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Abstract  

Background: 

Estimating the diagnostic accuracy (sensitivity and specificity) of a new medical test in 

the absence of a gold standard or perfect reference standard is a common problem in 

diagnostic accuracy studies. Failing to correct for this imperfection risks under- or over- 

estimating the accuracy measures of the index test. 

Aim:  

To identify and compare methods employed to evaluate the diagnostic accuracy of 

medical tests in the absence of a gold standard.   

Methodology: 

A systematic review was conducted to identify methods employed to evaluate the 

diagnostic accuracy in the absence of a gold standard. Promising correction methods 

and latent class models were explored and compared using simulation studies and 

clinical datasets. 

Results: 

The methods identified from the systematic review were classified into four main 

groups: methods employed when there is a missing gold standard; when there are 

multiple imperfect reference standards; correction methods; and other methods such 

as the test positivity rate. Following the simulation studies undertaken to compare the 

correction methods, the Staquet et al method was found to outperform the Brenner 

method. Investigation of the latent class models alongside the analysis of a clinical 

dataset indicates that the assumptions made on the tests being evaluated affect the 

estimates obtained and clinical decisions. Given three conditionally dependent tests, 

the fixed effect model and random effect model via logit link tended to be preferred to 

the finite mixture model and random effect model via probit link because they are less 

impacted by the choice of priors.   

Conclusion: 

Many methods have been developed to estimate the diagnostic accuracy of a medical 

test in the absence of a gold standard. The choice of method employed depends on 
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the varying assumptions or characteristics of the tests under investigation as this can 

affect the estimates obtained and the decisions made in practice.   



iii | P a g e  
  
  

Acknowledgement  

Firstly, I will like to express my profound gratitude to my Supervisors, Professor Luke 

Vale, Dr Kevin Wilson, Dr Joy Allen and Dr Sara Graziadio (maternity cover supervisor) 

for their immense support and guidance throughout this PhD research programme. 

They are totally AMAZING.  

Secondly, I am grateful to Newcastle University Research Excellence Award, the 

School of Mathematics, Statistics and Physics, the Health Economics Group in the  

Population Health Sciences Institute (previously known as the Institute of Health and 

Society), and the National Institute for Health Research, Newcastle In-Vitro 

Diagnostics Co-operative Newcastle University for  providing the fund required to 

undertake this research. In addition, I would like to thank Dr Dennis Lendrem and 

Professor John Isaacs for granting me the permission to use the key clinical dataset 

employed in this research study which is the RA-MAP dataset on rheumatoid arthritis 

patients in North East England. Employing this clinical dataset in my research provided 

a clinical application of some of the statistical methods I explored within my research.  

To my assessors, Professor John Mathews and Dr Thomas Chadwick, I say a big thank 

you. Their constructive criticism, comments and suggestions have helped to put this 

study into perspective and ultimately achieve the objectives. To my Examiners, Dr 

Clare Lendrem (Newcastle University) and Professor Yemisi Takwoingi (Birmingham 

University), thank you for the feedbacks, corrections and suggestions. They were very 

helpful. 

I also thank the postgraduate research community, the Postgraduate Head, Professor 

Elaine McColl and her team, and the Baddiley Clark Building Hot Desk PhD students’ 

cohort (2017 – 2020) for providing a viable and friendly environment for successful 

study.  

A special thank you to Professor Patrick Bossuyt, for finding time to review the protocol 

and manuscript for the systematic review published which is also an integral part of 

this Thesis.   

I am immensely grateful to my family, my husband (Dr Chikere Nkwonta), my children 

(ChukwudiEbube and NgoziChukwu) and parents (Mr. and Mrs. Simeon and Rose-

Tina Umemneku). Their daily encouragements, emotional and psychological support, 



iv | P a g e  
  
  

have worked together to keep me motivated and bring this research to a successful 

completion. Thank you for believing in me.  

Finally, thank you my Heavenly Father for making this dream come true. 

TO GOD BE THE GLORY 

 

 



v | P a g e  
  
  

Table of Contents 

Abstract ....................................................................................................................... i 

Acknowledgement .................................................................................................... iii 

List of Tables ............................................................................................................. x 

List of Figures ......................................................................................................... xiv 

List of Abbreviations ............................................................................................. xviii 

1.1. Introduction ...................................................................................................... 1 

1.1.1. Medical test ............................................................................................... 1 

1.1.2. Diagnostic Accuracy................................................................................. 4 

1.1.3. Reference Standard .................................................................................. 5 

1.1.4. Gold Standard ........................................................................................... 6 

1.1.5. Diagnostic Accuracy Statistics ................................................................ 7 

1.2. Statement of Problem ................................................................................... 11 

1.2.1. Review of types of methods ................................................................... 14 

1.3. Scope of the research study......................................................................... 17 

1.4. Aim of the PhD research study .................................................................... 17 

1.4.1. Objectives ................................................................................................ 17 

1.5. Research methodology ................................................................................. 17 

1.6. Significance of the research study .............................................................. 18 

2.1. Introduction .................................................................................................... 19 

2.2. Methodology .................................................................................................. 20 

2.2.1. Eligibility Criteria .................................................................................... 20 

2.2.2. Search strategies and selection of articles .......................................... 21 

2.2.3. Data synthesis ......................................................................................... 22 

2.3. Results ........................................................................................................... 22 

2.3.1. Methods employed when gold standard is missing ............................ 27 

2.3.2. Correction methods ................................................................................ 31 



vi | P a g e  
  
  

2.3.3. Methods with multiple imperfect reference standards ........................ 31 

2.3.4. Other designs methods .......................................................................... 32 

2.4. Guidance to researchers .............................................................................. 33 

2.5. Discussion ..................................................................................................... 35 

2.6. Conclusion ..................................................................................................... 36 

3.1. Introduction .................................................................................................... 38 

3.1.1. Gart & Buck Correction method ............................................................ 41 

3.1.2. Staquet et al correction method ............................................................ 42 

3.1.3. Brenner correction method .................................................................... 44 

3.1.4. Emerson et al correction method .......................................................... 45 

3.2. Aims of the simulation study ........................................................................ 46 

3.3. Methodology .................................................................................................. 46 

3.3.1. Comparison of correction methods – conditional independence ...... 48 

3.3.2. Comparison of correction methods – conditional dependence ......... 78 

3.4. Application of methods to a clinical dataset ............................................... 87 

3.5. Summary ........................................................................................................ 97 

4.1. Introduction .................................................................................................. 100 

4.2. Basic notation .............................................................................................. 100 

4.3. Latent class model ...................................................................................... 101 

4.3.1. Traditional latent class model .............................................................. 102 

4.3.2. Fixed effect latent class model ............................................................ 104 

4.3.3. Random effect latent class model ....................................................... 109 

4.3.4. Finite mixture latent class model ........................................................ 111 

4.4. Bayesian approach ...................................................................................... 112 

4.4.1. Specification of prior information ....................................................... 113 

4.4.2. Inference using the posterior distribution .......................................... 115 



vii | P a g e  
  
  

4.4.3. Advantages and disadvantage of Bayesian approach over frequentist 

approach ............................................................................................................. 117 

4.5. Simulation .................................................................................................... 118 

4.5.1. Simulated values ................................................................................... 118 

4.5.2. Conditional independence assumption .............................................. 120 

4.5.3. Conditional dependence assumption ................................................. 126 

4.6. Limitations ................................................................................................... 139 

4.7. Summary ...................................................................................................... 140 

4.7.1. Conditional Independence ................................................................... 140 

4.7.2. Conditional dependence ...................................................................... 141 

4.8. Revisiting the clinical dataset from chapter three .................................... 147 

5.1. Description of the clinical data ................................................................... 149 

5.1.1. Missing data .......................................................................................... 151 

5.2. Exploration of clinical dataset .................................................................... 152 

5.3. Aims of the clinical dataset analysis ......................................................... 155 

5.4. Methodology for analysing the clinical datasets ...................................... 155 

5.4.1. Prior information on the disease activities scores (SDAI, CDAI and 

DAS28-ESR4) ...................................................................................................... 156 

5.5. Analysis of the RA-MAP baseline clinical data ......................................... 160 

5.5.1. Analysis of the baseline data assuming DAS28-ESR4 is a gold 

standard .............................................................................................................. 162 

5.5.2. Analysis of the baseline data assuming SDAI, CDAI and DAS28-ESR4 

are conditionally independent and none of the scores is a gold standard ... 162 

5.5.3. Analysis of the baseline data assuming SDAI, CDAI and DAS28-ESR4 

are conditionally dependent and none of the scores are a gold standard .... 164 

5.6. Discussion ................................................................................................... 171 

6.1. Summary of the research study ................................................................. 174 

6.2. Contributions of the research study .......................................................... 175 



viii | P a g e  
  
  

6.3. Strength of the research study ................................................................... 178 

6.4. Limitations of the research study .............................................................. 180 

6.5. Further research .......................................................................................... 181 

6.6. Conclusion ................................................................................................... 182 

References ............................................................................................................. 183 

Appendices ............................................................................................................ 222 

A.1. PRISMA Checklist ........................................................................................ 223 

A.2. Example of search on SCOPUS database ................................................. 226 

A.3. Data extraction Sheet .................................................................................. 227 

A.4. Data Extraction Sheet (Example) ............................................................... 228 

A.5. Supplementary information ........................................................................ 229 

Update of the systematic review till December 2020 ......................................... 230 

A.5.1: Tables of methods employed in evaluating medical test(s) with missing gold 

standard in a binary-class diagnostic outcome ..................................................... 231 

A.5.2: Tables of methods employed to evaluate medical test when there is missing 

gold standard and the diagnostic outcomes is classified into three. Hence, focusing 

on ROC surface and volume of surface (VUS). .................................................... 250 

A.5.3: Tables of methods employed in evaluating medical test(s) with an imperfect 

reference standard or no gold standard. .............................................................. 254 

B.1. R Code Chapter three – comparison of correction methods ................... 263 

C.1. R Code Chapter Four – Simulation of datasets for investigation of LCMs

 279 

C.2. Openbugs code employed to analyse the simulated dataset .................. 284 

C.3. Diagnostic plots of 23CD dataset under CI assumption .......................... 297 

C.4. Diagnostic plots of 23CD dataset under the assumption of CD (FEM) ... 300 

C.5. Diagnostic plots of 23CD dataset under the assumption of CD (REML) 303 

C.6. Diagnostic plots of 23CD under the assumption of CD using informative 

priors not centred on the truth (FEM) .................................................................. 306 



ix | P a g e  
  
  

C.7. Diagnostic plots of 123CD under the assumption of CI (FEM). ............... 309 

C.8. Diagnostic plots of 123CD under the assumption of CD (REML) ............ 311 

C.9. Diagnostic plots of 123CD under the assumption of CD (FEMW) using 

informative priors centred on the simulated truth ............................................. 313 

C.10. Diagnostic plots of 123CD under the assumption of CD (REML) ......... 314 

C.11. Diagnostic plots of 123CD under CD assumption and the priors are not 

centred on the simulated truth. ............................................................................ 316 

D.1. Diagnostic plots of the RABR dataset under CI assumption ................... 318 

D.2. Density plots of the prior and posterior distribution of DAS28-ESR4, SDAI 

and CDAI using the REML on the RABR dataset ................................................ 321 

D.3. Diagnostic plots of the RABR dataset under CD assumption ................. 322 

D.4. Diagnostic plots of the sensitivity analysis of RABR ............................... 327 

D.5. R-Code for clinical dataset analysis .......................................................... 328 

 

 



x | P a g e  
  
  

List of Tables 

Table 1: Description of different roles performed by different medical tests. ............... 2 

Table 2: Summary of the methods employed to evaluate medical tests in the absence 

of a gold standard. ..................................................................................................... 15 

Table 3: Summary of classification of methods employed when there is missing or no 

gold standard. ............................................................................................................ 24 

Table 4: 2 by 2 contingency table of the index test and imperfect reference standard

 .................................................................................................................................. 40 

Table 5: Cell probabilities of the 4 x 2 and 2 x 2 classification of participants ........... 50 

Table 6: Estimates from unadjusted and corrected sensitivities and specificities of the 

index test under the conditional independence assumption when the reference 

standard is perfect ..................................................................................................... 55 

Table 7: Unadjusted and corrected sensitivities and specificities of the index test when 

the reference standard is imperfect and better than the index test ............................ 59 

Table 8: Unadjusted and corrected sensitivities and specificities of the index test when 

the reference standard is imperfect and the index test is better than the reference 

standard .................................................................................................................... 63 

Table 9: Unadjusted and corrected sensitivities and specificities of the index test when 

the reference standard is imperfect and has same sensitivity and specificity as the 

index test. .................................................................................................................. 67 

Table 10: Number of illogical and undefined results obtained at various sample sizes 

and prevalences ........................................................................................................ 75 

Table 11: 4 x 2 and 2 x 2 tables of cell probabilities classified by the true disease, 

reference standard and index tests results ................................................................ 81 

Table 12: Results of HRA cytology and punch biopsy in classifying patients into high 

grade and non-high grade squamous intraepithelial lesion ....................................... 87 

Table 13: Unadjusted and corrected sensitivities and specificities of HRA cytology . 88 

Table 14: Results of the visual inspection (reference standard) and fluorescence - 

based devices (LFpen and FC) by two separate examiners ..................................... 90 

Table 15: Sensitivity and Specificity of LFpen and FC stratified by examiner 1 and 2 

with the NC detection. ............................................................................................... 91 

Table 16: Results of the operative intervention (reference standard) and fluorescence 

- based devices (LF and FC) classified by examiners ............................................... 93 

file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571164
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571164
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571166
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571166


xi | P a g e  
  
  

Table 17: Sensitivity and Specificity of LFpen and FC stratified by examiner 1 and 2 

with the dentine caries lesions detection. .................................................................. 94 

Table 18: Simulated dataset of 500 participants assuming conditional independence

 ................................................................................................................................ 120 

Table 19: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs under the conditional independence assumption. ..................... 122 

Table 20: Simulated dataset of 500 participants assuming conditional dependence 

between two tests (test 2 and test 3). ...................................................................... 127 

Table 21: Estimated prevalence, and sensitivities and specificities of the three tests 

from the different LCMs under the conditional independence assumption. ............. 128 

Table 22: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3)

 ................................................................................................................................ 130 

Table 23: Simulated dataset of 500 participants assuming conditional dependence 

between two tests (test 2 and test 3) with specificities close to one. ....................... 131 

Table 24: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3).

 ................................................................................................................................ 132 

Table 25: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3).

 ................................................................................................................................ 133 

Table 26: Simulated dataset of 500 participants assuming conditional dependence 

among all tests. ....................................................................................................... 134 

Table 27: Estimated sensitivities and specificities of the three tests from the different 

LCMs under the conditional independence assumption. ......................................... 135 

Table 28: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. . 136 

Table 29: Simulated dataset of 500 participants assuming conditional dependence 

among all tests and the specificities of all the tests are close to one. ...................... 137 

Table 30: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. . 138 

Table 31: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. . 139 

Table 32: Comparison of the different LCMs explored in this chapter ..................... 144 



xii | P a g e  
  
  

Table 33: Estimated sensitivities and specificities of LFpen and FC in classifying teeth 

with D3 .................................................................................................................... 148 

Table 34: Demographic profile of RA patients and mean value of core set of variables

 ................................................................................................................................ 150 

Table 35: The Disease Activity Scores .................................................................... 151 

Table 36: Table of various cut-offs of the disease activities scores ......................... 152 

Table 37: Prior information on the sensitivity and specificity of DAS28-ESR4, SDAI and 

CDAI ........................................................................................................................ 158 

Table 38: Median, and quartiles values of sensitivity and specificity used to elicit the 

prior Beta distribution .............................................................................................. 160 

Table 39: Number of participants classified as being in remission and non-remission in 

RABR ...................................................................................................................... 161 

Table 40: Combination of DAS28-ESR4, CDAI and SDAI responses using RABR 

dataset .................................................................................................................... 161 

Table 41: Estimated sensitivity and specificity of SDAI and CDAI in the RABR dataset 

assuming that the DAS28-ESR4 is a gold standard ................................................. 162 

Table 42: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally independent. ............................. 163 

Table 43: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally dependent................................. 164 

Table 44: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally dependent (sensitivity analysis).

 ................................................................................................................................ 170 

Table 45: Methods employed for single binary index test ........................................ 231 

Table 46: Methods employed for multiple binary index tests ................................... 235 

Table 47: Methods employed for single ordinal index test ....................................... 240 

Table 48: Methods employed for single continuous index test ................................ 242 

Table 49: Methods employed for single continuous index test with focus on covariate-

specific ROC ........................................................................................................... 247 

Table 50: Methods employed for multiple ordinal or continuous index tests ........... 249 

Table 51: Methods employed for single ordinal index test with ROC surface and VUS

 ................................................................................................................................ 250 

Table 52: Methods employed for single continuous index test with ROC surface and 

VUS ......................................................................................................................... 251 



xiii | P a g e  
  
  

Table 53: Methods employed for multiple binary index tests and categorical disease 

status. ...................................................................................................................... 253 

Table 54: Methods employed to evaluate index test(s) when the sensitivity and 

specificity of the imperfect reference standard is known precisely. ......................... 254 

Table 55: Methods employed to evaluate index test(s) when the sensitivity and 

specificity of the imperfect reference standard is unknown. .................................... 256 

Table 56: Construction of reference standard. ........................................................ 261 

Table 57: Table of other methods employed to evaluate medical test(s) ................ 262 

 

 

 



xiv | P a g e  
  
  

List of Figures 

Figure 1: Diagnostic accuracy study with disease status of all participants known 

before the application of the index test ........................................................................ 5 

Figure 2: Classical design of diagnostic accuracy study. All participants undertake 

both the index test and gold standard. ........................................................................ 6 

Figure 3: 2 by 2 contingency table of classification of binary test responses .............. 7 

Figure 4: Example of receiving operating characteristic curves ................................ 10 

Figure 5: Diagnostic accuracy study with missing gold standard .............................. 12 

Figure 6: Differential verification with complete verification ...................................... 13 

Figure 7: The PRISMA flow-diagram of articles selected and included in the systematic 

review. ....................................................................................................................... 23 

Figure 8: Imputation and bias-correction for partial verification methods with binary 

diagnostic outcome. .................................................................................................. 29 

Figure 9: Imputation and bias-correction for partial verification methods in three class 

diagnostic outcomes where ROC and VUS are estimated ........................................ 30 

Figure 10: Guidance flowchart of methods employed to evaluate medical tests in 

missing and no gold standard scenarios. .................................................................. 34 

Figure 11: The mean, standard error, mean square error and bias of the unadjusted 

and corrected sensitivity and specificity of the index test when the reference standard 

is prefect. ................................................................................................................... 57 

Figure 12: The mean, standard error, mean square error and bias of the unadjusted 

and corrected sensitivity and specificity of index test when the reference standard is 

imperfect and better than the index test. ................................................................... 61 

Figure 13: The mean, standard error, mean square error and bias of the unadjusted 

and corrected sensitivity and specificity of index test when the reference standard is 

imperfect and worse than the index test. ................................................................... 65 

Figure 14: The mean, standard error, mean square error and bias of the unadjusted 

and corrected sensitivity and specificity of index test when the reference standard is 

imperfect and have same sensitivity and specificity as the index test. ...................... 69 

Figure 15: The unadjusted and corrected mean sensitivity and mean specificity of the 

index test when the sensitivity (or specificity) of the reference standard or index test is 

varied and the prevalence is fixed at 0.3. .................................................................. 71 

file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571208
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571208
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571213
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571214
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571214
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571215
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571215
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571216
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571216
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571217
file:///C:/Thesis/Chinyereugo%20untracked%20Corrected%20Thesis%20V4.docx%23_Toc69571217


xv | P a g e  
  
  

Figure 16: Changes in prevalence largely impact the unadjusted and Brenner 

corrected sensitivity and specificity of the index test, unlike the Staquet et al correction 

method. ..................................................................................................................... 73 

Figure 17: The unadjusted and corrected sensitivities and specificities of the index test 

under different variations of conditional dependence between the index test and the 

reference standard. ................................................................................................... 85 

Figure 18: Trace plots of the sensitivity and specificity of the three tests and prevalence 

when all tests are conditionally independent. .......................................................... 123 

Figure 19: Density plots of the sensitivity, specificity of the three tests and prevalence 

when all tests are conditionally independent. .......................................................... 124 

Figure 20: Auto-correlation plot of the sensitivity and specificity of the three tests . 124 

Figure 21: Gelman diagnostic plots of the sensitivities and specificities of the three 

tests ......................................................................................................................... 125 

Figure 22: Scatterplots of DAS28-ESR4, SDAI and CDAI ....................................... 153 

Figure 23: Correlation matrix plot of DAS28-ESR4, SDAI and CDAI ...................... 153 

Figure 24: Histogram and density plot of SDAI, CDAI and DAS28-ESR4 ............... 154 

Figure 25: Density plots of the prior and posterior distribution of the sensitivities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset ......................... 165 

Figure 26: Density plots of the prior and posterior distribution of the specificities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset ........................ 166 

Figure 27: Estimated sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 

under the different assumptions (RABR dataset) .................................................... 168 

Figure 28: Density plots of the prior and posterior distribution of the sensitivities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset ......................... 170 

Figure 29: Density plots of the prior and posterior distribution of the specificities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset ........................ 171 

Figure 30: Trace plots of the sensitivities and specificities of the three tests assuming 

that all tests are conditionally independent. ............................................................. 297 

Figure 31: Density plots of the sensitivities and specificities of the three tests assuming 

that all tests are conditionally independent. ............................................................. 298 

Figure 32: Autocorrelation plots of the sensitivities and specificities of the three tests 

assuming that all tests are conditionally independent. ............................................ 298 

Figure 33: Gelman diagnostic plots of the sensitivities and specificities of the three 

tests assuming that all tests are conditionally independent. .................................... 299 



xvi | P a g e  
  
  

Figure 34: Auto-correlation plots of the prevalence, sensitivities and specificities of the 

tests assuming that all tests are conditionally dependent. ....................................... 300 

Figure 35: Trace plots for the sensitivities and specificities of test 1, test 2 and test 3, 

and prevalence assuming that all tests are conditionally dependent. ...................... 300 

Figure 36: Density plots of the sensitivities and specificities of the three tests and the 

prevalence assuming that all tests are conditionally dependent. ............................. 301 

Figure 37: Gelman diagnostic plots of prevalence, sensitivities and specificities of the 

three tests................................................................................................................ 302 

Figure 38: Trace plots of sensitivities and specificities of the three tests, and the 

prevalence assuming that all tests are conditionally dependent. ............................. 303 

Figure 39: Density plots of sensitivities and specificities of the three tests, and the 

prevalence assuming that all tests are conditionally dependent. ............................. 305 

Figure 40: Trace plots of the sensitivities and specificities of the three tests .......... 306 

Figure 41: Autocorrelation of prevalence, sensitivities and specificities of the three 

tests ......................................................................................................................... 306 

Figure 42: Density plots of the sensitivities and specificities of the three tests ....... 307 

Figure 43: Gelman diagnostic plots for the sensitivities and specificities of three tests

 ................................................................................................................................ 308 

Figure 44: Trace plots of sensitivities and specificities of the three tests ................ 309 

Figure 45: Density plots of sensitivities and specificities of the three tests ............. 309 

Figure 46: Auto-correlation plots of sensitivities and specificities of the three tests310 

Figure 47: Gelman Diagnostic plot of sensitivity and specificity of the three tests .. 310 

Figure 48: Trace plots of sensitivities and specificities of three tests ...................... 311 

Figure 49: Density plots of the sensitivity and specificities of the three tests under the 

CD assumption (REML) using priors centred on the simulated truth. ...................... 312 

Figure 50: Trace plots of sensitivities and specificities of the three tests, and the 

prevalence via the FEMW model .............................................................................. 313 

Figure 51: Density plots of the sensitivities and specificities of the three tests using the 

FEMW model and assuming all tests are conditionally dependent ........................... 313 

Figure 52: Trace plots of sensitivities and specificities of the three tests ............... 314 

Figure 53: Density plots of sensitivities and specificities of the three tests, and the 

prevalence under the assumption of conditionally dependence (REML) ................. 315 

Figure 54: Density Diagnostic plots of 123CD under the assumption of conditional 

dependence using the FEMW. ................................................................................. 316 



xvii | P a g e  
  
  

Figure 55: Trace Diagnostic plots of 123CD under the assumption of conditional 

dependence using the FEMW. ................................................................................. 317 

Figure 56: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI

 ................................................................................................................................ 318 

Figure 57: Auto-correlation plots of sensitivities and specificities of DAS28-ESR4, 

SDAI and CDAI ....................................................................................................... 319 

Figure 58: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI ........................................................................................................................ 319 

Figure 59: Gelman diagnostic plots of sensitivities and specificities of DAS28-ESR4, 

SDAI and CDAI ....................................................................................................... 320 

Figure 60: Density plots of the prior and posterior distribution of the sensitivities of 

DAS28-ESR4, SDAI and CDAI using the REML on the RABR dataset ................... 321 

Figure 61: Density plots of the prior and posterior distribution of the specificities of 

DAS28-ESR4, SDAI and CDAI using the REML on the RABR dataset ................... 321 

Figure 62: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 

(REML) .................................................................................................................... 322 

Figure 63: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI (REML) .......................................................................................................... 323 

Figure 64: Auto-correlation plots of sensitivities and specificities of DAS28-ESR4, 

SDAI and CDAI (REML) .......................................................................................... 323 

Figure 65: Gelman diagnostic plots of sensitivities and specificities of DAS28-ESR4, 

SDAI and CDAI (REML) .......................................................................................... 324 

Figure 66: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI FEMW ............................................................................................................. 325 

Figure 67: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI FEMW ............................................................................................................. 326 

Figure 68: Trace plots of the sensitivities and specificities of SDAI, CDAI and DAS28-

ESR4 (FEMW). ......................................................................................................... 327 

Figure 69: Density plots of the sensitivities and specificities of SDAI, CDAI and DAS28-

ESR4 (FEMW). ......................................................................................................... 327 

 



xviii | P a g e  
  
  

List of Abbreviations  

Abbreviation Meaning 

ASC-H Atypical squamous cell high grade  

AUC Area under the ROC curve 

BBM Beta – binomial model 

BPS Bladder pain syndrome  

CD Conditional dependence  

CDAI Clinical Disease Activity Index  

CI Conditional independence  

CINAHL Cumulative index to Nursing and Allied Health Literature  

CRP C-reactive protein level 

CRS Composite reference standard  

CT Computed tomography  

CTC Circulating tumour cell  

D3 Dentine caries lesions 

DAS28ESR Disease Activity Score 28 joints 

dCRS Dual composite reference standard 

DIC Deviance information criteria 

EBM Evidence based medicine  

EDGA Evaluator determined disease activity  

ELISA Enzyme-linked immunosorbent assay  

EMBASE Excerpta Medica dataBASE 

ESCC Oesophageal squamous cell carcinoma  

ESR Erythrocyte sedimentation rate 



xix | P a g e  
  
  

FC Florescence camera  

FEM Fixed effect latent class model  

FEMW Fixed effect latent class model proposed by Wang et al  

FMM Finite mixture latent class model 

FN False negative  

FNAB Fine needle aspiration biopsy 

FP False positive  

GRE Gaussian random effect 

HAVS Hand and arm or full body vibration test 

HDA High disease activity  

HER2 Human epidermal growth factor receptor 2 

HIV Human immune virus  

HMC Hamilton Monte Carlo  

HRA High resolution anoscopy  

HSIL High grade squamous intraepithelial lesion  

HWCI Hui and Walter conditional independence  

ICDAS International Caries Detection and Assessment System  

LCA Latent class analysis 

LCM Latent class model  

LDA Low disease activity  

LFpen  Laser fluorescence pen 

MAR Missing at random  

MATCH  Multidisciplinary Assessment of Technology for Healthcare  

MCMC Markov Chain Monte Carlo  



xx | P a g e  
  
  

MDA Moderate disease activity  

MEDLINE Medical Literature Analysis and Retrieval System Online 

MNAR Missing not at random  

MRI Magnetic resonance imaging  

MSE Mean square error 

NC Non-cavitated caries lesions  

NUTS No-U-Turn sampler 

PCR Polymerase chain reaction  

pD Number of effective parameters 

PDGA Patient global disease activity  

PRISMA Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses 

PSYCINFO Psychology information database. It is a database of 

abstract of literature in the field of psychology.  

ptVAS Patients global disease activity visual analogue scale  

QoI  Quality of life  

RA Rheumatoid arthritis  

RABR Rheumatoid arthritis clinical dataset at baseline 

discriminating between participants in remission and non-

remission  

REM Random effect latent class model  

REML Random effect model via logit link  

REMP Random effect model via probit link  

rFN Relative False negative 

rFP Relative False positive 



xxi | P a g e  
  
  

ROC Receiver operating characteristics  

RS Reference standard  

rTN Relative True negative 

rTP Relative True positive  

SCOPUS Source-neutral abstract and citation database   

SDAI Simplified Disease Activity Index 

SE Standard error  

SHELF Sheffield ELicitation Framework  

SJC Swollen joint count  

Sn  Sensitivity 

Sp Specificity  

TEN28 Tenderness upon touching 28 joints 

TJC Tender joint count  

TLCM Traditional latent class model  

TN True negative  

TNM Tumour node metastasis 

TP True positive 

VUS Volume under ROC surface  

 

 
 

 



1 | P a g e  
  
  

Chapter 1: General Introduction 

1.1. Introduction 

Prior to adopting a new medical test in a healthcare system, the test should be 

evaluated in terms of safety, performance and efficacy. As part of the evaluation of the 

test, a few core questions are considered, such as:  

 Is the test safe?  

 Does the test work under controlled laboratory conditions?  

 Does the test work under real-life clinical conditions in the hands of the intended 

users?   

 Do the long- and short-term benefits of doing the test outweighs any risks 

associated with it?  

All these questions can be answered using robustly designed studies1, 2.  

Estimating the diagnostic accuracy of a medical test is just one part of the puzzle, but 

it is an important step in evaluating any new test3. Ultimately, clinicians, health 

practitioners and patients need assurance that a test has the ability to discriminate 

between patients who have the target condition that the test is designed to detect, and 

those who do not. Basic measures used to assess the accuracy of a medical test are 

“sensitivity” and “specificity”. Studies that focus on estimating these measures are 

“diagnostic accuracy studies”. These terms will be defined and discussed later in this 

chapter. 

1.1.1. Medical test 

Medical tests are employed to support clinical decisions about the management and 

care of individuals. According to the Cochrane Diagnostic Test Accuracy (DTA) 

portfolio4, a medical test is defined as “any observation, measurement made on an 

individual as well as more classic technology based test that involve medical and 

laboratory procedures on a person or on a sample or tissue or fluid from a person; and 

the key thing is that the observation is made to infer something about the health state 

of the individual”. Medical tests perform various roles such as screening, diagnosis, 

staging of disease, surveillance, and prognosis amongst others 4. The descriptions of 

some of these roles are given in Table 1.  
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Table 1: Description of different roles performed by different medical tests. 

Roles Description 

Screening Medical tests employed for screening purposes (screening tests) 

are used to identify people with an increased risk of the target 

condition or disease or for early detection of disease. They are 

normally used on apparently healthy people who may have not 

shown signs or symptoms of the disease and the aim is to detect 

the target condition early 5, 6. An example of a screening test is 

the cervical cancer screening test offered to women age 25 to 64 

for the detection of cervical cancer 7. 

Diagnosis Medical tests employed for diagnostic purposes (diagnostic tests) 

are used to confirm the presence or absence of the target 

condition in people who may have shown signs or symptoms of 

the target condition or may have had positive screening test 

results 4, 8. Examples include the fine needle aspiration biopsy 

(FNAB) used in the diagnosis of thyroid nodule disease 9. 

Prognosis Prognostic medical tests are used to “predict patients’ likelihood 

of experiencing a medical event” in the future, such as developing 

a disease, recovery from a disease or death10. They can also be 

used to inform patients’ treatment options. An example is the 

identification of prognostic markers or factors used when deciding 

on the treatment of breast cancer such as the tumour size, human 

epidermal growth factor receptor 2 (HER2) status, estrogen-

receptor (ER) status11 amongst others.  
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Table 1 cont.: Description of different roles performed by different medical test.  

Roles Description 

Staging Medical tests serving as staging tests are used to describe the 

progression of a disease. An example is the Tumour Node 

Metastasis (TNM) staging system which is a standard test 

used in describing the severity or growth of cancer 12. Another 

example of tests used for staging purpose are the simplified 

disease activity index (SDAI), which is used to stage patients 

with rheumatoid arthritis as  having mild, moderate or high 

disease activity13.  

Surveillance Surveillance tests are employed to detect early signs of a 

target condition or illness among people who are exposed to 

agents causing the target condition14 even before they show 

signs or symptoms. These are tests offered to people who are 

potentially exposed to hazardous substance or noise such as 

radiation or biological agents amongst others. An example is 

the Hand and arm or full body vibration test15 (HAVS) 

employed to test for hand-arm vibration syndrome among 

workers exposed to machine-induced vibration while working.   

Monitoring Monitoring tests are used to monitor the progression of a 

disease or the response of patients to a treatment16. An 

example is the follow-up tests offered to cancer survivors such 

as imaging tests (mammogram, colonoscopy, bone scans and 

x-ray amongst others) and blood tests which measure the level 

of blood tumour markers in the blood17-19. In addition, the 

circulating tumour cell (CTC) is employed to monitor tumour 

progression in oesophageal squamous cell carcinoma 

(ESCC)20.  

 

A medical test can serve more than one purpose described in Table 1. For example 

the disease activity scores (DAS28) can be used to monitor disease activity in patients 

with rheumatoid arthritis and stratify them into remission, low, moderate or high disease 

activity21. It can also be used to guide rheumatologists on treatment options or doses 
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of treatment for the patients. Therefore, this test can be used for monitoring and as a 

guide for treatment decisions. Another example is the mammogram which can be 

offered as a screening test for early detection of breast cancer in women, and also as 

a monitoring test for women who have undergone breast cancer treatment. 

Furthermore, some diagnostic or screening tests can be used to provide information 

about the spread of a target condition in a population and to monitor how effective an 

intervention or prevention has been over a time-period in that population. This process 

is also known as surveillance. A topical example would be the COVID-19 tests which 

are currently being used to monitor infection rates and how effectively some of the 

measures or policies put in place have prevented or affected the spread of COVID-

1922. 

1.1.2. Diagnostic Accuracy 

The diagnostic accuracy of a test is the ability of the test to appropriately discriminate 

between people with the target condition and people without the target condition23, 24. 

The target condition is often a disease. Studies that seek to evaluate the ability of a 

new (or index) test to differentiate participants with or without the target conditions are 

often referred to as diagnostic accuracy studies25. Throughout this thesis, I will use the 

terminology “participants” to describe people included in a diagnostic accuracy study 

rather than “patients” because those included in the study may be healthy people or 

those who may or may not have shown signs and symptoms of disease.  The purpose 

of any diagnostic accuracy study is to estimate the ability of the index test to distinguish 

between participants with or without the target condition in a specific population of 

individuals. The test that is under evaluation in a diagnostic accuracy study is termed 

an ‘index test’. Aside from the various purposes of medical tests (Table 1); there are 

different roles the index test could take in the current diagnostic pathway. For instance, 

the index test may replace an existing medical test, or be a triage test (where the 

results inform decisions to conduct another test or not), or an add-on test3 to the current 

tests undertaken. The potential role it will take should be taken into consideration when 

designing the diagnostic accuracy study to identify the most appropriate reference 

standards and estimate its accuracy within the diagnostic pathway.  

To evaluate the diagnostic accuracy of an index test, the test is compared to existing 

test, which is currently used to diagnose the same target condition (disease) as the 
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index test. This latter test is referred to as a reference standard (RS) (see section 1.1.3 

below). 

This study is often referred to as a diagnostic accuracy study3. Within the diagnostic 

accuracy study, it is also expected that the participants will undergo both the index test 

and the reference standard. However, if the disease status of the participants is already 

known before conducting the index test, the accuracy of the index test can be 

estimated without applying the reference standard26. The classification of the index test 

response with respect to the disease status is depicted in Figure 1 and the sensitivity 

and specificity of the evaluated test are derived using the formulas described in section 

1.1.5.  

 

 

 

 

 

 

 

 

 

 

 

1.1.3. Reference Standard 

The reference standard is an existing test that is used as a benchmark to evaluate the 

index test27, 28. The preferred reference standard is often the best test used to diagnose 

the target condition of interest. Sometimes, the assumption is made that the reference 

standard perfectly discriminates between participants with or without the target 

condition. In this case, the reference standard is referred to as a gold standard.  

Figure 1: Diagnostic accuracy study with disease status of all participants known 

before the application of the index test 

 

Disease status is known for all 

participants

Index test

Diseased 

+

-
Index test

+ -

TP FP
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TP = true positive
TN = true negative
FP = false positive
FN = false negative
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1.1.4. Gold Standard 

A gold standard as implied and defined by some researchers, is the “best available 

reference test”29, 30 used as a benchmark to evaluate the index test. However, for other 

researchers, a gold standard is defined as a perfect reference test with 100% sensitivity 

and 100% specificity31, 32. With the former definition (or application), any imperfection 

in the presumed “gold standard” is not accounted or corrected for. In this thesis, the 

latter definition of a gold standard is employed.  

The classical procedure of evaluating the index test using a gold standard is described 

in Figure 2 and the responses from both tests can be classified into a 2 – by – 2 

contingency table given that the disease status of the participants can be classified 

into two states (diseased and non-diseased).   

Figure 2: Classical design of diagnostic accuracy study. All participants undertake 

both the index test and gold standard.  

 

 

 

 

 

 

 

 

 

 

 

 

This dichotomy is often artificial if test results are reported as a continuous outcome 

and hence these outcomes can be classified into a 2 x 2 table using cut-offs. Receiver 

Operating Characteristic curve (ROC) analysis is used to determine a threshold (test 

positive cut-off) above which the condition is judged to be present33. The test positive 

All participants in the study 

Index test 

Gold Standard   

Gold Standard 

+ 
 

-  
Index test 

All participants undertake index test and gold 
standard at the same time or within a short 
interval to avoid changes in diseases status.  

+       - 
 

TP      FP 
 

FN      TN 
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cut-off is used to categorise the patients as having the target condition or not; and the 

2-by-2 contingency table (Figure 3) can then be used to display the results. 

The next section on diagnostic accuracy statistics assumes that the reference standard 

is a gold standard. However, if the reference standard is not a gold standard, estimating 

the sensitivity and specificity of the index test without considering the imperfection of 

the reference standard will yield biased estimates. This issue is discussed in more 

detail towards the end of this chapter (section 1.1). 

1.1.5. Diagnostic Accuracy Statistics 

Diagnostic accuracy studies use accuracy statistics such as sensitivity, specificity, 

predictive values (positive and negative), area under the ROC curve, and likelihood 

ratios to convey the ability of an index test to discriminate between those with the 

disease (target condition) and those without the disease24, 34. The 2x2 table (Figure 3) 

displays concordance and discordance between the two tests (the index test and 

reference test).  Disagreements between the two tests under comparison can be 

classified as false results (either as a false positive or false negative) for the index test 

being evaluated.  With the assumption that the reference standard is a gold standard, 

the value of true positives (TPs), false positives (FPs), false negatives (FNs) and true 

negatives (TNs) are used to estimate the sensitivity and specificity of the index test.   

 

Figure 3: 2 by 2 contingency table of classification of binary test responses 

 

 

 

 

 

The diagnostic accuracy statistics are defined below alongside how they are estimated 

or obtained using the quantities on Figure 3.  

 

 

Reference Test 

Positive Negative 
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Index  
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 Sensitivity  

The sensitivity (Sn) of a test is the probability of that test to correctly classify 

participants with the target condition (or disease) as having the disease.  

𝑆𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 Specificity 

The specificity (Sp) of a test is the probability of that test to correctly identify participants 

without the target condition as not having the disease.  

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 Positive Predictive Value 

The positive predictive value (PPV) is the probability that participants who have a 

positive index test results have the disease. 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 Negative Predictive Value 

The negative predictive value is the probability that participants who have a negative 

index test results do not have the disease.  

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 Likelihood Ratio 

A positive likelihood ratio tells us the relative likelihood that a positive test result would 

be expected in a person with the disease compared to a person without the disease. 

The positive likelihood ratio is the ratio of sensitivity to the false positive rate (1 – Sp).  

𝐿𝑅(+) =
𝑆𝑛

(1 − 𝑆𝑝)
 

A negative likelihood ratio tells us the relative likelihood that a person with the disease 

would have a negative test result compared to a person without the disease. The 

negative likelihood ratio is the ratio of the false negative rate (1 – Sn) to the specificity. 

𝐿𝑅(−) =
(1 − 𝑆𝑛)

𝑆𝑝
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 Diagnostic Odds Ratio 

Diagnostic odds ratio (DOR) is the ratio of the odds of disease in individuals who test 

positive relative to the odds of disease in individuals who test negative. It measures 

the ability of a test to discriminate between the diseased and non-diseased participants 

correctly. It can be calculated using the positive likelihood ratio and the negative 

likelihood ratio, or the NPV and PPV, or sensitivity and specificity of a test.  

𝐷𝑂𝑅 = 
𝐿𝑅(+)

𝐿𝑅(−)
=

𝑆𝑛 × 𝑆𝑝

(1 − 𝑆𝑛) × (1 − 𝑆𝑝)
 =  

𝑃𝑃𝑉 × 𝑁𝑃𝑉

(1 −  𝑃𝑃𝑉) × (1 − 𝑁𝑃𝑉)
=
𝑇𝑃 × 𝑇𝑁

𝐹𝑁 × 𝐹𝑃
  

 

 Receiver Operating Characteristic Curve  

The ROC is employed to display and measure the accuracy of a test with a continuous 

outcome at different cut-offs. The receiver operating characteristic (ROC) curve (
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Figure 4) is a plot of true positive rate (sensitivity) against the false positive rate (1 – 

specificity) for the different cut-offs. Each point on a ROC curve is the sensitivity and 

false positive rate at a positivity threshold or cut-off employed to classify individuals 

into diseased or non-diseased. The area under the ROC curve (AUC) is the grey-

coloured area under the ROC curve (see Figure 4(a)). The AUC measures the ability 

of the test to discriminate between participants with or without the target condition at 

different cut-offs. An AUC of 0.5 indicates a poor test as its ability to distinguish 

between those with and without the target condition is no better than chance. It is 

expected that an excellent test will have an AUC close to one.  In Figure 4(b) the black 

diagonal line (also known as the reference line) indicates the ROC of a useless test 

which randomly classifies individuals. The red ROC curve displays a test with good 

discriminating ability and the blue ROC curve displays a test with much better ability to 

discriminate between participants with or without the disease.  In the comparison of all 

the tests plotted on Figure 4(b) the test with the highest AUC (0.95) is preferred.  
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Figure 4: Examples of receiving operating characteristic curves 
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1.2. Statement of Problem 

When the true disease status of the participants is unknown the index test is evaluated 

in evaluated against with the preferred reference standard. Some researchers may 

assume the reference standard to be a gold standard despite its misclassification 

errors35-38. This approach may be favoured because it is simple or because the error 

is assumed to be insignificant/trivial. However, there are many studies which take into 

consideration the imperfection of the reference standard or the missingness of the gold 

standard to accurately estimate the sensitivity and specificity of the index test and avoid 

bias. Bias is considered to be the difference between the true / actual value of a 

parameter and the estimate of that parameter39. The techniques or methods employed 

in evaluating the accuracy of an index test depend on:  

 The accuracy of the reference standard used in the study  

 The availability of the reference standard to all participants of the study.  

The “availability of the reference standard” aims to answer the question, “Will the 

reference standard be applied to all the participants in the study (complete verification) 

or will (or did) a sub-sample of the participants undergo the reference standard (partial 

verification)?” These two components play a significant role in deciding which method 

will be employed to evaluate the index test. If all participants in the study underwent 

both the index test and the reference standard; and the reference standard is assumed 

to be a gold standard then it can be further assumed that it is appropriate to employ 

the classical design (Figure 2) and the sensitivity and specificity of the index test can 

be estimated using the methods described in section 1.1.5. 

Consider a scenario where all the participants underwent the index test but only a sub-

sample of the participants underwent the gold standard. This may occur for some 

reasons like the gold standard being invasive, unethical, expensive, time-consuming, 

or unavailable to all participants at the time of the study. By extension, the 

consequences of this is that the true disease status for some of the participants will be 

missing. When there is such missing information, evaluating the index test using only 

the complete cases introduces verification or workup bias40-42. Verification bias is a 

bias in the estimated diagnostic accuracy caused by ignoring information on the 

participants that were not verified using the chosen reference standard43, 44. To 

overcome this bias some researchers consider verifying the remaining participants with 
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an alternative reference standard. The alternative reference standard is often imperfect 

but may be less invasive or less costly compared to the gold standard. This method 

still introduces differential verification bias because the two tests can differ in quality 

(or accuracy measures) and in how they measure the target condition45. Differential 

verification bias is bias on the estimated diagnostic accuracy of the index test as a 

result of using different reference standards and combining the results as a single 

reference standard46, 47. Studies where the true disease status of a sub-sample of the 

participants is verified with the gold standard is depicted in Figure 5.  

Figure 5: Diagnostic accuracy study with missing gold standard 

(a) 

 

(b) 

 

 

 

 

Figure 5(a) describes a study where the participants, whose true disease status was 

unverified by the gold standard, are assumed missing (partial verification study 

design). Figure 5(b) is a study where the participants whose true disease status was 

unverified by the gold standard underwent an alternative reference standard 

(differential verification study design). 

An adapted version of the study design depicted in Figure 5(b) is the complete 

differential verification design48 (Figure 6), because all participants with a positive index 

test results undertake the gold standard, and all participants with negative index test 

results undertake the alternative reference standard. This design may be used when 

the gold standard is invasive and so it may be unacceptable for all participants to 

undergo the gold standard. Ultimately, the results of both reference standards are 

pulled together to estimate the accuracy measures of the index test. 
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Another potential scenario is where there is no accepted / consensus reference 

standard, because all tests available (validated or not) are unreliable. For example, in 

the diagnosis of bladder pain syndrome (BPS), there are some validated tests 

(questionnaires) developed based on expert opinion such as the O’Leary-Saint 

Interstitial Cystitis Symptom Index. However, there are no universally accepted 

reference / gold standard tests to diagnosis this target condition49-51.  

A further variant of the problem is where the best reference standard is not perfect 

because it still has some misclassification error. Some of the participants classified as 

having the target condition may not have the target condition and vice versa. Thus, 

using an imperfect reference standard imposes bias in the diagnostic accuracy 

Figure 6: Differential verification with complete verification 
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statistics of the index test, which is known as reference standard bias 52,53. Reference 

standard bias is a bias on the estimated diagnostic accuracy of the index test as a 

result of using an imperfect reference standard 28. 

Evaluating an index test in the aforementioned scenarios will potentially introduce bias. 

These biases can either overestimate or underestimate the sensitivity and specificity 

of the index test54, if the classical approach of diagnostic accuracy study is followed. 

The consequences of this is that an index test may be adopted by practitioners 

because of the “false accurate” data. Similarly, a test may be disregarded/abandoned 

because of “false inaccurate” data. In either circumstance, patients may receive sub-

optimal care and suffer poor outcomes.  

In recent years, rapid advances in technology having led to an influx of sophisticated 

medical diagnostic technologies which seek to optimize disease detection and so, 

evaluating a medical test in the absence of a gold standard is a very pertinent issue 

with implications for medical test developers, evaluators, patients, commissioners and 

clinicians alike. They may all be faced with the question “How can we ascertain that 

the new tests developed, accurately discriminate between those with or without the 

target condition? 

1.2.1. Review of types of methods 

Various research has been undertaken to develop statistical methods to evaluate the 

sensitivity and specificity of the index test in the absence of a gold standard. A review 

of methods in context was carried out by Rutjes et al41 in 2007. The identified methods 

were grouped into four broad groups which are:  

 Impute or adjust for missing data on reference standard 

 Correct imperfect reference standard 

 Construct reference standard and  

 Validate index test result.  

A summary of the identified methods by Rutjes et al41 is presented in Table 2. As part 

of my PhD research, a systematic review has been conducted as an update to the 

review by Rutjes et al41. The methodology and results of this review are reported in 

chapter two.  
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Table 2: Summary of the methods employed to evaluate medical tests in the absence of a gold standard. 

Classification group Characteristics 

Impute or adjust for missing data 

on reference standard 

This group presumes that there is a perfect reference standard. However, not all patients can be 

verified using the reference standard test. Evaluating the index test is done either by: 

A. Imputing outcomes for the missing data (reference standard) using a single or multiple imputation 

technique for patients who did not receive the reference standard.  

OR 

B. Adjust / correct the estimate of the sensitivity and specificity using information from patients who 

underwent both tests (index test and reference standard test) through statistical modelling. 

Correct imperfect reference 

standard 

This group accepts that all the reference standard tests do not perfectly discriminate between patients 

with the target condition and patients without the target condition. However, if the amount and the type 

of error associated with the reference standard test(s) is known, then estimates of the sensitivity and 

specificity of the index test can be corrected using some algebraic function.  

Validate index test In this group, the index test is evaluated based on what it is supposed to measure. It does not evaluate 

the index test against a reference standard rather it studies the index test results in relation to clinical 

characteristics associated to the target condition of interest. 
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Table 2 cont.: Summary of the methods employed to evaluate medical tests in the absence of a gold standard. 

Classification group Characteristics  

Construct reference Standard This group combines information from different tests to form a reference standard. There are two 

sub-groups within this group. The first sub-group includes methods where all patients receive the 

index test but different sets of reference tests (A & B) and the second sub-group is where all 

patients receive the same set of tests (index test and reference standard tests see C, D and E). 

A. Differential Verification where all patients receive the index test but a subgroup of patients 

receive a different reference standard test. 

B. Discrepancy analysis: All patients receive the index test and a reference standard test. 

However, patients with discordant results are subjected to another reference test known as 

the resolver test. 

C. Composite reference standard: Two or more imperfect reference standard tests are combined 

by a pre-specified rule to construct a reference standard that is used to evaluate the index 

test. 

D. Panel / Consensus Diagnosis: With this approach, a group of experts determine the presence 

or absence of the target condition in each patient using multiple sources information.  

E. Latent class analysis: This method uses a statistical model to combine information from all the 

tests to form a reference standard. The true diseases status is assumed to be unknown.  
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1.3. Scope of the research study 

This research study focuses on methodologies or techniques used or proposed in 

evaluating the diagnostic accuracy of medical tests in scenarios where the gold 

standard is not applied to a sub-sample of the participants or the reference standard 

employed in the study is imperfect or there is no reference standard at all.  

1.4. Aim of the PhD research study 

Given the problems potentially encountered in evaluating the diagnostic accuracy of a 

medical test in the absence of a gold standard and building upon what other 

researchers have done: this study aims to investigate all techniques proposed to 

evaluate the sensitivity and specificity of medical tests in the absence of a gold 

standard, compare some methods through simulation studies, and apply some 

methods identified to a real-life clinical dataset. 

1.4.1. Objectives 

 To identify all proposed methods developed and employed to evaluate the 

medical tests in the absence of a gold standard. 

 To explore and compare methods in order to select promising techniques 

 To apply the appropriate proposed methods to analysis of the clinical dataset 

available for this study. 

1.5. Research methodology 

To achieve the stated objectives set out above: firstly, a systematic review was carried 

out to identify all existing methods which included clinical applications of these 

methods. Their underpinning assumptions, as well as the strengths and weakness of 

the methods were explored. The systematic review is an update to the review carried 

out by Rutjes et al41. The decision to update the review was based on the timeliness 

and the relevance of the review question55, 56, and the emergence of databases not 

searched in the previous review, such as the Web of Science and Wiley Library. The 

emergence of these databases were expected to increase the number of eligible 

articles that will be retrieved for the review. The systematic review is reported in chapter 

two alongside the methodology underpinning the review and the results. Next, some 

of the methods identified from the systematic review were compared using simulation 

studies and clinical datasets. These comparisons were carried out because they have 

not been compared in previous studies. The comparison of the methods is reported in 
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chapter three. Finally, the latent class model was further explored and employed to 

analyse the clinical dataset under investigation in this research study. Latent class 

analysis was chosen as it was identified as the most appropriate and promising method 

for our dataset from the results of the systematic review. The investigation of the latent 

class model is reported in chapter four and the analysis of the real-life clinical dataset 

is reported in chapter five.  

The thesis concludes in chapter six with a discussion on the key contributions of the 

research, the potential significance of this work and future avenues for research.  

1.6. Significance of the research study 

Conventionally, an index test is evaluated by comparing it with the best available 

reference standard when the true disease status of the participants is unknown. Often, 

the reference standards available are imperfect. Thus, evaluating the diagnostic 

accuracy of an index test without taking into consideration the imperfection of the 

reference standard leads to a biased estimation of the accuracy measures of the index 

test. This bias may lead to over or underestimates of the true sensitivity and specificity 

of the test under evaluation. The effect of ignoring this bias may mean that if the test 

is introduced into routine practice, it may have detrimental consequences to patients, 

clinicians and public health. 

In the research reported in this thesis, the updated systematic review provides 

recommendations for the use of the most promising methodologies to improve the 

estimation of diagnostic accuracy when there is no gold standard. The research also 

compared statistical methods identified from the updated review. The focus of this 

comparison was on the methods used to correct the accuracy measures of the index 

test given that the accuracy measures of the imperfect reference standard are known. 

This element of the work informs test evaluators which methods to consider or 

discontinue when evaluating the accuracy of an index test given the accuracy 

measures of the imperfect reference standard are known. The research also 

investigated latent class models using both simulation methods and the analysis of the 

real-life dataset. This work provides information on which latent class model to employ 

when evaluating the accuracy of three conditionally dependent tests with higher order 

correlations. 
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Chapter Two: Systematic Review 

2.1. Introduction  

Numerous methods have been proposed and employed in evaluating the diagnostic 

accuracy of medical tests in the absence of a gold standard. Some of the methods 

were identified in a review undertaken by Rutjes et al41. In this work and as described 

in section 1.2.1, the methods were classified into four groups which are: 

 Impute or adjust for missing data on reference standard 

 Correct imperfect reference standard 

 Construct reference standard and  

 Validate index test result.  

Given the time which has elapsed since this review was undertaken and the increased 

research recently into diagnostic accuracy studies and their methodology, it is plausible 

that there have been methods proposed since the original review. Therefore, in order 

to meet the aims of this research on methods applied to evaluate medical tests in the 

absence of a gold standard, it is important to identify and explore all methods proposed 

or employed in diagnostic accuracy studies. These motivations are what inspired my 

quest to undertake a systematic review.  

The term “no gold standard” is defined as scenarios where the reference standard is 

imperfect (known to have misclassification error), or there are no generally accepted 

reference standard(s), or there is a  missing reference standard (partial and differential 

verification) for some participants of the study (Rutjes at al41).  

This chapter has been published in PLOS ONE journal as a systematic review entitled 

“Diagnostic test evaluation methodology: A systematic review of methods employed to 

evaluate diagnostic tests in the absence of gold standard – An update”57.  

This chapter comprises of the following sections: the methods employed to carry out 

the review (section 2.2); the results (section 2.3); guidance developed from the results 

of the review to aid researchers on methods to choose from when evaluating the test 

performance of medical tests in the absence of a gold standard (section 2.4); the 

discussion (section 2.5) and conclusions of the review (section 2.6).  
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2.2. Methodology 

A systematic review was used to identify all methods that have been proposed or 

employed in evaluating medical tests when there is no gold standard. This 

methodology was chosen because it is the best approach to avoid subjective bias that 

could arise in selecting research studies or authors of one’s own choice. In addition, 

this approach allows standardised searching across multiple databases for any article 

or research study that is related to the keywords or search terms used in the search 

procedure, cutting across different journals, countries, languages etc. Thus, expanding 

one’s knowledge about the topic of interest in order to make a sound judgement or 

conclusion about the topic of interest.    

On deciding to undertake this systematic review, I sought the consent of one of the 

key- authors of the previous review41 (Professor Patrick Bossuyt) to update their 

review. After receiving the consent, a protocol was developed, peer-reviewed and 

registered on PROSPERO (the registration number is CRD42018089349). 

2.2.1. Eligibility Criteria 

The review includes methodological articles (that is papers that proposed or developed 

a method) and application articles (that is papers where any of the proposed methods 

were applied). 

Inclusion criteria 

 Articles published in English language in a peer-reviewed journal.  

 Articles that focus on evaluating the diagnostic accuracy of new (index) test when 

there is a missing gold standard, no gold standard or an imperfect reference 

standard.  

Exclusion criteria 

 Articles that assumed that the reference standard was a gold standard and the gold 

standard was applied to all participants in the study. Books were excluded as they 

could contain information already published in a peer-review journal.   

 Books, dissertations, theses, conference abstracts, and articles not published in a 

peer reviewed journal.  

 Systematic reviews and meta-analyses of the diagnostic accuracy of medical 

test(s) for a target condition (disease) in the absence of gold standard for some or 

all of the participants. However, individual articles included in these reviews that 

met the inclusion criteria were included. 
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2.2.2. Search strategies and selection of articles  

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

statement58 was used as a guideline when conducting this systematic review. PRISMA 

is “an evidence-based minimum set of items for reporting in systematic reviews and 

meta-analyses”. The PRISMA checklist for this review is provided in the appendix 

(Appendix A.1). The following bibliographic databases were searched: EMBASE, 

MEDLINE, SCOPUS, WILEY online library (which includes Cochrane library, EBM), 

PSYCINFO, Web of Science, and CINAHL.  

Search term 

The keywords employed in the databases to search out articles included in this review 

are:  

("No gold standard*" OR "without gold standard*" OR "missing gold standard*" OR 

"imperfect reference standard*" OR "no reference standard*" OR "missing reference 

standard*" OR "partial verification" OR "differential verification") AND ("medical test*" 

OR "new test*" OR "index test*" OR "diagnostic test*" OR "screening test*" OR 

“routine*). An example of the comprehensive format is reported in Appendix A.2. 

Search date 

The search dates were from January 2005 – February 2019. This is because, this 

review is an update of a review by Rutjes et al41 who searched up to 2005. However, 

original methodological articles that proposed and described a method to evaluate 

medical tests when there is a missing or no gold standard published before 2005 were 

also included in the review. These original articles were identified by "snowballing"59 

from the references of articles identified by my review.  

Selection procedure 

All articles obtained from the electronic databases were imported to Endnote X8.0.260. 

Duplicated articles were removed including books, dissertations, conference abstracts, 

and articles not published in a peer reviewed journal.  

The selection of articles to be included in this review was made done by three people 

(Chinyereugo Umemneku-Chikere, A. Joy Allen, and Kevin Wilson). The sifting 

process was in two stages: by title and abstract and then by full text against the 

inclusion and exclusion criteria. Any discrepancies between reviewers were resolved 

in a group meeting.  
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2.2.3. Data synthesis 

A data collection form was developed for this review which was piloted on seven 

studies and remodified to fit the purpose of this review. A copy of the data collection 

form is in Appendix A.3. Information extracted from the included articles was 

synthesized narratively. An example of a completed data extraction form is in Appendix 

A.4. 

2.3. Results 

A total of 6127 articles were identified; 5472 articles were left after removing the 

duplicated articles; 5071 articles were excluded after sifting by title and abstract; 401 

articles went forward to full text assessment; and a total of 209 articles were included 

in the review. The search and selection procedure are depicted using the PRISMA 58 

flow-diagram (Figure 7).  The articles included in this review used a wide variety of 

different study designs including cross-sectional studies, retrospective studies, cohort 

studies, prospective studies and simulation studies. 

One hundred and one papers, which developed a statistical method or model that could 

be employed to estimate the accuracy measures of the index test in the absence of a 

gold standard, were identified. These methods were categorised into four groups 

based on the availability and / or application of a gold standard to the participants in 

the study. These group are: 

 Group 1: Methods employed when there is a missing gold standard.  

 Group 2: Correction methods which adjust for using an imperfect reference 

standard whose diagnostic accuracy is known. 

 Group 3: Methods employed when using multiple imperfect reference 

standards.  

 Group 4: “other methods”. This group includes methods such as study of 

agreement, test positivity rate, and considering alternative study design like 

validation. 
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Methods in groups 2, 3 and 4 are employed when there is no gold standard to evaluate 

the diagnostic accuracy of the index test, while methods in group 1 are employed when 

there is a gold standard to evaluate the diagnostic accuracy of the index test. However, 

the gold standard is applied to only a sub-sample of the participants. A summary of all 

methods identified in the review, their key references and the clinical applications of 

these methods are reported in Table 3. 

 Articles identified through 

electronic databases (n = 6127) 

Articles after duplicates removed  

(n = 5472) 

Full text articles excluded  
(n = 192) 

  
Reasons (number) 

• Reference standard is assumed 
to be a gold or pseudo-gold 
standard. Hence, the 
conventional method is used 
(157). 

• Discussed differences in 
sensitivity and specificity of the 
index tests (12). 

• Systematic reviews and meta-
analysis of a diagnostic test for 
a target condition (15). 

• Published protocols of 
diagnostic accuracy study (7). 

• Full text (review article) in 
Arabic (1). 

Remove duplicates 

(n = 655) 

Articles screened by title and 

abstract (n = 5472) 

Articles excluded 

(n = 5071) 

Full text articles assessed for 

eligibility (n = 401) 

Articles included in the review   
(n = 209) 
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Figure 7: The PRISMA flow-diagram of articles selected and included in the systematic 

review.   
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Table 3: Summary of classification of methods employed when there is missing or no gold standard. 

Main Classification Main Characteristics Key references of paper 

that developed method 

(number) 

Clinical Application of 

the methods  

Group 1: Method employed 

when there is missing gold 

standard:  

 Imputation and bias-

correction for partial 

verification methods 

 Differential verification 

The true disease status is verified with the 

gold standard only in a subsample of the 

study participants. The methods are grouped 

into imputation and bias-correction for 

partial verification methods (Figure 8 and 

Figure 9) and the differential verification 

approach. 

Imputation and bias 

correction methods43, 61-108 

(49) 

 

Differential verification39, 47, 

109 (3) 

Imputation & Bias-

correction methods110-114  

 

Differential 

verification115; 116  

Group 2: Correction methods  The reference standard is imperfect. 

However, there is available information 

about the sensitivity and specificity of the 

reference standard which is used to correct 

or adjust the estimated sensitivity and 

specificity of the index test.  

Correction methods117-122 

(6) 

 

Correction methods123-125  
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Table 3 cont.: Summary of classification of methods employed when there is missing or no gold standard 

Main Classification Main Characteristics Key references of paper 

that developed method 

(number) 

Clinical Application of 

the methods 

Group 3: Methods employed 

when using multiple 

imperfect reference 

standards or tests. 

 Discrepancy analysis 

 Latent class analysis (LCA) 

 Composite reference 

standard (CRS) 

 Expert or panel or 

consensus diagnosis  

A gold standard or an imperfect reference 

standard with known diagnostic accuracy 

may not be available. Thus, multiple 

imperfect tests may be employed to evaluate 

the index test. Methods in this group include 

discrepancy analysis, latent class analysis 

(frequentist and Bayesian), composite 

reference standard (CRS), and panel or 

consensus diagnosis.  

Discrepancy analysis126, 127 

(2)  

 

Latent class analysis: 

Frequentist LCA: 128-139 (12) 

Bayesian LCA: 140-147 (8) 

ROC (NGS):148-158 (11) 

CRS159-162 (4) 

Panel or consensus 

diagnosis163 (1) 

Discrepancy analysis164-

167  

 

Latent class analysis: 

Frequentist LCA168-180  

Bayesian LCA181-202; 188, 

203-221  

ROC (NGS)222, 223  

CRS224-232; 233  

Consensus diagnosis234-

238  

 

 

 

 

 

LCA is latent class analysis; CRS is composite reference standard. ROC is receiver operating characteristics; NGS is no gold standard  
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Table 3 cont.: Summary of classification of methods employed when there is missing or no gold standard 

Main Classification Main Characteristics Key references of paper 
that developed method 
(number) 

Clinical Application of 
the methods 

Group 4: Other designs 

 Considering an alternative 

study design like a 

validation study. 

 Study of agreement  

 Test positivity rate 

 

Analytic validation of a medical test is the 

process of verifying the test typically under 

controlled laboratory conditions which may 

not reflect the ultimate context of use. This 

also covers the technical performance of the 

tests. Case-control studies are common 

designs for these studies.   

Studies of agreement aim to investigate the 

concordance between two or more tests.  

Test positivity rate is the proportion of 

participants who have positive results on a 

test. This approach was used by Van Dyck et 

al 239 to reduce the number of people 

subjected to further evaluation.  

Validation240, 241 (2) 

 

Study of agreement242, 243 

(2) 

 

Test positivity rate239 (1) 

Validation:244, 245  

 

Study of agreement193, 246-

250  

 

Test positivity rate239, 243  
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2.3.1. Methods employed when gold standard is missing 

In some diagnostic accuracy studies, not all the participants get their disease status 

verified by a gold standard for reasons such as unavailability of the gold standard or 

medical reasons, amongst others. Such studies have partial verification as a 

subsample of the participants undergo the gold standard test and some will have their 

true disease status missing. Fifty-one papers were identified from the review that were 

developed to evaluate the diagnostic accuracy of index test(s) when the true disease 

status of some participants is not verified with the gold standard. These methods are 

divided into two subgroups: 

 Imputation and bias-correction methods  

 Differential verification methods 

Imputation and bias-correction for partial verification methods  

This includes methods to correct for verification bias while the disease-status of the 

unverified participants is left unverified. Forty-eight papers were developed in this 

group. These methods are further classified based on the result of the index test 

(binary, ordinal or continuous), the number of index tests evaluated (single or multiple), 

the assumptions made about verification (ignorable or missing at random – MAR) or 

non-ignorable or missing not at random – MNAR), and the classification of the 

diagnostic outcomes (disease-status). The identified methods in this subgroup are 

displayed in Figure 8 and Figure 9. There are two basic assumptions that are made 

regarding the missing disease status of the unverified participants, which are that they 

are missing at random or missing not at random251-253.  

 Missing at random (MAR): Missing at random implies that the missing disease 

status of the unverified participants can be fully accounted for or explained by the 

observed data (or variables in the dataset) such as the test results of another test 

etc.  

 Missing not at random (MNAR): Missing not at random implies that the missing 

disease status of the unverified participants cannot be accounted for or explained 

by the observed data or variables that are related to the disease status. 

In both assumptions, the missing disease status of the unverified participants are not 

missing randomly across the population; otherwise, the missingness is known as 

missing completely at random (MCAR).  
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Differential verification approach 

Participants whose disease status was not verified with the gold standard could 

undergo another reference standard (that is imperfect or less invasive than the gold 

standard39) to ascertain their disease status. This is known as differential 

verification48. Differential verification has been explored by Alonzo et al, De Groot et 

al and Naaktgeboren et al40, 48, 254. They discussed the bias associated with differential 

verification, and how results using this approach could be presented. There are three 

identified statistical methods in this group. They are: a Bayesian latent class approach 

proposed by De Groot et al47, a Bayesian method proposed by Lu et al53 and a ROC 

approach proposed by Glueck et al255. These three methods aim to simultaneously 

adjust for differential verification bias and reference standard bias that arise from using 

an alternative reference standard (i.e. imperfect reference standard) for participants 

whose true disease status was not verified with the gold standard. Differential 

verification bias arises from using an alternative test to verify the missing disease 

status for those participants whose true disease status was not verified with the gold 

standard. Reference standard bias arises from using an imperfect reference standard.
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*These LCM methods are employed when only participants with negative results in the index tests do not receive the gold standard.  
§This method is applied to more than two-phase (multiphase) design. 

Imputation and bias-correction for partial verification methods with binary 
diagnostic outcomes 

Binary test(s) 

Begg & Greenes
66

  

Multiple Imputation
67

  

Propensity Score
68

 

Likelihood based
69

  

EM-based regression
70

  

Global sensitivity analysis
71

  

Bayesian approach
72,73,74

 

Maximum likelihood based
75

 

Lloyd & Frommer
76

 

Imputation & reweighting
77

 
Semi-latent class 

Bayesian approach
78

 

WGEE
79

 

Baker et al
83

 

Double partial method
84,85

 

Aragon et al
86

 

Single test Multiple tests 

MAR 

MNAR 

MAR 

MNAR 

Ordinal test(s) 

MAR 

Parametric AUROC
87

 

Non-parametric likelihood based
88

 

Parametric maximum likelihood based
89

 

MNAR 

Parametric maximum likelihood based
90

 

Single test 

Continuous test(s) 

Covariate Specific ROC 

Hunink et al
91

 

Imputation and Reweighting
62

 

U-statistic & reweighting
92

 

K nearest neighbour
93, 94

 

PG-BRL
95

 

Doubly robust
96,97

 

Likelihood based imputation & reweighting
99

 

Propensity – score adjustment method
100

 

Doubly robust
98

 

Fully parametric
101

 

Imputation and reweighting
102

 

Single test 

MAR 

MNAR 

Multiple tests 

Likelihood based imputation approach
104 §

  

Walter
80

 

Bohning & Patilea
81

 

Chu et al
82

 

LCM methods (MAR)* 

MNAR MAR 

Semiparametric estimators 
103

 

MAR 

Figure 8: Imputation and bias-correction for partial verification methods with binary diagnostic outcome. 
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Imputation and bias-correction for partial verification methods with three-class diagnostic 

outcomes where ROC surface and VUS are estimated. 

Ordinal single test Continuous single test  

Non-parametric likelihood based
105

 

Imputation and reweighting
64

 

K nearest neighbor (KNN)
 106, 107

 

IPW-based approach
65

 

IPW, DR and Pseudo DR
108

 

Bayesian Semi-parametric approach
109

 

Parametric regression-based estimators 
110

 

MAR 
MAR MNAR 

Abbreviations used within the imputation and bias-correction figures (Figure 8 and 9). 
  
LCM: latent class model     WGEE: weighted generalised estimating equation 
MAR: missing at random    PG-BRL: partial gold Bayesian rank likelihood  
MNAR: missing not at random     DR: doubly robust 
AUROC: Area under the ROC curve   VUS: volume under the surface 
ROC: Receiver operating characteristic     EM: Expectation maximization 
IPW: inverse probability weighting     KNN: K nearest neighbour 

Figure 9: Imputation and bias-correction for partial verification methods in three class diagnostic outcomes where ROC and VUS are 

estimated 



23 | P a g e  
  
  

2.3.2. Correction methods  

This group includes algebraic methods developed to correct the estimated sensitivity 

and specificity of the index test when the sensitivity and specificity of the imperfect 

reference standard are known. There were seven statistical methods identified in this 

group, described in five different articles117-121. The method by Emerson et al121 does 

not estimate a single value for sensitivity or specificity, unlike the other correction 

methods117-120 but produces an upper bound value and a lower bound value for the 

sensitivity and specificity of the index test. These bounded values are used to explain 

the uncertainty around the estimated sensitivity and specificity of the index test. 

2.3.3. Methods with multiple imperfect reference standards 

A gold standard result or accurate information about the diagnostic accuracy of the 

imperfect reference standard are often not available to evaluate the index test. In these 

situations, multiple imperfect reference standards can be employed to evaluate the 

index test. Methods in this group include:  

Discrepancy analysis 

This compares the index test with an imperfect reference standard. Participants with 

discordant results undergo another imperfect test, called the resolver test, to ascertain 

their disease status. Discrepancy analysis is typically not recommended because it 

produces biased estimates126, 256. Modifications of this approach have been 

proposed127, 164, 239. In these, some of the participants with concordant responses (true 

positives and true negatives) are sampled to undertake the resolver test alongside 

participants with discordant responses (false negative – FN and false positive – FP). 

However, further research is needed to explore if these modified approaches are 

adequate to remove or reduce the potential bias. 

Latent class analysis  

The test performance of all the tests employed in the study are evaluated 

simultaneously using probabilistic models with the basic assumption that the true 

disease status of the participants is latent or unobserved. There are frequentist LCAs 

and Bayesian LCAs. The frequentist LCAs use only the data from the participants in 

the study to estimate the sensitivity and specificity of the tests; while the Bayesian 

LCAs employ external information (e.g. expert opinion or estimates from a previous 

research study) on the sensitivity and specificity of the tests evaluated in addition to 

the empirical data obtained from participants within the study. The LCAs assume that 
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the tests (index test and reference standards) are either conditionally independent 

given the true disease status or the tests are conditionally dependent. To model the 

conditional dependence among the tests, various latent class models (LCMs) with 

different dependence structures have been developed such as the Log-linear LCM129, 

Probit LCM130, extended log-linear and Probit LCMs135, Gaussian Random Effect 

LCM132 and two-crossed random effect LCM134. However, some studies32,257 have 

shown that different latent class models with different conditional dependence 

structures produce different estimates of sensitivities and specificities even though the 

posterior distributions of the estimated parameters in each model converge, showing 

that each model has a good fit of the data. This is plausible because of the non-

identifiability of the model and the impact of the priors on the posterior distributions.    

Construct composite reference standard 

This method combines results from multiple imperfect tests (excluding the index test) 

with a predetermined rule to construct a reference standard that is used to evaluate 

the index test. By excluding the index test as part of the composite reference standard, 

incorporation bias can be avoided159. A novel method identified under the composite 

reference standard is the “dual composite reference standard (dCRS)” proposed by 

Tang et al162. The dCRS aims to find a composite reference standard (CRS) with both 

high sensitivity and high specificity to reduce the errors in the estimated sensitivity and 

specificity of the index test. Thus, the sensitivity and specificity of the index test is 

evaluated with the same composite reference standard but with different combination 

rules. The sensitivity of the index test is evaluated using the “all positive combination 

rule” of the combined reference standards and the specificity of the index test is 

evaluated using the “any positive combination rule” of the combined reference 

standards.  

Panel or consensus diagnosis 

This method uses the decision from a panel of experts to ascertain the disease status 

of each participant, which is then used to evaluate the index test.  

2.3.4. Other designs 

This group includes methods that fit the inclusion criteria but could not be placed into 

the other three groups. They include study of agreement, test positivity rate and the 

use of an alternative study design such as analytic validation. Study of agreement and 

test positivity rate are best used as exploratory tools alongside other methods180, 225 
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because they are not robust enough to assess the diagnostic ability of the medical test. 

Validation of a medical test cuts across different disciplines in medicine such as 

psychology and laboratory and experimental medicine. With this approach, the medical 

test is  assessed based on what it is designed to do241, that is if the test is able to 

diagnose or detect the target condition for which it is designed. Other designs include 

case-control designs (where the participants are known to have or not have the target 

condition) 258, 259, laboratory based studies or experimental studies which are 

undertaken with the aim to evaluate the analytical sensitivity and specificity of the index 

test240, 260, 261.  

2.4. Guidance to researchers 

The guidance flowchart (Figure 10) constructed, is a modification and extension of the 

guidance for researchers flow-diagram developed by Reitsma et al262.  Since, 

evaluating the accuracy measures of the index test is the focus of any diagnostic 

accuracy study, the flowchart starts with asking the first question “Is there a gold 

standard to evaluate the index test?” Following the responses from each question box 

(not bold); methods are suggested (bold boxes at the bottom of the flowchart) to guide 

clinical researchers, test evaluators, and researchers as to the different methods to 

consider.
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Consider using 
alternative study 

design  
(Like validation). 

Is there a gold standard 
to evaluate the index 

test(s)? 

Are all participants verified 
with the gold standard? 

YES 

Can an alternative reference 
standard be applied to 
unverified participants 

(differential verification)?  

Is the diagnostic accuracy of the 
(imperfect) reference standard 

known?  

Use the classical 
method of 
diagnostic 

accuracy study 

Consider using 
imputation and 

bias-correction for 
partial verification 

methods  
(go to figure 8 & 9) 

Consider using 
methods that 

simultaneously 
adjust for both 

reference standard 
and verification bias 

Consider using 
correction 
methods 

Consider using 
composite 

reference standard 
or expert panel 

diagnosis  

Can multiple tests be 
employed to evaluate the 

index test? 

Is constructing a reference 
standard adequate to 

evaluate the index test? YES 

NO 

NO 

YES 

NO 

NO 

YES 

Consider 
using latent 

class analysis 
or 

discrepancy 
analysis  

YES 

YES 

NO 

NO 

Figure 10: Guidance flowchart of methods employed to evaluate medical tests in missing and no gold standard scenarios. 
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2.5. Discussion 

This review sought to identify and review new and existing methods employed to 

evaluate the diagnostic accuracy of a medical test in the absence of a gold standard. 

The identified methods are classified into four main groups based on the availability 

and/or the application of the gold standard on the participants in the study. The four 

groups are: methods employed when only a sub-sample of the participants have their 

disease status verified with the gold standard (group 1); correction methods (group 2); 

methods using multiple imperfect reference standards (group 3) and other methods 

(group 4) such as study of agreement, test positivity rate and alternative study designs 

like validation.  

In this review additional statistical methods have been identified that were not included 

in the earlier reviews on this topic by Reitsma et al 262 and Alonzo 251. A list of all the 

methods identified in this review are presented in the Appendix (Appendix A.5 – 

supplementary information). This includes a brief description of the all the methods 

identified alongside their strengths and weaknesses and published articles of where 

the methods have been clinically applied. Most of the methods developed to evaluate 

the index test when the gold standard is missing for some of the participants are 

scarcely applied clinically 66, 90. This may be due to the complexity of these methods 

(in terms of application and interpretation of results), and/or a disconnection between 

the fields of expertise of those who develop (e.g. statisticians) and those who employ 

the methods (e.g. clinical researchers). For example, the publication of such methods 

in specialist statistical journals may not be readily accessible to those developing 

clinical research studies. In order to close this gap, two flow-diagrams (Figure 8 and 

Figure 9) were constructed in addition to the modified guidance flowchart (Figure 10) 

as guidance tools to aid clinical researchers and test evaluators in the choice of 

methods to consider when evaluating medical tests in the absence of a gold standard. 

In addition, an R package (bcROCsurface)105 and an interactive web application (Shiny 

app) that estimates the ROC surface and VUS in the presence of verification bias have 

been developed by To Duc 105. 

One of the issues not addressed in this current review was methods that evaluate the 

differences in diagnostic accuracy of two or more tests in the presence of verification 

bias. Some published articles that consider this issue are Nofuentes and Del Castillo 

263-267, Marin-Jimenez and Nofuentes 268, Harel and Zhou 269 and Zhou and 

Castelluccio 270. This review also did not consider methods employed to estimate the 
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time-variant sensitivity and specificity of diagnostic tests in the absence of a gold 

standard. This issue has recently been addressed by Wang et al 271. These methods 

were outside the scope of my research. 

In terms of the methodology, a limitation of this review is the exclusion of books, 

dissertations, theses, conference abstracts and articles not published in the English 

language (such as the review by Masaebi et al 272 which was published in 2019), which 

could imply that there could still be some methods not identified by this review. A 

difference in the search strategy between the review reported in this chapter and the 

previous review by Rutjes et al41, is that experts were not contacted for unpublished 

papers in their archives which are related to methods used to evaluate the diagnostic 

accuracy of an index test in the absence of a gold standard.   

Regarding the methods identified in this review, further research could be carried out 

to explore the different modification to the discrepancy analysis approaches to 

understand if these modifications reduce or remove the potential bias.  In addition, 

further research is needed to determine if the identified methods, developed to 

evaluate an index test in the absence of a gold standard are robust. Therefore, in line 

with this suggested area of further research, chapter three statistically compares the 

correction methods identified from the review via simulation approach to ascertain 

which developed method is robust.   

Given the large numbers of statistical methods that have been developed, especially 

to evaluate medical tests when there is a missing gold standard, and the complexity of 

some of these methods, more interactive web applications (e.g. a Shiny package in R 

273) could be developed to implement these methods in addition those developed by 

To Duc 105 and Lim et al 274. The development of such interactive web tools with clear 

instructions for use will aid the applications of these methods and help bridge the gap 

between the method developers and the clinical researchers or tests evaluators who 

are the end users of these methods. The review was updated in December 2020 before 

the submission of this thesis. Twenty-two articles were identified. These papers were 

clinical application papers. The results is reported in the Appendix (). 

2.6. Conclusion 

Various methods have been proposed and applied in the evaluation of medical tests 

when there is a missing gold standard result for some participants, or no gold standard 

at all. These methods depend on the availability of the gold standard, its application to 
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all or a subsample of participants in the study, the availability of alternative reference 

standard(s), and underlying assumption(s) made with respect to the index test(s) and 

/ or participants in the study.  

Knowing the appropriate method to employ when analysing the data from participants 

in a diagnostic accuracy study in the absence of a gold standard can helps to make 

statistically robust inference on the accuracy of the index test. This evidence, in 

addition to data on cost-effectiveness, utility and usability of the test will support 

clinicians, policy makers and stake holders to decide on whether to adopt the index 

test into their practice.  

In the next chapter (chapter three), the correction methods will be explored and 

investigated to understand how they perform (in terms of their statistical properties) 

under different simulated scenarios. 
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Chapter Three: Comparison of Correction Methods 

3.1. Introduction 

From the systematic review (chapter two), several methods were identified that are 

employed to evaluate a medical test in the absence of a gold standard. The identified 

methods were grouped into four groups, which are:  

 Group 1: Methods employed when there is a missing gold standard. 

 Group 2: Correction methods which adjust for using an imperfect reference 

standard whose diagnostic accuracy is known. 

 Group 3: Methods employed when using multiple imperfect tests.  

 Group 4: “other methods”. This group includes methods such as study of 

agreement, test positivity rate, and considering alternative study designs such 

as validation studies. 

In this chapter, simulation studies are employed to investigate and compare the 

correction methods identified from the review. I have purposely not investigated all the 

correction methods identified, rather I have focused on those methods where there 

was a lack of comparisons in the literature. Simulations were used to create different 

scenarios (various “truths”) and to use the results from the simulations to help 

understand the applicability of these methods under certain circumstances. 

Understanding how these methods perform in different simulated scenarios will help 

us to make appropriate choices in diagnostic accuracy studies.  

Out of the seven correction methods identified in the systematic review; three 

correction methods are employed to simultaneously evaluate the diagnostic accuracy 

of multiple index tests. The three approaches take into consideration the conditional 

dependence of the index tests, given the true disease status of the participants and 

the known diagnostic accuracy of the imperfect reference test. Three of the seven 

approaches are based on different conditional dependence structures; which are 

Gaussian Random Effects (GRE) - initially proposed by Qu et al 132, the Beta-Binomial 

(BB), and the Finite Mixture (FM) approaches initially proposed by Albert et al 32, 133. 

These three correction methods have been explored and compared in a previous study 

by Albert 120 and all methods estimate the parameters of interest provided the model 

is specified correctly.  

Four further approaches are employed to evaluate a single diagnostic test with a 

dichotomous outcome using an imperfect reference standard whose sensitivity and 
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specificity are known (either from previous validation studies, experimental or field 

studies or case-control studies). In addition, the reference standard and the index test 

are assumed to be conditionally independent given the true disease status. Two or 

more tests are assumed to be conditionally dependent given the true disease status if 

the tests diagnose the same target condition (disease) using a related or the same 

biological component. For example, magnetic resonance imaging (MRI) and computed 

tomography (CT) could be considered as conditionally independent (although they are 

both imaging tests) because they use different biological components275-278 – to 

diagnose the target condition. The CT scan uses the radiation opacity of tissue while 

a MRI scan uses magnetism to excite water molecules to produce images. An example 

of conditionally dependent tests would be where some enzyme-linked immunosorbent 

assay (ELISA) or polymerase chain reaction (PCR) tests 167, 198, 279 are used to 

diagnose a target condition as these enzyme-linked immunosorbent assay or 

polymerase chain reaction tests use the same biological components. 

Mathematically, two tests (say T1 and T2) are assumed to be conditionally independent 

if: 

Pr(𝑇1 = 1, 𝑇2 = 1|𝐷 = 1) = Pr(𝑇1 = 1|𝐷 = 1) × Pr(𝑇2 = 1|𝐷 = 1) 

Pr(𝑇1 = 0, 𝑇2 = 0|𝐷 = 0) = Pr(𝑇1 = 0|𝐷 = 0) × Pr(𝑇2 = 0|𝐷 = 0) 

Where D denotes the diseases status; D equal to 1 indicates the presence of disease 

and D equal to 0 indicates the absence of disease. T1 equal to 1 indicates a positive 

test result from T1 and T1 equal to 0 indicates a negative result from T1 (similarly for 

T2).  

The four correction methods employed to evaluate a single index test with a binary 

outcome are: 

1. The Gart and Buck 118 correction method 

2. The Staquet et al 119 correction method 

3. The Brenner 117 correction method 

4. The Emerson et al 121 correction method 

These four correction methods are described in more detail below. Two of these 

correction methods, the Brenner correction method and the Staquet et al correction 

method, were compared with the classical method employed to estimate the sensitivity 

and specificity of the index test assuming the reference standard is a gold standard. 
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The estimated sensitivity and specificity from the classical method are referred to as 

“unadjusted sensitivity” and unadjusted specificity” respectively in this chapter. They 

are called unadjusted because if the reference standard is not a gold standard, the 

estimates obtained are biased and need to be corrected.  From Table 4, the unadjusted 

sensitivity and specificity of the index test and the sample prevalence of the target 

condition are: 

𝑆𝑛𝑇 = 
𝑎

𝑒
;               𝑆𝑝𝑇 = 

𝑑

𝑓
;              𝑃𝑟𝑟 =  

𝑒

𝑁
 

Table 4: 2 by 2 contingency table of the index test and imperfect reference standard 

 

The confidence intervals for sensitivity and specificity can be obtained using five 

different approaches. These are  the Wald confidence interval280, the Wilson Score 

interval281, the Clopper-Pearson280 interval, and Agresti – Coull interval282. In this thesis 

the Wilson Score interval is used to obtain the 95% confidence interval for the 

estimated sensitivity and specificity of the index test explored in the clinical dataset. 

The Wilson score interval is calculated as: 

(𝐿𝐿�̂�, 𝑈𝐿�̂�) =
1

1 +
𝑧2

𝑛∗

 (𝜃 +
𝑧2

2𝑛∗
) ±

𝑧

1 +
𝑧2

𝑛∗

√
𝜃(1 − 𝜃)

𝑛∗
+
𝑧2

4𝑛∗2
  

where 𝒏∗  is not the total number of participants in the study but rather it is the total 

number of participants with positive (negative) test results on the reference standard 

when calculating the confidence interval of the estimated sensitivity (specificity). 𝜃  is 

the estimated sensitivity (or specificity) and z is the standard normal distribution value 

at a given percentage of confidence interval.  

Reference standard

Positive = 1        Negative = 0 Total

a b a + b = g

c d c + d = h

a + c = e b + d = f a + b + c + d = N  

Positive = 1

Negative = 0

Index test
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The correction methods were compared via simulation studies. More details of the 

simulation process and the different scenarios explored is discussed in detail in section 

3.3. 

 

 

 

 

 

 

 

3.1.1. Gart & Buck Correction method 

Gart and Buck 118 proposed a pair of estimators to correct for the estimated sensitivity 

and specificity of the index test when the diagnostic accuracy of the reference test is 

known and the index and reference tests are conditionally independent given the true 

disease status.  

The Gart and Buck estimators are: 

 
𝑆𝑛𝑐𝑜𝑟

𝐺𝐵 =
𝑆𝑝𝑅 × 𝑃𝑟𝑟 × 𝑆𝑛𝑇 + ( 1 − 𝑆𝑝𝑅)(1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇 − (1 − 𝑆𝑝𝑅)(𝑆𝑝𝑅 − �̂�𝐽)

�̂�𝐽 
 

(1) 

 

 
𝑆𝑝𝑐𝑜𝑟

𝐺𝐵 =
𝑆𝑛𝑅 ∗ (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇 + ( 1 − 𝑆𝑛𝑅)𝑃𝑟𝑟 × 𝑆𝑛𝑇 − (1 − 𝑆𝑛𝑅)(1 − 𝑆𝑝𝑅 + �̂�𝐽)

𝐽(1 − �̂�) 
 

(2) 

 

where the corrected sensitivity and specificity of the index test are denoted 

as 𝑆𝑛𝑐𝑜𝑟 and 𝑆𝑝𝑐𝑜𝑟  respectively. The estimated population prevalence is denoted 

as �̂� and calculated as: 

�̂�    =  
𝑃𝑟𝑟 + 𝑆𝑝𝑅 − 1

𝐽
 

Where the sample prevalence of the target condition is denoted as 𝑃𝑟𝑟 and 𝐽 is the 

Youden index for the diagnostic test which is calculated as:  

𝐽 =  𝑆𝑛𝑅 + 𝑆𝑝𝑅 − 1 

Basic notation 

Let D be the true disease status with value 0 and 1 (0 represents non-diseased 

and 1 represents diseased). R is the reference standard and T is the index test. 

The known sensitivity and specificity of the reference standard are denoted 

as 𝑆𝑛𝑅 and 𝑆𝑝𝑅 respectively. The estimated sensitivity and specificity of the 

index test are denoted as 𝑆𝑛𝑇  and 𝑆𝑝𝑇 respectively.  As described above, they 

are also known as the unadjusted sensitivity and specificity of the index test. 
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The standard errors of the estimators are obtained via the delta method (a non-

parametric approach of obtaining standard errors and confidence intervals)283, 284.  

3.1.2. Staquet et al correction method  

Staquet et al119 proposed a pair of estimators to correct for the sensitivity and specificity 

of the index test when the index test and reference standard are conditionally 

independent given the true disease status, and the sensitivity and specificity of the 

reference standard are known though imperfect.  

The Staquet at al estimators are: 

 
 𝑆𝑛𝑐𝑜𝑟

𝑠𝑞 = 
𝑔𝑆𝑝𝑅 − 𝑏

𝑁(𝑆𝑝𝑅 − 1) + 𝑒
;          𝑆𝑝𝑐𝑜𝑟

𝑠𝑞 =
ℎ𝑆𝑛𝑅 − 𝑐

𝑁𝑆𝑛𝑅 − 𝑒
;      �̂� =  

𝑁(𝑆𝑝𝑅 − 1) + 𝑒

𝑁(𝑆𝑛𝑅 + 𝑆𝑝𝑅 − 1)
 

(3) 

 

where �̂� is the estimated population prevalence and the values of N, g, b, h and e are 

expressed in Table 4. 

The Staquet et al119 estimators are equivalent to the Gart and Buck 118 method. This is 

shown using algebraic expression below.  

Simplification of the Gart and Buck estimators to obtain the Staquet et al 

estimators 

𝑆𝑛𝑐𝑜𝑟
𝐺𝐵     =

𝑆𝑝𝑅𝑆 × 𝑃𝑟𝑟 × 𝑆𝑛𝐼𝑇 + ( 1 − 𝑆𝑝𝑅𝑆)(1 − 𝑃𝑟𝑟) × 𝑆𝑝𝐼𝑇 − (1 − 𝑆𝑝𝑅𝑆)(𝑆𝑝𝑅𝑆 − �̂�𝐽)

�̂�𝐽 
 

= 

𝑆𝑝𝑅𝑆 ×
𝑒
𝑁 ×

𝑎
𝑒 +

(1 − 𝑆𝑝𝑅𝑆) (
𝑓
𝑁 ×

𝑑
𝑓
) − (1 − 𝑆𝑝𝑅𝑆)(𝑆𝑝𝑅𝑆 − 𝑃𝑟𝑟 − 𝑆𝑝𝑅𝑆 + 1)
 

𝐽(�̂�)
 

= 

𝑎
𝑁
(𝑆𝑝𝑅𝑆) +

𝑑
𝑁 −

𝑑
𝑁
(𝑆𝑝𝑅𝑆) − (1 − 𝑆𝑝𝑅𝑆)(1 − 𝑃𝑟𝑟)

𝐽�̂�
 

= 

𝑎
𝑁
(𝑆𝑝𝑅𝑆) +

𝑑
𝑁 −

𝑑
𝑁
(𝑆𝑝𝑅𝑆) −

𝑓
𝑁
(1 − 𝑆𝑝𝑅𝑆)

𝐽�̂�
  

=

𝑎
𝑁
(𝑆𝑝𝑅𝑆) +

𝑑
𝑁 −

𝑑
𝑁
(𝑆𝑝𝑅𝑆) −

𝑓
𝑁 +

𝑓
𝑁
(𝑆𝑝𝑅𝑆)

𝐽�̂�
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=

𝑎
𝑁
(𝑆𝑝𝑅𝑆) −

𝑑
𝑁
(𝑆𝑝𝑅𝑆) +

𝑓
𝑁
(𝑆𝑝𝑅𝑆) −

𝑓
𝑁 +

𝑑
𝑁

𝐽�̂�
 

= 

𝑎 − 𝑑 + 𝑓
𝑁

(𝑆𝑝𝑅𝑆) +
𝑑
𝑁 −

𝑓
𝑁

𝐽�̂�
 

=   

𝑎 + 𝑏
𝑁  (𝑆𝑝𝑅𝑆) −

𝑏
𝑁

𝐽�̂�
 

= 
𝑔(𝑆𝑝𝑅𝑆) − 𝑏

𝑁(𝑃𝑟𝑟 + 𝑆𝑝𝑅𝑆 − 1)
  

= 
𝑔(𝑆𝑝𝑅𝑆) − 𝑏

𝑁(𝑃𝑟𝑟) +  𝑁(𝑆𝑝𝑅𝑆 − 1)
  

𝑆𝑛𝑐𝑜𝑟
𝑠𝑞 = 

𝑔(𝑆𝑝𝑅𝑆) − 𝑏 

𝑁(𝑆𝑝𝑅𝑆 − 1) + 𝑒
  

𝑆𝑝𝑐𝑜𝑟
𝐺𝐵 =    

𝑆𝑛𝑅𝑆 × (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝐼𝑇 + ( 1 − 𝑆𝑛𝑅𝑆)𝑃𝑟𝑟 × 𝑆𝑛𝐼𝑇 − (1 − 𝑆𝑛𝑅𝑆)(1 − 𝑆𝑝𝑅𝑆 + �̂�𝐽)

𝐽(1 − �̂�)
 

=
𝑆𝑛𝑅𝑆 ×

𝑓
𝑁 ×

𝑑
𝑓
+ ( 1 − 𝑆𝑛𝑅𝑆) ×

𝑒
𝑁 ×

𝑎
𝑒 −

(1 − 𝑆𝑛𝑅𝑆)(1 − 𝑆𝑝𝑅𝑆 +  𝑆𝑝𝑅𝑆 + 𝑃𝑟𝑟 − 1)

𝐽(1 − �̂�)
 

=

𝑑
𝑁 (𝑆𝑛𝑅𝑆) +

𝑎
𝑁
( 1 − 𝑆𝑛𝑅𝑆) − (1 − 𝑆𝑛𝑅𝑆)(𝑃𝑟𝑟)

𝐽(1 − �̂�)
 

= 

𝑑
𝑁 (𝑆𝑛𝑅𝑆) +

𝑎
𝑁 −

𝑎
𝑁 (𝑆𝑛𝑅𝑆) −

𝑒
𝑁
(1 −  𝑆𝑛𝑅𝑆)

 𝐽 (1 −
𝑃𝑟𝑟 + 𝑆𝑝𝑅𝑆 − 1

𝐽 )
 

=  

𝑑
𝑁 (𝑆𝑛𝑅𝑆) +

𝑎
𝑁 −

𝑎
𝑁
(𝑆𝑛𝑅𝑆) −

𝑒
𝑁 +

𝑒
𝑁
(𝑆𝑛𝑅𝑆)

𝐽(𝐽 − 𝑃𝑟𝑟 − 𝑆𝑝𝑅𝑆 + 1)
𝐽
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=  

𝑑 − 𝑎 + 𝑒
𝑁 (𝑆𝑛𝑅𝑆) +

𝑎
𝑁 −

𝑒
𝑁

 𝐽 (
𝑆𝑝𝑅𝑆 + 𝑆𝑛𝑅𝑆 − 1 − 𝑃𝑟𝑟 − 𝑆𝑝𝑅𝑆 + 1

𝐽 )
 

= 

ℎ
𝑁 (𝑆𝑛𝑅𝑆) −

𝑐
𝑁

𝑆𝑛𝑅𝑆 − 𝑃𝑟𝑟 
 

= 
ℎ(𝑆𝑛𝑅𝑆) − 𝑐

𝑁(𝑆𝑛𝑅𝑆 − 𝑃𝑟𝑟)
 

𝑆𝑝𝐶𝑜𝑟
𝑠𝑞 =  

ℎ(𝑆𝑛𝑅𝑆) − 𝑐

𝑁𝑆𝑛𝑅𝑆 − 𝑒
 

Hence, the Gart and Buck correction method is not explored in the simulation study  

3.1.3. Brenner correction method 

Brenner 117 proposed two pairs of estimators to correct the estimated sensitivity and 

specificity of an index test when using an imperfect reference standard. The first pair 

of estimators proposed by Brenner 117 assumes that the index test and the reference 

standard test are conditionally independent given the true disease status.  

The estimators are defined as: 

 
𝑆𝑛𝑐𝑜𝑟

𝐵1 = 
𝑃𝑟𝑟 × 𝑆𝑛𝑅 × 𝑆𝑛𝑇 + (1 − 𝑃𝑟𝑟)(1 − 𝑆𝑝𝑅)(1 − 𝑆𝑝𝑇)

𝑃𝑟𝑟 × 𝑆𝑛𝑅 + (1 − 𝑃𝑟𝑟)(1 − 𝑆𝑝𝑅)
 

(4) 

 

 

The second pair of estimators proposed by Brenner 117, assumes that there is a positive 

correlation between the index test and the reference standard. Thus, the estimators 

are developed to adjust for positive correlation between the classification error of the 

index test and reference standard.   

The estimators are defined as:  

 
𝑆𝑛𝑐𝑜𝑟

𝐵2 = 
𝑃𝑟𝑟 × 𝑆𝑛𝑇 + ( 1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)

𝑃𝑟𝑟 × 𝑆𝑛𝑅 + (1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)
 

(6) 

 
𝑆𝑝𝑐𝑜𝑟

𝐵1 =
𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑅 × 𝑆𝑝𝑇

𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑅
 

(5) 
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𝑆𝑝𝑐𝑜𝑟

𝐵2 = 
𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇
𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑅

 
(7) 

Both pairs of estimators will be considered in the simulation studies. 

3.1.4. Emerson et al correction method 

The Emerson et al correction method121 does not estimate a single value for the 

sensitivity or specificity of the index test. Rather, it estimates upper and lower bound 

values for the sensitivity and specificity of the index test as well as the prevalence of 

the target condition. The estimators employed to obtain the upper bounds of the 

sensitivity and specificity of the index test are: 

 
𝑆𝑛𝑚𝑎𝑥 = 

𝑆𝑛𝑇 × 𝑃𝑟𝑟 + (1 − 𝜂𝑅)( 1 − 𝑃𝑟𝑟)

�̂�
 

(8) 

 

 
𝑆𝑝𝑚𝑎𝑥 = 

(1 − 𝜓𝑅) × 𝑃𝑟𝑟 + 𝑆𝑝𝑇( 1 − 𝑃𝑟𝑟)

1 − �̂�
 

(9) 

where: 

η𝑅 =
𝑆𝑝𝑅(1 − �̂�)

1 − 𝑃𝑟𝑟
;           �̂� =  

𝑃𝑟𝑟 + 𝑆𝑝𝑅 − 1

𝑆𝑛𝑅 + 𝑆𝑝𝑅 − 1
;          𝜓𝑅𝑆 = 

𝑆𝑛𝑅 × �̂�

𝑃𝑟𝑟
  

 

 

The estimators employed to obtain the lower bounds of the sensitivity and specificity 

of the index test are: 

 
𝑆𝑛𝑚𝑖𝑛 = 

(𝜓𝑅 + 𝑆𝑛𝑇 − 1)𝑃𝑟𝑟 + 0 × (1 − 𝑃𝑟𝑟)

�̂�
=  
(𝜓𝑅𝑆 + 𝑆𝑛𝑇 − 1)𝑃𝑟𝑟

�̂�
 

(10) 

 
𝑆𝑝𝑚𝑖𝑛 =

0 ×  𝑃𝑟𝑟 + (𝜂𝑅 +  𝑆𝑝𝑇 − 1) × (1 − 𝑃𝑟𝑟)

1 − �̂�

=  
(𝜂𝑅 +  𝑆𝑝𝑇 − 1) × (1 − 𝑃𝑟𝑟)

1 − �̂�
 

(11) 

The estimators developed by Emerson et al121 are not compared with the Staquet et al 

and Brenner correction methods in this simulation study because they do not produce 

single value estimates like the Staquet et al and Brenner correction methods but rather 

bounded value estimates. These bounded values explains the confidence of the 
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estimated sensitivity and specificity of the index test121. The narrower the interval or 

bounds, the more confident the estimate and the wider the interval the less confident 

the estimate obtained. 

3.2. Aims of the simulation study 

The aims of this simulation study are to: 

 Explore the statistical properties of the correction methods: Brenner, and 

Staquet et al117, 119. 

 Compare two correction methods, the Brenner and Staquet et al correction 

methods, to understand how robust these methods are.  

3.3. Methodology  

Simulation studies were undertaken following the suggested guidelines by Morris, 

White 285. This includes: Planning for the simulation study, Coding and execution, 

Analysis and Reporting the simulation study appropriately.  

1. Planning for the simulation study: Planning for a simulation study entails stating 

out clearly the Aims (objectives) of the study, the Data-generating mechanism, the 

Estimands, the Methods and the Performance measures (ADEMP).  

 The aims of this simulation study are defined in section 3.2.  

 Data generating mechanism: The data-generating mechanism describes how 

the dataset is generated or simulated. The simulated variables are the 

discordant and concordant values (relative true positive – rTP, relative true 

negative – rTN, relative false positive – rFP, and relative false negative – rFN) 

of a dichotomous index and reference test. They are called relative because 

they are obtained in comparison to a reference standard which is not a gold 

standard (so the true disease status of the participants are unknown). These 

variables were simulated using the multinomial distribution. The prevalence of 

the target condition as well as the sensitivities and specificities of the index and 

reference tests were assumed to be known. The probability of each cell (rTP, 

rTN, rFP and rFN) is obtained using the relationship between the prevalence of 

the target condition, the sensitivity and specificity of the index and reference 

tests, and the covariance term or correlation between the two tests among the 

disease group and non-diseased groups. The probability values estimated for 

each cell are multiplied by the total number of participants to report the number 

of participants in each cell. These values are assumed to be known during the 
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simulation process. Thus, when the two tests are conditionally independent 

given the true the disease status, the covariance terms among the diseased and 

non-diseased group across both tests are zero. Further, if the two tests are 

conditionally dependent given the true disease status, then the conditional 

dependence across the two tests is modelled using the fixed effect method286. 

Finally, if the reference standard is a gold standard (perfect test), then the 

assumed (known) sensitivity and specificity of the reference test are both 1. In 

this case, the rTP, rTN, rFN, rFP are error free, so the estimated sensitivity and 

specificity of the index test are unbiased. 

 Estimands: The estimands are the random values obtained from using the 

estimators of interest. In this simulation study, the estimators of interest are the 

different correction methods employed to estimate the sensitivity and specificity 

of the index test. The estimands are the different sensitivities and specificities 

of the index test obtained by applying the estimators of interest on various 

simulated samples.  

 Methods: The methods are the estimators of interest, used to derive the 

estimands. These are: 

a) Unadjusted sensitivity and specificity: This is the classical method 

employed to estimate sensitivity and specificity of the index test assuming 

that the reference test is perfect (see Table 4). 

b) Brenner corrected sensitivity and specificity  

c) Staquet et al corrected sensitivity and specificity  

 Performance measures: The performance measures employed to assess the 

correction methods are well-used properties of a good estimator. The properties 

chosen are bias, mean square error (MSE) and consistency.  These measures 

were chosen as they are well-known measures employed to assess a good 

estimator. These measures were used to assess the estimators of interest 

under the conditional independence and conditional dependence assumption 

given the true disease status.  

 

a) Bias: An estimator is statistically unbiased if the difference between the true 

value of the parameter (𝜃) and the expected (mean) value of the estimator 

(𝐸(𝜃)) is equal to zero287, 288. That is: 

𝜃 − 𝐸(𝜃) = 0 
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If the true value is not equal to the expected value, then the estimator is 

biased.  

𝐵𝑖𝑎𝑠 =  𝐸(𝜃) − 𝜃 

b) Mean square error (MSE): The mean square error is the mean or average 

of the squared difference between the estimator and the true parameter288. 

That is  

𝐸 [(𝜃 − 𝜃)
2
] =  

1

𝑛
∑(𝜃𝑖 − 𝜃�̂�)

2
𝑛

𝑖=1

 

 

c) Consistency: An estimator is consistent if, as the sample size increases 

(𝑛 → ∞) the mean value of the estimates obtained using the given estimator 

approaches the true value288, 289 and the variance decreases to zero. 

𝐸(𝜃) → 0   𝑎𝑠  𝑛  → ∞;      𝑉𝑎𝑟(𝜃) → 0   𝑎𝑠   𝑛 → ∞ 

An estimator can be unbiased and consistent, it can be unbiased and not 

consistent, and it can be biased (for finite sample sizes) and consistent. 

2. Coding and Execution: Functions used to simulate the random samples (from the 

multinomial distribution) and to calculate the estimands were coded and executed 

using the R statistical software (R Studio)290. The script is attached as an appendix 

(Appendix B.1).  

 

3. Analysis: This section is divided into two cases (section 3.3.1 and section 3.3.2). 

The first case is where the index test and the reference standard (RS) are 

conditionally independent given the true disease status (under the assumption that 

the RS is perfect or imperfect) – section 3.3.1. The second case is where the index 

test and the reference standard are conditionally dependent given the true disease 

status (under the assumption that the RS is perfect or imperfect) – section 3.3.2.  

 

4. Reporting: At the end of the analysis in each section (sections 3.3.1 and 3.3.2) the 

results are presented with tables and graphs, alongside some observations and 

discussion.  

3.3.1. Comparison of correction methods – conditional independence 

Let D be the two-class true disease status of the participants which takes the value 0 

or 1. D equal to 0 indicates that the participant does not have the disease (or D-) and 
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D equal to 1 indicates the participant has the disease (or D+). Let the prevalence of 

the disease be denoted as 𝑝. 

Pr(𝐷 +)   =   Pr(𝐷 = 1) =  𝑝 ;          0 ≤ 𝑝 ≤ 1.   

The diseased and non-diseased groups are mutually exclusive because a participant 

cannot be classified as diseased and non-diseased at the same time. Thus, the joint 

probability of diseased and non-diseased is 1. Let T denote the index test and R denote 

the reference standard. T and R have dichotomised results - negative and positive 

results – which implies that each participant is classified as having the disease 

(positive) or not having the diseased (negative) by each test. Under conditional 

independence, having a positive (or negative) result with the reference test does not 

affect the likelihood of having a positive (or negative) result with the index test. 

However, under conditional dependence, having a positive (negative) result with the 

reference test can affect the likelihood of having a positive (negative) result on the 

index test, as both tests measure the same biological component.  

Therefore, statistically R and T are conditionally independent given the true disease 

status if and only if:  

Pr(𝑇 = 1, 𝑅 = 1|𝐷 = 1) = Pr(𝑇 = 1|𝐷 = 1) × Pr(𝑅 = 1| 𝐷 = 1) 

and  

Pr(𝑇 = 1, 𝑅 = 1|𝐷 = 0) = Pr(𝑇 = 1|𝐷 = 0) × Pr(𝑅 = 1| 𝐷 = 0) 

 

This implies that:  

Pr(𝑇 = 0, 𝑅 = 0|𝐷 = 0) = Pr(𝑇 = 0|𝐷 = 0) × Pr(𝑅 = 0| 𝐷 = 0) 

Pr(𝑇 = 0, 𝑅 = 0|𝐷 = 1) = Pr(𝑇 = 0|𝐷 = 1) × Pr(𝑅 = 0| 𝐷 = 1) 

Pr(𝑇 = 1, 𝑅 = 0|𝐷 = 1) = Pr(𝑇 = 1|𝐷 = 1) × Pr(𝑅 = 0| 𝐷 = 1) 

Pr(𝑇 = 1, 𝑅 = 0|𝐷 = 0) = Pr(𝑇 = 1|𝐷 = 0) × Pr(𝑅 = 0| 𝐷 = 0) 

Pr(𝑇 = 0, 𝑅 = 1|𝐷 = 1) = Pr(𝑇 = 0|𝐷 = 1) × Pr(𝑅 = 1| 𝐷 = 1) 

Pr(𝑇 = 0, 𝑅 = 1|𝐷 = 0) = Pr(𝑇 = 0|𝐷 = 0) × Pr(𝑅 = 1| 𝐷 = 0) 
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The sensitivity and specificity of the reference standard are  𝑆𝑛𝑅 =  𝑃𝑟(𝑅 = 1|𝐷 =

1) and 𝑆𝑝𝑅 = Pr(𝑅 = 0| 𝐷 = 0) respectively. The sensitivity and specificity of the index 

test are  𝑆𝑛𝑇 = 𝑃𝑟(𝑇 = 1|𝐷 = 1) and 𝑆𝑝𝑇 = Pr(𝑇 = 0| 𝐷 = 0) respectively. 

The covariance between two tests among the diseased group (participants with the 

target condition) can be expressed as: 

𝐶𝑜𝑣𝑑(𝑅 = 1, 𝑇 = 1|𝐷 = 1) = Pr(𝑅 = 1, 𝑇 = 1| 𝐷 = 1) − (𝑆𝑛𝑅 × 𝑆𝑛𝑇) 

= 𝜌𝑑√𝑆𝑛𝑅 × 𝑆𝑛𝑇 × (1 − 𝑆𝑛𝑅) × (1 − 𝑆𝑛𝑇) 

The covariance between the two tests among the non – diseased group can be 

expressed as: 

𝐶𝑜𝑣𝑛𝑑(𝑅 = 0, 𝑇 = 0|𝐷 = 0) = Pr(𝑅 = 0, 𝑇 = 0| 𝐷 = 0) − (𝑆𝑝𝑅 × 𝑆𝑝𝑇) 

= 𝜌𝑛𝑑√𝑆𝑝𝑅 × 𝑆𝑝𝑇 × (1 − 𝑆𝑝𝑅) × (1 − 𝑆𝑝𝑇) 

The correlation between T and R among the disease group is denoted by 𝜌𝑑, and the 

correlation between T and R among the non-disease group is denoted by 𝜌𝑛𝑑. R and 

T are conditionally independent when  𝜌𝑑  and 𝜌𝑛𝑑 are equal to zero. It is logical that the 

sensitivities and specificities of the tests are between 0 and 1; and the correlation 

coefficient is between 0 and the absolute value of 1.  

If the reference standard and the index test are conditionally independent given the 

true disease status, then the covariances defined above are zero; the same applies to 

their correlation coefficients. The cell probabilities of classifying participants under the 

assumption that the index test and the reference standard are conditionally 

independent given the true disease status are depicted in the 4 x 2 table and 2 x 2 

table displayed as Table 5. 

Table 5: Cell probabilities of the 4 x 2 and 2 x 2 classification of participants 

 Diseased (+) Diseased (-) 

 RS + RS – RS + RS – 

T + 𝑝1(𝑆𝑛𝑅 × 𝑆𝑛𝑇) 𝑝1(1 − 𝑆𝑛𝑅)𝑆𝑛𝑇 𝑝0(1 − 𝑆𝑝𝑅)(1 − 𝑆𝑝𝑇) 𝑝0 × 𝑆𝑝𝑅(1 − 𝑆𝑝𝑇) 

T – 𝑝1 × 𝑆𝑛𝑅(1 − 𝑆𝑛𝑇) 𝑝1(1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) 𝑝0 × 𝑆𝑝𝑇(1 − 𝑆𝑝𝑅) 𝑝0 × 𝑆𝑝𝑅 × 𝑆𝑝𝑇 

OR 
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 Reference standard (RS) 

 Positive (+) Negative (-) 

T + 𝑝1(𝑆𝑛𝑅 × 𝑆𝑛𝑇) + (𝑝0(1 − 𝑆𝑝𝑅)(1 − 𝑆𝑝𝑇)) 𝑝1(1 − 𝑆𝑛𝑅)𝑆𝑛𝑇 + (𝑝0 × 𝑆𝑝𝑅(1 − 𝑆𝑝𝑇))  

T – 𝑝1 × 𝑆𝑛𝑅(1 − 𝑆𝑛𝑇) + (𝑝0 × 𝑆𝑝𝑇(1 − 𝑆𝑝𝑅)) 𝑝1(1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) + (𝑝0 × 𝑆𝑝𝑅 × 𝑆𝑝𝑇)  

SnR is sensitivity of reference standard; SnT is sensitivity of index test; SpR is specificity of the 
reference standard; SpT is specificity of the index test; RS is reference standard; T+ is index test 
positive; T- is index test negative, p1 is the prevalence of the target condition (diseased); p0 is 1 
– p1 (which is the prevalence of non-diseased). 

 

In this section the correction methods (Brenner and Staquet et al) and the classical 

method are explored and compared under the assumption that the reference standard 

and the index test are conditionally independent given the true disease status. That is, 

there is no covariance terms between the two tests (reference standard and index test) 

among the diseased and non-diseased groups. This comparison helps us to 

understand how these estimators perform in the simulated scenarios. The different 

scenarios explored in this section are: 

 When the reference standard is perfect. 

 When the reference standard is imperfect and better than the index test. That 

is the sensitivity and specificity of the reference standard are higher than the 

sensitivity and specificity of the index test. 

 When the reference standard is imperfect and worse than the index test. 

That is the sensitivity and specificity of the reference standard are lower than 

the sensitivity and specificity of the index test. 

 When the accuracy measures of the reference standard are imperfect and 

the same as the index test. That is the sensitivity and specificity of the 

reference standard are the same as the sensitivity and specificity of the index 

test. 

In all scenarios, 200 random samples of sizes between 50 and 1000 were simulated 

using the multinomial distribution. Varying sample sizes were chosen to aid the 

understanding of how the sample size impacts the estimates of interest. The 

sensitivities and specificities of the index test and reference standard were varied to 

reflect the different scenarios simulated. The choice of parameters employed in the 

simulation study was based upon clinical case studies identified from the systematic 
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review reported in Chapter two. For example, the clinical datasets used in this chapter 

have prevelances varying between 0.1, 0.3 and 0.9. The sensitivity and specificity of 

the RS employed in the study by Mathew et al125 dataset were 0.74 and 0.91 

respectively, the sensitivities and specificities of the RS  used in the datasets reported 

in Matos et al124 were 0.8 both for the NC detection and 0.79 and 0.99 respectively for 

the D3 detection. Therefore, using a fixed prevalence of 0.3 (and varying the 

prevalences from zero to one), alongside setting the sensitivity and specificity of the 

reference standard to be either 0.8 and/or 0.9 in the simulation study reflects possible 

clinical cases identified from the review.  

Algebraic relationship between classical, Brenner and Staquet et al correction 

method  

In this section, the different estimators are explored to understand how they are 

mathematically related.  Mathematically, the Brenner estimators can be reduced to: 

𝑆𝑛𝑐𝑜𝑟
𝐵1 = 

𝑃𝑟𝑟 × 𝑆𝑛𝑅 × 𝑆𝑛𝑇 + (1 − 𝑃𝑟𝑟)(1 − 𝑆𝑝𝑅𝑆)(1 − 𝑆𝑝𝑇)

𝑃𝑟𝑟 × 𝑆𝑛𝑅 + (1 − 𝑃𝑟𝑟)(1 − 𝑆𝑝𝑅)
 

= 
(
𝑒
𝑁 × 𝑆𝑛𝑅 ×

𝑎
𝑒) + (

𝑓
𝑁 ×

(1 − 𝑆𝑝𝑅) ×
𝑏
𝑓
)

𝑒𝑆𝑛𝑅
𝑁 +

𝑓(1 − 𝑆𝑝𝑅)
𝑁

  

= 

1
𝑁
(𝑎𝑆𝑛𝑅) + 

1
𝑁 (𝑏

(1 − 𝑆𝑝𝑅))

1
𝑁 (𝑒𝑆𝑛𝑅 + 𝑓

(1 − 𝑆𝑝𝑅))
  

𝑺𝒏𝒄𝒐𝒓 = 
𝒂𝑺𝒏𝑹 + 𝒃(𝟏 − 𝑺𝒑𝑹)

𝒆𝑺𝒏𝑹 + 𝒇(𝟏 − 𝑺𝒑𝑹)
 

𝑆𝑝𝑐𝑜𝑟
𝐵1 =

𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) + (1 − 𝑃𝑟𝑟)𝑆𝑝𝑅 × 𝑆𝑝𝑇
𝑃𝑟𝑟(1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟)𝑆𝑝𝑅

 

=
(
𝑒
𝑁 (1 − 𝑆𝑛𝑅) ×

𝑐
𝑒) + (

𝑓
𝑁 × 𝑆𝑝𝑅 ×

𝑑
𝑓
)

𝑒(1 − 𝑆𝑛𝑅)
𝑁 +

𝑓𝑆𝑝𝑅
𝑁

  

= 

1
𝑁
(𝑐(1 − 𝑆𝑛𝑅)) + 

1
𝑁
(𝑑𝑆𝑝𝑅)

1
𝑁
(𝑒(1 − 𝑆𝑛𝑅) + 𝑓𝑆𝑝𝑅)
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𝑺𝒑𝒄𝒐𝒓 = 
𝒄(𝟏 − 𝑺𝒏𝑹) + 𝒅𝑺𝒑𝑹
𝒆(𝟏 − 𝑺𝒏𝑹) + 𝒇𝑺𝒑𝑹

  

 

 

As a reminder the second pair of estimators is: 

 

𝑆𝑛𝑐𝑜𝑟
𝐵2 = 

𝑃𝑟𝑟 × 𝑆𝑛𝑇 + ( 1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)

𝑃𝑟𝑟 × 𝑆𝑛𝑅 + (1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)
 

𝑆𝑝𝑐𝑜𝑟
𝐵2 = 

𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇
𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑅

 

If the reference standard is perfect (𝑆𝑛𝑅 = 𝑆𝑝𝑅 = 1) the Staquet et al and Brenner 

corrected estimators for sensitivity and specificity reduces to the classical estimator for 

sensitivity (𝑆𝑛𝑇) and specificity (𝑆𝑝𝑇). 

For the Staquet et al estimators: 

 𝑆𝑛𝑐𝑜𝑟
𝑠𝑞 =

𝑔𝑆𝑝
𝑅
− 𝑏

𝑁(𝑆𝑝
𝑅
− 1) + 𝑒

=
𝑔 − 𝑏

𝑒
=  
𝑎 + 𝑏 − 𝑏

𝑒
=
𝑎

𝑒
= 𝑆𝑛𝑇   

 𝑆𝑝𝑐𝑜𝑟
𝑠𝑞 =

ℎ𝑆𝑛𝑅 − 𝑐

𝑁𝑆𝑛𝑅 − 𝑒
=
ℎ − 𝑐

𝑁 − 𝑒
= 
𝑐 + 𝑑 − 𝑐

𝑒 + 𝑓 − 𝑒
=
𝑑

𝑓
= 𝑆𝑝𝑇 

For the Brenner estimators: 

𝑆𝑛𝑐𝑜𝑟
𝐵1 = 

𝑎𝑆𝑛𝑅 + 𝑏(1 − 𝑆𝑝𝑅)

𝑒𝑆𝑛𝑅 + 𝑓(1 − 𝑆𝑝𝑅)
=  
𝑎

𝑒
= 𝑆𝑛𝑇    

 𝑆𝑝𝑐𝑜𝑟
𝐵1 =

𝑐(1 − 𝑆𝑛𝑅) + 𝑑𝑆𝑝𝑅
𝑒(1 − 𝑆𝑛𝑅) + 𝑓𝑆𝑝𝑅

= 
𝑑

𝑓
= 𝑆𝑝𝑇 

𝑆𝑛𝑐𝑜𝑟
𝐵2 = 

𝑃𝑟𝑟 × 𝑆𝑛𝑇 + ( 1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)

𝑃𝑟𝑟 × 𝑆𝑛𝑅 + (1 − 𝑃𝑟𝑟) × (1 − 𝑆𝑝𝑅)
=  
𝑃𝑟𝑟 × 𝑆𝑛𝐼𝑇

𝑃𝑟𝑟
= 𝑆𝑛𝑇 

𝑆𝑝𝑐𝑜𝑟
𝐵2 = 

𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇
𝑃𝑟𝑟 × (1 − 𝑆𝑛𝑅) + (1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑅

= 
(1 − 𝑃𝑟𝑟) × 𝑆𝑝𝑇

(1 − 𝑃𝑟𝑟)
= 𝑆𝑝𝑇 

where a, b, c, d, e, f, g, h and N are described in Table 4.  

Therefore, when the reference standard is perfect: 

𝑆𝑛𝑐𝑜𝑟
𝑠𝑞 =  𝑆𝑛𝑐𝑜𝑟

𝐵1 = 𝑆𝑛𝑐𝑜𝑟
𝐵2 = 𝑆𝑛𝑇      𝑎𝑛𝑑        𝑆𝑝𝑐𝑜𝑟

𝑠𝑞 =  𝑆𝑝𝑐𝑜𝑟
𝐵1 = 𝑆𝑝𝑐𝑜𝑟

𝐵2 = 𝑆𝑝𝑇 
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However, if the reference standard is not perfect, the Staquet et al corrected sensitivity 

is a function of the known specificity of the reference standard and the observed data 

and the Staquet et al corrected specificity is a function of the known sensitivity and the 

observed data.  

That is, the Staquet et al estimators can be written as:  

𝑆𝑛𝑐𝑜𝑟
𝑠𝑞

=
𝑔𝑆𝑝𝑅 − 𝑏

𝑁(𝑆𝑝𝑅 − 1) + 𝑒
=

(𝑎 + 𝑏)𝑆𝑝𝑅 − 𝑏

(𝑒 + 𝑓)(𝑆𝑝𝑅 − 1) + 𝑒
=

𝑎𝑆𝑝𝑅 + 𝑏𝑆𝑝𝑅 − 𝑏

𝑒𝑆𝑝𝑅 + 𝑓𝑆𝑝𝑅 − 𝑒 − 𝑓 + 𝑒 

=
𝒂𝑺𝒑𝑹 + 𝒃(𝑺𝒑𝑹 − 𝟏)

𝒆𝑺𝒑𝑹 + 𝒇(𝑺𝒑𝑹 − 𝟏)
  

 𝑆𝑝𝐶𝑜𝑟
𝑠𝑞 =

ℎ𝑆𝑛𝑅 − 𝑐

𝑁𝑆𝑛𝑅 − 𝑒
 =

(𝑐 + 𝑑)𝑆𝑛𝑅 − 𝑐

(𝑒 + 𝑓)𝑆𝑛𝑅 − 𝑒
=   

𝑐𝑆𝑛𝑅 + 𝑑𝑆𝑛𝑅 − 𝑐

𝑒𝑆𝑛𝑅 + 𝑓𝑆𝑛𝑅 − 𝑒 
=  
𝒅𝑺𝒏𝑹 + 𝒄(𝑺𝒏𝑹 − 𝟏)

𝒇𝑺𝒏𝑹 + 𝒆(𝑺𝒏𝑹 − 𝟏)
     

The Brenner corrected sensitivity and specificity are function of both the sensitivity 

and specificity of the reference standard as well as the observed data, i.e.  

𝑆𝑛𝑐𝑜𝑟
𝐵1 = 

𝒂𝑺𝒏𝑹 + 𝒃(𝟏 − 𝑺𝒑𝑹)

𝒆𝑺𝒏𝑹 + 𝒇(𝟏 − 𝑺𝒑𝑹)
;     𝑆𝑝𝑐𝑜𝑟

𝐵1 =
𝒅𝑺𝒑𝑹 +  𝒄(𝟏 − 𝑺𝒏𝑹)

𝒇𝑺𝒑𝑹 + 𝒆(𝟏 − 𝑺𝒏𝑹)
 

The letters in red are common in both methods, and the variations or differences are 

displayed using the green colour.  

 

Perfect reference standard  

Initially, the sensitivity and specificity of the reference standard were set to 1 (indicating 

a perfect test) and the sensitivity and specificity of the index test were 0.8 and 0.7 

respectively. The prevalence of disease was 0.3. The mean values of the unadjusted 

and corrected sensitivities and specificities of the index test were obtained alongside 

the standard error, the mean squared error (MSE) and empirically assessed bias. 

These were reported in Table 6 and Figure 11.   

The results in Table 6 and Figure 11 showed that if the reference standard is perfect, 

the mean sensitivities and specificities (unadjusted and corrected) are very similar and 

are approximately equal to the simulated truth. The estimators are unbiased as their 

bias and MSE is approximately zero. The standard error decreases as the sample size 

increases. In fact, the standard error tends to zero as the sample size increases.  
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Table 6: Estimates from unadjusted and corrected sensitivities and specificities of the index test under the conditional independence 

assumption when the reference standard is perfect 

Sample  

size 

 Methods  

 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 

50 Mean 0.793 0.696 0.793 0.696 0.793 0.696 

 SE 0.106 0.079 0.106 0.079 0.106 0.079 

 MSE 0.011 0.006 0.011 0.006 0.011 0.006 

 Bias 0.007 0.005 0.007 0.005 0.007 0.005 

100 Mean 0.796 0.698 0.796 0.698 0.796 0.698 

 SE 0.071 0.053 0.071 0.053 0.071 0.053 

 MSE 0.005 0.003 0.005 0.003 0.005 0.003 

 Bias 0.004 0.002 0.004 0.002 0.004 0.002 

200 Mean 0.804 0.70 0.804 0.70 0.804 0.70 

 SE 0.05 0.039 0.05 0.039 0.05 0.039 

 MSE 0.003 0.002 0.003 0.002 0.003 0.002 

 Bias 0.004 0.000 0.004 0.000 0.004 0.000 
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Table 6 cont.: Estimates from unadjusted and corrected sensitivities and specificities of the index test under the conditional independence 

assumption when the reference standard is perfect 

Sample size Methods  
 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 

500 Mean 0.798 0.702 0.798 0.702 0.798 0.702 

 SE 0.037 0.025 0.037 0.025 0.037 0.025 

 MSE 0.001 0.001 0.001 0.001 0.001 0.001 

 Bias 0.002 0.002 0.002 0.002 0.002 0.002 

1000 Mean 0.798 0.700 0.798 0.700 0.798 0.700 

 SE 0.024 0.017 0.024 0.017 0.024 0.017 

 MSE 0.001 0.000 0.001 0.000 0.001 0.003 

 Bias 0.002 0.000 0.002 0.000 0.002 0.000 

MSE is mean squared error; SE is standard error; ST is simulated truth.  
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Figure 11: The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of the index test when the 

reference standard is prefect.  
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In Figure 11(a), the dashed yellow line represents the simulated truth, 0.8 for the 

sensitivity of the index test and 0.7 for the specificity of the index test. This yellow line 

is aligned to the red, blue and green lines which represent the Brenner corrected 

sensitivity (or specificity), unadjusted sensitivity (or specificity), and Staquet et al 

corrected sensitivity (specificity) respectively. The yellow line is the simulated true 

values of the sensitivity and the specificity of the index test. 

 

Imperfect reference standard  

In this section, the reference standard is assumed to be imperfect. The imperfection of 

the reference standard is varied to reflect different scenarios that will be explored. 

Multiple (200) random samples of sizes 50 to 1000 were simulated using the 

multinomial distribution. The values employed for the simulations are as follows: the 

sensitivity and specificity of the reference standard are both 0.9 and the sensitivity and 

specificity of the index test are 0.8 and 0.7 respectively. The prevalence of the target 

condition is 0.3. The estimated values are presented in Table 7 and Figure 12. 

From Table 7 and Figure 12, the unadjusted and Brenner corrected sensitivities and 

specificities of the index test are poorly estimated irrespective of the sample size. Their 

mean sensitivities and specificities are lower than the simulated truth. Thus, they are 

biased estimators for the sensitivity and specificity of the index test when the reference 

standard is imperfect. The Staquet et al corrected sensitivity and specificity appear to 

be approximately unbiased. The yellow line is the simulated true values of the 

sensitivity and the specificity of the index test 
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Table 7: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect and better than the 

index test 

Sample  

size 

 Methods  

 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 

50 Mean 0.694 0.672 0.627 0.651 0.820 0.696 

 SE 0.116 0.083 0.099 0.08 0.264 0.088 

 MSE 0.025 0.008 0.04 0.009 0.080 0.008 

 Bias 0.106 0.028 0.173 0.049 0.020 0.004 

100 Mean .692 0.676 0.624 0.656 0.804 0.698 

 SE 0.077 0.056 0.065 0.053 0.11 0.06 

 MSE 0.018 0.004 0.035 0.005 0.012 0.004 

 Bias 0.108 0.024 0.176 0.044 0.004 0.002 

200 Mean 0.703 0.678 0.635 0.657 0.81 0.701 

 SE 0.055 0.043 0.047 0.041 0.075 0.043 

 MSE 0.013 0.002 0.03 0.004 0.006 0.002 

 Bias 0.100 0.022 0.165 0.043 0.010 0.001 
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Table 7 cont.: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect and better than 

the index test 

Sample size Methods  
 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 ST = 0.8 ST = 0.7 

500 Mean 0.698 0.675 0.631 0.655 0.803 0.698 

 SE 0.036 0.026 0.031 0.025 0.048 0.028 

 MSE 0.012 0.001 0.03 0.003 0.002 0.001 

 Bias 0.0102 0.025 0.169 0.045 0.003 0.002 

1000 Mean 0.697 0.679 0.630 0.658 0.801 0.702 

 SE 0.026 0.017 0.022 0.017 0.035 0.018 

 MSE 0.011 0.001 0.03 0.002 0.001 0.000 

 Bias 0.103 0.021 0.17 0.042 0.001 0.002 

MSE is mean squared error; SE is standard error; ST is simulated truth.  

 

 

 



53 | P a g e  
 

Figure 12: The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of index test when 

the reference standard is imperfect and better than the index test. 
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The second scenario explored assumes that the reference standard is worse than the 

index tests. The sensitivity and specificity of the index test are both 0.9 and the 

sensitivity and specificity of the reference standard are 0.8 and 0.7 respectively. The 

prevalence of the target condition is 0.3. The estimated values are presented in Table 

8 and Figure 13. 

From Table 8 and Figure 13, it is clear that the unadjusted and Brenner corrected 

sensitivities and specificities of the index test are poorly estimated irrespective of the 

sample size. Their means are less than the simulated truth. The Staquet et al corrected 

sensitivity and specificity are estimated with less bias. However, at small sample sizes, 

say below 200, there are illogical results. Illogical results imply having sensitivities, 

specificities or prevalence that are above one or below zero. Illogical results are 

discussed later in this section. The yellow line is the simulated true values of the 

sensitivity and the specificity of the index test 
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Table 8: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect and the index 

test is better than the reference standard 

Sample  

size 

 Methods  

 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 

50 Mean 0.524 0.809 0.42 0.743 -2 x1013 0.906 

 SE 0.107 0.078 0.085 0.07 2.04 x 1014 0.110 

 MSE 0.153 0.014 0.238 0.03 4.19 x 1028 0.012 

 Bias 0.376 0.091 0.48 0.157 2.03 x 1013 0.006 

100 Mean 0.520 0.811 0.414 0.784 -1.9 x 1013 0.898 

 SE 0.073 0.051 0.055 0.045 1.94 x 1014 0.072 

 MSE 0.149 0.011 0.239 0.025 3.77 x 1028  0.005 

 Bias 0.38 0.089 0.486 0.152 1.93 x 1013 0.002 

200 Mean 0.523 0.816 0.417 0.751 0.917 0.907 

 SE 0.053 0.036 0.039 0.031 0.176 0.053 

 MSE 0.145 0.008 0.235 0.023 0.031 0.003 

 Bias 0.37 0.084 0.483 0.149 0.017 0.007 
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Table 8 cont.: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect and the 

index test is better than the reference standard 

 

Sample size Methods  
 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 

500 Mean 0.53 0.815 0.421 0.75 0.923 0.905 

 SE 0.033 0.023 0.025 0.021 0.121 0.031 

 MSE 0.138 0.008 0.23 0.023 0.015 0.001 

 Bias 0.370 0.085 0.479 0.150 0.023 0.005 

1000 Mean 0.526 0.814 0.418 0.75 0.913 0.900 

 SE 0.024 0.017 0.018 0.015 0.080 0.023 

 MSE 0.141 0.008 0.232 0.023 0.006 0.001 

 Bias 0.374 0.086 0.482 0.150 0.013 0.000 

MSE is mean squared error; SE is standard error; ST is simulated truth.  
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Figure 13: The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of index test 

when the reference standard is imperfect and worse than the index test. 
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The third scenario explored assumes that the reference standard and the index test 

have the same sensitivity and specificity. The simulated true values of the sensitivities 

and specificities of the reference standard and index test are 0.9. The prevalence of 

the target condition is 0.3. The estimated values are presented in Table 9 and Figure 

14. 

From Table 9 and Figure 14, the unadjusted and Brenner corrected sensitivities and 

specificities of the index test are poorly estimated irrespective of the sample size as 

their means are less than the simulated truth. The estimates obtained from the Brenner 

correction method are usually worse than the unadjusted estimates. The Staquet et al 

corrected sensitivity and specificity are estimated with less bias.  The yellow line is the 

simulated true values of the sensitivity and the specificity of the index test
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Table 9: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect and has same 

sensitivity and specificity as the index test. 

Sample  

size 

 Methods  

 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 

50 Mean 0.729 0.861 0.623 0.827 0.924 0.0899 

 SE 0.108 0.061 0.095 0.06 0.294 0.065 

 MSE 0.041 0.005 0.086 0.009 0.087 0.004 

 Bias 0.171 0.039 0.277 0.073 0.024 0.001 

100 Mean 0.732 0.862 0.623 0.830 0.912 0.898 

 SE 0.074 0.041 0.064 0.04 0.117 0.044 

 MSE 0.034 0.003 0.081 0.006 0.014 0.002 

 Bias 0.168 0.038 0.277 0.07 0.012 0.002 

200 Mean 0.743 0.868 0.633 0.835 0.915 0.905 

 SE 0.053 0.031 0.046 0.030 0.076 0.034 

 MSE 0.028 0.002 0.073 0.005 0.006 0.001 

 Bias 0.158 0.032 0.267 0.065 0.015 0.005 
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Table 9 cont.: Unadjusted and corrected sensitivities and specificities of the index test when the reference standard is imperfect has same 

sensitivity and specificity as the index test  

Sample size Methods  
 Unadjusted 

Sensitivity 

Unadjusted 

Specificity 

Brenner 

Sensitivity 

Brenner 

Specificity 

Staquet et al 

Sensitivity 

Staquet et al 

specificity 

Properties 

measured 

ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 ST = 0.9 

500 Mean 0.734 0.863 0.628 0.831 0.899 0.900 

 SE 0.032 0.019 0.028 0.018 0.045 0.020 

 MSE 0.029 0.002 0.075 0.005 0.002 0.000 

 Bias 0.166 0.037 0.272 0.069 0.001 0.000 

1000 Mean 0.733 0.865 0.627 0.832 0.898 0.901 

 SE 0.025 0.013 0.021 0.013 0.035 0.015 

 MSE 0.029 0.001 0.075 0.005 0.001 0.000 

 Bias 0.167 0.035 0.273 0.068 0.002 0.001 

MSE is mean squared error; SE is standard error; ST is simulated truth.  
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Figure 14: The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of index test when 

the reference standard is imperfect and have same sensitivity and specificity as the index test. 
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Other combinations 

In this section, four scenarios were explored where the sensitivity (or specificity) of 

the RS or IT varied from zero to one (with an increments of 0.01). 

a) Scenario one: The sensitivity of the RS was varied from 0 to 1 as the specificity 

of RS and IT, and the sensitivity of IT were fixed at 0.9, 0.8 and 0.8 respectively. 

b) Scenario two: The specificity of the RS was varied from 0 to 1 as the sensitivity 

of RS and IT, and the specificity of IT were fixed at 0.9, 0.8 and 0.8 respectively. 

c) Scenario three: The sensitivity of the IT was varied from 0 to 1 as the specificity 

of RS and IT, and the sensitivity of RS were fixed at 0.9, 0.8 and 0.9 respectively. 

d) Scenario three: The specificity of the IT was varied from 0 to 1 as the sensitivity 

of RS and IT, and the specificity of RS were fixed at 0.9, 0.8 and 0.9 respectively. 

The mean sensitivity and mean specificity of the IT in the four scenarios are reported 

in Figure 15 as (a), (b), (c), and (d) respectively.  From Figure 15, the estimates 

obtained from the Staquet et al approach are approximately equivalent to the simulated 

true values for the index test. However, when the sensitivity (or specificity) of the RS 

is low (< 0.3), the estimates obtained using the Staquet et al correction method could 

be inaccurate. Conventionally, the reference standard in clinical case studies do not 

have low sensitivity or specificity. The sensitivity and specificity of a reference standard 

are often above 0.5 (readers can explore further combination of sensitivity and 

specificity using the R-Code in the Appendix B.1).   
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Figure 15: The unadjusted and corrected mean sensitivity and mean specificity of the index test when the sensitivity (or specificity) of the 
reference standard or index test is varied and the prevalence is fixed at 0.3.   

(a) 

 

(b) 

 

(c) 

 

(d) 
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Impact of varying the prevalence on unadjusted and correction methods  

In this section, I wish to explore the impact of varying the prevalence of the target 

condition given that the sensitivity and specificity of the index test and reference 

standard are fixed across simulated samples. This investigation will help to understand 

which of the methods are the least impacted by changes in prevalence and which 

methods uphold the assumption of constant sensitivity and specificity across 

populations of differing prevalence. 

Multiple (200) samples of 1000 participants were simulated at 100 different prevalence 

rates (varying from 0 to 1). The mean unadjusted and corrected mean sensitivities and 

mean specificities of the index test are displayed Figure 16.  Changes in the prevalence 

of the disease have a large impact on the unadjusted and Brenner corrected 

sensitivities and specificities of the index test compared to the Staquet et al corrected 

sensitivity and specificity. The unadjusted and Brenner corrected sensitivities increase 

towards the simulated truth as the prevalence of the target condition increases. The 

Brenner and unadjusted specificities tend toward the simulated truth as the prevalence 

decreases. It could be that the estimates obtained via the classical approach and 

Brenner correction method are impacted by the sample prevalence. With the Staquet 

et al correction method, irrespective of the varying prevalences, the estimated 

sensitivity and specificity of the index test are the same as the simulated truth and are 

constant. This indicates that the Staquet et al correction method upholds the 

assumption of constant sensitivity and specificity across all populations (with different 

prevalences). However, there are some illogical sensitivities produced when the 

prevalence is very low.  
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Figure 16: Changes in prevalence largely impact the unadjusted and Brenner 

corrected sensitivity and specificity of the index test, unlike the Staquet et al 

correction method. 

  

 

Illogical results 

Illogical results for sensitivities and specificities occur when their estimated values are 

above or below their possible range, which in each case is zero to one inclusive. 

Undefined sensitivities or specificities occur when the estimated specificities or 

sensitivities are mathematically undefined.  In our results (Table 8 and Figure 13), 

illogical and undefined estimates were obtained for the Staquet et al correction method 

but not the Brenner correction method or the classical method. There are various 

reasons for obtaining illogical or undefined estimates such as high or low prevalence 

and small sample sizes. When the sample size is small (for example 50), there is the 

likelihood of having undefined specificities when the prevalence is high (for example 

0.85). When the estimated prevalence is 1, illogical results are always obtained in the 

Staquet et al method. Although, this case would not be of interest in practice. A 

consequence of undefined specificities is that; it is impossible to obtain a mean 

specificity. Therefore, they are excluded when computing the mean specificities, 

standard deviation, bias and MSE from the Staquet et al estimands. Illogical 
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sensitivities (specificities) occurs when the sample size is small, and the prevalence is 

very low (high).  

Table 10 reports the number of illogical and undefined estimates produced out of 200 

random simulated samples at various sample sizes and prevalences using the Staquet 

et al correction method. When the prevalence is low (e.g. 0.1) or very high (e.g. 0.95), 

there is a large number of illogical estimates, even with large sample sizes.  
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Table 10: Number of illogical and undefined results obtained at various sample sizes 

and prevalences 

 

Sample size 

Number of samples out of 200 producing illogical sensitivity and/or 

specificity at different prevalence values (number of samples with 

undefined results) 

Prevalence  

0.1 0.2 0.3 0.5 0.85 0.95 

50 64 (0) 33 (0) 0 (0) 3 (0) 42 (6) 57 (23) 

80 55 (0) 26 (0) 0 (0) 0 (0) 27 (2) 65 (16) 

100 49(0) 23 (0) 0 (0) 0 (0) 18 (0) 53 (15) 

120 48 (0) 13 (0) 0 (0) 0 (0) 12 (0) 64 (8) 

150 52 (0) 11(0) 0 (0) 0 (0) 6 (0) 54 (6) 

200 44 (0) 13 (0) 0(0) 0 (0) 4 (0) 58 (3) 

250 36 (0) 10 (0) 0 (0) 0 (0) 3 (0) 42 (4) 

300 27 (0) 6 (0) 0 (0) 0 (0) 3 (0)  46 (0) 

350 22 (0) 0 (0) 0 (0) 0 (0) 3 (0) 46 (2) 

400 22 (0) 2 (0) 0 (0) 0 (0) 0 (0) 46 (1) 

500 15 (0) 0 (0) 0 (0) 0 (0) 0 (0) 38 (0) 

700 14 (0) 0 (0) 0 (0) 0 (0) 0 (0)  26 (1) 

1000 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 11 (0) 
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 Conditions for obtaining illogical estimates using Staquet et al119 approach 

The Staquet et al119 correction method is explored algebraically to understand the 

conditions for obtaining illogical estimates. Illogical estimates are estimates (sensitivity, 

specificity and prevalence) that are outside [0, 1]. 

Illogical estimates for prevalence 

Algebraically, illogical estimate (greater than one) is obtained for the estimated 

prevalence if: 

𝑁(𝑆𝑝𝑅𝑆 − 1) + 𝑒 >  𝑁(𝑆𝑛𝑅𝑆 + 𝑆𝑝𝑅𝑆 − 1) 

𝑁𝑆𝑝𝑅𝑆 −𝑁 + 𝑒 >  𝑁𝑆𝑛𝑅𝑆 +𝑁𝑆𝑝𝑅𝑆 − 𝑁 

𝑒 >  𝑁𝑆𝑛𝑅𝑆 

𝑆𝑛𝑅𝑆 <
𝑒

𝑁
= 𝑃𝑟𝑟                                        𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (1) 

Illogical estimates for sensitivity and specificity  

Algebraically, illogical estimates are obtained for the sensitivity of the IT via the Staquet 

et al119 approach if: 

𝑆𝑝𝑅𝑆 <
𝑑

ℎ
= 𝑟𝑁𝑃𝑉                                                                  𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (2) 

𝑆𝑝𝑅𝑆 < 
𝑏

𝑔
= 𝑟𝑃𝑃𝑉′     𝒂𝒏𝒅      𝑆𝑝𝑅𝑆 >

𝑓

𝑁
= 1 − 𝑃𝑟𝑟 = 𝑃𝑟𝑟′                    𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (3𝑎) 

𝑆𝑝𝑅𝑆 > 
𝑏

𝑔
= 𝑟𝑃𝑃𝑉′     𝒂𝒏𝒅      𝑆𝑝𝑅𝑆 <

𝑓

𝑁
= 1 − 𝑃𝑟𝑟 = 𝑃𝑟𝑟′                    𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (3𝑏) 

Condition (2) produces an estimated corrected sensitivity whose absolute value is 

greater than one and condition (3) produces a negative estimate that is estimate less 

than zero.  
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Similarly, illogical estimates are obtained for the specificity of IT if:  

𝑆𝑛𝑅𝑆 < 
𝑎

𝑔
= 𝑟𝑃𝑃𝑉                                                               𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (4) 

𝑆𝑛𝑅𝑆 < 
𝑐

ℎ
= 𝑟𝑁𝑃𝑉′    and    𝑆𝑛𝑅𝑆 > 

𝑒

𝑁
= 𝑃𝑟𝑟                                     𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (5𝑎)  

𝑆𝑛𝑅𝑆 > 
𝑐

ℎ
= 𝑟𝑁𝑃𝑉′   and    𝑆𝑛𝑅 < 

𝑒

𝑁
= 𝑃𝑟𝑟                                       𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (5𝑏)  

Condition (4) produces an estimated corrected specificity whose absolute value is 

greater than one, and condition (5) produces negative estimates.  

The  𝒓𝑵𝑷𝑽 refers to the “relative negative predictive value”. It is the proportion of 

participants with negative results in both the IT and RS divided by total number of 

participants with a negative IT result. It is termed relative because it is obtained in 

relation to the RS which is imperfect. If the RS was a gold standard, it would be called 

the negative predictive value (NPV). Therefore, the complement of  𝑟𝑁𝑃𝑉 (𝑟𝑁𝑃𝑉′), is 

estimated as: 

1 − 𝑟𝑁𝑃𝑉 = 𝑟𝑁𝑃𝑉′ = 1 −
𝑑

ℎ
=
𝑐

ℎ
 

The “relative positive predictive value (rPPV)” is the proportion of participants with 

positive test results in both the IT and RS divided by the total number of participants 

with a positive IT result.   

Key conclusions from conditional independence assumption. 

Following the simulation studies in this section, firstly, when the reference standard is 

perfect, the classical method, Brenner corrected method and Staquet et al corrected 

method will all accurately estimates the sensitivity and specificity of the index test 

irrespective of the prevalence in the population and sample size. Secondly, when the 

reference standard is imperfect and conditionally independent of the index test given 

the true disease status, it does not matter whether the sensitivity and specificity of the 

reference standard is better than the index test, or worse or they are the same, the 

Staquet et al method is an unbiased and consistent estimator for sensitivities and 
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specificities. It outperformed the Brenner corrected and classical methods irrespective 

of the prevalence rates. Thirdly, estimates obtained using the classical and Brenner 

methods are always affected by the prevalence of the target condition. If the 

prevalence is high, the sensitivity is more likely to be estimated correctly and the 

specificity of the index test is underestimated, and if the prevalence is low the sensitivity 

is underestimated, and the specificity is more likely to be estimated correctly. Finally, 

the classical and Brenner methods do not produce illogical results (that is estimates 

outside 0 and 1) irrespective of the sample size or prevalence of the target condition. 

However, illogical estimates can be obtained with the Staquet et al method especially 

if the prevalence of the diseases is very low or high. Thus, having illogical results is not 

a sufficient indication of conditional dependence between the two tests. It could be that 

the sample size is small and the distribution of participants across the cells in the 2 x 

2 contingency table is the reason for obtaining the illogical results. 

3.3.2. Comparison of correction methods – conditional dependence 

Two medical tests (say T1 and T2) are assumed to be statistically conditionally 

dependent given the true disease status (D) if:  

Pr(𝑇1 = 1, 𝑇2 = 1|𝐷 = 𝑑) ≠ Pr(𝑇1 = 1|𝐷 = 𝑑) × Pr(𝑇2 = 1|𝐷 = 𝑑);           𝑑 = 0,1   

In this case, the correlation coefficient (𝜌) between the two tests given the true disease 

status (the diseased or non-diseased group) is not equal to zero (𝜌 ≠ 0 ). The 

correlation between the two tests, can be expressed using the covariance between the 

two tests results among the diseased and the non-diseased groups. Therefore, to 

introduce conditional dependence between the two tests (index test and reference 

standard) in our simulation, the fixed effects modelling approach54, 122, 286, 291, 292 will be 

employed. The joint probability of any two tests (say T1 and T2) given the true disease 

status can be expressed as54, 286: 

𝑃(𝑇1 = 𝑡1, 𝑇2 = 𝑡2|𝐷 = 𝑑) =  ∏𝑃(𝑇𝑖 = 𝑡𝑖|𝐷 = 𝑑)

2

𝑖=1

+ 𝜑𝑡1,𝑡2|𝑑 

where  𝜑𝑡1,𝑡2|𝑑  is the conditional dependence term among the diseased / non-diseased 

group. The joint probability of the two tests is expressed as: 

𝑃(𝑇1 = 𝑡1, 𝑇2 = 𝑡2) = 
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𝑝∏𝑃(𝑇𝑖 = 𝑡𝑖|𝐷 = 1)

2

𝑖=1

+ 𝜑𝑡1,𝑡2|1 + (1 −  𝑝)∏𝑃(𝑇𝑖 = 𝑡𝑖|𝐷 = 0)

2

𝑖=1

+ 𝜑𝑡1,𝑡2|0  

The two tests explored in the simulation study reported in this chapter are the index 

test denoted by T and the reference test denoted by R. Constraints are required on the 

covariance parameters to ensure that the correlations remain in the interval of -1 and 

1. The inequality54 and equality constraints of the conditional dependence terms286 

using the fixed effects model are expressed as follows: 

The inequality constraints are: 

−𝑆𝑛𝑅 × 𝑆𝑛𝑇 +max(0, 𝑆𝑛𝑅 + 𝑆𝑛𝑇 − 1) ≤ 𝜑1,1|1  ≤ min(𝑆𝑛𝑅 , 𝑆𝑛𝑇) − (𝑆𝑛𝑅  × 𝑆𝑛𝑇) 

−𝑆𝑝𝑅 ×  𝑆𝑝𝑇 +max(0, 𝑆𝑝𝑅 + 𝑆𝑝𝑇 − 1) ≤ 𝜑0,0|0  ≤ min(𝑆𝑝𝑅 , 𝑆𝑝𝑇) − (𝑆𝑝𝑅 ×  𝑆𝑝𝑇) 

where, 𝜑1,1|1 is the covariance term among the diseased participants with a positive 

response on both the index test and reference standard and 𝜑0,0|0 is the covariance 

term among the non-diseased participants with a negative response on both the index 

test and reference standard. The maximum and minimum values of the covariance 

terms depend on the sensitivity and specificity of the index test and reference standard.  

The equality constraints are: 

𝜑0,0|𝑑 + 𝜑0,1|𝑑 = 0      𝑜𝑟     𝜑0,1|𝑑 + 𝜑1,1|𝑑 = 0 ;  

𝜑0,0|𝑑 + 𝜑1,0|𝑑 = 0      𝑜𝑟      𝜑1,0|𝑑 + 𝜑1,1|𝑑 = 0;     

𝑑 = 0,1   

and  

𝜑0,0|𝑑 + 𝜑0,1|𝑑 + 𝜑1,0|𝑑 + 𝜑1,1|𝑑 = 0   

Following the inequality and equality constraints, there are seven possible 

combinations of covariances that can exist between the two tests given the true 

disease status. A dependence on the sensitivities of both tests (correlation between 

the two tests in the diseased group) does not imply dependence on the specificities of 

the two tests (correlation between the two tests in the non-diseased group)292. These 

seven possible combinations are: 

 Case 1: The covariances between the two tests in the diseased and non- 

diseased groups are both positive.  



72 | P a g e  
 

 Case 2: The covariances between the two tests in the diseased and non- 

diseased groups are both negative.  

 Case 3: The covariance between the two tests in the diseased group is positive 

and the covariance in the non- diseased group is negative. 

 Case 4: The covariance between the two tests in the diseased group is 

negative and the covariance in the non- diseased group is positive. 

 Case 5: The covariance between the two tests in the diseased group is either 

positive or negative and the covariance in the non-diseased group is 0. 

 Case 6: The covariance between the two tests in the non – diseased group is 

either positive or negative and the covariance in the diseased group is 0. 

 Case 7: The covariance between the two tests in the diseased and non- 

diseased groups are zero. This is a special case of when the two tests are 

conditionally independent given the true disease status.  

Cases 1 – 6 are known as pairwise correlation54, 286 because the two tests’ responses 

are correlated. Cases 1 – 6 will have different variations because changing the values 

of the covariance terms among diseased and / or non – diseased groups will always 

yield different cell probabilities, different cell frequencies (see Table 11) and ultimately 

different estimates of the sensitivity and specificity of the index test if the conditional 

dependence between the two tests is not taken into consideration.  It is important to 

note that if the value of the covariance term is very low (that is close to zero) then it is 

likely that it will have no significant impact on the estimated sensitivity and / or 

specificity of the index test. The probability of each cell in the 4 x 2 and 2 x 2 cell 

probabilities tables given that the reference standard and the index test are 

conditionally dependent given the true disease status is depicted in Table 11.



73 | P a g e  
 

Table 11: 4 x 2 and 2 x 2 tables of cell probabilities classified by the true disease, reference standard and index tests results  

 Diseased (+) Diseased (-) 

 RS + RS – RS + RS – 

T + 𝑝1(𝑆𝑛𝑅 × 𝑆𝑛𝑇 +𝜑11|1) 𝑝1 ((1 − 𝑆𝑛𝑅)𝑆𝑛𝑇 + 𝜑01|1) 𝑝0((1 − 𝑆𝑝𝑅)(1 − 𝑆𝑝𝑇)  + 𝜑11|0) 𝑝0(𝑆𝑝𝑅(1 − 𝑆𝑝𝑇) + 𝜑01|0) 

T – 𝑝1(𝑆𝑛𝑅(1 − 𝑆𝑛𝑇) + 𝜑10|1) 𝑝1((1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) + 𝜑00|1) 𝑝0(𝑆𝑝𝑇(1 − 𝑆𝑝𝑅) + 𝜑10|0) 𝑝0(𝑆𝑝𝑅 × 𝑆𝑝𝑇 + 𝜑00|0) 

OR 

 Reference standard (RS) 

 Positive (+) Negative (-) 

T + 𝑝1(𝑆𝑛𝑅 × 𝑆𝑛𝑇 +𝜑11|1) + 𝑝0((1 − 𝑆𝑝𝑅)(1 − 𝑆𝑝𝑇)  + 𝜑11|0) 𝑝1 ((1 − 𝑆𝑛𝑅)𝑆𝑛𝑇 + 𝜑01|1) + 𝑝0(𝑆𝑝𝑅(1 − 𝑆𝑝𝑇) + 𝜑01|0) 

T – 𝑝1(𝑆𝑛𝑅(1 − 𝑆𝑛𝑇) + 𝜑10|1) + 𝑝0(𝑆𝑝𝑇(1 − 𝑆𝑝𝑅) + 𝜑10|0) 𝑝1 ((1 − 𝑆𝑛𝑅)(1 − 𝑆𝑛𝑇) + 𝜑00|1) + 𝑝0(𝑆𝑝𝑅 × 𝑆𝑝𝑇 + 𝜑00|0) 

SnR is sensitivity of reference standard; SnT is sensitivity of index test; SpR is specificity of the reference standard; SpT is specificity of the 
index test; RS is reference standard; T+ is index test positive; T- is index test negative, p1 is the prevalence of the target condition; p0 is 1 
– p1. 𝜑00|0, 𝜑11|0, 𝜑01|0, 𝜑10|0, 𝜑00|1, 𝜑11|1, 𝜑01|1, 𝜑10|1 are covariance terms.  

 



74 | P a g e  
 

Perfect reference standard 

Taking the inequality constraints 54, 286, we can see that the covariance term among 

the diseased group is zero.  

−𝑆𝑛𝑅 × 𝑆𝑛𝑇 +max(0, 𝑆𝑛𝑅 + 𝑆𝑛𝑇 − 1) ≤ 𝜑1,1|1  ≤ min(𝑆𝑛𝑅 , 𝑆𝑛𝑇) − (𝑆𝑛𝑅  × 𝑆𝑛𝑇) 

⇒ −1 × 𝑆𝑛𝑇 +max(0,1 + 𝑆𝑛𝑇 − 1) ≤ 𝜑1,1|1  ≤ min(1, 𝑆𝑛𝑇) − (1 × 𝑆𝑛𝑇) 

⇒ −𝑆𝑛𝑇 + 𝑆𝑛𝑇 ≤ 𝜑1,1|1  ≤ 𝑆𝑛𝑇 − 𝑆𝑛𝑇 

⇒  0 ≤ 𝜑1,1|1  ≤ 0 

The same applies to the non-diseased group. This implies that the two tests are 

conditionally independent. Thus, provided that the reference standard employed in the 

study is a perfect test, there is no need to adjust for any conditional dependence as it 

does not exist. This is simple to understand as the dependence is between the errors 

made by the tests, and a perfect reference standard would not make any errors. No 

simulation pertaining to a perfect reference standard is performed in this section as 

this will be a replica of the simulation performed in section 3.3.1 while assuming the 

reference standard is perfect.  

Imperfect reference standard 

In this section, the reference standard is not perfect, and it is correlated with the index 

test. The simulated true values for the sensitivity and specificity of the reference 

standard are both 0.9. The sensitivity and specificity of the index test are both 0.8 and 

the prevalence of the target condition is 0.3. Following the inequality constraints, the 

bounded value of the covariance terms among the diseased group is:  

−𝑆𝑛𝑅 × 𝑆𝑛𝑇 +max(0, 𝑆𝑛𝑅 + 𝑆𝑛𝑇 − 1) ≤ 𝜑1,1|1  ≤ min(𝑆𝑛𝑅 , 𝑆𝑛𝑇) − (𝑆𝑛𝑅  × 𝑆𝑛𝑇) 

⇒ −0.02 ≤  𝜑1,1|1 ≤ 0.08 

 and among the non-diseased group is: 

−𝑆𝑝𝑅 ×  𝑆𝑝𝑇 +max(0, 𝑆𝑝𝑅 + 𝑆𝑝𝑇 − 1) ≤ 𝜑0,0|0  ≤ min(𝑆𝑝𝑅 , 𝑆𝑝𝑇) − (𝑆𝑝𝑅 ×  𝑆𝑝𝑇) 

⇒ −0.02 ≤  𝜑0,0|0 ≤ 0.08 

In addition to the Brenner correction method and the Staquet et al correction method, 

the Brenner correction method for two positively correlated tests (Equations 6 and 7) 

were also investigated in this section (section 3.3.2). To investigate the performance 
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of these correction methods assuming that the tests are conditionally dependent, 100 

samples of 1000 participants were simulated at 100 different prevalence values (from 

0 to 1) using the multinomial distribution. The different scenarios of conditional 

dependence investigated were cases 1 – 6. Case seven which is a case of conditional 

independence, has already being explored in section 3.3.1.  The estimated unadjusted 

and corrected sensitivities and specificities of the index test under different variation of 

conditional dependence between the index test and the reference standard are 

displayed in Figure 17 (plots a – h). In Figure 17, the Brennerpos represents estimates 

obtained from the second pair of estimators proposed by Brenner, which is employed 

to correct for the sensitivity and specificity of the index test given that the index test 

and reference standard are positively correlated. Each plot displayed in Figure 17 

labelled a – h is: 

a. Case 1:  𝑐𝑜𝑣𝑑 = 𝑐𝑜𝑣𝑛𝑑 = 0.08. 

b. Case 2: 𝑐𝑜𝑣𝑑 = −0.02;  𝑐𝑜𝑣𝑛𝑑 = −0.01. 

c. Case 3: 𝑐𝑜𝑣𝑑 = 0.07;  𝑐𝑜𝑣𝑛𝑑 = −0.01. 

d. Case 4: 𝑐𝑜𝑣𝑑 = −0.02;  𝑐𝑜𝑣𝑛𝑑 = 0.08. 

e. Case 5a: 𝑐𝑜𝑣𝑑 = 0.08;  𝑐𝑜𝑣𝑛𝑑 = 0. 

f. Case 5b: 𝑐𝑜𝑣𝑑 = −0.02;  𝑐𝑜𝑣𝑛𝑑 = 0. 

g. Case 6a: (𝑐𝑜𝑣𝑑 = 0;  𝑐𝑜𝑣𝑛𝑑 = 0.08. 

h. Case 6b: 𝑐𝑜𝑣𝑑 = 0;  𝑐𝑜𝑣𝑛𝑑 = −0.01. 

From the plots, all the methods perform poorly in estimating the sensitivity and 

specificity as they are either over estimated or underestimated.  

Key conclusions from the conditional dependence assumption. 

Following the simulation study, when the reference standard and the index test are 

conditionally dependent, all estimators (classical, Brenner and Staquet et al correction 

methods) performs poorly as they either underestimate or overestimate the accuracy 

measures of the index test. This is expected for the explored methods except the 

Brenner correction method for positively correlated tests in case 1; because the 

Brenner correction method for positively correlated tests was developed to be 

implemented when the two tests are conditionally dependent given the true disease 
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status. In addition, the sensitivity and specificity estimated from the Staquet et al 

approach is not constant across different populations unlike when the reference 

standard and index tests are conditionally independent. Thus, the estimates change 

with the prevalence of the target condition. Furthermore, there are still illogical results 

produced when using the Staquet et al methods, especially at very high or very low 

prevalence while the Brenner and Classical methods do not produce illogical 

estimates. 
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Figure 17: The unadjusted and corrected sensitivities and specificities of the index test under different variations of conditional dependence 
between the index test and the reference standard. 

(a) 

 

(b) 

 
(c) 

 

(d) 
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Figure 17 cont.: The unadjusted and corrected sensitivities and specificities of the index test under different variations of conditional dependence 
between the index test and reference standard  

(e) 

 

(f) 

 
(g) 

 

(h) 
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3.4. Application of methods to a clinical dataset 

In this section three clinical datasets from two published articles (Mathews et al125 and 

Matos et al124) were reanalysed to explore how the different methods (classical, 

Brenner and Staquet et al correction methods) employed can affect the estimates 

obtained and in turn potentially affect the adoption and usage of the evaluated test in 

clinical practice. In addition, exploration of these clinical datasets could support the 

findings observed in the simulation studies.  

Reanalysis of the clinical dataset by Mathews et al 

The extracted clinical dataset from Mathews et al125 (Table 12) aims to evaluated the 

sensitivity and specificity of high resolution anoscopy (HRA) cytology in discriminating 

HIV patients into high grade squamous intraepithelial lesion (HSIL) and atypical 

squamous cells high grade (ASC-H) or not.  

Table 12: Results of HRA cytology and punch biopsy in classifying patients into high 

grade and non-high grade squamous intraepithelial lesion  

 Biopsy ≥ 𝑨𝑰𝑵𝟐 Biopsy < 𝑨𝑰𝑵𝟐 Total 

Cytology HSIL or ASC-

H 

40 22 62 

Cytology < HSIL 22 177 199 

 62 199 261 

HSIL: high grade squamous intraepithelial lesion; ASC-H: atypical squamous cells; AIN: anal 

intraepithelial neoplasia. Biopsy ≥ AIN2 indicate positive results and Biopsy < AIN2 indicate 

negative result.  

 

The punch biopsy was employed as the reference standard, which is assumed to be 

imperfect. According to Mathews et al125, the sensitivity and specificity of punch biopsy 

were extracted from Byrom et al125, 293 which are 0.74 and 0.91 respectively. The study 

by Mathews et al125 employed the Staquet et al approach to correct for the sensitivity 

and specificity of HRA cytology given that the accuracy measures of punch biopsy are 

known and assuming both tests (index and reference standard) are conditionally 

independent. In this research, this dataset (Table 12) was reanalysed using the 

Brenner correction method.  
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The estimated population prevalence (�̂�) and sample prevalence (𝑃𝑟𝑟) are 0.27 and 

0.23 respectively (≅0.3), indicating a very low likelihood, based on the simulation 

study, of obtaining an illogical result when using the Staquet et al approach.  

The corrected and unadjusted sensitivity and specificity of HRA cytology are presented 

in Table 13. 

Table 13: Unadjusted and corrected sensitivities and specificities of HRA cytology  

 

Accuracy 

measures 

Methods 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al (95% CI) 

Sensitivity 0.65 (0.52, 0.75) 0.50(0.38, 0.62) 0.89 (0.79, 0.95) 

Specificity  0.89 (0.84, 0.93) 0.85 (0.79, 0.89) 0.96 (0.92, 0.98) 

CI is confidence interval 

 

Following the results obtained (Table 13), firstly, the estimates from the Staquet et al 

approach are not illogical. Secondly, not correcting for the imperfection of the reference 

standard (that is using the classical method), underestimates the sensitivity and 

specificity of HRA cytology when compared to the estimates obtained via the Staquet 

et al approach. In addition, correcting for the imperfection of the reference standard 

using the Brenner correction method further underestimates the sensitivity and 

specificity of HRA cytology. Therefore, discouraging the use of HRA cytology to rule 

out the diagnosis of HSIL because the sensitivity of HRA cytology via the Brenner 

correction method is 0.5. Furthermore, correcting for the imperfection of the reference 

standard (biopsy) using the Staquet et al correction method, adjusts the values of the 

sensitivity and specificity of HRA cytology. Thus, having an excellent sensitivity of 0.9 

and an excellent specificity that is close to one.  

Reanalysis of the clinical dataset by Matos et al 

The dataset considered the detection of occlusal caries lesions in primary teeth. The 

Matos et al 124 study used the Brenner117 correction method to estimate the sensitivities 

and specificities of two fluorescence – based devices (Fluorescence camera (FC) and 

DIAGNOdent – a pen type laser fluorescence (LFpen)) used in detecting occlusal 

caries lesions, under the assumption that the sensitivity and specificity of the reference 

standard – International Caries Detection and Assessment System (ICDAS) criteria) – 
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are known. The fluorescence devices (FC and LFpen) were assumed to be 

conditionally independent of the reference standard. In this research study, the dataset 

was reanalysed using the classical method, the Brenner correction method, and the 

Staquet et al correction method. 

The two target conditions are non-cavitated caries lesions (NC) and Dentine caries 

lesions (D3). D3 stands for Development Dental Defects. The total number of teeth 

considered for detecting noncavitated lesions (NC) were 383, of which 91.6% 

(351/383) had NC and 8.4% (32/383) were sound using visual inspection as the 

reference standard. The total number of teeth considered for D3 were 407, of which 

94.8% (386/407) were sound and 5.2% (21/407) had dentine caries lesions using 

operative intervention as the reference standard. The teeth were treated 

independently.   

According to Matos et al124, the sensitivity and specificity of the reference standard 

were obtained from previous studies294-298.  For NC detection, the sensitivity and 

specificity of visual inspection (reference standard) are 0.796 and 0.799 respectively. 

For the D3, the sensitivity and specificity of the reference standard are 0.786 and 0.995 

respectively.  

The 2 x 2 classification of the patients’ teeth stratified by two different examiners and 

the two fluorescence devices (FC and LFpen) are reported in Table 14 and Table 16 

(reproduced from the result  tables in the  Matos et al 124 study). I will reanalyse the 

dataset using the Matos et al124 stated accuracy measures for the reference standards. 

Reanalysing the dataset in Table 14, the results of the unadjusted, Brenner corrected 

and the Staquet et al corrected sensitivity and specificity are reported in Table 15. The 

sample prevalence is 0.916. 
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Table 14: Results of the visual inspection (reference standard) and fluorescence - based devices (LFpen and FC) by two separate 
examiners 

Visual inspection for NC (Examiner 1 ) 

Index test  Positive (+)  Negative ( - ) 

LFpen positive 241   6 

LFpen negative 110 26 

Total  351 32 

Visual inspection for NC (Examiner 1 ) 

Index test  Positive (+)  Negative ( - ) 

FC positive 156 3 

FC negative 195 29 

Total  351 32 

Visual inspection for NC (Examiner 2 ) 

Index test  Positive (+)  Negative ( - ) 

LFpen positive 237   6 

LFpen negative 114 26 

Total  351 32 

Visual inspection for NC (Examiner 2 ) 

Index test  Positive (+)  Negative ( - ) 

FC positive 158 4 

FC negative 193 28 

Total  351 32 
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Table 15: Sensitivity and Specificity of LFpen and FC stratified by examiner 1 and 2 

with the NC detection. 

Non-cavitated caries lesion (NC)  

Methods – LFpen (Examiner 1) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.69 (0.64, 0.73) 0.68 (0.63, 0.73) 0.70 (0.65, 0.75) 

Specificity  0.81 (0.65, 0.91) 0.44 (0.28, 0.61) 0.04 (0.01, 0.17) 

Methods – LFpen (Examiner 2) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.68 (0.63, 0.73) 0.66 (0.61, 0.71) 0.69 (0.64, 0.74) 

Specificity  0.81 (0.64, 0.91) 0.45 (0.29, 0.62) 0.06 (0.02, 0.20) 

Methods – FC (Examiner 1) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.44 (0.39, 0.50) 0.44 (0.39, 0.49) 0.45 (0.40, 0.50) 

Specificity  0.91 (0.76, 0.97) 0.65 (0.48, 0.79) 0.36 (0.22, 0.53) 

Methods – FC (Examiner 1) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.45 (0.40, 0.50) 0.44 (0.39, 0.49) 0.46 (0.41, 0.51) 

Specificity  0.88 (0.73, 0.95) 0.64 (0.47, 0.78) 0.37 (0.23, 0.54) 

CI is confidence interval; LFpen: laser florescence pen; FC: fluorescence camera 
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Following the estimated sensitivities and specificities of LFpen and FC (Table 15) in 

discriminating between participants with non-cavitated caries (NC); firstly, the results 

appear to be consistent across different examiners. Secondly, the sensitivity of LFpen 

and FC are consistent across all methods confirming the observation from the 

simulation that if the prevalence of the target condition is high, then the sensitivity is 

likely to estimated correctly by all methods. Furthermore, the Staquet at al corrected 

specificity is lower than the Brenner corrected and unadjusted specificities. Therefore, 

in clinical application, if the LFpen and the reference standard are conditionally 

independent (as is assumed), then the Staquet et al corrected sensitivity and specificity 

for the LFpen indicates that the LFpen has reasonable sensitivity (≅0.7) but very poor 

specificity (≅0.05) in diagnosing non-cavitated caries.  In addition, if the FC device is 

conditionally independent of the reference standard (as is assumed), then the FC 

device has poor sensitivity and poor specificity in diagnosing non-cavitated caries and 

is unlikely to be recommended for use in practice for ruling in the diagnosis of NC 

based on the specificity’ values. 

Reanalysing the dataset in Table 16, the prevalence of the D3 is 0.052. Having a low 

prevalence, indicates that the specificity of LFpen and FC are likely to be correctly 

estimated by all methods. However, the sensitivity could be poorly estimated. The 

unadjusted, Brenner corrected and the Staquet et al corrected sensitivity and 

specificity are reported in Table 17.  
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Table 16: Results of the operative intervention (reference standard) and fluorescence - based devices (LF and FC) classified by 
examiners 

Operative intervention  for D 3 (Examiner 1 ) 

Index test  Positive (+)  Negative ( - ) 

LFpen positive 20   45 

LFpen negative 1 341 

Total  21 386 

for D 3 (Examiner 1 ) 

Index test  Positive (+)  Negative ( - ) 

FC positive 21 38 

FC negative 0 348 

Total  21 386 

for D 3 (Examiner 2 ) 

Index test  Positive (+)  Negative ( - ) 

LFpen positive 21   54 

LFpen negative 0 332 

Total  21 386 

for D 3 (Examiner 2 ) 

Index test  Positive (+)  Negative ( - ) 

FC positive 19 46 

FC negative 2 340 

Total  21 386 

Operative intervention  

Operative intervention  

Operative intervention  
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Table 17: Sensitivity and Specificity of LFpen and FC stratified by examiner 1 and 2 

with the dentine caries lesions detection. 

Dentine caries lesion (D3)  

Methods – LFpen (Examiner 1) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.95 (0.77, 0.99) 0.86 (0.66, 0.95) 1.04 (NaN) 

Specificity  0.88 (0.85, 0.91) 0.87 (0.83, 0.90) 0.90 (0.87, 0.93) 

Methods – LFpen (Examiner 2) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  1 (0.85, 1) 0.91 (0.72, 0.98) 1.09 (NaN) 

Specificity  0.86 (0.82, 0.89) 0.85 (0.81, 0.88) 0.87 (0.83, 0.90) 

Dentine caries lesion (D3)  

Methods – FC (Examiner 1) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  1.00 (0.85, 1.00) 0.91 (0.72, 0.98) 1.09 (NaN) 

Specificity  0.90 (0.87, 0.93) 0.89 (0.86, 0.92) 0.92 (0.89, 0.94) 

Methods – FC (Examiner 2) 

Accuracy 

measures 

Unadjusted (95% CI) Brenner (95% CI) Staquet et al  (95% CI) 

Sensitivity  0.91 (0.72, 0.98) 0.82 (0.61, 0.93) 0.99 (0.83, 1.00) 

Specificity  0.88 (0.84, 0.91) 0.87 (0.83, 0.90) 0.89 (0.85, 0.92) 

CI is confidence interval; LFpen: laser florescence pen; FC: fluorescence camera; NaN is 
not available or cannot be estimated 
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From the estimates in Table 17, the results are consistent across all examiners and 

the specificities of LFpen and FC are consistent across all methods, as observed in 

the simulation, that, at low prevalence, the specificity of the test is likely to be estimated 

correctly by all methods. Thus, the LFpen and FC have an excellent ability to rule in 

(specificity ≅ 0.9 to one decimal place) the diagnosis of dentine caries lesion (D3). 

However, the sensitivities of the index tests are inconsistent across all the methods, 

with Staquet et al having an illogical sensitivity (> 1). 

Following the simulation study, the classical method outperforms the Brenner 

correction methods and the Staquet et al method outperforms both the classical and 

Brenner corrected methods. However, at very high or low prevalence, the Staquet et 

al method could provide illogical results when both tests are conditionally independent 

despite the large sample sizes available in the study. This is what has occurred in the 

analysis of this clinical dataset. Hence, to overcome the challenges of illogical results, 

considering another statistical method – a latent class model – could be considered to 

estimate the sensitivities and specificities of the LFpen and FC in detecting D3. Latent 

class models are discussed in detail in chapter four, and the reanalysis of this clinical 

dataset using a latent class model is revisited in this chapter (section 4.8). 

Assessing the clinical datasets for the possibility of obtaining illogical estimates 

The Mathews et al125 dataset was assessed to ascertain if illogical estimates could be 

obtained via the Staquet et al119 approach, the statistics below were estimated:  

𝑟𝑃𝑃𝑉 = 0.645;    𝑟𝑁𝑃𝑉 =  0.889;       𝑟𝑃𝑃𝑉′ = 0.355;        𝑟𝑁𝑃𝑉′ =  0.111;       𝑃𝑟𝑟 = 0.23 

The sensitivity of the RS (0.74) is greater than the sample prevalence (0.23), hence, 

obtaining illogical prevalence is unlikely. In addition, the sensitivity of RS is greater than 

the rPPV (0.645), the 𝑟𝑁𝑃𝑉′ (0.111) and the sample prevalence (0.23); therefore, 

obtaining an illogical sensitivity via Staquet et al119 approach is unlikely. The specificity 

of the RS (0.91) is greater than the rNPV (0.889),  𝑟𝑃𝑃𝑉′ (0.355) and   𝑃𝑟𝑟′ (0.77). 

Thus, an illogical specificity estimate will not be obtained using the Staquet et al 

approach. In summary, none of the conditions for obtaining illogical estimates were 

fulfilled in this dataset. 

The first clinical dataset from Matos et al124 was assessed for the possibility of obtaining 

illogical estimates and the following statistics were calculated:  
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NC, LFpen Examiner 1 

𝑟𝑃𝑃𝑉 = 0.975 ;     𝑟𝑃𝑃𝑉′ = 0.025;     𝑟𝑁𝑃𝑉′ =  0.809;     𝑟𝑁𝑃𝑉 = 0.191;     𝑃𝑟𝑟 =  0.916 

NC, FC Examiner 1 

𝑟𝑃𝑃𝑉 = 0.981 ;     𝑟𝑃𝑃𝑉′ = 0.019;     𝑟𝑁𝑃𝑉′ =  0.871;     𝑟𝑁𝑃𝑉 = 0.129;     𝑃𝑟𝑟 =  0.916  

The sensitivity of the RS (0.796) is less than the sample prevalence (0.92), hence, 

there is a likelihood of obtaining illogical estimated prevalence. The estimated 

prevalence is 1.2 (which is illogical). The specificity of visual inspection (0.799) is 

greater than the rNPV (0.191 or 0.129). It is also greater than the complement of the 

rPPV (𝑟𝑃𝑃𝑉′ = 0.025) and the complement of the sample prevalence (𝑃𝑟𝑟′ = 1 −

𝑃𝑟𝑟 = 0.004). Thus, obtaining illogical sensitivity for the index tests (LFpen and FC) 

are unlikely. The sensitivity of visual inspection (0.796) is less than the rPPV (0.975 or 

0.981) indicating the likelihood of obtaining illogical estimates for the specificities of FC 

and LFpen whose absolute value is greater than one. The sensitivity of the RS is also 

less than the sample prevalence (0.916) and less than the complement of the relative 

NPV (0.871 for FC, and 0.809 for LFpen). In summary, condition (1) and condition (3a) 

were fulfilled in this dataset. Illogical estimated prevalence was obtained but the 

estimated specificities are logical (that is within [0, 1]). Therefore, this result needs to 

be treated with scepticism.   

The second clinical dataset from Matos et al124 was assessed to ascertain of obtaining 

illogical results and the following statistics are calculated. 

D3, LFpen Examiner 1 

𝑟𝑃𝑃𝑉 =  0.308;      𝑟𝑃𝑃𝑉′ = 0.692;     𝑟𝑁𝑃𝑉′ = 0.003;    𝑟𝑁𝑃𝑉 = 0.997;      𝑃𝑟𝑟 = 0.052 

D3, FC Examiner 1 

 𝑟𝑃𝑃𝑉 =  0.356;       𝑟𝑃𝑃𝑉′ = 0.644;      𝑟𝑁𝑃𝑉′ = 0;    𝑟𝑁𝑃𝑉 = 1;      𝑃𝑟𝑟 = 0.052 

The sensitivity of the RS (0.786) is greater than the sample prevalence (0.052). Hence, 

obtaining illogical estimated prevalence is unlikely. The sensitivity of the RS (0.786) is 

also greater than the rPPV (0.31 or 0.36), and the complement of the rNPV (0).  

Therefore, the likelihood of obtaining illogical specificities for LFpen and FC are 

unlikely. The specificity of visual inspection (0.995) is less than the rNPV (1 for FC and 

0.997 for LFpen). It is also greater than the complement of the rPPV (𝑟𝑃𝑃𝑉′ = 0.025) 

and the complement of the prevalence (𝑃𝑟𝑟′ = 0.95). Thus, obtaining illogical 
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sensitivity estimates for the index tests (LFpen and FC) is likely as the condition (2) is 

met. In summary, illogical estimated sensitivity was obtained for the index tests (1.04 

and 1.09). 

3.5. Summary  

In this chapter, I used simulation studies to compare methods employed to correct for 

an imperfect reference standard to estimate the sensitivity and specificity of a binary 

response index test given that the accuracy measures (sensitivity and specificity) of 

the imperfect reference standard are known. The methods compared were the Brenner 

and Staquet et al correction methods. Both methods assume that the index test and 

the reference standard are conditionally independent given the true disease status.  

Different scenarios under the assumption of conditional dependence and conditional 

independence were explored to understand the statistical properties (bias, consistency 

and MSE) of the classical and two correction methods under investigation, and how 

they perform to estimate the accuracy measures of the index test. For example, under 

the assumption of conditional independence, I looked at the statistical properties of the 

correction and classical methods when the sensitivity and specificity of the reference 

standard are known and better than the index test, worse than the index test and the 

same as the index test. Coverage probability299 (which is the proportion of confidence  

intervals calculated in a particular way that contains the true value of the parameter) 

was not explored as it is a property of the confidence interval procedure which is not 

within the scope of my research.  

The results from the simulation studies indicate that at low prevalences (0 – 0.5) the 

sensitivity is underestimated using imperfect reference standards, and at high 

prevalences (0.5 – 1) the specificity of the index test is underestimated. The findings 

support the findings from other research that also suggest the use of a population with 

a high prevalence of disease to estimate the sensitivity and a low prevalence of 

diseases for the specificity118, 128 if this is possible.  

Adjusting for the error in the imperfect reference standard is essential to correctly 

estimate the accuracy measures of the index test. Exploring the correction methods, 

the Staquet et al correction method outperforms the Brenner correction method 

provided the index test and reference standard are conditionally independent 

irrespective of whether the reference standard is better than the index test or not. 

However, at very low or high prevalence there is the likelihood of having illogical results 
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(that is estimates of sensitivity or specificity that are greater than 1). The Staquet et al 

method was further explored to understand the conditions for illogical estimates.   

The knowledge gained from the simulation study was applied to reanalyse clinical 

datasets by Mathews et al125 and Matos et al 124.  

Mathews et al125, employed the Staquet et al correction method to correct for the 

imperfection of the reference standard (Biopsy) in order to estimate the sensitivity and 

specificity of the index test (HRA cytology). I reanalysed the dataset using the Brenner 

correction method in addition to the Staquet et al method. I found that the Brenner 

correction method underestimated the sensitivity and specificity of HRA cytology in 

comparison to the Staquet et al method. Therefore, if the Brenner estimates were 

employed to make a clinical decision on HRA cytology, HRA cytology would be 

considered a poor test in ruling out the diagnosis of HSIL as it had a sensitivity of 0.5 

and a very good test in ruling in the diagnosis of HSIL as it had a specificity of 0.85. 

Using the Staquet et al approach to correct for the imperfection of the reference 

standard, the sensitivity and specificity of HRA cytology were 0.89 and 0.96 

respectively, making it an excellent test to rule in and rule out the diagnosis of HSIL 

among HIV patients.  

Matos et al 124 used the Brenner correction method to adjust for the imperfection in the 

reference standard. Applying the Staquet et al correction method (which has shown to 

outperform Brenner correction method), showed that the specificities of LFpen and FC 

in detecting non-cavitated caries (NC) were significantly lower than those obtained 

when using the Brenner correction method. Hence, if the estimates from the Staquet 

et al correction method were used then FC and LFpen may not reach the threshold for 

changing clinical decision making and therefore would be less likely to be 

recommended in practice to rule in the diagnosis of NC.  

When the index test and the reference standard are conditionally dependent given the 

true disease status, using the Staquet et al or Brenner correction methods is not 

recommended, even if the diagnostic accuracy of the reference standard is known. 

Using a method that can account or correct for this dependence is essential to correctly 

estimate the sensitivity and specificity of the index test is recommended. Bayesian 

latent class models could be considered for this (these methods are investigated in 

chapter four) because the knowledge of the accuracy measures of the reference 

standard can be employed as prior information to make the latent class model 
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identifiable and therefore better able to accurately estimate the sensitivity and 

specificity of the index test.  
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Chapter Four: Latent Class Models 

4.1. Introduction 

Latent class models (LCMs) have been suggested by different researchers128, 139, 291, 

300-302 to evaluate the diagnostic accuracy of multiple tests simultaneously in the 

absence of a gold standard. With the LCM, none of the tests under investigation are 

used as a benchmark to determine the presence or absence of disease. Therefore, the 

true disease status of all the participants is unobserved (latent). The prevalence of the 

disease is estimated alongside other sensitivity and specificity of interest such as the 

sensitivities and specificities of the tests.  There are different types of latent class 

models that have been proposed and have been employed in diagnostic accuracy 

studies. These range from the traditional frequentist, Hui and Walter128 latent class 

model to more complex latent class models which consider the conditional 

dependence among the tests being evaluated.  

This chapter discusses the different LCMs employed in diagnostic accuracy studies 

with specific focus on the possible choices of LCMs to consider for the analysis of the 

clinical dataset explored in chapter five. Briefly, the clinical dataset consists of test 

responses from three scores that are conditionally dependent given the true disease 

status. The clinical dataset is discussed comprehensively in chapter five.  

The aim of the investigation in this current chapter is to explore how the different LCMs 

perform under varying assumptions (for example, conditional independence and 

dependence assumptions) and to inform which LCMs will be most appropriate to 

analyse the clinical dataset explored in chapter five. This chapter outlines various 

LCMs and simulation studies carried out to explore these models. A generated dataset 

from the simulation reflects the characteristics of the clinical dataset; thus, providing a 

guide of what to expect when analysing the clinical dataset. Finally, this chapter 

discusses the performance of the latent class models explored within the different 

simulated scenarios.  

The notation used throughout this chapter is described in the next section (section 4.2). 

4.2. Basic notation 

The notations stated here are employed in this chapter. Some are similar to those used 

in chapter three and some have changed to provide more details relevant for this 

chapter.  



93 | P a g e  
 

Let D be the true latent disease status of a participants with two classes – diseased 

and non-diseased. Let J be the number of tests that are evaluated and N (𝑖 =

1, 2, 3, … , 𝑁) be the total number of participants in the study. Each test has a binary 

outcome (0 for participants classified as non-diseased by a test and 1 for participants 

classified as diseased by a test). A test response can be continuous or have more than 

two categories. However, in this research, all test responses are dichotomised to have 

a binary response. Thus, for a test with a continuous response, cut-offs will be 

employed to dichotomise the test responses into two classes. Let  𝑡𝑖𝑗  (0 𝑜𝑟 1) be the 

test response of the jth test for the ith participant. Let  𝑝1 = 𝑃𝑟 (𝐷 = 1)  denote the 

prevalence of the diseased in the population and 𝑝0 = 𝑃𝑟 (𝐷 = 0)  denote the 

probability of no disease in the population.   

𝑝𝑑 = Pr(𝐷 = 𝑑) ;        𝑝0 = 1 − 𝑝1;       𝑑 =  0, 1 

Furthermore, it is expected that the ith participant will undergo all the tests employed in 

the diagnostic accuracy study, and the set of test responses from each individual is 

independent. Given the J tests, there will be 2J combinations of the test responses. So, 

let K be the total number of combinations of the test responses and 𝑛𝑘  (𝑘 =

1, 2, …𝐾) be the number of participants in each of the k tests’ combinations. For 

example, if there are three index tests, each with a dichotomised response, then there 

will be eight (K = 8) possible combinations of the test responses and 𝑛𝑘 is the number 

of participants in each combination, or the cell frequency of each combination.  

A randomly selected participant is considered, hence the subscript i is dropped. 

Let  𝑇𝑗 = 𝑡𝑗   be the binary result of the jth test and the vector 𝑻  denote the combination 

of all the test results. For example, when J = 3, the test results are  𝑇1 = 𝑡1, 𝑇2 = 𝑡2, 𝑇3 =

𝑡3,  where  𝑡𝑗 ∈ {0, 1}  and the vector  𝑻 = (𝑡1, 𝑡2, 𝑡3). Let the probability of the test 

combination be denoted as Pr (𝑻)). Let Sn denote the sensitivity of a test and Sp denote 

the specificity of a test. Then the sensitivity and specificity of the jth test is presented 

as: 

𝑆𝑛𝑗 = Pr(𝑇𝑗 = 1 |𝐷 = 1) ;             𝑆𝑝𝑗 = Pr(𝑇𝑗 = 0|𝐷 = 0) ;     𝑗 = 1, 2, … , 𝐽 

4.3. Latent class model 

LCMs are a statistical technique which uses observed information  (responses) from 

the participants in a study to group the participants into unobserved (latent) classes303. 

The observed information takes the form of categorical variables and the unobserved 
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variable is also a categorical variable304. For example, in a diagnostic accuracy study, 

given that there are multiple tests to evaluate, the test responses obtained from the 

participants are the observed information and the true disease status of each 

participant (diseased or non-diseased) is the latent variable.   

Employing latent class modelling in diagnostic accuracy studies originated with the Hui 

and Walter traditional latent class model (TLCM)128. The TLCM was proposed with the 

simplifying assumption that the tests evaluated in the diagnostic accuracy study are 

conditionally independent given the true disease status of the participants. This 

assumption is violated when the tests under evaluation are conditionally dependent 

given the true disease status. Since the development of the TLCM, LCMs with different 

conditional dependence structures have been proposed. The applications of these 

LCMs range from frequentist approaches (where only the observed data is employed 

to estimate the parameters of interest) to Bayesian approaches (where existing data 

or expert opinion is combined with the observed data to estimate the parameters of 

interest). Employing the TLCM128, 305 to estimate the sensitivity and specificity of tests 

that are conditionally dependent will result in biased estimates. To eliminate the bias 

that arises as a result of assuming conditional independence, LCMs which capture the 

conditional dependence of the tests can be employed. These LCMs include the fixed 

effect latent class model (FEM)54, 286, 291, the random effect latent class model 

(REM)132, the finite mixture latent class model (FMM)32, 120, 133, the Beta-Binomial latent 

class model (BBM)120, and the grade of membership latent class model306 amongst 

others. This chapter will focus on describing the key concepts behind the Hui and 

Walter LCM, the FEM, REM and FMM, and simulation studies are employed to explore 

these models. The choice of methods discussed is motivated by the clinical dataset 

which will be the focus of further data analysis in chapter five. 

4.3.1.  Traditional latent class model 

A basic assumption underlying the TLCM is that the tests under evaluation are 

conditionally independent. In a one-prevalence study, a minimum of three tests need 

to be employed to make the model identifiable140, because the degrees of freedom 

(2𝐽 − 1) is equal to or greater than the number of parameters to estimate (2 × 𝐽 + 1). A 

model is said to be identifiable if there exists a unique solution for every unknown 

parameter in the model307.  
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The TLCM uses the multinomial distribution to model the relationship between the 

parameters of interest and the observed data. Thus, using the notations introduced in 

section 4.2, the likelihood of the observed data is defined as:  

𝐿(𝑛1, 𝑛2, … , 𝑛𝑘) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑷𝒓(𝑻) , 𝑁)                                              (12) 

Where N is the total number of participants in the study and 𝒏 = (𝑛1, 𝑛2, … , 𝑛𝑘)  is the 

number of participants in each kth test combination. Both N and  𝑛  are observed data, 

while 𝑷𝒓(𝑻) is a vector of the joint probability of the test responses (Pr(𝑻)) of each kth 

test combination.  

Pr(𝑻)    =  ∑ Pr(𝑻|𝐷) × Pr(𝐷 = 𝑑)

1

𝑑=0

 

=∑Pr(𝑇1 = 𝑡1, 𝑇2 = 𝑡2, … , 𝑇𝐽 = 𝑡𝑗|𝐷 = 𝑑) × Pr(𝐷 = 𝑑)

1

𝑑=0

 

=∑𝑝𝑑

1

𝑑=0

× Pr(𝑻|𝐷 = 𝑑) 

                        = 𝑝1{Pr(𝑻|𝐷 = 1)} + 𝑝0{Pr(𝑻|𝐷 = 0)}                                (13) 

The probability of the test responses within the diseased group is denoted by 

Pr(𝑻|𝐷 = 1) and Pr(𝑻|𝐷 = 0) is the probability of the test responses within the non-

diseased group. The probabilities of the test responses within the diseased group and 

non-diseased group can be expressed in terms of the sensitivities and the specificities 

of the index tests199:   

Pr(𝑻𝒋|𝐷 = 1) =∏𝑆𝑛
𝑗

𝑡𝑗

𝐽

𝑗=1

 (1 − 𝑆𝑛𝑗)
(1−𝑡𝑗)

;   Pr(𝑻𝒋|𝐷 = 0) =∏𝑆𝑝
𝑗

(1− 𝑡𝑗)

𝐽

𝑗=1

 (1 − 𝑆𝑝𝑗)
𝑡𝑗
         (14) 

Equations (13) and (14) are used to estimate the probability of each test result 

combination (Pr (𝑻)) which are substituted into the likelihood in Equation (12) to 

estimate the parameters of interest. 

For example, let’s assume that there are three tests (𝑡1, 𝑡2, 𝑡3) to evaluate in a study, 

none of the three tests is a gold standard and all three tests are conditionally 

independent. I wish to estimate the sensitivities and specificities of the three tests using 

the TLCM approach.  
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The probability of the test responses is: 

Pr(𝑻) = 𝑝1{Pr(𝑻|𝐷 = 1)} + 𝑝0{Pr(𝑻|𝐷 = 0)} 

where 

Pr(𝑻|𝐷 = 1) = 𝑆𝑛1
𝑡1𝑆𝑛2

𝑡2𝑆𝑛3
𝑡3(1 − 𝑆𝑛1)

1−𝑡1(1 − 𝑆𝑛2)
1−𝑡2(1 − 𝑆𝑛3)

1−𝑡3 

Pr(𝑻|𝐷 = 0) = 𝑆𝑝1
1−𝑡1𝑆𝑝2

1− 𝑡2𝑆𝑝3
1−𝑡3(1 − 𝑆𝑝2)

𝑡2(1 − 𝑆𝑝3)
𝑡3  (1 − 𝑆𝑝1)

𝑡1 

4.3.2.  Fixed effect latent class model 

The fixed effect latent class model (FEM) assumes that the evaluated tests could be 

conditionally dependent given the true disease status of the participants. Hence, the 

FEM models the conditional dependence among the tests using covariance terms 

within the diseased and non-diseased groups, and these covariance terms are fixed 

across all participants. Covariance measures the joint variability of two variables308. As 

explained in section 3.3.2, the pairwise covariance terms between two tests can be 

expressed using the correlations between the two tests and the sensitivities or 

specificities of the two tests. The FEM uses the multinomial distribution, like the TLCM 

to model the relationship between the observed data and the parameters of interest 

(see Equation (12)). However, the joint probability of the test responses (Pr (𝑻)) is 

redefined to include the covariance term(s). Hence, the FEM is adapted from the TLCM 

with additional terms, the covariance terms, employed to model the conditional 

dependence among multiple tests, including pairwise conditional dependence between 

two tests and higher order conditional dependence among multiple tests.  

Let the covariance term among the diseased group be 𝜑𝒕|1 and the non-diseased group 

be 𝜑𝒕|0. The joint probability of the test responses is described as199, 274, 309:  

Pr(𝑻 = 𝒕)    = ∑𝑝𝑑

1

𝑑=0

× Pr(𝑻|𝐷 = 𝑑) + 𝜑𝒕|𝑑;     𝑑 =  0, 1 

= 𝑝1{Pr(𝑻|𝐷 = 1) + 𝜑𝒕|1} + 𝑝0{Pr(𝑻|𝐷 = 0) + 𝜑𝒕|0}              (15) 

The probability of the test responses within the diseased group is denoted as 

Pr(𝑻|𝐷 = 1) + 𝜑𝒕|1 and Pr(𝑻|𝐷 = 0) + 𝜑𝒕|0 is the probability of the test responses within 

the non-diseased group. The FEM often uses pairwise covariance terms because of 

the challenges in modelling higher order correlations. However, with the approach 

developed by Wang et al286, third-order correlation can now be modelled using the 
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FEM. A third-order correlation infers correlation among three tests. For example, let us 

assume that there are three tests under evaluation (𝑡1, 𝑡2, 𝑡3), and all three tests are 

correlated. That is, all three tests have some degree of pairwise correlation between 

them. So, test 1 and test 2 are correlated, test 2 and test 3 are correlated, and test 1 

and test 3 are correlated. The correlation that exist among the three tests is called a 

third-order correlation. 

With the introduction of the covariance terms, the total number of parameters to 

estimate is now 2𝐽+1 + 2𝐽 + 1. This includes J sensitivities, J specificities, 1 prevalence 

(for a single population study), and 2𝐽+1 covariance terms (both for the diseased and 

non-diseased groups); while the degrees of freedom is 2𝐽 − 1. So, this makes the FEM 

non-identifiable because the number of parameters to estimate is larger than the 

degrees of freedom140, 307.  

In order to overcome this restriction, equality constraints54, 286 are imposed on the 

covariance terms in a FEM (there are  𝐽 + 1  constraints). This reduces the number of 

covariance terms to be estimated to 2𝐽+1 − (2𝐽 + 2). Nevertheless, on its own, this 

does not make the model identifiable. Hence, prior information (deterministic or 

probabilistic)310 is used to model some of the parameters in the FEM. In addition to the 

equality constraints, the FEM also uses some inequality constraints 54, 291 on the 

covariance terms which allows the covariance terms to be bound by the marginal 

probabilities of the tests, so that the joint probabilities of the tests do not exceed one 

and that negative probabilities cannot be estimated. 

Let us assume that there are two tests (𝑇1 and  𝑇2) to evaluate and each test has a 

binary outcome (𝑡𝑗 = 0 or 1). There are seven parameters to estimate under the 

conditional dependence assumption. These are two sensitivities, two specificities of 

the two tests, the prevalence and two covariance terms (one for the diseased group – 

 𝑐𝑜𝑣𝑠12 and the other is the non-diseased group – 𝑐𝑜𝑣𝑐12). There are four possible 

combinations of the test responses which are: 

 An all-positive response (11)  

 Two one-positive responses (10, 01) 

 An all-negative response (00) 

The number of participants in each test combination is represented as 𝑛𝑘, 𝑘 = 1, 2, 3, 4.  

The likelihood of each combination is modelled using the multinomial distribution.  
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𝐿(𝑛1, 𝑛2, … , 𝑛4) ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (Pr(𝑻) , 𝑁) 

The joint probability of each test responses is:  

Pr(𝑇1 = 1, 𝑇2 = 1) = 𝑝1(𝑆𝑛1 × 𝑆𝑛2 + 𝑐𝑜𝑣𝑠12) + 𝑝0((1 − 𝑆𝑝1) × (1 − 𝑆𝑝2) + 𝑐𝑜𝑣𝑐12)  

Pr(𝑇1 = 0, 𝑇2 = 1) = 𝑝1((1 − 𝑆𝑛1) × 𝑆𝑛2 − 𝑐𝑜𝑣𝑠12) + 𝑝0(𝑆𝑝1 × (1 − 𝑆𝑝2) − 𝑐𝑜𝑣𝑐12)  

Pr(𝑇1 = 1, 𝑇2 = 0) = 𝑝1(𝑆𝑛1 × (1 − 𝑆𝑛2) − 𝑐𝑜𝑣𝑠12) + 𝑝0((1 − 𝑆𝑝1) × 𝑆𝑝2 − 𝑐𝑜𝑣𝑐12)  

Pr(𝑇1 = 0, 𝑇2 = 0) = 𝑝1((1 − 𝑆𝑛1) × (1 − 𝑆𝑛2) + 𝑐𝑜𝑣𝑠12) + 𝑝0(𝑆𝑝1 × 𝑆𝑝2 + 𝑐𝑜𝑣𝑐12)  

Since, there are only 3 (2𝐽 − 1) degrees of freedom, the model is non-identifiable. 

Hence, some constraints (either deterministic or probabilistic) need to be placed on 

some of the parameters to make the model identifiable so that the model provides a 

unique solution. 

Inequality constraints are used to provide the range of values (i.e. the upper and lower 

bound values) that the covariance terms can take, and this is determined by the 

sensitivities (specificities) of the tests. The covariance terms can be positive or 

negative and the model can have dependence among the diseased group only, among 

the non-diseased group only, or in both groups. The inequality constraints are54: 

−𝑆𝑛1 × 𝑆𝑛2 +max(0, 𝑆𝑛1 + 𝑆𝑛2 − 1) ≤ 𝜑1,1|1  ≤ min(𝑆𝑛1, 𝑆𝑛2) − (𝑆𝑛1 × 𝑆𝑛2) 

−𝑆𝑝1 × 𝑆𝑝2 +max(0, 𝑆𝑝1 + 𝑆𝑝2 − 1) ≤ 𝜑0,0|0  ≤ min(𝑆𝑝1, 𝑆𝑝2) − (𝑆𝑝1 × 𝑆𝑝2) 

Now let us suppose there are three tests to evaluate (𝑻 = 𝑇1, 𝑇2, 𝑇3), and each test has 

a binary outcome (𝑡𝑗 = 0 or 1). This implies that there are 8 (23) possible combinations 

of the test responses, which are: 

 An all-positive response (111)  

 Three two-positive responses (110, 101, 011) 

 Three one-positive responses (001, 010, 100) 

 An all-negative response (000) 

Firstly, let us assume that two (Test 1 and Test 2) out of the three tests are conditionally 

dependent among the diseased group and both tests are conditionally independent of 

the third test (Test 3).  

Thus, using Equation (15), the probabilities of the test responses are54: 

Pr(𝑻)  = 𝑝1{Pr(𝑻|𝐷 = 1) + 𝜑𝒕|1} + 𝑝0{Pr(𝑻|𝐷 = 0)} 
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Pr(𝑻|𝐷 = 1) + 𝜑𝒕|1 = (𝑆𝑛1
𝑡1𝑆𝑛2

𝑡2(1 − 𝑆𝑛1)
1−𝑡1(1 − 𝑆𝑛2)

1−𝑡2 + (−1)(𝑡1−𝑡2)𝜑12|1 ) × 𝑆𝑛3
𝑡3(1 − 𝑆𝑛3)

1−𝑡3 

Pr(𝑻|𝐷 = 0) = 𝑆𝑝1
1−𝑡1𝑆𝑝2

1− 𝑡2𝑆𝑝3
1−𝑡3(1 − 𝑆𝑝1)

𝑡1(1 − 𝑆𝑝2)
𝑡2(1 − 𝑆𝑝3)

𝑡3 

Secondly, let us assume that the three tests are correlated among the diseased and 

non-disease group. Hence, the joint probability of the test responses taking into 

consideration this third order correlation is described by Wang et al286: 

Pr(𝑻 = 111) = 𝑝1(𝑆𝑛1 × 𝑆𝑛2 × 𝑆𝑛3 + 𝑐𝑜𝑣𝑠111) + 𝑝0((1 − 𝑆𝑝1) × (1 − 𝑆𝑝2) × (1 − 𝑆𝑝3) + 𝑐𝑜𝑣𝑐111)  

Pr(𝑻 = 110) = 𝑝1(𝑆𝑛1 × 𝑆𝑛2 × (1 − 𝑆𝑛3) + 𝑐𝑜𝑣𝑠110) + 𝑝0((1 − 𝑆𝑝1) × (1 − 𝑆𝑝2) × 𝑆𝑝3 + 𝑐𝑜𝑣𝑐110)  

Pr(𝑻 = 101) = 𝑝1(𝑆𝑛1 × (1 −  𝑆𝑛2) × 𝑆𝑛3 + 𝑐𝑜𝑣𝑠101) + 𝑝0((1 − 𝑆𝑝1) × 𝑆𝑝2 × (1 − 𝑆𝑝3) + 𝑐𝑜𝑣𝑐101)  

Pr(𝑻 = 100) = 𝑝1(𝑆𝑛1 × (1 − 𝑆𝑛2) × (1 − 𝑆𝑛3) + 𝑐𝑜𝑣𝑠100) + 𝑝0((1 − 𝑆𝑝1) × 𝑆𝑝2 × 𝑆𝑝3 + 𝑐𝑜𝑣𝑐100)  

Pr(𝑻 = 011) = 𝑝1((1 − 𝑆𝑛1) × 𝑆𝑛2 × 𝑆𝑛3 + 𝑐𝑜𝑣𝑠011) + 𝑝0(𝑆𝑝1 × (1 − 𝑆𝑝2) × (1 − 𝑆𝑝3) + 𝑐𝑜𝑣𝑐011)  

Pr(𝑻 = 010) = 𝑝1((1 − 𝑆𝑛1) × 𝑆𝑛2 × (1 − 𝑆𝑛3) + 𝑐𝑜𝑣𝑠010) + 𝑝0(𝑆𝑝1 × (1 − 𝑆𝑝2) × 𝑆𝑝3 + 𝑐𝑜𝑣𝑐010)  

Pr(𝑻 = 001) = 𝑝1((1 −  𝑆𝑛1) × (1 − 𝑆𝑛2) × 𝑆𝑛3 + 𝑐𝑜𝑣𝑠001) + 𝑝0(𝑆𝑝1 × 𝑆𝑝2 × (1 − 𝑆𝑝3) + 𝑐𝑜𝑣𝑐001)  

Pr(𝑻 = 000) = 𝑝1((1 − 𝑆𝑛1) × (1 − 𝑆𝑛2) × (1 −  𝑆𝑛3) + 𝑐𝑜𝑣𝑠000) + 𝑝0(𝑆𝑝1 × 𝑆𝑝2 × 𝑆𝑝3 + 𝑐𝑜𝑣𝑐000)  

The FEM model by Wang et al286 allows researchers to study the pairwise and higher 

order conditional dependences that can exist between or among the tests evaluated. 

Equality constraints on the covariance terms reduces the number of covariance terms 

to estimate286. Hence, instead of estimating 16 covariance terms, 8 covariance terms 

will be estimated (four for the diseased group and four for the non-diseased group) and 

the remaining 8 covariance terms can be estimated using the 8 estimated covariance 

terms through the set of equations expressed below286.  

So, for the diseased group the covariance terms are: 

𝑐𝑜𝑣𝑠111, 𝑐𝑜𝑣𝑠000, 𝑐𝑜𝑣𝑠001, 𝑐𝑜𝑣𝑠011, 𝑐𝑜𝑣𝑠100, 𝑐𝑜𝑣𝑠101, 𝑐𝑜𝑣𝑠110 𝑎𝑛𝑑 𝑐𝑜𝑣𝑠010  

𝑐𝑜𝑣𝑠111, 𝑐𝑜𝑣𝑠000, 𝑐𝑜𝑣𝑠001 𝑎𝑛𝑑 𝑐𝑜𝑣𝑠011 are used to calculate the remaining covariance 

terms 

𝑐𝑜𝑣𝑠100 = 𝑐𝑜𝑣𝑠001 +   𝑐𝑜𝑣𝑠111 − 𝑐𝑜𝑣𝑠000 

𝑐𝑜𝑣𝑠101 = −(𝑐𝑜𝑣𝑠001 +   𝑐𝑜𝑣𝑠011 + 𝑐𝑜𝑣𝑠111) 

𝑐𝑜𝑣𝑠110 = 𝑐𝑜𝑣𝑠001 −   𝑐𝑜𝑣𝑠111 + 𝑐𝑜𝑣𝑠000 

𝑐𝑜𝑣𝑠010 = −(𝑐𝑜𝑣𝑠001 +   𝑐𝑜𝑣𝑠011 + 𝑐𝑜𝑣𝑠000) 
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For the non-diseased group, the covariance terms are:  

𝑐𝑜𝑣𝑐111, 𝑐𝑜𝑣𝑐000, 𝑐𝑜𝑣𝑐001, 𝑐𝑜𝑣𝑐011, 𝑐𝑜𝑣𝑐100, 𝑐𝑜𝑣𝑐101, 𝑐𝑜𝑣𝑐110 𝑎𝑛𝑑 𝑐𝑜𝑣𝑐010  

𝑐𝑜𝑣𝑐111, 𝑐𝑜𝑣𝑐000, 𝑐𝑜𝑣𝑐001 𝑎𝑛𝑑 𝑐𝑜𝑣𝑐011  are used to calculate the remaining covariance 

terms 

𝑐𝑜𝑣𝑐100 = 𝑐𝑜𝑣𝑐001 +   𝑐𝑜𝑣𝑐111 − 𝑐𝑜𝑣𝑐000 

𝑐𝑜𝑣𝑐101 = −(𝑐𝑜𝑣𝑐001 +   𝑐𝑜𝑣𝑐011 + 𝑐𝑜𝑣𝑐111) 

𝑐𝑜𝑣𝑐110 = 𝑐𝑜𝑣𝑐001 −   𝑐𝑜𝑣𝑐111 + 𝑐𝑜𝑣𝑐000 

𝑐𝑜𝑣𝑐010 = −(𝑐𝑜𝑣𝑐001 +   𝑐𝑜𝑣𝑐011 + 𝑐𝑜𝑣𝑐000) 

The pairwise conditional dependence terms between any two of the three tests are as 

follows: 

For the disease group: 

𝑐𝑜𝑣𝑠𝑡12 = 𝑐𝑜𝑣𝑠111 + 𝑐𝑜𝑣𝑠110 

𝑐𝑜𝑣𝑠𝑡13 = 𝑐𝑜𝑣𝑠111 + 𝑐𝑜𝑣𝑠101 

𝑐𝑜𝑣𝑠𝑡23 = 𝑐𝑜𝑣𝑠111 + 𝑐𝑜𝑣𝑠011 

The pairwise covariance between test 1 and test 2 is 𝑐𝑜𝑣𝑠𝑡12, the covariance term 

between test 2 and test 3 is 𝑐𝑜𝑣𝑠𝑡23, and the pairwise covariance term between test 1 

and test 3 is 𝑐𝑜𝑣𝑠𝑡13.   

For the non-diseased group:  

𝑐𝑜𝑣𝑐𝑡12 = 𝑐𝑜𝑣𝑐000 + 𝑐𝑜𝑣𝑐001 

𝑐𝑜𝑣𝑐𝑡13 = 𝑐𝑜𝑣𝑐000 + 𝑐𝑜𝑣𝑐010 

𝑐𝑜𝑣𝑐𝑡23 = 𝑐𝑜𝑣𝑐000 + 𝑐𝑜𝑣𝑐100 

The pairwise covariance between test 1 and test 2 is 𝑐𝑜𝑣𝑐𝑡12, the covariance term 

between test 2 and test 3 is 𝑐𝑜𝑣𝑐𝑡23, and the pairwise covariance term between test 1 

and test 3 is 𝑐𝑜𝑣𝑐𝑡13.   

There are twenty-three parameters to estimate for a diagnostic accuracy study 

evaluating three tests, if the three tests are assumed to be conditionally dependent 

both among the diseased and non-diseased groups. This number is greater than the 
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degrees of freedom which is seven. The equality constraints reduce the number of 

conditional dependence parameters to estimate to eight (four for each disease group). 

So, the total parameters to estimate is now fifteen. However, this is still greater than 

the degrees of freedom (seven); therefore, a minimum of eight (2𝐽) informative priors 

are needed to make the model identifiable.  

4.3.3. Random effect latent class model 

The REM assumes that the causes of the correlations between the tests are 

unobserved and they are subject-specific132, 199 (i.e. it could differ for each participant 

in the study), unlike the FEM which assumes that the conditional dependencies 

between the tests are fixed across all participants in the study. Hence, the REM does 

not use covariance terms like FEM; rather the REM models the conditional 

dependence of the tests using a continuous latent variable. Let that continuous latent 

variable be defined as  𝒁 (𝒁 = 𝑍𝑑; 𝑑 = 0, 1). The REM assumes that the test response 

for each participant depends not only on the unobserved disease status (because of 

the absence of a gold standard) but also on the unobserved continuous variable311, 312. 

The continuous latent variable is assumed to follow the multivariate standard normal 

distribution (𝒁𝒅~𝑁(0,1)). The number of random variables in 𝒁 depends on the number 

of disease classes. For instance, if there are two latent disease classes (diseased and 

non-diseased), then there are two continuous random variables in 𝒁, one for each 

disease class (𝒁 = (𝑍𝑑=1 , 𝑍𝑑=0)).  Moreover, the disease status and the continuous 

latent variable are assumed to be independent.    

The test response of the ith participant on the jth test is denoted as 𝑡𝑖𝑗 = 0 𝑜𝑟 1. Zero 

indicates a negative test response and one indicates a positive test response. D is the 

true disease status of a participant, which is latent. With the REM, the latent disease 

status of each participant (𝐷𝑖) is modelled using a Bernoulli distribution with the 

probability equal to the prevalence of the disease (𝑝1) in the population and the test 

response (𝑡𝑖𝑗) of a participant is modelled using the Bernoulli distribution with a 

probability related to each participant (𝑝𝑖𝑗). That is: 

𝐷𝑖  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝1);           

where Di is the disease status of the ith individual, and the test response of each 

participant is: 

𝑡𝑖𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖𝑗)   
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A random variable (say X) follows a Bernoulli distribution if X takes only two values (0 

and 1) such that the probability of X = 1 is denoted as p and the probability of X = 0 is 

denoted as 1 - p.  

The probability that a test response is positive given the latent disease status (D) and 

the latent continuous random variable (Z) is modelled using a regression equation132, 

199: 

𝑝𝑖𝑗 = Pr(𝑡𝑖𝑗 = 1|𝐷𝑖 = 𝑑𝑖 , 𝒁 = 𝒛) =  𝜂
−1(𝑎𝑗𝑑 + 𝒃𝑗𝑑𝑧)                                   (16) 

where  𝜂 is a link function,  𝑎𝑗𝑑 is the intercept and 𝒃𝒋𝒅 is the coefficients vector 

The link functions often employed in a diagnostic accuracy study are the probit link 

function132, 313 or the  logit link function312. The coefficient vector models the 

dependence in the tests induced by the random effects among the diseased or non-

diseased groups; however, this does not translate to the correlation between the tests 

in the same way as the covariance terms in the FEM. The coefficient vector is also 

called the variance parameter132 for a probit link model.  

In addition to the prevalence, sensitivity and specificity of the tests, other parameters 

to be estimated using the REM are the coefficients of the random effects (𝑏𝑗𝑑), which 

are called the variance parameters132 and the intercept parameter, 𝑎𝑗𝑑. Constraints can 

be placed on the variance parameters to reduce the number of parameters to estimate 

and make the REM identifiable.  

Firstly, the variance parameter can be set to zero (i.e. 𝑏𝑗𝑑 = 0;   𝑓𝑜𝑟  𝑑 = 0, 1).  In this 

scenario, the tests under evaluation are assumed to be conditionally independent 

given the disease status (D) and the latent variable (Z).  Hence, the probability of 

having a positive test response given disease status is:  

𝑃(𝑡𝑖𝑗 = 1 |𝐷) =  𝜂−1(𝑎𝑗𝑑) 

Alternatively, one can assume that the variance parameters are the same for all the 

tests within the diseased and non-diseased groups (𝑏𝑗𝑑 = 𝑏𝑑 ≠ 0;   𝑓𝑜𝑟  𝑑 = 0, 1). In this 

case, the coefficient of the latent variable Z is a constant (𝑏𝑑). That is: 

𝑃(𝑡𝑖𝑗 = 1 |𝐷, 𝒁) =  𝜂−1(𝑎𝑗𝑑 + 𝑏𝑑𝑧) 

Finally, the variance parameter (𝑏𝑗𝑑) can be employed to model the dependence (direct 

effect132) of two correlated tests. For example, if there are three tests under evaluation, 
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test 1 and test 2 can be correlated and both tests (test 1 and test 2) can be independent 

of test 3; thus, the variance parameter is used to model the dependence between test 

1 and test 2 only.  

The estimated sensitivities and specificities of the tests are the average of the 

estimated sensitivities and specificities from each participant in the study. This is 

because the REM assumes that the test responses are conditional on the disease 

status (D) and the latent variables (Z) are specific to each participant. So, the 

probability of the test responses given the disease status and latent continuous 

variable is calculated for each participant in the study. Hence, taking the average of 

the estimated sensitivities and specificities is required. 

The random effect latent class model is more computationally burdensome than the 

fixed effect latent class model because the conditional dependence of the tests 

evaluated is based on each participant, whereas for the FEM it is evaluated collectively 

on participants with same test response combination.   

4.3.4. Finite mixture latent class model  

The FMM models assumes that the conditional dependence is unobserved, like the 

REM, and heterogeneous among the participants in the study120. However, it does not 

model this latent variable with the Gaussian distribution like the REM75, 314, 315. The 

FMM models this dependence by using mixtures of distributions that are asymmetrical. 

The FMM assumes that there will be participants who will be correctly classed as 

diseased or non-diseased by the tests and some will be misclassified. Hence, the FMM 

tries to take this into consideration when modelling the conditional dependence of the 

tests306, 314 by using an indicator variable, 𝑙𝑖𝑑 , to label participants as correctly or 

wrongly diagnosed.  

Therefore, the probability of having a positive test response given the true disease 

status and the latent variable is described below133:   

Pr(𝑡𝑖𝑗 = 1|𝐷 = 𝑑, 𝐿 = 𝑙𝑖𝑑𝑖) =  {
𝑙𝑖1 + (1 − 𝑙𝑖1)𝑤𝑗(1)                                 𝑖𝑓 𝑑𝑖 = 1

1 − (𝑙𝑖0 + (1 − 𝑙𝑖0)[1 − 𝑤𝑗(0)])            𝑖𝑓 𝑑𝑖 = 0
 

where  𝑙𝑖𝑑𝑖   is an indicator variable which takes the value 0 or 1.  

The probability of a positive test response given the true disease status and the latent 

variable is further described as a four-class latent class model 32, 306: 



104 | P a g e  
 

Pr(𝑡𝑖𝑗 = 1|𝐷 = 𝑑, 𝐿 = 𝑙𝑖𝑑𝑖) =  

{
 

 
1,                             𝑖𝑓 𝑑𝑖 = 1   𝑎𝑛𝑑  𝑙𝑖1 = 1
0,                             𝑖𝑓 𝑑𝑖 = 0   𝑎𝑛𝑑  𝑙𝑖0 = 1

𝑤𝑗(1),                     𝑖𝑓 𝑑𝑖 = 1   𝑎𝑛𝑑  𝑙𝑖1 = 0

1 −  𝑤𝑗(0),            𝑖𝑓 𝑑𝑖 = 0   𝑎𝑛𝑑  𝑙𝑖0 = 0

 

The term 𝑤𝑗(0) is the probability test j correctly classifies a patient as non-diseased 

and  𝑤𝑗(1)  is the probability test j correctly classifies a patient as diseased. 

4.4. Bayesian approach  

Under the conditional independence assumption, the four latent class models 

described above – TLCM, FEM, REM and FMM – are identifiable in a single population 

study when there are at least three tests32, 128. However, when the three tests are 

assumed to be conditionally dependent given the true disease status, estimating the 

diagnostic accuracy of the tests using only the observed data when there is no gold 

standard is challenging as the models are non-identifiable. Thus, to make the models 

identifiable, the Bayesian approach has been recommended140, 291, 316-318.    

The Bayesian approach combines the observed data and prior information on the 

parameters of interest to obtain posterior distributions for the parameter317.  The 

parameters of interest in this research study are the sensitivities and specificities of the 

tests being evaluated and the prevalence of the target condition (disease). Prior 

information is obtained from expert opinions, previous pilot or experimental studies, or 

literature related to the parameters of interest319. The Bayesian approach combines 

the observed data and prior information via the continuous form of Bayes’ Theorem:  

𝑃𝑟(𝜽|𝑑𝑎𝑡𝑎) =  
Pr(𝑑𝑎𝑡𝑎|𝜽) Pr(𝜽)

Pr(𝑑𝑎𝑡𝑎)
                                                           (17)  

where 𝜽  is a vector of the unknown parameters,  Pr(𝜽|𝑑𝑎𝑡𝑎) is the posterior distribution 

of the parameters, Pr(𝑑𝑎𝑡𝑎|𝜽) is the likelihood function, Pr(𝑑𝑎𝑡𝑎) is the probability of 

the observed data and Pr(𝜽) is the prior distribution.  

The likelihood function describes the relationship between the parameters of interest 

and the observed data. The prior distribution describes the prior information for the 

parameters in a density function320, 321. The posterior distribution is the probability 

distribution obtained after the observed data and the prior information are combined 

typically via a sampling technique such as Markov Chain Monte Carlo (MCMC)322. 

Inference about a parameter is made using its posterior distribution (via the mean, 

median, mode or quartiles). Bayesian inference is accomplished using Gibbs Sampling 



105 | P a g e  
 

(BUGS) - WINBUGS323 or openBUGS324 software can be used to perform Bayesian 

analysis amongst others. There are different types of models employed in Bayesian 

analysis. These range from a simple model with only one parameter to complex - 

hierarchical models which need various hyper-parameters. Hyper-parameters are 

parameters employed to model the prior distribution of the parameter of interest325. 

They are related to the parameters of interest via some function such as the likelihood 

function. They could be a single value or a distribution. For example, the REM model 

(see section 4.3.3) uses some hyper-parameters (the intercepts and variance 

parameters) to estimate the parameters of interest (sensitivity, specificity and 

prevalence). The intercepts and the variance parameters are called “hyper-

parameters” because they are not the parameters of interest in the research; however, 

they play a very significant role in accurately estimating the parameters of interest and 

reflect some of the assumptions underlying a model. These hyper-parameters are part 

of the model. They are often used to constrain the parameters of interest. Hence, 

attention is needed when specifying these hyper-parameters so that the parameters of 

interest are accurately estimated. 

4.4.1. Specification of prior information 

Prior information about a parameter could be  probabilistic (i.e. a probability 

distribution) or deterministic (i.e. a single value)140.  Prior information is used to express 

a belief about a parameter in a model before evidence (such as the observed data) is 

taken into consideration in the analysis316, 317. The belief could be subjective if it is the 

opinion of an individual or group of individuals or it could be non-subjective if it is 

obtained from previous research studies such as pilot experiments or a published 

research study which employed real-life data. There are different measures that are 

used to elicit prior information about a parameter. Such measures include the mean, 

median, mode, probability values, uncertainty intervals or quartiles, proportions, and 

plots or graphs326, 327. The measures are also called Quantities of Interest (QoI)328. 

These measures are used to form a probability distribution that reflects the parameter 

of interest which is to be estimated. For example, in diagnostic accuracy studies, 

parameters such as prevalence, sensitivity and specificity, whose values range from 0 

to 1, typically use the Beta distribution with hyper-parameters  𝛼 and  𝛽 as their prior 

distribution, because they are the conjugate prior to a Bernoulli distribution. Conjugate 

priors are prior distributions that are of the same family of probability distributions as 

the posterior distribution329. The hyper-parameters of this distribution can be obtained 
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via the mean if the information on the parameter is a single value estimate. For 

example, if the prior information on the sensitivity of a test 1 is 0.9. This value (0.9) can 

be taken to be the mean value of the Beta distribution. Hence, using the mean function 

of a Beta distribution which is: 

𝐸(𝑋) =
𝛼

𝛼 + 𝛽
 

Possible combinations of hyper-parameters for the Beta distribution in this case are 

𝛼 = 6  and  𝛽 = 0.667 or 𝛼 = 4.05  and  𝛽 = 0.45,  since: 

𝛼

𝛼 +  𝛽
=

6

6 +  0.667
=  0.9;         

4.05

4 + 0.45
= 0.9      

The probability intervals or quantiles or variance of the parameter can also be used to 

obtain the hyper-parameters of the prior distribution. There are some web-based 

applications such as the SHeffield ELicitation Framework (SHELF)328, 330 and MATCH 

(Multidisciplinary Assessment of Technology for Healthcare)331 that have been 

developed to aid in the determination of the prior probability distributions for the 

parameters of interest using the measures inputted by the user.  

There are different ways to obtain information on the measures of interest from experts, 

which include face-to-face interviews, group workshops and probabilistic Delphi panel 

exercises319, 328, 332 amongst others. Elicitation of priors from experts is thought to be 

more rigorous if there are multiple experts, and especially if there are many measures 

to obtain from the experts. It is an approach worth taking if there are no published 

articles or existing information about the measures of interest, or there are 

discrepancies in existing information about the measures of interest. Whichever 

approach is used to obtain prior information, it is necessary that the information is from 

a credible source and it is elicited accurately so that the posterior distributions obtained 

are not biased.  

In Bayesian analysis, informative or non-informative priors can be used. A non-

informative prior expresses no specific information about the parameter to be 

estimated 333-335. It is often flat and covers a large range of plausible values for the 

parameter of interest.  An example of a non-informative prior employed in diagnostic 

accuracy studies is Beta (1,1). It is expected that the posterior distribution of the 

parameter (using non-informative priors) will be influenced only by the observed data. 

Informative priors provide some information about the parameter to be estimated. They 
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do not cover a large range of values, so the parameter may be constrained. They can 

be classified as weak or strong priors. Weakly informative priors are used to express 

partial (weak) information about the parameter and strong priors are used to express 

strong or very specific information about the parameter333-335. Using a very strong prior 

could impact the posterior distribution significantly. However, if the observed dataset 

is large and the model’s degrees of freedom are equal to or greater than the number 

of parameters to estimate then the posterior distribution is typically minimally impacted 

by the prior distribution whether the prior information is informative or non-informative. 

Furthermore, using a deterministic prior (i.e. an exact value rather than probabilistic 

prior) indicates very strong knowledge about the parameter. Parameters with 

deterministic priors are not estimated within the model.  

4.4.2. Inference using the posterior distribution 

Once the prior probabilistic information is obtained, the choice of model (see section 

4.3) is ascertained, and the observed dataset is formatted appropriately, the 

parameters of interest are estimated using a numerical technique such as Markov 

Chain Monte Carlo (MCMC)322 via statistical software such as WINBUGS323. The 

posterior distribution is obtained, which is used to make inferences about the 

parameter(s) of interest. The mean or median of the posterior distribution of the 

parameters of interest is often reported alongside the standard deviation or 95% 

credible interval. Different model diagnostics have been proposed such as the 

deviance information criterion (DIC), Gelman-Rubin diagnostic measures, 

autocorrelation plots and trace plots336, to  assess the posterior distributions of the 

parameters. These diagnostics are often used to “assess the convergence” of the 

posterior distributions of the parameters or to “select a model” (that fits best) among 

various models that may have been employed to analyse the observed dataset in a 

study.  

Assessing convergence 

Assessing the convergence of a parameter in a model is to ascertain that the samples 

generated from the algorithm (via MCMC) are from the posterior distribution of the 

parameter. A basic measure used to assess convergence is the potential scale 

reduction factor (denoted as �̂�). It is expected that at convergence the value of the 

potential scale reduction factor is equal to one (i.e. �̂� = 1). The Gelman and Rubin’s 

potential scale reduction factor is estimated when multiple chains are employed to run 



108 | P a g e  
 

the Bayesian analysis. It is calculated based on the variance of the estimated 

parameter between chains, and the variance within a chain317. Plots employed to 

assess convergence are trace plots, autocorrelation plots and the Gelman-Rubin 

diagnostic plot337. It is expected that at convergence: 

 The trace plots will be caterpillar-shaped, and where multiple chains are 

employed; all the chains will overlap each other. This is also to assess mixing.  

 The auto correlation from the samples will tend to zero as the number of 

samples generated increases.  

 The shrinkage factor in the Gelman – Rubin diagnostic plot will tend to one as 

number of the samples generated increases. The  �̂�  uses estimates of the 

variance within and between the chains to monitor convergence338. 

Selection of a model 

The deviance information criterion (DIC) 336 can be used to compare the different 

models employed to analyse a dataset in a study. DIC is a model fit criterion which is 

particularly suited to Bayesian models, and penalises models for increasing numbers 

of parameters. The DIC is a function of the posterior mean of the Bayesian deviance 

and the effective number of parameters (𝑝𝐷).  

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2 log 𝑝(𝑦|𝜽)   

Where y is the observed data, 𝜽  is the vector of parameters to estimate, and 𝑝(𝑦|𝜃)  is 

the likelihood of the observed data given the parameters of interest. The effective 

number of parameters (𝑝𝐷) is calculated as: 

𝑝𝐷 =
𝑉𝑎𝑟(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒)

2
;  for complex models      𝑂𝑅    𝑝𝐷 = �̅� − �̂�;    

 

An example of a complex model is the REM. The posterior mean of the deviance 

is  �̅� and  �̂� is the deviance of the mean.  

𝑝𝐷 =  𝐸[−2 log(𝑝(𝑦|𝜃)] +   2 log (𝑝 (𝑦|�̅�(𝑦)) 

where    �̅�(𝑦)  = 𝐸(�̅�|𝑦)  is the posterior mean of the parameters. 

Hence, the DIC is calculated as:             𝐷𝐼𝐶 = �̅� + 𝑝𝐷 
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The model with the smallest DIC is chosen to be the model that best fits the data. Using 

the DIC as a criterion for model selection alone is not always encouraged336, especially 

when the knowledge of the relationship between the parameters of interest and the 

observed data is well-known. This knowledge should be applied alongside the DIC in 

the selection of a model.  

4.4.3. Advantages and disadvantage of Bayesian approach over frequentist 

approach 

Advantage of Bayesian approach 

 The Bayesian approach incorporates prior information about the unknown 

parameters and uses the observed data to estimate the parameters of 

interest146 which could be more reliable if the prior is accurate and elicited 

carefully.  

 The Bayesian approach aids in solving non-identifiable models291. Under the 

conditional dependence assumption, most latent class models cannot obtain a 

unique solution for the parameters of interest especially when the degrees of 

freedom are smaller than the number of parameters to estimate. Thus, using 

prior information about some of the parameters in the model helps to make the 

model identifiable and so a unique solution is provided.  

 The Bayesian approach can be employed to solve the small sample – data 

problem339. Some research studies may lack sufficient data to reach a valid 

inference for some parameters of interest. However, if there are reliable 

opinions (expert opinions) about these parameters, these opinions can be 

employed as a prior to infer the parameters of interest.  That is, the data analyst 

does not have to rely on large sample asymptotic theory339.  

Disadvantages of the Bayesian approach 

 The Bayesian approach requires knowledge of the probability distribution of the 

parameters of interest for reliable inference. It is important to understand which 

distributional form to use for the parameters as this can impact the posterior 

distribution obtained. Several web-applications like MATCH331 have been 

developed to help non-statisticians in eliciting prior information.  

 The Bayesian approach employs prior information which could be based on 

expert opinions which are subjective. If the expert opinions are inaccurate, 

biased estimates are obtained. This is especially true if the study’s observed 
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data sample size is small and the model is non-identifiable with the observed 

data alone.   

 Bayesian analysis can be computationally complex and resource heavy.  

 

4.5. Simulation  

In this section, three datasets are generated to show the possible associations that 

can exist among three medical tests. The first dataset assumes that the three tests are 

conditionally independent (section 4.5.2), the second dataset assumes that only two of 

the three tests are conditionally dependent (and both tests are conditionally 

independent of the third test), and the last dataset assumes that all the three tests are 

conditionally dependent among the diseased group (section 4.5.3).  

The datasets were simulated in R studio290, 340, 341. The simulated datasets represent 

possible test responses from the three tests under two basic assumptions – a 

conditional independence assumption and a conditional dependence assumption 

among the tests given the true disease status. The openBUGS324, 342-345 software was 

employed to analyse the simulated datasets to estimate the sensitivities and 

specificities of the tests as well as the prevalence of the disease via the REM, FMM, 

TLCM and FEM. The RStan346 package via R studio was used to analyse the 

generated dataset using the FEM approach by Wang et al286 (FEMW). RStan346 uses 

the No-U-Turn sampler (NUTS)347 an extension of the Hamiltonian Monte Carlo (HMC) 

algorithm, which is a sampling algorithm that does not employ the random walk 

behaviour that Gibbs sampling uses. In addition, the NUTS is less sensitive to 

correlated parameters, so this sampling technique allows for higher order correlations 

among three or more tests. The R-code written to simulate the different datasets is 

presented in the appendix (Appendix C.1), the WINBUGS code and RStan code used 

to analyse the datasets is also reported in the appendix (Appendix C.2). Diagnostic 

plots were employed to assess the convergence of the posterior distribution of the 

parameters.  

4.5.1. Simulated values 

Let us assume that there are three tests (𝑇1, 𝑇2, 𝑇3) to evaluate, and the response of 

each test is either 0 or 1. Here, 0 indicates the absence of the target condition and 1 

indicates the presence of the target condition. The prevalence of the disease is 0.3, 

and the sensitivities and specificities of the three tests are:  
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 𝑆𝑛1 = 0.9, 𝑆𝑛2 = 0.8, 𝑆𝑛3 = 0.7, 𝑆𝑝1 = 0.9, 𝑆𝑝2 = 0.8, 𝑆𝑝3 = 0.9 

The choice of prevalence, sensitivities and specificities are arbitrary, but these values 

were chosen to represent values which are plausible for a diagnostic accuracy study. 

The fixed effect model by Wang et al286 was employed to simulate the datasets. 

Inequality constraints54 are employed to calculate the possible bound values that the 

covariance terms can take given the sensitivity and specificity of the tests. However, 

under the conditional independence assumption, all the covariance terms are zero. 

That is the covariance terms among the diseased group (𝑐𝑜𝑣𝑠) and the covariance 

terms among the non-diseased group (𝑐𝑜𝑣𝑐) between all tests are zero. 

𝑐𝑜𝑣𝑠12 = 𝑐𝑜𝑣𝑠13 = 𝑐𝑜𝑣𝑠23 = 𝑐𝑜𝑣𝑐12 = 𝑐𝑜𝑣𝑐13 = 𝑐𝑜𝑣𝑐23 = 0 

With the FEM approach, the number of participants (or cell frequency) of each test 

combination (111, 101, 110, 100, 000, 001, 011, 010) is simulated using a multinomial 

distribution. Therefore, using the information on the sensitivity and specificity of each 

test, alongside the prevalence and covariance terms, 100 different datasets of 500 

participants were simulated using the “rmultinom” function in R. The choice of using 

500 participants (rather than a small sample size like 50 or 100) was made to ensure 

that the inferences drawn about the models are consistent. This is because of the 

possibility that the sample size could impact the choice of one method over another. 

Studies of much larger sample size (10,000 for example) are possible but 

comparatively much rarer. I took the average of the 100 simulated datasets as my 

dataset for each scenario investigated. Using this approach reduces the random 

variability that could arise from using only one simulated sample (of 500 participants).  

Another option could have been to use a very large dataset, for example, 50,000 

participants; however, using such a large sample size would be computationally 

intensive and there would be the risk of the sampling iterations failing (terminating) 

especially when using the REM and FEM. The simulated dataset is employed to 

explore how the different latent class models described in section 4.3 recover the 

simulated truth. In order to estimate the parameters of interest, the Bayesian approach 

was employed. This is because of the identifiability issues discussed earlier (section 

4.3.2).  
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4.5.2. Conditional independence assumption 

Under the conditional independence assumption, all the covariance terms equate to 

zero. The simulated dataset is reported in Table 18 and the estimated parameters of 

interest are reported in Table 19.  

 

Table 18: Simulated dataset of 500 participants assuming conditional independence 

Test 1 result Test 2 result Test 3 result Mean frequency of test 

results 

1 1 1 77 

1 1 0 39 

1 0 1 21 

1 0 0 34 

0 1 1 14 

0 1 0 60 

0 0 1 27 

0 0 0 228 

 

The estimated sensitivities and specificities of the three tests as well as the prevalence 

from all the LCMs explored are approximately the same as the simulated truth 

(rounding to one decimal place – Table 19). The estimated sensitivities, specificities 

and prevalence from the TLCM and FEM models are identical because both models 

have the same likelihood function. The random effect and finite mixture models require 

a good choice of priors for the hyper-parameters to accurately reflect the underlying 

assumption of the analysis and to estimate the parameters of interest.  

Therefore, given that the three tests are conditionally independent, the dependence 

(or variance) parameters of the REM, FMM and FEM were equated to zero.  For the 

REM, the intercept parameters were modelled using weakly informed priors (via a 

truncated normal distribution). The intercept for the diseased (d = 1) and non-diseased 

group (d = 0) are stated as:  

𝑎𝑗1 ~ 𝑁(0, 0.1)𝐼(−1, )   𝑎𝑛𝑑    𝑎𝑗0 ~ 𝑁(0, 0.1)𝐼(, 1);   
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𝐼(−1, )  𝑎𝑛𝑑  𝐼(, 1) are used to truncate the normal distribution to constrain the intercept 

parameter. 𝐼(−1, )  implies values from -1 to infinity and 𝐼(, 1) implies values from minus 

infinity to 1.  

For the FMM model the indicator variables (𝑙𝑑𝑖) used non-informative priors 

(𝐵𝑒𝑡𝑎(1,1)), and the probability of each test to correctly classify participants as 

diseased or non-diseased (𝑤𝑗(𝑑)) used a weakly informed prior as described below.   

𝑊𝑗(𝑑) ~ 𝐵𝑒𝑡𝑎 (0.5, 0.5);       𝑑 = 0, 1 

The prevalence in all the models was modelled using a non-informative prior 

(𝐵𝑒𝑡𝑎 (1,1)).  
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Table 19: Estimated prevalence, sensitivities and specificities of the three tests from the different LCMs under the conditional 

independence assumption.  

Parameters Simulated truth  TLCM 

Mean (SD) 

FEM 

Mean (SD) 

REM (Probit) 

Mean (SD) 

REM (Logit) 

Mean (SD) 

FMM 

Mean (SD) 

𝑆𝑛1 0.9 0.90 (0.05) 0.90 (0.05) 0.94 (0.06) 0.92 (0.05) 0.91 (0.05) 

𝑆𝑛2 0.8 0.80 (0.05) 0.80 (0.05) 0.81 (0.05) 0.80 (0.05) 0.80 (0.05) 

𝑆𝑛3 0.7 0.69 (0.05) 0.70 (0.05) 0.70 (0.05) 0.70 (0.05) 0.70 (0.06) 

𝑆𝑝1 0.9 0.90 (0.03) 0.90 (0.03) 0.90 (0.03) 0.90 (0.03) 0.90 (0.03) 

𝑆𝑝2 0.8 0.80 (0.03) 0.80 (0.03) 0.79 (0.03) 0.80 (0.03) 0.80 (0.03) 

𝑆𝑝3 0.9 0.90 (0.02) 0.90 (0.03) 0.89 (0.02) 0.90 (0.02) 0.90 (0.02) 

Prevalence 0.3 0.30 (0.03) 0.30 (0.02) 0.29 (0.04) 0.29 (0.04) 0.30 (0.04) 

SD is standard deviation; TLCM is traditional latent class model; FEM is fixed effect model; REM is random effect model; FMM is finite mixture 

model; 𝑆𝑛1, 𝑆𝑛2, 𝑆𝑛3,  are the sensitivities of test 1, test 2 and test 3 and   𝑆𝑝1, 𝑆𝑝2, 𝑆𝑝3   are specificities of test 1, test 2 and test 3. 
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The trace plots, density plots, auto-correlation and Gelman diagnostic plots of the 

estimated parameters are reported in Figure 18 to Figure 21. The trace plots are 

caterpillar-shaped indicating that the model has converged to the target posterior 

distribution. The density plots of the parameters are bell-shaped and unimodal. The 

autocorrelations of the parameters are approximately zero. The Gelman diagnostic 

plots show that the shrinkage factor (�̂�) for all the parameters is 1, indicating the model 

has converged to the posterior distributions.  

There are three different colours on the diagnostic plots which represent the three 

chains employed to run the analysis. 

 

Figure 18: Trace plots of the sensitivity and specificity of the three tests and 

prevalence when all tests are conditionally independent. 
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Figure 19: Density plots of the sensitivity, specificity of the three tests and 

prevalence when all tests are conditionally independent.  

 
Figure 20: Auto-correlation plot of the sensitivity and specificity of the three tests 
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Figure 21: Gelman diagnostic plots of the sensitivities and specificities of the three 
tests 
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4.5.3. Conditional dependence assumption 

To explore the LCMs under the conditional dependence assumption, two scenarios 

were simulated. Firstly, datasets were simulated assuming that two of the three tests 

were conditionally dependent given the true disease status. Secondly, all the three 

tests were assumed to be conditionally dependent given the true disease status. As 

discussed in section 4.3.2, the number of parameters to estimate increases under the 

conditional dependence assumption and is often larger than the degrees of freedom in 

the model which makes the model non-identifiable. Therefore, to make the model 

identifiable, informative priors that constrain some or all of the parameters of interest 

are employed. Using the simulated truth in section 4.5.1, the plausible informative prior 

distributions for the sensitivities and specificities for the three tests are: 

 𝑆𝑛1~ 𝐵𝑒𝑡𝑎 (6, 0.667) 

 𝑆𝑛2~ 𝐵𝑒𝑡𝑎(4, 1) 

 𝑆𝑛3~ 𝐵𝑒𝑡𝑎 (5.95, 2.55) 

 𝑆𝑝1~𝐵𝑒𝑡𝑎(4.05, 0.45) 

 𝑆𝑝2~𝐵𝑒𝑡𝑎(4, 1) 

 𝑆𝑝3~𝐵𝑒𝑡𝑎(4.05, 0.45) 

The above informative priors are centred on the truth. The pairwise covariance terms 

of the fixed effects model employed a Uniform prior distribution that is bounded as 

follows:  

 𝐶𝑜𝑣23~ 𝑈𝑛𝑖𝑓(0, 𝑢𝑏23);                      𝑢𝑏23 = min(𝑆𝑛2, 𝑆𝑛3) − 𝑆𝑛2 × 𝑆𝑛3 

The variance parameter is modelled using a Gamma distribution for the FMM and 

truncated normal distribution for the REM: 

 𝑏1~ 𝐺𝑎𝑚𝑚𝑎(1,1) 

 𝑏1~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 0.1)𝐼(0, ) 

The prevalence was modelled using a flat beta prior: 

 𝑝𝑑 ~ 𝐵𝑒𝑡𝑎 (1,1) 
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SCENARIO ONE 

The pairwise covariance term between the two tests is 0.11. The choice of the 

covariance term is based on the inequality constraints of the FEM approach. In 

addition, I wanted to use the strongest possible positive correlation between test 2 and 

test 3. The simulated true values are: 

𝑝𝑑 = 0.3;    𝑆𝑛1 = 0.9, 𝑆𝑛2 = 0.8, 𝑆𝑛3 = 0.7, 𝑆𝑝1 = 0.9, 𝑆𝑝2 = 0.8,

𝑆𝑝3 = 0.9,    𝑐𝑜𝑣𝑠12 = 0;          𝑐𝑜𝑣𝑠13 = 0;        𝑐𝑜𝑣𝑠23 = 0.11 

The dataset generated is reported in Table 20. Firstly, the dataset was analysed 

assuming that all tests were conditionally independent. This will help understand what 

happens to the estimates when the underlying assumption is misspecified. The 

estimated sensitivities and specificities of the tests are presented in Table 21.  

 

Table 20: Simulated dataset of 500 participants assuming conditional dependence 

between two tests (test 2 and test 3). 

Test 1 result Test 2 result Test 3 result Mean frequency of test 

results 

1 1 1 92 

1 1 0 23 

1 0 1 5 

1 0 0 50 

0 1 1 15 

0 1 0 61 

0 0 1 28 

0 0 0 226 
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Table 21: Estimated prevalence, and sensitivities and specificities of the three tests from the different LCMs under the conditional 
independence assumption. 

Parameters Simulated truth  FEM 

Mean (SD) 

REM (Probit) 

Mean (SD) 

REM (Logit) 

Mean (SD) 

FMM 

Mean (SD) 

𝑆𝑛1 0.9 0.91 (0.04) 0.94 (0.05) 0.93 (0.04) 0.93 (0.05) 

𝑆𝑛2 0.8 0.97 (0.02) 1.00 (0.01) 0.99 (0.02) 0.98 (0.03) 

𝑆𝑛3 0.7 0.89 (0.05) 0.94 (0.06) 0.91 (0.05) 0.91 (0.06) 

𝑆𝑝1 0.9 0.82 (0.02) 0.82 (0.03) 0.82 (0.02) 0.82 (0.02) 

𝑆𝑝2 0.8 0.79 (0.02) 0.78 (0.03) 0.78 (0.03) 0.78 (0.03) 

𝑆𝑝3 0.9 0.89 (0.02) 0.89 (0.02) 0.89 (0.02) 0.89 (0.02) 

Prevalence 0.3 0.22 (0.02) 0.21 (0.02) 0.22 (0.02) 0.22 (0.03) 

SD is standard deviation; TLCM is traditional latent class model; FEM is fixed effect model; REM is random effect model; 

𝑆𝑛1, 𝑆𝑛2, 𝑆𝑛3,  are the sensitivities of test 1, test 2 and test 3 and   𝑆𝑝1, 𝑆𝑝2, 𝑆𝑝3   are specificities of test 1, test 2 and test 3. 
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From Table 21, the sensitivities of test 2 and test 3 are overestimated across all the 

LCMs. This is in line with the research study by Vacek 54, that if two tests are positively 

correlated among the diseased group, their sensitivities are overestimated if the 

conditional dependence between the two tests is not accounted for. The specificity of 

test 1 and the prevalence are underestimated and the specificities of test 2 and test 3 

are estimated accurately (rounding to one decimal place). The diagnostic plots are 

reported in Appendix C.3. 

Secondly, the dataset in Table 20 was analysed using the correct underlying 

assumption (conditional dependence between test 2 and test 3) and informative priors 

for some or all the parameters of interest. In analysing this dataset using the 

appropriate assumption, two versions of fixed effect latent class models were 

employed. The first version is the fixed effect model introduced by Wang et al286 

(FEMW), which allows for higher order conditional dependence to be estimated as this 

approach was employed to simulate the datasets. Another version of the FEM is the 

well-known FEM54 employed to model only the pairwise conditional dependence 

between two tests. The FMM was not used because of the complexity of the FMM in 

evaluating pair-wise correlated tests simultaneously with tests that they are 

conditionally independent.  

Reanalysing the dataset (Table 20) while taking into consideration the conditional 

dependence between the two tests (test 2 and test 3), informative priors centred on 

the simulated true values (see below) were employed to analyse the dataset in Table 

20. Generally, non-informative prior was used for the prevalence. The choice of using 

a non-informative prior for the prevalence is intentional as I want to find out if the latent 

class models can recover the true prevalence. 

 𝑆𝑛1~ 𝐵𝑒𝑡𝑎 (6, 0.667) 

 𝑆𝑛2~ 𝐵𝑒𝑡𝑎(4,1) 

 𝑆𝑛3~ 𝐵𝑒𝑡𝑎 (3.5, 1.5) 

 𝑆𝑝1~𝐵𝑒𝑡𝑎(4.05, 0.45) 

 𝑆𝑝2~𝐵𝑒𝑡𝑎(4, 1) 

 𝑆𝑝3~𝐵𝑒𝑡𝑎(4.05, 0.45) 

 𝑝𝑑~𝐵𝑒𝑡𝑎(1, 1) 

Table 22 shows the results obtained when the right model specification (with 

conditional dependence between test 2 and test 3 among the diseased group) and 
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informative priors (for some or all the parameters of interest) centred on the truth are 

used. The estimated values from the random effect model via probit link (REMP) is the 

same as the simulated truth, though it has larger uncertainty (SD) compared to the 

FEMs and random effect model via the logit link (REML). This could be an indication 

that the choice of prior affects the posterior distributions of the parameters. However, 

this observation is investigated later (within this section) by using different priors not 

centred on the simulated truth.  

Table 22: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3) 

Parameters Truth  FEM 

Mean (SD) 

FEMW 

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

𝑆𝑛1 0.9 0.93 (0.04) 0.73 (0.09) 0.90 (0.11) 0.93 (0.04) 

𝑆𝑛2 0.8 0.86 (0.10) 0.72 (0.09) 0.80 (0.16) 0.92 (0.04) 

𝑆𝑛3 0.7 0.76 (0.11) 0.65 (0.10) 0.70 (0.19) 0.75 (0.11) 

𝑆𝑝1 0.9 0.88 (0.06) 0.90 (0.06) 0.90 (0.13) 0.96 (0.05) 

𝑆𝑝2 0.8 0.79 (0.02) 0.83 (0.05) 0.80 (0.16) 0.79 (0.02) 

𝑆𝑝3 0.9 0.89 (0.02) 0.94 (0.04) 0.90 (0.13) 0.89 (0.02) 

Prevalence 0.3 0.27 (0.05) 0.38 (0.08) 0.30 (0.05) 0.34 (0.04) 

𝐶𝑜𝑣𝑠23 0.11 0.08 (0.05) 0.08 (0.04) NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al and the 
FEM is the traditional latent class model that takes into consideration pairwise correlation between 
two tests (test 2 and 3). REMP is random effect model via probit link and REML is the random 
effect model via logit link. Covs is the pairwise covariance term between the two tests subscripted. 

 

The FEM and REML overestimate the sensitivities of test 2 and test 3 and the REML 

overestimates the specificity of test 1. In addition, the covariance between test 2 and 

test 3 was underestimated, which could be the reason why the sensitivities of test 2 

and test 3 were not estimated correctly. The FEMW underestimates the prevalence, 

and sensitivities of test 1 and test 2. This posed questions because the dataset was 

simulated using the FEMW approach (section 4.5.1). On investigating the simulated 

datasets and the clinical case studies reported by Wang et al286, I noticed that 

conditional independence among the tests in the non-diseased group means that the 

specificities of tests are very close to one, such that the possible covariance terms 

among the non-diseased group are insignificant or close to zero286. Therefore, another 

dataset was simulated using the values below: 
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𝑝𝑑 = 0.3;    𝑆𝑛1 = 0.9, 𝑆𝑛2 = 0.8, 𝑆𝑛3 = 0.7, 𝑆𝑝1 = 0.99, 𝑆𝑝2 = 0.99,

𝑆𝑝3 = 0.99,     𝑐𝑜𝑣𝑠12 = 0,        𝑐𝑜𝑣𝑠13 = 0;        𝑐𝑜𝑣𝑠23 = 0.11 

The generated dataset is presented in Table 23.  

Table 23: Simulated dataset of 500 participants assuming conditional dependence 

between two tests (test 2 and test 3) with specificities close to one. 

Test 1 result Test 2 result  Test 3 result Mean frequency of test 

result  

1 1 1 92 

1 1 0 19 

1 0 1 5 

1 0 0 25 

0 1 1 12 

0 1 0 4 

0 0 1 3 

0 0 0 340 

 

Table 23 was analysed taking into consideration the conditional dependence between 

test 2 and test 3. With the changes in the specificities of the three tests, the informative 

priors for the specificities of the three tests centred on the truth are Beta (113.45, 0.419) 

286. The estimated mean and standard deviation of the parameters of interest are 

presented in Table 24. The FEM estimates the parameters of interest accurately 

including the covariance term between test 2 and test 3. The FEMw underestimates 

the sensitivities of test 1 and test 2. The REML overestimates the sensitivities of test 2 

and test 3 despite using informative priors. This could be because of the conditional 

dependence that exists between the two tests. The estimated sensitivities and 

specificities from the REMP and FMM are the same as the simulated truth. However, 

it has larger uncertainty (SD) compared to other estimates obtained from the FEMs 

and REML. This could be an indication that the choice of prior has a large impact on 

the posterior distributions in the REMP model. The diagnostic plots from the FEM and 

REML model are displayed in Appendix C.4 and Appendix C.5 respectively. The trace 

plots are caterpillar – shaped indicating that the model has converges to the target 

posterior distribution. The density plots of the parameters are bell-shaped and 



124 | P a g e  
 

unimodal. The Gelman diagnostic plots shows that the shrinkage factor (�̂�) for all the 

parameters is 1, indicating the model has converged to the posterior distributions. 

Table 24: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3). 

Parameters Truth  FEM 

Mean (SD) 

FEMW 

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

𝑆𝑛1 0.9 0.89 (0.03) 0.85 (0.05) 0.90 (0.11) 0.87 (0.03) 

𝑆𝑛2 0.8 0.80 (0.04) 0.75 (0.05) 0.80 (0.16) 0.94 (0.03) 

𝑆𝑛3 0.7 0.70 (0.04) 0.67 (0.05) 0.70 (0.19) 0.84 (0.06) 

𝑆𝑝1 0.99 0.99 (0.01) 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 

𝑆𝑝2 0.99 0.99 (0.01) 0.99 (0.01) 1.00 (0.01) 1.00 (0.01) 

𝑆𝑝3 0.99 0.99 (0.01) 0.99 (0.01) 1.00 (0.01) 1.00 (0.01) 

Prevalence 0.3 0.31 (0.02) 0.32 (0.03) 0.32 (0.03) 0.32 (0.02) 

𝐶𝑜𝑣𝑠23 0.11 0.10 (0.03) 0.11 (0.03) NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al and 
the FEM is the traditional latent class model that takes into consideration pairwise correlation 
between two tests (test 2 and 3). REMP is random effect model via probit link and REML is the 
random effect model via logit link. Covs is the pairwise covariance term between the two tests 
subscripted. 

 

To explore the impact of the priors on the posterior distributions, alternative priors not 

centred on the simulated true values were employed to reanalyse the dataset in Table 

23. The informative priors (not centred on the simulated true values) are: 

 𝑆𝑛1~ 𝐵𝑒𝑡𝑎 (4,1) centred on 0.8 

 𝑆𝑛2~ 𝐵𝑒𝑡𝑎(3.5, 1.5) centred on of 0.7 

 𝑆𝑛3~ 𝐵𝑒𝑡𝑎 (6, 0.667) centred on 0.9 

 𝑆𝑝1~𝐵𝑒𝑡𝑎(3.5, 1.5) centred on 0.7 

 𝑆𝑝2~𝐵𝑒𝑡𝑎(4.05, 0.45) centred on 0.9 

 𝑆𝑝3~𝐵𝑒𝑡𝑎(4,1) centred on 0.8 

The estimated parameters of interest are presented in Table 25. The diagnostic plots 

are presented in Appendix C.6.  
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Table 25: Estimated prevalence, sensitivities and specificities of the three tests from 

the different LCMs assuming conditional dependence of two tests (test 2 and test 3). 

Parameters Truth  Centred 

priors 

FEM 

Mean (SD) 

FEMW  

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

𝑆𝑛1 0.9 0.8 0.88 (0.03) 0.81 (0.06) 0.80 (0.16) 0.88 (0.03) 

𝑆𝑛2 0.8 0.7 0.90 (0.05) 0.83 (0.07) 0.70 (0.19) 0.95 (0.03) 

𝑆𝑛3 0.7 0.9 0.80 (0.05) 0.74 (0.06) 0.90 (0.11) 0.87 (0.05) 

𝑆𝑝1 0.99 0.7 0.95 (0.02) 0.95 (0.02) 0.70 (0.19) 0.95 (0.03) 

𝑆𝑝2 0.99 0.9 0.99 (0.01) 0.99 (0.01) 0.90 (0.13) 0.99 (0.01) 

𝑆𝑝3 0.99 0.8 0.99 (0.01) 0.99 (0.01) 0.80 (0.16) 0.99 (0.01) 

Prevalence 0.3 NA 0.28 (0.03) 0.3 0 (0.03) 0.32 (0.03) 0.28 (0.03) 

𝐶𝑜𝑣𝑠23 0.11 NA 0.03 (0.03) 0.06 (0.04) NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al and the 
FEM is the traditional latent class model that takes into consideration pairwise correlation between 
two tests (test 2 and 3). REMP is random effect model via probit link and REML is the random 
effect model via logit link. Covs is the pairwise covariance term between the two tests subscripted. 

 

 

The results presented in Table 25 indicate that the choice of priors employed had a 

large impact on the REMP, as the estimated values are centred on the priors and the 

variances of the estimated parameters are very large compared to those from the 

FEMs and REML. The results from FEMs and REML are not largely impacted by the 

choice of priors as the estimated values are not centred on the priors. However, the 

choice of priors affects the estimates obtained.  
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SCENARIO TWO 

In scenario two, all the tests were assumed to be correlated among the diseased group. 

This implies that all the tests have pairwise conditional dependence and some third 

order correlation in the diseased group. This simulated scenario replicates the 

conditions in the clinical dataset which is analysed in chapter five (where all the three 

tests being evaluated have pair-wise covariance terms). The simulated truth for 

scenario two is: 

𝑝𝑑 = 0.3;    𝑆𝑛1 = 0.9, 𝑆𝑛2 = 0.8, 𝑆𝑛3 = 0.7, 𝑆𝑝1 = 0.9, 𝑆𝑝2 = 0.8, 𝑆𝑝3 = 0.9 

𝑐𝑜𝑣𝑠12 = 0.02;          𝑐𝑜𝑣𝑠13 = 0.06;        𝑐𝑜𝑣𝑠23 = 0.12 

The equality and inequality constraints286 were applied so that the sensitivities and 

specificities of the tests do not exceed their boundaries (0 and 1). The simulated 

dataset is reported in Table 26.  

Table 26: Simulated dataset of 500 participants assuming conditional dependence 

among all tests. 

Test 1 result Test 2 result  Test 3 result Mean frequency of test 

result  

1 1 1 100 

1 1 0 20 

1 0 1 8 

1 0 0 45 

0 1 1 11 

0 1 0 62 

0 0 1 23 

0 0 0 231 

 

Assuming that the all the tests are conditionally independent given the true disease 

status overestimates the sensitivities of all the tests and underestimates the 

specificities of test 1.  The estimated sensitivities and specificities of the tests are 

reported in Table 27 and the diagnostic plots are in Appendix C.7.
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Table 27: Estimated sensitivities and specificities of the three tests from the different LCMs under the conditional independence 
assumption. 

Parameters Simulated truth  FEM 

Mean (SD) 

REM (Probit) 

Mean (SD) 

REM (Logit) 

Mean (SD) 

FMM 

Mean (SD) 

𝑆𝑛1 0.9 0.94 (0.03) 0.98 (0.03) 0.96 (0.03) 0.96 (0.04) 

𝑆𝑛2 0.8 0.95 (0.03) 0.98 (0.02) 0.97 (0.03) 0.96 (0.04) 

𝑆𝑛3 0.7 0.92 (0.04) 0.96 (0.04) 0.94 (0.04) 0.93 (0.05) 

𝑆𝑝1 0.9 0.84 (0.02) 0.82 (0.02) 0.83 (0.02) 0.83 (0.02) 

𝑆𝑝2 0.8 0.79 (0.02) 0.77 (0.03) 0.78 (0.02) 0.78 (0.03) 

𝑆𝑝3 0.9 0.90 (0.02) 0.90 (0.02) 0.91 (0.02) 0.90 (0.02) 

Prevalence 0.3 0.24 (0.02) 0.22 (0.02) 0.23 (0.02) 0.23 (0.02) 

SD is standard deviation; TLCM is traditional latent class model; FEM is fixed effect model; REM is random effect model; 

𝑆𝑛1, 𝑆𝑛2, 𝑆𝑛3,  are the sensitivities of test 1, test 2 and test 3 and   𝑆𝑝1, 𝑆𝑝2, 𝑆𝑝3   are specificities of test 1, test 2 and test 3. 
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Reanalysing the dataset described in Table 26, taking into consideration the 

conditional dependence among the three tests; informative priors centred on the 

simulated truth were employed for all the parameters of interest except the prevalence 

(as noted earlier this allows the model to be identifiable). The estimated sensitivities 

and specificities of test 1, test 2 and test 3 are reported in Table 28.  The diagnostic 

plots of the result presented in Table 28 is reported in Appendix C.8. 

Table 28: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. 

Parameters Simulated 

truth 

FEMW 

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

FMM 

Mean (SD) 

𝑆𝑛1 0.9 0.76 (0.09) 0.9 (0.11) 0.88 (0.10) 0.9 (0.11) 

𝑆𝑛2 0.8 0.73 (0.09) 0.8 (0.16) 0.83 (0.12) 0.8 (0.16) 

𝑆𝑛3 0.7 0.68 (0.10) 0.7 (0.18) 0.73 (0.15) 0.7 (0.19) 

𝑆𝑝1 0.9 0.91 (0.06) 0.9 (0.13) 0.86 (0.05) 0.9 (0.13) 

𝑆𝑝2 0.8 0.83 (0.05) 0.8 (0.17) 0.77 (0.04) 0.8 (0.16) 

𝑆𝑝3 0.9 0.95 (0.03) 0.9 (0.13) 0.9 (0.02) 0.9 (0.13) 

Prevalence 0.3 0.38 (0.08) 0.4 (0.06) 0.38 (0.06) 0.39 (0.22) 

𝐶𝑜𝑣𝑠12 

𝐶𝑜𝑣𝑠13 

𝐶𝑜𝑣𝑠23 

0.02 

0.06 

0.12 

0.05 (0.04) 

0.05 (0.04) 

0.08 (0.04) 

NA NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al. REMP 
is random effect model via probit link and REML is the random effect model via logit link. Covs 
is the pairwise covariance term between the two tests subscripted. 

 

From Table 28, the estimated sensitivities and specificities of the three tests from all 

the REMs and FMM are the same as the simulated truth except for the prevalence. 

However, the variances in the REMP and FMM are large compared to the REML and 

FEMW. The sensitivities of test 1 and test 2 obtained from the FEMW model are 

underestimated and the specificity of test 3 is overestimated. This is similar to what 

was observed in scenario one. When simulating datasets using the fixed effect 

approach by Wang et al286, conditional independence between two tests among the 

diseased (non-diseased) group implied that the sensitivities (specificities) of the tests 

have to be close to one. Hence, another dataset was generated using the information 

below assuming that the specificities of all the tests are close to one: 
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𝑝𝑑 = 0.3;    𝑆𝑛1 = 0.9, 𝑆𝑛2 = 0.8, 𝑆𝑛3 = 0.7, 𝑆𝑝1 = 0.99, 𝑆𝑝2 = 0.99,

𝑆𝑝3 = 0.99 

𝑐𝑜𝑣𝑠12 = 0.02;          𝑐𝑜𝑣𝑠13 = 0.06;        𝑐𝑜𝑣𝑠23 = 0.12 

The generated dataset is presented in Table 29. This dataset was analysed using the 

informative priors centred on the simulated truth and the results obtained are reported 

in Table 30. 

Table 29: Simulated dataset of 500 participants assuming conditional dependence 

among all tests and the specificities of all the tests are close to one.  

Test 1 result Test 2 result  Test 3 result Mean frequency of test 

result  

1 1 1 101 

1 1 0 13 

1 0 1 5 

1 0 0 22 

0 1 1 4 

0 1 0 8 

0 0 1 1 

0 0 0 345 
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Table 30: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. 

Parameters Simulated 

truth 

FEMW 

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

FMM 

Mean (SD) 

𝑆𝑛1 0.9 0.86 (0.05) 0.90 (0.11) 0.92 (0.06) 0.90 (0.11) 

𝑆𝑛2 0.8 0.77 (0.05) 0.80 (0.16) 0.81 (0.1) 0.80 (0.16) 

𝑆𝑛3 0.7 0.69 (0.05) 0.70 (0.19) 0.65 (0.14) 0.70 (0.19) 

𝑆𝑝1 0.99 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 1.00 (0.01) 

𝑆𝑝2 0.99 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 

𝑆𝑝3 0.99 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.01) 

Prevalence 0.3 0.32 (0.03) 0.4 (0.08) 0.4 (0.05) 0.43 (0.23) 

𝐶𝑜𝑣𝑠12 

𝐶𝑜𝑣𝑠13 

𝐶𝑜𝑣𝑠23 

0.02 

0.06 

0.12 

0.03 (0.03) 

0.05 (0.03) 

0.11 (0.03) 

NA NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al. 
REMP is random effect model via probit link and REML is the random effect model via logit 
link. Covs is the pairwise covariance term between the two tests subscripted. 

 

From Table 30  the estimated sensitivities and specificities are approximately the same 

as the simulated true values (rounding to one decimal place) except the prevalence 

from the REMs and FMM. This could be because no informative prior was employed 

for the prevalence parameter. The diagnostic plots from the FEMW and REML are 

reported in Appendix C.9 and Appendix C.10 respectively. The trace plots are 

caterpillar – shaped indicating that the model has converges to the target posterior 

distribution. The density plots of the parameters are bell-shaped and unimodal. The 

Gelman diagnostic plots shows that the shrinkage factor (�̂�) for all the parameters is 

1, indicating the model has converged to the posterior distributions. 

Informative priors, not centred on the simulated truth were employed to reanalyse the 

dataset reported in Table 26. The estimates obtained are reported in Table 31. 
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Table 31: Estimated prevalence, and the sensitivities and specificities of the three tests 

from the different LCMs assuming conditional dependence among all three tests. 

Parameters Simulated 

truth 

Centred 

priors 

FEM 

Mean (SD) 

REMP 

Mean (SD) 

REML 

Mean (SD) 

FMM 

Mean 

(SD) 

𝑆𝑛1 0.9 0.8 0.85 (0.06) 0.80 (0.16) 0.92 (0.06) 0.80 (0.16) 

𝑆𝑛2 0.8 0.7 0.84 (0.07) 0.70 (0.19) 0.90 (0.07) 0.70 (0.19) 

𝑆𝑛3 0.7 0.9 0.76 (0.07) 0.90 (0.11) 0.80 (0.12) 0.90 (0.11) 

𝑆𝑝1 0.99 0.7 0.95 (0.02) 0.70 (0.19) 0.95 (0.02) 0.70 (0.19) 

𝑆𝑝2 0.99 0.9 0.99 (0.01) 0.90 (0.13) 0.99 (0.01) 0.90 (0.13) 

𝑆𝑝3 0.99 0.8 1.00 (0.00) 0.80 (0.16) 0.99 (0.01) 0.80 (0.16) 

Prevalence 0.3 NA 0.29 (0.03) 0.41 (0.08) 0.34 (0.07) 0.64 (0.27) 

𝐶𝑜𝑣𝑠12 

𝐶𝑜𝑣𝑠13 

𝐶𝑜𝑣𝑠23 

0.02 

0.06 

0.12 

NA 0.05 (0.04) 

0.07 (0.04) 

0.07 (0.04) 

NA NA NA 

SD is standard deviation; NA means not applicable; The FEMW is the FEM by Wang et al. REMP is 
random effect model via probit link and REML is the random effect model via logit link. Covs is the 
pairwise covariance term between the two tests subscripted. 

 

From Table 31 the FMM and REMP are largely impacted by the choice of priors as 

their values are centred on the priors and they have large uncertainties compared to 

estimates from FEMW and REML. Moreover, using priors not centred on the true values 

can affect some of the estimated parameters, for example the sensitivities of test 2 and 

test 3 in the REML model and the sensitivity of test 3 in the FEMW model were 

overestimated compared to the estimated sensitivities when informative priors centred 

on the truth were employed (see Table 30). The diagnostic plots of estimates obtained 

using priors not centred on the simulated true values are reported in appendix 

(Appendix C.11). 

4.6. Limitations 

Firstly, the dataset was simulated using the FEM approach proposed by Wang et al286 

(FEMW) which allows pairwise and third order correlations between and among the 

tests to be modelled. This approach could have impacted the estimates obtained from 

other types of LCMs such as the REMs and FMM especially when the conditional 

dependence terms are not estimated accurately. However, in real – life scenarios, the 
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observed dataset cannot be proven by any statistical test to have a fixed or random 

effect conditional dependence structure. These are assumptions made by the 

researchers based on the knowledge of the observed dataset to justify the choice of 

LCM chosen. Secondly, simulated random samples may be affected by sampling 

variation, although this variation was minimized by the simulation of 100 samples of 

500 participants and using the mean values rather than generating a single sample of 

500 participants. Although, effort has been made to ensure that the results produced 

are reproducible by setting the seed to produce the simulated datasets in R. However, 

if a different seed is used, a different dataset will be generated, and slightly different 

estimates could be obtained; but the difference in the estimates obtained may not be 

significant. In addition, the scenarios explored in this chapter are limited to three 

imperfect tests that are correlated among the diseased group. There are other possible 

scenarios where the values for the sensitivity and specificity of the threes tests and the 

covariance terms are different from what is employed in this chapter. Thus, the 

comparison and inferences made in this chapter are by necessity limited. Furthermore, 

this simulation study is limited to three imperfect tests in a population where there is 

no gold standard; diagnostic accuracy studies can evaluate more or fewer than three 

imperfect tests in a population. However, the advantage of having more than three 

tests makes the models more identifiable without the need for informative priors, 

provided that the tests with conditional dependence are few. 

4.7. Summary  

4.7.1. Conditional Independence 

Under the conditional independence assumption, the REMs, FEM, TLCM and FMM 

are all identifiable with a minimum number of three tests in a population because the 

number of parameters to estimate is at least equal to the number of degrees of 

freedom. However, the REM and FMM require a good choice of hyper-priors (weakly 

informed hyper-priors) for the hyper-parameters, to estimate the parameters of interest 

accurately. Based on the simulation study, the TLCM is recommended when all the 

tests being evaluated are conditionally independent because: 

 They are simple models that do not have hyper-parameters; hence they do not 

require specification of prior distribution for any hyper-parameters.   
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4.7.2. Conditional dependence 

Estimating the sensitivity and specificity of three conditionally dependent imperfect 

tests in a population requires that informative priors are used to make the LCMs 

identifiable and to estimate the parameters of interest accurately. The different LCMs 

explored in this chapter are FEMs, REMs and FMM and all these LCMs have different 

conditional dependence structures.  

Fixed effect models 

From the simulation study, when two tests are conditionally dependent and both tests 

are conditionally independent of the third test, then using the basic FEM (with pairwise 

conditional dependence) would be recommended as opposed to the fixed effect model 

proposed by Wang et al286. This is because there is no higher order correlation that 

exist among the tests. However, when the three tests have pairwise conditional 

dependence among themselves (that is test 1 and test 2 are correlated, test 2 and test 

3 are correlated and test 1 and test 3 are correlated), then using the FEM by Wang et 

al286 (FEMw) should be considered, because of the third order correlations that exist 

among the tests.  

A disadvantage with the FEMW is that conditional independence among the diseased 

(non-diseased) group implies that the evaluated tests are expected to have sensitivities 

(specificities) that are close to one so that the covariances terms of the tests among 

the non-diseased group are insignificant or close to zero.  This is a case of conditional 

independence as observed in section 3.3.2  because tests with approximately 100% 

sensitivities (specificities) are conditionally independent among the diseased (non-

diseased) group. However, as observed in the simulation studies, conditional 

independence between two tests among either the diseased (or non-diseased) group 

does not always imply that the sensitivities (or specificities) of the tests must be close 

to one. It implies that the covariance terms between the two tests among the disease 

groups (diseased and non-diseased) are zero. Therefore, the FEMW approach could 

be employed if the expected specificities (sensitivities) of all the tests employed in the 

diagnostic accuracy study are approximately one, in order to ensure conditional 

independence among the non-diseased (diseased) group. For example, Table 20 and 

Table 26, showed two datasets simulated when the specificities and sensitivities of the 

imperfect tests are not approximately equal to 1. However, the three tests are 

conditionally independent among the non-diseased group, because the covariance 

terms among the non-diseased group were zero. Analysing these datasets with the 
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FEMW produced inaccurate estimates (Table 22 and Table 28) for the prevalence and 

sensitivities of the tests despite generating the datasets using the FEMW approach and 

using informative priors centred on the simulated true values.  Therefore, if the three 

tests are conditionally dependent among the diseased (non-diseased) group, and the 

specificities (sensitivities) of all the tests are expected to be approximately one then 

using the FEMW approach should be considered.  

Random effect models 

Using informative priors directly for the parameters of interest in the REML has less 

impact on the posterior distributions of the parameters but using informative priors 

directly for the parameters of interest in the REMP has a significant impact on the 

posterior distributions of the parameters.  A possible way to reduce this impact could 

be to transform the informative priors to informative hyper-priors. An example is the 

study by Dendunkuri et al348, where a mathematical approach (bisection method349, 350) 

was employed to estimate the hyper-parameters of the probit link function using the 

prior information on the sensitivity and specificity of the tests being evaluated. 

Transforming informative priors of the parameters of interest into hyper-priors of hyper-

parameters could be complex. This would be the case when the number of tests to 

evaluate is more than two. This could be the reason why most Bayesian diagnostic 

accuracy studies70, 140, 309 employ the random effect model via the logit link. 

From the simulation, the REMP is largely impacted by the choice of priors. The REML 

is less impacted by the choice of priors. However, specifying the correct priors will help 

the REML to estimate the sensitivities and specificities of the tests accurately.  

Finite mixture model  

From the simulation study, the choice of priors employed has a large impact on the 

posterior distribution of the model. To reduce this impact, researchers could consider 

transforming the informative priors to hyper-priors, however these can be very complex 

because of the model structure. 

Comparing all latent class models based on observations from the simulation 

If there are three imperfect tests to evaluate in a population and only two of the tests 

are conditionally dependent either among the diseased or non-diseased groups (i.e. 

scenario one); the FEM and REML models are preferred over the FMM and REMP 

models as they are less impacted by the choice of priors. The FEM may also be 
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preferred over the REML because it is computationally faster and can analyse very 

large datasets (for example, 50,000 participants).  

Generally, the choice of LCM, can depend on the prior knowledge about the tests being 

evaluated and some underlying conditions on the participants in the datasets. The 

REMs can be chosen if there is a suspicion that the disease status of the participants 

has some other underlying factor such as age, which can contribute to the results 

obtained by the tests. The FMM can be chosen if there is a degree of certainty that 

some percentage of participants are correctly classified as diseased and non-

diseased, because this information will help to specify the correct hyper-priors. The 

FEM can be employed if there is no prior knowledge of any variable that can influence 

the test responses of each participant or there is prior knowledge that all the tests 

evaluated have pairwise correlation between themselves and some higher order 

correlation and these pair-wise conditional dependencies could be of importance to the 

researcher. These comparison are shown in table (Table 32).   

Following the observations from the simulation studies on the various latent class 

models, the FEMW
286 and the REML will be employed to analyse the clinical dataset in 

chapter five. This is because, both latent class models are less influenced by the choice 

of priors. 
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Table 32: Comparison of the different LCMs explored in this chapter 

Comparison of LCMs based on the three tests scenarios explored in this chapter 

 LCMs  

Scenario  FEM FEMW REM FMM 

Scenario 

One 

Model is identifiable so model 

can recover the simulated true 

values. 

Model is identifiable so model can 

recover the simulated true values. 

Model is identifiable so model can 

recover the simulated true values. 

Model is identifiable so model 

can recover the simulated true 

values. 

 

Scenario 

Two 

Model is non-identifiable and 

will require informative priors.  

Model is non-identifiable and will 

require informative priors. 

Model is non-identifiable and will 

require informative priors. 

Model is non-identifiable and 

will require informative priors. 

Does not require hyper-priors  Does not require hyper-priors  Require informed hyper-priors. Require informed hyper-priors  

Encourage the use of FEM 

over the FEMW in scenario 

two, because the evaluated 

tests are not expected to have 

sensitivities or specificities 

close to one.  

Encourage its use if the 

specificities of the evaluated tests 

are expected to be close to one 

indicating that the tests are 

conditionally independent among 

the non-diseased group. 

REM do not expect the sensitivities 

or specificities of the evaluated 

tests to be close to one. In addition, 

due to the complexity of specifying 

the hyper-priors of the probit link 

REM, the logit link is well-employed.  

Complexity in specifying the 

right hyper-priors makes the 

choice of priors directly 

employed on the parameters of 

interest to impact largely the 

posterior distribution of the 

parameters of interest.   

Scenario one: All the three tests are conditionally independent among the diseased and non-diseased groups 

Scenario two: Two of the three tests are conditionally dependent among the diseased group only and both tests are conditionally independent of the 

third test among the diseased and non-diseased groups. LCM is latent class model; FEM is the classical fixed effect model with pairwise covariance 

structure;  FEMW is the FEM by Wang et al with third-order covariance structure; REM is random effect model; FMM is Finite mixture model 
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Table 32 cont. Comparison of the different LCMs explored in this chapter 

Comparison of LCMs based on the three tests scenarios explored in this chapter 

 LCMs 

Scenarios FEM FEMW REM FMM 

 

 

Scenario 

Three 

Cannot be used for cases 

with higher order 

covariance terms than two. 

Model not identifiable so 

informative priors are required. 

Model not identifiable so 

informative priors are required. 

Model not identifiable so 

informative priors are required. 

 Model is encouraged to be used 

if the specificities of the 

evaluated tests are expected to 

be close to one indicating 

conditional independence 

among the non-diseased group. 

Otherwise, consider the REM. 

REM does not expect the 

sensitivities or specificities of the 

evaluated tests to be close to one. 

In addition, due to the complexity 

of specifying the hyper-priors of 

the probit link, the logit link is 

employed.  

Complexity in specifying the right 

hyper-priors makes the choice of 

priors directly employed on the 

parameters of interest impact 

largely the posterior distribution 

of the parameters of interest. 

Scenario three: All three tests are conditionally dependent among the diseased group.  

LCM is latent class model; FEM is the classical fixed effect model with pairwise covariance structure;  FEMW is the FEM by Wang et al with third-order 

covariance structure; REM is random effect model; FMM is Finite mixture model 
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Table 32 cont. Comparison of the different LCMs explored in this chapter 

General comparison of LCMs explored in this chapter 

 LCMs 

Issues FEM FEMW REM FMM 

Sampling 

algorithm  

Model uses the MCMC 

sampling algorithm which 

can be implemented on 

Openbugs directly and R-

Openbugs package. 

This model uses the No-U-Turn 

sampling algorithm which is 

implemented in the R-Stan 

package because of the 

correlation that exits among the 

tests evaluated. 

Model uses the MCMC sampling 

algorithm which can be 

implemented on Openbugs 

directly and R-Openbugs 

package. 

 

Model uses the MCMC sampling 

algorithm which can be 

implemented on Openbugs 

directly and R-Openbugs 

package. 

Variables that 

could affect 

disease 

status among 

participants  

Encourage its use over the 

REM and FMM if there is no 

indication that the disease 

status of the participants 

could be affected by subject 

specific variables like age.  

Encourage its use over the 

REM and FMM if there is no 

indication that the disease 

status of the participants could 

be affected by subject specific 

variables like age. 

Encourage its use over FEM and 

FMM if there is an indication that 

the disease status of the 

participants are subject-specific 

that is affected by age, race or sex 

or other variables. 

Encourage its use over FEM and 

REM if the probabilities that the 

evaluated tests correctly classify 

the participants into diseased 

and non-diseased are known. 

However, this will require using 

informative hyper-priors to 

represent such information.    

LCM is latent class model; FEM is the classical fixed effect model with pairwise covariance structure;  FEMW is the FEM by Wang et al with third-order 

covariance structure; REM is random effect model; FMM is Finite mixture model 
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4.8. Revisiting the clinical dataset from chapter three  

In this section, the Matos et al124 clinical dataset discussed in chapter three is 

reanalysed using the TLCM. This example investigated the clinical performance of 

LFpen and FC to classify teeth with or without Dentine Lesions using operative 

intervention as the reference standard (Table 16). In chapter three, illogical results 

were obtained from using the Staquet et al correction method (see Table 17). The 

results obtained when reanalysing the dataset with TLCM are presented in Table 33. 

Using the TLCM, the known sensitivity and specificity of the reference standard are 

employed as deterministic priors. Deterministic priors involve setting the sensitivity and 

specificity of the reference standard within the TLCM to an exact value, rather than 

converting them to a probability distribution. Deterministic priors were employed to 

make the TLCM comparable to Brenner and Staquet et al correction methods, 

therefore, the estimates obtained via TLCM could be compared to the estimates 

obtained from the Brenner and Staquet et al correction methods which do not use 

probabilistic priors.   

From Table 33, the estimates from the TLCM are logical, as they are not above one 

unlike the estimated sensitivities from the Staquet et al correction method. The 

specificities of LFpen and FC are consistent across all methods (≅0.9). The estimated 

sensitivities from the TLCM is approximately the same as the unadjusted estimates 

(≅1). Thus, in the case where illogical estimates are obtain via the Staquet et al 

approach, using the TLCM is recommended if the two tests are conditionally 

independent.  
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Table 33: Estimated sensitivities and specificities of LFpen and FC in classifying teeth with D3 

Dentine caries lesion (D3) 

 LFpen FC 

Accuracy 

measures  

Unadjusted 

(SD) 

Brenner 

(SD) 

Staquet et 

al (SE) 

TLCM 

Mean (SD) 

Unadjusted 

(SD) 

Brenner 

(SD) 

Staquet et al 

(SD) 

TLCM 

Mean (SD) 

Sensitivity  0.95 (0.05) 0.87 (0.07) 1.04 (NaN) 0.94 (0.05) 1(0.00) 0.91 (0.06) 1.09 (NaN) 0.96 (0.04) 

Specificity  0.89 (0.02) 0.87 (0.02) 0.90 (0.02) 0.89 (0.02) 0.90 (0.02) 0.89 (0.02) 0.92 (0.01) 0.91 (0.02) 

Prevalence of D3 via TLCM is 0.07 (0.01) 

LFpen: laser florescence pen; FC: fluorescence camera; NaN means not a number; SD is standard deviation; TLCM is traditional latent class 
model.  
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Chapter Five: Clinical Application of Latent Class Model 

In chapter two, methods were identified by the systematic review that can be employed 

to evaluate the diagnostic accuracy of a medical test in the absence of a gold standard. 

Following the findings of this review57, the latent class model (LCM) was identified as 

being the best approach to use when there are multiple imperfect tests to evaluate and 

none of the tests are considered as a gold standard. In the LCM, the sensitivity and 

specificity of all the tests are evaluated simultaneously. An advantage of LCMs is that 

conditional dependence (or independence) that exists among the tests under 

evaluation can be taken into consideration. Various LCMs were identified by the 

review, some of which were explored in chapter four. Two LCMs (FEMW
286 and REML) 

were considered appropriate to analyse the clinical dataset used as a case study in 

this chapter because the scores evaluated in the clinical datasets are correlated, as 

explored in section 5.2 of this chapter. The clinical dataset is described in section 5.1 

and 5.2. The aims of the analysis presented in section 5.3. The methods employed to 

analyse the clinical dataset under the different model assumptions are presented in 

section 5.4. The results of the analysis of the clinical data are reported in section 5.5, 

and this chapter concludes with a discussion of the findings and limitations of the case 

study (section 5.6).   

5.1. Description of the clinical data 

The dataset explored in this chapter was obtained from the RA-MAP Consortium, 

Newcastle University. The RA-MAP Consortium is a multi-partner organisation of more 

than 140 individuals affiliated with 21 academic and industry organisations that are 

focused on making genomic medicine in rheumatoid arthritis a reality. They have 

established large a cohort dataset of patients with Rheumatoid Arthritis (RA) in 28 

centres in the UK. The RA-MAP Consortium data comprises of 317 participants and 

there are 70 variables recorded for each participant. The variables include clinical 

information to enable the calculation of three specific scores which are: the Disease 

Activity Score of 28 joints – Erythrocyte Sedimentation Rate (DAS28-ESR), the 

Simplified Disease Activity Index (SDAI) and the Clinical Diseases Activity Index 

(CDAI). These scores measure the disease activity of patients suspected and 

diagnosed with rheumatoid arthritis. Demographic variables such as age, sex, race, 

height and weight, etc. were also collected. These variables were collected both at 

baseline and at six months (follow-up period). In this research, I will use the information 
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collected from the RA patients at baseline. The demographic characteristics of the 

participants in the cohort study (at baseline) are provided in Table 34 

Table 34. The baseline data are newly diagnosed patients with seropositive RA. 

Further details on the characteristics of the participants, ethical approval and protocol 

for data collection is available in Tom et al351. 

Table 34: Demographic profile of RA patients and mean value of core set of variables 

Variables Statistics Baseline dataset 

  Total 

 

Female Male 

Age Min. 20 20 22 

 Max. 84 84 84 

 Mean (SD) 53.12 (15.27) 51.25 (15.08) 58.01 (14.77) 

DAS28-ESR4 Min. 1.89 2.07 0.89 

 Max. 8.68 8.68 8.14 

 Mean (SD) 5.19 (1.38) 5.310 (1.37) 4.89 (1.38) 

SDAI Min. 2.22 2.22 2.53 

 Max. 78.60 78.60 71.30 

 Mean (SD) 28.80 (14.29) 29.80 (14.53) 26.19 (13.39) 

CDAI Min. 1.70 1.70 1.90 

 Max. 66.10 66.10 65.60 

 Mean (SD) 27.08 (13.47) 23.9 (12.49) 28.30 (13.67) 

SD mean standard deviation; Min is minimum; Max is maximum; DAS28-ESR4 is disease 
activity score of 28 joints including CRP (four variables); SDAI is simplified disease activity 
index; CDAI is clinical disease activity index. 

 

RA is a disease of the joints and muscles21 and disease activity is measured in RA 

patients to enable rheumatologists offer personal-based treatment to improve quality 

of life. Various scores and medical tools have been employed to measure the disease 

activity in RA patients, such as the DAS28 (CRP and ESR), SDAI, CDAI, X-ray, and 

Doppler signals amongst others. There are different variations of DAS28 including the 

DAS28-CRP and the DAS28-ESR352-355. However, I will be focusing on the DAS28-

ESR4 (which includes four variables) because it is a well-established and widely used 

measure among rheumatologists21. In addition, for most research studies on the 
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validity or accuracy of newly developed or proposed scores for the diagnosis of RA, 

DAS28-ESR4 has been widely considered as a gold standard356-358. In addition to 

DAS28-ESR4, I will evaluate SDAI and CDAI. The formulas used to calculate these 

scores are expressed in Table 35. These formulas were used to calculate the baseline 

score for each patient in the RA-MAP dataset.   

Table 35: The Disease Activity Scores 

Scores Formula 

𝐷𝐴𝑆28 − 𝐸𝑆𝑅4 (0.56 ∗ √𝑇𝐸𝑁28 + 0.28 ∗  √𝑆𝐽𝐶28 + 0.70 ∗ 𝐼𝑛 (𝐸𝑆𝑅)) + 0.014 ∗ 𝑝𝑡𝐺𝑉𝐴𝑆 

𝑆𝐷𝐴𝐼 𝑇𝐽𝐶 + 𝑆𝐽𝐶 + 𝑃𝐷𝐺𝐴 + 𝐸𝐷𝐺𝐴 + 𝐶𝑅𝑃 

𝐶𝐷𝐴𝐼 𝑇𝐽𝐶 + 𝑆𝐽𝐶 + 𝑃𝐷𝐺𝐴 + 𝐸𝐷𝐺𝐴 

Key: TEN28 is tenderness upon touching the 28 joints; SJC28 is swollen joint count in 28 
joints; ESR is Erythrocyte sedimentation rate which is the rate at which red blood cells 
sediment in a period of one hour; and ptGVAS is the patient’s global disease activity visual 
analogue scale (VAS). Tender joint count (TJC); the swollen joint count (SJC); patient global 
disease activities (PDGA), and the evaluator determined global disease activity (EDGA); 
DAS28-ESR4 is disease activity score of 28 joints including ESR (four variables); SDAI is 
simplified disease activity index; CDAI is clinical disease activity index.  

 

The values obtained from these scores are used to classify the patients into one of four 

disease activity groups; remission, low disease activity (LDA), moderate disease 

activity (MDA) and high disease activity (HDA)21, 354. The responses from these three 

scores are continuous, so cut-offs are employed to classify patients into the different 

levels of disease activity. The standard cut-off for the different scores in classifying the 

disease activities of the patients are353, 359, 360 presented in Table 36. 

5.1.1. Missing data 

Out of 371 participants in the cohort, there were 51 participants whose baseline 

DAS28-ESR4 score was missing. There were a further 2 participants whose baseline 

scores for SDAI and CDAI were also missing. Therefore, there are 264 participants 

with complete information on the three scores at baseline. Since the number of 

participants with incomplete information across the three scores (53 at baseline) can 

be considered relatively small compared to participants with complete information on 

the three scores, removing these participants from the final analysis seems logical. 

This will also circumvent the complexity that could arise from making assumptions 
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about the missingness mechanism (missing at random or missing not at random) of 

the data.  

Table 36: Table of various cut-offs of the disease activities scores 

Scores Disease activity state Accepted cut-off 

SDAI359 Remission  

Low disease activity 

Moderate disease activity  

High disease activity  

𝑥 ≤ 3.3 

3.3 < 𝑥 ≤ 11 

11 < 𝑥 ≤ 26 

𝑥 > 26 

CDAI359, 361 Remission  

Low disease activity 

Moderate disease activity  

High disease activity  

𝑥 ≤ 2.8 

2.8 < 𝑥 ≤ 10 

10 < 𝑥 ≤ 22 

𝑥 > 22 

DAS28-ESR4
353 Remission  

Low disease activity 

Moderate disease activity  

High disease activity  

𝑥 ≤ 2.6 

2.6 < 𝑥 ≤ 3.2 

3.2 < 𝑥 ≤ 5.1 

𝑥 >  5.1 

DAS28-ESR4 is disease activity score of 28 joints including ESR (four 
variables); SDAI is simplified disease activity index; CDAI is clinical disease 
activity index. 

 

5.2. Exploration of clinical dataset  

In this section, the scores are presented using scatterplots (Figure 22), which indicate 

a positive relationship between the scores. The correlation between the scores is 

reported using a correlation matrix plot (Figure 23) and the distributions of the variables 

are explored using histograms and density plots (Figure 24). The correlation between 

the responses from the SDAI and CDAI is 0.9, the correlation between the scores from 

SDAI and DAS28-ESR4 is 0.9 and correlation between the scores from DAS28-ESR4 

and CDAI is 0.8 (Figure 23). These values indicate a strong correlation between the 

scores.  

From the histograms and the density plots (Figure 24), the response from the scores 

are unimodal, steeped bell-shaped. 
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Figure 22: Scatterplots of DAS28-ESR4, SDAI and CDAI 

 

 

Figure 23: Correlation matrix plot of DAS28-ESR4, SDAI and CDAI  
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Figure 24: Histogram and density plot of SDAI, CDAI and DAS28-ESR4 
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5.3. Aims of the clinical dataset analysis 

To estimate the sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in 

discriminating between RA patients who are in remission and non-remission (which 

include low, moderate and high disease activity group) using the baseline data only. In 

estimating these accuracy measures, different model assumptions were employed to 

help understand the potential bias that the variations in the model assumptions may 

have on how the scores should be used in practice. The different model assumptions 

are: 

 Estimating the sensitivity and specificity of SDAI and CDAI under the 

assumption that DAS28-ESR4 is a gold standard. 

 Estimate the sensitivity and specificity of SDAI and CDAI under the assumption 

that DAS28-ESR4, SDAI and CDAI are conditionally independent and none of 

the scores are a gold standard. 

 Estimate the sensitivity and specificity of DAS28-ESR, SDAI and CDAI under 

the assumption that the three tests are conditionally dependent and none of the 

scores are a gold standard.  

5.4. Methodology for analysing the clinical datasets 

Firstly, under the assumption that DAS28-ESR4 is a gold standard, the classical 

approach is employed to estimate the sensitivity and specificity of SDAI and CDAI in 

discriminating between RA patients in remission and non-remission. This is the 

standard assumption often presumed in some literatures where SDAI and CDAI have 

been evaluated356, 357, 362, 363; hence this assumption is explored in this analysis.  

In order to build on the findings of previous research studies, the three scores – 

DAS28-ESR4, CDAI and SDAI – are considered to be correlated, and DAS28-ESR4 is 

not a gold standard when evaluated with other devices such as x-ray 21, 354, 362-364. Thus, 

the accuracy measures of SDAI, CDAI and DAS28-ESR4 were estimated assuming 

that none of these scores is a gold standard while taking into consideration the 

correlations that exist among the scores.  

To account for the correlations that exist among the scores, given that none of the 

scores are a gold standard, the Bayesian LCM was employed. Therefore, Bayesian 

LCM 140, 197 is employed to analyse the clinical dataset to overcome the non-

identifiability problem which comes about because of the correlation among the scores. 
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The priors employed in this study were extracted from previous published research 

studies (see section 5.4.1).  

The MCMC322 method (via ROpenBUGS324, 344, 345) was used to obtain the posterior 

distributions of the sensitivity and specificity of the individual scores. These estimates 

were then used to make inference on the sensitivity and specificity of the scores at 

baseline. The models were assessed to ensure that the posterior distributions of the 

parameters converged and were compared using the DIC. For the purpose of our study 

both informative and non-informative priors were employed. To elicit these priors, the 

SHELF328, 330 was used.  

5.4.1. Prior information on the disease activities scores (SDAI, CDAI and DAS28-

ESR4) 

Prior information on the sensitivity and specificity of SDAI, CDAI and DAS28-ESR4 

were obtained from previous research studies. A literature review was undertaken for 

the purpose of this thesis to identify published articles with sensitivity and specificity of 

the DAS28-ESR4, SDAI and CDAI. This review considered studies published up until 

January 2020. The key criterion for selection of articles from the searched articles was 

the study population; as studies whose study population was homogenous to the RA-

MAP baseline clinical data were selected. The sensitivity and specificity of the 

evaluated scores (DAS28-ESR4, SDAI, CDAI) to discriminate between RA patients at 

remission and non-remission were extracted from the selected articles.  The sensitivity 

and specificity of the scores from selected published articles are reported in Table 37.  

Limitations of the prior information obtained via literature review 

Outlined below are the limitations experienced in the selection of articles used to 

specify the priors employed in analysing the clinical data using the Bayesian LCM 

approach.  

 Different reference standards were used in different research studies to evaluate 

the test performance of these scores. Most studies used DAS28-ESR4 as a 

reference standard to evaluate SDAI and CDAI356, 357, 362, 363, 365, 366 while others 

used expert’s opinions359, 367 or other medical devices like ultrasound368, x-ray369 or 

Boolean scores370 to evaluate SDAI, CDAI and DAS28-ESR4. This meant that if 

there are two identified studies with the same population as the RA-MAP dataset 

and both studies used different reference standard, the datasets from the two 

identified studies cannot be pooled together. Therefore, the study with the larger 
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sample size is chosen. Choosing a study with the larger sample size reduces the 

uncertainty around the estimates obtained. For example, Ben Abdelghani et al369 

and Legrand et al368 were two research studies identified from the review whose 

populations are homogenous to the RA-MAP baseline data. However, Ben 

Abdelghani et al369 and Legrand et al368 used ultrasound and x-ray stability as their 

reference standard respectively. The datasets from both studies cannot be 

combined because of the different reference standards used. Hence, the  Legrand 

et al368 study was chosen because it had a larger sample size (n = 133) than Ben 

Abdelghani et al369 (n = 62). 
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Table 37: Prior information on the sensitivity and specificity of DAS28-ESR4, SDAI and CDAI 

Authors Population 

(disease level) 

Sample 

size 

Index test 

(cut-off) 

Reference 

standard 

Sensitivity (95% 

CI) 

Specificity (95% 

CI) 

Legrand et al368  Newly recruited 

RA patients (Rem.)  

 

133 

SDAI (3.3)   

 

CDAI (2.8) 

X-ray stability 

 

X-ray stability 

0.39 (0.28, 0.50)* 

 

0.4 (0.29, 0.51)* 

0.86 (0.75, 0.97)* 

 

0.84 (0.72, 0.99)* 

Ben Abdelghani et al369 Newly recruited 

RA patients (Rem.)  

 

62 

DAS28-ESR4 

 (2.6) 

Ultrasound 0.81 (0.67, 0.96)* 0.63 (0.50, 0.76)* 

*Some articles did not publish their 95% confidence interval (CI) for their sensitivity and specificity obtained. Hence, the 95% CIs were estimated for 
those articles using the simple asymptotic method371 and the information within the articles. * is used to depict the 95% CI which I calculated. Rem. 
implies remission. SDAI is Simplified Disease Activity Index, CDAI is Clinical Disease Activity Index and DAS28-ESR is the Disease Activity Score for 
28 joints estimated using ESR (Erythrocyte sedimentation rate). HDA is high disease activity. RA is rheumatoid arthritis.   
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Specification of prior information 

In this section, the specification of the prior information (probabilistic prior information) 

on the parameters of interest, which are the sensitivities and specificities of the DAS28-

ESR4, SDAI and CDAI, is detailed.  

 The information reported in Table 37 was used to obtain the prior distributions for 

the sensitivity and specificity of the DAS28-ESR, SDAI and CDAI using the quartile 

method372 in the SHELF319, 328, 330.  

 The estimated sensitivity and specificity (𝜃) of the scores from the identified articles 

served as the mean values and were used to estimate the standard error of the 

estimates using the normal approximation to the binomial distribution373, 374.  

𝑆𝐸(𝜃) =  √
𝜃 (1 − 𝜃)

𝑛
;  ; 

Here n can be either the total number of positives as determined using the reference 

standard when the sensitivity is estimated or the total number of negatives as 

determined using the reference standard when specificity is estimated. The lower 

quartile (25% or Q1) and upper quartile (75% or Q3) were estimated using the formula 

below375, 376:  

𝑄1 = 𝑆𝐸 ∗ 𝑍1 + 𝜃    𝑎𝑛𝑑    𝑄3 = 𝑆𝐸 ∗ 𝑍3 + 𝜃;    𝑍1 = −0.67     𝑎𝑛𝑑   𝑍3 =  0.67  

The Z values within this formula are from the standard normal distribution for 25% and 

75% quartiles.  

 The estimated sensitivity and specificity from the identified articles were used as 

the median value (50%), and their estimated quartiles (𝑄1𝑎𝑛𝑑 𝑄3) were used as the 

lower and upper quartiles in the SHELF elicitation application to elicit their Beta 

distributions (see Table 38). 
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Table 38: Median, and quartiles values of sensitivity and specificity used to elicit the 

prior Beta distribution  

Variables 𝑸𝟏 Median 𝑸𝟑 Elicited Beta 

distribution 

Baseline Remission 

Sens. DAS28-

ESR4  

0.7531 0.813 0.8729 𝐵𝑒𝑡𝑎 (15.2, 3.68) 

Spec. DAS28-

ESR4  

0.5817 0.631 0.6803 𝐵𝑒𝑡𝑎 (27.6, 16.20) 

Sensitivity SDAI  0.3565 0.391 0.4254 𝐵𝑒𝑡𝑎 (35.8, 55.70) 

Specificity SDAI  0.8210 0.857 0.8928 𝐵𝑒𝑡𝑎 (36.3, 6.26) 

Sensitivity CDAI 0.3654 0.4 0.4346 𝐵𝑒𝑡𝑎 (36.6, 54.80) 

Specificity CDAI  0.7993 0.837 0.8747 𝐵𝑒𝑡𝑎 (35.9, 7.20) 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index and 
DAS28-ESR is the Disease Activity Score for 28 joints estimated using ESR (Erythrocyte 
sedimentation rate); Q1 is lower quartile and Q3 is upper quartile.  

 

5.5. Analysis of the RA-MAP baseline clinical data 

In this section, the baseline data are analysed under the three assumptions described 

in section 5.3. The baseline data are the score responses collected on the newly 

recruited RA patients. The score responses were used to classify participants into 

remission and non-remission. The number of participants classified into remission and 

non-remission groups using the standard cut-off for remission on DAS28-ESR4, SDAI 

and CDAI (in Table 36) is reported in Table 39. This dataset will be referred to as 

RABR (rheumatoid arthritis baseline dataset to classify RA patients into remission or 

non-remission). In the baseline, there are extremely high numbers of RA patients 

whose disease activity is above remission, i.e. there is a low prevalence of remission 

among the participants.  
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Table 39: Number of participants classified as being in remission and non-remission 

in RABR  

Scores Cut-off 

Remission 

Number of patients 

in remission  

Number of patients in 

non-remission 

DAS28-ESR4 2.6 8 256 

SDAI 3.3 4 260 

CDAI 2.8 4 260 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index and 
DAS28-ESR is the Disease Activity Score for 28 joints estimated using ESR (Erythrocyte 
sedimentation rate). 

 

Furthermore, in the RABR dataset, let 1 denote a test response that is below the cut-

off (remission) and 0 denote a test response that is above the cut-off (non-remission). 

Therefore, the number of RA patients based on the combination of the test responses 

from the baseline data is presented in Table 40 (RABR). The RABR table shows that 

253 participants have been classified as “non-remission” by DAS28-ESR, SDAI and 

CDAI, and one participant has been classified as remission by all three tests. 

Table 40: Combination of DAS28-ESR4, CDAI and SDAI responses using RABR 

dataset 

DAS28-ESR4 SDAI CDAI Observed Frequency 

1 1 1 1 

1 1 0 0 

1 0 1 0 

1 0 0 7 

0 1 1 3 

0 1 0 0 

0 0 1 0 

0 0 0 253 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease 
Activity Index and DAS28-ESR is the Disease Activity Score for 28 
joints estimated using ESR (Erythrocyte sedimentation rate). 
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5.5.1. Analysis of the baseline data assuming DAS28-ESR4 is a gold standard  

Firstly, the sensitivity and specificity of SDAI and CDAI was estimated using DAS28-

ESR4 as the reference standard (and a gold standard). The results obtained are 

presented in Table 41. The prevalence of RA patients in remission is 0.03.  

Table 41: Estimated sensitivity and specificity of SDAI and CDAI in the RABR dataset 

assuming that the DAS28-ESR4 is a gold standard  

Diagnostic accuracy 

measures 

SDAI 

Estimates (95% CI) 

CDAI 

Estimates (95% CI) 

Sensitivity  0.125 (0, 0.354) 0.125 (0, 0.354) 

Specificity 0.988 (0.975, 1) 0.988 (0.975, 1) 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index; CI means 
confidence interval 

 

Assuming that DAS28-ESR4 is a gold standard in classifying which patients are in and 

out of remission, the SDAI and CDAI have excellent specificity close to one (0.99) and 

very poor sensitivity (0.13). Both results are identical because both tests are highly 

correlated with correlation value as 0.9 (see Figure 23). The strong correlation between 

the two scores is in line with other researchers’ findings about the scores13, 356, 364, 377, 

378.  

5.5.2. Analysis of the baseline data assuming SDAI, CDAI and DAS28-ESR4 are 

conditionally independent and none of the scores is a gold standard  

Secondly, the sensitivity and specificity of SDAI, CDAI and DAS28-ESR4 were 

estimated under the assumption that none of the scores are a gold standard and all 

scores are conditionally independent given the true disease status using the traditional 

LCM (TLCM). The TLCM does not need informative priors as the model is identifiable 

when the number of tests to evaluate is more than two120, 169. Non-informative (flat Beta 

distribution – Beta (1, 1)) priors were employed to obtain the posterior distributions of 

the parameters of interest. The estimated sensitivities and specificities of the three 

scores are presented in Table 42.  
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Table 42: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally independent. 

Diagnostic accuracy measures Mean (Standard deviation) 

Sensitivity DAS28 – ESR4 0.333 (0.178) 

Specificity DAS28 – ESR4 0.97 (0.011) 

Sensitivity SDAI 0.808 (0.158) 

Specificity SDAI 0.996 (0.004) 

Sensitivity of CDAI 0.808 (0.158) 

Specificity of CDAI 0.996 (0.004) 

Prevalence 0.02 (0.009) 

DIC 21.71 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index; DAS28-
ESR is the Disease Activity Score for 28 joints estimated using ESR (Erythrocyte 
sedimentation rate); DIC is deviance information criterion.  

 

Under the conditional independence assumption, the results (Table 42) showed that 

CDAI and SDAI have sensitivities that are as good as (0.81) and better than the 

sensitivity of DAS28-ESR (0.33). The specificity of all the scores are high (i.e. greater 

than 0.9) when discriminating between patients in remission.  

Diagnostics of TLCM  

Multiple MCMC chains (three) were used to run the analysis, and a total of 40000 

iterations were run for each chain. The number of thinning interval was three. This is 

to ensure that the posterior distribution of the parameters converged. To check for 

convergence of the posterior distributions, firstly, the trace plot for each parameter was 

assessed to ensure that the chains overlapped and that they were caterpillar-shaped.  

Secondly, the autocorrelation plot was used to ascertain that the sampling 

autocorrelation is around zero. Finally, the Gelman and Rubin shrinkage factors (�̂�) of 

each parameter was assessed to ensure that they were less than 1.01379. The 

shrinkage factors of all the parameters is one. The diagnostic plots of each analysis is 

in the appendix section of the thesis (Appendix D.1). 
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5.5.3. Analysis of the baseline data assuming SDAI, CDAI and DAS28-ESR4 are 

conditionally dependent and none of the scores are a gold standard  

The RABR dataset was analysed under the assumption that none of the scores are a 

gold standard while taking into account the conditional dependencies among the 

scores using the Bayesian LCM (fixed effect LCM by Wang et al (FEMW) and random 

effect LCM via logit link – REML). In this case, informative priors reported in Table 38 

were employed to analyse the dataset. The informative priors are provided again 

below, and the results from this analysis are reported in Table 43. 

Sensitivity 

 𝐷𝐴𝑆28 − 𝐸𝑆𝑅4 ~ 𝐵𝑒𝑡𝑎 (15.2, 3.68) 

 𝑆𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(35.8, 55.70)  

 𝐶𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(36.6, 54.80) 

Specificity: 

 𝐷𝐴𝑆28 − 𝐸𝑆𝑅4 ~ Beta (27.6, 16.20) 

 𝑆𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(36.3, 6.26) 

 𝐶𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(35.9, 7.20)

Table 43: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally dependent. 

Diagnostic accuracy 

measures 

FEMW 

Mean (SD) 

REML 

Mean (SD) 

Sensitivity DAS28 – ESR4 0.68 (0.09) 0.76 (0.10) 

Specificity DAS28 – ESR4 0.93 (0.02) 0.92 (0.02) 

Sensitivity SDAI 0.40 (0.05) 0.40(0.05) 

Specificity SDAI 0.98 (0.01) 0.97 (0.01) 

Sensitivity of CDAI 0.41 (0.05) 0.40 (0.05) 

Specificity of CDAI 0.97 (0.01) 0.97 (0.01) 

Prevalence 0.02 (0.01) 0.02 (0.01) 

Deviance 56.40 (9.45) 141.31 (5.81) 

pD 1.86 16.86 

DIC 58.26 158.17 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index; DAS28-
ESR is the Disease Activity Score for 28 joints estimated using ESR (Erythrocyte 
sedimentation rate); DIC is deviance information criterion.  
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From Table 43, the estimated specificities of the three tests are above 0.9, showing 

excellent ability to rule in RA patients in remission or non-remission. The sensitivities 

of SDAI and CDAI are poor (< 0.5) and the sensitivity of DAS28 – ESR4 is within the 

range of 0.7 and 0.8, which is quite good. Hence, making DAS28-ESR4 a preferred 

choice of score among the three evaluated scores via these methods. The density plots 

of the priors and posterior distribution of the sensitivities and specificities of the three 

scores estimated from the REMW are displayed in Figure 25 and Figure 26 

respectively.  

Figure 25: Density plots of the prior and posterior distribution of the sensitivities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset 
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Figure 26: Density plots of the prior and posterior distribution of the specificities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset 

 

 

The density plots of the priors and posterior distribution of the sensitivities and 

specificities of the three scores estimated via the REML is similar to FEMW, and they 

are displayed in Appendix D.2. From the plots, the specificities of all the scores are not 

centred on the choice of priors.  

Diagnostics of the FEMW and REML 

The FEMW was implemented via the RStan program. 2,000,000 iterations were run for 

three chains each. 2000 iterations was used as the warm-up. The REML was analysed 

using Openbugs. 40,000 iterations were run for three chains each. All the parameters 

in the models converged to their posterior distributions. The convergence of the model 

was assessed using the trace plots, autocorrelation plots and the Gelman and Rubin 

diagnostic plots. These plots are presented in Appendix D.3, and the Gelman and 

Rubin shrinkage factor (�̂�) for each parameter is one, indicating a convergence of the 

model.  
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Comparison of estimates obtained from various assumptions 

Analysing the RABR dataset under different assumptions produced different estimates. 

These different estimates are displayed in Figure 27. There are differences in the 

estimates obtained due to the different assumptions used in the analysis of the dataset. 

This is more evident among the estimated sensitivities of the scores. This could be 

because of the low prevalence of the RA patients in remission in the RABR dataset, 

which is 0.03. Hence, the specificities seem to be quite consistent across all 

assumptions (> 0.90). The estimates of SDAI and CDAI (across all assumptions) are 

similar because as mentioned earlier, previous research studies have shown that both 

scores are highly correlated. The estimated sensitivity of SDAI and CDAI (0.81) under 

the conditional independence assumption is larger than the estimated sensitivity of 

SDAI and CDAI (0.40) under the conditional dependence assumption, and the 

estimated sensitivity of DAS28-ESR4 (0.33) under the conditional independence 

assumption is smaller than its estimated sensitivity (≅ 0.7) under the conditional 

dependence assumption. This could be because of the conditional dependence that 

exists among the scores. Therefore, not accounting for the conditional dependence 

between SDAI and CDAI overestimates the sensitivities of the two scores and 

underestimates the sensitivity of DAS28-ESR4. However, taking into consideration the 

conditional dependence between the scores reduces the sensitivities of SDAI and 

CDAI and increases the sensitivity of DAS28-ESR4. Therefore, if the assumptions used 

here hold, DAS28-ESR4 is a preferred test among the three tests to classify newly 

diagnosed RA patients into remission or non-remission. However, this analysis and 

comparison highlights the importance of exploring the conditional dependence 

between tests rigorously to inform the choice of method used to evaluate the sensitivity 

and specificity of multiple tests in the absence of a gold standard. 
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Figure 27: Estimated sensitivities and specificities of DAS28-ESR4, SDAI and CDAI under the different assumptions (RABR dataset) 

(a) 

 

(b) 

 

(c) 

 

 

The blue bar is the estimated sensitivity and 

specificity when DAS28-ESR4 is employed as a gold 

standard (GS). The green bar is the sensitivity and 

specificity when all the tests evaluated are assumed 

to be conditionally independent (CI) and the pink bar 

is the sensitivity and specificity when all the tests are 

assumed to be conditionally dependent (CD) and 

none of the scores is a gold standard. 
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Sensitivity analysis 

As part of Bayesian analysis, sensitivity analysis is often carried out to check how 

changes in the model inputs affect the posterior inferences made. These include 

changes in the prior information, or the sampling distribution used. To check how 

sensitive the FEMW and REML are in estimating the sensitivity and specificity of SDAI, 

CDAI and DAS28-ESR4, different priors for the sensitivities of the three scores were 

employed. The prior distributions used for the sensitivities of the three tests were 

centred on 0.99, and the prior distributions of the specificities of the scores were 

centred on 0.4. The beta distributions are: 

Sensitivity: 

 𝐷𝐴𝑆28 − 𝐸𝑆𝑅4~ 𝐵𝑒𝑡𝑎(113.45, 0.419) 

 𝑆𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(113.45, 0.419)  

 𝐶𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎(113.45, 0.419) 

Specificity: 

 𝐷𝐴𝑆28 − 𝐸𝑆𝑅4~ 𝐵𝑒𝑡𝑎 (2, 3) 

 𝑆𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎 (2 , 3)  

 𝐶𝐷𝐴𝐼 ~ 𝐵𝑒𝑡𝑎 (2 , 3) 

The choice of these prior distributions is arbitrary. The estimated sensitivity and 

specificity of SDAI, CDAI and DAS28-ESR4 via the FEMW and REML models are 

presented in Table 44. The density plots of the prior and posterior distributions of the 

sensitivities and specificities are presented in Figure 28 and Figure 29 respectively. 

From Table 44, and Figure 28, the choice of priors impacted the estimated sensitivities 

of the three scores, which indicates that the FEMW and REML model are sensitive to 

change. This also implies that the posterior inference about the sensitivities of the 

scores is not robust316, 380. The specificities of the scores are unaffected by the changes 

(Figure 29) as their posterior distributions are not impacted by the choice of priors. The 

REML and FEMW were assessed for convergence and their diagnostic plots are 

reported in Appendix D.4. In addition, the Gelman and Rubin shrinkage factor for all 

the parameters is one.  

 



162 | P a g e  
 

Table 44: Sensitivity and specificity of DAS28-ESR4, CDAI and SDAI in the RABR 

dataset assuming that all scores are conditionally dependent (sensitivity analysis). 

Diagnostic accuracy 

measures 

FEMW 

Mean (SD) 

REML 

Mean (SD) 

Sensitivity DAS28 – ESR4 0.98 (0.00) 0.99 (0.01) 

Specificity DAS28 – ESR4 0.96 (0.00) 0.96 (0.06) 

Sensitivity SDAI 0.98 (0.00) 1 (0.00) 

Specificity SDAI 0.98 (0.00) 0.98 (0.04) 

Sensitivity of CDAI 0.98 (0.00) 1 (0.00) 

Specificity of CDAI 0.98 (0.00) 0.98 (0.05) 

Prevalence 0.01 (0.00) 0.03 (0.09) 

SDAI is Simplified Disease Activity Index; CDAI is Clinical Disease Activity Index; DAS28-
ESR is the Disease Activity Score for 28 joints estimated using ESR (Erythrocyte 
sedimentation rate). 

 

 

Figure 28: Density plots of the prior and posterior distribution of the sensitivities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset 
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Figure 29: Density plots of the prior and posterior distribution of the specificities of 

DAS-ESR, SDAI and CDAI using the FEMW on the RABR dataset 

 

 

5.6. Discussion 

From the analysis of the clinical dataset under varying assumptions, it is obvious that 

various assumptions made about diagnostic tests employed in a diagnostic accuracy 

study affect the estimated accuracy measures obtained, like the assumptions of 

conditional dependence or independence or the assumption that one of the tests 

employed in the study is a gold standard. When the DAS28-ESR is employed as a gold 

standard to evaluate the diagnostic accuracy of CDAI and SDAI (which is an 

assumption made by some of the literature356, 357, 362, 363, 365, 366) the estimated sensitivity 

of SDAI and CDAI are very low. This indicates that neither measure is good in 

discriminating between rheumatoid arthritis patients in remission or non-remission at 

baseline compared to when the three tests are assumed to be imperfect (either 

conditionally independent or not). The high sensitivities of DAS28-ESR, SDAI and 

CDAI under the assumption of conditional independence could be an indication that 

the three tests are conditionally dependent among the diseased group. Hence, not 

accounting for the conditional dependence among the tests overestimates the 

sensitivity of the three scores, which is in line with our findings in chapter four and the 

study by Vacek 54. Furthermore, the estimated specificities of the scores are robust.   
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A limitation is that there are only three tests to evaluate and these tests are 

conditionally dependent given the true disease status. Thus, the number of parameters 

to estimate is more than the degrees of freedom. Hence, the model is non-identifiable. 

Using informative priors is essential to make the model identifiable and the choice of 

informative priors could impact the posterior distributions. Consequently, increasing 

the number of tests to evaluate could reduce the problem of model identifiability, 

especially if included tests are conditionally independent of the other tests considered.  

Another limitation is that the number of participants classified to be in remission by all 

scores at baseline is very small (there was only one participant in this category). This 

is expected because the baseline dataset is made up of newly diagnosed RA patients. 

Hence, the sensitivities of the scores are poor, volatile and highly sensitive to the 

choice of priors. Moreover, this could limit the utility of the results in clinical practice to 

populations homogenous to this case-study (RA-MAP baseline dataset).  

Finally, the estimates obtained may not be transferable to other clinical datasets and 

the values could change if data from other samples from another population was used.   

Comparison of latent class models 

The TLCM, which models the three scores (DAS28-ESR, SDAI and CDAI) under the 

assumption that all the scores are conditionally independent given the true disease 

status were compared to the FEMW and REML, which assumed that the scores are 

conditionally dependent given the true disease status. The deviance and DICs were 

used to compare the LCMs. The DIC and deviance from TLCM was smaller than the 

deviance and DIC from the conditional dependence models. However, following the 

background knowledge of the tests and the recommendation by Spiegelhalter et al 336 

that “the DIC should not be used as a strict criterion for model choice”, the conditional 

dependence model was chosen. Comparing the conditional dependence LCMs, the 

deviance and the DIC from the FEMW model is smaller than the REML. This is because 

the FEMW is considered as a simpler model than the REML which is a complex 

hierarchical model. The R code employed to analyse the dataset is reported in 

Appendix D.5.  

In conclusion, different assumptions are made when evaluating medical tests in 

diagnostic accuracy studies; some of these assumptions are not testable statistically 

such as conditional dependence when the true disease status of the participants is 

unknown or assuming the reference standard employed is a gold standard. However, 
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these are assumptions that are based on the biological knowledge of the medical tests 

and they are employed to help in estimating the sensitivity and specificity accurately. 

Therefore, to carry out a diagnostic accuracy study, it is important to explore and 

research to understand the possible correlation that could exist among the medical 

tests being evaluated especially if there is no gold standard. It is also important to, 

where possible, specify the conditional dependence accurately if any exists. The 

clinical analysis carried out in this chapter demonstrates the effect of different 

assumptions on the estimations of the diagnostic accuracy of tests. These estimates 

can impact on the utility of a test in practice and where the test will be used to rule in 

or rule out diagnosis. Therefore, it is important to ensure the assumptions are valid.  

 

 



166 | P a g e  
 

Chapter Six: General Discussion 

Conventionally, the sensitivity and specificity of an index test are evaluated by 

comparing the index test with the best available reference standard when the true 

disease status of each participant is unknown, and the reference standard is often 

assumed to be perfect (i.e. having 100% sensitivity and specificity). However, in reality 

the reference standard could be imperfect. Hence, evaluating the diagnostic accuracy 

of an index test without taking into consideration the imperfection of the reference 

standard leads to biased estimates of the sensitivity and specificity of the index test. 

This bias may overestimate the true sensitivity and specificity of the test under 

evaluation. Ignoring this bias may mean that the test is introduced into routine practice 

under the false assumption that it can accurately rule in or rule out disease. These 

assumptions can adversely affect a patient’s health.  

From the test developer’s perspective, a miscalculation of the diagnostic accuracy of 

the test may result in developmental revenue being misdirected to or away from the 

test in question, representing a waste of scarce research resources. From the patients’ 

and clinician’s perspective, this could mean a misdiagnosis which could potentially lead 

to use of treatments that are not effective and may even be harmful or conversely, it 

could mean patients are falsely reassured as not having the disease, leading to 

potentially harmful delays in treatment. From the government perspective, it could lead 

to misappropriation of public funds in funding or buying an inaccurate medical 

intervention while ignoring an effective medical intervention. Topically, from a public 

health perspective, misestimating the accuracy of an index test for an infection could 

lead to failure in controlling outbreaks of infectious disease and inaccurate measures 

of the incidence rate.  

6.1. Summary of the research study 

Firstly, this work reviewed previous research studies that proposed methods and 

diagnostic accuracy studies to evaluate the test performance of an index test in the 

absence of a gold standard (summarised in chapter two). Several methods were 

identified from the review which were classified in four groups which are: methods 

employed when only a sub-sample of the participants have their disease status verified 

with the gold standard (group 1); correction methods (group 2); methods using multiple 

imperfect reference standards (group 3) and other methods (group 4) such as study of 

agreement, test positivity rate and alternative study designs like validation. 
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Following the results from the review, some identified methods which are commonly 

used in diagnostic accuracy studies and have not been compared in previous research 

studies were compared. The compared methods were the corrections methods by  

Brenner117 and Staquet et al119. Both methods are employed to correct the sensitivity 

and specificity of an index test provided that the reference standard and the index test 

are conditionally independent, and the accuracy of the reference standard are known. 

These methods were compared via simulation studies and reanalysis of clinical 

datasets (chapter three). Combining the observations and results from the simulations 

studies and the clinical datasets, the Staquet et al correction method outperforms the 

Brenner correction method.  Based on the findings from comparing the correction 

methods, and the systematic review carried out in chapter two, alongside the nature of 

the RA-MAP clinical dataset, there was a need to explore and investigate LCMs with 

various conditional dependence structures. Therefore, in chapter four, various LCMs 

with different conditional dependence structures were investigated. The investigation 

of these LCMs led to the selection of LCMs deemed best to analyse the RA-MAP 

clinical dataset. Finally, in chapter five, the RA-MAP clinical dataset was analysed 

using the some of the LCMs explored in chapter four.  

6.2. Contributions of the research study 

The miscalculation of the sensitivity and specificity of an index test by test evaluators 

or researchers could affect the adoption of an index test into routine practice or the 

continued use of an existing test. In addition, it could be both harmful to patients directly 

and indirectly (through the wasted use of scarce health care resources). My research 

has addressed this issue and made the following contributions as outlined in the 

following paragraphs:  

Firstly, the systematic review conducted provided a list of methods developed to 

evaluate the accuracy measures of the index test in the absence of a gold standard. 

Clinical application studies where the identified methods have been applied were also 

cited as real-life examples to aid researchers and test evaluators in understanding how 

identified methods are applied. The strengths and weakness of the identified methods 

were also highlighted in this review to aid researchers and test evaluators in the choice 

of appropriate method for their research question. Based on the findings of the review, 

a guidance flowchart of the choice of methods to consider was constructed to guide 

test evaluators and researchers on available methods to consider when evaluating an 

index test in the absence of a gold standard.  
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This systematic review was an update of the review published in 2007 by Rutjes et 

al381 (whose search was conducted up to 2005). New methods were identified by my 

updated review such as the dual composite reference standard by Tang et al162. More 

examples of studies describing clinical applications were also identified, and the 

guidance flowchart was reconstructed and expanded to include the extra methods 

identified in the review.  There could be a variety of methods to consider when 

evaluating an index test in the absence of a gold standard. Thus, choosing the best 

method among the available methods is another question test evaluators and 

researchers need to consider when estimating the sensitivity and specificity of an index 

test. Hence, the guidance flowchart reported in chapter two will help guide researchers 

in the choice of which method is applicable to their scenario.  

Chapter three compared some of the correction methods identified from the systematic 

review. These correction methods (Brenner117 and Staquet et al119) are commonly 

used in diagnostic accuracy studies and no previous research was identified that 

directly compared the statistical performance of these methods. Both correction 

methods (Brenner 117 and Staquet et al119 correction methods) evaluate the diagnostic 

accuracy of a test given that the accuracy measures of the reference standard is known 

and the reference standard and index test are conditionally independent. These 

methods were investigated to identify how they perform at estimating the sensitivity 

and specificity of the index test accurately irrespective of the prevalence of the target 

condition. This is the first study that I am aware of that has compared these methods. 

From this comparison, an algebraic expression was used to show that the estimated 

sensitivity or specificity from the corrected and unadjusted methods are similar when 

the reference standard is perfect. This algebraic expression showed that no matter the 

method employed, the estimates obtained are unbiased and the same when the 

reference standard is perfect or a gold standard. From this work, it was observed that 

the Staquet et al method maintains the assumption of constant test characteristics 

(sensitivity and specificity) across populations with different prevalences of disease. 

Implying that, irrespective of the prevalence in that target condition, the Staquet et al 

method is more robust in estimating the accuracies of the index test than the 

unadjusted and Brenner correction method. The exception to this, is that the Staquet 

et al method might provide illogical estimates when the prevalence is very high or very 

low. Therefore, based on these findings, the use of Brenner correction method in 
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correcting for the sensitivity and specificity of a medical test in diagnostic accuracy 

study should be discontinued.  

In chapter four, various LCMs with differing conditional dependence structure (i.e. 

FEM, REM and FMM) were investigated using simulation studies. The purpose of this 

was to identify which LCM to consider when there are three tests to evaluate and all 

three tests are conditionally dependent given the true disease status. From the 

simulation studies, the REM via logit link (REML) and the FEM by Wang et al286 

(FEMW), are less affected by the choice of prior distributions used. This makes them 

good options for LCMs to consider. However, it was observed from this work that 

conditional independence among the diseased (non-diseased) group in the FEMW 

implies that the sensitivities (specificities) of the evaluated tests need to be close to 

one such that the covariances between the tests are insignificant or approximately zero 

else the FEMW may not estimate the sensitivity and specificity accurately.  

Finally, chapter five provides an example of a clinical application of the FEM proposed 

by Wang et al286 (FEMW). In addition, this is the first study, that I am aware of, that 

estimated the sensitivity and specificity of the DAS28-ESR4, SDAI and CDAI under the 

assumption that all scores are correlated and that none of the scores are a gold 

standard. No published research study that I have been able to identify has estimated 

the accuracy measures of these scores taking into consideration the correlation that 

exist among them and some studies have estimated the accuracy measures of SDAI 

and CDAI using DAS28-ESR4 as a gold standard, or estimated the accuracy measures 

of DAS28-ESR4 using another medical tool as a gold standard (see section 5.4). Such 

studies found out the sensitivity of SDAI and CDAI were poor (<0.4) using newly 

recruited RA patients and their specificities were very good (> 0.8). The decision to 

analyse the RA-MAP baseline dataset using these assumptions was made based on 

the findings from previous studies and is described in section 5.4. Analysing the RA-

MAP clinical dataset under these assumptions showed that CDAI and SDAI have poor 

sensitivity (< 40%), whilst DAS28-ESR4 has a better sensitivity (0.7), and the DAS28-

ESR4, SDAI and CDAI have excellent ability to rule in the classification of remission in 

RA patients as their specificities are above 0.9. Therefore, making all three scores 

preferred tests for classifying newly diagnosed RA patients into remission and non-

remission in practice.  
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6.3. Strength of the research study 

The strengths of this research study are discussed in line with the evaluative criteria 

by Lincoln and Guba382 but applying this idea to quantitative research. This includes 

the credibility, applicability, consistency and neutrality of the research study. 

Firstly, the systematic review was carried out following the PRISMA58 guidance. All 

databases related to medicine (both veterinary and human studies) were searched. 

Searching through all databases related to medicine enabled a wider number of 

relevant articles to be included in the review. Appropriate keywords such as imperfect, 

no or absence of gold standard, diagnostic accuracy, sensitivity, and specificity 

amongst others (see section 2.2.2) were used to identify as many potentially relevant 

articles for the review as possible. Articles obtained from the databases were screened 

by three reviewers independently (including myself) to ensure that the articles included 

in the review matched the inclusion criteria and relevant articles were not missed. 

Undertaking the systematic review through this process ensured that the results and 

conclusions obtained are original and unbiased. Moreover, this approach ensures that 

the results obtained are not subjective, but a critical evaluation of different approaches 

proposed.  

Secondly, the simulation studies were performed using the suggested guidelines by 

Morris et al285. These guidelines provide step by step recommendations to ensure that 

a simulation study is well-thought out, well-planned and executed accurately so that 

the results are reproducible, and the aim is achieved.  In following these guidelines, 

the aim of my simulation studies was defined a priori, and the theories and underlying 

assumptions associated to each method and model were taken into consideration 

when simulating the datasets and analysing the simulated datasets. For example, in 

chapter three where two correction methods were compared: firstly, the aim I desired 

to achieve from the simulation studies was well-defined. For this, some of the datasets 

were simulated under the assumption of conditional independence, which is the key 

assumption underlying the development of Brenner and Staquet et al correction 

methods. The processes followed for the simulations were well-detailed as were the 

results obtained to ensure reproducibility. The process of generating the datasets as 

well as analysing the generated datasets were performed using the RStudio341 

statistical software and the OpenBugs342 software, which are recognised statistical 

software employed to carry out this kind of statistical analysis. The codes used to 

simulate and analyse the datasets were peer reviewed in detail by one of my 
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supervisors (KW) to ensure there were no errors. The data-generating and data-

analysis processes were repeated more than three times on two occasions to ensure 

that the results obtained are consistent and can be reproduced using the methods 

outlined in this study. Furthermore, the codes for the simulation and analysis of the 

data are reported in Appendix B.1, C.1, C.2 and D.5 so that others can critique in detail 

my methods and findings.  

I have also used real world clinical datasets to support my findings from the simulation 

studies in chapter three and to provide a clinical application of the LCMs explored in 

chapter four. Using the real-world datasets is quite different from simulated datasets 

as they reflect the potential challenges or errors that can occur in the process of 

collecting the dataset, such as missing data. Although, this was not discussed in this 

thesis, it is a research to be carried out in the future. In addition, using real-world 

datasets can either support the findings from a simulation study or provide an avenue 

or scenarios where the findings from the simulation study can be flawed in real-time.  

The clinical dataset employed in this research was the RA-MAP clinical dataset. This 

clinical dataset was analysed using latent class models, which was deemed the most 

appropriate method. The LCMs considered the correlation that exists among the 

scores being evaluated. Various assumptions about the conditional dependence of the 

scores were considered, while the DIC from the different LCMs was explored. The 

parameters priors were obtained from peer-reviewed studies, whose populations 

matched the population associated with the clinical dataset. The SHELF328, 330 

elicitation web-app was employed to elicit the priors for the parameter of interest and 

this was cross-checked manually using the information from the peer reviewed articles. 

Using the SHELF provided a verification of the priors I obtained using the manual or 

analytic approach. In addition, it is a well-used tool for the elicitation of prior 

distributions for Bayesian analysis. Again, the Openbugs324, 342 and RStudio341 

statistical software were employed to analyse the dataset. As with the analyses 

reported in chapter 4, the dataset was analysed three times to ensure reproducibility 

of the results obtained. Finally, critical thinking, findings from this study, and 

information from previous research studies were employed to provide 

recommendations and suggestions. 
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6.4. Limitations of the research study 

The limitations of this study include: firstly, the focus of the study is on estimating the 

sensitivity and specificity of index test in the absence of a gold standard. There are 

other clinically important sensitivity and specificity employed to evaluate an index test, 

such as PPV and NPV (see section 1.1.5) which are not discussed in this research 

study. Secondly, in the systematic review, only peer-reviewed published articles which 

proposed methods and diagnostic accuracy studies which estimate the sensitivity and 

specificity of index tests in the absence of a gold standard were identified. Other 

methods related to diagnostic accuracy such as estimating differences in sensitivity 

and specificity were not explored. Thirdly, in the comparison of methods identified from 

the systematic review, only the correction methods were compared based on their 

statistical properties. There were other methods identified in the review such as 

methods employed when a subsample of the participants does not undergo the gold 

standard. However, all these methods could not be explored due to the limited 

timeframe for this research. In addition, there could be other possible combinations of 

prevalence, sensitivity and specificity of RS and index test not explored in this study, 

the R-Code in Appendix B.1 will aid readers to explore more. Fourthly, in the simulation 

study undertaken to explore various LCMs (chapter four), the generated datasets are 

limited to three tests. In addition, there are other possible combinations where the 

values for the sensitivity and specificity of the threes tests and the covariance terms 

are different from what is explored in chapter four. Thus, the comparison and 

inferences made in chapter four are by necessity limited. 

Furthermore, a limitation with the analysis of the RA-MAP clinical dataset is that the 

three scores evaluated are correlated and the number of participants classified in 

remission by all the three scores was very small (one). This implied that, the estimated 

values of some of the parameters relied strongly on the informative priors used. This 

was shown in the sensitivity analysis carried out on the RA-MAP dataset. The 

estimated sensitivities of the scores were highly sensitive to changes in their prior 

distributions. However, the specificities of the scores were robust and insensitive to the 

changes in their prior distributions. In addition, the pattern of missingness of the RA-

MAP clinical data was not taken into consideration when analysing the clinical dataset. 

This is a focus for future research.  

Finally, this research study was impacted by COVID-19 which prevented the proposed 

group elicitation workshop from happening. The workshop was designed to work with 
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clinical rheumatologists in Newcastle and the North-East of England to elicit the 

parameters of interest. An aim of the workshop was to elicit prior distributions for the 

sensitivities and specificities of the three scores (SDAI, CDAI and DAS28-ESR4) in 

discriminating between newly recruited RA patients in HDA and non-HDA at the 

standard cut-off. This information could not be obtained from published articles as 

some of the published article used cut-offs that were different from the standard cut-

offs.   

6.5. Further research 

This work is only one step in explorations in this area. The following are notable next 

steps to follow on from this work: 

 To investigate if statistical conditional independence implies biological conditional 

independence. From chapter three, where two correction methods were compared 

via simulation studies and clinical datasets, the assumption of conditional 

dependence or independence on the simulated datasets is done via mathematical 

model. However, in practice, the assumption of conditional independence or 

dependence is made on the biological component of the tests evaluated in the 

clinical datasets which may or may not follow the mathematical model. 

 To explore the reason for obtaining illogical results via Staquet et al approach and 

exploring its impact in predicting if the index test and the reference standard are 

conditionally dependent given the true disease status. Being able to propose a test 

to check for conditional dependence between two tests will help to verify such an 

assumption and provide a guide on which statistical methods to employ in a 

diagnostic accuracy study. Furthermore, as observed from the analysis of the 

clinical datasets (Table 14 and Table 15), an illogical value was obtained for the 

estimated prevalence, which could have impacted the estimated specificities of the 

index tests.  Thus, the Staquet et al approach could be further explored to ascertain 

other conditions that can make the Staquet et al approach produce illogical 

estimates, as well as possible implications where multiple conditions are satisfied 

simultaneously. 

 To reanalyse the RA-MAP clinical dataset to adjust for missing data and explore if 

the missing data could affect the estimates obtained. Reanalysing the RA-MAP 

dataset taking into consideration the missingness of the missing data could change 

the posterior inference made about the scores.  
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 To develop a web-based application including most or all of the identified methods 

in the systematic review to encourage test evaluators and researchers to explore 

the various methods developed.  

6.6. Conclusion  

A variety of methods have been proposed to evaluate an index test in the absence of 

a gold standard. Some of these methods have been applied in diagnostic accuracy 

studies like the composite reference standard and Bayesian LCMs, amongst others, 

and some have not been applied like some of the Bias-correction approaches62, 63 

developed to estimate the accuracy measures of the index test when only a subsample 

of the participants undergo the gold standard. Some are computationally complex like 

the Bayesian LCMs and some require only basic mathematical knowledge like the 

Staquet et al correction method. However, all of these methods are built on underlying 

assumptions, which, if violated in a clinical dataset, could result in inaccurately 

estimated sensitivity and specificity, which could have dire consequences. This 

research has not only provided a guidance flowchart to help researchers decide on 

what choice of method to employ in their study. It has also compared some of these 

methods in diagnostic accuracy studies to explore how each method performs in 

different clinical scenarios and under different assumptions. This comparison and 

application to a clinical dataset will help researchers and test evaluators to select the 

best method to employ amongst other options. 

Knowing and using the right method will provide appropriate estimates of the 

diagnostic accuracy of an index test, which can be used alongside other analysis 

related to the index test such as an economic evaluation to decide if the test could be 

adopted into clinical routine practice. 
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Appendices 

This section contains all the additional information supporting this research study.
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A.1. PRISMA Checklist  

Section/topic  # Checklist item  
Reported 
on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  20 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 
participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and 
implications of key findings; systematic review registration number.  

NIL 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  20 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 
outcomes, and study design (PICOS).  

NIL 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide 
registration information including registration number.  

21 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, 

language, publication status) used as criteria for eligibility, giving rationale.  
21 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched.  

21 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 
repeated.  

22 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis).  

22 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes 
for obtaining and confirming data from investigators.  

23 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

A3 Data 
extraction 

form 
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Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was 
done at the study or outcome level), and how this information is to be used in any data synthesis.  

NIL 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  NIL 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency 
(e.g., I2) for each meta-analysis.  

Narrative 
synthesis 

 

Page 1 of 2  

Section/topic  # Checklist item  
Reported on page 
#  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, 
selective reporting within studies).  

NIL 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, 

indicating which were pre-specified.  
NIL 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 
exclusions at each stage, ideally with a flow diagram.  

24 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations.  

NIL 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  NIL 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

NIL 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  NIL 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  NIL 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see 
Item 16]).  

NIL 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their 
relevance to key groups (e.g., healthcare providers, users, and policy makers).  

25 - 34 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete 
retrieval of identified research, reporting bias).  

35 
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Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future 
research.  

36 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of 
funders for the systematic review.  

See 
Acknowledgement 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 

doi:10.1371/journal.pmed1000097 For more information, visit: www.prisma-statement.org. Page 2 of 2
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A.2. Example of search on SCOPUS database  

( TITLE-ABS-KEY ( "no gold standard*"  OR  "without gold standard*"  OR  "missing gold 

standard*"  OR  "imperfect reference standard*"  OR  "no reference standard*"  OR  "missing 

reference standard*"  OR  "partial verification"  OR  "differential verification" )  AND  TITLE-ABS-

KEY (“diagnostic accuracy”) AND TITLE-ABS-KEY  ( "medical test*"  OR  "new 

test*"  OR  "index test*"  OR  "diagnostic test*"  OR  "screening 

test*"  OR  routine* ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2019 )  OR  LIMIT- 

TO ( PUBYEAR ,  2018 )  OR  LIMIT-TO ( PUBYEAR ,  2017 )  OR  LIMIT-

TO ( PUBYEAR ,  2016 )  OR  LIMIT-TO ( PUBYEAR ,  2015 )  OR  LIMIT-

TO ( PUBYEAR ,  2014 )  OR  LIMIT-TO ( PUBYEAR ,  2013 )  OR  LIMIT-

TO ( PUBYEAR ,  2012 )  OR  LIMIT-TO ( PUBYEAR ,  2011 )  OR  LIMIT-

TO ( PUBYEAR ,  2010 )  OR  LIMIT-TO ( PUBYEAR ,  2009 )  OR  LIMIT-

TO ( PUBYEAR ,  2008 )  OR  LIMIT-TO ( PUBYEAR ,  2007 )  OR  LIMIT-

TO ( PUBYEAR ,  2006 )  OR  LIMIT-TO ( PUBYEAR ,  2005)).  

Similar search terms were used in other databases. 
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A.3. Data extraction Sheet 

 

Date collected  

Collector’s ID  

Author(s)  

Year  

URL  

Title  

Source  

Database  

URL  

Aim/objective of study  

Type of study design  

“No gold standard” type   

Target Condition  

Index test  

Reference standard  

Data   

Time frame  

Method  

Notes Assumptions 
 
Was it met? 
 
Results 
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A.4. Data Extraction Sheet (Example) 

 

Date collected 15.06.2018 

Collector’s ID CMU 

Author (Year) Hsia, Schluger 383 

URL https://onlinelibrary.wiley.com/doi/epdf/10.1002/art.34382  

Title Interferon-γ release assay versus tuberculin skin test prior to treatment 
with golimumab, a human anti-tumour necrosis factor antibody, in patients 
with rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis 

Source Arthritis & Rheumatism  

Database Wiley Online Library  

Aim/objective of study To evaluate the performance of an interferon-γ release assay (IGRA) 
versus the standard tuberculin skin test (TST) as a screening tool for latent 
TB (LTB). 

Type of study design Cohort Study  

“No gold standard” 
type  

No gold standard  

Index test IGRA and TST 

Target Condition Latent tuberculosis  

Data 2282 patients  

Method Positivity rate – used to comparing two or more tests  
Argreement – Kappa statistic  

Notes  Patients were screened with three tests; TST, IGRA and Chest 
radiography.  

 Concordance of tests results was done using the kappa statistic / 
coefficient. 

 Rate of positivity is the proportion of participants that the test identified 
as positive (having the target condition) based on the test is defined as 
the cut-off.  

 Multivariate logistic regression analyses were performed to determine if 
there were any covariates or factor associated with the screening test.  

 

  

 

https://onlinelibrary.wiley.com/doi/epdf/10.1002/art.34382
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A.5. Supplementary information  

 

Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate 

diagnostic tests in the absence of gold standard – an update 

 

In this supplementary material, the identified methods from the systematic review are briefly 

discussed. Some strengths and weaknesses of each method are highlighted. In addition, clinical 

applications (which are published articles where the method was employed) and key references 

(which are articles that described the proposed method) of the proposed methods are included.  

As noted in the discussion section of the review (section 2.5), not all the methods have been 

applied outside the original publication of the developed method. Thus, those methods that have 

not been applied clinically outside the original publication of the developed method do not have 

clinical application.  

The identified methods are presented in tables under three main indices (A.5.1, A.5.2 and A.5.3):  

 A.5.1: include all methods proposed when the gold standard is missing for some of the 

participants in the study, and the diagnostic outcome is binary. This is from Table 45 to 

Table 50. The tables are stratified based on the number of index test being evaluated and 

how the test outcome is measured (binary, ordinal or continuous).  

 A.5.2: includes all methods proposed to evaluate medical test with more than two 

diagnostic outcomes and the gold standard is missing for some of the participants in the 

study.  Table 51 to Table 52 focuses on methods employed to estimate the on ROC 

surface and volume under the ROC surface of single index test with ordinal (Table 51) 

and continuous (Table 52) results; and Table 53 focus on estimating the sensitivities and 

specificities of multiple binary tests when the disease status is categorical. The methods 

listed under section A1 and A2 have the true disease status of some participants missing; 

hence, the methods are developed with the assumption that the missing disease status 

is either missing at random (MAR) or missing not at random (MNAR). And methods 

developed based on the assumption of missing not at random has the ‘missing at random’ 

as a special case.  

 A.5.3: includes methods proposed to evaluate medical test(s) when the reference 

standard is imperfect or there is no-gold standard. This is from Table 54 to Table 57. 

For all methods in A.5.1, A.5.2 and A.5.3; when multiple tests are evaluated together, the 

tests could be conditional independent given the true disease status, or conditional 
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dependent given the true disease status. Thus, some methods are developed based on 

these assumptions.   

 

Update of the systematic review till December 2020 

Articles published from January 2019 to December 2020 that fulfilled the eligibility criteria as 

defined in section 2.2.1 were reviewed in December 2020. From the search, 22 articles were 

identified of which most of them (20) were clinical application using the Bayesian latent class 

model, one employed the CRS and another article employed the differential verification. The 

identified articles are cited under the clinical application column in appropriate tables below.   

 

 

 

 

Abbreviations 
 
CI: conditional independence   LCM: latent class model 
CD: conditional dependence   WGEE: weighted generalised estimating equation 
MAR: missing at random    PG-BRL: partial gold Bayesian rank likelihood  
MNAR: missing not at random    DR: Doubly robust 
AUROC: Area under the ROC curve  VUS: volume under the surface 
ROC: Receiver operating characteristic   NI: non-ignorable verification  
IPW: inverse probability weight   EM: Expectation maximization  
FI: Full imputation      MSI: Mean square imputation  
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A.5.1: Tables of methods employed in evaluating medical test(s) with missing gold standard in a binary-class diagnostic outcome. 

Table 45: Methods employed for single binary index test 

Single binary index test 

Method 

(Year) 

MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Begg & 

Greenes 

(B&G) 

(1983) 

 

 

MAR CI This method is based on the Bayes 

theorem and the missing disease status of 

the unverified participants are considered 

as a doubling sampling problem. The true 

disease status of unverified participants is 

viewed as double-sampling problem and 

are included in the analysis.  

Clinical application: 110-112, 384, 385 

 Easy to implement analytically 

and the results are easily 

interpretable.  

 Can adjust for binary or discrete 

covariates. 

 Estimates of sensitivity and 

specificity could still be biased if there 

are few false negative in the study 

(Cronin and Vickers 113).  

 In the presence of more than one 

covariate, parametric models could 

be considered. Hence, the estimates 

obtained could be prone to bias that 

arise from model-misspecification.  

Begg and 

Greenes 64 

Likelihood-

based 

(1993) 

MNAR CI The conditional probability of verification 

given the true disease status, are assumed 

to be known and specified with two values. 

Hence, the boundary of this values can be 

estimated using the observed data, which 

is employed to obtain bounded values for 

the sensitivity and specificity of the index 

test under the MNAR assumption.  

 There is no need to conduct 

sensitivity analysis because this 

method produces all possible 

value of the sensitivity and 

specificity of the index test under 

the assumption that the 

verification is non-ignorable  

 It assumes that the verification is 

known which is not always true in 

practice.   

 The estimated value of the sensitivity 

and specificity of the test is not a 

single value (except if the verification 

is specified) but a range of value that 

is bounded. Thus, interpretation of 

estimates is not straightforward. 

Zhou 67 
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Table 44 cont.: Methods employed for single binary index test  

Method 

(Year) 

MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Expectation 

maximization 

(EM) – based 

regression 

(2003) 

MNAR CI Parametric models are used to model the joint 

distribution of the verification, disease and index 

test response. The conditional probability of 

disease, test, and verification are modelled using 

logistic regression. The estimates of the 

marginal sensitivity and specificity are obtained 

by maximising the log-likelihood of the observed 

data using the EM approach. The MAR 

assumption is a special case of this approach. 

 This method produces a single value each 

as the estimated sensitivity and specificity 

of the index tests not bounded values.  

 Observed discrete covariates can be 

considered with this approach. 

 Standard error of the parameters can be 

estimated using the observed information 

matrix not via bootstrapping. 

The probability of verification is estimated from 

the observed data rather than assuming it is 

known. 

 Due to the MNAR assumption, the 

model could be non-identifiable. 

Hence to ascertain if the estimates 

obtained are unique, the information 

matrix from the EM process need to 

be singular. 

 The choice of model-selection is 

limited because of the non-

identifiability problem. 

This method is prone to bias if the model 

is misspecified.  

Kosinski and 

Barnhart 68 

Global 

sensitivity 

analysis 

(2003) 

MNAR CI This method provides all possible (but bounded) 

jointed values of the sensitivity and specificity of 

the index test under different assumptions of the 

missing mechanism (MCAR, MAR and MNAR) in 

a graphical form. The area produced by the 

bounded possible values is called the true 

ignorance region (TIR). It is a sensitivity analysis 

that help researchers see the amount of bias that 

can be made as a result of the MNAR 

assumption. 

 

Clinical application: 386-389 

 This method allows researcher to 

understand how different missing 

mechanism assumption can impact their 

inference on the diagnostic accuracy of the 

index test. 

 The graphical presentation of all the 

possible pair values of the sensitivity and 

specificity makes the interpretation easy. 

With this approach, there is no need to change 

the values of parameters in the fitted model to 

obtain all the possible pairs of sensitivity and 

specificity under the MNAR assumption.  

This approach does not take into 

consideration observed covariates such 

as age, race, etc. that could affect the 

verification of the true disease status of 

the participants.  

Kosinski and 

Barnhart 69 
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Table 44 cont.: Methods employed for single binary index test  

Method 

(Year) 

MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Multiple 

imputation 

(2006) 

MAR CI The true disease status of the unverified 

participants is considered as a missing data 

problem. So, the missing disease status are 

imputed with M (>1) plausible simulated values 

based on the assumption of MAR. M complete 

datasets are obtained. Each dataset is analysed 

to obtain the estimate of sensitivity and 

specificity of the test. The estimates are pooled 

together to obtain a single estimate of the 

sensitivity, specificity and its variances using the 

Rubin’s rule (Little and Rubin 390; Rubin 391).  

 This approach is an alternative to 

Beggs & Greenes method. 

However, it is shown to be more 

flexible than B&G in incorporating 

more than one covariates 114. 

Estimates obtained are easily 

interpretable.  

If the MAR assumption do not 

hold, the MNAR assumption need 

to be modelled within the data 

augmentation process which will 

require specifying the right model 

and could be computationally 

demanding. 

Harel and 

Zhou 392 

Propensity 

score 

(2012) 

MAR CI This method defines the propensity score as 

“the probability of verification given the test 

response and observed covariates”. It is 

assumed to be unknown and estimates using 

the observed data. Participants are stratified 

based on their propensity score. Estimate of 

sensitivity and specificity of the index test are 

obtained by pooling the estimates obtained from 

each stratum. 

 Although, this approach is model 

based, the estimates obtained are 

less sensitive to model 

misspecification because the 

propensity score (verification 

model) is used to stratify the 

participants.  

 

 The number of strata must be 

decided. 

This method requires the sample 

size to be sufficiently large 

because of the stratification.  

He and 

McDermott 66 
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Table 44 cont.: Methods employed for single binary test  

Method 

(Year) 

MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

Bayesian 

approach 

(2006, 

2008, 

2018) 

MAR & 

MNAR 

CI Generally, Bayesian method combines prior information about the 

parameters of interest such as sensitivity and specificity of the index 

test in a parametric distribution together with the likelihood of the 

observed data to get the predictive or posterior distribution which is 

used to make inference about the parameters of interest. The three 

articles discussed here estimates the test’s performance of a single test 

with binary response under MNAR and MAR assumption. 

The method by Martinez 70 is the Bayesian approach of the likelihood – 

based method by Zhou 67. However, the verification quantities are taken 

as unknown and estimated alongside the sensitivity, specificity and 

prevalence of disease within the Bayesian process. This method does 

not employ observed covariates.  

Buzoianu and Kadane 71 used the data augmentation approach (which 

is a Bayesian imputation approach) to impute the missing disease 

status and simultaneously estimate the parameters of the models which 

is used to obtain the marginal sensitivity and specificity of the index test. 

This is the Bayesian approach of Kosinski and Barnhart 68. 

The Bayesian approach by Hajivandi, Shirazi 72 is an extension of the 

approach by Martinez 70 and Buzoianu and Kadane 71. This extended 

Bayesian method eliminates the verification variable. So that the 

probability of disease or test response do not depends on verification. 

Hence, a new model is developed to predict the true disease status 

for individuals who do not undergo the index test.  

 Generally, Bayesian methods 

overcome the problem of model 

non-identifiability faced by the 

maximum likelihood approach. 

Because they use prior 

information about the 

parameters of interest which 

imposes some statistical 

restriction on the parameters. 

 The number of parameters to be 

estimated using Bayesian 

approach is not limited like the 

maximum likelihood approach.  

 Prior distribution of the 

sensitivity and specificity can be 

elicited from the estimates 

obtained from the B&G 

approach (Martinez 70) or 

elicited from other sources like 

expert opinion or previous 

research. 

 Sensitivity analysis is 

required to study the 

impact of the prior 

distribution on the 

estimates. 

 If the prior is non-

informative then 

estimates tend towards 

likelihood. However, if 

informative priors are 

used, the obtained 

estimates tend to 

balance the idea. 

 Sufficient sample size is 

required to avoid the 

inference to coincide 

completely with the prior.  

 

 

Martinez 70 

 

Buzoianu and 

Kadane 71 

 

Hajivandi, 

Shirazi 72 
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Table 46: Methods employed for multiple binary index tests 

Multiple binary index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Baker et al  

(Maximum 

likelihood 

based) 

(1995) 

MNAR CI The idea behind this approach is to use 

multiple tests to fit identifiable verification 

models to overcome the problem of non-

identifiability that arises as a result of the 

MNAR assumption in the maximization of 

the log – likelihood function. The sensitivity 

and specificity of the combined multiple 

tests is obtained by choosing the disease 

model and verification model that fits the 

data. This method derives the ROC curve 

using the combined responses of the 

multiple index tests employed in the study 

to obtain the combination of the tests’ 

response that maximizes TPRs at a given 

FPRs.  

 The use of multiple index tests 

makes the likelihood of the 

observed data identifiable under 

the MNAR assumption.  

 The model can be extended to 

include covariates.  

 This method does not estimate 

the sensitivity and specificity of 

the index tests individually but 

only collectively. 

 This method does not consider 

the conditional dependence of 

the multiple index tests.  

 The estimates obtained are 

sensitive to the MNAR 

assumption (via the verification 

model). Thus, they are prone to 

bias that could arise from model 

misspecification. Evidence of 

model misspecification can be 

checked by fitting various 

verification models. 

Baker 81 

Maximum 

likelihood 

approach  

(1998) 

MAR CI This method uses the maximum likelihood 

approach to estimate the sensitivities and 

specificities of two binary (screening) index 

tests under the assumption that both tests 

are conditional independent given the true 

disease status.  

 Estimates are easy to compute or 

solve analytically. 

 The method can incorporate binary 

or categorical covariate to obtain 

the covariate specific diagnostic 

accuracy measures. 

 Method cannot be employed in 

the case of more than two index 

tests.   

 Tests must be conditional 

independent. 

Zhou 73 
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Table 45 cont.: Methods employed for multiple binary index tests 

Method MAR / 
MNAR 

CI / CD Characteristics Strength Weaknesses Key 
reference 

Latent 

class 

model 

(LCM) 

(1999, 
2008) 

MAR CI & CD When two screening tests are used the screen 

negatives (those participants with negative responses 

in both tests) are considered to be negative or non-

diseased. Hence, they are not referred for further 

testing with the gold standard because their true 

disease status is assumed to be negative.  

Methods (based on LCM) were developed  by Walter 

78, Böhning and Patilea 79 to estimate the sensitivities 

and specificities of the two binary index (screening) 

tests when all screen negatives do not get their 

disease status verified with the gold standard. The 

disease status of unverified participants are assumed 

to be latent or unobserved or missing but not negative. 

Because the two screening tests are imperfect. 

Walter 78 assumes both tests have dichotomised 

responses and they are conditional independent given 

the true disease status. 

Böhning and Patilea 79 is an extension of Walter 78 

which relaxes the assumption of conditional 

independence and assumes that both tests are 

conditionally dependent given true disease status and 

that the conditional dependence is homogenous.  

 The assumption that all 

participants with negative 

response in both tests are 

non-diseased is relaxed 

because both index 

(screening) tests are 

imperfect.  

 Sensitivities and specificities 

are calculated separately for 

the two tests evaluated.  

Böhning and Patilea 79 do not 

require the two tests’ responses to 

be independent.  

 The homogenous 

conditional dependence of 

the tests across all 

participants may not be 

true in practice.  

The estimates obtained can be 

biased if the model is 

misspecified. 

Walter 78 

 

 

Böhning and 

Patilea 79 
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Table 45 cont.: Methods employed for multiple binary index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Bayesian 

approach 

(2005) 

MAR CI This Bayesian approach estimates the sensitivity and 

specificity of two index tests which are applied to all 

participants while adjusting for observed covariates.  

 Using informative priors 

circumvent the problem of non-

identifiability that arises from 

likelihood estimation procedure. 

Correlation between tests is 

considered.  

Misspecification of the prior 

model or distribution can bias 

estimates. 

Martinez, 

Achcar 76 

 

 

 

 

Lloyd et al 

 

(2008) 

MAR NIL This method uses multinomial logistic regression to 

estimate the joint sensitivity and specificity of all the 

index tests. The aim of this method is to evaluate the 

diagnostic accuracy of a combination of multiple 

dichotomised or binary tests to decide verification 

process. 

The conditional dependence or 

independence of the tests is of no 

importance in this approach. 

It does not provide the 

diagnostic accuracy of the 

individual index test applied 

in the study.  

Lloyd 393 

Semi-latent 

class: 

Gaussian 

random effect 

(GRE) 

Finite mixture 

(FM) 

 

(2008) 

MAR CI 

& 

CD 

This approach is a modification of the GRE by 132 and 

Finite mixture by Albert and Dodd 32 which was original 

developed to evaluate medical tests when the is no 

gold standard or the reference test is imperfect. This 

method is semi-latent because the disease status of 

those that were verified with the gold standard are 

taken to be known and participants not verified are 

assumed to be latent. This method is an alternative to 

the imputation and reweighting approach by Albert 43.     

 This is more robust than the 

imputation approach by Albert 43 

if the models are correctly 

specified. 

 It is a data-driven method. 

 

Prone to bias that could arise 

from model misspecification.  

Albert 394 
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Table 45 cont.: Methods employed for multiple binary index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Imputation and 

reweighting: 

MSI, IPW, and 

SPE 

 

(2007) 

MAR CI & 

CD 

This approach applies the idea of the estimators by 

Alonzo and Pepe 61 (MSI, IPW and SPE) to estimate 

the sensitivity and specificity of multiple binary tests. 

The joint and marginal sensitivities and specificities 

of the tests being evaluated are estimated under the 

assumption that the verification is known or fixed by 

design. However, if it isn’t, then it can be estimated 

using the observed data. This approach is an 

alternative to the semi-latent methods by Albert 394 

 Comparing this approach to the 

semi-latent methods (GRE and 

FM) by Albert 394, it is simple and 

less prone to errors due to model 

misspecification.  

 It is less computational expensive 

compared to the semi-latent 

methods.  

Additional discussion about the 

advantages and disadvantages of the 

two methods are in this article. 

 The assumption that the 

verification is being fixed 

by designed or known is 

very restrictive and may 

not always be true in 

practice.  

In extreme biased sampling 

(those with all negative index 

test response do not get their 

disease status verified), the 

imputation approach requires 

statistical adjustment like 

extrapolation.   

Albert 43 

Bayesian 

approach 

 

(2010) 

MNAR CI This is a modification of the Martinez 70 approach to 

include two index binary tests. It uses Markov – chain 

Monte Carlo (MCMC) methods to simulate samples 

for the joint posterior distribution. The probability of 

verification is modelled using eight parameters in the 

form described by Zhou 67.  

 Employing two good sources of 

information rather than only the 

observed data can improve the 

accuracy of the estimates.  

 

 Relatively large sample 

size is needed to reduce 

the weight of the prior on 

the posterior.   

 

Aragon, 

Martinez 84 

 



231 | P a g e  
 

Table 45 cont.: Methods employed for multiple binary index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

Likelihood –

based approach 

 

(addresses 

double partial 

verification) 

 

(2012) 

MNAR CI This approach deals with double partial verification 

where not all the participants undergo all the index 

tests, and some do not undergo the gold standard. 

It is likelihood-based following the pattern of Baker 

81, and  Kosinski and Barnhart 68.  

Rather than using only 

participants that undertook 

both index tests (probable 

discarding data from 

participants who did not 

undergo both index tests); this 

approach utilises every data 

from all participants whether 

they undertook either index 

tests. 

 This method is model based, 

so it is prone to bias due to 

model misspecification.  

This method is computational 

expensive, especially when the 

number of index tests with 

conditional dependence 

increases and the number of 

missing participants within each 

test varies.  

Van Geloven 

82 

 

Van Geloven, 

Broeze 83 

Weighted 

Generalise 

Estimating 

Equation 

(WGEE) 

based method 

 

(2014, 2003, 

2006) 

MAR CD WGEE is employed to deal with correlated data 

with missing data problem. Because not all 

participants undergo the gold standard the number 

of verified participants is used as the weight.  

The single model proposed by Xue, Kim 77 

estimates the diagnostic accuracy of multiple index 

tests and compare them. The model can also 

combine data from different study to obtain the 

sensitivity and specificity of the index tests.  

The weighted least square (WLS)395 method and 

WGEE method by Lin, Barnhart 396 are proposed to 

estimate the diagnostic accuracy of the index test 

when applied at subunit levels. 

 This approach can 

estimate the diagnostic 

accuracy of more than two 

binary index tests that are 

correlated. 

Data from two or more study 

can be combined using this 

approach to obtain the 

parameters of interest.  

 This approach requires large 

sample size because of the 

normal approximation 

assumption.  

 It is model – based; hence it 

is prone to error due to 

misspecification of models. 

With this approach, verification 

depends only on the test 

response not on the observed 

covariates. Thus, it cannot adjust 

for observed covariates.  

Xue, Kim 77 

 

Barnhart and 

Kosinki 395 

 

Lin, Barnhart 

396 
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Table 47: Methods employed for single ordinal index test 

Single ordinal index test 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

Parametric 

AUROC 

 

(1984) 

MAR CI Constructing a ROC curve using the pair of 

sensitivities and specificities estimated using any 

correction method for binary test (like the B&G 

method) at every cut-off of continuous or ordinal 

tests often produce a step function ROC (not 

smooth). Hence, this method  employs the 

procedure of Dorfman and Alf Jr 397 to derive a 

smooth ROC curve. The method assumes that 

the index test result has an underlying continuous 

scale; the disease and non-diseased group of the 

underlying continuous scale of the test response 

are normally distributed (bi-normality) after 

monotonic transformation, and there are latent 

cut-offs. With the ROC curve derived, the AUROC 

is calculated  graphically or using the trapezoidal 

rule by Bamber 398. 

 This method produces a smooth ROC 

and the AUROC is estimated 

graphically or via the trapezoidal rule. 

 Estimate is easy to interpret. 

 The underlying bi-normality assumption 

of the disease and non-diseases group 

may not always be true in practice. 

 This approach estimates only the 

AUROC.  

 Pairs of sensitivity and specificity on the 

smooth ROC cannot be obtained at any 

cut-off because they are latent and are 

employed for model purpose. 

 With the derived ROC curve, the test’s 

response at the extreme of the upper 

ROC curve are indicative of non-

diseased than diseased, which is not in 

practice. 

 The estimated AUROC depends on the 

number of verified participants; thus, a 

relative high sample size is advised.  

 This method can be prone to bias that 

arises from model-misspecification.  

 This method cannot incorporate any 

observed covariates as the verification of 

participants depends only on the test 

response.  

Gray, Begg 85 
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Table 46 cont.: Methods employed for single ordinal index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

Non-

parametric 

likelihood 

based 

 

(1996) 

MAR CI This method estimates the AUROC of an ordinal test 

via likelihood approach.   

 This approach is non-parametric so 

not prone to model-

misspecification. 

 No need to make any assumption 

about the distribution of the disease 

and non-disease group. 

This approach can adjust for discrete 

covariates. 

This approach estimates only the AUROC, not 

the ROC curve (the pairs of sensitivities and 

specificities at different cut-offs).  

Zhou 86 

Parametric 

maximum 

likelihood 

based 

 

(1998) 

MNAR CI This method employs the basic assumption of  

Dorfman and Alf Jr 397 procedure to derived a smooth 

ROC curve. The EM algorithm is employed to obtain 

the maximum likelihood estimator of the ROC curve. 

The method incorporates sensitivity analysis to 

evaluate the impact of the MNAR assumption.  

 This approach produces range of 

possible values for the pair of 

sensitivity and specificity under the 

non-ignorable verification 

assumption. Hence, a separate 

sensitivity analysis is not needed.  

If the verification is known and accurate, 

then the estimates obtained are robust. 

 Assumption of bi-normality of disease and 

non-disease group is made which may not be 

true in practice. 

 The estimates of sensitivity and specificity is 

bounded by a range of values and not a 

single value. 

The verification is assumed to be known, which 

may not be true in practice. 

Zhou and 

Rodenberg 88 

Parametric 

maximum 

likelihood 

based 

 

(2000) 

MAR CI This approach is an extension of Gray, Begg 85 

method to include observed categorical covariates 

that can affect the verification of the disease status of 

the participants. This approach calculate the AUROC 

and the ROC curve applying the procedure and basic 

assumption of  Dorfman and Alf Jr 397. 

This method produces covariate-specific 

ROC and AUROC. 

 The underlying assumption of bi-normality 

about the diseased and non-diseased group 

may not be true in practice. 

 This method is prone to bias that can arise 

from model – misspecification. 

Pairs of sensitivity and specificity on the smooth 

ROC cannot be obtained at any cut-off because 

they are latent and employed for model 

development. 

Rodenberg 399 
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Table 48: Methods employed for single continuous index test 

Single continuous index test 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

Hunink et al 

(I990) 

MAR CI This approach evaluates the ROC curve of a 

continuous test based on the assumption that the 

selection for verification depend on observed 

covariates and not the result of the index test. 

Logistic regression analysis was employed to 

evaluate the probability of verification given the 

observed covariates to correct for verification 

bias.  

 A single ROC curve that 

adjust for all the covariates 

employed in the study can 

be produced as well as 

covariate specific ROC 

curves.  

 In practice, using only observed covariates such 

as signs and symptoms, age or sex may not be 

a strong evidence to send participants for 

disease verification.  

Hunink, 

Richardson 89 

Doubly robust 

(DR): 

 

AUROC only 

and 

Empirical ROC 

 

(2006, 2009) 

MNAR CI The doubly robust estimators discussed here 

produces marginal AUROC and ROC not 

covariate specific ROCs and AUROCs. The 

disease status of all the participants (verified or 

unverified) are replaced with the estimated 

disease which is a function of the probability of 

disease and verification probability. Both 

probabilities are specified parametrically. It is 

doubly robust because the correct specification of 

either the disease or verification model makes the 

estimator consistent. However, misspecification 

of both models makes the estimator inconsistent.  

Sensitivity analyses are undertaken to evaluate 

the impact of the MNAR assumption on the 

estimates. 

 The DR approaches are 

consistent and asymptotic 

normal provided the either 

the verification or diseased 

model is correctly specified. 

 This approach can adjust for 

continuous covariate without 

having to dichotomised or 

discretize them.  

 The number of covariates 

that can be included in the 

model is not limited. 

 The estimator is model based so 

misspecification of the models makes the 

estimator inconsistent. 

 There is efficiency cost with this approach; an 

estimator with correctly specified disease or 

verification model yields same consistent 

estimates as the DR estimator. However, the 

variance of the DR estimator is larger because 

of the additional model. 

 The non-ignorable parameter is assumed to be 

known which is not always true in practice. 

 The empirical ROC curve derived by Fluss 94 has 

non-monotonic property because the value of 

the ROC can lie outside the range of 0 and 1. 

Hence, the isotonic regression procedure is 

suggested to correct for the non-monotonicity of 

the ROC (estimated sensitivities and 

specificities). 

Rotnitzky, 

Faraggi 95 

(AUROC only) 

 

 

 

 

 

 

Fluss 94 

(Empirical 

ROC) 
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Table 47 cont.: Methods employed for single continuous index test 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Imputation and 

Reweighting: 

Full imputation 

(FI) 

Mean score 

imputation (MSI) 

Inverse 

probability 

weight (IPW) 

Semi-parametric 

efficient (SPE) 

 

(2005) 

MAR CI The four estimators (FI, MSI, IPW and SPE) 

derive the ROC curve and AUROC from 

empirical data. The FI estimator imputes the 

probability of disease (disease status) for all 

participants in the study regardless if they 

were verified with the gold standard or not.  

The MSI imputes the probability of disease 

only for participants with missing disease 

status. The IPW uses participants whose true 

disease status were verified. It weights each 

observation from the verified with the inverse 

of its probability of verification. The SPE 

incorporate the probability of verification and 

probability of disease to obtain the estimates 

of sensitivity and specificity. That is why it is 

referred to as doubly robust. The AUROC is 

estimated using trapezoidal rule. A 

modification of the FI, MSI, IPW and SPE 

estimators that adjust for non-ignorable 

verification is constructed by Liu 97. 

 No assumption is made about the 

distribution of the test response of 

the diseased and non-diseased 

group. 

 These methods are easy to 

implement, because the 

estimators only need regression 

model is fitted to the binary 

response – disease and or 

verification. 

 The four estimators are 

consistent, provided the disease 

model and/or verification is 

specified correctly. 

The SPE is doubly robust; the correct 

specification of either the verification 

or disease model make it a consistent 

estimator. 

 The estimators are model-based, so prone to 

bias due to model misspecification. The 

estimators are inconsistent if the model is 

misspecified. The effect of model 

misspecification on each of the estimator is 

discussed in the article.  

 Estimates of sensitivity and specificity could still 

be biased if there are few false negative in the 

study (Cronin and Vickers 113). 

 The SPE estimator does not produce a 

monotonic (increasing) ROC. Although, this can 

be corrected using isotonic regression (Fluss 94). 

 The SPE is inconsistent if both verification and 

disease model is misspecified. 

 If there are observed covariate(s) that affected 

verification, this approach does not adjust for it. 

The IPW employs information from verified 

participants, hence there is loss of information from 

those unverified. 

Alonzo and 

Pepe 61 

Propensity – 

score 

adjustment 

method 

(2018) 

MNAR CI It’s a parametric approach. The probability of 

verification for the diseased participants not 

the whole sample is model under some 

parametric assumption. The AUC of the index 

test is estimated.  

Since this method uses parametric 

assumption to model the probability of 

verification for only verified 

participants than the whole sample; 

the approach seems to be quite 

simpler or straightforward.  

The parametric assumption used to model the 

probability of verification for the verified participants 

could be misspecified or non-ideal in practice; thus, 

resulting in wrong estimated of the AUC.  

Yu, Kim 98 
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Table 47 cont.: Methods employed for single continuous index test 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

U-statistics 

estimator 

 

(2009) 

MAR CI The AUROC is estimated based on U-statistics and 

inverse probability weighting (IPW) technique. The 

IPW technique is used to correct for verification bias 

and the probability of verification is assumed to be 

known. The test response of the diseased and the non-

diseased group are assumed to follow the F 

distribution and the U-statistics estimator is 

constructed under this assumption.  

 The estimate obtained with this method 

is equivalent to the estimate obtained 

using the IPW estimator by Alonzo and 

Pepe 61. However, this estimator has a 

closed form variance. 

This method does not require the probability 

of disease as it depends mainly on the 

verification probability. And if this is known, 

then it is less prone to bias that could arise 

from model misspecification. 

 The assumption that the test’s 

response follows an F-distribution may 

not be true in practice. 

 This approach only estimates the 

AUROC not the ROC curve. 

The verification probability may not be 

known in practice. 

He 90 

Likelihood 

based 

(imputation 

and 

reweighted): 

FI, MSI , IPW 

and Pseudo – 

DR (PDR) 

 

(2010) 

 

MNAR 

 

CI 

This approach is an extension of Alonzo and Pepe 61 

to account for non-ignorable verification. The non-

ignorable parameter was estimated from the observed 

data (rather than taken to be known / specified) by 

using the whole participants (not only those verified) to 

model the disease model. The log-likelihood is a 

function of both the disease and verification model. 

The log-likelihood was solved using scoring equations. 

Estimates of the probability of disease and verification 

probability is obtained which is employed to estimate 

the ROC curve and AUROC.  The Pseudo DR is not 

doubly robust as the SPE estimator 61 or the DR 

estimators 94, 95; because the verification probability 

and disease probability are estimated from same 

likelihood function and correct specification of both 

model is required to make the PDR estimator 

consistent. 

 The estimators do not specify the NI 

parameter or assumes it to be known 

like the DR approach; rather it is 

estimated from the observed data. 

 The estimators derive both ROC curve 

and AUROC. 

 The disease’s estimator for the MSI and 

PDR methods are statistically 

unbiased. 

The estimators are consistent provided the 

underlying assumptions surrounding their 

development are fulfilled. 

 The misspecification of the models will 

cause the estimator to be inconsistent. 

 The PDR estimator produces non-

monotonic ROC curve. However, this 

can be corrected using isotonic 

regression technique (Fluss 94) 

 None of the estimators including the 

PDR estimator have the doubly robust 

property. 

A reasonably large sample size is required 

because of the non-ignorable parameter 

that is estimated from the observed data. 

 

Liu 97 
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Table 47 cont.: Methods employed for single continuous index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Partial gold 

Bayesian 

rank 

likelihood 

(PG-BRL) 

 

(2014) 

MAR CI This approach is a modification of Gu and Ghosal 

400 originally developed to derive the ROC and 

AUROC of diagnostic tests with continuous 

response in full or complete verification of 

participants with the gold standard. The PG-BRL is 

constructed to correct for verification bias. The 

method uses Bayesian technique to estimate the 

posterior distribution of the bi-normal parameters 

(mean and variance) of the disease group only 

(because the non-disease group is assumed to 

follow the standard normal distribution) and the 

prevalence of the true disease status. The 

observed data are placed in rank and label. Labels 

are used to describe the true disease status of the 

verified participants (non-disease = 0 and disease 

– 1) and missingness of unverified participants 

(unverified = 2). The ranks are invariant. Due to the 

missing labels of some participants, the data 

argumentation technique is applied via Gibbs 

sampling to impute the missing labels. Inference 

about the ROC and AUROC are derived using the 

posterior distributions of the parameters estimated 

(mean and variance). 

 This estimator derives both the 

ROC and AUROC under the bi-

normality assumptions of the 

diseased and non-diseased 

group. 

The PG-BRL estimator is consider to 

perform equivalently in terms of 

accuracy when compared to some 

bias – correction estimators like the FI, 

MSI, IPW and SPE 61. 

 The assumption of bi-normality of 

the disease and non-disease group 

after some transformation is a 

restrictive assumption in practice. 

 Adjusting for observed covariates 

with this approach is computational 

complex as various transformation 

of the data are required. 

To use this approach for MNAR the 

verification needs to be explicit known 

and must be reflected in the verification 

function. 

Gu, 

Ghosal 93 
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Table 47 cont.: Methods employed for single continuous index tests 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key reference 

K – nearest 

neighbour 

 

(2015, 2017) 

MAR 

 

CI These non-parametric estimators employs the 

K nearest neighbour imputation approach (Ning 

and Cheng 401) to impute the missing disease 

status of participants where the diseases status 

is not verified. 

 It is a fully non-parametric 

approach, so not prone to model 

misspecification. 

 It is a non-parametric version of 

the MSI approach of Alonzo and 

Pepe 61. 

The estimator is consistent and 

asymptotically normal under MAR 

assumption. 

 The choice of K and 

distance measure could 

be quite challenging in 

obtaining an unbiased 

estimate of the TPR and 

FPR. 

This approach requires a 

reasonably high sample 

size. 

Adimari and 

Chiogna 91 

(ROC) 

 

Adimari and 

Chiogna 92 

(AUROC) 
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Table 49: Methods employed for single continuous index test with focus on covariate-specific ROC  

Single index test with continuous response but focus on covariate specific ROC 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Fully 

parametric 

(2009)  

MNAR CI This method is a variation of the DR 

approach by Rotnitzky, Faraggi 95. However, 

the joint distribution of the test, disease, 

observed covariates and verification are 

specified parametrically rather than using the 

likelihood of the joint distribution. The ROC 

curve and AUROC derived are covariate 

specific. The observed covariate can be in 

continuous form.  

 The estimator is consistent 

provided the underlying 

assumptions involving their 

development is fulfilled.  

 The number of covariates are 

unlimited and the continuous 

form of the covariates are 

retained.  

 Requires large sample size. 

 Model – misspecification 

makes the estimator 

inconsistent. 

 

Page and 

Rotnitzky 99 

Semi- 

parametric: 

FI, IPW and 

PDR 

(2011) 

MAR CI The three estimators proposed here are 

modifications of the imputation and 

reweighting approach of Alonzo and Pepe 61 

and doubly robust approach by  Rotnitzky, 

Faraggi 95  to produce ROC curves that are 

covariate specific.  

 Compared to the fully 

parametric approach 99, the 

semi-parametric estimators is 

less impacted by model-

misspecification.  

 This approach only produces 

ROC curves but not AUROC 

because it does not have an 

explicit expression. 

 The continuous covariates 

have to be change to discrete 

form.  

Liu 402 
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Table 48 cont.: Methods employed for single continuous index test with focus on covariate-specific ROC 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Doubly 

Robust 

(2012) 

MNAR CI This method is an extension of the DR estimator by 

Fluss 94 to make the estimated pair of sensitivity and 

specificities (ROC)  covariate specific. To achieve 

this, semi-parametric location scale model was used 

to model the effect of the observed covariates on the 

ROC curve. The location scale model models the 

test’s response as function of the disease and 

covariates.  

 The estimator is doubly robust 

 It is consistent and 

asymptotically normal. 

The covariate is in discrete form.  

 Estimator is inconsistent if the 

both models (verification and 

disease) are misspecified. 

 The derive ROC is non – 

monotonic so the isotonic 

regression corrected is needed 

The non-ignorable parameter is 

specified so sensitivity analysis is 

required to study the impact of the 

MNAR assumption.  

Fluss, Reiser 

96 

Imputation & 

reweighting 

(2013) 

MAR & 

MNAR 

CI This method is a modification of the semi-parametric 

method by Liu 402 to develop an estimators that can 

also estimates the covariate – specific AUROCs  

 The method also estimates the 

AUROCs unlike the 

semiparametric approach.  

Adjust for covariates without 

having to change to discrete form. 

It is model based, hence the 

estimator is inconsistent in the 

presence of model misspecification.     

Liu 100 
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Table 50: Methods employed for multiple ordinal or continuous index tests  

Multiple index tests with ordinal or continuous responses 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Profile and EM 

method  

(2003) 

MNAR CI This is a ML – based approach which employs the profile 

method combined with EM to obtain a global maximum 

likelihood estimator for the sensitivity and specificity of 

two index tests with ordinal results. Although the article 

goes further to compare the two tests with assumption 

that they are correlated. However, this review focused on 

the approach employed to estimate the AUC of each 

index test.  

 This approach is non-

parametric, so not prone to 

model misspecification. 

  

 In estimating the AUC of each index 

test, the two tests are assumed to 

be independent given the true 

disease status.  

 The two index tests must have the 

same number of ordinal class. 

Zhou and 

Castelluccio 

270 

Likelihood 

based 

Imputation  

(MCEM) 

approach   

(2012) 

MAR CD This estimator is developed to estimate the ROC curve 

and AUROC of diagnostic tests in a multi-phase trial with 

partial verification. That is a trial with more than two – 

phase. The gold standard is applied to participants in the 

last phase of the trial to confirm true disease status. In 

multi-phase trial with multiple screening tests, decision 

rule is made on how to define positive and negative to 

move participants unto the last testing stage. Often times, 

the tests could be correlated or repeated. This method 

derived two estimators of the ROC curve when the 

believe-the-positive (BP) decision rule is used or believe-

the-negative (BN) rule is employed. It is a likelihood-

based approach and the Monte Carlo Expectation 

Maximization (MCEM) is used to maximise the log-

likelihood.  

 This method estimates the 

diagnostic accuracy of 

screening (index) tests that 

could be correlated and are 

employed in multi-phase 

trials which adjusting for 

partial verification within 

each phase.  

 This method is model based hence 

model misspecification makes the 

estimator inconsistent.  

 The method is computational 

complex as the MCEM is employed 

because direct maximization 

approach is difficult.  

 As the number of sequential tests 

employed in the study increases, 

the more complex the 

computational procedure of 

estimating the diagnostic accuracy 

especially if the tests are conditional 

dependent given true diseases 

status.  

Yu 102 
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A.5.2: Tables of methods employed to evaluate medical test when there is missing gold standard and the diagnostic outcomes is classified 

into three. Hence, focusing on ROC surface and volume of surface (VUS). 

 

Table 51: Methods employed for single ordinal index test with ROC surface and VUS 

Single ordinal index test 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Non-

parametric 

likelihood-

based 

approach  

(2008) 

MAR CI This estimator estimates the empirical 

ROC surface and volume under the 

ROC surface (VUS) using likelihood – 

based approach.   

 This estimator is not model based so bias 

due to model misspecification is eliminated.  

 Covariates can be adjusted; however, it 

must be in the discrete form to get covariate 

specific ROC surface. 

 Sparse data affects the 

estimate derived.   

Chi 103 
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Table 52: Methods employed for single continuous index test with ROC surface and VUS 

Single continuous index test  

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Imputation and 

reweighting: 

MSI, FI, IPW 

and SPE 

(2016) 

MAR CI This estimator is an extension of the imputation and 

reweighting approach (FI, MSI, IPW and SPE) by 

Alonzo and Pepe 61 to incorporate three disease class 

status.  

 

 Same as the imputation and 

reweighting estimators of Alonzo 

and Pepe 61. 

 Same as the imputation and 

reweighting estimators of Alonzo 

and Pepe 61. 

Duc, 

Chiogna 62 

Non-parametric 

approach: KNN 

approach 

(2016, 2017)  

MAR   This estimator is an extension of the KNN approach 

by Adimari and Chiogna 91. 

Same as the KNN approach above.  Same as the KNN approach above.  Duc, 

Chiogna 104 

To Duc 105 

IPW 

(2016) 

MAR CI This estimator is an extension of the IPW approach by 

Alonzo and Pepe 61 which both derive the ROC 

surface and estimate the VUS. Only information from 

verified participants is employed in the analysis and 

each observation from verified participant is weighted 

with the inverse of the verification probability. 

 The estimator is consistent given 

the verification of probability is 

accurately known or estimated.  

 

 There is loss of information 

especially from participants 

whose disease status were not 

verified with the gold standard.   

 Same as the IPW estimator 

above. 

Zhang, 

Alonzo 63 

IPW, DR and 

PDR estimators  

(2018) 

MNAR CI Three estimators are developed to estimate the 

volume under the ROC surface (VUS) only. These 

estimators are extension of the IPW estimator under 

the framework of the doubly robust technique, the DR 

and PDR approach by Rotnitzky, Faraggi 95 and Liu 97 

respectively. 

 The IPW and DR correct for 

verification bias in considerable 

samples; however, the PDR 

approach requires large sample. 

  The DR estimator has the doubly 

robust property. 

 The PDR has same strength and 

weaknesses as above. 

 Sensitivity analysis is required to 

study the effect of specifying the 

non-ignorable parameter in the 

DR and IPW approach.  

Zhang, 

Alonzo 106 
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Table 52 cont. Methods employed for single continuous index test with ROC surface and VUS 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Bayesian 

Semi-

parametric 

ROC 

(2018) 

MAR CI The method is based on tri-normality 

assumption and it is an extension of the rank-

based likelihood approach by Gu and Ghosal 

400, Gu, Ghosal 93 

 This method uses the tri--normality 

assumption to model the three 

diagnostic outcomes, resulting in a 

smoother ROC surface.  

 

 Adjusting for observed 

covariates is computational 

complex.  

It is a parametric approach, so 

deviation from the parametric 

assumptions like the tri-

normality of the diagnostic 

outcomes leads to inconsistent 

estimators.  

Zhu and 

Ghosal 107 

Parametric –

based 

approach 

FI, MSI, PDR 

(2019) 

 

MAR / 

MNAR 

CI Parametric regression model is used to model 

the probability of disease and verification 

using the whole sample and not only 

participants whose disease status were 

verified with the gold standard. It is an 

extension of the approach by Liu 97.  

 The NI parameter is estimated from 

the observed data. 

The estimators are consistent provided 

the underlying assumptions surrounding 

their development are fulfilled. 

 The misspecification of the 

models will cause the 

estimator to be inconsistent. 

The PDR estimator has the 

doubly robust properties if either 

the disease or verification model 

is specified correct under the 

MAR assumption. However, 

under the MNAR assumption 

the PDR estimator needs both 

the model to be correctly 

specified to be consistent.  

To Duc, 

Chiogna 108 
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Table 53: Methods employed for multiple binary index tests and categorical disease status. 

Multiple binary tests and categorical disease status 

Method MAR / 

MNAR 

CI / 

CD 

Characteristics Strength Weaknesses Key 

reference 

Latent class 

model  

(LCM) 

(2010) 

MAR CI & 

CD 

Chu 80 proposed a LCM method (frequentist 

and Bayesian) to estimate the sensitivities 

and specificities of the two index (screening) 

tests when all participants with negative 

responses in both tests do not get their 

disease status verified with the gold 

standard. The disease status of unverified 

participants is assumed to be latent or 

unobserved. The tests are binary, but the 

disease status is categorical. This approach 

assumes that only participants with negative 

results in the two binary tests applied do not 

get their disease status verified. 

 The Bayesian approach 

overcomes the non-identifiability 

problem encountered using the 

frequentist approach. 

 The conditional dependence model 

is not robust in that different 

conditional dependent homogenous 

model produces different estimates 

of the sensitivity and specificity. 

Chu 80 
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A.5.3: Tables of methods employed in evaluating medical test(s) with an imperfect reference standard or no gold standard. 

Table 54: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is known 

precisely.  

Methods Characteristics Strengths Weakness Key reference 

Algebraic correction 

functions 

(1966, 1981, 1996) 

 

 

 

Bounded algebraic 

correction function 

(1981, 2018) 

The estimators considered here are 

mathematical functions. The bias-

corrected sensitivity and specificity of 

the new test is a function of the known 

sensitivity and specificity of the 

imperfect reference test. These 

methods are applied to evaluate 

medical test with binary response.  

 

The approach by Emerson, Waikar 121 

aim to estimate the possible minimum 

and maximum values of the sensitivity 

and specificity of the index test when 

evaluated using an imperfect reference 

standard and the diagnostic accuracy of 

the reference standard is known.   

 

Clinical Application: 

Hahn 123, Matos 124, Mathews, Cachay 

125 

 It is easy to implement analytically. 

 Incorporating information from a 

reliable source in addition to the 

available data can improve the 

accuracy of the estimated parameters.  

 With the bounded correction by 

Emerson, Waikar 121, there is no need 

to perform sensitivity analysis as this 

approach provides the lower and 

upper bound value of the sensitivity 

and specificity of the test being 

evaluated. 

 If the information about the 

diagnostic accuracy of the 

imperfect test is not accurate then 

more bias is produced.  

 The approach by Emerson, 

Waikar 121 estimates the upper 

and lower bounds of the 

sensitivity and specificity of the 

test being evaluate but not an 

exact single value. 

Gart and Buck 118 

 

 

Brenner 117 

 

 

Staquet, 

Rozencweig 119 

 

 

Emerson, Waikar 

121 
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Table 54 cont.: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is 

known precisely 

Methods Characteristics Strengths Weakness Key reference 

Gaussian Random 

Effect (GRE) 

Finite Mixture (FM), 

and Beta Binomial 

(2009) 

These methods are model based. They 

are applied when there are multiple 

binary index tests to evaluate. These 

methods estimate the joint sensitivity 

and specificity of the index tests as well 

as their individual sensitivity and 

specificity while taking into 

consideration the conditional 

dependence structure across the index 

tests. The methods are modification of 

the GRE approach by Qu, Tan 132 and 

FM by Albert and Dodd 32. 

 Can be applied to multiple binary tests 

with conditional dependence structure 

and conditional independence of the 

tests is a special case of this approach.   

 This approach is an alternative to the 

LCA method.  

The estimates obtained from this approach 

can be very robust provided the diagnostic 

accuracy of the RS is high and the 

dependence structure among the index 

tests given the RS is also high. 

 Misspecification of the model can 

bias the estimate obtained.  

Inaccurate error rate of the imperfect 

tests can bias the estimates obtained. 

Thus, it is encouraged to obtain the 

accuracy measures of the imperfect 

reference standard in comparison 

with the gold standard (or participants 

with known disease status). 

Albert 120 
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Table 55: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is unknown.  

Methods Characteristics Strengths Weaknesses Key reference 

Discrepancy 

analysis 

All participants undergo both the index test and a 

reference standard which is imperfect. Then 

participants with discordant responses undergo 

another test called the resolver test, which is not a 

gold standard but assumed to have a high accuracy.   

This approach has been modified recently in that 

some samples with concordant responses are also 

verified with the resolver test or all positive responses 

to the index test and discordant responses are 

retested with the resolver test 164. Another 

modification is by Hawkins 127 where participants that 

undergo the resolver test are sampled from the four 

groups (TP, FP, TN, FN) and the proportion of the 

verified and unverified samples are taken into 

consideration when estimating the sensitivity and 

specificity. 

Clinical application  

Van Dyck, Buvé 239; Juhl 164; Nateghi Rostami, 

Aghsaghloo 165 

Spada 166; Brocchi, Bergmann 167 

 Easy to implement analytically.  

 It is less expensive compared to 

where all participants have to 

undergo the three tests.  

 This method has been shown 

to be biased; overestimating 

the sensitivity of the index test.  

Hadgu 403 

 

Hadgu, 

Dendukuri 126 

 

Schiller 160 

 

Hawkins 127 
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Table 55 cont.: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is 

unknown. 

Methods Characteristics Strengths Weaknesses Key 

reference 

Latent class 

model (LCM) 

This approach assumes the disease status of all the 

participants are latent (unobserved) no test is a reference 

standard as. All tests are evaluated using statistical model. It 

is often assumed that the tests’ responses are dichotomous. 

However, methods have been developed to derive the ROC 

and AUROC of medical tests when there is no gold standard. 

 

LCM can be broadly divided into frequentist and Bayesian 

approaches.  

 LCM can be applied to study whose 

diagnostic outcome (disease status) is 

dichotomous or more. Unlike the 

discrepancy approach, correction 

methods which is applied to studies with 

only binary diagnostic outcomes. 

It evaluates all the tests employed in the study 

simultaneously, because none of the test 

employed in the study is a gold standard.  

 Under the assumption that the tests are 

conditional dependent given the true 

disease status; the conditional 

dependence structure among the tests 

lacks robustness in that different 

dependence structure models fits the 

data but yield different estimates.  

 LCM are probability models that rely on 

parametric assumptions. 

 

 

Bayesian LCM 

(binary or 

dichotomized 

tests) 

Bayesian LCM combines the likelihood of the observed data 

with prior information about the parameters to be estimated 

(sensitivity and specificity). The Bayesian approach was 

developed to make the LCMs identifiable while accurately 

estimating the diagnostic accuracy measures. 

Examples of Bayesian methods 

Joseph 404, Dendukuri and Joseph 348, Johnson, Gastwirth 143; 

Georgiadis, Johnson 405; Nérette, Stryhn 141; Dendukuri, 

Hadgu 142; Dendukuri 406 (multi-latent variable model); The 

MLVM uses both CI and CD assumptions. Martinez 144; Zhang 

407; Dufour 408; García Barrado, Coart 222; Lu, Dendukuri 53 

 

Clinical Application of different Bayesian methods: 115, 181-

186, 190, 192, 193, 195, 196, 409-415  

 Bayesian LCM overcomes the problem of 

non-identifiability faced by the frequentist 

approach because they use probability 

constraints (called prior distribution) on 

the parameters to be estimated. Using an 

informative prior is recommended to 

make the model identifiable. 

It is rational to assume that combining 

information from two reliable source tend to 

produce accurate estimate and inference.  

 LCMs with different conditional 

dependence structures can produce 

different estimates and still fit same 

data.  

 To reduce the impact of the prior 

information on the estimates being 

derive, it is rational to have sufficient 

data size. 

It is recommended that accurate and 

precise priors be used to yield accurate 

posterior inference. However, imprecise 

priors can be used provided they are 

initialize with accuracy (McDonald and 

Hodgson 416). 

Branscum, 

Gardner 140 

 

Berkvens, 

Speybroec

k 310 
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Table 55 cont.: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is 

unknown. 

Methods Characteristics Strengths Weaknesses Key 

reference 

Frequentist LCM 

 

Frequentist LCMs use information from the observed data only to 

compute the estimate of the sensitivity and specificity such as the 

sensitivity, and specificity of the index test.  

Examples of frequentist LCMs 

Standard / Traditional two class latent class model (TLCM) by Hui 

and Zhou 128,417 assumes the tests are conditional independent (CI) 

and their sensitivities and specificities are constant across all 

population.  

Clinical application of the TLCM 

123, 168, 169, 174-178 

 MECM approach: Kang, Carter 418 applied binary, independent 

assumption  

 Log-linear latent class model (LLCM) (Hagenaars 129) relaxes 

the CI assumption of the traditional LCM and models conditional 

dependence using log-linear models.  

 Probit latent class model (PLCM) (Uebersax 130) relaxes the CI 

assumption and assumes that the K latent classes follow some 

multi-variate normal distribution with a mean vector and 

covariance matrix.  

 Xu 135 extended LLCM and PLCM to take into consideration 

intermediate responses of the tests if they are available. Hence, 

the diagnostic outcome is not dichotomized but three-classed.   

 This approach is based on the observed 

data only. 

 Some of the frequentist approach are 

straight forward like the TLCM, LLCM; 

however, some are computational 

complex because of the conditional 

dependence structure across the tests 

like the PLCM, two-random effect LCM,  

 Some Latent class models have some 

advantages over the others as well as 

some disadvantages; thus, it is worth 

reading through the original articles 

where the models were proposed to 

select which models is appropriate for 

the analysis.  

 

 

 Choice of model are 

restricted because of 

non-identifiability 

problem. Hence, strict 

assumptions are made 

to make the models 

identifiable.  

The estimates obtained 

from the LLCM approach is 

not interpretable as the 

diagnostic accuracy of the 

tests evaluated. 
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Table 55 cont.: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is 

unknown. 

Methods Characteristics Strengths Weaknesses Key 

reference 

Frequentist 

LCM 

 

 Gaussian random effect (GRE) LCM by Qu, Tan 132 estimates the diagnostic 

accuracies of multiple tests (or raters) and uses the Gaussian distribution to model 

the conditional dependence structure across the tests.  

Clinical application of the RE LCM: 170-172, 179 

 Finite mixture (FM) model by Albert, McShane 133 estimates the accuracies of 

multiple tests but use finite mixture to model the conditional dependence across 

the tests.  

GRE and FM are subject specific, and the test sensitivity and specificity are fixed.  

 Two-cross random effect LCM by Zhang 134 estimates the accuracies of multiple 

tests with conditional dependence by using the Monte Carlo Expectation 

Maximization (MCEM) algorithm to maximize the full likelihood of the data.  

Clinical application of two-cross random effect LCM  

Xie 173 

 Alternative to the MCEM two-cross RE is the maximum pseudo-likelihood 

estimation via Newton Raphson (NR) algorithm by Liu 138. This approach aims 

to reduce the computational time of two-cross RE especially if there are many 

participants and tests by constructing some class of pseudo-like function (pairwise 

likelihood, triple wise likelihood, hybrid likelihood, and dimensional-wise likelihood) 

which can be maximized using the expectation maximization (EM) or Newton 

Raphson algorithm.  

The latent class model developed by Xue, Oktay 139 estimates the accuracy of two 

tests (with conditional dependence)  specifically designed to diagnosis tumor 

mutations (molecular testing). It is a modification of the Random effect LCM by Qu, 

Tan 132 

 This approach is based on the 

observed data only. 

 Some of the frequentist 

approach are straight forward 

like the TLCM, LLCM; however, 

some are computational 

complex because of the 

conditional dependence 

structure across the tests like 

the PLCM, two-random effect 

LCM,  

 Some Latent class models have 

some advantages over the 

others as well as some 

disadvantages; thus, it is worth 

reading through the original 

articles where the models were 

proposed to select which 

models is appropriate for the 

analysis.  

 

 

 Choice of model are 

restricted because 

of non-identifiability 

problem. Hence, 

strict assumptions 

are made to make 

the models 

identifiable.  

The estimates obtained 

from the LLCM 

approach is not 

interpretable as the 

diagnostic accuracy of 

the tests evaluated. 
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Table 55 cont.: Methods employed to evaluate index test(s) when the sensitivity and specificity of the imperfect reference standard is 

unknown. 

Methods Characteristics Strengths Weaknesses Key 

reference 

ROC curve 

approaches 

Estimating the ROC curve using the standard latent class 

approach 128 for every cutoff and then plotting the curve using 

estimates obtained from this approach produces a ROC curve 

that is not monotonic 419.   

However, there are methods developed to produce ROC curves 

in the case of imperfect reference test. They are:  

 ROC with ordinal tests 

Henkelman, Kay 149; Beiden, Campbell 150; Zhou 148; Wang, 

Zhou 136 is an extension of 148 to incorporate multiple tests; 

and Wang 137 is an extension of  Wang, Zhou 136 to incorporate 

conditional dependence structure across the multiple tests 

being evaluated.  

 

 ROC with continuous tests 

Choi, Johnson 151; Wang 420;  Branscum 153; Jafarzadeh 421; Hall 

and Zhou 422; Erkanli 154 

This approach estimates the 

overall diagnostic accuracy of the 

test(s) being evaluated and does 

not assume that the test(s) being 

evaluated is dichotomized.   

 Some of the methods are model 

based so adequate 

specification of the model is 

important to derive unbiased 

estimates. 

The methods are computational 

tasking especially when there are 

multiple tests to evaluate and the 

assumption of conditional 

dependence is imposed on the tests 

being evaluated.  
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Table 56: Construction of reference standard. 

Methods Characteristics Strength Weakness Key reference 

Composite 

reference standard 

(CRS) 

CRS uses a predetermined rule to construct a reference 

standard test using multiple imperfect tests. The 

participants undergo all the tests (index test and the 

imperfect reference tests). The reference standard is 

formed using the responses from the imperfect tests 

excluding the index test. The index test is evaluated in 

comparison to the established reference test. The dual 

CRS (dCRS) proposed by Tang, Hemyari 162, employs 

the “any positive” rule and “all positive” rule to estimate 

the sensitivity and specificity of the index test.   

 

Clinical application: 225, 226, 234, 423 

 Combining different imperfect tests 

using a predetermined rule to rule in 

or rule out diagnosis. 

 Can have incorporation bias if the index 

test is also part of the test employed to 

construct the reference standard. 

Paine, Basu 424  

 Challenges can arise in deciding the 

number of tests to combine to make the 

constructed reference standard 

adequate to discriminate patients or 

participants with the target condition.   

 It could be burdensome, especially if 

the number of tests to combine is many.  

 The performance of this approach 

depends on the performance of each 

test employed as reference standard 

and the conditional dependence 

between the tests.  

Schiller 160 

 

Naaktgeboren, 

Bertens 161 

 

Tang, Hemyari 162 

Expert or panel or 

consensus opinion 

This approach employs the decision(s) of expert(s) of a 

health condition (disease) as the reference standard to 

evaluate the new or index test.  Often, observed 

covariates like signs and symptoms of the participants 

or test response of another test (not the index test) can 

be used together with expert(s) decisions to ascertain 

the disease status of the participants. 

 

Clinical application:234  

 The accuracy of the experts can be 

close to gold standard because they 

have good knowledge of the target 

condition.  

 There could be discrepancy across the 

experts’ decisions in confirm the 

diagnosis of the participants.  

 This approach could be time-

consuming especially if there are large 

number of participants.  

Bertens, 

Broekhuizen 163 
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Table 57: Table of other methods employed to evaluate medical test(s) 

Method Characteristics Strengths Weaknesses  Key reference 

Study of 

agreement 

 

The study of agreement looks at how two or more test 

responses agree or disagree. Often, this approach is used 

alongside other types of methods like the latent class analysis. 

Commonly used agreement measures in a diagnostic accuracy 

study is the Kappa statistic 425 (Cohen kappa and Fleiss or Scott 

Kappa) and McNemar test 426.  

 

Clinical application:193, 243, 246 

 It is a way to explore the observed data 

to understand the relationship between 

the tests’ responses.  

 Using the approach as a measure of 

accuracy is not encouraged; because 

the disagreement or agreement 

between two or more tests does not 

imply that one test is better or more 

efficient than the other.  

Zaki, Bulgiba 242 

Validation With this approach the disease status of the participants in the 

study are known (case and control). The estimates obtained are 

often referred to as analytical sensitivity and specificity 240. This 

approach assesses the test based on what it is supposed or 

designed to do.  

 

Clinical application: 167, 244, 245, 260, 427 

 This approach provides a basic 

knowledge on the performance of the 

index test. The estimates can be 

employed as prior information in 

Bayesian analysis when the test is 

applied to participants with unknown 

disease status.   

 In practice, the diagnostic test is 

designed to be applied to participants 

who may have or may have not 

shown signs or symptoms of the 

disease; thus, the estimated 

diagnostic accuracy using this 

approach may not reflect the true 

diagnostic accuracy of the index test. 

Elliott, 

Applegate 240 

Test positivity 

rate 

This approach estimates the proportion of participants who have 

positive result in a test. It is often taken that a test with the 

highest positivity rate compared to other tests have better 

accuracy225. However, this may not be true because these tests 

are prone to misclassification error (that is they are not gold 

standards) and the number of participants with positive result 

could depend on the prevalence of the target condition in the 

sample (sub-population) that is being studied. 

  

Clinical application: 225, 239, 243 

 This approach gives possible estimates 

of the sensitivities of the tests employed 

in the study.   

 It has been used to assess whether to 

include or exclude some tests in 

diagnostic accuracy studies (Van Dyck, 

Buvé 239).  

 This approach should not be used as 

a standalone analysis to decide the 

accuracy of index test; because 

having a positive result to an index 

test does not imply presence of target 

condition especially if the test is 

imperfect.  
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B.1. R Code Chapter three – comparison of correction methods  

This section explains the R-Code employed to simulate the different datasets explored in 

this paper and to analyse the clinical datasets.   

1. Calculate the cell probabilities for multinomial distribution using the fixed effect modelling 
approach54, 286 

```{r cell probabilities} 

proba<- function(pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

#sRS and spRS are sensitivity and specificity of RS respectively  

#sIT and spIt are sensitivity and specificity of IT respectively  

#cova1 is the covariance term among the diseased group 

#cova2 is the covariance term among the non-diseased group 

#pd is the prevalence of the target condition 

a<- pd*(sRS*sIT + cova1)+((1 -pd)*(1-spRS)*(1-spIT) + cova2) 

  c<- pd*(sRS*(1 - sIT) - cova1) + ((1 -pd)*( 1- spRS)*spIT + cova2) 

  b<- pd*((1 - sRS)*sIT - cova1) + ((1 -pd)*spRS*(1-spIT) + cova2) 

  d<- pd*((1 - sRS)*(1 - sIT) + cova1) + ((1 -pd)*spRS*spIT + cova2) 

prom<- c(a, c, b, d) 

return(prom) 

} 

``` 

2. Code employed to estimate the unadjusted and corrected sensitivity and specificity of 
the index test.  

```{r fun1} 

cal<- function(dtab, sRS, spRS){ 

#dtab is the 2 by 2 matrix simulated using the multinomial distribution and the cell 
probability function (#1) 

Np<- sum(dtab[1,1],dtab[1,2],dtab[2,1],dtab[2,2]) # total number of participants 

  e<- sum(dtab[1,1], dtab[2,1]) # a+c total RS positive 

  f<- sum(dtab[1,2], dtab[2,2]) # b+d total RS negative 

  g<- sum(dtab[1,1], dtab[1,2]) #a+b total IT positive 

  h<- sum(dtab[2,1], dtab[2,2]) # c+d # total IT negative 

  prev<- e/Np # sample prevalence  

  senIT <- dtab[1,1]/ e  # unadjusted sensitivity of index test  

  specIT<- dtab[2,2]/f # unadjusted specificity of index test  

  senbre<- (prev*sRS*senIT + (1 - prev)*(1 - spRS)*(1 - specIT))/(prev*sRS + (1 - 
prev)*(1 - spRS)) # Brenner corrected sensitivity 

  specbre<- (prev*(1 - sRS)*(1-senIT) + (1 - prev)*(spRS)*(specIT))/(prev*(1-sRS) + (1 - 
prev)*spRS) # Brenner corrected specificity  

  senstaq<- (g*spRS - dtab[1,2])/ (Np*(spRS - 1) + e) # Staquet et al corrected 
sensitivity  



256 | P a g e  
 

  specstaq<- (h*sRS - dtab[2,1])/(Np*sRS - e) # Staquet et al corrected specificity  

  estpre<- (prev + spRS - 1)/(sRS + spRS - 1) # estimated prevalence  

  result<- c(senIT, specIT, senbre, specbre, senstaq, specstaq, estpre, prev) 

} 

``` 

 

3. Code employed to estimate the covariance inequalities (boundary to decide the choice 
of covariance terms given that the index test and reference standard are conditionally 
dependent) 

```{r covabound} 

covabound<- function(sRS, spRS, sIT, spIT){ 

  lcovsen<- (-sRS * sIT) + max(0, sRS + sIT -1) #lower value for covariance among 
diseased group  

  ucovsen<- min(sRS,sIT) - (sRS * sIT) #upper value of covariance among the diseased 
group 

  lcovspec<- -spRS*spIT + max(0, spRS +spIT - 1) #lower value for covariance among 
non – diseased group 

    ucovaspec<- min(spRS,spIT) - (spRS * spIT) #upper value of covariance among the 
diseased group 

return (cbind(c("lower sen", "upper sen", "lower spec", "upper spec"),c(lcovsen, 
ucovsen, lcovspec, ucovaspec))) 

} 

``` 

 

4. Code to generate random samples of 2 by 2 tables under the assumption of conditional 
independence and conditional depedence using the possible covariance terms using the 
cell probabilties function.   

```{r multinomial} 

sim<- function(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

  # n is the sample size (number of participants)  

  # numb is the number of samples simulated with size n  

prom<- proba(pd,sRS,spRS, sIT, spIT, cova1, cova2) 

exp<- rmultinom(numb,n,prom) 

tab<- list() 

  for(i in 1:numb){ 

    tab[[i]]<- matrix(exp[,i],2, 2) 

  } 

return(tab) 

} 

``` 

### Example  

set.seed(1235679) 

exsim<- sim(1,100,0.9,1,1,0.8,0.7,0.05, 0.05) 
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5. Estimate the unadjusted and corrected sensitivty and specficty from numb samples 
simulated 

```{r solve} 

sol<- function(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

  tabu<- sim(numb, n, pd, sRS, spRS, sIT, spIT, cova1, cova2) 

  mat<- matrix(NA, numb, 8) 

  for (i in 1:numb){ 

   mat[i,] <-  cal(tabu[[i]], sRS,spRS) 

  } 

  colnames(mat) <- c("Unadjsen","Unadjspec", "Sen.Brenner", "Spec.Brenner", 
"Sen.Staquet", "Spec.Staquet", "EstPre", "Sam.Prev") 

  tabmat<- list(tabu, mat) 

  return(tabmat) 

} 

``` 

## Example 

set.seed(1235679) 

sol(10, 50, 0.3, 0.9, 0.9, 0.8, 0.7, 0,0)[[2]][,1] 

 

6. Obtain the mean values of estimates, standard deviation, mean square error (MSE) 
and bias. 

#Call up the required packages in R 

```{r call} 

library(gstat) 

library(e1071) 

library(hydroGOF) 

``` 

 

## Function to estimate the Mean, MSE, SD and bias of the unadjusted and corrected 
sensitivity and specificity of index test 

```{r descriptive} 

desol<- function(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

  msol<- sol(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2)[[2]] 

msol1<- msol[!rowSums(!is.finite(msol)),]# remove rows with inf values or non- finite 
values.  

msol2<- msol1[!rowSums(msol1 > 2),] # remove rows with any value above 2.  

#Values above 1 or below 0 are obtained via the Staquet et al approach.  

mval<- apply(msol1, 2, mean) 

sval<- apply(msol1, 2, sd) 

new<- msol1 

numb1<- length(msol1[,1]) 
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para<- cbind(rep(sIT, numb1),rep(spIT, numb1),rep(sIT, numb1), rep(spIT, 
numb1),rep(sIT, numb1), rep(spIT, numb1),rep(pd, numb1),rep(pd, numb1)) 

msqerror<- mse(new, para) 

realval<- c(sIT, spIT, sIT, spIT, sIT, spIT, pd, pd) 

BiasEP<- abs(mval - realval) 

MCerr<- sval/sqrt(numb) 

tog<- cbind(mval,sval, msqerror, BiasEP, MCerr) 

### returns only the mean value, standard deviation and MSE 

return(tog) 

} 

``` 

###### Simulated examples  

## Imperfect test RS better than IT, IT and RS are conditionally independent  

```{r example1} 

set.seed(1235679) 

example0<- desol(200,50,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example1<- desol(200,80,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example2<- desol(200,100,0.3,0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example3<- desol(200,120,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example4<- desol(200,150,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example5<- desol(200,180,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example6<- desol(200,200,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example7<- desol(200,250,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example8<- desol(200,300,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example9<- desol(200,350,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example10<- desol(200,400,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example11<- desol(200,500,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example12<- desol(200,600,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example13<- desol(200,700,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example14<- desol(200,800,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example15<- desol(200,900,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

example16<- desol(200,1000,0.3, 0.9, 0.9, 0.8, 0.7, 0.00, 0.00) 

``` 

```{r example2} 

### Imperfect test RS worse than IT, IT and RS are conditionally independent 

set.seed(1235679) 

example0<- desol(200,50,0.3, 0.8, 0.7,0.9, 0.9,  0.00, 0.00) 

example1<- desol(200,80,0.3, 0.8, 0.7,0.9, 0.9, 0.00, 0.00) 

example2<- desol(200,100,0.3,0.8, 0.7,0.9, 0.9, 0.00, 0.00) 

example3<- desol(200,120,0.3, 0.8, 0.7, 0.9, 0.9, 0.00, 0.00) 

example4<- desol(200,150,0.3, 0.8, 0.7, 0.9, 0.9, 0.00, 0.00) 

example5<- desol(200,180,0.3,0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 
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example6<- desol(200,200,0.3,0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example7<- desol(200,250,0.3, 0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example8<- desol(200,300,0.3, 0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example9<- desol(200,350,0.3, 0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example10<- desol(200,400,0.3, 0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example11<- desol(200,500,0.3, 0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example12<- desol(200,600,0.3,0.8, 0.7,  0.9, 0.9,  0.00, 0.00) 

example13<- desol(200,700,0.3,0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

example14<- desol(200,800,0.3, 0.8, 0.7,0.9, 0.9,  0.00, 0.00) 

example15<- desol(200,900,0.3, 0.8, 0.7,0.9, 0.9,  0.00, 0.00) 

example16<- desol(200,1000,0.3,0.8, 0.7, 0.9, 0.9,  0.00, 0.00) 

``` 

 

## Put performance measures in a single data frame   

```{r data1} 

toptab<- cbind(example0[,2],example1[,2], example2[,2], example3[,2], example4[,2], 
example5[,2], example6[,2], example7[,2], example8[,2], example9[,2], example10[,2], 
example11[,2], example12[,2], example13[,2], example14[,2], example15[,2], 
example16[,2]) 

samsize<- c(50, 80,100, 120, 150, 180, 200, 250, 300, 350, 400, 500, 600, 700, 800, 
900, 1000) 

ttab1<- t(toptab) 

ttab<- ttab1[,1:6] 

colnames(ttab)<- c("sdUnadjsen","sdUnadjspec", "sdSen.Brenner", "sdSpec.Brenner", 
"sdSen.Staquet", "sdSpec.Staquet") 

 

dimtab<- cbind(example0[,1],example1[,1], example2[,1], example3[,1], example4[,1], 
example5[,1], example6[,1], example7[,1], example8[,1], example9[,1], example10[,1], 
example11[,1], example12[,1], example13[,1], example14[,1], example15[,1], 
example16[,1]) 

tdimtab1<- t(dimtab) 

tdimtab<- tdimtab1[,1:6] 

colnames(tdimtab)<- c("meanUnadjsen","meanUnadjspec", "meanSen.Brenner", 
"meanSpec.Brenner", "meanSen.Staquet", "meanSpec.Staquet") 

 

msqtab<- cbind(example0[,3],example1[,3], example2[,3], example3[,3], example4[,3], 
example5[,3], example6[,3], example7[,3], example8[,3], example9[,3], example10[,3], 
example11[,3], example12[,3], example13[,3], example14[,3], example15[,3], 
example16[,3]) 

tmsqtab1<- t(msqtab) 

tmsqtab<- tmsqtab1[,1:6] 

colnames(tmsqtab)<- c("msqUnadjsen","msqUnadjspec", "msqSen.Brenner", 
"msqSpec.Brenner", "msqSen.Staquet", "msqSpec.Staquet") 
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biastab<- cbind(example0[,4],example1[,4], example2[,4], example3[,4], example4[,4], 
example5[,4], example6[,4], example7[,4], example8[,4], example9[,4], example10[,4], 
example11[,4], example12[,4], example13[,4], example14[,4], example15[,4], 
example16[,4]) 

tbtab1<- t(biastab) 

tbtab<- tbtab1[,1:6] 

colnames(tbtab)<- c("biasUnadjsen","biasUnadjspec", "biaSen.Brenner", 
"biaSpec.Brenner", "biaSen.Staquet", "biaSpec.Staquet") 

 

MCerrtab<- cbind(example0[,5],example1[,5], example2[,5], example3[,5], 
example4[,5], example5[,5], example6[,5], example7[,5], example8[,5], example9[,5], 
example10[,5], example11[,5], example12[,5], example13[,5], example14[,5], 
example15[,5], example16[,5]) 

MCtab1<- t(MCerrtab) 

MCtab<- MCtab1[,1:6] 

colnames(MCtab)<- c("MCerrUnadjsen","MCerrUnadjspec", "MCerrSen.Brenner", 
"MCerrSpec.Brenner", "MCerrSen.Staquet", "MCerrSpec.Staquet") 

 

samtab<- round(data.frame(samsize, ttab,tdimtab, tmsqtab, tbtab, MCtab),4) 

``` 

Other possible variations or conditions can be explored by changing the values of the 
sensitivities and specificities of IT and or RS and prevalence.   

 

7. Plot the unadjusted and corrected mean sensitivty and specificty of IT alongside the 
SD, Bias and MSE 

## call up required R packages   

```{r library} 

library(dplyr)  

library(tidyr) 

library(ggplot2) 

library(reshape2) 

library(gridExtra) 

``` 

 

##### plot performance measures against sample size   

```{r plot2} 

My_Theme = theme(axis.title.x = element_text(size = 16),axis.text.x = 
element_text(size = 14),axis.title.y = element_text(size = 16), axis.text.y = 
element_text(size = 14), 
legend.title=element_text(size=12),legend.text=element_text(size=12)) 

 

df <- melt(samtab[,c("samsize","sdUnadjsen", "sdSen.Brenner", "sdSen.Staquet")], 
id="samsize") 
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pg <- df    # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg$variable)[levels(pg$variable)=="sdUnadjsen"] <- "Unadjusted" 

levels(pg$variable)[levels(pg$variable)=="sdSen.Brenner"] <- "Brenner" 

levels(pg$variable)[levels(pg$variable)=="sdSen.Staquet"] <- "Staquet" 

names(pg)[names(pg)=="variable"]  <- "Standard.Error" 

 

p<- ggplot(pg, aes(x=samsize, y=value, col= Standard.Error)) + geom_line() + labs(x 
="Sample size", y = "SE sensitivity")   + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.0,0.3))+ My_Theme  

#+ geom_hline(yintercept=0.9, linetype="dashed", color = "yellow", size = 2) 

 

##### specificity  

df1 <- melt(samtab[,c("samsize","sdUnadjspec", "sdSpec.Brenner", "sdSpec.Staquet")], 
id="samsize") 

pg1 <- df1   # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg1$variable)[levels(pg1$variable)=="sdUnadjspec"] <- "Unadjusted" 

levels(pg1$variable)[levels(pg1$variable)=="sdSpec.Brenner"] <- "Brenner" 

levels(pg1$variable)[levels(pg1$variable)=="sdSpec.Staquet"] <- "Staquet" 

names(pg1)[names(pg1)=="variable"]  <- "Standard.Error" 

 

p1<- ggplot(pg1, aes(x=samsize, y=value, col= Standard.Error)) + geom_line() + labs(x 
="Sample size", y = "SE specificity")  + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.0,0.07))+ My_Theme  

#+ geom_hline(yintercept=0.9, linetype="dashed", color = "yellow", size = 2)  

 

### put both plot as one 

grid.arrange(p, p1, nrow=2) 

``` 

 

8. Estimate the mean sensitivity and specificity of IT at varying prevalences  

## Estimate only the mean sensitivity and specificity of IT 

```{r meansol} 

meansol<- function(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

  msol<- sol(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2)[[2]] 

  msol1<- msol[!rowSums(!is.finite(msol)),]# remove rows with inf values or non- finite 
values. 

  msol2<- msol1[!rowSums(msol1 > 2),] # exclude rows greater than 2 

  msol3<- msol2[!rowSums(msol2 < 0),] #exclude rows less than zero 

meanval<- apply(msol3, 2, mean) 

return(meanval)  
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} 

``` 

 

## Code that estimates the mean values of the estimator at different prevalence 

```{r soldiff} 

soldiff<- function (z,numb,n,sRS,spRS, sIT, spIT, cova1, cova2){ 

  pd<- seq(0.00, 1, length.out = z) 

  top<- list() 

  for(i in 1:z){ 

    top[[i]]<- meansol(numb,n,pd[i],sRS,spRS,sIT,spIT, cova1, cova2) 

  } 

  tim<- matrix(NA,z, 8) 

  for(i in 1:z){ 

    tim[i,]<- top[[i]] 

  } 

  ss<- rep(n, z) 

 colnames(tim) <- c("Unadjsen","Unadjspec", "Sen.Brenner", "Spec.Brenner", 
"Sen.Staquet", "Spec.Staquet", "EstPre", "Sam.Prev") 

 timpd<- cbind(pd, tim,ss)#data.frame 

return(timpd) 

} 

``` 

### Simulate 1000 participants, 200 multiple samples, 100 prevelances. RS is better 
than IT and RS is imperfect  

```{r data} 

set.seed(1235679) 

preout<- soldiff(100,200,1000, 0.9, 0.9, 0.8, 0.8, 0.00, 0.00) 

preout<- data.frame(preout) 

``` 

 

##### plot the mean sensitivity and specificity  

```{r plot2} 

My_Theme = theme(axis.title.x = element_text(size = 16),axis.text.x = 
element_text(size = 14),axis.title.y = element_text(size = 16), axis.text.y = 
element_text(size = 14), 
legend.title=element_text(size=12),legend.text=element_text(size=12)) 

 

df <- melt(preout[,c("pd","Unadjsen", "Sen.Brenner", "Sen.Staquet")], id="pd") 

pg <- df    # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg$variable)[levels(pg$variable)=="Unadjsen"] <- "Unadjusted" 

levels(pg$variable)[levels(pg$variable)=="Sen.Brenner"] <- "Brenner" 
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levels(pg$variable)[levels(pg$variable)=="Sen.Staquet"] <- "Staquet" 

names(pg)[names(pg)=="variable"]  <- "Mean" 

 

p<- ggplot(pg, aes(x=pd, y=value, col= Mean)) + geom_line()+ geom_point() + labs(x 
="Prevelance", y = "Mean sensitivity")   + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.2,1))+ My_Theme + geom_hline(yintercept=0.8, 
linetype="dashed", color = "yellow", size = 2) 

 

##### specificity  

df1 <- melt(preout[,c("pd","Unadjspec", "Spec.Brenner", "Spec.Staquet")], id="pd") 

pg1 <- df1   # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg1$variable)[levels(pg1$variable)=="Unadjspec"] <- "Unadjusted" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Brenner"] <- "Brenner" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Staquet"] <- "Staquet" 

names(pg1)[names(pg1)=="variable"]  <- "Mean" 

 

p1<- ggplot(pg1, aes(x=pd, y=value, col= Mean)) + geom_line() + geom_point() + 
labs(x ="Prevelance", y = "Mean specificity")  + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.4,1.2))+ My_Theme + geom_hline(yintercept=0.8, 
linetype="dashed", color = "yellow", size = 2)  

 

 

### put both plot as one 

grid.arrange(p, p1, nrow=2) 

``` 

 

9. Estimate the mean corrected and unadjusted sensitivty and specificty of IT assuming 
sensitivity of RS (or specificty of RS) varies from 0 to 1. Unlike the function in 6 and 8 
above the sensitivty of RS and IT, and the specificity of RS and IT are fixed. This allows 
more possible combinations to examine how the corrections method perform. 

#### estimate mean sensitivity and specificity by fixing one of these parameters – sRS, 
spRS, sIT, spIT- and varying the others  

```{r soldiff1} 

soldiff1<- function (z,pd,numb,n,sRS, spRS, sIT, cova1, cova2){ 

##in this stated function the spIT is varied and the others are fixed 

## to vary another parameter change it appropraitely  

  spIT<- seq(0, 1, length.out = z) 

  top<- list() 

  for(i in 1:z){ 

    top[[i]]<- meansol(numb,n,pd,sRS,spRS,sIT,spIT[i], cova1, cova2) 

  } 

  tim<- matrix(NA,z, 8) 
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  for(i in 1:z){ 

    tim[i,]<- top[[i]] 

  } 

  ss<- rep(n, z) 

 colnames(tim) <- c("Unadjsen","Unadjspec", "Sen.Brenner", "Spec.Brenner", 
"Sen.Staquet", "Spec.Staquet", "EstPre", "Sam.Prev") 

 timpd<- cbind(spIT, tim,ss)#data.frame 

return(timpd) 

} 

``` 

### explore1000 partcipants, 200 multiple samples 

```{r explore} 

set.seed(1235679) 

preout<- soldiff1(100,0.3,200,1000, 0.9, 0.9, 0.8, 0.00, 0.00) 

preout<- data.frame(preout) 

``` 

##### plot mean sensitivity and specificity  

```{r plot2} 

My_Theme = theme(axis.title.x = element_text(size = 16),axis.text.x = element_text(size 
= 14),axis.title.y = element_text(size = 16), axis.text.y = element_text(size = 14), 
legend.title=element_text(size=12),legend.text=element_text(size=12)) 

 

df <- melt(preout[,c("spIT","Unadjsen", "Sen.Brenner", "Sen.Staquet")], id="spIT") 

pg <- df    # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg$variable)[levels(pg$variable)=="Unadjsen"] <- "Unadjusted" 

levels(pg$variable)[levels(pg$variable)=="Sen.Brenner"] <- "Brenner" 

levels(pg$variable)[levels(pg$variable)=="Sen.Staquet"] <- "Staquet" 

names(pg)[names(pg)=="variable"]  <- "Mean" 

 

p<- ggplot(pg, aes(x=spIT, y=value, col= Mean)) + geom_line()+ geom_point() + labs(x 
="Specificity IT", y = "Mean sensitivity")   + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.4,1))+ My_Theme + geom_hline(yintercept=0.8, 
linetype="dashed", color = "yellow", size = 2) 

 

##### specificity  

df1 <- melt(preout[,c("spIT","Unadjspec", "Spec.Brenner", "Spec.Staquet")], id="spIT") 

pg1 <- df1   # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg1$variable)[levels(pg1$variable)=="Unadjspec"] <- "Unadjusted" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Brenner"] <- "Brenner" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Staquet"] <- "Staquet" 
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names(pg1)[names(pg1)=="variable"]  <- "Mean" 

 

p1<- ggplot(pg1, aes(x=spIT, y=value, col= Mean)) + geom_line() + geom_point() + 
labs(x ="Specificity IT", y = "Mean specificity")  + geom_line(size = 1) + 
coord_cartesian(ylim=c(0,1))+ My_Theme +geom_abline(intercept = 0,slope = 1, 
color="yellow", linetype="dashed", size=2) 

#+ geom_hline(yintercept=0.8, linetype="dashed", color = "yellow", size = 2)  

 

### put both plot as one 

grid.arrange(p, p1, nrow=2) 

``` 

  

10. Code to estimate the sensitivty and specificty of IT which include the Brenner second 
estimators for positively correlated IT and RS. This pair of estimators is explored in 
Appendix File 4.  

```{r Brenner positive fun} 

calpos<- function(dtab, sRS, spRS){ 

Np<- sum(dtab[1,1],dtab[1,2],dtab[2,1],dtab[2,2]) # total number of participants 

  e<- sum(dtab[1,1], dtab[2,1]) # a+c total RS positive 

  f<- sum(dtab[1,2], dtab[2,2]) # b+d total RS negative 

  g<- sum(dtab[1,1], dtab[1,2]) #a+b total IT positive 

  h<- sum(dtab[2,1], dtab[2,2]) # c+d # total IT negative 

  prev<- e/Np # prevalence of the diseased in sample of study 

  senIT <- dtab[1,1]/ e  # sensitivity of index test unadjusted  

  specIT<- dtab[2,2]/f # specificity of index test unadjusted 

  senpos<- (prev * senIT +(1 - prev)*(1 - spRS))/(prev*sRS + (1 - prev)*(1 - spRS)) # 
corrected sensitivity of IT using the positively correlated pair of estimator by Brenner 

  specpos<- (prev * ( 1 - sRS) +(1 - prev)*specIT)/(prev*( 1 - sRS) + (1 - prev)*spRS) # 
corrected sensitivity of IT using the positively correlated pair of estimator by Brenner 

  senbre<- (prev*sRS*senIT + (1 - prev)*(1 - spRS)*(1 - specIT))/(prev*sRS + (1 - 
prev)*(1 - spRS)) 

  specbre<- (prev*(1 - sRS)*(1-senIT) + (1 - prev)*(spRS)*(specIT))/(prev*(1-sRS) + (1 - 
prev)*spRS) 

  senstaq<- (g*spRS - dtab[1,2])/ (Np*(spRS - 1) + e) 

  specstaq<- (h*sRS - dtab[2,1])/(Np*sRS - e) 

  estpre<- (prev + spRS - 1)/(sRS + spRS - 1) 

  return( c(senpos, specpos, senIT, specIT, senbre, specbre, senstaq, specstaq)) 

} 

``` 

 

### Code to generate random samples of estimate the mean values  

```{r Brenner positive} 
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solpos<- function(numb,n,pd,sRS,spRS, sIT, spIT, cova1, cova2){ 

  tabu<- sim(numb, n, pd, sRS, spRS, sIT, spIT, cova1, cova2) 

  mat<- matrix(NA, numb, 8) 

  for (i in 1:numb){ 

   mat[i,] <-  calpos(tabu[[i]], sRS,spRS) 

  } 

  colnames(mat) <- c("Sen.pos.Bre", "Spec.pos.Bre", "Unadjsen", 
"UnadjSpec","Sen.Brenner","Spec.Brenner","Sen.Staquet", "Spec.Staquet") 

  meanmat<- apply(mat, 2, mean) 

  #tabmat<- list(tabu, mat) 

  return(meanmat) 

} 

``` 

## Code to estimate the mean values at different prevelances and result  

```{r soldiff} 

solposdiff<- function (z,numb,n,sRS,spRS, sIT, spIT, cova1, cova2){ 

  pd<- seq(0, 1, length.out = z) 

  top<- list() 

  for(i in 1:z){ 

    top[[i]]<- solpos(numb,n,pd[i],sRS,spRS,sIT,spIT, cova1, cova2) 

  } 

  ss<- rep(n, z) 

  tim<- matrix(NA,z, 8) 

  for(i in 1:z){ 

    tim[i,]<- top[[i]] 

  } 

 colnames(tim) <- c("Sen.pos.Bre", "Spec.pos.Bre", "Unadjsen", 
"UnadjSpec","Sen.Brenner", "Spec.Brenner","Sen.Staquet", "Spec.Staquet") 

 timpd<- data.frame(pd, tim, ss) 

return(timpd) 

} 

``` 

 

#### simulate dataset with IT and RS conditionally dependent and covariance terms 
among the disease and non-diseased group are 0.05.   

```{r solposdiff} 

set.seed(1235679) 

preout<- solposdiff(100,200,1000,0.9,0.9,0.8,0.8,0.05,0.05) 

preout<- data.frame(preout) 

``` 
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### plot the mean values against the prevalences 

```{r plot2} 

My_Theme = theme(axis.title.x = element_text(size = 16),axis.text.x = 
element_text(size = 14),axis.title.y = element_text(size = 16), axis.text.y = 
element_text(size = 14), 
legend.title=element_text(size=12),legend.text=element_text(size=12)) 

 

df <- melt(preout[,c("pd","Unadjsen", "Sen.Brenner", "Sen.Staquet", "Sen.pos.Bre")], 
id="pd") 

pg <- df    # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg$variable)[levels(pg$variable)=="Unadjsen"] <- "Unadjusted" 

levels(pg$variable)[levels(pg$variable)=="Sen.Brenner"] <- "Brenner" 

levels(pg$variable)[levels(pg$variable)=="Sen.Staquet"] <- "Staquet" 

levels(pg$variable)[levels(pg$variable)=="Sen.pos.Bre"] <- "BrennerPos" 

names(pg)[names(pg)=="variable"]  <- "Mean" 

 

p<- ggplot(pg, aes(x=pd, y=value, col= Mean)) + geom_line()+ geom_point() + labs(x 
="Prevelance", y = "Mean sensitivity")   + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.0,1))+ My_Theme + geom_hline(yintercept=0.8, 
linetype="dashed", color = "yellow", size = 2) 

 

##### specificity  

df1 <- melt(preout[,c("pd","UnadjSpec", "Spec.Brenner", "Spec.Staquet", 
"Spec.pos.Bre")], id="pd") 

pg1 <- df1   # Copy data into new data frame 

# Rename the column and the values in the factor 

levels(pg1$variable)[levels(pg1$variable)=="UnadjSpec"] <- "Unadjusted" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Brenner"] <- "Brenner" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.Staquet"] <- "Staquet" 

levels(pg1$variable)[levels(pg1$variable)=="Spec.pos.Bre"] <- "BrennerPos" 

names(pg1)[names(pg1)=="variable"]  <- "Mean" 

 

p1<- ggplot(pg1, aes(x=pd, y=value, col= Mean)) + geom_line() + geom_point() + 
labs(x ="Prevelance", y = "Mean specificity")  + geom_line(size = 1) + 
coord_cartesian(ylim=c(0.0,1))+ My_Theme + geom_hline(yintercept=0.8, 
linetype="dashed", color = "yellow", size = 2)  

 

 

### put both plot as one 

grid.arrange(p, p1, nrow=2) 

```  

11. Calculate the sensitivity and specificity of the clinical dataset 
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```{r clinical1} 

### use the cal function and put the sRS and spRS appropriately.  

## Matos et al NC dataset   

tabLF1<- matrix(c(241, 110,6,26), 2, 2) # matrix for LFpen  

tabFC1<- matrix(c(156, 195,2,30), 2, 2) # matrix for FC 

tiLF1<- cal(tabLF1, 0.796,0.799) # estimates for LFpen  

tiFC1<- cal(tabFC1, 0.796,0.799) # estimates for FC 

tiLF1 

tiFC1 

``` 

 

## D3 classification  

```{r clinical2} 

tabLF1<- matrix(c(20, 1,45,341), 2, 2) # matrix for LFpen  

tabFC1<- matrix(c(21, 0,38,348), 2, 2) # matrix for FC 

tiLF1<- cal(tabLF1, 0.786, 0.995) # estimates for LFpen  

tiFC1<- cal(tabFC1, 0.786, 0.995) # estimates for FC 

tiLF1 

tiFC1 

``` 

 

12. Calculate the 95% confidence interval of clinical dataset using the Wilson score interval  

# Code Wilson score interval 

```{r wilson} 

wilfun<- function(p, n){ 

  z<- qnorm(1-0.05/2) 

  rt<- 1/(1 + (z^2 /n)) 

  rt1<- p + (z^2/(2*n)) 

  rtp<- rt*rt1 

  vart<- ((p*(1 - p))/n) + ((z^2)/(4*(n^2))) 

  zvar<- (z/(1 + ((z^2)/n))) * sqrt(vart) 

  LL<- rtp-zvar 

  UL<- rtp+zvar 

  return(c(LL, UL)) 

} 

``` 

 

## calculate 95%CI Mathew dataset 

```{r cal} 

wilsu<- wilfun(0.65, 62) # sensitivity unadjusted  

wilsb<- wilfun(0.5,62 ) # Brenner corrected sensitivity  
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wilss<- wilfun(0.89,62)# Staquet corrected sensitivity  

wilpu<- wilfun(0.89, 199)# unadjusted specificity  

wilpb<- wilfun(0.85, 199) # Brenner corrected specificity  

wilps<- wilfun(0.96, 199) # Staquet et al corrected specificity  

wilsu 

wilsb 

wilss 

wilpu 

wilpb 

wilps 

``` 

 

## calculate 95% CI of the sensitivity of LFpen for NC detection  

```{r cal} 

wilu<- se(351, 32, 0.81, 0.69) 

wilb<- se(351, 32,0.44, 0.68) 

wils<- se(351, 32, 0.04, 0.70) 

wilu 

wilb 

wils 

``` 

 

## calculate 95% CI of the sensitivity of FC for NC detection 

```{r cal} 

wilu<- se(351, 32, 0.91, 0.44) 

wilb<- se(351, 32, 0.65, 0.44) 

wils<- se(351, 32, 0.36, 0.45) 

wilu 

wilb 

wils 

``` 

 

### calculate the 95% CI for unadjusted specificity FC- D3 dataset 

```{r test} 

install.packages("DescTools") 

library("DescTools") 

BinomCI(348, 386, 0.95, sides = "two.sided", method = "wilson") 

 

### Present result using barchart  

### D3 dataset  
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```{r barchart} 

## sensitivity for Lfpen 

dat<- data.frame(Examiners = factor(c("1","2", "1","2", "1","2")), levels = (c("1","2")), 
Method = factor(c("Unadjusted", "Unadjusted", "Brenner", "Brenner","Staquet", "Staquet")), 
Sensitivity = c(0.952,1, 0.865, 0.91, 1.037, 1.087)) 

### sensitivty for FC 

bat<- data.frame(Examiners = factor(c("1","2", "1","2", "1","2")), levels = (c("1","2")), 
Method = factor(c("Unadjusted", "Unadjusted", "Brenner", "Brenner","Staquet", "Staquet")), 
Sensitivity = c(1, 0.905, 0.905, 0.822, 1.092, 0.985)) 

## specificty  for Lfpen 

dat1<- data.frame(Examiners = factor(c("1","2", "1","2", "1","2")), levels = (c("1","2")), 
Method = factor(c("Unadjusted", "Unadjusted", "Brenner", "Brenner","Staquet", "Staquet")), 
Specificity = c(0.883, 0.860, 0.874, 0.850, 0.896, 0.873)) 

## specificity for FC 

bat1<- data.frame(Examiners = factor(c("1","2", "1","2", "1","2")), levels = (c("1","2")), 
Method = factor(c("Unadjusted", "Unadjusted", "Brenner", "Brenner","Staquet", "Staquet")), 
Specificity = c(0.902, 0.881, 0.891, 0.872, 0.915, 0.893)) 

``` 
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C.1. R Code Chapter Four – Simulation of datasets for investigation of LCMs 

In chapter four, various latent class models were explored to understand how they perform 

when employed to estimate the sensitivity and specificity of three tests that are correlated 

among themselves. The function (R-Code) employed to simulate the dataset are presented 

below: 

## Using the fixed effect modelling approach to generate or simulate the data of concerns 
### Calculate covariance boundaries  

```{r covabound} 

covabounds<- function(s1,s2,s3){ 

#s1, s2, s3 are sensitivity however they can be interchanged with specificity in this function 

  Lcs111<- -(s1*s2*s3) 

  Ucs111<- min(s1, min(s2, s3))-s1*s2*s3 

  Lcs011<- -((1 - s1)*s2*s3) 

  Ucs011<- min(1 - s1, min(s2, s3))-((1 -s1)*s2*s3) 

  Lcs001<- -((1 - s1)*(1 - s2) *s3) 

  Ucs001<- min((1 - s1), min(1 - s2, s3))-((1 - s1)*(1 - s2)*s3) 

  Lcs000<- -((1 - s1)*(1 - s2) * (1 - s3)) 

  Ucs000<- min((1 - s1), min(1 - s2, 1 - s3))-((1-s1)*(1 -s2)*(1 - s3)) 

  Lcs100<- -(s1*(1 - s2)*(1 -s3)) 

  Ucs100<- min(s1, min(1 - s2, 1 - s3))-(s1*(1 - s2)*(1 - s3)) 

  Lcs101<- -(s1*(1 - s2)*s3) 

  Ucs101<- min(s1, min(1 - s2, s3))-(s1*(1 - s2)*s3) 

  Lcs110<- -(s1*s2*(1 - s3)) 

  Ucs110<- min(s1, min(s2, 1 - s3))-(s1*s2*(1 -s3)) 

  Lcs010<- -(s1*(1 - s2)*s3) 

  Ucs010<- min(s1, min(1 - s2, s3))-(s1*(1 - s2)*s3) 

  cbs<- matrix(c(Lcs010, Lcs110, Lcs101, Lcs100, Lcs000, Lcs001, Lcs011, Lcs111, 
Ucs010, Ucs110, Ucs101, Ucs100, Ucs000, Ucs001, Ucs011, Ucs111), ncol=8, byrow= 
TRUE) 

   rownames(cbs)<- c("Lower", "Upper") 

   colnames(cbs)<- c("010", "110", "101","100", "000", "001", "011", "111") 

  return(cbs) 

} 
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``` 

### check out if the covariances sums up to zero as defined by Wang et al.  

```{r probT} 

# check out something  

checkcov<- function(cs011,cs111,cs000,cs001,cc011, cc111,cc000,cc001){ 

   #covariance term for diseased group  

cs100<- cs011+cs111-cs000 

cs101<- -(cs001+cs011+cs111) 

cs110<- cs000+cs001-cs111 

cs010<- -(cs000+cs001+cs011) 

# for non-diseased group  

cc100<- cc011+cc111-cc000 

cc101<- -(cc001+cc011+cc111) 

cc110<- cc001+cc000-cc111 

cc010<- -(cc000+cc001+cc011) 

rim<- c(cs100, cs101, cs110, cs010, cc100,cc101, cc110, cc010) 

rimn<- c("cs100", "cs101", "cs110", "cs010", "cc100", "cc101", "cc110", "cc010") 

rrim<- rbind(rimn, rim) 

return(rrim) 

} 

``` 

## Function for cell probabilities  

```{r proba} 

proba<- function(pd,s1,s2,s3,c1,c2,c3,cs011,cs111,cs000,cs001,cc011, 
cc111,cc000,cc001){ 

#s1, s2, s3 are sensitivities of the three tests 

#c1, c2, c3 are specificities of the three tests 

  #covarance term for diseased group  

cs100<- cs011+cs111-cs000 

cs101<- -(cs001+cs011+cs111) 

cs110<- cs000+cs001-cs111 

cs010<- -(cs000+cs001+cs011) 
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# for non-diseased group  

cc100<- cc011+cc111-cc000 

cc101<- -(cc001+cc011+cc111) 

cc110<- cc001+cc000-cc111 

cc010<- -(cc000+cc001+cc011) 

  a<- pd*(s1*s2*s3 + cs111) + (1 -pd)*((1-c1)*(1-c2)*(1 -c3) + cc111)#111 

  b<- pd*(s1*s2*(1 -s3) + cs110) + (1 -pd)*((1-c1)*(1-c2)*c3 + cc110)#110 

  c<- pd*(s1*(1 - s2)*s3 + cs101) + (1 -pd)*((1-c1)*c2*(1 -c3) + cc101)#101 

  d<- pd*(s1*(1 - s2)*(1 -s3) + cs100) + (1 -pd)*((1-c1)*c2*c3 + cc100)#100 

  e<- pd*((1 -s1)*s2*s3 + cs011) + (1 -pd)*(c1*(1 - c2)*(1 - c3) + cc011)#011 

  f<- pd*((1 -s1)*s2*(1 -s3) + cs010) + (1 -pd)*(c1*(1 - c2)*c3 + cc010)#010 

  g<- pd*((1 -s1)*(1 - s2)*s3 + cs001) + (1 -pd)*(c1*c2*(1 - c3) + cc001)#001 

  h<- pd*((1 -s1)*(1 - s2)*(1 - s3) + cs000) + (1 -pd)*(c1*c2*c3 + cc000)#000 

prom<- c(a, b,c,d,e,f,g,h) 

return(prom) 

} 

``` 

 

## Find the pairwise covariance of the two tests 

```{r pairwise} 

covs<- function(cs011,cs111,cs000,cs001,cc011, cc111,cc000,cc001){ 

   #covarance term for diseased group  

cs100<- cs011+cs111-cs000 

cs101<- -(cs001+cs011+cs111) 

cs110<- cs000+cs001-cs111 

cs010<- -(cs000+cs001+cs011) 

# for non-diseased group  

cc100<- cc011+cc111-cc000 

cc101<- -(cc001+cc011+cc111) 

cc110<- cc001+cc000-cc111 

cc010<- -(cc000+cc001+cc011) 

#CD pairwise tests diseased group  
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cs12<- cs111+cs110 

cs13<-cs111+ cs101 

cs23<- cs011+cs111 

# CD pairwise non-diseased group  

cc12<- cc000+cc001 

cc13<-cc000+ cc010 

cc23<- cc000+ cc100 

cvar<- c(cs12, cs13, cs23, cc12, cc13, cc23) 

nam<- c("covs12", "covs13", "covs23", "covc12", "covc13", "covc23") 

cvarn<- rbind(nam, cvar) 

return(cvarn) 

} 

``` 

### simulate many samples 

```{r pract} 

set.seed(1235679) 

exps<- rmultinom(100,500,pros)# all tests are positively coralated diseased thrid order  

expci<- rmultinom(100,500, proci) # all tests are CI 

exp23d<- rmultinom(100,500,pro23d) #cs23 = 0.11 # positively correlated but only among 
test 2 amd 3 

exp23cd<- rmultinom(100, 500, pro23cd) #cs23 = 0.11 # positively correlated but only 
among test 2 amd 3  

``` 

## take average of simulated values above 

```{r averagesim} 

expsm<- matrix(round(apply(exps,1, mean)), 8, 1) 

expcim<- matrix(round(apply(expci,1, mean)), 8, 1) 

exp23m<- matrix(round(apply(exp23d,1, mean)), 8, 1) 

exp23cdm<- matrix(round(apply(exp23cd, 1, mean)),8,1) 

``` 

 

## create tests responses in tablular form  

```{r tabular} 
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tab<- matrix(c(1,1,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0,1,0,0,0), ncol=3, byrow=TRUE) 

res1m<- cbind(tab, expsm) 

res2m<- cbind(tab,expcim) 

res3m<- cbind(tab, exp23m) 

res4m<- cbind(tab,exp23cdm) 

write.table(res1m, file = "res1m.txt", sep="\t", row.names = FALSE, col.names = FALSE) 

write.table(res2m, file = "res2m.txt", sep="\t", row.names = FALSE, col.names = FALSE) 

write.table(res3m, file = "res3m.txt", sep="\t", row.names = FALSE, col.names = FALSE) 

write.table(res4m, file = "res4m.txt", sep="\t", row.names = FALSE, col.names = FALSE) 

``` 

## put resm1 data on a full dataset style to allow for REM 

```{r data1} 

#library(mefa) 

ai<- data.frame("test 1" =1, "test 2" = 1, "test 3" =1) #111 

aip<- rep(ai,77) 

bi<- data.frame("test 1" =0, "test 2" = 0, "test 3" =0) #000 

bip<- rep(bi,228) 

ci<- data.frame("test 1" =1, "test 2" = 1, "test 3" =0) #110 

cip<- rep(ci, 39) 

di<- data.frame("test 1" =1, "test 2" = 0, "test 3" =1) #101 

dip<- rep(di, 21) 

ei<- data.frame("test 1" =1, "test 2" = 0, "test 3" =0) #100 

eip<- rep(ei, 34) 

fi<- data.frame("test 1" =0, "test 2" = 1, "test 3" =1) #011 

fip<- rep(fi, 14) 

gi<- data.frame("test 1" =0, "test 2" = 1, "test 3" =0) #010 

gip<- rep(gi, 60) 

hi<- data.frame("test 1" =0, "test 2" = 0, "test 3" =1) #001 

hip<- rep(hi, 27) 

dataci<- rbind.data.frame(aip,cip, dip, eip, fip, gip, hip,bip) 

write.table(dataci, file = "dataci.txt", sep=",", row.names = FALSE, col.names = FALSE) 

``` 
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C.2. Openbugs code employed to analyse the simulated dataset  

# Model 0 - Hui Walter CI assumption – Openbugs  

model{ 

# Likelihood 

freqobs[1:8]~dmulti(p[1:8],500)  

for (i in 1:8){  

     p[i]<-prev*(positive[i])+(1-prev)*(negative[i]) 

     positive[i]<-(s[1]*a[i]+(1-s[1])*(1-a[i])) * (s[2]*b[i]+(1-s[2])*(1-b[i]))  

                      * (s[3]*c[i]+(1-s[3])*(1-c[i]))  

     negative[i]<-((1-sp[1])*a[i]+sp[1]*(1-a[i])) * ((1-sp[2])*b[i]+sp[2]*(1-b[i]))  

                       * ((1-sp[3])*c[i]+sp[3]*(1-c[i]))  

     } 

 

# Prior  

prev~dbeta(1,1)  

for (j in 1:3){ 

     s[j]~dbeta(1,1) 

     sp[j]~dbeta(1,1)  

     } 

} 

 

# Model 1 – FEM – Wang et al Style (assuming CI) – Openbugs  

model{ 

### Likelihood of observed data 

freqobs[1:8] ~ dmulti(p[1:8],500) 

#============================================ 

# prior distributions of prevalence, sensitivities and specificities 

#============================================= 

prev ~ dbeta(1,1) 

for (i in 1:3) { 

s[i] ~ dbeta(1,1) 

c[i] ~ dbeta (1,1)} 
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#======================================================== 

# probabilities of observing different cross-classifications  

# of two dichotomous diagnostic tests 

#======================================================== 

p[1]<-prev*(s[1]*s[2]*s[3]+cs111)+(1-prev)*((1-c[1])*(1-c[2])*(1-c[3])+cc111) # 111 

p[2]<-prev*(s[1]*s[2]*(1-s[3])+cs110)+(1-prev)*((1-c[1])*(1-c[2])*c[3]+cc110) #110 

p[3]<-prev*(s[1]*(1-s[2])*s[3]+cs101)+(1-prev)*((1-c[1])*c[2]*(1-c[3])+cc101) #101 

p[4]<-prev*(s[1]*(1-s[2])*(1-s[3])+cs100)+(1-prev)*((1-c[1])*c[2]*c[3]+cc100) #100 

p[5]<-prev*((1-s[1])*s[2]*s[3]+cs011)+(1-prev)*(c[1]*(1-c[2])*(1-c[3])+cc011) # 011 

p[6]<-prev*((1-s[1])*s[2]*(1-s[3])+cs010)+(1-prev)*(c[1]*(1-c[2])*c[3]+cc010) #010 

p[7]<-prev*((1-s[1])*(1-s[2])*s[3]+cs001)+(1-prev)*(c[1]*c[2]*(1-c[3])+cc001) #001 

p[8]<-prev*((1-s[1])*(1-s[2])*(1-s[3])+cs000)+(1-prev)*(c[1]*c[2]*c[3]+cc000) #000 

#============================================ 

# prior distributions covariance term 

#============================================= 

cs111<-0 

cs110<-0 

cs101<-0 

cs100<-0 

cs011<-0 

cs010<-0 

cs001<-0 

cs000<-0 

cc111<-0 

cc110<-0 

cc101<-0 

cc100<-0 

cc011<-0 

cc010<-0 

cc001<-0 

cc000<-0 
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} 

### Model 2: REM model probit style - Openbugs  

model{ 

# Likelihood 

for (i in 1:500){  

     status[i]~dbern(prev)  

     z[i]~dnorm(0,1) 

for(j in 1:3){ 

     y[i,j]~dbern(p[i,j])  

     } 

     } 

### expand likelihood as three scores are correlated  

for (i in 1:500){  

  #p[i,1]<- phi(status[i]*alpha[1] + ((1-status[i])*beta[1])) 

for (j in 1:3) { 

    p[i,j]<- phi(status[i]*alpha[j] + ((1-status[i])*beta[j]) + (status[i]*b1*z[i])) 

     } 

     } 

 

##### Prior  

prev~dbeta(1,1)  

b1~ dnorm(0,0.01)I(0,) 

#b1<- 0 # use for CI 

#b2<- 0 # Use for CI  

 

### use below in CI  

#for (j in 1:3){ 

# alpha[j] ~ dnorm(0,0.1)I(-1,) 

#beta[j] ~ dnorm(0,0.1)I(,1) 

# } 

 

## Priors for sensitivity and specificity test (centred on simulated truth) 
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#s[1] ~ dbeta(6,0.667) 

#sp[1] ~ dbeta(4.05, 0.45) 

#s[2]~dbeta(4,1) 

#sp[2]~dbeta(4,1) 

#sp[2]~dbeta(1,1) 

#s[3]~dbeta(3.5, 1.5) 

#sp[3]~dbeta(1,1) 

#sp[3]~dbeta(4.05, 0.45) 

 

## priors for sensitivity and specificity test (not centred on simulated truth) 

s[1] ~ dbeta(4,1) 

sp[1] ~ dbeta(3.5, 1.5) 

s[2] ~ dbeta(3.5, 1.5) 

sp[2] ~ dbeta (4.05, 0.45)  

s[3] ~dbeta(6,0.667) 

sp[3] ~ dbeta (4,1) 

 

 

### Posterior calculation of parameters 

### used for CI assumption  

#for(j in 1:3){ 

  #  s[j]<-phi(alpha[j]/sqrt(1+pow(b1,2))) 

#sp[j]<- phi(-beta[j]/sqrt(1+pow(b2,2))) 

#} 

} 
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### Model 3: REM model logit style – Openbugs  

model { 

##### Likelihood 

for (i in 1:500){  

     status[i]~dbern(prev)  

     z[i]~dnorm(0,1) 

for(j in 1:3){ 

     y[i,j]~dbern(p[i,j])  

     } 

     } 

 

### expand likelihood as three scores are correlated  

for (i in 1:500){  

#logit(p[i,1])<-status[i]*alpha[1]+(1-status[i])*beta[1] 

for(j in 1:3) { 

     logit(p[i,j])<-status[i]*(alpha[j] + status[i]*b1*z[i]) + (1-status[i])*beta[j] 

     } 

} 

 

######    Prior    distribution ############### 

 

prev~dbeta(1,1) ## flat or non informed prior 

#b1<- 0 # use for CI 

#b2<- 0 # use for CI 

b1~dnorm(0,0.1)I(0,) # under conditional dependence among diseased group  

#b2~dnorm(0,0.1)I(0,) # use if the assumption of non-diseased correlated 

 

###### use under conditional independence assumption  

#for(j in 1:3){ 

#alpha[j]~dnorm(0,0.1)I(-1,) 

#beta[j]~dnorm(0,0.1)I(,1) 

#} 
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####### Use if priors distribution centred on the simulated truth ###### 

#s[1] ~ dbeta(6,0.667) 

#sp[1] ~ dbeta(4.05, 0.45) 

#s[2]~dbeta(4, 1) 

#sp[2]~dbeta(1,1) 

#sp[2]~dbeta(4,1) 

#s[3]~dbeta(3.5, 1.5) 

#sp[3]~dbeta(4.05, 0.45) 

#sp[3]~dbeta(1,1) 

 

## priors for sensitivity and specificity test (not centred on simulated truth) 

s[1] ~ dbeta(4,1) 

sp[1] ~ dbeta(3.5, 1.5) 

s[2] ~ dbeta(3.5, 1.5) 

sp[2] ~ dbeta (4.05, 0.45)  

s[3] ~dbeta(6,0.667) 

sp[3] ~ dbeta (4,1) 

 

for (j in 1:3){ 

alpha[j] <- logit(s[j])  

beta[j]<--logit(sp[j]) 

} 

} 
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### Model 4: Finite Mixture model – Openbugs  

model{  

for (i in 1:500)  

{ 

 d[i] ~ dbern(prev) 

l[i,1] ~ dbern(eta1[i]) 

l[i,2] ~ dbern (eta0[i]) 

eta1[i]<- d[i]*tau[1] # diseased group  

eta0[i]<- (1-d[i])*tau[2] # non diseased group  

for (j in 1:3){ 

 y[i,j] ~ dbern(p[i,j]) 

 p[i,j]<- d[i]*(l[i,1]+(1 - l[i,1])*w[j,1])+(1-d[i])*(1 - (l[i,2]+(1 -l[i,2])*(1-w[j,2]))) 

}   

} 

 

## prior  

prev ~ dbeta(1,1) 

#for (k in 1:2){tau[k]<- 0} # assuming CI 

#for (k in 1:2){tau[k] ~ dbeta(1,1)} 

tau[1] ~ dbeta(0.5,0.5) 

tau[2]<- 0  

for (j in 1:3){ 

  w[j,1]~dbeta(0.5,0.5) 

 w[j,2]~dbeta(0.5,0.5) 

} 

 

###################################################### 

########## Use if priors distribution centred on the truth ############### 

#s[1] ~ dbeta(6,0.667) 

#sp[1] ~ dbeta(4.05, 0.45) 

#s[2]~dbeta(4, 1) 

#sp[2]~dbeta(4,1) 
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#s[3]~dbeta(3.5, 1.5) 

#sp[3]~dbeta(4.05, 0.45) 

################################################### 

 

## priors for sensitivity and specificity test (not centred on simulated truth) 

s[1] ~ dbeta(4,1) 

sp[1] ~ dbeta(3.5, 1.5) 

s[2] ~ dbeta(3.5, 1.5) 

sp[2] ~ dbeta (4.05, 0.45)  

s[3] ~dbeta(6,0.667) 

sp[3] ~ dbeta (4,1) 

 

### Posterior calculation of parameters 

## used under assumption of CI 

#for (j in 1:3){ 

#s[j] <- tau[1]+(1-tau[1])*w[j,1] 

#sp[j] <- tau[2] + (1-tau[2])*(1 - w[j,2]) 

#}  

 

}    
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### Model 5: Fixed effect model Wang et al style - RStan  

 

### Start using stan 

```{r stan3} 

library("StanHeaders") 

library(ggplot2) 

library("rstan") # observe startup messages 

library("inline") 

library("matrixStats") 

``` 

#### enter data  

## Prevalence is 0.3 

```{r stan5} 

FEMCI<- list(T = 8,  freqobs= c(77,39,21,34,14,60,27,228), N= 500)  

FEM23<- list(T = 8,  freqobs= c(92,23,5,50,15,61,28,226), N= 500)  

FEM123<-list(T = 8,  freqobs= c(100,20,8,45,11,62,23,231), N= 500) 

``` 

 

### Code for analysis 

```{r stancode} 

FEMCD1<- " 

data { 

  int<lower=0>T; // number of possible combination of the tests response 

 int<lower=0>freqobs[T];// the frequency of each possible combinations  

} 

 

// The parameters accepted by the model. 

parameters { 

 real<lower=0, upper=1> pi; // prevalence 

 real<lower=0, upper=1>s1; // sensitivity of T1 

 real<lower=0, upper=1>s2; // sensitivity of T2 

 real<lower=0, upper=1>s3; // sensitivity of T3 
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 real<lower=0, upper=1>c1; // specificity of T1 

 real<lower=0, upper=1>c2; // specificity of T2 

 real<lower=0, upper=1>c3; // specificity of T3 

 

 

 // conditional dependence term for result (T1=1, T2=1, T3=1 | D=1) 

 real<lower=-s1*s2*s3,upper=fmin(s1, fmin(s2, s3))-s1*s2*s3> covS111;  

 real<lower=-(1-s1)*s2*s3,upper=fmin(1-s1, fmin(s2, s3))-(1-s1)*s2*s3> covS011; 

 real<lower=-(1-s1)*(1-s2)*s3,upper=fmin(1-s1, fmin(1-s2, s3))-(1-s1)*(1-s2)*s3> 
covS001; 

 real<lower=-(1-s1)*(1-s2)*(1-s3),upper=fmin(1-s1, fmin(1-s2, 1-s3))-(1-s1)*(1-
s2)*(1-s3)> covS000; 

} 

 

transformed parameters { 

real<lower=-s1*(1-s2)*(1-s3),upper=fmin(s1, fmin(1-s2, 1-s3))-s1*(1-s2)*(1-s3)> covS100; 

real<lower=-s1*(1-s2)*s3,upper=fmin(s1, fmin(1-s2, s3))-s1*(1-s2)*s3> covS101; 

real<lower=-s1*s2*(1-s3),upper=fmin(s1, fmin(s2, 1-s3))-s1*s2*(1-s3)> covS110; 

real<lower=-(1-s1)*s2*(1-s3),upper=fmin(1-s1, fmin(s2, 1-s3))-(1-s1)*s2*(1-s3)> covS010; 

vector<lower=0,upper=1>[T] pr; // joint probability of each type of possible test result 

 

// the pairwise conditional dependence between 

 real covST12; // test 1 and test 2 

 real covST13; // test 1 and test 3  

 real covST23; // test 2 and test 3 

 

 // calculate the transformed conditional dependence terms 

 covS100 = covS011 + covS111 - covS000; 

 covS101 = -(covS001 + covS011 + covS111); 

 covS110 = covS000 + covS001 - covS111; 

 covS010 = -(covS000 + covS001 + covS011);  

  

 // calculate the pairwise conditional dependence terms 
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 covST12 = covS111 + covS110; 

 covST13 = covS111 + covS101; 

 covST23 = covS011 + covS111; 

  

 // probability of having combination of test response 

 pr[1] = pi*(s1*s2*s3+covS111)+(1-pi)*((1-c1)*(1-c2)*(1-c3));    // 111 

 pr[2] = pi*(s1*s2*(1-s3)+covS110)+(1-pi)*((1-c1)*(1-c2)*(c3));  // 110 

 pr[3] = pi*(s1*(1-s2)*s3+covS101)+(1-pi)*((1-c1)*(c2)*(1-c3));  // 101 

 pr[4] = pi*(s1*(1-s2)*(1-s3)+covS100)+(1-pi)*((1-c1)*c2*c3);    // 100 

 pr[5] = pi*((1-s1)*s2*s3+covS011)+(1-pi)*((c1)*(1-c2)*(1-c3));  // 011 

 pr[6] = pi*((1-s1)*s2*(1-s3)+covS010)+(1-pi)*(c1*(1-c2)*(c3));  // 010 

 pr[7] = pi*((1-s1)*(1-s2)*s3+covS001)+(1-pi)*(c1*(c2)*(1-c3));  // 001 

 pr[8] = pi*((1-s1)*(1-s2)*(1-s3)+covS000)+(1-pi)*((c1)*c2*c3);  // 000 

 

} 

// The model to be estimated. We model the output 

// 'y' to be normally distributed with mean 'mu' 

// and standard deviation 'sigma'. 

 

model { 

  // quartile method 

  // priors: 

  pi ~ beta(1,1); 

//s1 ~ beta(1,1); 

//c1 ~ beta(1,1); 

//s2 ~ beta(1,1); 

//c2 ~ beta (1,1);  

//s3 ~ beta(1,1); 

//c3 ~ beta (1,1);  

 

// Use if priors distribution for 3 CD tests 

s1 ~ beta(6,0.667); 
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c1 ~ beta(4.05,0.45); 

s2 ~ beta(4,1); 

c2 ~ beta (4,1);  

//c2 ~ beta(4,1); 

s3 ~ beta(3.5, 1.5); 

c3 ~ beta (4.05, 0.45);  

//c3 ~ beta(4.05,0.45); 

 

 

 // likelihood function 

 freqobs ~ multinomial(pr); 

}" 

``` 

 

### Run analysis 

```{r stanexam1} 

fit<- stan(model_code = FEMCD1, data= FEM23, iter =100000, warmup = 2000, chains 
=3) 

#fit<- stan(model_code = FEMCD1, data= FEMBR, iter = 100000, warmup = 2000, chains 
= 3, control = list(adapt_delta = 0.90)) #iter = 10000, warmup = 1000, chains = 2, verbose 
= TRUE,  max_treedepth = 15) 

``` 

 

## Print result  

```{r diag} 

print(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3", "covST12", "covST23", "covST13"), 
digits.summary = 5)#, , probs=c(.1,.5,.9) 

``` 

 

 

## plot necessary plots 

```{r stanplot} 

plot(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3"), ci_level = 0.95, outer_level = 0.999) 
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plot(fit, show_density = TRUE, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3")) 

#plot(fit, show_density = TRUE, pars="pi",ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars="s1", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "s2", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "s3", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "c1", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars="c2", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "c3", ci_level = 0.95,outer_level = 0.999) 

traceplot(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3")) 

``` 
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C.3. Diagnostic plots of 23CD dataset under CI assumption  

The 23CD dataset is the simulated dataset where test 2 and test 3 are conditionally 

dependent given the true disease status and both tests are conditionally independent with 

test 1 given the true disease status.  

Figure 30: Trace plots of the sensitivities and specificities of the three tests assuming that 

all tests are conditionally independent. 
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Figure 31: Density plots of the sensitivities and specificities of the three tests assuming that 

all tests are conditionally independent. 

 
 

Figure 32: Autocorrelation plots of the sensitivities and specificities of the three tests 

assuming that all tests are conditionally independent. 
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Figure 33: Gelman diagnostic plots of the sensitivities and specificities of the three tests 

assuming that all tests are conditionally independent. 

 
 

 



292 | P a g e  
 

C.4. Diagnostic plots of 23CD dataset under the assumption of CD (FEM) 

Figure 34: Auto-correlation plots of the prevalence, sensitivities and specificities of the 

tests assuming that all tests are conditionally dependent. 

 

Figure 35: Trace plots for the sensitivities and specificities of test 1, test 2 and test 3, and 

prevalence assuming that all tests are conditionally dependent. 
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Figure 36: Density plots of the sensitivities and specificities of the three tests and the 

prevalence assuming that all tests are conditionally dependent. 
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Figure 37: Gelman diagnostic plots of prevalence, sensitivities and specificities of the 

three tests 
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C.5. Diagnostic plots of 23CD dataset under the assumption of CD (REML) 

Figure 38: Trace plots of sensitivities and specificities of the three tests, and the prevalence 

assuming that all tests are conditionally dependent.  
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Figure 39: Density plots of sensitivities and specificities of the three tests, and the prevalence assuming that all tests are conditionally 

dependent.  
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C.6. Diagnostic plots of 23CD under the assumption of CD using informative priors 

not centred on the truth (FEM) 

Figure 40: Trace plots of the sensitivities and specificities of the three tests 

 

Figure 41: Autocorrelation of prevalence, sensitivities and specificities of the three tests 
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Figure 42: Density plots of the sensitivities and specificities of the three tests 
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Figure 43: Gelman diagnostic plots for the sensitivities and specificities of three tests 
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C.7. Diagnostic plots of 123CD under the assumption of CI (FEM). 

The 123CD dataset is the simulated dataset where test 1, test 2 and test 3 are conditionally 

dependent given the true disease status.  

Figure 44: Trace plots of sensitivities and specificities of the three tests 

 

Figure 45: Density plots of sensitivities and specificities of the three tests 
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Figure 46: Auto-correlation plots of sensitivities and specificities of the three tests 

 

Figure 47: Gelman Diagnostic plot of sensitivity and specificity of the three tests 
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C.8. Diagnostic plots of 123CD under the assumption of CD (REML)  

Figure 48: Trace plots of sensitivities and specificities of three tests 

iteration

0 20000 40000 60000

pre
v

0.0
0.2

0.4
0.6

0.8

 

iteration

0 20000 40000 60000

s[1
]

0.2
0.4

0.6
0.8

1.0

 

iteration

0 20000 40000 60000

s[2
]

0.2
0.4

0.6
0.8

1.0

 

iteration

0 20000 40000 60000

s[3
]

0.0
0.5

1.0

 

iteration

0 20000 40000 60000

sp[
1]

0.6
0.7

0.8
0.9

1.0

iteration

0 20000 40000 60000

sp
[2]

0.5
0.7

0.9

 

iteration

0 20000 40000 60000

sp[
3]

0.6
0.7

0.8
0.9

1.0

 



304 | P a g e  
 

Figure 49: Density plots of the sensitivity and specificities of the three tests under the CD assumption (REML) using priors centred on the 

simulated truth.  
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C.9. Diagnostic plots of 123CD under the assumption of CD (FEMW) using 

informative priors centred on the simulated truth 

Figure 50: Trace plots of sensitivities and specificities of the three tests, and the prevalence 

via the FEMW model 

 

Figure 51: Density plots of the sensitivities and specificities of the three tests using the 

FEMW model and assuming all tests are conditionally dependent  

 

The red colour in under the curve is the 95% confidence interval 
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C.10. Diagnostic plots of 123CD under the assumption of CD (REML)  

Figure 52: Trace plots of sensitivities and specificities of the three tests 
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Figure 53: Density plots of sensitivities and specificities of the three tests, and the prevalence under the assumption of conditionally 

dependence (REML)
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C.11. Diagnostic plots of 123CD under CD assumption and the priors are not centred 

on the simulated truth.  

Figure 54: Density Diagnostic plots of 123CD under the assumption of conditional 

dependence using the FEMW. 

 

The red colour under the curve is the 95% confidence interval 
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Figure 55: Trace Diagnostic plots of 123CD under the assumption of conditional dependence using the FEMW. 
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D.1. Diagnostic plots of the RABR dataset under CI assumption  

When analysing the RABR dataset, DAS28-ESR4 is denoted as the test 1, SDAI is demoted 

as test 2 and CDAI is denoted as test 3. This implies that s[1] represent the sensitivity of 

DAS28-ESR4, s[2] represent the sensitivity of SDAI and s[3] represent the sensitivity of 

CDAI. Similarly the specificity of DAS28-ESR4, SDAI and CDAI is denoted as sp[1], sp[2], 

and sp[3] respectively. 

Figure 56: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI  
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Figure 57: Auto-correlation plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI 

 
Figure 58: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 
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Figure 59: Gelman diagnostic plots of sensitivities and specificities of DAS28-ESR4, SDAI 

and CDAI 
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D.2. Density plots of the prior and posterior distribution of DAS28-ESR4, SDAI and 

CDAI using the REML on the RABR dataset 

Figure 60: Density plots of the prior and posterior distribution of the sensitivities of DAS28-

ESR4, SDAI and CDAI using the REML on the RABR dataset 

 

Figure 61: Density plots of the prior and posterior distribution of the specificities of DAS28-

ESR4, SDAI and CDAI using the REML on the RABR dataset 
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D.3. Diagnostic plots of the RABR dataset under CD assumption  

Figure 62: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 
(REML) 
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Figure 63: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 
(REML) 

 
 

Figure 64: Auto-correlation plots of sensitivities and specificities of DAS28-ESR4, SDAI and 

CDAI (REML) 
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Figure 65: Gelman diagnostic plots of sensitivities and specificities of DAS28-ESR4, SDAI 

and CDAI (REML) 

 



317 | P a g e  
 

Figure 66: Trace plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI FEMW 
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Figure 67: Density plots of sensitivities and specificities of DAS28-ESR4, SDAI and CDAI 

FEMW 

 
The red colour under the curve is the 95% confidence interval 
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D.4.  Diagnostic plots of the sensitivity analysis of RABR  

Figure 68: Trace plots of the sensitivities and specificities of SDAI, CDAI and DAS28-ESR4 

(FEMW). 

 
 

Figure 69: Density plots of the sensitivities and specificities of SDAI, CDAI and DAS28-

ESR4 (FEMW). 
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D.5. R-Code for clinical dataset analysis 

When analysing the DAS28-ESR4 is denoted as the test 1, SDAI is demoted as test 2 and 

CDAI is denoted as test 3. This implies that s[1] represent the sensitivity of DAS28-ESR4, 

s[2] represent the sensitivity of SDAI and s[3] represent the sensitivity of CDAI. Similarly the 

specificity of DAS28-ESR4, SDAI and CDAI is denoted as sp[1], sp[2], and sp[3] respectively.  

###### Start R code ############################################  

Model 6: RStan clinical dataset RABR 

#### enter data  

```{r stan5} 

FEMBR<- list(T = 8,  freqobs= c(1,0,0,7,3,0,0,253), N= 264)  

## freqobs is the observed frequency of the combination of test responses 

``` 

### Code the model for analysis 

```{r stancode} 

FEMCD1<- " 

data { 

  int<lower=0>T; // number of possible combination of the tests response 

 int<lower=0>freqobs[T];// the frequency of each possible combinations  

 //int<lower=0>N; // total number of observation 

} 

 

// The parameters accepted by the model. 

parameters { 

 real<lower=0, upper=1> pi; // prevalence 

 real<lower=0, upper=1>s1; // sensitivity of T1 

 real<lower=0, upper=1>s2; // sensitivity of T2 

 real<lower=0, upper=1>s3; // sensitivity of T3 

 real<lower=0, upper=1>c1; // specificity of T1 

 real<lower=0, upper=1>c2; // specificity of T2 

 real<lower=0, upper=1>c3; // specificity of T3 

  

 // conditional dependence term for result (T1=1, T2=1, T3=1 | D=1) 
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 real<lower=-s1*s2*s3,upper=fmin(s1, fmin(s2, s3))-s1*s2*s3> covS111;  

 real<lower=-(1-s1)*s2*s3,upper=fmin(1-s1, fmin(s2, s3))-(1-s1)*s2*s3> covS011; 

 real<lower=-(1-s1)*(1-s2)*s3,upper=fmin(1-s1, fmin(1-s2, s3))-(1-s1)*(1-s2)*s3> 
covS001; 

 real<lower=-(1-s1)*(1-s2)*(1-s3),upper=fmin(1-s1, fmin(1-s2, 1-s3))-(1-s1)*(1-s2)*(1-
s3)> covS000; 

} 

 

transformed parameters { 

real<lower=-s1*(1-s2)*(1-s3),upper=fmin(s1, fmin(1-s2, 1-s3))-s1*(1-s2)*(1-s3)> covS100; 

real<lower=-s1*(1-s2)*s3,upper=fmin(s1, fmin(1-s2, s3))-s1*(1-s2)*s3> covS101; 

real<lower=-s1*s2*(1-s3),upper=fmin(s1, fmin(s2, 1-s3))-s1*s2*(1-s3)> covS110; 

real<lower=-(1-s1)*s2*(1-s3),upper=fmin(1-s1, fmin(s2, 1-s3))-(1-s1)*s2*(1-s3)> covS010; 

vector<lower=0,upper=1>[T] pr; // joint probability of each type of possible test result 

 

// the pairwise conditional dependence between 

 real covST12; // test 1 and test 2 

 real covST13; // test 1 and test 3  

 real covST23; // test 2 and test 3 

 

 // calculate the transformed conditional dependence terms 

 covS100 = covS011 + covS111 - covS000; 

 covS101 = -(covS001 + covS011 + covS111); 

 covS110 = covS000 + covS001 - covS111; 

 covS010 = -(covS000 + covS001 + covS011);  

  

 // calculate the pairwise conditional dependence terms 

 covST12 = covS111 + covS110; 

 covST13 = covS111 + covS101; 

 covST23 = covS011 + covS111; 

  

 // probability of having combination of test response 

 pr[1] = pi*(s1*s2*s3+covS111)+(1-pi)*((1-c1)*(1-c2)*(1-c3));    // 111 
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 pr[2] = pi*(s1*s2*(1-s3)+covS110)+(1-pi)*((1-c1)*(1-c2)*(c3));  // 110 

 pr[3] = pi*(s1*(1-s2)*s3+covS101)+(1-pi)*((1-c1)*(c2)*(1-c3));  // 101 

 pr[4] = pi*(s1*(1-s2)*(1-s3)+covS100)+(1-pi)*((1-c1)*c2*c3);    // 100 

 pr[5] = pi*((1-s1)*s2*s3+covS011)+(1-pi)*((c1)*(1-c2)*(1-c3));  // 011 

 pr[6] = pi*((1-s1)*s2*(1-s3)+covS010)+(1-pi)*(c1*(1-c2)*(c3));  // 010 

 pr[7] = pi*((1-s1)*(1-s2)*s3+covS001)+(1-pi)*(c1*(c2)*(1-c3));  // 001 

 pr[8] = pi*((1-s1)*(1-s2)*(1-s3)+covS000)+(1-pi)*((c1)*c2*c3);  // 000 

 

} 

// The model to be estimated. We model the output 

// 'y' to be normally distributed with mean 'mu' 

// and standard deviation 'sigma'. 

 

model { 

  // quartile method 

  // priors: 

 //s1 ~ beta (217,2.43); //s1~beta(15.2,3.68); // RABR 

  //c1 ~ beta (62.5,177); 

 // c1~beta(27.6,16.20); // RABR 

  //s2 ~ beta (75.6,1.77); 

 // s2 ~ beta(35.8,55.7);//RABR 

  //c2 ~ beta (540,80.80);  

  //c2 ~ beta(36.3,6.26); // RABR 

  //s3 ~ beta (49.9,8.19);  

 // s3 ~ beta(36.6,54.80); // RABR 

  //c3 ~ beta (35.6,6.14);  

  //c3 ~ beta(35.9,7.20); //RABR 

 

 // likelihood function 

freqobs ~ multinomial(pr); 

}" 

``` 
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### perform the analysis  

```{r stanexam1} 

#install.packages("Rtools") 

fit<- stan(model_code = FEMCD1, data= FEMBR, iter = 100000, warmup = 2000, chains = 
3, control = list(adapt_delta = 0.90)) 

#iter = 10000, warmup = 1000, chains = 2, verbose = TRUE,  max_treedepth = 15) 

``` 

## Print out results  

```{r diag} 

print(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3", "covST12", "covST23", "covST13", 
"log_lik"), digits.summary = 5)#, , probs=c(.1,.5,.9) 

``` 

## plot necessary plots 

```{r stanplot} 

plot(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3"), ci_level = 0.95, outer_level = 0.999) 

plot(fit, show_density = TRUE, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3")) 

#plot(fit, show_density = TRUE, pars="pi",ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars="s1", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "s2", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "s3", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "c1", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars="c2", ci_level = 0.95,outer_level = 0.999) 

#plot(fit, show_density = TRUE, pars= "c3", ci_level = 0.95,outer_level = 0.999) 

traceplot(fit, pars=c("pi","s1", "s2", "s3", "c1","c2", "c3")) 

``` 

  


