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Abstract 

Background 

Rheumatoid Arthritis (RA) is a genetically complex disease which causes inflammation 

primarily affecting synovial joints. The therapeutic success of B cell depletion in RA has 

confirmed the clinical relevance of B cells in disease, but their specific role in 

pathogenesis remains unclear. 

Aims 

1. Identify differences in the transcriptome of CD19
+
 B cells between RA samples 

and disease controls  

2. Carry out an expression quantitative trait locus (eQTL) analysis of confirmed RA 

genetic risk loci  

3. Identify RA disease-specific eQTLs  

4. Immunophenotype peripheral blood B cells  

Method 

242 patients were recruited, RNA and DNA was extracted for subsequent analyses and 

parallel flow cytometry data obtained.  

Results  

A list of differentially expressed genes, without multiple test correction (MTC), was 

identified between the transcriptome in RA and disease controls. Web-based analysis 

tools identified downregulation of B cell receptor (BCR) signalling and pathways 

involved in transcription and RNA processing in the RA group. A list of differentially 

expressed genes (with MTC) was identified when samples were divided based on 

chronological age and inflammatory status, not diagnosis. The eQTL analysis at RA risk 

loci identified 10 cis eQTLs in B cells and a further 21 potential RA-specific eQTLs 

which lay outside the known RA risk loci. The RA group had an increased frequency of 

CD19
+
CD24

hi
CD38

hi
 cells, a postulated regulatory subset 

Conclusions 

Age and inflammatory status have a greater influence on the CD19
+ 

B cell transcriptome 

than RA in this cohort. The genetic component to gene expression is highlighted by the 

eQTL findings and will aid the prioritisation of genes for downstream functional work. 

The disease-specific eQTLs identified may indicate novel mechanisms of disease. The 

absence of a robust diagnostic gene signature between the disease groups examined may 

relate to the heterogeneity of the B cells examined, as highlighted by differences in the 

frequency of CD19
+
CD24

hi
CD38

hi
 cells.   
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1.1 Rheumatoid Arthritis  

1.1.1 Rheumatoid Arthritis Overview 

Rheumatoid Arthritis (RA) is a chronic autoimmune condition characterised by 

inflammation at the synovial joints. It classically presents as a symmetrical, small joint 

polyarthritis. It is a systemic disease which can cause anaemia, osteoporosis, fatigue and 

organ specific extra-articular features such as lung fibrosis. Unchecked chronic 

inflammation leads to progressive, irreversible joint damage and is associated with an 

increased mortality (standard mortality ratio (SMR) 1.27), primarily due to an increase in 

cardiovascular disease (SMR 1.49)[1].  

 

RA affects 0.5-1% of adults in Western populations and there are estimated to be 

26,000 new diagnoses in England annually[2]. Its prevalence is higher in females than 

males, with a male:female ratio of 1:3 typically quoted, but this influence decreases 

with age [3, 4]. There are certainly genetic predisposing factors to the condition as 

demonstrated by the 15-30% disease concordance in monozygotic twins and 

observations from genome wide association studies[5, 6]. Additional risk factors 

include smoking, obesity and lower levels of formal education as a measure of 

socioeconomic status [7, 8]. 

 

RA is a debilitating condition and around three quarters of patients are of working age at 

the time of diagnosis. A third of sufferers stop work within 2 years of disease onset[9].  In 

addition to the personal cost of the disease to the individual, the annual financial costs are 

estimated to be £560 million to the NHS and £1.8 billion in sick leave and work-related 

disability[2]. 

  

In autoimmune conditions, such as RA, the inflammatory immune processes which 

activate in response to pathogens or danger signals, react to self (autoantigen); perhaps 

due to a break down in self-tolerance. In RA the synovial joint in particular becomes 

the target. The perceived ‘danger’ or autoantigen which activates the inflammatory 

process and indeed which parts of the immune system are most important in disease 

pathogenesis, remain to be fully elucidated. Autoantibodies, namely Rheumatoid factor 

(RF) and anti- citrullinated protein antibodies (ACPAs), are detected in the circulation 
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of the majority of patients with RA and their presence is prominent in the classification 

criteria of the condition[10, 11]. 

 

The therapeutic management of RA aims to alleviate symptoms and prevent joint 

damage. The standard approach centres around the early introduction of immune-

modulatory medications (disease modifying anti-rheumatic drugs, DMARDs) and 

regular monitoring of response to enable appropriate drug titration. In cases where this 

is insufficient to control disease then more focussed treatments are introduced 

including biologic therapies and janus kinase (JAK) inhibitors[9].  

 

1.1.2 Current management of RA 

The last two decades have seen substantial changes in the management strategies used 

in RA as there has been an increased appreciation that early diagnosis enables the 

prompt introduction of disease modifying agents and, as a consequence of good clinical 

control of disease, the potential to prevent or minimise disease related damage. The aim 

is for early referral of patients to secondary care enabling prompt assessment and 

diagnosis in order to begin and induce clinical remission. 

 

However, despite an increased awareness of the genetic and environmental factors 

which predispose a person to developing RA, the diagnosis remains a clinical one. The 

increased emphasis on the need for diagnostic biomarkers comes from evidence that 

the early initiation of treatment regimes has been shown to reduce subsequent joint 

damage[12]. This has led to the concept of the ‘window of opportunity’ for 

commencing treatment: ideally within 12 weeks of the first symptoms[13, 14].  

 

1.1.3 Treat to target 

In 2010 an international task force provided a consensus on recommendations to 

improve the management of RA with the aim of treating to a given target. The primary 

goal was to maximise long term outcomes by treating the disease to a defined target by 

measuring disease activity on a regular basis and adjusting treatment to optimise 

outcomes. The recommendations have been incorporated widely into clinical practice. 

They rely on the definition of a treatment ‘target’ and adaptations made to the clinical 

pathway to achieve this. The primary target, based on expert opinion, is a state of 
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clinical remission, which was felt to be achievable in a significant proportion of 

patients, especially those with early RA. Clinical remission is defined as the “absence 

of the signs and symptoms of significant inflammatory disease activity” and low 

disease activity, particularly in those with established RA. Measures of disease activity 

should be carried out and documented on a regular basis, and treatments adjusted at 

least every 3 months to reach the target, with the aim of a sustained remission 

throughout the disease course (figure 1.1) [15]. 

 

 
 
Figure 1.1 Algorithm for treating rheumatoid arthritis (RA) to target 

The top thread indicates the main target: remission and sustained remission. The lower 

thread indicates the alternative target of sustained low disease activity in patients with 

long term disease. The approaches to attain and sustain the targets are essentially 

identical. Figure adapted from Smolen et al 2010[15].  

  

1.1.4 Diagnosis and classification criteria 

There is no specific test or diagnostic criteria for RA, however, classification criteria 

exist which do inform clinical practice.  

 

In 2010 the American College of Rheumatology / European League Against 

Rheumatism (ACR/EULAR) classification criteria were introduced (table 1.1). The 

working group was focussed on developing classification criteria to facilitate the study 

of patients with early RA; classification criteria do not aim to capture all patients with 

RA. It replaced the 1987 ACR criteria which had been based on a cohort of patients 

with established disease, and was intended to differentiate between those with RA and 

those with other rheumatological conditions[11].  
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Target population 

Patients who: 

1) have at least joint with definite clinical synovitis 

2) with the synovitis not better explained by another disease 

 

Classification criteria for RA. Add scores for categories (A-D) 

a score of ≥6/10 is required for classification as definite RA 

 

A. Joint involvement 

1 large joint 

2-10 large joints 

1-3 small joints (with or without involvement of large joints) 

4-10 small joints (with or without involvement of large joints) 

>10 joints (at least one small joint) 

 

0 

1 

2 

3 

5 

B. Serology (at least 1 test is needed for classification) 

Negative RF and negative ACPA 

Low positive RF or low positive ACPA 

High positive RF or high positive ACPA 

 

0 

2 

3 

C. Acute phase reactants (at least 1 test is needed for classification) 

Normal CRP and normal ESR 

Abnormal CRP or abnormal ESR 

 

0 

1 

D. Duration of symptoms 

<6 weeks 

≥6 weeks 

 

0 

1 

Table 1.1 The 2010 Rheumatoid Arthritis classification criteria 

Joint involvement refers to any swollen or tender joint on examination, distal 

interphalangeal joints, first carpometacarpal joints, and first metatarsophalangeal joints 

are excluded from assessment. “Large joints” refers to shoulders, elbows, hips, knees, 

and ankles. “Small joints” refers to the metacarpophalangeal joints, proximal 

interphalangeal joints, second through fifth metatarsophalangeal joints, thumb 

interphalangeal joints, and wrists. Duration of symptoms refers to patient self‐reporting 

of the duration of signs or symptoms of synovitis in joints that are clinically involved at 

the time of assessment. Rheumatoid factor (RF); anti-citrullinated protein antibody 

(ACPA); C‐reactive protein (CRP); erythrocyte sedimentation rate (ESR), Adapted from 

Aletaha et al 2010[11] 

 

The diagnosis is based on the clinical opinion of the Rheumatologist using a 

combination of clinical features and autoantibody status. In practice, patients with a 

suspected inflammatory arthritis are referred for assessment and may be diagnosed with 
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definite RA, an alternative rheumatological condition or an undifferentiated arthritis 

(UA). Around 40% of patients with a new onset inflammatory arthritis have disease 

that cannot be classified at their first appointment and so are described as having an 

undifferentiated arthritis (UA)[16]. It is varyingly estimated that a third of these 

patients will develop RA but, due to the diagnostic uncertainty, their diagnosis is 

delayed, placing them at risk of irreversible joint damage[17]. Although aggressive 

treatment regimes offer the opportunity to reduce subsequent disability, if  they are 

applied to all patients there is a risk of over-treatment of those with more benign 

disease and exposure to potential drug related toxicities.  

 

1.2 Pathogenesis of RA 

1.2.1 The synovial joint in RA 

In the normal joint the synovial membrane is a thin layer lining the non-articular surfaces 

of the joint and is just a few cells thick. The resident cells are mesenchymal-derived, 

fibroblast like synoviocytes (FLS) and macrophages. In RA the synovium becomes 

infiltrated with immune cells. Leucocytes migrate to the inflamed joint in response to 

chemokines and this is further facilitated by changes in the synovial microvasculature, 

including the increased expression of adhesion molecules. The adaptive immune system 

is thought to be crucial to both disease initiation and persistence but the exact 

mechanisms of this are not yet known.  

 

The synovium becomes thickened to form the pannus which is able to invade and destroy 

the adjacent articular cartilage and subchondral bone (figure 1.2) [18]. In the disease state 

the FLS display a different phenotype, becoming more resistant to apoptosis which is, in 

part, mediated by the upregulation of oncogenes such as p53[19]. The FLS and 

infiltrating immune cells release cytokines, chemokines and metalloproteinases which 

contribute to cartilage damage and disease persistence[20].  
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Figure 1.2 Schematic view of a normal synovial joint and in rheumatoid arthritis 

a) The normal synovial joint with two bony ends each covered with an even layer of 

cartilage, separated by a joint space and surrounded by the synovial membrane and joint 

capsule. The synovial lining consists of a thin layer of synoviocytes. b) The inflamed joint 

seen in rheumatoid arthritis (RA) is depicted with evidence of synovial inflammation, 

inflammatory cell infiltrate, new vessel formation, cartilage loss and bony destruction.  

The synovial lining becomes hyperplastic and the membrane expands. The hallmark of 

RA is bone destruction which mostly starts at the cartilage-bone-synovial membrane 

junction, the destructive cellular element is the osteoclast. Enzymes released by 

neutrophils, chondrocytes and synoviocytes lead to cartilage degradation. Figure 

adapted from Smolen and Steiner 2003.[21]. 

 

The articular cartilage is limited in its ability to grow and repair. Thus, cartilage damage 

is irreversible and so increased stress and wear occurs at the bone surface. Bone erosions 

are a characteristic of RA which can be identified radiologically and underline the further 

structural damage occurring at the joint. The presence of bone erosions is related to the 

extent of synovitis and elevated inflammatory markers. Receptor activator of nuclear 

factor kappa-B ligand (RANKL) and the pro-inflammatory cytokines which are abundant 

in the inflamed synovium, including tumour necrosis factor (TNF) and interleukin-6 (IL-

6), promote osteoclast differentiation which mediates bone resorption[22].  

 

The chronic inflammation and tissue damage in RA is mediated by several cell subtypes 

including T cells, B cells, macrophages, osteoclasts and fibroblasts. No single cell type 

has been identified as primarily responsible for the initiation and maintenance of 
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pathogenic inflammation. The dominant pathogenic cell type(s) may differ between 

patients explaining the observed heterogeneity of disease.  

 

1.2.2 T cells and the pathogenesis of RA 

Rheumatoid Arthritis is traditionally thought of as primarily a T cell driven disease. 

Indeed, T cells are abundant in the synovium of RA patients and CD4
+
 T cells 

predominate[23]. CD4
+
 T cell activation is dependent on recognition by the T cell 

receptor of antigen fragments presented on the major histocompatibility complex  class II 

(MHC II) molecule, the presence of co-stimulatory molecules (CD80/CD86) on the 

antigen presenting cell (APC) and the cytokine milieu. The established association 

between the HLA-DRB1 locus and RA is the cornerstone of the evidence for CD4
+
 T 

cells in RA pathogenesis. However, the functional role of T cells is not fully understood. 

There is indirect evidence of their importance through the success of treatments such as 

Abatacept, a co-stimulation modulator, which prevents full T cell activation and has been 

shown to ameliorate disease[24]. 

 

There is now an increasing focus on pathogenic T helper type 17 (Th17) cells which can 

produce IL-17A, IL-22, IL-23 and TNF. These cytokines subsequently activate 

fibroblasts and chondrocytes implicating Th17 cells in the pathogenesis of RA and a 

range of autoimmune conditions. The pro-inflammatory milieu of the synovium promotes 

the differentiation of Th17 cells and suppresses that of regulatory T cells, shifting the 

balance towards an inflammatory phenotype[20].  

 

1.2.3 B cells and the pathogenesis of RA 

There has been an increased focus on the role of B cells in the pathogenesis of disease 

following the effectiveness of selective B cell depletion by the chimeric monoclonal 

antibody against CD20, rituximab[25]. B cells have a multi-faceted role in the adaptive 

immune system and their potential roles in disease pathogenesis include: self-reactive B 

cells initiating and perpetuating disease though the production of auto-antibodies, the 

release of pro-inflammatory cytokines (TNF, IL-1, IL-6 and interferon gamma (IFNγ)) 

and, as antigen-presenting cells (APCs), activating or amplifying autoreactive T cell 

responses. Ectopic germinal centres have been identified in the synovium in RA, 

providing a local source of autoantibody production [26]. The traditional focus has been 
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on the ‘help’ antigen-specific CD4
+
 T cells provide to B cells, via CD40/CD40L 

interactions, to promote B cell receptor affinity maturation and class switch 

recombination, but such interactions are likely to be bidirectional. 

 

1.3 B cells 

1.3.1 B cell overview 

B cells are continuously produced in the bone marrow from haematopoetic stem cells but 

the size of the peripheral pool remains relatively stable. There are two key requirements 

for survival: the formation of a functional B cell receptor and the presence of B cell 

activating factor (BAFF) which is essential for B cell maturation and survival in the 

periphery. Autoreactive B cells can be generated during the immunoglobulin variable 

gene rearrangements in the bone marrow and also by somatic hypermutations at the 

germinal centre stage. There are multiple methods of maintaining B cell tolerance which 

include deletion and anergy. 

 

1.3.2 B cell receptor 

The B cell receptor (BCR) is the membrane form of the antibody and is non-covalently 

linked to a signal transducing heterodimer, CD79A and CD79B, which both have 

immunoreceptor tyrosine-based activation motifs (ITAMs) in their intracellular tails. It 

carries out the dual function of initiating a signalling cascade in response to antigen and 

can also internalise and process it to deliver antigenic peptide to the cell to bind to MHC 

II molecules.  

 

Engagement of foreign antigen and cross-linking of the receptor promotes ITAM 

phosphorylation and the overall effect is activation of the nuclear factor of activated T 

cells (NFAT), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase 

(MAPK) pathways (figure 1.3)[27]. CD19 functions as a BCR co-receptor, decreasing the 

threshold for receptor activation. In the presence of antigen binding it is phosphorylated 

by the Src family of protein kinases (SFKs) associated with the BCR, recruiting and 

activating phosphoinositide 3-kinase (PI3K) and downstream Akt kinases. 
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Figure 1.3 Overview of B cell receptor and CD19 signalling 

Binding of antigen to the B cell receptor (BCR) leads to the engagement of several 

downstream pathways leading to the activation of MAPK, NFAT, AKT/mTOR and NF-κB. 

BLNK, B-cell linker protein; BTK, Bruton tyrosine kinase; CARD11, caspase recruitment 

domain-containing protein 11; CBM, CARD11–BCL-10–MALT1; CIN85, Cbl-interacting 

protein of 85 kDa; DAG, diacylglycerol; IKK, inhibitor of NF-κB kinase; IgH, 

immunoglobulin heavy chain; IgL, immunoglobulin light chain; IP3, inositol 

trisphosphate; MALT1, mucosa-associated lymphoid tissue lymphoma translocation 

protein 1; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of 

rapamycin; NF-κB, nuclear factor-κB; NFAT, nuclear factor of activated T cells; PI3K, 

phosphoinositide 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, 

phosphatidylinositol-3,4,5-trisphosphate; PKCβ, protein kinase Cβ; PLCγ, phospholipase 

Cγ; SFK, SRC family kinase. Adapted from Young and Staudt 2013 [27] 

 

In the absence of antigen, phosphorylation of signalling molecules can be detected in B 

cells, driven by tonic signalling by the BCR. This is essential for cell development and 

survival. In mice, the inducible deletion of the BCR leads to rapid mature B cell loss, with 

a half-life of 3-6 days, due to the loss of B cell signalling rather than simply the loss of 

expression of the BCR on the surface[28, 29]. Low level activation of the PI3K pathway 

has been shown to rescue mature B cells in which the BCR had been deleted and so to be 

critical to tonic signalling[30].  

 

In the mature cell, as tonic signalling is required for survival in the periphery, the B cell is 

continuously selected to survive. In immature cells, tonic signalling promotes 

developmental progression while BCR ligation promotes developmental arrest and 

receptor editing.  
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1.3.3 Generation of a functional BCR 

The generation of the antibody repertoire relies on random V(D)J recombination in early 

development and random somatic mutations in the periphery to generate diverse, high 

affinity antibodies. A consequence of this process is the generation of autoantibodies 

which are found in healthy individuals as well as in autoimmune conditions. In health, 

autoreactive B cells are regulated by processes to decrease their frequency, affinity or 

function. These processes take place centrally, in the bone marrow when the cells are not 

yet mature, and peripherally, for example in the spleen and lymph nodes, where the cells 

develop further and gain the capacity to be activated[31]. Defects in the tolerance process 

have been implicated in autoimmune conditions. 

 

B cells develop from the common lymphoid progenitor in the bone marrow. The first 

stage of commitment to the B cell lineage is the pro B cell stage which begins with the 

ordered rearrangement of the immunoglobulin heavy chain segments, initiated by the 

expression of the recombination activating genes, RAG1 and RAG2. The D (diverse) 

segments are first rearranged to the J (joining) segment, followed by the V (variable) 

segment to the DJ rearrangement creating a unique locus. If a functioning heavy chain is 

not produced at this stage then the cell may undergo repeated rearrangements. A complete 

pre-BCR is transiently expressed on the cell surface using a heterodimeric surrogate light 

chain (λ5 and Vpre-B) and the cell is now termed a large pre-B cell.  

 

Spontaneous signalling through the pre-BCR downregulates RAG expression and 

stimulates the proliferative expansion of B cells with a functional heavy chain to produce 

numerous small pre-B cells. These re-express RAG proteins and so rearrange the light 

chain V and J segments. Once both chains have been successfully rearranged the cell is 

termed an immature B cell expressing a complete, functional IgM molecule which signals 

tonically. Defects in the receptor itself would prohibit tonic signalling and so the cell 

would not mature further at this stage. Tonic tyrosine phosphorylation of components of 

the BCR complex promotes PI3K signalling: suppressing RAG protein expression and 

promoting cell survival (figure 1.4).  
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Figure 1.4 B cell development in the bone marrow  

Pro-B cells in the bone marrow are derived from common lymphoid progenitor (CLP) 

cells. They initiate heavy (H)-chain gene rearrangement through expression of 

recombination activating genes (RAG1 and RAG2; collectively known as RAG) and 

epigenetic modifications of the H-chain loci that promote accessibility. Productive H-

chain assembly leads to the association of the IgM H-chain (-chain) protein with 

surrogate light-chain (SLC) components 5 (known as IGLL1) and Vpre-B, and surface 

expression of the pre-B cell receptor (pre-BCR) in large pre-B cells. Spontaneous, 

antigen-independent triggering of the pre-BCR promotes progression to the large pre-B 

cell stage, with downregulation of RAG expression and transient proliferation. 

Differentiation to the small pre-B cell stage follows; at this stage SLC components are 

downregulated, RAG is re-expressed and RAG activity is redirected to the light (L)-chain 

genes. L-chains pair with H-chains and trigger tonic BCR signalling which promotes 

positive selection when the BCR is non autoreactive (a) or receptor editing  when the 

BCR is autoreactive or if tonic signalling is impaired (b and c). Editing can lead to 

exchange of one functional L-chain for another, which can allow developmental 

progression (b) or to secondary rearrangements that prevent L-chain expression (c), such 

as out-of-frame joins that destroy the original L-chain gene but fail to replace it, which 

returns the cell to the pre-B cell compartment. Cells that go through positive selection 

enter the transitional B cell stage, at which stage they are sensitive to apoptosis. Adapted 

from Nemazee 2017 [31]. 
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It is at this stage that the cell is first tested for auto-reactivity, a process termed ‘central 

tolerance’. The fate for the B cell now depends on the signals from the functional receptor 

complex. If there is no strong reactivity to self antigens (the BCR is not ligated) then the 

B cell is selected and the cell migrates from the bone marrow, as an immature/transitional 

B cell to undergo further maturation steps in the secondary lymphoid organs.  

 

If the new BCR reacts to an antigen in the bone marrow, and hence to self the possible 

outcomes include: (i) receptor editing, thought to be the dominant process, (ii) deletion, 

and (iii) anergy [32]. During receptor editing the cell undergoes further antibody gene 

recombination to generate a functional BCR of a different specificity, if unsuccessful it 

will undergo apoptosis. The cell signalling processes involved in this remain unclear and 

postulated models include: reduced cellular expression of the BCR on ligation, and 

therefore reduced tonic signalling, or the production of a distinct intracellular signal e.g 

by the activation of BLNK, B cell linker protein [31].  

 

Central tolerance will only eliminate the antigens that are detectable in the bone marrow 

and so tolerance is incomplete, there must be an additional mechanism in the periphery. 

There is no option for further receptor editing and so any B cell that encounters a self 

antigen after exit from the bone marrow will undergo deletion, anergy or its activity may 

be limited by regulatory lymphocytes or the lack of a cognate autoreactive T cell[32].  

 

The proportion of autoreactive B cells in healthy donors has been shown to be as much as 

75% of recombinant antibodies cloned from early immature B cells with a pre-B surface 

phenotype and expressing functional light chain transcripts; this then reduces during 

development to just over 40% in newly emigrated cells in the blood, and reduces further 

to 20% in mature B cells. The majority of these early, autoreactive cells are polyreactive 

but the proportion that are polyreactive drops dramatically in the newly emigrated cells 

and mature naive cells, suggesting that polyreactive cells are ‘counter-selected’ and that 

there are checkpoints during development to remove autoreactive cells [33].  
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1.3.4 Germinal centres and the potential to develop autoreactive B cells 

Germinal centres (GC) form around follicular dendritic cells (FDCs) within the peripheral 

lymphoid organs and it is here that B cells undergo the next stage of receptor 

diversification, class switching, and differentiate into high affinity plasma cells and 

memory B cells[34]. It is also a further stage at which autoreactive B cells may be 

generated[35]. Formation of the GCs is initiated when a naive B cell is activated by 

antigen and interacts with its corresponding antigen-specific T cell to become fully 

activated. A subset of these activated B cells moves to the medullary cords of the lymph 

node to differentiate into plasmablasts which secrete antibodies, although these are of 

lower affinity than plasma cells. They produce IgM antibody, are still dividing, are able to 

continue to respond to antigenm, and can present antigen on the MHC on the cell surface. 

Their lifespan is relatively short.  

 

The B cells in the germinal centre rapidly proliferate in the dark zone, an area densely 

populated with B cell blasts, and undergo somatic hypermutation, whereby point 

mutations occur in the immunoglobulin variable region genes, altering the affinity of the 

antibody and generating cells with a range of affinities[36]. The affinity maturation is 

driven by competition for antigen presented on immune complexes by FDCs and the later 

receipt of help from the corresponding T cell[37]. T follicular helper (Tfh) cells are 

motile and continuously scan B cells in the GC and form the strongest interactions with 

cells with a high surface density of cognate peptide on MHC complexes, leading to their 

positive selection[38, 39]. Higher BCR affinity is associated with better antigen capture 

and so a higher density of peptide-MHC complexes. The positively selected B cells may 

recirculate to the dark zone and undergo successive rounds of mutation and selection. 

 

In addition to the help from Tfh cells, it has been suggested that access to antigen on 

follicular dendritic cells is limited by antibodies secreted early in the GC reaction which, 

if bound to antigen presented by the FDC, shield it from the BCR so that only high 

affinity BCRs are able to compete to bind antigen. In this way, the selection process is 

accelerated and becomes progressively more stringent by ‘antigen masking’ and antibody 

related feedback [40] [41].  

 

BCRs which are of lower reactivity, or those that are potentially autoreactive, are 

eliminated by apoptosis. Elimination of autoreactive GC B cells is probably most 
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effective if the self-antigen is expressed within or near the GC microenvironment. If there 

is low local expression of the self-antigen, or if its expression is tissue specific, then cells 

may be positively selected in error[42].  

 

B cells from the germinal centre reaction exit as memory B cells or plasma cells. The 

precise mechanisms that determine cell fate remain unclear. In the case of memory B 

cells, no specific transcriptional regulator has been identified to date. The differentiation 

into plasma cells involves major changes in cell morphology and function to enable the 

production of a large amount of secreted antibody which can be up to 20% of all the 

protein secreted by the cell. In order for plasma cell differentiation to occur key 

transcription factors which determine B cell identity are down-regulated (for example 

PAX5 and BACH2), and transcription factors crucial for the development into antibody 

secreting cells are upregulated (IRF4, BLIMP1 and XBP1). BLIMP1 is a transcriptional 

repressor in B cells, exclusively expressed in antibody secreting cells although at a lower 

level in plasmablasts than plasma cells, and it inhibits pathways required for B cell 

proliferation, class switching and affinity maturation. Plasma cells then home to the bone 

marrow, driven by CXCL12 and its receptor CXCR4, where they are the source of the 

long lasting high affinity antibody; others can migrate to lymph nodes [43, 44]. 

 

1.3.5 B cell subsets in peripheral blood 

B cells in the circulation comprise a variety of subsets including transitional, naive, 

mature, memory and plasmablasts, with differing states of maturation and activation. 

Plasma cells are rarely found in the peripheral blood, localising to the lymphoid tissues 

and bone marrow.  

 

In mice, B cells are generated in the bone marrow, exiting as immature transitional B 

cells to complete maturation in the spleen. There is less evidence about the development 

of human B cells in the periphery but an analogous human transitional B cell subset has 

been defined as CD19
+
CD24

hi
CD38

hi 
B cells[45]. Human transitional B cells make up 

just 5% of the peripheral blood B cell compartment, although this is known to be higher 

in cord blood and after bone marrow transplantation[46]. The biology and function of 

human transitional B cells is not clearly established and, although it was initially 

suggested that the transitional B cell subset could be subdivided into two major groups, 2 
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further subgroups have been identified which are functionally and phenotypically 

distinct[47]. 

 

Naive B cells, which express low levels of IgM, high levels of IgD and do not express 

CD27, make up approximately 50-60% of blood B cells in adults. Upon recognition of an 

antigen they may differentiate into early antibody producing cells or enter the germinal 

centre reaction[46, 48]  

 

Memory B cells are traditionally defined by the presence of CD27 on their cell surface 

and have been broadly divided into IgD
+ 

and IgD
- 
class switched cells, which 

preferentially enter the germinal centres or differentiate into plasmablasts respectively 

upon stimulation[48]. However, there is certainly greater complexity and heterogeneity 

within this broad grouping with functional overlap between the two groups. In addition, 

smaller subsets have been defined within the CD27
+ 

B cell population[43, 49].  

 

Plasmablasts found in blood and lymph nodes are defined phenotypically by the high 

expression of CD27 and CD38, they are produced in the extrafollicular foci and provide a 

short lived antibody response after the primary antigen contact. Like their fellow antibody 

producing plasma cells they express BLIMP1, albeit to a lesser extent, and they continue 

to express MHC II. It remains unclear whether these proliferating, short-lived cells are the 

precursors of the terminally differentiated plasma cells or if plasma cells can be derived 

from an earlier plasma cell-committed stage[44, 46]. 

 

1.3.6 Regulatory B cells 

B cells are critical to generating a successful immune response but a small subset of B 

cells, regulatory B cells (Bregs), are able to suppress inflammation. There is a growing 

body of evidence that Bregs play an immunoregulatory role in autoimmune diseases and 

transplant tolerance, but progress has been hampered by the lack of consensus on their 

immunophenotype and the absence of a unique transcription factor to define this subset 

[50, 51].  

 

In mouse models of experimental autoimmune encephalomyelitis and collagen induced 

arthritis the inflammatory response can be suppressed by the presence of B cells in an 
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effect that is IL-10 dependent [52, 53]. In addition, transforming growth factor β (TGFβ), 

IL-35, and direct cell to cell contact, with CD80/CD86 playing a critical role, have been 

shown to also contribute to Breg-dependent immunoregulation[54]. They suppress the 

proliferation of effector T cells (Th1 and Th17), modulate the T cell production of pro-

inflammatory cytokines, promote the differentiation of regulatory T cells and have 

recently been shown to decrease the production of interferon alpha (IFN) by 

plasmacytoid dendritic cells[55, 56].  

 

The majority of the current work in humans relies on either isolating B cells, subjecting 

them to in vitro stimulation to identify IL-10 producing cells and subsequently 

phenotyping these cells; or focussing on a chosen immunophenotype. The use of 

intracellular staining to identify IL-10 further hampers functional assessments of this 

subset.  

 

IL-10 producing cells are enriched within established B cell subsets, including the 

transitional, memory and plasmablast subsets, but within these groups they form only a 

minority of that population[57-59].  

 

The most established Breg subsets in humans are CD19
+
CD24

hi
CD27

+
 and 

CD19
+
CD24

hi
CD38

hi
 B cells. As, in vitro, B cells require stimulation in order to identify 

IL-10 producing cells it has been suggested that they arise in response to inflammation to 

restrain the immune response; it is the environment rather than, for example, a specific 

Breg lineage factor which stimulates their differentiation. This theory is corroborated by 

work in mice where B cell differentiation and IL-10 production is promoted by the 

induction of arthritis, and also by alterations to the gut microbiome, which lead to 

inflammatory signals, and this effect is reduced by blocking the IL-6 and IL-1 receptors 

on B cells[60]. 

 

In autoimmune disease, Mauri’s group have shown that CD19
+
CD24

hi
CD38

hi
 B cells are 

reduced in number in established RA patients with active disease when compared to those 

with inactive disease and healthy individuals[61]. In addition, they have shown that 

CD19
+
CD24

hi
CD38

hi 
B

 
cells from healthy individuals are able to convert CD4

+
 T cells 

into suppressive regulatory T cells (Tregs) and limit Th17 development, unlike 
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CD19
+
CD24

hi
CD38

hi
 B cells from RA patients. This suggests that, in patients with RA, 

this subset is unable to prevent the differentiation of Th17 cells in Th17 polarising 

conditions or convert naive T cells to regulatory T cells and so are unable to prevent the 

development of autoreactive inflammation. In this study, the Bregs maintained their 

ability to inhibit Th1 cell differentiation. This presents an insight into potential 

mechanisms of disease in RA. Similarly, in systemic lupus erythematosus (SLE), 

CD19
+
CD24

hi
CD38

hi
 B cells have been shown to be numerically deficient and 

functionally impaired. In vitro CD19
+
CD24

hi
CD38

hi
 B cells from SLE patients produce 

less IL-10 in response to CD40 stimulation than those from healthy controls and are 

unable to suppress pro-inflammatory cytokine production by T cells[54]. In addition, in 

SLE the increased levels of IFN promotes B cell differentiation into plasmablasts over 

regulatory B cells[55]. 

 

There is currently little work regarding the frequency or function of Bregs in early RA. A 

recent study looked at Bregs in this setting but focussed on CD5
+
CD1d

+
 B cells (a 

phenotype which is more established in mouse models of disease) and, combined with 

intracellular IL-10 staining, found them to be fewer in number in RA patients that healthy 

controls. This cell population was also shown to negatively correlate with disease activity 

score 28 (DAS-28)[62]. 

 

The importance of B cells in the maintenance of tolerance is highlighted in the transplant 

literature where the adoptive transfer of B cells from tolerant animals in a rat model of 

long term allograft tolerance resulted in the transfer of allograft tolerance[63]. These B 

cells may be described as displaying a regulatory phenotype.  

 

Operationally tolerant renal transplant patients have been shown to have an increased 

frequency of transitional B cells and higher levels of this subset have been associated 

with protection from rejection, providing further evidence that this subset of immature 

cells is important for the maintenance of tolerance[51, 64]. Cherukuri et al have shown 

that the regulatory effect is based on the cytokine polarisation profile of this subset, as 

patients with graft rejection displayed a reduced IL-10/TNF ratio compared to those 

with stable graft function (IL-10 expression levels alone were similar between the two 

groups)[65]. There is increasing evidence that the regulatory role of B cells is not solely 
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due to IL-10 production. This is highlighted by the ability of IL-21 dependent B cells 

from tolerant patients to inhibit the effector T cell response in a contact and granzyme B 

dependent pathway in operationally tolerant patients. The effect was independent of IL-

10 and TGFβ [60]. 

 

1.4 B cells and Rheumatoid Arthritis 

1.4.1 Overview of B cells and Rheumatoid Arthritis 

A potential pathogenic role for B cells in RA has been long suggested following the 

identification of Rheumatoid Factor (RF) and later, additional autoantibodies, including 

anti-citrullinated protein/peptide antibodies (ACPA), in patients. The question has always 

been whether the humoral immune response is the driver of disease or a consequence of 

the overall breakdown in tolerance to self. B cells exert their effects through the 

production of autoantibodies, inflammatory and regulatory cytokines, acting as antigen 

presenting cells to provide co-stimulation to T cells and are also able to generate ectopic 

lymphoid structures.  

 

1.4.2 Autoantibodies 

The presence of autoantibodies prior to the onset of disease predicts the development of 

RA, with anti-cyclic citrullinated peptide (anti-CCP) having the highest predictive 

value[66]. Anti-CCP antibodies are detectable in the blood a median of 4.5 years before 

the clinical development of disease[67]. The presence of these auto antibodies is used to 

define the seropositive subset of RA, representing around two thirds of patients, and 

associated with more severe disease, extra-articular manifestations, joint destruction, 

genetic and environmental risk factors and a better response to B cell depletion with 

rituximab and co-stimulation blockade with abatacept [68, 69]. 

 

Anti-CCP2 is the current commercially available assay with a sensitivity of 70-75% and 

specificity of 95-99% in RA. In contrast to RF it is found in less than 2% of healthy 

individuals and just at low levels in other inflammatory conditions[69, 70]. In RA, RF 

and ACPA are the clinically used autoantibodies but there is evidence for antibodies 

specific for other post-translational modifications, such as carbamylation and acetylation, 

with cross-reactivity present between the modified antigens[71]. 
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It is possible that the presence of ACPAs is simply a reflection of the dysregulation of the 

immune system but the data for a pathogenic role is increasing[69]. In addition to the 

clinical associations detailed above we know that citrullination, the post-translational 

conversion of arginine to citrulline by peptidyl arginine deiminases (PAD), increases the 

affinity of peptides for the MHC II molecules with the ‘shared epitope’, an established 

genetic risk factor for RA[72]. This change may lead to the increased presentation of 

potential autoantigens by APCs to autoreactive T cells, initiating disease. The 

citrullinated antigens: fibrinogen, vimentin, collagen type II and α-enolase are targets of 

ACPAs and can be found in the articular joint which may lead to the persistence of 

inflammation via, for example, immune complex formation [73].  

 

1.4.3 Synovial infiltrate and ectopic lymphoid neogenesis 

RA is characterised by synovial inflammation and subsequent joint damage but the 

histological features seen in the RA synovium are heterogeneous and are broadly defined 

as: pauci-immune (fibroblast type), diffuse (myeloid type) or follicular synovitis with 

ectopic lymphoid-like structures (ELS) (lymphoid type), which is found in 40% of RA 

patients [74]. In the lymphoid subset aggregates of T and B cells, often displaying T/B 

segregation, are found with GC reactions identified in approximately half of these[74, 

75]. The presence of lymphoid neogenesis has not been shown to correlate with RA 

clinical phenotype, although it is associated with high inflammatory markers[76]. ELS 

development requires lymphotoxin, CXCL13, CCL19, CCL21, CXCL12, and is 

positively regulated by the inflammatory cytokines IL-17, IL-21, IL-22, IL-23, TNF and 

negatively regulated by IL-27[74].  

 

The host factors which determine the development of ELS in the RA synovium are not 

yet known but it has been shown that these structures support the production of 

somatically hypermutated, class switched autoantibodies[26]. Synovial B cells may 

therefore, lead to joint damage by the production of local antibodies and inflammatory 

cytokines including IL-6, TNF, and RANKL inducing osteoclast activation, the release of 

destructive metalloproteinases and the further recruitment of immune cells[77]. 

 

Next generation sequencing (NGS) of the BCR heavy chain mRNA has identified 

multiple dominant clones in the synovial tissue of patients with active, seropositive RA in 
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early, disease modifying antirheumatic drug (DMARD)-naive, and established RA 

patients[78]. The presence of dominant BCR clones in the peripheral blood of patients is 

also predictive of the development of RA in an autoantibody positive at risk group. At the 

onset of RA these clones were no longer detectable peripherally but could be found in the 

synovial tissue, suggesting that the activated clones may migrate to the target tissue as 

disease develops – a hypothesis supported by the identification of the same clones at 

different joints[78, 79]. The phenotype and antigen specificity of the BCR clones were 

not determined as cell lysis was required for NGS. 

 

Therefore, in a subset of RA, B cell clonal expansion occurs in the synovium providing a 

local source of class switched autoantibodies but the site of the initial generation of 

autoreactive B cells remains to be elucidated. Interestingly, ELS are also found in 

conditions which are not associated with B cell pathology; including spondylarthritis and 

osteoarthritis leading to the suggestion that lymphoid neogenesis is not disease specific 

and may be related to the degree rather than the type of inflammation[80]. 

 

1.4.4 B cell depletion in RA 

Rituximab is a monoclonal antibody against CD20, licensed for the treatment of patients 

with active RA who have not responded or been able to tolerate TNF inhibitors or in 

whom their use in contra-indicated[25, 81]. The clinical effectiveness of rituximab in RA 

has provided an insight into disease pathogenesis but its exact mechanism of action, and 

therapeutic biomarkers of response, have yet to be established. A meta-analysis of four 

placebo-controlled randomised trials demonstrated an additional treatment benefit with 

rituximab in patients who were seropositive (as defined by the presence of RF and/or 

ACPA autoantibodies)[82]. The effect seen was modest but suggests that seropositive 

patients may have more B cell driven disease. 

 

CD20 is believed to act as a calcium channel in the cell membrane and is involved in cell 

activation and growth. It is expressed on the surface of pre-B cells through the different 

stages of development to memory B cells, but it is not found on haematopoetic stem cells, 

pro-B cells or plasma cells (figure 1.5)[83]. Rituximab, therefore, almost completely 

depletes the peripheral B cell compartment by antibody-dependent cellular cytotoxicity, 
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complement-dependent cytotoxicity and apoptosis, with variable depletion in the 

synovium, lymphoid organs and bone marrow[83, 84].  

 

 

Figure 1.5 B cell subsets displaying CD20 are depleted by rituximab 

CD20 is not found on stem cells, pro-B cells, plasmablasts or plasma cells[85] 

 

Potential biomarkers have been identified ranging from genetic polymorphisms 

(including in FC-gamma receptor type IIIA and a promoter polymorphism in the BAFF 

gene), B cell subset proportions, transcriptomic profiles, levels of Type I interferon and 

cytokine levels, but, to date, none have entered clinical practice[84, 86-88].  

 

1.4.5 Rituximab and B cell subsets 

Highly sensitive flow cytometry, a technique established for the detection of minimal 

residual disease in haematological malignancies, has shown that patients have variable 

depletion of circulating B cells after rituximab infusions and that response rates are 

significantly better in patients who experience a complete depletion of their B cells after 

the first infusion of rituximab[89]. Repopulation of the peripheral B cell compartment 

occurs, on average, at 8 months; initially with immature and naive cells and, later, by 

memory B cells but levels of memory cells can remain reduced for more than 2 years[90-

92]. Disease relapse can occur at varying time points after B cell repopulation. 

 

There is evidence to suggest that the persistence of particular B cell subsets is associated 

with lack of clinical response to rituximab. A low baseline frequency of CD27
+
 memory 

B cells in patients is associated with an improved clinical response to rituximab, but the 

absence of a specific threshold of effect limits the clinical utility of this observation [93]. 

In smaller studies, early clinical relapse in responders has been associated with a higher 

proportion of CD27
+
 memory B cells before therapy and repopulation with a higher 

number of memory B cells[91, 94]. Low numbers of peripheral blood switched memory 

(IgD
-
CD27

+
) cells after treatment with rituximab have been shown to correlate with a 
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good response at 6, 9 and 12 months post treatment. This effect was not seen when 

looking at non-switched memory B cells or naive cells at the same time points[95].  

 

Higher baseline levels of CD20
-
 pre-plasma cells, which are not depleted by rituximab, 

are associated with incomplete B cell depletion and inferior response. In patients in whom 

B cells persist after treatment these are mainly CD20
-
 pre-plasma cells [89, 96]. Pre-

plasma cells are short-lived in the circulation and are generated from CD20
+
 B cells so 

their persistence may indicate ongoing B cell activity at other sites where B cells are 

protected from depletion. 

 

In contrast to the peripheral B cell compartment there is only partial depletion in the bone 

marrow. In a small study, rituximab responders had a significant decrease in CD27
+
 

memory cells in the peripheral blood and bone marrow at three months but this was not 

seen in non-responders[97].  

 

In synovial tissue B cell depletion is again variable. The small numbers of patients in 

such studies has led to difficulties in reaching firm conclusions regarding the relationship 

between rituximab and synovial depletion, although it has been suggested response is 

related to better synovial depletion, specifically of plasma cells[98, 99]. 

 

1.4.6 Rituximab and transcriptomic biomarkers 

Owczarczyk et al showed that mean baseline mRNA expression of IgJ, a marker of 

plasmablasts, was elevated in rituximab non-responders. This was confirmed in three 

additional cohorts of patients undergoing B cell depletion (2 cohorts using rituximab and 

the third using ocrelizumab). Application of a combination biomarker of IgJ
hi 

and 

FCRL5
lo

 (a splice variant expressed predominantly on mature B cells) demonstrated that 

the ACR50 response rate (a 50% improvement in a composite measure) was 28% for the 

biomarker negative group and 9% for the IgJ
hi

FCRL5
lo 

group (OR 3.6 95%, CI 1.8-8.4). 

Plasmablasts are not believed to be present in significant levels in healthy individuals 

outside the context of infection or immunisation but are elevated in autoimmune 

conditions such as lupus[100]. Ozczarczyk and colleagues suggest that plasmablasts 

escape depletion with rituximab and may contribute to disease persistence by localising to 
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sites of inflammation. Plasmablasts express high affinity BAFF receptors and BAFF 

levels rise after B cell depletion, potentially promoting the survival of these cells[101]. 

 

Type I interferon regulated genes have been previously shown to be elevated in a subset 

of RA patients compared to healthy controls[102]. A type I IFN signature in peripheral 

blood mononuclear cells (PBMCs) has also been identified as a response-predictor for 

rituximab; with IFN-low scores (based on levels of selected type 1 IFN-response genes) 

associated with a better response as determined by DAS-28 score and EULAR 

response[103, 104].  

 

Whole blood transcriptome profiling of RA patients commencing rituximab identified a 

143 gene signature which successfully identified non-responders. Genes downregulated 

in the responder group were predominantly in the interferon pathway while the 

inflammatory genes (such as for IL-33 and STAT5A) and those related to NFB were 

upregulated[105]. The transcriptomic data for IL-33 has been confirmed at a protein level 

by ELISA, as detectable IL-33 was predictive of clinical response to rituximab[106]. 

 

1.5 Genetics of RA 

1.5.1 RA as a complex trait 

RA is a complex, polygenic disease and the presence of strong genetic factors 

predisposing to RA was suggested by disease concordance in monozygotic twins and 

confirmed by genome wide association studies (GWAS) which have identified over 100 

risk loci for RA[5, 6, 107].  

 

The risk alleles identified by GWAS studies are single nucleotide polymorphisms (SNPs), 

the variant allele having a frequency of greater than 1% in the population, the most 

common form of genetic variation in humans. There are approximately 10 million 

throughout the human genome which are used as biological markers[108]. Alleles are 

considered to be in linkage disequilibrium (LD) if they are associated together due to 

infrequent recombination between them, and regions inherited together are termed 

haplotype blocks.  
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GWAS studies in RA have identified many SNPs associated with disease but the majority 

lie in non-coding regions and so their functional effect has been difficult to elucidate. 

This is for a combination of reasons: the current limitations in our understanding of non-

coding regions of the genome, difficulty in identifying the causal SNP from those in LD 

with it, and challenges identifying which clinical context or cellular subset is affected by 

a variant. Each risk allele implicates multiple candidate genes and the functional effects at 

a cellular level remain to be established.  

 

The human leukocyte antigen (HLA) alleles have been estimated to contribute between 

10 and 40 % of the genetic risk associated with RA, while the non-HLA alleles combined 

explain around 5% of the association[109, 110]. In common with complex traits such as 

height, there remains a discrepancy between the effect of the detected genetic variants 

identified and the estimated heritability of the trait, approximately 60% in RA, and this is 

often described as the missing heritability of such traits [107, 111, 112]. The possible 

explanations for this include: missed variants with small effects, rare variants with larger 

effects and additional factors which may modify the effect of risk variants such as 

chromatin architecture and environment[111, 113]. 

 

The majority of work on the genetic risk for RA has focused on the ACPA positive group. 

The genetic contribution to the seronegative form of RA is smaller; as are the number of 

polymorphisms associated with it[114]. In the Swedish population, the heritability of 

ACPA positive RA has been estimated at around 50% compared to 20% in ACPA 

negative RA[115]. The seronegative subset is less well understood, possibly as it 

represents a more heterogenous group as there are no serological markers to define the 

group [112, 116]. There are shared non-HLA risk loci between the two groups for 

example PTPN22, BLK, ANKRD55/IL6ST, STAT4, TNFAIP3 locus 1 and C5orf30. The 

effect size of BLK, ANKRD55, STAT4 and C5orf30 is the same for both subsets, while 

that of PTPN22 is greater in the ACPA positive group[117]. The RA risk loci have been 

established in ACPA positive cohorts but ACPA negative specific risk loci, PRL and 

NFIA, have also been identified[117, 118].  
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1.5.2 HLA and the ‘shared epitope’ hypothesis 

The strongest genetic association with RA comes from a group of alleles within the HLA 

region. Three amino acid positions in HLA-DR1 (positions 11, 71 and 74), HLA-B 

position 9 and HLA-DP1 position 9 have been shown to explain the majority of this 

association in seropositive RA[119]. The alleles, termed the shared epitope (SE), encode 

amino acid sequences that lead to structural similarities within the binding groove of the 

MHC class-II heterodimer[120].  

 

Changes in this region of the ‘shared epitope’ are thought to influence the interaction 

between the MHCII complex and CD4
+
 T helper cells and, in mice, the conversion of 

arginine to citrulline increases the binding affinity between the peptide and SE, leading to 

activation of CD4
+
 T cells[72]. Although a well-established risk factor, the exact 

mechanism and stage of disease at which the SE contributes to the development RA is not 

established. As it is more strongly associated with ACPA positive RA and associated with 

higher titres of autoantibodies, the SE may indeed preferentially present citrullinated 

antigens initiating disease in the correct setting [121]. It has recently been shown, in twin 

studies, that the presence of the SE may be particularly important in determining which 

ACPA positive individuals develop clinical RA[122]. 

 

Although it was previously suggested that this region had little effect in the ACPA 

negative group, two amino acid positions (HLA-DR1 position 11 and HLA-B position 

9) have been associated with ACPA negative RA[114, 116]. These HLA alleles are also 

associated with ACPA positive disease but the amino acid residues conferring risk were 

distinct between groups[123]. 

 

1.5.3 PTPN22 

The functional consequences from the inheritance of the risk alleles is, as yet, unclear but 

there is evidence from functional work implicating intrinsic defects in B cells in disease 

pathogenesis. One of the strongest additional risk factors for RA lies in the protein 

tyrosine phosphatase nonreceptor type 22 gene, PTPN22. This polymorphism is 

associated with numerous autoimmune disorders including RA where risk is conferred by 

the minor allele at rs2476601[124]. It is notable in its association with disorders with a 

strong autoantibody component. The protein tyrosine phosphatases remove phosphate 
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residues from tyrosines on intracellular proteins, and so regulate the signal transduction 

threshold. In T cells it is established as a negative regulator of T cell signalling. The role 

in B cells is less clear; it is thought to have an inhibitory effect on the BCR, as shown by 

reduced calcium mobilization in response to stimulation[125]. Activation of the BCR by 

soluble anti-IgM leads to decreased phosphorylation of downstream signaling proteins in 

the presence of the disease risk allele, and this effect is reversed by inhibition of 

PTPN22[126]. In healthy donors it has been shown that the PTPN22 RA risk allele is 

associated with an increase in polyreactive, newly emigrant cells from the bone marrow, 

suggesting an alteration in B cell central tolerance[127]. The presence of the risk allele 

alters BCR signal transduction and so, as discussed earlier, this has the potential to affect 

B cell development as well as function. The risk allele may, therefore, lead to a 

hyporesponsive state, preventing the generation of the required level of signal in response 

to binding self antigen and the subsequent survival of autoreactive B cells which are 

released into the periphery.  

 

1.5.4 Genetics of gene expression 

The primary ambition behind GWAS studies in complex disease such as RA was to 

improve the understanding of disease susceptibility and pathogenesis. However, the lead 

SNPs identified are frequently in non-coding regions of the genome or tagging LD blocks 

containing more than one gene and so their functional effect has been difficult to 

elucidate. It has not been as straightforward as a genetic variant being identified in a 

given gene and, by extension, the implication that the gene product is disrupted in RA, 

leading to insights into pathogenesis and potential therapeutic targets.  

 

In many cases, such as at the FAM167A/BLK locus, work has focussed on the most likely 

causal gene; in this case B lymphocyte kinase (BLK) rather than the uncharacterised 

FAM167A. One method to establish a functional link and identify causal genes is to look 

for downstream consequences of this genetic variation, such as gene expression. 

 

Gene expression levels have a heritable component and expression quantitative trait locus 

(eQTL) mapping analyses test for associations between genetic variants and total gene 

expression levels. It is used to prioritise the variants identified from GWAS studies. The 

gene expression level, a quantitative trait, is compared between individuals with different 
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genotypes at the polymorphic locus under analysis. The assumption being that the 

quantitative trait is modified by a genetic variant.  

 

The genetic influences on gene expression may act in cis or trans. A cis eQTL acts 

locally within a defined distance, typically set at 1Mb but can be up to 5Mb, while a trans 

acting eQTL shows an association with more distant gene expression, typically set at 

5Mb, and can act on a different chromosome (figure 1.6) [128, 129].  

 

 

 

 

Figure 1.6 Schematic representation of expression quantitative trait loci  

Expression quantitative trait loci (eQTL) are single nucleotide polymorphisms (SNPs) 

associated with gene transcription levels a) Cis eQTLs alter the expression of local genes 

shown here as within 1 megabase (Mb) b) Trans eQTLs act on distant genes, shown here 

at over 5Mb, and genes on different chromosomes. 

 

Although heritable, gene expression varies across cell types and is also influenced by the 

environment. Examining cis-regulatory variation in lymphoblastoid cell lines, skin and 

fat, the MuTHER study showed that eQTLs can be shared between tissues or be tissue 
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specific. However, even in the case of shared eQTLs, the magnitude of the effect can 

differ between tissues[130].  

 

Analysis of cell subsets has demonstrated the cell specificity of eQTLs in immune cells, 

although it has been suggested that early studies had overestimated this by directly 

comparing lists of eQTLs generated by separate analyses and failing to account for 

incomplete power in tissue by tissue analyses[131]. Indeed, a comparison of cis eQTLs 

identified between positively selected CD19
+ 

and CD14
+ 

cells from 280 healthy 

volunteers found an overlap of just 21.8%[132]. More recent studies using a joint analysis 

framework have shown that this methodology improves the identification of shared 

eQTLs and found that 45% of eQTLs were shared between CD19
+
, CD4

+
, CD8

+
, CD16

+
 

and CD14
+ 

cells[133]. Interestingly, a subset of eQTLs shared between different immune 

cells exert opposing effects on gene expression[132, 133]. The difficulty in replicating 

identified eQTLs in PBMCs highlights the importance of cell subset considerations to 

avoid missing cell-specific eQTLs, due to lack of power in studies on whole blood or 

PBMCs[132, 133]. Deconvolution strategies have been designed to explore the relative 

proportions of different immune subsets and their activation status within microarray 

datasets. However, this relies on the prior knowledge of the expression signature for each 

cell subset to be established; either from an established database or the isolation of 

individual subsets for the construction of expression signatures, which is challenging for 

the rare subsets[134, 135].  

 

Beyond cell type, environmental factors have been shown to affect eQTLs in vitro and 

their clinical relevance has been highlighted by Peters et al who used linear modelling 

with a 'genotype x disease' interaction term to demonstrate eQTLs which are only present 

in the setting of inflammatory disease, in this case inflammatory bowel disease 

(IBD)[136]. The same group showed that the eQTL for CTDP1 found in the IBD cohort 

and a cohort of patients with ANCA associated vasculitis disappeared in the latter group 

with treatment. This finding may indicate evidence of the effect of inflammation on the 

eQTL, although the observation may be secondary to drug effects[133].  

 

GWAS trait-associated SNPs are enriched at eQTLs, hence eQTL mapping has the 

potential to aid the biological understanding of RA GWAS loci and prioritise potential 

disease-causing genes [137]. In RA, an example of this is the GWAS SNP rs3761847, 
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which is in LD with two plausible inflammatory genes: TRAF1 and C5, in B cells, this 

SNP has been shown to be an eQTL for TRAF1[133]. Fairfax et al showed that 14 of the 

cis eQTLs (HLA loci excluded) identified in B cells were shared with GWAS SNPs 

associated with RA, 6 of these were shared eQTLs with monocytes and an additional 7 

such RA SNPS were specific to monocytes[132]. Although, this study only looked at two 

immune subsets it does highlight the possibility that a subset of RA GWAS loci may be 

specific to B cells.  

 

1.6 Biomarker discovery in RA 

1.6.1 Definition of a biomarker 

A biomarker, as defined by the Biomarkers Definitions Working Group, is “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacological responses to a therapeutic 

intervention"[138]. In RA there remains a lack of diagnostic, prognostic and therapeutic 

biomarkers. 

 

1.6.2 The need for biomarkers in RA 

RA is also a clinically heterogeneous condition with patients experiencing different 

patterns of disease. Although aggressive treatment regimens offer the opportunity to 

reduce subsequent disability, if applied to all patients, this will result will in the over-

treatment of those with more benign disease and exposure to potential drug related 

toxicities. In addition, not all patients respond to the same medications and so therapeutic 

biomarkers are required to personalise or stratify treatment regimes. The current step up 

treatment regime, universally applied, can result in a delay in attaining disease 

control[68]. 

 

1.6.3 Transcriptional biomarkers 

Gene expression analyses using high-throughput microarray technologies allow the study 

of the expression of thousands of genes in one experiment, providing quantitative 

information on gene expression in a given condition[139]. The protein-coding RNAs 

detected reflect the proteins required for cellular function and so may provide an insight 

into disease pathogenesis. The use of leucocyte subsets for microarray analyses is well 
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established and has the advantage of obtaining data which is not confounded by the 

relative proportions of different cell subsets present between experimental groups[140, 

141]. 

 

These technologies generate a vast amount of data but, using bioinformatics technology, 

it is possible to group differentially expressed genes to identify cellular pathways which 

may provide insights into disease pathogenesis and aid the identification of potential new 

therapeutic targets. Alternatively, they could be used to identify subsets of disease, 

leading to personalised or stratified patient care[142]. This area has been most fruitful in 

oncology where, for example, gene expression profiling of breast tumours can help 

determine prognosis[143, 144].  

 

1.6.4 Transcriptional profiling in autoimmune diseases 

Transcriptional profiling has provided insights into autoimmune diseases and has often 

been focussed on whole blood samples. Work on whole blood identified an interferon 

gene signature which predicts the development of RA in at risk individuals[145, 146]. 

The increased expression of B cell related genes such as CD79A, CD79B, CD19, CD20 

and FCRL5 was protective against progression to arthritis. This finding was unexpected 

given that the increased expression of CD79A, CD79B and CD19 suggests upregulation 

of the B cell receptor and increased humoral activity[146]. It has been suggested that the 

interferon gene signature is present in a subset of RA patients and, rather than being 

universal and translatable as a diagnostic biomarker, it may have greater utility as a 

therapeutic biomarker[104, 147]. 

 

Microarray analyses in patients presenting to an early arthritis clinic have identified a 

CD4
+
 T cell-derived, 12 gene transcriptional signature which predicts the later 

development of RA in patients with UA. This also provided insights into potential disease 

mechanisms, as signal transducer and activator of transcription 3 (STAT3) inducible 

genes were shown to be over-represented[16]. Furthermore, transcription profiling in 

CD8
+
 T cells in autoimmune vasculitis has identified two distinct subgroups predictive of 

long term prognosis. The subgroups could be identified by measuring the expression of 

just three genes, which adds great potential for its translation into clinical practice[148].  

 



 32 

The majority of leucocyte subset studies have focused on T cell subsets, which may be a 

reflection on the relative paucity of B cells in PBMCs as they make up approximately 1-

7% of PBMCs. There is, to date, one published study which assessed differences in gene 

expression in B cells between healthy controls and RA patients but pooled samples of 

RNA were used. The authors identified 305 genes which were upregulated in the disease 

group and 231 genes which were downregulated. The genes identified were involved in 

the cell-cycle, proliferation and apoptosis [149]. However, more recently, using RNA 

sequencing, Imgenberg-Kreuz et al have identified over 4000 differentially expressed 

genes in the CD19
+ 

transcriptome of a small cohort of female patients with untreated 

Sjogren’s syndrome and healthy controls; the top upregulated, validated gene being 

CX3CR1[150]. 

 

1.6.5 Transcriptomic evidence for the role of B cells in tolerance  

The transplantation literature has provided a novel insight into tolerance. The 

improvements in immunosuppression have led to improved graft survival but patients are 

committed to long term treatment with immunosuppressive regimes that come with 

potential side effects. The ideal situation is a state of ‘tolerance’ as defined as ‘patients 

with stable graft function without continuous immunosuppression’; in the majority of 

cases this relates to patients who are non-compliant with the relevant medications.  

 

The role of B cells in transplant tolerance was demonstrated by Newell et al who 

identified a B cell gene signature following a microarray study comparing the whole 

blood gene expression profiles of renal transplant tolerant patients to those with stable 

graft function on immunosuppressive treatment and healthy controls. This showed that, of 

30 genes upregulated by two fold or more in the tolerant group, 22 were B cell specific. 

There was no significant difference in gene expression when comparing tolerant patients 

to healthy controls. A set of just three genes (IGKV4-1, IGLL1 and IGKV1D-13) 

distinguished between tolerant and non-tolerant transplant recipients (PPV 83%, NPV 

84%). The 3 identified classifier genes all encode for the immunoglobulin light chain[51]. 

The same group identified an increased number of naive and transitional B cells in 

tolerant patients, which combined with the expression data adds weight to the importance 

of B cells in tolerance and, in particular, the potential role of individual B cell subsets.  
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Sagoo et al similarly described a predominance of B cell related genes in the renal 

tolerance gene signature but, as is often the case with transcriptomic studies, the gene lists 

between the two groups showed limited overlap[151]. In light of the conflicting results in 

the literature a meta-analysis combining the different data sets from 5 separate studies 

looking at a total of 596 samples identified and validated a gene signature to discriminate 

between tolerant and stable patients. The top 20 markers, the majority of which were B 

cell centred (including upregulation of BLK, MS4A1, CD79B in the tolerant group), 

successfully discriminated between tolerant patients and patients stable on standard 

immunosuppression, with little or no difference between the tolerant group and healthy 

volunteers, highlighting the central role of B cells in tolerance[152]. 

 

1.7 Summary  

 

There is increasing evidence of the importance of B cells in RA, beyond the presence of 

autoantibodies, but their specific role in its pathogenesis remains unknown. It may be that 

the disease is initiated by a particular subset of B cells; for example, the presence of 

pathogenic B cells, a relative deficiency of Bregs or an abnormal Breg population.   

 

Transcriptomic profiling has the potential to provide insights into disease pathogenesis. 

The clinical utility of any cell signature identified in B cell subsets will be determined by 

the identification of a small number of classifier genes and its subsequent, further 

validation in whole blood RNA samples to enable translation into clinical practice.  

 

The insights gained from immunophenotyping and gene expression data may allow the 

future targeting of a subset of B cells, rather than blanket depletion in the treatment of 

RA. 

 

In this thesis, I will examine B cells from patients in a DMARD-naive early arthritis 

cohort to explore changes in gene expression, B cell subsets, and the influence of genetic 

variants on gene expression in this cohort.  

 



 34 

1.8 Hypothesis, aims and objectives 

 

Hypothesis: 

I hypothesise that the pathogenic role of B cells in RA is associated with a distinct 

transcriptional profile and changes in the proportions of B cell subsets in the peripheral 

blood.  

 

In addition, I hypothesise that an eQTL analysis, focussed on B cells, will reveal eQTLs 

which are both specific to this cell subset and RA. 

 

Aims:  

To improve the early diagnosis of RA and identify causative pathways which may lead to 

new treatments and insights into pathogenesis. 

 

Objectives: 

1) Examine the B cell transcriptome in an early arthritis cohort, comparing RA and 

non-RA patients to identify disease related changes 

2) Examine the influence of age and inflammation on the B cell transcriptome in an 

early arthritis cohort 

3) Perform an eQTL analysis of non-HLA RA risk loci in B cells and an interaction 

analysis to identify RA specific eQTLs 

4) Analyse B cell subsets in an early arthritis cohort 
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2. Methods  
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2.1 Samples 

2.1.1 Ethics and Sponsorship 

The NRES Committee North East - County Durham & Tees Valley provided ethical 

approval for the project: Prognostic and Therapeutic Biomarkers in an Inception cohort: 

the Northeast Early Arthritis Clinic, REC number12/NE/0251 (2012). Additional 

approval was provided by the South West 3 Research ethics committee for the project: 

Newcastle Autoimmune Inflammatory Rheumatic Disease Research Biobank; REC 

reference 10/H0106/30 (2012) for the recruitment of healthy volunteers and patients with 

established rheumatoid arthritis. Sponsorship was provided by Newcastle upon Tyne 

Hospitals NHS foundation Trust. 

2.1.2 Patient recruitment 

Patients are referred to the Newcastle Early Arthritis clinic (NEAC) from primary care 

with a suspected inflammatory arthritis. The primary aim of this NHS clinic is to 

promptly identify and initiate treatment for patients presenting with a new inflammatory 

arthritis. General Practitioners (GPs) are encouraged to refer those they clinically suspect 

to have an inflammatory arthritis rather than waiting for supporting investigations prior to 

referral. In light of this, the clinic assesses a proportion of patients who are later shown to 

have a non-inflammatory arthritis.  

 

Patients are given two linked appointments, 1-2 weeks apart. The first appointment is 

intended to be within 2 weeks of receipt of the referral letter. Patients are also sent 

information sheets and consent forms related to research prior to their appointment. 

 

At the first appointment (visit 1) patients are seen by a nurse specialist for a clinical 

assessment including a DAS-28 score, a musculoskeletal ultrasound, X-rays of hands, 

feet and chest, urine dipstick and blood tests for routine clinical purposes. The DAS-28 is 

a composite score derived from a count of the number of swollen joints (out of 28), tender 

joints (out of 28), patient global health assessment and inflammatory markers (CRP or 

ESR can be used). At this appointment, the patient has the opportunity to discuss the 

research study. 

 

At the second appointment (visit 2) the patient is assessed by a consultant Rheumatologist 

and a diagnosis made based on the clinical picture and investigations. This diagnosis 
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assigned at this stage is the baseline diagnosis. Visit 2 will be termed the baseline visit in 

this thesis. The diagnosis is coded to one of 12 categories for later database entry (see 

Appendix A.1). If the diagnosis is unclear then the patient is described as having an 

undifferentiated arthritis (UA). 

 

After this visit, the patient may be discharged or assigned an NHS follow up appointment 

depending on clinical need. The diagnosis may change depending on the clinical picture, 

particularly in the case of UA patients. The working diagnosis reflects the most up to date 

diagnosis assigned to a patient and may be different to that made at the baseline visit. The 

working diagnosis is updated on the clinical database after follow up clinic appointments 

(figure 2.1). 

 

 

Figure 2.1 Newcastle Early Arthritis Clinic patient pathway  

Patients are referred to the Newcastle Early Arthritis Clinic by the General Practitioners 

(GPs). At the first appointment (visit 1) patients are seen by a nurse specialist and 

clinical assessments and investigations carried out. At the second appointment (visit 2) 

patients a baseline diagnosis is made. Patients may be recruited to the study at visit 1 or 

visit 2. Patients are subsequently seen on a monthly basis and the updated diagnosis are 

termed the working diagnosis for the purpose of this study. 
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Patients were recruited for this study at visit 1 or visit 2. The inclusion criteria were: 

 a) Referred with suspected inflammatory arthritis     

 b) > 16 years of age         

 c) Able and willing to give informed consent.      

d) Naive to disease modifying anti-rheumatic drugs (DMARDs)    

e) No steroid therapy of any kind for > 2 months. 

There were no exclusion criteria if the inclusion criteria were met. 

 

2.1.3 Newcastle Early Arthritis Clinic patient cohorts 

The samples were divided in to groups determined by baseline diagnosis. The primary 

analysis, to identify disease specific, differentially expressed genes, compared the gene 

expression profile of RA samples to non-RA samples in a discovery cohort. The patients 

who were labelled with UA at initial presentation were omitted from this analysis, with 

the intention of using this group as a prediction cohort to validate any potential 

discriminatory gene signature identified (figure 2.2). 

 

Figure 2.2 Patient cohorts for gene expression analysis 

The samples were divided in to two cohorts based on baseline diagnosis. Rheumatoid 

arthritis (RA) and non-RA samples were included in the discovery cohort to identify any 

differentially expressed genes. Samples from undifferentiated arthritis samples were 

included in the prediction cohort. 
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2.1.4 Healthy volunteers 

Healthy volunteers were recruited from the Musculoskeletal Research Group and donated 

blood for whole blood flow cytometry studies. 

 

2.1.5 Established rheumatoid arthritis patients 

Patients with established rheumatoid arthritis were recruited from the Freeman Hospital 

and the samples used for whole blood flow cytometry studies. Patients were all awaiting 

treatment with rituximab for active rheumatoid arthritis.  

2.1.6 Blood sampling 

Blood samples from patients attending the NEAC were taken at the same time as for 

routine tests where possible. All samples were taken in the morning. The time between 

blood sampling and processing was between 1 and 4 hours, depending on the time of the 

patient’s clinic appointment.  

2.1.7 Clinical database 

The clinical data including relevant aspects of the patient history, examination findings 

and investigations are stored on a Microsoft Access database. 

 

2.2 B cell isolation 

2.2.1 Peripheral blood mononuclear cell (PBMC) isolation 

 

Principle 

PBMCs can be removed from whole blood by density centrifugation at room temperature  

 

Method 

Whole blood (median volume 45ml) was collected in EDTA tubes (containing K2EDTA) 

(Greiner Bio-one, Germany). Blood was diluted 1:1 with Hank’s balanced salt solution 

(Hanks) (Ca
2+ 

and Mg
2+

 free) (Lonza, Switzerland) containing 2mM endotoxin free 

EDTA (Fisher Scientific UK). Density centrifugation was performed by layering 15-20ml 

of the diluted blood over 15ml of Lymphoprep
TM 

(Axis-Shield Diagnostics, Norway) in 

each 50ml centrifuge tube and centrifuged at 895g at room temperature for 30 minutes. 

After centrifugation the PBMCs form a band at the interface between the sample and 

medium. The PBMCs were recovered from this interface using a Pasteur pipette and 
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transferred to a new 50ml centrifuge tube. Cells from 2 lymphoprep tubes were pooled 

into each new centrifuge tube. Each tube was filled with cold Hank’s balanced salt 

solution containing 1% foetal calf serum (FCS) (Sigma Aldrich, UK) to make a total 

volume of 50ml. The sample was centrifuged at 600g for 7 minutes at 4
o
C to remove any 

contaminating Lymphoprep
TM

. Lymphoprep
TM

 is toxic to cells if left in contact with 

them. The supernatant was aspirated and the cells resuspended. The cells were pooled 

again into one centrifuge tube and diluted with cold Hank’s balanced salt solution 

containing 1% FCS to a total volume of 50ml and spun at 250g for 7 minutes at 4
o
C, to 

remove any contaminating platelets. The supernatant was aspirated and cells resuspended 

in 20ml of cold Hank’s balanced salt solution containing 1% FCS. The cell suspension 

was strained through a 70µm nylon filter to remove any debris or clumps. The number of 

PBMCs was counted using a Burker counting chamber.  2x10
5
 PBMCs were transferred 

to a 96 v-bottom well plate and stored at 4˚C for use in a cell purity check by flow 

cytometry. The remaining cells were used for CD19
+ 

B cell isolation. 

 

2.2.2 Positive selection of CD19
+
B cells 

 

Principle 

CD19 is a transmembrane glycoprotein expressed during all phases of B cell 

development, until terminal differentiation into plasma cells. CD19 is also expressed on 

follicular dendritic cells; these cells are found in the primary and secondary lymphoid 

structures. CD19 MicroBeads are 50nm superparamagnetic particles conjugated with 

monoclonal CD19 antibodies (isotype: mouse IgG1). 

 

A positive cell selection means the target cell type is magnetically labelled, in this case 

with CD19 MicroBeads, and the cell suspension is passed through a magnetic column. 

The column contains a matrix of ferromagnetic spheres. The column is held in a magnetic 

separator and the spheres amplify the magnetic field, inducing a high gradient within the 

column. The unlabelled cells pass through but labelled cells are retained in the column. 

The column is then removed from the magnetic field and the target, positively selected, 

cells eluted (figure 2.3). 
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Figure 2.3 Positive cell selection using MicroBead technology 

The target cell is magnetically labelled, retained within the column during separation 

while unlabelled cells flow through. After a washing step the column is removed from the 

magnetic field and target cells eluted. www.miltenyibiotech.com[153] 

 

Method 

The isolations were carried out using pre-cooled solutions and the cells kept on ice to 

prevent capping of antibodies on the cell surface and non-specific cell labelling. The 

volumes described below are for the magnetic labelling of up to 1x10
7
 total cells. When 

working with higher cell numbers the reagent volumes and total volumes were scaled up 

accordingly.  

 

MACS buffer contains 500 ml PBS (Ca
2+

/Mg
2+

 free) (Lonza, Switzerland), 2.5ml FCS 

and 2 ml Endotoxin free 0.5M EDTA, filtered through a 0.2 m filter and cooled on ice 

prior to use. 

 

Hanks containing 1% FCS was added to fill the tube containing the remaining PBMCs, 

after cells were removed for flow cytometry. The tube was spun at 400g at 4
o
C for 7 

minutes. The supernatant was aspirated and cells resuspended in MACS buffer (80l 

MACS buffer per 1x10
7
 PBMCs) and 20l MACS CD19 MicroBeads (Miltenyi Biotech, 

Germany) were added per 1x10
7 
cells. The cells were mixed and incubated at 4°C for 15 

minutes in a refrigerator. The cells were washed by adding 10ml of ice-cold MACS 

buffer and spun at 400g at 4
o
C for 7 minutes. The supernatant was aspirated completely 

and cells resuspended in 500µl of MACS buffer (500µl per 1x10
8
 cells). 
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A positive selection column (LS) (Miltenyi Biotech, Germany) was placed in the MACS 

separator and the column prepared with a pre-rinse of 3ml of ice-cold MACS buffer. The 

cell suspension was added to the column. The unlabelled cells which passed through were 

collected in a centrifuge tube and the column washed 3 times by adding 3ml of MACS 

buffer. The MACS column was removed from the magnetic separator and placed in a 

30ml universal tube. 5ml of MACS buffer was added to the column and the plunger 

pushed firmly in to the column to flush out the magnetically labelled cells. The tube was 

filled with MACS buffer and spun at 400g at 4
o
C to wash the cells. The supernatant was 

aspirated and the cells resuspended in 1ml of Hanks containing 1% FCS. The cells were 

then counted. If there were > 1.2x10
6
 CD19

+
 B cells then 2x10

5
 cells were transferred 

into one well of the 96 v-bottom well plate and stored at 4
o
C for use in the purity check 

by flow cytometry. The remaining cells were lysed. 

 

2.2.3 Freezing homogenised CD19
+
 B cells in Qiagen RLT buffer 

 

Principle 

RNA stabilisation is required after the harvesting of samples to prevent unwanted 

changes in the transcriptome due to RNA degradation or transcriptional induction. This 

can be done by disrupting and homogenising the cells in the presence of RNase-inhibiting 

or denaturing reagents. The disruption of cell walls and plasma membranes allows the 

release of all the RNA from the samples and homogenisation reduces the viscosity of the 

lysate produced by the disruption. Incomplete homogenisation can lead to inefficient 

binding of RNA to the spin column used for the RNA extraction. Samples can then be 

stored in lysis buffer at –80°C for months. 

 

Method 

RNase, DNase-free filter tips and RNase, DNase, pyrogen-free microcentrifuge tubes 

were used.  

 

The universal tube containing the positively selected cells was filled with Hanks 

containing 1% FCS and spun at 400g at 4
o
C for 7 minutes. The supernatant was aspirated 

and 350µl of lysis buffer added to disrupt the cells. The lysis buffer used was Qiagen 

Buffer RLT from the AllPrep DNA/RNA mini kit (Qiagen, Germany) to which β-



 43 

mercaptomethanol (Sigma Aldrich, USA) had been added at a ratio of 1:100. If the cell 

count was over 5x10
6 

cells then 600µl of lysis buffer was added. This was mixed 

thoroughly by pipetting and vortexed. The lysate was homogenised by adding it to a QIA-

shredder column (Qiagen, Germany) in a 2ml collection tube and spun at maximum speed 

in a microcentrifuge for 2 minutes at 4
o
C. The QIA-shredder column was removed, a cap 

placed on the 2ml collection tube and the sample stored immediately at -80°C until RNA 

and DNA extraction. 

 

2.2.4 CD19
+ 

B cell purity check by flow cytometry 

 

Principle  

The purity of the isolated CD19
+
 B cells can be checked by flow cytometry. PBMC and 

isolated CD19
+
 B cells are labelled with fluorescently conjugated antibodies recognising 

different surface markers and the proportions of CD19
+
 B cells measured using flow 

cytometry. The starting population of PBMCs is assessed to determine the recovery of the 

CD19
+ 

B cells. The Miltenyi MACS MicroBead technology used for the cell isolation 

requires only minimal cell labelling and so sufficient epitopes remain available for 

fluorescent staining on the magnetically labelled cells. 

 

Method 

The PBMCs and CD19
+
 B

 
cells were centrifuged at 400g for 3 minutes at 4

 o
C. The 

supernatant was removed and the pellet resuspended in flow cytometry staining buffer 

(Dulbecco’s phosphate buffered saline (DPBS) (Mg
2+ 

and CA
2+

 free) (Lonza, 

Switzerland) containing 0.01% sodium azide (Sigma-Aldrich, UK), 0.5% bovine serum 

albumin (Sigma-Aldrich, UK) and 1mM EDTA), human IgG at 4g/ml (Octagam, 

Octapharma Limited), and fluorophore labelled surface antibodies as per the table below 

(table 2.1) to a final volume of 50l per well. 
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Surface 
marker 

Fluorophore Dilution Clone Supplier 

CD3 PB 1:50 UCHT1 BD, Biosciences 

CD4v4 FITC 1:200 L120 BD, Biosciences 

CD14 PE 1:20 M5E2 Beckton Dickinson,  

CD19 APC 1:10 LT19 Miltenyi Biotec 
Table 2.1 Fluorophore labelled antibodies used to assess purity of positively selected 

CD19
+
 B cells 

 
The samples were incubated at 4

 o
C in the dark for 30 minutes and then washed twice in 

flow cytometry staining buffer by centrifugation at 400g for 3 minutes at 4°C, 

resuspended in 200l of staining buffer and acquired on a FACSCanto II (Beckton 

Dickinson, USA). Data was analysed using FlowJo software (TreeStar, USA). Figure 2.4 

shows a representative example. 

 

        

       
Figure 2.4 An example of a CD19

+ 
B cell purity check  

The starting PBMC population a) and the purified CD19
+
 B cell population b) were 

stained for cell surface markers and assessed by flow cytometry. The population in the 

pink box are CD19
+
 B cells and the number in pink in the lower right corner indicates the 

percentage of these cells in the entire population. T cells (CD3
+
) can be seen in the top 

left area of plot b). 
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2.3 Nucleic acid extraction 

2.3.1 Extraction of RNA and DNA from frozen homogenised CD19
+ 

cells 

 
Principle 

Total RNA and genomic DNA can be simultaneously purified from frozen homogenised 

CD19
+
 B cell lysates using spin technology (AllPrep DNA/RNA mini kit) (figure 2.5). 

The thawed lysate is first passed through a DNA spin column which, in combination, 

with a high salt buffer, allows the selective binding of DNA to the column membrane 

from which DNA can then be eluted. Ethanol is added to the flow through from this 

process to create appropriate binding conditions for RNA and this is then applied to an 

RNeasy spin column where the total RNA binds to the column and contaminants washed 

away. An on-column DNase digestion step is carried out to eliminate any contaminating 

genomic DNA. The RNA can then be eluted from the column.   

 

Figure 2.5 Overview of AllPrep RNA/RNA procedure 

Qiagen, Germany[154] 

 

 

 

 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiu0YqomYDcAhXEtBQKHb3bBIAQjRx6BAgBEAU&url=http://www.liankebio.com/article-information_Newsletter-834.html&psig=AOvVaw0eo-_Uf0vH67cmcU5O3kJh&ust=1530613319069465
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Method 

The AllPrep DNA/RNA mini kits were used (Qiagen, Germany) to extract DNA and 

RNA from the homogenised lysates as per the manufacturer’s instructions (AllPrep 

DNA/RNA mini handbook, Qiagen, Germany).  

 

The sample was removed from the freezer and allowed to thaw to room temperature. The 

homogenised lysate was added to an AllPrep DNA spin column placed in a 2ml 

collection tube and centrifuged for 30 seconds at 8000g.  The DNA spin column was then 

placed in a new 2ml collection tube and stored at room temperature for later purification 

after RNA purification. 

 

RNA purification: 350 µl of 70% ethanol was added to the flow through from the DNA 

spin step and mixed well by pipetting. This was then transferred to an RNeasy spin 

column placed in a 2ml collection tube and spun for 15 seconds at 8000g. The flow 

through was discarded. The on-column DNase digestion was then carried out using the 

RNase-Free DNase Set (Qiagen, Germany). 350µl Buffer RW1 was added to the RNeasy 

spin column and centrifuged for 15 seconds at 8000g to wash the spin column membrane. 

The flow through was discarded. 10µl DNase I was added to 70µl Buffer RDD and mixed 

gently. 80µl of the DNase incubation mix was added directly to the RNeasy spin column 

membrane, where the RNA was bound, and incubated at room temperature for 15 

minutes. 350µl Buffer RW1 was added to the RNeasy spin column and centrifuged for 15 

seconds at 8000g column to remove the DNase I. The flow through was discarded, 

completing the DNase digestion. 

 

The column was washed by adding 500µl Buffer RPE to the RNeasy spin column and 

centrifuged for 15 seconds at 8000g. The flow through was discarded, a further 500µl 

Buffer RPE was added and the column centrifuged for 2 minutes at 8000g to dry the 

column membrane and ensure no ethanol was carried over to the elution stage. The 

RNeasy column was placed in a new 2ml collection tube and centrifuged at full speed for 

1 minute to eliminate carry over of Buffer RPE. The RNeasy column was placed in a new 

1.5ml collection tube to elute the RNA. 30µl RNase-free water was added directly to the 

spin column membrane and the column centrifuged for 1 minute at 8000g. The sample 

was then stored at -80
o
C. 
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DNA purification: The AllPrep DNA spin column which was stored at room temperature 

was now washed by adding 500µl Buffer AW1 and centrifuged for 15s at 8000g. A 

further wash was carried out by adding 500µl Buffer AW2 and the column centrifuged at 

full speed for 2 minutes to dry the spin column and prevent carry over of ethanol to the 

DNA elution. The AllPrep DNA spin column was placed in a new 1.5ml collection tube 

and DNA eluted by adding 100µl Buffer EB directly to the spin column, incubating at 

room temperature for 1 minute. The column was then centrifuged for 1 minute at 8000g 

and the eluted DNA stored at -80
o
C. 

 

2.4 Illumina Human HT12-v4 Expression BeadChip  

 

290 RNA samples were sent to the laboratory of Professor Anne Barton at the University 

of Manchester for whole genome microarray analysis. The sample preparation, quality 

control and microarray work described in section 2.4 was carried out by Dr Nisha Nair at 

the University of Manchester, unless otherwise stated. 

2.4.1 RNA Quality assessment 

 

Principle 

The use of intact RNA is critical to successful gene expression analyses. The Agilent 

bioanalyser system uses electrophoretic separation and the subsequent detection of RNA 

samples to provide a visual display of the quality of the RNA sample and the software is 

used to generate a standardised assessment: RNA integrity number (RIN) for each 

sample. The RIN range produced is 0-10, RIN:0 describes the most degraded sample, 

RIN:10 the most intact RNA. 

 

Method 

The RNA quality of the samples was assessed using the Agilent 2100 bioanalyzer 

(Agilent Technologies, USA), the Agilent RNA 6000 Nano kit and Agilent 2100 expert 

software as per the manufacturer’s instructions to obtain an RNA integrity number (RIN) 

for each sample. An example of a sample electropherogram trace is shown in figure 2.6.  

 

The median RIN for the samples was 10 (range 7.9-10).  
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Figure 2.6 Agilent bioanalyser electropherogram summary of one RNA sample  

Fluorescence is shown on the y axis, fragment size on the x axis. A 25 nucleotide marker 

peak is shown. 2 distinct ribosomal peaks are seen, sample with a RIN 10, indicative of 

intact RNA (results and image from Cambridge Genomics Services, UK, produced as part 

of my MRes project). 

 

2.4.2  Illumina Human HT12-v4 Expression BeadChip  

 
Principle 

The human HT12-v4 expression beadchip uses a direct hybridisation assay where gene 

specific probes are used to detect labelled cRNA. Each bead has a sequence specific oligo 

probe. Each bead is covered with hundreds of thousands of copies this probe, that act as 

the capture sequence (figure 2.7). 

 

The HT12-v4 expression beadchip allows the measurement of the expression levels of 

47,000 transcripts and splice variants from RefSeq Database Release 38 and other 

sources.  
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Figure 2.7 Direct hybridisation of labelled cRNA from the sample to probe  

Each silica bead on the array has hundreds of thousands of copies of a specific 

oligonucleotide attached to it, a single probe is depicted here for ease of visualisation 

(Image, Illumina, USA[155]) 

 

Method 

The Illumina TotalPrep 96-RNA amplification kit from Ambion (Life Technologies, 

USA) was used to generate biotinylated, amplified RNA for hybridisation to the 

microarrays. In 3 batches the RNA was converted to complementary DNA (cDNA) by 

reverse transcription. The cDNA underwent second strand synthesis followed by a single 

in vitro transcription amplification step to generate biotin-labelled cRNA. The cRNA was 

purified and quantified before hybridisation to the beadchip. 42 samples were noted to be 

contaminated at this stage with ethanol and underwent a reconcentration and clean up 

procedure (see Methods 2.4.3).  

 

The Illumina iScan was used to detect fluorescence emission and was carried out in 7 

batches. The raw data was processed using the beadarray package in RStudio and was 

transferred to Newcastle University in the form of IDAT files with the a Sentrix id sheet 

containing positional information to enable identification of the arrays.  

 

2.4.3 Ethanol precipitation of RNA for re-concentration and clean up 

 

Principle 

Contamination of the sample can occur during the RNA conversion process. The sample 

can be precipitated out of the aqueous solution using ethanol and then resuspended for 

downstream applications. 
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Method 

During the conversion process 42 samples were noted to be contaminated with ethanol. 

To each sample the following were added: 2 µl glycogen, 0.5 of the starting volume of 

7.5M ammonium acetate, 2.5 of the starting volume of ice cold 100% ethanol. The 

sample was mixed thoroughly by vortexing, precipitated at -20
o
C for 1 hour then spun at 

full speed (16,000g at 4
o
C for 30 minutes) and the supernatant removed. The pellet was 

washed twice with 0.5ml of ice cold 80% ethanol (16,000g at 4
o
C for 10 minutes) and the 

pellet air dried for 10 minutes before resuspending in 50µl of nuclease-free water.  

 

2.5 Microarray data analysis 

The microarray data analysis was carried out with the support of Andrew Skelton from 

the Bioinformatics Support Unit. The analysis was performed in RStudio using 

Bioconductor libraries[156]. The workflow pathway can be summarised as: importing the 

data, pre-processing the data, fitting the linear models, making the comparisons required 

to test the hypotheses, and lastly visualising the results. 

 

2.5.1 Pre-processing 

The sample probe profiles were read into RStudio. Background correction and 

normalisation was carried out using the limma package[157]. Normalisation is carried out 

to remove systematic effects due to technical differences which are unrelated to the 

biological differences between the samples. It aims to place the expression values for all 

the samples on the same measurement scale prior to analysis based on phenotype. The 

neqc function was used to perform background correction followed by quantile 

normalization. This function is used for Illumina BeadChip data utilising the control 

probes specific to these arrays: negative control probes for background correction and 

both negative and positive controls for normalisation[158].  

The illuminaHumanv4.db package was used to map annotation of the array probes, 

providing information on the NuID, IlluminaID, gene symbol, ensemble annotation and 

probe sequence. 
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2.5.2 Quality Control 

Quality control is carried out to optimise the downstream analyses: the methods used 

were based on detection P-values, the removal of technical failures (samples which had 

failed on the array) and principle components analyses. The pre-processing steps were 

repeated after the removal of probes or samples identified in this way. 

 

The detection p-value, is the confidence that a given transcript is expressed above the 

background level and this data is read into RStudio. The probes were filtered in RStudio 

to keep probes which met the P-value detection threshold of p<0.01 in 25% or more 

samples. This removed 31,676 probes. An annotation filter was used to identify probes 

which do not represent unique capture sequences, removing 5560 probes. 10974 probes 

were taken forward after probe filtering to the further analyses. 

 

The technical failures are identified by checking the proportion of microarray probes 

expressed in each array and 3 samples were identified as technical failures and 

subsequently removed. A principal components analysis identified 1 outlier which was 

removed from all further analyses.  

 

The principal components analysis was employed to visually examine the data to identify 

problems potentially arising from sample processing. This enables the removal of any 

systematic bias prior to further analysis. The samples were colour coded to look in turn 

for effects based on: conversion batch, scanning batch, chip ID, samples which had 

undergone a clean up procedure and CD19
+
 B cell purity. The samples were then coded 

by clinical factors: gender, smoking, diagnosis, seropositivity and based on levels of 

inflammation. The samples clustered together based on conversion batch alone (figure 

2.8). Conversion batch was, therefore, added to the linear model. 



 52 

 

Figure 2.8 Principal Components Analysis by conversion batch  

Visualisation of the normalised data in 2 principal components. Each point represents 

one array and the samples are colour coded by conversion batch. The proportion of the 

total variance attributable to each component is indicated on the axis.  

 

 

2.5.3 Differential gene expression 

Differentially expressed genes were sought using linear modelling in the limma package. 

This method allowed the flexible modelling of experimental features such as batch and 

additional clinical factors such as inflammatory markers.  

 

A design matrix was first created indicating which RNA samples have been applied to 

which array. A contrast matrix was created to define the contrasts to be used to test the 
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hypotheses of interest. The lmfit and contrasts.fit functions were used for assessing 

differential expression. Limma computes the log2-fold-changes and t-statistics for the 

contrasts of interest. An empirical Bayesian method was used to moderate the standard 

errors of the estimated fold changes.  

 

To prioritise the results, a log2-fold change threshold was set at 1.2 to identify genes with 

a fold change equal or greater than the set threshold, rather than different to zero. This 

fold change threshold has been shown to clinically relevant in CD4
+
 T cells[16]. The 

Benjamini-Hochberg false discovery rate (FDR) corrected p-value of <0.05 was used to 

adjust for multiple testing. The toptable function was used to produce a spreadsheet of the 

filtered results including gene annotation. The results of the individual contrasts carried 

out were visualised using volcano plots. 

 

2.5.4 Ingenuity pathway analysis 

Ingenuity® Pathway Analysis (IPA) (Qiagen, Germany) is a web-based software 

application used to interpret high-throughput biological data. IPA uses the Ingenuity 

Knowledge Base for its analysis; a manually curated, maintained and frequently updated 

repository of relevant biological and chemical data based on the literature which includes 

data on the directional changes in any reported relationship between molecules[159].  

 

A gene list table for each comparison to be examined was created containing: gene 

symbol, logFC, P-value and FDR. The lists were uploaded to the IPA platform for 

analysis. IPA integrates the dataset with previously observed relationships in the 

literature. The data was examined to identify canonical pathways, upstream regulators 

and molecular networks within the dataset with the aim of providing a biological insight 

to the observed changes.  

 

There are 2 primary statistical tests used in the core IPA analysis: the p-value of overlap 

and the Z score. The null hypothesis employed is that the molecule in the dataset does not 

overlap with those present in a given biological pathway, function or disease. The p-value 

of overlap is calculated using a right tailed Fisher’s exact test, indicating the chance of 

getting a given result, or a more extreme result, if the null hypothesis is true. A p-value of 

<0.05 is generally deemed significant and is generated for all the analyses in IPA. The Z 
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score makes a prediction as to the activation status of a pathway. It takes directional 

expression data to compare the expression patterns of your dataset to information in the 

ingenuity database. A Z score of ≤-2 predicts inhibition and ≥2 activation. If there is 

insufficient information in the literature curated database then a Z score is not provided. 

The molecular network analysis does not use directional data. 

 

2.5.5 Gene set enrichment analysis 

The Gene Set Enrichment Analysis (GSEA) software evaluates the microarray data at the 

level of gene sets rather than isolated changes in single genes[160, 161]. The gene sets are 

determined by prior biological knowledge. The Molecular Signatures Database 

(MSigDB) is a collection of manually curated, annotated gene sets designed for use in 

gene set enrichment analyses and link with the GSEA software[162]. By examining gene 

sets rather than individual genes the aim is to aid the interpretation of data where long 

lists of genes may not appear to have a unifying biological function and their 

interpretation is reliant on the knowledge of the assessor. By using gene sets it increases 

the signal relative to noise and improves statistical power. It is useful in the setting of 

noisy data due to human heterogeneity.  

 

GSEA is able to detect modest co-ordinated differences in gene expression. Cellular 

processes often affect groups of genes together and single gene analyses may miss such 

effects; the level of change in a single gene may be small but a change in a group genes in 

concert may have a meaningful, relevant effect on a cellular pathway. GSEA aims to 

identify if members of a gene set tend to occur at the top or bottom of the list of genes 

from the experiment. 

The GSEA desktop application was downloaded for use. Phenotype and expression files 

for the analysis were produced in R. For the expression file, the GSEA algorithm does not 

filter the dataset and recommends that an unfiltered dataset is uploaded. The detection P-

value filter was, therefore, removed. The annotation filter remained in place for creating 

the expression file.  

 

The genes are ranked based on their expression and the user determined phenotypic class 

to create a list of genes (L). The aim of GSEA is to determine if members of the prior 
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defined gene set (S) are randomly distributed through L, or primarily found at the bottom 

or top of this list.  

 

An enrichment score (ES) is first calculated to reflect the degree gene set S is 

overrepresented at one extreme of the list L. The ES is calculated by walking down the 

list L and increasing a running-sum statistic if a gene in S is identified or decreasing it, if 

the gene identified is not in S. The enrichment score is the maximum deviation from zero 

in the random walk and corresponds to a weighted Kolmogorov–Smirnov-like statistic 

(figure 2.9). The statistical significance of the ES is calculated using a phenotype-based 

permutation test. The ES is normalised to account for the size of the gene sets, to provide 

a normalised enrichment score (NES). The proportion of false positives is controlled for 

by calculating the FDR. GSEA highlights the gene sets with an FDR of less than 25%. 

The term leading-edge subset refers to the genes in S that appear in list L before the 

running sum statistic reaches its maximum deviation from zero. 

 

 

 

Figure 2.9 GSEA overview 

(A) A heat map of an expression data set sorted by correlation with phenotype. (B) the 

“gene tags,” i.e., location of genes from a set S within the sorted list and plot of the 

running sum for set S in the data set, including the location of the maximum enrichment 

score (ES) and the leading-edge subset[160]. 
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2.6 Genotyping (University of Manchester, UK) 

Genotyping was carried out at the laboratory of Professor Anne Barton at the University 

of Manchester by Dr Nisha Nair using Illumina Human CoreExome-24 version 1-0 

arrays, following the manufacturer’s protocol.  

 

The quality control and data processing steps were carried out by Andrew Skelton at the 

Bioinformatics Unit, Newcastle University. Samples and SNPs with a call rate of <98% 

were excluded. SNPs with an Illumina GenomeStudio cluster separation of <0.4 were 

excluded from further analysis. Data were pre-phased using SHAPEIT2 and imputed to 

the 1000 Genomes Phase 1, version 3, reference panel using IMPUTE2. Imputed SNPs 

with INFO scores of <0.8 were excluded. 

 

2.7 B cell phenotyping 

2.7.1  Cell surface protein expression 

 

Principle 

Cell surface markers can be used in combination to identify different B cell subsets in 

whole blood using flow cytometry.  

 

Method 

200l of whole blood collected in EDTA tubes was added to 2ml microcentrifuge tubes. 

Surface marker antibodies were added as per table 2.2.  

 

Surface 

marker 

Fluorophore Dilution Clone Supplier 

CD19 APC 1:200 HIB19 BD, Biosciences 

CD24 APC-eFluor 780 1:50 SN3 eBioscience 

CD27 V450 1:200 M-T271 BD, Biosciences 

CD38 PerCP-Cy5.5 1:50 HIT2 BD, Biosciences 

Table 2.2 Fluorophore labelled antibodies used for B cell phenotyping in whole blood 

 

The microcentrifuge tube was then incubated at 37
 o
C in a water bath for 15 minutes 

following a protocol which had been optimised within the group, as a proportion of B cell 

markers are not robust to detection after fixation. The cells were fixed by adding 10 

volumes of warmed FACS lysing solution (Beckton Dickinson, Biosciences, USA). The 
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sample was mixed by vortexing to ensure erythrocyte lysis and incubated at 37
 o
C in a 

water bath for 12 minutes. The sample was removed and centrifuged at 600g for 8 

minutes at room temperature, the supernatant removed, the tube vortexed to disrupt the 

cell pellet and then cells washed with FACS buffer by centrifuging at 600g for 6 minutes 

at room temperature. Samples were resuspended in 200l of FACS buffer and acquired 

on a FACSCanto II (Beckton Dickinson, USA). Data was analysed using FlowJo 

software (TreeStar, USA). 

 

2.7.2 Flow cytometry analysis 

The data acquired was analysed using FlowJo software v10.4.2 (TreeStar, USA). 

Doublets were first excluded by examining the side scatter area (SSC-A) and side scatter 

width (SSC-W) plot (figure 2.10a). The singlets were taken forward from this gate. The 

SSC-A against forward scatter area (FSC-A) plot was used to identify the lymphocyte and 

leucocyte populations (figure 2.10b).  

 

The lymphocyte gate was used for the identification of CD19
+
CD27

+
 memory B cells and 

CD19
+
CD27

-
 naive B cells (figure 2.10d).  

 

The leucocyte gate was taken forward and, plotting SSC-A against CD19, used to identify 

the CD19
+ 

B cell population (figure 2.10c). Using this CD19
+ 

B cell population the 

markers from table 2.2 were used in combination, using contour plots to identify the 

regulatory B cell subsets CD19
+
CD24

hi
CD38

hi
 (figure 2.10e) and CD19

+
CD24

hi
CD27

+
 

(figure 2.10f) and plasmablasts (CD19
+
CD27

hi
CD38

hi
) (figure 2.10g) as a percentage of 

CD19
+
 B cells.  

 

To identify the CD19
+
CD24

hi
CD38

hi
 population the gate was drawn to the right of the 

inner contour of the CD38 positive population (CD38 on the x axis) and at the bottom of 

the inner contour of the CD24 population (CD24 on the y axis). To identify the 

CD19
+
CD24

hi
CD27

+
 population the CD24

hi
 contours were used as before and CD27

+
 co-

ordinates taken from the previous plots described. For plasmablasts 

(CD19
+
CD27

hi
CD38

hi
) identification, the CD38 contours were used as before and CD27

hi 

population gate drawn at the top of the inner contour of the positive population. In cases 

where CD27
hi 

population could not be clearly defined on the B cell population, the co-
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ordinates were taken from the CD27
hi 

population defined on the lymphocyte plot. If 

required, the co-ordinates for the CD24
hi

 and CD38
hi 

gates from the CD19
+
CD24

hi
CD38

hi
 

plot were used to define the CD24
hi

 and CD38
hi

 populations in the CD19
+
CD24

hi
CD27

+
 

and CD19
+
CD27

hi
CD38

hi
 plots.  

 

 

 
Figure 2.10 Gating strategy for B cell subsets 

The singlet gate was identified (a) and carried forward to identify the leucocyte and 

lymphocyte populations (b). The lymphocyte gate was taken forward to identify the 

memory (CD19
+
CD27

+
) and naive (CD19

+
CD27

+
) B cell populations (d). The leucocyte 

gate was taken forward to identify the CD19 
+ 

B cell population (d). The CD19
+ 

B cell 

population was taken forward to first identify the CD19
+
CD24

hi
CD38

hi
 subset (e), 

followed by the CD19
+
CD24

hi
CD27

+
 population (f) and CD19

+
CD27

hi
CD38

hi
 population 

(g) Red box identifies the gate of interest for each plot. 

 

2.8 Serum IL-6 detection by MesoScale Discovery (MSD) assay 

Serum IL-6 was measured using the MesoScale Discovery (MSD) assay by Dr Amy 

Anderson and Dr Arthur Pratt following the manufacturer’s instructions. 

 

Principle 

The MSD assay allows the quantitative measurement of cytokines, using 

electrochemiluminescent labels conjugated to detection antibodies. The MSD plates are 

pre-coated with capture antibodies. The sample is added to the plates with a solution 
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containing the detection antibody conjugated to the electrochemiluminescent labels. The 

cytokine to be measured binds to the capture antibody and the detection antibody then 

binds to the cytokine of interest. The MSD buffer is added to create the appropriate 

chemical environment for electrochemiluminesce. Voltage is applied to the plate 

electrodes, causing the bound electrochemiluminescent labels to emit light. The light 

intensity emitted is measured, providing a quantitative measure of the cytokine in each 

sample. 

  

Method 

Blood from patients was collected in Serum Separator tubes (Greiner). The serum was 

separated by centrifuging the tube at 1800g for 10 minutes at room temperature. Aliquots 

of serum were stored in labelled 1.5ml microcentrifuge tubes and frozen at -80°C. 

Samples were defrosted for use in a MSD assay.  

 

The MSD analysis of serum was carried out according to the manufacturer’s instructions 

using a V-PLEX Human IL-6 Kit diluent (Meso Scale Discovery; Maryland, USA).   

 

2.9 Statistical methods 

The microarray analyses, eQTL and interaction analyses were carried out using RStudio 

and the appropriate packages as detailed in the appropriate sections. The statistical tests 

presented for clinical data and flow cytometry data were performed using GraphPad 

Prism (version 8.0) and IBM SPSS (version 24). 
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3. The gene expression profile of peripheral blood B cells in patients 

with early RA 
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3.1 Background 

Oligonucleotide microarrays provide an opportunity to analyse the simultaneous 

expression of thousands of genes in one experiment. This has the potential to identify 

individual genes or gene expression patterns important in RA disease pathogenesis.  

 

The majority of transcriptomic analyses in RA have used whole blood or PBMCs, 

focussed on comparing RA samples to healthy controls and sample numbers have been 

relatively small[102, 140, 163, 164]. The analysis of combined cell subsets, in whole 

blood and PBMCs, may mask meaningful biological signals from the individual cell 

subsets and those detected may reflect the relative abundance of a different subsets. The 

majority of differentially expressed genes identified in cell subset analyses are not 

replicated in PBMCs, and this is true of both relatively rare subsets, such as B cells, and 

the more abundant CD4
+
 and CD8

+
 T cells[165].  

 

The choice of subset for analysis is more complex in autoimmune conditions than in 

oncology where transcriptomic analyses have, in some cases, translated into clinical 

practice[166, 167]. In RA, the primary site of disease (the synovium) is relatively difficult 

to access, biopsies are not routinely required for clinical practice and the pathogenesis of 

RA is less clearly defined. The analysis of T cell subsets has been successfully used to 

identify diagnostic and prognostic signatures for RA and other autoimmune 

conditions[16, 148, 165, 168].  

 

As discussed in Chapter 1, B cells are potentially pathogenic in early RA. The sole 

publication on the B cell transcriptome in RA did detect differentially expressed genes 

but the 8 samples in each group were pooled to produce an RA sample and a healthy 

control sample for comparison. This was done to overcome the inter individual variability 

in gene expression and to maximise the amount of RNA for the microarray. The group 

identified over 500 differentially expressed genes and pathway analyses were carried out. 

The top four functional groups related to i) B cell activation and proliferation, ii) 

autoimmunity, iii) neuro-immune modulators and iv) angiogenesis [149]. However, this 

interesting result may be influenced by the use of steroid in the RA group (each patient 

was on a stable dose of oral prednisolone, <10mg) and pooling of the RNA may mask 

heterogeneity between samples limiting interpretation of this result. Although CD19
+
 B 
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cells can be successfully isolated from peripheral blood samples, the lack of microarray 

work on this subset may also relate to the relatively low yield of CD19
+ 

B cells, and so 

RNA, from a given peripheral blood sample when compared to CD4
+
,
 
CD8

+
 and CD14

+
 

cells[141]. 

 

The use of healthy controls as a control group in analyses provides insights into disease 

pathogenesis but a comparison with disease controls, particularly those presenting to an 

early arthritis clinic, may provide clinically useful biomarkers of disease. By looking at 

untreated patients with early disease I aim to identify diagnostic biomarkers and avoid the 

influence of DMARDs on the transcriptome. The importance of looking at early disease 

is highlighted by the identification of significant differences between the synovial 

transcriptome of patients with untreated RA and those with established RA, which may 

be secondary to treatments and the impact of prolonged inflammation[169]. 

 

Microarray experimental technology is well established, although the analysis remains 

complex and must control for factors including technical variation and batch effects, 

which may otherwise confound the identification of meaningful biological variation 

between samples[170]. The results have been shown to be reproducible and the lack of 

translation to clinical utility in autoimmune conditions may relate to the tissue analysed, 

sample numbers and inter-individual variation that is not disease related[171, 172]. In this 

chapter, I will examine the CD19
+ 

B cell transcriptome in a large cohort of DMARD 

naive patients, which has the potential to provide insights into B cell mediated 

mechanisms of disease pathogenesis. This approach attempts to circumvent the 

challenges of previous studies which have used small cohorts and mixed cell populations. 

The benefit of using peripheral blood is that circulating B cells are accessible, allowing 

for easier translation into clinical practice. 

 

3.2 Hypothesis and aims 

 

3.2.1 Hypothesis 

In RA, the B cells are the source of autoantibody production, can produce pro-

inflammatory cytokines and act as antigen presenting cells activating or amplifying auto-

reactive T cells. Therefore, B cells potentially have a crucial role in disease initiation. 
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Examination of the B cell transcriptome will provide insights into the pathogenesis of 

RA, potentially highlighting cellular pathways which are altered in disease and 

identifying diagnostic biomarkers of disease. 

 

3.2.2 Aims 

1. To identify a list of differentially expressed genes in the transcriptome of 

circulating CD19
+
 B cells of DMARD-naive RA patients versus disease controls.  

2. To test the clinical utility of any potential diagnostic gene signature in a separate 

cohort of patients with undifferentiated arthritis. 

3. To undertake a pathway analysis of differentially expressed genes (DEGs) with a 

view to gaining new insight into B cell mediated pathobiology of early RA. 
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3.3 Results 

 

3.3.1 Patient cohort overview 

Microarray data with accompanying phenotype clinical data were available for 240 

samples in total. Based on the diagnoses at the baseline visit, (see Methods 2.1.2 for 

details regarding patient recruitment) the samples comprised 59 RA patients, 50 patients 

with an undifferentiated arthritis (UA) and 131 patients with a rheumatological condition 

other than RA, referred to as the non-RA group.  

 

The non-RA group comprised 59 patients with other inflammatory conditions and 72 

patients with non-inflammatory conditions. The strategy of grouping inflammatory and 

non-inflammatory samples together has been successfully used in a CD4
+
 T cell study 

and increases the sample size of the control group[16]. In addition, the UA cohort in 

which we aim to test any diagnostic signature includes those who will subsequently be 

given both inflammatory and non-inflammatory diagnoses[16]. The patients with UA 

were not included in the primary analysis, as this group included patients who would go 

on to be diagnosed with RA and it was intended that this sub-cohort would provide a 

means of validating a putative discriminatory gene signature arising from my primary 

comparison.  

 

3.3.2 Demographics 

In total 240 samples have been used in the analysis described in this chapter. A CD19
+ 

B 

cell purity check was carried out for 187 of these samples (see Methods 2.2.4). The first 

analysis used all the available samples and the second analysis used only the samples 

where the CD19
+ 

B cell purity was known to be ≥ 90%.  

 

The clinical data for the samples used in the analyses is shown in table 3.1. The RA group 

is older, with more evidence of inflammation (measured by inflammatory markers ESR 

and CRP), and a greater number of swollen and tender joints than the disease control 

group.  
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 All samples CD19
+
 B cell Purity ≥90.0% 

 RA Non-RA P-value RA Non-RA P-value 

Sample 

Number  

59 131 - 39 101 - 

Age (yrs) 61 (21-89) 52 (18-92) 0.0002 58 (21-85) 51 (18-92) 0.0156 

Gender 

(%F)  

76.3 72.5 ns 76.9 70.3 ns 

ESR 

(mm/hr) 

25 (1-91) 10 (1-111) 0.0002 21 (1-91) 8 (1-100) 0.0013 

CRP 

(mg/L) 

10 (0-91) 7 (0-171) 0.0009 9 (0-80) 5 (0-53) 0.0120 

SJC 1 (0-25) 0 (0-11) <0.0001 1 (0-25) 0 (0-11) 0.0023 

TJC 6 (0-22) 2 (0-28) 0.0006 5 (0-22) 3 (0-28) 0.0149 

DAS28 4.59 (1.26-

8.46) 

3.44 (0.71-

6.99) 

<0.0001 4.31 (1.26-

8.46) 

3.56 (0.16-

5.67) 

<0.0001 

 Table 3.1 Demographics for gene expression analyses based on baseline diagnosis for 

RA and non-RA samples 

The analysis was initially carried out for ‘all samples’ (n=190) which refers to samples 

analysed without knowledge of the CD19
+
 B cell purity of all the samples used. The 

analysis was repeated using the samples where the CD19
+
 B cell purity was known to be 

≥90.0% (n=140). In each analysis, the rheumatoid arthritis (RA) samples were compared 

to the non-RA samples. Median (range) shown. P-values were calculated using the 

unpaired T test (age), Mann-Whitney test (CRP, ESR, SJC, TJC, DAS28), or Fisher’s 

exact test (gender). 

 

A third analysis included the UA cohort and samples were divided into RA and non-RA 

based on the current diagnosis from clinic letters. The samples which continued to be 

labelled as UA were excluded from this analysis. The RA group is older, with higher 

levels of inflammation (measured by inflammatory markers ESR and CRP), and a greater 

number of swollen and tender joints than the disease control group (table 3.2). 
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 Samples based on current diagnosis 

 RA Non-RA P-value 

Sample 

Number  

73 159 - 

Age (yrs) 60 (21-89) 52 (18-92) <0.0001 

Gender 

(%F)  

75.3 74.2 ns 

ESR 

(mm/hr) 

23 (1-91) 11 (1-111) 0.0008 

CRP 

(mg/L) 

10 (0-91) 5 (0-171) 0.0004 

SJC  2 (0-25) 0 (0-12) <0.0001 

TJC  5 (0-22) 3 (0-28) 0.0009 

DAS28  4.40 (1.26-8.46) 3.45 (0.16-6.99) <0.0001 

Table 3.2 Demographics for gene expression analyses based on current diagnosis for 

RA and non-RA samples 

The undifferentiated arthritis cohort was combined with the original sample group and 

samples divided into RA and non-RA groups based on the current diagnosis. Median 

(range) shown. P-values were calculated using the unpaired T test (age), Mann-Whitney 

test (CRP, ESR, SJC, TJC, DAS28), or Fisher’s exact test (gender). 

 

At the first consultant visit, the baseline visit, patients are allocated 1 of 12 clinical 

diagnoses, including RA and UA (see Appendix A.1). The term ‘non-RA’ combines the 

remaining diagnoses: osteoarthritis, other non-inflammatory conditions, psoriatic arthritis, 

crystal arthritis, reactive arthritis, ankylosing spondyloarthritis, undifferentiated 

spondyloarthritis, enteropathic arthritis, Lupus/other CTD related condition or other 

inflammatory arthritis. The number of samples for each diagnosis within the non-RA 

group is shown in table 3.3. The 10 diagnoses can also be broadly grouped into other 

inflammatory and non-inflammatory conditions, the non-inflammatory category includes 

those with osteoarthritis and other non-inflammatory conditions (shown in blue in table 

3.3) and the remainder are inflammatory conditions.  

 

The demographic data for the ‘other inflammatory’ and ‘non-inflammatory’ samples 

provides information on the composition of the non-RA group (table 3.4).  
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Diagnosis All samples CD19
+
 Purity ≥90.0% 

Other non-inflammatory 

condition 

39 34 

Osteoarthritis 33 27 

Psoriatic arthritis 20 14 

Other inflammatory arthritis 12 7 

Crystal arthritis 9 7 

Reactive arthritis 9 4 

Lupus/other CTD related 

condition 

3 3 

Undifferentiated 

spondyloarthritis 

3 2 

Ankylosing spondylitis 2 2 

Enteropathic arthritis 1 1 

Table 3.3 Diagnoses for samples within the non-RA group 

Number of samples for each diagnosis within the non-RA group. Diagnoses categorised 

as non-inflammatory conditions shown in blue, inflammatory conditions in black. 

 

 

 All samples CD19
+
 Purity ≥90.0% 

 Other 

inflammatory 

Non 

Inflammatory 

P-value Other 

inflammatory 

Non 

Inflammatory 

P-value 

Sample 

Number  

59 72 - 40 61 - 

Age 

(yrs) 

51 (18-92) 52 (22-87) ns 50 (18-92) 51 (22-72) ns 

Gender 

(%F)  

64.4 79.2 ns 60.0 77.1 ns 

ESR 

(mm/hr) 

15.5 (1-111) 7 (1-100) 0.0201 11 (1-66) 7 (1-100) ns 

CRP 

(mg/L) 

7 (0-171) 5 (0-49) 0.0166 5 (0-53) 5 (0-49) ns 

SJC  0 (0-9) 0 (0-11) <0.0001 2 (0-9) 0 (0-11) <0.0001 

TJC  3 (0-28) 2 (0-19) ns 2 (0-19) 3 (-28) ns 

DAS28  3.78 (0.71-

6.99) 

3.03 (0-

5.46) 

0.0156 3.44 (0.90-

5.67) 

3.31 (0.16-

5.46) 

ns 

Table 3.4 Demographics for samples with other inflammatory and non-inflammatory 

diagnoses within the non-RA group 

Median (range) shown. P-values were calculated using the unpaired T test (age), Mann-

Whitney test (CRP, ESR, SJC, TJC, DAS28), or Fisher’s exact test (gender). 

 

The RA group used in the first analysis using all samples based on baseline diagnosis, 

comprised 13 patients (22.0%) who were seronegative and the remainder (46 patients) 
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were seropositive for rheumatoid factor (RF) and/or anti-cyclic citrullinated protein (anti-

CCP).  

 

The demographic data for the UA group at baseline visit are shown in table 3.5a and the 

current diagnoses made for patients within this group in table 3.5b. 14 of the 50 UA 

patients have been subsequently been diagnosed with RA, 6 of whom were seropositive. 

 

 

       

a)        b) 

Table 3.5 Demographics and current diagnoses for undifferentiated arthritis group 

 a) demographic data for the undifferentiated arthritis (UA) group (n=50). Median 

(range) shown. b) current diagnoses for patients within the initial UA group. CTD, 

connective tissue disease. 

 

3.3.3 CD19
+
 B cell quality 

The normal range for B cells in peripheral blood is 1-10%. In samples where greater than 

1.2 x10
6
 CD19

+ 
B cells were isolated then 0.2 x10

6 
cells were removed to check the purity 

of the isolate by flow cytometry (see Methods 2.2.4). Purity checks were carried out for 

187 of the 240 samples used in this analysis.  

 

There were no significant differences in the CD19
+ 

B cell purity between the diagnostic 

groups. This was true when comparing the RA group to the non-RA group as a whole (as 

 Undifferentiated 

Arthritis 

Sample 

Number  
50 

Age 

(yrs) 
53.5 (20-83) 

Gender 

(%F)  
78 

ESR 

(mm/hr) 
14 (1-99) 

CRP 

(mg/L) 
8.5 (0-76) 

SJC  0 (0-15) 

TJC  3 (0-22) 

DAS28  3.76 (0.97-6.54) 

Working Diagnosis  Number of 

patients 

Rheumatoid Arthritis 14 

Other non-inflammatory 

condition 
5 

Osteoarthritis 5 

Psoriatic arthritis 3 

Other inflammatory arthritis 1 

Crystal arthritis 0 

Reactive arthritis 12 

Lupus/other CTD related 

condition 
1 

Undifferentiated 

spondyloarthritis 
0 

Ankylosing spondylitis 1 

Enteropathic arthritis 0 

Undifferentiated arthritis 8 
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used in the initial gene expression analysis) and when the non-RA group was subdivided 

into inflammatory, non-inflammatory and undifferentiated arthritis groups (figure 3.1a). 

The median cell purity for all samples was 95.1% (range 81.3 - 98.8%). There were no 

significant differences in the number of CD19
+ 

B cells isolated for each group (figure 

3.1b) 

 

Figure 3.1 CD19
+ 

B cell purity and total CD19
+
 B cell counts for samples from patients 

in the early arthritis cohort 

a) CD19
+
cell purity, RA (n=43), other inflammatory (n=44), non-inflammatory (n=62), 

undifferentiated arthritis (n=36) b) CD19
+
cell count RA (n=59), other inflammatory 

(n=59), non-inflammatory (n=72), undifferentiated arthritis (n=50). Diagnostic 

categories based on baseline diagnosis. No significant differences were detected between 

the groups. Kruskal Wallis test. 

 

3.3.4 Differential gene expression between RA patients and non-RA patients 

I hypothesised that, in a cohort of DMARD-naive patients presenting to an early arthritis 

clinic, DEGs could be identified between the CD19
+
 B cell transcriptome of patients with 

RA and those diagnosed other forms of arthritis. The patients who were labelled with UA 

at initial presentation were omitted from this analysis, with the intention of using this 

group to validate DEGs. 

 

59 RA samples were compared to 131 non-RA samples. I first compared the profiles with 

a multiple test correction in place (Benjamini-Hochberg, FDR adjusted p-value <0.05) 

looking for a fold change of ≥1.2. No differentially expressed genes were identified and I 
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repeated the analysis after removing the multiple test correction and this revealed 279 

differentially expressed probes between the two groups, representing 261 unique genes 

(figure 3.2a) (see Appendix A.2 for full list of DEGs) 

 

The RA group were significantly older with higher levels of inflammation and so age, 

ESR and CRP were then added as covariates to the linear model. There were no DEGs 

with multiple test correction in place but once removed, 104 probes were identified at a 

FC ≥1.2 and p-value <0.05, representing 94 unique genes (figure 3.2b) (see Appendix A.3 

for full list of DEGs) 

 

There was an overlap of 90 genes between the two lists of DEGs between RA and non-

RA samples with and without the inclusion of clinical covariates (figure 3.2c). 4 genes 

were unique to the list generated with clinical covariates included: DSTYK, MFGE2, 

CCR9 and MAL. 
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a)       b) 

 

c) 

Figure 3.2 Differentially expressed genes identified between the CD19
+
 B cell 

transcriptome of RA and non-RA samples 

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. Samples 

from DMARD-naive RA patients (n=59) and non-RA patients (n=131) were compared. a) 

Volcano plot of RA against non-RA samples, 279 differentially expressed probes were 

identified (no multiple test correction in place). b) Volcano plot of RA against non-RA 

samples with covariates age, ESR and CRP added to the linear model, 104 differentially 

expressed probes were identified (no multiple test correction in place). Vertical, dotted 

lines denote fold change (FC) 1.2. The x axis represents log2 of the fold change, y axis 

represents the –log10 adjusted p-value. Horizontal, dotted lines denote p-value 0.05. Red 

dots indicate probes which are differentially expressed between the comparator groups. 

c) Venn diagram of the unique differentially expressed genes (DEGs) identified 

comparing RA and non-RA samples with (261 unique DEGs) and without covariates 

added (94 unique DEGs). There is an overlap of 90 DEGs between the two lists of DEGs. 

 

RA versus non-RA 

RA versus non-RA with   
covariates added  
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3.3.5 Ingenuity pathway analysis – choice of analysis  

Differentially expressed genes were analysed using the web-based functional analysis 

program ingenuity pathway analysis (IPA) to identify canonical pathways, upstream 

regulators and molecular networks within the DEG list. The aim of IPA is to carry out a 

functional analysis of the dataset and to explore the biological relevance of the DEGs. 

IPA uses the Ingenuity Knowledge Base for its analysis, a manually curated and 

maintained repository of relevant biological and chemical data based on the literature.  

 

There are 2 primary statistical tests used in the core IPA analysis: the p-value of overlap 

and the Z score. The Z score makes a prediction as to the activation status of a pathway. 

A Z score of ≤-2 predicts inhibition and ≥2 activation. If there is insufficient information 

in the literature curated database then a Z score is not provided. The molecular network 

analysis does not use directional data. 

 

The supporting information provided by IPA advises that the gene list used should be 

between 200 and 700 genes long for an optimal analysis. Two lists of DEGs were 

generated from the comparison between RA and non-RA samples: 279 DEGs identified 

without clinical covariates and 104 DEGs with clinical covariates added to the model.  

 

The list of DEGs generated with clinical covariates potentially allows a focus on the RA 

associated genes alone; without the confounders of genes associated with age and 

inflammation. However, when this shorter list of 104 DEGs was put through the IPA 

software, no canonical pathways, upstream regulators or molecular networks were 

identified within the DEG list which met the filtering criteria (p <0.05 or Z score ≤-2 or 

≥+2). Therefore, in light of this and the IPA supporting information, I focussed on the 

DEGs from the RA versus non-RA comparison without a consideration of clinical 

covariates for further analysis and exploratory purposes. 

 

3.3.6 Ingenuity pathway analysis results 

 

Canonical pathways 

The canonical pathways analysis generated a total of 256 pathways. 165 of the pathways 

identified had just 1 or 2 molecules from the list of DEGs for each pathway. In order to 
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prioritise the pathways identified by the IPA software, I applied filtering criteria of ≥ 5 

molecules from the DEG list found in the pathway, a Z-score of ≤ -2 or ≥ +2 and p-value 

<0.05. The 6 pathways that met the filtering criteria are all down regulated in the RA 

group (table 3.6). 

 

There is a noticeable overlap in the molecules listed for each of the 5 pathways, for 

example CD79A and CD79B, transmembrane proteins which form a complex with the 

BCR and mediate signalling on antigen detection, are found in 4 of the 6 pathways. 

 

Canonical 

Pathway 
-log (p-value) z-score Genes 

Phospholipase 

C Signaling 
1.66 -2.449 

HDAC9, FYN, 

CD79B, GNG2, 

RALB, PRKCE, 

CD79A 

EIF2 

Signaling 
1.36 -2.449 

RPL32, WARS, 

RPL8, ATF5, IRS2, 

RPLP0 

p70S6K 

Signaling 
1.73 -2.236 

JAK1, CD79B, 

PRKCE, CD79A, 

IRS2 

Tec Kinase 

Signaling 
1.33 -2 

FYN, JAK1, GNG2, 

PRKCE, IRS2 

Role of NFAT 

in Regulation 

of the Immune 

Response 

1.19 -2 

FYN, CD79B, 

GNG2, CD79A, 

IRS2 

B Cell 

Receptor 

Signaling 

1.15 -2 

PTPRC, CD79B, 

BCL10, CD79A, 

IRS2 

Table 3.6 Canonical pathways identified from the list of differentially expressed genes 

between RA samples and non-RA samples   

IPA software was used to analyse the list of DEGs identified by comparing the CD19
+ 

B 

cell transcriptome from RA patients (n=59) to non-RA patients (n=131) without clinical 

variables added. The pathways shown have a minimum of 5 molecules from the pathway 

identified in the list of DEGs. Z score ≤ -2 or ≥ +2, p-val <0.05.  

 

BCR signalling is downregulated in the RA group and the phospholipase C (PLC) 

signalling, p70S6K signalling and NFAT pathways operate downstream of BCR 

signalling. Phospholipase C signalling is one of the principal BCR activation pathways 

and the subsequent increase in intracellular calcium upregulates the transcription factor 

NFAT. p70S6K signalling is downstream of another principal pathway downstream of 
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the BCR, PI3K signalling. The pathway “PI3K signalling in B lymphocytes” was 

identified in the canonical pathway analysis with 7 molecules within the dataset (PTPRC, 

FYN, CD79B, ATF5, BCL10, CD79A, IRS2), but the pathway did not meet the Z score 

threshold selected (Z score -1.633). TEC kinase signalling refers to a family of non 

receptor tyrosine kinases, of which Bruton’s tyrosine kinase is the best investigated in B 

cells and is a key component of the BCR signalling pathway.  

 

Eukaryotic initiation factor 2 (EIF2) signalling is downregulated in response to the 

unfolded protein response (UPR), a process that is upregulated in antibody producing B 

cells.  

 

Upstream regulators 

A separate analysis stream in IPA identifies upstream regulators; cytokines, transcription 

factors or other molecules that explain the observed changes in gene expression in the 

dataset. The IPA software predicts if the regulator is activated or inhibited.  

 

The overlap p‐value measures whether there is a statistically significant overlap between 

the dataset genes and the genes known to be regulated by an upstream regulator, using 

Fisher’s Exact Test, and significance is generally attributed to p‐values < 0.01. 14 

upstream regulators were identified, 4 predicted to be inhibited and 10 activated from the 

DEG list for RA versus non-RA samples (table 3.7). 

The upstream regulator analysis can also be displayed as a network to allow an 

exploration of the relationship between the regulator and the relevant molecules in the 

dataset (figure 3.3). 

 

IFNL1, a type III interferon, and IFNA2, a type I interferon, are identified as inhibited 

upstream regulators. Each has 5 molecules linked to it from the dataset, but 4 overlap, 

highlighting the importance of context when interpreting the results. The network display 

shows that the interactions of IFNL1 and IFNA2 with the molecules they are connected to 

are indirect (figure 3.3a). 

 

The upstream regulators predicted to be activated include the cytokine pathways for GM-

CSF, IL-5 and IL-6. CD38, a B cell surface protein with ADP-ribosyl cyclase activity, 
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used as a marker for B cell subsets, including transitional B cells is identified as activated. 

In Chapter 6 the frequency of the transitional B cell subset, CD19
+
CD24

hi
 CD38

hi 
B cells, 

is indeed elevated in the RA group. The majority of connections between regulators and 

molecules can be seen to be indirect, with the exception of ESR1 and ATF4 (figure 3.3).
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Upstream

regulator 

Molecule 

type 
Name z-score p-value  Target molecules in the dataset 

IFNL1 cytokine Interferon lambda-1 -2.236 0.000734 IFI44, IFI44L, TRIM22, UBE2L6, ZC3HAV1 

BNIP3L other 
BCL2 interacting 

protein 3 like 
-2 0.00415 CCNA2, CD79B, IL16, KIF11 

E2F6 
transcription 

regulator 

E2F transcription 

factor 6 
-2 0.00058 CDC45, E2F2, GINS2, GMNN, PCLAF 

IFNA2 cytokine Interferon alpha 2 -2.207 0.00384 BIRC5, IFI44, IFI44L, UBE2L6, ZC3HAV1 

E2f 
transcription 

factor 
E2f family  2 0.0000194 CAV1, CCNA2, CDC45, E2F2, GINS2, GMNN, NUSAP1 

IL5 cytokine IL-5 2.353 0.000292 CRELD2, HMMR, KIAA1147, NFE2, PRDM1, PYCR1 

TFRC transporter 
Transferrin receptor 

1 
2 0.00044 ATF5, CASP3, CCNA2, CDKN1A, PHGDH, UBE2E1 

NQO1 enzyme 
NAD(P)H quinone 

dehydrogenase 1 
2.169 0.0000639 BIRC5, CDKN1A, CXCR4, PTGS2, TP63 

CSF2 cytokine GMCSF 2.1 0.00749 BIRC5, CCNA2, CD74, CDKN1A, KIF11, NFE2, NUSAP1 

CD38 enzyme CD38 2.01 0.0000115 CRELD2, HMMR, KIAA1147, LGALS3, PRDM1, PYCR1 

ERN1 enzyme 
inositol-requiring 

enzyme 1 
2.401 0.00245 ANG, DNAJC3, FKBP11, SDF2L1, WARS, WFS1 

ATF4 
transcription 

regulator 

activating 

transcription factor 4 
2.18 0.0000004 ATF5, CDKN1A, FUT7, FYN, LGALS3, PHGDH 

IL6 cytokine IL-6 2.451 0.000442 BIRC5, BMP6, CD74, CDKN1A, E2F2, LDLR, PROK2 

ESR1 
nuclear 

receptor 
Estrogen receptor 1 2.486 0.0000037 ABLIM1, AQP9, ASPM, BIRC5, CAV1, CC 

Table 3.7 Upstream regulators for the differentially expressed genes between RA and non-RA samples  

IPA software was used to identify upstream regulators for the list of DEGs identified by comparing RA patients (n=59) to non-RA patients 

(n=131) without clinical variables added. Z score ≤ -2 predicts an inhibited state (shown in blue); ≥ 2 predicts an activated state for the 

regulator.
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a) 
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b) 

Figure 3.3 Network display of upstream regulators for the differentially expressed 

genes between RA and non-RA samples 

 IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from RA patients (n=59) to non-

RA patients (n=131) without clinical variables added. a) inhibited upstream regulators; 

b) activated upstream regulators. Upstream regulators are displayed centrally with lines 

connecting each to the molecules in the dataset which they are predicted to effect. Dashed 

lines represent indirect interactions and solid lines, direct interactions. 

 

The E2F transcription factors appear twice in table 3.7 with contrasting activation states 

predicted. The E2F family consists of activators (E2F1, E2F2, E2F3a) and repressors 

(E2F3b to E2F8) of the cell cycle. The repressor E2F6 is predicted to be an inhibited 

upstream regulator of this dataset, while the activator E2F2 is upregulated. E2F2 is shown 
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in figure 3.3b connected to the activated upstream regulator E2f, the family of 

transcription factors rather than a specific member of it. This highlights the complexity of 

the regulators required for cellular homeostasis.  

 

Molecular networks 

In addition to the analyses above, the IPA software identifies molecular networks within 

the list of DEGs. The networks are assembled based on the connections between 

molecules apparent from the Ingenuity Knowledge Base. The presumption is that highly 

interconnected networks are more likely to represent a meaningful biological function. 

From the list of DEGs, the molecules which interact with each other, and those in the IPA 

knowledge base, are termed Network Eligible and act as the “seeds” for network 

generation. Molecules from the Ingenuity Knowledge Base may be added to fill or join 

areas lacking connectivity. The networks are annotated with functional categories.  

 

The top 2 networks assembled from the list of DEGs generated from the comparison 

between RA and non-RA samples are shown in figures 3.4 and 3.5. The diseases and 

functions associated with network 1 were cellular development, cellular growth and 

proliferation, haematological system development and function. Network 2 is related to 

cell-to-cell signalling and interaction, skeletal and muscular system development and 

function and the cell cycle. 

 

In network 1 it is notable that the connections are dense around the BCR complex and 

molecules downstream of this, including the ERK1/2 complex, which has been added 

from the Ingenuity Knowledge Base (figure 3.4). 

 

Network 2 relates to cell to cell signalling and the cell cycle and the most dense 

connections surround the NF-kB complex which was not present in the dataset (figure 

3.5). In the canonical pathway analysis the pathway termed ‘NF-kB signalling’ was 

downregulated but did not reach the Z score threshold set (Z score -1.342); the molecules 

from the DEG list in this pathway were BCL10, PELI1, IRS2, TRAF5 and TNFRSF17. 
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Figure 3.4 Molecular network 1 with functions related to cellular development, cellular 

growth and proliferation, haematological system development and function 

Analysis using IPA software to identify molecular networks from the list of DEGs from 

the comparison of RA (n=59) to non-RA (n=131) samples. The IPA software assembled a 

network of 34 molecules in network 1, 21 of which were identified in the DEG list. 

Molecules not coloured are from the Ingenuity Knowledge Base and not present in the 

dataset. The shape of the gene represents the functional class of the gene product (see 

key). 
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Figure 3.5 Molecular network 2 with functions related to cell-to-cell signalling and 

interaction, skeletal and muscular system development and function, cell cycle 

Analysis using IPA software to identify molecular networks from the list of DEGs from 

the comparison of RA (n=59) to non-RA (n=131) samples. The IPA software assembled a 

network of 35 molecules, 22 of which were identified in the list of DEGs. Molecules not 

coloured are from the Ingenuity Knowledge Base and not present in the dataset. The 

shape of the gene represents the functional class of the gene product (see key). 

 

 

 



 82 

3.3.7 Differential gene expression between RA patients and non-RA patients using 

samples of known CD19
+
 cell purity ≥90% 

The analysis described in section 3.3.4 did not identify any differentially expressed 

probes which stood up to multiple test correction. I considered different methods for 

optimising the analysis. The first analysis, using all samples, had the benefit of 

maximising the number of samples available but the extent of contamination with other 

cells was unknown for the 50 samples where CD19
+
 B cell purity was not examined. 

  

The available data on cell purity does not demonstrate a difference in the proportion of 

contaminating cells between the sample groups (figure 3.1) and the proportion of 

contaminating cells may, indeed, not differ in the samples where the cell purity was not 

measured. However, contamination with other cell subsets may be a potential source of 

noise in the data and a potential explanation for the absence of a robust signal. I chose to 

repeat the analysis using only samples with a known CD19
+
 B cell purity of ≥ 90%. The 

analysis was carried out using the same methods and analysis procedures. 

 

The RA group (n=39) were compared to the non-RA group (n=101) and no DEGs were 

identified with the multiple test correction in place at FC ≥1.2. The multiple test 

correction was removed and 93 probes, representing 79 unique genes, were identified 

with a FC ≥1.2 (pval <0.05) (figure 3.6a). The analysis was repeated with the clinical 

covariates (age, CRP and ESR) added to the linear model and 68 probes, representing 58 

unique genes, were identified as differentially expressed (figure 3.6b). There was an 

overlap of 49 genes between the two lists of DEGs. 
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a)                                b)    

Figure 3.6 Differentially expressed genes identified between the CD19
+
 B cell 

transcriptome of RA and non RA samples with known CD19
+
B cell 

 
purity ≥90%  

CD19
+
 B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. Samples 

from DMARD-naive RA patients (n=39) and non-RA patients (n=101) were compared. a) 

Volcano plot of RA against non-RA samples, 93 differentially expressed probes were 

identified (no multiple test correction in place). b) Volcano plot of RA against non-RA 

samples with covariates age, ESR and CRP added to the linear model, 68 differentially 

expressed probes were identified (no multiple test correction in place). Vertical, dotted 

lines denote FC 1.2. The x axis represents log2 of the fold change, y axis represents the –

log10 adjusted p-value. Horizontal, dotted lines denote p-value 0.05. Red dots indicate 

probes which are differentially expressed between the comparator groups.  

 

Ingenuity pathway analysis 

The list of DEGs from RA versus non-RA samples without clinical covariates added to 

the linear model was analysed using IPA software. The canonical pathway analysis was 

uninformative, identifying 127 pathways none of which met the filtering criteria applied 

in the previous analysis described; 97 of these pathways listed just 1 molecule from the 

list of DEGs used and none of the remainder reached a Z score of ≤ -2 or ≥ +2. This may 

reflect the difficulties which arise when the length of the list of DEGs used is shorter than 

that recommend by the IPA supporting information. 

The upstream regulator analysis identified two regulators with a predicted upregulated 

state: IL-4 (Z score +2.156, p-value 0.00122) and IL-6 (Z score +2.19, p-value 0.00538). 

In combination, IL-4 and IL-6 have connections to 12 molecules in the list of DEGs, the 
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interactions are indirect. The cytokines lead to activation of the downstream molecules, 

except in the case of the effects of IL-4 on FUT7 and HIPK2 where the program is unable 

to predict the expected direction of change; the molecules are upregulated in the dataset 

(figure 3.7).  

 

 
 

Figure 3.7 Network display of activated upstream regulators for the differentially 

expressed genes between RA and non RA samples with known CD19
+
B cell 

 
purity 

≥90% 

IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from RA patients (n=39) to non-

RA patients (n=101) without clinical variables added. Upstream regulators are displayed 

centrally with lines connecting each to the molecules in the dataset which they are 

predicted to effect. * indicates that multiple identifiers were found in the dataset to map 

to single gene. There were 3 probes for PRDM1, 2 for WARS and 2 for HIPK2 in the 

dataset.    

 

Of the 12 molecules shown here, 10 of these were present in the list of DEGs generated 

from the linear model with clinical covariates added (E2F2 and SLAMF7 were not present 

in the list with clinical covariates added). The 12 downstream molecules connected to IL4 

and IL6 are shown in more detail in table 3.8. PRDM1 encodes the transcriptional 

repressor, BLIMP1 which is important for plasma cell differentiation.
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Gene Gene name Function 

ACTA2 smooth muscle alpha (α)-2 

actin 

 

Actins are highly conserved proteins involved in cell motility, structure and intercellular signalling. 

Described as a smooth muscle actin. Expressed in lymph nodes. 

CD86 CD86 Expressed on antigen presenting cells, ligand for CD28 and CTLA4 on T cells. 

FUT7 fucosyltransferase 7 

 

Golgi membrane protein involved in the synthesis of sialyl-Lewis X antigens which can bind 

selectins. 

HIPK2 Homeodomain-interacting 

protein kinase 2 

 

Serine/threonine nuclear kinase interacts with transcription factors such as p53. Can function as a 

corepressor or coactivator depending on the context.  

LGALS3 Galectin-3 

 

Member of a family of carbohydrate binding proteins, localises to the extracellular matrix, the 

cytoplasm and the nucleus, plays a role in numerous cellular functions including apoptosis, innate 

immunity, cell adhesion and T-cell regulation. 

 

PRDM1 PR/SET domain 1 Protein also known as BLIMP-1, transcriptional repressor 

SLAMF7 Signaling Lymphocyte 

Activation Molecule 

family member 7  

Also known as CD319  

E2F2 E2F transcription factor 2 

 

Transcription factor, part of the E2F family which are involved in the control of cell cycle and 

action of tumour suppressor proteins 

LDLR Low density lipoprotein 

receptor 

Cell surface protein involved in receptor-mediated endocytosis of specific ligands. Low density 

lipoprotein (LDL) is normally bound at the cell membrane and taken into the cell ending up in 

lysosomes where the protein is degraded and the cholesterol is made available to repress HMG CoA 

reductase the rate limiting step in cholesterol synthesis 

PROK2 Prokineticin 2 

 

Expressed in the uprachiasmatic nucleus (SCN) circadian clock. Biased expression in the bone 

marrow. 
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TBXAS1 thromboxane A synthase 1 
 

Encodes a member of the cytochrome P450 enzyme family, on the basis of sequence similarity 

rather than functional similarity. This ER membrane protein catalyzes the conversion of 

prostglandin H2 to thromboxane A2 

  

 

WARS Tryptophanyl-tRNA 

synthetase 

 

Tryptophanyl-tRNA synthetase (WARS) catalyzes the aminoacylation of tRNA(trp) with 

tryptophan and is induced by interferon. Tryptophanyl-tRNA synthetase belongs to the class I tRNA 

synthetase family.  

 

Table 3.8 Gene names and function of the molecules with connections with the upstream regulators IL-4 and IL-6 

 Data from the NCBI Gene database[173]. 
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3.3.8 A comparison of the DEGs from both analyses 

 

The first analysis described in section 3.3.4, using all samples, has the benefit of 50 extra 

samples but the extent of contamination with other cells is unknown. The first analysis 

(section 3.3.4) has the advantage of an increased sample size but the second analysis 

(section 3.3.7), with known purity, may reduce the interference of gene expression from 

other cell types. To combine the advantages of sample size and sample quality I identified 

a list of 52 individual genes which were present in the DEG lists from the two separate 

analyses. 

 

The IPA software analysis was repeated using this list of 52 genes; the upstream regulator 

analysis identified IL-6 as an activated regulator of the dataset with an indirect effect on 

LDLR, E2F2, PROK2, TBZAS1 and WARS (Z score 2.19, p-value 0.000843) (figure 3.8). 

Interferon gamma was the next potential upstream regulator identified; however, it did 

not reach the Z-score filtering criteria (Z score -1.915, p-value 0.0017). This pathway was 

inhibited affecting the genes: AQP9, CAV1, IFI44, KCNMA1, NCALD, PRDM1, TBXAS1. 

There were no significant canonical pathways or molecular networks identified by the 

IPA software. 
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Figure 3.8 Network display for the activated upstream regulator IL-6 

IPA software was used to predict upstream regulators for the shared list of DEGs found 

in both the comparisons of the CD19
+ 

B cell transcriptome from RA patients to non-RA 

patients  using i) all samples and ii) samples with known CD19
+ 

B cell purity ≥ 90%. IL-6 

was the sole upstream regulator identified. IL-6 is shown centrally with lines connecting 

to each of the molecules in the dataset which it is predicted to effect. * indicates that 

multiple identifiers were found in the dataset to map to single gene.  

 

3.3.9 Validation using top 25% of probes from comparison of RA against non-RA 

with clinical variables included. 

 

I originally hypothesised that examining the differences between the CD19
+ 

B cell 

transcriptome from patients presenting with RA and a disease control group would reveal 

potential diagnostic biomarkers and these biomarkers could be used to identify patients 

with RA within an undifferentiated arthritis (UA) group. DEGs identified were to be 

validated in the UA cohort. However, no DEGs were identified with multiple test 

correction in place, limiting this approach. 

 

I took the top 25% of DEGs, 26 probes, from the comparison of RA  versus non-RA 

samples (with clinical covariates included in the linear model) and looked for differences 

in the expression of the 26 probes in the UA cohort who, over time, acquired a definitive 

diagnosis of RA versus another type of arthritis. There were 14 samples in the RA group 

and 28 samples in the non RA group for this “validation” cohort. In the non-RA group 10 
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had osteoarthritis or other non-inflammatory conditions and the remainder another type of 

inflammatory arthritis, 12 of which were reactive arthritis.  

 

The same methods were used as for the other expression analyses in this chapter and no 

differences were identified between the two groups in the validation cohort when the 

subset of 26 selected probes were examined.  

 

3.3.10 Differential gene expression between RA patients and non-RA based on current 

working diagnosis 

 

The comparisons described so far in this chapter divided the samples based on the 

baseline diagnosis made at the patient’s first consultant appointment. At baseline, 50 

patients were labelled as having an undifferentiated arthritis. I did not include this group 

in the disease control, non-RA group, for the analyses described as, within this group, 

there were patients who were subsequently diagnosed with RA and I had planned to use 

this UA group as a validation cohort.  

 

However, the analyses based on baseline diagnosis did not reveal clear potential 

biomarkers for the diagnosis of RA. The possible reasons that this was not the case are 

discussed later but one reason may be that sample groups were not large enough to detect 

subtle, meaningful differences which were robust to multiple test correction.  

 

I carried out a third analysis using the most up to date, current diagnosis from clinic 

follow up letters to increase the number of samples. The samples were then divided as 

before into RA and non-RA, increasing the sample sizes to 73 RA and 159 non-RA 

samples. Those who remained without a definitive diagnosis were excluded from the 

analysis. The samples were not restricted based on cell purity in order to further optimise 

group sizes; there were no differences in the cell purity between the RA, non-RA and 

original UA groups (figure 3.1). 

 

No DEGs were identified in this comparison with the multiple test correction in place, 

and when the multiple test correction was removed 213 differentially expressed probes, 

representing 201 unique genes, were identified with a FC ≥1.2 (p-value <0.05) (figure 
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3.9a). 159 of the genes from this list were also identified in the original analysis using 

baseline diagnosis (section 3.3.4).  

 

71 differentially expressed probes were identified when clinical covariates (age, ESR and 

CRP were added to the linear model (figure 3.9b).  

 

    

a)            b) 

  

Figure 3.9 Differentially expressed genes identified between the CD19
+
 B cell 

transcriptome of RA and non-RA samples based on current diagnosis 

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. Samples 

from DMARD-naive RA patients (n=73) and non-RA patients (n=159) were compared. a) 

Volcano plot of RA against non-RA samples, 213 differentially expressed probes were 

identified (no multiple test correction in place). b) Volcano plot of RA against non-RA 

samples with covariates age, ESR and CRP added to the linear model, 71 differentially 

expressed probes were identified (no multiple test correction in place). Vertical, dotted 

lines denote FC 1.2. The x axis represents log2 of the fold change, y axis represents the –

log10 adjusted p-value. Horizontal, dotted lines denote p-value 0.05. Red dots indicate 

probes which are differentially expressed between the comparator groups.  

 

Ingenuity pathway analysis 

The IPA canonical pathway analysis of the list 213 DEGs identified 8 canonical 

pathways, all downregulated in the RA group, which met the filtering criteria (table 3.9). 

The top two pathways in this comparison were leucocyte extravasation signalling and 

integrin signalling. 5 of the 8 canonical pathways were also identified in the IPA analysis 

of the DEG list for the comparison using the diagnoses at baseline (section 3.3.6). In the 
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case of the leucocyte extravasation signalling pathway, this was also identified in the 

analysis using baseline diagnoses, with 6 molecules in the pathway, however the pathway 

did not meet the Z score criteria (Z score -1.633).  

Canonical 

Pathways 

-log(p-value) z-score Genes 

Leukocyte 

Extravasation 

Signaling 

1.93 -2.449 NCF1, CXCR4, CD44, 

ABL1, PRKCE, IRS2 

Integrin 

Signaling 

3.1 -2.236 NCK2, FYN, TSPAN3, MPRIP, 

RALB, ABL1, IRS2, NEDD9 

p70S6K 

Signaling 

2.18 -2.236 JAK1, CD79B, PRKCE, 

CD79A, IRS2 

EIF2 

Signaling 

1.84 -2.236 RPL32, RPL8, EIF4G2, 

ATF5, IRS2, RPLP0 

B Cell 

Receptor 

Signaling 

1.55 -2.236 CD79B, BCL10, ABL1, 

CD79A, IRS2 

Tec Kinase 

Signaling 

1.74 -2 FYN, JAK1, GNG2, 

PRKCE, IRS2 

Ephrin 

Receptor 

Signaling 

1.69 -2 NCK2, FYN, CXCR4, 

GNG2, ABL1 

Role of NFAT 

in Regulation 

of the Immune 

Response 

1.59 -2 FYN, CD79B, GNG2, 

CD79A, IRS2 

PI3K 

Signaling in B 

Lymphocytes 

3.77 -1.633 FYN, CD79B, ATF5, BCL10, 

ABL1, CD79A, IRS2 

Phospholipase 

C Signaling 

2.22 -1.633 FYN, MPRIP, CD79B, GNG2, 

RALB, PRKCE, CD79A 

 

Table 3.9 Canonical pathways identified from the list of differentially expressed genes 

between RA samples and non-RA samples based on current diagnosis 

IPA software was used to analyse the list of DEGs identified by comparing the CD19
+ 

B 

cell transcriptome from RA patients (n=73) to non-RA patients (n=159) without clinical 

variables added. The pathways shown have a minimum of 5 molecules from the pathway 

identified in the list of DEGs, Z score ≤ -2 or ≥ +2, p-val <0.05. In red pathways with Z 

scores which miss the filtering criteria 

 

The three, additional, downregulated canonical pathways which emerge through this 

comparison: leucocyte extravasation signalling, integrin signalling and ephrin receptor 

signalling; relate to cell to cell communication and cell migration. Leucocyte 

extravasation signalling describes the process of leucocyte migration from blood to 
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tissues during inflammation. Integrins are cell surface glycoproteins involved in cell to 

cell and cell to extracellular matrix interactions. These interactions are crucial for the 

structural changes involved in cell migration and signal transduction which can affect cell 

survival, differentiation and proliferation. Ephrin receptors are tyrosine kinases; the 

receptors and their corresponding ephrin ligands are membrane-bound proteins that 

require direct cell-cell interactions for ephrin receptor activation.  

 

BCR signalling is again shown to be downregulated and the two major signalling 

pathways (PLC and PI3K) downstream of the receptor are the next pathways identified by 

IPA but do not meet the Z-score threshold. 

 

IPA software identified 7 upstream regulators for this dataset. It is notable that the 

upstream regulator seen consistently across the analyses is IL-6 (table 3.10). The network 

displays for the upstream regulators demonstrate that the effects of the inhibited upstream 

regulators (PAF1, IFNL1, IFNA2 and EIF2AK) are indirect on their target molecules in 

the dataset (figure 3.10a). The effects of IL-6 are also indirect on its target molecules, 

while the effects of ESR1 are predicted to be direct (figure 3.10b). 
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Upstream 

regulator 

Molecule 

type 

Name z-score p-value Target genes in dataset 

PAF1 other Polymerase associated 

factor 1 

-2 0.00106 IFI44, IFI44L, OAS3, ZC3HAV1 

IFNL1 cytokine Interferon lambda 1 -2.449 0.0000185 IFI44, IFI44L, OAS3, TRIM22, UBE2L6, ZC3HAV1 

IFNA2 cytokine Interferon alpha 2 -2.403 0.000152 IFI44, IFI44L, OAS3, RB1, UBE2L6, ZC3HAV1 

  

EIF2AK2 kinase Interferon-induced, 

dsRNA-activated 

protein kinase 

-2.219 0.000601 IRS2, NEDD9, OAS3, UBE2L6, ZC3HAV1 

IL1RN cytokine IL-1 receptor 

antagonist 

2.433 0.000219 CD44, IFI44, IFI44L, OAS3, PELI1, TRIM22 

IL6 cytokine IL-6 2.158 0.00923 BMP6, CD74, E2F2, LDLR, PROK2, RAB27A, RB1, 

TBXAS1 

ESR1 ligand-

dependent 

nuclear 

receptor 

Estrogen receptor 2.333 0.00136 ABLIM1, AQP9, CCNT2, DISC1, IFI44, IFI44L, 

LDLR, RNF38, S100P, TSC22D3, XK, ZNF24 

Table 3.10 Upstream regulators for the differentially expressed genes between RA and non-RA samples based on up to date diagnosis  

IPA software was used to identify upstream regulators for the list of DEGs identified by comparing the CD19
+ 

B cell transcriptome from RA 

patients (n=73) to non-RA patients (n=159) without clinical variables added. Z score  ≤ -2 predicts an inhibited state (shown in blue) and ≥ +2 

predicts an activated state for the regulator.
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a) 

 
b) 

Figure 3.10 Network display of upstream regulators for the differentially expressed 

genes between RA and non-RA samples based on current diagnosis 

IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from RA patients (n=73) to non-

RA patients (n=159) without clinical variables added. Upstream regulators are displayed 

centrally with lines connecting each to the molecules in the dataset which they are 

predicted to effect. * indicates that multiple identifiers were found in the dataset to map 

to single gene.  
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3.3.11 IL-6 

MSD data were available for a subset of the microarray cohort (data from Dr Amy 

Anderson) and serum IL-6 levels were compared between the 2 sample groups: RA and 

non-RA in the three datasets: all samples (using baseline diagnosis), samples with CD19
+ 

B cell purity ≥ 90% (using baseline diagnosis) and all samples using current diagnosis 

(figure 3.11). This consistently shows that serum IL-6 levels are higher in the RA than 

non-RA group for all three comparisons. 

 

 
Figure 3.11 Log10 IL-6 serum levels by diagnostic group  

a) Samples grouped by baseline diagnosis, RA n=37, non-RA n=70, pval 0.0081 b) 

samples with CD19
+ 

B cell purity ≥ 90% grouped by baseline diagnosis, RA n=20, non-

RA n=48, pval 0.0086 c) Samples grouped by current diagnosis RA n=44, non-RA n=97 

pval 0.0001. Mann Whitney tests. 

 

3.3.12 Gene set enrichment analysis (GSEA) 

 

GSEA interrogates data at the level of sets of genes, grouped based on prior experimental 

knowledge from the literature, rather than looking at individual genes. Cellular processes 

would usually affect a group of molecules, rather than in isolation. The study of gene sets 

  RA                  Non-RA RA                  Non-RA 

RA                  Non-RA 

a) b) 

c) 
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may allow the detection of changes which are subtle but co-ordinated; overcoming the 

challenges of vast microarray data where differences in expression can be modest when 

compared to the background ‘noise’, and interpretation of any list of DEGs can be 

challenging to identify a meaningful unifying, biological explanation for the change 

 

The web-based GSEA from the Broad Institute was used to look for co-ordinated changes 

in gene sets between two user defined phenotypes [160]. The gene sets are divided into 8 

‘collections’ and the Gene Ontology collection of annotated sets was used.  

 

The phenotypes used were RA (n=59) versus non-RA samples (n=131) and the program 

ranked the genes in the data based on the differential expression between the two 

phenotypes. An enrichment score (ES) was first calculated to reflect the degree that any 

gene set being examined was over-represented at the extremes (the top or bottom) of the 

ranked gene list, the statistical significance assessed next by a permutation test and lastly 

adjusted for multiple hypothesis testing. The ES was normalised for each gene set to 

account for the size of the set, providing a normalised enrichment score (NES). An FDR 

cut off was applied to control for the proportion of false positives, the estimated 

probability that an NES represents a false positive finding. 

 

4187 sets from the Gene Ontology collection were tested and 37 pathways were 

differentially expressed between the two groups (FDR <25%). To render a more intuitive 

summary of functional information, pathways were grouped by function (table 3.11). 

 

The relative expression of the 37 gene sets identified is higher in the disease control 

group, non-RA, than in the RA group, hence the negative values for the enrichment 

scores shown. Given that the rheumatological conditions represented in the disease 

control group are not considered to be B cell mediated, these results may indicate 

pathway downregulation in the RA group.  
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Category Gene ontology set ES NES FDR 

DNA repair 
Global genome nucleotide excision repair -0.5607982 -1.6132796 0.23832387 

Nucleotide excision repair DNA duplex unwinding -0.61677194 -1.5758291 0.24963197 

Transcription, 

translation and 

silencing 

DNA directed RNA polymerase II holoenzyme -0.5048356 -1.6432542 0.2334442 

Transcriptional repressor complex -0.55602115 -1.7730718 0.23473078 

dsRNA fragmentation -0.64933866 -1.6547841 0.24210277 

Posttranscriptional gene silencing DNA directed RNA polymerase II 

holoenzyme 
-0.51306003 -1.6551133 0.24704707 

Nucleosome Nucleosome binding -0.5144523 -1.6157382 0.24781571 

Histone 

modification 

Histone methyltransferase complex -0.5257227 -1.613204 0.2348409 

Histone deubiquitination -0.6148687 -1.614706 0.24252507 

Histone methyltransferase activity -0.53560984 -1.6328591 0.24889699 

SIN3 type complex -0.59872967 -1.5815475 0.24807833 

MLL1_2 complex -0.6282426 -1.5775148 0.24864604 

RNA processing 

snRNA binding -0.562579 -1.6486899 0.2403679 

mRNA processing -0.4083914 -1.6045289 0.24474731 

mRNA metabolic process -0.41401324 -1.6226012 0.24723203 

RNA splicing via transestertification reactions -0.3926336 -1.5797857 0.24923289 

Post translational 

modifications 

Acetyltransferase complex CUL3 rung ubiquitin ligase complex -0.6357071 -1.9409733 0.22092754 

Lysine N-methyltransferase activity -0.5501833 -1.6126041 0.23269609 
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CUL3 ring ubiquitin ligase complex -0.5345131 -1.644695 0.2347206 

Cullin ring ubiquitin ligase complex -0.43626913 -1.6089464 0.23777463 

Peptidyl lysine trimethylation -0.6279962 -1.6467234 0.24000877 

N-methyltransferase activity -0.4840115 -1.6258838 0.24353907 

Transferase complex transferring phosphorus containing groups -0.45952913 -1.6154255 0.24463683 

Deacetylase activity -0.5190539 -1.6170225 0.24895547 

Peptide N acetyltransferase activity -0.522617 -1.594338 0.24906248 

Negative regulation of dephosphorylation -0.4655819 -1.5970217 0.24921104 

Protein acylation -0.45356375 -1.6290699 0.24925643 

Protein/lipid 

processing 

Bloc complex -0.614468 -1.6040541 0.24233998 

Golgi organisation -0.47892088 -1.5749071 0.24921449 

Cytoskeleton 
Microtubule nucleation -0.69583064 -1.6451253 0.23860565 

Lamellipodium organisation -0.5539983 -1.6530507 0.24102226 

Cell signalling 

Inositol phosphate mediated signalling -0.5248304 -1.6280522 0.24268949 

Protein kinase A regulatory subunit binding -0.59867424 -1.5967791 0.24643724 

Phosphatidylinositol 3 kinase signalling -0.6323521 -1.6199005 0.24984726 

Growth factor 

response 

PDGF signalling pathway -0.54785293 -1.6505347 0.24134766 

Response to nerve growth factor -0.46626347 -1.6287607 0.24545705 

B cell 

differentiation 
B cell differentiation pathway -0.44574007 -1.6144383 0.2393389 

Table 3.11 Gene sets differentially expressed between RA and non-RA samples using Gene set enrichment analysis  
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CD19
+
 B cell gene expression data for RA (n=59) and non RA (n=131) were analysed using the GSEA program from the Broad Institute. 37 

gene sets from the Gene Ontology collection of gene sets were differentially expressed in the RA samples compared to non-RA samples (FDR 

<0.25). The negative values for the enrichment scores shows that the gene sets are upregulated in the non-RA groups, or downregulated in the 

RA group. Gene sets are grouped by cellular function. ES; enrichment score, NES; normalised enrichment score, FDR, false discovery rate. 
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The downregulated pathways in table 3.11 include basic cellular functions, in particular 

the generation and modification of proteins. This suggesting an overall reduction in 

cellular activity. B cell differentiation and signalling pathways downstream of the BCR 

are also downregulated which would be in agreement with the IPA canonical pathway 

analysis described. The B cell differentiation gene set is described in the annotation as 

‘the process in which a precursor cell type acquires the specialised features of a B cell.’ 

This is an interesting finding and downregulation of this pathway in the RA group may 

reflect a change in the B cells of RA patients to promote their differentiation into 

antibody producing cells 

 

No gene sets were significantly enriched at an FDR of <25% using the data solely from 

samples with known CD19
+ 

B cell purity ≥ 90%. 

 

3.4 Discussion 

 

My original hypothesis stated that DEGs would be identified between the RA group and 

those with other forms of arthritis. This was not the case with a multiple test correction in 

place, however, a thorough examination of the data using different comparisons and 

analysis programs has shown themes which emerge from the data: an alteration in BCR 

signalling, changes in B cell differentiation, the role of IL-6 and the potential role for 

pathways related to the oestrogen receptor in B cells in early RA. 

 

IPA, in particular the canonical pathways and molecular network analyses, and GSEA 

concur that BCR signalling and its downstream cell signalling pathways are 

downregulated in the RA group compared to the non-RA group. When interpreting the 

results this assumes that the disease control group exhibits a normal level of gene 

expression for these pathways. Only 3 of 131 non-RA samples used in the first analysis 

had a baseline diagnosis of lupus or CTD associated conditions, diseases which are B cell 

driven. These samples were not excluded as the project was aimed at identifying a 

diagnostic gene signature.  

 

As discussed in Chapter 1, the level of BCR signalling is critical in determining the effect 

on the cell and is crucial to B cell development, proliferation and activation. Sustained 
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BCR signalling is required for cell survival in the periphery through induction of NFB 

and PI3K dependent signalling and an intermediate signal may be optimal for survival. 

The removal of autoreactive B cells relies on a strong BCR signal to promote apoptosis, 

so, in RA, it could be that the BCR signal is constitutively downregulated, and binding of 

the BCR to self-antigens does not lead to the removal of autoreactive cells. The 

downregulation of the signalling pathways may therefore lead to tolerance breakdown 

and the initiation of autoimmune disease, with the sustained presence of autoreactive cells 

in the periphery.  

 

The PTPN22 disease RA risk allele alters BCR signalling. It is believed to be a gain of 

function mutation in humans; an increase in the encoded protein tyrosine phosphatase 

activity impairs B cell signal transduction, as measured by phosphorylation of Syk, 

PLC2 and Akt in response to activation by soluble anti-IgM in heterozygotes and this is 

more marked in homozygotes[126]. A dysregulated, impaired BCR signal may affect B 

cell selection and maturation, resulting in disease initiation and maintenance by allowing 

the survival of autoreactive cells. This would fit with the increase in polyreactive, newly 

emigrant cells from the bone marrow in healthy donors carrying the risk allele and the 

observation that transitional B cells (although the immunophenotypes used differ) are 

increased in the RA group in this cohort (Chapter 6)[127]. Given that not all RA patients 

carry this risk allele there may be different potential routes to downregulation of BCR 

signalling including those related to co-receptors of the BCR. 

 

The GSEA results suggest a downregulation of the fundamental processes of 

transcription, translation and protein modification alongside decreased B cell 

differentiation in the RA group. This raises the possibility that, in early RA, the B cells 

are in an anergic or exhausted state similar to that described in T cells. A discrete, 

exhausted subset of T cells have been identified which are thought to be induced by a 

combination of continuous antigen exposure, inflammatory cytokines and the local 

microenvironment. They represent a distinct lineage expressing altered transcription 

factors and inhibitory receptors, leading to cells with impaired effector functions and a 

limited proliferative potential[174, 175].  
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The relative downregulation of B cell differentiation in the RA group may reflect the 

transition into a terminally differentiated phase to produce antibody secreting cells. This 

requires fundamental changes in gene expression and the silencing of the transcription 

factors which control B cell identity, allowing the focus to shift to the production of large 

amounts of immunoglobulin[44]. This change may also explain the relative change in the 

cellular functions identified by the GSEA analysis. The shift to antibody secreting cells is 

supported by the observations regarding PRDM1, EIF2 signalling and CD38. PRDM1, a 

widely recognized plasma cell related gene is upregulated in the list of DEGs (3 probes 

for the gene are upregulated). The EIF2 signalling pathway was shown to be 

downregulated in the RA group in the IPA analysis, which may be secondary to the 

unfolded protein response (UPR) in antibody producing cells. CD38 was identified as an 

upstream regulator in the RA group and daratumumab (a monoclonal antibody against 

CD38) is currently under investigation as a potential treatment for RA and SLE, acting by 

depleting plasmablasts/plasma cells[176].  

 

The RA peripheral blood CD19
+
 B cells examined here may, therefore, be at different 

stages than those in non-RA as they differentiate towards antibody producing cells. The 

findings, therefore, hint at potential changes in the B cell compartment of RA patients. 

The parallel flow data for the cohort described in Chapter 6 did not, however, identify a 

difference in the proportion of plasmablasts between the groups and plasma cell levels 

were not assessed.  

 

The IPA analysis identified IL-6 as a potential upstream regulator to explain the changes 

seen in gene expression, a cytokine critical to plasma cell differentiation and the humoral 

response. Serum IL-6 was consistently higher in the RA group and the monoclonal 

antibody tocilizumab is an effective treatment for RA. Interestingly, B cell depletion has 

been shown to alleviate central nervous system autoimmunity through ablation of an IL-6 

producing pathogenic subset of B cells, which potentially acts by promoting Th17 

responses in mouse models with experimental autoimmune encephalomyelitis [177]. The 

IL-6 dependent mechanism was independent of antibody production and the subset was 

not required for disease initiation but shown to exacerbate ongoing disease. The IPA 

results in this chapter show an indirect effect of IL-6. We cannot assume that the B cells 

are producing IL-6 themselves, simply that IL-6 is potentially influencing the gene 

expression changes which are seen in the RA group. The pathogenic role of B cells in RA 
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may be, in part, related to cytokine production rather than the traditional focus of humoral 

immunity. One mechanism may be breakdown in tolerance occurring as a defect in an IL-

10 dependent regulatory function of B cells and this change is maintained by an IL-6 

producing B cell subset[52]. 

 

The oestrogen receptor, ESR1, is identified as an activated upstream regulator in the RA 

group in the analyses using both baseline and outcome diagnoses to determine sample 

groups; despite no difference in the gender balance between the groups. The role of 

oestrogens in RA development remains poorly understood particularly in disease 

development but it has been suggested that oestradiol promotes autoimmune disease 

development via an action on B cells, including an increase in the survival of autoreactive 

B cells and, interestingly, RA male patients have higher levels of oestradiol than healthy 

controls[178, 179]. 

 

Type I interferons are an area of particular interest in rheumatic diseases. An interferon 

gene signature (IGS) is a feature of RA development in subset of patients[145]. It initially 

appears counter-intuitive that my data are suggestive of inhibition of this pathway in 

circulating early RA B cells. However, it should be remembered that studies on the type I 

IGS have generally used whole blood or PBMC samples, and a study in patients in SLE 

demonstrated marked differences in IGS expression between individual cell subsets[180]. 

The literature used in the IPA database to identify relevant pathways is likely to be based 

on literature related to mixed cell subsets.  

 

The absence of a robust list of DEGs in this study may be related to technical 

considerations or the heterogeneity of the cell populations, samples, and sample groups 

examined.  

 

The inter-individual variability in the CD19
+
 B cell transcriptome was highlighted in the 

small pilot study I carried out prior to this project. Comparing the CD19
+
 B cell profiles 

of 12 healthy controls and 11 RA patients with established RA, the overall variability in 

gene expression in CD19
+
 B cells, independent of disease state, was notable. There are 

many potential sources of this overall variability including genetic factors, recent 

infections or immunisations, age and sex. I attempted to maximise the opportunity to 



 104 

identify significant changes in the transcriptome by using the current diagnoses of 

patients in the third analysis described, however, a clear DEG list did not emerge. 

 

In this study, I attempted to reduce the issues that arise from the study of mixed cell 

populations; nonetheless, the CD19
+ 

B cell profile analysed is comprised of several 

different B cell subsets including regulatory, memory, and naive cells for example. If one 

particular subset is dysregulated in RA, such as regulatory B cells, then any change in the 

dysregulated subset may be masked by the transcriptional profiles of the other subsets. In 

addition, the relative proportions of immune cell subsets has a heritable component and is 

also strongly influenced by additional non-heritable factors in healthy individuals such as 

age and the environment. For example transitional B cell proportions decrease linearly 

with age, adding increased complexity to the data beyond the contribution of disease[181, 

182]. A further possible explanation for the lack of a diagnostic signal may be that the 

CD19
+
 B cell isolation used did not include plasma cells. Whilst plasma cells are not 

depleted by rituximab, which is an effective treatment for RA, this subset may still 

provide insights into disease pathogenesis. An alternative approach would be to sort 

individual B cell subsets by flow cytometry prior to downstream transcriptomic work; 

this would be reliant on the prior identification of a subset of interest, however, and 

would likely be restricted in terms of cell numbers. 

 

The RA group comprises a heterogeneous population, with differing levels of disease 

activity and autoantibody status. In addition, given that autoantibodies can be identified in 

the serum of patients years before the development of clinical symptoms, examining 

patient samples once symptoms have developed could miss the window during which 

pathogenic changes are present in the CD19
+ 

B cell transcriptome [67]. The 

downregulation of the canonical pathway related to leucocyte extravasation signalling 

and integrin signalling may indicate the migration of B cells critical to pathogenesis to 

sites of inflammation prior to presentation to secondary care[183]. 

 

Beyond the heterogeneity in the patient cohort and B cell subsets there are technical 

considerations which may have affected the outcome of this study. The number of 

patients recruited inevitably meant that the samples were processed in separate batches 

for different stages of the experiment. Examination of the data demonstrated a batch 

effect related to conversion of RNA to cDNA and the generation of biotin-labelled cRNA 
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(Methods 2.5.2), which was carried out in 3 batches. The ‘batch effect’ was incorporated 

into the linear model for analysis and is a common issue for experiments on this scale 

which is difficult to overcome outside large facilities. The second major technical 

consideration is cell contamination, the data for which are not available for 50 samples. 

The cell purity in these cases was not measured to maximize the number of cells available 

for analysis.  

 

This dataset of 240 CD19
+
 B cell transcriptomes represents a great potential resource but 

the interpretation of the data relies on the analysis programs available, their maintenance 

and the curated literature used to underpin them. The literature used to build the 

associations identified are from a range of tissues and cell subsets which may not always 

be relevant to the dataset under analysis and this must be borne in mind when interpreting 

the results. The advantage is that, with this caveat, the results can be hypothesis 

generating and novel. 

 

There are multiple factors potentially affecting the gene expression profile in CD19
+ 

B 

cells beyond disease and so, in Chapter 4, I will go on to examine the effects of age and 

inflammation on the CD19
+ 

B cell transcriptome. 

 

3.5 Future work 

 Determine if BCR signal transduction is impaired in RA compared to controls by 

measuring phosphoproteins by flow cytometry 

 Determine whether the CD19
+
 B cells, as a broad group, from RA patients are 

anergic in early disease and if they become activated and proliferate in response to 

stimulation by the BCR in vitro. 

 Quantify IL-6 production in response to stimulation in B cells from RA patients 

compared to controls, and examine whether this is increased as in the paper by 

Barr et al[177]. 
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4. Factors affecting the gene expression profile of peripheral blood B 

cells  
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4.1 Background 

In Chapter 3 the CD19
+ 

B cell gene expression profile was examined to identify changes 

related to disease pathology. Beyond the presence of arthritis there are multiple factors 

potentially affecting the gene expression profile in CD19
+ 

B cells including genetic and 

environmental factors[130, 133, 184-186]. These may explain the absence of a clear, 

multiple test corrected gene signature distinguishing RA samples from non-RA samples 

discussed in Chapter 3. 

 

Age related changes in gene expression in immune cell subsets have been described, 

although not in CD19
+
 B cells[187]. Aging is associated with telomere attrition, 

epigenetic changes and genomic instability which in turn lead to gene expression 

changes[188, 189]. There is increasing interest in the molecular changes associated with 

ageing to provide insights into the age-related increase in the incidence of autoimmune 

diseases[190].  

 

When discussing aging and the immune system “immunosenescence” and “inflamm-

aging” are frequently used terms. Immunosenescence refers to the age-related decline in 

the immune system which leads to the increased morbidity and mortality observed in the 

elderly from infection and the reduced response to vaccines in this population. Inflamm-

aging describes the persistent, low grade increase in inflammation observed with age 

which is associated with an increase in proinflammatory cytokines such as IL-6. The 

underlying cause of the latter state remains to be identified, but it has been suggested that 

this is secondary to chronic antigen stimulation, the presence of persistent, latent 

infections or the transfer of microbes across the gut epithelium[191, 192].  

 

Our understanding of the changes in the human B cell population with aging are based 

largely on the quantification of circulating peripheral cell subsets. Work in mouse models 

has shown that there is a decrease in lymphopoeisis with increasing age. Production shifts 

toward the generation of myeloid progenitors over lymphoid progenitors and the B cell 

population is increasingly comprised of antigen-experienced cells at the expense of naive 

cells. In addition, novel subsets emerge, such as age related B cells, and the 

immunoglobulin pool is dominated by immunoglobulins that have undergone somatic 

hypermutation such that diversity is reduced.[193, 194]  
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The response to influenza vaccination in the elderly is reduced with a decreased 

frequency of vaccine specific antibody secreting cells (ASCs), reduced expression of 

BLIMP-1, a transcriptional repressor critical for the terminal differentiation of B cells, 

and a reduction in the quantity of vaccine specific antibodies. It has been suggested that 

memory cells are less able to respond to antigen, cells are less able to differentiate into 

ASCs and clonal expansion may also be reduced[195, 196].  

 

In this chapter, the samples will be divided based on age and levels of inflammation, 

regardless of diagnosis, to examine the influence of these environmental covariates on the 

CD19
+
 B cell

 
transcriptome. The analysis of the dataset in this way was prompted by 

results from a comparison of RA and non-inflammatory samples and this will be 

described first. 

 

4.2 Hypothesis and Aims 

 

4.2.1 Hypothesis  

In an older population, the peripheral B cell transcriptome will reveal upregulation of pro-

inflammatory pathways as a consequence of inflamm-ageing. In samples with higher 

levels of systemic inflammation, measured by ESR and CRP, upregulation of pro-

inflammatory pathways will be identified. 

 

4.2.2 Aims 

To determine the relationship between the transcriptome of circulating B cells with both 

chronological age and systemic inflammation in a cross-sectional study of patients 

attending an early arthritis clinic; specifically: 

 

1. To identify a list of differentially expressed genes in the transcriptome of 

circulating CD19
+
 B cells from older versus younger people.  

2. To undertake a pathway analysis of these DEGs with a view to gaining new 

insight in to age related changes in B cells 

3. To identify a list of differentially expressed genes in the transcriptome of 

circulating CD19
+
 B cells based on inflammation 
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• To undertake a pathway analysis of DEGs with a view to gaining new insight in to 

changes in B cells due to increased levels of inflammation 

 

4.3 Results 

4.3.1  The effect of age and inflammation on a comparison between RA and non-

inflammatory samples 

In Chapter 3 my data were examined to identify changes to the CD19
+
 B cell 

transcriptome related to disease. Further analyses divided the original control group into 

subsets to enable comparisons between RA samples and samples from those with other 

inflammatory conditions alone (n=59) and then those with non-inflammatory conditions 

alone (n=72).  

 

No DEGs robust to multiple test correction were identified in the comparison of RA 

versus other inflammatory conditions.  

 

A list of DEGs, which withstood multiple test correction, was identified in the 

comparison between RA samples and non-inflammatory samples (using the baseline 

diagnosis and all samples available) (figure 4.1a). This identified a list of 225 

differentially expressed probes, FC ≥ 1.2 (see Appendix A.4 and A.5 for the list of DEGs 

and the results of the IPA analysis). 

 

A comparison of the clinical characteristics for the RA and non-inflammatory groups 

revealed no significant differences in gender but significant differences in age, CRP, 

ESR, swollen joint count, tender joint count and DAS28 score between the two groups 

(table 4.1). In light of this the clinical variables CRP, ESR and age were added to the 

linear model and the list of DEGs no longer withstood multiple test correction (figure 

4.1b). 
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 RA Non-inflammatory P-value 

Sample number 59 72 - 

Age (yrs) 61 (21-89) 52 (22-87) 0.0008 

Gender (%F) 76.27 79.17 0.83 

ESR (mm/hr) 25 (1-91) 7 (1-100) 0.0002 

CRP (mg/L) 10 (0-91) 5 (0-49) <0.0001 

SJC 1 (0-25) 0 (0-11) <0.0001 

TJC 6 (0-22) 3 (0-28) 0.0028 

DAS28 4.59 (1.26-8.46) 3.03 (0-5.46) <0.0001 

Table 4.1 Demographics for gene expression analyses based on baseline diagnosis for 

RA and non-inflammatory samples 

Median (range) shown. P-values were calculated using the unpaired T test (age), Mann 

Whitney (CRP, ESR, SJC, TJC, DAS28), or Fisher’s exact test (gender).  

 

 
a)                                                            b) 

Figure 4.1 Differentially expressed genes identified between the CD19
+
 B cell 

transcriptome of RA and non-inflammatory samples 

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. a) 

Volcano plot of RA (n=59) against non-inflammatory samples (n=72) identified 225 

differentially expressed probes (FC ≥ 1.2, p 0.05, MTC Benjamini-Hochberg). b) Volcano 

plot of RA (n=59) against non-inflammatory (n=72) samples with covariates age, ESR 

and CRP added to the linear model, no differentially expressed probes were identified 

(FC ≥ 1.2, p 0.05, MTC Benjamini-Hochberg). Vertical, dotted lines denote FC 1.2. The x 

axis represents log2 of the fold change, y axis represents the –log10 adjusted p-value. 

Horizontal, dotted lines denote p-value 0.05. Red dots indicate probes which are 

differentially expressed between the comparator groups. 

 

Adding the clinical variables separately (age, ESR and CRP) to the linear model led to the 

disappearance of the list of DEGs in each instance (Appendix A.6).  
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This result suggests that chronological age and/or systemic inflammation, rather than 

clinical diagnosis, may explain the majority of the variability in CD19
+
 B cell gene 

expression in this population. In order to further examine the effect of these factors on the 

CD19
+ 

B cell transcriptome I compared the samples based on age and inflammatory 

status. To maximise power I used all the samples which had passed the quality control 

regardless of diagnosis and used the median values for each chosen clinical variable to 

divide the samples into two groups for the subsequent analyses. 

 

A total of 243 samples were available for analysis. The median age of the patients at 

recruitment was 54 years old and this was selected as the cut off age between the sample 

groups. The comparator groups were aged under 55 years (n=131) and 55 years and over 

(n=112).  

 

To examine changes in the transcriptome related to inflammation the samples were 

divided using median CRP and ESR levels. The low inflammation group being less than 

or equal to the median value for the population. For ESR, the median value was 14mm/hr 

and so the two groups were low inflammation (ESR <15mm/hr) and high inflammation 

(ESR ≥15mm/hr), giving groups of 126 and 117 samples respectively. In the case of CRP, 

the median was 7mg/L and so the two groups were low inflammation (CRP <8mg/L) and 

high inflammation (CRP ≥ 8mg/L), giving groups of 128 and 115 samples respectively. 

 

4.3.2 Relationship between clinical covariates 

The <55 years group had significantly lower levels of inflammatory markers and a lower 

proportion of patients diagnosed with RA, based on their outcome diagnoses (table 4.2).  
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 < 55 years ≥ 55 years 

 

P-value 

Sample number 131 112 - 

ESR mm/hr  9 (0-96) 21 (0-111) <0.0001 

CRP mg/L 5 (0-80) 8 (0-171) 0.0074 

Gender (% F) 67.0 80.9 0.0178 

Outcome diagnosis  

(% RA) 

20.6 

 

41.1 

 

0.0007 

Table 4.2 Clinical data for gene expression analyses based on age at baseline diagnosis 

Median (range) shown. P-values were calculated using the unpaired T test (age), Mann 

Whitney test (CRP, ESR), or Fisher’s exact test (gender and diagnosis). 

 

Further analysis demonstrated that age is significantly correlated with CRP and ESR 

(figure 4.2). This is in keeping with the concept of inflamm-ageing. 41.1% of the samples 

in the ≥55 years age group have an outcome diagnosis of RA compared to 20.6% in the 

younger group. When the RA group is combined with other inflammatory conditions 

there are again more samples from patients with a current diagnosis of an inflammatory 

arthritis in the ≥55 years age group; 70.5% versus 55.0% (P 0.0167, Fisher’s exact test).  

 

  
a)          b) 

Figure 4.2 Linear regression of age against inflammatory markers 

 a) Age and CRP b) Age and ESR using samples from all recruited patients. Age 

positively correlates with CRP and ESR.  

 

Age positively correlates with both ESR and CRP, however the proportion of variance of 

the CRP which is explained by age (as expressed by the R
2
 value) is only 0.05, and for 

ESR is only 0.07. Further, the samples in the ≥ 55 years age group and each high 

inflammation group are not the same. Of the samples in the ≥55 years age group 59.8% 

overlapped with the high ESR group and 52.7% overlapped with the high CRP group. 
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This demonstrates that higher levels of inflammation do not simply reflect older age. 

72.6% of the high ESR samples overlapped with the high CRP group (figure 4.3).  

 

 
Figure 4.3 Venn diagram of samples in the ≥ 55 years age group, high ESR and high 

CRP groups  

 

4.3.3 The effect of age on the CD19
+ 

cell transcriptome  

The samples were divided into two sample groups: <55 years old and ≥ 55 years old. The 

principal components analysis did not show a clear difference based on age (figure 4.4).  
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Figure 4.4 Principal component analysis (PCA) of samples used in the analysis 

between age groups 

 The younger age group (age <55 years) samples are shown in blue and older age group 

(age ≥55 years) in red. The samples in each group do not clearly cluster together.  

 

A differential expression analysis was carried out to compare the two age groups with 

ESR and CRP, the additional factors under review, added to the linear model. 136 

differentially expressed probes which stood up to multiple test correction at a FC ≥ 1.2 

were identified (figure 4.5). 
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Figure 4.5 Differentially expressed genes identified in the CD19

+
 B cell transcriptome 

in a comparison based on chronological age with ESR and CRP added to the linear 

model  

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. The 

samples were divided by median age at presentation. Volcano plot of comparison 

between ≥55 years old age group (n=112) and <55 years old group (n=131). ESR and 

CRP added to the linear model.  MTC; Benjamini-Hochberg, FC ≥ 1.2, p 0.05. 136 

differentially expressed probes identified. Vertical, dotted lines denote FC 1.2. The x axis 

represents log2 of the fold change, y axis represents the –log10 adjusted p-value. 

Horizontal, dotted lines denote p-value 0.05. Red dots indicate probes which are 

differentially expressed between the comparator groups. 

 

Ingenuity pathway analysis 

The 136 probes identified, representing 129 unique genes, were analysed using IPA. No 

significant canonical pathways were identified which met the filtering criteria previously 

described. The upstream regulator analysis identified 5 potential regulators (table 4.3). 14 

out of 129 molecules are identified as regulated by TNF. TNF, IL-2, TGM2 and NOS2 

are predicted to be activated in the ≥55 years group and APOE is inhibited in the older 

age group. 

 

The network display of the upstream regulators demonstrates that the vast majority of 

predicted interactions, with molecules in the DEG list, are indirect (figure 4.6). 
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Upstream 

Regulator 

Molecule 

Type 

Name z-score p-value Target molecules in the dataset 

APOE Transporter Apolioprotein E -2.219 0.000335 
ADGRG1, IL1RN, JAK1, LCN2, LTBR, 

NCF2, TIMP1, TNFRSF1A 

IL2 Cytokine IL-2 2.167 0.000977 
BCCIP, CX3CR1, EPHA4, GART, IP6K2, PRF1, 

TIMP1, TNFRSF1A 

TNF Cytokine TNF 2.149 0.00033 

CSF1R, GBP2, HK3, IL1RN, IRAK3, ITGA4, JAK1, 

LCN2, MAFF, NCF2, NLRP3, PIK3CB, TIMP1, 

TNFRSF1A 

TGM2 Enzyme Transglutaminase 2 2.646 0.00027 

AQP9, CX3CR1, HK3, LILRA5, NCF2, PADI4, 

SIRPA 

 

NOS2 Enzyme 
Nitric oxide 

synthase 2 
2.219 0.00294 

ATP2A2, IL1RN, LCN2, PRF1, TIMP1 

 

Table 4.3 Upstream regulators for the differentially expressed genes between < 55 years and ≥ 55 year samples  

IPA software was used to identify upstream regulators for the list of DEGs identified by comparing the CD19
+ 

B cell transcriptome between ≥55 

years old age group (n=112) and <55 years old group (n=131) with ESR and CRP added to the linear model. Z score ≤ -2 predicts an inhibited 

state (blue) and ≥ 2 predicts an activated state for the regulator  
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Figure 4.6 Network display of upstream regulators for the differentially expressed 

genes between ≥55 years and <55 years old samples 

IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from ≥55 years old patients 

(n=112) and <55 years old patients (n=131) with ESR and CRP added to the linear 

model. a) Inhibited upstream regulator, APOE, predicted to be inhibited in the ≥ 55 years 

old group. b) Activated upstream regulators, activated in the ≥55 years old group. 

Upstream regulators are displayed centrally with lines connecting each to the molecules 

in the dataset which they are predicted to effect.  

* indicates that multiple identifiers were found in the dataset to map to single gene.  

 

 

 

 

 

a) 

b) 
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The top two networks assembled by IPA were: network 1, described as relating to 

infectious diseases, inflammatory response and cellular movement (figure 4.7) and 

network 2 which related to cellular movement, cancer and endocrine system disorders 

(figure 4.8). 

 

 
 

Figure 4.7 Network 1 with function related to infectious diseases, inflammatory 

response and Cellular Movement  

Analysis using IPA software to identify molecular networks from the list of DEGs from 

the comparison of the ≥55 years (n=112) to <55 years (n=131) samples. Molecules not 

coloured are from the Ingenuity Knowledge Base and not present in the dataset. The 

shape of the gene represents the functional class of the gene product (key as for figure 

4.6) 

 

 

. 
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Figure 4.8 Network 2 with function related to cellular movement, cancer and endocrine 

system disorders 

Analysis using IPA software to identify molecular networks from the list of DEGs from 

the comparison of the ≥55 years (n=112) to <55 years (n=131) samples. Molecules not 

coloured are from the Ingenuity Knowledge Base and not present in the dataset. The 

shape of the gene represents the functional class of the gene product (key as for figure 

4.6) 

 

4.3.4 The effect of age on the CD19
+ 

cell transcriptome without consideration of 

inflammatory status 

 

The analysis described in section 4.3.3 was repeated without including ESR and CRP in 

the linear model. The concept of inflamm-ageing describes the persistent, low grade 

increase in inflammation observed with age. In a comparison between samples based on 
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age, interesting pathways related to inflamm-ageing may be missed if inflammatory status 

is incorporated within the linear model. When the analysis was repeated, 127 probes were 

differentially expressed between the older and younger sample groups, representing 120 

unique genes (figure 4.9). 

 

 
 

Figure 4.9 Differentially expressed genes identified in the CD19
+
 B cell transcriptome 

in a comparison based on chronological age 

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. The 

samples were divided by median age at presentation. Volcano plot of groups age ≥55 

years (n=112) against age < 55 years old (n=131). MTC; Benjamini-Hochberg, FC ≥ 

1.2, p 0.05. 127 differentially expressed probes identified. Vertical, dotted lines denote 

FC 1.2. The x axis represents log2 of the fold change, y axis represents the –log10 

adjusted p-value. Horizontal, dotted lines denote p-value 0.05. Red dots indicate probes 

which are differentially expressed between the comparator groups. 

 

Ingenuity pathway analysis 

The list of differentially expressed genes was subjected to IPA. The canonical pathway 

analysis identified one pathway, the ERK/MAPK pathway, which met the filtering 

criteria of ≥ 5 molecules in the dataset and a Z-score ≤-2 or ≥2.  

 

The ERK/MAPK pathway (Z-score -2, log10 Pval 2.4) was downregulated in the ≥ 

55years age group in comparison to the <55years age group. The molecules from the 

dataset in the pathway were: ITGA4, DUSP6, PRKACB, PIK3CB and YWHAZ. The 

ERK/MAPK pathway is involved in many cell signalling pathways including that of the 

BCR. 
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The upstream regulator analysis identified 22 potential upstream regulators, of which 7 

were inhibited in the ≥ 55 years group (table 4.4). The pathways inhibited in the ≥ 55 

years group include APOE which was seen in the analysis with ESR and CRP added to 

the linear model. The pathways activated in the ≥ 55 years old group include TNF and 5 

additional cytokines, including the proinflammatory cytokines IL-1A, IL-17A and the 

receptor IL-17RA. 

 

The upstream regulator analysis can also be displayed as a network to allow an 

exploration of the relationship between the regulator and the relevant molecules in the 

dataset (figure 4.10).  
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Upstream 

regulator 

Molecule type Name Z -core P-value Target molecules in dataset 

VCAN other Versican -2.236 0.000475 ADM, IL1RN, LCN2, TIMP1, VCAN 

INSIG1 other Insulin induced gene 1 -2.236 0.000151 LCN2, PRF1, RAB7A, S100A8, S100A9 

APOE transporter Apolioprotein E -2.219 0.000000814 ADGRG1, DYRK1A, IL1RN, JAK1, LCN2, LTBR, 

NCF2, S100A8, S100A9, TIMP1, TNFRSF1A 

MRTFB transcription 

regulator 

Myocardin related 

transcription factor B 

-2 0.00107 CAMP, LCN2, S100A8, S100A9 

SRF transcription 

regulator 

Serum response factor -2 0.0000424 CAMP, CAPRIN1, GP9, LCN2, MBD2, MRPS35, 

S100A8, S100A9 

MRTFA transcription 

regulator 

Myocardin related 

transcription factor A 

-2 0.0045 CAMP, LCN2, S100A8, S100A9 

 

SATB1 transcription 

regulator 

SATB homeobox 1 -2 0.0105 ACTN1, HBB, ILF3, RB1 

 

TNFSF12 cytokine TNF superfamily 

member 12  

2 0.00107 CCR1, S100A8, S100A9, TIMP1 

 

IL5 cytokine IL-5 2 0.0163 CCR1, DUSP6, GBP2, NFE2 

mir-223 Micro RNA microRNA 223 2 0.00437 IL1RN, MMP25, PADI4, S100A9 

IL17RA transmembrane 

receptor 

IL-17A receptor 2 0.000015 CCR1, S100A8, S100A9, TIMP1 

EHF transcription 

regulator 

ETS homologous factor 

 

2 0.000936 IL1RN, S100A12, S100A8, S100A9 

 

TP63 transcription 

regulator 

Tumour protein p63 2.186 0.0187 ADM, DUSP6, ITGA4, S100A8, TNFRSF1A 

IKBKG kinase inhibitor of nuclear 

factor kappa B kinase 

regulatory subunit 

gamma 

2.213 0.000594 CCR1, DUSP6, GBP2, IL1RN, LCN2 

 

NOS2 enzyme Nitric oxide synthase 2 2.219 0.00245 IL1RN, LCN2, PRF1, S100A8, TIMP1 

 



 123 

TLR3 transmembrane 

receptor 

Toll like receptor 3 2.219 0.00561 GBP2, LCN2, S100A8, TIMP1, TNFRSF1A 

 

CEBPA transcription 

regulator 

CCAAT enhancer 

binding protein alpha 

 

2.395 0.0000166 CAMP, CCR1, GP9, IL1RN, LCN2, PTAFR, S100A8, 

S100A9, TNFRSF1A, VCAN 

IL1A cytokine IL-1A 2.433 0.0000534 IL1RN, LCN2, S100A12, S100A8, S100A9, 

SERPINA1 

 

IL17A cytokine IL-17A 2.527 0.00000591 CAMP, GBP2, IL1RN, LCN2, S100A8, S100A9, 

TIMP1 

TNF cytokine TNF 2.558 0.00000343 ADM, CCR1, DUSP6, FPR1, GBP2, HK3, IL1RN, 

IRAK3, ITGA4, JAK1, LCN2, NCF2, PIK3CB, 

S100A8, S100A9, TIMP1, TNFRSF1A 

IL2 cytokine IL-2 2.569 0.000741 CCR1, CX3CR1, DUSP6, EPHA4, PRF1, S100A8, 

TIMP1, TNFRSF1A 

TGM2 enzyme Transglutaminase 2 3 0.00000339 AQP9, CX3CR1, HK3, LILRA5, LRRC25, MAFB, 

NCF2, PADI4, S100A8 

Table 4.4 Upstream regulators for the differentially expressed genes between ≥ 55 years and < 55 years samples 

 IPA software was used to identify upstream regulators for the list of DEGs identified by comparing the CD19
+ 

B cell transcriptome from 

patients ≥55 years (n=112) to <55 years (n=131).  Z score ≤ -2 predicts an inhibited state and ≥ 2 predicts an activated state for the regulator. 

Inhibited regulators shown in blue 
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a) 
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b) 

 

Figure 4.10 Network display of upstream regulators for the differentially expressed 

genes between ≥55 years old and < 55 years old patient samples 

 IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from <55 years old patients 

(n=131) and ≥55 years old patients (n=112) a) Inhibited upstream regulators, inhibited 

in the ≥55 years old group. b) Activated upstream regulators, activated in the ≥55 years 

old group. Upstream regulators are displayed centrally with lines connecting each to the 

molecules in the dataset which they are predicted to effect.  
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In a molecular network analysis of this dataset the top network is described as relating to: 

Cellular Movement, Haematological System Development and Function and Immune 

Cell Trafficking (figure 4.11). The second network related to connective tissue disorders, 

developmental disorder, haematological disease (Appendix A.7). 

 

 

 
Figure 4.11 Network 1 with function related to Cellular Movement, Haematological 

System Development and Function and Immune Cell Trafficking  

Analysis using IPA software to identify molecular networks from the list of DEGs from 

the comparison of the ≥55 years old patients (n=112) to ≥ 55 years old patients (n=131) 

samples. Molecules not coloured are from the Ingenuity Knowledge Base and not present 

in the dataset. The shape of the gene represents the functional class of the gene product 

(Key as for figure 4.10). 
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4.3.5 The effect of inflammation on the CD19
+ 

cell
 
transcriptome 

The addition of ESR and CRP, individually, to the linear model used to compare samples 

from RA patients and those with non-inflammatory arthritis, led to the loss of the 

differentially expressed genes. In order to explore the effect of inflammation on the 

transcriptome, the samples were divided into two groups based on the median values for 

the ESR and CRP. 

 

ESR 

The high ESR group was significantly older, this is not unexpected given that ESR 

positively correlated with age. There was a significant difference in the proportion of RA 

patients in each group, with a higher percentage of RA patients in the high ESR group 

(table 4.5). 

 

 ESR low ESR high P-value 

Sample number 126 117 - 

Gender (%F) 73.8 75.2 ns 

 

Age (yrs) 

 

51 (18-85) 57 (18-92) 0.0003 

 

Outcome diagnosis  

(% RA) 

22.2% 38.5% 0.0076  

 

Table 4.5 Clinical data for gene expression analyses based on ESR at baseline 

diagnosis 

Median (range) shown. Unpaired T test (age), Fisher’s exact test (gender and diagnosis). 

 

The samples in the high and low ESR groups did not separate out on a principal 

components analysis (figure 4.12).  
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Figure 4.12 Principal component analysis of samples used in the analysis between low 

ESR and high ESR samples 

There are no demonstrable differences between the two groups (red denotes high ESR 

samples and blue denotes low ESR samples). The samples in each group do not cluster 

together.  

 

An initial comparison of the high ESR and low ESR groups was carried out with age 

added to the linear model. This identified 47 probes which were diffentially expressed 

(FC ≥1.2, p-value 0.05) with multiple test correction in place (figure 4.13a) 

 

The analysis was repeated after removing age from the linear model and 104 

differentially expressed probes were identified (figure 4.13b). The 104 probes identified 

represented 96 unique genes and just 8 of these were found in the list of differentially 

expressed genes in the comparison of samples based on age without consideration for 

clinical variables. 
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a)                                                                  b) 

Figure 4.13 Differentially expressed genes identified between the CD19
+
 B cell 

transcriptome of samples with high ESR and low ESR 

CD19
+ 

B cells were positively isolated from patients presenting to the early arthritis 

clinic, RNA extracted and transcriptome analysed using microarray technology. a) 

Volcano plot of samples with high ESR (n=117) against samples with low ESR (n=126) 

with age added to the linear model. 47 differentially expressed probes were identified. 

(FC ≥ 1.2, p ≤ 0.05, MTC Benjamini-Hochberg). b) Volcano plot of samples with high 

ESR (n=117) against samples with low ESR (n=126), no clinical covariates added to the 

linear model. 104 differentially expressed probes were identified. (FC ≥ 1.2, p ≤ 0.05, 

MTC Benjamini-Hochberg). Vertical, dotted lines denote FC 1.2. The x axis represents 

log2 of the fold change, y axis represents the –log10 adjusted p-value. Horizontal, dotted 

lines denote p-value 0.05. Red dots indicate probes which are differentially expressed 

between the comparator groups. 

 

Ingenuity pathway analysis 

The list of 47 DEGs from the high ESR versus low ESR analysis with age added to the 

linear model was analysed using IPA and did not yield any significant pathways or 

upstream regulators. This may be related to the length of the list of DEGs.  

 

The list of DEGs identified from the analysis of high ESR and low ESR samples without 

additional variables added to the linear model was subjected to IPA. There were no 

canonical pathways that met the filtering criteria set. 12 upstream regulators were 

identified by the IPA software in the list of 104 DEGs (table 4.6). 
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Upstream 

Regulator 

Molecule 

Type 

Name  z-score p-value  Number of molecules 

BNIP3L other BCL2 interacting 

protein 3 like 

-2.236 0.00000362 ALAS2, CCNA2, CDKN3, CHEK1, KIF11 

 

TOB1 transcription 

regulator 

transducer of 

ERBB2, 1 

-2.236 0.000000925 CCNA2, CDT1, CHEK1, SON, UBE2T 

XBP1 transcription 

regulator 

X-box binding 

protein 1 

2 0.00136 DNAJC3, FKBP11, PPIB, PRDM1, SDF2L1 

 

E2F3 transcription 

regulator 

E2F transcription 

factor 3 

2 0.000372 CCNA2, CDC45, CDK1, PCLAF, TK1 

ESR1 ligand-

dependent 

nuclear 

receptor 

Estrogen 

receptor 1 

2.087 0.0000317 ASPM, CCNA2, CDK1, CDKN3, CENPM, LCN2, 

NCAPG, UBE2T, XK, ZNF24 

TAL1 transcription 

regulator 

TAL bHLH 

transcription 

factor 1 

2.236 0.0000388 ASPM, CDKN3, HBB, IL10RA, MELK, NCAPG, 

OIP5 

EGFR kinase epidermal 

growth factor 

receptor 

2.423 0.000318 CCNA2, CDK1, FKBP11, LCN2, SDF2L1, 

TIMM10 

 

CSF2 cytokine colony 

stimulating 

factor 2 

2.438 0.000544 CCNA2, CD38, CDCA5, CDK1, KIF11, PHGDH 

 

RABL6 other RAB, RAS 

oncogene family 

like 6 

2.449 0.000000334 CCNA2, CHEK1, MCM10, MELK, NCAPG, TTK 

 

ERBB2 kinase erb-b2 receptor 

tyrosine kinase 2 

2.449 2.4E-10 ASPM, CCNA2, CDC45, CDCA5, CDK1, CDKN3, 

CDT1, CHEK1, CKS2, GAS6, LCN2, MCM10, 

NCAPG, TK1, TOP1MT, ZWINT 
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PTGER2 g-protein 

coupled 

receptor 

prostaglandin E 

receptor 2 

2.646 0.000000172 ASPM, CCNA2, CDKN3, CKS2, KIF11, MELK, 

TTK 

 

RARA ligand-

dependent 

nuclear 

receptor 

retinoic acid 

receptor alpha 

 

3.095 0.000000168 ASPM, CCNA2, CD38, CDK1, CDKN3, CENPM, 

NCAPG, UBE2T, XK, ZNF24 

Table 4.6 Upstream regulators for the differentially expressed genes between high ESR and low ESR samples 

 IPA software was used to identify upstream regulators for the list of DEGs identified by comparing the CD19
+ 

B cell transcriptome from 

patients with a high ESR (n=117) to low ESR patients (n=126). Z score ≤ -2 predicts an inhibited state (shown in blue) and ≥ 2 predicts an 

activated state for the regulator. 
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The upstream regulator analysis can also be displayed as a network to allow an 

exploration of the relationship between the regulator and the relevant molecules in the 

dataset (figure 4.14). 

 
Figure 4.14 Network display of upstream regulators for the differentially expressed 

genes between high ESR and low ESR patient samples 

IPA software was used to predict activated upstream regulators for the list of DEGs 

identified by comparing the CD19
+ 

B cell transcriptome from high ESR patients (n=117) 

and low ESR samples (n=126). a) Inhibited upstream regulators, predicted to be 

inhibited in the high ESR group. b) Activated upstream regulators, activated in the high 

ESR group. Upstream regulators are displayed centrally with lines connecting each to the 

molecules in the dataset which they are predicted to effect.  

 

a) 

b) 
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The top two networks identified in the network analysis were network 1: DNA 

Replication, Recombination, and Repair, Cell Cycle, Cellular Movement and Cell Death 

and network 2: Survival, Cancer, Haematological Disease which is in agreement with the 

identification of several proto-oncogenes, nuclear receptors and growth factors in the list 

of potential upstream regulators. The top network is shown in figure 4.15. 

 

 

 
Figure 4.15 Network 1 with function related to DNA Replication, Recombination, and 

Repair, Cell Cycle, Cellular Movement 

Network analysis using IPA software to identify molecular networks from the list of DEGs 

from the comparison of the high ESR group (n=117) to low ESR group(n=126) samples. 

Molecules not coloured are from the Ingenuity Knowledge Base and not present in the 

dataset. The shape of the gene represents the functional class of the gene product (key as 

for figure 4.14). 
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CRP 

The samples in the high and low CRP groups did not separate out on a principal 

components analysis (figure 4.16). The high CRP group was significantly older (P 0.017, 

unpaired T test) than the low inflammation group but there was no significant difference 

in gender or the proportion of patients with RA between the groups.  

 

The differential gene expression analysis of the samples in the low CRP and high CRP 

groups with age added to the linear model did not identify any differentially expressed 

probes which stood up to multiple test correction. When age was removed from the linear 

model, and the anlaysis repeated, 2 probes which were diffentially expressed with a FC 

≥1.2 and met the multiple test correction criteria were identified (figure 4.16b). The 

probes upregulated in the high CRP group were both for GAS6, growth arrest specific 6, 

which encodes a gamma-carboxyglutamic acid (Gla)-containing protein believed to be 

involved in the stimulation of cell proliferation.  

                                   
a)          b) 

Figure 4.16 Prinicpal components analysis and volcano plot for high and low CRP 

groups 

a) PCA plot displaying samples identified based on high or low levels of CRP. There are 

no demonstrable differences between the two groups (red high inflammation, CRP 

≥8mg/L, blue low inflammation, CRP <8mg/L). b) Volcano plot for high CRP (n=115) 

versus low CRP (n=128), FC1.2, MTC; Benjamini-Hochberg, no clinical variables added 

to the linear model. 2 differentially expressed probes identified. Vertical, dotted lines 

denote FC1.2. Horizontal, dotted lines denote p-value 0.05. Red dots indicate probes 

which are differentially expressed between the comparator groups. 
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4.4 Discussion 

Age and the CD19
+ 

B cell
 
transcriptome 

Large scale meta-analyses have confirmed the variation in gene expression with age and 

identified overexpression of inflammation and immune response genes, which is in 

keeping with the upstream regulators identified here and the network analyses[185, 197]. 

Published transcriptomic analyses focussing on the effects of aging in specific immune 

cell subsets are restricted to T cells and monocytes and so this is a novel analysis[187, 

198]. The identification of the transcriptional changes which occur with age has the 

potential to identify altered molecular pathways, improving our understanding of age-

related immune modulation and so identify therapeutic targets. The dissection of the 

pathways underlying the aging process is complicated by the combination of varying 

genetic influences and the accumulated environmental influences.  

 

The results described in this exploratory experiment have identified several interesting 

upstream regulators for the DEG lists generated. In keeping with the concept of inflamm-

ageing, pro-inflammatory cytokines have been identified as activated upstream regulators 

in the ≥ 55 years age group; in particular in the comparison of the < 55 years old group to 

the ≥ 55 years old group without the addition of ESR and CRP to the linear model. The 

pro inflammatory cytokines IL-1A, IL17A and its receptor IL17RA were identified as 

potential activated upstream regulators, alongside TNF in this comparison. In this 

discussion, I will focus on upstream regulators identified in both analyses between the 

two age groups. 

 

APOE is an inhibited transcriptional regulator in the ≥55 years group which is identified 

in both analyses. APOE has an established association with aging and age-related diseases 

such as cardiovascular disease and Alzheimer’s disease. Along with FOXO3, it is 

associated in multiple, independent genome wide association studies with longevity, the 

longevity phenotype being survival to ≥90 years old[199, 200].  

 

The APOE gene encodes the protein apolipoprotein E, synthesised primarily in the liver 

but also produced in other tissues. It combines with lipids to form lipoproteins, playing an 

essential role in cholesterol metabolism. The Apoe deficient mouse (Apoe
-/-

) is a widely 

used mouse model for human atherosclerosis as it displays poor lipoprotein clearance, 
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and develops hypercholesterolaemia, which promotes the development of atherosclerotic 

plaques[201]. A splicing analysis using RNA-seq data has recently shown that the 

expression of APOE exons and links change with age in skin tissue. This results in the 

production of different isoforms of the gene, favouring an isoform skipping the third exon 

of the gene in older individuals and this may alter protein function with age[188].  

 

There is increasing interest in B cell function in the field of cardiovascular research and 

coronary heart disease, in particular in the use of B cell modulation in the treatment of 

atherosclerosis[202, 203]. In mouse models, it has been shown that functional B cells are 

protective of atherosclerosis[204, 205]. A systems biology approach using whole blood 

gene expression profiles from the Framingham Heart Study (using coronary heart disease 

(CHD) cases and age and sex matched controls) identified a module enriched for B cell 

activation, which demonstrated strong co-expression in controls but not CHD cases, 

suggesting a potential role for B cell dysregulation in atherosclerotic CHD[206]. There is, 

therefore, a potential link between dysregulated B cell function and atherosclerosis which 

is in turn linked to APOE.  

 

APOE itself is not differentially expressed between the two sample groups in this 

experiment. The effects ascribed here to APOE by IPA are largely indirect associations, 

thus we may be seeing the effects of APOE from other sources influencing the B cell 

transcriptome.  Changes in the isoform of APOE expressed in the two age groups may 

differ and as such the differences may not be adequately detected in a microarray 

experiment. Changes in APOE expression in B cells could be further investigated using 

RNA-seq experiments to look for differential expression of splicing variants and 

measuring paired serum APOE to examine alternative explanations for the gene 

expression changes presented here. 

 

NOS2 encodes an inducible nitric oxide synthase which generates the second messenger 

nitric oxide. NOS2 is not differentially expressed in the dataset but is shown to be an 

activated upstream regulator in the ≥ 55 years group. This is in keeping with the 

hypothesis that oxidative stress is a major factor in the aging process and age related 

diseases such as atherosclerosis[207, 208]. 

 



 137 

TGM2, transglutaminase 2, is a widely expressed, multifunctional enzyme which 

catalyses the crosslinking of proteins and has been identified as a potential biomarker of 

frailty. It is induced by pro inflammatory cytokines and accumulates in atherosclerotic 

plaques, playing a role in the atherosclerotic pathway by NFkB activation, TNF and NOS 

expression[209]. It has been associated with the physiological response to stress, 

apoptosis, inflammation and fibrosis, where cross linking of proteins in the extracellular 

matrix by TGM2 increases resistance to breakdown[210, 211]. The encoded protein of 

TGM2 is the autoantigen implicated in coeliac disease.[212]. 

 

IL-2 is primarily produced by T cells in the secondary lymphoid organs following 

antigen-mediated activation and is important for the maintenance of regulatory T cells 

and the differentiation of effector T cells subsets; the overall effect is finely tuned to the 

strength and duration of the IL-2 signal. The IL-2 receptor, IL-2R, is found on immature 

B cells and promotes the differentiation of primed B cells into plasma cells[213, 214]. 

Given that IL-2 production is increased in the setting of an immune response its 

identification here as an activated upstream regulator suggests a heightened activation 

state in the immune system as we age, although the trigger for this is unknown. This may 

also be relevant to the increase in autoantibody formation with age.  

 

The identification of the pro-inflammatory cytokine TNF as an activated upstream 

regulator in the ≥55 years group is in keeping with the literature that serum TNF is 

elevated in older people and is one potential explanation of the chronic inflammatory 

state described[215]. A study on healthy volunteers found that unstimulated CD19
+
 B 

cells isolated from older individuals (≥60 years old) produced more TNF mRNA and 

this was positively correlated with serum TNF. There was an observed reduction in 

activation-induced cytidine deaminase (AID) after stimulation with CpG in this older age 

group, which negatively correlated with pre-stimulation TNF mRNA levels; leading the 

group to suggest that the intrinsic change to B cells in the older group prior to stimulation 

rendered them unable to respond optimally to antigen[215]. The cytokine changes with 

aging are likely to be complex as there is also evidence that IL-10 producing B cells 

decrease with age and an additional factor, in the observed effect of TNF, may be the 

altered balance between the production of IL-10 and TNF production by B cells[216]. 
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It is interesting to note that two of the upstream regulators TNF and NOS2 are both 

considered evolutionarily preserved mediators to the cellular response to stress and TGM2 

is upregulated in response to stress. The changes seen in aging have been described as a 

reduction in the ability to cope with stress. The trigger that leads to this activated stress 

response is unknown but antigen has been suggested in this role[217].  

 

Inflammation and the CD19
+
B cell

 
transcriptome 

In the analyses described, dividing the samples by ESR measurement, not CRP, led to the 

identification of a number of differentially expressed genes. This is despite a large 

overlap in the samples in both high inflammation groups. In this population, 

inflammation as measured by ESR is an indicator of changes in gene expression. The IPA 

analysis for the comparison between groups based on ESR with age added to the linear 

model yielded a list of DEGs, however, the analysis using IPA was uninformative and so 

I will focus on the analysis of high ESR versus low ESR without clinical covariates added 

to the linear model. 

 

The IPA analysis identified two inhibited upstream regulators BNIP3L and TOB1, in the 

high ESR group, however, there is limited data in the literature regarding these genes. 

Their inhibition promotes proliferation and cell survival as BNIP3L is pro-apoptotic and 

TOB1 anti-proliferative. BNIP3L belongs to the pro-apoptotic subfamily within the Bcl-2 

family. TOB1 is a member of a family of anti-proliferative factors and may function as a 

tumour suppressor, it has been shown to be highly expressed in unstimulated T cells and 

is downregulated on activation ([173],[218]). TOB1 knockout mice show an increase in B 

cell proliferation both when unstimulated and when stimulated with LPS[219]. The 

inhibition of TOB1 in the high inflammation group here is in keeping with the findings in 

T and B cells, suggesting it may be a negative regulator of the immune response and 

important in maintenance of quiescence in immune cells[218, 219].  

 

The activated regulators in this sample group include transcription factors, several of 

which have been implicated in tumorigenesis: ERBB2, EGFR, RABL6, RARA, ESR1 and 

E2F2. ERBB2, also known as HER2, is connected to 16 molecules in the dataset; like 

EGFR, it is a receptor tyrosine kinase and dysregulation of their downstream signalling is 

associated with certain cancers. Overexpression of ERBB2 is, in particular, associated 
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with breast cancer associated with a poor prognosis and clinically targeted by 

trastuzumab (Herceptin)[220]. 

 

In B cells the transcription factor XBP1 is important for the development of plasma cells, 

and is considered to act downstream of BLIMP1, its expression increases the secretory 

apparatus and protein synthesis, thereby co-ordinating the cellular changes in structure 

and function required for plasma cells[221, 222]. XBP1 is also involved in the unfolded 

protein response in other tissues. It has been identified in GWAS as a risk factor for IBD 

and work in the IBD field has shown that deletion of XBP1 results in ER stress [223]. The 

activation of its downstream pathway reflects an activated immune response and response 

to stress. 

 

CSF2, also known as GM-CSF, is a growth and differentiation factor which acts on cell 

types of different lineages via its receptor but the expression of this on lymphocytes is 

debated. There are published data demonstrating that GM-CSF is produced by B cells; 

this increases on activation and promotes cell survival, in keeping with an activated 

immune response[224, 225].  

 

The IPA analysis indicates that, in the high ESR group, CD19
+ 

B cells are activated and 

more able to survive and proliferate. The molecular network analysis includes the BCR 

complex, NFkB complex and PI3K complex to link molecules within the network which 

suggests there may be an alteration in B cell signalling in the setting of inflammation. 

 

In summary, the identification of multiple test corrected DEGs between groups divided 

by both age and level of inflammation highlights the influence of both factors on the 

CD19
+ 

B cell transcriptome. The analysis based on age was the most productive, 

providing an interesting insight into the potential additional effect of APOE on B cells as 

we age, beyond the established focus on cardiovascular and neurodegenerative 

conditions. The upstream regulators identified also confirm the concept of a heightened 

inflammatory state with age, with the identification of activated pathways downstream of 

pro inflammatory cytokines and pathways related to stress. 

 

In this analysis ESR was a more effective discriminator between samples than CRP, at the 

thresholds chosen. The clinical utility of ESR and CRP varies with clinical context and 
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this result potentially marks ESR as more likely to reflect changes in the CD19
+ 

B cell 

population than CRP. The upstream regulators identified in this analysis are indicative of 

pathways promoting cell survival and increased cellular activity, which would be 

expected during an immune response. In keeping with this, the top network identified 

relates to DNA Replication, Recombination, and Repair, Cell Cycle, Cellular Movement. 

 

In this chapter, my analyses have shown that age and inflammation, here measured by 

ESR, are important factors determining gene expression in CD19
+
 B

 
cells and may be 

contributory factors to help explain the absence of a clear DEG signature in Chapter 3. 

The results have also provided novel insights into the influence of age on the 

transcriptome and confirmed the pro-inflammatory state present as we age. 

 

The results described here are exploratory and an extension of the efforts to identify 

differentially expressed genes related to diagnosis in the early arthritis clinic.  

 

4.5 Future work 

 Further examine the data with a more relaxed FC cut off, for example FC ≥1.1 for 

CRP to identify possible DEGs for further analysis 

APOE 

 Identify genes from the literature, alongside those from this study, downstream of 

APOE and confirm changes in APOE related genes in CD19
+ 

B cells with RT-

PCR.  

 Measure APOE expression in B cells and, if present, identify splice variants of 

APOE in B cells. 

  Measure serum levels of APOE and correlate with changes in gene expression 

TNF 

 Investigate TNF production by CD19
+ 

B cells further by looking specifically at 

which B cell subsets produce TNF in healthy controls  

 Pair serum TNF measurements and correlate with changes in gene expression in 

putatively regulated genes 

IL-2 

 Measure serum IL-2 levels and relate this to age with parallel measurements of 

IL-2 receptor expression on B cells subsets.  
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5. Integration of genotype, expression profiling of peripheral blood B 

cells and clinical data 
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5.1 Background 

There is an established genetic component to RA identified through GWAS and twin 

studies. The strongest association is with the MHC region and, more specifically, genetic 

variation in the HLA-DRB1 locus, but also the HLA-DPB and HLA-B loci; accounting 

for a large proportion of the risk in cases of seropositive RA[119]. The additional 101 RA 

risk loci identified from GWAS studies are frequently in non-coding regions of the 

genome or tag LD blocks containing more than one gene. Identifying the most likely 

candidate gene, or genes, at each of these loci is challenging as, on average, each has 4 

genes within the region of LD[107]. Indeed, the mechanisms by which genetic variation 

predisposes people to a given disease remain poorly understood. Given that the majority 

of GWAS variants are non-coding, it is postulated that their effects are likely to be 

regulatory and so understanding the mechanisms by which they regulate the genome is 

also essential to deciphering the significance of these variants[226].  

 

The number of genes potentially implicated in complex traits limits the use of gene knock 

down or overexpression studies to identify causal variants without the earlier 

prioritisation of likely candidates. To do this, and potentially establish the biological 

consequences of the genetic variation, expression quantitative trait locus (eQTL) mapping 

has been used to analyse the effect of genetic variants on total gene expression levels. 

However, the heritable component of gene expression also varies across cell types and is 

context specific[132]. The context specificity highlights the potential flaws in using cell 

lines to investigate genetic variants as they may display different influences compared to 

in vivo. In addition, cell specific effects may be undetectable in an eQTL analysis of a 

heterogenous population such as PBMCs where B cells make up 5-10% of the cells 

examined and so transcriptional changes may be masked by those from other cell types. 

 

Cis eQTLs have been shown to have a larger effect size than trans eQTLs in humans and 

so relatively small sample sizes have been used to detect cis eQTLs[184, 227]. In B cells, 

Fairfax et al, using 283 samples from healthy volunteers (a cohort of comparable size to 

my dataset) identified over 40,000 cis eQTLs (eSNPs) (minor allele frequency (MAF) 

0.01, permuted P <0.001). In this study, paired monocyte data were available which 

demonstrated that the majority of eSNPs were unique to B cells (26,549 eSNPs unique to 

B cells and 17,962 shared with monocytes). Interestingly, some shared eSNPs displayed 

opposing directional effects on gene expression in a cell-specific manner, emphasising 
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the importance of examining cell subsets to interpret GWAS studies. The group further 

examined eQTLs involving SNPs identified as disease risk alleles for common traits 

(based on Catalog of Published Genome-Wide Association Studies accessed in 2011) and 

showed that, after excluding the HLA loci, 14 of the cis eQTLs identified in B cells were 

shared with GWAS SNPs associated with RA. Of these, 6 were shared eQTLs with 

monocytes (ANAPC4, C5, FAM119B, MEGF9, VARS2, XRCC6BP1) and 8 unique to B 

cells (ABCG1, BLK, CCR6, COL8A2, DIP2A, FAM167A, GIN1, MSRA). An additional 7 

RA SNPs were specific to monocytes[132].  

Environmental conditions were first shown to affect a proportion of eQTLs in model 

organisms such as yeast[228, 229]. The identification of similar, context-specific eQTLs 

in the setting of complex diseases is more challenging, as the environmental change is 

less clearly defined and accurate measurement of exposure levels of a given factor 

difficult to measure, in contrast to in vitro work. However, analysis of combined datasets 

confirms the effects of sex, age, treatments such as glucocorticoids and exposure to 

immune stimuli on gene regulation[133, 136, 229-231]. This raises the possibility that a 

proportion of eQTLs may only be evident in the disease state. 

 

Peters et al examined this in vivo, looking for eQTLs which differed between the disease 

state, in this case inflammatory bowel disease (IBD), and health using an interaction 

analysis. They used a linear model with a genotype x disease interaction term (GxD) to 

look for differences in the effect of genotype on expression in the disease and healthy 

volunteer cohorts. A significant GxD interaction term for a SNP-gene pair indicated that 

the effect of the given genotype on expression was significantly different in disease (IBD 

in this case) and health. The eQTL may have a greater or lesser effect in disease, be 

absent in health but present in disease, or vice versa. In essence, they asked if there was a 

significant difference in the slope of the genotype-expression regression line between the 

two groups. 

 

The group identified 13 eQTLs with a GxD interaction effect across different cell subsets: 

CD4
+
 and CD8

+ 
T cells, monocytes and neutrophils. There were no B cell data available 

due to the relatively low number of available samples for this subset. The approach 

described by Peters et al has the potential to identify novel pathways for disease 

pathogenesis and the genes identified are not all immune related[133]. 
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The same group also showed that a proportion of eQTLs identified in an ANCA 

associated vasculitis cohort disappear with treatment, highlighting the importance of 

studying, not only a disease cohort but also untreated disease to gain insights into 

pathogenesis. In common with other complex diseases the missing heritability may also 

be unravelled by this approach, identifying novel pathways for disease development[111].  

 

A similar analysis of a multi-tissue RNA-sequencing dataset identified 16 cis genotype x 

body mass index (GxBMI) interactions, all of which were specific to adipose tissue and a 

subset were replicated in an independent dataset. The genes identified were enriched for 

inflammatory and metabolic genes and may provide insights into the potential 

mechanisms for the heterogeneity in obesity related co-morbidities[232].  

 

In this thesis, the eQTL landscape, at known RA risk loci, in CD19
+
 B cells from early 

arthritis patients was explored. The published findings can be found at the end of this 

thesis (Appendix C) and an overview of the findings is provided in this chapter.  

 

The principle used by Peters et al will be applied and adapted to integrate disease state 

data for the CD19
+
 B cell samples in this cohort and thereby identify disease specific 

eQTLs. This chapter will focus on work undertaken to seek differences in eQTL effects 

between RA and non-RA cohorts. 

 

5.2 Hypothesis and Aims 

5.2.1 Hypothesis 

By integrating genotype, B cell gene expression and clinical data in untreated RA 

patients, I hypothesise that novel insights into mechanisms of disease could be revealed. 

Specifically, an eQTL analysis of confirmed genetic risk loci in RA will provide insights 

into the mechanism of genetic risk in RA. Characterising the disease related specificity of 

variations in gene expression may provide insights into the biological significance of 

earlier discoveries from traditional GWAS approaches and alternative mechanisms of 

disease pathogenesis. 
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5.2.2 Aims 

1. Carry out an eQTL analysis of confirmed RA genetic risk loci in CD19
+
 B cells 

from patients presenting to an early arthritis clinic to gain further insight into the 

potential mechanisms of genetic risk in RA 

2. To identify a list of cis eQTLs in B cells which exert different effects in DMARD-

naive RA patients compared to a non-RA patients  

 

5.3 Analytical Methodology 

5.3.1 eQTL analysis of RA risk loci 

Cis and trans eQTLs were sought, focussing on variants in LD (defined as r
2 

≥0.8) with 

non-HLA RA SNPs confirmed in Caucasians and described by Okada et al [107]. The 

analysis was limited to non-HLA variants due to cross-hybridisation of expression probes 

and confounding effects of copy number variants in the HLA region. The bioinformatics 

analysis, using the MATRIX eQTL package in R, was completed by Andrew Skelton in 

the Bioinformatics Unit, in parallel with that from CD4
+ 

T cells from the NEAC patients.  

 

5.3.2 Interaction analysis 

The principle used by Peters et al was based on a two step procedure; in step 1 gene-SNP 

pairs were identified by linear regression of expression on genotype (no covariates 

included) and SNPs reaching the selected criteria were taken forward and a full model 

fitted with regression of genotype (0,1,2), disease (0,1) and genotype x disease interaction 

term. The aim of step 1 was to reduce the number of tests and improve the ability to 

detect significant changes. However, by analysing the cohort in one run, without 

stratifying the data in step 1 into disease and non-disease cohorts there is the potential to 

miss a proportion of interaction effect SNPs, as they may not appear as eQTLs. In light of 

this concern, the method used for this analysis was the LINEARCROSS function in 

MATRIX eQTL; as used by Glastonbury et al[232]. The function in matrix eQTL 

'modellinear_cross' was employed to indicate that MATRIX eQTL include the interaction 

of SNP and covariate (disease) in the model and test for its significance.  

 

The MAF was set at 0.05 and FDR threshold was set at 5%. Peters et al used an FDR 

threshold of 15% and MAF 0.1.  
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For the genome wide interaction analysis the disease group was made up of all the RA 

samples, combining seropositive and seronegative patients, and the control group 

comprised the remaining samples; excluding those with a diagnosis of UA. The choice of 

‘RA’ and ‘non-RA’ mirrored the earlier analyses described in Chapter 3, and had the 

advantage of maximising the number of samples available. This comparison has been the 

most informative in the previous analyses of CD19
+ 

B cell gene expression in this cohort. 

Alternative control groups were considered, in particular, non-inflammatory samples with 

normal CRP and ESR (n=32), however, given that this is an exploratory analysis, group 

size was prioritised for the choice of analysis and consistency of analysis groups. 

 

5.4 Results 

5.4.1  eQTL analysis of RA risk loci in CD19
+ 

B cells 

The cis-eQTL analysis of non-HLA RA risk loci in CD19
+ 

B cells identified 194 cis-

eQTLs and this corresponded to 10 genes at 7 loci: FAM167A, FADS1, ORMDL3, 

FADS2, FCRL3, GSDMB, SYNGR1, BLK, PPIL3 and CD83 (figure 5.1). At the 8p23 

locus FAM167A and BLK were both subject to cis regulation, however, the FAM167A 

eQTL was specific to CD19
+
 B cells and not seen in the CD4

+ 
T cells. 

 

The incorporation of disease phenotype (RA versus non-RA) to the linear model did not 

alter the final eQTL list. There was no evidence of disease-specific eQTLs at RA risk 

loci. 
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Figure 5.1 Manhattan plot of the 101 RA risk loci analysed  

The 101 RA risk loci analysed are shown and P-values for the single nucleotide 

polymorphism (SNP)-probe pairs in CD19
+
 B cells in early arthritis patients. Human 

Genome Organisation gene symbols for SNP-probe pairs that reached, or approached, 

experiment-wise significance (at thresholds of = 5% and =10%, horizontal lines) are 

indicated. 

 

5.4.2 Demographics for interaction analysis RA and Non-RA samples 

177 samples were used in the interaction analysis. The RA group was significantly older, 

with significantly higher levels of inflammation as measured by CRP and ESR (table 5.1). 

The age differences are not unexpected given the known age profile of RA patients and 

the inclusion of patients with non-inflammatory conditions within the control group, non-

RA. The non-RA group includes 55 patients diagnosed with other inflammatory 

conditions and 65 patients with non-inflammatory conditions. In the RA group 37 of the 

57 patients were ACPA positive. 
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 RA Non-RA P-value 

Sample number 57 120 - 

Age (yrs) 61 (21-89) 51.5 (18-92) 0.0004 

Gender (%F) 75.4 70.8 ns 

ESR (mm/hr)  25 (1-91) 9.5 (0-111) 0.0001 

CRP (mg/L) 10 (0-91) 5 (0-171) 0.0008 

SJC  1 (0-25) 0 (0-11) <0.0001 

TJC  6 (0-22) 2 (0-28) 0.0008 

DAS28 4.59 (1.26-8.56) 3.36 (0-6.99) <0.0001 

Table 5.1 Demographics for interaction analysis for RA and non-RA samples 

Median and range shown. P-values were calculated using unpaired T-test (age and 

DAS28), Fisher’s exact test (gender), or Mann-Whitney test (ESR, CRP, SJC, TJC). 

 

5.4.3 Interaction analysis – RA and non-RA 

The RA and non-RA data were analysed to identify genome wide cis eQTLs which 

differed between the two groups; meaning the effect of genotype on expression is 

significantly different in the RA and non-RA cohort.  

 

The initial analysis identified SNPs related to 64 genes where such an effect was seen. 

However, visualisation of the data demonstrated a marked imbalance in the genotype 

counts in a proportion of these results, such as the absence of samples homozygous for 

the minor allele at the SNP examined. Figure 5.2 depicts one example of a spurious 

finding at rs9622618, NCF4, alongside an example of a valid plot for rs7672848, 

CYP4V2. Indeed, observation of the plots in the paper by Peters et al demonstrate the 

potential flaws. The absence of filtering for genotype counts can lead to skewed 

genotype-expression regression lines in one cohort, potentially due to one sample, and the 

identification of a false positive interaction effect. This is particularly an issue in studies 

with small cohorts such as this. 
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Figure 5.2 Exemplar plots of disease specific eQTLs in the absence of filtering for 

genotype counts 

a) disease specific eQTL for NCF4 demonstrates a skewed genotype expression 

regression line in the RA group and b) the disease specific eQTL for CYP4V2 is an 

example of balanced genotype counts between groups. Plots of expression of a given gene 

on the vertical axis and genotype on the horizontal axis. Each data point represents one 

sample. The coloured lines drawn on the plots represent the estimated best fit line of the 

regression of expression on genotype in each group. The non-RA group is shown in red 

and RA in blue. 

 

There are various possible approaches to reduce the number of false positive results in 

this setting: increasing the MAF or adding genotype count filters either pre-analysis or 

post-analysis. The published interaction analyses do not describe this issue in detail in 

their methods sections.  

 

To address this issue the MAF was first increased from 0.05 to 0.1, the level used by 

Peters et al. In contrast to the addition of a genotype count, this approach did not require 

the inclusion of an additional step to the analysis pathway. However, this decreased the 

number of genes identified in the analysis to 4 (CSNK1G3, LRRC58, P2RX4 and 

POLR3H, which were also identified in the subsequent analyses) and so this option was 

rejected, given that this analysis is primarily for discovery purposes. In addition, when 

rerunning the analyses with control groups with smaller sample sizes no genes with 

interaction effects were identified, highlighting the need to adapt the methodology for 

discovery approaches.  

a) b) 
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Next, a genotype count filter was included prior to running the analysis. A minimum 

count of 5 samples for each genotype was tested and found to be too stringent; no disease 

related cis eQTLs were identified.  

 

The third option, a post analysis genotype filter, was selected for discovery purposes. The 

genotype count filter of ≥3 samples in each of the three genotype groups (prior to 

stratification by diagnosis) was selected to balance the considerations of false positives 

and false negatives in the analysis. After applying this post hoc filter to the data, 21 

individual genes, subject to a GxD interaction effect in CD19
+
 B cells, were identified 

(table 5.2), in each case the SNP with the lowest p-value is shown. The individual plots 

are shown in figure 5.3 allowing visualisation of the plots which is useful for the 

interpretation of results.  

 

The plots in figure 5.3 all met the criteria set for statistical significance and genotype 

counts, however, the ANKRD13C and CERK plots may represent false positives, skewed 

by the low expression of a RA minor allele homozygote sample in each case. In the case 

of INO80D, there is again, a RA minor allele homozygote with low expression but the 

plot appears more convincing as the heterozygotes in the RA sample demonstrate lower 

levels of expression than the non-RA group. It is, of course, easier to be convinced by 

plots where the spread of samples is more balanced between the homozygotes and 

heterozygotes in both the RA and non-RA groups as for CYPV42. 
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Gene 

Symbol 

SNP P-value FDR 

corrected  

p-value 

Gene Description 

AF339771 

 

Rs56306980  7.15478E-07 0.024485652 

 

DOCK9 DT (divergent 

transcript) 

ANKRD13C Rs1341793 1.20149E-07 

 

0.006552875 

 

Ankyrin repeat domain-

containing protein 13C 

ARID2 

 

Rs4768750 

 

6.35435E-07 

 

0.022313361 AT rich interaction domain 

2 (DNA binding protein) 

ATP5S 

 

Rs11157776 

 

2.42387E-07 0.010610813 distal membrane arm 

assembly complex 2 like 

(mitochondria) 

CERK 

 

Rs13058106 

 

5.56412E-08 

 

0.004017125 

 

ceramide kinase 

(sphingolipid metabolism) 

CLEC4 

 

Rs6488352 

 

9.13765E-07 

 

0.029844095 

 

C-type lectin domain 

family 4 member A 

CSNK1G3 

 

Rs17418582  1.15783E-08 

 

0.002223959 

 

casein kinase 1 gamma 3 

CYP4V2 

 

Rs7672047 

 

8.52922E-08 

 

0.005207385 

 

cytochrome P450 family 4 

subfamily V member 2 

DYRK1A 

 

Rs187450854 

 

3.63226E-07 

 

0.014744806 

 

dual specificity tyrosine 

phosphorylation regulated 

kinase 1A 

INO80D Rs12464038 9.02861E-08 0.005355195 INO80 complex subunit D 

LRRC58 

 

Rs1259291 

 

2.70393E-07 

 

0.011464193 

 

leucine rich repeat 

containing 58 

NS4APT2 Rs185843 1.14945E-07 0.006372081 SAP30 like 

P2RX4 Rs1718119 8.9594E-07 0.029387677 purinergic receptor P2X 4 

PIGB 

 

Rs35734155 

 

3.40315E-09 

 

0.001011888 

 

phosphatidylinositol 

glycan anchor biosynthesis 

class Bp 

PISD 

 

Rs12484094 

 

7.7126E-07 

 

0.026121367 

 

phosphatidylserine 

decarboxylase 

PITRM1 

 

Rs17159312 

 

1.32716E-07 

 

0.006619933 

 

pitrilysin metallopeptidase 

1 (mitochondria) 

POLR3H 

 

Rs80477 

 

3.24247E-08 

 

0.003258653 

 

RNA polymerase III 

subunit H 

RPLP0 

 

Rs2519541 

 

3.44591E-07 

 

0.014088288 

 

ribosomal protein lateral 

stalk subunit P0 

SUN1 

 

Rs28548330 

 

2.1397E-07 

 

0.009402815 

 

Sad1 and UNC84 domain 

containing 1 

TMEM62 

 

Rs1991324 

 

7.50871E-07 

 

0.025506298 

 

transmembrane protein 62 

TTC31 

 

Rs1474335 

 

8.78238E-07 

 

0.028931371 

 

tetratricopeptide repeat 

domain 31 

Table 5.2  cis eQTLs displaying different effects in RA and non-RA groups 

For each individual gene the SNP with the lowest P-value is shown. Gene description 

from NCBI Gene database[173].  
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Figure 5.3 cis eQTLs with distinct effects related to disease state 

Individual eQTL plots for each gene identified from the analysis using RA and non-RA 

sample groups, plots shown represent SNP with lowest P-value for the interaction effect 

for each gene. Each plot shows expression against genotype for the SNP. Genotype 0 

major allele homozygote, 1 heterozygote, 2 minor allele homozygote. Non-RA shown in 

red, RA shown in blue. Lines demonstrate the best fit linear regression line of expression 

on genotype for each group. 
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20 of the 21 genes identified are protein coding. AF33977, also known as DOCK9 

divergent transcript, is a validated non-coding RNA (ncRNA). The term ncRNA refers to 

RNA which is not translated to protein. There are several different categories of ncRNA, 

including long non-coding RNA and micro RNAs, which have been shown to potentially 

have functional roles in the cell, particularly in the regulation of gene expression. The 

remaining genes are protein coding and will be summarised in turn, the functional 

annotation, is from the NCBI Gene website unless otherwise stated[173]. 

 

ANKRD13C, ankyrin repeat domain 13C. Ankyrin repeats are widely found protein 

motifs which mediate protein-protein interactions. Understanding of the functional role of 

the ANKRD13 family is limited, it consists of 4 members, A, B, C and D. ANKRD13C is 

the only one of the 4 members not to contain an ubiquitin-interacting motif[233]. It 

localises to the cytosolic side of the endoplasmic reticulum and is thought to act as a 

molecular chaperone for G protein-coupled receptors, regulating their expression and exit 

from the endoplasmic reticulum[234]. Examination of the plot demonstrates one sample 

which may be skewing the data, there is a single minor allele homozygote in the RA 

group and its expression level is markedly lower than for the other samples.  

 

ARID2 AT-rich interaction domain 2. ARID2 is a DNA-binding protein which functions 

as a subunit of the PBAF (SWI/SNF-B) chromatin remodelling complex that regulates 

chromatin accessibility for transcription factors. The PBAF complex is a tumour 

suppressor and mutations in its subunits, including ARID2, are associated with human 

cancers including melanoma and hepatocellular carcinomas. ARID2 has been shown to 

suppress the expression of interferon- responsive genes. The PBAF complex reduces 

chromatin accessibility for IFN- inducible genes, increasing resistance to T cell–

mediated cytotoxicity; targeting the PBAF complex is under investigation as a potential 

mechanism to overcome this resistance in tumour cells [235].  

 

ATP5S, official symbol DMAC2L, distal membrane arm assembly complex 2 like. ATP5S 

encodes a subunit of the mitochondrial ATP synthase which catalyses ATP synthesis, this 

subunit is necessary for the energy transduction activity of the ATP synthase complexes. 
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CERK ceramide kinase. CERK phosphorylates ceramide to the sphingolipid metabolite, 

and lipid mediator, ceramide 1-phosphate (C1P). Both CERK and C1P have been 

implicated in various cellular processes and are thought to be involved in autocrine and 

paracrine signalling, and cell growth and survival[236]. The exact physiological role of 

ceramide and C1P have yet to be elucidated but there is increasing interest in their role in 

cancer and inflammation. Examination of the plot again demonstrates one sample which 

may be skewing the data. There is a single minor allele homozygote in the RA group and 

its expression level is markedly lower than for the other samples. 

 

CLEC4A C-type lectin domain family 4 member A. A member of the C-type lectin/C-

type lectin-like domain (CTL/CTLD) superfamily, transmembrane proteins which can 

bind Ca
2+

 and carbohydrate ligands which are derived from pathogen or self. They may 

have a potential role in both innate and adaptive immunity and in differentiating between 

self and non self.  

 

CSNK1G3 casein kinase 1 gamma 3. It encodes a member of a family of serine/threonine 

protein kinases that are regulators of signal transduction pathways. 

 

CYP4V2 cytochrome P450 family 4 subfamily V member 2. A member of the 

cytochrome P450 hemethiolate protein superfamily which is involved in oxidizing 

various substrates in the metabolic pathway. It is implicated in the metabolism of fatty 

acid precursors into polyunsaturated fatty acids but its exact function is unclear. The 

individual plot for this is convincing, showing that genotype has an effect in opposing 

directions in the RA and non-RA groups. The functional consequences of potential 

differences in energy generation are not clear. 

 

DYRK1A dual specificity tyrosine phosphorylation regulated kinase 1A. DYRK1A 

contains a nuclear targeting signal sequence, a protein kinase domain and a leucine zipper 

motif. It is localized in the Down syndrome critical region of chromosome 21, and is 

considered to be a strong candidate gene for learning difficulties associated with Down 

syndrome, hence the focus in the literature in the field of intellectual disability. It has a 

critical role in lymphopoeisis, where DYRK1A has a major role in the transition from the 

highly proliferative state of pre-B and pre-T cells to the quiescence of later development 

(where cells exit the cell cycle to undergo further differentiation), by negatively 
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regulating cyclin D3 levels. Loss of DYRK1A therefore impairs cell cycle exit and 

lymphocyte differentiation[237]. Expression of DYRK1A is not related to genotype in the 

non-RA group, however, an eQTL can be seen in the RA group. 

 

INO80D INO80 complex subunit D. This is a putative regulatory component of the 

chromatin remodelling INO80 complex which regulates nucleosomes and is important for 

responses to DNA damage. Dynamic modifications in chromatin are vital for maintaining 

DNA repair [238] 

 

LRRC58 leucine rich repeat containing 58. The protein is validated but its functional role 

is unknown. 

 

NS4APT2, official symbol SAP30L, Sin3A associated protein 30 like. The protein is a 

component of the histone deacetylase complex, deacetylation favours a closed chromatin 

structure and inhibition of transcription. 

 

P2RX4 purinergic receptor P2X4. The product of this gene belongs to the family of 

purinoceptors for ATP. This receptor functions as a ligand-gated ion channel with high 

calcium permeability. The main pharmacological distinction between the members of the 

purinoceptor family is their relative sensitivity to the antagonists suramin and PPADS. 

The product of this gene has the lowest sensitivity for these antagonists.  

 

PIGB phosphatidylinositol glycan anchor biosynthesis class B. This transmembrane 

protein is located in the endoplasmic reticulum and is involved in 

glycosylphosphatidylinositol GPI-anchor biosynthesis, anchoring proteins to the cell 

surface. There are 2 RA samples, one heterozygote and one minor allele homozygote, 

each associated with lower gene expression than the remaining samples, which are 

skewing this plot. 

 

PISD phosphatidylserine decarboxylase. The enzyme is involved in phospholipid 

metabolism, catalysing the conversion of phosphatidylserine to phosphatidylethanolamine 

in the inner mitochondrial membrane.  
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PITRM1 pitrilysin metallopeptidase 1. This ATP-dependent metalloprotease degrades 

post-cleavage mitochondrial transit peptides. The encoded protein binds zinc and can also 

degrade amyloid beta A4 protein, suggesting a possible role in Alzheimer's disease.  

 

POLR3H RNA polymerase III subunit H. Pol III is responsible for the transcription of 

housekeeping genes, it is tightly regulated during the cell cycle and its activity changes 

during cell differentiation[239]. There are 2 RA samples, one heterozygote and one minor 

allele homozygote associated with lower gene expression than the remaining samples 

which may be skewing this plot. 

 

RPLP0 ribosomal protein lateral stalk subunit P0.  This encodes a ribosomal protein that 

is a component of the 60S subunit. 

 

SUN1 Sad1 and UNC84 domain containing 1. This encodes a nuclear envelope protein 

involved in nuclear anchorage and migration. It has been shown that 

SUN1 overexpression prevents human immunodeficiency virus 1 nuclear entry[240]. 

 

TMEM62 transmembrane protein 62. Its functional role remains to be elucidated. 

 

TTC31 tetratricopeptide repeat domain 31. Its functional role remains to be elucidated.  

 

5.5 Discussion  

Interaction analysis – RA and non-RA 

The results shown here demonstrate the presence of disease specific cis eQTLs in CD19
+
 

B cells from RA patients compared to the non-RA cohort. Interestingly, there is no 

overlap between the genes identified in this analysis and the RA risk SNPs described by 

Okada et al[107]. The results of this interaction analysis may, therefore, offer new 

insights into disease pathogenesis and identify potential explanations for the ‘missed 

heritability’ of RA. 

 

Interpretation of analyses such as this, which are not hypothesis driven, is complicated by 

the identification of genes without clear associations with the disease under examination, 
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genes that encode ncRNAs which may regulate more than one gene and genes whose 

function remains to elucidated, such as LRRC58, TMEM62, TTC31.  

 

It is possible to prioritise the findings based on their perceived relevance to RA and so 

focus on immune function genes such as CLEC4 and DYRK1A. Alternatively, direct 

visualisation of the eQTL plots allows a focus on results where the distribution of the 

samples between genotypes is balanced, such as CYP4V2. However, both methods 

potentially ignore results which may provide insights into pathogenesis or identify genetic 

factors relevant to disease progression or severity. 

 

DYRK1A is not an eQTL in the non-RA population but, in RA patients, the presence of 

the minor allele is associated with decreased expression of the gene. DYRK1A has been 

shown to phosphorylate many proteins with diverse functions, including cyclin D3 which 

itself plays a critical role in the regulation of B cell development and proliferation[237]. 

Work in the Dyrk1A
-/-

 knockout mouse has shown that loss of DYRK1A during 

haematopoesis stabilises Cyclin D3, reducing its degradation and so impairs the 

appropriate exit of pre-B cells from the cell cycle which is required for normal 

differentiation and development[237]. The functional consequences to the peripheral B 

cell compartment of a reduction in DYRK1A are yet to be investigated, but the 

identification of this disease specific eQTL raises the possibility that B cell development 

may be altered in a subgroup of RA patients.  

 

CLEC4A, C-type lectin domain family 4 member A, also known as the dendritic cell 

immunoreceptor (DCIR), is a member of the C-type lectin receptors which have diverse 

functions including acting as pattern recognition receptors. CLEC4A has been associated 

with ACPA-negative RA in Asian populations and is expressed on antigen presenting 

cells, including B cells[241, 242]. The extracellular domain contains the carbohydrate 

recognition domain with a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, 

which transduces negative signals into cells; leading to the suggestion that it has a 

potential immunoregulatory role [243].  

 

A small study in humans identified DCIR expression on cells from synovial fluid and 

synovial tissue from rheumatoid joints and this was downregulated following 

corticosteroid treatment. DCIR expression was not identified in healthy synovium[244]. 
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In mouse models, Dcir
-/-

 mice display a more severe collagen induced arthritis phenotype 

and develop serum autoantibodies over time, alongside an excessive expansion of the 

dendritic cell population; suggesting DCIR is a negative regulator of dendritic cell (DC) 

expansion and may be important in the development of autoimmunity[245]. Engagement 

of the DCIR has been shown to inhibit BCR-mediated Ca
2+

 mobilisation, therefore 

potentially influencing B cell activation[246]. The precise role of DCIR in B cells is not 

established but differences in its expression in RA patients may influence antigen 

presentation or the B cell response to antigen binding through modulation of the strength 

of signalling through the BCR.  

 

The plot in figure 5.3 for CLEC4A shows the gene expression is not related to genotype in 

the non-RA group but expression is reduced in the RA group in the presence of the minor 

allele, of note there are no minor allele homozygotes in the RA group and the result 

should be confirmed in a larger cohort and at a protein level. 

 

The eQTL effect seen at CYP4V2 is striking for the convincing opposing effects seen 

between the RA and non-RA groups. The exact function of this CYP4V2 is not known 

although it is involved in fatty acid metabolism. Alterations in the expression of CYP4V2, 

if reflected at the protein level, may relate to activation state of the cell or altered 

effective B cell function if cellular metabolism is altered.  

 

In this analysis, the genes related to the regulation of gene expression, cell signalling and 

metabolism predominate over immunological function. ARID2, INO080D and NS4APT2 

are important in chromatin remodelling thereby influencing gene expression and also 

DNA repair. Gene expression and the cellular processing of proteins is potentially 

influenced by ANKRD13C, DYRK1A, PIGB, POLR3H and RPLP0. 

 

ATP5S, CYP4V2, PISD and, PITRM1 are related to mitochondrial function and cell 

metabolism, which may link to the altered B cell activation state identified in the gene set 

analysis for the RA group in Chapter 3. The other potential functional category is cell 

signalling influenced by CERK, CSNK1G3 and P2RX4. 

 

The results in table 5.2 display the SNPs with the most siginifcant p-value for each gene. 

In most cases, several SNPs were shown to display an interaction effect for each of the 21 
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genes. A proportion of these SNPs are likely to be in LD with each other. In this setting 

clumping might optimise power and so may lead to the identification of additional 

interaction effects. Clumping identifies the most significant SNP in each LD block and 

this is used in subsequent analyses, reducing the number of tests to be carried out and 

ensuring there remains one representative SNP for each region of the genome. The 

analysis pipeline presented here has been shown to be effective but additions such as 

clumping may lead to the discovery of further disease specific eQTLs. 

 

The demographics of the two comparator groups used for this analysis differed 

significantly in terms of age and inflammation, as measured by ESR and CRP. The gene 

expression analysis previously described, in Chapter 4, provides evidence that both 

inflammation and age influence the B cell transcriptome. The differences identified 

between the RA and non-RA groups may, therefore, reflect differences attributable to age 

or inflammation rather than to disease per se. The next step with these data would be to 

add these variables to the model and so examine the influence of clinical covariates on the 

results shown.  

 

In summary, the principle behind this interaction analysis was to identify disease specific 

eQTLs and the methodology selected was chosen for discovery purposes, hence the 

decision to use all the RA samples and the non-RA group as control, to optimise the 

sample sizes used. The results shown here highlight the potential to gain valuable insights 

into disease pathogenesis using this methodology.  

 

The individual results shown here should be interpreted with caution give the sample 

sizes and the potential confounders of age and levels of inflammation. The identification 

of relatively few disease specific cis eQTLs is not surprising given that Peters et al 

identified 3 such eQTLs in CD4
+
 T cells, 3 in neutrophils, none in CD8

+
 T cells and 7 in 

monocytes, with the FDR relaxed to 15%. The lack of immunological bias in the results is 

also in keeping with their work where the genes identified did not solely have 

immunological functions, concluding that analyses may identify novel, potentially 

clinically relevant eQTLs only present in disease. Their paper used a healthy volunteer 

cohort and so, in this context, levels of inflammation may not have been corrected for. 
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There are many potential avenues to be explored prompted by these findings if replicated. 

The disease specific eQTLs related to chromatin state highlight the potential importance 

of the regulation of gene expression in the development of disease. eQTLs related to cell 

metabolism may indicate that B cell activity is altered in RA as suggested in my 

expression analysis. 

 

In the first instance I would like to establish the influence of age and inflammation on the 

analyses. Initially, I would repeat the analyses adding age, ESR and CRP to the model. I 

would then like to recruit a healthy volunteer cohort to repeat the analysis prior to 

carrying out downstream work. 

 

5.6 Future work 

 Repeat the analyses incorporating age, ESR and CRP into the model 

 Repeat the analysis using a larger RA cohort and a healthy volunteer age-matched 

control group 
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6. B cell subsets in an early arthritis cohort  
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6.1 Background 

Lymphopaenia is observed in many autoimmune conditions including SLE where it is 

included in the diagnostic criteria. An analysis of a small cohort of British established RA 

patients showed that 15% of patients had a persistent lymphopaenia, a lymphocyte count 

of ≤ 1.00 x10
9
/L on at least 2 occasions, over the course of 1 year[247]. The observed 

persistent lymphopaenia was secondary to a decrease in circulating T cells, with no 

significant change in the CD4:CD8 T cell ratio. There was no change observed in the 

number of circulating B cells.  

 

The French ESPOIR cohort of over 800 DMARD naive early arthritis patients showed 

that 6.2% of patients were lymphopaenic at baseline and this was associated with 

inflammation, RF positivity and disease activity[248]. The most common diagnosis in the 

lymphopaenic group (at 3 years) was RA (54%). The study concluded that lymphopaenia, 

in early inflammatory arthritis, may be a feature of RA but the proportion of 

lymphopaenic patients was rare in the early RA group overall. The lymphocyte subsets 

were not examined. 

 

There is little evidence to suggest that the overall proportion of B cells within the 

lymphocyte population differs between healthy controls (HC) and the early RA 

population[247, 249, 250]. There is no clear consensus on the frequency of different B 

cell subsets in early RA, reflecting the paucity of studies in this area and the small 

samples sizes used. In early RA patients have been shown to have a higher percentage of 

circulating total CD19
+
 B cells, a lower proportion of plasmablasts and an expanded 

proportion of antigen inexperienced naive B cells compared to those with established 

disease. This may reflect the influence of disease duration or the effects of 

medications[250]. In addition, patients with early, untreated disease have a higher 

percentage of circulating naive B cells and a lower percentage of total memory B cells 

compared to healthy controls [249, 251]. The increase in the proportion of circulating 

naive cells described may be secondary to the migration of the memory subset to the 

synovium where the percentage of memory B cells has been shown to be higher than in 

the peripheral blood in established disease [252]. 

 

Analysis of the B cell subsets in early, untreated disease may provide information related 

to the pathogenesis and initiation of disease. Insights into the potential importance of 
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individual B cell subsets comes from the rituximab response literature, where preplasma 

cells, and the plasmablast marker, IgJ, have been associated with response to B cell 

depletion[96, 101]. The proportion of naive and memory B cells was also higher in a 

rituximab non-responder group, although this did not reach statistical significance[96]. 

 

Hypotheses regarding disease pathogenesis include the expansion of an autoreactive 

clone of B cells and loss of regulation of the immune system. The subset from which any 

autoreactive cells arise remains to be established, but the naive cell subset, which is 

expanded in early RA, have been postulated as a potential source[250, 253].  

 

The regulatory capacity of B cells has gained increasing interest in recent years. In mouse 

models of autoimmune diseases, including collagen induced arthritis, B cells which 

produce high levels of IL-10 can suppress the inflammatory response[52]. IL-10 

producing B cells, termed regulatory B cells (Bregs), can be found in humans and they 

play a crucial role in autoimmune diseases and transplant tolerance[56, 254]. As there is 

no consensus on the exact phenotype of B cells with a regulatory capacity in mice or 

humans, regulatory B cells have been identified by the expression and release of IL-10 

but it is unlikely that suppression is entirely mediated by IL-10.  Transforming growth 

factor β (TGFβ), IL-35, and direct cell to cell contact, with co-stimulatory molecules 

CD80/CD86, have been shown to also contribute to Breg dependent 

immunoregulation[54].  

 

In mice, different phenotypes have been shown to have regulatory capability with the 

consensus that Bregs express high levels of CD1d, CD24 and CD21 but variable levels of 

CD5, CD10 and CD23[255]. They do not fall into a single homogenous population. 

 

In humans, regulatory B cells again do not fall into a single, clearly defined population 

and have been shown to be enriched in memory, plasmablast and transitional B cell 

subsets[59, 61, 256]. As a consequence of the lack of a definitive phenotype, the majority 

of current human work relies on B cell isolation, in vitro stimulation to identify IL-10 

producing cells and then phenotyping of these cells. An alternative approach is to focus 

on a group’s favoured phenotype, for example CD19
+
CD24

hi
CD38

hi 
or 

CD19
+
CD24

hi
CD27

hi 
B cells[59, 61]. 
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In autoimmune disease, Mauri’s group has shown that CD19
+
CD24

hi
CD38

hi
 B cells are 

reduced in number in established RA (estRA) patients with active disease when compared 

to those with inactive disease and healthy individuals[61]. In addition, they have shown 

that CD19
+
CD24

hi
CD38

hi 
B cells from healthy individuals are able to convert CD4

+
 T 

cells into suppressive regulatory T cells (Tregs) and limit Th17 development, unlike 

CD19
+
CD24

hi
CD38

hi
 B cells from RA patients. This suggests that, in RA, immature B 

cells are unable to prevent the differentiation of Th17 cells under Th17 polarising 

conditions, or convert naive T cells to regulatory T cells and so are less able to restrict the 

development of autoreactive inflammation. However, in RA, CD19
+
CD24

hi
CD38

hi
 B 

cells maintained their ability to inhibit Th1 cell differentiation. This presents an exciting 

insight into potential mechanisms of disease in RA. 

 

Mauri’s group have examined the CD19
+
CD24

hi
CD38

hi
 B cell subset in other 

autoimmune conditions and demonstrated a functional impairment in SLE. Cells from 

SLE patients produced less IL-10 in response to CD40 stimulation than those from HCs, 

and were unable to suppress pro-inflammatory cytokine production from CD4
+
 T 

cells[54]. 

 

There is currently little work regarding Bregs in early RA. One study looked at postulated 

Bregs in early RA, focussing on CD5
+
CD1d

+
 B cells, a phenotype more established in 

mouse models of disease. This subset was reduced in RA patients compared to HCs and 

negatively correlated with DAS28 score[62]. It is interesting to note that Mauri’s group 

have shown that the majority (71%) of CD19
+
CD5

+
CD1d

hi 
B cells are found within the 

CD19
+
CD24

hi
CD38

hi
 B cell subset .[54] This suggests that there may be concordance 

with the Breg phenotype found in mice. 

 

The importance of B cells in the maintenance of tolerance is highlighted in the transplant 

literature where the adoptive transfer of B cells from tolerant animals, in a rat 

transplantation model, resulted in the transfer of allograft tolerance[63]. These B cells 

could be described as displaying a regulatory phenotype. Newell et al identified an 

increased frequency of transitional CD19
+
CD24

+
CD38

+ 
B cells in renal transplant 

patients who did not require continuous drug immunosuppressive therapy; providing 

further evidence that this subset of immature cells may be important for the maintenance 

of tolerance[51].  
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Simon et al recently highlighted the complexity of the regulatory function of B cells[47]. 

In CD19
+
CD24

hi
CD38

hi
 B cells, multicolour flow cytometry, bioinformatics and 

functional studies were used to identify multiple subsets within this population; each 

subset demonstrating differing regulatory properties. A 10-colour flow cytometry analysis 

using Flow clustering without K (FLOCK) software identified 8 clusters within the 

CD19
+
CD24

hi
CD38

hi
 B cell population. Three markers: CD27, IgM and IgD were the 

most useful in differentiating subsets within the clusters. These markers were used to 

congregate the 8 clusters into 4 groups, subsequently named T1 (immature), T2 

(intermediate) , T3 (resting state) and CD27
+
 transitional (activated memory). The 

transitional CD27
+ 

population could be identified as CD27
+ 

within the 

CD19
+
CD24

hi
CD38

hi
 group and T1, T2 and T3 groups were identified within the 

CD19
+
CD24

hi
CD38

hi
CD27

- 
subset, based on the relative expression of IgD and IgM, and 

this strategy was used for functional work on the subsets.  

 

The transitional CD27
+
 subset was able to suppress proinflammatory cytokines and 

produce high levels of IL-10. Interestingly, the percentage of CD27
+ 

cells within the 

CD19
+
CD24

hi
CD38

hi
 B cell population was significantly increased in Sjogren’s 

syndrome and SLE compared to HC. This may be secondary to disease activity or drug 

treatments, which may influence the composition of the B cell compartment. 

Alternatively, the observed increase in the transitional CD27
+
 subset may represent a 

compensatory response to control the inflammatory process. The patients with Sjogren’s 

syndrome and SLE had a significantly higher overall percentage of CD19
+
CD24

hi
CD38

hi
 

B cells (as a % of CD19
+
 cells) compared to HCs.  

 

The T3 subset was consistently able to suppress T cell proliferation, in contrast to the T1 

and CD27
+ 

subsets. This work demonstrates that the regulatory properties of B cells may 

not lie solely within one subset. The group did not look at RA transitional B cell subsets 

in this manner[47].  

 

IL-10 is produced by B cells on stimulation, but production is not limited to a single, 

distinct subpopulation. IL-10 producing cells are enriched in both the CD19
+
CD27

+ 
and 

CD19
+
CD38

+
 B cell compartments [58, 59]. In a CD19

+
CD27

+
 B cell population, the 

frequency of IL-10 producing cells was 2-4 times that in the CD19
+
CD27

-
 B cell 

population, suggesting a correlation with the subsets identified by Simon et al[47, 58]. 
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More specifically, IL-10 producing cells have been shown to be enriched in a 

CD19
+
CD24

hi
CD27

+ 
B cell population[59] 

 

These data highlight the potential importance of B cell subsets in RA disease 

pathogenesis and the need to further examine subsets in a DMARD-naive, early RA 

cohort. As highlighted above, there is now substantial evidence linking the 

CD19
+
CD24

hi
CD38

hi
 B cell subset to regulation of the immune system, and 

autoimmunity, but data are lacking on this population in DMARD naive RA patients. 

This transitional B cell subset, newly emerged from the bone marrow and so at a key 

stage in B cell differentiation, may hold further clues to RA pathogenesis and play a 

crucial role in the development of autoreactivity. 

 

6.2 Hypothesis and Aims 

 

6.2.1 Hypothesis 

The peripheral B cell compartment has been shown to be altered in established and early 

RA but there is a lack of data comparing DMARD naive RA patients to control groups. 

Given the assumed role of autoantibody producing cells in RA pathogenesis I would 

predict the plasmablast subset to be elevated in early disease, and memory population 

reduced, as this latter subset migrates to the synovium and other sites of disease activity; 

the naive population will consequentially expand in proportion. I also predict that the 

regulatory B cell populations will be expanded in the RA group, in an attempt to control 

the inflammatory process. 

 

6.2.2 Aims 

In this chapter I will look for differences in subsets within the CD19
+ 

B cell compartment 

in whole blood, to answer the following questions: 

1. Do the proportions of naive and memory B cells differ between patients with RA 

and those with other inflammatory or non-inflammatory conditions? 

2. Does the proportion of plasmablasts differ between patients with RA and those 

with other inflammatory or non-inflammatory conditions?  

3. Can I identify differences in the main three postulated regulatory B cell subsets in 

early RA?  
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6.3 Results 

6.3.1 Patient cohort 

Patients were recruited from the Newcastle Early Arthritis Clinic for the microarray study 

(Chapter 3) and an aliquot of whole blood was used for phenotyping CD19
+
 B cell 

subsets by flow cytometry. The patients recruited were DMARD and glucocorticoid 

naive. A small group of HC and patients with estRA were recruited for further work on 

the purported regulatory B cell subset, CD19
+
CD24

hi
CD38

hi
 cells. The patients with 

estRA had seropositive RA and were all due to receive their first dose of rituximab but 

had differing treatment regimes, including glucocorticoids, in the weeks prior to 

recruitment. 

 

The initial comparisons were between the early RA group and non-RA groups (table 6.1). 

The RA group were older, with higher levels of inflammation as measured by ESR and 

CRP. The non-RA group included patients diagnosed with both inflammatory and non-

inflammatory conditions. Following the initial analysis, the non-RA group was split into 

‘other inflammatory’ and ‘non-inflammatory’ conditions and the three groups differed 

significantly in terms of gender, age, CRP and ESR (table 6.2 and figure 6.1). The 

comparisons in figure 6.1 are all based on comparisons with the RA group. The RA group 

are older, with more evidence of inflammation as measured by ESR.  

 

 RA Non-RA P-value 

Number of 

samples 
56 124 - 

Gender 

(% female) 
78.6 67.2 ns 

Age 

(yrs) 

61 

[21-73] 

51 

[18-92] 
<0.0001 

ESR 

(mm/hr) 

26 

[1-91] 

12 

[1-113] 
0.0008 

CRP 

(mg/L) 

11 

[4-91] 

5 

[0-129] 
0.0007 

Table 6.1 Demographics and clinical characteristics for RA and non-RA samples 

Median values and range shown. P-values were calculated by the Mann-Whitney or 

unpaired T tests, except in the case of gender where the individual Fisher’s exact test was 

used. 
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 RA 

Non-RA 

P-value Non 

inflammatory  

Other 

inflammatory 

Number of 

samples 
56 68 56 - 

Gender 

(% female) 
78.6 78.3 53.6 0.0032 

Age 

(yrs) 

61 

[21-73] 

51 

[22-87] 

51.5 

[18-92] 
0.0001 

ESR 

(mmHg) 

26 

[1-91] 

11 

[1-100] 

13 

[1-113] 
0.002 

CRP 

(mg/L) 

11 

[4-91] 

5 

[0-49] 

6.5 

[0-189] 
0.0009 

Table 6.2 Demographics and clinical characteristics for RA, other inflammatory and 

non-inflammatory samples 

Median values and range shown. One way ANOVA or Kruskal Wallis tests were used to 

compare groups except in the case of gender where Fisher’s exact test was used. 
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Figure 6.1 Demographics and clinical characteristics: The Newcastle Early Arthritis 

cohort  

The clinical characteristics for the rheumatoid arthritis (RA) group (n=56), non-

inflammatory arthritis group (n=68) and other inflammatory group (n=56) were 

compared. The groups were compared by a) Gender, b) Age, c) ESR and d) CRP. 

Horizontal lines depict the median values in plots b)-d). Individual T tests/Mann Whitney 

tests were carried out to compare the RA group separately to the non-inflammatory group 

and then to the other inflammatory group. Fisher’s exact test was used for gender. 

*P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.  
 

The group termed non-inflammatory includes patients with a final diagnosis of 

osteoarthritis (OA) and also other non-inflammatory conditions, as attributed by their 

consultant; this includes a mixture of diagnoses including fibromyalgia. When the non-

inflammatory group is divided into OA (n=28) and other non-inflammatory conditions 
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(n=40), the OA group is significantly older; the CRP is also lower in the OA group 

although this difference does not reach statistical significance (table 6.3). The OA group 

is similar to the RA group in terms of gender distribution and age, but not levels of 

inflammation (table 6.4).  

 

 Osteoarthritis 

patients 

Other non-

inflammatory 

patients 

P-value 

Number 28 40 - 

Gender 

(%F) 
78.6 80 ns 

Age 
(yrs) 

55 

[37-87] 
45.5 

[22-69] 
0.0005 

ESR 
(mm/hr) 

7 

[1-38] 

15.5 

[1-100] 
0.269 

CRP 
(mg/L) 

5 

[4-26] 

6.5 

[5-49] 
0.055 

Table 6.3 Demographics and clinical characteristics for OA and other non-

inflammatory samples 

Median values and range are shown. P-values were calculated by the Mann-Whitney or 

unpaired T test, except in the case of gender where the individual Fisher’s exact test was 

used. 
 

 RA Osteoarthritis P-value 

Number of 

samples 
56 28 - 

Gender 

(%F) 
78.6 75.9 ns 

Age 
(yrs) 

61 

[21-73] 

55 

[37-87] 
0.1682 

ESR 
(mm/hr) 

26 

[1-91] 

7 

[1-38] 
0.0006 

CRP 
(mg/L) 

11 

[4-91] 

5 

[4-26] 
<0.0001 

Table 6.4 Demographics and clinical characteristics for RA and OA samples 

Median values and range are shown. P-values were calculated by the Mann-Whitney or 

unpaired T test, except in the case of gender where the individual Fisher’s exact test was 

used. 
 

 



 174 

6.3.2 Gating strategy 

As described in Methods 2.7.2 , the CD19
+
 B cell subset was identified by first using a 

singlet gate (SSC-A against SSC-W) to remove doublets and this was carried forward to 

identify the leucocyte and lymphocyte populations. The percentage of CD19
+
 B cells was 

then determined as a proportion of total leucocytes. The proportions of postulated 

regulatory B cell subsets (CD19
+
CD24

hi
CD38

hi
, CD19

+
CD24

hi
CD27

+
) and plasmablasts 

(CD19
+
CD27

hi
CD38

hi
) were then measured as percentages of the CD19

+ 
B cell gate. The 

lymphocyte gate was used for the identification of CD19
+
CD27

+
 memory B cells and 

CD19
+
CD27

-
 naive B cells. 

 

6.3.3 Total B cells 

The percentage of CD19
+ 

B cells was significantly lower in the early RA group than the 

main comparator group, non-RA (figure 6.2a). When the non-RA group was split there 

was a significant difference in the percentage of CD19
+
 B cells between the early RA 

group and those with a non-inflammatory arthritis, but not those with other inflammatory 

arthritides (figure 6.2b).  Comparing the other inflammatory arthritis group to the non-

inflammatory group the observed difference did not reach statistical significance (p = 

0.064). In summary, a significant difference was identified in the percentage of CD19
+
 B 

cells between the early RA group and all the other conditions combined and with the non-

inflammatory group but this was not true when comparing the early RA group to patients 

with other inflammatory conditions. 
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Figure 6.2 The frequency of CD19
+
 B cells in different disease groups 

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+ 

B cells. CD19
+ 

B cells were identified from leucocytes 

following exclusion of doublets using SSC-A v SSC-W. a) Data from RA (n=56) and non-

RA (n=124) individual donors were plotted. b) The non-RA group is split into two 

groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared to the 

RA group. The horizontal bars represent the median value, significance was determined 

by Mann-Whitney tests to compare the RA group to each group separately. ** p<0.01, 

***p<0.001. 
 

Given the differences in age and acute phase response (as measured by CRP and ESR) 

between the early RA and non-RA group a logistic regression analysis was performed. 

This demonstrated that, in addition to age, the percentage of CD19
+ 

B cells is 

independently associated with a diagnosis of RA in patients presenting to the early 

arthritis clinic. In contrast, markers of the acute phase response (ESR and CRP) are not 

independently associated with a diagnosis of RA (table 6.5). 
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 Exp (B) P-value 95% CI 

CD19
+ 

B cells  

(% of leucocytes) 

0.769 0.036 0.602-0.983 

Age (yrs) 1.035 0.014 1.007-1.063 

ESR (mm/hr) 1.019 0.075 0.988-1.040 

CRP (mg/L) 0.989 0.241 0.972-1.007 

Table 6.5 Multivariate analysis of clinical variables and the frequency of CD19
+ 

B cells 

as predictors of clinical outcome 

Logistic regression analysis was carried out using SPSS. RA (n=56) and non-RA (n=124) 

samples. Multivariate analysis indicates that age and frequency of CD19
+ 

B cells are 

independently associated with a diagnosis of RA. 

 

The relationship between the percentage of CD19
+
 B cells and clinical characteristics was 

next examined using all available samples; including samples without a clear diagnosis at 

the baseline assessment, to improve the sample size. There was a negative correlation 

between the percentage of CD19
+ 

B cells and age, ESR and CRP (figure 6.3).  

 

In the RA group alone (n=75) the percentage of CD19
+
 B cells negatively correlated with 

age (R=-0.2981, P 0.0094) and CRP (R=-0.2800, P 0.0157) but not with ESR or disease 

activity as measured by DAS28 score (data not shown). 
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Figure 6.3 Relationship between the percentage of CD19
+
 B cells and clinical 

characteristics  

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+ 

B cells. CD19
+ 

B cells were identified from leucocytes 

following exclusion of doublets using SSC-A v SSC-W. The relationship between the 

frequency of CD19
+
 B cells and a) age (n=233), b) ESR (n=230) and c) CRP (n=232) 

was tested using Spearman’s correlation. 

 

6.3.4 Naive and memory B cells 

There were no differences detected in the frequency of naive (CD19
+
CD27

-
 cells) or 

memory (CD19
+
CD27

+
 cells)

 
B cells between the RA group and the non-RA group. The 

non-RA group was split into a non-inflammatory and other inflammatory group and these 

two groups were compared, in turn, to the RA group. No difference in the frequency of 

naive and memory B cells was detected between the groups (figure 6.4). 
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Figure 6.4 The frequency of naive and memory B cells 

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+
CD27

- 
B cells (naive) and CD19

+
CD27

+ 
B cells (memory). 

Naive and memory B cells were identified from lymphocytes following exclusion of 

doublets using SSC-A v SSC-W. Plots a) and b) show data for CD19
+
CD27

-
(naive)

 
B cells 

from a) RA (n=56) and non-RA (n=124) individual donors, b) the non-RA group is split 

into two groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared 

to the RA group. Plots c) and d) show data for CD19
+
CD27

+
 (memory) B cells from c) 

RA (n=56) and non-RA (n=124) individual donors, d) the non-RA group is split into two 

groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared to the 

RA group.  The horizontal bars represent the median value. There was no significant 

difference between the groups using the Mann-Whitney test. 
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6.3.5 Regulatory B cells 

 

CD19
+
CD24

hi
CD27

+
 B cells 

One postulated regulatory B cell subset is part of the memory B cell compartment and the 

frequency of this subset, CD19
+
CD24

hi
CD27

+
 B cells, was assessed within the CD19

+
 B 

cell population. There was no detectable difference between the percentage of this subset 

in the RA group compared to the other clinical categories (figure 6.5). 

 

 

Figure 6.5 The frequency of CD19
+
CD24

hi
CD27

+
B cells  

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+
CD24

hi
CD27

+
B cells. CD19

+ 
B cells were identified from 

leucocytes following exclusion of doublets using SSC-A v SSC-W. The 

CD19
+
CD24

hi
CD27

+
 population was identified within the CD19

+ 
gate. a) Data from RA 

(n=56) and non-RA (n=124) individual donors were plotted. b) The non-RA group is split 

into two groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared 

to the RA group. The horizontal bars represent the median value. There was no 

significant difference between the groups using the Mann-Whitney test. 

 

Plasmablasts 

Plasmablasts (CD19
+
CD27

hi
CD38

hi
 B cells) have also been described as potential 

regulatory B cells based on their ability to produce IL-10. The frequency of this subset, 

CD19
+
CD27

hi
CD38

hi 
B cells, was assessed in the CD19

+
 B cell population. There was no 
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detectable difference in the percentage of this subset in the RA group compared to the 

other clinical categories (figure 6.6). 

 

 

Figure 6.6 The frequency of CD19
+
CD27

hi
CD38

hi
 B cells  

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+
CD27

hi
CD38

hi 
B cells. CD19

+ 
B cells were identified from 

leucocytes following exclusion of doublets using SSC-A v SSC-W. The 

CD19
+
CD27

hi
CD38

hi 
population was identified within the CD19

+ 
gate. a) Data from RA 

(n=56) and non-RA (n=124) individual donors were plotted. b) The non-RA group is split 

into two groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared 

to the RA group. The horizontal bars represent the median value. There was no 

significant difference between the groups using the Mann-Whitney test. 

 

Given that plasmablasts are a potential source of autoantibodies and, therefore, may play 

a role in disease pathogenesis beyond any potential regulatory capacity, the same 

comparisons were repeated but using only seropositive (RF and/or anti-CCP positive) RA 

patients (n=47) in the RA group. No difference was detected in percentage of 

plasmablasts between the seropositive RA and the disease control groups (figure 6.7).   
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Figure 6.7 The frequency of CD19
+
CD27

hi
CD38

hi 
B cells in seropositive RA and 

different disease groups  

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+
CD27

hi
CD38

hi 
B cells. CD19

+ 
B cells were identified from 

leucocytes following exclusion of doublets using SSC-A v SSC-W. The 

CD19
+
CD27

hi
CD38

hi
B cell

 
population was identified within the CD19

+ 
gate.  a) Data 

from seropositive RA (n=47) and non-RA (n=124) individual donors were plotted. b) The 

non-RA group is split into two groups: non-inflammatory (n=68) and other inflammatory 

(n=56) and compared to the RA group. The horizontal bars represent the median value. 

There was no significant difference between the groups using the Mann-Whitney test. 

 

 

Transitional B cells 

B cells with a transitional phenotype, CD19
+
CD24

hi
CD38

hi 
B cells, are one of the most 

studied of the postulated Breg cell populations. There was a significant increase in the 

percentage of CD19
+
CD24

hi
CD38

hi
 B cells in the RA group compared to the non-RA 

group (figure 6.8a). When the non-RA group was split, the observed difference remained 

between the RA and other inflammatory group but did not reach statistical significance 

between the RA and non-inflammatory group (figure 6.8b). However, a significant 

increase in the percentage of CD19
+
CD24

hi
CD38

hi 
cells was observed between the RA 

group and those with OA (figure 6.8c). 
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Figure 6.8 The frequency of CD19
+
CD24

hi
CD38

hi
 B cells  

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+
CD24

hi
CD38

hi
 B cells. CD19

+ 
B cells were identified from 

leucocytes following exclusion of doublets using SSC-A v SSC-W. The 

CD19
+
CD24

hi
CD38

hi
 population was identified within the CD19

+ 
gate. a) Data from RA 

(n=56) and non-RA (n=124) individual donors were plotted. b) The non-RA group is split 

into two groups: non-inflammatory (n=68) and other inflammatory (n=56) and compared 

to the RA group. c) RA and OA (n=28) donors, d) RA donors alone, blue box to identify 

the subgroup of RA donors with relatively high frequency of CD19
+
CD24

hi
CD38

hi
 B 

cells. The horizontal bars represent the median value, significance was determined by 

Mann-Whitney tests to compare the RA group to each other group. *p<0.05,** p<0.01. 
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The RA group, shown on the plots in figure 6.8, has the appearance of a bimodal 

distribution, with groups with relatively high (RA_high) and low (RA_low) percentages 

of CD19
+
CD24

hi
CD38

hi
 cells (figure 6.8d). There was no significant difference in 

autoantibody status, gender, age, ESR or DAS28 score between the two subgroups (table 

6.6). The RA_low subgroup had a significantly higher CRP than the RA_high subgroup 

but there was a broad spread of values (figure 6.9).  

 

 RA_low RA_high P-value 

Number of 

samples 

32 24 - 

% CCP positive 65.63 66.7 0.999 

% RF positive 78.1 66.7 0.375 

% seropositive 87.5 79.2 0.476 

Gender (%F) 75 83.3 0.525 

Age (years) 59.5 [21-86] 63.5 [21-85] 0.983 

ESR (mm/hr) 21 [1-91] 26.5 [4-84] 0.853 

CRP (mg/L) 14 [5-91] 9 [5-80] 0.0383 

DAS 28 4.31 [1.26-7.15] 4.63 [2.62-8.46] 0.220 

Table 6.6 Demographics and clinical characteristics of rheumatoid arthritis  

The RA_low subgroup refers to rheumatoid arthritis patients with low levels of 

CD19
+
CD24

hi
CD38

hi
 B cells and the RA_high subgroup refers to rheumatoid arthritis 

patients with a higher frequency of this subset based on flow cytometry data. Median 

values and ranges are shown. P-values were calculated by Mann-Whitney or unpaired T 

tests, except in the case of gender and serological status where Fisher’s exact test was 

used. 
 
 

 



 184 

  
Figure 6.9 CRP levels in rheumatoid arthritis patients  

The RA patients were divided into two groups based on whether they were identified as 

having a low (RA_low) (n=32) or a high (RA_high) (n=23) frequency of 

CD19
+
CD24

hi
CD38

hi 
cells in figure 6.8. The CRP levels for patients in the RA_low and 

RA_high groups were compared. The horizontal bars represent the median value, 

significance was determined by the Mann-Whitney test. *p<0.05 

 

The RA group has a significantly higher frequency of CD19
+
CD24

hi
CD38

hi
B

 
cells than 

the other inflammatory group, but this was not seen in the comparison with those with 

non-inflammatory conditions. The RA and other inflammatory conditions group differ in 

age, ESR level and gender (figure 6.1). However, a multivariate analysis indicates that, in 

addition to age and gender, the frequency of CD19
+
CD24

hi
CD38

hi 
B cells, but not ESR, is 

independently associated with a diagnosis of RA amongst individuals presenting to an 

early arthritis clinic with inflammatory arthritis (table 6.7).  

 Exp(B) P-value 95% CI 

Frequency of 

CD19
+
CD24

hi
CD38

hi 
cells      

1.092 0.031 1.008-1.184 

Gender 2.771 0.029 1.113-6.902 

Age 1.043 0.005 1.013-1.074 

ESR 0.999 0.907 0.982-1.1017 

Table 6.7 Multivariate analysis of clinical variables and frequency of 

CD19
+
CD24

hi
CD38

hi 
B cells as predictors of clinical outcome 

Logistic regression analysis was carried out using SPSS demonstrating that frequency of 

CD19
+
CD24

hi
CD38

hi 
 B cells, age and gender are independently associated with a 

diagnosis of RA.  

 

There was no correlation between the frequency of CD19
+
CD24

hi
CD38

hi
 B cells and age, 

ESR or CRP when using all the available samples from patients recruited (n=230-233 
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depending on analyses, difference in numbers due to missing clinical data) (data not 

shown).  

 

Looking at the RA population in isolation there was also no correlation between 

CD19
+
CD24

hi
CD38

hi
 B cell

 
frequency and age, ESR, CRP or DAS28 score (n=56). The 

frequency of CD19
+
CD24

hi
CD38

hi 
 B cells did correlate with the percentage of CD19

+
 B 

cells when looking at all samples (figure 6.10), but this did not reach statistical 

significance in the RA group alone (p = 0.0586, r = 0.2543). 

 
 
Figure 6.10 Relationship between the frequency of CD19

+
 B cells and 

CD19
+
CD24

hi
CD38

hi 
cells 

Whole blood from early arthritis patients was stained for flow cytometry with a panel of 

antibodies to detect CD19
+ 

B cells and CD19
+
CD24

hi
CD38

hi 
 cells. The relationship 

between the frequency of CD19
+
 B cells and CD19

+
CD24

hi
CD38

hi 
 cells (n=233) was 

tested using Spearman’s correlation. 
 

In order to look at this transitional B cell subset in greater detail the CD27
+ 

population 

was identified within the CD19
+
CD24

hi
CD38

hi 
 subset as described by Simon et al [47] 

but no significant differences were identified between the disease groups (data not 

shown).  

 

To provide a more in-depth assessment of CD19
+
CD24

hi
CD38

hi
 transitional B cells in 

health and disease, small cohorts of HC (n=6) and patients with estRA (n=7) were 

recruited. There were statistically fewer CD19
+
CD24

hi
CD38

hi 
 B cells in established RA 
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compared with early RA (figure 6.11). There was no difference between HC and early 

RA or HC and estRA but statistical power was low due to the small numbers in HC and 

estRA cohorts. 

 

The estRA cohort had a significantly higher DAS28 score than the early RA cohort, with 

a median DAS28 of 6.18 in estRA and 4.59 in early RA (P 0.037). Patients in the estRA 

cohort were awaiting their first treatment with rituximab and so had high disease activity, 

but there was no correlation between DAS28 and the frequency of CD19
+
CD24

hi
CD38

hi
 

B cells. Complete clinical data were not available but 50% of the estRA cohort had 

received oral or intramuscular steroids within 3 months of recruitment. There was no 

significant difference in gender, age, ESR or CRP between the estRA and early RA 

groups (data not shown).  

 
Figure 6.11 The frequency of CD19

+
CD24

hi
CD38

hi
 B cells in different disease groups, 

healthy controls and established RA 

Whole blood from early arthritis patients, healthy controls (HC) and patients with 

established RA (estRA) was stained for flow cytometry with a panel of antibodies to detect 

CD19
+
CD24

hi
CD38

hi
 B cells. CD19

+ 
B cells were identified from leucocytes following 

exclusion of doublets using SSC-A v SSC-W. The CD19
+
CD24

hi
CD38

hi
 population was 

identified within the CD19
+ 

gate.  Data from RA (n=56), other inflammatory (n=56), OA 

(n=28), HC (n=6) donors, estRA (n=7) patients were compared. The horizontal bars 

represent the median value, significance was determined by the Mann-Whitney test to 

compare the RA group to each other group. *p<0.05,** p<0.01. 
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6.4 Discussion 

In contrast to the literature I have shown the that the percentage of CD19
+ 

B cells in 

peripheral blood is reduced in early RA compared to patients in the disease control (non-

RA) group. However, when the non-RA group was split, the difference only remained 

significant between the RA and non-inflammatory groups. The reduction in CD19
+ 

B 

cells may be secondary to the effects of systemic inflammation. TNF, a key cytokine 

linked to RA pathogenesis, promotes B cell mobilisation from the bone marrow and 

promotes granulopoesis at the potential expense of bone marrow lymphopoesis, alongside 

a corresponding increase in developing B cells in spleen[257, 258]. This initially leads to 

an increased release of immature B cells into the periphery, but reduced bone marrow 

lymphopoesis may ultimately result in decreased circulating B cells over time. 

Alternatively, systemic inflammation may cause migration to the extramedullary tissues, 

or local sites of inflammation, leading to an apparent decrease in circulating B cells. 

Memory B cells accumulate in the synovium of RA patients, expressing relatively higher 

levels of CXCR1, CXCR2, CXCR4 and CCR2 than those remaining in the peripheral 

blood[252].  

 

Data from the whole cohort demonstrate a negative correlation between the frequency of 

CD19
+
 B cells and levels of inflammation, measured by ESR and CRP, strengthening the 

possibility that CD19
+ 

B cells have migrated to sites of inflammation or germinal centres. 

In the RA group alone the frequency of CD19
+ 

B cells negatively correlated with CRP, 

but not ESR.  

 

The RA group was significantly older and, as expected, had higher levels of inflammation 

than the non-RA group. However, a logistic regression analysis showed that older age and 

lower CD19
+
 B cell percentages were predictors of a diagnosis of RA, in contrast to 

measures of the acute phase response. Age negatively correlated with the proportion of 

CD19
+
 B cells. 

 

The immune system is known to change with age: there is a decline in response to 

vaccination and an increased susceptibility to cancer and infection[191, 259-261]. The B 

cell compartment changes in terms of function, with a decline in the ability to generate a 

sustained humoral response; the relative proportions of the different B cell subsets also 
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change with age. However, the data are conflicting regarding a decline in the proportion 

of total B cells in peripheral blood with age[181, 262, 263]. This may reflect a lack of 

data for people at the extremes of age, particularly those over 80 years old.  Interestingly, 

the proportion of transitional B cells has been shown to decrease with increasing age in 

healthy volunteers, possibly reflecting an age related reduction in bone marrow 

activity[181]. This has not been confirmed by my data, perhaps due to the fact that I have 

studied a disease cohort. 

 

I did not identify a difference in the proportion of circulating memory and naive B cells 

between disease groups. This contrasts with changes reported in the literature but those 

reports compared early RA and HCs rather than disease controls. Given that synovial 

inflammation, and indeed ectopic lymphogenesis, is not specific to the RA synovium, 

common memory B cell migration patterns may have existed in both my early RA and 

disease control cohorts, contributing to a lack of difference between these groups.  

 

I have studied, for the first time, the proportion of circulating CD19
+
CD24

hi
CD38

hi 

transitional B cells in early RA, cells which are postulated to have a regulatory function. 

In contrast to the work by the Mauri group, who examines estRA, I found this population 

to be elevated rather than reduced in early RA. However, the frequency of 

CD19
+
CD24

hi
CD38

hi
 B cells in the small group of patients with estRA receiving 

DMARD treatment was significantly lower than found in the early RA cohort and, whilst 

not statistically significant, numerically lower than the level in healthy and disease 

controls. Therefore, the data from the estRA group here is in agreement with the findings 

from the Mauri group. 

 

Although the number of HC is low in my cohort, the scatter plots do appear to show that 

the median frequency of the CD19
+
CD24

hi
CD38

hi
 B cell subset is similar between the 

healthy group and patients with other inflammatory causes of arthritis, in keeping with 

the literature. 

 

The Mauri group showed that CD19
+
CD24

hi
CD38

hi
 B cell frequency was inversely 

correlated with disease activity. At first sight this appears counterintuitive for a regulatory 

subset, which might increase in frequency to combat inflammation, especially 

considering its potentially impaired function in RA[61]. On the other hand, similar to my 
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arguments for CD19
+ 

B cells overall, it is possible that these cells migrate to sites of 

inflammation, explaining their disappearance from blood in active disease. Indeed, work 

from the Mauri group has demonstrated that CD19
+
CD24

hi
CD38

hi
 B cell frequency was 

significantly higher in the synovial fluid (SF) of patients with active disease than in 

matched blood. As CCR5, which is associated with Treg migration, was elevated on the 

SF B cells it was suggested that the reduction in circulating cells was a consequence of 

their migration. However, the frequency was not measured in SF from inactive disease or 

other diseases. It would be interesting to investigate the proportion of the 

CD19
+
CD24

hi
CD38

hi 
B cell subset in the SF of an early disease cohort. 

 

The increased frequency of circulating transitional CD19
+
CD24

hi
CD38

hi 
B cells in early 

RA may also reflect mobilisation from the bone marrow in response to recent onset 

inflammation[258]. Given the suggested regulatory potential of this subset, such early 

mobilisation seems logical from a disease perspective, with subsequent migration to 

inflamed tissues as suggested above. Alternatively, transitional B cells potentially include 

more autoreactive cells than other peripheral B cell subsets as they have not been 

subjected to peripheral tolerance checkpoints; in this regard their higher frequency in 

early RA may reflect the disease process.  

 

The RA group can be divided into two groups based on the frequency of 

CD19
+
CD24

hi
CD38

hi 
 B cells and there is a significant difference in the levels of CRP 

between the two groups. The RA patients with a lower frequency of CD19
+
CD24

hi
CD38

hi
 

B cells have a higher CRP, which may be secondary to the migration of these cells to the 

inflamed synovium. Additionally, it may be that there are functional differences in the 

CD19
+
CD24

hi
CD38

hi
 B cells between the two groups which have not been examined 

here.  

 

These data provide a snapshot of the peripheral B cell compartment in patients at 

presentation. Given the regulatory role of this subset, long term follow up data may 

address questions such as whether patients with higher levels of CD19
+
CD24

hi
CD38

hi 
 

B cells at presentation have a better prognosis, given the postulated regulatory role of this 

subset. The duration of symptoms prior to presentation to the early arthritis clinic may 

also influence the observed frequency of CD19
+
CD24

hi
CD38

hi 
 B cells in early RA, but 

the available clinical data did not allow me to test this possibility. It is also possible that 
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the observed bimodal transitional B cell distribution in early RA patients is an artefact 

and may disappear with a larger cohort size.  

 

The apparent increase in frequency of CD19
+
CD24

hi
CD38

hi
 B cells in early RA is 

interesting but requires work, such as assessment of IL-10 production and the influence of 

this subset on T cell responses, to determine whether it is functionally suppressive in this 

setting. It would also be valuable to determine if CD19
+
CD24

hi
CD38

hi
 B cell function as 

well as frequency changes with disease duration.
  

 

6.5 Future work 

 Increase the number of donors in the HC and estRA cohorts to more robustly 

compare the frequency of B cell subsets with the early arthritis cohort.  

 Obtain longitudinal samples from the RA patients in the early arthritis cohort to 

look for changes in Breg frequency over the time course of the disease.  

 Relate Breg frequency at presentation and disease progression as measured by 

disease activity over time, glucocorticoid use and erosive changes, to assess 

whether Breg frequency at presentation influences disease prognosis. 

 Measure the frequency of CD19
+
CD24

hi
CD38

hi 
B cells in synovial fluid samples 

from early RA patients, and disease controls (such as OA), and the relationship 

with the percentage observed in peripheral blood. 

 Functional assays in early RA, estRA and HC:  

- sort cell subsets using flow cytometry: regulatory B cells 

(CD19
+
CD24

hi
CD38

hi
), naive B cells (CD19

+
CD27

-
IgD

+
), memory B cells 

(CD19
+
CD27

+
IgD

-
) and T cells (CD3

+
CD4

+
CD25

-
)  

- stimulate the B cell subsets and measure IL-10 secretion to confirm 

CD19
+
CD24

hi
CD38

hi
 B cells are able to produce high levels of IL-10 in 

response to inflammation. Cell sorting is required because the markers, in 

particular CD24, are altered in response to cell stimulation limiting later 

identification of the subset in a mixed population of cells, such as PBMCs, 

for a secretion assay.  

- Co-culture experiments of B cell subsets and allogenic T cells to look at 

stimulation of T cells (measured by assessment of proliferation and CD25 

induction), as well as assessment of Treg induction.  
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7.1 General Discussion 

 

Interest in the role of B cells in the pathogenesis of RA was renewed by the success of B 

cell depletion for the treatment of RA. B cells are the source of autoantibody production, 

produce pro-inflammatory cytokines, act as antigen presenting cells activating or 

amplifying auto-reactive T cells, and a subset may have a regulatory function within the 

immune system. Therefore, B cells are likely to have a critical role in disease initiation 

and persistence but their specific role in RA pathogenesis remains unclear.  

 

In this thesis, I have examined CD19
+
 B cells from patients in a DMARD-naive early 

arthritis cohort to explore differences in gene expression and peripheral blood B cell 

subsets between patients with RA and disease controls. Transcriptomic, genetic and 

clinical data have been combined to examine the influence of genetic variants on gene 

expression at RA risk loci and to identify disease specific eQTLs.  

 

The summary presented in this chapter will highlight the findings from my study and the 

potential insights obtained into B cell function in RA, including the genetic and 

environmental factors that influence the B cell transcriptome.  

 

7.2 Gene expression data 

In the primary comparison of RA samples to non-RA samples, a list of differentially 

expressed genes (DEGs) which was robust to multiple test correction (MTC) was not 

identified. However, pathway analyses of the DEGs obtained, after removal of the 

multiple test correction, revealed interesting themes which may provide an insight into 

the peripheral B cell compartment in RA. 

 

‘BCR signalling’ is identified as a pathway which is downregulated in RA and is shown 

as a central component in the top molecular network fitted to the DEGs by IPA. Pathways 

downstream of the BCR: ‘phospholipase C signalling’ and ‘the role of NFAT in the 

regulation of the immune response’ are also shown to be downregulated. The GSEA 

results, which utilise a different methodology, add weight to this finding by identifying 

PI3K signalling and IP3 signalling as downregulated in RA, both pathways downstream 

of the BCR. 
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In RA, one might expect the BCR signalling to be upregulated, representing activation of 

the cell and promoting cell survival. However, BCR signalling is critical to B cell 

development, survival and activation, and so defects may promote the development of an 

autoimmune response, perhaps through the persistence of autoreactive clones if an 

adequate BCR signal is not generated at tolerance checkpoints. Intrinsic defects in B cell 

signalling have been suggested as a potential pathogenic mechanism in RA as, for 

example, carriers of the PTPN22 risk allele demonstrate impaired BCR signalling in 

response to stimulation[125, 126]. The PTPN22 risk allele has been linked to high 

frequencies of autoreactive clones within the transitional B cell subset, which have newly 

emerged from the bone marrow[127]. In this setting, carriers of the PTPN22 allele may 

be unable to generate an adequate BCR signal to self antigen to induce the required B cell 

tolerance mechanisms, leading to the persistence of autoreactive cells and disease 

initiation.  

 

Alternatively, the downregulation of pathways downstream of the BCR may represent 

exhaustion of the peripheral B cells, analogous to that seen in T cells[174]. The GSEA 

results indicate that RA CD19
+ 

B cells have downregulated DNA repair mechanisms and 

RNA and protein processing, which may reflect an ‘exhausted’ or inactive cell state. A 

reduced BCR signal may also impair B cell survival, which has been shown to be 

dependent on PI3K signalling, a pathway identified as downregulated in the GSEA 

analysis, [30].  

 

The samples used in this analysis are from peripheral blood and it is possible that, at the 

onset of disease, an activated set of B cells has already migrated to the joints or germinal 

centres[79]. The downregulation in the RA group of ‘leucocyte extravasation signalling’ 

and ‘integrin signalling’ may indicate that the cells able to migrate from the peripheral 

compartment have done so, hence the development of clinical symptoms.  

 

In examining the CD19
+
 B cells from peripheral blood I have not analysed the 

transcriptome of plasma cells and it is interesting to note that the GSEA analysis has also 

shown the ‘B cell differentiation’ pathway to be downregulated in the RA group which, in 

combination with the upregulation in PRDM1, may represent the shift in cell function to 

antibody producing cells which represents a major shift in the cellular machinery.  
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A further theme to emerge relates to IL-6, where the combination of IPA results and 

MSD data confirm the influence of IL-6 on the CD19
+ 

B cell transcriptome in RA. IL-6 is 

critical to plasma cell differentiation and so has an established effect on B cells in RA. 

This finding is not unexpected given the clinical success of anti-IL-6 treatments in RA, 

and underlines the influence of the cytokine on this cell type.  

 

The pathway analyses of the DEG list without multiple test correction raises interesting 

themes regarding the state of the peripheral B cell compartment in RA but, importantly, a 

robust list of DEGs was not identified in the three analyses discussed in Chapter 3. 

Subsetting the data did identify a list of DEGs which withstood MTC between the RA 

and non-inflammatory samples but the addition of the clinical variables age, CRP and 

ESR led to the loss of any DEGs. This suggests that chronological age and inflammatory 

status, rather than a clinical diagnosis of RA, have a greater influence on the CD19
+ 

B cell 

transcriptome.  

 

In Chapter 4, examination of the transcriptome using sample groups based on age, 

demonstrated a list of DEGs robust to multiple test correction. The IPA platform 

identified upregulation of pathways related to TNF, IL-2 and oxidative stress, NOS2, in 

the older age group. This is in keeping with the concept of inflamm-ageing, a chronic 

inflammatory state that develops with increasing chronological age. When measures of 

inflammatory status, CRP and ESR, are removed from the model, IL-17 and IL-1 were 

also identified as potential activated upstream regulators in the older age group.  

 

The identification of APOE as an inhibited upstream regulator in the older age group 

raises the possibility that the influence of APOE in the ageing phenotype may be 

mediated by CD19
+ 

B cells. APOE variants are associated with longevity in GWAS 

studies, the Apoe
-/-

 mouse is a model for atherosclerosis and, additionally, B cell 

dysregulation has been linked to atherosclerosis and so this finding provides a potential 

insight into the biological significance of the association of APOE and ageing[199, 201, 

206].  

 

Dividing the samples using ESR levels at the time of recruitment shows that ESR, rather 

than CRP, reflects changes in the CD19
+
 B cell transcriptome. In samples with a higher 

ESR the activated upstream regulators in the DEG list (with MTC) include XBP1, 
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indicating potential differentiation into plasma cells, GMCSF, indicating B cell activation, 

and transcription factors associated with tumorigenesis. The CD19
+ 

B cells from samples 

with a higher ESR may thus possess a profile favouring survival, proliferation and 

antibody secretion.  

 

The results described here are intriguing, particularly in light of the multiple test 

corrected list of DEGs based on age or inflammatory status. This identifies these factors 

as a greater influence on the CD19
+ 

B cell transcriptome than disease in this cohort. These 

factors, and additional inter-individual variability, may explain the absence of robust gene 

signature differences between disease groups in this cohort. If this study were repeated 

we would need large sample groups and careful matching of the samples for age and 

ESR. An alternative explanation for the absence of a robust diagnostic signature is that 

analysis of the CD19
+ 

B cells may miss a signal from a relatively small subset of B cells, 

which may be masked in the heterogeneous B-cell population. 

 

The pathway analyses reported here require further validation. IPA and GSEA are well 

established analytical procedures but they reflect the literature, the quality of the manual 

curation and rely on regular maintenance. Transcriptomic data from B cells is not as 

plentiful as that from other cell types, hence the novelty of this study, and the pathways 

identified may be reflective of findings in different immune subsets, PBMCs and tumour 

samples. As transcriptomic data from CD19
+ 

B cells is increasingly published and shared, 

the pathway analyses employed here may become more fruitful. A further caveat is that 

the pathways identified by IPA require interpretation in the context of the disease under 

study. In the canonical pathways identified, for example, there is marked overlap in the 

molecules between pathways and so not all may be relevant. 

 

7.3 eQTL analysis 

 

The eQTL analysis at the 101 RA risk loci explored the downstream correlates of known 

genetic variation and highlights the importance of studying appropriate cell subsets when 

analysing the cellular mechanisms underlying genetic risk. The eQTL analysis in CD19
+
 

B cells identified 194 cis acting significant SNP-transcript associations, corresponding to 

10 unique genes. After validation of these findings at the protein level, this will provide a 
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foundation for the prioritisation of genes for further downstream, functional studies in B 

cells.  

 

At the 8p23 locus FAM167A and BLK were both subject to eQTLs in CD19
+ 

B cells. The 

focus at the locus has predominantly been on BLK which phosphorylates tyrosine 

residues in the ITAM of the BCR. The RA risk haplotype at this region has been 

associated with decreased expression of BLK in B cells and evidence of lower basal BCR 

signalling activity yet the cells have been shown to be hyperactive after crosslinking of 

the BCR, with enhanced B cell-T cell interactions[264]. Simpfendorfer et al have also 

demonstrated the cis regulatory effect on BLK and confirmed this at the protein level but 

this finding was restricted to early B cells, leading to the suggestion that the influence of 

this risk variant may be critical in the early stages of B cell development[265]. 

Interestingly, these findings highlight the potential significance of an alteration in BCR 

signalling in the initiation of RA and further eQTL analyses of subsets within the 

peripheral CD19
+
 B cell population may shed light on the functional consequences of 

genetic variants. FCRL3, which was also identified as an eQTL in CD19
+
 B cells here, 

has also been shown to potentially inhibit BCR signalling, altering the activation 

threshold and promoting the breakdown of tolerance[266]. 

 

It is noteworthy that the eQTL effects seen at the 101 RA risk loci did not differ between 

the RA and non-RA groups, and incorporation of additional clinical covariates to the 

linear model did not alter the eQTL list generated. There were, therefore, no disease 

specific eQTLs identified at the RA risk loci.  

 

21 disease specific eQTLs were successfully identified using an genome wide interaction 

analysis and these lie outside the known 101 RA risk loci. This finding is in keeping with 

the IBD literature where the IBD-specific eQTLs were also outside the currently known 

disease risk loci[133]. The description here, in CD19
+
 B cells, is novel and confirms the 

success of the methodology. One limitation, however, is the imbalance of genotypes 

between the disease groups and I would next repeat the analysis with a change to the 

genotype filter to a minimum of 3 samples of each genotype by disease group, prior to 

attempting to validate the data at the protein level.  
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This methodology has the potential to provide new insights into the inherited risk of RA, 

given the lack of overlap with known risk loci. The themes which emerge from the genes 

identified through the interaction analysis relate to transcription, chromatin remodelling 

and metabolic function, which may reflect changes in the activation status of the B cell.  

 

A fundamental challenge to the interpretation of RA risk loci from GWAS has been the 

number of genes implicated. However, I have shown here that gene prioritisation can be 

addressed using eQTL analyses and that disease specific eQTLs can be identified using 

interaction analyses, providing potential new insights into disease mechanisms. 

Furthermore, improvements in cell sorting by flow cytometry will, in the future, enable 

similar analyses of subsets of CD19
+ 

B cells, which may provide further insights into 

pathogenesis. 

 

7.4  B cell subsets 

 

The frequency of the transitional, postulated regulatory, CD19
+
CD24

hi
CD38

hi 
subset was 

increased in the RA cohort in my study, when compared to the cohorts with other 

inflammatory conditions. Alongside age and gender, the frequency of this subset was an 

independent predictor of RA. The results are in contrast to the data in the literature from 

an established RA cohort[61]. This difference may be related to the stage of disease: the 

increase in this postulated regulatory subset in DMARD-naive RA may be an attempt to 

control the autoimmune process at this early clinical stage or a rebound increase given the 

previously described functional impairment of this subset in RA[61].  

 

The CD19
+
CD24

hi
CD38

hi 
subset represents transitional B cells and so, alternatively, an 

increase may reflect an increase in autoreactive cells within this newly emigrant 

population or a compensatory response to migration of CD19
+
 B cells from the blood to 

the joints. The frequency of CD19
+ 

B cells overall (as a % of leucocytes) is reduced in the 

RA population here compared to non-RA samples.  

 

My data represent a snapshot of the peripheral B cell compartment and I would be most 

interested to obtain follow up samples to determine if the frequency of the 

CD19
+
CD24

hi
CD38

hi 
subset changes with disease duration/progression and if it is related 
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to prognosis or treatment response. Functional work is required to determine if the 

observation represents an increase in autoreactive cells, functional regulatory cells or 

functionally impaired regulatory cells. 

 

In light of the increased frequency of this subset in RA compared to other inflammatory 

conditions, that it is an independent predictor of RA, and the identification of CD38 as a 

potential activated upstream regulator in RA in the gene expression data, it would be 

interesting to study this cell subset more closely through functional and transcriptomic 

work. 

 

7.5  Strengths and weaknesses 

 

The strengths and weaknesses of my study are summarised in table 7.1. 

 

Strengths Weaknesses 

Large cohort of DMARD naive samples 

 

Parallel genetic, transcriptomic, clinical 

and flow cytometry data 

 

Transcriptomic analysis using 2 methods: 

IPA and GSEA 

 

Examination of the transcriptomic profile 

to identify the influence of environmental 

factors beyond disease: age and 

inflammation 

 

eQTL analysis in a clinically relevant cell 

subset 

 

Methodology for interaction analysis tested 

in CD19
+ 

B cells  

 

Flow cytometry data for B cell subsets in a 

DMARD and steroid naive cohort 

No CD19
+ 

B cell purity checks for a 

proportion of samples 

 

No validation of transcriptomic or eQTL 

findings  

 

Absence of longitudinal flow cytometry 

data  

 

No functional analyses of 

CD19
+
CD24

hi
CD38

hi 
subset 

 

No parallel data for transcriptomics or flow 

cytometry from synovia 

 

Small established RA and healthy control 

groups for flow cytometry data 

comparisons 

 

Interaction analysis not repeated with the 

inclusion of clinical covariates 

 

Table 7.1 Experimental strengths and weaknesses 
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The primary strength of this study comes from the recruitment of a large cohort of 

DMARD-naive patients with early arthritis and the parallel clinical, transcriptomic, 

genetic and flow cytometry data. Studies in CD19
+
 B cells at a transcriptomic level have 

been limited due to problems with cell purity and isolating sufficient cells, so the 

transcriptomic data here are a useful, clinically relevant resource. The data have been 

rigorously analysed and I am confident that a diagnostic gene signature has not been 

missed.  

 

The absence of a clear gene signature may be due to the heterogeneity of the CD19
+ 

B 

cell population, migration of a pathogenic subset to sites of inflammation, cell 

contamination during the CD19
+ 

B cell isolation, differences in genetic backgrounds 

between patients and the potential influence of additional environmental factors.  

The heterogeneity of CD19
+ 

B cells may mean that changes in a small, potentially 

pathogenic subset, such as transitional B cells, may be masked by other subsets. An 

additional consideration is that peripheral plasma cells were not examined; they are rarely 

found in the peripheral blood but this subset may be informative in a disease such as RA. 

In a small group of patients at risk of RA the presence of ≥ 5 dominant BCR clones in 

peripheral blood was associated with the development of RA, but at the onset of RA these 

clones were no longer detectable in the periphery and appeared in the synovial tissue[79]. 

 

The clinical diagnosis of RA encompasses a broad population; including patients who 

with differing autoantibody status, clinical patterns of disease, genetic backgrounds, 

synovial findings and IFN scores in a single group[74, 109, 147]. The RA cohort studied 

here was heterogeneous and this may be a contributing factor in the absence of a robust 

DEG list between the disease comparator groups.  

 

The RA cohort includes seropositive and seronegative patients and it has become 

increasingly clear, since this project started, that the two groups may represent different 

diseases. It is established that the heritability of RA is greater in the ACPA positive group 

and the ‘shared epitope’ hypothesis is more strongly associated with ACPA positive 

RA[112, 113, 116, 120]. Indeed, the ACPA positive and ACPA negative RA may be 

described as genetically different disease subsets, which share only a small proportion of 

genetic susceptibility factors[118]. In addition, the environmental risk factors smoking 

and the periodontal pathogen, Porphyromonas gingivalis, are associated with the 
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development of RA in ACPA positive disease in particular [267, 268]. In genetically 

predisposed individuals, citrullination induced by these factors may promote the 

development of autoantibodies [268, 269]. There is also further evidence from 

therapeutics studies that seropositivity is a prognostic factor for response to treatment, not 

just to rituximab, but also to adalimumab and abatacept [82, 270].  

 

In light of the developments in the understanding of seronegative and seropositive RA 

over the course of this project, the gene expression data was analysed post hoc using first 

ACPA positive samples and, secondly, seropositive (RF and/or ACPA positive) samples 

as the disease group. These analyses were carried out using the procedures and 

comparisons described in Chapter 3 and did not identify lists of differentially expressed 

genes which stood up to multiple test correction. The reduced sample size in the disease 

group for these analyses may, of course, be a factor in the absence of differentially 

expressed genes. 

 

There is further heterogeneity in the comparator non-RA group, which includes patients 

with inflammatory and non-inflammatory conditions. The influence of inflammation, as 

measured by ESR, on the CD19
+ 

B cell transcriptome is highlighted in Chapter 4. The 

additional analyses referred to in Chapter 4, divided the original non-RA group into 

subsets to allow separate comparisons between RA samples and other inflammatory 

samples alone and with non-inflammatory alone. No DEGs robust to multiple test 

correction were identified in the comparison between RA samples and other 

inflammatory samples. A list of DEGs robust to multiple test correction was identified in 

the comparison between RA samples and non-inflammatory samples but no DEGs 

remained when the clinical variables ESR, CRP and age were added to the linear model. 

The work here indicates that in future projects, it would be beneficial for samples in the 

comparator groups to be matched for age and inflammatory status to improve the 

likelihood of detecting relevant, disease specific differentially expressed genes. 

 

The interpretation of big datasets, such as the one described in this thesis, is reliant on the 

technology of pathway analysis platforms which are, in turn, dependent on regular 

maintenance and manual curation. I attempted to use platforms that are maintained; 

however, the documentation that informs the pathways identified often requires manual 

curation. The output from such platforms must always be interpreted in the clinical 
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context and with knowledge of the relevant literature. However, this unsupervised 

approach does have the advantage of potentially identifying novel discoveries. 

 

7.6  Conclusion 

This study has not demonstrated differential changes in gene expression in the CD19
+
 B 

cell transcriptome attributable to a diagnosis of RA.  However, it is notable that a robust 

signature is identified when the samples are divided based on the median chronological 

age and inflammatory status, measured by ESR. In combination with the eQTL data this 

confirms the marked influence of genetic and environmental factors on gene expression 

in CD19
+ 

B cells in peripheral blood. 

 

The mechanisms of RA disease initiation and persistence are no doubt complex but the 

findings presented here may indicate a downregulation of BCR signalling leading to a 

breakdown in tolerance and an increase in autoreactive cells, seen here as an increase in 

the transitional B cell subset. Closer examination into the functional and transcriptomic 

profile of transitional B cells may provide further insights into this theory.  
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Appendix A.1 

Diagnostic categories for early arthritis patients 

 

Diagnosis 

Ankylosing spondylitis 

Crystal Arthritis 

Enteropathic arthritis 

Lupus/other connective tissue disease associated condition 

Non-inflammatory  

Osteoarthritis 

Other inflammatory arthritis 

Psoriatic arthritis 

Reactive arthritis 

Rheumatoid arthritis 

Undifferentiated arthritis 

Undifferentiated Spondylo-Arthropathy 

 

Appendix A.2 

List of 279 differentially expressed genes between RA (n=59) and non-RA (n=131) 

samples without the inclusion of clinical covariates. FC ≥ 1.2. No multiple test correction 

in place. 

 

Gene logFC P.Value 

KIAA1370 -0.267571393 4.18E-05 

LPIN2 -0.311827532 4.69E-05 

LMNA 0.408713569 6.74E-05 

KCNK12 0.405818443 7.67E-05 

NRSN2 0.438024293 7.98E-05 

VPS13A -0.307437162 9.44E-05 

UST -0.342338183 9.57E-05 

ZSCAN12 -0.288531476 1.04E-04 

COG3 -0.401061837 1.10E-04 

OXCT1 -0.324102491 1.29E-04 

FUT7 0.37425993 1.34E-04 

TOP1MT -0.416663121 1.41E-04 

PHLPP2 -0.29645826 1.86E-04 

C10orf32-AS3MT -0.270165949 2.52E-04 

BRMS1L -0.263534447 2.66E-04 

ATF5 0.426787027 2.79E-04 

HOPX 0.41510197 2.88E-04 

LDLR 0.418943206 3.08E-04 

NA -0.411936432 3.32E-04 

ARID2 -0.263656937 3.37E-04 

LDOC1 -0.326112912 3.43E-04 

SLC25A26 -0.363812764 3.65E-04 
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PFKFB2 -0.298716265 3.73E-04 

MAPKAP1 -0.273052321 4.23E-04 

YPEL2 -0.385042708 4.48E-04 

DHRS9 0.624260078 4.75E-04 

ZNF266 -0.283909696 4.80E-04 

DYRK1A -0.369877192 5.00E-04 

SP140L -0.267986355 5.14E-04 

C17orf28 0.268506862 5.50E-04 

EPB41L2 -0.285344264 6.16E-04 

NCALD 0.337974229 6.46E-04 

TUBGCP6 -0.283418564 6.61E-04 

HIPK2 0.354602844 7.07E-04 

GALNT10 -0.339482494 7.12E-04 

PKD1 -0.279983257 7.36E-04 

ZC3H14 -0.38113736 7.44E-04 

FYN -0.432958678 7.58E-04 

CAPRIN2 -0.286116206 7.60E-04 

SLTM -0.377630759 8.03E-04 

PRICKLE2 0.268333721 8.42E-04 

ACAP2 -0.392382601 8.78E-04 

LMNA 0.277053298 9.30E-04 

UHRF1BP1L -0.274632543 9.49E-04 

YPEL1 -0.277596856 9.50E-04 

NA 0.289452583 9.84E-04 

GAS6 0.533495363 9.96E-04 

FAM129A 0.375970682 0.001009863 

SFMBT1 -0.310386721 0.001028943 

RPL32 -0.334316207 0.001038074 

TOX2 0.383856725 0.001153085 

TRAF5 -0.287316319 0.0011654 

RNF146 -0.305824705 0.001197759 

LUC7L3 -0.414264525 0.001244887 

JF432672 -0.333798851 0.001256027 

CEP110 -0.282069774 0.001263059 

APP -0.343602749 0.001267015 

SF3B1 -0.350590604 0.001321057 

MBNL1 -0.343866472 0.001341491 

LGALS3 0.370173628 0.001359543 

PROK2 0.51810562 0.001419745 

PRKCE -0.313413299 0.001425892 

CCNDBP1 -0.331839038 0.001457201 

PHC2 -0.299530143 0.001535749 
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CCNT2 -0.318150775 0.001564744 

NA 0.277577079 0.001690798 

ASB16 0.457623743 0.001693588 

PHGDH 0.476526102 0.001697143 

NUAK2 -0.359528086 0.001722575 

AY665172 0.305835514 0.001725755 

UBE2E1 -0.433410974 0.001731896 

PPTC7 -0.268457427 0.001790939 

TAF7 -0.300951928 0.001797217 

ZXDB -0.278270006 0.001842629 

KIAA1407 -0.345086912 0.001856642 

ZNF614 -0.310646421 0.00190025 

NFYA -0.272256198 0.002022462 

SEC24B -0.264825751 0.002030148 

MEGF6 -0.32384602 0.002040967 

IL16 -0.309589077 0.002093404 

DYRK1A -0.322983155 0.002100245 

TP63 0.416327753 0.002102612 

OPN3 -0.387005072 0.002117143 

KCNMA1 0.266936113 0.002123021 

TBXAS1 0.337630976 0.002276691 

PABPC3 -0.280672793 0.002323378 

ARHGAP30 -0.299272177 0.002329236 

MTSS1 -0.30715592 0.00232995 

ADD3 -0.36257321 0.002366625 

SMG7 -0.368137644 0.002397627 

KIAA1468 -0.265363825 0.00250618 

CAMK1G 0.413465655 0.002609081 

TSPYL2 -0.28842449 0.002624534 

SF1 -0.358524112 0.002649359 

CD44 -0.451996761 0.002688745 

E2F2 0.367115002 0.002853388 

GAS6 0.44383535 0.00288804 

TRIM22 -0.317396777 0.002905957 

NCALD 0.300352398 0.002959512 

PPP1R8 -0.280277599 0.002977531 

PRDM1 0.429708956 0.002983807 

CNBP -0.265108825 0.003080317 

SNRPN -0.293511609 0.003163953 

ATP2C1 -0.324318891 0.003201715 

DCK -0.274071398 0.003338666 

ZNF514 -0.277606654 0.003353544 
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SLC16A3 0.265967552 0.003409898 

PYCR1 0.321118937 0.003448543 

TTPAL -0.297050522 0.003493799 

TESC 0.353216848 0.003516599 

CUL4B -0.277058647 0.003562993 

SMEK1 -0.316464459 0.003595884 

CR603183 0.298055545 0.003605946 

AFF4 -0.30551211 0.00361092 

RAB27A 0.267449779 0.003669763 

CDK2AP2 0.27122797 0.003746564 

HERPUD2 -0.382906925 0.003876841 

UHRF2 -0.30525153 0.003966884 

FAM108B1 -0.34459209 0.003994262 

SIL1 0.269789607 0.004058184 

PARP11 -0.263686276 0.004138222 

MBTPS1 -0.287036179 0.004229787 

AK8 0.315910085 0.004351976 

SMEK1 -0.273831406 0.004380249 

MOBKL2B -0.300191937 0.004389479 

C6orf129 0.281374892 0.004476008 

EIF4E3 0.278078967 0.004513509 

NA -0.362838423 0.004582759 

MAD2L1BP -0.270852613 0.004607428 

MTMR4 -0.293611023 0.004608337 

OGT -0.45964243 0.004657041 

C17orf60 -0.445388148 0.004725037 

MBD2 -0.295916111 0.004752199 

TOP1MT -0.272590208 0.00478497 

ZCCHC18 -0.297764565 0.004816676 

CD79B -0.438995166 0.004872579 

ACTRT1 0.343774197 0.00488621 

GMPPB 0.33138968 0.004936865 

TULP4 -0.333832079 0.004981629 

ABLIM1 -0.427964004 0.005013375 

C14orf43 -0.265547117 0.005183822 

NDRG3 -0.358402045 0.005379781 

CDC42SE1 -0.37232774 0.005388972 

SAV1 -0.302695749 0.005454739 

NDFIP2 0.274201117 0.005486009 

COCH 0.340648269 0.005622816 

PELI1 -0.329872254 0.005689638 

BEX4 -0.309836086 0.005717463 
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BCL10 -0.269169867 0.005877756 

CAV1 0.40696977 0.005953496 

ADARB1 -0.324948678 0.00600355 

ZNF627 -0.268328629 0.006043477 

RALB -0.29980648 0.006106776 

TOX2 0.322104601 0.006310076 

HPS3 -0.36979558 0.006473078 

WARS 0.319350808 0.006506097 

GINS2 0.387817449 0.006524673 

ACACB -0.263758331 0.00652469 

DHRS9 0.386043652 0.00655558 

MMP25 0.264204703 0.006578416 

CRELD2 0.280819854 0.00662965 

RYK -0.270086341 0.006670262 

ZFP36L2 -0.29404644 0.006706525 

KIAA1147 -0.291118718 0.006727608 

CDC42SE1 -0.299344346 0.006920869 

TMEM123 -0.325420424 0.006974758 

KCNK6 0.298176061 0.007111542 

HDAC9 -0.284119031 0.007183391 

CXCR4 -0.664736919 0.007312107 

AQP9 0.508026974 0.007468068 

NFX1 -0.274860448 0.007536333 

CDKN1A 0.279596988 0.00755832 

NT5DC2 0.445768644 0.007689589 

CD2AP -0.27214581 0.00770417 

HCST 0.329267501 0.007897203 

FAM129A 0.374861979 0.008048692 

SLAMF7 0.322736289 0.008249914 

FKBP11 0.351230396 0.0082924 

TEX9 0.268350413 0.008313085 

IFI27L1 0.280133314 0.008372077 

TSPAN3 -0.348376764 0.008547858 

PHF19 0.264855287 0.008635661 

AK124143 -0.354277186 0.008900254 

DYSF 0.317030586 0.008920023 

NR1D2 -0.264636183 0.009345983 

WFS1 0.279577994 0.009353554 

NUSAP1 0.335416004 0.009552984 

SDF2L1 0.3031163 0.009595083 

PACAP 0.280384395 0.00963179 

SAR1B 0.285961619 0.009638728 
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MZB1 0.368168341 0.010005381 

SPG21 -0.336650726 0.010382804 

PPIA -0.399410314 0.010443076 

CKS2 0.28914983 0.010741883 

CD74 -0.354928918 0.011056475 

S100A8 0.390941478 0.011412522 

MANEA 0.288613321 0.011466785 

PRDM1 0.298605596 0.011667343 

PDE4B -0.326069092 0.012285586 

BMF -0.272098623 0.012385876 

SPOPL -0.27111883 0.012571239 

ANG 0.278397458 0.012719236 

CLEC2D -0.359030234 0.012887358 

BMP6 0.291303307 0.012896742 

RTEL1 0.279972988 0.013153217 

G3BP2 -0.324570735 0.014036273 

ZC3HAV1 -0.268828671 0.014198536 

ADM 0.311588254 0.014970142 

C20orf103 0.368234189 0.015021243 

NCF1 -0.550374565 0.015129988 

JAK1 -0.44124232 0.015261227 

FLJ44054 0.268078205 0.015485242 

RPLP0 -0.313467202 0.015718988 

ARHGAP32 -0.27635206 0.015761235 

FBLN2 -0.297466191 0.015761839 

PRNP -0.279310049 0.01587394 

UBE2L6 -0.312548751 0.016103493 

PHKB -0.27006308 0.016167636 

TRIB1 0.291438789 0.016214602 

ILF3 -0.29814908 0.016471418 

PTGS2 0.311737755 0.016777557 

IFI44 -0.346858778 0.016987937 

GGH 0.283576687 0.017067914 

PPIB 0.312277948 0.018184177 

NFE2 0.33495086 0.018296617 

CD79A -0.433637903 0.018430501 

CASP3 0.279273528 0.01850669 

FAM150B 0.340424185 0.01851195 

C19orf10 0.268539343 0.018728382 

S100A9 0.370918738 0.019037914 

AGPAT5 -0.299201961 0.020063827 

MOCS2 -0.297492998 0.020181372 
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TP63 0.308892718 0.020733423 

PPP2R2D -0.280807015 0.021108297 

CTBP1 -0.268931859 0.02172329 

FBLN2 -0.28162848 0.021825372 

FAM190B -0.283844502 0.022182213 

HIP1R -0.280766468 0.022208474 

BIRC5 0.306644083 0.022684418 

GLTSCR2 -0.358068193 0.023233231 

OIP5 0.298860922 0.024066381 

WAPAL -0.345863765 0.024212042 

RCBTB2 0.279857962 0.024763259 

GNG2 -0.290781474 0.024933762 

CHPF 0.321750383 0.025436771 

GMNN 0.280911071 0.026423956 

KIAA0101 0.416704758 0.026518456 

TK1 0.363988564 0.026895143 

CNN3 -0.275463852 0.027153685 

HMMR 0.298013475 0.027175616 

RNF38 -0.266291489 0.028608371 

CDHR3 -0.362545602 0.028697227 

CDC45 0.35922027 0.029398907 

S100P 0.32554663 0.029911084 

BIK 0.298215008 0.030446531 

TRIM5 -0.263351982 0.03046395 

SLC7A5 0.316629427 0.03164915 

DNAJC3 0.269728622 0.031724095 

JSRP1 0.355369823 0.03175505 

WARS 0.268013977 0.032201814 

KIF11 0.284634836 0.032279259 

PLBD1 0.397814244 0.032695304 

MS4A1 -0.287344428 0.032992802 

PLEKHF2 -0.306328133 0.033571886 

RPL8 -0.274569609 0.03607261 

PTPRC -0.295363151 0.036349468 

IRS2 -0.276452655 0.036744682 

TNFRSF17 0.313143336 0.037861688 

SLC38A11 -0.276588279 0.038420951 

CCNA2 0.329123109 0.040012632 

NA -0.371739094 0.040359441 

C10orf26 -0.265190838 0.040739764 

ASPM 0.26569874 0.041295902 

ATP1A1 -0.26402067 0.043418936 
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IFI44L -0.427334264 0.043865956 

NINJ1 0.269118676 0.046962642 

S100A12 0.413866662 0.047832257 

CNPY3 -0.309100683 0.048384294 

ANKDD1A 0.309176919 0.049747599 
 

 

 

 

 

 

Appendix A.3 

List of 104 differentially expressed genes between RA (n=59) and non-RA (n=131) 

samples with the inclusion of clinical covariates. FC ≥ 1.2. No multiple test correction in 

place. 

 

Gene logFC P.Value 

VPS13A -0.29071413 3.09E-04 

LPIN2 -0.282011434 3.16E-04 

ZSCAN12 -0.264443548 4.21E-04 

FUT7 0.356859758 4.65E-04 

NRSN2 0.397817043 4.88E-04 

NCALD 0.358662012 5.07E-04 

LMNA 0.361686018 5.29E-04 

KCNK12 0.361988351 5.36E-04 

KCNMA1 0.305561942 7.26E-04 

LDOC1 -0.307860228 9.38E-04 

HOPX 0.390652063 9.84E-04 

UST -0.288117222 0.001286436 

ATF5 0.389288157 0.001312511 

MFGE8 0.291740448 0.001373339 

NCALD 0.336090599 0.001416622 

COG3 -0.322249016 0.001697441 

TP63 0.441758184 0.001743227 

HIPK2 0.330166483 0.002087204 

LDLR 0.350095686 0.002874723 

NA -0.34124883 0.003214183 

LGALS3 0.348949208 0.003291926 

COCH 0.376145756 0.003322116 

SLC25A26 -0.300588624 0.003375081 

FYN -0.38416372 0.003681543 

AK8 0.333323407 0.003830051 

MBNL1 -0.316618622 0.003835272 

SLTM -0.332553724 0.004090454 
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AY665172 0.288320216 0.004523924 

ARHGAP30 -0.28235242 0.004801986 

TOP1MT -0.3083869 0.004984279 

FAM150B 0.418981647 0.005210305 

DYRK1A -0.283233936 0.00554628 

FAM129A 0.326352353 0.005609511 

DHRS9 0.501738808 0.005888927 

TESC 0.336366396 0.006454009 

SF3B1 -0.300014903 0.006848611 

CAMK1G 0.385062592 0.006915888 

IL16 -0.275275206 0.007418065 

ZC3H14 -0.303202739 0.007435935 

ACAP2 -0.307962353 0.007630342 

CCNDBP1 -0.277235365 0.007742287 

LUC7L3 -0.350872166 0.007797459 

GALNT10 -0.264894459 0.008016595 

NUAK2 -0.303923585 0.008411058 

PROK2 0.415584097 0.008664974 

YPEL2 -0.280932695 0.009065496 

APP -0.279020219 0.009203212 

RPL32 -0.264468942 0.009630459 

TP63 0.358232079 0.009893684 

SMG7 -0.319124612 0.01013403 

UBE2E1 -0.353601288 0.010519228 

KIAA1407 -0.285131964 0.011843841 

ASB16 0.374106879 0.012270173 

PHGDH 0.374900108 0.012652155 

GAS6 0.366610487 0.012843036 

C17orf60 -0.405564806 0.013291164 

CD79B -0.386605814 0.013519818 

CAV1 0.368176298 0.01369187 

CD44 -0.365773181 0.014613128 

ADD3 -0.292545285 0.015166529 

PRDM1 0.354943175 0.01537095 

ACTRT1 0.300361994 0.016331658 

E2F2 0.297520474 0.016880264 

SF1 -0.285008334 0.017048823 

HERPUD2 -0.315186147 0.017357886 

NDRG3 -0.309942977 0.01753697 

OGT -0.387737435 0.017920947 

TOX2 0.282376083 0.018021839 

CDC42SE1 -0.323591513 0.018668189 
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NT5DC2 0.392744191 0.019991323 

OPN3 -0.281097563 0.020638161 

MANEA 0.271436833 0.02129062 

ADARB1 -0.264295977 0.025603875 

TULP4 -0.263606189 0.025779472 

TOX2 0.26959114 0.026151073 

DHRS9 0.324993865 0.026212584 

AK124143 -0.295728817 0.026625114 

CXCR4 -0.542884027 0.026951417 

IFI44 -0.330958579 0.027843957 

CNN3 -0.279924311 0.028458381 

RCBTB2 0.280247091 0.029278393 

FAM129A 0.316050199 0.029424038 

MAL 0.328056654 0.031230166 

SLAMF7 0.263352066 0.031800866 

TSPAN3 -0.283608531 0.032201382 

FAM150B 0.324691019 0.032303484 

DSTYK -0.308112643 0.032470359 

CLEC2D -0.306758183 0.033587921 

GAS6 0.289835414 0.034004545 

PPIA -0.335233536 0.034304791 

NUSAP1 0.279288174 0.034351051 

CD74 -0.298128044 0.034637962 

TRIB1 0.26413929 0.03504892 

NA -0.267702211 0.035675384 

ABLIM1 -0.309653016 0.038463629 

RPLP0 -0.272418827 0.03860245 

FKBP11 0.27249962 0.038822785 

NCF1 -0.467724411 0.039901685 

JSRP1 0.347883881 0.04283498 

NA 0.275919995 0.042845062 

HPS3 -0.267652193 0.046217295 

MAL 0.265110766 0.047052501 

CD79A -0.366655964 0.047253377 

CCR9 -0.30961145 0.048232377 
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Appendix A.4 
List of 225 differentially expressed genes between RA (n=59) and non-inflammatory 

(n=72) samples without the inclusion of clinical covariates. FC ≥ 1.2. Benjamini-

Hochberg multiple test correction in place 

 

Gene logFC P.Value adj.P.Val 

LPIN2 -0.378744578 9.10E-06 0.024995124 

OXCT1 -0.417111446 9.42E-06 0.024995124 

C10orf32-AS3MT -0.361917695 9.98E-06 0.024995124 

TOP1MT -0.535904553 1.07E-05 0.024995124 

RCSD1 -0.30326813 1.14E-05 0.024995124 

NA 0.414880461 1.97E-05 0.026208951 

NINJ2 0.327347907 2.48E-05 0.026208951 

TRAK1 -0.342936634 2.68E-05 0.026208951 

C17orf28 0.361562973 2.79E-05 0.026208951 

NRSN2 0.514068698 3.31E-05 0.026208951 

VPS13A -0.364246594 3.35E-05 0.026208951 

GATAD1 -0.307157012 3.48E-05 0.026208951 

COG3 -0.476747029 3.74E-05 0.026208951 

RBM15B -0.30451631 4.35E-05 0.026208951 

OPA1 -0.333247555 4.50E-05 0.026208951 

FAM108B1 -0.536865385 4.72E-05 0.026208951 

BAG5 -0.266415472 4.87E-05 0.026208951 

NDRG2 -0.290652963 5.44E-05 0.026208951 

YPEL2 -0.489917519 6.03E-05 0.026208951 

SLTM -0.501749294 6.18E-05 0.026208951 

TSPYL2 -0.422990307 6.69E-05 0.026208951 

UHRF1BP1L -0.367426101 6.93E-05 0.026208951 

ING5 -0.324299995 7.02E-05 0.026208951 

ACAP2 -0.520783843 7.14E-05 0.026208951 

TSHZ1 -0.307923064 7.60E-05 0.026208951 

CUL4B -0.415247053 7.78E-05 0.026208951 

DYRK1A -0.463919873 8.92E-05 0.026208951 

CDC42SE1 -0.47802667 9.07E-05 0.026208951 

KIAA1370 -0.284197618 9.57E-05 0.026208951 

UST -0.382035196 9.58E-05 0.026208951 

PHC2 -0.409434949 9.68E-05 0.026208951 

ATP2C1 -0.474506371 9.82E-05 0.026208951 

RBM41 -0.327560296 9.93E-05 0.026208951 

NA -0.497739841 1.01E-04 0.026208951 

NUDT2 0.338631882 1.02E-04 0.026208951 

SMEK1 -0.412652111 1.03E-04 0.026208951 

MAPKAP1 -0.33423213 1.09E-04 0.026208951 
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PHLPP2 -0.342054928 1.11E-04 0.026208951 

EPB41L2 -0.358404288 1.13E-04 0.026208951 

LMNA 0.441543934 1.14E-04 0.026208951 

BRMS1L -0.311015198 1.15E-04 0.026208951 

ZBTB5 -0.310755244 1.23E-04 0.027508064 

HECTD1 -0.26695656 1.31E-04 0.02873462 

AKAP10 -0.331871004 1.37E-04 0.029387435 

DHRS9 0.758726136 1.40E-04 0.029495763 

PPTC7 -0.362930698 1.46E-04 0.029864878 

VKORC1 0.311129258 1.47E-04 0.029864878 

AY665172 0.410410729 1.56E-04 0.031061531 

KIAA0430 -0.272382147 1.78E-04 0.033164801 

SLC16A2 0.276304534 1.78E-04 0.033164801 

PRKCE -0.409591386 1.81E-04 0.033164801 

SYN1 0.281707297 1.83E-04 0.033164801 

ZXDB -0.371639198 1.84E-04 0.033164801 

LDOC1 -0.378850135 1.93E-04 0.033461916 

MRPS21 -0.324321504 1.98E-04 0.033461916 

CAPRIN2 -0.35258493 1.98E-04 0.033461916 

JF432672 -0.428868073 1.98E-04 0.033461916 

BCL7C -0.35905934 2.08E-04 0.034533968 

RNF146 -0.389506698 2.13E-04 0.034846095 

GAS6 0.667130547 2.22E-04 0.035042507 

ARID2 -0.302320842 2.30E-04 0.035042507 

SFMBT1 -0.388093078 2.31E-04 0.035042507 

LPGAT1 -0.313432899 2.35E-04 0.035042507 

ZC3H14 -0.463426524 2.36E-04 0.035042507 

SLC25A26 -0.418495786 2.39E-04 0.035042507 

LMNA 0.342691432 2.40E-04 0.035042507 

MPP5 -0.287259335 2.49E-04 0.035269816 

HOPX 0.467811662 2.51E-04 0.035269816 

NFYA -0.359015829 2.55E-04 0.035269816 

TXNRD1 -0.292611737 2.61E-04 0.035269816 

FYN -0.522898026 2.66E-04 0.035269816 

TMEM183A -0.294357051 2.66E-04 0.035269816 

ARHGAP12 -0.272534431 2.67E-04 0.035269816 

C12orf49 -0.305120059 2.68E-04 0.035269816 

RPL32 -0.413884326 2.71E-04 0.035269816 

WRNIP1 -0.34736794 2.73E-04 0.035269816 

SMEK1 -0.438989352 2.78E-04 0.035460959 

SP140L -0.312522079 2.84E-04 0.035529891 

ADD3 -0.48050213 2.95E-04 0.035529891 
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CCDC50 -0.34112732 2.96E-04 0.035529891 

GALNT10 -0.404960835 2.96E-04 0.035529891 

ZDHHC17 -0.285144533 3.03E-04 0.035529891 

ZSCAN12 -0.299433215 3.05E-04 0.035529891 

CCNT2 -0.404158836 3.12E-04 0.035529891 

CDC42SE1 -0.535032883 3.14E-04 0.035529891 

ASB16 0.58392685 3.24E-04 0.035949786 

PFKFB2 -0.33594738 3.37E-04 0.036466725 

KIAA1468 -0.349881135 3.44E-04 0.036466725 

DIS3 -0.288071358 3.51E-04 0.036466725 

TBXAS1 0.439714722 3.59E-04 0.036466725 

SEC24B -0.340964446 3.62E-04 0.036466725 

ZNF32 -0.393358672 3.62E-04 0.036466725 

TUBGCP6 -0.330702576 3.71E-04 0.036846925 

OGT -0.641322538 3.80E-04 0.036846925 

TMEM185B -0.283331326 3.81E-04 0.036846925 

NR3C1 -0.280735237 3.82E-04 0.036846925 

KCNK12 0.405838629 3.87E-04 0.036846925 

PTPRA -0.267759927 3.89E-04 0.036846925 

DAZAP1 -0.292421844 4.01E-04 0.036846925 

ZNF266 -0.321230324 4.02E-04 0.036846925 

BCL10 -0.383945171 4.02E-04 0.036846925 

PRMT6 -0.275245902 4.03E-04 0.036846925 

SF3B1 -0.430137146 4.12E-04 0.037055892 

WDR26 -0.309412338 4.13E-04 0.037055892 

CREBZF -0.310495934 4.22E-04 0.037055892 

PROK2 0.638527199 4.22E-04 0.037055892 

LDLR 0.454519663 4.53E-04 0.038017183 

MTSS1 -0.393420147 4.66E-04 0.038017183 

TULP4 -0.462282415 4.69E-04 0.038017183 

MPHOSPH8 -0.307215861 4.73E-04 0.038017183 

ZC3HAV1 -0.42348811 4.77E-04 0.038017183 

ZC4H2 -0.312916172 4.80E-04 0.038017183 

SEPX1 0.31712172 4.84E-04 0.038017183 

SLFN11 0.279112589 4.87E-04 0.038017183 

TAF7 -0.374836641 4.88E-04 0.038017183 

S100P 0.574425924 4.94E-04 0.038017183 

HPS3 -0.525491514 4.95E-04 0.038017183 

MAD2L1BP -0.369699088 5.07E-04 0.038017183 

GAS6 0.576811324 5.09E-04 0.038017183 

FCRL2 -0.283047146 5.10E-04 0.038017183 

CASD1 -0.336976716 5.15E-04 0.038017183 
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ZMYM5 -0.366073408 5.16E-04 0.038017183 

ABLIM1 -0.588329994 5.22E-04 0.038017183 

WDR44 -0.32601251 5.23E-04 0.038017183 

NA 0.341858369 5.26E-04 0.038017183 

FUT7 0.378809305 5.27E-04 0.038017183 

TRIM24 -0.320506032 5.38E-04 0.038386196 

CD79B -0.600067752 5.41E-04 0.038386196 

MAPKAP1 -0.369829455 5.42E-04 0.038386196 

HERC3 -0.334198804 5.76E-04 0.040021247 

URB2 -0.267614065 5.98E-04 0.04099923 

RALB -0.416282793 6.16E-04 0.042003274 

WDR47 -0.316484035 6.25E-04 0.042090815 

STXBP5 -0.265033358 6.45E-04 0.04240837 

APP -0.405917188 6.45E-04 0.04240837 

SMAP1 -0.290646456 6.55E-04 0.042555468 

CXCR4 -0.937614191 6.63E-04 0.04278259 

ZNF614 -0.378983853 6.84E-04 0.043313477 

AFF4 -0.397116463 6.85E-04 0.043313477 

SF1 -0.451330991 6.90E-04 0.043313477 

ARHGAP30 -0.371871659 6.93E-04 0.043313477 

ZMYND8 -0.27561743 6.95E-04 0.043313477 

S100A8 0.580989926 7.00E-04 0.043386972 

MMP25 0.366303515 7.04E-04 0.043386972 

SCARNA3 -0.263632959 7.08E-04 0.043401121 

CSRNP2 -0.265759086 7.12E-04 0.043401121 

ASB3 -0.285722983 7.17E-04 0.043445196 

PPP2R2D -0.455058494 7.21E-04 0.043445196 

AMOT -0.279747451 7.30E-04 0.043801864 

TOMM40 -0.303004882 7.38E-04 0.044031635 

MMD -0.286784733 7.59E-04 0.044999101 

ZMAT5 -0.298427971 7.69E-04 0.045191716 

PJA1 -0.280585741 7.70E-04 0.045191716 

CD44 -0.564312651 7.80E-04 0.04533697 

CDKN2D -0.371824181 7.99E-04 0.045606975 

LGALS3 0.431506564 8.24E-04 0.045606975 

YPEL1 -0.313466406 8.30E-04 0.045606975 

MTMR4 -0.3858024 8.32E-04 0.045606975 

AQP9 0.705625829 8.34E-04 0.045606975 

SON -0.27457028 8.43E-04 0.045606975 

TRPV2 0.330040623 8.44E-04 0.045606975 

FBXO21 -0.303216397 8.50E-04 0.045606975 

NDRG3 -0.478132309 8.54E-04 0.045606975 
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RRP1 0.284285758 8.56E-04 0.045606975 

JF432672 -0.315380371 8.71E-04 0.045606975 

DIDO1 -0.263542947 8.97E-04 0.045606975 

DYRK1A -0.388981878 9.03E-04 0.045606975 

SLC29A2 -0.266839632 9.07E-04 0.045606975 

RCL1 -0.274177445 9.07E-04 0.045606975 

HIPK2 0.387764202 9.09E-04 0.045606975 

SON -0.343672396 9.14E-04 0.045606975 

P2RY10 -0.275992587 9.24E-04 0.045606975 

ANO6 -0.286755075 9.34E-04 0.045606975 

EHBP1 -0.278782539 9.46E-04 0.045606975 

PKD1 -0.306118807 9.46E-04 0.045606975 

PHKB -0.411214415 9.55E-04 0.045606975 

SCAND1 -0.318774135 9.65E-04 0.045606975 

FNBP4 -0.279803304 9.67E-04 0.045606975 

SLC16A3 0.334167732 9.70E-04 0.045606975 

NFE2 0.518633788 9.74E-04 0.045606975 

ERF -0.324861902 9.78E-04 0.045606975 

C17orf60 -0.579123231 9.79E-04 0.045606975 

BANF1 -0.346275149 9.89E-04 0.045606975 

NEDD9 -0.291562389 9.93E-04 0.045606975 

CRK -0.282213279 0.001008228 0.045606975 

REV3L -0.299662734 0.001008663 0.045606975 

GAB3 -0.281000343 0.001008942 0.045606975 

SEC24B -0.337704888 0.001024204 0.045606975 

ZNF549 -0.275288278 0.001042904 0.045606975 

UBE2E1 -0.506024018 0.001051699 0.045606975 

UBE2L6 -0.471804254 0.001054717 0.045606975 

SMG7 -0.442835084 0.001066713 0.045606975 

ADARB1 -0.317836223 0.001067716 0.045606975 

PARP11 -0.335337939 0.001073224 0.045606975 

C12orf35 -0.272067712 0.001074967 0.045606975 

KIAA1737 -0.282445863 0.001083341 0.045606975 

HIAT1 -0.295463341 0.001083891 0.045606975 

MAP3K9 -0.292298119 0.001087978 0.045606975 

MAP4K4 -0.290448457 0.001091429 0.045606975 

OPN3 -0.458736233 0.001100069 0.045606975 

PPIA -0.565806544 0.001101417 0.045606975 

IRF2BP2 -0.412293135 0.001152608 0.046228448 

SNRPN -0.360549683 0.001156439 0.046228448 

RALGPS2 -0.359539301 0.001161758 0.046228448 

PDIK1L -0.324268038 0.00116619 0.046228448 
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CAMK1G 0.497602505 0.001169313 0.046228448 

FHOD1 0.299238328 0.001169323 0.046228448 

AGXT2L2 -0.320971966 0.001170062 0.046228448 

DIP2B -0.270467184 0.001171194 0.046228448 

MAML1 -0.283618738 0.001182312 0.046336595 

ANG 0.401828073 0.001209339 0.047224479 

ANKRD33 0.333365228 0.00124945 0.04798521 

ZNF514 -0.340465578 0.001263193 0.04798521 

FAM190B -0.44312967 0.001268955 0.04798521 

PIK3CB -0.332760784 0.001292431 0.048181506 

CHRAC1 -0.29038132 0.001293145 0.048181506 

DALRD3 -0.292666875 0.001308591 0.048185136 

DYSF 0.433150638 0.001327708 0.048562104 

E2F2 0.440792435 0.001331353 0.048562104 

PPFIA1 -0.26750883 0.001332277 0.048562104 

ADARB1 -0.422849474 0.001336531 0.048562104 

LUC7L3 -0.458364457 0.001378807 0.049768594 

PRICKLE2 0.286884779 0.001387774 0.049773952 

PLOD1 0.264586419 0.001388028 0.049773952 

NUAK2 -0.409314186 0.001394775 0.049852988 
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Appendix A.5 

Upstream regulators identified for the list of differentially expressed genes between RA 

(n=59) and non-inflammatory (n=72) samples without the inclusion of clinical 

covariates. FC ≥ 1.2. Benjamini-Hochberg multiple test correction in place. IL-13 is 

predicted to be activated in the dataset. PLG is predicted to be inhibited 
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Appendix A.6  
Volcano plots for Rheumatoid samples (n=59) versus non-inflammatory samples (n=72), 

FC1.2, MTC BH with each clinical variable added separately to the linear model. a) with 

age included, b) with CRP included, c) with ESR included. No DEGs were identified at a 

FC≥1.2 in any comparison. Vertical, dotted lines denote FC1.2. Horizontal, dotted lines 

denote p-value 0.05. Red dots indicate probes which are differentially expressed between 

the comparator groups. 

 

 
a)            b) 

 
c) 
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Appendix A.7 

Network 2 identified for list of differentially expressed genes between the ≥55 years and 

<55 years age groups, no clinical covariates added, FC ≥1.2, Benjamini-Hochberg 

multiple test correction in place. The top diseases and functions for this netowrk are 

described as related to connective tissue disorders, developmental disorder and 

haematological diseases. 
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CD4+ and B Lymphocyte Expression Quantitative Traits at
Rheumatoid Arthritis Risk Loci in Patients With

Untreated Early Arthritis

Implications for Causal Gene Identification

Nishanthi Thalayasingam,1 Nisha Nair,2 Andrew J. Skelton,1 Jonathan Massey,2

Amy E. Anderson,1 Alexander D. Clark,1 Julie Diboll,1 Dennis W. Lendrem,1

Louise N. Reynard,1 Heather J. Cordell,3 Stephen Eyre,2 John D. Isaacs,1

Anne Barton,2 and Arthur G. Pratt1

Objective. Rheumatoid arthritis (RA) is a geneti-
cally complex disease of immune dysregulation. This
study sought to gain further insight into the genetic
risk mechanisms of RA by conducting an expression
quantitative trait locus (eQTL) analysis of confirmed
genetic risk loci in CD4+ T cells and B cells from care-
fully phenotyped patients with early arthritis who were
naive to therapeutic immunomodulation.

Methods. RNA and DNA were isolated from
purified B and/or CD4+ T cells obtained from the
peripheral blood of 344 patients with early arthritis.
Genotyping and global gene expression measurements
were carried out using Illumina BeadChip microarrays.
Variants in linkage disequilibrium (LD) with non-HLA
RA single-nucleotide polymorphisms (defined as r2 ≥
0.8) were analyzed, seeking evidence of cis- or trans-
eQTLs according to whether the associated probes were
or were not within 4 Mb of these LD blocks.

Results. Genes subject to cis-eQTL effects that
were common to both CD4+ and B lymphocytes at RA
risk loci were FADS1, FADS2, BLK, FCRL3, ORMDL3,
PPIL3, and GSDMB. In contrast, those acting on
METTL21B, JAZF1, IKZF3, and PADI4 were unique to
CD4+ lymphocytes, with the latter candidate risk gene
being identified for the first time in this cell subset. B
lymphocyte–specific eQTLs for SYNGR1 and CD83 were
also found. At the 8p23 BLK–FAM167A locus, adjacent
genes were subject to eQTLs whose activity differed
markedly between cell types; in particular, the FAM167A
effect displayed striking B lymphocyte specificity. No
trans-eQTLs approached experiment-wide significance,
and linear modeling did not identify a significant influ-
ence of biologic covariates on cis-eQTL effect sizes.

Conclusion. These findings further refine the
understanding of candidate causal genes in RA patho-
genesis, thus providing an important platform from
which downstream functional studies, directed toward
particular cell types, may be prioritized.
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Rheumatoid arthritis (RA) is a complex genetic
disease in which immune tolerance becomes impaired,
and an unchecked inflammatory response leads to
chronic pain and damage to the synovial joints (1).
Genetic variation at the HLA–DRB1, HLA–DPB, and
HLA–B loci accounts for a large proportion of the
known RA risk (2), with implications for antigen pre-
sentation to T lymphocytes (3,4). Outside of the HLA
region, accumulating data now highlight an overlap
between the 101 confirmed RA risk loci and cell-spe-
cific enhancer elements, which is maximal in CD4+
lymphocytes followed by B lymphocytes (5–8). Such
molecular insights support a pivotal role for both
CD4+ T cell and B cell lineages in the pathogenesis of
RA (9–11). Mapping cellular mechanisms of genetic
risk in the disease is far from straightforward, however,
because lead single-nucleotide polymorphisms (SNPs)
at associated loci are typically noncoding and inter-
genic, tagging linkage disequilibrium (LD) blocks that
contain multiple genes (7,12).

To prioritize causal genes, one solution is to
explore associations between genetic variants and down-
stream molecular quantitative traits, the most proximal
of which is gene expression. Thus, with respect to a puta-
tive susceptibility gene, colocalization of an expression
quantitative trait locus (eQTL) with a disease risk vari-
ant implicates the gene as a candidate for disease causa-
tion (13). Data from eQTL studies in healthy human
subjects have indeed informed algorithms for prioritiza-
tion of candidate genes in RA (7). Importantly, however,
it is now clear that the transcriptional consequences of
genetic variation can manifest as cell type specificity,
with potentially profound implications for disease patho-
genesis (14,15). For example, it has been observed that
only 22% of cis-eQTLs are consistently identified in dif-
ferent circulating cell subsets from healthy donors;
eQTLs present in a specific cell type may not be detect-
able in another cell type or in whole blood—and vice
versa. Moreover, a number of eQTLs can be detected
only under specific conditions of cell stimulation
(14,16,17). This suggests that the contribution of eQTL
data to inferred causality among candidate genes for a
given disease must increasingly be understood at a cellu-
lar level and within a relevant biologic context (18).

The suggestion that the effect size of a risk vari-
ant’s influence on gene expression may depend on the
environmental parameters to which cells are exposed has
potentially important implications for understanding the
complexities of disease induction. In RA, for example,
the unmasking of eQTL effects in relevant cell popula-
tions during a transient systemic trigger might plausibly
be sufficient to break immune tolerance, permitting a

transition to persistent joint inflammation. Against this
backdrop, we set out to reassess the biologic landscape of
candidate susceptibility genes in RA by mapping cis- and
trans-eQTLs at 101 established RA risk loci in circulating
CD4+ and B lymphocyte subsets sampled from a cohort
of untreated patients with early arthritis. In so doing, we
sought insight into potential common and/or cell-specific
mechanisms of genetic risk in a highly relevant biologic
context, free from the confounding influences of in vivo
immune modulation or ex vivo manipulation.

PATIENTS AND METHODS

Patients. Patients with early arthritis (all of self-
reported white ethnicity) who were attending the Newcastle
Early Arthritis Cohort (NEAC) clinic in the UK were
recruited into the study, and peripheral blood samples were
obtained prior to the commencement of immunomodulatory
therapy; individuals who were exposed to steroid treatment
during the 3 months prior to recruitment or those whose eth-
nic origin, determined by genotype, was not of white North-
ern European descent were excluded from the analyses. This
resulted in 71 patients being recruited between January 2008
and December 2009, and a further 273 during 2012 and 2013;
the NEAC cohort has been described in detail elsewhere (19–
22). Initial diagnoses were validated at follow-up visits over a
median period of 20 months (range 13–25 months; duration
of follow-up >1 year in all cases), as described previously
(19,21). All patients gave their written, informed consent for
inclusion into the study, which was approved by the local
Regional Ethics Committee.

Measurements of gene expression, data curation, and
quality control. Whole peripheral blood was stored at room
temperature for ≤4 hours before processing. CD4+ lympho-
cytes were isolated from the peripheral blood by positive
selection, as previously described (21), yielding a median cell
purity of 98.9%. To obtain B lymphocytes, peripheral blood
mononuclear cells were first isolated by density centrifugation
using the Lymphoprep protocol (Axis-Shield Diagnostics), and
then subjected to positive selection using anti-CD19 magnetic
microbeads (Miltenyi Biotec). The median cell purity was
96.4%, as determined by flow cytometry (see Supplementary
Figure 1, available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.40393/abstract).

RNA was immediately extracted from total CD4+ T
cells or B lymphocytes using an RNeasy Mini kit (prior to
2012) or AllPrep DNA/RNA Mini kit (both from Qiagen),
and then subject to quality control using an Agilent 2100 Bio-
analyzer (Agilent). The median RNA integrity number in the
samples analyzed was 9.4. Complementary RNA generated
from 250 ng total RNA (Illumina TotalPrep RNA Amplifica-
tion kit) was hybridized to either an Illumina Whole Genome
6 version 3 (using CD4+ lymphocyte samples obtained prior
to 2012) or a 12HT BeadChip (using CD4+ T cell samples
obtained in or after 2012, and all B cell samples) (both from
Illumina). The analysis was limited to probes determined
to be common to both array platforms, based on unique
capture sequence identifiers. Those liable to cross-hybridization
according to probe-sequence BLATanalysis were then excluded.
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Following normalization (robust spline normalization)
and variance stability transformation (23,24), batch correction
of the data from CD4+ cells by linear modeling (25), and
merging of the component data sets (26), principal compo-
nents analysis was carried out to confirm correction for tech-
nical bias (see Supplementary Figure 2, available on the
Arthritis & Rheumatology web site at http://onlinelibrary.wiley.
com/doi/10.1002/art.40393/abstract). The raw and processed
expression data used in this study are available in the Gene
Expression Omnibus database (accession nos. GSE20098,
GSE80513, or GSE100648; http://www.ncbi.nlm.nih.gov/geo) (a
complete list of unique identifiers is provided in Supplementary
Table 1, available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.40393/abstract).

Genotyping. Genomic DNA was isolated from the
peripheral blood of all patients, either from the whole blood
using the Wizard genomic DNA purification kit (Promega) (for
samples obtained prior to 2012) or from isolated lymphocytes
in parallel with RNA extraction (AllPrep DNA/RNA Mini kit;
Qiagen). Genotyping was carried out using an Illumina Human
CoreExome-24 version 1-0 array, following the manufacturer’s
protocol. Samples and SNPs with a call rate of <98% were
excluded. In addition, SNPs with a minor allele frequency of
<0.01 or an Illumina GenomeStudio cluster separation of <0.4
were excluded from further analysis. Data were pre-phased
using SHAPEIT2 and imputed to the 1000 Genomes Phase 1,
version 3, reference panel using IMPUTE2. Imputed SNPs with
INFO scores of <0.8 were excluded.

Analysis of eQTLs and covariates. Analysis of eQTLs
was limited to loci defined by the 101 lead disease-associated
variants confirmed to be present in Caucasians, as previously
described by Okada et al (7). For this analysis, linear models

were fitted and residual analysis was performed to verify
model assumptions using the R package; Pearson’s R2 statis-
tics and associated P values were derived. Due to abundant
cross-hybridization of the expression probes and the con-
founding effect of copy numbers within the HLA region, we
limited our analysis to non-HLA variants. Permutation testing
(10,000 permutation replicates) was carried out to derive
experiment-wide P values equivalent to a predetermined a
value of 5%; a more relaxed (though nonetheless robust) sig-
nificance threshold was also defined at an a value of 10%.
This method, utilized to correct for multiple testing, proved
more stringent than the standard Benjamini-Hochberg
method, which was also applied for comparison. A general
linear model incorporating other potential biologic and clini-
cal parameters, including age, sex, C-reactive protein (CRP)
level, and swollen joint count, permitted evaluation of the
robustness of the eQTLs in relation to inflammation markers
and other potential covariates.

Comparisons with published data sets. Published
eQTL data sets were identified using PubMed literature
searches. Results were cross-checked and validated with refer-
ence to the GTEx Portal database (available at http://gtexportal.
org) (27).

RESULTS

Mapping of eQTLs at RA risk loci in lymphocytes
of treatment-naive patients with early arthritis. Expres-
sion data from primary peripheral blood lymphocytes
were available for a total of 344 genotyped patients with
early arthritis; available data on CD4+ lymphocytes were

Table 1. Characteristics of the patients with early arthritis*

RA
(n = 124)

Non-RA
inflammatory arthritis

(n = 113)
Noninflammatory arthritis

(n = 107) P†

Age, years 59 (48–73) 51 (39–63) 52 (44–57) <0.001
Sex, % female 69 61 81 <0.001
Duration of symptoms, weeks 12 (8–27) 12 (6–25) 24 (8 to >52) 0.03
CRP, gm/liter 11 (5–26) 8 (5–19) <5 (<5–8) <0.001
ESR, mm/minute 26 (12–49) 19 (7–34) 8 (4–20) <0.001
TJC 6 (3–12) 2 (1–6) 3 (0–8) 0.001
SJC 2 (1–6) 1 (0–3) 0 (0–0) <0.001
DAS28 4.68 (3.5–5.5) NA NA NA
RF positive, % 57 7 14 <0.001
ACPA positive, % 48 2 1 <0.001
Non-RA diagnosis, %
Osteoarthritis – – 55 –
Other, noninflammatory arthritis – – 45 –
Spondyloarthropathy (PsA, AS, EA) – 68 – –
Crystal arthropathy – 9 – –
Other, inflammatory arthritis – 20 – –
Undifferentiated arthritis – 3 – –

* Patients with early arthritis are stratified by diagnostic category, including non–rheumatoid arthritis (RA) subclassifica-
tions. Except where indicated otherwise, values are the median (interquartile range). CRP = C-reactive protein; ESR =
erythrocyte sedimentation rate; TJC = tender joint count (of 28 joints); SJC = swollen joint count (of 28 joints); DAS28 =
Disease Activity Score in 28 joints; NA = not applicable; RF = rheumatoid factor; ACPA = anti–citrullinated peptide
autoantibody; PsA = psoriatic arthritis; AS = ankylosing spondylitis; EA = enteropathic arthritis.
† P values were based on Kruskal-Wallis nonparametric analysis of variance for continuous variables, and chi-square test
for dichotomous variables.
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limited to 249 of the patients, data on B lymphocytes
were available for 242 of the patients, and paired data
were available for 147 of the patients. The baseline clini-
cal characteristics and diagnoses of all patients are sum-
marized in Table 1. After quality control procedures were
applied, a total of 1,227 genotyped variants in LD
(defined as r2 ≥ 0.8) with lead RA-associated SNPs were
considered. Filtered expression probes whose start sites
mapped to within 4 Mb of LD blocks (as defined in
Patients and Methods) were initially measured to identify
cis-acting eQTLs. In a secondary analysis of trans-eQTLs,
those with start sites >4 Mb from the same LD blocks
were evaluated in a similar manner.

Permutation testing was carried out using 10,000
permutation replicates for each analysis in each lympho-
cyte subset. This allowed us to account for multiple test-
ing, in which the total number of tests for each cell
type corresponded to the number of unique SNP–gene
pairs in the analyses of cis- or trans-acting eQTLs across
the prespecified loci, after data processing and quality

control had been performed. The maximum value of the
test statistic (minimum nominal P value) across the total
number of tests in each permutation replicate was
recorded, and significance thresholds exceeding 5%
or 10% in each permutation replicate were determined.
This procedure resulted in experiment-wide P value
thresholds (a = 5% or a = 10%) that were used to define
evidence of eQTLs in each cell type, as summarized in
Figure 1 (for cis-eQTL analyses) and in Supplementary
Figure 3 (for trans-eQTL analyses; available on the
Arthritis & Rheumatology web site at http://onlinelibrary.
wiley.com/doi/10.1002/art.40393/abstract).

In total, 213 cis-acting significant SNP–transcript
associations were identified in CD4+ lymphocytes (a =
5%), corresponding to 10 unique genes at 7 established
RA risk loci; 194 cis-eQTLs were similarly identified in B
lymphocytes (a = 5%), also corresponding to 10 unique
genes at 7 loci. The cis-eQTL effects for FADS1, FADS2,
FCRL3, BLK, ORMDL3, GSDMB, and PPIL3 were
robust in both CD4+ and B lymphocytes at RA risk loci.

Figure 1. Determination of experiment-wide significance of cis-acting expression quantitative trait loci (cis-eQTLs) in CD4+ T lymphocytes (A)
and CD19+ B lymphocytes (B). Top, Histograms summarize the data from 10,000 permutation replicates, each derived from the indicated number
of single-nucleotide polymorphisms (SNPs) and expression probes, and the final number of included tests. P values at the a = 5% and a = 10%
thresholds are shown. Bottom, QQ plots depict expected P value distributions under the null hypothesis (red line) versus observed distributions.
Analogous plots for analyses of trans-eQTLs are shown in Supplementary Figure 3 (available on the Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.40393/abstract). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.
wiley.com/doi/10.1002/art.40393/abstract.
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The eQTLs acting on 3 genes (METTL21B, IKZF3, and
JAZF1) were unique to CD4+ T lymphocytes in this pop-
ulation, with PADI4 also subject to a convincing effect
exclusively in this cell type despite falling marginally
short of the a = 10% threshold by permutation analysis;
the latter gene encodes a peptidylarginine deiminase
enzyme, and therefore is of interest in the pathogenesis
of RA (28).

At the 8p23 locus, FAM167A was, in contrast to
the neighboring BLK gene, shown to be subject to cis
regulation only in B lymphocytes, and SYNGR1 and
CD83 eQTLs were also specific to this cell type. These

data are summarized in Tables 2 and 3 and depicted
as Manhattan plots in Figure 2. No trans-eQTLs
achieved experiment-wide significance thresholds, either
in CD4+ T lymphocytes or in B lymphocytes.

Representative examples of eQTL plots are
depicted in Figure 3, and a comprehensive list of all
SNP–probe associations that remained significant after
Benjamini-Hochberg correction for multiple testing is
provided in Supplementary Tables 2 and 3 (available on
the Arthritis & Rheumatology web site at http://onlinelib
rary.wiley.com/doi/10.1002/art.40393/abstract), in which
significance thresholds of a = 5% and a = 10% by

Table 2. Summary of CD4+ T lymphocyte cis-eQTL genes*

Gene Lead eQTL SNP Locus Minor allele (MAF) P†
R2 in relation to RA

index SNP

Total no. of
significant SNPs

for probe‡

FADS1 rs968567 11q12 T (0.177) 1.06 9 10–27 1.0 3
BLK rs922483 8p23 T (0.426) 1.41 9 10–20 0.805 9
FADS2 rs968567 11q12 T (0.177) 2.40 9 10–20 1.0 3
METTL21B rs701006 12q13–q14 A (0.408) 3.65 9 10–19 1.0 3
FCRL3 rs2210913 1q23 C (0.457) 6.24 9 10–16 0.873 12
ORMDL3 rs4795397 17q12–q21 G (0.482) 1.07 9 10–14 0.959 66
PPIL3 rs6757776 2q33 G (0.103) 8.60 9 10–11 1.0 16
GSDMB rs4795397 17q12–q21 G (0.314) 6.92 9 10–10 0.969 88
IKZF3 rs1453559 17q12–q21 C (0.453) 2.52 9 10–9 0.801 23
JAZF1 rs4722758 7p15 G (0.195) 1.70 9 10–8 1.0 15
PADI4 rs2240339 1p36 T (0.418) 3.37 9 10–6§ 0.923 –

* Microarray probe targets are shown as Human Genome Organisation gene symbols. Lead expression quantitative trait locus
(eQTL) single-nucleotide polymorphisms (SNPs) and loci are also shown, along with their minor allele and minor allele frequency
(MAF). Rheumatoid arthritis (RA) index SNPs were those listed in the report by Okada et al (see ref. 7).
† The permuted significance thresholds of a = 5% and a = 10% equate to P = 6.48 9 10�7 and P = 1.96 9 10–6, respectively (see
Figure 1).
‡ Based on a threshold of a = 10%.
§ Data for the PADI4 eQTL fell marginally short of the a = 10% threshold.

Table 3. Summary of CD19+ B lymphocyte cis-eQTL genes*

Gene Lead eQTL SNP Locus Minor allele (MAF) P†
R2 with

RA index SNP

Total no. of
significant SNPs

for probe‡

FAM167A rs4840568 8p23 A (0.264) 2.48 9 10–80 0.817 9
FADS1 rs968567 11q12 T (0.177) 1.96 9 10–41 1.0 3
ORMDL3 rs9906951 17q12–q21 C (0.383) 2.29 9 10–35 0.881 66
FADS2 rs968567 11q12 T (0.177) 6.60 9 10–25 1.0 3
FCRL3 rs2210913 1q23 T (0.482) 3.09 9 10–22 0.839 12
GSDMB rs12936231 17q12–q21 G (0.434) 7.21 9 10–16 0.862 66
SYNGR1 rs909685 22q13 A (0.31) 3.66 9 10–14 1.0 5
BLK rs2618476 8p23 C (0.25) 3.02 9 10–13 0.958 9
PPIL3 rs2141331 2q33 T (0.097) 1.13 9 10–10 0.943 8
CD83 rs78242827 6p23 C (0.058) 2.72 9 10–8 1.0 20

* Microarray probe targets are shown as Human Genome Organisation gene symbols. Lead expression quantitative trait locus
(eQTL) single-nucleotide polymorphisms (SNPs) and loci are also shown, along with their minor allele and minor allele frequency
(MAF). Rheumatoid arthritis (RA) index SNPs were those listed in the report by Okada et al (see ref. 7).
† The permuted significance thresholds of a = 5% and a = 10% equate to P = 5.71 9 10�7 and 2.19 9 10�6, respectively (see
Figure 1).
‡ Based on a threshold of a = 10%.
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permutation testing are also indicated. Supplementary
Table 4 (http://onlinelibrary.wiley.com/doi/10.1002/art.
40393/abstract) summarizes this information, listing

all significant eQTL SNPs (and associated genes) in rela-
tion to the index SNPs reported by Okada et al (7). Lim-
iting any or all of the above analyses to samples

Figure 2. Manhattan plots depict the 101 rheumatoid arthritis risk loci analyzed and P values for the significance of single-nucleotide polymor-
phism (SNP)–probe pairs (denoted by different-colored dots) among CD4+ T lymphocytes (top) and B lymphocytes (bottom) in patients with early
arthritis. Human Genome Organisation gene symbols for SNP–probe pairs, or groups thereof, that approached or reached experiment-wide signifi-
cance (at thresholds of a = 5% and a = 10% [horizontal lines]) are indicated, permitting comparison of expression quantitative trait loci between
cell types.

Figure 3. Representative examples of expression quantitative trait loci (eQTLs). Plots of normalized individual gene expression, along with their
Spearman’s rho statistics and P values for association, are shown for the lead eQTL single-nucleotide polymorphisms acting on FADS1 (A) and
PADI4 (B) in CD4+ T lymphocytes and FAM167A (C) in B lymphocytes.
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for which paired CD4+ and B lymphocytes were avail-
able (n = 147) had no substantial effect on the eQTL
genes identified, although some associations ceased to
reach experiment-wide significance due to diminished
power (see Supplementary Tables 5 and 6, http://online
library.wiley.com/doi/10.1002/art.40393/abstract).

Comparison of eQTLs with published data sets.
Our findings were considered in light of a number of
human eQTL studies for which significant SNP–probe
combinations are in the public domain. These included
analyses of cis-eQTLs in primary CD4+ and B lympho-
cytes. Murphy et al studied genome-wide expression in
positively selected whole CD4+ lymphocytes from 200
non-Hispanic white subjects, comprising young adults
with asthma and their first-degree relatives (29). Hu et al
examined paired expression limited to 270 genes in rest-
ing CD4+ lymphocytes and CD3/CD28-stimulated effec-
tor memory CD4+ lymphocytes from healthy donors;
genes were selected based on their proximity to 157
SNPs with known autoimmune disease associations (in-
cluding with RA) (30). Raj et al reported genome-wide
eQTL data in positively selected CD45RO� (naive)
CD4+ lymphocytes from 200 healthy European Ameri-
cans (31), and a similar analysis, by Kasela et al, was con-
ducted in whole CD4+ (and CD8+) Tcells (32). Another
study, by Fairfax et al (14), demonstrated the presence
of eQTLs in primary B cells from 288 healthy Euro-
peans. Studies by Dixon and colleagues (33,34) pre-
sented cumulative data from Epstein-Barr virus–
transformed human B cells (lymphoblastoid cell lines),
and a large meta-analysis was conducted to compare
studies performed in the whole blood of predominantly
healthy volunteers (35). Finally, our data were consid-
ered in the context of the GTEx resource database (27).

Overlap between the genes subject to cis-eQTLs
in these studies compared with those identified in our
own study is illustrated in Supplementary Figure 4 (avail-
able on the Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.40393/abstract).
Reassuringly, all of the cis-eQTL genes identified in
patients with untreated early arthritis replicated the find-
ings reported in at least one of the comparator studies.
Strong independent validation of CD4+ lymphocyte–specif-
ic associations was provided with regard to 9 of the genes.
Among these, RA risk loci at 11q12 and at 17q12–21 were
each observed to harbor pairs of apparently coregulated
genes, FADS1/FADS2 and ORMDL3/GSDMB, respec-
tively. Moreover, at the 17q12–21 locus, IKZF3 was con-
firmed to be subject to a highly significant eQTL effect in
CD4+ lymphocytes (32). When a more lenient (but
nonetheless robust) method for multiple test correction
was employed, we highlighted, for the first time, an

association between PADI4 expression and genotype at
the 1p36 locus specifically in CD4+ Tcells, its having previ-
ously been identified only in whole blood. Our findings
with respect to FAM167A, SYNGR1, and CD83 corrobo-
rate those in the only other study of primary human B lym-
phocytes, by Fairfax et al (14), and although the same
eQTLs have been noted in mixed cell populations of whole
blood (35), no study (including our own) has yet replicated
them in CD4+ T lymphocytes.

Lack of significant impact of clinical covariates
on eQTLs. Because differential eQTL effect sizes have
been observed in paired CD4+ T cells from healthy
donors according to whether T cell receptor–mediated
stimulation of the cells was undertaken ex vivo prior to
RNA extraction (30), we hypothesized that certain clini-
cal covariates, and/or the activation status of circulating
CD4+ T cells, might have a similar influence in vivo.
The clinical parameters considered included age, sex,
CRP level, and erythrocyte sedimentation rate (as indi-
cators of the systemic acute-phase response), as well as
disease phenotype (RA versus non-RA). In the patient
subgroup for whom CD4+ lymphocyte expression data
were available, normalized transcript levels of CD25,
CD69, and interferon-c, as measured by microarray,
were also considered as surrogates of the CD4+ T cell
activation status. The incorporation of each of these
covariates, in turn, into linear models made no differ-
ence to the final eQTL list (as shown in Tables 2 and
3), and individual regression slopes were robust to their
inclusion (representative examples are depicted in Sup-
plementary Figure 5, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.
com/doi/10.1002/art.40393/abstract). Consistent with these
findings, lists of genes subject to cis-eQTL effects did not
vary substantially when patients with RA and those
with alternative diagnoses were considered indepen-
dently (results not shown). Thus, eQTLs were robust to
clinical and biologic covariates in our study, and no evi-
dence of early disease–specific eQTLs at RA risk loci was
found.

DISCUSSION

We present the first eQTL analysis of primary
lymphocytes from donors presenting with untreated,
suspected inflammatory arthritis—a context highly rele-
vant for the purpose of unravelling genetic risk mecha-
nisms in RA. Several important observations can be
made on the basis of our findings.

CD4+ and B lymphocytes in this setting exhibit
distinct but overlapping eQTLs at confirmed RA risk loci
(Tables 2 and 3). The specificity of an eQTL effect for
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one cell type may simply be a reflection of the lack of
expression of a gene by a comparator cell, but probe-
level microarray data suggest that reported genes were
expressed in both CD4+ and B lymphocytes in our study.
Therefore, the cell-specific effects that we observed for
METTL21B, IKZF3, JAZF1, and PADI4 (in CD4+ lym-
phocytes) and FAM167A, SYNGR1, and CD83 (in B lym-
phocytes) may indicate differential regulatory functions
of disease risk variants between lineages.

Strikingly, at the common BLK–FAM167A auto-
immune locus at 8p23, we found that 2 adjacent genes
were subject to eQTLs whose activity differed between
cell types: the FAM167A effect displayed robust B lym-
phocyte specificity and was absent in CD4+ lymphocytes,
whereas the BLK effect that was prominent in CD4+ T
lymphocytes was less prominent among B lymphocytes
(compare Table 2 and Table 3, and see Figure 2). The
most strongly associated SNPs differed between cell
types at this locus—a finding that was maintained among
patients for whom paired cell–specific data were
available (as shown in Supplementary Tables 5 and 6,
http://onlinelibrary.wiley.com/doi/10.1002/art.40393/abstract),
potentially signifying the presence of mechanistically
distinct regulatory variants in strong LD. Nonetheless, the
results of our study also contribute to an emerging picture
in which eQTLs can regulate the expression of more than
one gene at disease-associated loci, examples being found
at 11q12 and 17q12–21. This is consistent with the concept
that key genetic variants may act as “master regulators” of
gene expression.

Our findings provide an important platform from
which downstream functional studies may be directed
toward particular cell types. For example, elucidating the
relevance of the METTL21B gene product in CD4+ T
cell function would now seem a priority, given our find-
ings confirming a pronounced eQTL effect on this gene
in this cell type. Alternative causal candidate genes
known, to date, to be favored at the 12q13–q14 locus are
CDK4 and CYP27B1, based on their respective functions
in cell-cycle progression and vitamin D metabolism (7);
however, since neither of these genes were shown to be
subject to prominent eQTL effects, despite the growing
body of literature discussing their functions, it seems jus-
tified to consider METTL21B as an alternative candi-
date gene in CD4+ Tcells.

A similar case for both CD83 and SYNGR1 in B
lymphocytes might also be made. CD83 encodes a trans-
membrane member of the immunoglobulin superfamily
expressed widely on dendritic cells, but also on activated
lymphocytes; its important role in regulating B lympho-
cyte development and effector function is only now
beginning to be understood (36). SYNGR1 is an integral

membrane protein associated with presynaptic vesicles
in neuronal cells, and its function in lymphoid cells
remains obscure. However, caution should be exercised
when interpreting transcript eQTLs in isolation (37),
and validation of our findings at the protein level should
be prioritized. This was amply illustrated by Simpfendorfer
et al, who, similar to our findings at the 8p23 locus,
highlighted BLK transcript expression as subject to an
eQTL in lymphocytes; however, the CD4+ T cell–specific
effect was not sustained at the protein level in these
cells. By measuring allelic expression imbalance, those
authors went on to demonstrate a robust eQTL for both
RNA and protein expression in naive/transitional B cell
subsets isolated from umbilical cord blood, which was less
evident in whole B cells, suggesting that disease risk is con-
ferred during early B cell development rather than by
CD4+ T cells (38), potentially via dysregulated B cell
receptor signaling (39).

Our study is the first to provide evidence of an
eQTL SNP in CD4+ lymphocytes that was in perfect
LD with the RA-associated variant at the 1p36 locus, a
variant that regulates PADI4 gene expression. The
PADI4 gene has already been recognized as a strong
causal candidate for the disease, encoding peptidyl-
arginine deiminase 4, a key enzyme involved in post-
translational citrullination of arginine residues that
yields neoepitopes against which RA-specific anti–
citrullinated peptide autoantibodies may be raised (28).
However, distinct mechanisms of CD4+ lymphocyte
dysregulation now warrant further investigation (40).

Similarly, the finding that IKZF3 is subject to
an eQTL in CD4+ lymphocytes is, to our knowledge, a
novel observation and is intriguing, given the proven role
of the transcription factor product of this gene in regulat-
ing interleukin-10 production by these cells (41).

Conceiveably, our observations with regard to
PADI4 and IKZF3 could be interpreted as evidence
that putatively common causal SNPs augment gene
expression in CD4+ T cells uniquely under the particu-
lar biologic and/or environmental circumstances of
early arthritis. However, our analysis of interactions
between specific biologic covariates and eQTL effects
did not support such an interpretation: in particular,
the IKZF rs9916765 eQTL slope gradient was unaf-
fected by markers of systemic inflammation, T cell acti-
vation, or clinical diagnosis (see Supplementary Figures
5D–F, http://onlinelibrary.wiley.com/doi/10.1002/art.40393/
abstract). While this could be seen as surprising, given
the previously reported differences between CD4+ T cell
eQTLs according to activation status in vitro (30), the
contrastingly cross-sectional nature of our study, which
focused on unstimulated ex vivo cells from systemically
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inflamed and uninflamed peripheral blood samples, ren-
der the findings complimentary rather than contradictory,
in our view. Indeed, the fact that eQTL effects did not
differ according to disease classification (e.g., RA versus
non-RA) in our early arthritis population recalls the find-
ings in a study by Peters et al, whereby inflammatory
bowel disease–specific eQTLs resided outside of known
risk loci for that condition (42). Further work is therefore
needed to elucidate the mechanisms by which eQTL
effects may wax or wane at a cellular level within the
in vivo environment.

Our data extend the understanding of the causal
candidate gene landscape in early RA, highlighting sev-
eral such candidates that now deserve further investiga-
tion in defined primary lymphocyte populations. In the
future, the possibility that eQTL effects may exhibit
heterogeneity between subsets of CD4+ T and/or B
lymphocytes should be considered, since these popula-
tions are well-known to comprise functionally diverse
compartments. Moreover, it is likely that larger integra-
tive studies, including meta-analyses of accumulating
lymphocyte eQTL data sets in relevant populations, will
be required to expand on this. Such work will have
additional value in the identification of trans-eQTL
effects, which, because of power considerations, we
were not able to address in the present study.
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