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Abstract

Digital visual displays are aimed to provide an illusion of a continuous reality through a
discrete presentation of visual information. This thesis explored three topics on (i) angular, (ii)
spatial, and (iii) temporal sampling characteristics, related to distortion visibility, acceptance,
and discomfort. In the first topic, we addressed the issue of optimizing the view density
in continuous parallax visualization by replicating the changing views of a 3-D object for
a moving observer. We measured the visibility of the related artifacts and evaluated the
performance of full-reference visual quality metrics. We found that the state-of-the-art metrics
can indirectly characterize artifact visibility and established a quantitative relationship for
threshold estimation on varying conditions. The second topic addressed the relation of the
contrast sensitivity function (CSF) to adaptation luminance and specifically its asymptotic
behavior at high light levels essential to modern high-luminance displays. Using a custom-
built system, we measured the CSF at relatively high luminance levels and spatial frequency
range, integrating our dataset to the existing research. We found a gradual transition among
the linear to DeVries-Rose to Weber regions with steeper slopes for higher frequencies and
lower luminance. A further decreasing region was located at low to intermediate frequencies.
Following this construct, we adopted a model consisting of central elements in the visual
signal processing and proposed an eight-parameter form for the CSF in the luminance domain.
The final topic addressed the effects of frame rate on distortion acceptance and its impact on
visual discomfort during regular display use. We assessed the perceived symptoms, preference,
and task performance under varying conditions. The measurements indicated that for non-
demanding everyday tasks, the frame rate could be reasonably reduced without severe effects
on the observer; however, this tolerance diminished under more dynamic content. A potential
association of discomfort with the blinking activity was also discussed.



Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
80,000 words and has less than 150 figures.

Christos Kaspiris-Rousellis
Sep 2020



Acknowledgements

The work in this thesis was partly supported by the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No 676401,
European Training Network on Full Parallax Imaging and Huawei Technologies Co., Ltd. I
would like to thank Jenny Read for securing the funding and supervising the projects. The thesis
was based on the following manuscripts with the corresponding collaborative contributions:

• Kaspiris-Rousellis C., Simmons A., Read, J. C. A. (2018). Perceptually optimized view
density for continuous parallax. Journal of Vision 2018;18(10):512. Abstract

Kaspiris-Rousellis C., Simmons A., Read, J. C. A. (2019). Visibility and acceptance of
angular distortions in full-parallax content. Unpublished manuscript

– CKR and JR designed the research

– CKR and AS collected the data

• Kaspiris-Rousellis, C., Fernandez-Alonso, M., and Read, J. C. A. (2019). Extending the
human foveal spatial contrast sensitivity function to high luminance range. Proceedings
of the European Light Field Imaging Workshop

Kaspiris-Rousellis, C., Fernandez-Alonso, M., and Read, J. C. A. (2019). The human
spatial contrast sensitivity at high luminance. Unpublished manuscript

– CKR, MFA, and JR designed the research

• Kaspiris-Rousellis, C., Fernandez-Alonso, M., Tong C.C., and Read, J. C. A. (2019).
The effect of high frame rates on visual comfort, performance, and blinking activity.
Unpublished manuscript

– CKR, MFA, and JR designed the research

– CKR and CCT collected the data



Table of Contents

List of Figures vii

List of Tables ix

General introduction 1

1 Visibility of angular distortions in full-parallax content 14
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Image sequence simulation . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Experimental task and conditions . . . . . . . . . . . . . . . . . . . 19
1.2.5 The psychometric function and the degradation scale . . . . . . . . . 21

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Psychophysical data . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Distortion ranking similarity and metrics performance . . . . . . . . 24
1.3.3 Model estimates and validation . . . . . . . . . . . . . . . . . . . . 25

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 The human contrast sensitivity function at high luminance 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Measurements of the human CSF at high luminance . . . . . . . . . . . . . . 35

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2 Apparatus and experimental design . . . . . . . . . . . . . . . . . . 35
2.2.3 CSF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 CSF modeling in the luminance domain . . . . . . . . . . . . . . . . . . . . 50



Table of Contents

2.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Segmented regression . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3 Extending the CSF to high luminance range . . . . . . . . . . . . . . 53
2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.5 Barten’s CSF formula and model assessment . . . . . . . . . . . . . 60

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 The effect of frame rate on visual discomfort and fatigue 68
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Apparatus and experimental design . . . . . . . . . . . . . . . . . . 70
3.2.3 Subjective measures . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.4 Objective measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.5 Statistical analysis and modeling . . . . . . . . . . . . . . . . . . . . 75

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Task performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.2 Eye blinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Subjective feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

General discussion 91

Appendix A Supplementary material for Chapter 1 93

Appendix B Supplementary material for Chapter 2 97

Appendix C Supplementary material for Chapter 3 101

References 109

vi



List of Figures

0.1 The human eye and the retina . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Receptive fields of ON and OFF cells . . . . . . . . . . . . . . . . . . . . . 3
0.3 Sinusoidal gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 Spatiotemporal contrast sensitivity function . . . . . . . . . . . . . . . . . . 5
0.5 Sampled motion and the window of visibility . . . . . . . . . . . . . . . . . 6
0.6 Triangulation-based depth cues . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.7 Block diagram of a generic error visibility metric . . . . . . . . . . . . . . . 10

1.1 Two-plane lightfield parameterization in an image acquisition setup . . . . . 15
1.2 Epipolar plane images and angular sampling in the Fourier domain . . . . . . 16
1.3 Angular view simulation schematic . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Image sequence simulation process . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 The stimulus with an example of the respective distortions . . . . . . . . . . 20
1.6 Psychophysical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7 Disparity threshold estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Metric ranking correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . 26
1.9 Metric performance compared with the psychophysics data . . . . . . . . . . 27
1.10 Individual psychometric function fits using the GMSD score . . . . . . . . . 28
1.11 Final model estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.12 An example of model validation on different condition subsets . . . . . . . . 30

2.1 The linear to DeVries-Rose to Weber transition . . . . . . . . . . . . . . . . 34
2.2 Projector-based display schematic . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 CSF stimuli subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Typical human CSF characteristics . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Individual CSFs for each luminance condition . . . . . . . . . . . . . . . . . 41
2.6 Boxplot of the contrast sensitivity measurements . . . . . . . . . . . . . . . 43
2.7 Boxplot of the main CSF characteristics . . . . . . . . . . . . . . . . . . . . 46
2.8 Contrast sensitivity estimates at the extended illuminance range . . . . . . . . 48

vii



List of Figures

2.9 Gain of increase in sensitivity at the extended illuminance range . . . . . . . 49
2.10 The gain surface in the spatial frequency-luminance domain . . . . . . . . . 50
2.11 CSF model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.12 CSF model fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.13 Segmented regression slopes . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.14 Fitted critical illuminance constants . . . . . . . . . . . . . . . . . . . . . . 60
2.15 Main CSF characteristics as a function of retinal illuminance . . . . . . . . . 61

3.1 First-person view of the experimental task . . . . . . . . . . . . . . . . . . . 72
3.2 Normalized task performance measures . . . . . . . . . . . . . . . . . . . . 77
3.3 Normalized blinking activity measures . . . . . . . . . . . . . . . . . . . . . 78
3.4 Estimated effect on the blinking activity . . . . . . . . . . . . . . . . . . . . 81
3.5 Aggregated evaluation observer feedback for experiment I . . . . . . . . . . 82
3.6 Aggregated evaluation observer feedback in experiment II . . . . . . . . . . 83
3.7 Preference feedback scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8 Hold-type blur example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1 Individual psychometric function fits based on disparity . . . . . . . . . . . . 93
A.2 Metrics performance across conditions using the Weibull function . . . . . . 94
A.3 Metrics performance across conditions using the cumulative Gaussian function 94
A.4 Metrics performance across conditions using the Logistic function . . . . . . 95
A.5 Example of correlation between two metrics . . . . . . . . . . . . . . . . . . 95
A.6 Example of correlation between metrics and psychophysics . . . . . . . . . . 96

B.1 Statistical sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.1 Visual fatigue and discomfort questionnaire in experiment I . . . . . . . . . . 101
C.2 The frame rate evaluation questionnaire in experiment I . . . . . . . . . . . . 102
C.3 The frame rate evaluation questionnaire in experiment II . . . . . . . . . . . 103
C.4 Separate linear regression coefficients of the individual blink rates . . . . . . 104
C.5 Statistical sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.6 Visual discomfort and fatigue symptoms questionnaire for experiment I . . . 105
C.7 Individual data on the frame rate evaluation in Experiment I . . . . . . . . . 106
C.8 Individual data on frame rate evaluation in Experiment II . . . . . . . . . . . 106
C.9 Alternative preference feedback scaling . . . . . . . . . . . . . . . . . . . . 108

viii



List of Tables

1.1 Summary of the disparity threshold estimates . . . . . . . . . . . . . . . . . 24

2.1 The mean sensitivity thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Statistics on the effect of luminance at each spatial frequency level . . . . . . 43
2.3 Pairwise comparisons of sensitivity estimates . . . . . . . . . . . . . . . . . 44
2.4 Mean estimates of the CSF characteristics . . . . . . . . . . . . . . . . . . . 45
2.5 Statistics of the effect of luminance on the main CSF characteristics . . . . . 46
2.6 Pairwise comparisons of the CSF characteristics . . . . . . . . . . . . . . . . 47
2.7 Estimated global model parameters . . . . . . . . . . . . . . . . . . . . . . . 58
2.8 Fitted model constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9 CSF model comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.10 Re-estimated parameters of the proposed model among studies . . . . . . . . 64
2.11 Estimated parameters of the proposed model within studies . . . . . . . . . . 65

3.1 Estimated means of the objective measures . . . . . . . . . . . . . . . . . . 79
3.2 Statistics of the frame rate effect on the objective measures . . . . . . . . . . 80
3.3 Follow-up tests tests for linear and quadratic contrasts . . . . . . . . . . . . . 80
3.4 Correlation matrix of the evaluation feedback questionnaire . . . . . . . . . . 84

B.1 Summary table of the meta-analysis data . . . . . . . . . . . . . . . . . . . . 97
B.2 Fitting performance of the descriptive CSF model . . . . . . . . . . . . . . . 98
B.3 Correlation matrix of the main CSF characteristics . . . . . . . . . . . . . . 98

C.1 Frame-based performance of the eye state classifier . . . . . . . . . . . . . . 104
C.2 Predicted probabilities of the overall preference scaling model . . . . . . . . 107

ix



General introduction

In the field of visualization and modern electronic displays, vision science is increasingly gain-
ing attention. Evaluating human responses and limitations is valuable both from the perspective
of efficient resource allocation as well as for delivering a higher quality of experience with
reduced symptoms of visual fatigue and discomfort. Digital visual displays are discrete systems
aimed to provide an illusion of continuous reality, or equivalently to truthfully represent the
plenoptic structure that characterizes the rays of light through every point in space (Adelson
and Bergen, 1991). However, sampling and reproducing the light rays at every desired location
in three-dimensional space and for every angle, time point, and wavelength to an adequate
degree is an inherently complex problem. It follows that specifying how dense is dense enough
depends on the properties and limitations of the average human observer, e.g., spatiotemporal
resolution, binocular viewing, or trichromatic vision, which becomes challenging to model as
the input increases in complexity or one generalizes to non-static or multiple observers.

The human eye is the device that allows us to capture the incident light rays in order to
construct a visual representation of our surroundings, their shapes, colors, and dimensions under
varying illumination conditions. Therefore, specifying the optimal sampling characteristics
from a perceptual perspective first requires understanding how the early visual processes
encode the intensity distribution of these light rays in the brain. When fixating on an object, the
reflected light entering the eye is refracted by the cornea and the crystalline lens and focused
on the retina, while an aperture (the pupil) regulates the light entering the eye in response
to the light’s intensity (left column in Figure 0.1; more details on the optical structure and
properties can be found in Atchison and Smith, 2000). The light is then converted into an
electrical signal which travels through the optic nerve along the visual pathway to higher
cortical areas. The phototransduction process starts in the outer layer of the retina, which
contains a class of specialized photoreceptor cells: rods and cones (left column in Figure 0.1).
These photoreceptors transmit the information to ganglion cells that are directly signaling to
the optic nerve. Their function and organization have been well studied over the past decades
(a detailed introduction can be found in Kandel et al., 2012). Rods have high sensitivity to
light and thus mediate vision under dim light levels (scotopic conditions; outside the cone
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Figure 0.1 Left: an illustration of the human eye and the retina (the zoomed-in region in the middle).
The reflected light rays reach the retina at the back of the eye after passing through the cornea and the
crystalline lens, while the pupil (located between the cornea and the lens) regulates the light entering the
eye. The retina consists of a light-sensitive tissue that contains multiple pigmented, cellular, and nerve
fiber layers. Cones and rods (easily recognizable from their shapes) populate the outer layer along the
horizontal temporal section of the retina. The zoomed-in region depicts the three subtypes of cones in
blue (S cones ∼ 420 nm), green (M cones ∼ 534 nm), and red (L cones ∼ 564 nm) according to their
peak sensitivity to different wavelengths, which is responsible for the human trichromatic system that
enables color vision. Rods (depicted in grey) are more sensitive to wavelengths around 498 nm and
can only support achromatic vision. When the light reaches the retinal pigment epithelium, a cascade
of events activates the sodium channels in the cell membrane of the photoreceptors. The biochemical
message passes from rods and cones to the inner nuclear layers as an electrical signal through an
interactive network of horizontal, bipolar, and amacrine cells that integrate and transmit the information
to ganglion cells. Within the inner plexiform layer, the ganglion cells then convey the visual information
to higher subcortical and cortical areas along the optic nerve. Right: the distribution of rods and cones
as a function of eccentricity around the fovea (the data were extracted from Osterberg, 1935). Cone
density is higher in the fovea and declines rapidly towards the periphery. In contrast, rods are absent in
the fovea and populate the periphery of the retina. The blind spot (depicted as a white bar) corresponds
to the location of the optic nerve where no photoreceptors are present

operating range). In contrast, cones are responsible for photopic vision (higher light levels
where rods saturate); they have faster response and higher spatial resolution. This transition
from rod to cone-dominated vision occurs at intermediate light levels (mesopic range), where
both types are sensitive. Cones are further classified into three subtypes according to their
spectral sensitivities (short, medium, and long wavelengths), which provides the basis for
color discrimination. Unlike cones, rods contain a single photosensitive pigment and thus
cannot support chromatic vision. The photoreceptors are arranged in a hexagonal grid (retinal
mosaic; Curcio and Hendrickson, 1991) within the outer neuroepithelial layers of the retina.
Their distribution varies as a function of eccentricity with a higher concentration of cones in

2



General introduction

the fovea — the central location where vision is the sharpest (right column in Figure 0.1).
Cone density then decreases towards the periphery and falls rapidly outside the fovea, where
rods are located. Ganglion cells are within the inner retina, receiving the signals from rods
and cones through several synaptic connections. Their activation region is generally divided
into ON and OFF depending on whether they are triggered by increments or decrements in
light intensity, respectively. ON and OFF subregions are located either in the center or the
periphery of the cell’s receptive field (ON-center combined with OFF-surround and vice versa);
this center-surround antagonism generally reveals higher sensitivity to image gradients than
uniform background fields (Figure 0.2). The axons of the cells converge at the optic nerve, and
this segregation remains intact up to more advanced cortical areas.

ON cell OFF cell

center surround uniform center surround uniform

+

+

–+ +

+

+

–+ +

+

+

–+ +– –+

–

–

– –+

–

–

– –+

–

–

Figure 0.2 An illustration of center-surround receptive fields. The left and right drawings depict ON-
center and OFF-center (OFF-surround and ON-surround) cells, respectively. A spot of light flashed on
the center of an ON cell (left first column) will cause excitation (indicated with the plus symbol) and
increase its firing rate. Conversely, if the light falls on the same cell’s surround (left second column), the
response will be inhibited (indicated with the minus symbol). Suppose one uses a uniform stimulation
instead that covers both the center and the surround of the cell (left third column). In that case, the
surround will be inhibited and the center excited — a mechanism known as lateral inhibition. OFF cells
(shown on the right) have the opposite organization (complementary responses and activation)

The human visual system can operate over a massive range of light intensities spanning
more than eleven orders of magnitude (see Table 1.4 in Makous, 1998). However, only part of
this range can be handled by the pupillary light reflex and the rod and cone subsystems described
above; additional adaptation mechanisms are needed to maintain the system’s responsiveness
at different light levels (before the response reaches its ceiling; see Walraven et al., 1990). One
characteristic example is pigment bleaching — photopigment molecules are depleted faster than
they can be restored at high light levels reducing the photon catch and allowing the cones to
continue to operate. Evidently, adaptation is a process that allows the visual system to respond
to the relative luminance variations of the surrounding objects (the surface reflectances in a
typical scene vary to a much lesser degree than the range of illumination throughout the day).
The different aspects of light and dark adaptation have been previously analyzed using various
paradigms (a detailed review can be found in Hood and Finkelstein, 1986). For the thesis
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purposes, our primary interest lies in how the visual sensitivity to these relative luminance
differences varies with the level of adaptation. In psychophysics, visual sensitivity refers to the
reciprocal of the threshold contrast, i.e., the just-noticeable light increment over the background
luminance required for the stimulus to be detected (given the Weber contrast definition). Note
that for periodic light patterns (e.g., the spatial sine-wave in Figure 0.3), a more appropriate
expression is the Michelson contrast, i.e., the amplitude of the luminance modulation over the
average luminance (this is also the convention that this thesis follows). A comparison among
the various contrast measures can be found in Kukkonen et al. (1993).

Figure 0.3 A sinusoidal grating decreasing in spatial frequency and luminance contrast (rightwards). For
periodic luminance patterns, contrast is most commonly defined as the difference between the maximum
and minimum luminance values over their sum (Michelson contrast)

Early studies typically employed a brief light stimulus presented against a uniform back-
ground to measure sensitivity as a function of adaptation luminance (commonly referred to
as threshold versus intensity curve; an example can be found in Figure 2.1). Sensitivity is
generally known to increase with background luminance before obeying Weber’s law, i.e., the
change in luminance required to reach the threshold becomes proportional to the background
level (sensitivity plateaus; Chapter 2 analyzes this relationship in more detail). However, it is
well-known that adaptation luminance is not the only associated factor; several other stimulus
characteristics affect sensitivity, e.g., the spatial and temporal frequencies of the luminance
pattern (see a detailed summary in Graham, 1989). A widely-used measure for these effects is
the contrast sensitivity function (CSF). The spatiotemporal CSF describes the sensitivity of the
observer as a function of the spatial and temporal frequencies of the stimulus (Figure 0.4; see
Chapter 2 for a detailed analysis of the spatial frequency component). Sensitivity variations in
the other pattern dimensions (e.g., mean luminance, orientation, eccentricity, wavelength, and
size) are often described through their effect on the CSF; the same also applies to individual
factors such as the observer’s age or other viewing conditions (e.g., monocular). In other words,
the observer’s ability to detect or discriminate visual patterns can be generally quantified by
their CSF. It follows that combinations of spatial and temporal frequencies outside the area
defined by the sensitivity limits are invisible to the human eye.
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Figure 0.4 Typical spatiotemporal contrast sensitivity surface (left) and contour (right) following the
model described in Kelly (1979). The model was fitted to sensitivity measurements for drifting sinusoidal
gratings at various spatial and temporal frequencies. The sensitivity boundary (i.e., where log sensitivity
asymptotes to zero) describes the spatial and temporal limits; frequencies outside this range are invisible
to the human eye. The cut-off frequencies were measured at the lower end of the photopic range, where
contrast sensitivity is generally not expected to have reached a plateau. Note that the spatiotemporal
surface measured with counterphase flickering stimuli (e.g., Robson, 1966) has the same shape over a
wide frequency range, scaled-down by a factor of two in sensitivity after retinal stabilization (i.e., after
compensating for the eye movements of the observer; Kelly, 1979)

Following this brief overview, it becomes apparent why central characteristics such as the
spatial and temporal resolution (minimum sampling intervals), the average luminance, or the
dynamic range of a visual display are linked with the properties of the human visual system.
Classical sampling theory states that the minimum sampling requirement can be determined by
the Nyquist limit — the signal can be exactly reconstructed if the sampling rate is at least twice
the highest frequency component one wishes to sample (usually after prefiltering the signal
to remove higher frequencies). If that requirement cannot be satisfied, then aliasing occurs;
spectral aliases begin to overlap, and direct reconstruction is no longer possible (an example
can be found in Figure 1.2). Ideally, the highest frequencies that one aims to reconstruct should
generally match what human vision can perceive. One typical example is the appearance of
sampled motion. Suppose one wishes to depict a vertical line moving smoothly across the
screen at constant velocity (left column in Figure 0.5). Its frequency spectrum will be a line
passing through the origin with spectral replicas along the temporal direction due to the finite
sampling in the time domain (middle and right columns in Figure 0.5). If these replicas fall
outside the region of visible frequencies (known as the window of visibility; Watson et al.,
1986), one can generally assume that no artifacts will be visible and motion will appear smooth.
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Although this is a simplified description of the observer’s sensitivity, the general idea is clear;
the window’s edges define the region of frequencies that one would need to preserve in the
visual signal. Naturally, factors that change the spatiotemporal sensitivity limits also affect the
window’s size and shape (see Watson, 2013a). Note that the necessary sampling rates cannot
always be achieved, nor are they always desirable (e.g., when resource efficiency is the primary
objective instead). In that case, the sampling requirements can also be optimally specified by
considering the acceptability (rather than visibility) of the related visual artifacts.
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Figure 0.5 An illustration of the window of visibility for sampled motion. Left: the horizontal position
of a smoothly moving vertical line over time (gray arrow). Middle: a stroboscopic presentation of the
stimulus with constant velocity ∆x/∆t, where ∆t is the refresh interval and ∆x is the displacement. Right:
the Fourier domain representation of the sampled signal. The horizontal and vertical axes show the
temporal (Ft) and spatial (Fx) frequencies, respectively. The temporal sampling produces aliases spaced
1/∆t apart with a slope of −∆t/∆x (parallel thin blue lines). The spectrum is otherwise identical to the
smoothly moving stimulus (ignoring any subtractive distortions for simplicity). The shaded diamonds
(similar to the sensitivity boundary in Figure 0.4 on linear scale) are a simplified representation of the
spatiotemporal limits in human vision (referred to as window of visibility) at two different background
luminance levels (L1 < L2). The diamond corners depict the highest spatial (VA) and temporal (CFF)
frequencies that can be perceived (commonly referred to as visual acuity and critical flicker fusion). If
the spectral aliases lie outside this window (as shown for the lower luminance), we predict that they will
be invisible to the human eye, and motion will appear smooth. In the opposite case (as shown for the
higher luminance), the displayed image sequence would be contaminated with visible artifacts. Note
that eye movements shear the window in the temporal frequency domain (Girod, 1992)

The visual scene is projected onto a two-dimensional retinal surface, but we perceive a
three-dimensional world. Regardless of how dense and broad sampling one can effectively
support in the other dimensions, the display will fall short of replicating optical reality if
it cannot provide a truthful representation of the scene’s depth. Depth cues can be broadly
classified into ones based on triangulation, perspective projection, and light transport effects
(Banks et al., 2016). The last two types include cues such as linear perspective, relative size,
shading, and occlusions, whereas the first comprises binocular disparity, motion parallax, and
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retinal blur (Figure 0.6). The primary interest (for the thesis purposes) lies in the first type,
which is more closely related to the specific display characteristics and generally far more
challenging to reproduce (to the extent that display classification is often based on which of
these cues they can support). Binocular disparity describes the difference in the location of
a scene object in the left and right retinal images. Motion parallax expresses how the retinal
location of this object changes over time as the eyes translate. Blur (in the current context)
refers to the defocus of objects located away from the eye’s focal plane. Note that all three
cues are neurally coupled with extraretinal signals; binocular disparity with eye vergence (see
Figure 0.6), motion parallax with smooth eye movements (Nadler et al., 2009), and defocus
blur with accommodation — the eye switches its focus (accommodates) to another object in
depth by changing the power of the crystalline lens.

L L

R

R L R

Figure 0.6 An illustration of triangulation-based depth cues. The bottom panels show a simplified
version of the corresponding left (L) and right (R) retinal projections. Left: binocular disparity, i.e.,
the difference in the corresponding locations of a scene object on the retinae (red vertical lines), and
vergence, i.e., inward and outward counter-rotational eye movements. The curved dashed line depicts the
geometric horopter — the set of points around fixation with zero retinal disparity (black vertical lines).
Binocular disparities are commonly described as uncrossed for objects located outside the horopter (red
marker in the left column; the eyes need to diverge to fixate on it) and crossed for objects closer to
the observer (blue marker in the right column; the eyes need to converge instead). Note that the visual
system cannot successfully fuse the two images if the range of disparities exceeds an upper limit on
either side of the horopter (a region known as Panum’s fusional area). Middle: motion parallax cues for
an observer translating laterally to the right while maintaining fixation (the image depicts the left eye).
The monocular retinal location of the object changes over time in a geometrically similar manner to
binocular disparity. Objects at different depths produce different retinal velocities with opposite signs
around fixation (objects with crossed and uncrossed disparities appear to move in opposite directions).
Right: defocus blur and accommodation (collectively referred to as focus cues). Under natural viewing
conditions the eye adjusts its accommodative distance to bring the point of fixation into focus (black
marker). Objects at different distances (e.g., blue marker) are blurred on the retina
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In the disparity domain, a similar but much narrower window of visibility can be generally
defined based on the spatiotemporal disparity thresholds (Kane et al., 2014). Note that the
observer’s sensitivity function can be measured in a similar way to the CSF by using periodic
patterns in depth instead of luminance. Thus, one can generally (within the same simplified
framework) specify the spatiotemporal disparity variations they need to preserve in the stereo-
scopic signal (helpful in applications such as disparity compression, e.g., see Didyk et al.,
2011). Conventional 3-D display technologies support disparity cues, but there is only a limited
depth range relative to the focal distance that allows comfortable viewing (known as the zone of
comfort; Shibata et al., 2011). On the display side, the primary source of this discomfort is the
vergence-accommodation conflict (Hoffman et al., 2008). The eye accommodates to the physi-
cal display surface, but vergence varies depending on where the observer fixates when viewing
the scene; this mismatch produces a conflict between disparity and focus cues. Typically, more
advanced displays designed to address this issue introduce additional objectives depending on
the specific technology they implement. These objectives may include, for instance, specifying
the maximum depth plane separation in multiplane displays (the sampling of focal distances;
see MacKenzie et al., 2010) or the minimum angular view density in directional displays
(the density of discrete views entering the pupil; e.g., see Nakamura et al., 2013) to drive the
accommodative response effectively. Furthermore, additional constraints on the disparity range
apply to displays offering parallax cues to non-stationary observers. One characteristic example
is the shallow depth-of-field (the range where objects appear sharp) in multiview systems. It is
known that depicting scenes with a larger depth range requires a higher view density to avoid
aliasing artifacts (Chapter 1 demonstrates this relationship in detail); however, the number of
discrete views (and thus depth) is already upper-bounded in practice. This problem is often
treated using prefiltering (depth-of-field blur; see Zwicker et al., 2006), leading to this effect.
It follows that from a perceptual perspective, an ideal display would need to deliver smooth
continuous parallax without noticeable image artifacts or cue conflicts.

Given that distortions may appear at various stages during the signal acquisition, transmis-
sion, and visualization process, satisfying these criteria becomes quite challenging in practice
(particularly for complex natural scenes). As a result, the displayed images often suffer (to a
higher or lesser degree) from visible artifacts, and hence subjective visual assessment becomes
essential in evaluating and optimizing these processes. However, subjective assessments are
usually impractical and tedious, creating a need for objective metrics that can perform similarly
to a human observer. It is known that conventional pixel-based signal fidelity measures such
as the peak signal-to-noise ratio (PSNR) do not generally correlate well with subjective judg-
ments (e.g, see Wang and Bovik, 2009). This shortcoming led to numerous perceptually-based
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quality metrics (i.e., computational models) incorporating how human observers process visual
information. It should be noted that fidelity and quality are not interchangeable terms; fidelity
is rather one of the various factors affecting the perceived quality (e.g., Winkler, 2001). For
our purposes, the primary interest lies in the ability of these models to predict the threshold
sampling density for any given scene by gradually increasing the strength and visibility of
the related artifacts, and hence this distinction is not made. Quality metrics can be generally
classified based on the input they require as reference. Full-reference metrics assume that
the (undistorted) reference signal is known and available. Reduced-reference metrics require
only some features of the reference signal. No-reference metrics, as the name also suggests,
receive only the distorted signal. Naturally, having more information makes it easier for the
model to predict the perceived degradation level; however, these requirements cannot always
be satisfied in practice (which is why different options exist). Here, our evaluation was limited
to full-reference metrics; other types may be included in future work (see general discussion).
Any further classification, although not clear-cut, can be usually based on similarities in the
underlying approach or the specialization of the respective family of metrics (a detailed intro-
duction can be found in Wang and Bovik, 2006). Note that dedicated video and stereo image
and video metrics form distinct subcategories. Although 2-D image metrics can also be applied
to videos by pooling the individual scores (see Chapter 1), they cannot directly account for
temporal factors such as different presentation rates and protocols. The same applies to stereo
image and video pairs in the presence of asymmetric distortions.

In the development of full-reference metrics, one can distinguish two main approaches.
The first (bottom-up) is derived from near-threshold psychophysics, modeling the different
aspects of the visual system that determine artifact (error) visibility, e.g., the visible differences
predictor (VDP; Daly, 1992). The second (top-down) is based on hypotheses about the overall
functionality of the visual system, e.g., extracting the image structural information (SSIM;
Wang et al., 2004). However, there is no sharp distinction between these (conceptually different)
approaches, and indeed many metrics combine elements from both domains. A generic error
visibility model is depicted in Figure 0.7. The input images are typically first passed through a
preprocessing step. Common preprocessing operations include luminance conversion, color
transformation, and low-pass filtering simulating the point-spread function of the eye’s optics.
The next stage is usually a decomposition of the preprocessed images. Both psychophysical
and neurophysiological evidence supports the idea of multiple mechanisms selective to spatial
frequency and orientation (e.g., Graham, 1985). Following a similar logic, these processing
algorithms usually decompose the images into different frequency and orientation bands. Such
decompositions often include the cortex transform (Watson, 1987) and steerable pyramids
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(Simoncelli and Freeman, 1995). The differences in the resulting coefficients can then be
adjusted (normalized), considering the variations in contrast sensitivity (i.e., the CSF) and
masking effects (e.g., contrast masking; Legge and Foley, 1980) — the term masking generally
describes how the presence of a signal component (masker) affects the visibility of another.
Finally, these differences (errors) are combined into a single distortion measure using a pooling
method (e.g., Minkowski summation). Note that the differences can also be mapped to detection
probabilities (before pooling) using an appropriate psychometric function (see definition in
Subsection 1.2.5). It follows that a visibility metric that claims it can effectively simulate
all the relevant visual system components would also need to demonstrate it can predict the
visual system response to arbitrary input. In reality, the human visual system is complex
and not yet fully understood; thus, any modeling attempt to satisfy this criterion becomes
quite challenging in practice (even comprehensive bottom-up models usually need to be
based on many simplifying assumptions). Wang et al. (2004) summarized several drawbacks
of error visibility methods, such as the fidelity-quality equivalence described above or the
generalization to suprathreshold distortions, and proposed an alternative top-down measure
based on the structural similarity between the images (currently one of the most widely used
general-purpose image metrics). Structural distortions were indirectly defined as errors that
cannot be classified as non-structural; non-structural errors are the ones that do not distort the
structure of the objects in the scene, such as alterations in contrast and luminance. Naturally,
these methods are not limited to structural-based measures; however, an in-depth review is
beyond our purposes (a recent survey can be found in Zhai and Min, 2020).

preprocessing decomposition contrast
sensitivity

masking
effects

error
pooling

Figure 0.7 Block diagram of a generic error visibility metric. The reference and distorted images are
first passed through preprocessing, followed by a decomposition and error normalization considering
the contrast sensitivity function and masking effects. At the final stage, the errors are pooled to provide
a single distortion measure. Note that the CSF is sometimes applied before the decomposition

The perceived image quality and naturalness of the depicted scenes are undoubtedly sig-
nificant parts of the overall visual experience; however, they are not the only factors involved
in specifying the optimal (from a human-centric perspective) sampling characteristics. As the
discussion moves away from artifact visibility thresholds, aspects such as task performance or
visual comfort and fatigue become critical in determining the limits that human observers can
tolerate. The vergence-accommodation conflict described above is a characteristic example
of how viewing discomfort becomes a central issue in the design of (stereoscopic) displays.
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Indeed, the design of common display characteristics was partly influenced by human factors.
For instance, it is known that perceptible display flicker induces visual discomfort (e.g., Isensee
and Bennett, 1983). It is also known that the refresh rate is a central variable in the design of
flicker-free displays (e.g., Watson and Ahumada, 2011). A similar connection can be made
between the screen resolution and reduced visual performance (e.g., Ziefle, 1998). Naturally,
these factors can be more effectively assessed under ecologically valid conditions.

Outline and thesis structure

This dissertation investigated current aspects of modern visualization and display technologies
from the perspective of the human observer. We explored three topics on (i) angular, (ii) spatial,
and (iii) temporal sampling characteristics related to the visibility and acceptance of sampling
distortions and visual discomfort. Each topic is presented in a dedicated and self-contained
chapter, including the background and objectives, description of the experimental design,
analysis of the results, discussion of the findings and their limitations, and potential extensions,
with the necessary supplementary material in a separate appendix. The last chapter contains an
overview of the main findings, limitations, and future work.

Summary

A key objective in emerging 3-D technologies, e.g., lightfield displays (Yamaguchi, 2016), lies
in their ability to adequately support full-parallax visualization, which would allow the viewer
to experience a stereoscopic 3-D scene from multiple continuous perspectives, i.e., the observer
can move around the scene and see different aspects of an object or occluded regions of the
background. A fundamental problem in visualizing continuous-parallax content is the angular
sampling limitations, i.e., the number of discrete perspectives. Trivially, a scene depicting a flat
Lambertian surface on the screen plane would only require one view. A scene with a higher
depth range would be expected to require more views. Additionally, the velocity with which
the viewer moves around the scene might matter; changing rapidly between perspectives might
make distortions less noticeable than if they occur widely-spaced in time.

In the first chapter, we investigated the perceptually optimal view density; the just-noticeable
step for a human observer to perceive a distortion as they transition from one perspective to
another. We addressed this problem by analyzing the artifacts that arise in an image sequence
replicating the changing views of a synthetic 3-D object for a moving observer. Using a generic
simulation on a passive stereoscopic display, we performed a psychophysical study to measure
the visibility and acceptance of these artifacts changing the object’s depth range and the virtual
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observer’s velocity. In a two-interval forced-choice task, participants indicated the "better
looking" interval between a reference sequence where we explicitly updated the correct view at
every image frame and a distorted one where a sub-sampling factor was modulated to increase
the severity of the artifacts. As the view density threshold generally varies across different
scenes and conditions, we assessed how well full-reference quality metrics could capture the
perceived distortions in the simulated image sequences. We found that the metric scores could
indirectly characterize the perceived degradation intensity on a unidimensional scale, allowing
us to establish a general method for predicting observer performance.

The most general way of quantifying what human vision can perceive is the contrast
sensitivity function (CSF). Recall that the CSF describes how the sensitivity to visual stimuli
changes as a function of their spatial and temporal frequencies. It predicts which artifacts will
be detectable on a display and what changes to hardware will result in noticeable improvements.
Many of the quality metrics described above, were explicitly based on the visual system
properties, as quantified by the CSF. One of the main factors affecting contrast sensitivity
is adaptation luminance. Generally, increasing the luminance of a display results in higher
sensitivity, with a shift of the peak magnitude towards higher frequencies (e.g., Van Nes and
Bouman, 1967). Modern displays can now reproduce images at much higher luminance range
than was previously feasible; thus, it is essential to understand how sensitivity varies in this
extended range, particularly concerning its asymptotic behavior at high-light levels (i.e., the
upper limit where increasing luminance further will not result in any improvement). The
changes of sensitivity with luminance are often expected to fall into three regions from low
to high luminance levels, described as a transition from the linear to DeVries-Rose to Weber
range where contrast sensitivity reaches its ceiling (Graham, 1989). The CSF has been widely
studied in the past; however, datasets where this extended range could be more thoroughly
investigated, particularly the region near saturation at high frequencies, are limited.

In the second chapter, we measured the spatial CSF at relatively high luminance levels
and frequencies using a custom-built display setup and supplemented our data with a large
number of measurements in the literature. We then explored the effect of luminance on contrast
sensitivity and assessed how well the theoretical transition described above approximates the
empirical data. Using segmented regression analysis, we verified a gradual transition among the
three regions with steeper slopes for higher spatial frequencies and lower luminance levels. A
consistent sensitivity decrease following saturation was also found at low to intermediate spatial
frequencies across studies. Based on this theoretical construct, we adopted and modified a CSF
model (Rovamo et al., 1994, 1997) comprising a low-pass optical modulation transfer function,
high-pass lateral inhibition, a matched filter, and three limiting internal noise components
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corresponding to each region. We then assessed the model’s performance on the full dataset
against similar approaches and suggested an eight-parameter form to approximate the contrast
sensitivity surface in the spatial frequency-luminance domain.

Another characteristic of modern visual displays is their capability to support higher frame
rates that improve motion fidelity by reducing the severity of the related artifacts, e.g., motion
blur that arises in hold-type displays. As the optimal frame rate is naturally task-specific, the
overall user acceptance and perceptual quality and comfort will vary under different conditions,
with more dynamic content demanding a higher frame rate. However, most consumer displays
today typically operate at relatively low frame rates (usually 60 Hz), with an even lower
rate for portable devices where resources (e.g., battery life) are limited, making them more
susceptible to motion artifacts. Since the frame rate modulation is also relevant for moving
static images and text around the screen, e.g., when a user scrolls through a document, one
question that naturally follows is whether these effects are also evident during typical display
use, or observers generally exhibit some tolerance. Currently, little is known about the potential
gains in the perceived quality and comfort when users perform regular display tasks.

In the third chapter, we measured the subjective effects of high frame rates (up to 240 Hz) on
visual comfort, fatigue, and overall preference and investigated their correlation with objective
indicators in task performance and blinking activity during regular display use. In a naturalistic
reward-based scan reading task, the participants scrolled through a text document searching
for errors at different frame rates while we recorded their eye activity using a binocular eye
tracker. We evaluated two scenarios: in the first one, the subjects scrolled through the text
at will, whereas, in the second, the text speed was fixed at a relatively high value increasing
the task dynamics. The measurements indicated that for the self-paced scrolling condition,
the observers performed the same with no significant differences in their overall preference,
and no reported increase in visual fatigue and discomfort symptoms for frame rates down to
30 frames/s. During the more dynamic task, the differences were generally evident even at
the highest frame rates (given the observer preferences) without any significant decrease in
task performance. In both cases, the increase in blinking activity generally correlated with the
decrease in the frame rate, with a more substantial effect during the dynamic task. However,
the effects were practically small compared with other associated factors. The results suggested
that for everyday display tasks, e.g., self-paced scrolling through text at moderate speed, the
frame rate can be substantially reduced (even to 30 frames/s or lower) without severe effects on
the user. In contrast, this tolerance diminished under the more dynamic content.
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Chapter 1. Visibility of angular distortions in full-parallax content

1.1. Introduction

The optimal representation of a three-dimensional scene, regardless of the specific display
technology, could be defined as one which provides a veridical free-viewing visual experience
by minimizing the required computational and visualization resources. Given this objective, a
display would need to replicate the equivalent retinal images that would be created if an observer
or multiple observers moved around the natural scene by also eliminating redundant visual
information. In other words, one would need to sample and reproduce the rays of light through
every point in space, i.e., the lightfield (Gershun, 1939), based on the properties and limitations
of the human visual system (HVS). The distribution of these light rays in the most general form
can be expressed as a 7-D function, denoted by P(θ ,φ ,λ , t,Vx,Vy,Vz), where θ and φ are the
propagation angles, λ is the wavelength, t is the time, and V is the viewing position in 3-D
space (Adelson and Bergen, 1991). It follows that for a monochromatic static feature in the
scene, this function can be reduced to four dimensions in free space. This 4-D function can
then be represented in various ways, with the two-plane parameterization (Levoy and Hanrahan,
1996) being the most common. In that case, the lightfield is denoted by L(u,v,s, t), where (u,v)
and (s, t) are the points where each ray crosses the two planes (see Figure 1.1). This convenient
structure allows us to assign one plane to the different scene viewpoints and the other to the
image or display plane depending on the context (image acquisition or display). However, due
to the discretization, one can only sample this field with a finite spatial and angular resolution
(number of perspectives). This chapter explores the perceptually optimal discrete angular view
density for continuous parallax; that is, how finely-spaced must these views be so that a human
observer does not notice any distortion as they transition from one perspective to another.

Naturally, failure to meet the angular sampling requirements could result in visible artifacts
during the image acquisition and rendering process or the display, e.g., abrupt transitions and
double or blurry images (see examples in Halle, 1994; Levoy and Hanrahan, 1996; Moller
and Travis, 2005). If one ignores the specific display characteristics, the minimum sampling
rate can be analytically derived as a function of the scene depth and highest spatial frequency
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Figure 1.1 Left: Top-view of an image acquisition setup using the two-plane parameterization. A point
in the 3-D scene at depth z is seen by two pinhole cameras located at t1 and t2 with focal length f , at
horizontal image coordinates v1 and v2 with disparity ∆v = v2 − v1. Right: The captured images using a
3 × 3 grid on the st-plane. Slicing the views (here the central) along the u-axis and stacking the pixels
on the orange line would form an EPI of the 3-D scene, similar to the one depicted in Figure 1.2

following the work in Chai et al. (2000). This approach can be briefly demonstrated if we
consider equidistant camera positions along the t-axis described above (horizontal parallax).
The captured images can then be combined to form a 3-D volume of different perspectives
with the t-axis perpendicular to the uv-plane. This arrangement can be further simplified by
slicing the volume along the u-axis (i.e., stacking the image rows for a fixed u across the
perspective views). Consequently, the complex scene structure can be directly mapped to
features within these slices or epipolar plane images (EPI) as defined by Bolles et al. (1987).
In this 2-D representation, any visible point in the scene would appear as a line with a slope
determined by its depth and the adjacent views distance. This regular structure of the EPI can
then be exploited in the Fourier domain (Fv - Ft frequency axes; see Figure 1.2), where its
spectrum is limited by the minimum and maximum depths in the scene forming a "bow-tie"
shape with replicas along the Fv and Ft direction due to the finite spatial and angular sampling.
As the replicas in Ft direction are spaced 2π/∆t apart, by increasing the sampling interval
∆t along the t-dimension, they will start to overlap resulting in these aliasing artifacts. It
follows that a higher depth range requires a higher view density. In any case, a sufficient
condition to avoid these artifacts is to limit the disparity among the neighboring camera images
to ±1 pixel. Although this approach is given in the context of signal reconstruction, similar
principles would apply to the displayed image sequence if we simulated an observer translating
along the camera path. Note that when the observer moves between two sampled perspectives,
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due to the eye offset from the intended viewing position, the acceptance of the intermediate
views (e.g., the nearest-neighbor perspective) is not solely controlled by these artifacts but
could also be affected by geometric distortions. However, we expect these effects to appear at
relatively larger mismatches as human observers partially compensate for incorrect viewing
positions (Vangorp et al., 2013). Additionally, as each eye receives the correct perspective
at different intervals, stereoscopic effects could also emerge, e.g., in the form of temporal
binocular disparity variations, asymmetric distortions, or even temporary loss of stereo parallax
when both eyes receive the same perspective. The purpose of this study was to assess from an
end-user viewpoint the tolerance of a human observer to these artifacts and provide a method
to approximate the perceived distortion intensity.
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Figure 1.2 Left: The central EPI of the continuous lightfield signal for the above scene with three
objects placed at two depth levels. Center: Sparse sampling along the t-dimension. The vA and vB
indicate the image coordinates of a point seen by two cameras positioned at tA and tB. Right: The
resulting spectrum (background) with a diagram depicting the baseband (bounded by lines corresponding
to the minimum and maximum depth z of the scene from the two planes) and its aliases (lighter gray) at
2π/∆t distance along the Ft frequency axis

A subjective threshold estimation for all possible conditions and variations would be
infeasible. Predicting artifact visibility or acceptance would require modeling both the specific
viewing conditions (e.g., display luminance) and the human observer characteristics (e.g.,
the spatiotemporal contrast sensitivity function), which can become highly challenging as
the complexity of the visual input increases. A straightforward "off-the-shelf" method for
approximating the perceived degradation by integrating how the HVS processes the visual
information (even with a top-down approach based on its overall functionality) is quality
metrics. Recall that quality metrics are computational models designed to objectively evaluate
the quality of distorted images and videos in agreement with human judgments. As essentially
the retinal image sequence quality degrades, one would expect the state-of-the-art metrics to
describe human near-threshold performance to some extent, even if they are not primarily
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constructed to capture distortions in the angular domain. Previous studies indicated that specific
metrics correlate with the perceived quality for compressed lightfield images (Paudyal et al.,
2017) and the perceptual scaling of angular specific lightfield distortions when full-reference
(i.e., sufficiently dense sequence) is available (Adhikarla et al., 2017).

Following this direction, we generated 3-D image sequences replicating the changing
views of a static scene for a moving observer (see Figure 1.3). We used a synthetic stimulus
modulating the depth range, the virtual observer’s movement speed, and the angular view
density. The resulting artifacts included perspective distortions due to incorrect viewing
positions, non-smooth motion parallax caused by abrupt view transitions, and blurry images
with double contours as a result of inter-perspective crosstalk (referred to here as view blending;
a common artifact in autostereoscopic multiview displays). Stereoscopic effects related to
the asynchronous correct perspective update in the two eyes and the temporary loss of stereo
parallax were also simulated. The analysis was limited to a Lambertian scene with a single 3-D
object and horizontal parallax. We measured the perceived degradation using a two-interval
forced-choice task on a passive stereoscopic display and evaluated the distortion scaling
similarity between the observed data and a wide range of 2-D and stereoscopic image and video
quality metrics. We then established a quantitative relationship between the metric scores and
the observer performance, which allows for threshold estimation on variable input.
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Figure 1.3 Schematic of the simulated observer where w is the relative weight of the respective views
or zones (Latin numerals) at the corresponding eye locations (X) and dx is the varying movement step
size. The weight w is given from the crosstalk model (referred to here as view blending) as described
below. For instance, the observer at the leftmost position sees a sharp image of the first perspective with
their left eye, whereas their right eye receives a composite image of the first two perspectives. If view
blending is disabled, then the right eye will see a sharp image of the second perspective. In both cases,
the retinal images are distorted due to the offset from the correct viewing positions
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1.2. Methods

1.2.1. Participants

Twelve volunteers were divided into two groups. The first group (n = 7, mean age: 35 years,
SD: 13 years, span 21 – 55 years, four males and three females) evaluated the stimulus shown
in Figure 1.5 placed at the zero parallax plane. The second group (n = 5, mean age: 33 years,
SD: 11 years, span 23 – 50 years, three males and two females) evaluated the same stimulus
under the same conditions except for a translation of the 3-D object in depth. They had normal
or corrected to normal vision with no history of visual problems. All the observers were able to
complete the training session accurately. The author was excluded. The Newcastle University
Ethics Committee approved the study, and all participants gave written informed consent.

1.2.2. Apparatus

The stimuli were presented on a 47" passive stereoscopic display (LG 47LD920-ZA) in a dark
room at a total resolution of 1920×1080 pixels and a frame rate of 60 Hz, with the left and
right views horizontally interleaved. The average luminance of the 3-D object through the
polarized glasses was 32 cd/m2, as measured using the Minolta LS-100 meter. Participants
were positioned at a viewing distance of 150 cm, measured perpendicularly from the center of
the screen to their eyes’ midpoint. They viewed the simulated stereoscopic video from a static
position using a chin rest to ensure their eyes were aligned correctly. Before each session, the
simulation parameters were adjusted to the participant’s interocular distance.

1.2.3. Image sequence simulation

The object views were pre-rendered in Blender software (version 2.78, Stichting Blender
Foundation, Amsterdam, the Netherlands) using a dense regular horizontal camera grid (Figure
1.4) with a baseline of .5 mm (maximum disparity less than 1 pixel). The array was positioned
at 150 cm, focused on a plane passing through the virtual world zero coordinates. The sensor
size and the focal length for each camera were set to 35 mm and 29 mm, respectively. Near-
zero disparity at the focus plane was achieved by horizontally shifting the camera sensors
towards the center (the optical axes remain parallel) using the tools developed by Honauer
et al. (2016). The textures were rendered at a resolution of 1920×1080 pixels. The 3-D object,
when its geometrical center was placed at the world origin, extended from (-33, -14, -20) to
(45, 22, 18) cm, in the horizontal, vertical, and depth axes, respectively. The camera grid
extended symmetrically around the central view at a distance of 45 cm covering approximately
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a 36 degrees field-of-view relative to the object. The observer’s eyes were simulated as two
pinhole cameras with off-axis projections coinciding on the zero parallax plane at a distance
of 150 cm. The virtual eyes translated on a horizontal path (same as the rendering array)
around two identical virtual planes (one plane visible to each eye) placed at zero parallax. The
corresponding views (rendered images) at each eye location were then projected on these virtual
planes. For simplicity, the movement step size (dx) was set as a multiple of the array baseline
value. Before the images were projected on the virtual planes, the textures of the adjacent views
were passed through an alpha channel blending function using a super-Lorentzian profile (Li,
2002) to account for display related effects (Figure 1.3; the weight w was given as function of
the relative to the zone center and normalized by half its width position x: w(x) = (1+ |x|M)−1).
The parameter M controlled the amount of crosstalk between adjacent perspectives. The output
images of the virtual eyes (the image sequence replicating the movement around the object)
were then horizontally interleaved and projected on the physical stereoscopic display at the
fixed subject’s location (Figure 1.4).

rendering array

virtual projection planes

L physical S3D display

R

L
Rtexture

blending

texture
blending

interleave

fixed

R views
L views

C

Figure 1.4 The image sequence generation process for the simulated moving observer

1.2.4. Experimental task and conditions

In a two-interval-forced-choice task (2-IFC), the subjects indicated the "better looking" image
sequence between a dense reference condition and a randomly chosen distorted one (Figure
1.5). In the reference condition, we explicitly updated the correct view of the synthetic stimulus
at each simulated observer’s location. The severity of the distortions was mainly modulated
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using a subsampling factor N (distortion level); that is, we updated the correct view at every N

steps. The movement step size (dx) was set at 2 mm and 3 mm or equivalently at a velocity of
12 cm/s and 18 cm/s, and eight distortion levels N ∈ {2,3,4,5,7,9,12,16} were evaluated. The
view blending was examined as a modified distorted condition (M = 4) for the same parameter
values as in the sharp view transitions (no blending; M = 0). For the first group of participants,
the single 3-D object was rendered with its geometrical center positioned on the zero-parallax
plane (coinciding with the physical plane of the monitor). For the second group, we explored
the effect of moving the object at 15.6 cm off the screen plane and towards the observer. Points
further from the zero-parallax plane create larger discontinuities between the successive views
in the image sequence, thus resulting in more noticeable distortions (e.g., abrupt transitions).
The angular size of the object at its central location relative to the subject was approximately
18×8 degrees (horizontal × vertical angle), increasing to 20×10 degrees when we translated
the object in depth. The interval (black image) between the two sequences was set at 1 s. Each
distorted condition was evaluated five times for a total of 160 trials per observer. The order of
the two simulated videos was also randomized. At random intervals, a randomly selected scene
with a different object replaced the tested stimulus to maintain participant engagement. The
experiment was completed in one visit lasting approximately 1 hour.

Reference

Distorted

Distorted
with view
blending

Figure 1.5 The 3-D model (The Stanford 3D Scanning Repository, 2020) used for generating the
experimental stimuli and its central epipolar plane image (i.e., the central image rows from the simulated
views stacked together) with an example of the respective distortions. On the right, a zoomed-in version
of the image region indicated with the dashed rectangle on the left
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1.2.5. The psychometric function and the degradation scale

Given that the sequence degradation is a monotonically increasing function of the subsampling
factor N, and a correct response can be defined as the selection of the dense sequence in the
paired comparison, we can assume that the observer’s performance (i.e., the ratio of correct
responses) will rise monotonically from an equal probability in the sequence selection to
absolute preference for the reference. The general form of this psychometric function ψ

(equation 1.1) is commonly given for stimulus intensity x as:

ψ(x;α,β ,γ,λ ) = γ +(1− γ −λ )F(x;α,β ) (1.1)

where γ is the guess rate, λ is the lapse rate (i.e., the probability of a failure irrespective of
the stimulus intensity), and F(x;α,β ) a function that relates the stimulus intensity x to the
underlying sensory mechanism performance, with α and β the location and scale parameters
(commonly referred to as "threshold" and "slope"). Assuming that the sensory effect corre-
sponding to each sequence is a one-dimensional Gaussian random variable, signal detection
theory (Green and Swets, 1966) predicts that performance will rise monotonically from "guess-
ing" (when the difference in the respective means is zero) to perfect (when the distributions
do not overlap) as the upper half of a cumulative Gaussian function (their difference is also
normally distributed). In practice, our main interest lies in the estimation of the threshold
and slope parameters of a well-fitting sigmoid curve; thus, theoretical considerations on the
underlying sensory process are not our primary objective. In this study, as it is often the case,
the parameter estimates were not considerably affected by the choice of the function; thus, due
to slightly better-fitting performance, we selected the Weibull form (equation 1.2).

F(x;α,β ) = 1− exp
[
−
( x

α

)β
]

(1.2)

For each condition (i.e., combinations of step size and blending power), we can express the
perceptual intensity of the sequence degradation by replacing the factor N with a more relevant
quantity defined as the maximum pixel disparity (d) among the input views for the 3-D object’s
mesh coordinates at depth z (equation 1.3; see the supplement in Honauer et al., 2016).

d = (β/z−N ×dx× focal length× resolution)/(focus distance× sensor size) (1.3)

β = N ×dx× focal length× focus distance× resolution

Note that we refer to the disparity in the neighboring camera images and not binocular disparity
(see also the general introduction). The probability of selecting the reference stimulus over the
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distorted one then extends from .5 (guess rate for a 2-IFC task; the lower asymptote) to 1 - λ

(the upper asymptote) as a function of increasing pixel disparity.
This distortion intensity measure, however, even if in our design describes the main modu-

lating factor, it is not sufficient to capture different sources of distortion at the same disparity
level or their interaction (which might also be complex). Therefore, as our objective was
to extract a unidimensional interval scale that can generalize to a different input (including
textural information), we suggested using the existing quality metric scores (in the absence of a
dedicated model) to approximate the overall perceived sequence degradation intensity (Kaspiris-
Rousellis et al., 2018). Explicitly, considering the ease of implementation and consistency with
the related studies (see the chapter introduction), we tested the following full-reference 2-D
and stereoscopic image and video objective metrics: SSIM (Wang et al., 2004), MS-SSIM
(Wang et al., 2003), BVQM (Pinson and Wolf, 2004), VIF (Sheikh et al., 2005), PSNR-HVS
(Egiazarian et al., 2006), PSNR-HVS-M (Ponomarenko et al., 2007), CW-SSIM (Sampat et al.,
2009), MAD (Larson and Chandler, 2010), IW-SSIM (Wang and Li, 2011), FSIM (Zhang et al.,
2011), HDR-VDP-2.2 (Mantiuk et al., 2011), SIQM (Chen et al., 2013), StSD-LC (De Silva
et al., 2013), GMSD (Xue et al., 2014), VSI (Zhang et al., 2014), VSPC (Jia and Wang, 2017),
and PSNR (considered as the baseline metric). The inclusion of several similar models was
intentional, as they would directly indicate which components may improve prediction or the
opposite (albeit the latter would be less informative).

The psychometric functions were fitted based on the maximum likelihood using the Nelder-
Mead simplex algorithm as implemented in the Palamedes toolbox (Prins and Kingdom, 2018).
The lapse rate was fixed at 1% (Klein, 2001) to reduce the number of free parameters. Following
the suggestions by Wichmann and Hill (2001), the fitting performance was evaluated in terms
of deviance (equation 1.4 for binomial data, where y and p the observed and predicted success
rates for n trials at intensity level i; see derivation in Collett, 2003).

D = 2
K

∑
i=1

{
niyi log

(
yi

pi

)
+ni (1− yi) log

(
1− yi

1− pi

)}
(1.4)

1.3. Results

1.3.1. Psychophysical data

Figure 1.6 illustrates the average observer performance for the stimulus shown in Figure 1.5
when its geometrical center was positioned on the zero-parallax plane (left column) or at a
distance of 15.6 cm towards the observer (right column). We recorded a correct response when
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subjects indicated the reference stimulus (dense image sequence) in the paired comparison.
Recall that in the reference condition, we updated the correct view at every simulated position
(N = 1). In the distorted sequence, the correct view was updated at successively wider spaced
intervals (N > 1). The observer performance was near chance, i.e., artifacts were negligible
or invisible, at low N levels but rose to perfect as the N level increased, i.e., artifacts became
apparent. As expected, the perceived visual quality was negatively affected (overall better
performance) by translating the object in depth. This effect was partially negated when view
blending was enabled, i.e., blurrier but smoother view transitions in the simulated movement.
In contrast, the movement step size effect was practically negligible (possibly due to the
small increase in the design parameters, an interaction between the movement speed and pixel
disparities, i.e., larger discontinuities but faster transitions, or both).

dx = 3 mm, M = 0 dx = 3 mm, M = 4

dx = 2 mm, M = 0 dx = 2 mm, M = 4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
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z = 0 cm

dx = 3 mm, M = 0 dx = 3 mm, M = 4

dx = 2 mm, M = 0 dx = 2 mm, M = 4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
N

z = −15.6 cm

Figure 1.6 The average proportion of correct responses across observers relative to the distortion level
(N), the step size (dx), the view blending power (M; zero for sharp view transitions), and the distance (z)
from the zero parallax plane (the first group of participants is shown on the left and the second group on
the right). A proportion of 1 indicates that the reference condition was always preferred to the distorted
one (artifacts evident). The level of chance performance was at .5 (artifacts invisible or negligible). The
error bars show the 95% CI by basic bootstrap

Figure 1.7 depicts the threshold estimates of the psychometric fits, assuming that the
degradation intensity for each condition can be expressed as a function of the maximum pixel
disparity in the updated input views (normalizing the depth and step size). The average threshold
across observers ranged roughly between 3 and 5 pixels among the conditions. A summary of
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the estimates is given in Table 1.1. The slope parameters were omitted as some of the estimated
values tended to infinity (the fitted curve could be approximated by a step function). Figure
A.1 shows the individual fits. The results revealed a consistent effect of the view blending on
the estimated threshold (a mean overall increase by a factor of 1.29), albeit practically small.
If we simultaneously fitted a single psychometric function among the examined conditions
for each observer, the probability of obtaining a likelihood-ratio in the Monte-Carlo (MC)
samples generated from the restricted model less than the observed value (see a practical guide
in Kingdom and Prins, 2016) was relatively small (pLR = .050); thus, assuming the lesser model
(the same function parameters across conditions) is not well-supported.

view
blending

z = 0 cm (n = 7) z = -15.6 cm (n = 5)

dx [mm] Mean SD Q1 Mdn Q3 Mean SD Q1 Mdn Q3

M = 0 2 3.2 1.3 2.0 3.0 4.3 2.6 .5 2.5 2.6 2.7
3 4.4 2.4 2.8 3.2 6.1 3.6 1.5 3.0 3.0 3.5

M = 4 2 4.8 2.0 3.7 5.0 5.2 3.5 1.0 3.4 3.4 3.8
3 5.3 2.3 3.7 5.0 6.8 4.1 1.7 3.0 3.9 4.0

Table 1.1 Summary of the disparity threshold estimates for each examined condition across observers

1.3.2. Distortion ranking similarity and metrics performance

Figure 1.8 illustrates how similarly the different metrics ranked the distorted conditions in our
study in terms of increasing perceptual degradation (i.e., how they cluster together). For the
2-D image metrics, we calculated the final score (the predicted quality degradation compared
with the reference) as the mean value across the sequence image pairs. Generally, the largest
discrepancies were among the stereoscopic and video quality metrics, not unexpectedly, as they
are tuned to different types of distortions. The metrics performance on the psychophysical data
was then assessed both in terms of the distortion ranking similarity and the fitted psychometric
function deviance across observers (see Figure 1.9). Note that the correlation coefficients
are expected to be affected (presumably decreased) by the upper bound on the proportion of
correct responses and the relatively small number of individual repetitions (the actual ranking
cannot be fully determined; see Figure A.6). However, they are still informative in terms of
relative performance and thus were retained for visualization purposes (e.g., see the BVQM
metric’s departure from linearity). The metrics that best predicted the measured data (average
deviance lower than 26 on the individual responses) clustered around the GMSD and the SSIM
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Figure 1.7 The average estimated thresholds for each condition across observers with the distortion
intensity given as the maximum pixel disparity in the updated input views (Ndx). The error bars show
the 95% CI by basic bootstrap. The thin lines depict the individual observers

(see connected nodes in Figure 1.8), with the former group of 2-D image metrics slightly
outperforming the latter. For our purposes, we selected the GMSD metric due also to its
consistency across different psychometric functions and the various subsets of experimental
conditions (Appendix A). Practically, any other metric in that group except for the IW-SSIM,
explicitly the VSPC, the MAD, and the HDR-VDP-2, performed equally well. Note that the
parameters of each metric were not tuned to our data.

1.3.3. Model estimates and validation

Figure 1.10 illustrates the individual psychometric function fits with the perceived degradation
intensity approximated by the GMSD score. Generally, the metric’s scores predicted the
difference between the reference condition and each distorted sequence sufficiently. The
median threshold estimate across observers was 7.1× 10−3, bias-corrected and accelerated
(BCa) CI95%:[5.3, 10.8] ×10−3 by bootstrap. Likewise, the median slope, excluding two of the
observers where the parameter value tended to infinity, was 1.9, BCa-CI95%:[1.5, 2.1]. When
we constrained the slope to be equal among the observers, the p-value of the likelihood-ratio
test for the nested model, based on the MC generated distribution, was pLR = .649, indicating
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Figure 1.8 Left: A Kendall τb correlation network diagram of the distorted conditions ranking among
the examined metrics in terms of increasing degradation (edges were drawn for an arbitrary value of .95
and above). The stereoscopic and video metrics are indicated with a cross and an asterisk, respectively.
Right: The full metric correlation matrix (see examples in Figure A.5)

that it is reasonable to assume the lesser model. The optimal global slope estimate was 2.0,
BCa-CI95%:[1.7, 2.9] by parametric bootstrap, with the median threshold across observers
approximately the same at 7.1×10−3, BCa-CI95%:[5.2, 9.9]. Figure 1.11 depicts the threshold
and slope estimates for each observer under the final model (constrained slope). In the same
figure, we also illustrate the model estimates on different subsets of the examined conditions.
Explicitly, we tested fitting the data separately for each step size (dx2 and dx3), view blending
(M0 and M4), and object depth (A and B). The maximum absolute difference in the median
threshold estimates among the subsets was 1.9× 10−3, found between the two depth range
levels (not unexpectedly as they corresponded to different groups of participants). In all cases,
the absolute difference relative to the median threshold estimate of the full set did not exceed
1.0× 10−3; however, the slope estimates generally diverged when the number of samples
dropped by half (from 32 to 16 per observer in all subsets of the within-subjects conditions).
Figure 1.12 provides an example of the observer performance prediction across conditions and
participants based on a split (i.e., training and validation on different subsets) between the two
depth levels. These results suggest that even with suboptimal distortion levels sampling, we
can sufficiently predict the threshold value across the different conditions (within limits).
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Figure 1.9 The average metric performance (markers) across observers. The horizontal and vertical
axes depict two different measures of metric performance. If a metric captures the perceived degradation
intensity, we expect human performance to improve when the metric indicates the quality has degraded.
The horizontal axis shows the average Kendall τb correlation between the metric scores and the individual
observer responses (higher values indicate a closer agreement; see an example in Figure A.6). Similarly,
if a metric captures human near-threshold performance, we would expect to fit a psychometric function
predicting the observer responses as a function of the metric scores. The vertical axis shows the average
fitted psychometric function deviance on the individual data (lower values indicate a better fit; see an
example in Figure 1.10). The error bars depict the 95% CI by basic bootstrap

1.4. Discussion

In this chapter, we aimed to define the perceptually optimal discrete angular view density for
continuous-parallax content; that is, to specify an upper limit for the visibility and acceptance
of the corresponding distortions in the angular domain for a human observer. Using a passive
stereoscopic display, we simulated the related artifacts in 3-D videos replicating the changing
views of a synthetic object for an observer translating laterally in both directions parallel to
the scene (a "look-around" effect). We then performed a psychophysical study to measure the
tolerance of human participants to these artifacts, modulating the angular view density, the
object depth range, and the virtual observer’s velocity. As the view density limit generally
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Figure 1.10 The individual psychometric function fits on the observer performance (markers) using the
GMSD score as an approximation of the perceived degradation intensity. The error bars show the Wilson
binomial CI95%. The shaded area depicts the BCa-CI95% for the threshold estimate (dashed line; α) by
parametric bootstrap. The goodness-of-fit is reported on the bottom right-hand corner (gray text), where
D is the observed deviance, D∗ the .025 and .975 quantiles of the Monte-Carlo deviance distribution (N
= 1e+4 samples), and p the probability of obtaining deviance on the generated samples larger than the
observed value. The letters A and B indicate the first and the second group of participants, respectively

depends on the depicted scene, e.g., the depth range, our goal was to establish a general way to
estimate these threshold values. After we assessed the distortion ranking similarity between the
psychophysics data and a wide range of full-reference quality metrics on the simulated image
sequences, we proposed using the metric scores to approximate the perceived degradation
intensity on a unidimensional scale and predict near-threshold observer performance. We found
this approximation sufficient to describe the observed data, which then allowed us to establish
a method to generalize the estimated threshold to different conditions.
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Figure 1.11 Top: threshold and slope estimates for each observer under the final model (equal slopes).
The vertical solid line shows the median value across observers. The dashed line shows the mean. The
shaded area illustrates the BCa-CI95% for the median threshold (left) and the global slope estimate by
parametric bootstrap (PB; right). The error bars depict the PB BCa-CI95% of the threshold estimates.
Bottom: the median threshold across observers and the global slope estimate on different subsets of the
examined conditions. Explicitly, we tested pooling the data separately for each step size (dx = 2 mm and
dx = 3 mm), view blending (M = 0 and M = 4), and depth (A: z = 0 cm and B: z = -15.6 cm). The error
bars show the BCa-CI95% for the median threshold (left) and the global slope estimate by parametric
bootstrap (right). The infinity sign indicates a very high upper limit for the slope estimate

In agreement with our results, Adhikarla et al. (2017) found the GMSD and HDR-VDP-2
image quality metrics to perform best on similar distortions in the angular domain (the other
ones in our study were the MAD and VSPC). Note that these metrics follow conceptually
different approaches extending from a purely bottom-up method modeling the human visual
system components (i.e., HDR-VDP) to a simple top-down measure based on the similarity of
the image gradients magnitude (i.e., GMSD). Since the latter is also the most parsimonious
metric, we can reasonably assume that a central feature in successfully approximating the
perceived distortion intensity for the related artifacts generally lies in capturing the local
structural and contrast changes. In most cases, the 2-D image metrics outperformed both the
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Figure 1.12 An example of the observer performance prediction across conditions and participants based
on a split between the two depth levels (left and right). Top: the psychometric function corresponding
to the median threshold estimate across observers (solid line; triangle) trained at zero depth (left) and
tested at a different depth level and participant group (right). The markers (circles) indicate the mean
observer performance. The error bars and the shaded areas show the BCa-CI95% by bootstrap. Bottom:
the same procedure in the opposite direction (by switching train and test sets)

stereoscopic and video ones, despite being "blind" to temporal and binocular distortions. If this
result was not due to the specific metric selection, we could hypothesize that the corresponding
artifacts had either a relatively small effect or were effective well above the view density
threshold. When we examined different condition subsets (Appendix A), the stereoscopic
and video metrics were most negatively affected at the lowest and the highest depth level,
respectively. The former can be more easily explained as the binocular disparities when the
object was placed at zero were relatively small and within the stereoscopic comfort zone
(Shibata et al., 2011), ranging between .31 and .35 degrees across participants. Presumably,
by simulating more excessive binocular disparities or modulating the frame rate instead of the
virtual movement step size (or even the step size itself), one could increase the severity of these

30



1.4 Discussion

effects; thus, balancing the overall metrics performance. In any case, metrics tuned to different
types of distortions that can theoretically emerge are still useful in the absence of a dedicated
metric as well as if one is interested in suprathreshold distortion scaling. The metric scores can
then be potentially fused to improve prediction performance (e.g., Liu et al., 2013).

The optimal view density for the median observer ranged roughly between .9 views/degree
to 3.2 views/degree (M = 1.8, SD = .9) over a 36 degrees field of view among the conditions in
our synthetic scene. Translating the stimulus in depth increased the relative density estimate
by a factor of 2.7 on average across conditions (SD = .3), whereas changing the simulated
observer velocity generally produced the same results within the examined range. The absence
of view blending (equivalent to a nearest-neighbor interpolation with an added perspective
distortion due to the position offset) resulted in a slightly higher view density by a mean factor
of 1.3 across conditions (SD = .2), indicating that smoother transitions with moderate crosstalk
were preferable to sharp and abrupt parallax shifts. Interestingly, despite the vast differences
in the experimental conditions, previous studies investigating the perceived smoothness and
naturalness of motion parallax in multiview content reported comparable findings. Speranza
et al. (2005) found an average density of approximately 4 views per degree of visual angle
for a smooth transition without user interaction. Runde (2000) suggested a minimum limit
of 12 views/degree for sampling the eye positions of a moving observer. Takaki et al. (2012)
showed that the naturalness of motion parallax improved by increasing the cross-talk among the
neighboring views on a super multi-view display (i.e., the view density can be smaller than the
pupil diameter), albeit with reduced image quality. Note that our estimates were slightly biased
due to discretization effects (we can only approach the threshold at a minimum distance for
given scene conditions). From a practical viewpoint, we chose to report the nearest value below
the threshold in order to avoid visible distortions; thus, overestimating the density estimate
while underestimating some of the differences among the conditions (one condition can be
closer to the threshold than the other). In terms of maximum pixel disparity among the input
views, the estimated thresholds for the median observer given the discretization restrictions were
generally higher than 1 pixel (considered as the limit for a dense sequence), which suggests
some observer tolerance up to approximately 5 pixels (M = 3, SD = 1) across conditions.
However, the specific density value is of no particular interest as it will naturally vary across
different scenes and individuals. Note that the range of the optimal average estimate across
participants was .8 to 2.1 views/degree (M = 1.3, SD = .5) and 1.9 to 3.5 views/degree (M = 3.0,
SD = .7) for the first and the second group, respectively, which indicates some considerable
variability among observers. For practical reasons, due to the relatively small sample size, we
followed the more common fit and pool procedure (i.e., estimating the individual thresholds
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and then specifying the median or average observer). However, a partial pooling method could
potentially provide a preferable solution (see Moscatelli et al., 2012).

The current approach is limited to image sequences where a full-reference is available. For
real-world scenes, this is not always possible. Previous attempts using a less distorted sequence
as reference were not as successful (Adhikarla et al., 2017). If this is the case, an appropriate
reconstruction method could be potentially used to generate a sufficiently dense sequence
(e.g., Vagharshakyan et al., 2018). Note that in order to allow a more generic approach and
given the available resources, specific display dependencies (e.g., the display type), vertical
parallax, and artifacts related to transmission (e.g., compression) or sequence reconstruction
were not included. In principle, as long as the displayed images can be simulated, the same
procedure applies; however, the metrics’ performance could vary. Other extensions, such as
non-Lambertian scenes, multiple objects in depth, occlusions, and different conditions for
the simulated observer (non-linear paths), could also be investigated. In any case, given that
the metric scores can sufficiently approximate the distortion intensity (even if it needs to be
re-calibrated or used merely as a prior), the data collection duration can be considerably reduced
since it allows us to map the multi-dimensional distortions space to a single variable. Note
that this approach is bounded at one just-noticeable difference relative to the reference, which
suffices for our purpose. Extending the scale further would also require paired comparisons
among the distorted conditions (common in subjective quality assessment), which would allow
recovering their relative distance based on a set of assumptions similar to signal detection
theory (e.g., case V in Thurstone, 1927; see a practical guide in Perez-Ortiz and Mantiuk, 2017).
The metric scores can then be mapped to this extended unified scale similarly.

In summary, this study provides additional evidence that existing state-of-the-art quality
metrics can approximate the perceived distortion intensity in simulated full-parallax content
even if they are not primarily constructed to capture the related artifacts in the angular domain.
Thus, it becomes feasible to describe the observer near-threshold performance as a function of
the metric scores and potentially extend it to different conditions (e.g., depth range modulation).
Consequently, this procedure allows us to specify the required view density to minimize the
visible distortions for the average human observer, generally providing us with a method to
optimize or even avoid impractical and extensive subjective evaluations.
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Chapter 2. The human contrast sensitivity function at high luminance

2.1. Introduction

The most basic way of characterizing the ability of a human observer to discriminate visual
patterns is the contrast sensitivity function (CSF). The CSF reports the sensitivity to visual
stimuli as a function of their spatiotemporal frequency. It is an integral part of visual display
standardization (e.g., NEMA, 2020) and the central component in HVS-based image quality
assessment algorithms for extending performance to higher luminance range (e.g., Daly, 1992;
Mantiuk et al., 2011). The latter stems from the fact that one of the primary factors determining
the shape of the CSF is adaptation luminance. Generally, an increase in background luminance
results in higher peak sensitivity and spatial resolution, while the location of the peak shifts to
higher frequencies, additionally changing the CSF shape from low-pass to band-pass (Patel,
1966; Van Nes and Bouman, 1967; van Meeteren and Vos, 1972; De Valois et al., 1974).

The relationship between contrast sensitivity and adaptation luminance is often described
as a trilinear transition (Graham, 1989) with each segment corresponding to the dominant
noise source that limits visual detection, i.e., early noise or "dark light" (Barlow, 1964), photon
shot noise (Rose, 1942; De Vries, 1943), and late neural noise (Pelli, 1990). This theoretical
construct is usually referred to as linear to DeVries-Rose to Weber transition, with slopes equal
to 1, .5, and 0 in log-log space for each segment, respectively (an example can be found in
Figure 2.1). In the case of sine-wave gratings, most commonly employed in CSF measurements,
sensitivity was found to demonstrate asymptotic behavior, i.e., to approach the Weber region,
at higher luminance for increasing spatial frequency (Van Nes and Bouman, 1967; Hess and
Howell, 1988; Rovamo et al., 1994). Several studies provide evidence for a further decreasing,
albeit neglected, region for low to intermediate (∼ 8 cpd) spatial frequencies (Depalma and
Lowry, 1962; Daitch and Green, 1969; Kelly, 1972; De Valois et al., 1974; Rovamo et al., 1995;
Peli et al., 1996; Kim et al., 2013; Silvestre et al., 2018; Bierings et al., 2019). This interesting
phenomenon of a decrease in sensitivity with increasing luminance was briefly discussed in
García-Pérez and Peli (1997) and Rovamo et al. (1997).
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Figure 2.1 The three linear segments in log-log scale corresponding to the dominant noise source that
limits visual detection. At low light levels (linear region), the amplitude threshold is independent of
luminance (∆L = constant), and contrast sensitivity becomes proportional to the background luminance
(L/∆L ∼ L). At intermediate light levels (DeVries-Rose region), the amplitude threshold is proportional
to the square root of luminance (∆L ∼

√
L), and thus sensitivity is also proportional to the square root of

luminance. At higher light levels (Weber region), the amplitude becomes proportional to the background
luminance (∆L ∼ L), and thus sensitivity is independent of luminance

The human CSF has been measured extensively over the years. However, only a few studies
have systematically investigated relatively high luminance levels with sufficiently broad and
dense frequency sampling, and they were limited to one or only a few observers (Depalma and
Lowry, 1962; Van Nes and Bouman, 1967; Rovamo et al., 1994; Silvestre et al., 2018). The
CSF governs artifact visibility, and as new technology is producing higher luminance displays,
it becomes essential to understand how this function behaves in this regime. Here, our purpose
was two-fold: first, to assess the asymptotic behavior of the CSF; second, to investigate the
validity range of the existing CSF models and provide an additional calibration dataset.

Using a custom-built display system inspired by previous designs on high dynamic range
displays (Seetzen et al., 2004), we measured and analyzed the foveal spatial CSF of eleven
participants up to a mean background luminance of 1078 cd/m2 at spatial frequencies ranging
from 1.5 cpd to 30 cpd. Higher luminance values were then examined for two of the observers
through artificial pupil dilation up to an average equivalent display luminance of 8066 cd/m2

(based on a 2 mm pupil diameter). Our dataset was further supplemented by extracting a large
number of foveal CSF measurements with varying luminance levels from the literature. We
investigated the overall effect of adaptation luminance on contrast sensitivity for sine-wave
gratings and examined the validity of the linear to DeVries-Rose to Weber region transition.
Based on this theoretical construct, we adopted a CSF model consisting of central elements in
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2.2 Measurements of the human CSF at high luminance

the human visual signal processing and three limiting internal noise components corresponding
to each region. We subsequently assessed the model’s performance on the measured contrast
sensitivities and proposed an eight-parameter form to describe the contrast sensitivity surface
in the spatial frequency-luminance domain.

2.2. Measurements of the human CSF at high luminance

2.2.1. Participants

Eleven healthy volunteers (mean age: 28.6 years, SD: 4.9 years, span: 20 – 38, three males and
eight females) participated in the experiment. The participants had normal or corrected to nor-
mal vision with no history of visual problems. The volunteers were screened for normal visual
acuity using a Sloan standardized letter chart. The Newcastle University Ethics Committee
approved the study, and all participants gave written informed consent.

2.2.2. Apparatus and experimental design

2.2.2.1. Display setup

The task was performed on a custom-built liquid-crystal display (LCD) system. An 8-bit LCD
panel with 1920×1200 pixels resolution and .27 mm pixel pitch was removed from its monitor
housing (Dell U2412M), and the backlight source was replaced with a 3LCD projector rated
at 2200 lumens (Epson EH-TW6000; used solely as a light source). The projected light was
collimated through a Fresnel lens sheet and then redistributed through a diffuser before falling
on the back of the panel (a schematic can be found in Figure 2.2). This design achieved a
peak luminance of approximately 2160 cd/m2 with a contrast ratio of 860:1 for a 9 cm height
viewport. The monitor was calibrated using a Minolta LS-100 luminance meter, and bit-depth
was increased to 10 bits using a bit-stealing method as implemented in the Psychophysics
Toolbox version 3 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The luminance fall-off
from the center of the viewing area to the edges was measured at eight points on each of two
concentric circles of 2.25 cm and 4.50 cm radii across the horizontal, vertical, and diagonal
directions. The mean values of the relative decrease and their SD were 3.95 ± 2.42% and 6.90
± 3.48%, respectively. The CIE chromaticity of the background was [x, y] = (.34, .37). The
subjects were seated in a dark room at a 280 cm viewing distance from the screen center to
their eyes, with their head placed on a chinrest. The display setup was covered and positioned
in a second adjacent room that was occluded by two side curtains to minimize stray light.
The viewing area was isolated by placing black cardboard with a square aperture equal to the
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2.2 Measurements of the human CSF at high luminance

viewport’s height directly in front of the panel. The decrease in mean luminance was achieved
using three circular neutral density filters (77 mm) mounted on an optical post assembly placed
directly in front of the participant’s eyes, with optical densities of .4 and .7 (Shenzhen Neewer
Technology Co., Ltd., China), and 1.2 (Hoya, Kenko Tokina Co., Ltd., Japan). The measured
shifts in chromaticity were below .01. In order to avoid confounds due to changes in the pupil
size as a function of retinal illuminance, the stimuli were viewed monocularly through a 2 mm
iris diaphragm attached to a fully adjustable optical trial frame and with the left eye occluded.
The diaphragm was positioned at the closest possible distance to the cornea.

ProjectorFresnel lens and
diffuser sheets

Black cardboard
occluder

LCD panel

Figure 2.2 The projector-based display setup schematic (top cover not shown)

2.2.2.2. Stimuli

The stimuli consisted of static sinusoidal gratings with a 2-D Gaussian envelope, oriented at
±45 degrees from the vertical direction. The images were drawn on a 332x332 pixel grid
encompassing a visual angle of 1.8 degrees with the envelope’s standard deviation at .3 degrees.
The mean background luminance was set to 1078 cd/m2 when viewed with no neutral density
filter. A subset of the stimuli is shown in Figure 2.3.

2.2.2.3. Experiment I

The subjects reported the orientation of a single grating stimulus by a keypress. The orientation
(±45 degrees) and phase of the gratings were randomized. The stimulus presentation time was
not limited, and no feedback was provided. A fixation cross was displayed at the center of the
window for 500 ms preceding each trial. We examined four luminance conditions, explicitly,
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2.2 Measurements of the human CSF at high luminance

Figure 2.3 A subset of the stimuli from low (left; 1.5 cpd) to high (right; 9.1 cpd) frequency

1078 cd/m2, 475 cd/m2, 206 cd/m2 and 68 cd/m2 at six spatial frequencies spaced log10-linearly
from approximately 1.5 to 30 cpd. Each subject performed four sets of 30 consecutive trials
for each spatial frequency and luminance condition at varying contrast levels for a total of 720
trials per set. The frequencies were randomly interleaved within each luminance condition,
and the luminance testing order was randomized for each set of trials. The thresholds were
estimated using the Ψ Bayesian method with uniform priors as described in Kontsevich and
Tyler (1999) and implemented in the Palamedes toolbox (Prins and Kingdom, 2018). The
lapse rate was included in the posterior, but the slope and the lapse rate were marginalized in
the stimulus level selection (Prins, 2013). The participants completed the experiment in two
sessions, each lasting approximately 70-90 min. A training run of 90 or 450 trials based on the
participant’s experience was performed to familiarize the subjects with the procedure.

2.2.2.4. Experiment II

In a follow-up experiment, we extended the luminance range above and below the tested levels
for two of the participants in experiment I. Higher luminance levels were examined in terms
of equivalent retinal illuminance [Td], calculated as the display luminance times the circular
pupil area, by artificially dilating the observer’s right pupil using eye drops of Cyclopentolate
at 1%. The pupil diameter was monitored at regular intervals prior to the session through a
photorefractor (PowerRef, Plusoptix GmbH, Nuremberg, Germany) until it was stabilized at 7.4
mm and 8.5 mm for the first (S01) and the second observer (S07), respectively. We measured
three retinal illuminance levels with the corresponding display luminance set at 140 cd/m2, 475
cd/m2, and 1078 cd/m2. The lower level was selected based on the available neutral density
filters to approximate the maximum retinal illuminance in experiment I, with the purpose of
combining the two sets of sensitivity measurements. The matched levels were then used as
a step to adjust for the changes in optical aberrations due to the increased pupil size and the
lack of accommodation. The selected filter with an optical density of .9 (Hoya, Kenko Tokina
Co., Ltd., Japan) displaced the retinal illuminance step point by -7.4% (235 Td) and 1.7% (54
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2.2 Measurements of the human CSF at high luminance

Td) relative to experiment I, for the first and the second observer, respectively. The retinal
illuminance values were corrected for the Stiles-Crawford effect (Stiles et al., 1933) by a factor
(SC) relative to the pupil diameter (d) as given in Atchison and Smith (2000); equation 2.1,
with a β coefficient of .12 (Applegate and Lakshminarayanan, 1993).

SC(dmm) =
4
[
1− exp

(
−βd2

mm/4
)]

βd2
mm

(2.1)

The resulting retinal illuminance levels for the first observer were approximately 2.96×103

Td, 1.00×104 Td, and 2.28×104 Td corresponding to roughly a display luminance of 999
cd/m2, 3388 cd/m2, and 7689 cd/m2 given a 2 mm pupil diameter. Likewise, the levels for the
second observer were 3.25×103 Td, 1.10×104 Td, and 2.50×104 Td corresponding to 1096
cd/m2, 3720 cd/m2, and 8442 cd/m2. On the lower end, we examined two additional luminance
conditions at 3 cd/m2 and 17 cd/m2 with the artificial 2 mm pupil without cycloplegia by using
two neutral density filters with densities of 2.6 and 1.5 (Hoya, Kenko Tokina Co., Ltd., Japan),
respectively. The participants completed the experiment in two dedicated sessions for each
of the low and high illuminance conditions set, following the same procedure as in the first
experiment. For the low luminance sessions, we included an additional adaptation time of five
minutes in the dark before the task started.

2.2.3. CSF characteristics

The CSF represents the sensitivity, the reciprocal of the contrast threshold estimate, as a
function of the grating stimulus frequency. The shape of the CSF can be generally described by
four characteristics: the peak sensitivity (Gmax), the frequency of the peak (Fmax), the grating
visibility area under the log-curve (AULCSF), and the high-frequency cut-off (Fc), i.e., the
frequency where sensitivity asymptotes to zero (Figure 2.4). A sensitivity plateau may also be
seen at very low frequencies (roughly below 1 cpd); however, it was outside our sampling range.
Watson and Ahumada (2005) reviewed several functional forms that can adequately characterize
the CSF curve, with only small differences among them in terms of fitting performance. Here,
considering mainly the interpretability of the parameters, we adopted an asymmetric form of the
log-parabola model (Chung and Legge, 2016) to extract these characteristics. This descriptive
model (equation 2.2) uses four parameters to express the log sensitivity S as a function of the
log frequency u: the location Fmax and magnitude Gmax of the peak, and the weights wL and wR

for the curvature of the left and right branches, respectively.
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2.2 Measurements of the human CSF at high luminance

S(u) =

 Gmax −w2
L [u− log10 (Fmax)]

2 , u < log10 (Fmax)

Gmax −w2
R [u− log10 (Fmax)]

2 , u ≥ log10 (Fmax)
(2.2)
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Figure 2.4 Typical human CSF shape depicted as an asymmetric log-parabola truncated at low frequen-
cies. Fc: the highest visible frequency. Fmax and Gmax: the location and magnitude of the peak. AULCSF:
the area under the log curve (shaded area). wL and wR: the parameters that control the curvature of the
left and right branches. The truncation parameter was omitted as it was outside our sampling range.
On the background, a Campbell-Robson contrast sensitivity chart demonstrating the CSF shape with a
sine-wave increasing in spatial frequency (rightwards) and decreasing in luminance contrast (upwards)

2.2.4. Statistical analysis

A two-way within-subjects ANOVA was conducted on the mean log-sensitivity thresholds
in experiment I, with the spatial frequency and luminance as independent predictors. The
tests (type III) were performed using the R libraries afex (Singmann et al., 2020) and car (Fox
and Weisberg, 2019). The pairwise comparisons among all luminance pairs at each spatial
frequency were carried out using the library emmeans (Lenth, 2020) with a multivariate model.
The simple effects are reported with the Geisser-Greenhouse’s ε̂ adjustment for the degrees of
freedom. Likewise, we tested each of the CSF characteristics described above, i.e., the location
and magnitude of the peak, the area under the log CSF, and the high-frequency cut-off, using a
one-way within-subjects ANOVA with the luminance as an independent predictor.
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2.2 Measurements of the human CSF at high luminance

2.2.5. Results

2.2.5.1. Sensitivity estimates

Figure 2.5 illustrates the mean sensitivity estimates for the individual CSFs under the examined
luminance conditions. Figure 2.6 shows a summary of the average threshold estimates across
observers, along with the significance of the luminance differences. As expected, there was a
significant interaction between spatial frequency and luminance, F(15, 150) = 26.55, p < .001,
η2

p = .726. Further analysis indicated a significant difference among the luminance conditions
for spatial frequencies of 1.5 cpd, 9.1 cpd, 16.5 cpd, and 30.2 cpd (Table 2.2). However, there
was no significant effect in our sample on the intermediate frequencies of 2.7 cpd and 5.0
cpd, where sensitivity generally saturated in the examined range. The mean estimates are
given in Table 2.1. Sensitivity increased asymptotically with luminance for spatial frequencies
of 9.1 cpd and above. These increments were significant for all luminance levels compared
with the 68 cd/m2 (given the multiplicity adjustment; Table 2.3). At the highest frequency of
30.2 cpd, significant gains extended above 208 cd/m2 (≈ 616 Td) before sensitivity began to
plateau at 475 cd/m2 (≈ 1406 Td). In contrast, at the lowest frequency of 1.5 cpd, the effect
was reversed, with sensitivity decreasing significantly at 475 cd/m2 and 1078 cd/m2 (≈ 3191
Td) compared with the 68 cd/m2 (≈ 201 Td). Note that our sample size limits the minimum
effect size that we can reliably detect. As the sensitivity generally increased asymptotically
in the examined range, increasing the sample size further would result in detecting smaller
and smaller effects (excluding the cases where a decrease was found instead). Whether these
increments are meaningful in practice also depends on the specific application. The statistical
sensitivity is given in Appendix B. Regardless, generalization should be primarily based on the
physical model described in the following section.

2.2.5.2. CSF characteristics

Figure 2.7 depicts the main CSF characteristics at each luminance level, as estimated through
the best-fitting descriptive model parameters. Naturally, some of these variables are associated
(Table B.3); however, the specific luminance effects were of primary interest. The model
performance in terms of the RMS error for each CSF curve is summarized in Table B.2. The
mean estimates are presented in Table 2.4. The examined luminance range elicited significant
changes in the location (Fmax), F(2.74, 27.38) = 3.65, p = .028, η2

p = .267, and the magnitude
(Gmax), F(2.39, 23.90) = 13.55, p < .001, η2

p = .575, of the peak sensitivity. Likewise, there
was a significant effect of luminance on the extrapolated high-frequency cut-off (Fc), F(2.56,
25.61) = 37.20, p < .001, η2

p = .788, and the area under the log curve (AULCSF), F(2.63,
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2.2 Measurements of the human CSF at high luminance

Spatial
frequency

Luminance
[cd/m2]

Estimated
mean [dB]

SE df
Lower
CI95%

Upper
CI95%

1.5 cpd 68 32.88 .62 10 31.50 34.27
208 32.79 .88 10 30.82 34.75
475 31.14 .76 10 29.45 32.83

1078 30.68 .76 10 28.99 32.37

2.7 cpd 68 37.43 .85 10 35.54 39.93
208 38.13 .80 10 36.36 39.90
475 37.84 .72 10 36.22 39.45

1078 37.55 .69 10 36.01 39.09

5.0 cpd 68 40.32 .91 10 38.29 42.35
208 41.30 .80 10 39.51 43.08
475 41.19 .81 10 39.37 43.00

1078 41.17 .71 10 39.58 42.76

9.1 cpd 68 36.37 .91 10 34.35 38.40
208 39.08 .84 10 37.20 40.96
475 39.52 .73 10 37.88 41.16

1078 40.14 .76 10 38.44 41.83

16.5 cpd 68 27.78 1.23 10 25.05 30.51
208 30.41 1.04 10 28.10 32.72
475 31.59 1.11 10 29.11 34.08

1078 31.96 .83 10 30.10 33.82

30.2 cpd 68 9.66 1.33 10 6.69 12.64
208 13.81 1.40 10 10.70 16.92
475 15.53 1.47 10 12.27 18.80

1078 16.63 1.40 10 13.51 19.74

Table 2.1 The mean sensitivity thresholds in dB for each luminance condition and spatial frequency
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2.2 Measurements of the human CSF at high luminance

Spatial
frequency

df MSE
[dB] F η2

p [90% CI] p-val
Holm6

p-val

1.5 cpd (1.63, 16.29) 2.29 11.23 .529 [.183, .671] .001 .004
2.7 cpd (2.48, 24.80) .69 1.87 .157 [.000, .313] .168 .168
5.0 cpd (2.45, 24.48) .90 3.07 .235 [.000, .395] .056 .111
9.1 cpd (2.09, 20.89) 1.49 29.24 .745 [.519, .815] <.001 <.001

16.5 cpd (2.73, 27.25) 2.15 20.15 .668 [.435, .748] <.001 <.001
30.2 cpd (2.55, 25.55) 1.56 77.34 .886 [.785, .914] <.001 <.001

Table 2.2 Statistical tests on the effect of luminance at each spatial frequency level. The last two columns
show the unadjusted and the Holm corrected p-values for the six tests (the values we used). The reported
mean square error was calculated using the sensitivity in dB (the log multiplied by 20). The method for
calculating the confidence intervals can be found in Smithson (2001)
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Figure 2.6 Boxplot of the average log sensitivity estimates for each observer (horizontally jittered
markers) per spatial frequency (horizontal axis) and luminance condition (darker gradient for lower
luminance). The stars indicate the significant differences (*** p < .001, ** p < .01, * p < .05)
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2.2 Measurements of the human CSF at high luminance

Spatial
frequency

Luminance
difference

Estimate
[dB]

SE df t-ratio p-val
Holm6

p-val
Holm24

p-val

1.5 cpd 208 − 68 -.10 .40 10 -.25 .809 .809 1
475 − 68 -1.74 .41 10 -4.27 .002 .008 .020

1078 − 68 -2.20 .44 10 -5.01 <.001 .003 .008
475 − 208 -1.64 .60 10 -2.72 .022 .065 .194

1078 − 208 -2.11 .64 10 -3.28 .008 .033 .091
1078 − 475 -0.46 .25 10 -1.82 .099 .198 .410

9.1 cpd 208 − 68 2.71 .43 10 6.26 <.001 <.001 .002
475 − 68 3.15 .42 10 7.43 <.001 <.001 <.001

1078 − 68 3.77 .48 10 7.83 <.001 <.001 <.001
475 − 208 .44 .42 10 1.04 .323 .323 .968

1078 − 208 1.06 .55 10 1.93 .082 .164 .410
1078 − 475 .62 .24 10 2.61 .026 .078 .208

16.5 cpd 208 − 68 2.63 .60 10 4.38 .001 .006 .018
475 − 68 3.81 .64 10 5.98 <.001 <.001 .002

1078 − 68 4.18 .65 10 6.46 <.001 <.001 .001
475 − 208 1.19 .49 10 2.40 .038 .075 .246

1078 − 208 1.55 .51 10 3.01 .013 .039 .131
1078 − 475 .36 .66 10 .55 .592 .592 1

30.2 cpd 208 − 68 4.14 .56 10 7.37 <.001 <.001 <.001
475 − 68 5.87 .56 10 10.50 <.001 <.001 <.001

1078 − 68 6.96 .53 10 13.26 <.001 <.001 <.001
475 − 208 1.72 .36 10 4.75 <.001 .002 .011

1078 − 208 2.82 .46 10 6.12 <.001 <.001 .002
1078 − 475 1.10 .45 10 2.43 .035 .035 .246

Table 2.3 Pairwise comparisons of the sensitivity estimates among the luminance conditions at each
spatial frequency level. The last three columns provide the unadjusted and the Holm corrected p-values
for the six and the total twenty four tests (the adjustment we selected) across spatial frequencies
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2.2 Measurements of the human CSF at high luminance

26.27) = 29.88, p < .001, η2
p = .749 (Table 2.5). Pairwise comparisons revealed a significantly

lower peak and a narrower visibility area at 68 cd/m2, which then saturated in our sample above
208 cd/m2. The highest visible frequency increased significantly with luminance up to 475
cd/m2 before reaching a nearly asymptotic state. Likewise, the location of the peak shifted to a
higher spatial frequency with increasing luminance; however, the pairwise differences were not
significant after adjusting for the multiplicity (Table 2.6).

CSF
measure

Luminance
[cd/m2]

Estimated
mean

SE df
Lower
CI95%

Upper
CI95%

Gmax [dB] 68 39.78 .89 10 37.79 41.77
208 41.12 .76 10 39.43 42.81
475 41.28 .76 10 39.59 42.97

1078 41.39 .68 10 39.87 42.92

Fmax 68 5.59 .33 10 4.87 6.31
208 5.96 .25 10 5.41 6.52
475 6.26 .30 10 5.60 6.92

1078 6.46 .32 10 5.76 7.17

Fc 68 39.40 1.37 10 36.35 42.45
208 44.53 1.98 10 40.12 48.94
475 46.92 1.98 10 42.51 51.33

1078 48.40 2.12 10 43.66 53.13

AULCSF 68 43.14 1.10 10 40.68 45.60
208 45.50 1.06 10 43.14 47.86
475 45.83 1.00 10 43.59 48.07

1078 46.10 .84 10 44.23 47.98

Table 2.4 Mean estimates of the CSF characteristics at each luminance level. Gmax: the peak sensitivity.
Fmax: the location of the peak. Fc: the highest visible frequency (extrapolated). AULCSF: the area under
the log curve reported using the sensitivity in dB (within the measured frequency range)

2.2.5.3. Extended illuminance range

Figure 2.8 illustrates the adjusted sensitivity at each spatial frequency for the extended retinal
illuminance range in the second experiment. Qualitatively, this further increase in illuminance
did not produce any noticeable differences. The mean log sensitivity generally plateaued at all
spatial frequencies for both observers in the examined range. The gain of increase (Figure 2.9),

45



2.2 Measurements of the human CSF at high luminance

CSF
measure

df MSE F η2
p [90% CI] p-val

Holm4
p-val

Gmax [dB] (2.39, 23.90) .57 13.55 .575 [.291, .683] <.001 <.001
Fmax (2.74, 27.38) .48 3.65 .267 [.018, .416] .028 <.028
Fc (2.56, 25.61) 5.39 37.20 .788 [.615, .841] <.001 <.001
AULCSF (2.63, 26.27) .78 29.88 .749 [.554, .811] <.001 <.001

Table 2.5 Statistical tests on the effect of luminance on each of the main CSF characteristics. The last
two columns show the unadjusted and the Holm corrected p-values for the four tests (the values we
used). The reported mean square error for AULCSF was calculated using the sensitivity in dB
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Figure 2.7 The main CSF characteristics for each luminance condition. Top left: the peak sensitivity.
Top right: the location of the peak. Bottom left: the highest visible frequency (extrapolated). Bottom
right: The area under the log curve (within the measured frequency range). The stars indicate the
significant differences among pairs (*** p < .001, ** p < .01, * p < .05)
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2.2 Measurements of the human CSF at high luminance

CSF
measure

Luminance
difference

Estimate SE df t-ratio p-val
Holm6

p-val
Holm24

p-val

Gmax [dB] 208 − 68 1.34 .25 10 5.41 <.001 .002 .030
475 − 68 1.50 .32 10 4.74 <.001 .003 .047

1078 − 68 1.61 .30 10 5.30 <.001 .002 .030
475 − 208 .16 .31 10 .51 .620 1 1

1078 − 208 .27 .32 10 .85 .413 1 1
1078 − 475 .11 .22 10 .53 .611 1 1

Fmax 208 − 68 .37 .25 10 1.46 .175 .524 1
475 − 68 .67 .30 10 2.26 .048 .239 1

1078 − 68 .87 .29 10 3.04 .013 .075 .908
475 − 208 .30 .27 10 1.08 .307 .614 1

1078 − 208 .50 .24 10 2.11 .061 .243 1
1078 − 475 .21 .33 10 .63 .542 .614 1

Fc 208 − 68 5.13 1.08 10 4.73 <.001 .003 .014
475 − 68 7.52 .95 10 7.94 <.001 <.001 <.001

1078 − 68 9.00 1.05 10 8.58 <.001 <.001 <.001
475 − 208 2.39 .82 10 2.92 .015 .031 .216

1078 − 208 3.87 .80 10 4.83 <.001 .003 .013
1078 − 475 1.48 .73 10 2.03 .070 .070 .908

AULCSF 208 − 68 2.37 .33 10 7.24 <.001 <.001 .002
475 − 68 2.69 .35 10 7.66 <.001 <.001 .002

1078 − 68 2.97 .39 10 7.64 <.001 <.001 .002
475 − 208 .33 .32 10 1.04 .325 .650 1

1078 − 208 .60 .41 10 1.47 .173 .518 1
1078 − 475 .27 .30 10 .90 .392 .650 1

Table 2.6 Pairwise comparisons of the estimated CSF characteristics among the luminance conditions at
each spatial frequency level. Gmax: the peak sensitivity. Fmax: the location of the peak. Fc: the highest
visible frequency (extrapolated). AULCSF: the area under the log curve reported using the sensitivity in
dB. The last three columns provide the unadjusted and the Holm corrected p-values for the six tests and
the total twenty four tests (the adjustment we selected)
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2.2 Measurements of the human CSF at high luminance

defined here as the slope of the linear regression through every three consecutive illuminance
levels, was higher for increasing spatial frequency and decreasing retinal illuminance. Segments
with negative gain, indicating a decrease in sensitivity, were also found at spatial frequencies
up to 5.0 cpd. These decrements, although consistent across the two observers, were relatively
small with absolute gain values below .1, and appeared to recover with a further increase in
illuminance. It is unclear whether this observation was a result of a transition to another state
of stability or merely fluctuations around the saturation level.
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Figure 2.8 The mean log sensitivity estimates (open markers) as a function of retinal illuminance
pooling the data from both experiments. The sensitivities for each spatial frequency (lines) were shifted
vertically (light gray numbers on the left side of the curves) from the highest (bottom) to the lowest (top)
spatial frequency for visualization purposes. The dotted lines depict the vertically adjusted sensitivities
(light gray numbers on the right side) in the extended illuminance range where pupil dilation was used
(to line them up with the first experiment). The small markers depict all the raw threshold estimates
(also shifted). The error bars show the standard error
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2.2 Measurements of the human CSF at high luminance
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Figure 2.9 The estimated gain (open markers) for each spatial frequency (lines). The gain was calculated
as the slope of the linear regression through every illuminance level and its two neighbors (backward
and forward). The boundaries were omitted. The error bars show the regression standard error

2.2.5.4. Sensitivity as a function of illuminance and frequency

The relationship between the spatial frequencies and the gain of increase with retinal illuminance
can be more clearly seen in Figure 2.10. The depicted linearly interpolated mean gain on the
illuminance-frequency plane, pooling the data from both experiments, ranged from .46 to -.15.
Excluding the negative slope segments, the estimated gains were in fair agreement with a
theoretical gradual DeVries-Rose to Weber transition translated to higher illuminance levels
with increasing spatial frequency. This lateral shift of the transition point among frequencies
was previously described in terms of relative retinal illuminance, i.e., the illuminance divided by
spatial frequency squared, which stems from the hypothesis that the transition is determined by
the luminous flux collected through circular receptive fields whose size scales as the inverse of
the spatial frequency (e.g., Graham, 1989); a theory that was found to reasonably approximate
this effect (Mustonen et al., 1993; see parallel orange lines in Figure 2.10).
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in the respective illuminance range. The orange parallel isolines depict three indicative values of relative
retinal illuminance, i.e., the illuminance divided by spatial frequency squared

2.3. CSF modeling in the luminance domain

As described in the chapter introduction, the sensitivity increase in the luminance domain can
be approximated by three linear segments in log-log space translated to higher background
luminance level for increasing spatial frequency (recall the example in Figure 2.1). According
to this approximation, at low light levels where dark noise is dominant (linear region), the
amplitude threshold is independent of luminance (∆L = constant); thus, contrast sensitivity
becomes proportional to the background luminance (L/∆L ∼ L). At intermediate light levels
where quantal noise is dominant (DeVries-Rose region), the amplitude threshold is proportional
to the square root of luminance (∆L ∼

√
L), following the Poisson distributed fluctuations in

the number of photons absorbed by the retina. Therefore, sensitivity is also proportional to the
square root of the luminance. At higher light levels, after the final transition (Weber region), the
amplitude becomes proportional to the background luminance (∆L ∼ L), and thus sensitivity
is independent of luminance, obeying Weber’s law (L/∆L = constant). The suitability of this
theoretical construct for describing sine-wave contrast sensitivity as a function of luminance
intensity has been questioned over the years (García-Pérez and Peli, 1997; García-Pérez, 2005).
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2.3 CSF modeling in the luminance domain

Although this approach constitutes a simplified model of a complex system of contributing
adaptation mechanisms, e.g., different types of photoreceptors and their interactions, it has
been proven successful in approximating sensitivity variations in the luminance domain (Pelli,
1990; Mustonen et al., 1993; Silvestre et al., 2018) and forms the basis of the most widely-used
class of CSF models (Rovamo et al., 1994; Barten, 1999).

In this section, combined with our dataset, we assessed how well this non-linear relationship
accounts for the measured data in a wide range of studies in the literature (Depalma and Lowry,
1962; Patel, 1966; Van Nes and Bouman, 1967; De Valois et al., 1974; Banks et al., 1987; Hess
and Howell, 1988; Rovamo et al., 1993; Rovamo et al., 1994; Peli et al., 1996; Kim et al., 2013;
Shannon et al., 1996; Rasengane et al., 2001; Valero et al., 2004; Silvestre et al., 2018; Bierings
et al., 2019) using continuous piecewise linear regression analysis. This regression method is
structured to answer whether for a given luminance range: (a) sensitivity is independent of
luminance (i.e., a single segment with zero slope), (b) a critical point of change in the slope
exists, (c) the linear to DeVries-Rose to Weber law holds (i.e., transition from a slope of 1
to .5 to 0), and (d) a decreasing region is present (i.e., a segment with negative slope). We
then adopted a variant of the models derived from this construct (Rovamo et al., 1994) that
incorporates basic elements in the human visual signal processing to describe the CSF in the
luminance domain. It comprises optical factors, the addition of photon shot noise, lateral
inhibition, the addition of late neural noise, and a matched filter (Hauske et al., 1976) with a
sampling aperture. The model (Figure 2.11) was adjusted to include an additional early neural
noise component (related to the linear segment preceding the DeVries-Rose region) that was
found to dominate low luminance intensities and spatial frequencies (Silvestre et al., 2018).
Finally, we examine the model’s performance on the measured CSFs and evaluate the basic
CSF characteristics as a function of luminance, namely, the location and amplitude of the peak,
the area under the curve, and the spatial resolution limit.

signal

external
noise

OMTF HMTF template
match

Nq Ne Ni

Figure 2.11 Block diagram of the visual processing model. The stimulus is low-pass filtered by the
optical MTF (OMT F ) of the eye before photon (Nq) and early noise (Ne) components are added. A
high-pass filter (HMT F ) is then applied due to lateral inhibition, and late internal noise is added (Ni)
before the signal is interpreted. External noise is included for completeness but assumed negligible
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2.3 CSF modeling in the luminance domain

2.3.1. Pre-processing

Unavailable data were extracted from the published figures using the software by (Rohatgi,
2012). Retinal illuminance values were corrected for the Stiles-Crawford effect (Stiles et al.,
1933) following the equation 2.1 given above, with a β coefficient of .12. The same formula
was used to convert display luminance values to retinal illuminance. Where unavailable, the
pupil diameter d was approximated for the corresponding adaptation luminance L using the
unified formula in Watson and Yellott (2012) as a function of the corneal flux density F = LaM

for an observer of twenty-five years old or the study population mean, where a the adapting
field area in deg2 and M a factor equal to .1 for monocular viewing and 1 otherwise. The
formula is given as follows:

dmm (F,age) = DSD(F)+(age−28.58) [.02132− .009562DSD(F)] (2.3)

where DSD the adjusted for the number of eyes equation by Stanley and Davies (1995) given as:

DSD(F) = 7.75−5.75
(

(F/846).41

(F/846).41 +2

)
(2.4)

2.3.2. Segmented regression

Breakpoints were estimated using the iterative method described by Muggeo (2003). Given
one breakpoint the model is expressed as:

Si = α +β1I +U1 (I −ψ1)+ (2.5)

where (I −ψ1)+ = (I −ψ1)×G(I > ψ1) and G(·) is a step function equal to one when I > ψ1

and zero otherwise, Si denotes the sensitivity for a spatial frequency ui, I the retinal illuminance,
α is the intercept, β1 is the slope of the segment before the breakpoint ψ1, and β2 =U1 +β1 is
the slope of the segment after the breakpoint. Additional breakpoints can be estimated similarly
by adding the appropriate terms to equation (2.5). The existence of a breakpoint against the null
hypothesis of a zero change in slope was validated using a two-sided Davies test (Davies, 1987)
at .05 significance level with the additional constraint of its confidence interval to lie within
the measured luminance boundaries. For the breakpoint estimation, the number of points was
increased by N-1, where N is the total number of samples, using a shape-preserving piecewise
cubic interpolation (Moler, 2004) on the midpoints between each pair of luminance values.
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2.3 CSF modeling in the luminance domain

2.3.3. Extending the CSF to high luminance range

Following the model derived in Rovamo et al. (1994, 1997), with the assumption that critical
illuminance is independent of grating stimulus area and external noise is negligible, the
sensitivity-illuminance curve for spatial frequency ui can be described by:

S(ui, I) = S′max(ui)

[
1+

Ici

I
+

(
Idi

I

)2
]−0.5

(2.6)

where S is the Michelson contrast sensitivity, S′max the sensitivity ceiling for a constant grating
area, I the retinal illuminance, and Idi and Ici the frequency-dependent critical illuminances
that mark the transition from the linear to DeVries-Rose and DeVries-Rose to Weber regions,
respectively. It should be noted that this form implies a gradual transition, that is qualitatively
in better agreement with experimental findings (Rovamo et al., 1997) and satisfies the empirical
constraints in García-Pérez (2005). The S′max is defined as:

S′max(ui) = Smax(ui)

[
1+

(
Ac(ui)

A

)−0.5
]

(2.7)

where A is the stimulus grating area and Ac(ui) the critical area where spatial integration
saturates. Assuming that the latter is independent of retinal illuminance, it can be expressed as:

Ac(ui) = A0

[
1+

(
ui

umax

)2
]−1

(2.8)

where A0 and umax the upper spatial summation limits for the grating area and the critical spatial
frequency, respectively. The Smax is then given as:

Smax(ui) = K0OMT F(ui)HMT F(ui)
√

Ac(ui) (2.9)

where K0 is a constant, OMT F is the low-pass optical modulation transfer function, and HMT F

is the high-pass filter due to lateral inhibition. The constant K0 is expressed as:

K0 =

√
ηmax

2d′2Ni
(2.10)

where ηmax is the maximum efficiency of the local matched filter, d′ is a detectability constant
(Tanner and Birdsall, 1958) that depends on the task and the threshold level, and Ni is the late
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2.3 CSF modeling in the luminance domain

noise. The choice of the human optical MTF formula varies in the literature (Watson, 2013b).
Here, for comparison purposes, we adopt a Gaussian form (Barten, 1999) that accounts for
both the optical attenuation and retinal sampling factors:

OMT F(ui) = e−2π2σ(d)2u2
i (2.11)

where σ(d) is the SD of the line-spread function relative to the pupil diameter d [mm]:

σ(d) =
√

σ2
0 +(Cabd)2 (2.12)

where σ0 can be considered constant for foveal vision and Cab an increment weight for increas-
ing pupil size estimated at 0.08 arcmin/mm (Barten, 1999). In the original model, low-frequency
attenuation was found to decrease linearly with increasing spatial frequency. However, this
appears to be valid only at a limited frequency range (Donner and Hemilä, 1996). Here, we
adopted the following approximation formula for lateral inhibition (Barten, 1999) but allowing
for the square exponent to vary; the parameter u0 and is the upper-frequency limit for lateral
inhibition and ν is a free parameter:

HMT F(ui) =
√

1− e−(ui/u0)ν (2.13)

The best fit for the parameters K0, u0, σ0, κ , and the vectors Ic and Id was found by
simultaneously minimizing the sum of squared errors in log-space for all spatial frequencies
with more than two samples in luminance. Where the total number of frequencies was below
four, the sensitivity-illuminance curves were estimated using equation (2.6) with S′

max as a free
parameter. The summation parameters A0 and umax were fixed at 320 deg2 and .465 c/deg,
respectively, as estimated in Rovamo et al. (1994). Although the actual values might differ,
any deviation will be reflected in the variability of the fitted parameters among studies. Fitting
performance is expressed as the root mean square (RMS) and normalized root mean square
(NRMS) errors, as defined in Watson and Ahumada (2005). The penalization was used to adjust
for the number of free parameters and is given as:

NRMS =

√√√√ 1
J−N

J

∑
j=1

(
t j − t̂ j

)2

where J the number of different stimuli, N the number of the model parameters, t j the mean
thresholds, and t̂ j the model predictions in dB (the log10 threshold multiplied by 20).
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2.3 CSF modeling in the luminance domain

2.3.4. Results

2.3.4.1. CSF model fits

Figure 2.12 illustrates the model fit to the measured contrast sensitivities as a function of retinal
illuminance for all spatial frequencies across studies (equations 2.6 – 2.13; the fitted parameters
are given below in Table 2.7 and Figure 2.14). Where applicable, the model was fitted to the
average observer (eleven studies). Despite the vast differences in the experimental conditions,
the data exhibit a qualitatively similar relationship to background luminance. Generally, as the
spatial frequency increases, the curve becomes steeper, and the asymptotic region translates
to higher luminance. The RMS error for each study is shown at the top left of each panel in
Figure 2.12. The total RMS error for all studies combined was 1.19 dB.

2.3.4.2. Segmented regression

Figure 2.13 summarizes the results of the segmented regression on the measured sensitivity
data. For visualization purposes, the slopes of each segment are presented as a function of
relative retinal illuminance, i.e., the retinal illuminance divided by the spatial frequency squared
(Mustonen et al., 1993). Qualitatively, a region where the DeVries-Rose to Weber law holds in
a strict sense (the observed values agree with the predicted slopes of .5 and 0 within an arbitrary
threshold of ±.05) does seem to exist for specific luminance and frequency conditions, but
generally, this range seems restricted (see dashed thin lines in Figure 2.13; panels A2, B2-3,
D1, and E3). Instead, the slopes gradually decrease with increasing relative illuminance from
a value between .5 and 1 to zero approaching a Weber region. This observation translates as
follows: for decreasing/increasing retinal illuminance or increasing/decreasing frequency, the
transition towards the contrast sensitivity ceiling becomes steeper/more flat. Negative-slope
segments, below an arbitrary threshold value of -.1 (M = -.19, SD = .09), were found in four
of the studies (Kelly, 1972; Rovamo et al., 1994; Peli et al., 1996; and the present one) at
spatial frequencies between .25 cpd and 8 cpd and starting log relative illuminance between
.79 and 3.20 Td deg2. A negative slope was also present in (Depalma and Lowry, 1962; Van
Nes and Bouman, 1967; De Valois et al., 1974; Hess and Howell, 1988; Valero et al., 2004;
Kim et al., 2013; Silvestre et al., 2018) at roughly the same frequency range that can, however,
be considered as negligible (M = -.05, SD = .02). Note that in two of the studies (Shannon
et al., 1996; Rasengane et al., 2001) the stimuli were temporally modulated at low temporal
frequency (6 Hz) that could diverge the slopes from the ideal DeVries-Rose to Weber transition
depending on luminance (Kelly, 1972). However, in both cases, the slopes were in relatively
better agreement with this approximation law compared to the rest of the data.
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Figure 2.12 Model fits (black lines) to the measured sensitivity data (markers ≈ .25 log units width) for
each spatial frequency as a function of retinal illuminance across studies. Different markers within the
same study indicate different observers. Sensitivities were vertically shifted from higher to lower spatial
frequency for visualization purposes. The RMS error [dB] is shown at the top left of each panel. The
observers’ initials are shown at the bottom left, where AVG and ALL indicate the average and all the
observers, respectively. The asterisk indicates a model fit with S′max as a free parameter
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Figure 2.13 The segmented regression slopes across studies as a function of relative retinal illuminance
[Td deg2]. The thin lines depict the slope of the segments for each spatial frequency. The dashed thin
lines indicate a transition with slopes .50±.05 and ±.05 (panels A2, B2-3, D1, and E3). The thick black
curves show the median slope over a non-overlapping sliding window of .5 log units. The markers depict
the estimated breakpoints and the vertical red lines the mean value of their density estimate. The studies
in panels A1 and C1 were grouped for visualization purposes (vertical legend for the leftmost curve)

2.3.4.3. CSF model estimates and reduction

The fitted global parameters are given in Table 2.7. The mean estimates were K0 = 343 (SD =
248), u0 = 5.4 (SD = 3.9) c/deg, σ0 = .55 (SD = .15) arcmin, and ν = 2.4 (SD = .6). Estimates
near the parameter boundaries were excluded in calculating these means. A possible explanation
for this discrepancy is discussed below. In another variant of the same class of models, the one
from Barten (1999), u0, and σ0 were estimated at 7 c/deg and .5 arcmin, respectively, while the
parameter ν was assumed fixed at 2. The estimated critical illuminance vectors are presented
in Figure 2.14. The critical illuminance Ic that marks the transition to a Weber region was
found to be log-linearly related to spatial frequency, over a wide frequency range. Previous
studies indicated that Ic is approximately proportional to the spatial frequency squared (Van
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2.3 CSF modeling in the luminance domain

Nes and Bouman, 1967; Mustonen et al., 1993; Rovamo et al., 1994), i.e., a slope of 2. We
estimated a mean slope of 1.7 (SD = .6), in good agreement with the above. The relation
between the spatial frequency and the critical quantity Id was less clear, mainly since the
luminance-frequency sampling across studies did not allow for reliable estimates. However, at
this point, we will assume a first-degree polynomial approximation. Therefore the parameters
Ic and Id as a function of frequency can be expressed as:

log10Ic(u)≈ constantc + slopec log10u (2.14)

log10Id(u)≈ constantd + sloped log10u (2.15)

Study K0 u0 [c/deg] σ0 [arcmin] ν

Banks et. al 1987 (AVG) 107.45 2.98 .37 2.00
De Valois et. al 1974 (AVG) 145.10 3.67 <.1 2.91
Hess & Howell 1988 (ERH) 843.90 13.64 .50 2.33
Present study (AVG) 419.81 3.56 .70 2.71
Kelly 1972 (EB) 137.79 1.66 <.1 3.92
Kim et. al 2013 (AVG) 192.86 2.65 <.1 2.09
Patel 1966 (DR) 634.84 UB .53 2.24
Peli et. al 1996 (AVG) 76.82 2.40 .62 2.54
Rovamo et. al 1994 (JM) 375.23 7.54 <.1 1.95
Shannon et. al 1996 (AVG) 253.80 UB <.1 1.30
Silvestre et. al 2018 (AVG) 177.36 3.54 <.1 2.58
van Meeteren & Vos 1972 (AVG) 389.49 7.39 .74 2.30
van Nes & Bouman 1967 (FLN) 699.34 10.45 .36 2.42

Table 2.7 Estimated global parameters. In parenthesis, the observer’s initials, where AVG the average
observer. The letters UB indicate the upper bound (set at 16 cpd), and the gray color a fixed value

Based on the above results, we explored the effect of reducing the critical illuminance parame-
ters on the total RMS error for all the studies combined. This is an essential step as it not only
considerably reduces the total estimated parameters, but it also allows us to extract the CSF
surface in the frequency-luminance domain. If we fixed slopec = 2 in equation (2.14), and fitted
constantc along with the individual values of Id , the RMS and NRMS error increased by 1.30
dB and 1.35 dB, respectively. Re-estimating the global model parameters with simultaneous
optimization of constantc increased the RMS error by .37 dB and .22 dB, respectively. Fitting
slopec as well, resulted in a smaller increase of .59 dB and .52 dB (optimized estimates: .19 dB
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and .03 dB) in RMS and NRMS errors, respectively. Fitting all four terms (proposed model) in
equations (2.14) and (2.15) led to an increase of 1.27 dB and 1.06 dB (optimized: .39 dB and
.08 dB) for the RMS and NRMS errors, respectively. Increasing the polynomial terms further
did not produce any considerable improvement. The fitted values are given in Table 2.8.

Study constantc slopec constantd sloped

Banks et. al 1987 (AVG) 1.48 1.20 -.10 .00
Bierings et. al 2019 (AVG) 1.24 1.72 .55 1.75
De Valois et. al 1974 (AVG) .80 1.50 -2.18 3.97
Hess & Howell 1988 (ERH) .31 3.08 -3.32 2.71
Present study (AVG) -1.22 3.16 -1.09 2.38
Kelly 1972 (EB) .82 1.58 -1.23 1.68
Kim et. al 2013 (AVG) 1.45 1.52 .39 1.48
Patel 1966 (DR) 1.64 .88 -1.99 2.85
Peli et. al 1996 (AVG) .58 2.07 .91 .00
Rovamo et. al 1994 (JM) .69 1.93 -3.75 2.27
Shannon et. al 1996 (AVG) 2.08 1.11 1.04 .75
Silvestre et. al 2018 (AVG) 1.17 1.48 .64 0.94
Valero et. al 2004 (AVG) 1.34 1.20 -1.03 .00
van Meeteren & Vos 1972 (AVG) .50 1.51 -2.79 3.83
van Nes & Bouman 1967 (FLN) -.02 1.64 -3.24 3.07

Table 2.8 The fitted constants (not optimized) in the approximation of Ic and Id (equations 2.14-2.15).
In parenthesis, the observer’s initials, where ‘AVG’ the average observer.

2.3.4.4. CSF characteristics

In Figure 2.15 we examined the relationship of the main CSF characteristics to retinal illu-
minance across studies (based on the proposed model and the fitted parameters), namely, the
location (Fmax) and the magnitude (Gmax) of peak sensitivity, the highest visible frequency (Fc),
and the area under the log-CSF (AULCSF). The grating area was kept constant at 4 deg2. Where
the pupil size was not fixed, it was estimated as described in the methods section. Datasets
with limited spatial frequency sampling (Banks et al., 1987; Rovamo et al., 1994; Shannon
et al., 1996; Valero et al., 2004; Bierings et al., 2019) were excluded from further analysis. The
peak sensitivity was predicted to asymptote above roughly 103 Td, while the peak frequency
gradually increased from about 2 to 10 cpd with increasing illuminance (omitting predicted
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Figure 2.14 The critical illuminance vectors Ic (filled symbols) and Id (open symbols) as a function of
spatial frequency. The grey line illustrates a critical illuminance proportional to the spatial frequency
squared. The solid and the dotted lines depict the log-linear regressions for the Ic and Id vectors,
respectively. On the bottom left the observer’s initials, where ‘AVG’ indicates the average observer. On
the bottom right, the RMS errors in log units left for Ic and right for Id

sensitivities below zero). The visibility area and the high-frequency cut-off did not appear to
reach a plateau within the tested range. It should be noted that the predicted relationship for
the high-frequency cut-off (i.e., visual acuity) does not account for a well-known discontinuity
(Hendley, 1948; García-Pérez, 2005) during the transition from scotopic to photopic conditions
(approximately between 4.7×10-3 and 710 Td; Zele and Cao, 2015).

2.3.5. Barten’s CSF formula and model assessment

Barten (1999) produced an influential model of the human CSF. It was found successful in
describing previous sensitivity measurements with various grating stimuli in the photopic range
and is still generally regarded as the state-of-the-art in the field. Naturally, even though it
was similarly derived, this model serves as the reference point for assessing the performance
of the proposed approach. Following the suggestion in Barten (1999), we fitted the model
(BT P3) with three free parameters: the quantum efficiency of the eye η , a constant σ0, and
the signal-to-noise ratio κ . The constant σ0 controls the optical attenuation at high spatial
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Figure 2.15 The main CSF characteristics as a function of retinal illuminance. From the left to the right:
The peak sensitivity, the spatial frequency of the peak, the high-frequency cut-off where sensitivity
asymptotes to zero (extrapolated), and the area under the log-CSF (from .1 cpd to the highest visible
frequency). The thin lines depict different studies. The thick black line is the mean. Negative sensitivity
values were assumed zero and were omitted from the spatial frequency measures

frequencies, whereas the signal-to-noise ratio κ is a multiplication factor. The effective retinal
illuminance is modulated by the quantum efficiency η . A brief model description is provided
in Appendix B. Without modifying the model and in order to roughly match the degrees of
freedom in the proposed approach, we also extended the number of free parameters to six
(BT P6) by allowing the maximum integration area Xmax, the maximum number of cycles
Nmax, and the spatial frequency limit for lateral inhibition u0 to vary. The two former variables
interact with the field size and the spatial frequency, whereas the latter shifts the location of
the low-frequency roll-off. The photon conversion factor p [photons/sec/deg2/Td] was kept
constant across studies at 1.2× 106 for usual luminance conditions. Although this variable
depends on the specific light source, any differences will be absorbed by the estimates of
quantum efficiency η ; thus, resulting in equal fitting performance. Note, however, that as we
extend to the rod-dominated range (scotopic conditions), due to the shift of the peak spectral
sensitivity to shorter wavelength, reduced performance is to be expected if this parameter
is not properly adjusted as a function of the background luminance level. In the case of a
Gaussian grating envelope, the angular size of the patch was set to two standard deviations.
The rest of the parameters were fixed to the typical values for an average observer, foveal
vision, and photopic viewing conditions (Table B.4). The model was adjusted to monocular
viewing by reducing the sensitivity by a factor of

√
2 (Campbell and Green, 1965; also the

adjustment used in Barten, 1999), although the actual value might be higher (Baker et al.,
2018). Where applicable, to correct for the well-known oblique effect (see the introduction in
Kaspiris-Rousellis et al., 2017) in the diagonally oriented gratings, the maximum number of
cycles was reduced by a factor of two as suggested in Barten (2003). Every effort was made to
match the experimental conditions of each study, given the available information. However,
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as generally, Barten’s model is more strict regarding the accuracy of the measured physical
quantities, an underestimation of its performance cannot be ruled out (although partly negated
by the increase in the number of free parameters). The studies with limited spatial frequency
sampling were excluded. The comparison was run with four variants of the modified model
presented here. The basic model (RV M0) included the four global parameters (K0, u0, σ0, and
ν) along with one critical illuminance estimate Ic for each spatial frequency u. This form was
extended (RV M2) by introducing the second critical illuminance vector Id(u). Both models
were then tested with a log-linear approximation of their critical illuminance vectors (RV M0 to
M1 and RV M2 to M3), as shown in equations 2.14 – 2.15, which also allows for interpolating
(or extrapolating within limits) across spatial frequencies. The RMS and NRMS errors for
each study are presented in Table 2.9. Across the board, RV M3 gives the best account of the
data. The fitted parameters for the proposed model (RV M3) are given in Table 2.10. Where
applicable, the variability in the parameter estimates within studies and the corresponding
individual RMS errors for the RV M3 are reported in Table 2.11.

2.4. Discussion

In this chapter, we analyzed foveal (not strictly cone isolating conditions but generally non-
peripheral) contrast sensitivity measurements in the literature that systematically investigated
the effect of varying background luminance levels on the CSF. Using a custom-built display
system, we supplemented the existing research with a dataset at relatively high luminance
for spatial frequencies ranging from 1.5 cpd to 30 cpd and eleven observers to further our
understanding of the asymptotic CSF behavior in this regime. We focused on a theoretical
construct that describes this relationship, the linear to DeVries-Rose to Weber transition, which
manifests as an increase in sensitivity with increasing luminance with slopes of 1 and 0.5
in double log space to a Weber region where sensitivity becomes independent of luminance
(i.e., a slope of zero). By using continuous segmented regression analysis, we found that the
DeVries-Rose to Weber transition in a strict sense holds only for a limited range across spatial
frequencies and luminance conditions. Instead, a curvilinear form with a gradual transition
among the three regions appears as a valid approximation for sine-wave gratings. Specifically,
when relative retinal illuminance decreased, either by increasing the spatial frequency or
decreasing the retinal illuminance, the transition towards the sensitivity ceiling became steeper,
in agreement with the empirical constraints derived in García-Pérez (2005). Except for one
study (Van Nes and Bouman, 1967), there was insufficient evidence for a Weber region beyond
approximately 16 cpd, i.e., increasing luminance continued to increase log sensitivity, and no
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Model
DV

1974
HH

1988
Our

KL
1972

KM
2013

PT
1966

PL
1996

SL
2018

VMV
1972

VNB
1967

BT P3
3.49

(3.63)
4.55

(4.68)
1.36

(1.45)
3.50

(3.63)
2.78

(2.87)
2.04

(2.09)
2.06

(2.16)
3.78

(3.94)
3.07

(3.21)
2.33

(2.37)

BT P6
3.11

(3.39)
3.61

(3.84)
1.08

(1.25)
3.18

(3.42)
2.22

(2.37)
1.67

(1.75)
1.31

(1.44)
2.36

(2.58)
2.28

(2.50)
1.81

(1.86)

RV M0
2.69

(3.12)
2.10

(2.38)
.60

(.79)
1.14

(1.40)
1.60

(1.85)
1.42

(1.57)
.97

(1.12)
1.74

(2.08)
1.77

(2.04)
1.57

(1.78)

RV M1
2.89

(3.02)
2.48

(2.63)
.85

(.98)
1.42

(1.53)
1.78

(1.86)
1.66

(1.62)
1.00

(1.10)
1.81

(1.99)
1.93

(2.03)
1.86

(1.92)

RV M2
1.67

(2.33)
2.07

(2.62)
.56

(.97)
1.08

(1.69)
.86

(1.18)
1.08

(1.45)
.94

(1.21)
.94

(1.32)
.77

(1.04)
.89

(1.15)

RV M3
2.07

(2.23)
2.46

(2.67)
.85

(1.04)
1.38

(1.53)
1.12

(1.20)
1.36

(1.35)
.97

(1.10)
1.18

(1.34)
1.65

(1.80)
1.46

(1.53)

Table 2.9 The models’ fitting performance in terms of RMS error in dB (the log thresholds multiplied
by 20) across studies (columns). In parenthesis, the penalized for the number of parameters NRMS error
[dB] (after penalization for the number of parameters). BT P3: Barten’s suggested model with three
free parameters (κ , η , and σ0). BT P6: Barten’s model with six free parameters (κ , η , σ0, u0, Xmax,
and Nmax). RV M0: The modified Rovamo model with four global parameters (K0, u0, σ0, and ν) and
one critical illuminance vector with length equal to the number of spatial frequencies: Ic(u). RV M1:
The modified Rovamo model with six free parameters (K0, u0, σ0, ν , and the two critical illuminance
coefficients of the log-linear approximation constantc and slopec). RV M2: The modified Rovamo
model with four global parameters (K0, u0, σ0, and ν) and two critical illuminance vectors with length
equal to the number of spatial frequencies: Ic(u) and Id(u). RV M3: The proposed model modification
with eight free parameters (K0, u0, σ0, ν , and the four critical illuminance coefficients of the log-linear
approximation constantc, slopec, constantd , and sloped). In bold, the minimum errors excluding the
models RV M0 and RV M2 as they require an additional step for interpolating across spatial frequencies

saturation occurred at the luminance range tested (up to ≈ 104 Td). When we further extended
the retinal illuminance for two of the observers in our study, sensitivity asymptoted at all the
tested spatial frequencies up to 30 cpd. A decrease in sensitivity with increasing luminance was
also present at frequencies between 0.25 cpd and 8 cpd for a large number of studies (Figure
2.13, panels A2, B2-3, C1, C3, D1-2, and E1-3). However, the slope of decrease was relatively
small, and the results do not suffice to draw any further conclusions. It should be noted, though,
that in most cases, we used the average observer that could cancel out any related individual
differences (García-Pérez and Peli, 1997). In our data, we found significant but relatively
small (maximum mean difference of .1 log units) decrements in sensitivity across observers
above approximately 1.4× 103 Td at 1.5 cpd. In agreement with our results, Bierings et al.
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Study K0 u0 σ0 ν constc slopc constd slopd

De Valois et. al 1974 (AVG) 159.05 4.88 <.1 2.49 .69 1.62 -.57 2.09
Hess & Howell 1988 (ERH) 930.04 UB <.1 2.28 .31 3.01 -3.69 <.1
Present study (AVG) 398.18 3.28 .65 2.84 .69 1.74 -14.63 7.93
Kelly 1972 (EB) 132.21 1.57 <.1 4.00 .99 1.24 -1.36 2.56
Kim et. al 2013 (AVG) 178.89 2.16 .57 2.23 1.46 1.37 .35 1.41
Patel 1966 (DR) 571.59 UB .39 2.15 1.24 1.41 -3.80 4.16
Peli et. al 1996 (AVG) 74.05 2.39 .40 2.44 .29 2.50 .93 .53
Silvestre et. al 2018 (AVG) 179.25 3.56 <.1 2.57 1.30 1.45 .47 .35
van Meeteren & Vos 1972 (AVG) 978.90 UB .18 2.34 .46 2.52 -1.55 2.88
van Nes & Bouman 1967 (FLN) 891.88 UB .39 2.12 .03 1.64 -1.98 1.93

Table 2.10 The re-estimated parameters of the proposed model (RV M3) with simultaneous optimization
of the critical illuminance coefficients (constantc, slopec, constantd , and sloped) across studies. In
parenthesis, the observer’s initials, where ‘AVG’ the average observer. A value of ‘UB’ indicates the upper
bound (set at 16 cpd). Studies with limited spatial frequency sampling were omitted

(2019) found a significant sensitivity decrease (roughly .1 log units) for 1 cpd at approximately
3.5×104 Td compared with 4.7×103 Td, with the sensitivity ceiling reached at 710 Td. In the
extended range for the two observers in our dataset, the slope of decrease appeared to recover
with a further increase in retinal illuminance. However, given the relatively small magnitude of
decrease, it was unclear whether this was due to fluctuations around the saturation level or a
transition to a second Weber region, as discussed in Rovamo et al. (1997).

Following this theoretical construct, we adopted the model in Rovamo et al. (1994) con-
sisting of a low-pass optical MTF, a high-pass MTF due to lateral inhibition, a local matched
filter, and two noise sources (photon shot noise and late proximal noise) that limit visual
detection across the luminance domain and generate this observed DeVries-Rose to Weber
transition. We modified the model to include an additional early noise component that relates
to the linear to DeVries-Rose transition (Id) and was found to have a significant effect at low
luminance and spatial frequencies (approximately .16 Td to 1.6 Td at spatial frequencies below
2 cpd; Silvestre et al., 2018). The preliminary segmented regression analysis revealed slopes
between 1 and .5 that further supports the existence of a third region, in the context of this
model, where contrast sensitivity becomes proportional to the background luminance. The
critical illuminance that marks the transition to a Weber region was found to be log-linearly
related to the spatial frequency, consistent with the above results. It was roughly proportional
to spatial frequency squared, a phenomenon that is usually explained neurophysiologically by
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Study/Observer (RMSE) K0 u0 σ0 ν constc slopc constd slopd

Present study
S01 (1.20 dB) 537.52 3.00 <.1 2.87 -2.11 4.89 -15.38 8.48
S02 (1.48 dB) 436.53 3.40 .66 3.19 .54 1.85 -8.80 4.97
S03 (1.44 dB) 312.34 2.86 .76 2.84 1.30 1.29 -9.67 5.00
S04 (1.00 dB) 288.93 3.72 .64 2.12 .12 2.04 1.18 1.05
S05 (1.03 dB) 404.30 4.85 .61 2.67 .78 1.47 -17.41 9.91
S06 (0.89 dB) 276.16 3.08 .50 2.82 .20 2.59 -11.20 6.61
S07 (0.79 dB) 445.76 3.23 .60 3.15 .99 1.28 -7.05 6.26
S08 (1.06 dB) 408.72 3.89 .45 2.53 -.02 2.96 -6.10 2.08
S09 (1.71 dB) 393.66 2.62 .66 2.32 -4.41 1.24 1.69 .69
S10 (1.31 dB) 400.10 3.08 .80 3.03 .50 1.57 -4.22 .83
S11 (1.11 dB) 651.08 3.49 .68 3.26 -.15 2.01 -7.55 6.34

Kim et. al 2013
FLD (1.88 dB) 237.08 3.82 <.1 2.14 1.57 1.73 -1.62 3.68
JPT (1.65 dB) 155.11 2.39 .64 2.21 1.33 1.55 .06 1.73

KJK (1.59 dB) 234.66 2.28 .58 2.13 1.36 1.09 .69 1.20
PFI (2.10 dB) 165.36 2.05 .85 2.29 .74 1.24 1.13 .54

RFM (1.28 dB) 193.84 1.84 .66 2.27 1.42 1.16 .58 1.09
TOM (1.30 dB) 151.45 2.34 <.1 1.95 -6.59 8.30 1.43 1.28
VIB (1.70 dB) 136.66 1.66 <.1 2.27 -6.43 7.82 1.62 .49

Peli et. al 1996
AL (2.14 dB) 126.22 1.92 .63 2.88 -.81 2.91 .92 .95
EF (0.85 dB) 66.46 3.32 .79 2.55 .70 1.81 .72 .41
JI (1.55 dB) 106.98 2.40 .64 2.60 1.18 1.73 -11.94 <.1

RL (1.64 dB) 41.86 2.09 <.1 2.21 .66 2.26 -6.08 <.1

Silvestre et. al 2018
DS (0.95 dB) 246.29 4.42 <.1 2.55 .92 1.51 .50 .85
EM (3.08 dB) 231.21 3.67 <.1 2.78 1.74 2.14 .42 <.1
KL (1.97 dB) 81.95 2.26 .35 2.43 1.33 .35 .51 1.22
MB (1.54 dB) 269.88 4.14 <.1 2.72 .55 1.77 .67 .44

Table 2.11 The estimated parameters of the proposed model (RV M3) with simultaneous optimization
of the critical illuminance coefficients (constantc, slopec, constantd , and sloped) within studies
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the constant-flux hypothesis (Graham, 1989; Mustonen et al., 1993). Our proposed model with
eight parameters, i.e., equations (2.6) – (2.15), resulted in a total RMS error of 2.45 dB (1.57
dB if we re-estimated the global parameters by simultaneous optimization of the log-linear
approximation coefficients) for all the studies combined, but further improvements can be made.
The fitting performance was comparable with the state-of-the-art model by Barten (1999) tested
with six free parameters (see Table 2.9), improving on average the penalized NRMS error by
.86 dB (ranging from .2 dB to 1.89 dB) across studies. Note, however, that the results are
within the context of extending the CSF in the luminance domain. Regardless, as both models
belong to the same family, similar modifications can also be applied to Barten’s formula.

Scrutiny of the global parameters revealed an inconsistency in the estimation of σ0, which
controls the optical attenuation at high spatial frequencies. This discrepancy could be an
artifact due to limited frequency range sampling (Kelly, 1972; Shannon et al., 1996), or an
overestimation of the pupil diameter. Except for one of these studies, pupil size was estimated
from the display luminance (De Valois et al., 1974; Kim et al., 2013), or it was artificially dilated
to a high value (Rovamo et al., 1994). The same inconsistency, however, did not persist to all
the corresponding individual fits, with the other global individual parameters also generally
in agreement. In two of the studies, the parameter u0, the spatial frequency where the lateral
inhibition ceases, was at the upper boundary. A possible explanation would be the presence
of a local notch on the CSF (Patel, 1966), and limited frequency range sampling (Shannon
et al., 1996). Note, though, that when we re-estimated the global parameters by simultaneous
optimization of the log-linear approximation coefficients, three more studies converged to the
upper boundary, which might indicate the need for additional constraints. The variability in
the estimation of the constant K0 was expected due to the vast differences in the experimental
conditions. Nevertheless, fixing these parameters still provided us with reasonable fits.

However, other factors might be present. In the derivation of the model, we assumed that
the critical area where spatial summation saturates is independent of retinal illuminance. A
violation of this assumption would also cause this discrepancy. In fact, in an extension of a
similar model, the one by Barten (1999), to scotopic conditions (Jarvis and Wathes, 2012),
the spatial integration along with other parameters were adjusted to eccentric viewing that is
more appropriate for rod-dominated vision. This approach essentially assumes a discontinuous
piecewise function in luminance for the otherwise fixed model parameters, that was found
successful in describing contrast sensitivity measurements under scotopic (i.e., rod-dominated)
conditions. Inspecting the prediction of our model variant on the main CSF characteristics
revealed a limitation at low light levels, i.e., no discontinuity in acuity during the transition
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from the scotopic to the photopic range, that limits its application to moderate or higher light
levels and foveal vision. A similar two-segment relationship could be investigated here.

Another drawback of this modeling approach is that it does not account for any decrease
in sensitivity with increasing luminance, and therefore it is also upper-bounded for low to
intermediate frequencies (based on the examined datasets). Incorporating a decreasing term
in equation (2.6) is trivial (e.g., by adding the term (I/Ib)

b in the parenthesis, where Ib the
transition point and b the slope of decrease). However, this does not appear to be theoretically
justified, and high-luminance data where this could be more accurately examined are scarce.
Alternatively, given sufficiently dense sampling in luminance and frequencies, it is feasible
to extend the CSF only by interpolating the parameters of a mathematical form, e.g., an
asymmetric log-parabola (see subsection 2.2.3), in the luminance domain. An advantage of this
approach is that by definition it can describe the decreasing sensitivity at lower frequencies
while there is still sensitivity increase at the high-end with increasing luminance, and thus can
be extended to high light levels and different conditions where this decrease is prominent, e.g.,
peripheral stimuli (Daitch and Green, 1969). This technique also allows for capturing other
CSF features, e.g., low-frequency truncation (Watson and Ahumada, 2005). However, this
approach is highly sensitive to measurement noise. We found that combining our model variant
for interpolating across luminance with an asymmetric log-parabola form for interpolating
across spatial frequencies performed similarly with the same number of free parameters, but
could lead to an overestimation of the spatial resolution limit.

Whereas an alternative model derivation incorporating elements from the neurophysiology
of vision (e.g., photoreceptor responses, retinal gain controls) would provide a more accurate
description, this much more straightforward approach is a reasonable approximation to psy-
chophysically and electrophysiologically (Shannon et al., 1996) measured contrast sensitivity
variations in the luminance domain and allows for the extraction of the CSF surface as a
function of light level over a wide range of normal viewing conditions.
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Chapter 3. The effect of frame rate on visual discomfort and fatigue

3.1. Introduction

The extensive use of electronic visual displays is known to induce ocular and vision-related
symptoms of fatigue and discomfort (Bergqvist and Knave, 1994; Ye et al., 2007; Portello
et al., 2012; Kim et al., 2016; Larese Filon et al., 2019). Naturally, any prolonged visual task
under strenuous conditions, even with hard copies, e.g., sustained near work, would lead to the
same results. However, specific display characteristics and their interaction with environmental
variables and the user could exacerbate these symptoms, e.g., the effect of ambient light
and viewing angle on the appearance of emissive displays. Previous studies found various
associated factors related to these properties, e.g., gaze elevation (Menozzi et al., 1994), pixel
density (Ziefle, 1998; Wright et al., 1999; Mayr et al., 2017), display luminance and ambient
illumination (Benedetto et al., 2014; Kim et al., 2017; Fernandez-Alonso et al., 2020), and
screen reflections (Shieh, 2000; Miyake-Kashima et al., 2005).

The current ergonomic guidelines for human-display interaction (ISO 9241-303, 2011)
provide a detailed description of display specifications aimed to alleviate these effects. One of
the many overall characteristics that manufacturers are required to address is motion fidelity.
Motion fidelity is essential not only for depicting dynamic content but also for moving static
images or text around the screen, such as when a user scrolls through a document. With sample-
and-hold displays becoming the industry standard, e.g., liquid crystal displays, and given their
current susceptibility to motion artifacts such as motion blur, the resulting frame sequence
degradation has created another potential source of visual discomfort and fatigue. Despite the
various techniques that were proposed to reduce these effects, e.g., backlight strobing (Feng,
2006), the effective transition time between two static frames remains the main limitation.
Naturally, if not limited by the pixel response time, a higher frame rate results in higher fidelity
with better support for faster moving stimuli. Although the highest attainable rate is desirable,
when resources are limited, e.g., the battery life in portable devices, this adjustment becomes
another variable in the optimization process balancing energy consumption and user satisfaction
(e.g., Han et al., 2013; Egilmez et al., 2017).
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The "window of visibility" in the spatiotemporal Fourier domain (Watson et al., 1986;
Watson, 2013a) successfully described the fundamentals of sampling and motion fidelity, as a
function of the stimulus spectrum and the spatiotemporal frequency detection limits in human
vision. A sufficiently high frame rate would preserve the signal within this detection window,
thus making any artifacts invisible to the human eye. Psychophysical studies have quantified
the effect of frame rate on the visibility of several motion artifacts (Wang et al., 2009; Hoffman
et al., 2011; Selfridge et al., 2016; Chapiro et al., 2019) and its impact on the perceived
motion-image quality (Kuroki et al., 2007; Emoto et al., 2014; Nasiri et al., 2015; Mackin et al.,
2019) and task performance (Chen and Thropp, 2007; Claypool and Claypool, 2007; Janzen
and Teather, 2014; Kime et al., 2016). Although a link between fidelity and quality could be
established under certain conditions (see Chapter 1), this is not always the case (Silverstein and
Farrell, 1996). Fidelity is rather one of the several factors determining the perceived quality
(see general introduction). Likewise, we may hypothesize that the absence of fidelity is one
of the potential factors of visual discomfort and, eventually, fatigue. Currently, little is known
about the development of these symptoms as a function of frame rate and motion distortion.
Here, our purpose was two-fold: first, to investigate the effect of frame rate variations on fatigue
and visual discomfort during regular display use; and second, to explore potential correlation
with objective indicators that could yield quantifiable parameters.

The methods of assessing visual fatigue and discomfort can be divided into two classes:
subjective and objective measures. Subjective evaluation is usually performed through self-
assessment questionnaires on the severity of the most common symptoms, e.g., eye strain, dry
eyes, and blurred vision. In contrast, objective assessment includes changes in the critical
flicker-fusion threshold and oculometrics, such as blinking patterns, accommodative effects, and
pupillometry (Sheppard and Wolffsohn, 2018). The latter approach is further supported by the
fact that ocular responses have been widely used in the literature as indicators of physiological
and psychological processes related to fatigue such as the state of arousal (Yoss et al., 1970;
Häkkänen et al., 1999; Barbato et al., 2000; Caffier et al., 2003; Di Stasi et al., 2013) or
vigilance (McIntire et al., 2014; Unsworth and Robison, 2016; Maffei and Angrilli, 2018).
Generally, on the intersection of these studies with research on overall fatigue development
(Stern et al., 1994a; Stern et al., 1994b; Morris and Miller, 1996; Summala et al., 1999;
Van Orden et al., 2000; Kaneko and Sakamoto, 2001; Schleicher et al., 2008; Zargari Marandi
et al., 2018) and eye health and comfort (Acosta et al., 1999; Wolkoff, 2005; Himebaugh
et al., 2009; Gowrisankaran et al., 2012; Johnston et al., 2013; Portello et al., 2013; Jie et al.,
2019) are measures related to blinking activity. It is widely accepted that spontaneous blinks
are modulated by a complex interaction of extrinsic, e.g., the state of the ocular surface, and
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intrinsic factors, e.g., mental activity (Cruz et al., 2011). Nevertheless, we hypothesized that
even in complex interaction, frame rate effects on the observer would be predominantly reflected
in their blinking patterns. Blink analysis was also used in studies exploring viewer stress levels
in high-frame-rate video content (Tag et al., 2016) and the impact of the visual information
presentation rate on fatigue and eye discomfort symptoms (Cardona et al., 2011).

Following this direction, we developed a naturalistic reward-based scan reading task where
participants searched for errors in scrolling text while we recorded their eye activity using
a portable binocular eye tracker. Four frame rates log2-linearly spaced between 30 and 240
frames/s were evaluated under two settings: self-paced unconstrained scrolling, and high fixed
continuous text velocity. We assessed the perceived visual fatigue and discomfort symptoms,
overall observer preference, task performance, and blinking activity. A possible association
between the subjective reports and the objective measures was also examined.

3.2. Methods

3.2.1. Participants

Twenty-three healthy volunteers (mean age: 31 years, SD: 8 years, span: 21 – 52 years, ten
males and thirteen females) participated in experiment I. Fourteen of them were paid in vouchers
based on task performance. Nine volunteers (mean age: 25 years, SD: 5 years, span: 21 – 32
years, seven males and two females) participated in experiment II. Six of them completed both
experiments with at least a three-month interval between the first and the second experiment
(also in order of execution). They had normal or corrected to normal vision with no history
of visual problems. Six participants in the first group and one in the second wore contact
lenses. The Newcastle University Ethics Committee approved the experimental protocol, and
all participants gave written informed consent.

3.2.2. Apparatus and experimental design

The experiments were performed on a 24.5" LCD monitor (Acer Predator XB252Q) in a dark
and quiet room. The resolution of the panel was 1920×1080 pixels, with a maximum frame rate
of 240 Hz. Participants were seated in front of a desk, and the monitor was fixed at 90 degrees.
They were instructed to adjust the height of the display and the seat to their preferred position.
The average viewing distance was approximately 40 cm, measured perpendicularly from the
center of the screen to their eyes’ midpoint. The subjects were fitted with a portable binocular
eye-tracker (Pupil Labs Core) that recorded their eye activity at 120 Hz. The calibration
procedure for the eye-tracker was performed using the Pupil Labs software (Kassner et al.,
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2014). Subjects performed a scan reading task searching for scrambled words in scrolling
text. They indicated their response with the press of the space bar on the keyboard. If a
scrambled word was present inside the visible area, the response was recorded as correct.
Participants received one point for locating a scrambled word, and one point was deducted
for each false alarm. The task objective was to locate as many text errors as possible within
the time frame. Paid participants were informed before the session that their accumulated
score would specify their compensation reward amount. The size of the text canvas was set
to 540×960 pixels encompassing an average visual angle of approximately 22×40 degrees
(horizontal × vertical). The displayed font was Open Sans Semibold with a maximum line
height of 25 pixels (approximately 1 visual degree). The light gray background was set to a
luminance of 370 cd/m2, as measured using the Minolta LS-100 meter. The dark text luminance
level was .5 cd/m2. We examined four conditions of decreasing degradation by modulating the
frame update frequency. Explicitly, we emulated a frame rate of 30, 60, 120, and 240 frames/s.
We selected four similar legal texts from the European Union law database EUR-Lex (2020),
namely the documents with the CELEX unique identification numbers: (A) 12012A/TXT, (B)
32012R0966, (C) 32013R1303, and (D) 32013R1308. The preamble and tabular content were
filtered out. Scrambled words were algorithmically generated and were the same for all subjects.
The algorithm used a random variable character step size to move along the text and locate
the nearest word of above six characters in length. A coin toss decided whether to scramble
at this location or move to the next one. The scrambling process consisted of a split between
consonants and vowels, a random swap of the consonants, and a merge of the two segments in
series with a random order (e.g., European to rnpEuoea). The tedious text content was selected
to encourage a quick pace and hence rapid motion, while task engagement was maintained
using the reward system. Figure 3.1 shows an example of the experimental recordings.

3.2.2.1. Experiment I

The subjects were instructed to scroll through the text at their preferred speed using the mouse
wheel (Dell Moczul). The mouse wheel sensitivity was set to 27 pixels per scroll event.
The experiment consisted of a 5 min training session, followed by one 10 min trial for each
condition. The subjects were allowed to recover after each trial without any time restriction.
The four frame rates were randomly interleaved and randomly combined with the four texts.
The experiment was completed in one visit lasting approximately 1 hour.
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Figure 3.1 First-person view of the experimental text scrolling task. Top left: the binocular eye
recordings with the detected pupils shown as ellipses. Middle: the text canvas with the estimated gaze
depicted as a circle. Top right: the elapsed time. Bottom right: the accumulated reward points

3.2.2.2. Experiment II

The second experiment was divided into two parts: speed-adjustment trials and paired com-
parisons. It consisted of a 5 min training session, followed by an 8 min set of adjustment
trials, and an 18 min set of comparisons, with unrestricted rest intervals. In the adjustment
trials, the subjects performed the same task on continuously moving text. They were instructed
to adjust the text speed to their comfort level using the arrow keys on the keyboard. The
initial text velocity was set to 390 pixels/s. They completed two 1 min trials per frame rate
for a total of eight trials per subject, with 20 s minimum rest intervals. The conditions were
randomly interleaved, and one randomly chosen text was assigned to all conditions. In the
paired comparisons, the subjects performed the same task at a fixed text velocity of 390 pixels/s.
Each participant completed two 90 s evaluations for each frame rate pair (45 s for each frame
rate) for a total of twelve comparisons, with 20 s minimum rest intervals. The pairs were
randomly interleaved and randomly combined with the four texts. For every text repetition, in
both parts of the experiment, the task continued below the last visible line of the previous trial.
The experiment was completed in one visit lasting approximately 50 min.

72



3.2 Methods

3.2.3. Subjective measures

Subjective feedback on visual fatigue, discomfort, and preference was recorded using the
questionnaires in Hoffman et al. (2008). In the first questionnaire (Appendix C.1), the subjects
indicated the severity of visual (questions 1, 2, 4, and 5) and musculoskeletal (question 3)
symptoms on a five-level scale. The latter question was added by the authors to assess whether
the responses were specific to the symptoms. In the second questionnaire (Appendix C.2), the
subjects evaluated each pair of conditions in terms of higher visual fatigue and discomfort, and
overall preference. They were given the options of strong, mild, or no difference. Participants
were instructed not to take into consideration the text content in their evaluation.

In experiment I, the subjects completed the self-assessment of their symptoms before and
after each trial. Each evaluation was performed for the last pair on every two consecutive trials.
In experiment II, the self-assessment questionnaire was omitted due to the short duration of the
trials. The subjects randomly evaluated all the combinations among conditions, from a lower to
a higher frame rate and in reverse presentation order. The evaluation questionnaire (Appendix
C.3) was supplemented with two questions on "text clarity" (question 4) and "perceived
brightness" (question 5). The latter question was added due to comments received from some
observers during experiment I, who reported that some conditions appeared brighter.

3.2.4. Objective measures

The potential objective indicators of visual fatigue and discomfort were arranged into two
categories: ocular responses and task performance. In the first category, we examined the blink
rate (BR), the duration of the blinks (BD), and the incomplete blink ratio (ICR). In the second
category, we evaluated the individual performance in terms of hit rate (HT), precision (PPV),
and adjusted text velocity (MV). The hit rate was defined as the number of hits (detected text
errors) over total errors seen, and precision expressed the hits over the sum of hits and false
alarms. The MV was calculated as the average scrolling speed during the trial. Note that in the
second experiment, the MV corresponded to the preferred constant text speed that we measured
during the speed-adjustment task at the beginning of the session (the text velocity was fixed at
390 pixels/s for all the observers in the paired frame rate evaluations). Although the MV can
also be used as a predictor for the other responses, it was only treated as a response variable to
avoid additional complexities since we did not systematically sample different text velocities.
After visually inspecting the data, we set a high cut-off value for the blink duration at 600
ms corresponding to a data exclusion of 1.8%. In the blink rate calculation, multiple blinks
in series were treated as one to avoid contamination by local bursts. All the blinks that were
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classified as incomplete were excluded from further processing. This exclusion did not alter
any of the conclusions as the ratio of incomplete blinks was roughly constant.

3.2.4.1. Blink detection

Eye blinks were detected using a bidirectional long short-term memory recurrent neural network
following the basic architecture in Fogelton and Benesova (2018). The recorded image frames
were down-sampled to 24x24 pixels, and optical flow vectors were calculated using the method
in Farnebäck (2003). At each time-step, we constructed a feature vector consisting of the Pupil
Labs detection algorithm confidence value and the optical flow vectors. The author annotated
the eye-activity during the subjects’ training trials by inspecting the ocular video recordings at
controllable speed using custom software. From the annotated set, we extracted 3957 batches
of 256 sample size intervals encompassing the blink events. The data were augmented by
approximately 50% with random non-blink intervals and split for each observer and category
(i.e., blink and non-blink) in 70/15/15 percent for training, validation, and testing, respectively.
In the case of multiple blinks in series, each blink event was isolated, zero-padded, and then
masked throughout the network. The model was initialized and trained as described in the
original paper (Fogelton and Benesova, 2018). Each frame was classified in one of three classes,
i.e., non-blink, incomplete blink, or complete blink. The frame-by-frame classification achieved
a weighted average F1 score of .94; a complete report is provided in Table C.1. Practically,
the network detected 98.96% of the annotated blinks (total number of events: N = 575) in the
test set, with a false alarm rate of 1.49% (N = 269), for a minimum blink duration of 50 ms.
In terms of blink completeness, 90.31% (N = 413) of the complete blinks were classified in
agreement with the human annotator, with a 9.26% (N = 162) of false positives, for a minimum
complete closure duration of 10 ms. A full blink cycle occurs when the upper and lower eyelids
come in contact. Here, we adopted a lower threshold of the upper lid covering approximately
two-thirds of the iris. The network was implemented using the Keras Python library (Chollet
et al., 2015) with TensorFlow (Abadi et al., 2015) as a backend.

The onset and offset of the blink intervals were post adjusted based on the baseline-corrected
mean vertical component of the optical flow vectors. Baseline activity was extracted from the
non-blink intervals of the annotated trials, and its mean value was subtracted from the signal.
The signal was then passed through a median filter of window size three. During a blink, the
vertical component exhibits a specific pattern: a positive peak followed by a negative peak
corresponding to a downward and upward eyelid movement. Thus, the onset was set to the
nearest local minimum or zero-crossing preceding the global maximum of the mean vertical
component. Likewise, offset was set to the nearest local maximum or zero-crossing following
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the global minimum at a minimum distance of frames (set after visually inspecting the isolated
signal segments). If sequential blinks were present, they were visually inspected and then split
at the location of the minimum standard deviation of the vertical flow. Compared to the human
annotator, there was an average latency of 2 ms (SD = 12 ms) and -43 ms (SD = 34 ms) in
the onset and offset detection, respectively. This adjustment resulted in an average decrease
of 45 ms (SD = 40 ms) in the blink duration among participants. The process was run for
each eye separately, and the signals were downsampled and synced to 60 Hz. The binocular
combination was performed by calculating the intersection over union (IoU) of the overlapping
blink segments. If the IoU was above a threshold, here set to .2, we adjusted the onset and offset
to the midpoints of the difference between the two segments (Fogelton and Benesova, 2016).
If a blink was detected or classified as incomplete in only one of the eyes, the corresponding
frames were extracted and visually inspected. Finally, blink and non-blink intervals were
randomly extracted for each subject and inspected for false positives and negatives.

3.2.5. Statistical analysis and modeling

A within-subjects ANOVA was conducted on each of the objective measures with the frame
rate as independent predictor. The tests were performed using the R libraries afex (Singmann
et al., 2020) and car (Fox and Weisberg, 2019). The frame rate effects were reported with the
Geisser-Greenhouse’s ε̂ adjustment for the degrees of freedom. Follow-up tests for linear and
quadratic trends were performed using the library emmeans (Lenth, 2020) with a multivariate
model. In the second experiment, the data were pooled across repetitions. The statistical
sensitivity of our tests is given in the Appendix C.

The subjective feedback on fatigue and discomfort was analyzed using Friedman’s test on
the self-reported increase in each of the symptoms. The paired comparisons on the preference
among the frame update frequencies were fitted with a log-linear Bradley-Terry model (Dittrich
et al., 2002b). This modeling approach aims to place the different objects, here the frame
rates, on a unified preference interval scale based on the responses for the tested attribute. The
estimated non-negative parameters or the objects’ worth, i.e., the location on the preference
scale, are associated with the probabilities of selecting one object over another. We fitted the
model on the overall preference using the R library prefmod (Hatzinger and Dittrich, 2012).
The data were grouped into three response categories: preference for the first object, the
second, or none, to reduce sparseness. Note that due to the within-subject dependencies, an
underestimation of the standard errors is to be expected. Thus, we also examined an alternative
model formulation accounting for the dependencies in the response patterns (Dittrich et al.,
2002a). We did not find any differences in the object ranking or the significance tests (see
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Figure C.9); therefore, we report the results of the former due to better model fits. For
convenience, as the estimated standard errors are calculated with reference to a base frame
rate, the coefficients were plotted using quasi-standard errors (Firth, 2004). However, the
test statistics were performed on the estimated covariance matrix. The remaining feedback
questions on the specific symptoms or attributes were analyzed in terms of their repeated
measures correlation (rrm; Bakdash and Marusich, 2017) with overall preference.

3.3. Results

3.3.1. Task performance

Task performance can be quantified as speed, hit rate, and precision. Table 3.1 summarizes the
mean estimates for each frame rate and variable. Figure 3.2 depicts the normalized to each
observer frame rate differences. Recall that in the first experiment, the participants scrolled
through the text (potentially in a "start-stop" way), whereas in the second experiment, we
measured the preferred constant scrolling speed at the beginning of the session (the speed-
adjustment task; the text velocity was fixed at 390 pixels/s for all the observers in the paired
frame rate evaluations where all the other variables were measured).

The mean text scrolling velocity (MV; right column in Figure 3.2) was relatively constant
in the first experiment with no significant changes among the frame update frequencies, F(2.25,
49.55) = .05, p-corrected = 1, η2

p = .002 (see also Table 3.2). In contrast, during the second
experiment’s speed-adjustment task, the subjects fixed the MV to higher levels by roughly
18 pixels/s for every two-fold increase in the frame rate, CI95%:[3, 32], before the adjusted
velocity began to saturate between 60 frames/s and 120 frames/s. However, the overall effect
was practically small and not significant in our sample, F(2.16, 17.26) = 3.41, p-corrected =
.267, η2

p = .299. The average MV in the aggregated across conditions data (M = 186, SD =
80 pixels/s) was 52% lower, CI95%:[46%, 59%] by basic bootstrap (boot), than the one we
arbitrarily set for the main evaluation task, but 57% higher, boot CI95%: [20%, 69%], than
experiment I (M = 119, SD = 65 pixels/s). The latter was expected by design due to the
"start-stop" scrolling behavior in the first experiment.

Turning to the error detection performance, the frame rate effect on the first experiment’s
hit rate (HT; left column in Figure 3.2) was practically negligible and not significant, F(2.73,
60.08) = .09, p-corrected = 1, η2

p = .004 (see Table 3.2). In the second experiment, similar to
the preferred text speed, the two-fold increase in frequency improved the hit rate by roughly
.02, CI95%:[−.01, .06], before performance began to asymptote above 60 frames/s. However,
the effect was still practically small and not significant, F(2.50, 20.03) = 2.22, p-corrected =
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.502, η2
p = .217. Likewise, precision (PPV; middle column in Figure 3.2) did not significantly

differ among frame rates in either the first, F(2.55, 56.20) = 1.95, p-corrected = .594, η2
p = .081,

or the second experiment, F(2.17, 17.38) = .41, p-corrected = 1, η2
p = .049. The average HT in

the aggregated data in experiment II (M = .24, SD = .16) dropped by 58%, boot CI95%:[45%,
70%], compared with experiment I (M = .57, SD = .24). The participants were conservative in
both cases, with the average PPV in the second experiment (M = .92, SD = .06) decreasing by
5%, boot CI95%:[3%, 7%], relative to experiment I (Mdn = .97, SD = .04).
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Figure 3.2 The normalized to each observer frame rate differences in the task performance (mean-
centered values for each observer). From left to right, the hit rate (HT), the precision (PPV), and
the adjusted text velocity (MV). Top: experiment I. Bottom: experiment II. The MV in the second
experiment corresponds to the speed-adjustment task before the paired frame rate evaluations. The
error bars show the bootstrap 95% CI of the average value across observers (large markers). The small
transparent markers depict the individual observations (horizontally jittered)

3.3.2. Eye blinks

Table 3.1 summarizes the blinking measures for each frame rate condition. The normalized to
each observer differences are illustrated in Figure 3.3. In the first experiment, the blink rate
(BR; left column in Figure 3.3) decreased approximately linearly (see significant linear trend in
Table 3.3) by .66 blinks/min for every two-fold increase in the frame rate. However, the effect
was practically negligible and not significant in our sample after adjusting for the multiplicity,
F(2.78, 61.15) = 3.19, p-corrected = .197, η2

p = .127. (see Table 3.2). In the second and more
demanding experiment, the frame rate effect was considerably larger and significant, F(2.06,
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16.44) = 7.07, p-corrected = .035, η2
p = .469, albeit still practically moderate. Consistent with

experiment I, the blink rate decreased approximately linearly (the linear contrast was also
significant) by 1.45 blinks/min for every two-fold increase in the frame rate, CI95%:[.56, 2.34].
The estimated effects are depicted in Figure 3.4. It is worth noting that a paired t-test on the
post-trial blink rate in the first experiment revealed a significant mean relative increase of 21.2
blinks/min during the feedback reports, t(91) = 12.84, p < .001, boot CI95%:[17.9, 24.6].

The effect of frame rate on blink duration (BD; middle column in Figure 3.3) was trivial,
with no significant differences in either the first, F(2.20, 48.44) = 2.19, corrected-p = .594,
η2

p = .090, or the second experiment, F(2.04, 16.30) = .34, corrected-p = 1, η2
p = .040 (Table

3.2). Likewise, any differences in the incomplete blink ratio (ICR; right column in Figure
3.3) were practically negligible and non-significant in both the first, F(2.42, 53.26) = .01,
corrected-p = .722, η2

p = .062, and the second experiment, F(2.40, 19.21) = .10, corrected-p =
1, η2

p = .013. The average BD in the aggregated data in experiment II (M = 301, SD = 50 ms)
increased by roughly 18%, boot CI95%:[10%, 26%], relative to experiment I (M = 255, SD =
62 ms). Likewise, the average ICR in the second experiment (M = .31, SD = .17) increased by
approximately 56%, boot CI95%:[23%, 89%], relative to experiment I (M = .20, SD = .18).
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Figure 3.3 The normalized to each observer frame rate differences in blinking activity. From left to right,
the blink rate (BR), the blink duration (BD), and the incomplete blink ratio (ICR). Top: experiment I.
Bottom: experiment II. The error bars show the bootstrap 95% CI of the average value across observers
(large markers). The small transparent markers depict the individual observations
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Dependent
variable

Experiment I (df = 22) Experiment II (df = 8)

FPS Mean SE 95% CI Mean SE 95% CI

BR [min-1] 30 11.56 1.86 7.71 – 15.42 7.95 1.68 4.08 – 11.83
60 9.44 1.52 6.30 – 12.58 7.36 1.88 3.03 – 11.68
120 9.73 1.66 6.29 – 13.16 4.88 1.22 2.06 – 7.70
240 9.28 1.37 6.43 – 12.13 3.94 1.00 1.64 – 6.24

BD [ms] 30 262 14 234 – 291 293 16 255 – 331
60 248 12 223 – 274 299 15 265 – 334
120 252 12 226 – 278 306 17 268 – 344
240 258 14 230 – 287 306 20 259 – 352

ICR 30 .22 .04 .13 – .30 .30 .04 .21 – .39
60 .20 .04 .13 – .27 .32 .05 .20 – .44
120 .17 .03 .11 – .24 .31 .07 .15 – .46
240 .20 .04 .11 – .29 .30 .07 .14 – .46

HT 30 .57 .05 .46 – .67 .21 .06 .08 – .34
60 .57 .05 .46 – .68 .26 .06 .11 – .41
120 .57 .05 .48 – .67 .24 .05 .12 – .36
240 .56 .05 .45 – .67 .26 .05 .14 – .38

PPV 30 .97 .01 .96 – .99 .91 .02 .87 – .96
60 .96 .01 .94 – .98 .93 .02 .89 – .98
120 .97 .01 .96 – .99 .92 .02 .87 – .97
240 .97 .01 .95 – .99 .91 .02 .88 – .95

MV [pixels/s] 30 119 13 91 – 146 164 21 116 – 211
60 117 13 91 – 144 186 27 125 – 248
120 118 14 88 – 148 199 32 126 – 272
240 120 14 90 – 149 193 30 124 – 263

Table 3.1 The estimated means of the objective variables and their 95% CI. BR: blink rate. BD: blink
duration. ICR: incomplete blink ratio. MV: text scrolling velocity. HT: hit rate. PPV: precision. FPS:
the frame rate. Note that multiple blinks in series were merged into one for calculating the blink rate
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Dependent
variable

df MSE F η2
p [90% CI] p-val

Holm3
p-val

Holm6
p-val

Eye blinks I
BR (2.78, 61.15) 8.67e+0 3.19 .127 [.006, .232] .033 .099 .197
BD (2.20, 48.44) 5.57e+2 2.19 .090 [.000, .206] .119 .238 .594
ICR (2.42, 53.26) 5.80e−3 .01 .062 [.000, .157] .241 .241 .722

Task performance I
HT (2.73, 60.08) 6.01e+1 .09 .004 [.000, .019] .958 1 1
PPV (2.55, 56.20) 7.20e−4 1.95 .081 [.000, .181] .140 .421 .594
MV (2.25, 49.55) 5.59e+2 .05 .002 [.000, .023] .966 1 1

Eye blinks II
BR (2.06, 16.44) 6.89e+0 7.07 .469 [.110, .619] .006 .017 .035
BD (2.04, 16.30) 1.45e+3 .34 .040 [.000, .175] .723 1 1
ICR (2.40, 19.21) 1.32e−2 .10 .013 [.000, .078] .930 1 1

Task performance II
HT (2.50, 20.03) 2.85e−3 2.22 .217 [.000, .385] .126 .251 .502
PPV (2.17, 17.38) 2.51e−3 .41 .049 [.000, .184] .686 .686 1
MV (2.16, 17.26) 8.74e+2 3.41 .299 [.000, .478] .053 .160 .267

Table 3.2 Statistics of the frame rate effect on the objective measures. The last three columns show the
unadjusted and the Holm corrected p-values for the three and the total six tests in each experiment (the
adjustment we selected). For the calculation of the confidence intervals, see Smithson (2001)

Dependent
variable

Contrast Est. SE t-ratio
Lower
CI95%

Upper
CI95%

p-value

BR (I) linear −.66 .26 −2.51 −1.20 −.11 .020
df = 22 quadratic .42 .30 1.41 −.20 1.04 .174

BR (II) linear −1.45 .39 −3.74 −2.34 −.56 .006
df = 8 quadratic −.09 .34 −.25 −.88 .71 .810

Table 3.3 Follow-up tests for linear and quadratic contrasts. The contrast coefficients were scaled using
the codings [-.3, -.1, .1, .3] for the linear and [.25, -.25, -.25, .25] for the quadratic effects
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Experiment I (average scrolling MV = 119 pixels/s)
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Figure 3.4 The estimated effect of the frame update frequency on the blink rate (BR; considering also the
variability in the observer intercepts). The blue line (above) and the red line (below) depict experiments
I and II, respectively. The shaded areas depict the 95% CIs. The coefficients of separate individual linear
regressions on the individual data are shown in Figure C.4

3.3.3. Subjective feedback

The self-assessment report on fatigue and discomfort was generally null, i.e., no symptom
increase, with zero and negative responses (when corrected for the pre-trial measurement)
ranging between 65% and 96% among the feedback questions and frame rates (see Figure
C.6). Recall that in experiment I, the participants were asked after each condition to rate five
symptoms of discomfort. Neither overall eye tiredness, χ2(3) = 1.42, p = .702, nor eye strain,
χ2(3) = 3.19, p = .364, nor vision blurriness, χ2(3) = 3.22, p = .359, were significantly affected
by the variations in the frame rate. Likewise, there was no significant effect on headache
symptoms, χ2(3) = 4.40, p = .221, or neck and back soreness, χ2(3) = .90, p = .827.

In both experiments, observers were also asked to make direct comparisons between pairs of
trials. Recall that in the first experiment, each evaluation was performed for the last pair on every
two consecutive trials, whereas, in experiment II, the subjects assessed all the combinations
among the conditions (from a lower to a higher frame rate and in reverse presentation order).
The aggregated votes in the first and the second experiment are depicted in Figures 3.5 and
3.6, respectively. Qualitatively, the first experiment’s feedback was inconclusive without
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considerable differences in the paired comparisons. In contrast, the more dynamic second
experiment revealed a generally clear preference with higher perceived text clarity for the
higher frames rates (bottom and middle right panels dominated by blue bars in Figure 3.6).
Participants also generally reported higher fatigue and eye irritation effects for the lower frame
rates (top panels dominated by pink bars in Figure 3.6).
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Figure 3.5 Aggregated votes for the observer evaluation feedback in Experiment I. Note that for the
fatigue, eye irritation, and headache questions, a mild or strong selection corresponds to the severity of
the symptoms instead of preference, e.g., stronger symptoms in the lower frame rate (see Figure C.2).
The data were plotted using the R library HH (Heiberger and Robbins, 2014)

Figure 3.7 illustrates the log model estimates based on the overall observer preferences in
the paired evaluations feedback, with the 30 frames/s as the base rate. In experiment I, the
coefficients increased with the frame rate up to 120 frames/s before they dropped below the
base rate value. However, none of the differences were significant (right panel in Figure 3.7).
The estimated worth parameters, given as the exponents of two times the coefficients over the
sum of these exponents, were π30 = .21, π60 = .28, π120 = .36, and π240 = .16. The global no
preference coefficient (γ =−.10) revealed a relatively balanced discriminability, and it was
not significant (Wald p = .700). Generally, lower negative values indicate a higher tendency
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Figure 3.6 Aggregated votes for the observer evaluation feedback in Experiment II. Note that for the
fatigue, eye irritation, and headache questions, a mild or strong selection corresponds to the severity
of the symptoms instead of preference, e.g., stronger symptoms during the low frame rate. Likewise,
a strong low frame selection for brightness indicates that the lower frame rate was perceived as much
brighter. The questionnaire is shown in Figure C.3
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Feedback
question

Experiment II

Fatigue Eye irritation Headache Preference Brightness

Text clarity
-.76∗∗∗

[-.86, -.67]
-.79∗∗∗

[-.89, -.69]
-.22

[-.32, -.10]
.83∗∗∗

[.73, .92]
-.06

[-.28, .20]

Fatigue
.78∗∗∗

[.61, .92]
.30∗

[.16, .41]
-.72∗∗∗

[-.84, -.60]
-.04

[-.26, .21]

Eye irritation
.81∗∗∗

[.64, .93]
.34∗∗

[.20, .45]
-.74∗∗∗

[-.86, -.61]
.06

[-.21, .31]

Headache
.47∗∗

[.09, .72]
.66∗∗∗

[.40, .82]
-.33∗∗

[-.45, -.20]
-.08

[-.28, .14]

Preference
-.74∗∗∗

[-.86, -.55]
-.74∗∗∗

[-.85, -.56]
-.52∗∗

[-.70, -.16]
-.11

[-.29, .09]

Experiment I

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 3.4 Repeated measures correlation matrix of the evaluation feedback questionnaire. The lower
triangular matrix shows the rrm correlation coefficients and their 95% CI by bootstrap (within brackets)
for experiment I. Likewise, the upper triangular matrix depicts the coefficients and their 95% CI for
experiment II. The stars indicate the Holm corrected p-values given twenty-one tests

towards a decision, whereas higher positive values express a larger indecision effect. The
overall preference anticorrelated at the intra-individual level with the perceived fatigue, rrm(45)
= -.74, p < .001, eye irritability, rrm(45) = -.74, p < .001, and headache symptoms, rrm(45) =
-.52, p = .002. In experiment II, the model coefficients increased for increasing frame rate, with
all the differences except for the 60 – 120 frames/s pair being significant in our sample. The
estimated worth parameters were π30 = .01, π60 = .09, π120 = .12, and π240 = .78. The global
no preference estimate (γ = .20) was comparable to the first experiment with a non-decision
tendency, but it was also not significant (Wald p = .432). The overall preference anticorrelated
with the perceived fatigue, rrm(98) = -.72, p < .001, eye irritability, rrm(98) = -.74, p < .001,
and headache symptoms, rrm(98) = -.33, p = .007, and correlated with text clarity rrm(98) =
.83, p < .001. Table C.2 shows the predicted probabilities and their relation to the estimated
worth parameters for each comparison in the two models. The individual preference data are
shown in Figures C.7 and C.8. The full repeated measures correlation coefficients and their
95% CI are given in Table 3.4. The reported p-values for each correlation were adjusted for the
total of twenty-one tests using the Holm method.
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Figure 3.7 Scaling of the frame rate conditions based on the overall observer preference. Left: the log
estimates as a function of frame rate (FPS) with the 30 frames/s as the reference, for experiments I (blue
circles) and II (red diamonds). The error bars depict the quasi standard errors. Right: the difference in
the estimates (bold) and the standard error (italics) among the frame rate pairs for experiments I (bottom)
and II (top). A negative sign indicates that the column was preferred to the row. The shaded blocks
indicate p-values below .05. The data were plotted using the R library factorplot (Armstrong, 2016)

3.4. Discussion

This chapter analyzed the effects of frame rate on visual discomfort, fatigue, and overall
preference during regular display use, and their association with real-time objective indicators
in task performance and blinking activity. The observers performed a typical scan reading task
looking for typographical errors in a lengthy text document while we modulated the frame rate.
The study comprised two experiments. In the first experiment, the subjects scrolled through
the text at their own pace using a mouse wheel, whereas, in the second, the text velocity was
fixed at a relatively high value increasing the task difficulty (the preferred fixed text speed was
recorded at the beginning of the experiment). Given the exploratory nature of this study and
the currently limited knowledge of the specific effects, the purpose of the second approach
was to establish a basis for evaluating the results. We hypothesized that if there were an effect
due to the varying frame rate, it would be amplified by further increasing degradation and
eye-pursuit movements through an accelerated continuous text flow. Smooth eye pursuits are
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associated with the most prominent artifact in hold-type displays, hold-type or motion blur (see
an example in Figure 3.8), which adversely affects visual annoyance (Kurita, 2001), particularly
in the presentation of scrolling text sequences (Tourancheau et al., 2009).
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Figure 3.8 An illustration of hold-type or motion blur for an object translating with constant velocity (in
our case the scrolling text). The eye is smoothly tracking the object but the display samples and holds
a static frame for the duration of the frame update interval. This positional error results in the object
image getting smeared out on the retina. A higher frame rate produces a lower error and thus less blur

The subjective evaluation in the first experiment did not reveal a significantly higher
preference for any of the frequencies. Previous studies on user satisfaction with handheld
devices operating under different frame rates presented comparable findings. Han et al. (2013)
reported that 80% of the users were satisfied scrolling through a webpage at approximately 25
frames/s for a scrolling speed of 45 pixels/s (about half the value of the median observer in
our study), increasing to 41 frames/s at 200 pixels/s. Along similar lines, Egilmez et al. (2017)
found almost no significant increase in user ratings above 45 frames/s on several applications,
surprisingly, including a fast-paced video game, with 30 frames/s becoming more acceptable
with less dynamic content. We also found that subjective preference anticorrelated with the
perceived difference in fatigue and eye discomfort symptoms. Indeed, one purpose of including
these questions was to guide the participant to consider fatigue and eye comfort when selecting
their preference, and this association suggests that we achieved this.

Consistent with the paired evaluations, the self-assessment questionnaire did not show any
significant increase in the symptoms for a 10 min trial duration at each frame rate condition.
Considering the large number of zero responses throughout the first experiment, it follows that
this duration was somewhat short or the task not strenuous enough to induce such typically
long-timescale effects. Note, though, that it is not unusual to observe a non-significant change
in the subjective reports even when objective metrics indicate otherwise (Lin et al., 2008).
Regardless, one usually has to demonstrate a substantial effect (detectable even with relatively
small sample sizes) to convince that at least a two-fold increase would be necessary within this
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context. Based on these results, in the second experiment, we allocated the remaining resources
to improve the evaluation feedback reliability by increasing the number of paired comparisons
among the conditions (i.e., all the frame rate pairs in both orders of presentation to extract the
full comparisons matrix for each observer). Consequently, the symptoms questionnaire was
omitted, and the trial duration was reduced to maintain the total time-on-task at roughly the
same level. Although an investigation of long-term effects would be equally important, given
that the self-reported increase in the symptoms after 40 min on the task was negligible, for
practical reasons, we limited our current exploration to short-timescale frame rate effects.

Under these conditions in the second and more demanding experiment, the changes in the
overall preference with frame rate became apparent. The subjects reported a higher preference
monotonically increasing with the frame rate up to 240 frames/s, with only the 60-120 frames/s
pair being relatively close on the estimated scale. Although the sample size was relatively
small for this type of analysis, the data were consistent across participants, and the scaling
results were generally unambiguous. This considerable variation in the frame rate threshold
with changes in the stimulus content and particularly its velocity can also be seen in studies
evaluating the perceived quality of video at high frame rates where improvements up to 240
frames/s were previously reported (Kuroki et al., 2007; Emoto et al., 2014). Recall that there
was a core difference between the two experiments; here, the text was continuously moving, and
the image was updated at the corresponding intervals without the observer’s control. Instead,
in the first experiment, the image was abruptly updated at the corresponding locations based
on the accumulated discrete scroll events and the frame rate. Had we simulated a smooth
movement, or the momentum in the user input, e.g., by using a touch-screen, or any other
common modifications such as scrolling acceleration, the results would have presumably
differed. Note that we can easily create the conditions where a higher frame rate would be
needed; however, testing all the possible scenarios was outside the purpose of this study.

Same as in the first experiment, the preference anticorrelated with the perceived fatigue and
eye discomfort effects. However, the slightly higher correlation with "text clarity" suggests
that the subjects might have responded more generally or that their decision was based on an
interaction of factors, including the motion-image quality. We could reasonably assume that a
trial of 45 s is rather short to induce actual fatigue symptoms, yet the responses were similar
to the perceived eye discomfort and text clarity. This inconsistency, even if it stems from a
perceived visual fatigue potential, demonstrates the challenges of decoupling these factors with
naive observers and further supports the need for objective indices.

The error detection performance and the adjusted text velocity were not significantly
affected by the variations in the frame rate, although a practically small effect was present in the
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second experiment (primarily at 30 frames/s where the task demands were higher). As expected,
due to the increase in the task difficulty, the overall hit rate dropped considerably from the first to
the second experiment, with a higher number of false alarms and lapses. The speed-adjustment
trials at the beginning of the second experiment confirmed that the fixed text velocity in all
cases was well above the observer’s comfort level, approximately two times higher than the
average value. This difference was even higher compared with the first experiment, roughly
three times above the average observer, due to the unrestricted discontinuous scrolling (i.e.,
scrolling in a "start-stop" way). Therefore, the pre-set speed was sufficiently low to accomplish
the task adequately even at the lowest frame rate, where the hold-type blur was most severe, but
high enough to stress the participants. Increasing the text speed further would have eventually
impaired task execution at the lower frequencies; however, detecting the threshold performance
as a function of frame rate was outside the purpose of this study. Although there was no clear
indication of a link between visual fatigue or discomfort with task performance, the examined
conditions were too tightly constrained to draw any further conclusions.

The blinking activity generally corresponded to the overall observer preference. In both
experiments, the blink rate increased asymptotically with the frame rate, approximately linearly
in log scale within the examined range. However, in the first experiment, this increase was
practically negligible (maximum mean difference of approximately 2 blinks/min). The corre-
sponding effect in the second experiment was considerably larger (roughly doubled) but still
relatively moderate. An increase in blink rate was previously associated with overall fatigue
development based on the axiomatic relationship of the latter with increasing time-on-task
(Kaneko and Sakamoto, 2001; Zargari Marandi et al., 2018), often combined with decrements
in task performance (Morris and Miller, 1996; Van Orden et al., 2000; McIntire et al., 2014). It
naturally follows that this behavior is not restricted to visual fatigue, but it could also reflect
other processes (Stern et al., 1994b). Nonetheless, the impact of time-on-task effects was
negated in our experiments by the short duration of the randomly interleaved trials interrupted
by resting periods restricted only to a minimum interval (Stern et al., 1994a). Therefore, it
would be misleading to conclude that this increase in blink rate was solely due to higher fatigue
and particularly of visual origin. However, visual fatigue (here measured only subjectively) is
not always bi-directionally coupled with visual discomfort. Borrowing a definition by Lambooij
et al. (2009), visual fatigue refers to a decrement in visual function that may be accompanied by
visual discomfort, whereas the nature of visual discomfort is purely subjective. Hence, the latter
may also occur during short exposure to an irritating stimulus without necessarily inducing
fatigue. In our study, there was some evidence of higher subjective discomfort with decreasing
frame rate as expressed through the association with the overall observer preference.
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In agreement with our results, Tag et al. (2016) found a decreasing blink count with
increasing frame rate in videos with various motion complexities, which they attributed to
lower viewer stress levels. It is not illogical to hypothesize that viewer discomfort could lead
to moderate psychological stress that, through a consequent increment in dopamine levels
(Pruessner, 2004), results in increased blinking activity (Jongkees and Colzato, 2016) — all
other things being equal. On the other hand, several studies have linked blink inhibition to
ocular surface dehydration that may predispose individuals to visual discomfort symptoms
(Wolkoff, 2005; Himebaugh et al., 2009). Given that there was generally no indication of
discomfort with increasing frame rate, the latter, if we assume an effect, would have smoothed
out the differences by bouncing back the blink count. However, the short trial duration and the
frequent resting periods could have also mitigated these symptoms.

Regardless, this complex interaction suggests a mechanism that strategically modulates this
behavior to balance these effects while maintaining the continuity of critical visual information,
which is naturally interrupted during blinking. Thus, it may also be argued that the blinking
frequency was merely adapted to the flow increment of visual information. Previous studies
found higher blink inhibition for more dynamic display content (Himebaugh et al., 2009;
Cardona et al., 2011), although with vast differences among the tasks in comparison. Whether
a maximum lag of 29 ms in the presentation rate (maximum difference among the frame update
frequencies) would have been sufficient to affect the blinking behavior and to what extent, to
the author’s knowledge, is currently unknown. Nevertheless, the overall effect of frame rate
on the blinking activity compared with other task-dependent (average blink rate increase of 21
blinks/min during the feedback questionnaire) or individual factors (observer intercepts ranging
roughly from 1 to 32 blinks/min at 60 Hz) was practically negligible. Note that this is not to
contradict the above argument but to emphasize that these effects were on a different scale in
terms of blink inhibition and its link with visual discomfort.

The blink duration and the incomplete blink ratio were not significantly affected by the
changes in the frame rate, and they were generally constant across conditions. Based on these
results and considering the available resources, we did not explore a further classification for
the blink type, e.g., bursts in activity, duration, e.g., extended closure, and completeness, e.g.,
closure percentage. A more in-depth analysis of the latter, however, could potentially provide a
better insight into blink inhibition effects on visual discomfort symptoms (Ousler et al., 2014).
It is also worth noting that many participants in our study exhibited binocular asymmetries in
their blink completion. Lastly, concerning the effects across the two experiments, the absence
of a baseline measurement, the relatively small sample size, and the demographic sample
differences on several associated factors do not allow us to draw safe conclusions. However, in
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terms of relative measures, there was a noticeable increase in the ratio of incomplete blinks in
the second experiment with the more dynamically changing content.

Summarizing, the measurements indicated that for a trial duration of 10 min at relatively
low self-paced scrolling speeds, naive observers performed the same with no considerable
differences in their overall preference and no reported visual fatigue or discomfort for frame
rates ranging from 30 to 240 frames/s. When we increased the task dynamics by changing to a
continuous high-speed text flow, the differences among conditions became generally apparent
up to the highest frame rate that we tested (240 frames/s) in less than 1 min of exposure. The
participants expressed a higher preference for increasing frame rate with evidence suggesting
an association with image quality and discomfort, without any practically meaningful reduction
in task performance. The blinking activity was higher at the lower frequencies with a more
prominent effect in the more dynamic experiment and generally in agreement with the subjective
preference estimates. Based on this association, we discussed a possible link between the
increase in blinks and moderate visual discomfort along with alternative interpretations. We
also noted that the overall effect of frame rate on the blinking activity would likely be dwarfed
by other associated factors, making it less useful as an indicator.

In conclusion, the results suggested that during everyday display use, e.g., self-paced
scrolling through text at moderate speed and duration, the frame rate can be considerably
reduced (even to 30 frames/s or lower) without severe effects on the user. However, this
tolerance diminishes under more dynamic content, e.g., by using animated sequences or
continuously fast-moving text as in our task (even much higher rates may not be tolerable).
Since the optimal frame rate is naturally task-specific, the overall user acceptance and perceived
visual comfort would need to be quantified as a function of frame rate for the targeted application
and platform and potentially tailored to the individual user. Overall, this study provides evidence
of potential gains in adaptive display designs.
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General discussion

The thesis was primarily structured around two general objectives in the field. The first was to
describe the visual performance in processing the information from a finite (distorted) version
of optical reality. The second was to identify the limitations of human observers and quantify
their tolerance to the respective artifacts. Following the summary in the general introduction, a
central topic among the studies was the contrast sensitivity function (CSF). Recall that the CSF
is the most general way to describe what human observers can detect and an integral part of
many visual quality metrics (such as those employed in Chapter 1). It is also a general (and
quick) way for a display to adapt to the individual observer and the varying environmental and
stimulus demands (especially helpful for portable devices). Two of our studies investigated
how the spatial CSF varies with adaptation luminance, mainly focusing on high light levels (the
discussion of the methods and results is given in Section 2.4). Recall that sensitivity is generally
expected to increase with luminance before reaching a plateau; this creates an apparent trade-off
between the level of detail that can be discerned and artifact visibility (greater image detail
could also result in more visible artifacts). Furthermore, the presence of the plateau indicates a
level where increasing the luminance further would not result in any noticeable improvements.
An interesting finding was the decrease (after the peak) in sensitivity with increasing luminance
at low to intermediate spatial frequencies. Although not striking, this decrease was also found
in some previous studies but was generally neglected. It follows that such a decrease could
result in luminance increments that have the opposite of the intended effect; this adds further
complexity as lower frequencies reach the critical point at lower luminance levels. Currently,
CSF models do not generally account for this effect. The same limitation applies to the model
presented here; although we could easily incorporate a decreasing term, this adjustment could
not be theoretically justified. An extension of this work would be developing (or modifying)
a model that adjusts for this effect while maintaining the same performance across datasets.
The same model could then be further modified to handle the drop in performance at the lower
end of the luminance range tested (mesopic to scotopic levels). Future work could also include
other pattern dimensions such as temporal frequency, eccentricity, chromatic contrast, and
stimulus size. The same applies to the individual observer’s characteristics (e.g., age) or other
viewing conditions such as natural pupils and surround illumination.
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General discussion

The other two main topics were application-specific studies derived from the same overall
objectives. Note that an additional purpose of this work was to demonstrate a general approach
for treating similar problems. The first of these studies presented a method for estimating the
perceptually optimal view density in (arbitrary) continuous-parallax content. Recall that we
used the metric scores on the simulated image sequence to extract a unidimensional interval
scale and estimate (through fitting an appropriate psychometric function) the near-threshold
density for the depicted scene (Section 1.4 discusses this approach and our results in detail).
Naturally, future work would need to extend this estimation to multiple arbitrary scenes with
varying properties. However, even without an extensive calibration dataset, this mapping offers
a practical advantage in reducing the duration of subjective visual assessments (i.e., better
sampling of the distortion levels). Further work could directly integrate the predicted distortion
intensity into a faster adaptive threshold estimation procedure, such as the Bayesian approach in
Chapter 2. Note that the existing metrics were reasonably accurate in estimating the perceived
distortion levels for the tested stimuli despite not being explicitly structured to capture the related
artifacts; however, a dedicated model could improve prediction performance. Furthermore,
the evaluation of no-reference or reduced-reference metrics would benefit applications where
the full-reference signal is not known. One interesting result in the present study was that the
threshold level was primarily driven by abrupt motion; the presence of slight crosstalk (reduced
image sharpness but smoother transitions) generally increased observer tolerance. Naturally,
this result would need to be verified by future studies. Future work could also evaluate more
display-specific (non-generic) simulations for the displayed images.

The second of these studies explored the effect of high temporal presentation rates on visual
comfort and fatigue. The results were generally null in the more realistic task, although the
overall negative effect of lower frequencies could be demonstrated under more demanding (and
controlled) conditions (see Section 3.4). One of the main difficulties in measuring the perceived
symptoms (particularly with naive observers) is decoupling the different factors that may affect
the subjective responses (e.g., general preference due to better image quality). A typical way
to address this issue is with the use of objective metrics. Researchers have proposed several
potential indicators; here, we examined task performance and blinking activity. The suitability
of these measures was thoroughly analyzed in Chapter 3. Generally, the main issue was the
relatively small effect that we found even when subjective feedback indicated otherwise. Note
that it is common practice in vision science to use a relatively small number of participants,
which can impact the generality of the results; thus, one should also consider the minimum
effect we can reliably detect given the sample size. Future studies could explore alternative
indicators and different usage scenarios, including the impact of adaptive designs.
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Appendix A. Supplementary material for Chapter 1

Individual fits as a function of disparity
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Figure A.1 The individual psychometric function fits on the observer performance (markers) with the
maximum pixel disparity among the input views as the degradation intensity. The error bars show the
Wilson binomial 95% CI. The shaded area depicts the 95% CI for the threshold estimate (dashed line) by
parametric bootstrap. The goodness-of-fit is shown on the bottom right-hand corner (gray text), where
D is the observed deviance and p the probability of obtaining deviance on the Monte-Carlo generated
samples (N = 10000) larger than the observed value. Each facet corresponds to different combinations
of step size (dx) and view blending (M), where C1: dx = 2 mm, M = 0, C2: dx = 3 mm, M = 0, C3:
dx = 2 mm, M = 4, and C4: dx = 3 mm, M = 4. The observers with the letter A correspond to the first
(depth z = 0 cm) group. Likewise the letter B indicates the second group (z = -15.6 cm)
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Metric performance across conditions
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Figure A.2 The average metrics performance across observers and conditions in terms of the Kendall
τb correlation and the fitted Weibull function deviance. The error bars depict the 95% CI by basic
bootstrap. The text labels were slightly jittered to avoid overlap
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Figure A.3 The average metrics performance across observers and conditions in terms of the Kendall τb
correlation and the fitted cumulative Gaussian function deviance. The error bars depict the 95% CI by
basic bootstrap. The text labels were slightly jittered to avoid overlap
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Figure A.4 The average metrics performance across observers and conditions in terms of the Kendall
τb correlation and the fitted Logistic function deviance. The error bars depict the 95% CI by basic
bootstrap. The text labels were slightly jittered to avoid overlap

Metric correlation examples
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Figure A.5 An example of the Kendall τb pairwise correlations among metrics as depicted in Figure
1.8 (left panel for high correlation). The markers show the metric scores for the examined distorted
conditions in terms of increasing degradation. The concordant and discordant pairs are connected with
black and red segments, respectively (more details can be found in Davis and Chen, 2007)
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Figure A.6 An example of the Kendall τb correlation with the proportion of correct responses across
observers as illustrated in in Figure 1.9. The concordant and discordant pairs are connected with black
and red segments, respectively, whereas ties are depicted with horizontal blue lines
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Appendix B. Supplementary material for Chapter 2

Basic sampling characteristics of the data included in the meta-analysis

Source study [Nobs, NSF , Mdn.NE] SF range [cpd]
approx. max E

range [Td]

Banks et. al 1987 (AVG) [2, 5, 3.0] [5, 20] [1.0e+1, 1.0e+3]
Bierings et. al 2019 (AVG) [51, 3, 6.0] [1, 10] [1.5e−1, 3.5e+4]
De Valois et. al 1974 (AVG) [5, 8, 4.5] [.6, 14] [3.8e−2, 3.5e+2]
Hess & Howell 1988 (ERH) [1, 8, 6.5] [.1, 20] [3.8e−5, 1.1e+3]
Present study (Exp I) (AVG) [11, 6, 4.0] [1.5, 30] [2.0e+2, 3.2e+3]
Present study (Exp II) (S01) [1, 6, 8.0] [1.5, 30] [8.9e+0, 2.3e+4]
Present study (Exp II) (S07) [1, 6, 8.0] [1.5, 30] [8.9e+0, 2.5e+4]
Kelly 1972 (EB) [1, 11, 4.0] [.25, 8] [6.9e−1, 6.9e+2]
Kim et. al 2013 (AVG) [7, 10, 5.0] [.125, 16] [4.3e−1, 1.3e+3]
Patel 1966 (DR) [1, 13, 3.0] [.8, 18] [2.8e−1, 9.4e+2]
Peli et. al 1996 (AVG) [4, 5, 7.0] [1, 16] [1.1e+1, 9.5e+2]
Rasengane et. al 2001 (AVG) [5, 1, 5.0] [.25, .25] [1.8e+0, 7.3e+3]
Rovamo et. al 1994 (ALL) [5, 8, 6.0] [.125, 32] [7.0e−5, 1.6e+4]
Shannon et. al 1996 (AVG) [2, 5, 5.0] [.5, 6] [1.7e+0, 5.4e+2]
Silvestre et. al 2018 (AVG) [4, 7, 5.0] [.25, 16] [1.4e−1, 1.4e+4]
Valero et. al 2004 (AVG) [3, 3, 6.0] [.5, 2] [9.1e+0, 1.5e+3]
van Meeteren & Vos 1972 (AVG) [2, 7, 5.0] [.5, 19] [2.0e−3, 1.4e+2]
van Nes & Bouman 1967 (FLN) [1, 18, 6.0] [.5, 48] [8.5e−4, 5.6e+3]

Table B.1 Summary of the basic sampling characteristics of the data included in the meta-analysis. The
second column reports the number of individual observers in the estimation of the average sensitivity
(Nobs), the number of spatial frequencies (NSF ), and the median number of retinal illuminance samples
across frequencies (Mdn.NE). The last two columns show the range of the spatial frequencies and the
approximate maximum retinal illuminance range tested. The characteristics of experiment II in the
present study are only given for comparison purposes as they were omitted from this analysis
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Individual descriptive CSF model fits

Observer
RMSE0 [dB] RMSEALP [dB]

68 208 475 1078 All 68 208 475 1078 All

S01 .59 .91 .67 .55 .70 .63 1.06 .82 .70 .82
S02 1.34 2.49 2.18 2.29 2.12 1.46 2.49 2.22 2.34 2.16
S03 2.93 2.41 2.50 2.34 2.55 2.95 2.43 2.51 2.42 2.59
S04 3.95 3.81 3.39 3.49 3.67 3.96 3.89 3.42 3.53 3.71
S05 4.21 1.73 3.46 3.09 3.25 4.22 1.73 3.49 3.18 3.28
S06 4.32 2.41 3.85 2.72 3.42 4.35 2.44 3.85 2.75 3.44
S07 2.66 2.95 2.70 2.14 2.63 2.66 2.99 2.79 2.48 2.74
S08 2.59 3.90 2.20 3.28 3.06 2.70 3.90 2.26 3.32 3.11
S09 2.19 3.19 2.38 2.21 2.53 2.24 3.24 2.51 2.45 2.64
S10 2.05 2.52 2.29 1.97 2.22 2.20 2.65 2.34 1.99 2.31
S11 1.32 1.56 1.84 1.77 1.63 1.32 1.76 1.88 2.19 1.81

Table B.2 The fitting performance of the asymmetric log-parabola CSF form (RMSEALP) for each
observer and luminance level, and for all the levels combined. The RMSE0 corresponds to a model
where the threshold is given by the mean log estimate across repetitions at each level. The RMS errors
are shown in dB (the log sensitivity multiplied by 20) on the full set of measurements

Intercorrelations of the main CSF characteristics

CSF measure AULCSF Fc Fmax

Fc .78∗∗∗ [.61, .88]

Fmax .65∗∗∗ [.42, .81] .41∗ [.07, .69]

Gmax .87∗∗∗ [.78, .94] .58∗∗ [.33, .76] .33 [.04, .59]

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table B.3 Repeated measures correlation matrix for the main CSF characteristics. The matrix shows the
rrm correlation coefficients and their 95% CI by bootstrap (within brackets) for experiment I. Gmax: the
peak sensitivity. Fmax: the location of the peak. Fc: the high-frequency cut-off
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Sensitivity analysis

The sensitivity analysis was performed using the R library Superpower (Caldwell and Lakens,
2019). The confidence intervals for the partial eta squared were calculated following the
procedure in Smithson (2001). Note that the partial eta squared estimation includes the
correlation among the paired measures (see the appendix in Lakens, 2013). In the present
sample the mean correlation was .89 (SD = .04).
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Figure B.1 Top left: the estimated power as a function of the partial eta squared measure. The solid
line depicts the power of the ANOVAs, and the dashed line the power for the pairwise comparisons
(without multiplicity adjustment). The dotted line shows the conventional 80% power level. Bottom
left: the measured effect size for the tested variables. Right: the measured effect size for each pairwise
comparison (panels) and variable (we reported the eta squared based on F = t2 when the numerator
degrees of freedom equals one; see Table 2 in Friedman, 1982). The error bars show the 90% CI
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Barten’s contrast sensitivity model at photopic luminance

The formula for estimating contrast sensitivity S for binocular viewing of static stimuli as a
function of spatial frequency u (roughly with a lower bound of 1 cpd) is expressed with the
following equation for retinal illuminance E [Td]:

S (u) =
Mopt (u)/k√

2
T

(
1

X2
0
+ 1

X2
max

+ u2

N2
max

)(
1

η pE + Φ0

1−e(u/u0)
2

) (B.1)

where Mopt (u) is the optical modulation transfer function of the eye given as:

Mopt (u) = e−2π2σ2u2
(B.2)

and σ is the standard deviation of the eye line spread function that can be expressed as:

σ =

√
σ2

0 +(Cabd)2 (B.3)

Barten (1999) provides a detailed interpretation of the parameters and an analytical derivation
of the above formulae. The physical quantities and their typical values are given in Table B.4.

Parameter Short description Value/units

d pupil diameter mm
X0 stimulus angular size degrees
p photon conversion factor photons/sec/deg2/Td
T integration time of the eye .1 sec
u0 spatial frequency limit for lateral inhibition 7 cpd
Xmax maximum size of the integration area 12 degrees
Nmax maximum number of integration cycles 15 cycles
Φ0 spectral density of the neural noise 3 × 108 sec degrees2

Cab constant that controls the increase of σ with the pupil size .08 arc min/mm
σ0 constant that depends on the eye lens and the cone density .5 arc min
κ signal-to-noise ratio at the detection threshold 3
η quantum efficiency of the eye .03

Table B.4 Barten’s model parameters and their typical values for an average observer and foveal vision.
For usual conditions p ≈ 1.2×106 (depends on the light source spectrum). Note that the Cab and σ0
parameters require a conversion to degrees
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Appendix C. Supplementary material for Chapter 3

Subjective feedback questionnaires

Please rate the severity of each symptom at this moment.

Very fresh OK Mild ache

How does your head feel?

Severe acheModerate ache

Very fresh OK Mild strain

How do your eyes feel?

Severe strainModerate strain

Very fresh OK Mild ache

How tired and sore are your neck and back?

Severe acheModerate ache

Very fresh OK Mildly tired

How tired are your eyes?

Very tiredModerately tired

Very clear OK Mild blur

How clear is your vision?

Much blurModerate blur

Figure C.1 The visual fatigue and discomfort symptoms questionnaire in experiment I
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Please select the option that best represents your final impression between the last two trials.

Strong preference
for the 1st trial

Mild preference
for the 1st trial

No preference

Which trial did you prefer?

Strong preference
for the 2nd trial

Mild preference
for the 2nd trial

1st trial
much worse

1st trial
worse

No difference

If you felt a headache, which trial was worse?

2nd trial
much worse

2nd trial
worse

1st trial
much worse

1st trial
worse

No difference

Which trial was most fatiguing?

2nd trial
much worse

2nd trial
worse

1st trial
much worse

1st trial
worse

No difference

Which trial irritated your eyes the most?

2nd trial
much worse

2nd trial
worse

Figure C.2 The frame rate evaluation questionnaire in Experiment I
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Please select the option that best represents your final impression between the last two trials

Strong preference
for the 1st trial

Mild preference
for the 1st trial

No preference

Which trial did you prefer?

Strong preference
for the 2nd trial

Mild preference
for the 2nd trial

1st trial
much brighter

1st trial
brighter

No difference

Which trial appeared brighter?

2nd trial
much brighter

2nd trial
brighter

1st trial
much clearer

1st trial
clearer

No difference

Which text was more clear?

2nd trial
much clearer

2nd trial
clearer

1st trial
much worse

1st trial
worse

No difference

If you felt a headache, which trial was worse?

2nd trial
much worse

2nd trial
worse

1st trial
much worse

1st trial
worse

No difference

Which trial was most fatiguing?

2nd trial
much worse

2nd trial
worse

1st trial
much worse

1st trial
worse

No difference

Which trial irritated your eyes the most?

2nd trial
much worse

2nd trial
worse

Figure C.3 The frame rate evaluation questionnaire in Experiment II
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Blink detection classification performance

precision recall f1-score support

class 0: non-blink .99 .94 .97 192195
class 1: incomplete .62 .90 .73 19846
class 2: complete .89 .86 .87 4023
accuracy .94 216064
macro avg .83 .90 .86 216064
weighted avg .95 .94 .94 216064

Table C.1 Frame-based performance of the eye state classifier

Supplementary blink rate data

intercept slope

S20
S06
S02
S19
S07
S08
S03
S14
S01
S15
S24
S21
S18
S09
S25
S13
S17
S16
S04
S05
S22
S23
S10
S11
S12
S26

0 10 20 30 40 −10 −5 0 5 10

Figure C.4 The coefficients (blue circles for experiment I; red diamonds for experiment II) of separate
individual linear regressions on the blink rate (BR) with predictor the log frequency. The data were
centered at 60 Hz. The error bars show the 95% CI by parametric bootstrap
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Sensitivity analysis
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Figure C.5 Left: the estimated statistical power as a function of the partial eta squared measure. The
solid line depicts the power of the ANOVAs (blue for experiment I and red for experiment II), and the
dashed line the power for the follow-up tests (without multiplicity adjustment). The dotted line shows
the conventional 80% power level. Right: the measured effect size for the tested variables (blue circles
for experiment I and red diamonds for experiment II). The error bars show the 90% CI. More details on
the sensitivity analysis can be found in Appendix B

Subjective feedback data

Tired eyes Blurry vision Tired/sore neck and back Eye strain Headache

30 60 120 238 30 60 120 238 30 60 120 238 30 60 120 238 30 60 120 238

.00

.25

.50

.75

1

FPS
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te
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io

symptom increase No 1 level 2 levels

.87 .74 .65 .74

.13

.26

.35

.26

.83 .96 .74 .74

.17

.04

.26 .22

.87 .87 .83 .91

.09 .13
.17

.09

.74 .87 .91 .74

.26

.13
.04

.17

.96 .96 .78 .83

.04 .04

.17
.17

Figure C.6 The ratio of the self-reported post-trial increase (stacked bars; text labels) of visual discomfort
and fatigue symptoms across participants for each frame rate condition in the first experiment. The
questionnaire can be found in Figure C.1
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Figure C.7 Individual preferences of the paired frame rate evaluations in Experiment I
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Figure C.8 Individual preferences of the paired frame rate evaluations in Experiment II
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Supplementary preference scaling data

The conversion from the worth parameters (π > 0) to the predicted probabilities of selecting
the frequency i to the frequency j (i ≻ j), or the frequency j to i (i ≺ j), or none (i ≈ j) given
the no preference estimate γ , where i, j ∈ {30,60,120,240} frames/s, can be calculated using
the Davidson’s tie model (equations C.1; Davidson, 1970) with the parameter ν = exp(γ):

P(i ≻ j) =
πi

πi +π j +ν
√

πiπ j

P(i ≺ j) =
π j

πi +π j +ν
√

πiπ j

P(i ≈ j) =
ν
√

πiπ j

πi +π j +ν
√

πiπ j

(C.1)

FPS
comparison

Experiment I Experiment II (n = 18)

n Low No High Low No High

30 vs 60 14
.29

(.21)
.31

(.29)
.40

(.50)
.09

(.06)
.29

(.33)
.63

(.61)

60 vs 120 12
.30

(.33)
.31

(.17)
.39

(.50)
.25

(.22)
.38

(.33)
.37

(.44)

120 vs 238 10
.49

(.40)
.29

(.40)
.22

(.20)
.10

(.06)
.30

(.33)
.60

(.61)

30 vs 120 12
.25

(.33)
.30

(.17)
.44

(.50)
.06

(.17)
.26

(.11)
.68

(.72)

60 vs 238 13
.45

(.31)
.30

(.46)
.25

(.23)
.07

(.06)
.27

(.39)
.66

(.56)

30 vs 238 8
.39

(.50)
.31

(.38)
.30

(.12)
.01

(.00)
.13

(.11)
.86

(.89)

Table C.2 Predicted probabilities among the frame rate pairs of the overall preference scaling model.
Low, High, and No indicate the probabilities of an observer selecting the lower, the higher, or none of
the frame rates in comparison, respectively. The gray numbers in the parentheses depict the aggregated
observed values. n: the total number of votes for each comparison
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Figure C.9 Frame rates scaling based on the overall observer preference in the alternative model
accounting for the within-subject dependencies. Left: The log model estimates (vertical axis) as a
function of frame rate (horizontal axis) with the 30 frames/s as the reference value, for experiments
I (blue circles) and II (red diamonds). The error bars illustrate the quasi standard errors. Right: The
difference in the estimates (bold text) and the standard error (italics) among all the frame rate pairs for
experiments I (bottom) and II (top). A negative sign indicates that the column is preferred to the row.
The shaded blocks indicate p-values below .05
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