two objects, 

objects are moved accordingly to the calculated repulsion forces. In the case of 

interaction with a cylinder (neurite), a virtual sphere is created at the location of the 

overlap, and repulsion forces are calculated accordingly. As a neurite’s centre of 

mass is located exclusively at its distal end, part of the force is transmitted to the 

other end depending on the mechanical interaction location along the cylinder. 

Depending on the interaction location, some displacements can be transmitted to the 
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cylinder mother or daughters as well. I had the opportunity to take part in the 

implementation of these mechanical interactions. 

Diffusion in 3D of chemical substances in the extracellular space has also been 

implemented, with the discrete central difference method. This diffusion is supported 

by a grid in the simulation space and can be of variable resolution. The more points a 

diffusion grid has, the more precise and realistic the diffusion will be, at the 

counterpart of more calculation. At each time step, the concentration value of each 

voxel is updated according to the equation (Equation 2)

, 

where  is the concentration value on grid point (i, j, k) at time step n+1, ν is the 

diffusion coefficient, µ is the decay constant, Δt is the duration of one time step, and 

Δx, Δy, Δz are the distances between grid points in the x, y, z directions respectively. 

Substances concentration distribution can be added artificially (with or without 

diffusion and decay) and following any user-defined function, or predefined functions 

such as a Gaussian distribution. For performance optimisation, no diffusion is 

calculated if the diffusion and decay coeficient parameters are set to 0. I also had the 

chance to take part in this simulation aspect. 

At each time step, the simulation engine executes operations for all simulation 

objects. An operation can either alter the state of a simulation object (for instance 

diameter increase), create a new object, or remove an object from simulation. 

Process of different time scales can co-exist by using an execution frequency for 

each operation. A frequency operation of one means that the corresponding 

operation will be executed at each time step, while a frequency of ten means that the 

operation will be executed every ten time steps. At each time step (or depending on 

the frequency operation), the engine updates objects spatial organisation 

(mechanical interactions), then runs all biology modules, and finally updates diffusion 

grids. 

The simulation state (objects position and characteristics, chemical substances 

concentration and gradient) can be exported every desired time step in order to 

visualise it using the open-source visualisation software ParaView 

(https://gitlab.kitware.com/paraview/paraview). 

By offering pre-built functions (cell division, dendrite extension, etc.), functionalities 

(simulation export, visualisation, etc.), and by being built using a general purpose 
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coding language and a hidden implementation of the engine (parallelisation, 

hardware optimisation, etc.), BioDynaMo is easily programmable and can be used 

with only basic C++ knowledge. In addition, this minimises the amount of work, and 

time, needed to build a use case, and thus quickly implement and verify a 

hypothesis. 

The BioDynaMo source code is available at 

https://github.com/BioDynaMo/biodynamo and is licensed under the open-source 

Apache License, Version 2.0. 

3.2 Simulation Illustrations 

Three general examples demonstrate BioDynaMo’s applicability: Cell growth and 

division, soma clustering and pyramidal cell growth. This work has been done in 

collaboration with other BioDynaMo developers, Lukas Breitwieser and Ahmad 

Hesam. 

Cellular growth and division 

In the first example, the simulation starts with a grid of 40×40×40 cells that are 

programmed, through a biological module, to grow to a certain diameter and 

subsequently divide into two smaller cells. These daughter cells inherit their mother 

biological module and hence, will themselves grow and divide. An illustration of this 

simulation can be found in Figure 23. This simulation is characterised by a high cell 

density and slow cell movements due to mechanical repulsion, illustrating mechanical 

interactions between spherical objects as well as cell divisions process. 
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Figure 23: Illustration of grow-divide simulation example. A: Simulation state at 
the beginning of the simulation (time step 0). B: Simulation state at the end of the 
simulation (time step 100). 

Chemical substance secretion and soma clustering 

In the second one, cells aggregate depending on external factors and their cell type. 

The simulation starts as 4000 randomly distributed cells of two different types (A and 

B) in a cubic space. Each cell secretes a type-specific extracellular substance that 

will act as an attractant for homotypic cells. Substances diffusion through space 

follows Equation 2. To allow cells to belong to a specific type and being able to 

recognise their corresponding substance, we extended the cell object and defined 

cells as either type A or B. Two biological modules were implemented, one for 

substance secretion, and one for migration depending on their homotypic substance 

gradient. During the simulation, clusters of homotypic cells form, as shown by Figure 

24. This example illustrates the extracellular substance diffusion mechanism, cell 

migration depending on a chemical gradient as well as default object extension. 
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Figure 24: Soma clustering simulation. Each cell of type A (blue) or B(red) secrete 
a substance A or B and move following its homotypic substance gradient. A: 
Simulation at t0, cells are randomly distributed. B: Simulation at t18, cells start to 
form clusters. C: Simulation at t100, cells form clusters. Heat-map of both substances 
concentration (blue: 0, red: 4000) is overlaid. 

Pyramidal cells dendritic arbour growth 

Finally, the pyramidal cell growth example illustrates dendritic tree development 

using chemical clues. The goal here was to demonstrate the capability of BioDynaMo 

to create neuronal morphologies that are similar to experimentally measured 

pyramidal neuro morphologies. To do so, a cell body with three initial 0.5 µm long 

basal dendrites and one initial 0.5µm long apical dendrite are created. Two chemical 

developmental cues following a Gaussian distribution were initialised along the z 

axis, acting as attractant for dendrites. Two distinct biological modules describing 

apical and basal dendrites' growth behaviour were created. Thus, at each time step 

they define dendrites growth direction, speed and branching behaviour. Apical 

dendrites’ growth is more driven by the chemical clues and grows twice faster than 

the basal dendrites. Branching behaviour also differs, apical dendrites having a 

higher branching rate, but they can branch only on the main branch of the arbour. 

These simple rules give rise to a straight long apical dendrite with simple branching 

patterns and more dispersed basal dendrites, as shown in Figure 25A, similarly to 

what can be observed in real pyramidal cell morphologies. We have been able to 

tune parameters and compare our simulated neurons using a publicly available 

database of real pyramidal cells (Mellström et al. 2016). Parameters have been 

empirically chosen, without fitting method (due to the large number of parameters), 

but rather using a trial-and-error approach. Two different measures were used to 

compare our simulated neurons and the 107 neurons composing the real 

morphologies' database: the average number of branching points, and the average 

length of dendritic trees. As shown in Figure 25B, C, no significant differences were 
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observed between the two groups for both measures (p > 0.05 with an unpaired T-

test), demonstrating the ability of BioDynaMo to model realistic neurons’ 

morphologies. 

 

Figure 25: Pyramidal cell growth example. A: Illustration of a simulated pyramidal 
cell. B: Number of branching point comparison between simulated and in-vitro cells. 
C: Dendritic length comparison between simulated and in-vitro cells. Error bars 
represent standard deviation. 

This simple simulation highlights the differences in growth behaviour needed in order 

to simulate realistic pyramidal cells dendritic arbours. These results could indicate 

intrinsic differences between apical and basal dendrites, but also the importance of 

external developmental cues. 
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3.3 Performance 

These examples also allowed us to measure the performance of BioDynaMo and to 

analyse its scalability. Scalability refers to the ability of a system to be able to handle 

more work as the available resources increase as well. A scalable software is more 

flexible and able to take full advantage of various hardware, from high-performance 

servers to personal laptop. This provides benefits in both short and long term, as it 

increases the software performance and the range of hardware it can be run on, but 

also as it increases software lifespan by being able to take advantage of future 

hardware advances. One common way to accomplish this goal is to use parallel 

computing, where several processors execute a process simultaneously. Indeed, a 

single complex problem (or process) can, in most cases, be divided into smaller ones 

that can be solved at the same time. By doing so, the process execution time can be 

drastically reduced. The optimal speed-up offered by parallel computing has been 

theorised by the Amdahl's law, stating that doubling the number of processors should 

halve the runtime, and doubling it a second time should halve the runtime again 

(Amdahl 1967). However, the speed-up is not linear with the number of processors, 

as it also depends on the percentage of the task that cannot be parallelised. To 

approach Ahmdahl’s law theoretical maximum speed-up, BioDynaMo has been built 

such as the number of serial instructions (non-parallelised instructions) has been 

minimised. Thanks to that, BioDynaMo parallel efficiency is measured between 0.90 

and 0.98 depending on the simulation condition. 

Graphics processing unit (GPU) acceleration has also been implemented, being 

however limited to the calculation of mechanical interactions between simulation 

objects. Nevertheless, a speed-up between 1.1× (cell growth example) and 3.3× 

(soma clustering example) has been measured when using the GPU acceleration. Of 

course, the more collision between simulation objects (and so the more mechanical 

interactions are to be calculated), the more GPU computing offers a benefit. 

3.4 BioDynaMo flexibility: a Hybrid Continuum-/Agent-Based Procedure to 

Model Cancer Development 

To illustrate BioDynaMo’s flexibility, we present here its integration with the 

continuum based simulation framework FEB3 (pronounced Phoebe) (Vavourakis et 

al. 2017), in order to simulate tumour development. This section presents a 

simulation showcase and thus can be skipped for readers who directly want to read 

the RGC development and mosaics formation chapter. During this collaborative work, 
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I took part in the elaboration of the methodology, the development of the software 

(agent-based model and interface between FEB3 and BDM), the visualisation 

procedure and data analysis, but also in the writing and review processes of the 

published paper (de Montigny et al., 2020). 

As previously stated, AB approach allows modelling detailed cellular mechanisms 

(cellular dynamics, cell-cell interactions, etc.) and can take into account highly 

heterogeneous system dynamics. Thus, BioDynaMo is particularly well suited for 

realistic and detailed simulations of small scale (< 10 mm). However, despite its 

focus on performance, BioDynaMo (similarly to other AB modelling frameworks) is 

not well suited for larger scale simulation, especially if diffusion grids are 

implemented. Indeed, schematically, each point of a diffusion grid occupies 8 bytes in 

computer memory (substance concentration stored as a double floating-point format). 

Thus, one diffusion grid in a cubic simulation space of 10,000µm and with a 

resolution of 10,000 (one diffusion point per µm), would require 8,000 Gigabytes of 

memory (10,0003 × 8 bytes). For comparison, a diffusion grid in a cubic space of 

1,000µm (resolution of 1,000) would only require 8 Gigabytes of memory. 

On the other hand, continuum models, such as FEB3, allow large-scale simulations. 

Indeed, these approaches are based on the resolution of differential equations, and 

are thus more efficient than AB approaches. They are especially efficient to model 

substance concentration dynamics, such as oxygen consumption and diffusion from 

blood vessels. However, this efficiency is done at the expense of a concrete 

representation of objects. Thus, cell populations and environment characteristics are 

usually abstractly represented. In addition, it is very challenging to model 

independent cell behaviour with a continuum based approach. This can negatively 

impact the verisimilitude of these models, especially when discrete cellular dynamics 

influence the results (such as it is the case in small-scale simulations). 

Hence, combining both modelling approaches would greatly benefit simulation 

efficiency without impacting their verisimilitude. Such models have already emerged 

in the past decade (Anderson 2005; Gerlee and Anderson 2007; Hunter and 

Viceconti 2009; Altrock, Liu, and Michor 2015) and are referred as hybrid models. 

They are usually built by building interfaces across different modelling solutions, a 

continuum based and an AB one. The resulting hybrid model, and the question it 

aims to answer, depends directly on the two interfaced modelling solutions. Our 

approach follows the same principle, using an interface between FEB3 and 
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BioDynaMo. We have chosen to apply this hybrid solution to model glioma 

development. Gliomas are a common type of primary CNS tumours (Goodenberger 

and Jenkins 2012) characterised by a median survival of 6.5 to 8 years for low-grade 

gliomas, to 1.25 years for glioblastoma multiforme (Maher 2001). While they were 

believed to be initiated by glia, new evidences point toward an expansion from 

restricted progenitors, or neural stem cells. They are characterised by their quick 

progression and highly invasive behaviour, resulting in diffuse tumour, that is, 

infiltration by cancerous cells of otherwise healthy brain tissue. This, in particular, is 

responsible for the lack if effective therapeutic approaches and for tumour recurrence 

after tumour resection. Despite much research on the topic, the invasion dynamics 

and its underlying mechanisms remain unclear. Mathematical and computational 

models can play an important role in extrapolating findings from in-vitro experiments 

to in in-vivo. 

Here, we use FEB3 in a macroscopic scale to model growth factor transport and 

oxygen while we use BioDynaMo at multiple microscopic scales to model discrete 

cell dynamics. 

3.4.1 Macroscopic scale: continuum model 

These simulations consist in a cubic space of 20mm3, with sufficient distance from 

the focal region of interest (tumour location) in order to avoid boundary conditions 

impacting the simulation. At the macroscopic (length scale) level, the continuum-

based model accounts for three compartments, each consisting of various species: 

the biochemical components' compartment, the cells compartment and the 

extracellular matrix (ECM). The biochemical compartment encompasses the balance 

of oxygen and nutrients, growth factors and enzymes. The cells’ compartment 

encompasses the cells involved (both host and non–host tissue), while the ECM 

compartment collectively accounts for the structural aspects of the stroma. Each 

component is described at the continuum level through a boundary value problem: 

the balance of each species is mathematically modelled via coupled differential 

equations. 

 

 

Oxygen 
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Assuming the presence of a microvascular network that supports tissue with a 

uniform source of oxygen and other nutrients, oxygen diffuses into the tissue and is 

consumed by the cells. Thus, the balance equation of the oxygen saturation level, 

denoted as ξ, is calculated by , where 

ci denotes each cell species, Dξ is the isotropic diffusion coefficient for oxygen (given 

in m2day-1, αξ is the constant oxygen production rate owing to the supply, from the 

microvascular network (expressed in day-1), δξi is the oxygen consumption rate by 

each of the i-th cell species (in day-1) and Ω is the total volume of the biological 

tissue. Function  (where γV ∈ (0, 1)) controls the supply of oxygen 

from the blood vessels to the adjacent tissue and so to the cells. 

Growth factors 

The present macroscopic model accounts for chemical cues that are responsible for 

cell activation, growth, mitosis, migration etc. The balance of these growth factors 

(each species denoted by gj in dimensions: mg/mm3) is described by a set of 

reaction-diffusion equations that account for random spatial diffusion, growth factor 

secretion and uptake by the various cell species, ci, and the natural decay. The 

corresponding partial differential equations (PDEs) are expressed as 

, where Dj is the 

isotropic diffusion coefficient for each of the chemical agents involved, gj (in m2day-1), 

δj represents the decay rate of the agent, and αji is the gross rate of the growth factor 

gj due to both secretion and uptake by the cells (given in day-1). 

Matrix metalloproteinases (MMPs) 

In addition to this, the proposed model accounts for the dynamics of the 

concentration of MMPs, noted μ in our model. MMPs (also referred as matrix-

degrading enzymes) are enzymes that degrade the extracellular matrix. The balance 

of the MMPs concentration in the extracellular space obeys a PDE identical to the 

growth factors one, with corresponding model parameters: Dμ, αμi and δμ. 

ECM 

This model treats the ECM, ep, as a porous solid medium of porosity, where the 

volume fraction occupied by stromal components (collagen, fibronectin, laminin) is: 
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.The present model assumes a fixed volume fraction for the interstitial fluid, 

whereas the structural integrity and composition of the ECM, and hence ∊s, is 

assumed to change with time. We describe structural changes at the stroma using a 

first-order ordinary differential equation for the ECM volume fraction that accounts for 

the remodelling of the ECM, and the degradation of the matrix due to the presence of 

chemical cues (here metalloproteinases are modelled to cleave ECM fibres) at the 

interstitium such as , where δ∊ is the ECM 

degradation rate due to the presence of matrix degrading biochemicals μ (given in 

days-1), α∊ is the ECM self-regeneration rate and α∊i is the cell-stimulated ECM 

remodelling (e.g. deposition of collagen or/and fibronectin as a result of cell activity). 

Also,  with the scalar exponent parameter: γH ⩾ 1. 

Cellular populations 

Finally, the population of each cell species is controlled by the following PDE: 

, where αi is the cell production (if negative-

valued, the cell decay) term. The first term of the equation on the right-hand side 

describes the potential for migration or invasion of the i-th cell phenotype. Both terms 

are calculated by the solver at the microscopic domain (AB model) and then 

projected to the macroscopic domain solver, as explained in section 3.4.3. The 

domain of analysis is discretised here with 3D elements (tetrahedrons, hexahedrons) 

while time discretisation and numerical solution of the above equations was carried 

out through an explicit Euler scheme. All parameters used in the macroscopic scale 

simulations can be found in Table 2. 
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Table 2: Macroscopic scale model parameters. Adapted from: [1] (Sciumè et al. 
2014) [2] (Wang and Li 1998) [3] (Wu et al. 2013) [4] (Valero et al. 2013) [5] (Bray 
2001) [6] (Wood et al. 2012) [7] (Karagiannis and Popel 2006) [8] (Vavourakis et al. 
2017) [9] (Anderson 2005) 

3.4.2 Microscopic scale: agent-based model 

At the microscopic scale, simulations consist of 100µm3 simulation spaces filled with 

cells explicitly represented as spheres. Cells are present in several types, either host: 

neurons (Ne), glial cells (G) or cancerous: cancerous glial cells and cancer-

associated fibroblasts (CAF). Also, the model distinguishes between normoxic-state 

cancerous glial cells (CG) and hypoxic-state cancerous glial cells (hCGs). For Ne and 

G species, the cell densities considered are 5 × 104 per mm3 and 105 per mm3 

respectively to match observed density in human cortex. The initial population of the 

CG species has a density of 104 cells per mm3, which for simplicity are evenly 

distributed at the centre of the domain of analysis (within radius ~0.5 mm). 

Figure 26 illustrates in a flowchart the phenotypic behaviour of host (Ne, G), 

cancerous (CG, hCG, CAF) and necrotic cells (NC) with respect to the level of 

oxygen saturation, chemical cues and the extracellular matrix (ECM). 



72 
 

 

Figure 26: Phenotypic behaviour and cellular interactions. Ne: neurons, G: 
healthy glial cells, CG: cancerous glial cells, hCG: hypoxic cancerous glial cells, NC: 
necrotic cells, CAF: cancer-associated fibroblasts, PDGF: platelet-derived growth 
factor, MMP: matrix metalloproteinases, ECM: extracellular matrix. 

The present model assumes a passive role for the host cells unless oxygen drops 

below a certain level. In this case they die and corresponding cell agents are 

removed from the simulation. However, host fibroblasts trans-differentiation is 

implicitly described by explicitly increasing the CAF population (in proportion to the 

CGs population). CGs are prone to unregulated cell growth and division, as long as 

the oxygen/nutrients concentration in the matrix doesn’t decrease below a certain 

threshold (oxygen saturation level must be ⩾0.9). The growth rate of CGs was set by 

matching simulation results of our in-silico hybrid model to in-vitro data of cancerous 

cells’ growth rate. However, cancer cell mitosis is modelled as a stochastic event 

governed by a probability density function having uniform distribution. The increase 

of the CG population size leads to a decline of oxygen concentration in the medium, 

resulting in a hypoxic micro-environment, since blood vessels oxygen support is 

insufficient. The present model assume that only cancerous cells (normoxic or 

hypoxic) can transform permanently into necrotic cells (NC). CGs under hypoxic 

conditions (hCG) can express a migratory phenotype dictated by local gradients of 

the oxygen saturation level (chemotaxis), while ECM microstructural properties 

become important to the cells’ preference to migrate (durotaxis). In this model, 

tumour cells degrade the ECM locally (as outlined briefly in Section 3.4.1) and hence 

they prefer moving towards a denser matrix. Through trans-differentiation of native 
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fibroblasts to CAFs, CGs secrete matrix metalloproteinases (MMP) that in turn 

degrade the ECM by breaking the structural fibres of the stroma (collagen, 

fibronectin), thus, resulting in a heterogeneous ECM. Relevant observations have 

been reported in gliomas in-vitro and in-vivo. In addition, CGs through CAFs also 

discharge platelet-derived growth factors (PDGF) for vasculogenesis, which 

subsequently fuel the unregulated proliferation of CGs. Transition between cell states 

(normoxia↔hypoxia→necrosis) is modelled as a stochastic event depending on a 

given cell’s internally encoded rules in interaction with the micro-environment. 

Mechanical interaction between cells are taken into account, as explained in 3.1. 

3.4.3 hybrid macro to micro model 

The hybrid multiscale model couples the macroscopic scale with the microscopic 

scale using the representative averaging volume (RAV) technique. Briefly, each 

quadrature point of a (macroscopic) finite element is associated with a unique 

representative cubic volume, the RAV, which contains a cloud of randomly distributed 

cells, as illustrated by Figure 27. 

Each cell population, their physiological condition and state (oxygen levels, chemical 

cues, …), at each representative volume are determined by linear interpolation of the 

nodal (macroscopic) data to every point within the finite element. In turn, these nodal 

data are determined by the macroscopic initial conditions imposed at the beginning of 

the simulation, or obtained from the corresponding nodal data evaluated from the 

previous time increment of the FEB3 solver. Subsequently, the cells’ dynamics within 

each RAV is simulated by the agent-based modelling solver at each quadrature 

point. After several internal iterations of the microscopic level simulator (BioDynaMo), 

cell populations are re-evaluated for each species, and for each representative 

volume. Subsequently, the average cell rate at each RAV and the average direction 

vector of the cells escaping the bounds of the representative cubic volume is 

calculated. These data are evaluated for each species and then up-scaled back to 

the macroscopic simulator (FEB3). In summary, as illustrated in Figure 28, the 

simulation procedure of the proposed in-silico hybrid procedure is partitioned, with 

FEM and ABM working alternatively and passing necessary data interchangeably by 

projection and averaging until all simulation steps have been completed. 
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Figure 27: Illustration of a hybrid multi-scale simulation. A: Cut-through 
illustration of the 3D unstructured finite element mesh (outline surface mesh is shown 
slightly transparent). B: From the same perspective, the representative averaging 
volumes (RAVs) are illustrated in the 3D domain (scaled up for visualisation 
purposes) with each agent represented as a small spheroid, coloured with respect to 
their phenotype (purple for the neurons, green for the healthy glial cells, whereas 
orange for the normoxic cancerous cells and red for the hypoxic ones). C: From 
bottom to top, consecutive zoom-in pictures (2.5×, 9×) depict the cells, shown as 
spherical agents and coloured with respect to their phenotype. The yellow arrows 
point out the scattered cancerous cells, located at adjacent RAVs at the centre of the 
3D domain of analysis. Light blue thick line depicts a one millimetre scale, while the 
cells size in the RAVs is scaled up by a factor of five for illustration purposes. 
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Figure 28: Schematic representation of the hybrid multi-scale modelling 
communication between the two solvers. 

This in-silico cancer model distinguishes two layers of implementation that are 

identified from the two spatial scales involved. The AB modelling method has been 

implemented using BioDynaMo, and thus in a multi-threaded, object-oriented, C++ 

code. BioDynaMo employs several open-source libraries: ROOT, ParaView, and 

OpenMP. Moreover, the continuum-based method has been implemented in a 

scalable C++ code, and incorporated into the existing numerical analysis framework 

FEB3. FEB3 is founded on several high-performance, open-source numerical 

libraries: PETSc, libMesh, GSL, blitz++ and the MPICH library. The tissue domain 

finite element three-dimensional meshes have been generated using Gmsh, and 

decomposed and distributed across multiple processors using the ParMETIS library. 

The coupling and communication between FEB3 and BioDynaMo has been achieved 

within FEB3. All simulations were carried out on a desktop machine having an Intel 

i9-7940X CPU (@3.1 GHz ×14) and 128 GB main memory, operating Linux (Ubuntu 

18.04, kernel version: 4.15.0–54-generic). Simulations of a 30 days tumour 

development (44,000 simulation steps) required on average 4 h to be completed 

while the main memory usage was less than 3 GB. However, it is worth highlighting 

here that the code of our solvers was not fully optimised. 
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3.4.4 Results 

Low-grade tumour growth 

Using our in-silico hybrid model, we simulated the development of a low-grade 

tumour over the period of a month. These low-grade tumours are well-differentiated 

and characterised by a slower growth rate compared to high-grade tumours. Thus, in 

this simulation, cancerous cells express a slow growth rate and no migratory 

behaviour. In the resulting simulation, tumour expansion is observed as shown in 

Figure 29, where the tumour diameter increases from about 37 mm at day 10 to 

about 64 mm at day 30. Similarly, the tumour volume increases from 180 mm3 (±7.1 

mm3) at day 10 of the simulation to 784 mm3 (±28 mm3) at day 30, as shown in 

Figure 29C. This tumour growth is supported by cell divisions in the microscopic 

domains. Thus, the cumulative number of cells composing the tumour mass in all 

microscopic domains rises up to 54,800 (±1120 cells/mm3) at the end of the 

simulation. This link between macroscopic domain and individual cell elements is 

represented in Figure 29A. As CGs proliferate, and as we assume a uniform 

microvascular network providing a uniform source of oxygen, a hypoxic region 

emerges at the centre of the tumour (Figure 29D), leading to CGs expressing the 

hCG phenotype. Later on, as oxygen becomes scarcer, hCGs survival becomes 

impossible thus creating a necrotic centre, as shown in Figure 29G. This oxygen 

deprivation also impacts healthy hosts (Ne and G), whose densities decrease as they 

get closer to the tumour centre, even reaching a density of 0 at the centre. These 

characteristics can be observed at both macroscopic and microscopic scales in 

Figure 29A, where the tumour centre, composed of NCs (coloured in blue) and hCGs 

(coloured in red), is surrounded by CGs (cells coloured in orange). The tumour 

obtained at the end of this simulation is shaped as a spheroid and clearly defined, 

with no isolated CGs outside of the tumour mass as shown in Figure 29D. 



77 
 

 

Figure 29: Time snapshots of a growing in-silico low-grade brain tumour. A: 
History plot of the development of the tumour volume. B: Cut-through of the 
macroscopic domain of analysis illustrating the tumour cell density (×103 per mm3) at 
different time points, with the semi-opaque surface depicting the outline of the 
tumour. C: Distribution of the oxygen saturation level at day 30 where a poorly 
oxygenated tissue core is formed. D,E,F: Snapshots of the CG, hCG (hypoxic CG) 
and necrotic cells density (scale is in ×103 cells/mm3) respectively. G: Same 
perspective cut-through of the macroscopic domain (finite elements are transparent) 
depicting the microscopic domains in enhanced view and at different time points. The 
colours correspond to the cell phenotypes involved in the simulation (blue for the 
neurons, green for the healthy glial cells, orange for the normoxic cancerous cells, 
red for the hypoxic ones, dark blue for necrotic cells). 

High-grade tumour growth 

High-grade brain tumours are more malignant tumours and thus have worse 

prognosis than low-grade tumours. They are known to have a high regrowth 

behaviour, even after complete surgical removal of the tumour mass, in some cases 
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due to their more diffused organisation. In order to simulate such more aggressive 

tumour development, three modifications have been made to our model, the first one 

being the secretion of MMPs by CAFs. These enzymes, by degrading the ECM, 

facilitate cell migration and so give rise to more invasive behaviour of cancerous 

cells. Secretion of a growth factor has also been added, recapitulating the beneficial 

effect of PDGF on tumour growth. Finally, in this simulation cancerous cells adopt a 

“go-or-grow” phenotype, where hCGs express a high migratory behaviour without the 

possibility to grow or divide, while CGs grow and divide, without exhibiting any 

migratory behaviour. In other words, when cancerous cells are in a hypoxic 

environment, they express a migratory behaviour. Oxygen supply is assumed to be 

uniform across all the tissue. Simulation results for this case are illustrated in Figure 

30. During tumour development, we can observe that the early growth behaviour, 

and the resulting shapes, are still similar between low-grade and high-grade tumours, 

as they have a well-defined spherical shape (Figure 29B day 10 and Figure 30B day 

10 respectively). Likewise, their volumes are still in the same range, being 151 mm3 

and 212 mm3, respectively. This means that under the specified conditions, high-

grade tumours exhibit a volume 1.4 times bigger than low-grade ones. However, 

differences emerge as the development continues, with a bigger volume difference 

between low and high-grade at day 20 (2.1 times bigger for the high-grade) and day 

30 (2.4 times bigger for the high-grade), tumours reaching a final volume of 

respectively 784 mm3 and 1890 mm3 after 30 days of development. Moreover, 

differences in shape can be observed at day 30, high-grade tumours exhibiting a 

more diffused phenotype with outgrowth of lower density at the surrounding of the 

main tumour mass, while low-grade tumours remain well-defined and more spherical 

(Figure 29B and Figure 30B). In addition, healthy cells (glials and neurons) are 

significantly affected by the tumour, as cancerous cells spread covering a larger area 

when compared to the low-grade case (see Figure 29B,D and 30B,D respectively). 

As evident in Figure 30C, due to the pronounced hypoxia and anoxia, healthy cells 

within the tumour region are susceptible to abrupt apoptosis. Figure 30G, depict the 

absence of cells from both healthy populations respectively. Finally, secretion of 

MMPs by the proliferative CGs at the rim of the tumour leads to degradation of the 

ECM both at the tumour localisation and surrounding. As a consequence, these 

changes of the ECM density facilitate migration of cancerous cells, hence, the 

expansion and spread out of the glioma. All these factors give rise to more 

aggressive tumours, exhibiting high growth rate and migratory behaviour, with a more 
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diffused phenotype characterised by outgrowth of low CGs density at the surrounding 

of the main tumour mass. 

 

Figure 30: Time snapshots of a growing in-silico high-grade brain tumour. A: 
History plot of the tumour volume in cubic millimetres. B: Cut-through of the 
macroscopic domain of analysis illustrating the tumour cell density (×103 per mm3) at 
different time points, with the semi-opaque surface depicting the outline of the 
tumour. C: Distribution of the oxygen saturation level at day 30 where a poorly 
oxygenated tissue core is formed. D, E, F: Snapshots of the cancerous glial cells, the 
hypoxic ones and the necrotic cells density (scale is in ×103 cells/mm3) respectively. 
G,H: Distribution of the glial cells and the neurons respectively (×103 per mm3) at two 
time points. Notice the absence of native cells within the necrotic core of the tumour. 

3.4.4 Discussion 

The proposed in-silico hybrid platform demonstrates potential to simulate the 

development of brain gliomas in a detailed but computationally cost-effective manner. 

For the working cases presented in this paper, each simulation took about four hours 

to finish on a multi-core desktop machine. In particular, the AB solver required the 

simulation of between 5.5×105 to 7×105 agents coupled via the RAV technique with a 

mesh (of 8 cm3 tissue volume) consisting of ~4×103 tetrahedral elements in total. If 
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AB alone had to be employed to simulate glioma growth in a domain of the same 

size, it would have required for the solver to simulate approximately ~1.3 billion 

agents. The scale of data involved in such an analysis is numerically prohibitive even 

for a moderate sized computer cluster. Furthermore, the proposed in-silico hybrid 

platform was capable to recapitulate the dynamics of a growing tumour in the brain 

that may exhibit either a low-grade or a high-grade behaviour. In addition to this, the 

platform recapitulated the main points of brain tumour necrosis and oxygen 

deprivation, as well as the dynamics of a heterogeneous developing tumour matrix. 

The present model could be extended to incorporate more elements (for instance 

tumour-induced angiogenesis) or used as a platform for the study of the efficacy and 

delivery of drugs to tumour spheroids in in-vitro experiments. This modelling 

approach could be further employed for a wide range of biomedical problems, other 

than cancer. In particular, models of healthy biological development, biofilm growth, 

immune system dynamics, or synthetic tissue growth are based on relevant 

dynamics. In particular, it could be used to simulate retinal development at the level 

of the whole organ.  
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Chapter 4. RGC Development and Mosaics Formation 

As presented in Chapter 3, agent-based models are particularly well suited to build 

realistic simulations of neuronal tissue self-organisation. In order to investigate how 

the RGC layer and its mosaics develop, we present in this chapter an implementation 

using BioDynaMo of three theories of mosaic self-organisation, cell-fate, cell death 

and cell migration. We report here that CM yields the most regular mosaics, while CD 

can create regular mosaics only if the death rate is kept below 30%. Once this death 

rate is reached, CD appears to have a negative impact on mosaic regularity. We also 

present a modelling of realistic RGC dendritic arbour shapes, and discuss the 

requirements to match the observed morphological diversity of RGCs. 

4.1 Methods 

4.1.1 RGC mosaics development 

All simulations took place in a cubic space of 1300µm3, with cells of 7 to 8µm 

diameter randomly distributed (uniform distribution) in a space of 

1000µm×1000µm×22µm. The initial cell density has been set to 8600 cells/mm2, in 

order to reach the RGC density — around 3000cells/mm2 reported in literature 

(Sanes and Masland 2015a) and around 3500cells/mm2 in our measures — once 

programmed CD mechanism is over. Mechanical interactions between simulation 

objects are taken into account, such that they cannot overlap, and mechanically 

repulse each other. The time step has been set such that 160 steps simulate one day 

of development. Mosaic formation simulations run for a maximum of 2240 steps, 

corresponding to 14 days of development. 

The global RGC population is subdivided into 43 types. Some have been precisely 

documented, such as the On or On-Off DSGC, the melanopsin RGCs (M1 to M5), the 

LED, On or Off Alpha RGCs and the Off J-RGCs, and their population densities and 

dendritic arbours characteristics are known. However, these precisely documented 

RGC only represent 19 types, and so only about 60% of the total RGC population 

(~1700 cells/mm2 over ~3000cells/mm2) (Sanes and Masland 2015). RGC types 

composing the remaining 40% of the population have been estimated using results 

from Sanes and Masland (2015), Reese and Keeley (2015) and Baden et al. (2016). 

These authors state that a large number of RGC types are still unknown and these 

cells are probably sparsely distributed across the retina. Thus, we implemented 24 

additional RGC types of various but low densities. All implemented RGC types and 

their corresponding starting and final densities are summarised in Table 3. 
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43 diffusion grids of 650×650×650 points, representing voxel edge size of 2µm 

(volume of 8µm3), were also created to support the diffusion of 43 chemical 

substances. Each chemical substance corresponds to a defined RGC type, and is 

characterised by a diffusion coefficient of 2 (see diffusion equation in section 2.2.1). 

Simulation states are exported every sixteen simulation steps, which means that 

there are a total of ten simulation states per developmental day. These exports 

encompass all cells characteristics: 3D position, type and diameter. Using this 

information, it is possible to measure the mosaic regularity and the cell density of all 

RGC types, the RGC layer thickness and RGC death rate through development. 

Cells biology modules 

Cells are created with no predefined types when simulating the cell-fate (CF) 

mechanism. Otherwise, cells of each RGC type are created matching their 

experimentally observed initial density. Four biology modules describing cellular 

behaviour at each time step have been generated and assigned to each cell created. 

Substance secretion 

The first biology module implements substance secretion depending on the cell type. 

This secretion corresponds to an increase of substance concentration by 1 at the cell 

centre position. Undifferentiated cells do not secrete any substance. 

Mosaic formation 

The second biology module implements CF, cell death (CD) and cell migration (CM) 

behaviours. 

CF is implemented such that substances act as an inhibitor for cell differentiation, 

preventing nearby undifferentiated cells to adopt the same type. In this way, 

neighbouring cells preferentially choose to differentiate into other RGC types. CF is 

the first event to occur during simulations, because CD and CM mechanisms operate 

on differentiated cells. 

The CD mechanism simply corresponds to the cells removing themselves from 

simulation if their corresponding substance concentration is higher than a defined 

threshold. In this way, the clusters of homotypic cells exhibit high death rates and 

become sparser. As the cell density decreases, the initial multilayer collapses into a 

RGC monolayer. This is not currently implemented as a mechanical consequence of 
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pressure from other tissues or cell layers (due to cell growth and multiplication in a 

constrained physical space), but by having cells moving along the z axis toward the 

centre of the RGC layer, using their chemical cue. CD is triggered after completion of 

CF, and continues until a steady-state is reached, around a death rate of 65%. This 

steady-state is reached without global controllers but depends on the chosen 

concentration threshold triggering cell death. If this threshold is low the steady-state 

will be reached with a high death rate, while if this threshold is high the steady-state 

will be reached with a low death rate. In addition, for an identical threshold value, a 

low density cell population will exhibit a lower final death rate than a high density 

population. Therefore, the chosen threshold value depends on the initial cell density 

of the considered cell type. Each threshold value has been hand-tuned, fallowing a 

trial and error approach in order to reach a steady state around 65% of death rate. 

Fitting methods have also been tried for parameter estimation (least squares fit, 

parameter screening, maximum likelihood estimation), but they have proven unable 

to be applied or to find parameters values, due to the too important number of 

parameters. 

CM is implemented such that the homotypic substances act as a repulsive factor. 

Thereby, cells exhibit short distance avoidance, moving tangentially against their 

substance gradient, distancing themselves from homotypic neighbours. CM is 

triggered after completion of CF, at the same time as CD, and continues either until a 

steady state or day 13 is reached. Development conditions incorporating all 

combinations of these three mechanisms have been investigated. As the 

mechanisms influence each other, parameters vary depending on the implemented 

mechanisms. The CD mechanism parameters were chosen for each RGC type such 

that its final death rate is about 65%. The CM parameters were chosen (hand-tuned, 

empirical approach) depending on the CD parameter value and such that the 

interaction is kept to close range distance. Table 3 summarises all the parameters. 

Internal clock and dendrites extension 

The third biology module implements an internal cell clock used to trigger the 

subsequent mechanisms. At each time step, this internal clock has a 96% chance to 

increase by 1. This parameter value has limited influence and only prevents all cells 

from having the exact same timing. Decreasing chance to increase the internal clock 

just slows down the transition from one mosaic formation mechanism to the other. 
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Finally, the fourth biology module is used to create dendrites at the end of mosaic 

formation and will be explained in section 4.1.2. 

All simulation codes are available on github 

(https://github.com/JeandeMontigny/new_ret). 

 

Table 3: Implemented RGC types and parameters used for different conditions. 
D: death mechanism only. FD: fate and death mechanisms. FDM: fate, death and 
migration mechanisms. Death: concentration threshold for death mechanism. 
Migration: concentration threshold for migration mechanism. Parameters have been 
empirically chosen. 

4.1.2 Dendritic development 

RGC dendritic development has been simulated by having two chemical substances 

(On and Off) normally distributed. These developmental cues could represent the 

https://github.com/JeandeMontigny/new_ret
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developmental guidance given from SACs dendrites to RGCs dendrites (Galli-Resta 

et al., 2008; see section 1.1.2 and 1.4.2). This guidance can be achieved through 

secreted cues (notably including molecules from the neurotrophins, semaphorins and 

ephrins families) or through the existence of electric fields (Graves et al., 2011). The 

two chemical substances concentration varies from 0 to 1, and they are positioned at 

43 and 67µm along the z axis, with a variance of 6 and 8µm respectively. The centre 

of the RGC layer is located at 27µm along the z coordinate, meaning that these two 

chemical cues are located at a distance of 16µm and 40µm from the RGC layer 

centre respectively. Position and variance of chemical cues were set such that 

simulated RGC dendrites location matches observed average peak distance for On 

(15.9µm ±5.3) and Off (40.4µm ±8.3) dendritic lamination distance from RGC cell 

bodies (measured from Sümbül et al. 2014). A schematic representation of dendrites 

chemical guidance initialisation can be found in Figure 31. These two substances act 

as developmental cues for RGC dendritic growth. Depending on the cell type, 

dendrites will be attracted to either one or both of these chemical clues. 

 

Figure 31: Dendrites chemical guidance initialisation. On and Off chemical cues 
are represented in orange and blue respectively. They are respectively located at a 
distance of 16µm and 40µm from the RGC layer centre. 
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At the end of mosaic formation, cells extend their dendrites with their number 

depending on the cell type. The range of dendrite numbers per cell type are shown in 

Table 4. It has been chosen for cells to extend dendrites only at the end of mosaic 

formation for several reasons: 1. The effects of inter-cellular dendritic interaction on 

mosaic formation are still unclear and so would lead to a non-precise modelling. 2. 

RGCs cellular spacing has been reported to take place even in the absence of 

homotypic dendritic contacts (Galli-Resta 2002; Lin, Wang, and Masland 2004). 3. 

The current status of the framework does not allow cellular migration once cells have 

extended dendrites (due to technical limitations). Dendrites are created with a biology 

module describing their growth behaviour at each time step. In brief, at each time 

step the growth direction is calculated depending on the chemical cue gradient, the 

dendrite’s direction (current axis) and some randomness. In addition, the dendritic 

diameter tapers as dendrites grow away from the soma, until it reaches a certain 

minimal diameter, preventing it from growing any further. A mechanism of dendrite 

retraction has also been implemented, recapitulating the “searching” behaviour of 

dendrites. First, a dendrite can retract if it is growing too far from its chemical clue. In 

particular, retraction is triggered when the chemical guide concentration at the 

dendrite’s growth cone location is below a first threshold of 0.01. The dendrite will 

keep retracting until a second concentration threshold of 0.02 is reached. Once the 

dendrite’s tip is back at that second threshold concentration, it restarts growing. In 

this way, dendrites express a more realistic behaviour, being able to search for the 

correct developmental cues, as commonly observed in developing neurons (Luo and 

O’Leary 2005; Portera-Cailliau et al. 2005). Such a retraction process has been 

previously implemented in other simulations (Bauer et al. 2014). Likewise, the 

retraction mechanism allows simulating homotypic competition for space. Two 

dendritic arbours of homotypic cells will avoid overlapping and one of them will 

instead choose to retract a branch surrounded by homotypic dendrites. To avoid a 

O(n2) time complexity with n being all the objects in simulation (more than 10 million), 

only dendrites in close neighbourhood (radius ≤ 1.44µm) are considered for 

homotypic competition. 

Two simulation conditions have been investigated, using either three or thirteen 

behavioural growth rules. In the condition of three growth rules, dendritic growth 

behaviour for RGC of the same type (On, Off, On-Off) are identical. However, when 

thirteen growth rules are applied, dendritic growth behaviour depends on the RGC 

type (for instance DSGC, off Alpha RGC, J-RGC, …). Attribution of a specific growth 
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rule to a RGC population has been decided depending on the available 

morphological description of that RGC population in the literature. Thus, some RGC 

groups that are distinct for the mosaic creation share the same dendritic growth rules. 

More specifically, the thirteen growth rules consist of: On-Off DSGC (four RGC 

types), On-Off Melanopsin (one RGC type), On-Off LED (one RGC type), On-Off 

generic (six RGC types), On DSGC (three RGC types), On Alpha (one RGC type), 

On Melanopsin (three RGC types), On generic (twelve RGC types), Off Alpha (two 

RGC types), Off Melanopsin (one RGC type), Off J-RGC (one RGC type), Off mini-J-

RGC and Off midi-J-RGC (two RGC type) and Off generic (six RGC types). In this 

way, a dendritic growth behaviour has been attributed to each of the 43 RGC types 

used for mosaics formation. RGC groups sharing the same growth behaviour are 

either known to exhibit the same dendritic morphology (for instance On-Off DSGC) or 

have not been precisely described in the literature (generic growth rules). All 

parameters used are recapitulated in Table 4. 

Dendritic arbours are exported at the end of the simulation in swc format, a widely 

used open format for the description of dendritic tree morphologies. Each neuron is 

composed of points defined by their x, y, z location, a unique id number, the id 

number of the point they are attached to and the nature of each point (soma, 

dendrite, branching point, terminal dendrite). Simulated RGCs are then compared to 

a database of 363 real RGC morphologies from Sümbül et al., 2014, publicly 

available at http://neuromorpho.org. To do so, key morphology features have been 

extracted: dendritic arbour diameter, anisometry score and number of branching 

points. The arbour diameter consists of the disc diameter containing 95% of all 

dendrite points. The anisometry score is calculated as a ratio between a perfect 

circular distribution of dendrite points around the soma and a 2D representation of 

the measured distribution of dendrite points. Thus, the anisometry score increases 

for more asymmetric dendritic arbours (not evenly distributed around the soma). 

These features have been selected based on their capability to form coherent groups 

of cells from the Sümbül database, using a k-means clustering method. The selected 

morphology measures demonstrate their relevance as the number of clusters in a k-

means clustering, determined by an elbow method for optimal value of k, is either 

four or five for each RGC type (On, Off, On-Off), while three to six defined 

morphologies have been described for each of these RGC types. 

Similarly to parameters used for mosaic formation simulations, dendritic growth 

simulations parameters have been hand-tuned, following a trial and error approach. 
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For each measure of a considered population, parameters have been tuned such as 

it matches the corresponding population’s measure from the Sümbül database. 

Simulations results are particularly sensitive to parameter changes, such as the 

shrinkage value or the bifurcation probability. 

Comparisons between simulated and Sümbül database dendritic arbours have been 

conducted using the Mann-Whitney U-Test on each morphology feature score 

distribution, for each RGC population (On, Off, On-Off). 

Scripts used for mosaics and dendrites data processing or analysis are available at 

the address https://github.com/JeandeMontigny/scripts. 

 

https://github.com/JeandeMontigny/scripts


89 
 

 

Table 4: Implemented parameters for RGC dendritic arbour development. 

4.1.3 Measuring mosaic regularity 

Before modelling retinal mosaics, and in order to assess the regularity of these 

mosaics, it is crucial to investigate different methods to measure their regularity, and 

to select the most appropriate one. For this purpose, we selected five measures: the 

mosaic Delaunay triangulation segment length (DTS) distribution, the mosaic Voronoi 

diagrams areas (VDR) distribution, the Voronoi diagram angles (VDA) distribution, 

the Regularity Index (RI) and the closest neighbour (CN) distribution. 
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Figure 32: Illustration of Delaunay triangulation and corresponding Voronoi 
diagrams. Cells are represented as black dots. Delaunay triangulation is displayed 
as blue lines. One Delaunay triangle circumcicle is displayed in grey, with its centre in 
bright red. All Delaunay triangles circumcicle centers are displayed in red. Red lines 
represent Voronoi diagrams. Dashed red lines belong to Voronoi diagrams with a 
point outside of the region. 

Delaunay triangulation is a specific triangulation such that no point of the considered 

set is inside the circumcircle of any triangle (see blue lines and grey circle of Figure 

32). Thus, DTS is the distribution of all triangle vertices length of the mosaic 

Delaunay triangulation. The Voronoi diagram results directly from the Delaunay 

triangulation, such that the circumcenters of Delaunay triangles are the vertices of 

the Voronoi diagram (see red dots and red lines of Figure 32). Thus, VDR is the 

distribution of all regional areas of the mosaic Voronoi diagram and VDA is the 

distribution of all regional angles of the mosaic Voronoi diagram. CN is the 

distribution of the closest neighbour measured for each cell. The RI is computed as 

the average value of the CN distribution divided by its standard deviation, and 

exhibits a theoretical value of 1.91 for random distribution (Cook, 1996). 

All these methods are tested using the same set of mosaics, each composed of 400 

cells. Nine mosaic regularity conditions are generated with a random weight varying 

from 0.1 to 0.9 – 0.1 being a very regular mosaic and 0.9 a random point distribution. 

The script used for mosaics creation and methods analysis can be found on github 
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(https://github.com/JeandeMontigny/scripts/blob/master/mosaic_method.py). It is 

important to point out that the differences in mosaic regularity decrease as the 

random weight value used for mosaic generation increases. In order to minimise the 

effect of randomness, each regularity condition is repeated eight times, resulting in a 

total testing set of seventy-two mosaics. 

From the eight mosaics of the same random weight value, the averaged cumulative 

density distribution is computed for DTS, VDR, VDA and CN, while the averaged 

index values is used for RI. This averaging is done for each of the random values 

used for mosaic creation. Figure 33 illustrates the computed average cumulative 

density for DTS (Figure 33A) and the average RI (Figure 33B) depending on the 

random weight value used for mosaic creation. 

 

Figure 33: Two mosaic regularity measures, depending on random weight 
value used for mosaic creation, varying from 0.1 to 0.9. A: Delaunay triangulation 
segment length (DTS) cumulative density distribution. Each cumulative density is the 
average of eight different mosaics of the same random weight. B: Regularity index. 
Each point is the averaged RI value of eight mosaics of the same random weight. 
Error bars represent the standard deviation. 

In order to investigate the strength of each method to discriminate differences 

between mosaics of distinct random weight, and hence, with different regularity, we 

compared mosaics of adjacent random weight (0.1 vs 0.2, 0.2 vs 0.3, etc.). A two-

sample Kolmogorov-Smirnov statistic test is used to compare cumulative density 

probability for DTS, VDR, VDA and CN, while a T-test for two independent samples 

scores is used for RI. 

https://github.com/JeandeMontigny/scripts/blob/master/mosaic_method.py
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All methods are able to discriminate regular mosaics from random distributions. 

However, few methods are able to discriminate fine differences in medium and low 

regularities, as shown in table 5. In more detail, the VDA is unable to capture any of 

the fine mosaic regularity changes, even for highly regular mosaics. The DTS is able 

to discriminate differences of mosaic regularity, but only for highly regular mosaics 

(0.1 to 0.4). On the contrary, no significant differences are noted for comparison of 

mosaics with a random weight higher than 0.4. The VDR and the CN are both able to 

discriminate between mosaics of high and medium regularities (0.1 to 0.7), but these 

measures are not sensitive enough to capture differences between mosaics of lower 

regularities. On the contrary, the RI is able to discriminate changes for all mosaic 

generation conditions, including fine differences in low regularities (0.8-0.9). RI also 

presents the benefit of offering a single score, facilitating mosaic comparisons and 

evolution through development. In addition, and as previously reported by Reese and 

Keeley (2015), the RI offers a scale-invariant measure of mosaic regularity and thus 

more direct evidence of any change in the mosaic spatial organisation during 

development. It is not only the absolute RI value that carries information, but also its 

evolution across development, related to the contribution of each mosaic 

developmental mechanism (CF, CD, CM). However, it should be pointed out that RI 

is sensitive to a low sampling rate (Cook, 1996), leading to important variability in RI 

score for low sample mosaics. Nonetheless, based on these results we decided to 

use the RI as the mosaic regularity measure in the following work. 

 

Table 5: Comparison of mosaic regularity measure methods sensitivities. n = 8 
for each mechanism. Asterisks indicate significant difference between the two 
considered mosaics (*** for p < 0.001; ** for p < 0.01; * for p < 0.05). 

4.2 Results 

4.2.1 Prior simulations 

Prior simulations have been conducted in order to investigate the effect of tissue 

stretching on the RI, but also to build control situations of each mosaic formation 
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mechanism. By doing this, we are able to verify if each mechanism is intrinsically 

able to create a regular mosaic. 

To investigate the impact of retinal stretching on RI, we built a simple prior simulation 

in which stretching is applied homogeneously from either one corner, or from the 

centre of the tissue. Unsurprisingly, we found that tissue stretching has no impact on 

cell regularity (for both conditions: p < 0.001, n=8 using a T-test for two independent 

samples). 

To determine if each biological process that is potentially involved in mosaic 

formation (CF, CD and CM) is able to create mosaics by itself, we built non-agent 

based simulations, implementing optimised but non biologically realistic mechanisms. 

All mechanisms are ruled by a global supervisor, charged to determine cell 

differentiation, cell death (population death rate fixed at 65%) and cell migration. 

Mechanisms’ implementation is available on github 

(https://github.com/JeandeMontigny/scripts/blob/master/non_AB_mechanisms.py). 

Mosaics built using only non-agent based mechanisms have a RI of 3.14 (±0.08, n = 

8) for CF, 5.83 (±0.4, n = 8) for death mechanism and 15.7 (±1.5, n = 8) for CM 

(Figure 34). All these RI values are significantly higher than random distribution, and 

can be considered of mid regularity (in the case of CF mechanism) to extremely 

regular (for the CM mechanism). These preliminary studies demonstrate that all three 

mechanisms are able to yield regular mosaics. 

https://github.com/JeandeMontigny/scripts/blob/master/non_AB_mechanisms.py
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Figure 34: Non AB implementation of CM, CD and CF mosaic formation 
mechanisms. n = 8 for each mechanism, error bars represent the standard 
deviation; death rate has been fixed to 65%; y axis is broken to better display lower 
values; *** for p < 0.001 with an independent samples T-test. 

4.2.2 Agent based modelling of mosaic development 

Using the AB framework BioDynaMo, we investigated the three mechanisms 

potentially implicated in RGC mosaic formation during retinal development. 

Thereby, we demonstrate that a realistic AB implementation of the CF mechanism is 

able to significantly increase the mosaic regularity compared to a random distribution 

(p < 0.001 with a T-test for two independent samples). Indeed, as shown in Figure 

35A, the average RI values rapidly increase from random levels (between 1.8 and 2) 

until reaching a value of 2.42 (±0.09) at the end of the CF mechanism. However, 

such RI values cannot be considered as reflecting regular mosaics. Moreover, the CF 

mechanism alone cannot explain high RI scores observed for some RGC types (> 5). 

As shown by Figure 35B, no correlation can be established between cell density and 

RI values (correlation magnitude of 0.31), mosaics of high cell density reaching 

similar RI as seen in mosaics of low cell density, as illustrated by the blue and orange 

lines in Figure 35A. 
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Figure 35: RGC mosaic formation modelling using an ABM approach. A,C,E: RI 
score evolution during simulation (x axis: 10 visualisation steps correspond to 1 
developmental day in mouse). Average RI values for all RGC types are displayed in 
black while two populations of high and low densities (250 and 20 cells/mm2 
respectively) are displayed in blue and orange. The first vertical grey dashed line on 
the left indicates, if implemented, the end of the CF mechanism and if implemented, 
the beginning of the CD mechanism. Second grey dashed line indicates the end of 
the CD mechanism. B,D,F: Final RI score depending on cell density at the final step 
of the simulation. Error bars represent standard deviations for average RIs and 
densities. Red lines represent linear regressions (correlation coefficient: r=0.31, 
r=0.58 and r=0.87 for B, D and F respectively). The blue line in D represents a non-
linear regression (a*x / b+x), while the horizontal dashed line represents the RI value 
under which no cell type of density higher than 125 is observed. A,B: CF mechanism 
only. C,D: CD mechanism only. E,F: Combination of CF, CD and CM combination. 

The CD mechanism is also able to significantly increase RI compared to a random 

distribution (p<0.001 with a T-test for two independent samples). As shown by Figure 

35C, the average RI value increases from random to 3.31 (±0.33) at the end of CD. 
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This death rate amounts to around 65% when it reaches a steady state at the end of 

the simulation. As shown in Figure 36A, these death rate dynamics are very similar to 

rates observed in-vitro. Moreover, and unlike for the case of the CF mechanism, CD 

is able to generate mosaics of medium regularities (RI > 3). 

Interestingly, and as shown by Figure 36B, the death rate measured in-vitro and 

selected for our simulations (grey vertical dashed line) is not the one generating the 

highest regularity. Indeed, the highest scores of RI are achieved for death rates 

between 5 and 30% of the RGC population, regardless of the initial density of the 

considered population. After 30% of cell death, RI decreases until it reaches a 

random distribution once 92% of cell death is achieved. This is observed in both high 

and low density conditions. However, strong differences between populations of high 

and low initial densities can be noted. As shown by Figure 36B, the high density 

population is able to generate more regular mosaics than the population of low 

density, both for their maximum value (RI > 9 and RI > 5, respectively) and at 65% of 

cell death (RI = 4.49 ±0.36 and RI = 3.61 ±0.59, respectively). In fact, a relation 

between cell density and the final regularity is observed when the death rate is set to 

65%. Mosaics of low density exhibit on average low RI values, while mosaics of cell 

density higher than 65 cells/mm2 (vertical dashed line of Figure 35D) exhibit a higher 

average RI score of 3.35 (horizontal dashed line of Figure 35D). This RI-density 

correlation does not appear to be linear (correlation magnitude of 0.58, linear 

regression is displayed as a red line in Figure 35D), but follows a non-linear function 

(a*x / b+x) that plateaus around a RI value of 3.7 (non-linear regression displayed as 

a blue line in Figure 35D, standard deviation errors on the parameters use for fitting = 

0.045). Final average RI scores for the CD mechanism alone and a combination of 

the CF and CD mechanisms do not significantly differ (3.31 ±0.33 and 3.48 ±0.44 

respectively, p = 0.76 with a T-test for two independent samples). However, coupling 

the CF and CD mechanisms has a positive impact on dense mosaics' regularity (for 

cell densities higher than 125 cells/mm2). Thereby, the shapes of non-linear 

regression between cell density and RI are similar for these two conditions, except 

for the higher RI value plateau in the case of the CF and CD combination, which 

amounts to approximately 4.1 (standard deviation errors on the parameters use for 

fitting = 0.08). 
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Figure 36: CD mechanism impact on RGC population. A: RGC population 
measured in-vitro (blue) and in simulations (orange). In-vitro population at day 1 is an 
estimation based on a final CD of 65%. Error bars represent standard deviation. B: 
RI score depending on final CD rate in a simulation implementing only the CD 
mechanism, for selected RGC populations of high density (blue curve, initial density 
= 571 cells/mm2) and low density (orange curve, initial density = 114 cells/mm2). 
Error bars represent standard deviation. 

A combination of all three mechanisms (CF, CD and CM) is also able to generate 

mosaics significantly more regular than random distributions (p<0.001 with a T-test 

for two independent samples). Different steps of a simulation are illustrated by Figure 

37. As shown by Figure 35E, a first RI increase is observed, corresponding to the 

effect of CF. After the CD and CM mechanisms are triggered (first dashed line), an 

important second increase is to be noted until the RI value stagnates toward the end 

of CD (simulation day 4 to 5.5). Finally, a third RI increase is observed after CD is 

over (second dashed line) due to the CM mechanism, leading to an average RI score 

of 4.01 (±0.75) at the end of the simulation. Unlike any other mechanism alone, and 

thanks to tangential migration, this simulation condition is able to generate highly 

regular mosaics (RI > 5). Moreover, a strong correlation appears between cell density 

and RI values (linear correlation magnitude of 0.87) as shown by Figure 35F. 

Thereby, only RGC types exhibiting a cell density higher than 125 cell/mm2 are able 

to generate mosaics with a RI value higher than 5. Thus, as illustrated by the blue 

and orange lines in Figure 35E, significant differences emerge between mosaics of 

high and low density. No significant differences are seen between simulations of CD 

and CM combination and simulations of CF, CD and CM combination. Although 

tangential cell migration alone is able to yield very regular mosaics, it is important to 

note that the CF and CD mechanism cannot be neglected. Their implementations are 
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essential to obtain simulations as realistic and exhaustive as possible, as these two 

mechanisms have been reported to take place during retinal development. 

 

Figure 37: Time laps of mosaic formation, implementing the three mechanisms 
(CF, CD and CM) using BioDynaMo. A: Simulation at step 0. All cells are 
undifferentiated and represented in blue. B,C,D: On cells are represented in green, 
Off cells in red and On-Off cells in blue. B: Simulation state at the end of cell 
differentiation, at step 180. Average RI = 2.41. C: Simulation state at the end of cell 
death (65% of death rate), step 1000. Average RI = 3.42. D: State at the end of the 
simulation, step 2240. Average RI = 3.99. 

When all mechanisms are implemented, surviving cells migrate tangentially with an 

average of 8.72 µm (±0.11, n = 8). This average travelled distance is in accordance 

with in-vivo measures, reporting RGCs and SACs tangential migration not beyond 

30µm (Nguyen-Ba-Charvet and Chédotal, 2014). Important disparities between cells 

are to be noted, as shown in Figure 38A, with an average migration distance 



99 
 

standard deviation of 9.44 (±0.18). No correlation between final RI and migration 

distance can be seen. Likewise, no correlation appears between final density and 

migration distance if the whole population is considered. However, if only populations 

with a final density higher than 100 cells/mm2 are considered, a strong correlation 

can be observed (correlation coefficient r = 0.92, see Figure 38B red line). Hence, the 

denser the cell type the larger the distance cells migrate. 

 

Figure 38: Migration distance measured in simulations implementing CF, CD 
and CM. A: Migration distance distribution. B: Relation between cell type density and 
migrating distance. The red line represents the correlation between migration 
distance and cell type density for densities higher than 100 cells/mm2 (correlation 
coefficient r=0.92). 

4.2.3 Altered RGC development: the Pax6-αCre driven Dicer-1 model 

Successfully simulating a single healthy developmental condition is usually not 

enough to validate a computational model. To support our model validation, we 

conducted a simulation of an abnormal developmental condition, the Dicer-1 deletion 

model. 

The deletion of Dicer-1 in retinal progenitor cells leads to the death of RGCs. By 

using a Pax6-αCre line, it is possible to target specifically progenitors cells of distal 

areas of nasal and temporal retina, inducing RGC death for all cells in these areas 

(Maiorano and Hindges 2013). In order to reproduce this model, cells are created 

similarly to previous simulations (section 4.2.3), and implement CF and CM 

mechanisms. To recreate the retinal degeneration pattern induced by the Dicer-1 

deletion (ellipsoid), cells are removed from the simulation if their coordinates (x, y) 
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follow the inequation , where cx and cy are the x and y 

coordinates of the simulation space centre and where L is the length of the square 

formed by the initial population creation. This cell death represents on average 

61.8% (±0.3, n=8) of the initial population, and the resulting surviving cells follow an 

ellipse pattern (see Figure 38A). This amount and pattern of cell death is similar to 

what is observed in the biological model, where around 40% of cells remain alive 

(Georgi and Reh 2010) and form an ellipse at the centre of the retina. Because of this 

initial cell death, and in order to follow the Dicer-1 deletion model, CD mechanism is 

not implemented here. The model is then simulated similarly to previous simulations 

(section 4.2.3). 

At the end of the simulation, an expansion toward the periphery of the ellipse formed 

by surviving cells is observed, increasing its width from 421.98µm (±1.0, n = 8) to 

540.45µm (±8.74, n = 8). This represents an expansion of 28.1% (±1.87, n = 8) as 

show by Figure 39. Moreover, a significant difference of average migratory distance 

(p < 0.001 with a T-test for two independent samples) is observed, with an increase 

from 8.72µm (±0.11, n = 8) for previous simulations (section 4.2.3), to 39.0µm (±0.77, 

n = 8) for simulation implementing the Dicer-1 deletion model. In addition, and 

contrary to previous simulations (see Figure 38B), no significant correlation is found 

between migration distance and cell type density. No significant impact of cell-fate on 

the average migratory distance is to be noted (p > 0.05 with a T-test for two 

independent samples). Nonetheless, the expansion observed in our simulations is 

less pronounced to what is observed in the biological in-vivo model. Indeed, in the 

Dicer-1 deletion driven by the Pax6-αCre model, the expansion of the remaining cells 

results in a RGC retinal coverage of 8.6mm2 (±0.2, n = 8) versus 12.1mm2 (±0.3, n = 

8) for wild-type animals (Maiorano and Hindges 2013). This represents a final 

coverage of 71% of the total retinal surface while this final coverage represents only 

about 54% in our simulation. 



101 
 

 

Figure 39: Simulation of Dicer-1 deletion Model. A: Simulation at step 0, after cell 
death following the Dicer-1 deletion driven by Pax6-αCre model and before the 
beginning of mosaic formation. B: Simulation at the end of mosaic development. On 
cells are represented in green, Off cells in red and On-Off cells in blue. 

Differences in mosaic formation also appear, with very high regularity being achieved 

(RI > 7), due to the high cell density that results from the absence of cell death. For 

this reason, and contrary to previous simulations (see Figure 35F), no significant 

linear correlation between RI and cell density develops. Indeed, RI value plateaus 

around 7 when cell density is higher than 100 cells/mm2 thus following a covariance 

similar to the one observed for mosaic formation without CM (see Figure 35D). 

It is important to point out that these results were obtained without changing any 

simulation parameters (chemical substance sensibility, migration speed, etc.). This is 

an important condition to use this abnormal developmental condition as a step 

toward the validation of our mosaic formation model. In principle, modifying some cell 

parameters could increase the expansion of the ellipse formed by surviving cells, and 

so improve the agreement with experimental results. This however, can only be done 

based on biological evidence, in order to preserve the model realism. 

4.2.4 SAC mosaics formation 

Our simulations for RGC mosaics development can also be applied to simulate SAC 

mosaics formation. In addition of SAC mosaics formation study, successfully applying 

our mosaic creation model to another cell type would strengthen our model 

validation. 
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The SAC population is divided between two different cellular layers, the GCL and the 

INL, forming two separated populations. These two SACs populations exhibit regular 

pattern organisation (see Figure 9B in section 2.2.1), and the two mosaics formed by 

the GCL and INL populations tend not to overlap (see Figure 10 in section 2.2.1). 

Thus, a SAC in the GCL has few chances to be at the same location as a SAC in the 

INL. 

In the simulations implemented here, SAC mosaics are formed before GCL/INL 

separation. Indeed, the SAC mosaics RIs measured in mouse pup do not vary 

between P3-4 (shortly after GCL and INL separation) and the end of retinal 

development (see Figure 9 in section 2.2.1). This could indicate that mosaics are 

already formed and do not improve their regularity once SACs have migrated to their 

respective cellular layer. Mosaic formation is achieved using locally diffused chemical 

cues triggering homotypic avoidance (tangential migration mechanism). Once 

mosaics are formed, the two populations migrate to their respective layers. Two 

different developmental conditions have been implemented, using either one 

common or two separated (one for GCL population, one for INL population) chemical 

substances for mosaics formation. Concentration thresholds triggering cellular 

migration have been set to 3.18 and 2.66 respectively. Importantly, this concentration 

threshold is identical for the GCL and INL populations. Parameters have been set 

such that the mosaic RIs match the measured RIs in mouse SACs mosaics. 

Interestingly, using an identical concentration threshold for CM, the GCL population 

exhibits less regular mosaics than the INL population at the end of the simulation, in 

both developmental conditions (RI of 3.57±0.12 and 4.11±0.12 respectively when one 

substance is used, RI of 3.36±0.07 and 4.37±0.15 respectively when two substances 

are used, n=8 for each group, p<0.0001 with T-tests for two independent samples). 

This mosaic regularity disparity is in accordance with observations in mouse (see 

Figure 9B in section 2.2.1) and can be explained in our simulations by the cell density 

difference between these two layers. 

However, an important difference emerges between the two conditions concerning 

the exclusion factor of the two SACs populations. Indeed, if one common 

developmental cue is used, GCL and INL mosaics exclude each other with a 

calculated exclusion factor of 0.71 (±0.01, n=8), similar to what has been measured 

in-vitro (0.74±0.09, n=5, see Figure 10 in section 2.2.1). This indicates that the GCL 

and INL populations’ mosaics tend not to overlap. However, if two distinct 
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developmental cues are used, the exclusion factor is measured to a lower value of 

0.31 (±0.1, n=8), denoting independent mosaics that tend to overlap more. In this 

second condition, the measured exclusion factor is significantly lower than the one 

observed in mouse (p<0.0001 using a T-test for two independent samples, n=8 and 5 

respectively). Thus, only the first condition, where one common developmental cue is 

used for the two SAC populations, is able to reproduce the exclusion factor observed 

in-vitro. 

4.2.5 Dendritic development 

Using BioDynaMo, we investigated the requirement to grow realistic dendritic 

arbours. We demonstrate here that AB growth rules based on simple chemical 

developmental cues are enough to obtain complex, varied and realistic 

morphologies. Simulated dendritic arbours are illustrated in Figure 40A. Only six cells 

(two On, two Off and two On-Off) are displayed to increase the figure readability. As 

shown in Figure 40B, two dendritic lamination levels are formed. Off cell dendrites 

(red) laminate only in the upper layer while On cells dendrites (white) laminate 

exclusively in the lower layer. On-Off cells for their part (blue) extend dendrites in 

both lamination levels of the IPL. This recapitulates the main morphological 

difference between these three distinct RGC types. 

Number of dendritic roots 

The attribution of dendritic root number has been determined in accordance with the 

observed number of dendritic roots for On, Off and On-Off cells of the Sümbül 

database (Sümbül et al., 2014). Indeed, while the whole RGC population exhibits an 

average number of dendritic roots of 4.02 (± 1.14) some disparities emerge if sub-

populations are considered. Indeed, the On population exhibits a significantly higher 

number of roots (4.99 ± 1.41), similar to the On-Off population (4.56 ± 1.14) while the 

Off population exhibits a number of roots close to the average value (4.08 ± 0.93). 

Thus, simulated RGCs adopt root numbers in accordance with these measured 

values, more precisely 4.91 (± 1.21) for the On population, 4.51 (± 1.12) for the On-

Off population and 3.99 (± 0.88) for the Off population. No significant differences 

appear between simulated and real values for each RGC population (p>0.1 with a T-

test for two independent samples). 
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Figure 40: Illustration of simulated dendritic arbours. For clarity purpose, only six 
cells are displayed, two On, two Off and two On-Off. On cells are represented in grey, 
Off cells in red and On-Off cells in blue. A: Three quarter view from the top. B: view 
from the side. 

Two simulation conditions have been studied, using either three generic growth rules 

(On, Off, On-Off) or using thirteen growth rules. 

In the first condition, growth rules have been defined such as the morphologies are 

as close as possible to the measured morphologies of the Sümbül database. It is 

important to point out that despite the limited number of growth rules, dendritic 

competition for space depends on the considered cell type and not on the 

implemented growth behaviour (On, Off, On-Off). Thus, these dendritic interactions 

depend on the 43 types used to form RGC mosaics, not the 3 dendritic groups 

formed by the Implemented growth rules. For example, two On cells will only 

compete for dendritic space if they are of the same RGC type (for instance M2), and 

not because they both follow an On growth behaviour. This also applies to the 

second condition, where thirteen different growth rules are used. 

In the second condition, the attribution of specific growth rules to sub-populations (for 

instance On-Off DSGC or J-RGC) has been decided based on the available 

morphological description of that RGC population in the literature, and morphological 
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measures of specific populations within the Sümbül database. For instance, J-RGC 

are described as cells with a strongly asymmetric dendritic arbour but a large 

diameter. Using these information, and by looking at the classification established in 

Sümbül et al., 2014, it has been possible to extract the J-RGC population from the 

Sümbül database and thus, to extract key morphological features of this population. 

These key features have then been used to determine the growth rule for the 

simulated J-RGC population, using a heuristic methodology to find parameter values. 

Likewise, mini-J-RGC and midi-J-RGC are described as strongly non symmetric, 

similarly to J-RGC, but of smaller diameter to J-RGC (Sanes and Masland 2015a). 

This principle applies for RGC sub-populations when morphological descriptions are 

available. Otherwise, a generic growth rule has been established for each On, Off 

and On-Off RGC population, in accordance the distributions of their morphological 

measures. In particular, these generic growth rules have been used to simulate 

dendritic growth of populations accounting for small RGC populations that remain to 

be discovered and characterised. Parameters have also been tuned using a heuristic 

approach. 

Modelling dendritic arbour growth using only three different rules cannot recapitulate 

the morphological diversity observed in real RGC dendritic arbours. Indeed, no RGC 

group of morphological characteristics far from the average are represented (see 

Figure 41). In more detail, significant differences in arbour diameter distribution are 

observed between simulated RGC and empirical RGC. That is true for the whole 

population (p=0.008) or if On, Off and On-Off populations are considered separately 

(p=0.0023, p=0.012, p=0.026 respectively, using a Mann–Whitney U test for two 

independent samples). Similarly, significant differences are noted concerning the 

anisometry score distribution, for both the whole population (p<0.001), or if On, Off 

and On-Off populations are considered separately (p<0.001, p=0.021, p=0.048 

respectively, using a Mann–Whitney U test for two independent samples). Finally, 

concerning the branching point number, significant differences emerge but only for 

the whole population (p=0.011) and the Off population (p < 0.001 using a Mann–

Whitney U test for two independent samples). 
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Figure 41: Dendritic arbour characteristics comparison when three growth 
rules are implemented. A: arbour diameter. B: anisometry score. C: number of 
branching point. (*** for p < 0.001; ** for p < 0.01; * for p < 0.05). n=364 for in-vitro, 
n=12000 for simulations. 
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Dendritic arbours simulated following only three different growth rules exhibit highly 

homogeneous diameters, compared with arbours diameters measured in Sümbül. 

Indeed, few to none simulated cells exhibit small (smaller than 120) or large (higher 

than 200) dendritic arbours (see Figure 41A). In addition, the anisometry score 

distribution of simulated cells does not reflect the variability observed in anisometry 

score of the Sümbül database. This is particularly true for the high anisometry 

observed in Off cells (anisometry score higher than 0.6, see Figure 41B). Some cells 

with abnormal dendritic arbour characteristics are still generated when using only 

three growth rules, but their number is negligible, and they do not present 

homogeneity in their phenotype. For these reasons, they cannot be considered a 

group or a population. 

 

On the contrary, modelling dendritic development using numerous growth rules, 

especially for RGC known to exhibit a specific dendritic arbour (such as J-RGC or 

LED), allows the emergence of populations with morphological properties far from the 

average RGC population, as it is observed in real RGC populations (see Figure 42). 

Increasing the number of developmental rules (thirteen instead of three) increased 

the morphological diversity of our simulated neurons. By consequence, no significant 

differences are seen concerning dendritic arbour size (diameter) distributions (see 

Figure 42A), both for the total population and for On, Off and On-Off populations 

separately (p > 0.1 using a Mann–Whitney U test for two independent samples). 

However, there are significant differences concerning the anisometry score 

distribution and branching points number distributions between our simulated RGC 

and the Sümbül database. In the case of the Off population, the implemented number 

of J-RGC, mini-J-RGC and midi-J-RGC and their very high asymmetry explains this 

observed anisometry score difference with the in-vitro RGC population (p<0.001 

using a Mann–Whitney U test for two independent samples). Indeed, we have 

chosen here to follow the cell densities observed and documented by (Sanes and 

Masland 2015), reporting cell densities of approximatively 200, 350 and 80 cells per 

mm2 for J-RGC, mini-J-RGC and midi-J-RGC respectively. Such high densities of 

non-symmetric cells are not found in the Sümbül database. Moreover, only few cells 

of small diameter and very high anisometry score (mini-J-RGC and midi-J-RGC) are 

represented in the experimental RGC population. Of course, this anisometry 

difference for the Off population (see Figure 42B) is transcribed in the overall 
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population, explaining the observed significant difference between our simulated cells 

and the Sümbül database (p < 0.001 using a Mann–Whitney U test for two 

independent samples) as shown in Figure 42B (whole population). This under-

sampling of specific RGC types also explains the significant difference in branching 

number for Off cells between the empirical and simulated populations (p < 0.001 

using a Mann–Whitney U test for two independent samples) as shown in Figure 42C 

(Off population). Indeed, as mini-J-RGC and midi-J-RGC exhibit small arbour trees, 

their branching number is mechanically small as well. As we follow the cell density 

reported in the literature for these cell types (see sections 1.4.2, 4.1.1 and 4.1.2), it 

increases the number of cells with few branching points in our simulations, thus 

diverging from the RGC dataset of Sümbül. Likewise, this Off population branching 

number difference is found in the global RGC population and explains the significant 

difference from the Sümbül database (p < 0.001 using a Mann–Whitney U test for 

two independent samples) as shown in Figure 41C (whole population). The 

significant difference of anisometry score distribution for the On population (p < 0.001 

using a Mann–Whitney U test for two independent samples, see figure 42B) results 

from an inability in our simulations to reproduce the very low anisometry score of this 

population. 
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Figure 42: Dendritic arbour characteristics comparison when thirteen growth 
rules are implemented. A: arbour diameter. B: anisometry score. C: number of 
branching point. (*** for p < 0.001; ** for p < 0.01; * for p < 0.05). n=364 for in-vitro, 
n=12000 for simulations. 
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Chapter 5. Discussion 

All computational simulations have to be built upon biological data in order to offer 

relevant insight of a scientific problem. For this reason, information about retinal 

development has been gathered using in-vitro experimental observations. Thus, we 

followed RGCs characteristics through development using RBPMS staining in 

neonatal mouse retinas. This notably allowed us to measure death dynamic from P2 

to P11, and to confirm that our measures are in agreement with the literature, 

reporting RGC death during the first 11 days of life with a peak between P2-4 

(Braunger, Demmer, and Tamm 2014). By taking into account retinal surface 

expansion during normal development, our measured total RGC death rate is low 

compared to the study considering simply RGCs density over time. 

Biological information gathered from our in-vitro experiment and from the literature 

have been used to build realistic simulations of retinal cells self-organisation. This 

notably includes the number of RGCs types incorporated in our simulations. Indeed, 

the numerical distribution of On, Off and On-Off RGCs is known to vary depending on 

species. For instance, midget cells are numerous in primates and cats (representing 

the main vehicle for acute vision), but not in mouse where these cells (βRGC) are 

almost not represented. Thus, for our simulations, we chose the number of RGCs 

types and their numerical distribution based on a review from the literature (Sanes 

and Masland 2015a; Reese and Keeley 2015; Baden et al. 2016). Notably, Sanes 

and Masland 2015 speculated that classified and well-described RGC types 

represent only about 60% of the total RGC population, corresponding to around 1740 

cells/mm2 from the total 3000 cells/mm2 observed in the mouse retina. In addition, it 

is important to note that from these known and classified RGC populations, only 

12.4% are On type (216 cells/mm2 out of 1740 cells/mm2, divided in 7 types) while 

44.4% are Off types (773 cells/mm2 out of 1740 cells/mm2, divided in 6 types) and 

43.1% are On-Off (750 cells/mm2 out of 1740 cells/mm2, divided in 6 types) types. As 

On, Off and On-Off are evenly represented (30% to 35% each), a great number of 

On cells still needs to be discovered in order to reach the theoretical percentage of 

On RGC in the total RGC population (30% to 35%). Thus, we can hypothesize that 

either: 1. A couple of numerous and high density On types have not been discovered 

and characterised yet. 2. There are more On than Off or On-Off types. 

The first hypothesis appears unlikely as RGCs are widely studied, especially with the 

emergence of large-scale and high density MEA recordings, but also using 

morphological and molecular characterisations. Thus, there is only a low probability 
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that the existence of several dense On RGC types (representing the majority of the 

On population, and so being the most common On type) has not been captured by at 

least one of these techniques. The second hypothesis for its part appears to be 

coherent as mouse, similarly to other nocturnal animals, have rod-dominated vision. 

Indeed, rods are known to project their dendrites and to establish synaptic 

connections only to On bipolar cells, that in turn establish synaptic connections to On 

RGCs. In order to extract as many features as possible from a visual scene using 

mainly rod vision, a great diversity of specialized RGCs can be justified. The 

hypothesis of a great diversity of low density On types is also in agreement with 

Masland et al., 2015, speculating that around 30 low density RGC types exist — 

representing about 1% of the population each but about 95% of the total population 

in total — and are yet to be discovered. Baden et al., 2016 also estimate the total 

number of RGC types to be over 40, supporting the hypothesis of numerous low 

density RGC types, including On types. 

As it is still possible that one On type of mid density has not been discovered, we 

chose to allow the possibility for this hypothesis, in addition to adding multiple low 

density On RGC. Thus, one On RGC type with the density of 150cells/mm2 has been 

integrated. Choice and implementation of these speculated On RGC types has been 

done using a Poisson law (high probability of low density population, low probability 

of high density population). As respectively 25.7% and 25% of Off and On-Off RGCs 

from the total RGC population have been characterised (with some types exhibiting 

high density, rising up to 350 cell/mm2), we assumed that only low density Off and 

On-Off RGC are still to be discovered. For these reasons, only 6 types are added for 

Off and On-Off populations, while 16 On types are added. The chosen numbers (6, 6 

and 12 respectively) allow the average densities of the added supplementary types to 

be similar for On, Off and On-Off RGC, with the exception to one mid density On 

added type. Thereby, a total of 43 RGC types are implemented in our mosaic 

development model. 

Resulting simulations allowed us to investigate the requirements for RGCs mosaics' 

formation through development, and the specific impact of each mosaic formation 

mechanism (CF, CD and CM). 

5.1 Mosaic formation 

CF implication on RGC mosaics’ regularity is particularly difficult to study in-vitro or 

in-vivo. Yet, thanks to RGCs progenitors' studies, no evidence has been found for 
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RGC type-specific progenitors (Sweeney et al. 2017). This means that types of RGCs 

are probably not pre-determined early on and so are likely to depend on extrinsic 

factors, such as the presence of chemical cues (Livesey and Cepko 2001). Thereby, 

it allows for the contribution of a mechanism such as CF for RGC type differentiation, 

and its potential implication on mosaic formation. However, the first result arising 

from our simulations is the impossibility to create highly regular mosaics by using 

only the CF mechanism (RI > 2.5). Likewise, CF mechanism does not significantly 

increase the potentiality of other mechanisms (CD and CM) neither. This suggests 

that RGC types are unlikely to be dictated by cell body mosaics but instead may be 

dictated by intrinsic factors (that are still to be discovered), functional determination 

(dictated by the input it receives from other cells, or in order to establish a functional 

visual pathway), or a combination of intrinsic factors interacting with extrinsic factors. 

In our simulations, the CD mechanism (alone, or in combination with the CF 

mechanism) is able to create regular mosaics (RI > 3.5) with a death rate of 65%. As 

this mechanism is based on a locally diffused chemical substance, homotypic cellular 

spacing (and therefore cell type initial density) has an important impact on CD 

mechanism. For this reason, only populations with an initial cell density higher than 

180 cells/mm2 exhibit regular mosaics. Importantly, our CD implementation is able to 

match measured RGC death dynamic during development, thus strengthening its 

plausibility. It should be pointed out that with the implemented CD mechanism, the 

concentration threshold triggering CD varies depending on the RGC type initial 

density. Indeed, a dense sub-population exhibits higher chemical cue concentration 

compared to a low density one, due to the higher number of cells secreting the 

chemical substance, but also by their closer proximity. With an identical threshold 

triggering CD, a high density sub-population would exhibit higher death rate than a 

low density sub-population. Thus, this CD threshold has to be set depending on the 

RGC type initial density in order to reach around 65% of death rate for each RGC 

population. Another mechanism allowing the triggering of CD by an identical 

concentration threshold value for all RGC types is also possible, but mechanically 

leads to RGC populations of low density to express only a negligible death rate. 

Indeed, a strong correlation between the initial cell density and the final death rate 

emerges, almost all the dying cells belonging to RGC types of high cell density. This 

also implies that at the time of cell birth, and after cell differentiation, a couple of RGC 

types represent almost the entire RGC population. To this date, it is unknown if the 

RGC death rate observed during development occurs asymmetrically between RGC 
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types, meaning that a few (very dense) RGC types die massively while the 

population of most (low density) RGC types do not undergo apoptosis. Experimental 

investigation could elucidate this possibility. It does, however, seem unlikely that only 

a minor portion of RGC types account for the majority of all the measured cell death. 

In both cases, it is important to point out that CD probably serves additional purposes 

in the retinal maturation process, and is not only geared towards mosaic creation. 

Indeed, some cell types which do exhibit mosaic regularity do not undergo any 

significant levels of CD (such as horizontal cells or photoreceptors). In fact, as 

demonstrated here, the maximum positive impact of CD upon RI is reached for a 

death rate between 5 and 30%. Beyond this death rate, cell death appears to have a 

negative impact on mosaic regularity, with RI decreasing to lower values when more 

cells disappear. This implies that even if CD can be involved in mosaic formation at 

early stages, cell death at levels above 30% is likely to be driven by other 

mechanisms and for another purpose than mosaic regularity. By removing cells that 

have established non-coherent connections, CD could be implicated in refining retinal 

functional connectivity and activity. Axonal miss targeting could be a potential 

mechanism triggering RGC death during normal development. 

Finally, CM appears to be the only mechanism able to explain the formation of highly 

regular mosaics (RI > 5). As for the CD mechanism, the efficacy of the CM 

mechanism is dependent on cell density as it is based on local interactions. The 

shorter homotypic cellular distances are, the more they can sense and repulse each 

other. Thereby, a strong correlation emerges between RGC type populations 

densities and the regularity of their mosaics. Therefore, we propose here that all 

RGC types do not form mosaics. Only high density RGC types can form mosaics of 

high regularity, while low density RGC types can not form regular mosaics. It would 

be technically complex but very informative to verify this assumption in-vitro. To this 

date, no experimental studies tried to answer this question. 

We show here that high mosaic regularity can be achieved with limited migration 

distance (8.72µm ±0.11 in average, n = 8). This average migration distance is in 

accordance with in-vivo measures, reporting RGCs and SACs tangential migration 

not beyond 30µm (Nguyen-Ba-Charvet and Chédotal, 2014). It is however notably 

lower than the average migration distance, measured at around 20µm (Galli-Resta et 

al. 1997), and could be partially explained by the absence of retinal surface 

expansion implementation in our simulations. The CM mechanism implemented here 

is based only on local cues and short-distance interaction, and thereby follows the 
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description of tangential dispersion in mouse, reported as a local, short-distance, 

phenomenon (Reese and Galli-Resta 2002). More importantly, our results are 

consistent with previous studies showing that a cell tangential dispersion does not 

appear to be directly related to its time of birth, but rather to its cell type (Reese and 

Galli-Resta 2002). 

The cellular organisation and RI dynamics resulting from the CM mechanism are in 

agreement with the literature, where it is reported that RI increases mostly between 

P1 and P5, while distance between cells still increasing after that period, from P1 to 

P10 (Reese and Keeley, 2015). After reaching the correct cell layer, a slower fine 

tangential positioning phase of RGC within the GCL has been reported (Galli-Resta 

et al. 1997; Amini, Rocha-Martins, and Norden 2017). Cellular movement during this 

period has been described as random but important for exact cellular positioning 

(Amini, Rocha-Martins, and Norden 2017). However, with regard to our results and 

as stated by other studies (Chow et al., 2005), they are likely to be related to mosaic 

formation and refinement. Indeed, these movements appear random as the whole 

RGC population (On, Off, On-Off population) is considered, while RGC populations 

should themselves be divided into types in order to meaningfully investigate RGCs 

lateral migration. If it would be possible to examine each type independently, it is 

likely that these movements, reported as random, would appear as coherent. 

To further elaborate on our computational study, we created a model of pathological 

retinal development. Indeed, a single modelling condition of healthy development is 

insufficient to validate a computational model. For this reason, a simulation of the 

Dicer-1 deletion driven by the Pax6-αCre model has been carried out. The positive 

results and the reproduction of this abnormal development by our simulation support 

our model validation. Indeed, without modifying any cellular properties of simulation 

parameters, we reproduced the observed cellular dispersion, limited only in the distal 

directions where cell death occurred. 

Some differences are to be noted between the biological model and our 

computational model of Dicer-1 deletion, notably the inferior migration distance 

observed in our simulations. This difference could partially be explained by retinal 

surface stretching during development, facilitating cellular dispersion. In addition, 

surviving cells could also express more sensitivity to chemical clues, and so respond 

more strongly, with higher cell-cell repulsion. Moreover, some cellular properties or 

migration characteristics could be changed due to the massive and localised cell 
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death resulting from Dicer-1 deletion. For instance, disappearance of all RGCs in 

some retinal regions could modify some ECM properties of these regions due to 

dislocation of tissue integrity. This, in turn, could facilitate cellular mobility and thus 

increase cell migration speed and distance. 

Further testing of our simulation procedure was done by applying this mosaic 

formation mechanism to a different cell type, the SAC population. As discussed in the 

section 2.3, in-vitro investigations are particularly complex due to the early 

developmental stage of the retinas. Thus, a simulation of SACs mosaics 

development has been built. In particular, the interaction between the GCL and INL 

populations during mosaics formation has been investigated using this model. First, 

these simulations clearly show that our modelling procedure can successfully be 

applied to another cell population, without changing any simulation parameters. 

Indeed, we have been able to explain differences in GCL and INL mosaic regularities 

(RI of INL population being higher than the GCL population, see Figure 9 in section 

2.2.1) by using only local interactions between SACs. This is the case if SACs 

constitute a unique population, or if GCL and INL populations are distinct (in other 

words, if one common or two distinct chemical cues are used). In the first case (if just 

one chemical cue is used), this RI difference can be explained by the higher number 

of cells migrating to the INL compared to the GCL. Indeed, the INL population 

represents a larger part of the initial regular SACs population than the GCL one. 

Precisely, the proportion of a population characterised by a highly regular mosaic 

dictates the regularity of the resulting sub-population. In other words, the bigger the 

sub-population, the closer the obtained RI will be from the initial population, if cells 

constituting this sub-population are chosen randomly. For instance, a sub-population 

representing 75% of an initial (highly regular) population will have a higher RI than a 

sub-population representing 25% of this initial population. In the second case (if two 

distinct chemical cues are used), this RI difference between GCL and INL 

populations can simply be explained by the higher cell density of SACs in the INL. 

This higher cell density in the INL allows more interactions and homotypic repulsion 

and thus the emergence of a higher RI than cells located in the GCL. 

However, and surprisingly, only the simulation condition using a common chemical 

cue for mosaic formation is able to reproduce the exclusion factor observed between 

the GCL and INL populations. Indeed, if two mosaics (GCL and INL) are formed 

independently, they overlap frequently, thus exhibiting an exclusion factor lower than 

the one observed in-vitro. As no changes of RI or the exclusion factor are observed 
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once SACs have migrated to GCL and INL, this is an argument toward the 

hypothesis that SAC mosaics are formed at an early developmental stage, before 

SACs differentiation and migration to the GCL and INL. Again, it would be 

experimentally complex but informative to verify this assumption directly in-vitro or in-

vivo. Finally, as the link between cell density and RI is observed for both RGCs and 

SACs populations, it strengthens the hypothesis of mosaic formation based only on 

close-range, locally available developmental cues, like molecular guidance. It could 

also suggest a common mosaic formation mechanism for all cell types in the retina. 

It is important to point out that our simulations are in part based on an intrinsic clock, 

to regulate the transition between major phases of cellular development. The 

existence of such intrinsic cellular clocks has been previously demonstrated in 

mammals (Elliott et al. 2008; Alsio et al. 2013; La Torre, Georgi, and Reh 2013; 

Saurat et al. 2013), thus corroborating the verisimilitude of this modelling choice. The 

other major basis of our simulations is the presence of chemical cues supporting 

cells self-organisation mechanisms. Likewise, evidences of such chemical cues have 

been previously reported (Tissir and Goffinet 2003; Edwards et al. 2010; Kay, Chu, 

and Sanes 2012). The importance of chemical cues is particularly crucial in our 

simulations of dendritic development, where the targeted level of dendritic lamination 

directly depend on a chemical substance. Evidence supporting the existence of 

molecular guidance in dendrite proper lamination have been largely reported as well 

(Kay et al. 2004; Huberman, Clandinin, and Baier 2010; Matsuoka et al. 2011). 

5.2 Dendritic growth 

Despite several computational studies of dendritic growth in the cortex (Nowakowski, 

Hayes, and Egger 1992; van Pelt and Schierwagen 2004; Cuntz et al. 2010; van 

Ooyen 2011; Torben-Nielsen and De Schutter 2014), few to none realistic dendritic 

growth modelling has been conducted in the retina, and more specifically concerning 

RGCs. 

As already reported here, we decided to simulate dendritic growth after mosaic 

completion (see section 4.1.2), using two normally distributed chemical guidance. 

These chemical substances represent the developmental cues given from SACs 

dendrites during development, allowing RGCs dendrites to laminate at the correct 

level (see section 1.1.2). This developmental guidance is a mandatory feature in our 

simulations. 
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Our results indicate that separating the RGC population into only the three major 

morphological categories (On, Off, On-Off) is too reductive. Indeed, building 

simulations using only three growth rules (On, Off, On-Off) cannot explain the 

observed heterogeneity of RGCs. In addition, it cannot explain the reported 

homogeneity inside each RGCs type, as observed for atypical arbours that are 

specific of a particular cell type. This shows that external cues driven growth rules are 

not enough to recapitulate the observed morphological diversity of RGCs dendritic 

arbours and the coherence inside each sub-group. This assumption is confirmed by 

adding more type specific internal growth rules that interact with the external 

developmental cues. Indeed, when thirteen distinct growth rules are created, the 

verisimilitude of obtained dendritic morphologies increases, allowing important 

morphological disparities but also similar dendritic shape within each RGC types. In 

other words, more internally driven developmental rules allow the emergence of 

specific morphologies that cannot be obtained with a single rule focusing on 

environmental interactions. This is particularly true for the J-RGCs family that exhibit 

very strong asymmetry in their dendritic arbour, that cannot be obtained without a 

specific, more internally driven, growth rule. Thus, we propose here that genetic 

factor might be an important component of RGCs dendritic shape determination. 

However, it should be pointed out that the impossibility in our simulations to 

reproduce the very low anisometry score for On RGCs may denote the existence of a 

specific mechanism during dendritic growth to increase the arbour symmetry. This 

may be an evolutionary mechanism that appeared to increase the dendritic coverage 

and homogeneous retinal coverage of On cells. Indeed, as mouse present a rod-

dominated vision, a correct On RGCs dendritic coverage is particularly important for 

their survival as preys. Such a mechanism of dendrites self-avoidance has been 

previously described for RGCs (Dacey and Petersen 1992; Dacey 1993), and is 

believed to participate in yielding a uniform spatial coverage. Interestingly, this 

mechanism does not seem to be universal, with many RGCs exhibiting self-crossing 

dendrites (Reese and Keeley 2015), thus being in accordance with our hypothesis of 

a genetic factor for very low anisometric morphologies. 

It is also important to point out that dendritic growth should be simulated with multiple 

cells simultaneously. This is mandatory in order to account for cell-cell dendritic 

interactions that occur during normal development. Indeed, such interactions have 

been demonstrated in the retina, and more particularly for RGCs. More precisely, 

RGCs of dissimilar types exhibit overlap of their dendritic arbours (Gauthier et al. 
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2009), while RGCs of the same type do not overlap, but instead they tile. This 

phenomenon has been shown for various RGCs (Dacey 1993; Vaney 1994), and can 

only be simulated when several cells are developing their dendritic arbours together. 

However, several simulations of dendritic development (Cuntz et al. 2010) are 

modelling cells independently (either one cell at a time, or without any cell-cell 

interactions). Hence, they do not take these dendritic interactions into account, which 

can potentially lead to misinterpretations. 

The precision of the extracted RGCs morphologies from Sümbül et al., 2014 

represents a rare opportunity to compare simulated RGCs with a database of 

experimentally obtained RGCs morphologies. Indeed, the high resolution of the z 

axis (in depth of the tissue) is still rare feature in 3D reconstructed neurons’ 

morphology. Unfortunately, despite the large number of cells extracted by Sümbül et 

al., 2014, it is likely that several RGC types are under-sampled, especially J-RGC, 

mini-J-RGC and midi-J-RGC. Indeed, only 26 cells corresponding to these 

populations (so with an anisometry score higher than 0.70) are found in the Sümbül 

database while cells of the J-RGC family are believed to represent more than 20% of 

the whole RGC population. Around 74 cells should be found in the Sümbül database, 

to match theoretical values. 363 cells appear not to be enough to constitute an 

exhaustive and reliable representation of RGC morphological diversity. This under-

sampling leads to incompatibilities between reported RGC type densities (Sanes and 

Masland, 2015), their described morphologies and characteristics measured on the 

Sümbül database. This is especially true for the anisometry score as J-RGC, mini-J-

RGC and midi-J-RGC are known to express a very particular non symmetric arbour, 

but also branching number and arbour diameter as midi-J-RGC and mini-J-RGC are 

known to be of small size with fewer branching numbers. However, no exhaustive 

and fully reliable data base of RGC dendritic arbours' description exist, stressing the 

need for an open data and collaborative science. The lack of description of real 

morphologies also prevents us to finely tune all RGC types. Increasing the number of 

specific growth rules (probably to the point of having one specific growth behaviour 

per RGC type) would increase the realism of simulated RGC dendritic arbours. 

Previous biological experiments showed the importance of intrinsic factors in the 

development of RGC dendritic tree morphologies (Montague and Friedlander 1989; 

1991; Lin et al. 2004), while other point out the importance of environmental cues 

(Kay et al., 2004; Huberman et al., 2010; Matsuoka et al., 2011; Hoon et al. 2014). 

Using our simulations, we demonstrate here the importance of both mechanisms. 
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Indeed, only the interaction of two chemical cues (thus extrinsic factors representing 

the AC developmental guidance), with multiple distinct internally driven growth rules 

(intrinsic factors) can explain both the diversity of RGCs dendritic morphologies and 

the RGCs types homogeneity. 

5.3 Limits and future work 

In this thesis, we used a combination of experimental and computational approaches 

to investigate different mechanisms that could be required to give rise to a coherent 

and functional retina. 

Using immunocytochemistry and large-scale electrophysiological recordings, we 

investigated potential mechanisms underlying hyperactivity generating stage II retinal 

waves. To our surprise, we discovered a population of auto-fluorescent cells in the 

RGC layer, organised as tight clusters forming an annulus. This annulus appears at 

the proximity of the optic disc at P2, then expands during development, reaching the 

retinal periphery around P6-P7. Finally, it starts to disintegrate and completely 

disappears by P10, coinciding with the switch to Stage-3 waves. Our results suggest 

that these cells may be hyper-active and generate strong neural activity during the 

period of Stage-2 waves. The presence of a transient population of hyper-active 

neurons during early development has been previously reported in cortical areas, 

suggesting a universal mechanism mediating hyper-excitability in developing CNS 

networks during the critical period for brain wiring. Interestingly, new observations 

obtained from E. Sernagor’s lab show a collocation of clusters and the 

vascularisation edge during the development, as well as a collocation of clusters and 

expression of HIF-1, a transcription factor activated in hypoxic condition. These 

results suggest that this transient population could actively participate in 

angiogenesis and elaboration of retinal vascularity through activity-induced hypoxia. 

However, as previously stated, the precise nature of this transient population remains 

to be fully elucidated. Several experiments could be considered to investigate further 

these cluster cells. Functional imaging and patch clamping experiments could bring 

more information about the precise implication of this population in the initialisation of 

Stage-2 waves, and about their hyper-active nature. More precisely, these 

experiments could elucidate if the clusters are acting as pacemaker by triggering the 

Stage II waves, but also bring more information about the cell types they are 

connected to. The link between the clusters and the vascularity could also be further 

investigated using several approaches. The first one could be achieved by 
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modulating the activity of the cluster cells (both increase and decrease of activity) 

and to investigate the resulting impact on the vascularity. A second complementary 

approach could be to influence the angiogenesis (both by impairing and promoting 

the neoangiogenesis) and measure the changes of the cluster cells’ development. 

Finally, single cell RNA sequencing represents a particularly promising technique for 

cell characterisation. In addition of providing the precise genetic profile of an 

individual cell, this technique is especially useful to better understand a cell function 

in its environment. This technique could be used to better characterise and 

understand the cluster cells, but also to distinguish different cell types in the mature 

retina. By doing so, it would be possible to precisely determine the number and 

density of every RGC types. Interestingly, it could be used at various stages of 

development to investigate the emergence of cell types and the mechanisms 

dictating cell type determination. More, by combining imaging and single cell RNA 

sequencing, it could be possible to obtain the spatial position of every cell of interest, 

in addition with their genetic profile. Thus, it would be possible to investigate retinal 

development and mosaic creation at very early stages of the development. This 

could for instance allow us to determine if some genetic differences exist between 

RGCs at early developmental stages, before the emergence of mosaics, or the 

respective influence of intrinsic and extrinsic factors upon cellular differentiation and 

mosaic creation. Likewise, it would be possible to investigate if genetic differences 

exist between the GCL and INL SAC populations. If some differences are to be 

noted, it would also be possible to determine at which developmental stage these 

differences emerge, and which factor (intrinsic and extrinsic) influence the cell layer 

each cell will migrate to. 

Using information gathered from our in-vitro experiments and from the literature, we 

built agent-based computational simulations to investigate mechanisms underlying 

retinal mosaics formation and dendritic development. In particular, we investigated 

the requirements for mosaics' formation through development, and the specific 

impact of each mosaic formation mechanism. Our simulations clearly showed that 

mosaic formation can be explained using only simple rules, based on locally 

available information and short-range cell-cell interactions. In additions, they indicate 

that cellular migration is the only mechanism able to give rise to regular mosaics. 

This high regularity can be achieved using only limited migration distance. We also 

found that cell death can create regular mosaics only if the death rate is kept below 

30%, thus indicating that programmed cell death is implicated in another mechanism 
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than mosaic formation. Interestingly, we also showed that all RGC types do not form 

mosaics, thus agreeing with recent studies. Indeed, in our simulations, only RGC 

populations of high to mid-density can self-organise as regular mosaics. 

Using the agent-based approach, we also built simulations to investigate the 

requirements for realistic RGCs dendritic development. We showed that realistic 

dendritic arbour morphologies can be obtained using only simple rules, based on 

locally available information. Importantly, we demonstrated that only the interaction of 

extrinsic factors (developmental cue), with multiple distinct intrinsic factors (internally 

driven growth rules) can explain both the diversity of RGCs dendritic morphologies 

and the RGCs types homogeneity. 

As mentioned in the Introduction Chapter, computational simulations can pursue four 

goals: 1. to provide a reasoning aid. 2. to remove ambiguity from biological theories. 

3. to explain large systems by small simple elements. 4. to replace or minimise the 

use of animal experimentation. The simulations presented in this thesis fulfilled all 

these four aims. 

Indeed, in order to model mosaics formation, it has first been mandatory to determine 

the number of RGC types in the retina and their respective densities. By doing so, we 

discovered that less On than Off and ON-Off RGC have been reported and 

characterised in the literature, thus leading to the hypothesis that the On RGC 

population might be composed of more type than the Off or On-Off RGC populations. 

The implementation of each mosaic formation mechanism (CF, CD, CM) also helped 

to clarify how they could form mosaics, defining the biological requirements and 

mechanisms that could underlie mosaic formation. Likewise, the implementation of 

dendritic development brought clarifications about the precise mechanisms and 

information needed in order to grow realistic dendritic arbours. The modelling 

approach used in this work is particularly well suited to explain large system 

formation by simpler elements as agent-based simulations are precisely built on the 

principle of agents. Agents are simple, independent and explicitly represented 

objects that can only have access to close range information, without any central 

simulation control. Thus, in our modelling, mosaic formation and dendritic arbour 

growth are achieved using only simple independent agents (cells and dendrites) that 

interact with their local environment to self-organise in more complex structures. 

Finally, our results and predictions could be used as preliminary results by 

experimentalists, thus helping them to reduce the number of plausible outcomes and 
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select possible experiments for further investigations. In turn, this could minimise the 

number of experiments and animals used. 

Nonetheless, our simulations are built upon some assumptions and would need 

experimental verifications of these assumptions and of our predictions in order to 

further validate our model. It would for instance be informative to verify if low density 

populations of RGCs are not forming regular mosaics, accordingly to our prediction. 

Furthermore, every parameter of our simulations has been hand-tuned. An automatic 

procedure for parameter tuning could validate the chosen parameters values but 

could also benefit the simulations with more finely tuned values. More, an automatic 

procedure could be used to determine the theoretical ideal number of RGC types for 

mosaic formation and dendritic growth rules, in addition of their characteristics (cell 

density, behaviour, etc.). Other investigations could also be considered to elaborate 

further either our model or its results analysis. I would for instance be interesting to 

calculate the distance recovery profile to assess mosaics’ regularity and investigate if 

significant differences are to be noted compared to analysis using the RI. Our model 

could also be further elaborated, by integrating additional cell types and the 

corresponding interactions between and inside each cell populations. The first step 

would consist in the incorporation of the amacrine cell population alongside the RGC 

population. This would be particularly interesting as amacrine cells are believed to 

provide strong developmental cue to RGCs dendrites, while RGCs are believed to 

give developmental cue to some amacrine cells for the precise positioning of their 

stratification level. Investigating the interactions between amacrine cells and RGCs, 

in addition of the interactions within each population, could greatly benefit our 

understanding of retinal development. 
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