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Abstract 

This thesis covers three interconnected topics that investigate the impact of investor 

sentiment on stock returns. Given that investor sentiment is the central theme of this thesis, an 

accurate measure of investor sentiment is of great importance, and it is this theme which the 

thesis starts by exploring. With a new investor sentiment index which is superior to others 

currently available, the question of whether sentiment or fundamental factors play a more 

important role in driving stock returns is then explored. Finally, the thesis explores in greater 

depth channels through which investor sentiment drives stock returns as well as the pricing of 

rational and irrational risk factors.  

The first substantive chapter proposes an enhanced investor sentiment index, uniquely 

accounting for time-varying components in its construction. The poor time-series forecasting 

power of the often-used Baker and Wurgler (2006) investor sentiment index has long been a 

puzzle, and this study demonstrates that it is largely due to its implicit assumption that 

contributions of its individual index components to the aggregate sentiment index are time-

invariant. By capturing time-varying contributions of those components, the enhanced 

investor sentiment index not only demonstrates the basic property of a good sentiment 

measure (i.e. sentiment today predicts negatively the future aggregate stock returns), but also 

represents a superior measure of investor sentiment as compared to other sentiment indexes 

given that it is the only investor sentiment measure that has its sustained predictive power 

across different forecast horizons. Cross-sectionally, the new index also predicts significantly 

the time series of cross-sectional stock returns for portfolios sorted based on firm size, book-

to-market ratio and momentum.  

The relative importance of investor sentiment to stock market fluctuations is explored 

in the second substantive chapter. Whilst most studies can be split into two distinct branches 

of the forecasting literature – forecasting power of investor sentiment versus fundamental 

return predictors – this chapter performs a battery of forecasting tests in evaluating the 

forecasting power of the enhanced investor sentiment index against a host of widely applied 

economic predictors in order to determine the main driver of stock market fluctuations. The 

results show that investor sentiment exerts a stronger influence on stock market movements, 

manifested by the superior forecasting power of the new index relative to the economic 

predictors, in both the statistical and economic sense.  
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The third, and final, substantive chapter examines the channels through which investor 

sentiment affects stock market returns, i.e. the cash flow or discount rate channel, in light of 

the predictive ability of investor sentiment on stock market returns. This chapter constructs a 

four-beta model that separates the cash flow beta and the discount rate beta of Campbell and 

Vuolteenaho (2004) into rational and irrational components. The results show that the 

irrational beta in the cash flow channel receives a relatively greater weight than that in the 

discount rate channel, implying that the predictive power of investor sentiment is going 

through the cash flow channel. The findings also do not support the assumptions made in 

Campbell, Polk and Vuolteenaho (2010) that cash flow (discount rate) is mainly fundamental 

(sentiment) driven. Comparing the asset pricing performance of the four-beta model against 

alternative asset pricing models reveals that the four-beta model has a better model fit with a 

lower pricing error. The documented negative (positive) risk premia of irrational (rational) 

betas implies that investors are willing to pay a price (require a risk premium) for stocks that 

are sensitive to the irrational risk factors (rational risk factors). 
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Chapter 1. Introduction 

1.1 Motivations  

Market efficiency has been theorised since 1960s, but empirical evidence on market 

efficiency have actually been documented much earlier. The earliest version of market 

efficiency documented empirically is associated with the random walk theory, i.e. subsequent 

price changes (i.e. stock returns) are independent and unpredictable (see Fama, 1965b; 1970 

for a review). The accumulated evidence on the random walk pattern in stock prices led to the 

formal development of the efficient market hypothesis (EMH), pioneered by Fama (1965b) 

and Samuelson (1965). Fama (1965b) suggests that, in an efficient market, chartists and 

fundamental analysts will not be able to consistently beat the investor who adopts a buy-and-

hold strategy since stock prices will always converge to their fundamental values. Meanwhile, 

Samuelson (1965) argues that price changes, on average, will be zero in an efficient market as 

stock prices fully reflect all information used in forming the expectations. In a simple 

statement, the EMH states that all available information has already been incorporated into 

current stock prices in an efficient market (Fama, 1970). Later, Jensen (1978) defines the 

EMH as investors being unable to systematically make any risk-adjusted profits based on the 

given information set if the market is efficient.  

Fama (1970) further distinguishes the information set and defines three different forms 

of market efficiency, i.e. weak-, semi-strong- and strong-form EMH, based on the degree to 

which stock prices efficiently reflect a particular set of information. Although Fama (1970) 

hypothesises a constant expected return in the weak-form test, this was later relaxed in Fama 

(1991), who re-interprets the EMH1 and extends the weak-form test to include the time-

varying expected return2.  

Whilst the definition and the test of market efficiency could have changed, proponents 

of EMH tend to assume that investors are collectively rational and the role played by 

irrational investors is immaterial. Nevertheless, Fama (1991) poses the following question: 

“Does return predictability reflect rational variation through time in expected returns, 

 
1 The weak-form test covers the test of return predictability, the semi-strong-form test is called as event studies 

and the strong-form test is replaced by the test for private information. 

2  Timmermann and Granger (2004) and Rapach and Zhou (2013) also argue that time-varying return 

predictability is not an evidence against EMH.  
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irrational deviations of price from fundamental value, or some combination of the two?”. 

Even though Fama (1991) tends to believe it is the variation in rational expectations, the 

theory has been increasingly challenged by empirical studies since 1980s (e.g. Banz, 1981; 

DeBondt and Thaler, 1985; Jegadeesh and Titman, 1993; Poterba and Summers, 1988). This 

growing body of evidence against the EMH has laid the path to the emergence of behavioural 

finance.  

Unlike the EMH, behavioural finance acknowledges that the irrationality of investors 

does matter in asset pricing. The advocates of EMH argued that any deviation of a stock’s 

price from its intrinsic value is merely a short-lived event and would be self-corrected by 

rational arbitrageurs. However, unforecastable sentiment of noise (or irrational) traders can 

impede the willingness of arbitrageurs to take a position against the noise traders. De Long, 

Shleifer, Summers and Waldmann (1990) claim that noise traders with correlated 

misperceptions3 induce a systematic risk that affects the asset price. Therefore, the mispricing 

may not be fully corrected and the effect of noise trading could last longer, resulting in price 

reversal in the long run. In fact, this theory is clearly manifested in the stock market: the 

optimistic sentiment creates ‘irrational exuberance’ during expansion periods, which builds up 

until the ‘bubble burst’ and the stock market rapidly corrects, as evidenced from the 1990s 

dot-com bubble and the 2007/08 financial crisis.  

Hence, investor sentiment has a dominant role in the formation of stock prices. Being 

able to measure sentiment accurately provides useful and valuable information for stock 

return prediction. Nevertheless, the unobservable nature of investor sentiment presents a 

challenge to researchers to accurately quantify sentiment. In view of this, a better measure of 

sentiment is consistently sought-after in the literature, and this is the main objective of 

Chapter 3. The theory proposed by De Long et al. (1990) and the empirical evidence 

documented by Brown and Cliff (2005) and Huang, Jiang, Tu and Zhou (2015) concur that 

investor sentiment has a strong presence in the aggregate stock market. However, the market-

wide sentiment index developed by Baker and Wurgler (2006) is found to have weak 

predictive power for stock returns at the aggregate level (Baker and Wurgler, 2007; Baker, 

Wurgler and Yuan, 2012), which is perplexing. Therefore, Chapter 3, building on the basis of 

the BW index, aims to construct an enhanced investor sentiment index that can substantially 

improve the predictive power of the Baker and Wurgler (BW) index for stock market returns. 

 
3 Their misperception represents the bullishness and bearishness of noise traders.  
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The validity of the new index in being a good measure of investor sentiment index is also 

tested.  

Although investor sentiment does affect the evolution of stock market prices, previous 

literature has also revealed that stock market returns are predictable based on various 

fundamental factors (e.g. Fama and French 1989, Campbell and Yogo, 2006; Cochrane, 2011). 

As both types of return predictors have their own proponents, there is a question to ponder: 

which predictor – investor sentiment or fundamental economic predictors – has a stronger 

predictive power and therefore, plays a relatively more important role in stock market 

movements? This question is central to Chapter 4. The answer to this question is derived by 

performing a series of forecast evaluation tests, which do not involve the perfect foresight 

assumption, on the return forecasts produced by different predictors, from both statistical and 

economic viewpoints. 

The present value formula indicates that stock prices change as a result of the 

variations of expectations about future cash flows and/or discount rates. If investor sentiment 

has a strong predictive power for stock market returns, then through which channel – cash 

flow (CF) or discount rate (DR) – is the sentiment effect transmitted to asset returns? The 

controversial claim held in previous studies that the cash flow channel is purely rational calls 

for further investigation (see Campbell, Polk and Vuolteenaho, 2010; Huang et al., 2015) and 

insights into this question are discussed in Chapter 5. The two-beta model of Campbell and 

Vuolteenaho (2004) serves as the building block in Chapter 5, given their model decomposes 

the market beta into cash flow and discount rate betas. The sentiment-induced CF and DR 

betas are extracted by further disentangling the two-beta model into a four-beta model, 

accounting for both the rational and irrational components in each channel. This four-beta 

model acts as a device to evaluate the relative importance of changes in the irrational 

expectations of cash flows versus discount rates. The question of whether the four resulting 

factors are systematic risks that are priced across different stocks is also addressed in Chapter 

5. 

1.2 Contributions 

This thesis contributes to the literature in behavioural finance as well as asset pricing, 

and is of relevance to practitioners. The main contribution of Chapter 3 is the construction of 

an enhanced investor sentiment index that addresses the weaknesses of the BW index and 

thereby improves the time-series return predictability of the BW index. Not only is the new 
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index of relevance to future empirical studies that require a good proxy of investor sentiment 

for the U.S. stock market, but the method used to capture the investor sentiment over time as 

proposed in this thesis also provides a reference for future academic research that consider 

constructing accurate investor sentiment measures for other stock markets. Furthermore, the 

findings provide insights into the root cause of the weak return predictability by investor 

sentiment in the time-series context.  

Chapter 4 contributes mainly to the literature on return predictability. Previous studies, 

such as Welch and Goyal (2008) and Campbell and Thompson (2008), examined only the 

predictive power of fundamental predictors. Extending their works, the chapter considers 

investor sentiment as another return predictor that competes with fundamental predictors in 

forecasting stock market returns. The findings of this chapter provide a deeper understanding 

towards the underlying driving force of stock market fluctuations, which is relevant to the 

intense debate between rational and behavioural proponents. The economic value analysis 

also provides an indication to practitioners as to which type of return predictor – sentiment or 

fundamental – should be employed in forecasting stock returns in order to enhance their 

returns on investment.  

 Chapter 5 contributes to the literature in behavioural finance and asset pricing by 

developing a four-beta model that integrates the expectations formed by rational and 

sentiment traders on the future CF and DR into one model. Based on the four-beta model, the 

chapter reveals the underlying source of the predictive power of investor sentiment on the 

stock market returns (i.e. CF or DR). The findings in Chapter 5 complements the conclusion 

of Huang et al. (2015) that cash flow channel is the transmission medium for investor 

sentiment to affect the stock market movements. However, the analysis in this thesis is 

conducted within a direct examination framework, which is in contrast to the indirect 

approach of Huang et al. (2015). Second, this study calls for academic attention to the 

appropriateness of assuming cash flow (discount rate) is mainly fundamentals (sentiment) 

driven. Third, the four-beta model provides a view on the pricing properties of each of the 

four betas in a more comprehensive model that considers the rational and irrational 

expectations in both CF and DR channels.  

1.3 Structure of the thesis 

The remainder of this thesis is organised as follows. Chapter 2 reviews the literature 

on investor sentiment and return predictability. The chapter starts by exploring different 
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definitions of investor sentiment and provides justification for the definition adopted 

throughout this thesis. The second section reviews the theory of noise traders and how their 

presence impedes the arbitrage activities. This section discusses the role that investor 

sentiment plays within the stock market. Subsequently, different measures of investor 

sentiment employed in the literature and the predictive power of each of these measures on 

the stock returns are reviewed. Finally, the chapter discusses the return predictability using 

different fundamental economic predictors and considers some of the potential issues 

associated with the out-of-sample forecasting.  

Chapter 3 constructs an enhanced investor sentiment index after discussing the 

weaknesses of the BW index and providing evidence to support the construction of a new 

index. To establish the validity of the new index in being a good proxy of investor sentiment, 

this chapter evaluates whether the new index delivers the negative sentiment-return 

relationship. At the same time, the superior predictive power of the new index is tested by 

evaluating its in-sample predictive power for stock market returns against other sentiment 

measures. The closing section of this chapter concentrates on the predictive power of the new 

index on the time-series of portfolio returns.  

Chapter 4 analyses the relative importance of investor sentiment to stock market 

fluctuations. This chapter begins by comparing the out-of-sample forecasting performance of 

the new index relative to other sentiment measures, providing further support to the in-sample 

findings documented in Chapter 3 that the new index is a superior measure of investor 

sentiment. The chapter then provides empirical results on the out-of-sample predictive 

performance of the enhanced investor sentiment index against the fundamental economic 

predictors in order to assess the role of sentiment versus economic predictors in the stock 

market movements. The robustness check on the predictive performance of various return 

predictors and analysis over different business cycle periods are presented in the next section.  

Chapter 5 examines the transmission channels the sentiment effect on the stock market 

returns is going through and the pricing of the four-beta model. First, the chapter reviews the 

literature on the expectations formed regarding future cash flows and discount rates, 

highlighting the need of considering both rational and irrational expectations of the cash flows 

and discount rates in a model. Then, a section is dedicated to the construction of the four-beta 

model, followed by the examination on the key research questions of this chapter: (1) Is the 

sentiment effect going through the CF or DR channel? (2) are the assumptions that CF (DR) is 

fundamentals- (sentiment-) driven, as argued in previous studies, appropriate? (3) Do the four 
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betas represent systematic risks that are priced at the cross-sectional level? The robustness 

check on the asset pricing test of the four-beta model and the use of the four-beta model in 

explaining a set of anomalies are presented in two separate sections.  

The last chapter provides the summary of findings and discusses the policy and 

practical implications of the empirical investigations of this thesis. Finally, the 

recommendations for future research are proposed in the last section.  
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Chapter 2. Literature Review 

2.1 Definition of investor sentiment  

Previous literature offers more than one definition for investor sentiment. De Long, 

Shleifer, Summer and Waldmann (1990) define investor sentiment as the belief about asset 

returns that cannot be explained by fundamentals. Shleifer (2000, p.12) mentions that 

“investor sentiment reflects the common judgment errors made by a substantial number of 

investors, rather than uncorrelated random mistakes.” In Barberis, Shleifer and Vishny (1998, 

p.332), investor sentiment can be referred as “how investors form expectations of future 

earnings”. Brown and Cliff (2004, p.2) define investor sentiment as “expectations of market 

participants relative to a norm: a bullish (bearish) investor expects returns to be above (below) 

average, whatever ‘‘average’’ may be”. They also referred investor sentiment as excessively 

optimism or pessimism in their paper published in 2005. Meanwhile, Baker and Wurgler 

(2006) mention that investor sentiment can be broadly defined as “optimism or pessimism 

about stocks in general” (Baker and Wurgler, 2006, p. 1649). A year later, Baker and Wurgler 

(2007) define investor sentiment as “a belief about future cash flows and investments risks 

that is not justified by the facts at hand”.  

The definition used by Baker and Wurgler (2006) and Brown and Cliff (2005), in 

which investor sentiment refers to optimism or pessimism about the stock market, is mainly 

used in this thesis. The reasons for this choice of definition is twofold. First, as Chapter 3 

aims to enhance the way the sentiment captured by SBW, for fairness, same definition adopted 

in Baker and Wurgler (2006) has been used here. Second, this definition is consistent with the 

concept of market-wide investor sentiment, which its effect on aggregate stock market returns 

is evaluated in this thesis. As a complement to the above definition, Chapter 5 also employs 

the definition given by Baker and Wurgler (2007) since the chapter focuses on the irrational 

expectations about future cash flows and discount rates. Investors could form optimistic or 

pessimistic expectations about these two elements, which then affect the stock returns. 

2.2 Noise traders theory and limit to arbitrage 

Noise trader theory, first established in the early 1980s, has resulted in it being widely 

accepted in the finance literature that some investors behave irrationally. Black (1986) argues 

that investors do not share common beliefs and information, which violate the assumptions of 

the EMH – homogeneous expectations. The consequence of these information asymmetries is 
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the presence of noise traders in the markets. Black (1986) claim that some investors trade on 

noise4 as if the erroneous beliefs were information, and these traders are termed as ‘noise 

traders’. He further predicts that “[t]he influence of noise traders will become apparent” 

(Black, 1986, p.530). Despite Black (1986) outlining and acknowledging the profound effect 

of the noise traders, De Long et al. (1990) is the first paper that proposes a model to 

demonstrate the role of noise traders or irrational investors in the stock market. In their model, 

noise traders are assumed to act collectively and their misperceptions are correlated. This, in 

turn, creates a force in the stock market that could not be easily be cancelled out by 

arbitrageurs within a short period. As such, the implication of their models is that asset prices 

tend to revert to mean only in the long run.  

The traditional asset pricing model claims that the existence of noise traders can be 

ignored as their impact on the stock prices is trivial even though EMH does not deny the fact 

that not all investors are rational. The proponents of classical finance theory believe that the 

deviation of stock prices from their ‘correct’ values caused by noise traders will be fully 

swept away by arbitrageurs. However, this perfect arbitrage argument is impractical since 

close substitutes of stocks are unavailable in the market, and hence the riskless arbitrage does 

not exist in the stock markets, arbitrageurs are reluctant to trade aggressively in the presence 

of arbitrage risk (Wurgler and Zhuravskaya, 2002) since EMH assumes that all rational 

investors (including arbitrageurs) are risk-averse. As such, the argument that arbitrage activity 

will always correct the dispersion of stock prices from their fundamental values is dubious.  

Arbitrageurs are also likely to have short horizons due to the liquidity constraint faced by 

them (Shleifer and Vishny, 1997). As mentioned in Shleifer and Vishny (1997), most 

arbitrageurs in the real world act as an agent to wealthy investors (i.e. principal) and the 

liquidity constraint does matter in this agency context. The principal tends to evaluate the 

competency of an arbitrageurs based on their past performance, which has been called as 

performance-based arbitrage in Shleifer and Vishny (1997). Principals may refuse to channel 

additional capital or withdraw their capital if the investment position seems to be deteriorating 

due to widening mispricing. In this case, full arbitrage could be hard to achieve.  

Apart from the arbitrage risk stemming from imperfect stock substitutes, risk-averse 

arbitrageurs also encounter two main sources of risk, namely fundamental risk and noise 

 
4 Noise is the pseudo-signals obtained from technical analysis, sentiment indexes and financial gurus’ advices, 

that do not carry any reliable information (De Long et al., 1990).  
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trader risk, which reduce their willingness to bet against noise traders. Fundamental risk, as 

Shleifer and Summers (1990) explain, is the risk that the stock price moves against the 

arbitrageur’s initial bet due to unexpected news. For instance, if a particular stock is believed 

to be overvalued, an arbitrageur will short sell the stock. If the stock price returns to the value 

as expected in the future, the arbitrageur is making profit by buying back the stock later at a 

price lower than the selling price. However, the arbitrageur is at risk if the stock subsequently 

increases in value as a consequence of favourable fundamental news arrives unexpectedly. 

Aversion to the loss due to fundamental risk limits the arbitrage trading (Mitchell, Pulvino 

and Stafford, 2002).  

‘Noise trader risk’, as introduced by De Long et al. (1990), also demonstrates that 

perfect riskless arbitrage does not exist in the stock markets. Unpredictable noise traders’ 

beliefs create unforecastable variations in future stock prices when the sentiment of irrational 

investors are correlated. It is possible for the noise traders to become even more optimistic or 

pessimistic and hence causes stock prices to drift further from their fundamental values. If this 

is the case, arbitrageurs who initially bet against noise traders’ beliefs would face a huge loss. 

This phenomenon has been termed as ‘noise trader risk’. For instance, an arbitrageur who 

initially takes a short sell position would hope for stock price to reduce and revert to its mean. 

However, the mispricing caused by noise traders might persists for a long-term period as a 

result of the beliefs of noise trader persistently move towards one extreme direction, causing 

stock prices to be even more overvalued. Owing to the liquidity constraint and the higher 

transaction costs in the long-term, arbitrageurs may have to liquidate and close their positions 

at a loss. Thus, fear of having such a loss may deter arbitrageurs from betting against noise 

traders and the effect generated by noise traders might persist for a long time. This argument 

has been discussed in several other studies as well (Campbell and Kyle, 1993; De Long, 

Shleifer, Summers and Waldmann, 1990; Shleifer and Vishny, 1997; Shleifer and Summers, 

1990).  

Abreu and Brunnermeier (2002, 2003) offer a new type of risk, termed as 

‘synchronization risk’. Although the synchronization risk does not originate from the 

aggressive noise traders’ activity, nonetheless, it is important to understand how an increase in 

this risk can limits the arbitrage activity in the short-term. Synchronization risk arises when an 

arbitrageur is unable to coordinate with other rational investors in eliminating the mispricing 

since he or she is uncertain about when other arbitrageurs will also exploit the arbitrage 

opportunity. Huge losses could be incurred if the arbitrageur trades alone since the force from 
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a single arbitrage is unable to counteract the noise traders’ activity. Thus, this synchronization 

risk delays and limits arbitrage activity.  

The rationale underlying the limit to arbitrage is not confined to different types of 

risks faced by arbitrageurs, but the inability of arbitrageurs in distinguishing the fundamental 

information from the noise also contributes to the ‘limit to arbitrage’ (Shleifer and Summers, 

1990). If the deviation of price is excessively large and follows a ‘random walk’ behaviour 

persistently, then it would be hard for arbitrageurs to correctly identify the fundamental value 

of the stocks and the risk involved in the arbitrage activity. Hence, the arbitrage activity is 

limited in this case. In fact, irrational investors with erroneous beliefs have exerted an effect 

that can persist for a long period of time, regardless of their long-run survival (Kogan, Ross, 

Wang and Westerfield, 2006), since investor sentiment is highly persistent in the stock market 

(Brown and Cliff, 2005).  

The discussions above clearly depict that noise traders, who based their decision 

making on their beliefs or investor sentiment, creates the risk that form the basis for the ‘limit 

to arbitrage’. As such, investor sentiment plays a key role in the variations of stock prices that 

cannot be justified under the classical finance theory. As mentioned in Baker and Wurgler 

(2007, p.130), “the question is no longer, as it was a few decades ago, whether investor 

sentiment affects stock prices, but rather how to measure investor sentiment and quantify its 

effects.” Since investor sentiment is a latent variable, researchers have strived hard to produce 

accurate measure of investor sentiment. The next section provides a discussion of various 

investor sentiment measures and their predictive power on the stock returns.  

2.3 Measures of investor sentiment and returns predictability by sentiment  

Since investor sentiment has a profound impact in the stock market, constructing an 

accurate measure of investor sentiment is of high importance and is an ongoing task among 

the researchers in behavioural finance. Different measures have been continuously sought in 

past studies and a range of investor sentiment measures used in extant studies can be 

categorised into three main groups: survey-, market-, and textual-based measures. Although 

different measures have been proposed in the literature, these measures have the same 

purpose: to predict the stock returns. As discussed in the previous sub-section, noise trader 

risk curtails arbitrage activities in the short-term, and hence price reversal tends to occur in 

the long-term. This proposition has been supported by empirical evidence that high (low) 

sentiment predicts a high (low) contemporaneous return, followed by low (high) future return 
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as the overpricing (underpricing) is eventually corrected (e.g., Ben-Rephael, Kandel and Wohl, 

2012; Da, Engelberg and Gao, 2011; Tetlock, 2007). Despite the fact that the negative 

relationship between sentiment and future stock returns is regularly documented in the 

literature, there are also studies which find a positive relationship between investor sentiment 

and future stock market returns (see Beaumont, Daele, Frijns, Lehnert and Muller, 2008; 

Gebka, 2014; Lutz, 2016). 

Survey-based measures reveal the optimistic or pessimistic view of market 

participants by gathering the responses of people regarding their expectation of stock market 

and general economic conditions. Popular survey-based measures include, but are not limited 

to, Investor Intelligence (II), American Association of Individual Investors (AAII), Consumer 

Confidence Index (CCI), and University of Michigan Consumer Sentiment Index (MS)5. II, 

which is constructed by categorising newsletters into a bearish, bullish or neutral perspective, 

can be viewed as institutional investor sentiment since investment newsletters are mainly 

written by professionals (Brown and Cliff, 2004). Contrarily, AAII collect the responses of 

market participants about the stock market perspective.  

Studies which have used the survey-based sentiment measures as discussed above 

have employed these in different ways to uncover the underlying investor sentiment. Fisher 

and Statman (2000) use a simpler way by calculating the percentage of optimistic investors as 

measured by AAII and II; whereas some studies have instead constructed the bull-bear spread 

based on the percentage of bullish and bearish investors reported in AAII and/ or II. (Brown 

and Cliff, 2004; 2005; De Bondt, 1993; Greenwood and Shleifer, 2014; Verma, Baklaci and 

Soydemir, 2008; Verma and Soydemir, 2006). The consistent feature of all these studies is 

that a negative sentiment-return relationship, i.e. an increase in AAII and/ or II is followed by 

a lower future stock returns, has been documented, with the only exception being Brown and 

Cliff (2004). 

The CCI and MS are monthly survey-based measures of individual investor sentiment 

that have been used concurrently in many studies since both indices reveal the level of 

consumer confidence with respect to the overall conditions of the economy. Since these two 

indexes have been found to correlate positively with contemporaneous returns (Fisher and 

 
5 These survey-based measures are the barometers of the investor sentiment in US. II and AAII are published on 

a weekly basis, whereas MS and CCI are published on a monthly basis. To match the data frequency of other 

sentiment measures and economic predictors, this study opts for MS and CCI in the forecast comparison.  
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Statman, 2003; Qiu and Welch, 2004), many studies have adopted these two measures as a 

proxy for investor sentiment in studying the fluctuation of stock prices. Fisher and Statman 

(2003) and Lemmon and Portniaguina (2006) find that both MS and CCI predict negatively 

the future return on small-cap stocks. Meanwhile, Coakley, Dotsis, Liu and Zhai (2014) find 

that MS has significant impact on the option prices of large firm and growth stock indices. In 

contrast, Kalotay, Gray and Sin (2007) reveal that MS does not have any predictive power on 

the quarterly equity risk premium for US stock market. Ho and Hung (2012) also claim that 

CCI does not generate significant impact on US next month stock market returns. Likewise, 

Coakley et al. (2014) does not find any significant relationship between MS and the option 

price of S&P 500 index6.  

Studies that focus on the stock markets outside the US prefer to use a consumer 

confidence index as a proxy to investor sentiment since this type of measure is readily 

available in many countries. For instance, Bathia and Bredin (2013), Ho and Hung (2012) and 

Schmeling (2009) find a negative relationship between consumer confidence indicators and 

future stock market returns across different developed countries. Recently, Ferrer, Salabera 

and Zalewska (2016) reveal that EU and US stock markets Granger-cause consumer 

confidence indicators, but the reverse direction was either not observed or weak. This finding 

is in line with Fisher and Statman (2003), Jansen and Nahuis (2003) and Otoo (1999) who 

also find that changes in stock prices seem to lead the consumer confidence indicators. 

Adding insult to injury, Ferrer, Salabera and Zalewska (2016) find that consumer confidence 

indexes do not even hold the basic property of investor sentiment given that there is no 

universally significant support to the positive relationship between contemporaneous stock 

returns and consumer confidence. Furthermore, they found that consumer confidence 

measures are shaped based on macroeconomic condition, which is also shown in Acemoglu 

and Scott (1994) and Lemmon and Portniaguina (2006). Hence, the mixed findings on the use 

of consumer confidence indicators as an investor sentiment measures calling for more 

research to prove its predictive power on the stock market returns.  

Market-based measures, on the other hand, rely on market data that correlate with 

investor sentiment. Chicago Board Option Exchange’s Volatility Index (VIX) is a commonly 

used market-based measure. It is the implied volatility computed from S&P 500 index option 

prices and is often known as ‘investor fear gauge’ (Whaley, 2000). Kaplanski and Levy (2010) 

 
6 They documented the same findings by using SBW as an alternative investor sentiment measure. 
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who use the VIX as a proxy for investor sentiment find that VIX increases while stock prices 

declines following an aviation disaster, and this effect is generally stronger on the firms that 

face the difficulty to arbitrage as suggested in Baker and Wurgler (2006). Similarly, Smales 

(2017) reveal that VIX, which they claim is the preferred measure of investor sentiment, 

affect significantly the price movements of not only the aggregate stock market, but also small 

firms and technology firms. Since high value of VIX represents ‘fear’ and pessimism, Smales 

(2017) find that VIX has a negative relationship with contemporaneous return but a positive 

relationship with future return. Other studies that documented the similar findings include 

Ben-Rephael, Kandel and Wohl (2012) and Lutz (2016).  

Other than VIX, various market-based single proxies have been proposed and used in 

past studies, these include closed-end fund discount (Bathia and Bredin, 2013; Doukas and 

Milanos, 2004; Gemmill and Thomas, 2002; Lee, Shleifer and Thaler, 1991; Neal and 

Wheatley, 1998); IPO-related measures (Brown and Cliff, 2004; Baker and Wurgler, 2006); 

derivative variables (Sheu and Wei, 2011b; Spyros, 2012; Wang, Keswani and Taylor, 2006); 

share of equity issues (Baker and Wurgler, 2000); dividend premium (Baker and Wurgler, 

2004; Baker and Wurgler, 2007).  

Since single market-based sentiment proxies as mentioned above are imperfect 

measures, Baker and Wurglr (2006) combine several single market-based proxies into a 

composite sentiment index, SBW. They documented that SBW predict negative future stock 

returns significantly in subgroups of stocks with stocks that are hard to value and difficult-to-

arbitrage7 tend to suffer a lot following the high sentiment period. Gradually, other studies 

also followed their path, constructing investor sentiment indexes using the same approach 

and/ or proxies for other stock markets in order to investigate the potential effect of investor 

sentiment on other stock market returns (see Chen, Chong and Duan, 2010, for Hong Kong 

stock market; Finter, Niessen-Ruenzi and Ruenzi, 2012, for German stock market; Hu and 

Wang, 2012, for Chinese stock market; Li, 2015, for Chinese stock market; Ryu, Kim and 

Yang, 2017, for Korean stock market; Yang and Zhou, 2015; 2016, for Chinese stock market).  

Besides that, SBW index has been widely employed as an investor sentiment measure in 

different financial applications, ranging from stock market anomalies (Antoniou, Doukas and 

Subramanyam, 2013; Stambaugh, Yu and Yuan, 2012; 2014); mean-variance relation (Yu and 

 
7 Stocks that fulfil these characteristics are small stocks, younger stocks, stocks at the two extreme quintiles of 

book-to-market ratio, highly volatile stocks, unprofitable stocks and non-dividend-paying stocks.  
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Yuan, 2011), pricing of macro-risk (Shen, Yu and Zhao, 2017), to high-beta low-return puzzle 

or downward sloping security market line (Antoniou, Doukas and Subramanyam, 2016). All 

of the above studies excluding Yu and Yuan (2011) mainly focused on cross-sectional stock 

returns and concluded that SBW successfully explains the cross-sectional asset pricing puzzles. 

The empirical evidences of sentiment effect at the cross-sectional level is supported by the 

theoretical model proposed recently by Ding, Mazouz and Wang (2019). Ding et al. (2019) 

further find that the short- (long-) run component of investor sentiment predicts positively 

(negatively) the contemporaneous (future) returns of long-short portfolios.  

One drawback of the Baker and Wurgler (2006) approach has been that empirical 

evidence for its performance in capturing sentiment for the aggregate stock market has been 

rather mixed; as epitomised by its weak forecasting power for future aggregate stock returns. 

Baker and Wurgler (2007) themselves observe that, when forecasting the aggregate market 

using SBW, “the statistical significance is modest” (p. 148). To address this shortcoming, 

Huang et al. (2015) construct an improved investor sentiment index using the same 

components as in SBW but employing a different methodological approach. They find that their 

aligned investor sentiment index (SPLS)8  significantly predicts short-term future aggregate 

stock market returns, where SBW has been found to have no predictive power in the same 

sample. Arif and Lee (2014) also confirm the fact that SBW has weak or no predictive power 

over the aggregate stock market returns, and produces a prediction that is in the wrong 

direction (i.e. positive slope coefficient). A more extreme result on the predictive performance 

of SBW and SPLS is documented in Bekiros, Gupta and Kyei (2016). Given the parameter 

instability and the non-linear structure in the relationship between investor sentiment and 

stock market returns, they employ a nonparametric causality test to examine the predictive 

ability of SBW and SPLS. Surprisingly, using a non-linear approach, both SBW and SPLS are not 

able to predict future stock market returns nor volatility.  

Recently, a new branch of literature focuses on the textual-based investor sentiment 

measures, which can be further split into media-based and search-based sentiment measures. 

Media-based sentiment measures are computed by analysing the content published on 

traditional and social media such as newspaper columns, internet stock message boards, and 

Twitter. These measures are believed to shape investor sentiment as investors follow the news 

 
8 SPLS is constructed by disentangling the information embedded in the proxies that are related to the stock 

market returns from common approximation errors. 
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or the opinions, and react accordingly even if those information could be misleading or false. 

Tetlock (2007), the seminal paper which uses news media content to construct an investor 

sentiment measure, finds that the media pessimism, i.e. the proportion of negative words in a 

Wall Street Journal (WSJ) column, predicts a long-run reversal in the stock market returns, 

supporting the hypothesis of the noise model instead of information theory. Instead of 

counting only on the negative words, Garcia (2013) accounts for both positive and negative 

words in the financial columns of the New York Times (NYTimes) in his sentiment measure. 

Similarly, the price reversals happened in the later period and the heightened trading volume 

associated with extreme positive or negative news are in line with the behavioural model. He 

found that his sentiment measure predicts well the next day stock returns during recessionary 

periods. While their findings are built on the basis of daily sentiment measures, Sun, Najand 

and Shen (2016) find that the intraday investor sentiment measure, the Thomson Reuters 

MarketPhysc index, contains textual information from both traditional and social media, and 

strongly predicts intraday stock market returns.  

Investor sentiment extracted from social media has also been found to statistically 

significantly predict stock returns (see Chen, De, Hu and Hwang, 2014 (extract the sentiment 

information from SeekingAlpha.com); Bollen and Mao, 2011 (extract investor sentiment from 

Twitter posts)). Contrarily, Das and Chen (2007) find that the daily small investor sentiment 

constructed utilising the positive and negative opinions posted for each technology stock on 

the stock message boards does not have strong statistical predictive power over individual 

stock prices, but their aggregate investor sentiment index does have statistical predictive 

power on the stock market returns. Similarly, Kim and Kim (2014) find that investor 

sentiment extracted from internet message postings does not predict future stock returns at 

both aggregate and individual stock levels. Meanwhile, Antweiler and Frank (2004) claim that 

this type of sentiment measure produces return forecasts that is not economically justifiable.     

As for search-based sentiment measures, they are constructed mainly based on the 

Google Search Volume Index (SVI). One of the most popular search-based sentiment 

measures is the FEARS index of Da et al. (2015). The index is formed by aggregating the 

number of searches for the words that express household concerns, e.g. “unemployment”, 

“recession” and “bankruptcy”, and revealed that a high FEARS value, which represents 

investor pessimism, is associated with a low contemporaneous returns but predicts a higher 

future returns in few days later. Another study by Joseph, Wintoki and Zhang (2011) 

constructed the sentiment measure based on the number of searches for stock tickers also 
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found that investor sentiment predicts the returns reversal in longer horizons (i.e. beyond two 

weeks) for stocks that are hard-to-arbitrage and of high volatility. Despite SVI has been used 

as a proxy to investor sentiment measure in these studies, other studies using it as a measure 

to investor attention (see Bank, Larch, Peter, 2011; Da, Engelberg and Gao, 2011; 

Vozlyublennaia, 2014)9. Even though Dimpfl and Jank (2016) mention that the number of 

searches for stock index is mainly driven by noise traders, Da et al. (2011) claim that an 

increase in investor attention could also be caused by investors paying attention to genuine 

news. They found that the SVI is weakly correlated to other media-based sentiment measures.  

The review of literature above shows that most investor sentiment measures do not 

consistently perform well in predicting (1) positive contemporaneous returns, and (2) negative 

future returns. Therefore, there is room for further investigation on a better investor sentiment 

measure that predicts stock returns well. Chapter 3 and Chapter 4 focus mainly on the 

prediction of the latter case, i.e. investor sentiment predicts negatively future stock returns. 

The former case is not the focus of this study since contemporaneous sentiment-return 

relationship has the endogeneity issue (Smales, 2017). It is also more realistic to test on the 

predictive power of investor sentiment on future stock returns instead of contemporaneous 

returns as any potential gains could be offset by the trading costs having to rebalance the 

portfolio within a month. For the interest of comparison, this study uses only the survey- and 

market-based sentiment measures. The textual-based sentiment measure is not considered in 

this study as the data frequency of the textual-based measure, which is at daily, weekly or 

even intraday level, does not match the monthly data frequency of this study.  

2.4 Predictability of stock returns by economic predictors 

Having reviewed the association of return predictability and investor sentiment, this 

sub-section reviews the previous literature working on the return predictability using 

fundamental factors. A vast amount of fundamental economic predictor variables have been 

proposed since late 1980s, starting with the financial valuation ratios, such as dividend yield 

and earnings yield. The literature has then expanded to include other valuation ratios and 

financial market variables, such as dividend payout ratio and net equity issuance. Fama and 

French (1989) argue that the predictability of stock returns stemmed from the ability of 

predictor variables in tracking the variations in the business cycle. In particular, expected 

 
9 These three studies, except Vozlyublennaia (2014), find that increased in search queries leads to a short-run 

increased in the stock returns, which is then reversed in a longer prediction horizon.  
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returns covary negatively with the business cycle, and any variable moves along with the 

upswings and downswings of the business cycle should be able to predict the expected stock 

returns. Nevertheless, there is no economic risk underlying the relationship between expected 

return and these business cycle indicators. Therefore, a few variables that link the return 

predictability to the macroeconomics factor, such as consumption, aggregate wealth, and 

production have been proposed since late 1990s. Accordingly, reviews of the literature on 

return predictability by widely employed economic predictors can be categorised into (a) 

financial indicators: dividend price ratio, dividend yield ratio, earnings-price ratio, book-to-

market ratio, dividend payout ratio, stock return variance, and net equity expansion; (b) 

business cycle indicators: treasury bill rate, term yield spread, default yield spread, and 

inflation; (c) macroeconomics indicators: output gap, consumption wealth ratio, surplus 

consumption ratio.  

Dividend price ratio (DP) and Dividend yield ratio (DY). The present-value 

identity of Campbell and Shiller (1988a; 1988b) shows that DP, which measures the 

fundamental value relative to the current stock prices, deviates from its mean whenever there 

is a change in expected dividend growth and/ or expected returns. This implies that return is 

predictable from DP. The expected returns is forecasted to be lower when the stocks are 

overpriced as compared to fundamentals, i.e. low DP or DY10, and vice versa. Studies that 

provide support to the predictive power of DP and DY include Cochrane (1992; 2008; 2011), 

Hodrick (1992), Koijen and van Nieuwerburgh (2011), Lewellen (2004), and Rozeff (1984).  

Furthermore, most studies find that the predictive power of these ratios improves with 

the forecast horizon. For instance, Hodrick (1992) reports a dramatic increase of R2 from a 6% 

at next-month forecast to a 39% at 4-year-ahead forecast for the predictive power of DY. 

Similarly, the in- and out-of-sample forecasts of Fama and French (1988b) show that the DP 

ratio explains the monthly return variability for less than 7%, but account for up to 64% of the 

return variance for four-year forecasts. In contrast, Ang and Bekaert (2007) find that the 

predictive power of DP on the stock market returns forecasted from next-month to 60-month 

horizon is unseen 11 , consistent with Goetzman and Jorion (1993) whose findings are 

 
10  The difference of DP and DY ratios is that the former (latter) divides the current dividend with the 

contemporaneous (lagged) stock prices. Fama and French (1988b) mention that the DY is a rather conservative 

measure, avoiding the potential of overly reject the null that no predictability from dividend yield but 

understating its out-of-sample predictive power as compared to the DP, which is a more timely measure.  

11 Ang and Bekaert (2007) find that DP can only predict next-month stock market returns when three-month 

Treasury bill rates in included as another predictor in post-1952. 
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documented from one- to four-year horizons. Goetzman and Jorion (1995) and Nelson and 

Kim (1993) report that the predictive power of these ratios could be driven by the 

survivorship bias and small sample bias, respectively.  

Earnings-price ratio (EP). Similar to the dividend yield ratios, EP ratio should 

positively predict expected returns. A high EP ratio implies that the stock is undervalued, so 

will have higher expected returns in the future. Nevertheless, Fama and French (1988b) find 

that the explanatory power of EP ratio on future stock market returns is weaker than that of 

the dividend yield ratio even though the predictive power of EP ratio is strengthened with the 

forecast horizon. A similar conclusion is presented by Lamont (1998) for quarterly returns 

forecasts, and by Lewellen (2004) who find that the predictive power of EP ratio depends on 

the definition of asset returns (nominal vs. excess returns). Campbell and Yogo (2006), 

however, reveal the opposite findings that EP ratio consistently predicts the stock returns from 

monthly to annual frequency whereas DP ratio can only predict annual returns.  

Book-to-market ratio (BM). BM is another valuation ratio that is expected to have 

positive impact on the future stock returns. The use of BM ratio as one of the factors in the 

three-factor model proposed by Fama and French (1992; 1993) has motivated researchers to 

investigate its ability to predict the stock market returns. Kothari and Shanken (1997) reveal 

that the predictive power of BM ratio are sensitive to the sample period as well as the returns 

definition (equal-weighted vs. value-weighted). They found that BM strongly predicts the 

returns even after accounting for the small sample bias over the entire sample period (1926-

1991) but not for the period in post-1962. The disappearance of the predictive ability of BM 

ratio post-1960 is further verified by Pontiff and Schall (1998), who find that both DJIA and 

S&P 500 BM ratios lose their ability to predict the respective stock market returns. Their 

findings are dissimilar to that reported in Lewellen (2004), where he found that BM ratio 

reliably predicts the next-month stock market returns. However, only the equal-weighted 

returns are predictable by BM ratio, a finding that is consistent with Kothari and Shanken 

(1997).  

Dividend payout ratio (DE). As mentioned by Lamont (1998), DE predicts returns 

because (1) dividends, which signal future cash flows, forecast future returns in a positive 

direction, and (2) earnings, which covary positively with the business cycle, negatively 

predict future returns. Combining both effects, DE positively predicts future stock returns. Its 
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predictive ability is, however, limited to the short-horizon forecasts (i.e. quarterly and annual 

frequencies).   

Stock return variance (SVAR). The risk-return trade-off suggests a positive relation 

between risk and expected returns. Although this hypothesis has long been proposed in the 

literature, empirical findings are mixed, depending on the risk measure. French, Schwert and 

Stambaugh (1987) confirm that expected excess market returns are positively related to the 

market returns volatility when GARCH-in-mean instead of realized volatility is employed to 

estimate the market volatility. Furthermore, the documented negative relationship between the 

realized excess market returns and the contemporaneous shocks in the market volatility 

further support their findings on the positive risk-return trade-off.  

Guo (2006), however, find that the effect of the market volatility on future stock 

market returns is unveiled only when the regression is augmented by consumption-wealth 

ratio (CAY), which is a proxy for the liquidity premium. The author further revealed that the 

market volatility has strong out-of-sample forecasting power when both volatility and CAY 

are employed in the forecasting exercise, implying that the liquidity premium proxied by 

CAY could be the explanation for the failure of risk-return trade-off.  

In contrast, Goyal and Santa-Clara (2003) shows that market volatility fails to predict 

stock market returns. They found that idiosyncratic risk, which is the cross-sectional average 

of stock risks, reliably forecasts the future stock market returns and brings economic benefit 

to investors based on the out-of-sample trading strategy. 

Net equity expansion (NTIS). Empirical studies generally found that stock issuers 

deliver low average returns in the long-run after the equity issuance. Ritter (1991) find that 

initial public offerings (IPOs) stocks underperform the matching firms’ stocks by about 29% 

three years after the IPOs. His result is supported by Loughran, Ritter and Rydqvist (1994) 

and Purnanandam and Swaminathan (2004) which find that IPOs stocks earn negative market-

adjusted abnormal returns of up to five years after the IPOs. Not only do IPOs stocks 

experience the long-run underperformance relative to comparable non-issuers, firms 

conducting seasoned equity offerings (SEOs) also deliver negative adjusted returns in the long 

run. Loughran and Ritter (1995) find that the average five-year holding period return that is 

60 percentage point lower than of non-issuers; whereas Spiess and Affleck-Graves (1995) 

reveal that the median returns over five-year period that is 32% percentage point lower than 

the non-issuers.  
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Rather than focusing on the returns of IPOs stocks, Baker and Wurgler (2000) provide 

evidence on the predictive power of equity issuance on the future stock market returns. They 

showed that stock market returns are positive (negative) following the years with low (high) 

equity issue, and demonstrated that new equity issuance predicts the future stock market 

returns significantly and negatively even after controlling for other aggregate return predictors. 

Butler, Grullon and Weston (2005) reveal contradictory findings that future expected returns 

is not predictable by the net equity issuance.  

Treasury bill rate (TBL). Campbell (1987) reveals that one-month TBL can be used 

to predict the excess stock returns, where a low TBL predicts high future returns, since TBL is 

the state variable of the term yield spread that predicts the excess stock returns. Indeed, its 

predictive power becomes stronger in the second sub-sample period (i.e post-1979). Besides 

that, Hodrick (1992) also find that TBL strongly predicts the future stock returns in their late 

sample period.  However, Pontiff and Schall (1998) who also employ the three-month TBL 

show that TBL does not predict significantly the next-month and annual stock market returns 

across different sample periods even though its coefficient sign is generally consistent with 

the literature. A similar finding is documented in Baker and Wurgler (2000); contradictory 

finding can be found in Ang and Bekaert (2007) and Campbell and Yogo (2006).  

Term yield spread (TMS). The changes in yield curve reflects the different phases of 

business cycle, and hence, TMS, which is the spread in yields of long-term bond and short-

term bond, capture the information about business cycle. TMS tend to be higher (lower) at the 

trough (peak) of the business cycle, suggesting a better (poor) prospects for the future of the 

economy. Since the business cycle is countercyclical with expected stock returns, TMS 

positively predicts expected future returns. This intuition is confirmed by Fama and French 

(1989) who reveal that TMS predicts positively and significantly for monthly and quarterly 

returns, a finding supported by Campbell and Yogo (2006) at the aggregate level. Campbell 

and Hamao (1992) and Campbell and Ammer (1993) also show that TMS has a positive 

relation with the next-month stock returns across different subperiods within the time frame of 

Fama and French (1989). On the other hand, Baker and Wurgler (2000) find that TMS is 

unable to predict the next-year stock market returns from 1928 to 1997. Similarly, Pontiff and 

Schall (1998) show that TMS predicts neither the next-month returns nor next-year returns at 

the aggregate level over almost the similar sample period.  



21 

 

Default yield spread (DFY). Apart from TMS, Chen, Roll and Ross (1986) and Fama 

and French (1989) argue that DFY, that is, the yield spread between lower- and higher-grade 

bonds, is closely related to the business cycle. The default yield premium tends to be higher 

near the trough, and hence predicts higher expected returns in the future, and the converse 

holds. Fama and French (1989) find that the predictive power of the DFY increases with the 

forecast horizon as the statistical significance of its slope coefficient increases from the next-

month forecast up to the 4-year forecast. The increasing predictive power of DFY with the 

forecast horizon also evident in Fama (1990).  

Keim and Stambuagh (1986), although incorporating the DFY as one of the ex-ante 

predictor variables, their measure also has the element of TMS since they consider the yield 

spread between the low-grade corporate bond and one-month TBL. They generally found that 

the predictive ability of DFY is seen only on the large stocks and over the full sample period, 

but the predictive power disappears at all over the sub-sample periods. In contrast, Amihud 

(2002) does not only find that the DFY has a strong positive effect on the expected excess 

market returns, but also notice that its effect decreases with firm size.   

Inflation (INFL). Although stocks are commonly viewed as a hedge against the 

inflation, i.e. the parameter estimates of inflation should be positive, in the past, literature 

generally found that stock market returns correlate negatively with the INFL (Fama and 

Schwert, 197712; Jaffe and Mandelker, 1976; Lintner, 1975; Kaul, 1987). Nelson (1976) also 

find that INFL predicts negatively the future stock market returns at short-horizons. Despite 

the negative relation between these two variables, the author revealed that the trading 

strategies using the return forecasts estimated from the inflation variable indeed generates 

higher returns than a simple buy-and-hold strategy in an out-of-sample context. Besides that, 

Kim and In (2005) find that the negative relationship exists at the intermediate horizon. A few 

studies, however, documented a positive relationship between stock returns and INFL at long-

horizons (Jaffe and Mandelker, 1976, Boudoukh and Richardson, 1993).  

Output gap (OG). The use of OG as a returns predictor is introduced by Cooper and 

Priestley, 2009). OG, a measure of divergence of the log industrial production from a time 

trend, is a business cycle indicator that tracks the variation in stock prices. The expected 

returns are predicted to be low (high) when the output gap is high (low) during the expansion 

 
12 They employed the Treasury bill rate as the proxy for the expected inflation rate.  
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(recession). Since this measure does not possess the information of the asset price, they 

argued that the predictive power of OG merely reflects the time-varying risk, avoiding the 

return predictability stemmed from the stock mispricing. Cooper and Priestley (2009) claim 

that OG is a strong stock market returns predictor at short-horizon and long-horizon, 

evaluated in both in- and out-of-sample contexts. Vivian and Wohar (2013) further extend the 

evidence on the predictive power of OG to the cross-section of stock returns. Their findings 

that all size and value sorted portfolio returns are predictable by OG appear to support the 

predictive ability of OG documented at the aggregate level.  

Consumption-wealth ratio (CAY). CAY measures the transitory deviation of log 

consumption from the shared trend derived from the log assets and log labour income. Based 

on the present-value identity, Lettau and Ludvigson (2001a) show that consumption-wealth 

ratio can be expressed as a function of expected stock returns and expected consumption 

growth. If the expected consumption growth is rather constant, then the consumption-wealth 

ratio can be a good return predictor13. To smooth the consumption pattern over time, investors 

would reduce (increase) their consumption when the expected returns are low (high) in the 

future, resulting in consumption falling below (above) the long-term trend, i.e. low (high) 

CAY. The in- and out-of-sample forecasts conducted by Lettau and Ludvigson (2001a) shows 

that the predictive power of CAY on the quarterly excess market returns is particularly strong 

at short- and intermediate-horizons, further supported by Cochrane (2011). Meanwhile, their 

in-sample results further depict that the variable alone can predict the excess market returns at 

long-horizon of up to six years. The superior out-of-sample performance of CAY over the 

historical mean model has also been confirmed in Guo (2006).  

Surplus consumption ratio (SCR). SCR proposed by Campbell and Cochrane (1999) 

argue that the expected returns is inversely related to the ratio of consumption relative to the 

external habit14. In particular, low surplus consumption, i.e. consumption level in excess of 

the habit decreases, in cyclical downswing predicts the high expected returns as the risk 

aversion increases and current stock prices drop. The simulated data produced from their 

model matches the long-horizon stock returns prediction. Engsted, Hyde and Møller (2010) 

 
13 Indeed, they found that only the coefficient of CAY on the growth of asset wealth is significant, suggesting 

that only the asset wealth (i.e. asset returns) that will adjust to ensure the log consumption aligns with the shared 

trend. Therefore, the trend deviation signals the variation in the expected returns.  

14  The external habit formation specifies that the habit level is determined based on the history of total 

consumption in the economy.  
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and Møller (2009) provide empirical in-sample evidences on the ability of SCR in predicting 

the annual excess market returns. 

 Although the above cited literature provide the rationale and the direction to which 

each variable predicts the stock returns, majority of these studies are primarily in-sample and 

studied either a particular variable or a limited set of return predictors. The most influential 

study by Welch and Goyal (2008) has contributed greatly towards the understanding of the 

return predictability by considering the predictive power of a more comprehensive set of 

predictors, including the ones reviewed above15, in both the in- and out-of-sample contexts. 

They cast doubt about the forecast ability of economic predictors since most of the predictors 

considered fail to survive from the in-sample and out-of-sample tests. Whilst the predictors 

like BM and NTIS perform well in-sample, their out-of-sample predictive power is hard to 

unfold. Their findings reconcile with the work of Bossaerts and Hillion (1999), Marquering 

and Verbeek (2004) which concerns on the economic value of the return forecasts by market 

volatility.  

 The poor out-of-sample forecasting performance of economic predictors could be 

originated from the parameter instability as Welch and Goyal (2008) reveal that all predictors 

perform badly after the oil shock recession. Other studies which also reveal the break in the 

relationship between expected returns and economic predictors include Paye and 

Timmermann (2006), Pesaran and Timmermann (2002). Accordingly, different strategies 

have been proposed in the literature with an aim to improve the out-of-sample forecasts of 

economic predictors.  

First, Campbell and Thomson (2008) restrict either the coefficient’s sign to be 

consistent with the theory or the return forecasts to be non-negative. The sum-of-parts (SOP) 

approach of Ferreira and Santa-Clara (2011) can be viewed as a restrictive model in that the 

intercept of DY predictive model is restricted to be the long-run average of the past earnings 

growth and the slope coefficient of DY is one16. Second, some studies evaluate the predictive 

performance of economic predictors across different regimes (e.g. Dangl and Halling, 2012; 

 
15 They also included long-term yield (LTY), long-term returns (LTR) and default return spread (DFR) in their 

set of predictors. 

16 The SOP method forecasts the components stock market returns separately from the expected values of DY 

and earnings growth as well as the price-earnings multiple growth rate (PEG). The expected earnings growth is 

estimated as the long-run average, representing the intercept in the model; the PEG is assumed to be zero, 

leaving the DY to follow a random walk process.  
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Henkel, Martin and Nardari, 2011; Pesaran and Timmermann, 1995). Third, a diffusion index 

that retrieves the common (latent) factor underlying a broad range of predictors is constructed 

based on either the principal component analysis (Ludvigson and Ng, 2007; Neely, Rapach, 

Tu and Zhou, 2014) or the partial least square method (Kelly and Pruitt, 2013, Huang, Jiang, 

Tu and Zhou, 2015). Fourth, Rapach, Strauss and Zhou (2010) combining the forecasts of 

individual predictors. All of these studies together with Rapach and Zhou (2013) 

acknowledge the usefulness of these strategies in improving the forecasting performance of 

the economic predictors, and reached at a conclusion contradicting Welch and Goyal (2008). 

Along this line, there are studies echoed the suggestion of Welch and Goyal (2008) by 

introducing the new predictors, such as short interest (Rapach, Ringgenberg and Zhou, 2016) 

and technical indicators (Neely et al., 2014), and by using a more advanced method (Gebka 

and Wohar, 2019). 

 Apart from the poor out-of-sample forecasting performance, the other issue 

concerning many researchers is the striking forecasting performance of economic predictors 

in the long-horizon, where some studies, as reviewed above, revealed that the measure of 

linear fit, e.g. R2 statistics, of long-horizon prediction are much higher than that of the short-

horizon prediction. This phenomenon could be attributable to the highly persistent and 

endogenous return predictors, e.g. ratios of fundamental relative to price, (see Ferson, 

Sarkissian and Simin, 2003; Nelson and Kim, 1993; Stambaugh, 1999). Stambaugh (1999) 

argues that small sample bias exists when the stock returns are regressed on a highly 

persistent predictor and the return innovations is correlated with the innovation in the 

stochastic predictor. As a result, the estimated slope coefficient is biased. Therefore, bias-

adjusted estimator has been proposed for single-predictor model (Lewellen, 2004) and 

multiple-predictor model (Amihud, Hurvich and Wang, 2009). Whilst Lewellen (2004) find 

that the long-horizon predictability stands up even after accounting for the Stambaugh bias, 

other studies remain doubtful about the long-horizon predictability (e.g. Ang and Bakaert, 

2007; Boudoukh, Richardson and Whitelaw, 2008;  Kostakis, Magdalinos and Stamatogiannis, 

2015; Lanne, 2002, Maynard and Ren, 2019; Torous, Valkanov and Yan, 2004). 

 The literature reviews on the return prediction using economic predictors reveals that 

the research in this line remains controversial in view of the mixed results on the in-sample 

findings, the structural instability of the parameter estimates, the presence of the statistical 

bias, and the poor out-of-sample forecasting performance. Correspondingly, the conclusion on 

the predictive power of any return predictor should be carefully assessed not only in the in-
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sample context, but also in the out-of-sample framework. The findings on the predictive 

power of the economic predictors and the enhanced investor sentiment index in Chapter 4 are, 

therefore, drawn mainly from the out-of-sample evaluation. This study also guards against the 

potential Stambaugh bias by considering the Feasible Generalised Least Square (FGLS) 

approach proposed by Westerlund and Narayan (2012) in order to produce reliable out-of-

sample forecasts17. A few forecasting strategies as discussed above are employed to derive a 

more robust results that stands up with the alteration in the specification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
17 FGLS procedure will be discussed in detailed in Section 4.2.1 
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Chapter 3. Constructing a Superior Investor Sentiment Index 

3.1 Introduction 

Investor sentiment is well established in the behavioural finance literature as having a 

pivotal impact on asset price fluctuations. De Long, Shleifer, Summers and Waldmann (1990, 

DSSW henceforth), for example, demonstrate how prices can be driven away from their 

fundamental values by ‘sentiment’, also called ‘noise’, traders. They suggest that where such 

unpredictable traders dominate, they deter arbitrage activities in the short-term, leading to 

price reversals (towards their fundamental values) in the long-term18. Crucially, this implies 

that investor sentiment has predictive power for stock returns, and thus, an accurate measure 

of investor sentiment is of great empirical importance: for instance, portfolio managers would 

benefit from availability of an empirical measure which captures a well-known risk factor 

(sentiment, or noise risk) in asset pricing (e.g., Antoniou et al., 2016), while, given that 

investor sentiment induces mispricing especially in the environment of lacking transparency 

and weak corporate governance of firms (e.g., Firth et al., 2015), policy makers, regulators 

and accounting professionals would gain an improved instrument to gauge the severity of 

such distortions and to guide them towards appropriate reforms. 

A key issue with the measurement of investor sentiment is that it is a latent 

(unobservable) factor in investor decisions. Survey-based measures have sought to directly 

quantify sentiment but have been found to perform poorly empirically (e.g. Ferrer, Salabera 

and Zalewska, 2016; Otoo, 1999), whereas market-based measures have attempted to 

approximate sentiment based on observable market variables. The seminal paper of Baker and 

Wurgler (2006) fits into and builds upon this second class of measures, as their index (SBW 

hereafter) combines six market-based sentiment proxies, using constant time-invariant 

weights, into a single sentiment index.  The BW index successfully predicts high (low) future 

returns for small stocks, young stocks, distressed stocks, and extreme growth stocks when 

current sentiment is low (high), i.e. at the cross-sectional level.  

It might be expected that SBW would also perform well at the market level given that 

investor sentiment is a market-wide phenomenon (see Baker and Wugler, 2006; 2007; Brown 

 
18  De Bondt and Thaler (1985) and Chopra, Lakonishok and Ritter (1992) demonstrate that stock prices 

experience price reversal over 3- to 5- year horizons. Fama and French (1988a) and Poterba and Summers (1988) 

also shows that stock returns are negatively correlated over long-horizon. 
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and Cliff, 2004; DSSW, 1990; Lee, Jiang and Indro, 2002; Stambaugh, Yu and Yuan, 2012) 

and that SBW seeks to capture market-wide sentiment. However, numerous studies demonstrate 

that SBW fails to exhibit strong statistically significant predictive power for future aggregate 

stock market returns in the time-series context (Arif and Lee, 2014; Baker and Wurgler, 2007; 

Huang, Jiang, Tu and Zhou, 2015). 

The novelty of the approach of this chapter is to propose that one possible reason for 

the failure of SBW to significantly forecast future aggregate stock returns could be the fixed 

nature of the original index’s components weights, which is based on an implicit assumption 

that the ability of each component to capture latent sentiment is time-invariant19. Crucially, all 

these proxies are driven by both sentiment and market fundamental factors. Thus, changes in 

these imperfect measures of investor sentiment could reflect a change in investor sentiment 

or/and fundamental factors, e.g., equity issuance varies with investor sentiment, but issuing 

equities depends also on the investment opportunities (Jung, Kim and Stulz, 1996). As such, 

the degree to which each proxy captures the investor sentiment may vary over time20. In other 

words, not every proxy captures the unobserved investor sentiment to the same degree at all 

times, an observation which casts doubt on the constant weight being applied to every 

component in the original SBW index. 

An enhanced investor sentiment index, which would address this shortcoming and 

which could consequently establish the time-series forecasting power of the BW approach, is 

therefore required. Furthermore, it might be argued that a more stringent test of any sentiment 

index is how it performs in the time-series rather than cross-sectional domain, given that 

Baker and Wurgler (2007) observe that the forecasting ability of investor sentiment for 

aggregate stock market is less apparent than its cross-sectional performance, which suggest 

that the former feature is harder to capture. 

For the cross-sectional predictive performance, Baker and Wurgler (2006) find that 

their market-wide sentiment measure generates different effects on the cross-section of stock 

 
19 The proxies used include: dividend premium (PDND); average first-day returns of IPOs (RIPO); the number 

of IPOs (NIPO); the closed-end fund discount (CEFD); market turnover (TURN) and the share of equity issues 

(EQ). 

20 Excluding NYSE share turnover from the construction of the latest series of SBW exemplified the importance or 

contribution of each sentiment proxy to the sentiment index could have changed over time. In Jeffrey Wurgler’s 

latest data file, he mentioned that “Turnover does not mean what it once did, given the explosion of institutional 

high-frequency trading and the migration of trading to a variety of venues”. Therefore, a sentiment proxy which 

was once potentially reflect the investor sentiment may no longer capture the sentiment well. Similarly, other 

sentiment proxies could also have their contributions to the sentiment index increased or reduced over time.  
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returns with stocks that are hard to arbitrage and value, such as, small, distressed, and extreme 

growth stocks, affected most by the wave of investor sentiment. Even though the main aim of 

this chapter is to improve the time-series return predictability of SBW at the aggregate level, 

this study also concerns on whether an index that can predict the aggregate stock market 

returns predicts also the returns of different portfolios across time.  

This chapter therefore seeks to address the following key research questions: (1) Can 

the predictive ability of SBW in the time series context be improved by allowing the 

contribution of each index component to vary over time? (2) Is the newly constructed investor 

sentiment index a good proxy for investor sentiment (i.e. high sentiment today predicts low 

future returns and vice versa)? (3) If it is, does the new index stand out to be the superior 

investor sentiment index that outperforms other sentiment measures in predicting the stock 

market returns?  (4) Does the newly constructed investor sentiment index predict equally well 

the returns of different portfolios across time? 

To briefly review the main results, this chapter finds that STV appears to be a good 

measure of investor sentiment and generally outperforms competitor variables. In particular, 

STV is found to have the required negative and significant relationship with future stock 

returns, even after having controlled for economic fundamentals in the in-sample evaluations. 

Furthermore, the new index predicts significantly the stock market returns from a prediction 

horizon of 3-month up to 60-month, a strong predictive power unobserved in other sentiment 

measures. Furthermore, STV index continues to predict well the time-series of characteristics 

portfolio returns. It predicts significantly the returns of most portfolios sorted based on size, 

book-to-market (BM) ratio and momentum across time with differential impacts have been 

detected within cross-section, such that greater effect of sentiment is seen on small stocks, 

past losers and value stocks.  

This study contributes to the existing literature as follow. First, this chapter constructs 

a new investor sentiment index, STV, expanding on the work of Baker and Wurgler (2006): the 

new index does not suffer from look-ahead bias, and permits dynamic time-varying features 

of sentiment components to be captured. This study is different from previous studies (e.g. 

Chen, 2011; Chung et al., 2012; Garcia, 201321) in that the dynamic feature of investor 

 
21 These studies examined the asymmetry effect of investor sentiment on stock returns in different market states. 

Therefore, they focused on the changes of the slope coefficient associated with the investor sentiment in the 

return predictive regression without considering on the time-varying ability of each sentiment component in 

capturing the investor sentiment optimally.   
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sentiment is first modelled through the time-varying weights of index components prior to 

evaluating the predictive power of investor sentiment in a time-varying sentiment-return 

relation framework, thus avoiding look-ahead bias. Empirically, STV outperforms other 

sentiment measures statistically at the aggregate level, justifying the benefits of accounting for 

the dynamic structure in the weights of sentiment components. The enhanced sentiment index 

also does equally well at predicting cross-sectional portfolio returns across time. Overall, this 

study proposes a superior measure of unobservable investor sentiment. 

The remainder of this chapter is organised as follows: Section 3.2 presents the data 

employed for the empirical analyses and the descriptive statistics of data. Section 3.3 

describes the construction of the time-varying weighted investor sentiment index (STV) and the 

return predictive regression. Section 3.4 discusses the empirical findings and Section 3.5 

concludes. 

3.2 Data and descriptive statistics 

The following sub-sections provide details of various types of data, which include 

investor sentiment indexes, aggregate stock market return cross-sectional portfolio returns and 

economic predictors. The sample period of this study spans for forty-nine full calendar years 

(in order to avoid biases potentially induced by seasonal or month of the year effect in 

variables) from January 1966 through December 2014.  

3.2.1 Investor sentiment Indexes  

Five investor sentiment proxies: dividend premium (PDND), average first-day returns 

of IPOs (RIPO), the number of IPOs (NIPO), the closed-end fund discount (CEFD), and the 

share of equity issues (EQ), along with five macroeconomic variables: growth of industrial 

production ( INDPRO ), real growth of durable consumption ( CONSDUR ), real growth of 

nondurable consumption ( CONSNON ), real growth of services consumption 

( CONSSERV ), growth in employment ( EMPLOPY ) are employed in this study. Data for 

these variables and SBW index are obtained from Jeffrey Wurgler’s website22. This study also 

uses other market-based sentiment measures, namely SPLS, which is available from Guofu 

Zhou’s website23, and Chicago Board Options Exchange's volatility index (VIX)24, which is 

 
22 http://people.stern.nyu.edu/jwurgler/   

23 http://apps.olin.wustl.edu/faculty/zhou/  

http://people.stern.nyu.edu/jwurgler/
http://apps.olin.wustl.edu/faculty/zhou/
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retrieved from Datastream. Two most popular survey-based investor sentiment indexes, which 

are the University of Michigan Consumer Sentiment Index (MS), obtained from Michigan 

directly25 , and the Conference Board Consumer Confidence Index (CCI), retrieved from 

Bloomberg, are also used.  

3.2.2 Aggregate stock market returns and cross-sectional portfolio returns  

In line with other studies26, the excess market return (Rm) is used as a measure of 

aggregate stock market return. It is computed as monthly stock market return minus the risk-

free rate (i.e. 3-month annualized Treasury-bill rate divided by 12). The stock market return is 

the monthly value-weighted S&P 500 index returns (inclusive of dividends) computed by the 

Center for Research in Security Price (CRSP). The data for stock market returns is obtained 

from Amit Goyal’s website27. The data for cross-sectional portfolio returns can be obtained 

from Kenneth R. French’s data library28. 

3.2.3 Descriptive statistics of data 

Table 3.1 summarises the descriptive statistics for the six investor sentiment indexes 

in panel A; the excess market return (Rm), risk-free rate (Rf), the cross-sectional portfolio 

returns in panel B, from January 1966 to December 2014.  

Panel A shows that all sentiment indexes are positively skewed, except MS, and have 

no excess kurtosis, and are mesokurtic (kurtosis value of close to 3), except SPLS and VIX 

which are highly leptokurtic with positive excess kurtosis (kurtosis value > 3). Among all 

investor sentiment measures, CCI has the highest standard deviation. First-order 

autocorrelation, denoted as ρ(1), suggests that sentiment indexes have a relatively long 

 
24 VIX is only available from January 1990. 

25 http://www.sca.isr.umich.edu/tables.html. MS was first published on a quarterly basis for months February, 

May, August and November and only became available on a monthly basis after 1978. Similarly, the series of 

CCI gathered by the Conference Board are published once every two months prior to June 1977. To be 

consistent with the data frequency of other variables (i.e. monthly frequency), the ‘missing values’ of these two 

indexes are filled with the latest observation until the next observation becomes available following the 

procedure adopted by Lemmon and Portniaguina (2006) and Ho and Hung (2009). 

26 Campbell (1987), Campbell and Shiller (1988a; 1988b), Campbell and Thompson (2008), Huang et al. (2015), 

Kim, Ryu and Seo (2014), Lee, Jiang and Indro (2002), Welch and Goyal (2008), and Yu and Yuan (2011), for 

example. 

27 http://www.hec.unil.ch/agoyal/  

28 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

http://www.sca.isr.umich.edu/tables.html
http://www.hec.unil.ch/agoyal/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 3.1: Summary statistics of data from January 1966 to December 2014 

  Mean SD Skewness Kurtosis Min Max ρ(1) 

 Panel A: Investor sentiment index 

STV -0.022 2.198 0.113 2.619 -5.442 6.650 0.723 

SBW 0.020 0.994 0.147 3.645 -2.325 3.076 0.983 

SPLS 0.016 0.964 1.363 4.516 -1.701 3.249 0.977 

MS 84.816 12.408 -0.324 2.488 51.700 112.000 0.950 

VIX 19.837 8.250 2.223 11.678 10.020 70.330 0.824 

CCI 93.406 24.989 -0.042 2.448 25.300 144.710 0.967 

 Panel B: Risk-free returns and stock returns 

Rf 0.004 0.003 0.527 3.726 0.000 0.014 0.988 

Rm 0.005 0.044 -0.417 4.714 -0.221 0.162 0.043 

ME1 0.011 0.065 -0.137 5.266 -0.289 0.295 0.240 

ME2 0.011 0.065 -0.241 5.087 -0.305 0.284 0.150 

ME3 0.012 0.062 -0.423 4.851 -0.290 0.257 0.132 

ME4 0.011 0.059 -0.485 4.984 -0.296 0.243 0.135 

ME5 0.011 0.057 -0.494 5.030 -0.279 0.248 0.122 

ME6 0.011 0.054 -0.513 4.845 -0.263 0.209 0.124 

ME7 0.011 0.053 -0.460 5.247 -0.262 0.224 0.123 

ME8 0.010 0.051 -0.447 4.723 -0.243 0.191 0.090 

ME9 0.010 0.047 -0.433 4.894 -0.223 0.181 0.101 

ME10 0.008 0.043 -0.335 4.602 -0.197 0.181 0.020 

BM1 0.008 0.052 -0.195 4.350 -0.227 0.230 0.084 

BM2 0.009 0.047 -0.426 4.795 -0.248 0.196 0.073 

BM3 0.010 0.047 -0.457 5.101 -0.257 0.171 0.073 

BM4 0.010 0.048 -0.493 5.400 -0.236 0.185 0.079 

BM5 0.009 0.045 -0.424 5.442 -0.235 0.176 0.071 

BM6 0.011 0.044 -0.372 5.198 -0.231 0.184 0.037 

BM7 0.010 0.047 -0.351 5.865 -0.243 0.222 0.095 

BM8 0.011 0.047 -0.598 6.839 -0.249 0.227 0.103 

BM9 0.013 0.050 -0.336 4.740 -0.194 0.223 0.084 

BM10 0.013 0.062 -0.145 7.188 -0.264 0.348 0.154 

M1 0.002 0.082 0.645 7.248 -0.261 0.455 0.156 

M2 0.007 0.063 0.208 6.012 -0.249 0.355 0.105 

M3 0.009 0.054 0.290 6.534 -0.233 0.338 0.105 

M4 0.009 0.049 -0.128 4.987 -0.187 0.217 0.108 

M5 0.008 0.045 -0.278 5.097 -0.215 0.208 0.107 

M6 0.009 0.046 -0.392 5.334 -0.238 0.167 0.078 

M7 0.009 0.044 -0.451 5.579 -0.243 0.189 -0.008 

M8 0.011 0.045 -0.319 4.795 -0.204 0.189 0.052 

M9 0.011 0.049 -0.531 5.658 -0.263 0.218 0.039 

M10 0.015 0.063 -0.384 4.743 -0.267 0.231 0.050 

Notes: SD denotes standard deviation, Min is the minimum value, Max is the maximum value and ρ(1) is the first-order 
autocorrelation. The descriptive statistics of investor sentiment indexes and returns data are reported in panel A and B, 

respectively. For the cross-sectional portfolio returns, each portfolio is labelled with a combination of text and number: 
the text represents the characteristics used to form the portfolio and the number represents the decile from 1 to 10. ME 

denotes the market capitalization, BM denotes the book-to-market ratio, and M represents momentum (i.e. prior 
returns). The sample period spans for 588 months, from January 1966 until December 2014. 
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Table 3.2:  Correlations of investor sentiment indexes 

  STV SBW SPLS VIX MS CCI 

STV 1.000      
SBW 0.073* 1.000     
SPLS 0.024 0.552*** 1.000    
VIX -0.124** -0.130** 0.379*** 1.000   
MS 0.085** 0.320*** 0.045 -0.248*** 1.000  
CCI 0.246*** 0.297*** 0.158*** -0.139** 0.810*** 1.000 

Notes:  This table reports the correlations of investor sentiment indexes: time-varying weighted investor sentiment index 

(STV), Baker and Wurgler investor sentiment index (SBW), aligned investor sentiment index (SPLS), Chicago Board Options 

Exchange’s volatility index (VIX), University of Michigan Consumer Sentiment Index (MS), and Conference Board 

Consumer Confidence Index (CCI). *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively. 

The sample period covers from December 1968 to December 2014. 

memory, with all but STV and VIX having a value for ρ(1) greater than 0.95. STV is the least 

persistent in the set of sentiment indexes which would therefore, suggest that the estimated 

predictive regression model from this sentiment measure will be subject to the least 

Stambaugh bias. Yet, as shown in next section, the predictive performance of STV at long 

forecast horizons (i.e. 3 – 5 years) is not scarified and has optimal performance amongst the 

full set of sentiment indexes.  

Panel B shows that the excess market return has a mean of 0.47% and standard 

deviation of about 4.40%. The returns of small stocks (i.e. ME1), value stocks (i.e. BM10), 

growth stocks (i.e. BM1), stocks with lowest prior returns (i.e. M1) are more volatile than 

their counterparts sorted based on similar characteristics. The statistics show the stylized facts 

of return series – return series are negatively skewed and exhibit leptokurtic distribution. In 

contrast to investor sentiment indexes, returns series are less persistent.  

Table 3.2 presents the correlations of STV and other sentiment measures. STV positively 

correlates with all sentiment indexes except VIX29. Other sentiment indexes also display the 

similar pattern, except SPLS which covaries positively with VIX. Meanwhile, STV is highly 

significantly correlated with sentiment indexes that are free from look-ahead bias and employ 

relatively recent information in the index construction, such as VIX, MS and CCI. The 

correlation between STV and CCI is especially strong, i.e. 0.246, and highly significant at 1% 

 
29 Ben-Rephael, Kandel and Wohl (2012) and Kurov (2010) find that the changes in VIX is negatively correlated 

with the changes in other sentiment measures. VIX measures the expectation of market participants about the 

stock market volatility. High VIX value represents ‘fears’ and investor pessimism, of which is reflected by a 

lower value in other investor sentiment indexes. Therefore, VIX should be negatively correlated with other 

investor sentiment measures. 
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level30. On the other hand, STV is weakly correlated with SBW and SPLS, which are 0.073 and 

0.024, respectively, suggesting that STV extract latent sentiment information that is not 

captured by SBW and SPLS after accounting for the dynamic contribution of each sentiment 

component to the sentiment index.  

3.3 Methodology 

 This section describes the methodology underlying the SBW and presents the time-

varying weighted investor sentiment index, STV, designed to address underlying issues of SBW. 

The return predictive regression used to assess the sentiment-return relationship is then 

described after the construction of STV. 

3.3.1 Baker and Wurgler investor sentiment index (SBW)  

 Baker and Wurgler (2006) construct SBW using principal component analysis (PCA) to 

extract the common sentiment component from six investor sentiment proxies: dividend 

premium (PDND), average first-day returns of IPOs (RIPO), the number of IPOs (NIPO), the 

closed-end fund discount (CEFD), market turnover (TURN), and the share of equity issues 

(EQ). PCA identifies the latent common factor from the group of interrelated variables. It 

redefines the data set by transforming it into new variables, which are termed principal 

components (PCs), and the first principal component (PC1) is the linear combination of the 

variables that explain the maximum variation from the sentiment proxies. PC1 is then used as 

SBW. 

Prior to employing PCA, fundamental components related to business cycle are 

removed from sentiment proxies. This is achieved by orthogonalising each proxy by 

regressing it on a set macroeconomic variables: INDPRO , CONSDUR , CONSNON , 

CONSSERV , EMPLOPY  and NBER-dated recession (RECESS). 

There are two features of this process of construction of SBW which might affect its 

ability to capture sentiment. Firstly, as PC1 is extracted using the entire sample period, each 

component within PC1 is implicitly assumed to have fixed affect (or weight) across all time 

periods in the sample. This is equivalent to an assumption that each component’s ability to 

capture sentiment, relatively, i.e. as compared to the remaining components, is constant over 

 
30 Further analysis in Section 3.4.1 shows that both STV and CCI have strong effect on future stock market return 

across all forecast horizons. However, the strong predictive performance of CCI is driven mainly by the 

fundamental economic factors. 
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time. As this assumption might not be correct, SBW may not optimally capture the dynamic 

contributions of those sentiment proxies to the aggregate sentiment index, given that each 

sentiment proxy might better capture the unobserved sentiment in some periods while being 

largely affected by fundamental factors in others. This chapter proposes to relax this implicit 

assumption and allow contributions of each index component to vary over time.  

Second, as discussed by Chung et al. (2012), SBW is constructed with a look-ahead bias, 

due to PC1 being extracted utilising data for the entire sample (i.e. July 1965 to December 

2010). This poses an issue when evaluating the forecasting power of any variable, as forecasts 

formed at any time t should not rely on information which would have only become available 

in the future (t+1 and beyond). For example, the value of sentiment in January 2000 should 

not be drawn from information after this date, yet the value of SBW estimated using the entire 

sample period would be employing information which is in the future to January 2000. All 

sentiment values prior to the last period in the sample suffer therefore from this look-ahead 

bias. To put differently, when applying such an index for return forecasting, investors are 

assumed to have had access to future information, i.e. future, to them, values of sentiment 

proxies. This is clearly not realistic. To address this issue, one should construct an investor 

sentiment index utilising only information available up to time t, in order to avoid any look-

ahead bias in the return prediction implied by the sentiment model for time t+k31. 

Recently, Huang et al. (2015) proposed a new investor sentiment index (SPLS) that 

aims at improving the short-term return predictive power of SBW. They argued that a more 

accurate sentiment index can be constructed by using the partial least squares (PLS) rather 

than PCA approach. They suggested that the lack of forecasting power in the original SBW 

index is stemmed from its inability to factor out common approximation errors, which are 

irrelevant to the expected stock market returns, from the sentiment element common among 

the index’s individual proxy variables, and argued that the PLS method is an appropriate 

approach to remove that common noise component. However, the Huang et al. (2015) 

approach of employing the PLS estimation methodology in the context of six sentiment 

proxies involves running regressions with only six observations in the cross-section, at each 

point in time. This is concerning given that Kelly and Pruitt (2015) demonstrate that large 

time and cross-section dimensions are required to ensure that the PLS produces consistent 

forecasts from the latent factor. Despite this issue, Huang et al. (2015) demonstrate that their 

 
31 Antoniou et al. (2016) also urge that alternative sentiment measure based solely on the historical information 

should be sought in future research.  
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index has an improved performance at the aggregate time-series level compared to SBW for 

short-term horizons. However, their index can also suffer from look-ahead bias: a solution 

they use is to estimate the index values recursively, but this suffers from potentially 

employing very outdated information, as compared to a rolling window estimation which only 

utilises most recent values of relevant variables. 

While Huang et al. (2015) attribute the sub-optimal forecasting power of the original 

BW index to the existence of common approximation errors contained in sentiment proxies, 

this study investigates a different, maybe complementary, proposition, namely the fluctuating 

relative ability of those proxies to capture unobservable sentiment and the resulting need to 

model their contributions to the investor sentiment index as time-varying. This study also 

aims at avoiding look-ahead bias and mitigating employment of outdated, irrelevant 

information by estimating the new index in the rolling window framework rather than 

recursively. The findings of this study reveal that the issue this study addresses here (i.e., of 

time-varying ability components’ to capture sentiment) seems to be more relevant empirically 

than that of common errors, given that the new time-varying weighted investor sentiment 

index (STV) outperforms SPLS, on average, in forecasting stock market returns. 

3.3.2 Evidence on the time-varying performance of investor sentiment components 

This section motivates the construction of an improved investor sentiment index 

accounting for a time-varying ability of sentiment index components to accurately capture the 

unobserved sentiment. As a starting point, consider the basic sentiment-return regression 

model below:  
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   (3.1) 

,m t hR +  is the h-month-ahead excess market return and Sent_Proxyi,t is one of the different 

sentiment proxies at time t, which, for comparison, also includes the Baker and Wurgler (2006) 

sentiment index, BW

tS , which combines these individual proxies into a single investor 

sentiment index. 
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Table 3.3: Predictive performance of SBW and individual investor sentiment proxies on excess market return across different horizons 

  Prediction horizons 

 h = 1 h = 3 h = 6 h = 9 h = 12 h =24 h = 36 h = 60 

  β (%) β (%) β (%) β (%) β (%) β (%) β (%) β (%) 

SBW -0.1723 -0.1489 -0.1670 -0.1580 -0.1311 0.0186 0.1109 0.0441 

 [-0.7780] [-0.7032] [-0.8233] [-0.8402] [-0.7374] [0.1403] [1.2621] [0.5389] 

PDND -0.0045 -0.0015 -0.0007 0.0019 0.0037 0.0011 -0.0033 -0.007 

 [-0.2618] [-0.0863] [-0.0398] [0.1140] [0.2256] [0.0908] [-0.3979] [-1.2992] 

RIPO -0.0186* -0.0214** -0.0247*** -0.0285*** -0.0309*** -0.0292*** -0.0186*** -0.0088*** 

 [-1.5930] [-1.8787] [-2.3549] [-2.9755] [-3.7141] [-5.3598] [-3.3223] [-2.6308] 

NIPO -0.0001 0.0000 0.0001 0.0001 0.0002 0.0005 0.0007 0.0003 

 [-0.0641] [-0.0169] [0.0793] [0.1435] [0.2639] [1.0332] [1.6773] [0.8487] 

CEFD 0.0051 0.0081 0.0142 0.0151 0.0137 0.0031 -0.0074 0.0043 

 [0.1960] [0.3406] [0.5768] [0.6240] [0.5954] [0.1707] [-0.6809] [0.4250] 

EQ -3.8859** -3.3964* -2.6574 -2.1917 -1.7820 -0.2685 0.6198 0.1617 

  [-1.7837] [-1.5706] [-1.2292] [-1.0111] [-0.8452] [-0.1700] [0.5015] [0.1629] 
Notes: This table presents the estimated coefficients of SBW and individual proxies from the predictive regression 

, ,_ Prm t h i t t hR Sent oxy  + += + +  where Rm,t+h is the h-period-

ahead excess market return and Sent_Proxyi,t denotes the SBW or individual investor sentiment proxies. SBW is the Baker and Wurgler investor sentiment index constructed from six 

proxies: dividend premium (PDND), average first-day returns of IPOs (RIPO), number of IPOs (NIPO), closed-end fund discount (CEFD), and share of equity issues (EQ). The 

Newey-West (automatic bandwidth selection) t-statistics are shown in brackets.  *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.  The sample 

period covers from January 1966 to December 2014.   
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The results shown in Table 3.3 for BW

tS are consistent with the literature, in that   is 

insignificant, hence SBW is unable to predict future excess market returns across all prediction 

horizons (Arif and Lee, 2014; Huang et al., 2015). Furthermore, for longer prediction 

horizons the sign of SBW, in being positive (yet still insignificant), is inconsistent with the 

theory that investor sentiment should negatively influence future stock returns due to return 

reversals.  

For individual sentiment proxies, the appropriate sign of β depends on each sentiment 

proxy given that sentiment proxies are either negatively or positively correlated with 

sentiment. As such, it is appropriate to test the null hypothesis of β = 0 against the alternate 

hypothesis of β > 0 for CEFD and PDND, yet β < 0 in the alternate hypothesis for RIPO, 

NIPO and EQ. Table 3.3 clearly shows that RIPO performs best in predicting future excess 

market returns over the entire sample given that it predicts significantly and negatively the 

excess market return across all forecast horizons, justifying the use of RIPO as the benchmark 

in the  construction of STV as shown in the next sub-section. In contrast, the predictive power 

of EQ can only be seen to be significant over shorter forecast horizons. Likewise, other 

sentiment proxies have a greater or lesser effect depending on the time-horizon, 

demonstrating that those proxies contain different information potentially useful in 

forecasting.  

To show the time-varying ability of each sentiment proxy to capture sentiment, as 

mirrored by its performance in predicting excess market returns, the equation (3.1) is 

estimated on a rolling-window basis, using a fixed window of three years32.Specifically, the 

first window runs from January 1966 to December 1968 and the window will then be rolled 

over to incorporate the following month’s data and drop the first month’s observation from 

previous estimation period. The graphical evidence on the time-varying effect of investor 

sentiment is shown in Figure 3.1. 

Panel A of Figure 3.1 shows that the estimated coefficients vary considerably over 

time, clearly demonstrating the time-variability in these sentiment proxies’ abilities to capture 

sentiment and hence predict future stock market returns. Much clearer illustration on the 

significant effect of investor sentiment is shown by the rolling p-values and rolling R-squared 

 
32 Pesaran and Timmermann (2002) mention that a rolling window approach instead of a recursive window is 

used if “parameters … are not believed to be constant over time”. Since the impact of investor sentiment is 

expected to change over time, a rolling window approach is used in this study.  
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in Panel B and C, respectively. Panel B depicts that investor sentiment proxies predict future 

excess market returns differently across time33. For example, dividend premium (PDND), the 

number of IPOs (NIPO) and the share of equity issues (EQ) are shown to have a very                    

significant effect on future excess market return during 1982-1983, whereas the influence of 

closed-end fund discount (CEFD) is far more modest, while average first-day returns of IPOs 

(RIPO) does not have any effect during this period. Yet, in the 2001-2002 period, only CEFD 

has any predictive power.  

This evidence shows that SBW, which assumes constant weights on each investor 

sentiment proxy over the entire sample, may not be able to optimally capture the dynamic 

contribution of each sentiment proxy over time. Instead, an index which allows these weights 

to vary over time should be able to capture far better the overarching sentiment component. 

3.3.3 Construction of the time-varying weighted investor sentiment index (STV) 

Single market-based variables might individually be poor proxies for general investor 

sentiment, due to inherent idiosyncratic noise. Therefore, this thesis combines several single 

market-based proxies into a composite sentiment index in order to “iron out the remaining 

idiosyncracies” (Baker and Wurgler, 2007, p.139). Following Baker and Wurgler (2006, 

2007), PCA approach is employed to extract the common latent sentiment component from 

imperfect sentiment measures (i.e. PDND, RIPO, NIPO, CEFD and EQ) in the construction of 

the time-varying weighted investor sentiment index, STV. To capture the time-varying 

contribution of each of these proxies, this study differs from BW in that STV is constructed on 

a rolling window basis. This approach allows us to utilise only the most up-to-date, hence the 

most relevant, information at each point in time, and has an additional benefit of avoiding any 

look-ahead bias in the construction of the index. Furthermore, following Baker, Wurgler and 

Yuan (2012) and Finter, Niessen-Ruenzi and Ruenzi (2012), the contemporaneous proxies are 

adopted in the construction of STV34. Following reviews of each sentiment proxy also provide 

further support to the use of contemporaneous proxies. 

 
33  The predictive power of each sentiment proxy remains fluctuated over time even after controlling for 

macroeconomic factors. The graphs are shown in Figure A. 1 (refer to Appendix).  

34 The use of contemporaneous rather than lagged values is more practical when applied in the forecasting 

context since, at any point in time t prior to sample’s end, a forecaster would not possess information from the 
entire sample to determine the optimal in-sample lag for each proxy. The robustness check also confirms that the 

parsimonious model does not lose its power in h-horizon return predictions. Indeed, it performs better than 

sentiment index constructed using lagged proxies. 
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Figure 3.1: 36-month rolling regression estimates for SBW and individual investor 

sentiment proxies    
The predictive regression model used to plot these figures: 

, 1 , 1_ Prm t i t tR Sent oxy  + += + +  ,              Sent_Proxyi,t =  { BW

tS , PDNDt , RIPOt , NIPOt , CEFDt , EQt} 

Panel A shows the rolling slope coefficients (blue lines) associated with the confidence intervals (red lines) 

for Baker and Wurgler investor sentiment index (SBW), dividend premium (PDND), average first-day returns of 

IPOs (RIPO), number of IPOs (NIPO), closed-end fund discount (CEFD), and share of equity issues (EQ). Panel 

B shows the rolling p-values of the slope coefficients. The dark, green and red lines denote the significance level 

of 10%, 5% and 1%, respectively. Panel C exhibits the rolling R-squared. The sample period covers from 

January 1966 to December 2014. 

Panel A: Rolling Coefficient Estimates   
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Panel B: Rolling p-values  
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Panel C: Rolling R-squared   
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dividend premium – the valuations between dividend-paying stocks and non-dividend-paying 

stocks. As such, a negative contemporaneous relationship between investor sentiment and 

dividend premium could be seen.  

Initial Public Offerings (IPOs) Market. It has long been a puzzle for IPOs 

‘underpricing’ that stems from positive average first-day returns on IPOs (RIPO). Previous 

studies have documented that high level of first-day returns is ‘corrected’ subsequently, 

especially when high volume of IPOs is observed (Ritter, 1991) 35 . Derrien (2005) and 

Ljungqvist, Nanda and Singh (2006) confirm that the optimism of noise traders push the IPO 

stock prices more than it should be, leading to high initial returns but a subsequent poor long-

run performance when investor sentiment fades away. Therefore, there is a positive 

contemporaneous relationship between RIPO and investor sentiment, where high initial 

returns of IPOs are observed during the high sentiment period. The monthly RIPO series is 

computed as the NIPO-weighted average of RIPOs over the previous 12 months.  

Not only does the over-optimism of sentiment traders affect initial returns of IPO 

stocks, their periodic bullish sentiments also offer windows of opportunity to issuers. Ritter 

(1991) proposes that firms ‘time’ their stock offering during which investor sentiment is high. 

Later, Loughran, Ritter and Rydqvist (1994) demonstrate a contemporaneous positive 

relationship between market valuation and IPOs volume on a yearly basis. They claimed this 

phenomenon as the successful timing of firms’ offerings in matching the market 

overvaluation period, during which investors could be excessively optimistic. Other studies 

that documented the same finding include Loughran and Ritter (1995), Ibbotson, Sindelar and 

Ritter (1994), and Ljungqvist et al. (2006). Hence, an increase in the number of IPOs (NIPO) 

is commonly observed during high sentiment periods. Whist one may contend that RIPO 

tends to lead NIPO (see Ibbotson and Jaffe, 1975; Lowry and Schwert, 2002) and their 

relationship with investor sentiment should enter with different timings (Baker and Wurgler, 

2006; 2007), this study argues that the high NIPO and RIPO could happen at the same time 

when sentiment is high.  

IPOs in US typically take an average of three to four months from the beginning of 

filing date to their first trading day (see Boeh and Dunbar, 2016). Despite previous initial 

returns bear some role on a firm’s decision to go public, the success of an IPO still depends 

 
35 Ritter and Welch (2002) provide detailed review on the pricing and long-run performance of IPOs.   
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on investors’ perception towards the market condition close to the issuing date. Owing to the 

book building process of IPOs, in which ‘road shows’ have been conducted in order to elicit 

investors’ interest on the offerings, firms in US have an option to withdraw their offerings 

before issue date (Busaba, Benveniste and Guo, 2001). After the marketing process, 

underwriter proposes an offer price by taking into consideration of investors’ interests. At this 

stage, the firm may opt out from an IPO if the firm viewed the proposed offer price as 

‘undervalued’. This could happen when market participants irrationally undervalued the firm (see 

Boeh and Dunbar, 2014). In other words, firms may withdraw the IPO if investors are pessimistic, 

and the reverse holds. As a result, actual NIPO depends on current investor sentiment, and a 

contemporaneous relationship between NIPO and investor sentiment is deemed appropriate. The 

monthly NIPO data is simply the sum of NIPO over the prior 12 months. 

Share of Equity (EQ). Share of equity computed as the equity issues over the total 

new issues is one of the proxies for investor sentiment. The main difference between share of 

equity and IPOs is that share of equity consists of all seasoned and non-seasoned equity 

offerings. Baker and Wurgler (2000) reveal that future stock market returns can be predicted 

by the share of equity. They discovered that firms tend to finance their companies with more 

equity than debt prior to the period of low returns and vice versa. Hence, in a similar logic to 

the IPOs market, firms have been claimed to ‘time’ their equity issuing when their stocks are 

overvalued by market participants, resulting in a significantly poor performance in the long-

run which contradicts the efficient market hypothesis. This is a manifestation of the 

contemporaneous effect of investor sentiment on the firms’ equity financing activities. 

Closed-End Fund Discount (CEFD). Closed-end funds are publicly traded at the 

stock exchange with a specified number of shares issued during IPOs. Therefore, unlike the 

open-end funds, prices of close-end funds fluctuate with the supply and demand in the market, 

and are potentially different from their net asset value (NAV). CEFD, which is computed as 

the difference between the NAV of a closed-end fund and its market price, has been employed 

as a measure of investor sentiment (Neal and Wheatley, 1998; Zweig, 1973; Gemmil and 

Thomas, 2002). Large discount on closed-end funds reflects investor pessimism; investors are 

bullish otherwise. Since investor demand, which depends partly on investors’ mood, directly 

affects the CEFD, a contemporaneous relationship between CEFD and investor sentiment can 

be assumed.  
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The window length chosen for the rolling-window is three years 36 , with the first 

window running from January 1966 until December 1968. As in Baker and Wurgler (2006, 

2007), each proxy is first orthogonalised against a set of macroeconomic variables to remove 

any business cycle related (fundamental) components. The macroeconomic variables used are: 

growth of industrial production ( INDPRO  ), real growth of durable consumption 

( CONSDUR ), real growth of nondurable consumption ( CONSNON ), real growth of 

services consumption ( CONSSERV ), growth in employment ( EMPLOPY ). The resulting 

orthogonalised sentiment components are standardized to have a zero mean and unit variance 

before being applied in the principal component analysis. As with SBW, the value of STV in 

each window is defined as the first principal component, PC1, or more precisely, the 

summation of the products of standardized investor sentiment proxies and their respective 

component loadings. Finally, the value of STV is taken as the last observation in each window37.  

As such, STV can be viewed as a series of updated investor sentiment proxies utilising only the 

most relevant and updated information in every window. Figure 3.2 clearly depicts the 

construction of the new index.  

 It is noteworthy that the signs generated by PCA are arbitrary for each PC vector and 

hence the signs of PC1 component loadings could be inconsistent with theory (Fenn, Porter, 

Williams, McDonald, Johnson and Jones, 2011). Hence, the sign of an eigenvector can be 

flipped (Narsky and Porter, 2013; Bro, Acar and Kolda, 2008) to ensure a theoretically 

relevant index is constructed. As long as the sign of every variable is flipped, their relative 

contributions and hence the optimal variance of the principal component is preserved. In view 

of this, the sign of the eigenvector is flipped whenever the sign of RIPO is inconsistent with 

the theory in each window38. Previous literature shows a positive relation between investor 

 
36 The period of three years roughly corresponds to a half of the average duration of a business cycle in the U.S. 

for the sample period employed in this study, the rationale being that the sentiment impact on stock market 

varies across phases of the business cycle (see Chung et al., 2012; Garcia, 2013; Huang et al., 2015).  

37 The average proportion of variance explained by first principal component across different windows is about 

50%, which is higher than the proportion of variance explained by first principal component from the entire 

sample (i.e. about 41%).  

38 RIPO has been used as a benchmark component since Baker and Wurgler (2006, 2007) mention that IPO 

variables (i.e. NIPO and RIPO) capture well the demand of stocks that are sensitive to investor sentiment. As 

RIPO directly links to the investor demand, it can better reflect investor sentiment on a theoretical basis. This is 

confirmed in Huang et al. (2015), which show that RIPO receives the greatest weight in their aligned investor 

sentiment index. Empirically, Chu et al. (2017) reveal that RIPO is least affected by macroeconomic factors as 

compared to other sentiment proxies of SBW. Thus, RIPO truly reflects a greater proportion of investor sentiment 

component as compared to other proxies. As shown in the analysis over the whole sample period (refer Table 

3.3), RIPO consistently predicts the equity premium across all forecast horizons, implying that RIPO could have 

the component that is most sensitive to investor sentiment and hence predicts future stock market returns well.  
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sentiment and RIPO, as investor over-optimism generates high RIPO (e.g. Cornelli, Goldreich 

and Ljungqvist, 2006; Derrien, 2005). Therefore, the sign of whole vector will be flipped if 

RIPO received a negative initial loading; otherwise, the signs of component loadings remain 

unchanged. 

Figure 3.2: The construction of time-varying weighted investor sentiment index (STV) 

This figure depicts the construction of STV, which is computed on a rolling window basis with a fixed window 

length of 36 months. The first window spans from January 1966 to December 1968, and is subsequently rolled 

over to the next window by eliminating the observation in January 1966 and adding a new observation from 

January 1969 into the series. The principal component analysis is performed in every window and only the last 
observation in each window is retained. The same estimation process is repeated until the end of the data series, 

which gives a total of 553 observation in the STV index.  

 

 



46 

 

Figure 3.3: Investor sentiment indexes 

This figure depicts the investor sentiment indexes over three sub-periods: December 1968 to November 1982, December 1982 to March 2001, and April 2001 to 

December 2014. The blue line is the time-varying weighted investor sentiment index (STV), the green colour line is the aligned investor sentiment index (SPLS) 

retrieved from Guofu Zhou’s website, and the dotted line is the Baker and Wurgler investor sentiment index (SBW) retrieved from Jeffrey Wurgler’s website. 

Orthogonal investor sentiment indexes are used in this figure. The shaded bars represent the recession period as dated by NBER. 
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Figure 3.4: Principal component loadings of each investor sentiment proxy for STV 

The figures show the weights of investor sentiment proxies, which are dividend premium (PDND), average first-day returns of IPOs (RIPO), number of IPOs (NIPO), closed-end 

fund discount (CEFD), and share of equity issues (EQ), for the time-varying weighted investor sentiment index (STV) from December 1968 to December 2014. The weights of 

sentiment proxies in month t are retrieved from the first principal component on a rolling window basis with a window length of 36 months. The shaded bars represent the recession 

period as dated by NBER. 
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Figure 3.3 presents the enhanced investor sentiment index, STV, as well as those of BW, 

SBW, and of Huang et al. (2015), SPLS, from December 1968 to December 2014 split, for clarity, 

into three sub-periods: December 1968 to November 1982, December 1982 to March 2001, 

and April 2001 to December 2014. It can be observed that STV evolves in line with the overall 

trend of SBW and SPLS. Although the initial glance shows that STV is more volatile than SBW and 

SPLS, its movements correspond to the peaks and the troughs of business cycle. The surge in 

investor sentiment as shown by STV is parallel with the speculative periods, for instance, the 

young growth stocks bubble in 1968, the speculative period of the late 1970s, the early 1980s 

biotech bubble, the technology boom of the late 1990s, and the housing speculation before 

2007. STV also clearly shows a drop in investor sentiment during the historic bear market 

periods, such as, the 1968-1970 recession, the stock market crash of 1973-1974, the 1981-

1982 recession, the burst of biotech bubble in mid-1983, the Black Monday 1987, post-dot-

com bubble period of 2000-2002, and the subprime crisis of 2008-2009.  

To provide further evidence for the initial hypothesis that individual components of 

the BW index exhibit a time-varying ability to capture sentiment, the behaviour of estimated 

weights of index components is inspected and depicted in Figure 3.4. Their visible 

fluctuations over time further support the new approach of constructing the aggregate 

sentiment index on a rolling-window basis. 

3.3.4 Return predictive regression   

 To assess whether STV can predict negatively future stock market returns and to 

compare its predictive power against other investor sentiment indexes over the entire sample 

period, this study estimates the standard return predictive regression model: 
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where, as previously, ,m t hR +  denotes the h-month-ahead excess market return and 
,i tSent  

represents one of different investor sentiment indexes. As discussed in Section 2.3, in general, 

current sentiment is negatively correlated with future stock returns. Thus, this study tests the 

null hypothesis of 0 =  against the alternative of 0  . The only exception is VIX where 

the alternative is β > 0 given that high VIX values represent investor pessimism. To account 

for autocorrelation in the error terms caused by the overlapping forecast horizons and possible 
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heteroscedasticity, a robust covariance matrix (Newey and West, 1987) is employed when 

estimating (3.2). 

To examine if the predictive power of STV is not driven by fundamental factors, this 

study also estimates the “kitchen sink” (Welch and Goyal, 2008) regression model39, directly 

controlling for all potential fundamental predictors. This chapter includes all but two of the 

economic fundamental proxies suggested by Welch and Goyal (2008)40: dividend price ratio 

(DP), dividend yield (DY), earnings-price ratio (EP), stock return variance (SVAR), book-to-

market ratio (BM), net equity expansion (NTIS), treasury bill rate (TBL), long-term return 

(LTR), term yield spread (TMS), default yield spread (DFY), default return spread (DFR), 

lagged inflation (INFL), and consumption-wealth ratio (CAY). This study also includes 

another two economic predictors, namely the lagged output gap (OG) as suggested by Cooper 

and Priestley (2009) and the log surplus consumption (SCR) as proposed by Campbell and 

Cochrane (1999)41. Hence, the following model is estimated, with the same hypothesis tests 

on   as outlined previously: 
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  (3.3) 

The STV is considered to be a good measure of investor sentiment if its slope coefficient in 

equation (3.3) remains significant and negative across different forecast horizons.  

 
39 Kitchen sink regression include all possible predictors and is found to perform well in the in-sample analysis 

of Welch and Goyal (2008).  

40  The multiple regression suffers from the multicollinearity issue if all economic fundamental proxies are 

included at once. Therefore, this study excludes dividend payout ratio (DE) and long-term yield (LTY) since DP, 

DE and EP are inter-correlated, and TMS is a linear combination of LTY and TBL. First, DE is dropped for three 

reasons: (i) Welch and Goyal (2008) find that DE does not significantly predict the equity premium over the in-

sample period, (ii) Welch and Goyal (2008) find that DP significantly predicts monthly equity premium in both 

in-sample and out-of-sample forecasts, (iii) Campbell and Thomson (2008) also confirm the predictability of EP 

for both the in-sample and out-of-sample forecasts. Second, LTY is excluded because (i) Campbell and 

Thompson (2008) and Welch and Goyal (2008) depict that TBL and TMS are good equity premium predictors 

for monthly stock market return for both in-sample and out-sample analyses, (ii) Ang and Bekaert (2007) even 

conclude that TBL is the most robust predictor in predicting excess return. 

41 The construction of all economic predictors is described in Section 4.3. 
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To evaluate the predictive performance of STV on the time-series of cross-sectional 

portfolio returns, this study performs the following regression model:  

 ( )
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where 
,j t hR +

 is the h-month ahead excess portfolio returns and ,i tSent  denotes one of the 

investor sentiment measures. The cross-sectional portfolios employed here is the value-

weighted returns for portfolios sorted into ten deciles based on market capitalization (ME), 

book-to-market (BM) ratio, and prior returns (i.e. momentum). For investor sentiment 

measure, the predictive performance of STV is evaluated against SBW and SPLS42. As usual, the 

null hypothesis of 0j =  against the alternative hypothesis of 0j  is tested. This study 

hypothesizes that STV could explain all stocks to some extent if STV has improved predictive 

power at the aggregate stock market level as compared to SBW, yet, the enhanced sentiment 

index is able to show that investor sentiment does affect certain types of stocks to a greater 

extent. 

3.4 Empirical results  

This section presents the results in two parts. The first part reviews the predictive 

performance of STV against other investor sentiment indexes in order to determine if our index 

is a good measure of investor sentiment, in both absolute (i.e., does it behave like a sentiment 

proxy?) and relative (i.e., is it superior to alternative sentiment proxies?) terms. The second 

part examines the predictive power of STV relative to other market-based sentiment measures 

on the time-series of characteristics-sorted portfolios.  

3.4.1 Predictability of STV on the stock market returns  

As discussed previously, the goodness of a sentiment measure can be empirically 

assessed by testing if high values of that measure today predict lower stock returns in the 

future, and vice versa. To that end, Table 3.4 presents the parameter estimates, t-statistic and 

R2 values for different investor sentiment indexes across different forecast horizons estimated 

based on equation (3.2). First, it is apparent that STV produces negative and significant β 

 
42 Only SBW and SPLS are used in the comparison since STV is constructed with an aim to improve the time-series 

predictability of SBW, and SPLS is another index computed with the same intention as ours and performs well after 

STV at the aggregate stock market level (see Section 3.4.1). 
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Table 3.4: Predictive performance of different investor sentiment indexes without controlling for economic predictors 

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

STV         
     β (%) -0.1242* -0.1571** -0.1474** -0.1572*** -0.1765*** -0.0834*** -0.0485** -0.0484** 

     t-statistic [-1.4467] [-2.1766] [-2.4268] [-3.2009] [-4.2541] [-3.1310] [-1.7278] [-2.2747] 

     R2 0.0039 0.0178 0.0291 0.0487 0.0810 0.0384 0.0217 0.0390 

SBW         
     β (%) -0.2221 -0.1868 -0.1982 -0.1673 -0.1276 0.0240 0.1008 0.0354 

     t-statistic [-0.9677] [-0.8525] [-0.9339] [-0.8464] [-0.6816] [0.1715] [1.1092] [0.4169] 

     R2 0.0025 0.0050 0.0105 0.0111 0.0086 0.0006 0.0192 0.0044 

SPLS         
     β (%) -0.6595*** -0.6285*** -0.5632*** -0.4741*** -0.4168*** -0.2154** -0.0640 -0.0614 

     t-statistic [-3.8154] [-4.3985] [-4.2856] [-3.5050] [-3.0248] [-1.6680] [-0.6693] [-0.7022] 

     R2 0.0209 0.0548 0.0819 0.0855 0.0876 0.0499 0.0073 0.0123 

CCI         
     β (%) -0.0172** -0.0167** -0.0153** -0.0138** -0.0146** -0.0129*** -0.0115*** -0.0134*** 

     t-statistic [-1.7883] [-1.8568] [-1.9096] [-1.9322] [-2.2640] [-2.4899] [-2.9798] [-6.7987] 

     R2 0.0087 0.0235 0.0369 0.0444 0.0663 0.1079 0.1422 0.3163 

MS         
     β (%) -0.0061 -0.0072 -0.0052 -0.0055 -0.0090 -0.0114 -0.0092 -0.0134** 

     t-statistic [-0.3186] [-0.3827] [-0.3111] [-0.3648] [-0.6661] [-1.0097] [-0.9947] [-2.3093] 

     R2 0.0003 0.0012 0.0012 0.0019 0.0069 0.0233 0.0250 0.0923 

VIX         
     β (%) 0.0077 0.0216 0.0290 0.0201 0.0146 0.0152 0.0056 -0.0016 

     t-statistic [0.1399] [0.5049] [1.1575] [0.9211] [0.7166] [0.8070] [0.3160] [-0.0884] 

     R2 0.00004 0.0043 0.0143 0.0099 0.0068 0.0126 0.0026 0.00004 

Notes: This table reports the estimates obtained from equation (3.2) for the time-varying weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index 

(SBW), the aligned investor sentiment index (SPLS), the Chicago Board Options Exchange's volatility index (VIX), the University of Michigan Consumer Sentiment Index (MS) and 

the Conference Board Consumer Confidence Index (CCI) across different prediction horizons. The Newey-West (automatic bandwidth selection) t-statistics are shown in brackets.  

*, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.  The sample period covers from December 1968 to December 2014, except for VIX which 

starts from January 1990.   
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Table 3.5: Predictive performance of different investor sentiment indexes after controlling for economic predictors 

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

STV         
     β (%) -0.0657 -0.1213** -0.1032* -0.1166** -0.1447*** -0.0681*** -0.0294** -0.0307*** 

     t-statistic [-0.7219] [-1.6637] [-1.5261] [-2.0510] [-3.3058] [-3.0538] [-1.8098] [-2.6665] 

     R2 0.0465 0.0741 0.1709 0.2338 0.2982 0.4741 0.663 0.7521 

SBW         
     β (%) -0.2464 -0.172 -0.1714 -0.1253 -0.0622 0.0944 0.1532 0.0179 

     t-statistic [-1.0240] [-0.7194] [-0.7928] [-0.6600] [-0.3539] [0.9254] [2.8386] [0.3663] 

     R2 0.0474 0.0675 0.1633 0.2142 0.2518 0.4579 0.6832 0.7391 

SPLS         
     β (%) -0.5702*** -0.6884*** -0.6499*** -0.5367*** -0.4355*** -0.1495* 0.0541 -0.0275 

     t-statistic [-2.4466] [-2.9705] [-4.0204] [-4.3064] [-3.9922] [-1.4991] [1.0251] [-0.6130] 

     R2 0.0552 0.1056 0.2262 0.2786 0.3104 0.4667 0.6593 0.7399 

CCI         
     β (%) 0.0049 0.002 0.0049 0.0078 0.003 -0.0008 -0.001 -0.0101*** 

     t-statistic [0.2678] [0.1251] [0.3546] [0.6757] [0.2872] [-0.2691] [-0.2491] [-6.6245] 

     R2 0.0457 0.0649 0.1594 0.2139 0.2512 0.4518 0.6563 0.7879 

MS         
     β (%) 0.0400 0.0340 0.0396 0.0325 0.0196 0.004 0.0018 -0.0152*** 

     t-statistic [1.0786] [1.3894] [1.4054] [1.2287] [0.8866] [0.4401] [0.2556] [-4.2265] 

     R2 0.049 0.0721 0.1767 0.2285 0.2593 0.4524 0.6563 0.7693 

VIX         
     β (%) 0.3454*** 0.2706*** 0.1419*** 0.0633** 0.0359 0.0293 0.0096 -0.0313 

     t-statistic [7.0084] [6.7112] [4.6042] [2.2991] [1.2153] [1.2470] [0.8093] [-3.4529] 

     R2 0.1419 0.3120 0.3881 0.4140 0.4503 0.6175 0.7993 0.8590 

Notes: This table reports the estimates obtained from equation (3.3) for the time-varying weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index 

(SBW), the aligned investor sentiment index (SPLS), the Chicago Board Options Exchange's volatility index (VIX), the University of Michigan Consumer Sentiment Index (MS) and 

the Conference Board Consumer Confidence Index (CCI) across different prediction horizons. The Newey-West (automatic bandwidth selection) t-statistics are shown in brackets.  

*, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively.  The sample period ranges from December 1968 to December 2014, except for VIX which 

starts from January 1990. 
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values across different forecast horizons, hence meeting the requirement that a good investor 

sentiment measure should predict statistically significant negative future excess market 

returns43. Apart from STV, only SPLS and CCI produce such a result. Both STV and CCI are 

strong return predictors across all horizons whilst SPLS can only predict the excess market 

return up to the 24-month forecast horizon. Nevertheless, SPLS is a strong predictor for next-

month stock market returns since its slope coefficient is highly significant at 1% level.  In 

contrast, MS and VIX perform poorly in predicting excess market returns given that β values 

are insignificant for these indexes.  

Next, this sub-section establishes whether STV continues to be a significant predictor of 

future excess market returns after controlling for a set of economic predictors by using 

equation (3.3). Results in Table 3.5 further confirm the previous findings regarding the 

strength of STV. The predictive power of STV continues to hold across all forecast horizons as 

the slope coefficient of STV remains negative and significant in the presence of a set of 

economic predictors, the only small difference being at the 1-month horizon44. The lack of 

predictability for 1-month forecast horizon is consistent with Brown and Cliff (2005) and Yu 

and Yuan (2011) who claim that predictive power of investor sentiment in the short run is 

weaker since investor sentiment is highly persistent and arbitrage activity is limited within the 

short run. As such, one should not expect the mispricing at the aggregate level to be 

completely eliminated within the next-month period45. Rather, longer-term price reversals, 

and therefore the ability of a sentiment measure to predict stock market returns over the 

intermediate and long-run periods is more indicative of the sentiment effect. 

As for SPLS, it continues to predict future stock market returns for short-horizons,

 
43 Robustness check, as in Table A. 1 (refer to Appendix), conducted using different widow sizes demonstrates 

that the period of three years is optimal to capture the time-varying ability of proxy variables to mirror sentiment, 

as measured by performance of model (3.2). 

44 The bivariate regression which regresses the excess market return on investor sentiment and a single economic 

predictor is also conducted. The results are reported in Table A. 2 (refer to Appendix). In brief, STV is found to 

robustly predict future stock market returns across all forecast horizons for most of the regressions. In contrast, 

only 7 out of 17 economic predictors predict significantly future stock market returns across different forecast 

horizons.   

45 For instance, Lamont and Thaler (2003a) show that mispricing is corrected slowly (i.e. requires at least two 

months) even when the mispricing occurred between the market value of a parent company and its subsidiary 

(i.e. disaggregate level) is unambiguous. In addition, mispricing at individual stock level should be eliminated 

quicker than at the aggregate stock market level, given the scale of arbitrage and the capital required to restore 

the value of the total stock market are relatively greater. 
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including at the next-month forecast horizon. The stronger predictive ability of SPLS over the 

short run could be a reflection of the dominance of a short-run component of investor 

sentiment in that index. As shown in Ding et al. (2019), the short-run sentiment is a temporary 

deviation of investor sentiment from its long-run trend. Hence, when the transitory deviation 

of sentiment reverts back to its long-run mean within a short-term period, the mispricing due 

to this short-run deviation of sentiment will disappear as well. Table 3.5 shows that the 

predictive power of SPLS over longer horizons is weaker whereas our index performs best in 

the medium-to-longer run, implying that whilst SPLS mainly captures the short-term 

component of sentiment, STV manages to empirically incorporate longer term sentiment 

features.  

The CCI, on the other hand, does not predict the excess market return across most 

horizons after controlling for fundamental effects. This finding suggests that the prominent 

result for CCI in Table 3.4 is likely driven by fundamental factors which are irrelevant to 

investor sentiment. In contrast, VIX predicts significantly and positively future stock market 

returns for forecast horizons of less than a year once the fundamental information has been 

controlled for. Again, MS does not have significant effect on future excess market returns 

across most forecast horizons. The result for CCI and MS is consistent with Ferrer, Salaber 

and Zalewska (2016) who argue that consumer confidence indicators, such as MS and CCI, 

are inferior measures of investor sentiment, since they reflect how consumers perceive the 

future economic condition instead of their prospects for the future of the stock market46.  

Overall, the in-sample results confirm that STV is a superior investor sentiment 

measure amongst the main competitors tested in this study, since its high (low) values today 

predict low (high) future values of market returns, its predictive power is not driven by 

fundamental information, and it performs better than competitors including both the original 

BW index as well as the amended index proposed by Huang et al. (2015).  

3.4.2 Predictability of STV on the time-series of the characteristics portfolios returns 

The results are split into eight panels in Table 3.6, with each panel corresponds to the 

predictive performance at a particular forecast horizon. All investor sentiment indexes 

considered here, except SBW beyond 24-month forecast horizon, continue to be the contrarian 

 
46  See also Chung, Hung and Yeh (2012, p.234) which found limited predictive power of orthogonalised 

consumer confidence across different portfolios. 
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predictors (i.e. generate negative slope coefficient) of future stock returns across different 

forecast horizons at the first glance. This result again confirms that high (low) sentiment today 

predicts low (high) future stock returns of different characteristics portfolios. 

STV predicts most of the portfolio returns significantly across different forecast 

horizons, i.e., j  associated with STV is significantly lower than zero at 10% level. The 

insignificant slope coefficients associated with the STV for the size-sorted portfolios, especially 

the small stocks, beyond one-year forecast indicating that small stocks have their prices revert 

to fundamental values within a year. Similar finding can also be seen from the results of SPLS 

in longer prediction horizons. Besides that, STV, on average, improves the explanatory power 

of investor sentiment on future stock returns, as measured by R2 statistic, relative to SBW. For 

instance, the R2 of STV is 2.53% for value stocks at 3-month horizon; whereas the R2 of SBW for 

the same portfolio is only 0.97%. 

In contrast, SBW produces statistically insignificant effect on future returns in about 

half of the characteristics portfolios across all forecast horizons considered. Among three 

characteristics portfolios, the best return prediction produced by SBW is on the portfolios sorted 

based on firm size where it significantly predicts all portfolios of different sizes except the 

large stocks, which is in line with the literature (e.g. Baker and Wurgler, 2006; 2007; Kumar 

and Lee, 2006; Lemmon and Portniaguina, 2006). However, it consistently fails to predict the 

growth stock returns as shown by its insignificant slope coefficients across all forecast 

horizons. For the SPLS, the results show that it has a strong predictive power on the cross-

sectional stock returns since it predicts significantly returns of all portfolios sorted based on 

different characteristics across short-term forecast horizons of up to 12 months. This finding 

is consistent with the results presented in Table 3.5, which depicts that SPLS is a strong 

predictor of aggregate stock market returns over the short-term forecast horizons. Besides that, 

all investor sentiment measures considered in this section do not predict well the time-series 

of the cross-sectional stock returns at 36-month forecast horizon.  

In short, STV predicts equally well the time-series of the cross-sectional stock returns. 

The enhanced investor sentiment index, on average, shows that investor sentiment effect 

penetrates into almost every single portfolio, justifying the predictive power of STV on the 

aggregate stock market returns in Section 3.4.1. The results in this sub-section also reaffirm 

the hypothesis that sentiment today predicts negative future stock returns. Meanwhile, the 

differential sentiment effect on the cross-sectional stock returns as one would expect is well 
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Table 3.6: Predictive performance of investor sentiment indexes on the time series of cross-sectional stock returns 

  STV SBW SPLS   STV SBW SPLS 

 β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%)  β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%) 

  Panel A: 1-month horizon  Panel B: 3-month horizon 

I. Size portfolios                                
Small -0.35 -2.15 1.50 -0.75 -2.39 1.33 -0.95 -3.20 2.09  -0.32 -2.46 2.77 -0.70 -2.37 2.68 -0.94 -3.56 4.64 

2 -0.34 -2.47 1.38 -0.62 -1.99 0.90 -0.83 -2.80 1.56  -0.29 -2.40 2.43 -0.57 -2.35 1.90 -0.81 -3.21 3.77 

3 -0.32 -2.52 1.37 -0.53 -1.83 0.71 -0.86 -3.59 1.86  -0.28 -2.61 2.71 -0.48 -1.87 1.55 -0.83 -4.19 4.48 

4 -0.30 -2.36 1.27 -0.55 -2.00 0.84 -0.85 -3.66 1.95  -0.27 -2.45 2.70 -0.50 -1.98 1.85 -0.82 -4.18 4.72 

5 -0.26 -2.19 1.00 -0.49 -1.81 0.70 -0.84 -4.13 2.02  -0.22 -2.17 1.95 -0.44 -1.78 1.46 -0.79 -4.94 4.65 

6 -0.25 -2.17 1.02 -0.45 -1.70 0.69 -0.81 -3.66 2.13  -0.23 -2.29 2.28 -0.41 -1.71 1.47 -0.78 -4.56 5.15 

7 -0.24 -2.20 1.00 -0.41 -1.53 0.57 -0.78 -4.19 2.02  -0.23 -2.43 2.38 -0.36 -1.48 1.16 -0.74 -5.32 4.83 

8 -0.21 -2.08 0.77 -0.33 -1.29 0.39 -0.66 -3.51 1.53  -0.19 -2.11 1.75 -0.29 -1.33 0.83 -0.63 -4.72 3.85 

9 -0.18 -1.99 0.69 -0.25 -1.07 0.26 -0.69 -4.22 1.98  -0.19 -2.34 2.10 -0.22 -1.16 0.55 -0.65 -5.44 4.73 

Large -0.10 -1.34 0.26 -0.20 -0.78 0.20 -0.65 -3.78 2.08  -0.14 -2.02 1.50 -0.16 -0.68 0.39 -0.62 -4.72 5.57 

II. Book-to-market portfolios                          
Growth -0.09 -0.90 0.14 -0.29 -0.94 0.31 -0.78 -3.28 2.10  -0.13 -1.41 0.78 -0.25 -0.88 0.61 -0.76 -4.25 5.36 

2 -0.19 -2.15 0.76 -0.20 -0.79 0.18 -0.66 -4.31 1.80  -0.20 -2.48 2.42 -0.16 -0.67 0.31 -0.64 -4.70 4.58 

3 -0.16 -1.79 0.54 -0.24 -1.04 0.25 -0.74 -5.07 2.28  -0.17 -2.05 1.74 -0.20 -0.94 0.49 -0.71 -6.30 5.82 

4 -0.19 -1.80 0.75 -0.28 -1.06 0.32 -0.63 -3.08 1.61  -0.20 -2.15 2.30 -0.25 -1.01 0.71 -0.60 -3.24 4.07 

5 -0.07 -0.85 0.12 -0.23 -1.08 0.25 -0.61 -3.12 1.66  -0.11 -1.62 0.85 -0.19 -0.99 0.49 -0.57 -3.40 4.06 

6 -0.13 -1.45 0.39 -0.24 -1.10 0.28 -0.55 -2.99 1.41  -0.16 -2.05 1.78 -0.22 -1.07 0.66 -0.49 -2.87 3.31 

7 -0.14 -1.35 0.43 -0.34 -1.51 0.50 -0.67 -2.97 1.89  -0.18 -2.03 1.95 -0.31 -1.50 1.06 -0.61 -3.40 4.08 

8 -0.17 -2.10 0.64 -0.27 -1.32 0.31 -0.61 -2.61 1.57  -0.18 -2.36 1.91 -0.25 -1.32 0.70 -0.55 -2.87 3.41 

9 -0.18 -1.99 0.62 -0.30 -1.21 0.36 -0.53 -2.52 1.05  -0.18 -2.24 1.81 -0.28 -1.24 0.83 -0.47 -2.66 2.32 

Value -0.26 -2.66 0.83 -0.41 -1.55 0.42 -0.65 -2.43 1.02  -0.28 -2.95 2.53 -0.39 -1.62 0.97 -0.62 -4.07 2.41 

III. Momentum portfolios                          
Loser -0.29 -1.54 0.60 -0.78 -1.83 0.86 -1.11 -3.70 1.66  -0.37 -2.28 2.41 -0.72 -1.84 1.89 -1.02 -4.03 3.59 

2 -0.17 -1.12 0.32 -0.29 -0.95 0.20 -0.68 -2.87 1.04  -0.22 -1.78 1.53 -0.27 -0.97 0.45 -0.62 -3.16 2.35 

3 -0.19 -1.50 0.58 -0.24 -0.89 0.19 -0.67 -4.46 1.40  -0.21 -2.21 1.91 -0.20 -0.80 0.36 -0.60 -4.50 3.03 

4 -0.15 -1.45 0.47 -0.23 -0.93 0.22 -0.59 -2.55 1.33  -0.18 -2.06 1.70 -0.21 -0.89 0.46 -0.52 -2.87 2.87 

5 -0.14 -1.55 0.47 -0.18 -0.81 0.16 -0.60 -3.24 1.62  -0.18 -2.20 2.08 -0.15 -0.72 0.29 -0.52 -3.24 3.27 

6 -0.14 -1.53 0.47 -0.32 -1.25 0.47 -0.74 -3.69 2.39  -0.18 -2.15 1.92 -0.26 -1.09 0.81 -0.66 -4.48 5.28 

7 -0.13 -1.97 0.41 -0.22 -0.94 0.23 -0.61 -4.21 1.75  -0.15 -2.38 1.76 -0.16 -0.80 0.41 -0.56 -4.37 4.51 

8 -0.10 -1.20 0.23 -0.23 -1.00 0.26 -0.70 -4.87 2.25  -0.11 -1.44 0.85 -0.19 -0.91 0.51 -0.66 -5.85 5.85 

9 -0.11 -1.16 0.24 -0.40 -1.76 0.64 -0.76 -5.35 2.24  -0.16 -1.98 1.42 -0.36 -1.78 1.51 -0.73 -6.43 5.98 

Winner -0.25 -1.93 0.75 -0.52 -1.90 0.66 -0.92 -5.24 2.06   -0.22 -2.13 1.63 -0.45 -1.82 1.41 -0.90 -6.10 5.41 
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Table 3.6 (Continued) 
  STV SBW SPLS   STV SBW SPLS 

 β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%)  β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%) 

  Panel C: 6-month horizon  Panel D: 9-month horizon 

I. Size portfolios                                
Small -0.24 -2.07 3.05 -0.68 -2.28 4.89 -0.86 -3.83 7.55  -0.21 -2.33 3.61 -0.62 -2.34 6.28 -0.67 -2.65 7.15 

2 -0.21 -1.91 2.68 -0.57 -2.06 3.97 -0.74 -2.90 6.53  -0.19 -1.96 3.44 -0.52 -2.14 5.28 -0.59 -2.29 6.45 

3 -0.19 -2.04 2.65 -0.49 -1.93 3.36 -0.73 -3.83 7.40  -0.17 -2.21 3.43 -0.44 -2.00 4.54 -0.57 -2.83 7.25 

4 -0.20 -2.10 3.03 -0.51 -2.02 3.91 -0.73 -3.67 7.91  -0.18 -2.30 4.10 -0.45 -2.03 5.04 -0.57 -2.78 7.76 

5 -0.17 -1.94 2.18 -0.43 -1.82 2.98 -0.70 -4.00 7.46  -0.17 -2.23 3.59 -0.39 -1.80 3.82 -0.55 -3.11 7.48 

6 -0.18 -2.12 2.84 -0.40 -1.72 2.94 -0.70 -3.96 8.41  -0.18 -2.48 4.56 -0.35 -1.70 3.62 -0.56 -3.13 8.56 

7 -0.17 -1.93 2.47 -0.35 -1.75 2.13 -0.67 -4.90 7.61  -0.16 -3.02 3.52 -0.30 -3.69 2.49 -0.54 -3.40 7.77 

8 -0.14 -1.85 1.95 -0.29 -1.41 1.64 -0.56 -3.79 6.05  -0.14 -2.23 3.11 -0.25 -1.34 1.87 -0.44 -3.20 5.86 

9 -0.15 -2.06 2.43 -0.22 -1.08 1.12 -0.57 -4.28 6.93  -0.15 -2.70 3.61 -0.19 -0.99 1.20 -0.46 -3.78 6.98 

Large -0.14 -2.20 2.61 -0.17 -0.75 0.82 -0.56 -4.14 8.43  -0.15 -3.18 4.63 -0.15 -0.67 0.84 -0.49 -3.46 9.20 

II. Book-to-market portfolios                          
Growth -0.10 -1.25 0.88 -0.26 -0.94 1.20 -0.73 -4.54 9.33  -0.12 -1.82 1.84 -0.23 -0.91 1.41 -0.68 -4.15 11.76 

2 -0.15 -2.01 2.57 -0.17 -0.72 0.70 -0.58 -4.06 7.66  -0.15 -2.55 3.84 -0.14 -0.62 0.68 -0.50 -3.42 8.33 

3 -0.15 -2.16 2.88 -0.20 -0.96 0.98 -0.61 -5.08 8.56  -0.16 -2.96 4.52 -0.17 -0.87 1.03 -0.48 -3.73 8.07 

4 -0.17 -2.00 3.19 -0.28 -1.18 1.71 -0.53 -3.19 5.95  -0.17 -2.66 4.89 -0.26 -1.26 2.35 -0.42 -2.40 5.89 

5 -0.12 -1.96 1.98 -0.20 -1.17 1.08 -0.47 -3.28 5.56  -0.14 -2.77 3.59 -0.18 -1.12 1.23 -0.36 -2.44 4.86 

6 -0.15 -2.27 3.08 -0.25 -1.27 1.58 -0.41 -2.71 4.32  -0.17 -2.82 5.43 -0.23 -1.31 2.07 -0.31 -1.85 3.64 

7 -0.19 -2.46 3.49 -0.32 -1.71 1.98 -0.50 -2.90 4.82  -0.20 -3.25 5.56 -0.28 -1.70 2.28 -0.35 -2.37 3.52 

8 -0.18 -2.70 3.44 -0.27 -1.57 1.61 -0.44 -2.91 4.14  -0.16 -2.96 4.60 -0.24 -1.55 2.03 -0.31 -1.86 3.26 

9 -0.18 -2.36 3.24 -0.31 -1.59 2.01 -0.40 -2.32 3.22  -0.17 -2.79 4.85 -0.30 -1.62 3.03 -0.31 -1.91 3.03 

Value -0.24 -2.92 3.66 -0.38 -1.76 1.88 -0.50 -2.33 3.13  -0.22 -3.09 5.22 -0.33 -1.70 2.32 -0.34 -1.54 2.44 

III. Momentum portfolios                          
Loser -0.33 -2.54 3.64 -0.71 -1.84 3.37 -0.86 -2.70 4.83  -0.33 -3.01 5.60 -0.60 -1.74 3.72 -0.72 -2.23 5.22 

2 -0.20 -2.04 2.37 -0.29 -1.05 1.00 -0.51 -2.40 3.04  -0.22 -2.82 4.40 -0.24 -0.92 1.04 -0.41 -1.93 3.05 

3 -0.20 -2.92 3.57 -0.19 -0.75 0.61 -0.50 -3.10 4.20  -0.20 -3.59 5.53 -0.13 -0.55 0.45 -0.41 -2.41 4.41 

4 -0.18 -2.51 3.24 -0.21 -1.04 0.94 -0.41 -2.19 3.32  -0.18 -3.00 5.31 -0.16 -1.05 0.87 -0.29 -1.62 2.69 

5 -0.18 -2.61 3.95 -0.16 -0.80 0.67 -0.41 -2.68 4.04  -0.18 -3.45 6.59 -0.13 -0.71 0.67 -0.31 -2.15 3.67 

6 -0.18 -2.57 3.74 -0.24 -1.10 1.42 -0.54 -3.23 6.70  -0.19 -3.61 6.32 -0.20 -1.01 1.40 -0.42 -2.74 6.26 

7 -0.15 -2.74 3.72 -0.15 -0.90 0.71 -0.47 -3.60 6.58  -0.16 -3.31 5.58 -0.11 -1.05 0.58 -0.36 -2.84 5.79 

8 -0.11 -1.61 1.57 -0.20 -1.02 1.10 -0.60 -5.68 9.35  -0.11 -1.83 2.30 -0.18 -1.00 1.29 -0.51 -4.31 9.64 

9 -0.15 -2.10 2.43 -0.38 -1.92 3.07 -0.68 -5.51 9.54  -0.15 -3.84 3.50 -0.35 -1.97 3.92 -0.56 -8.33 9.89 

Winner -0.15 -1.56 1.45 -0.45 -1.93 2.78 -0.89 -5.91 10.45   -0.14 -1.72 1.93 -0.42 -1.97 3.58 -0.78 -4.61 12.20 
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Table 3.6 (Continued) 

  STV SBW SPLS   STV SBW SPLS 

 β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%)  β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%) 

  Panel E: 12-month horizon  Panel F: 24-month horizon 

I. Size portfolios                                
Small -0.21 -1.94 4.93 -0.54 -2.18 6.50 -0.53 -2.58 6.16  -0.05 -0.78 0.69 -0.31 -1.53 5.43 -0.22 -1.23 2.50 

2 -0.20 -2.01 5.05 -0.46 -2.00 5.54 -0.48 -1.92 5.82  -0.04 -0.76 0.62 -0.26 -1.46 4.57 -0.20 -1.23 2.67 

3 -0.19 -2.46 5.69 -0.39 -1.87 4.95 -0.46 -2.34 6.74  -0.04 -0.97 0.83 -0.23 -1.48 4.57 -0.23 -1.71 4.21 

4 -0.20 -2.62 6.84 -0.39 -1.85 5.24 -0.46 -2.32 7.15  -0.05 -1.18 1.18 -0.21 -1.31 3.93 -0.20 -1.41 3.55 

5 -0.20 -2.95 6.80 -0.34 -1.64 4.02 -0.46 -2.65 7.24  -0.05 -1.40 1.23 -0.18 -1.17 3.12 -0.23 -1.68 4.68 

6 -0.20 -3.23 8.11 -0.30 -1.56 3.67 -0.47 -2.67 8.40  -0.06 -1.78 1.96 -0.14 -0.98 2.01 -0.24 -1.84 5.51 

7 -0.18 -3.04 6.42 -0.25 -1.70 2.41 -0.46 -2.94 7.69  -0.06 -2.79 1.68 -0.09 -0.62 0.71 -0.22 -1.85 4.55 

8 -0.16 -3.02 5.83 -0.20 -1.16 1.78 -0.37 -2.67 5.59  -0.05 -1.45 1.16 -0.06 -0.48 0.46 -0.17 -1.43 3.10 

9 -0.17 -3.75 6.77 -0.15 -0.83 1.06 -0.40 -3.23 7.15  -0.07 -2.32 2.48 -0.02 -0.17 0.06 -0.21 -1.86 4.81 

Large -0.17 -4.42 7.52 -0.11 -0.52 0.60 -0.44 -2.98 9.67  -0.09 -3.21 3.98 0.05 0.33 0.28 -0.24 -1.59 5.50 

II. Book-to-market portfolios                          
Growth -0.15 -2.77 3.85 -0.18 -0.76 1.16 -0.63 -3.74 13.35  -0.07 -1.81 1.68 0.03 0.20 0.09 -0.33 -2.14 8.18 

2 -0.16 -3.22 6.14 -0.10 -0.46 0.46 -0.44 -3.10 8.94  -0.06 -2.31 1.91 0.08 0.51 0.75 -0.22 -1.56 5.00 

3 -0.17 -3.96 7.55 -0.12 -0.68 0.78 -0.39 -3.20 7.64  -0.06 -3.89 1.95 0.01 0.10 0.02 -0.21 -1.98 5.09 

4 -0.19 -3.31 8.59 -0.23 -1.23 2.59 -0.35 -2.12 5.72  -0.08 -2.29 3.34 -0.12 -0.91 1.86 -0.20 -1.62 4.37 

5 -0.16 -3.55 6.51 -0.14 -1.04 1.11 -0.28 -1.96 4.07  -0.06 -1.92 2.09 -0.07 -0.58 0.52 -0.14 -1.49 2.37 

6 -0.20 -3.98 10.55 -0.21 -1.26 2.34 -0.25 -1.73 3.40  -0.08 -2.47 4.16 -0.12 -1.14 1.89 -0.15 -1.22 2.90 

7 -0.22 -4.47 9.49 -0.24 -1.59 2.34 -0.27 -2.94 2.73  -0.09 -3.39 3.20 -0.15 -1.32 1.90 -0.12 -0.93 1.26 

8 -0.17 -3.56 7.46 -0.21 -1.48 2.28 -0.24 -1.56 2.87  -0.05 -2.42 1.77 -0.15 -1.38 2.75 -0.14 -1.13 2.26 

9 -0.19 -3.60 7.73 -0.28 -1.50 3.67 -0.28 -1.90 3.40  -0.07 -2.03 2.53 -0.17 -1.08 3.16 -0.22 -1.49 4.75 

Value -0.24 -3.74 9.24 -0.27 -1.78 2.35 -0.25 -1.19 1.90  -0.10 -2.25 3.97 -0.13 -0.99 1.35 -0.11 -0.63 0.91 

III. Momentum portfolios                          
Loser -0.34 -3.32 8.17 -0.48 -1.52 3.29 -0.65 -2.17 5.78  -0.16 -2.08 3.94 -0.10 -0.64 0.36 -0.27 -1.30 2.30 

2 -0.25 -3.66 7.84 -0.18 -0.73 0.87 -0.37 -1.84 3.36  -0.08 -1.68 1.93 0.04 0.21 0.10 -0.15 -0.93 1.44 

3 -0.22 -4.30 8.70 -0.07 -0.31 0.17 -0.35 -2.05 4.13  -0.07 -1.65 1.92 0.13 0.77 1.37 -0.10 -0.61 0.76 

4 -0.20 -3.80 8.77 -0.11 -0.64 0.56 -0.24 -1.41 2.48  -0.07 -2.06 2.41 0.06 0.40 0.37 -0.08 -0.66 0.70 

5 -0.21 -4.88 11.46 -0.09 -0.55 0.50 -0.26 -1.95 3.66  -0.08 -2.85 4.20 0.02 0.21 0.07 -0.14 -1.42 2.57 

6 -0.21 -4.59 10.92 -0.15 -0.86 1.18 -0.36 -2.35 6.15  -0.08 -2.81 3.92 -0.01 -0.09 0.02 -0.17 -1.29 3.23 

7 -0.18 -4.23 9.62 -0.07 -0.65 0.33 -0.30 -2.25 5.16  -0.08 -2.97 4.40 0.04 0.37 0.23 -0.12 -1.24 1.79 

8 -0.13 -2.57 4.25 -0.16 -0.90 1.26 -0.44 -3.36 9.49  -0.04 -1.36 1.02 -0.07 -0.51 0.63 -0.27 -2.68 8.54 

9 -0.16 -3.20 5.75 -0.31 -1.91 4.21 -0.48 -3.20 9.52  -0.07 -2.07 2.33 -0.18 -1.40 3.37 -0.23 -1.88 5.28 

Winner -0.15 -2.18 3.21 -0.37 -1.89 3.77 -0.69 -3.89 12.74   -0.07 -1.82 1.63 -0.20 -1.32 2.83 -0.40 -2.86 10.94 
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Table 3.6 (Continued) 
  STV SBW SPLS   STV SBW SPLS 

 β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%)  β (%) t-stat R2 (%) β (%) t-stat R2 (%) β (%) t-stat R2 (%) 

  Panel G: 36-month horizon  Panel H: 60-month horizon 

I. Size portfolios                         
Small -0.01 -0.22 0.06 -0.28 -1.46 7.31 -0.13 -0.84 1.55  -0.03 -0.56 0.64 -0.38 -2.54 22.10 -0.22 -1.29 6.75 

2 -0.02 -0.42 0.23 -0.23 -1.66 6.51 -0.12 -0.94 1.62  -0.04 -0.83 1.49 -0.32 -2.84 20.81 -0.19 -1.24 6.71 

3 -0.03 -0.75 0.71 -0.20 -1.67 6.13 -0.14 -1.44 2.69  -0.05 -1.25 3.21 -0.26 -3.64 20.76 -0.16 -1.25 7.23 

4 -0.03 -0.72 0.61 -0.18 -1.52 5.39 -0.11 -1.15 1.82  -0.04 -1.18 2.69 -0.27 -3.52 23.12 -0.15 -1.19 6.45 

5 -0.03 -0.87 0.89 -0.16 -1.35 4.09 -0.14 -1.50 3.06  -0.05 -1.32 3.28 -0.24 -3.16 19.06 -0.17 -1.45 8.92 

6 -0.04 -1.10 1.23 -0.10 -1.09 1.92 -0.12 -1.57 2.75  -0.05 -1.54 4.17 -0.18 -2.72 11.99 -0.14 -1.34 7.17 

7 -0.03 -1.20 0.90 -0.03 -0.34 0.18 -0.09 -1.13 1.38  -0.05 -1.77 5.14 -0.11 -1.40 4.68 -0.10 -0.94 3.87 

8 -0.03 -1.39 0.93 -0.02 -0.23 0.08 -0.07 -0.89 1.03  -0.04 -1.76 4.52 -0.08 -1.17 2.74 -0.09 -0.98 3.69 

9 -0.04 -1.52 2.00 0.03 0.37 0.21 -0.09 -1.03 1.45  -0.05 -2.08 5.58 -0.02 -0.19 0.13 -0.07 -0.73 2.08 

Large -0.05 -1.72 2.11 0.14 1.25 3.11 -0.07 -0.61 0.78  -0.05 -2.19 3.26 0.07 0.69 1.38 -0.07 -0.64 1.15 

II. Book-to-market portfolios                          
Growth -0.03 -0.85 0.56 0.13 1.05 2.19 -0.16 -1.31 3.08  -0.04 -1.52 1.56 0.06 0.60 0.95 -0.18 -2.27 7.50 

2 -0.03 -1.04 0.87 0.14 1.29 3.75 -0.09 -0.88 1.32  -0.04 -1.69 2.78 0.03 0.26 0.24 -0.10 -0.96 3.06 

3 -0.04 -1.36 1.55 0.05 0.60 0.56 -0.09 -1.18 1.66  -0.05 -2.40 6.54 -0.01 -0.18 0.11 -0.09 -1.08 3.77 

4 -0.04 -1.42 2.13 -0.06 -0.78 0.89 -0.07 -0.67 0.99  -0.05 -2.02 6.39 -0.11 -1.29 5.52 -0.07 -0.59 1.95 

5 -0.03 -0.89 0.86 -0.04 -0.62 0.35 -0.06 -0.78 0.86  -0.05 -1.93 5.44 -0.07 -0.81 2.34 -0.05 -0.52 1.26 

6 -0.05 -1.81 3.15 -0.05 -0.66 0.67 -0.06 -0.65 0.90  -0.05 -2.00 5.06 -0.06 -0.66 1.49 -0.05 -0.51 1.09 

7 -0.05 -1.51 1.75 -0.08 -0.84 0.92 0.00 -0.04 0.00  -0.05 -2.40 4.65 -0.07 -0.82 1.58 0.02 0.22 0.20 

8 -0.03 -1.25 0.99 -0.10 -1.25 2.17 -0.04 -0.42 0.33  -0.04 -2.11 3.64 -0.10 -1.58 4.80 -0.01 -0.14 0.07 

9 -0.05 -1.90 2.22 -0.09 -0.89 1.57 -0.10 -0.98 2.02  -0.05 -2.31 6.85 -0.10 -1.39 5.21 -0.05 -0.50 1.18 

Value -0.05 -1.60 2.17 -0.07 -0.74 0.74 -0.01 -0.07 0.01  -0.05 -1.96 3.77 -0.11 -1.51 4.22 0.02 0.18 0.13 

III. Momentum portfolios                          
Loser -0.10 -1.51 2.93 -0.01 -0.08 0.01 -0.05 -0.50 0.18  -0.08 -1.65 3.88 -0.13 -1.05 2.33 -0.14 -0.95 2.37 

2 -0.05 -1.28 1.50 0.11 1.00 1.55 0.00 -0.01 0.00  -0.06 -1.82 5.00 0.01 0.05 0.01 -0.06 -0.44 0.87 

3 -0.05 -1.11 1.54 0.16 1.55 3.60 0.02 0.25 0.08  -0.05 -2.15 4.10 0.06 0.58 0.93 -0.02 -0.19 0.11 

4 -0.04 -1.32 1.57 0.10 1.26 2.31 0.02 0.25 0.08  -0.05 -2.05 4.94 0.03 0.35 0.48 0.00 0.03 0.00 

5 -0.05 -1.96 2.99 0.09 0.91 1.71 -0.03 -0.37 0.18  -0.06 -3.16 7.20 0.05 0.53 1.23 -0.02 -0.26 0.20 

6 -0.04 -1.49 1.53 0.05 0.49 0.42 -0.05 -0.51 0.49  -0.04 -2.11 3.71 -0.03 -0.47 0.43 -0.07 -0.80 1.80 

7 -0.04 -1.32 1.42 0.08 0.98 1.47 -0.03 -0.34 0.14  -0.04 -1.85 3.24 0.00 0.03 0.00 -0.05 -0.54 0.91 

8 -0.02 -0.75 0.49 -0.05 -0.46 0.48 -0.20 -2.49 7.53  -0.04 -1.50 3.03 -0.11 -1.27 4.28 -0.18 -1.99 10.62 

9 -0.03 -1.04 0.86 -0.13 -1.25 3.06 -0.11 -1.18 2.07  -0.04 -1.49 2.37 -0.19 -2.33 12.81 -0.11 -1.13 3.95 

Winner -0.03 -0.99 0.65 -0.13 -1.00 2.09 -0.26 -2.43 8.04   -0.04 -1.35 1.65 -0.20 -2.58 9.90 -0.24 -2.81 14.12 

Notes: This table reports the slope coefficients obtained from equation (3.4) for the time-varying weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index (SBW), and the aligned investor sentiment index (SPLS). 

Panel A to H report the estimation results for different investor sentiment indexes across different forecast horizons. The Newey-West (automatic bandwidth selection) t-statistics and R2 values are reported in the table. The critical values of 

one-tailed t-test are: 1.282 (α = 0.10), 1.646 (α = 0.05) and 2.330 (α = 0.01). The sample period covers from December 1968 to December 2014. 
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exhibited. Concretely, STV generates greater absolute beta coefficients for small stocks (except 

those in longer forecast horizons) and past losers, suggesting that the sentiment effects on 

these stocks is more pronounced than on large stocks and past winners. With regards to the 

BM-sorted portfolios, STV and SBW show that investor sentiment has greater influence on the 

value stocks as compared to growth stocks, which is consistent with Baker and Wurgler (2006) 

and Schmeling (2009). 

3.5 Conclusion 

This study addresses a puzzle that the investor sentiment index constructed by Baker 

and Wurgler (2006) does not have a strong time-series forecasting power for future aggregate 

market returns. It is puzzling since it utilises numerous variables which individually have 

been themselves widely employed in prior literature as effective sentiment proxies. This 

chapter propose an enhancement to the original Baker and Wurgler (2006) method which 

grants the resulting sentiment index the previously lacking forecasting power, a feature it 

should always have had. The approach is based on the consideration that the construction of 

the original index implicitly assumes a time-invariant ability of each of its component 

sentiment proxy to empirically capture the unobservable investor sentiment. However, this 

study conjectures that the ability may vary over time, which would lead to the contribution of 

each proxy to the aggregate investor sentiment index being time-varying. Hence, a new, time-

varying investor sentiment index, STV is constructed. The approach employed in this study 

captures the dynamic contributions of investor sentiment proxies to the aggregate index while 

also avoiding any look-ahead bias.  

The basic property of a good investor sentiment measure (i.e. high sentiment today 

predicts future stock returns negatively) is evaluated by examining whether STV consistently 

generates negative slope coefficient even after removing as much fundamental effects as 

possible in the sentiment-return regression framework. Empirically, the findings show that STV 

is a superior measure of investor sentiment: it consistently generates a significant negative 

effect on future stock market returns even after controlling for a set of fundamental economic 

predictors, in line with the theoretical rationale behind a good sentiment proxy. Moreover, STV 

greatly enhances the predictive power of investor sentiment at the aggregate stock market 

level as compared to the original Baker and Wurgler (2006) construct, and outperforms other 

sentiment measures in predicting stock market returns across different forecast horizons. The 

strong predictive power of STV index at the aggregate level is further supported by its 
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predictive power for the time-series of the cross-sectional stock returns. Specifically, the 

results reveal that that STV index generates significant influence on portfolios sorted based on 

firm size, book-to-market value and momentum across time.  

Overall, the proposed enhancement to the original Baker and Wurgler (2006) index 

significantly improves its ability to empirically capture the latent investor sentiment. The new 

index should therefore be of value in future academic research where a good empirical proxy 

for sentiment is required, and to stock market investors, as demonstrated by the predictive 

ability of STV. 
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Appendix 

Figure A. 1: The rolling regression estimates of each individual investor sentiment proxy 

after controlling for macroeconomic factors.  

 

Panel A: Rolling coefficient estimates 
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Panel B: Rolling p-values 
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Panel C: Rolling R-squared 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.00

.05

.10

.15

.20

.25

1970 1975 1980 1985 1990 1995 2000 2005 2010

PDND

.00

.04

.08

.12

.16

.20

.24

1970 1975 1980 1985 1990 1995 2000 2005 2010

RIPO

.00

.05

.10

.15

.20

.25

.30

.35

1970 1975 1980 1985 1990 1995 2000 2005 2010

NIPO

.00

.05

.10

.15

.20

.25

.30

1970 1975 1980 1985 1990 1995 2000 2005 2010

CEFD

.0

.1

.2

.3

.4

.5

1970 1975 1980 1985 1990 1995 2000 2005 2010

S
EQ 



65 

 

Table A. 1:     Predictive performance of STV computed using different estimation window lengths 

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

1-year STV
           

     β (%) -0.078 -0.093* -0.011 -0.010 0.004 -0.021 -0.013 0.014 

     t-statistic [-0.731] [-1.341] [-0.197] [-0.198] [0.109] [-0.549] [-0.429] [0.623] 

     R2 0.001 0.004 0.000 0.000 0.000 0.001 0.001 0.002 

2-year STV
           

     β (%) 0.005 0.037 0.056 0.010 -0.043 -0.070** -0.052** -0.029* 

     t-statistic [0.070] [0.609] [1.071] [0.213] [-1.142] [-1.944] [-1.887] [-1.366] 

     R2 0.000 0.001 0.004 0.000 0.004 0.022 0.021 0.012 

3-year STV
           

     β (%) -0.124* -0.157** -0.147** -0.157*** -0.177*** -0.083*** -0.049** -0.048** 

     t-statistic [-1.447] [-2.177] [-2.429] [-3.200] [-4.254] [-3.131] [-1.728] [-2.275] 

     R2 0.004 0.018 0.029 0.049 0.081 0.038 0.022 0.039 

4-year STV
           

     β (%) -0.035 -0.024 0.001 -0.004 -0.003 0.015 0.006 0.024 

     t-statistic [-0.504] [-0.425] [0.015] [-0.081] [-0.045] [0.287] [0.132] [0.820] 

     R2 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.011 

5-year STV
           

     β (%) 0.013 0.023 0.011 -0.002 -0.001 0.030 0.010 0.039 

     t-statistic [0.218] [0.361] [0.159] [-0.029] [-0.020] [0.549] [0.257] [1.350] 

     R2 0.000 0.001 0.000 0.000 0.000 0.006 0.001 0.035 

Notes: This table reports the estimates obtained from equation (3.2) for the time-varying weighted investor sentiment index (STV) computed using different rolling window lengths 

across different prediction horizons. The Newey-West (automatic bandwidth selection) t-statistics are shown in brackets.  *, ** and *** indicate statistical significance at 10%, 5% 

and 1% levels, respectively. The sample period covered are 1966:12-2014:12 for 1-year STV, 1967:12 – 2014:12 for 2-year STV, 1968:12 – 2014:12 for 3-year STV, 1969:12 – 2014:12 

for 4-year STV, 1970:12 – 2014:12 for 5-year STV.  
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Table A. 2:   Predictive performance of STV after controlling for individual economic predictor 

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

STV -0.001* -0.002** -0.001*** -0.002*** -0.002*** -0.001*** 0.000*** 0.000*** 

 [-1.538] [-2.087] [-3.257] [-3.665] [-4.049] [-2.985] [-1.756] [-2.219] 

DP 0.003*** 0.004** 0.004** 0.004* 0.004* 0.005* 0.004* 0.004 

 [0.745] [0.795] [1.605] [1.692] [1.127] [1.254] [1.420] [3.265] 

Adj-R2 0.001 0.018 0.034 0.059 0.097 0.077 0.075 0.157 

STV -0.001* -0.002** -0.001*** -0.002*** -0.002*** -0.001** 0.000** 0.000** 

 [-1.530] [-2.084] [-3.247] [-3.383] [-4.044] [-2.972] [-1.736] [-2.203] 

DY 0.004 0.004 0.004* 0.004* 0.004 0.004 0.004* 0.004*** 

 [0.841] [0.809] [1.641] [1.499] [1.135] [1.224] [1.402] [3.235] 

Adj-R2 0.002 0.018 0.034 0.059 0.097 0.075 0.073 0.154 

STV -0.001* -0.002** -0.001*** -0.002*** -0.002*** -0.001*** 0.000** 0.000** 

 [-1.613] [-2.282] [-2.452] [-3.219] [-4.340] [-3.178] [-1.733] [-2.250] 

EP 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0 

 [0.370] [0.336] [0.319] [0.464] [0.566] [0.360] [0.376] [0.089] 

Adj-R2 0.001 0.015 0.027 0.049 0.083 0.037 0.021 0.035 

STV -0.001* -0.002** -0.001** -0.002*** -0.002*** -0.001*** 0.000* 0.000** 

 [-1.529] [-2.060] [-2.186] [-4.292] [-4.258] [-2.974] [-1.525] [-1.710] 

DE 0.001 0.003 0.004 0.003 0.003 0.005** 0.005** 0.007*** 

 [0.198] [0.506] [0.735] [1.192] [0.799] [1.855] [1.861] [4.636] 

Adj-R2 0.000 0.016 0.030 0.050 0.083 0.071 0.068 0.224 

STV -0.001* -0.002** -0.001** -0.002*** -0.002*** -0.001*** 0.000** 0.000** 

 [-1.643] [-2.207] [-2.313] [-3.185] [-4.488] [-3.226] [-1.670] [-2.294] 

SVAR -1.047*** -0.263 0.109 0.214* 0.192** 0.205** 0.106 0.133* 

 [-3.473] [-0.535] [0.528] [1.542] [1.903] [2.296] [1.088] [1.485] 

Adj-R2 0.013 0.016 0.026 0.049 0.082 0.046 0.023 0.049 

STV -0.001* -0.002*** -0.001** -0.002*** -0.002*** -0.001*** 0.000** 0.000** 

 [-1.588] [-3.163] [-2.292] [-3.126] [-4.378] [-3.130] [-1.725] [-2.224] 

BM 0.000 0.000 0.001 0.002 0.002 0.000 0.000 0.001 

 [-0.031] [0.089] [0.221] [0.258] [0.259] [0.076] [-0.081] [0.310] 

Adj-R2 0.000 0.014 0.026 0.046 0.079 0.035 0.018 0.038 
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Table A. 2 (Continued):  

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

STV -0.001* -0.002** -0.001*** -0.002*** -0.002*** -0.001*** 0.000* 0.000*** 

 [-1.569] [-2.199] [-2.362] [-3.289] [-4.456] [-3.145] [-1.624] [-2.438] 

NTIS -0.056 -0.027 -0.031 -0.036 -0.04 -0.032 -0.02 -0.049 

 [-0.383] [-0.181] [-0.226] [-0.296] [-0.350] [-0.625] [-0.444] [-1.063] 

Adj-R2 0.001 0.015 0.027 0.047 0.081 0.04 0.021 0.068 

STV -0.001* -0.001** -0.001** -0.002*** -0.002*** -0.001*** 0.000* -0.001** 

 [-1.505] [-2.121] [-2.284] [-3.788] [-4.330] [-2.930] [-1.577] [-2.331] 

TBL -0.076 -0.059 -0.049 -0.042 -0.035 -0.02 -0.013 0.016 

 [-1.262] [-1.000] [-1.104] [-1.122] [-0.909] [-0.752] [-0.513] [0.527] 

Adj-R2 0.003 0.020 0.033 0.053 0.084 0.039 0.021 0.042 

STV -0.001* -0.002** -0.001*** -0.002*** -0.002*** -0.001*** 0.000** 0.000*** 

 [-1.556] [-2.214] [-2.353] [-3.181] [-4.442] [-3.104] [-1.731] [-2.456] 

LTY -0.052 -0.035 -0.022 -0.004 0.005 0.027 0.047 0.078 

 [-0.686] [-0.453] [-0.360] [-0.051] [0.085] [0.556] [1.128] [2.539] 

Adj-R2 0.001 0.015 0.027 0.045 0.078 0.040 0.042 0.145 

STV -0.001* -0.002** -0.001** -0.002*** -0.002*** -0.001*** 0.000* 0.000** 

 [-1.443] [-2.118] [-2.229] [-3.099] [-4.366] [-3.075] [-1.640] [-2.231] 

LTR 0.136*** 0.046 0.074*** 0.053*** 0.042*** 0.021** 0.016** 0.013*** 

 [2.529] [1.127] [3.551] [2.533] [3.166] [2.090] [1.948] [2.369] 

Adj-R2 0.009 0.017 0.040 0.056 0.086 0.039 0.022 0.041 

STV -0.001 -0.001** -0.001** -0.001*** -0.001*** 0.000** 0.000 0.000 

 [-1.049] [-1.729] [-1.853] [-2.682] [-3.943] [-1.917] [-0.431] [-1.047] 

TMS 0.221** 0.187* 0.175** 0.193** 0.185** 0.177*** 0.186*** 0.136** 

 [1.709] [1.541] [1.748] [1.896] [2.267] [2.688] [4.137] [2.197] 

Adj-R2 0.006 0.025 0.044 0.077 0.117 0.109 0.156 0.166 

STV -0.001* -0.001** -0.001** -0.001*** -0.002*** -0.001*** 0.000* 0.000** 

 [-1.333] [-1.965] [-1.912] [-2.728] [-3.851] [-2.793] [-1.367] [-1.690] 

DFY 0.384 0.345 0.496* 0.386 0.31 0.214 0.187 0.358** 

 [0.609] [0.662] [1.298] [1.067] [0.943] [1.061] [0.798] [1.906] 

Adj-R2 0.002 0.018 0.039 0.057 0.087 0.045 0.031 0.122 
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Table A. 2 (Continued):  

  Prediction horizons 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

STV -0.001* -0.002** -0.001** -0.002*** -0.002*** -0.001*** 0.000** 0.000** 

 [-1.548] [-2.167] [-2.309] [-3.175] [-4.426] [-3.160] [-1.691] [-2.268] 

DFR 0.208 0.115* 0.084 0.047 0.023 0.007 0.009 0.01 

 [1.116] [1.329] [1.215] [1.038] [0.552] [0.255] [0.496] [0.647] 

Adj-R2 0.005 0.019 0.03 0.047 0.078 0.035 0.018 0.036 

STV -0.001* -0.001** -0.001** -0.001*** -0.002*** -0.001*** 0.000* 0.000** 

 [-1.531] [-2.027] [-2.053] [-2.875] [-4.165] [-2.760] [-1.398] [-1.934] 

INFL -0.139 -0.418 -0.669* -0.744** -0.592** -0.285* -0.229* -0.136 

 [-0.181] [-0.843] [-1.610] [-1.757] [-1.727] [-1.388] [-1.480] [-0.807] 

Adj-R2 0.000 0.016 0.038 0.067 0.095 0.043 0.027 0.04 

STV -0.001* -0.002** -0.001** -0.002*** -0.002*** -0.001*** 0.000** 0.000*** 

 [-1.616] [-2.188] [-2.273] [-3.043] [-4.493] [-3.399] [-1.996] [-2.708] 

CAY 0.017 0.102 0.149** 0.174** 0.190*** 0.227*** 0.216*** 0.159*** 

 [0.206] [1.225] [1.888] [2.338] [2.644] [4.024] [5.354] [6.049] 

Adj-R2 0.000 0.020 0.049 0.092 0.151 0.255 0.349 0.365 

STV -0.001 -0.001* -0.001** -0.001*** -0.001*** -0.001** 0.000 0.000 

 [-0.994] [-1.637] [-1.700] [-2.356] [-3.526] [-1.829] [-0.616] [-1.135] 

OG -0.090*** -0.087*** -0.084*** -0.080*** -0.073*** -0.063*** -0.060*** -0.055*** 

 [-2.964] [-2.838] [-2.786] [-3.083] [-2.709] [-3.135] [-4.618] [-6.790] 

Adj-R2 0.017 0.058 0.102 0.147 0.189 0.213 0.285 0.429 

STV -0.001* -0.002** -0.001*** -0.001*** -0.002*** -0.001*** 0.000* 0.000** 

 [-1.510] [-2.137] [-2.372] [-4.244] [-4.178] [-2.920] [-1.361] [-2.241] 

SCR -0.002 -0.002 -0.002* -0.003*** -0.003*** -0.003*** -0.002*** -0.003*** 

 [-1.034] [-1.176] [-1.611] [-3.331] [-2.694] [-3.056] [-3.587] [-5.318] 

Adj-R2 0.003 0.023 0.043 0.073 0.115 0.111 0.122 0.206 

Notes: This table reports the parameter estimates for the time-varying weighted investor sentiment index (STV) and individual economic predictor as described in Section 4.3 across 

different prediction horizons. The Newey-West (automatic bandwidth selection) t-statistics are shown in brackets.  *, ** and *** indicate statistical significance at 10%, 5% and 1% 

levels, respectively. Adj-R2 denotes the adjusted R2 statistic. The sample period ranges from December 1968 to December 2014, except for VIX which starts from January 1990. 
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Chapter 4. The Relative Importance of Investor Sentiment to the Stock 

Market Movements 

4.1 Introduction  

As early as 1980s, it was acknowledged that either the rational pricing model, which 

involves time-varying risk, or the noise trader model (Fama and French, 1988a; Poterba and 

Summer, 1988), can be used to explain the phenomenon of negative autocorrelation in stock 

returns for horizons of more than a year. Poterba and Summer (1988) distinguish these two 

competing explanations and conclude that the patterns of stock returns lean towards the noise 

traders view. Although noise traders model provides potential explanation, they further 

suggested that future work examine whether the mean-reverting behaviour of stock prices is 

better explained by either one of these models “require information other than stock returns, 

such as data on fundamental values, proxies for noise trading …”47. Contributing to this vein 

of research, this chapter evaluates the relative importance of the investor sentiment versus a 

set of fundamental factors to the stock market fluctuations through their forecasting 

performance on the stock market returns. 

 The time-series predictability of stock market returns has been of long-standing 

interest in the finance literature. Voluminous return predictors have been proposed to forecast 

the stock market returns over the last three decades48. Proponents of fundamental predictors 

argued that stock market returns, which are inversely related to the business cycle, are 

predictable by variables that capture the business cycle risk, for instance dividend yields, 

earnings yields, and term yield spread (e.g. Cochrane, 1991; Fama and French, 1989; Pesaran 

and Timmermann, 1995). Besides these, variables that reflect the time-varying risk aversion 

and the level of consumption, such as the consumption-wealth ratio (Lettau and Ludvigson, 

2001a) and the surplus consumption ratio (Campbell and Cochrane, 1999) are suggested in 

the literature as good return predictors. Compared to in-sample analysis, the out-of-sample 

forecasting performance of economic predictors is arguably considerable poorer (see, for 

example, Rapach et al., 2016; Lettau and van Nieuwerburgh, 2008; Welch and Goyal, 2008). 

On the other hand, the behavioural view, as discussed in the previous chapter, advocates that 

 
47 The demands from noise traders are affected by investor sentiment (refer to Chapter 2 for a review) and the 

proxies for noise trading suggested by Poterba and Summer (1988) have been employed as the measures of 

investor sentiment in other studies. 

48 The detailed reviews of return predictors are given in Section 2.3 and 2.4. 
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the predictability of the stock market returns stems from investor sentiment (e.g. Brown and 

Cliff, 2005; Schmeling, 2009; Huang et al., 2015). Whilst most literature sits into these two 

distinct groups, the question of whether one dominates the other, or whether both 

fundamentals and sentiment complement each other in predicting the stock market returns of 

different horizons, is still largely unanswered.  

Accordingly, this chapter considers the return predictors from both streams of research 

in forecasting stock market returns – fundamental and behavioural. As Chapter 3 clearly 

demonstrated, the newly constructed investor sentiment index, STV, predicts significantly the 

future stock market returns. This chapter aims to answer: (1) Is STV able to forecast future 

stock market returns in the out-of-sample context? (2) Are economic predictors able to 

forecast future stock market returns in the out-of-sample context? (3) Whether investor 

sentiment or economic predictors exert greater influence in the stock market? If investor 

sentiment plays a more important role in the stock market movement, STV is expected to 

outperform its fundamental counterparts in predicting stock market returns. 

The empirical investigation starts by comparing the predictive performance of STV with 

other sentiment measures in the out-of-sample context to further ascertain whether STV is 

indeed an investor sentiment measure that predicts superior out-of-sample stock market 

returns better than its competitor sentiment indexes. The superior performance of STV confirms 

that it can be used as a benchmark sentiment proxy in our subsequent analysis. A battery of 

out-of-sample forecasting tests is performed to compare the forecasting performances of STV 

and 17 well-known economic predictors employed by Welch and Goyal (2008) and Huang et 

al. (2015)49 . Finally, as a different way of assessing the relative importance of investor 

sentiment, the economic value of the return forecasts produced by STV and other return 

predictors are also evaluated. 

To preview the main results, this chapter finds that the out-of-sample results support 

the in-sample findings of Chapter 3 that the STV is a good sentiment measure since the forecast 

encompassing test reveals that STV encompasses other disparate sentiment measures in 

forecasting the excess market returns. Albeit most of the economic predictors are unable to 

beat the historical mean model (HMM), STV forecasting performance against HMM is 

encouraging. Furthermore, forecast encompassing tests reveal that STV possesses unique 

 
49 As discussed in Section 2.4, the issues associated with the out-of-sample forecasting are well acknowledged in 

this study and necessary precautions are taken to guard against the potential bias. 
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information for forecasting future market returns over an assorted of economic predictors. The 

enhanced investor sentiment index is also found to deliver real economic benefits, in terms of 

certainty equivalent return (CER) gains and Sharpe ratios, to an investor who holds an 

optimal mean-variance portfolio, especially for higher level of investor risk aversion. At the 

same time, it delivers consistent and higher CER gain rankings relative to its competitors. All 

these results imply that investor sentiment, from both statistical and economic perspective, 

has a stronger influence on the stock market returns as compared to economic predictors.  

This study complements existing literature on stock market returns predictability by 

presenting a more comprehensive comparison on the out-of-sample predictive performance of 

investor sentiment against fundamental predictors based on a consistent methodological 

approach. Such comparison permits a robust conclusion on the relative importance of a 

particular type of predictor being the main driving force of the stock market movements. 

Therefore, this study is of high relevance to the debate between behaviourists and rationalists.  

The most closely related works are Huang et al. (2015) and Kadilli (2015). Kadilli 

considered the effects of both investor sentiment and economic predictors on annual stock 

returns of financial companies. However, their analysis is more limited compared to this study, 

as their results are derived from an in-sample analysis using only the consumer confidence 

indicators. As we show, for a more complete picture of the role of sentiment, an out-of-

sample analysis should be considered in addition to any in-sample analysis. Furthermore, as 

we have shown in Chapter 3, the CCI is an inferior sentiment measure compared to our own 

sentiment index.  

Moreover, to the best of our knowledge, most studies in behavioural finance have 

focused solely on the predictive power of investor sentiment on future stock market return 

over the entire sample as if market participants had perfect foresight, which is unrealistic. 

Studies that are an exception to this can be found in Chung et al. (2012) and Huang et al. 

(2015). Nevertheless, their forecasting exercises do not emphasize long-horizon forecasts. The 

correction from mispricing caused by sentiment takes a longer period of time to correct and a 

vast literature has documented an enhanced long-horizon return predictability by economic 

predictors (see, for example, Campbell and Shiller, 1998; Fama and French, 1988a, 1988b; 

Patelis, 1997; Poterba and Summers, 1988; Rapach and Wohar, 2005). Therefore, it is of 

relevance to compare and contrast the predictive performance of investor sentiment against 

economic predictors in the longer horizon prediction.  
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The rest of this chapter is organised as follows: Section 4.2 presents the methodology 

used in the out-of-sample forecasting, followed by data descriptions in Section 4.3. Section 

4.4 presents the out-of-sample forecasting performances of STV against its competitors. Section 

4.5 reports the robustness check and some extension analyses. Section 4.6 concludes.  

4.2  Methodology 

4.2.1 Generating out-of-sample return forecasts 

The out-of-sample analysis reveals the genuine return predictability by different return 

predictors, providing a solid conclusion on the relative importance of a particular predictor to 

stock market fluctuations. To perform the rolling regression forecasts, a fixed window length 

of 15 years, following Henkel, Martin and Nardari (2011)50, is used. The first estimation 

period used to generate the first return forecast for December 1983 is December 1968 to 

November 198351. The estimation window is then rolled over by one month to obtain next 

forecast for January 1984, and so forth. The sample of forecasts from December 1983 to 

December 2014 is retained for forecast evaluations.  

Although the standard regression model as stated in equation (3.2) can be estimated 

using OLS, it suffers from size distortions when predictors are persistent and endogenous as 

discussed in Section 2.4. Besides that, the heteroscedasticity of return innovations violates the 

best linear unbiased estimator (BLUE) property of OLS. To ensure that the out-of-sample 

results are reliable, this study employs the Feasible Generalised Least Square (FGLS) 

framework introduced by Westerlund and Narayan (2012), which is an extension to the 

estimator proposed by Lewellen (2004). First, the regression in equation (3.2) is modified to 

account for persistent and endogeneous predictors as follow: 

 , 0 1( )m t h adj t t h t h t hR x x x    + + + − += + + − +   (4.1) 

 
50 They found that 15 years of monthly observations (i.e. 180 months) is required to produce reliable estimation 

for the US stock market. 

51 The in-sample estimation of the first window starts from December 1968 since the observations of STV from 

January 1966 to December 1968 are constructed based on the constant loading assigned to each sentiment 

component.  
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where (1 )   = − − , 
0( )adj    = − −  is the bias-adjusted parameter estimate, tx and 

t hx +  are the individual predictor at time t and t+h, respectively, and 0  = 152. All data are 

weighted by 1/
t

 , where the estimator of the variance of errors, 2ˆ
t

 , is defined as the fitted 

value of the regression that regresses estimated squared innovation, 2ˆ
t , on a constant and its 

lagged values, in order to account for the autoregressive conditional heteroskedasticity 

(ARCH) structure of return innovations. Using the parameter estimates, ̂  and adj̂ , obtained 

from equation (4.1), the forecast of h-step-ahead excess market return is computed as follow: 

 ,
ˆ ˆ

m t h adj tR x + = +   (4.2) 

The whole procedure is conducted on a moving window of 15 years with the step size 

of one month. The out-of-sample forecasts for all investor sentiment indexes and economic 

predictors are generated using the same approach. Note that for SBW, this study re-estimates 

the index based on the information in the past 15 years when new forecast of excess market 

return is to be computed in each window, so avoiding look-ahead bias53. 

Given the relatively large number of economic predictors used in this study, we also 

consider the diffusion index of economic predictors54 . Specifically, PCA is employed to 

extract the common factor of economic predictors in every estimation window, the first 

principle component of these economic factors is being labelled PC-ECON henceforth. The 

use of diffusion index does not only avoid the over-parameterization issue, but has been found 

to perform better empirically than individual components (e.g. Rapach et al., 2010; Neely et 

al., 2014). Comparing the forecasting performance of STV with PC-ECON in this way 

therefore gives us an extra layer of robustness to the results. 

4.2.2 Out-of-sample evaluation tests 

Three popular out-of-sample evaluation tests are used in this study, namely: Campbell 

and Thomson (2008) out-of-sample R-squared statistic ( 2

OSR ), Clark and West (2007) adjusted 

 
52 Refer to Westerlund and Narayan (2012, pp. 2633) for the rationale of setting 10 = . 

53 The sentiment proxies of SBW in each in-sample estimation window (i.e. 15 years) are assigned with constant 

loadings.  

54 This study does not consider the kitchen sink regression in the out-of-sample forecast as it has been shown to 

perform poorly in the out-of-sample analysis (see Welch and Goyal, 2008; Rapach, Strauss and Zhou, 2010). 
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mean squared forecast error (MSFE-adjusted) statistic, and Harvey, Leybourne and Newbold 

(1998) forecast encompassing test (ENC). To compute the 2

OSR  and the MSFE-adjusted 

statistics, the historical mean model (HMM)55 has been used as a benchmark model. For the 

ENC, the forecasting performance of STV against other predictors is of interest. Therefore, the 

forecast performances evaluated based on 2

OSR  and MSFE-adjusted statistics present results 

for the nested models; the evaluation based on ENC shows the forecast performance of non-

nested models56. The description of each test is provided below.  

(I) Out-of-sample R2 ( 2

OSR ) 

 The 2

OSR  measures the forecast accuracy of predictive regression model relative to that 

of HMM in the out-of-sample periods based on the following equation.  

 
( )
( )

2

, ,2

2

, ,

ˆ

1

T h

m t h m t ht p

OS T h

m t h m t ht p

R R
R

R R

−

+ +=

−

+ +=

−
= −

−




  (4.3) 

where m

htR +  is the h-month-ahead realized excess market return, htmR +,
ˆ  and  htmR +,  denote the 

h-month-ahead forecast of excess market return produced by predictive regression model and 

HMM, respectively. A predictive regression model is said to beat the historical mean forecast 

if 02 OSR . However, an unrestricted model (i.e. predictive regression model) could produce a 

greater MSFE as compared to HMM simply due to its additional slope parameter, which 

generates a noisier forecast, leading to a negative 2

OSR . Therefore, another test – MSFE-

adjusted – is used in conjunction with the 2

OSR in comparing the forecasting performance 

between a predictive regression model and the HMM. 

 

 
55 HMM is the historical average return computed on a rolling window basis for every time point t.  

56  Nested models are two different forecasting models with the larger model can be easily reduced to the 

parsimonious model in the null hypothesis by constraining the additional parameter associated with the larger 

model to be zero. Hence, two models are said to be nested when the forecast of any predictor (Rm,t+h = α + βadj xt 

+ εt) considered in this study is compared to the forecast of historical mean (Rm,t+h = α + εt).  In contrast, non-

nested models are two different competing models with neither of them can be transformed into one another, for 

example, STV forecast against SBW forecast. The forecast encompassing test introduced by Harvey et al. (1998) is 

originated from the idea that each individual forecast should contribute optimally to the combined forecast when 

combining forecasts produced by different predictors. A particular forecast is said to encompass its competitor if 

that forecast received entire weight in the forecast combination.  
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(II) MSFE-adjusted statistic  

The MSFE-adjusted statistic determines if the HMM has a significantly lower MSFE 

against the predictive regression model (i.e. unrestricted model) under the null hypothesis 

( PRHMM MSFEMSFEH :0  against PRHMM MSFEMSFEH :1 ). According to Clark and West 

(2007), forecasts produced by unrestricted model are contaminated by noise since the 

additional slope parameter in the model has a non-zero value, which is different from the zero 

population value under the null, and thus, inflating the forecast error of unrestricted model. To 

ensure the fairness in forecast comparison, Clark and West (2007) adjust the MSFE statistic to 

accommodate for this bias in unrestricted model under the null. Hence, one can reject the null 

hypothesis that HMM has a better forecast even though 2

OSR  is negative (Huang et al., 2015; 

Neely et al., 2014). This test can be easily performed by regressing htf +
ˆ  on a constant term (α), 

where htf +
ˆ  is computed as follow.  

 ( ) ( ) ( )
2 22

, , , , , ,
ˆ ˆ ˆ
t h m t h m t h m t h m t h m t h m t hf R R R R R R+ + + + + + +

 = − − − − −
  

  (4.4) 

The null hypothesis is rejected when the constant term, α, is significantly greater than zero 

having accommodate for the autocorrelation of the standard error in the long-horizon 

forecasts using the Newey-West estimator. 

(III) Forecast encompassing test (ENC) 

Unlike previous tests, which compare the forecasting performance of each predictor to 

that of the benchmark model (HMM), the forecast encompassing test focuses on the 

difference in information content between individual predictors in the forecast 

combination, ,
ˆ

c t hR + , which can be expressed as follow: 

 , 1, 2,
ˆ ˆ ˆ(1 )  ,      0 1c t h t h t hR R R  + + += − +     (4.5) 

where htR +,1
ˆ  is a given forecast, 2,

ˆ
t hR +  denotes the competing forecast and λ represents the 

optimal weight associated with the competing forecast. ENC tests the null hypothesis that the 

given forecast encompasses the competing forecast (λ = 0). Alternatively, the competing 

forecast does provide useful information to the combined forecast that is not already 

embodied in the given forecast if λ > 0. The usual t-statistic leads to over rejection of the null 

hypothesis due to autocorrelation and conditional heteroscedasticity features in the errors of 
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combined forecast. Therefore, Harvey et al. (1998) propose the following modified Diebold-

Mariano (MDM) test statistic for long-horizon forecast evaluation: 

 

1 2 11
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  (4.6) 

where e1t and e2t are forecast errors of given forecast and competing forecast, respectively, at 

time t, h denotes the forecast horizon, and n is the number of observations. The null 

hypothesis that a given forecast encompasses competing forecast is rejected if the MDM test 

statistic is greater than the critical value of the one-sided tn-1 distribution. 

When applying encompassing tests in the context of this research, there is no a priori 

reason as to which forecast (from STV or the competing predictor) should be treated as a given 

forecast or a competing forecast. The possible outcomes based on the results from two 

different tests performed in both directions are illustrated in the Figure 4.1.  

Figure 4.1 illustrates that there are four different possible outcomes which could be 

obtained by combining the results from test 1 and test 2. The forecast of STV is treated as the 

given forecast in test 1 and as the competing forecast in test 2. Outcome 1 indicates that STV 

forecast encompasses the forecast retrieved from alternative predictor (A). It is obtained when 

the weight of competing forecast, i.e. λ in equation (4.5), is not significantly different from 

zero (λ = 0) in test 1 and the weight of STV forecast in test 2 is significantly greater than zero 

(λ > 0). Outcome 3 is observed when the MDM statistic reveals the opposite findings in both 

tests. Meanwhile, outcome 2 implies that both predictors could provide complementary 

information to forecast combination when both tests produce lambda that is significantly 

greater than zero. That is, both given and competing forecasts have additional information that 

is useful in predicting stock market returns. On the other hand, when both tests generate 

insignificant lambda as shown by outcome 4, it means that two forecasts encompass each 

other (i.e. encompassing observed in both directions) and the information content of both 

forecasts are redundant. Therefore, outcome 1 and 2 are in line with the hypothesis that the 

forecast based on  STV captures unique information that is not already incorporated in the 

forecast by alternative predictor (the STV forecast dominates: it encompasses, but is not  

encompassed by, the alternative predictor’s forecast corresponding to outcome 1). Outcome 3 
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implies that forecasts by alternative predictor dominate those forecasts produced by STV, and 

outcome 4 suggests that the forecast based on STV is neither dominated by nor dominant over 

the alternative predictor’s forecast.  

Figure 4.1: Outcomes of forecast encompassing tests 

No Outcome Explanation Test 1 
(STV is the 

given 

forecast) 

Test 2 
(STV is the 

competing 

forecast) 

1  STV forecast encompasses 

alternative forecast (A) 

STV forecast outperforms 

alternative forecast and 

alternative forecast does not 

contain useful information 

in forecasting future stock 

market returns. All relevant 

information in alternative 

forecast is contained in STV 

forecast. 
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λ > 0 
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Neither forecast 

encompasses the other one. 

Both forecasts embody 

incremental information 

while sharing some 

common information. 

Hence, both forecasts 

provide (partially) 

complementary information 

in forecasting future stock 

market returns. 
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3  Alternative forecast (A) 

encompasses STV forecast. 

Alternative forecast 

dominates STV forecast and 

hence STV forecast does not 

contain useful incremental 

information in forecasting 

future stock market returns. 

All relevant information in 

STV forecast is contained in 

alternative forecast. 
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No Outcome Explanation Test 1 
(STV is the 

given 

forecast) 

Test 2 
(STV is the 

competing 

forecast) 

4  Two forecasts encompass 

each other. 

Both predictors produce 

forecasts that are of equal 

accuracy. They have 

identical predictive ability, 

in which the information 

contained in both forecasts 

is identical. Therefore, 

neither forecast contains 

unique information for 

forecasting future stock 

market returns (Wang and 

Bessler, 2004).  

 

 

 

 

λ = 0 

 

 

 

 

 

λ = 0 

Notes: 
       Alternative forecast (A)            STV–based forecast  

λ denotes the optimal weight associated with the competing forecast in the following forecast combination: 

 

 

STV forecast is treated as the given forecast, 
1,

ˆ
t hR +

, in the first test and as competing forecast, 
2,

ˆ
t hR +

, in the second 

test. 

4.2.3 Certainty equivalent return (CER) and Sharpe ratio 

Contrary to previous statistical evaluation methods, economic significance measure 

takes into account the risk faced by an investor, which makes it more relevant in the real 

world. In line with the literature, the certainty equivalent return (CER), which is the certain 

return an investor will receive on an investment that generates the same expected utility as a 

risky portfolio with uncertain returns (see Campbell and Thompson, 2008; Cenesizoglu and 

Timmermann, 2012; Huang et al., 2015; Marquering and Verbeek, 2004; Rapach et al., 2010; 

Rapach et al., 2016), is employed. 

Assuming a mean-variance investor who holds a portfolio consisting of equities and 

risk-free assets, one can determine the optimal equity allocation ( *

t ) based on the forecast of 

excess market return ( htmR +,
ˆ  )57 produced by a given predictor at the end of month t:  

 
57 Compounding return is used for the asset allocation exercise. For this exercise, the out-of-sample spans from 

January 1985 to December 2014 in order to ensure that the total out-of-sample period is evenly divided by the 

portfolio rebalanced frequency across different forecast horizons. This out-of-sample period is also used in 

Huang et al. (2015).  

 

STV & A 

 

hththtc RRR +++ +−= ,2,1,
ˆˆ)1(ˆ 
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  (4.7) 

where   is the risk-aversion coefficient and 2ˆ
ht+  is the forecasted variance of excess market 

return computed using ten-year moving window of past excess market return (see Rapach et 

al., 2016). Following the literature, a constraint on *

t values to be between 0 and 1.5 is 

imposed based on the assumptions of no short sales and leverage of no more than 50%. The 

CER is defined as the average utility of the portfolio over the forecasting period: 

 2

2
p pCER R


= −   (4.8) 

where 
pR  is the average portfolio return and 2

p   is the portfolio variance. The CER gain is 

the difference in CER between a predictive regression using a specific predictor variable and 

HMM forecasts, and is expressed as an annualized term, representing the annual portfolio 

management fees an investor would be willing to pay to receive the information contained in 

the predictive regression forecast (rather than relying on HMM forecasts). The portfolio 

rebalancing frequency is similar to the forecast horizon. The Sharpe ratio, which is computed 

as excess market returns over the risk, is employed as a second measure of economic 

performance. 

4.3 Data and descriptive statistics 

Since the data description of investor sentiment indexes have been given in Section 

3.2.1, this section provides the descriptions of 17 economic predictors, which can be 

categorised into financial indicators, business-cycle indicators and macroeconomic indicators. 

The data for financial and business-cycle indicators are retrieved from the website of Amit 

Goyal. The brief description for each economic predictor, as stated in Welch and Goyal 

(2008), are given below. The detailed description of each predictor is provided on their 

website. 

4.3.1 Financial indicators 

a) Dividend-price ratio (DP): computed as log of dividends minus log of prices. 

b) Dividend yield (DY): computed as log of dividends minus log of lagged prices. 

c) Earnings-price ratio (EP): calculated by subtracting log of prices from log of earnings. 
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d) Dividend-payout ratio (DE): computed as the log of the ratio of dividends to earnings.  

e) Stock return variance (SVAR): calculated as the total of squared daily returns on the S&P 

500 index in a month. 

f) Book-to-market ratio (BM): calculated as the ratio of book value to market value for the 

Dow Jones Industrial Average. 

g) Net equity expansion (NTIS): defined as the ratio of 12-month moving sums of net issues 

by NYSE-listed stocks to total market capitalization of NYSE stocks. 

4.3.2 Business-cycle indicators 

a) Treasury bill rate (TBL): three-month Treasury bill rate in the secondary market.  

b) Long-term yield (LTY): yields on long-term government bond.  

c) Long-term return (LTR): returns on long-term government bonds. 

d) Term yield spread (TMS): defined as the deviation between LTY and TBL. 

e) Default yield spread (DFY): computed by deducting the yields of AAA-rated corporate 

bond from BAA-rated corporate bond. 

f) Default return spread (DFR): defined as the deviation between long-term corporate bond 

returns and long-term government bond returns. 

g) Inflation (INFL): lagged two months inflation is used to take into consideration of the 

delay in Consumer Price Index (CPI) releases.  

4.3.3 Macroeconomic indicators 

a) Consumption-wealth ratio (CAY): The quarterly data is retrieved from Martin Lettau’s 

webpage58. To obtain the monthly data, ‘missing values’ between two quarters are filled 

with the data from the most recent quarter until the next quarter’s data becomes available.  

b) Output gap (OG): residuals ( t ) from regression that regress the log of industrial 

production59 ( ty ) on a linear time trend ( t ) and a quadratic trend ( 2t )60. (Cooper and 

Priestley, 2009). Since the data reported is delayed by a month, this study employs lagged 

two months OG in the return predictive regression following Cooper and Priestley (2009). 

 
58 http://faculty.haas.berkeley.edu/lettau/data_cay.html     

59 The data of total seasonally adjusted Industrial Production index is obtained from the Federal Reserve.  

60 The OG measure computed in this study is the primary measure used in Cooper and Priestley (2009). They 

demonstrated that the results are not affected with the use of other measures.  

http://faculty.haas.berkeley.edu/lettau/data_cay.html
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 2. .t ty t t   = + + +   (4.9) 

c) Log surplus consumption ratio (SCR): estimated with nondurable and service consumption 

data following Campbell and Cochrane (1999). The consumption data employed here is the 

monthly seasonally adjusted real per capita consumption expenditures on nondurable 

goods and services 61 . st is used to represent log surplus consumption ratio 62  in the 

following equations:  

 1 1(1 ) ( )( ) ,   0< 1 t t t ts s s s c g   + += − + +  −    (4.10) 

where   is the habit persistence parameter being set at 0.92 following Tallarini and Zhang 

(2005)63, s  is the steady-state of log S , ( )ts  is the sensitivity function, and tc  is the 

consumption growth governed by the following process: 

 1 1  t tc g v+ + = +   (4.11) 

where g denotes the average consumption growth rate. The sensitivity function, ( )ts , is 

defined as: 
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  (4.12) 

  is the standard deviation of the consumption growth and the curvature of utility function, 

 , is being set at 2 (see Campbell and Cochrane, 1999; Li, 2001).  

 
61 The nominal consumption expenditures and price indexes for consumption are retrieved from the National 

Income and Product Accounts published by the U.S. Bureau of Economic Analysis (BEA). The US resident 

population data is available on Federal Reserve Economic Data (FRED).  

62 Lowercase letters represent variables that expressed in logarithms and uppercase letters are used for variables 

at original scale thereafter.  

63 The habit persistence parameter measures the adjustment speed of habit to previous consumption and it is 

found to approach unity. Other acceptable persistence parameters are 0.80, 0.90, 0.95, 0.99 (see Li, 2001; 2005; 

Li and Zhong, 2005), and previous studies generally found that their results are robust to different ρ.  
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4.3.4 Descriptive statistics of data 

Table 4.1 presents the descriptive statistics for economic predictors described in 

previous sub-sections. Most of the economic predictors have positive mean value, except a 

few financial indicators, SCR and CAY. Besides that, most economic predictors have a first-

order autocorrelation of close to unity, indicating that economic predictors are highly 

persistence. The persistent feature of return predictors justifies the use of FGLS framework in 

generating the return forecasts.  

Table 4.1: Descriptive statistics of economic predictors 

  Mean SD Skewness Kurtosis Min Max ρ(1) 

DP -3.592 0.418 -0.197 2.109 -4.524 -2.753 0.994 

DY -3.586 0.418 -0.202 2.135 -4.531 -2.751 0.994 

EP -2.819 0.456 -0.794 5.629 -4.837 -1.899 0.989 

DE -0.773 0.327 2.921 18.066 -1.244 1.380 0.985 

SVAR 0.002 0.005 9.821 125.703 0.000 0.071 0.467 

BM 0.506 0.274 0.688 2.411 0.121 1.207 0.994 

NTIS 0.011 0.020 -0.747 3.686 -0.058 0.051 0.979 

TBL 0.051 0.032 0.527 3.726 0.000 0.163 0.988 

LTY 0.070 0.026 0.664 3.207 0.021 0.148 0.989 

LTR 0.007 0.031 0.384 5.317 -0.112 0.152 0.034 

TMS 0.019 0.015 -0.456 2.757 -0.037 0.046 0.953 

DFY 0.011 0.005 1.778 7.125 0.003 0.034 0.962 

DFR 0.000 0.015 -0.409 9.318 -0.098 0.074 -0.077 

INFL 0.003 0.003 0.136 7.504 -0.018 0.018 0.618 

OG 0.000 0.062 0.131 2.073 -0.139 0.139 0.993 

SCR -4.373 1.033 -2.160 7.621 -9.119 -3.511 0.981 

CAY -0.002 0.020 -0.208 2.204 -0.047 0.044 0.968 

Notes: SD denotes standard deviation, Min is the minimum value, Max is the maximum value and ρ(1) is the 

first-order autocorrelation. The description of each economic predictor variable is given in the text. The sample 

period spans for 588 months, from January 1966 until December 2014. 

4.4 Empirical results 

This section is split into three sub-sections. The first sub-section evaluates the out-of-

sample (OOS) forecast performance of STV in order to answer the first research question. The 

forecasting performance of STV is compared to that of other sentiment measures, providing 

further support to the claim that STV is indeed a superior sentiment measure that forecasts 

future stock market returns better than other sentiment measures. To answer the main research 

question of this chapter – whether investor sentiment or economic predictors play(s) a greater 

role in the stock market fluctuation, the second sub-section provides statistical proof on the 

out-of-sample forecasting performance of STV against other economic predictors. Later on, the 
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economic value generated by different predictors is assessed to provide further support to the 

main findings of this chapter.  

4.4.1 The OOS predictive performance of STV versus other sentiment indexes 

Given that STV outperforms competing variables in capturing the latent investor 

sentiment, and assuming that sentiment systematically affects stock prices, we would expect 

STV to have significant forecasting power for future stock returns, and to outperform other 

sentiment proxies in this respect. Table 4.2 presents the out-of-sample forecasting 

performance of investor sentiment measures based on 2

OSR  and MSFE-adjusted statistics as 

described in Section 4.2.2. The former statistic tells us of the extent that MSFE of a predictive 

regression model is reduced as compared to HMM, and the latter statistic helps to gauge the 

statistical significance of results, informing us if the predictive regression model has a 

forecast error that is statistically lower than that generated by the HMM after adjusting for the 

noise in predictive model. The null hypothesis of MSFE-adjusted statistic (i.e. MSFE 

generated by HMM is less than or equal to that of predictive regression model) can still be 

rejected even though 2

OSR  is negative due to the negative bias associated with the predictive 

regression model (see Huang et al., 2015; Neely et al., 2014; Rapach and Zhou, 2013). Thus, 

the inference is based largely on the results of MSFE-adjusted test. 

The results reported in Table 4.2 show that the MSFE-adjusted statistic for STV-

generated forecasts is statistically significant at 5% level for 3-month forecasts, suggesting 

that STV has statistically superior out-of-sample forecasting power as compared to HMM at the 

3-month forecast horizon. In addition, STV consistently beats the benchmark model from 9-

months until 24-months forecast horizon as the 2

OSR  is significantly greater than zero. These 

results indicate that STV has strong predictive power for the future stock market returns even in 

the out-of-sample context.  

On the other hand, Table 4.2 also shows that SBW generates negative 2

OSR  values and 

insignificant negative MSFE-adjusted statistics, across most forecast horizons, except for 

positive 2

OSR  values for next month forecasts. Nevertheless, its forecast error is not 

significantly lower than that of HMM at 1-month horizon. These results suggest that SBW fails 

to outperform HMM since it produces greater forecast error across most forecast horizons. 

Overall, for both in-sample and out-of-sample result, the original SBW index has been shown to 
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have poor predictive power for excess market returns, whereas the time-varying modification 

of the original BW approach proposed in Chapter 3 improves its forecasting power 

considerably. 

Consistent with Huang et al. (2015), SPLS has a strong predictive power over short 

horizons. The null hypothesis of the MSFE-adjusted test is strongly rejected at 1% 

significance level for 1- and 3-month forecast horizons. It also generates the 

highest 2

OSR values for 1- and 3-month predictions (i.e., 2% and 5.77%, respectively) among 

all predictive regression models. This superior performance, however, does not last beyond 6-

month forecast horizon. Indeed, the inferior forecast performance exacerbates for longer 

forecast horizons, with 2

OSR  value of more than -30% and has the worst 5-year forecast 

performance, with 2

OSR  of about -44%, among all investor sentiment indexes. Thus, unlike the 

STV index, SPLS does not seem to produce consistent out-of-sample statistical benefits across 

both shorter and longer forecast horizons.  

The results show that MS does not outperform HMM in any forecast horizon, likewise 

for the CCI, except for 36-month and 60-month horizons, at which the 2

OSR  values are more 

than 10%. Campbell and Thompson (2008), however, claim that high 2

OSR  value does not 

make much sense economically since everyone would become rich by just exploiting the 

information contained in that model. Overall, the results of 2

OSR  and MSFE-adjusted statistic 

suggest that STV not only outperforms HMM for most forecast horizons, it also has a superior 

forecasting performance as compared to other investor sentiment indexes.  

Table 4.3 presents the results of forecast encompassing test, which provides an insight 

into the information content of forecasts produced by different investor sentiment measures, 

each pitched against STV. The forecasting performance of STV against other sentiment measures 

is presented with each entry in the column λ(1) and λ(2), with the null hypothesis that the 

given forecast encompasses the competing forecast (i.e. λ = 0) determined based on the MDM 

statistic in test 1 and test 2, as described in Section 4.2.2. The λ value and its associated MDM 

statistic (in square brackets) are reported for both tests. Significance of λ indicates that the 

weight of the competing forecast is greater than zero, and that the competing forecast contains 

information that is not already included in a given forecast but is useful for the optimal 

combination forecast. The outcomes for each pairing following the decision rules as 

summarised in Figure 4.1 are presented next to the λ(2) column for each forecast horizon. An
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Table 4.2: Out-of-sample forecasting results: STV vs. other investor sentiment measures  

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

STV -0.52 0.02 -0.32 1.81** -0.41 0.64 1.04 1.40* 2.43 1.65* 0.59 1.31* -0.41 0.49 -4.58 -0.57 

SBW 0.39 1.04 -2.00 -1.18 -4.42 -0.29 -6.31 -0.04 -4.63 0.67 -23.36 -0.73 -20.70 -1.71 -33.78 -2.26 

SPLS 2.00 2.40*** 5.77 3.58*** 0.45 1.41* -8.70 -0.07 -13.79 -0.44 -30.96 -1.73 -36.53 -1.93 -43.62 -4.35 

MS -1.66 -0.4 -3.94 -0.54 -9.5 -1.38 -15.15 -1.62 -16.52 -1.24 -19.38 -0.51 -22.08 -0.02 -16.65 1.08 

CCI -1.50 -0.15 -4.10 -0.39 -5.74 -0.36 -5.74 0.03 -4.71 0.49 -2.82 1.01 11.00 1.54* 19.10 1.75** 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of various investor sentiment measures: 

time-varying weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan 
Consumer Sentiment Index (MS) and the Conference Board Consumer Confidence Index (CCI). *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, 

respectively, based on Newey-West t-statistic for MSFE-adjusted test. The in-sample period ranges from December 1968 to November 1983 and out-of-sample period from 

December 1983 to December 2014. 

 

Table 4.3: Forecast encompassing tests: STV vs. other investor sentiment measures  

λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome

S BW
0.75* 0.25 0.29 0.71*** 0.04 0.96** 0.05 0.95*** 0.12 0.88*** 0.00 1.00* 0.00 1.00** 0.00 1.00

[1.64] [0.57] [0.88] [2.67] [0.18] [2.27] [0.13] [3.33] [0.26] [2.92] [-0.46] [1.49] [-0.92] [1.67] [0.00] [0.00]

S PLS
1.00*** 0.00 0.87*** 0.13 0.54* 0.46* 0.15 0.85** 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.00 1.00

[2.74] [-0.45] [3.07] [0.64] [1.39] [1.29] [0.38] [1.65] [-0.14] [1.67] [-1.02] [1.74] [-1.30] [1.62] [-9.45] [0.00]

MS 0.20 0.80* 0.25 0.75** 0.00 1.00* 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.02 0.98** 0.40 0.60

[0.21] [1.48] [0.61] [1.87] [-0.34] [1.61] [-0.55] [2.22] [-0.80] [2.16] [-0.26] [1.62] [0.12] [1.83] [0.96] [0.93]

CCI 0.26 0.74** 0.22 0.78*** 0.09 0.91** 0.12 0.88** 0.17 0.83** 0.42 0.58* 0.74 0.26 0.81* 0.19

[0.51] [1.83] [0.79] [2.95] [0.24] [1.93] [0.33] [2.19] [0.34] [1.87] [0.77] [1.48] [1.09] [1.04] [1.42] [0.42]
4 31 1 1 1 1 1

1 4

1 1 1 1 1 1 1 4

3 3 2 1 1 1

h = 36 h = 60

3 1 1 1 1 1 1 4

h = 1 h = 3 h = 6 h = 9 h = 12 h =24

 
Notes: This table presents the forecast encompassing tests results of the time-varying weighted investor sentiment index (STV) against other investor sentiment measures: the Baker 

and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS) and the Conference Board 

Consumer Confidence Index (CCI). λ represents the optimal weight associated with the competing forecast. The forecast based on STV is treated as the given forecast in the test 1 and 

as the competing forecast in test 2. The values in the brackets are MDM test statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively. The in-

sample period ranges from December 1968 to November 1983 and out-of-sample period from December 1983 to December 2014. 
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outcome 1, which represents STV outperforming other sentiment measures, is obtained when 

the weight (λ) of competing forecast in test 1 is insignificant and the weight (λ) of STV 

forecast is significant in test 2.  

The findings in Table 4.3 provide support for the hypothesis that STV contains useful 

information which is not already included in the competing sentiment proxies. Outcome 1 is 

consistently observed beyond the next month forecast and up to the 36-month forecast 

horizon when the forecasting performance of STV is compared to that of SBW, suggesting that 

STV forecasts dominate SBW forecasts across all forecast horizons, except for 1-month and 60-

month horizons. At the 1-month forecast horizon, the comparison between STV and SBW yields 

an outcome of 3 which implies that SBW is a better return predictor at the next-month forecast 

horizon. However, at the 60-month forecast horizon, forecasts produced by both sentiment 

measures do not contain unique information and their forecasts are redundant since an 

outcome 4 is obtained.  

In addition, STV–based forecasts also dominate those based on SPLS beyond forecast 

horizon of six months, while SPLS dominates STV only for 1-month and 3-month forecast 

horizons. At h = 6, an outcome 2 is observed for the pairing between STV and SPLS, implying 

that the forecasts of both predictors provide complementary information to the optimal 

forecast combination at the 6-month forecast horizon. These results are consistent with the in-

sample analysis in that, whilst SPLS produces more accurate return forecasts over the short run, 

STV forecasts stock market returns well over longer forecast horizons. As for the MS and CCI, 

the results depict that STV–based forecasts dominate the forecasts based on those variables for 

most forecast horizons except the long-term horizons.  

Counting the occurrence of outcome 1 leads us to a conclusion that all other sentiment 

measures can be excluded from the optimal combination forecast in 72% of the all cases 

considered, since STV–based forecasts encompasses forecasts of other sentiment measures 

significantly at 10% level (i.e., STV-based forecasts deliver all the useful information); this 

high probability associated with outcome 1 is too high to be purely driven by chance at 10% 

significance level. In contrast, only four out of 32 cases show forecasts based on other 

sentiment measures to encompass STV forecast, as shown by outcome 3. This is well depicted 

in the Figure 4.2, where STV index captures well the dynamics of stock market returns and 

moves along with the direction of realized excess return even at the longer forecast horizons.
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Figure 4.2: The forecasts of excess market returns across different forecast horizons 

This figure illustrates the out-of-sample forecasts produced by the time-varying weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index 

(SBW), and the aligned investor sentiment index (SPLS). The forecasts are produced on a rolling window basis with a fixed window length of 15 years, and are compared 

against the realized return (6-month moving average of excess market return). Shaded areas represent NBER-dated recessions. 
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 Overall, the enhanced investor sentiment index not only improves on the original BW 

approach in terms of time-series forecasting power, it also outperforms other competing 

measures of investor sentiment. These findings reinforce the findings documented in the 

previous chapter: STV is a superior measure of latent investor sentiment that forecasts well 

future stock market returns. 

As a robustness check, a comparison of the forecasting performances of nth-year STV 

indexes and other sentiment measures is conducted to further investigate the relative 

forecasting power of STV index constructed on a 3-year rolling window size, which is termed 

as the benchmark STV for further analysis in this sub-section. To recall, Table A. 1 shows that 

the benchmark STV outperforms other nth-year STV indexes constructed based on differing 

windows (i.e. 1-year, 2-year, 4-year, and 5-year STV) in the in-sample evaluation. These 

results indicate that the benchmark STV index can optimally capture the time-varying 

contribution of each sentiment proxy and hence better predicts stock market returns. This 

sub-section presents the out-of-sample forecasting performance of nth-year STV indexes as 

compared to the benchmark STV and other investor sentiment measures given that in-sample 

forecasting performance might not represent out-of-sample forecasting power.  

The analysis is split into two parts: (1) the forecasting performance of nth-year STV 

indexes against other investor sentiment measures, and (2) the forecasting performance of nth-

year STV indexes as compared to the benchmark (i.e. 3-years-moving-windows-based, as used 

across in this thesis) STV index. The first analysis aims to provide further support to the 

importance of allowing the loadings of each proxy to vary over time, should we have nth-year 

STV indexes outperform other investor sentiment measures in the out-of-sample forecasting. If 

forecasts produced by nth-year STV indexes are indeed more accurate than those generated by 

other sentiment measures, comparing the performance of nth-year STV indexes to the 

benchmark STV in the second step of the analysis aims at validating whether the 3-years 

window length is optimal in capturing the time-varying contribution of each sentiment proxy 

to the index, and whether the benchmark STV therefore generates superior out-of-sample 

forecasts (as it did in the in-sample analysis).  

 Table 4.4 shows the results of the forecast encompassing test for 1-year STV (panel A), 

2-year STV (panel B), 4-year STV (panel C), and 5-year STV (panel D). In each panel, the 

forecasting performance of nth-year STV index is compared with that of the benchmark STV (i.e. 
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Table 4.4: The forecast encompassing test performances of nth-year STV indexes 

λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome

Benchmark S TV
0.91** 0.09 0.49** 0.51** 0.63 0.37 0.41 0.59* 0.62* 0.38 0.86** 0.14 0.58 0.42 0.00 1.00***

[2.05] [0.19] [1.98] [1.93] [1.01] [0.56] [0.99] [1.39] [1.49] [0.95] [1.66] [0.23] [0.92] [0.72] [0.00] [3.92]

S BW
0.91*** 0.09 0.19 0.81*** -0.07 1.07** 0.00 1.00*** 0.10 0.90** 0.00 1.00* 0.00 1.00** 0.00 1

[2.45] [0.25] [0.67] [2.65] [0.04] [1.82] [-0.65] [2.81] [0.19] [1.74] [-0.37] [1.38] [-1.35] [1.74] [0.00] [0.00]

S PLS
1.00*** 0.00 0.98*** 0.02 0.62* 0.38 0.00 1.00* 0.00 1.00* 0.00 1.00** 0.00 1.00** 0.00 1

[3.42] [-0.76] [3.21] [0.08] [1.38] [0.93] [-0.29] [1.42] [-0.57] [1.37] [-1.17] [1.68] [-1.52] [1.71] [-7.26] [0.00]

MS 0.55 0.45 0.11 0.89* 0.00 1.00* 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.03 0.97** 0.37 0.63

[1.12] [1.15] [0.15] [1.57] [-0.96] [1.58] [-1.55] [2.00] [-1.34] [1.93] [-0.29] [1.58] [0.11] [1.70] [0.86] [0.93]

CCI 0.55* 0.45* 0.11 0.89*** 0.00 1.00** 0.00 1.00** 0.09 0.91** 0.48 0.52* 0.73 0.27 0.78* 0.22

[1.48] [1.41] [0.35] [2.43] [-0.15] [1.92] [-0.53] [2.12] [0.15] [1.67] [0.83] [1.40] [1.01] [0.99] [1.39] [0.47]

Benchmark S TV
0.37 0.63 0.53** 0.47 0.66* 0.34 0.49* 0.51* 0.60* 0.4 0.59 0.41 0.90* 0.10 0.93* 0.07

[0.64] [0.88] [1.95] [1.18] [1.62] [0.78] [1.42] [1.43] [1.61] [1.07] [1.12] [0.84] [1.44] [0.17] [1.61] [0.06]

S BW
0.75* 0.25 0.03 0.97** 0.17 0.83** 0.00 1.00*** 0.11 0.89** 0.00 1.00* 0.00 1.00* 0.00 1.00

[1.53] [0.48] [0.10] [1.84] [0.50] [1.74] [-0.29] [2.34] [0.18] [1.94] [-0.39] [1.42] [-0.83] [1.40] [0.00] [0.00]

S PLS
1.00*** 0.00 1.00*** 0.00 0.65* 0.35 0.04 0.96* 0.00 1.00* 0.00 1.00** 0.00 1.00* 0.00 1.00

[2.76] [-0.59] [2.83] [-0.64] [1.58] [0.91] [0.08] [1.50] [-0.30] [1.42] [-1.01] [1.72] [-1.20] [1.52] [0.00] [0.00]

MS 0.11 0.89* 0.00 1.00 0.00 1.00* 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.02 0.98** 0.42 0.58

[0.04] [1.45] [-0.11] [1.20] [-0.54] [1.46] [-1.11] [1.98] [-1.16] [1.93] [-0.32] [1.60] [0.10] [1.79] [0.94] [0.91]

CCI 0.18 0.82** 0.00 1.00** 0.11 0.89** 0.00 1.00** 0.09 0.91* 0.43 0.57* 0.77 0.23 0.84* 0.16

[0.28] [1.77] [-0.06] [1.95] [0.28] [1.80] [-0.21] [2.25] [0.13] [1.56] [0.72] [1.54] [1.01] [1.05] [1.41] [0.37]

Benchmark S TV
0.39 0.61 0.39* 0.61* 0.63 0.37 0.70** 0.30 0.85*** 0.15 0.83 0.17 0.72 0.28 0.51 0.49**

[0.61] [0.88] [1.32] [1.58] [1.19] [0.61] [1.89] [0.81] [2.51] [0.51] [1.15] [0.25] [0.87] [0.32] [0.00] [1.71]

S BW
0.71** 0.29 0.00 1.00*** 0.11 0.89** 0.17 0.83** 0.47 0.53* 0.00 1.00* 0.00 1.00** 0.00 1.00***

[1.77] [0.72] [-0.22] [3.20] [0.64] [1.93] [0.59] [2.31] [0.96] [1.36] [-0.38] [1.55] [-0.90] [1.78] [-4.38] [9.80]

S PLS
1.00*** 0.00 1.00*** 0.00 0.62* 0.38 0.11 0.89* 0.00 1.00 0.00 1.00** 0.00 1.00** 0.00 1.00***

[2.87] [-0.58] [3.28] [-0.06] [1.65] [1.05] [0.27] [1.34] [-0.14] [1.27] [-1.44] [1.84] [-1.60] [1.81] [-4.89] [9.56]

MS 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.00 1.00** 0.00 1.00** 0.00 1.00* 0.01 0.99* 0.40 0.60

[-0.21] [1.81] [-0.42] [1.98] [-0.68] [1.63] [-0.73] [1.92] [-0.65] [1.72] [-0.46] [1.57] [0.09] [1.61] [0.96] [0.88]

CCI 0.25 0.75** 0.00 1.00*** 0.07 0.93** 0.17 0.83** 0.35 0.65* 0.48 0.52* 0.79 0.21 0.81* 0.19

[0.53] [2.03] [-0.34] [2.49] [0.33] [1.88] [0.44] [1.87] [0.66] [1.38] [0.92] [1.31] [1.28] [0.76] [1.61] [0.42]

Benchmark S TV
0.57 0.43 0.58** 0.42 0.97** 0.03 1.00** 0.00 1.00*** 0.00 0.83* 0.17 0.59*** 0.41 0.75 0.25

[1.00] [0.53] [2.33] [1.26] [2.06] [0.00] [2.25] [-0.03] [2.35] [-0.06] [1.55] [0.30] [3.23] [0.73] [1.24] [0.33]

S
BW

0.81** 0.19 0.32 0.68** 0.64** 0.36 0.69** 0.31 0.76** 0.24 0.05 0.95* 0.00 1.00** 0.00 1.00***

[2.02] [0.37] [1.04] [2.06] [1.73] [0.95] [1.65] [1.03] [1.71] [0.90] [0.38] [1.59] [-1.12] [1.78] [-0.74] [2.37]

S PLS
1.00*** 0.00 1.00*** 0.00 0.82** 0.18 0.45 0.55 0.21 0.79 0.00 1.00** 0.00 1.00** 0.00 1.00***

[3.24] [-0.82] [3.86] [-0.27] [2.23] [0.61] [1.01] [0.96] [0.47] [1.02] [-1.02] [1.90] [-1.49] [1.88] [-1.90] [2.57]

MS 0.09 0.91* 0.24 0.76* 0.26 0.74 0.12 0.88* 0.00 1.00* 0.00 1.00** 0.00 1.00* 0.43 0.57

[-0.01] [1.34] [0.45] [1.52] [0.48] [1.07] [0.25] [1.31] [-0.02] [1.30] [-0.13] [1.77] [0.19] [1.48] [1.09] [0.80]

CCI 0.26 0.74** 0.20 0.80** 0.50 0.50 0.63 0.37 0.66 0.34 0.57 0.43* 0.77* 0.23 0.83** 0.17

[0.51] [1.65] [0.55] [2.21] [1.11] [1.11] [1.07] [0.82] [0.99] [0.81] [1.18] [1.44] [1.39] [0.91] [1.81] [0.36]

h = 36 h = 60

Panel A: 1-year S TV vs. Investor sentiment indexes

3 2 4 1 3 3 4

h = 1 h = 3 h = 6 h = 9 h = 12 h =24

1

3 1 1 1 1 1 1 4

1 4

4 1 1 1 1 1 1 4

3 3 3 1 1 1

4 3

Panel B: 2-year S TV vs. Investor sentiment indexes

4 3 3 2 3 4 3

2 1 1 1 1 1

3

3 1 1 1 1 1 1 4

1 4

1 4 1 1 1 1 1 4

3 3 3 1 1 1

1 1

1 1

4 3

Panel C: 4-year S TV vs. Investor sentiment indexes

4 2 4 3 3 4 4

1 1 1 1 1 1

1

3 3 3 1 4 1

3 1 1 1 1 1

4

1 1 1 1 1 1 1 4

1 4

3 3 3 4 4 1

4 3

Panel D: 5-year S
TV

vs. Investor sentiment indexes

4 3 3 3 3 3 3

1 1 1 1 1 1

3 1 3 3 3 1 1 1

3 31 1 4 4 4 1

1 1

1 1 4 1 1 1

 
Notes: This table reports the forecast encompassing test results of nth-year STV indexes against other sentiment measures. λ represents the optimal weight associated with the competing forecast. The forecast based on 

nth-year STV is treated as the given forecast in the test 1 and as the competing forecast in test 2. The values in the brackets are MDM test statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, 

respectively. The in-sample period ranges from December 1968 to November 1983 and out-of-sample period from December 1983 to December 2014. 
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3-year STV) index, the Baker and Wurgler investor sentiment index (SBW), the aligned investor 

sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS), and the 

Conference Board Consumer Confidence Index (CCI), all across different forecast horizons, h. 

Within every forecast horizon, each entry in the column λ(1) and λ(2) corresponds to the null 

hypothesis that the competing forecast does not contain useful information for the optimal 

combination forecast (i.e. λ = 0) when the modified Diebold-Mariano (MDM) test statistic is 

less than the critical value of one-sided tn-1 distribution. Based on the decision rule in Figure 

4.1 , the outcome of each pairing is presented next to the column of λ(2). Outcome 1 derived 

from the comparison between nth-year STV index and other investor sentiment measures (i.e. 

excluding the first row in each panel) indicates that nth-year STV index outperforms another 

sentiment measure; whereas outcome 3 reveals the opposite result. Outcome 2 indicates that 

nth-year STV index contains unique information for return forecasting (but so does its 

competitor), whereas outcome 4 suggests that both predictors are equivalent to one another 

(i.e., none possesses any unique information which would not be contained in the other one).  

Each panel in Table 4.4 shows that nth-year STV yields outcome 1 at 10% significance 

level for a large majority of cases, especially from 3-month forecast horizon onwards, when 

comparing with other sentiment measures, i.e. SBW, SPLS, MS, and CCI. Conversely, fewer 

pairings are seen to have outcome 3. In general, the forecasting performance of nth-year STV 

indexes is similar to that of the benchmark STV as presented in Table 4.3 in that: 1) forecasts of 

nth-year STV indexes tend to encompass (represented by outcome 1) those of SBW  from 3-

month up to 36-month forecast horizons except 5-year STV index, 2) nth-year STV indexes 

dominate SPLS across different forecast horizons, except short-run forecasts, and 3) outcome 1 

is generated for most of the comparisons between nth-year STV indexes and MS as well as for 

the CCI. 

Table 4.5 summarises the results of forecast encompassing tests by presenting the 

frequency of each outcome for each nth-year STV index. Among the nth-year STV indexes, 4-

year STV outperforms other investor sentiment measures in forecasting stock market returns in 

three quarters of all pairings considered in panel C of Table 4.4. Even though the 5-year STV 

index has the lowest number of cases for outcome 1 as compared to other nth-year STV indexes, 

it still performs better than other sentiment measures in half of all cases (and in additional 

21.9% of cases, it is not worse than the alternative predictor). The last column of Table 4.5 

shows that nth-year STV indexes, on average, outperform other investor sentiment measures 

given that the probability of outcome 1 exceeds 60%. On the other hand, each of the nth-year 
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STV indexes shows outcome 3 (i.e., is dominated by its competitors) for about 15% of all 

pairings, except 5-year STV. Therefore, the average probability of outcome 3 across different 

nth-year STV indexes is at 18.8%. These results imply that nth-year STV indexes contain useful 

information that is not already embedded in other investor sentiment measures, and hence 

tend to dominate competitor sentiment indexes in forecasting stock market returns.  

Table 4.5: The probability associated with each outcome of ENC test for nth-year STV 

indexes 

  1-year STV 2-year STV 4-year STV 5-year STV Average 

Outcome 1 0.656 0.688 0.750 0.500 0.648 

Outcome 2 0.031 0.000 0.000 0.000 0.008 

Outcome 3 0.156 0.156 0.156 0.281 0.188 

Outcome 4 0.156 0.156 0.094 0.219 0.156 
Notes: This table presents the probability of each outcome for the forecasting encompassing test estimated by 
comparing the forecasts produced by nth-year STV indexes to the forecasts of other investor sentiment indexes 

which include the Baker and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), 

the University of Michigan Consumer Sentiment Index (MS), and the Conference Board Consumer Confidence 

Index (CCI). The description of each outcome is presented in Figure 4.1. The average probability of each 

outcome across different nth-year STV indexes is shown in the last column.  

Given that STV indexes constructed based on differing window lengths are good 

sentiment measures, as they produce more accurate forecasts as compared to other sentiment 

measures, the next task is to examine whether the benchmark (3-years moving window) STV 

index continues to outperform other nth-year STV indexes in the out-of-sample forecasts, as it 

did in the in-sample evaluation. The results relevant to this question are shown in the first row 

of each panel of Table 4.4. Whilst outcome 1 is favourable to nth-year STV indexes (as it 

implies that the benchmark STV index is dominated by the nth-year STV index), outcome 3 – a 

result opposite to outcome 1 – implies a superior forecasting performance of the benchmark 

STV. Aggregating the results from first rows across four panels, which totals 32 cases, we 

conclude that outcome 3 has a probability/frequency of 50%. However, outcome 1 only 

occurs in fewer than 10% of 32 cases. The high probability associated with outcome 3 

confirms that benchmark 3-years STV generally outperforms other STV indexes constructed on 

different window lengths in out-of-sample forecasts (in addition to its superior in-sample 

predictive power as documented in Table A. 1).  

In summary, the comparison between nth-year STV indexes and other investor sentiment 

measures lends further support to our approach of allowing the loading of each sentiment 

proxy to vary over time when constructing the investor sentiment index, as STV indices based 

on time-varying nature of their composite proxies generally outperform their competitors in 

the out-of-sample context. Furthermore, the forecasting performance of STV is robust to the 
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choice of various window lengths, in that STV indices computed over widows of one to five 

years all seem to outperform alternative sentiment proxies in out-of-sample forecasting tests. 

Last but not least, the outperformance of our benchmark STV index over nth-year STV indexes 

indicates that the 3-year window length is optimal in its ability to reflect the time-varying 

ability of each index component to empirically capture unobservable investor sentiment.  

4.4.2 The OOS predictive power of STV vs. economic predictors 

Having empirically established that STV is the superior sentiment measure, this sub-

section turns the attention to the key question of this chapter – is sentiment or fundamentals 

the main driver of the stock market movements? This question can be answered through 

examining whether information contained in sentiment, as captured by STV, is unique and can 

be utilised to improve forecasts of future stock returns, above and beyond of information 

contained by popular economic predictors. To the extent that the US stock market is expected 

to be driven mostly by news about fundamentals, STV, the proxy of irrational sentiment, is not 

necessarily expected to have higher forecasting power than every single economic variable 

considered; it might contain useful additional information about future stock returns only in 

comparison to a few economic predictors and still be considered a useful addition to the 

forecaster’s toolbox. The results of forecasting performance of STV index against economic 

predictors based on 2

OSR  and MSFE-adjusted statistics are presented in Table 4.6. For the ease 

of comparison, the results of STV are presented in the first row, followed by the performances 

for different economic predictors from second row onwards.  

The results in Table 4.6 demonstrate that most economic predictors underperform 

HMM, given that they produce negative 2

OSR  with large magnitudes and insignificant MSFE-

adjusted statistics. This result is consistent with previous literature which finds that economic 

predictors have limited predictive power out-of-sample (Welch and Goyal, 2008; Rapach, 

Strauss and Zhou, 2010; Rapach et al., 2016). Generally, STV outperforms most economic 

predictors when the forecast accuracy is compared between the forecasts of individual 

predictors and HMM. However, some exceptional results can be seen for DP, OG and CAY. 

While DP is a good predictor over the short-term period with positive 2

OSR values and 

significant MSFE-adjusted statistics can be observed from 1-month up to 6-month forecast, 

CAY forecasts well the excess market returns over longer horizons. The last row 

demonstrates that the diffusion index of economic predictors (PC-ECON) outperforms HMM
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Table 4.6: Out-of-sample forecasting results: STV index vs. economic predictors 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

STV -0.52 0.02 -0.32 1.81** -0.41 0.64 1.04 1.40* 2.43 1.65* 0.59 1.31* -0.41 0.49 -4.58 -0.57 

DP 1.05 1.89** 3.95 2.02** 3.22 1.36* -4.07 1.01 -13.14 0.59 -41.15 -0.19 -63.54 -0.4 -89.8 -0.1 

DY -0.94 0.17 2.19 1.41* 0.55 1.16 -4.36 0.91 -12.92 0.68 -44.64 -0.31 -68.58 -0.55 -113.97 -0.39 

EP -5.9 -0.77 -7.3 -0.33 -16.36 -0.65 -26.9 -0.6 -29.43 -0.77 -50.14 -1.44 -75.7 -1.37 -107.94 -2.02 

DE -0.02 0.71 0.44 1.12 -7.91 -0.13 -4.91 0.27 -3.66 0.46 -35.16 0.12 -44.21 0.06 8.57 1.79** 

SVAR -6.32 -0.2 -30.03 -0.93 -82.68 -0.06 -95.89 0.06 -46.11 0.9 -15.26 0.88 -15.61 -0.06 -28.01 -1.09 

BM -0.52 -0.7 -0.4 0.95 -2.18 0.96 -10.4 0.3 -19.52 0.05 -36.97 -0.74 -46.85 -1.38 -83.9 -1.21 

NTIS -0.48 1.15 -2.44 1.05 -4.61 1.25 -11.86 1.12 -15.07 1.27 -18.43 1.28 -20.26 1.22 -57.59 0.63 

TBL -1.08 0.04 -1.77 0.34 -5.16 -0.33 -4.93 -0.08 0.16 0.73 5.87 0.96 7.4 0.97 -41.8 -1.49 

LTY -1.65 -0.17 -1.24 1.09 -3.77 0.47 -1.18 0.88 -0.3 0.95 -9.66 0.57 -25.29 -0.25 -59.05 0.35 

LTR -8.81 0.19 -1.77 -0.19 0.05 0.7 1.06 0.98 3.31 1.62* 1.74 0.84 2.44 1.09 -2.29 -0.76 

TMS -1.07 -0.01 -3.59 -0.14 -5.93 -1.2 -1.73 0.59 -1.47 0.56 0.19 0.69 21.81 2.21** 6.96 1.51* 

DFY -2.49 0.37 -14.4 0.23 -39.17 -0.35 -73.41 -0.71 -44.18 -0.71 -29.47 -1.24 -14.85 -1.54 -19.37 -1.19 

DFR -16.41 0.48 -9.55 -1.1 -3.76 -0.59 -0.46 0.52 -0.65 0.36 -1.22 0.33 0.53 0.45 -1.69 -0.39 

INFL -0.13 0.23 -1.55 -0.39 -1.06 -0.36 2.65 1.52* 2.26 1.15 -0.37 0.11 -2.61 -0.29 -8.31 -1.31 

OG -0.38 1.34* -1.30 1.80** -1.64 1.94** -3.28 2.12** -9.45 1.79** -83.60 0.85 -105.82 0.69 46.89 2.41*** 

SCR -3.19 0.27 -15.93 -0.36 -55.72 -0.83 -81.49 -1.08 -83.11 -1.34 -62.45 1.06 -248.32 1.22 -96.65 1.13 

CAY -0.26 1.22 -4.8 -0.2 2.07 1.84** 4.08 2.51*** 8.43 3.33*** 17.91 2.13** 16.82 2.03** -10.92 1.43* 

PC-ECON -1.84 -1.14 -1.55 0.05 1.82 1.81** 5.48 1.79** 4.65 1.59* -43.59 1.14 -61.53 0.88 -73.77 0.41 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of the time-varying weighted investor 

sentiment index (STV), and economic predictors as listed in Section 4.3. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on Newey-West 

t-statistic for MSFE-adjusted test. The in-sample period stretches from December 1968 to November 1983 and out-of-sample period from December 1983 to December 2014. 
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Table 4.7: Forecast encompassing tests: STV vs. economic predictors 

λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome

DP 1.00** 0.00 0.78*** 0.22 0.79* 0.21 0.39 0.61** 0.18 0.82*** 0.00 1.00** 0.00 1.00** 0.02 0.98**

[2.10] [-0.28] [2.50] [0.92] [1.59] [0.65] [1.17] [1.86] [0.65] [2.49] [-0.14] [2.28] [-0.17] [1.89] [0.07] [1.74]

DY 0.46 0.54* 0.76** 0.24 0.56* 0.44 0.36 0.64** 0.20 0.80*** 0.00 1.00** 0.00 1.00* 0.00 1.00*

[0.82] [1.35] [2.03] [0.98] [1.41] [1.22] [1.08] [2.11] [0.72] [2.82] [-0.22] [1.89] [-0.28] [1.53] [-0.22] [1.41]

EP 0.00 1.00** 0.17 0.83* 0.00 1.00 0.00 1.00 0.00 1.00* 0.00 1.00** 0.00 1.00* 0.00 1.00*

[-0.55] [1.73] [0.39] [1.32] [-0.19] [1.03] [-0.17] [1.21] [-0.29] [1.58] [-1.06] [2.05] [-0.98] [1.38] [-1.43] [1.41]

DE 0.61 0.39 0.56* 0.44* 0.12 0.88 0.22 0.78* 0.24 0.76* 0.03 0.97* 0.06 0.94* 0.57 0.43

[1.14] [0.70] [1.52] [1.29] [0.26] [1.19] [0.45] [1.36] [0.38] [1.39] [0.19] [1.59] [0.23] [1.60] [1.21] [0.78]

SVAR 0.01 0.99** 0.04 0.96 0.04 0.96 0.04 0.96 0.07 0.93 0.15 0.85 0.10 0.90* 0.00 1.00

[0.01] [1.97] [0.45] [1.19] [0.90] [1.06] [0.88] [1.07] [1.17] [1.07] [0.91] [1.17] [0.92] [1.41] [-0.45] [1.06]

BM 0.62 0.38 0.50* 0.50** 0.41 0.59* 0.17 0.83** 0.04 0.96** 0.00 1.00** 0.00 1.00** 0.00 1.00

[0.75] [0.75] [1.57] [1.88] [1.17] [1.58] [0.60] [1.75] [0.17] [1.91] [-0.47] [1.75] [-0.84] [1.90] [-0.81] [0.00]

NTIS 0.51** 0.49* 0.42* 0.58** 0.42 0.58* 0.33 0.67** 0.33 0.67** 0.32* 0.68 0.30* 0.70* 0.14 0.86

[1.65] [1.62] [1.40] [1.84] [1.23] [1.38] [1.16] [1.67] [1.28] [1.80] [1.55] [1.23] [1.29] [1.33] [0.68] [1.28]

TBL 0.31 0.69* 0.40 0.60* 0.20 0.80 0.20 0.80* 0.38 0.62* 0.73 0.27 0.99 0.01 0.00 1.00

[0.74] [1.51] [1.05] [1.59] [0.33] [1.15] [0.51] [1.47] [0.87] [1.46] [0.77] [0.64] [0.80] [0.17] [-0.89] [1.25]

LTY 0.18 0.82** 0.45* 0.55** 0.33 0.67* 0.43 0.57* 0.42 0.58** 0.34 0.66** 0.07 0.93** 0.12 0.88***

[0.61] [2.23] [1.62] [2.19] [0.81] [1.39] [1.09] [1.52] [1.00] [1.97] [0.60] [2.07] [0.02] [2.06] [0.65] [2.39]

LTR 0.08 0.92*** 0.36 0.64** 0.60 0.40 0.50* 0.50* 0.60** 0.40 0.66 0.34 0.92* 0.08 1.00* 0.00

[0.42] [4.55] [1.09] [2.01] [1.21] [0.78] [1.41] [1.46] [1.73] [1.09] [0.92] [0.53] [1.43] [0.15] [1.39] [-0.02]

TMS 0.30 0.70* 0.26 0.74*** 0.00 1.00** 0.31 0.69** 0.20 0.80** 0.42 0.58* 1.00* 0.00 0.82*** 0.18

[0.64] [1.31] [0.78] [2.42] [-0.18] [1.84] [0.75] [1.68] [0.40] [1.79] [0.62] [1.38] [1.53] [-0.99] [3.18] [0.29]

DFY 0.36 0.64* 0.21 0.79 0.01 0.99 0.00 1.00 0.00 1.00 0.00 1.00* 0.00 1.00** 0.00 1.00

[0.67] [1.61] [0.59] [1.25] [0.00] [0.97] [-0.39] [1.01] [-0.45] [1.06] [-0.77] [1.29] [-0.47] [1.92] [-0.41] [1.10]

DFR 0.12 0.88*** 0.00 1.00*** 0.10 0.90** 0.34 0.66 0.19 0.81* 0.31 0.69 0.61 0.39 1.00** 0.00

[0.60] [2.99] [-0.05] [2.61] [0.28] [1.73] [1.05] [1.93] [0.44] [1.65] [0.46] [0.72] [1.27] [0.75] [2.06] [-0.26]

INFL 0.73 0.27 0.35 0.65** 0.37 0.63 0.68** 0.32 0.48 0.52* 0.35 0.65 0.19 0.81* 0.15 0.85

[1.10] [0.38] [0.91] [2.15] [0.71] [1.16] [2.30] [1.07] [1.26] [1.29] [0.46] [0.98] [0.42] [1.60] [0.26] [1.06]

OG 0.57** 0.43* 0.53** 0.47** 0.57** 0.42** 0.54** 0.46** 0.44* 0.56** 0.17 0.83* 0.21 0.79* 0.93* 0.07

[1.71] [1.55] [1.98] [2.51] [2.07] [1.87] [2.07] [1.76] [1.50] [1.82] [0.66] [1.44] [0.57] [1.34] [1.58] [0.27]

SCR 0.24 0.76* 0.04 0.96* 0.00 1.00 0.00 1.00 0.00 1.00 0.17 0.83 0.15 0.85 0.30 0.7

[0.52] [1.51] [0.13] [1.41] [-0.50] [1.03] [-0.83] [1.05] [-1.02] [1.14] [1.16] [1.01] [0.97] [0.98] [0.90] [0.84]

CAY 0.57* 0.43 0.27* 0.73** 0.71** 0.29 0.66*** 0.34 0.69*** 0.31 0.81** 0.19 0.71** 0.29 0.46* 0.54

[1.54] [1.19] [1.30] [2.13] [2.11] [0.84] [2.44] [1.13] [2.52] [0.96] [2.11] [0.82] [1.79] [0.90] [1.51] [0.92]

PC-ECON 0.00 1.00* 0.39 0.61* 0.66** 0.34 0.68** 0.32 0.55* 0.45* 0.25 0.75* 0.24 0.76* 0.18 0.82***

[-0.21] [1.56] [0.98] [1.53] [1.79] [0.85] [1.95] [0.99] [1.60] [1.67] [0.93] [1.31] [0.68] [1.55] [0.38] [2.81]

3 3

1 1 3 3 2 1 1 1

3 2 3 3 3 3

1 3

1 1 4 4 4 4 4 4

2 2 2 2 2 1

4 3

4 1 4 3 1 4 1 4

1 1 1 1 1 4

3 3

1 4 4 4 4 1 1 4

1 1 1 1 1 1

1 1

1 1 4 2 3 4 3 3

1 2 1 1 1 1

2 4

1 1 4 1 1 4 4 4

2 2 1 1 1 3

1 4

4 2 1 1 1 1 1 4

1 4 4 4 4 4

1 1

4 2 4 1 1 1 1 4

1 1 4 4 1 1

1

1 3 3 1 1 1 1 1

h = 36 h = 60

3 3 3 1 1 1 1

h = 1 h = 3 h = 6 h = 9 h = 12 h =24

 
Notes: This table presents the forecast encompassing tests results of the time-varying weighted investor sentiment index (STV) against economic predictors (as listed in Section 4.3). λ 

represents the optimal weight associated with the competing forecast. The forecast based on STV is treated as the given forecast in the test 1 and as the competing forecast in test 2. 

The values in the brackets are MDM test statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels,  respectively. The in-sample period ranges from 

December 1968 to November 1983 and out-of-sample period from December 1983 to December 2014. 
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substantially beyond 3-month forecast horizon, but its predictive performance worsens after 

the 12-month forecast horizon.  

Having examined the forecast accuracy of each predictor against HMM, the predictive 

performance of the new investor sentiment index, STV, against those economic predictors is 

presented next. The corresponding forecast encompassing results are presented in Table 4.7. 

As in Section 4.4.1, STV forecast is treated as the given forecast in test 1 and as the competing 

forecast in test 2. Based on tests 1 and 2, the possible outcome is reported in Table 4.7 in the 

column denoted “Outcome” for each forecast horizon. The outcome 1, which shows that STV 

dominates an economic predictor, for each pairing is particularly of interest. 

As can be seen in Table 4.7, most pairings yield outcome 1 for different economic 

predictors across different forecast horizons, suggesting that most economic predictors are 

dominated by STV in terms of their ability to forecast future stock market returns. Specifically, 

this result occurs in 70 cases out of 144 pairings (i.e. about 50%) at 10% significance level. 

Furthermore, the comparison between STV and PC-ECON yields outcome 1 in more than half 

of the forecast horizons. On the other hand, PC-ECON forecast encompasses STV forecast, 

represented by outcome 3, only at horizons h = 6 and h = 9. As PC-ECON has been found in 

previous literature to predict stock returns better than individual economic predictors do, the 

outperformance of STV against PC-ECON is especially supportive of the expectation that STV 

has incremental forecasting power beyond those economic predictors (fundamental 

information).  

Overall, these results show that the STV index is a strong predictor of excess market 

returns and that it contains unique, non-fundamental systematic component, given its 

outstanding performance against economic predictors. The findings demonstrate that stock 

market returns are significantly driven by investor irrationality, and this irrational sentiment is 

well captured by the STV index proposed here.  

4.4.3 The economic value of STV 

Given that STV performs well statistically, the next question is whether it adds 

economic value to investors. Campbell and Thompson (2008) show that even as small 2

OSR  of 

0.43% generates economic value to investors, and hence return forecasts are worthwhile. 

Therefore, this section explores the economic value of the STV-based forecasts in a realistic, 

out-of-sample framework, presenting a different way to evaluate the relative importance of 
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investor sentiment in driving the stock market movements. If investor sentiment plays a 

greater role on the stock market fluctuations, STV-based forecasts should be of valuable to the 

investors.  

Results for economic value of forecasts are presented in Table 4.8, the CER gain and 

Sharpe ratio are presented side by side and we rank the economic performance of each 

predictor based on their CER gain, which is called CER ranking, at each forecast horizon. The 

average of CER rankings for each predictor across different forecast horizons is denoted as 

mean rank. Two mean ranks are computed: mean rank (all) is the average of CER rankings 

across all forecast horizons and mean rank ( 24h  ) is the average of CER rankings from 1- to 

24-month forecast horizons. Finally, a final rank is assigned to each predictor according to the 

mean rank value.  

Panels A and B report the portfolio performance for an investor with the risk-aversion 

coefficient (γ) of 1 and 3,64 respectively. Panel A demonstrates that STV consistently generates 

sizeable CER gains, ranging from 0.15% to 1.14%, to investors from 1-month up to 24-month 

forecast horizon, except for the 9-month forecast horizon. This indicates that investors are 

willing to pay a portfolio management fee of up to 1.14% to exploit the information contained 

in the STV forecast. Meanwhile, SBW also produces greater CER than HMM model in five out 

of eight forecast horizons as shown by the positive CER gain. Taking a closer look at the 

magnitudes of CER gains, however, reveals that SBW has lower CER gains than STV for most 

prediction horizons. Hence, once again the findings show that constructing the sentiment 

index in a way which allows for time-varying contributions of its components, as in STV, helps 

to improve the way the original approach by Baker and Wurgler (2006) captures the 

underlying sentiment. 

At 1- and 3-month forecast horizons, SPLS delivers the highest CER gains, which are 

2.96% and 3.52%, respectively. Further analysis, however, shows that the CER gains of SPLS 

is affected greatly beyond 6-month forecast horizon and SPLS underperforms STV in term of

 
64 Previous studies have chosen a risk-aversion coefficient in the range of 1 to 3 (e.g. Campbell and Thompson, 

2008; Dangl and Halling 2012; Dasgupta, 2008; Mehra and Sah, 2002; Rapach et al., 2016). Mehra and Prescott 

(1985) and Weil (1989) argue that even though a higher risk aversion coefficient produces a higher equity 

premium, a very high risk aversion coefficient generates another puzzle, the so called ‘risk-free rate puzzle’, 

since the observed low risk-free rate does not justify the model’s high risk-free rate when investors are highly 

risk averse. Mehra and Prescott (1985) also mention that most studies documented an estimate of 1.0 – 2.0 for γ. 

Hence, the risk aversion coefficients, γ, of 1 and 3 are opted to represent a less risk averse investor and a more 

risk-averse investor, respectively.  



97 

 

Table 4.8: Out-of-sample CER gains and Sharpe ratios for a mean-variance investor 

CER 

gain
SR 

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

HMM - 1.33 - 1.00 - 0.88 - 0.78 - 0.71 - 0.57 - 0.50 - 0.36

S
TV 0.28 1.40 8 1.14 1.07 2 0.84 0.92 1 -0.08 0.76 9 0.87 0.73 2 0.15 0.56 3 -2.51 0.45 17 -1.64 0.36 12 6.75 2 4.17 1

S
BW 0.78 1.43 6 -1.00 0.99 15 -0.67 0.85 8 0.20 0.78 7 0.28 0.72 4 0.03 0.58 4 0.11 0.47 6 -4.30 0.31 21 8.88 6 7.33 4

S
PLS 2.96 1.55 1 3.52 1.18 1 0.13 0.89 4 -1.40 0.75 14 -1.07 0.69 12 -2.99 0.53 18 -5.28 0.43 22 1.53 0.38 7 9.88 9 8.33 6

MS -2.02 1.26 20 -2.30 0.92 21 -3.29 0.78 21 -3.33 0.69 23 -1.51 0.67 15 -2.40 0.53 14 -1.81 0.48 16 -2.03 0.34 13 17.88 21 19.00 21

CCI -2.22 1.25 22 -1.69 0.96 18 -2.99 0.80 20 -2.56 0.72 20 -2.43 0.64 19 -0.96 0.56 9 -0.70 0.49 11 -2.03 0.34 14 16.63 20 18.00 20

DP 2.39 1.51 2 1.10 1.11 3 -1.39 0.87 12 -2.11 0.73 17 -2.27 0.65 18 -2.70 0.53 16 -0.88 0.49 13 0.97 0.38 9 11.25 12 11.33 11

DY -1.53 1.32 19 -0.37 1.04 13 -1.55 0.86 14 -1.82 0.74 16 -1.39 0.68 14 -2.88 0.53 17 -0.93 0.49 14 0.93 0.38 10 14.63 18 15.50 18

EP -0.25 1.35 10 1.07 1.08 4 -2.20 0.84 17 -1.20 0.79 12 -2.65 0.66 20 -4.67 0.47 23 -6.38 0.41 23 1.88 0.39 5 14.25 16 14.33 16

DE 0.79 1.41 5 -0.06 1.01 9 -1.78 0.83 15 -1.21 0.74 13 -0.12 0.71 8 -1.32 0.54 12 0.37 0.46 5 2.89 0.38 2 8.63 4 10.33 10

SVAR -1.05 1.34 14 -2.17 0.92 19 -0.93 0.86 9 -2.18 0.73 18 0.10 0.71 6 -0.47 0.56 7 -3.91 0.43 20 -2.67 0.33 19 14.00 15 12.17 14

BM -1.15 1.29 15 -2.92 0.88 23 -2.43 0.82 19 -2.56 0.72 19 -2.70 0.64 21 -3.45 0.51 20 -3.74 0.45 19 -4.36 0.32 22 19.75 23 19.50 23

NTIS -0.03 1.38 9 -2.57 0.92 22 0.74 0.89 2 0.83 0.78 1 0.06 0.67 7 -0.17 0.56 5 -1.26 0.45 15 1.74 0.38 6 8.38 3 7.67 5

TBL -1.23 1.31 17 -1.18 0.99 16 -3.89 0.76 23 -2.86 0.71 21 -1.76 0.67 16 -0.76 0.57 8 -0.68 0.49 10 2.31 0.39 4 14.38 17 16.83 19

LTY -0.70 1.34 13 -2.21 0.93 20 -3.79 0.75 22 -3.17 0.70 22 -2.18 0.66 17 -4.63 0.50 22 -0.12 0.46 7 -5.13 0.33 23 18.25 22 19.33 22

LTR -3.08 1.19 23 -0.99 0.97 14 -0.50 0.85 7 0.28 0.78 5 0.12 0.71 5 -0.24 0.57 6 -0.25 0.49 8 -2.54 0.33 16 10.50 11 10.00 9

TMS -1.22 1.28 16 -0.37 0.99 12 -0.30 0.87 6 0.53 0.79 2 0.69 0.73 3 -1.67 0.53 13 -0.72 0.49 12 -0.85 0.35 11 9.38 7 8.67 7

DFY -1.52 1.36 18 0.56 1.07 7 -1.44 0.88 13 -0.40 0.78 10 -2.71 0.65 22 -4.40 0.50 21 -4.71 0.44 21 1.51 0.37 8 15.00 19 15.17 17

DFR 0.75 1.47 7 0.92 1.06 6 -1.22 0.84 10 0.27 0.78 6 -0.57 0.70 10 -3.18 0.52 19 0.53 0.50 4 -2.56 0.33 17 9.88 9 9.67 8

INFL 0.97 1.40 4 -0.27 0.99 11 0.09 0.88 5 0.46 0.78 4 -0.26 0.70 9 -1.05 0.56 10 -0.61 0.48 9 -2.62 0.33 18 8.75 5 7.17 3

OG -0.66 1.30 12 0.93 1.04 5 0.67 0.90 3 0.50 0.79 3 0.96 0.73 1 -1.17 0.56 11 0.67 0.52 3 4.42 0.39 1 4.88 1 5.83 2

SCR 1.28 1.44 3 0.40 1.06 8 -1.27 0.89 11 -1.53 0.75 15 -3.19 0.63 23 -2.65 0.53 15 -2.83 0.46 18 -2.33 0.34 15 13.50 14 12.50 15

CAY -0.26 1.32 11 -1.63 0.94 17 -1.85 0.80 16 -0.54 0.76 11 -1.31 0.62 13 1.21 0.57 1 5.67 0.61 1 -4.01 0.34 20 11.25 12 11.50 12

PC-ECON -2.03 1.23 21 -0.07 1.00 10 -2.23 0.83 18 0.11 0.79 8 -1.05 0.68 11 0.27 0.59 2 0.91 0.52 2 2.41 0.39 3 9.38 7 11.67 13

Panel A: γ = 1

Final 

ranking

Mean            

rank
Final 

ranking         

(all)

Mean     

rank        

(all)

h = 36 h = 60h = 1 h = 3 h = 6 h = 9 h = 12 h = 24

( 24)h  ( 24)h 
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Table 4.8 (Continued): 

CER 

gain
SR 

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

CER 

gain
SR

CER 

Ranking

HMM - 1.16 - 0.81 - 0.72 - 0.65 - 0.58 - 0.49 - 0.44 - 0.33

S
TV 1.76 1.32 5 1.92 0.95 8 1.37 0.81 3 0.41 0.68 4 1.61 0.67 3 1.23 0.51 3 -0.75 0.42 10 -4.54 0.32 19 6.88 2 4.33 1

S
BW 2.14 1.36 4 1.36 0.90 14 0.35 0.75 9 0.72 0.70 3 0.92 0.64 5 -1.62 0.50 8 0.53 0.46 6 -5.61 0.29 21 8.75 6 7.17 5

S
PLS 5.07 1.57 1 5.37 1.13 1 1.55 0.88 2 -0.76 0.71 11 -1.40 0.63 11 -5.03 0.42 21 -6.63 0.36 22 -1.13 0.33 10 9.88 7 7.83 6

MS -0.05 1.15 20 0.51 0.85 17 -2.01 0.70 17 -2.95 0.62 18 -4.08 0.58 17 -3.54 0.49 17 -2.75 0.43 12 -0.73 0.34 6 15.50 19 17.67 21

CCI -0.35 1.12 22 0.31 0.86 18 -2.73 0.72 21 -2.36 0.66 17 -3.38 0.63 16 -2.13 0.53 9 -5.10 0.49 18 0.35 0.34 4 15.63 20 17.17 19

DP 2.78 1.51 2 3.65 1.04 2 -3.66 0.78 22 -5.98 0.64 22 -6.66 0.55 23 -3.66 0.51 18 -4.85 0.48 16 -0.77 0.38 7 14.00 17 14.83 18

DY 0.40 1.20 14 2.06 0.94 6 -3.92 0.77 23 -5.99 0.63 23 -5.84 0.58 22 -3.54 0.53 16 -4.27 0.48 14 -1.51 0.38 11 16.13 21 17.33 20

EP 0.28 1.19 16 2.21 0.95 5 0.82 0.81 7 -0.74 0.69 10 -1.38 0.57 10 -5.60 0.38 22 -3.24 0.40 13 1.21 0.37 3 10.75 8 11.67 12

DE 0.96 1.26 12 1.94 0.96 7 1.25 0.80 4 0.29 0.68 5 1.09 0.64 4 -0.49 0.48 6 2.37 0.43 2 3.49 0.35 2 5.25 1 6.33 3

SVAR 1.19 1.27 10 -1.69 0.72 23 -0.17 0.74 10 -2.24 0.61 16 -0.59 0.61 9 -0.67 0.48 7 -1.64 0.40 11 -2.43 0.31 15 12.63 14 12.50 14

BM -0.37 1.11 23 0.13 0.85 20 -2.39 0.81 19 -4.25 0.69 21 -4.85 0.60 19 -3.71 0.49 19 -5.64 0.45 19 -4.85 0.31 20 20.00 23 20.17 23

NTIS 0.98 1.26 11 0.29 0.87 19 3.72 0.84 1 2.59 0.71 1 3.74 0.66 1 1.97 0.53 2 -0.08 0.41 9 -3.88 0.36 18 7.75 3 5.83 2

TBL 1.20 1.28 9 1.61 0.91 11 -1.40 0.80 15 -2.02 0.70 15 -4.54 0.59 18 -4.64 0.51 20 -6.79 0.47 23 -0.94 0.34 9 15.00 18 14.67 17

LTY 1.24 1.28 8 0.78 0.86 16 -2.70 0.76 20 -3.96 0.68 20 -4.94 0.60 20 -7.57 0.48 23 0.34 0.38 8 -11.78 0.33 23 17.25 22 17.83 22

LTR -0.01 1.16 19 -0.46 0.81 21 0.48 0.73 8 -0.29 0.66 9 -0.35 0.61 8 -0.27 0.50 4 0.37 0.44 7 -2.60 0.31 16 11.50 12 11.50 11

TMS 0.60 1.23 13 1.42 0.93 13 -1.19 0.74 13 -0.27 0.70 8 -0.02 0.64 6 -0.47 0.48 5 1.76 0.46 3 0.21 0.34 5 8.25 5 9.67 7

DFY 0.05 1.16 18 1.59 0.91 12 0.85 0.77 6 0.24 0.72 6 -0.26 0.63 7 -3.05 0.44 14 -4.46 0.38 15 -1.60 0.32 12 11.25 11 10.50 8

DFR 2.35 1.37 3 1.74 0.93 10 -1.59 0.68 16 -0.83 0.66 12 -1.59 0.61 12 -2.81 0.45 13 0.81 0.43 5 -3.29 0.31 17 11.00 9 11.00 9

INFL 0.38 1.21 15 -0.52 0.80 22 -0.97 0.74 12 0.15 0.70 7 -2.25 0.61 15 -2.15 0.49 10 1.17 0.44 4 -1.61 0.32 13 12.25 13 13.50 15

OG 1.72 1.32 6 2.31 0.99 4 -1.34 0.87 14 -1.40 0.78 14 -1.90 0.70 13 -3.22 0.55 15 -6.34 0.48 21 5.53 0.37 1 11.00 9 11.00 9

SCR 1.42 1.29 7 2.51 0.97 3 -0.86 0.83 11 -3.57 0.66 19 -5.65 0.55 21 -2.72 0.51 12 -6.32 0.47 20 -1.82 0.34 14 13.38 15 12.17 13

CAY 0.23 1.19 17 0.84 0.89 15 1.10 0.78 5 1.88 0.74 2 2.36 0.64 2 4.15 0.56 1 10.75 0.64 1 -9.81 0.34 22 8.13 4 7.00 4

PC-ECON -0.20 1.14 21 1.79 0.93 9 -2.11 0.86 18 -0.91 0.79 13 -2.03 0.68 14 -2.15 0.57 11 -4.98 0.50 17 -0.86 0.38 8 13.88 16 14.33 16

Mean     

rank        

(all)

Final 

ranking         

(all)

Mean            

rank

Final 

ranking

h = 6 h = 9 h = 12 h = 24 h = 36 h = 60

Panel B: γ = 3

h = 1 h = 3

( 24)h  ( 24)h 

 
Notes: This table reports the annualized certainty equivalent return (CER) gain (%) and the Sharpe ratio (SR) of portfolios formed based on excess market return forecasts 
constructed using different investor sentiment measures and economic predictors on a rolling window basis. Panel A and B report results for an investor with a mean-variance utility 

function with a coefficient of risk aversion of 1 and 3, respectively. Mean rank (all) represents the average ranking of the economic performance of each predictor across eight 

forecast horizons; whereas mean rank (h ≤ 24) is the average ranking of each predictor from 1-month up to 24-month forecast horizons. The final ranking of each predictor is 

determined based on their mean rank across different forecast horizons. Investor is assumed to rebalance the portfolio at a frequency similar to the forecast horizon. The proportion of 

wealth invested equities is restricted to be between 0 and 1.50. The out-of-sample period stretches from January 1985 until December 2014. 
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CER gains beyond 3-month forecast horizon, except for h = 60. MS and CCI perform the 

worst among all sentiment measures since the portfolio return does not improves by using 

their forecasts in lieu of HMM forecasts. Overall, the comparison among investor sentiment 

measures shows that STV performs better than most sentiment measures in delivering the real 

benefits to a mean-variance investor with a risk-aversion coefficient of one.  

As for the economic predictors, there is only weak evidence of CER gains for most of 

them. OG appears to be the best return predictor as it consistently generates positive CER 

gains beyond 1-month forecast horizon, other than 24-month forecast horizon. 

When a higher risk aversion coefficient of 3 (panel B) is assumed, the STV stands out 

as the superior sentiment measure which consistently delivers positive CER gains up to 24-

month forecast horizon. It is worth noting that the annual portfolio management fees an 

investor is willing to pay to gain access to the forecast based on  STV is higher in panel B (i.e. 

ranging from 0.41% to 1.92%)  as compared to that in panel A, where risk aversion was lower 

(i.e. ranging from 0.15% to 1.14%). Also, comparing with the results in panel A reveals that 

STV experiences a great improvement in CER gains for an investor with a risk aversion 

coefficient of 3 across most forecast horizons. These findings imply that the more risk-averse 

an investor is, the more she or he is willing to pay for access to forecasts generated by the new 

investor sentiment index, STV. 

When risk aversion is higher (panel B), SPLS generates positive CER gains over short-

term forecasts of only up to 6-month horizon with the highest CER gains at 1- and 3-month 

forecast horizons (5.07% and 5.37%, respectively). These findings again confirm that SPLS 

predicts stock market returns well only over the short-run period. In line with the results 

shown in panel A, SBW, although producing positive CER gains for most forecast horizons, 

generally has lower CER gains than STV. MS and CCI are shown to provide positive CER 

gains to investors only occasionally and hence are ranked as the worst predictors among all 

investor sentiment measures.  

Out of 17 individual economic predictors, only three of them, namely DE, NTIS and 

CAY, deliver positive CER gains over half of the forecast horizons. Surprisingly, the 

diffusion index of all economic predictors (PC-ECON) does not provide positive CER gains 

for most forecast horizons when 3= .  

Since most predictors have their economic performance affected for long-term 

forecasts, two different final rankings are computed: (1) “final ranking (all)” accounts for 
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CER ranking across all forecast horizons, whereas (2) “final ranking ( 24h  )” excludes the 

CER ranking in 36- and 60-month forecast horizons. Both final rankings demonstrate that STV 

delivers consistent results across horizons in panels A and B. Specifically, STV ranks first in 

both panels when 36- and 60-month forecasts have been excluded. Meanwhile, it ranks 

second in both panels when CER gains across all forecast horizons are taken into account. 

Other investor sentiment measures and economic predictors, however, do not produce 

consistent rankings across horizons in both panels. These results suggest that STV can 

consistently deliver economic gains to mean-variance investors across different forecast 

horizons and magnitudes of risk aversion.  

Regarding the Sharpe ratio, STV consistently produces higher values relatively to 

HMM across most forecast horizons, regardless of the degree of risk aversion. This finding is 

in line with the results for CER gains. MS and CCI generate poorer risk-adjusted returns to 

investors with the risk aversion coefficient of 1 as compared to HMM, but CCI has a higher 

Sharpe ratio than HMM where this coefficient is equal to 3. The result of economic predictors 

is analogous to that of CCI: economic predictors rarely generate Sharpe ratios higher than that 

of HMM when 1= , but perform better when 3= .  

Overall, the analysis of the economic value of forecasts strongly indicates that STV 

index outperforms competitor indices and economic predictors. Its superior performance does 

not only suggest that accounting for the dynamic structure in the contributions of sentiment 

components enhances the original Baker and Wurgler (2006) approach and captures the latent 

investor sentiment better than alternative proxies, but also confirms that investor sentiment 

has a relatively more important role for the stock market fluctuations.  

4.5 Robustness check and extension  

This section provides a robustness check to determine the relative importance of the 

investor sentiment or economic predictors to the fluctuations of stock market through 

examining the predictive performance of STV against economic predictors under the forecast 

restriction framework. The forecasting performance of STV against its sentiment counterparts is 

also conducted here to further affirm that STV is superior in capturing the unobservable 

investor sentiment even a different forecasting strategy is employed. Finally, an analysis of 

the predictive ability of various predictors over different states of business cycle is conducted. 
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4.5.1 Forecasting performance of STV indexes under restrictive regression 

For robustness analysis, this study considers the restrictive regression model as 

another forecasting strategy. In particular, the slope coefficient of a given predictor is 

restricted to a zero value when the model delivers a coefficient with unexpected sign (i.e. 

inconsistent with the sign suggested by theory). This sign restriction strategy has been 

employed in previous studies (see Campbell and Thompson, 2008; Rapach et al., 2010; 

Rapach and Zhou, 2013; Welch and Goyal, 2008) since the dynamic nature of stock market 

fluctuations might potentially lead to the parameter instability issue in the return predictive 

framework. Among these papers, however, only Campbell and Thompson (2008) present 

strong support to their hypothesis that restrictive regression improves forecasting 

performances of economic predictors. Other studies generally found mixed results for 

individual economic predictors. 

Given that investor sentiment tends to generate negative effects on future stock market 

returns, the coefficient of all investor sentiment indexes is restricted to be a non-positive value, 

otherwise, the coefficient value will be truncated to a zero value (i.e. the prediction reduces to 

HMM-based forecasts). As for economic predictors, the ‘correct’ sign of each predictor is 

determined following the work of Rapach et al. (2016)65. In particular, coefficient values of 

NTIS, TBL, LTY, INFL, OG and SCR are restricted to be less than zero; other predictors 

must have a non-negative coefficient. The PC-ECON is excluded from the restrictive 

regression analysis since PC-ECON is computed by extracting the common information from 

all economic predictors and its sign cannot be determined on a theoretical basis. The 

following sub-sections provide detailed discussion on the predictive performance of investor 

sentiment indexes and economic predictors under the sign restriction strategy.  

(I) STV vs. other investor sentiment indexes 

The predictive performance of STV against other sentiment indexes based on 2

OSR  and 

MSFE-adjusted statistic is shown in Table 4.9. As explained, these two statistics evaluate the 

difference in MSFE between a predictive regression model and HMM. A positive 2

OSR  and a 

significant MSFE-adjusted statistic indicate that forecasts produced by a given predictor is 

more accurate than HMM in terms of MSFE. As in Section 4.4, the results based mainly on

 
65 The literature review in Section 2.4 also gives an indication of the ‘correct’ coefficient sign for each predictor. 
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Table 4.9: Out-of-sample forecasting results under the restrictive regression framework: STV vs. other sentiment measures 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

STV -0.50 -0.05 -1.38 1.19 -0.73 0.55 1.04 1.40* 2.43 1.65* -0.15 1.29 0.63 0.70 -4.64 -0.60 

SBW 0.50 1.12 -2.28 -0.48 -4.65 -1.60 -4.63 -0.80 -4.40 -0.17 -16.89 -1.13 -11.30 -1.57 -19.77 -1.48 

SPLS 2.02 2.42*** 6.07 3.70*** 1.76 1.66** 0.67 1.25 0.83 1.07 -14.78 -0.92 -14.32 -1.28 -19.42 -1.83 

MS -0.66 -1.15 -2.19 -0.48 -3.83 -0.87 -5.59 -0.68 -11.08 -0.85 -13.12 -0.12 -19.81 0.06 -16.15 1.10 

CCI -1.11 0.02 -2.04 0.29 -2.23 0.45 -2.02 0.49 -0.02 0.91 3.87 1.41* 10.32 1.51* 19.10 1.75** 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of various investor sentiment measures: the time-varying 

weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS) 
and the Conference Board Consumer Confidence Index (CCI) under the restrictive regression framework. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on 
Newey-West t-statistic for MSFE-adjusted test. The in-sample period covers from December 1968 to November 1983 and out-of-sample period covers from December 1983 to December 2014. 

 

Table 4.10: Forecast encompassing tests under the restrictive regression framework: STV vs. other sentiment measures  

λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome

S
BW

0.81* 0.19 0.40 0.60** 0.00 1.00** 0.00 1.00*** 0.00 1.00*** -0.75 1.75 0.00 1.00*** 0.00 1.00

[1.63] [0.39] [1.10] [2.08] [-0.24] [2.29] [-0.03] [2.80] [-0.20] [2.36] [-0.68] [1.20] [-1.43] [2.59] [-0.67] [1.21]

S PLS
1.00*** 0.00 0.96*** 0.04 0.63* 0.37 0.48 0.52* 0.43 0.57* 0.00 1.00 0.00 1.00* 0.00 1.00*

[2.71] [-0.40] [3.33] [0.17] [1.56] [1.03] [1.24] [1.38] [0.94] [1.29] [-0.32] [1.20] [-0.87] [1.44] -0.95 [1.44]

MS 0.46 0.54 0.46* 0.54** 0.20 0.80* 0.14 0.86* 0.00 1.00** 0.01 0.99 0.03 0.97* 0.41 0.59

[0.60] [0.96] [1.29] [2.04] [0.34] [1.64] [0.38] [1.62] [-0.40] [1.74] [0.06] [1.25] [0.10] [1.64] [0.98] [0.91]

CCI 0.35 0.65** 0.46* 0.54** 0.36 0.64* 0.29 0.71* 0.36 0.64* 0.61 0.39 0.70 0.30 0.81* 0.19

[0.73] [1.65] [1.64] [2.33] [0.96] [1.55] [0.74] [1.63] [0.74] [1.42] [1.13] [1.05] [1.03] [1.16] [1.42] [0.42]

h = 1 h = 3 h = 6 h = 9

4 2 1 1

h = 12 h =24 h = 36 h = 60

3 1 1 1 1 4 1 4

3 3 3 1 1 4 1 1

1 4 1 4

1 2 1 1 1 4 4 3

 
Notes: This table presents the forecast encompassing tests results of the time-varying weighted investor sentiment index (STV) against other investor sentiment measures: the Baker and Wurgler investor 
sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS) and the Conference Board Consumer Confidence Index (CCI) under the 
restrictive regression framework. λ represents the optimal weight associated with the competing forecast. The forecast based on STV is treated as the given forecast in the test 1 and as competing forecast 
in test 2. The values in the brackets are MDM test statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively. The in-sample period covers from December 1968 to 

November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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the MSFE-adjusted statistic since it adjusts for the noise forecasts produced by unrestricted 

models.  

Comparing the statistics in Table 4.9 and Table 4.2, the results show that the sign 

restriction, in general, does not seem to have great impact on the performance of investor 

sentiment measures in terms of the statistical significance of MSFE-adjusted statistics. For 

instance, the MSFE-adjusted statistic of STV remains significant at h = 12 after imposing the 

sign restriction. The similar observation is also seen from SPLS. In spite of that, SBW, SPLS, MS 

and CCI experience some improvements in the 2

OSR , albeit these improvements do not result in 

a significantly lower MSFE. Therefore, the forecast accuracy of other investor sentiment 

indexes relative to HMM does increase to a limited extent with the sign restriction strategy.  

In contrast, the 2

OSR  values for STV reduce slightly after imposing the coefficient sign 

restriction at certain forecast horizons, especially for the short-horizon of less than 9 months. 

The MSFE-adjusted statistic of STV also loses its significance at h = 3 and h = 24. These 

findings suggest that the sign restriction strategy leads to a mild reduction in the forecast 

performance of STV relative to HMM. As discussed in the literature, even though negative 

relationship between investor sentiment and future stock returns is commonly found in the 

literature, investor sentiment could have positive effect on future stock returns as well66. 

Therefore, STV could possibly capture well different effects of investor sentiment at different 

points in time and limiting the coefficient sign of STV to be a negative value over the entire 

estimation period does more harm than good to the forecasting performance of STV. The 

observed negative relationship between investor sentiment and future stock market returns in 

Section 3.4 could be due to that, on average, the negative effect of investor sentiment 

outweighs the positive effect of investor sentiment over the entire sample period.  

Next, Table 4.10 presents the forecast encompassing test result of investor sentiment 

measures corresponds to the restricted forecast. Similarly, the outcomes are retrieved from the 

encompassing test in both directions. Outcome 1 means that STV forecasts dominate the 

forecasts based on alternative sentiment measure and the opposite finding is represented by 

 
66 Negative sentiment-return relationship is observed as current high (low) sentiment drives contemporaneous 

stock prices above (below) its fundamental value, and stock returns will subsequently experience a reversal when 

the mispricing is corrected by arbitrageurs. In contrast, a positive sentiment-return relationship is perceived when 

the high contemporaneous stock prices resulted from a current favourable sentiment lift up further the investor 

sentiment level, resulting in further increase in expected returns, and the reverse holds.  
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outcome 3. Apart from these two extreme results, the forecasts of STV and another sentiment 

measure could provide complementary information to the combination forecast and this is 

shown by outcome 2. Hence, combining both forecasts in predicting excess market returns 

would be an ideal option. Finally, both sentiment measures capture similar and redundant 

information when outcome 4 is obtained.  

Table 4.10 shows that STV still stands out to be the best return predictors among all 

sentiment measures, in which the forecasts of STV encompass the forecasts of all other 

sentiment measures (i.e. outcome 1) for 53% of the total pairings, despite a slight drop in the 

predictive power of STV is observed. Contrarily, the reverse (outcome 3) happened for only 

about 16% of the total cases (5 out of 32 pairings). Particularly, the STV forecast encompasses 

SBW forecast from 3-month forecast horizon up to 36-month forecast horizon, except for h = 

24. However, the opposite finding is only seen at the monthly forecast. Combining forecasts 

of STV and SBW provides redundant information at forecast horizons of 24-month and 60-

month. Similarly, forecasts based on STV dominate forecasts of SPLS in half of the forecast 

horizons, which are h = 9, 12, 36, and 60. On the other hand, SPLS forecasts encompass STV 

forecasts only over the short-term horizons. Since the forecast performances of MS and CCI 

have been improved after restricting their coefficient signs, mixed results have been observed 

across different forecast horizons. Nevertheless, the fact that STV-based forecasts encompass 

forecasts produced by MS and CCI still dominates the comparison.  

As a whole, the results show that STV continues to generate lower forecast errors 

relative to other sentiment measures under the restrictive regression framework based on 

forecast encompassing test results. Furthermore, panel A of Figure 4.3 clearly illustrates that 

the predictive performance of STV  index is affected relatively less by the sign restriction 

strategy as compared to other sentiment measures since 2

OSR  values do not vary a lot after 

imposing the sign restriction on the coefficient across all forecast horizons, implying that STV 

consistently produces appropriate coefficient sign. Hence, STV remains to be the superior 

investor sentiment measure even after imposing the sign restriction.  
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Figure 4.3: The 2

OSR  statistics for each investor sentiment index across different forecast 

horizons 
This figure exhibits the 2

OSR  statistics for each investor sentiment index over the entire out-of-sample period. The 

solid (dotted) line denotes the 2

OSR  statistics for each investor sentiment index prior to (after) the implementation 

of sign restriction.  
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(II) STV vs. economic predictors 

The predictive performance of economic predictors against HMM as measured by 2

OSR  

and MSFE-adjusted statistic is presented in Table 4.11. The results of STV across different 

forecast horizons are presented in the first row for the ease of comparison.  

The table shows that most economic predictors have their 2

OSR  improved after 

imposing the sign restriction as compared to the statistics shown in Table 4.6. At the same 

time, the number of significant MSFE-adjusted statistic has seen an increase also across 

different economic predictors, with the most noticeable improvement can be seen from NTIS, 

TBL, LTY, TMS and OG. These findings suggest that restricting the coefficient sign leads to 

an improvement in the forecasting performance of economic predictors, which is consistent 

with the findings of Campbell and Thompson (2008) and Rapach and Zhou (2013). As 

discussed, the forecast accuracy of STV relative to HMM is, however, reduced slightly based 

on the 2

OSR  and MSFE-adjusted statistics. 

Therefore, the forecasting strategy that is useful to economic predictors may not be 

that useful to STV since both types of predictors convey different signals on future stock 

market returns. In view of this, other forecasting strategies that better suit to the sentiment 

measures could be explored in the future.   

Next, Table 4.12 examines the predictive performance of STV against economic 

predictors under the restrictive regression model based on the forecast encompassing test. As 

expected, the results show that the forecasting performance of STV relative to that of economic 

predictors are affected under the restrictive regression since forecasting performances of 

economic predictors have greatly improved after the application of sign restriction. Looking at 

the occurrence of outcome 1, the results show that forecasts of STV encompass forecasts of 

economic predictors in 26 cases out of total 136 pairings (or 19%), but the opposite has a 

probability of 32%. Nevertheless, STV is shown to have a better performance against DP, DY, 

EP and BM, with more outcome 1 as compared to outcome 3 are observed across different 

forecast horizons. Counting on outcome 1 and outcome 2 jointly gives us a total probability of 

0.31, approximates to that of the outcome 3 (i.e. 0.32). This shows that the inclusion of STV 

forecasts to optimal combination forecasts is still worthwhile as STV does provide 

complimentary information to economic predictors. 
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Table 4.11: Out-of-sample forecasting results under the restrictive regression framework: STV vs. economic predictors 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

STV -0.50 -0.05 -1.38 1.19 -0.73 0.55 1.04 1.40* 2.43 1.65* -0.15 1.29 0.63 0.70 -4.64 -0.60 

DP 1.81 2.71*** 3.95 2.02** 3.02 1.31* -3.60 1.03 -9.32 0.86 -14.42 0.89 -13.45 0.88 4.36 1.54* 

DY -0.74 0.29 2.42 1.47* 1.12 1.18 -2.26 1.07 -7.50 1.06 -9.48 0.99 -7.88 0.89 7.22 1.48* 

EP -5.69 -0.80 -6.90 -0.26 -16.43 -0.66 -26.90 -0.60 -30.25 -0.84 -46.18 -1.24 -75.51 -1.39 -91.23 -1.51 

DE -0.44 0.21 0.49 0.97 -2.27 0.22 0.18 0.78 5.46 1.29* -15.16 0.85 -21.67 1.05 13.13 1.87** 

SVAR -3.21 -1.01 -28.33 -0.63 -80.32 -0.07 -89.74 1.43* -45.69 1.01 -12.79 1.67** -12.11 0.02 -2.67 0.06 

BM -0.15 -0.41 -0.66 0.77 -2.05 0.98 -8.85 0.47 -15.42 0.38 -18.58 0.09 -20.79 -0.55 -40.77 -0.12 

NTIS -0.49 1.39* -1.42 1.52* -1.86 1.81** -2.59 1.50* -3.73 1.34* 1.16 1.16 0.11 1.01 -1.40 1.03 

TBL  -0.18 0.87 1.62 2.51*** 0.45 1.05 2.93 1.65* 5.80 1.63* 12.26 1.48* 12.36 1.35* -38.52 -1.49 

LTY  -0.63 0.65 0.01 1.77** 3.09 1.96** 4.72 1.56* 5.44 1.32* 0.96 0.78 -9.96 -1.02 -27.31 -1.29 

LTR -7.41 0.35 -1.80 -0.22 -0.06 0.59 1.59 1.19 3.46 1.74** 0.71 0.52 -0.60 -0.28 -0.33 -0.38 

TMS -0.65 0.17 -1.24 0.37 -1.51 0.00 1.57 1.55* 4.25 2.06** 3.76 1.33* 23.29 2.38*** 9.49 1.72** 

DFY -0.54 -0.02 -1.06 0.01 0.20 0.87 1.12 1.04 3.30 1.53* 0.32 0.30 -1.68 -0.45 -9.58 -0.68 

DFR -16.24 0.50 -0.01 0.43 -0.91 -1.08 1.53 1.40* 1.83 1.64* 2.03 0.98 3.54 1.40* -1.15 -0.41 

INFL -0.41 -0.38 -0.92 -0.15 0.45 0.84 2.18 1.48* 2.15 1.10 1.93 0.87 3.99 1.84** 0.85 1.03 

OG 0.56 1.86** 0.79 1.99** 3.65 2.01** 5.04 2.13** 5.98 2.34** -35.36 1.80** -47.05 1.48* 46.99 2.41*** 

SCR -0.13 0.02 -0.80 0.75 0.64 1.04 -1.42 0.26 -12.65 -0.68 -61.83 1.06 -249.46 1.21 -96.65 1.13 

CAY -0.08 -0.20 -1.15 0.53 1.17 1.55* 3.99 2.49*** 8.43 3.33*** 17.91 2.13** 16.82 2.03** -6.76 1.61* 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and MSFE-adjusted (Clark and West, 2007) statistic of the time-varying weighted investor 

sentiment index (STV) and economic predictors (as listed in Section 4.3) under the restrictive regression framework. *, ** and *** indicate statistical significance at 10%, 5% and 1% 
levels, respectively, based on Newey-West t-statistic for MSFE-adjusted test. The in-sample period covers from December 1968 to November 1983 and out-of-sample period covers 

from December 1983 to December 2014. 
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Table 4.12: Forecast encompassing tests under the restrictive regression framework: STV indexes vs. economic predictors 

λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome λ (1) λ (2) Outcome

DP 1.00*** 0.00 0.82*** 0.18 0.82* 0.18 0.41 0.59** 0.27 0.73** 0.30 0.70** 0.33 0.67*** 0.67 0.33*

[2.73] [-1.13] [2.75] [0.82] [1.57] [0.62] [1.19] [1.80] [0.92] [2.18] [0.78] [2.14] [0.67] [4.27] [1.07] [1.47]

DY 0.53 0.47 0.84*** 0.16 0.63* 0.37 0.42 0.58** 0.31 0.69*** 0.35 0.65** 0.37 0.63*** 0.72 0.28

[0.94] [1.24] [2.35] [0.72] [1.43] [1.02] [1.23] [1.87] [1.11] [2.37] [0.88] [2.07] [0.70] [5.59] [1.00] [1.10]

EP 0.00 1.00** 0.23 0.77 0.00 1.00 0.00 1.00 0.00 1.00* 0.00 1.00** 0.00 1.00* 0.00 1.00

[-0.49] [1.66] [0.50] [1.20] [-0.18] [1.03] [-0.17] [1.21] [-0.34] [1.61*] [-0.79] [1.89] [-1.05] [1.40] [-1.04] [1.13]

DE 0.50 0.50 0.65** 0.35 0.36 0.64 0.44 0.56 0.67* 0.33 0.27 0.73 0.26 0.74 0.60 0.40

[0.79] [0.70] [1.68] [0.99] [0.76] [0.96] [1.24] [1.14] [1.41] [1.03] [1.01] [1.15] [1.11] [1.15] [1.25] [0.71]

SVAR 0.00 1.00 0.07 0.93 0.04 0.96 0.06* 0.94 0.07 0.93 0.23* 0.77 0.10 0.90 0.71* 0.29

[-0.45] [0.96] [0.91] [1.13] [1.00] [1.03] [1.38] [1.03] [1.22] [1.07] [1.52] [1.06] [0.51] [1.12] [1.37] [0.45]

BM 0.83 0.17 0.56** 0.44* 0.44 0.56* 0.22 0.78* 0.13 0.87** 0.11 0.89 0.00 1.00* 0.05 0.95*

[1.06] [0.25] [1.77] [1.64] [1.24] [1.52] [0.76] [1.64*] [0.48] [1.70] [0.18] [1.28] [-0.33] [1.49] [0.16] [1.50]

NTIS 0.49** 0.51** 0.50** 0.50** 0.46** 0.54** 0.43* 0.57** 0.41 0.59** 0.53 0.47** 0.48 0.52** 0.72 0.28

[1.76] [1.71] [2.17] [2.14] [1.85] [1.97] [1.51] [2.25] [1.22] [2.09] [1.20] [1.94] [0.89] [1.92] [1.01] [0.89]

TBL 0.65* 0.35 0.83** 0.17 0.65 0.35 0.65* 0.35 0.74* 0.26 1.00 0.00 1.00 0.00 0.00 1.00

[1.34] [0.80] [2.23] [0.61] [1.25] [0.65] [1.50] [0.88] [1.38] [0.68] [1.18] [-0.58] [0.94] [-0.40] [-0.78] [1.02]

LTY 0.49* 0.51* 0.60*** 0.40** 0.79** 0.21 0.69* 0.31* 0.62 0.38** 0.52 0.48** 0.00 1.00 0.00 1.00

[1.33] [1.57] [2.36] [1.88] [1.89] [0.71] [1.58] [1.32] [1.19] [2.15**] [0.73] [1.79] [-0.37] [0.81] [-0.55] [0.95]

LTR 0.11 0.89*** 0.45* 0.55** 0.64* 0.36 0.57* 0.43 0.61* 0.39 0.62 0.38 0.29 0.71 1.00* 0.00

[0.57] [4.18] [1.29] [1.76] [1.35] [0.76] [1.38] [1.18] [1.41] [0.91] [0.86] [0.59] [0.31] [0.79] [1.40] [-0.65]

TMS 0.41 0.59 0.52* 0.48* 0.38 0.62 0.56* 0.44 0.67** 0.33 0.82 0.18 1.00* 0.00 0.90*** 0.10

[0.74] [0.94] [1.44] [1.47] [0.79] [1.01] [1.64] [1.14] [1.88] [0.85] [1.23] [0.82] [1.55] [-1.05] [6.01] [0.17]

DFY 0.65 0.35 0.61* 0.39* 0.81 0.19 0.60 0.40 0.63 0.37 0.62 0.38 0.15 0.85 0.00 1.00

[0.94] [1.05] [1.52] [1.57] [1.20] [0.65] [1.03] [0.94] [1.13] [0.79] [0.71] [0.73] [0.07] [0.73] [-0.02] [0.72]

DFR 0.12 0.88*** 0.68* 0.32 0.51 0.49 0.55** 0.45 0.47 0.53 0.88** 0.12 1.00* 0.00 1.00* 0

[0.63] [2.95] [1.47] [1.11] [0.69] [0.77] [1.66] [1.22] [0.96] [1.17] [1.38] [0.35] [1.45] [-0.08] [1.42] [-0.41]

INFL 0.53 0.47 0.56* 0.44* 0.74 0.26 0.62** 0.38 0.47* 0.53* 0.79 0.21 0.96** 0.04 1.55** -0.55

[0.78] [0.59] [1.45] [1.51] [1.19] [0.42] [2.12] [1.23] [1.31] [1.37] [1.13] [0.31] [1.66] [0.04] [1.69] [-0.85]

OG 0.76** 0.24 0.66** 0.34** 0.72** 0.28 0.65** 0.35 0.61** 0.39 0.34** 0.66 0.37 0.63 0.82*** 0.07

[2.16] [0.85] [2.44] [1.80] [2.12] [1.00] [2.29] [1.05] [2.15] [1.05] [1.37] [1.00] [1.06] [0.98] [2.81] [0.27]

SCR 0.81 0.19 0.55** 0.45** 0.68* 0.32 0.28 0.72* -0.54 1.54* 0.18 0.82 0.15 0.85 0.30 0.70

[1.07] [0.21] [1.73] [1.83] [1.37] [0.67] [0.61] [1.60] [-0.54] [1.33] [1.17] [1.01] [0.94] [0.99] [0.90] [0.84]

CAY 0.91 0.09 0.54** 0.46** 0.69** 0.31 0.66*** 0.34 0.69*** 0.31 0.82** 0.18 0.71** 0.29 0.50** 0.50

[1.03] [0.10] [1.76] [1.78] [1.98] [0.93] [2.42] [1.14] [2.52] [0.96] [2.09] [0.82] [1.76] [0.91] [1.87] [0.83]

h = 1 h = 3 h = 6 h = 9 h = 12 h =24 h = 36 h = 60

3 3 3 1 1 1 1 1

4 3 3 1 1 1 1 4

1 4 4 4 1 1 1 4

4 3 4 4 3 4 4 4

4 4 4 3 4 3 4 3

4 2 1 1 1 4 1 1

2 2 2 2 1 4 1 4

3 3 4 3 3 4 4 4

2 2 3 2 1 1 4 4

1 2 3 3 3 4 4 3

4 2 4 3 3 4 3 3

4 2 4 4 4 4 4 4

1 3 4 3 4 3 3 3

4 2 4 3 2 4 3 3

3 2 3 3 3 3 4 3

4 2 3 1 1 4 4 4

3 34 2 3 3 3 3
 

Notes: This table presents the forecast encompassing tests results of the time-varying weighted investor sentiment index (STV) against economic predictors (as listed in Section 4.3) under the restrictive 

regression framework. λ represents the optimal weight associated with the competing forecast. The forecast based on STV is treated as the given forecast in the test 1 and as the competing forecast in test 

2. The values in the brackets are MDM test statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively. The in-sample period covers from December 1968 to 

November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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To conclude, even though economic predictors have a stronger predictive power as 

compared to STV index under the restrictive regression, this demonstrates that most economic 

predictors do not generate theoretically aligned coefficient signs at all time, and hence having 

the need to tweak the forecasts. The pure predictive ability of economic predictors is opaque 

under the restrictive regression framework. The improved predictive performances of 

economic predictors are ‘muddied’ with the predictive performance of HMM since the 

forecast value is truncated to HMM-based forecast (i.e. slope coefficient of the predictor 

reduced to zero) when the coefficient sign of economic predictors is inconsistent with the 

theory. This implies that economic predictors predict well only at certain times since their 

predictive performances based on conventional regression67 are poorer than that based on 

restrictive regression. Therefore, it is apparent that stock market movements are not driven 

mainly by economic predictors at all times. 

On the other hand, the slight drop in the forecasting performance of STV due to the 

truncation of forecasts to HMM-based forecasts when STV produces ‘inconsistent’ sign 

indicating that investor sentiment indeed predicts well stock market returns for most of the 

time. Therefore, the outperformance (underperformance) of STV against economic predictors 

in forecasting stock market returns under the conventional (restrictive) regression framework 

reflects that investor sentiment has a dominant role in stock market fluctuations.  

4.5.2 Forecasting performances over the business cycle period 

Following most literature (e.g. Chung et al, 2012; Henkel et al., 2011; Huang et al., 

2015), this section also considers the forecasting performance of various return predictors in 

the expansion and recession periods. Such analysis provides an understanding as to when (i.e. 

expansion or recession period) the investor sentiment captured by STV is having a more 

dominant role in stock market movements. 

Chung et al. (2012) find that the predictive power of investor sentiment can only be 

seen in expansion periods but disappears in recession periods. The underlying causes of the 

asymmetry effect of investor sentiment could come from two channels – the growing 

optimism during expansion periods and the limit to arbitrage. The increased optimism, which 

has been found during expansion periods (Chung et al., 2012), attracts uninformed traders to 

actively involved in stock buying, leading to a substantial stock overvaluation (Antoniou et al., 

 
67 Conventional regression is the regression performed in Section 4.4. 
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2016). Contrarily, the growing pessimism causes underpricing. Ideally, arbitrageurs would 

correct any mispricing occurred in the market immediately. However, the potential of 

investors becoming even more optimistic (De Long et al., 1990) coupled with the short sale 

constraints (see Shleifer and Vishny, 1997; Mitchell, Pulvino and Stafford, 2002) hinder the 

arbitrage activities, especially when short sale is required to rectify the overpricing 

phenomenon in the expansion period. Taking altogether, the sentiment effect could be more 

pronounced in expansion periods; whereas the sentiment-driven underpricing can be easily 

arbitraged away by buying underpriced stocks and thus the sentiment effect is not apparent 

during recession periods.  

To shed further light on the asymmetric predictive power of investor sentiment, this 

sub-section evaluates and compares the out-of-sample forecasting performance of STV against 

other predictors across different business cycles. The expansion and recession periods are 

defined according to the National Bureau of Economic Research (NBER)-dated recession. 

The analyses are segregated into predictive performances of (1) investor sentiment measures 

and (2) economic predictors in different market states. The results are reported in terms of 

2

OSR  and MSFE-adjusted statistics. Similarly, both unrestricted and restricted forecasts are 

considered in each sub-section.  

(I) Predictive power of investor sentiment measures in different business cycles 

Table 4.13 depicts the conventional predictive regression performance of different 

investor sentiment measures in the expansion (panel A) and recession periods (panel B), 

respectively. Comparing results from panel A and B reveals that STV has a much stronger 

predictive power in the expansion period than in the recession period and so for other 

sentiment measures. All sentiment measures deliver greater 2

OSR  value and tend to have more 

rejection on the null hypothesis of MSFE-adjusted statistic ( PRHMM MSFEMSFEH :0 ), 

suggesting that forecast errors of investor sentiment indexes measured by MSFE is 

significantly lower than that of HMM during the expansion period.  

The predictive performance of STV in the expansion period is even better than their 

whole sample performance as shown in Table 4.2. For instance, the 2

OSR  value of STV at 9-

month forecast horizon improves substantially from 1.04% to 5.49% in the expansion period. 

Besides that, STV also performs better than other investor sentiment measures during the 

expansion period. SPLS is shown to predict well at 1-month and 3-month forecast horizons, 
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Table 4.13: Out-of-sample forecasting results for conventional regression in different business cycles: STV vs. other sentiment measures 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 
Panel A: Expansion period 

STV -0.6 0.05 -0.3 1.89** 2.25 1.40* 5.49 2.27** 5.92 2.18** -0.01 1.16 2.04 0.98 -4.73 -0.53 

SBW -1.07 -0.09 -4.22 -0.65 -4.38 0.09 -1.12 1.17 0.78 1.37* -11.05 0.04 -14.37 -1.37 -34.86 -2.51 

SPLS 1.53 2.10** 4.06 3.44*** -2.7 0.96 -9.49 0.23 -2.7 0.81 -27.11 -1.36 -33.72 -1.72 -47.99 -3.96 

MS -2.41 -2.49 -4.39 -0.89 -14.31 -1.48 -21.22 -1.42 -14.3 -0.45 -18.97 -0.23 -21.84 0.14 -19.4 1.06 

CCI -2.28 -0.61 -3.42 0.24 -6.2 0.02 -1.33 1.05 4.47 1.45* -2.52 1.07 10.82 1.48* 23.21 1.83** 

 
Panel B: Recession period 

STV -0.22 -0.14 -0.38 0.14 -5.99 -1.85 -6.88 -1.54 -3.68 -0.61 2.88 2.21** -19.21 - -3.41 - 

SBW 5.98 1.39* 0.96 0.48 -2.83 -2.44 -11.31 -5.59 -10.45 -2.27 -53.63 -1.41 -41.01 - 6.95 - 

SPLS 3.84 1.13 9.7 2.25** 7.06 1.33* -7.28 -1.11 -33.26 -2.45 -45.69 -1.86 -58.04 - -8.67 - 

MS 1.25 0.51 -2.9 -0.09 0.59 0.51 -4.33 -1.38 -20.42 -3.38 -20.96 -5.41 -23.86 - 5.29 - 

CCI 1.54 0.6 -5.67 -1.46 -4.76 -1.43 -13.62 -2.57 -20.81 -2.75 -3.96 -0.47 12.39 - -13.8 - 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of various investor sentiment measures: the time-varying 

weighted investor sentiment index (STV), the Baker and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS) 

and the Conference Board Consumer Confidence Index (CCI). Panel A reports the forecasting performance of each sentiment measure in expansion periods; Panel B reports the forecasting performance 

of each sentiment measure in recession periods. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on Newey-West t-statistic for MSFE-adjusted test. The in-

sample period covers from December 1968 to November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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Table 4.14: Out-of-sample forecasting results for restrictive regression in different business cycles: STV vs. other sentiment measures 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 
Panel A: Expansion period 

STV -0.73 -0.17 -1.44 1.43* 1.77 1.35* 5.49 2.27** 5.92 2.18** -0.75 1.1 3.22 1.24 -4.73 -0.53 

SBW -0.9 0.02 -3.84 -1.04 -5.77 -1.23 -3.13 0.55 -1.26 1.75** -5.89 -0.64 -7.54 -1.6 -22.32 -1.5 

SPLS 1.55 2.13** 4.49 3.65*** -0.76 1.32* 1.56 1.38* 5.74 1.58* -7.02 -0.24 -8.62 -1.16 -21.6 -1.87 

MS -0.95 -1.43 -2.68 -0.29 -5.23 -0.75 -8.58 -0.66 -10.03 -0.26 -13.77 0.04 -19.73 0.2 -18.83 1.08 

CCI -1.92 -0.39 -1.9 0.61 -1.38 0.93 2.19 1.38* 7.38 1.61* 3.53 1.35* 10.05 1.44* 23.21 1.83** 

 
Panel B: Recession period 

STV 0.39 0.63 -1.23 -0.53 -5.99 -1.85 -6.88 -1.54 -3.68 -0.61 2.11 1.60* -19.21 - -3.95 - 

SBW 5.98 1.39* 1.28 0.58 -2.30 -1.97 -7.31 -2.93 -9.91 -2.04 -58.93 -1.73 -40.12 - 0.59 - 

SPLS 3.84 1.13 9.70 2.25** 7.06 1.33* -0.91 0.06 -7.78 -2.76 -44.42 -1.83 -58.00 - -1.96 - 

MS 0.49 1.82** -1.06 -0.87 -0.90 -1.06 -0.26 -1.22 -12.94 -1.52 -10.64 -1.57 -20.42 - 5.29 - 

CCI 2.07 1.61* -2.37 -0.89 -4.01 -1.13 -9.51 -1.50 -13.00 -1.31 5.15 1.56* 12.39 - -13.80 - 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (%) and the Clark and West (2007) MSFE-adjusted statistic of various investor sentiment measures: the time-varying weighted 

investor sentiment index (STV), the Baker and Wurgler investor sentiment index (SBW), the aligned investor sentiment index (SPLS), the University of Michigan Consumer Sentiment Index (MS) and the 

Conference Board Consumer Confidence Index (CCI) under the restrictive regression framework. Panel A reports the forecasting performance of each sentiment measure in expansion periods; Panel B 

reports the forecasting performance of each sentiment measure in recession periods. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on Newey-West t-

statistic for MSFE-adjusted test. The in-sample period covers from December 1968 to November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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whereas STV consistently predicts excess market returns from 3-month up to 12-month 

forecast horizon in the expansion period based on MSFE-adjusted statistic.  

The asymmetric predictive power of investor sentiment is consistent with the results 

reported in Aissia (2016) and Chung et al. (2012). Investors become more optimism during 

market expansion and participate actively in the stock market. Therefore, the predictive power 

of investor sentiment is more pronounced during expansion periods.  

The predictive power of investor sentiment measures in different states of business 

cycle after imposing the sign restriction are evaluated as well. Panels A and B of Table 4.14 

report the forecasting performance of sentiment measures under restrictive regression 

framework in the expansion and recession period, respectively. The results show that investor 

sentiment measures again perform better in expansion periods than in recession periods, 

where the chances of rejecting null hypothesis based on MSFE-adjusted statistic are higher in 

expansion periods, even after the implementation of the restrictive forecast. By constraining 

the coefficient sign, STV, however, has lower 2

OSR  values during expansion periods as 

compared to the results of STV under unrestricted model reported in panel A of Table 4.13. 

The reduction in 2

OSR  is mainly seen in short-horizon forecasts. In contrast, panel B of Table 

4.14 shows that the sign restriction has a relatively little adverse impact on the forecasting 

performance of STV during recession periods given that 2

OSR  remains insignificant according to 

the MSFE-adjusted statistic for most cases, except for h = 24, at which the 2

OSR  statistic of STV 

in panel B of Table 4.13 is significant as well. As we have seen from panel B of Figure 4.4, 

out-of-sample forecasting performances of investor sentiment measures, especially STV, do not 

affected much after imposing the sign restriction in recession periods as compared to 

expansion periods as shown in panel A of Figure 4.4. 

In summary, restricting the coefficient sign of STV to be a negative value in recession 

periods could be more appropriate than in expansion periods. During the expansion period, 

the growing optimism of irrational investors leads to stock overvaluation that is hard to be 

corrected within a short-term period due to limits to arbitrage68. As such, stock prices take a 

longer time to revert to fundamental values, which is evidenced by the poorer forecasting 

performance of STV after restricting the coefficient sign to be negative in short-horizon 

 
68 Arbitrage is also easier if buying, but not short selling, is required. 
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forecasts during expansion periods. These phenomena could explain why 2

OSR  values over the 

entire out-of-sample period are being affected slightly, especially for short-horizon forecasts, 

when the coefficient sign of STV is restricted to be less than zero. The expansion period has a 

greater number of observations than the recession period in this study, and hence the 

predictive performance of STV in expansion periods has a greater influence on the overall 

performance of STV under the restrictive regression framework. This truly reflects a stronger 

sentiment effect during expansion periods when stock overvaluations resulted from excessive 

optimism during good market state requires a longer correction period. Therefore, this finding 

implies that investor sentiment drives the stock market mainly during the expansion period. 

Figure 4.4: The 2

OSR  statistics for each investor sentiment index across different forecast 

horizons over the business cycle period 

Panel A and B present the 2

OSR  of investor sentiment indexes during the expansion and recession periods, 

respectively, occurred in the out-of-sample period. The solid (dotted) line denotes the 2

OSR  statistics for each 

investor sentiment index prior to (after) the implementation of sign restriction.  

 

Panel A: Expansion period 
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Panel B: Recession period 
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 (II) Predictive power of economic predictors measures in different business cycles 

The predictive performance of economic predictors corresponds to unrestricted model 

in different business cycles is presented in Table 4.15. As usual, panel A demonstrates the 

predictive performances during the expansion period, and panel B shows the results for the 

recession period. For the ease of comparison, the performance of STV is shown in the first row. 

Table 4.15 shows that economic predictors perform better during the expansion period 

than during the recession period, with greater 2

OSR  values and the null hypothesis of MSFE-

adjusted test is being rejected at a higher rate. This result is in contrast to Henkel, Martin and 

Nardari (2011), Pettenuzzo, Timmermann and Valkanov (2014), Rapach et al. (2010). Two 

explanations could possibly contribute to this finding. First, the recession period covered in 

this study is infrequent and hence a relatively limited observation (i.e. 34 months) 

corresponds to the recession period is available for this study as compared to previous studies. 

Pettenuzzo et al. (2014) has a total recession period of 122 months in the out-of-sample 

evaluation. Similarly, a higher number of recession period is used in the study of Rapach et al. 

(2010). Second, the underlying causes of the recession will probably affect the conclusion 

drawn. Although Henkel et al. (2011) has about the same number of recession period as in 

this study for the out-of-sample evaluation, the subprime crisis in 2007/2008, which can be 

partially explained by investor irrationality (see Barberis, 2013; Hoffmann, Post and Pennings, 

2013), has been excluded in their study. Contrarily, they included the tight monetary policy 

triggered recession in 1980s, which occurred before the out-of-sample period considered in 

this study.  

The economic predictors also predict well during the expansion period under the 

restrictive regression framework as shown in Table 4.16, which is consistent with the results 

of unrestricted regression model. In addition, a massive improvement in terms of 2

OSR  and 

MSFE-adjusted statistics is shown in panel A of Table 4.16 after the sign restriction has been 

imposed on the coefficient of economic predictors. The number of significant MSFE-adjusted 

statistics has increased across different forecasting horizons with the improvement highly 

focuses at 9-month and 12-month forecast horizons. However, the sign restriction does not 

have much effect on the economic predictors during the recession period.  
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Table 4.15: Out-of-sample forecasting results for conventional regression in different business cycles: STV vs. economic predictors 

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

S TV -0.6 0.05 -0.3 1.89** 2.25 1.40* 5.49 2.27** 5.92 2.18** -0.01 1.16 2.04 0.98 -4.73 -0.53

DP 1.12 1.86** 6.45 2.55*** 9.45 1.87** 2.67 1.50* -11.63 1.02 -42.67 0.02 -74.92 -0.49 -106.63 -0.34

DY -0.48 0.49 3.3 1.76** 6.73 1.75** 2.95 1.48* -10.39 1.16 -42.85 -0.06 -79.51 -0.61 -134.55 -0.61

EP -1.04 0.05 -1.04 -0.25 -24.65 -0.74 -41.9 -0.61 -42.05 -0.62 -49.75 -1.4 -70.07 -1.27 -120.53 -2.02

DE -1.12 0.01 -0.88 0.84 -13.72 -0.46 -6.46 0.39 4.13 1.11 -38.17 0.3 -52.5 -0.06 4.63 1.72**

SVAR -6.92 -0.75 -35.44 0.96 -120.87 -0.51 -147.25 0.37 -68.25 1.91** -17.85 1.32* -1.72 0.3 -29.46 -1.07

BM -0.73 -1.09 -0.46 1.07 -0.78 1.22 -12.38 0.57 -25.81 0.3 -39.06 -0.5 -49.72 -1.29 -92.8 -1.19

NTIS -1.82 0.66 -7.24 0.61 -18.76 0.55 -33.26 0.5 -35.2 0.91 -30.44 1.06 -28.26 1.05 -64.77 0.46

TBL -1.66 -0.46 -4.32 -0.4 -11.74 -1.12 -9.46 -0.33 2.5 0.96 11.5 1.25 9.54 1.06 -26.94 -1.41

LTY -2.17 -0.5 -2.87 0.84 -7.87 0.15 -4.87 0.64 -1.89 0.88 -15.34 0.45 -34.97 -0.88 -70.66 0.25

LTR -11.2 0.06 0.84 1.72** 1.95 2.30** 4.53 1.97** 8.68 3.10*** 2.78 1.15 2.2 0.89 -1.63 -0.56

TMS -1.57 -0.18 -4.89 -0.08 -6.23 -0.68 3.77 1.88** 5.84 1.92** -0.51 0.59 18.29 2.1 21.58 2.31**

DFY -2.11 -0.93 -10.21 -1.16 -59.23 -1.07 -128.3 -1.07 -74.34 -0.88 -36.58 -1.22 -17.22 -1.69 -21.34 -1.15

DFR -5.56 1.21 -5.86 -0.54 -0.04 0.84 4.74 1.80** 5.02 2.15** -1.44 0.37 1.17 0.62 -1.43 -0.31

INFL -0.35 -0.12 -0.54 0.51 0.63 0.91 6.87 2.33** 7.13 2.07** 0.68 0.45 -1.55 -0.08 -7.83 -1.18

OG -1.03 1.01 -2.48 1.80** 0.73 2.17** 0.17 2.43*** -6.62 2.26** -90.24 1.08 -121.33 0.66 44.96 2.23**

SCR -1.48 -1.01 -10.33 -0.66 -83.19 -1.08 -120.90 -0.95 -107.05 -0.92 -76.79 1.11 -282.00 1.21 -108.45 1.14

CAY -0.29 1.27 -6.97 -0.32 4.37 2.24** 5.12 2.51*** 5.07 2.91*** 4.07 2.00** 11.4 2.14** -19.03 1.33*

PC-ECON -0.82 -0.49 1.49 1.58* 3.51 1.69** 8.20 1.74** 5.57 1.54* -59.92 1.05 -75.97 0.75 -90.00 0.26

h  = 36 h  = 60

Panel A: Expansion period

h = 1 h  = 3 h  = 6 h = 9 h  = 12 h  = 24
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Table 4.15 (Continued): 

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

MSFE-

adjusted 

statistic

S TV -0.22 -0.14 -0.38 0.14 -5.99 -1.85 -6.88 -1.54 -3.68 -0.61 2.88 2.21** -19.21 - -3.41 -

DP 0.75 0.5 -1.78 0.04 -9.86 -0.78 -16.08 -1.23 -15.78 -1.52 -35.32 -2.09 23.58 - 44.98 -

DY -2.74 -0.42 -0.37 0.18 -12.42 -1.23 -17.38 -1.64 -17.36 -2.12 -51.46 -2.25 15.14 - 50.79 -

EP -24.9 -0.84 -9.42 -0.27 1.04 0.87 -0.17 0.14 -7.29 -0.91 -51.63 -0.99 -118.8 - -7.07 -

DE 4.28 0.87 3.45 0.73 4.28 0.55 -2.14 0.02 -17.33 -1.57 -23.69 -2.11 19.26 - 40.16 -

SVAR -3.99 0.48 -17.63 -1.87 -2.54 0.61 -4.3 -2.86 -7.25 -3.31 -5.37 -0.9 -121.93 - -16.41 -

BM 0.3 0.32 -0.24 0.1 -5.13 -1.51 -6.86 -2.61 -8.49 -2.52 -29.02 -4.08 -24.87 - -12.63 -

NTIS 4.78 0.95 8.58 0.95 25.1 1.36* 26.3 1.17 20.25 1.02 27.46 1.62* 40.98 - -0.07 -

TBL 1.19 0.47 4.08 0.81 8.66 1.38* 3.15 0.6 -3.95 -1.18 -15.62 -1.18 -9.04 - -160.75 -

LTY 0.39 0.27 2.49 0.8 4.81 1.15 5.39 1.14 2.48 0.59 12 2.43** 48.83 - 33.84 -

LTR 0.54 0.59 -7.75 -1.26 -3.92 -2.18 -5.13 -2.2 -6.11 -2.5 -2.25 -0.8 4.22 - -7.65 -

TMS 0.89 0.62 -0.6 -0.29 -5.29 -2.71 -11.54 -3.56 -14.29 -3.91 2.86 5.92 48.82 - -110.16 -

DFY -4.01 0.62 -24.03 0.61 2.92 1.5 24.49 1.38 8.74 0.98 -2.28 -0.93 3.35 - -3.63 -

DFR -58.88 0.08 -18.02 -0.94 -11.59 -1.73 -9.74 -2.43 -10.59 -2.18 -0.4 -0.07 -4.36 - -3.73 -

INFL 0.75 0.36 -3.87 -1.03 -4.59 -2.84 -4.89 -2.22 -6.29 -3.2 -4.4 -0.87 -10.78 - -12.2 -

OG 2.20 1.42* 1.40 0.47 -6.62 -1.82 -9.44 -2.00 -14.41 -1.15 -58.23 -0.96 12.97 - 62.37 -

SCR -9.88 0.47 -28.77 -0.15 1.91 1.02 -11.22 -1.3 -41.09 -1.68 -7.64 -0.68 9.54 - -2.20 -

CAY -0.18 -0.33 0.19 0.19 -2.76 -0.37 2.22 0.71 14.31 2.83*** 70.77 2.31** 58.35 - 54.05 -

PC-ECON -5.82 -1.09 -8.52 -0.99 -1.73 0.59 0.62 0.27 3.05 0.55 18.78 1.01 49.07 - 56.24 -

h = 1 h  = 3 h  = 6 h = 9 h  = 12 h  = 24 h  = 36

Panel B: Recession period

h  = 60

 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of the time-varying weighted investor sentiment index (STV) 

and economic predictors (as listed in Section 4.3). Panel A reports the forecasting performance of each sentiment measure in expansion period; Panel B reports the forecasting performance of each 

sentiment measure in recession period. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on Newey-West t-statistic for MSFE-adjusted test. The in-sample 

period covers from December 1968 to November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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Table 4.16 Out-of-sample forecasting results for restrictive regression in different business cycles: STV vs. economic predictors 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 
Panel A: Expansion period 

STV -0.73 -0.17 -1.44 1.43* 1.77 1.35* 5.49 2.27** 5.92 2.18** -0.75 1.1 3.22 1.24 -4.73 -0.53 

DP 2.13 2.87*** 6.45 2.55*** 9.16 1.81** 3.26 1.52* -8.84 1.15 -18.29 0.87 -18.28 0.7 -0.71 1.34* 

DY -0.23 0.63 3.64 1.85** 7.45 1.76** 4.71 1.56* -6.42 1.32* -11.84 0.99 -10.86 0.76 1.78 1.25 

EP -0.82 -0.03 -5.77 -0.15 -24.88 -0.75 -41.9 -0.61 -43.33 -0.69 -44.76 -1.14 -69.86 -1.3 -102.09 -1.54 

DE -0.56 0.19 0.35 0.9 -2.35 0.36 1.42 0.94 9 1.33* -19.23 0.85 -27.96 0.87 8.39 1.78** 

SVAR -4.03 -1.01 -35.05 1.06 -117.96 0.1 -139.02 1.66** -67.6 2.05** -16.8 1.56* 0.02 0.39 -2.81 0.19 

BM -0.21 -0.72 -0.88 0.85 -0.69 1.22 -11.25 0.64 -22.36 0.48 -19.15 0.28 -20.26 -0.44 -44.28 -0.15 

NTIS -0.7 1.34* -1.82 1.58* -1.28 1.97** 0.25 1.73** 0.52 1.53* 2.58 1.18 0.53 1.02 -1.1 0.97 

TBL -0.26 0.83 2.27 2.49*** 0.66 1.05 4.79 1.70** 9.1 1.63* 15.23 1.47* 14.69 1.41* -23.42 -1.51 

LTY -0.69 0.76 0.01 1.77** 5.33 2.13** 8.12 1.65* 10.04 1.43* 1.27 0.78 -11.26 -1.03 -30.13 -1.3 

LTR -9.65 0.19 0.69 1.61* 1.77 2.16** 5.28 2.52*** 8.42 3.23*** 1.86 1.03 -1.02 -0.52 -0.38 -0.38 

TMS -0.92 0.1 -2.05 0.27 -1.47 0.24 4.59 2.07 8.17 2.40*** 4.39 1.28 19.96 2.31** 23.92 2.58*** 

DFY -0.92 -0.33 -2.05 -0.25 -1.47 0.61 4.59 0.9 8.17 1.44 4.39 0.29 19.96 -0.47 23.92 -0.75 

DFR -5.35 1.26 0.38 0.81 -0.93 -0.77 3.35 1.70** 2.93 1.67** 1.91 0.84 3.76 1.38* -0.63 -0.22 

INFL -0.01 0.41 0.11 0.92 1.03 1.12 5.66 2.20** 6.74 1.95** 3.59 1.58* 4.32 1.84** 0.95 1.07 

OG 0.14 1.51* 0.50 2.03** 7.32 2.14** 9.41 2.37*** 8.17 2.29** -49.18 1.71** -58.04 1.40* 45.06 2.23** 

SCR -0.18 -0.07 0.29 1.47* 2.29 1.49* 5.55 1.69** 2.63 0.93 -75.72 1.13 -283.13 1.2 -108.45 1.14 

CAY -0.09 -0.17 -1.54 0.59 3.05 1.92** 4.99 2.49*** 5.07 2.91*** 4.07 2.00** 11.4 2.14** -14.36 1.55* 
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Table 4.16 (Continued): 

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

  

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 

MSFE-

adjusted 

statistic 

 Panel B: Recession period 

STV 0.39 0.63 -1.23 -0.53 -5.99 -1.85 -6.88 -1.54 -3.68 -0.61 2.11 1.60* -19.21 - -3.95 - 

DP 0.58 0.43 -1.78 0.04 -9.86 -0.78 -15.84 -1.20 -10.17 -0.81 0.39 3.15*** 23.58 - 44.98 - 

DY -2.74 -0.42 -0.37 0.18 -12.19 -1.20 -14.68 -1.26 -9.39 -0.91 -0.45 0.41 14.87 - 50.79 - 

EP -24.76 -0.83 -9.48 -0.28 1.31 0.97 -0.17 0.14 -7.29 -0.91 -51.63 -0.99 -118.80 - -4.35 - 

DE 0.01 0.12 0.79 0.93 -2.10 -0.91 -2.04 -1.27 -0.76 -1.17 0.39 0.70 26.45 - 51.05 - 

SVAR 0.00 N/A -12.94 -1.49 -1.31 -1.24 -1.87 -4.42 -7.25 -3.31 2.52 2.28 -104.97 - -1.54 - 

BM 0.09 0.18 -0.14 0.12 -4.90 -1.41 -4.56 -1.44 -3.26 -0.94 -16.37 -1.70 -24.87 - -12.69 - 

NTIS 0.34 0.79 -0.51 0.00 -3.07 -1.23 -7.65 -1.49 -11.20 -1.21 -4.26 -1.03 -3.16 - -3.79 - 

TBL 0.12 0.27 0.12 0.43 0.00 0.00 -0.37 -1.19 0.00 N/A 0.93 2.12** -5.43 - -159.47 - 

LTY -0.39 -0.36 0.00 N/A -1.61 -1.50 -1.36 -1.47 -2.64 -1.56 -0.20 -1.26 0.00 - -4.69 - 

LTR 1.36 0.81 -7.50 -1.21 -3.92 -2.18 -4.99 -2.09 -5.25 -1.82 -3.66 -1.68 2.65 - 0.00 - 

TMS 0.42 1.33* 0.61 0.88 -1.58 -0.86 -3.80 -1.16 -2.62 -1.03 1.35 2.37** 48.82 - -106.02 - 

DFY 1.04 1.24 0.92 0.66 1.42 1.02 0.86 1.24 0.78 1.16 0.08 1.10 0.21 - -0.31 - 

DFR -58.87 0.08 -0.91 -1.89 -0.86 -0.99 -1.72 -1.90 -0.09 -1.12 2.49 2.15** 1.87 - -5.28 - 

INFL -1.95 -1.11 -3.26 -0.85 -0.76 -1.82 -4.02 -1.99 -5.91 -3.49 -4.40 -0.87 1.43 - 0.01 - 

OG 2.20 1.42* 1.46 0.48 -4.05 -0.99 -2.75 -0.93 2.14 1.02 17.46 1.68* 37.10 - 62.43 - 

SCR 0.08 0.23 -3.30 -1.51 -2.84 -1.40 -13.85 -1.92 -39.44 -1.55 -8.76 -0.85 8.37 - -2.20 - 

CAY -0.06 -0.19 -0.25 0.08 -2.76 -0.37 2.22 0.71 14.31 2.83*** 70.77 2.31** 58.35 - 54.11 - 

Notes: This table presents the Campbell and Thompson (2008) 2

OSR  (in percentage) and the Clark and West (2007) MSFE-adjusted statistic of the time-varying weighted investor sentiment index (STV) 

and economic predictors (as listed in Section 4.3) for restrictive regression. Panel A reports the forecasting performance of each sentiment measure in expansion period; Panel B reports the forecasting 

performance of each sentiment measure in recession period. *, ** and *** indicate statistical significance at 10%, 5% and 1% levels, respectively, based on Newey-West t-statistic for MSFE-adjusted 

test. The in-sample period covers from December 1968 to November 1983 and out-of-sample period covers from December 1983 to December 2014. 
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4.6 Conclusion 

This study sheds light on the main driver – investor sentiment or fundamental 

economic predictors – of the stock market movements. Whilst fundamentalists proposed 

different fundamental predictors capturing the business cycle risk and changing risk aversion, 

behaviourists introduced various measures of investor sentiment that aim to improve the way 

the sentiment is being captured. Although different return predictors might capture different 

information, proponents from both sides have the same objective: predict stock market returns 

with their newly introduced predictor. However, less is known about whether investor 

sentiment or economic predictor has a greater influence on stock market fluctuations. 

Therefore, this study tackles this question by performing a horse race on the return 

predictability by investor sentiment and economic predictors.  

The predictive power of STV against economic predictors for stock market returns has 

been assessed thoroughly based on both statistical and economic measures. Out-of-sample 

findings reaffirm that STV is a superior sentiment measure since it generates superior out-of-

sample forecasts as compared to alternative sentiment proxies in forecasting stock market 

returns. Besides that, return forecasts produced by this superior sentiment measure, STV, 

dominate the fundamental-based forecasts, implying that sentiment possesses unique 

information about future stock market movements that are not contained in most of the 

popular economic predictors. Lastly, our sentiment index generates economically, not only 

statistically, significant forecasts, consistently outperforming fundamental competitor 

variables especially for investors with higher level of risk aversion. These results imply that 

the stock market is mainly driven by investor irrationality or sentiment.  

This study has a great relevance to the intense debate between proponents of efficient 

market and behaviourists. Previous studies contended that predictability of stock returns based 

on economic predictors does not necessary imply that stock market is inefficient (e.g. Balvers, 

Cosimano and McDonald, 1990; Campbell and Cochrane, 1999; Fama and French, 1988a), 

rather stock returns adjusted to incorporate new fundamental information (Van Nieuwerburgh 

and Koijen, 2009), time-varying risk (Bansal and Yaron, 2004; Malkiel, 2003), or it could be 

due to the flaw of methodology adopted (Fama, 1998). Having said that, the superior 

performance of STV over fundamental economic predictors is inconsistent with the market 

efficiency view. Indeed, the stronger predictive power of STV confirms that investor sentiment 



122 

 

has overriding influence to stock market movements and the findings lean towards the notion 

that price reversal is mainly caused by mispricing of assets.  
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Chapter 5. The Sentiment Effect through Cash Flow and Discount Rate 

Channels 

5.1 Introduction 

This chapter investigates whether it is the cash flow (CF) and/or discount rate (DR) 

channel, through which investor sentiment affects stock returns. This chapter builds on the 

superior predictive ability of investor sentiment, captured by STV, on the stock market returns 

as documented in Chapter 3 and 4. Whilst Campbell, Polk and Vuolteenaho (2010) assume 

investor sentiment is transmitted only through the discount rate channel, Huang et al. (2015) 

conversely argue transmission is only through the cash flow channel. Therefore, a more 

comprehensive examination on these conflicting views is required. Although the two-beta 

model of Campbell and Vuolteenaho (2004, henceforth CV) decomposes the capital asset 

pricing model (CAPM) beta into cash flow and discount rate betas, their model does not 

distinguish between the effects of rational and irrational expectations of cash flows and 

discount rates on the stock prices. Irrational investors who trade based on their sentiment tend 

to form irrational expectations about future cash flows and returns, affecting stock prices and 

returns. Hence, this chapter revisits and extends their two-beta model to a four-beta model 

that explicitly acknowledges the role of irrationally and rationally expected future cash flow 

and discount rates69 on the stock prices given that previous literature has documented the role 

of irrational expectations in both channels70. The four-beta model provides a mean to evaluate 

the source of return predictability with investor sentiment, i.e. CF and/ or DR.  

Traditional finance theory is built on the assumption that investors discount the 

rationally expected cash flow at an appropriate discount rate. This gives rise to the return 

decomposition framework of the Campbell and Shiller (1988a) and Campbell (1991), where 

unexpected stock market returns consist of the market cash flow news (NCF) and the market 

discount rate news (NDR)71. Building upon this framework, CV (2004) decompose the CAPM 

beta into ‘good’ discount-rate beta (βi,DR) that measures the response of stock to the NDR, and 

 
69 Investor irrationality is a broad term in that it is a reflection of different types of investor psychology. Thus, 

the whole magnitude of investor irrationality in the stock market is unknown. Since investor sentiment has been 

well recognised as a proxy to investor irrationality, sentiment-induced expectations are termed as irrational 

expectations throughout this chapter.    

70 The review of literature on the impact of irrational expectations on both channels is given in Section 5.2. 

71 NCF (NDR) is the change in expectations about the future cash flow (future stock returns). 
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‘bad’ cash-flow beta (βi,CF) that measures the reaction of stock to the NCF. The terminology of 

‘bad’ and ‘good’ beta is used since, as explained by those authors, a long-term risk averse 

investor would require a greater premium on stocks that are more sensitive to the NCF, which 

causes a permanent and irreversible effect, than the stocks that are more sensitive to the NDR, 

which tends to be only a transitory effect.  

Whilst their two-beta model improves the explanatory power of CAPM proposed by 

Sharpe (1964) and Lintner (1965) on the cross-section of stock returns, their model is silent 

on differentiating the irrational expectation from the rational expectation of future cash flow 

and discount rates. Unlike CV (2004), Campbell, Polk and Vuolteenaho (2010, CPV hereafter) 

distinguish the fundamental and sentiment view based on the cash flow and discount rate 

movement of firms with the market news. Specifically, the systematic risks72 of stocks are 

said to be driven by fundamental factors if the co-movements of stock returns with market 

news are caused by their cash-flow movements. Otherwise, investor sentiment is said to play 

an important role in explaining the systematic risks of stocks if the discount rates of stocks 

mainly drives those systematic risks. Their assumptions are built on the basis that investor 

sentiment has a direct impact on the discount rates, but has an indirect impact on the cash 

flow, based on the work of Subrahmanyam and Titman (2001). They found that the 

systematic risks of value and growth stocks are mainly driven by their cash flow news, and 

hence claim that the systematic risks of growth stocks are driven by their fundamentals 

instead of sentiment, as claimed in previous studies73.  

Other studies, such as Da and Warachka (2009) and Koubouros, Malliaropulos and 

Panopoulou (2010), which do not aim to distinguish between the fundamental and sentiment 

view tend to perceive that the cash flow risk is linked to the fundamentals. Chen and Zhao 

(2009) also mention that NCF is link to fundamental factors and NDR could be caused by a 

change in sentiment or risk aversion.  

 
72 The systematic risk measures adopted in CPV (2010) are the bad and good betas of CV (2004), which claim 

that value (growth) stocks have higher bad cash flow (good discount rate) beta. Nevertheless, such a pattern of 

bad and good betas is not documented for value and growth stocks in this study, which has a different sample 

period, and therefore allowing for both rational and irrational expectation to play a role in both cash flow and 

discount rate channels would be more appropriate.  

73 Since assets’ cash flow news (discount rate news) is correlated to the markets’ cash flow news (discount rates 

news) (Pettit and Westerfield, 1972), the claim of CPV (2010) made at the stock-level also implicitly implies that 

the changes in the market-wide cash flow expectations is driven by fundamental factor; changes in market 

discount rates are driven by investor sentiment. 
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Despite these assumptions, the changes in expectations about the future cash flows 

and discount rates can, however, reflect both rational and irrational expectations of investors, 

and stock prices react to both rational and irrational components in each shock. Indeed, as 

defined in Baker and Wurgler (2007), investor sentiment is the expectation about future cash 

flow and risk that is not justifiable by fundamental information. Hence, a change in investor 

sentiment could reflect a change in the irrational expectations of future cash flow and/ or 

returns, which would then lead to an unexpected move in the stock price. As shown in the 

simple model by Brown and Cliff (2005), the stock price is the weighted average of prices 

formed based on rational and irrational expectations of future cash flows and future returns74. 

Therefore, unexpected returns could be result from revisions in both the rational and irrational 

expectations of future cash flows and/ or discount rates. 

Empirically, the phenomenon of investors forming irrational expectations about future 

cash flows is well documented in the literature (e.g. Barberis, Shleifer and Vishny, 1998; 

Cooper, Gullen and Schill, 2008; Engelberg, Mclean and Pontiff. 2018; Hribar and Mlcnnis, 

2012; Lakonishok, Shleifer and Vishny, 1994 (LSV henceforth); Piotroski and So, 2012). 

Stock prices could be greatly affected if investors form systematic expectation errors of future 

cash flows. Lamont and Thaler (2003b, p.201) question that “During the Nasdaq bubble of the 

late 1990s, approximately $7 trillion of wealth was created and then destroyed. Was this a 

rational process of forecasting the future cash flows of new technology or an investing frenzy 

based on mob psychology?”. Indeed, past studies mention that investors’ irrational 

expectations of earnings growth led to the formation of the Dot-com bubble (Ofek and 

Richardson, 200275) and the overvaluation of internet-based IPOs (Loughran and Ritter, 1995; 

Ritter 1991). Therefore, irrationally expected cash flows should not be completely ruled out 

from an asset pricing model even though CPV (2010) claim that investor sentiment can only 

have an indirect effect on the cash flow. Furthermore, investor sentiment is highly persistent, 

current expectations about future cash flows could be affected by a prolonged history of 

sentiment, and hence it is hard to claim that NCF links solely to fundamental factors.  

 
74 Such pricing model, i.e. asset prices are determined as the weighted average of expected payoffs formed by 

heterogeneous investors, can be traced back to Diether, Malloy and Scherbina (2002), Lintner (1969) and Miller 

(1977). 

75 They reported that 6% of total market capitalization in the US stock market is represented by internet-based 

stocks even though these stocks have negative earnings, which are priced in the market, before the burst of Dot-

com bubble. Similar evidence is presented by Schultz and Zaman (2001, p.354).  



126 

 

As opposed to the sentiment view of CPV (2010) on the discount rates, other studies 

show that discount rate news could have rational explanations. Changes in the discount rates 

could reflect the compensations for the time-varying risk (e.g. Bansal and Yaron, 2004; 

Bollerslev, Tauchen and Zhou, 2009) and/ or the risk aversion (e.g. Campbell and Cochrane, 

1999; Cochrane, 2011). In his presidential address, Cochrane (2011) argued that discounting 

the future payoffs at a risk-free rate with distorted probability is simply equivalent to 

discounting the future payoffs at a different discount rate. Having said so, behavioural 

explanations have been proposed to explain the variation in expected returns76. As Cohen, 

Gompers and Vuolteenaho (2002) argue that discount rate news can be treated as the 

mispricing news as well as a change in the firm’s risk. Hence, it is important to account for 

both rational and irrational expectations of future discount rate in an asset pricing model.  

Given that both rational and irrational expectations could have affected both cash flow 

and discount rate channels, this study constructs a four-beta model that decomposes the cash 

flow and discount rate betas into rational and irrational components in order to empirically 

evaluate the source of the predictive ability of investor sentiment on stock market returns. 

Each beta in the four-beta model measures the covariances of asset returns with one of the 

news series – irrational cash flow news ( IR

CFN ), rational cash flow news ( R

CFN ), irrational 

discount rate news ( IR

DRN ), and rational discount rate news ( R

DRN ). Furthermore, this study also 

empirically evaluates the assumptions made by CPV (2010) with the use of this four-beta 

model. If their assumptions are correct, then the covariances of an asset’s returns with the 

irrational cash flow news and the rational discount rate news would not be significantly 

different from zero. That is to say, asset prices will not react to, for instance, the changes in 

the irrational expectations of market cash flows, which consists of the irrational cash flow 

news from individual stocks, if NCF is mainly driven by fundamental factors. If both rational 

and irrational expectations significantly affect stock prices, is the covariance of stock returns 

with the shocks in both expectations significantly priced across different stocks? Hence, this 

study investigates whether each component in the four-beta model is a systematic risk factor 

that is priced in the cross-section.   

Methodologically, unexpected returns are first disentangled into cash flow news and 

discount rate news by using the Vector Autoregression (VAR) approach following Campbell 

(1991) and CV (2004). However, unlike CV (2004) who assume the true VAR parameters are 

 
76 Refer to Section 5.2 for a detailed discussion.  
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constant over the full sample period, the parameter estimate of each state variable is allowed 

to vary over time since the literature has argued that parameter instability is accountable for 

the time-varying predictive strengths of the state variables on future stock market returns (see 

Lettau and van Nieuwerburgh, 2008; Henkel, Martin and Nardari, 2011; Pesaran and 

Timmermann, 2002). By doing so, the news series could more precisely reflect the shocks in 

stock returns over time. This approach is termed as the time-varying VAR (TV-VAR) 

throughout this chapter77. To investigate the pricing of the four factors, this study performs 

the Fama-Macbeth (1973, henceforth FMB) regression to obtain the estimated risk premium 

of each risk factor. 

Asset pricing theory states that only the risk factors that systematically affect all 

stocks are priced. Whilst different fundamental risks have been considered and priced in the 

rational asset pricing models (e.g. Campbell and Cochrane, 2000; Engle and Mistry, 2014; 

Lettau and Ludvigson, 2001b; Jagannathan and Wang, 1996), behavioural studies also found 

that systematic trading from irrational investors (Barber, Odean and Zhu 2009), and so their 

sentiment and irrational expectations, can generate systematic risk (see Lee, Jiang and Indro, 

2002; Piotroski and So, 2012), which are priced (e.g. Liang 2018; Piotroski and So, 2012; 

Shefrin, 2008; 2015). Therefore, the risk premium in the market could contain both a rational 

and an irrational premium. Since Liang (2018) and Fong and Toh (2014) report a negative 

risk premium for sentiment factor in the cross-section of stock returns, this study conjectures 

that irrational risk factors in this study would command a negative risk premium78.  

Empirical results from the four-beta model are consistent with the findings of Huang 

et al. (2015) in that changes in the irrational expectation of cash flow is the main underlying 

source of the sentiment-return relationship. Besides that, the findings confirm that stocks are 

not immune to the variations in the irrational cash flow expectations and rational discount rate 

expectations since the irrational cash flow beta and rational discount rate beta estimates are 

significant across different portfolios. Hence, the null hypothesis that the covariances of an 

asset’s returns with the irrational cash flow news and the rational discount rate news would 

not be significantly different from zero is rejected by the four-beta model. The results from 

 
77  As Chen and Zhao (2009) show that the news series estimated from different sample periods alter the 

conclusion of beta trend (i.e. βi,CF has an increasing trend moving from growth stocks to value stocks) 

documented in CV (2004), which can be seen also in Section 5.6.2. Hence, we adopt a time-varying VAR 

approach to estimate the news series. Although our baseline results come from the TV-VAR, we also provide the 

results derived from a VAR for comparison.  

78 The rationale of the negative risk premium associated with the irrational betas are discussed in Section 5.6.5. 
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the full sample VAR estimation further supports the findings obtained from the TV-VAR 

estimation, where only the irrational cash flow news and rational discount rate news are found 

to significantly affect the stock price under different estimation frameworks. As for the asset 

pricing test, the results demonstrate that the four-beta model improves the explanatory power 

of the CAPM and CV’s two-beta model in describing the cross-sectional variation of average 

excess returns since the four-beta model delivers a higher adjusted cross-sectional R2 statistic 

and a lower pricing error. In line with the prediction, the irrational betas are significantly and 

consistently priced in the cross-section of stock returns and demand a negative risk premium. 

On the other hand, covariances of asset’s returns with the news of rational expectations earns 

a positive risk premium. However, the risk premium estimates associated with the rational 

cash flow and discount rate betas have lower magnitude in the absolute terms.  

A popular issue documented in the asset pricing literature is that the market beta is 

varying over time (see Jagannathan and Wang, 1996; Merton, 1973), and hence a time-

varying beta is widely employed in the literature (e.g. Adrian and Franzoni, 2009; Botshekan, 

Kraeussl and Lucas, 2012; Petkova and Zhang, 2005). In view of the fact that the beta is non-

constant, this study also performs the sub-sample analysis in order to investigate if the beta 

estimates produced under the TV-VAR framework change across different sub-samples, and 

how these changes affect the pricing of each beta risk. In particular, this study employs a 

structural break test to identify the structural shifts in the four betas79.  

The sub-sample analysis reveals that the changes in the irrationally expected cash 

flows significantly affect most of the assets’ returns in the second sub-sample period 

(February 1998 to December 2014), but not in the first sub-sample period (December 1969 to 

August 1997). In contrast, irrational discount rate betas are insignificant across both sub-

sample periods, confirming that the predictive power of investor sentiment is transmitted 

through the cash flow channel. The rational discount rate betas do, however, remain highly 

significant, across all portfolios in both sub-sample periods. These findings are again calling 

into question the assumptions of CPV (2010). Meanwhile, the positive sign on the irrational 

cash flow beta and rational discount rate beta estimates also remain unchanged across both 

periods. As for the pricing of risk, consistent with the full sample results, both irrational cash 

 
79 To be able to estimate the risk premia associated with the four betas, a consistent break point is required for 

each of the four betas. Although multiple break points could have incorporated in this study, but the test for 

multiple breaks reveals inconsistent break points across different betas and this complicates the analysis. Hence, 

for simplicity, a single break test is adopted to identify the main structural break in the sample period considered.   
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flow and irrational discount rate betas are significantly priced and investors are willing to pay 

a premium for the irrational risk factors across sub-sample periods.    

This study contributes to the literature in several aspects. First, this study adds to the 

literature of behavioural finance in that it provides a deeper understanding on the economic 

source underlying the sentiment-return relation. Most of the behavioural literature examined 

the effect of irrational expectation on only either the future cash flow or the expected returns, 

separately80. This chapter fills the gap by integrating irrational expectations in both cash flow 

and discount rate channels into one model since the stock valuation could be affected by the 

expectations errors about the future cash flow and discount rates concurrently. The newly 

constructed model permits a better comparison of the relative importance of the sentiment-

induced irrational cash flow and discount rate expectations on the asset’s returns.  

Although Huang et al. (2015) also examine the predictive power of sentiment on 

stocks’ cash flow and discount rates, their investigation focused on the one-period model as 

shown in the equation (2’) of Campbell and Shiller (1988a). In contrast, this study considers a 

multi-period model, which is modelled through the VAR specification, on the ground that we 

are evaluating the behaviour of the long-lasting securities, and that the sentiment exerts 

stronger predictive power on stock market returns of longer horizons as shown in Chapter 2 

and Chapter 3. Besides that, their study provides an indirect link in this subject since the 

sentiment is used to forecast only the CF and DR, but does not directly link the sentiment-

induced CF or DR news to stock returns. This study, however, provides a direct link as the 

returns of 25 size- and value-sorted portfolios, which represent the stock market returns, are 

regressed on the sentiment-induced CF and DR news series.  

Second, this study critically investigates the assumptions that are commonly applied in 

the literature, especially those made in CPV (2010). Often, cash flow news is claimed to be 

driven by fundamental factors, but no study has split the cash flow news into rational and 

irrational components in order to examine if the fundamental factor is the only driver for the 

cash flow news. This study provides the first examination of the assumption made with 

respect to the cash flow news. Similarly, CPV (2010) made a definite claim on the discount 

rate news that it is driven mainly by the sentiment. Again, no study has tested whether 

discount rate news is truly driven by investor sentiment only, or rational expectation does play 

 
80 See Section 5.2 for a review.  
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a role as well. Thus, this study fills this gap, verifying the assumptions of cash flow and 

discount rate news by using the four-beta model constructed in this study.  

Lastly, to the best of our knowledge, no one has developed a four-beta model that 

decomposes the cash flow and discount rate betas into rational and irrational components, in 

order to examine the pricing of those betas in the cross-section of stock returns. CV (2004) 

mention that their model remains important in understanding how a long-term risk-averse 

investor prices the cash flow and discount rate risks even though investor irrationality could 

have affected the stock prices. However, investor irrationality has not been given credit 

explicitly in their model. Therefore, extending their two-beta model to a four-beta model that 

accounts for both rational and irrational expectations could further enhance our understanding 

towards the pricing properties of rational and irrational risks in both cash flow and discount 

rate channels. 

This chapter is organized as follows. Section 5.2 reviews the literature and Section 5.3 

presents the framework of return decomposition. Section 5.4 discusses the empirical 

methodology employed in this study, which includes the approaches used to decompose stock 

market returns, the computation of the four-beta model, and the pricing of the four betas. 

Section 5.5 presents the data and descriptive statistics of data, followed by the empirical 

findings in Section 5.6. Section 5.7 presents the robustness checks on the asset pricing test 

and Section 5.8 performs the equity anomalies test. Last section concludes.  

5.2 Literature review 

5.2.1 Different beta risks 

The seminal work of Campbell and Shiller (1988a) propose the dividend-ratio model 

that decomposes the dividend-price ratio into two components, which are the shocks in 

expected future dividend growth rates (i.e. cash flow shock) and in discount rates, under a 

framework with time-varying discount rates. Given that both expected future cash flows and 

discount rates are unobservable, they employ the vector autoregressive model (VAR) to 

operationalize the concept of log dividend-price decomposition. While the returns forecast in 

Campbell and Shiller (1988a) is implied by the forecasts estimated from log dividend-price 

ratio and dividend growth rates, Campbell (1991) models the returns forecast explicitly to 

obtain a return decomposition model. 
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Following the introduction of the return decomposition model, some studies have 

investigated whether NCF or NDR plays a dominant role in the variation of stock returns. 

Studies which argued that NDR plays a more important role than NCF in explaining the 

movement of stock returns at aggregate level include Campbell (1991), Campbell and Ammer 

(1993) and Campbell and Vuolteenaho (2004); whereas the opposite finding is reached at the 

cross-sectional level (see Lochstoer and Tetlock, 2018; Vulteenaho, 2002). Meanwhile, Chen, 

Da and Zhao (2013) claim that NCF can explain stock returns at both individual stock and 

aggregate market level. There are studies which claimed that NCF has a more important role in 

the return predictability if a different measure of NCF is employed (see Chen, Da and Priestley, 

2012; Chen, Da and Zhao, 2013; Chen and Zhao, 2009; Garrett and Priestley, 2012).  

Another application of return decomposition model can be seen in the market risk 

decomposition of Campbell and Vuolteenaho (2004) who assess the sensitivity of stock 

returns with respect to the market NCF and NDR, measured by βi,CF and βi,DR. Their two-beta 

model successfully explains the cross-sectional of average stock return. Concretely, they 

documented that a higher reward is awarded to a long-term risk averse investor for bearing the 

cash flow risk given that an undesirable move in the expected cash flows brings permanent 

effect to investors81. Therefore, stocks with returns that are highly correlated with the market 

NCF receive a higher risk premium, for instance, small and value stocks. Contrarily, stocks 

that are more sensitive to the market NDR have a relatively lower risk premium, e.g. large and 

growth stocks. 

Building on the market risk decomposition of CV (2004), several studies also 

developed different asset pricing models with market risk being decomposed into different 

components in order to shape further understanding towards the variation in stock returns at 

the cross-sectional level. While some studies focused on different measures of NCF when 

computing the βi,CF, other studies proposed new types of beta in addition to βi,CF and βi,DR.  

As mentioned earlier, some studies argued that the measure used to model NCF is 

important in revealing the role of the NCF in the return variability. Likewise, βi,CF computed 

from a different measure of NCF also led to a different explanation for the cross-sectional of 

 
81  Using a VAR model, Cochrane (1994) shows that stock returns is predictable by price/dividend ratio and the 

dividend resemblance a random walk series. Therefore, dividend will not revert to its mean following a dividend 

shock (i.e. cash flow news) holding expected returns constant, and thus bring permanent effect to the stock price 

as price moves to a new level. Contrarily, a price shock (i.e. discount rate news) holding dividend constant 

triggers a transitory effect on the stock returns since returns will revert to its mean level.  
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stock returns. Instead of modelling the NCF as the residual of unexpected returns and NDR, 

Chen and Zhao (2009) model the NCF directly in the VAR based on two proxies, which are the 

dividend growth rate and return on equity. A noise beta, βi,Noise, in addition to βi,CF and βi,DR is 

then introduced to capture the news explained neither by CF nor DR. The ‘noise’ in their 

model is simply the difference between the NCF retrieved from the VAR of CV (2004) and the 

direct modelled NCF. The direct modelling of NCF reveals that value stocks have lower βi,CF 

and βi,DR, but a higher βi,Noise as compared to growth stocks. Excluding price-earnings ratio as 

a state variable, they found that the positive risk premium associated with the βi,CF is 

applicable only to the size effect (i.e. small stocks earns higher returns), but not related to the 

value effect (i.e. value stocks have higher returns), contradicting the findings of CV (2004). 

Meanwhile, the βi,DR commands a negative risk premium. 

An extension to their work can be seen from Garrett and Priestley (2012), where they 

employed a new predictor to forecast the dividend growth, which is then used to compute the 

NCF directly from the VAR. Similarly, they found that value stocks have a higher βNoise. Their 

cross-sectional regression shows that the cash flow and noise beta risks are consistently and 

positively priced, but discount rate beta risk is not significantly priced across stocks. Da and 

Warachka (2009) also report that their earnings beta (i.e. cash flow beta) computed from the 

revision in analysts’ earnings forecasts can explain more than half of the cross-sectional 

variation of stock returns. Nevertheless, the discount rate beta risk is ignored in their cross-

sectional regression model. 

There are a few studies which accounted for the second moment of return distribution 

when they decomposed the market risk (see Campbell, Giglio, Polk and Turley, 2018; 

Koubouros, Malliaropulos and Panopoulou, 2007; Koubouros, Malliaropulos and Panopoulou, 

2010). Koubouros et al. (2007) decompose the market beta into four betas that measure the 

co-movement of firm-specific cash flow and discount rate news with the market cash flow 

and discount rate news. They differentiate their four-beta model from, but closely related to, 

the four-beta model of CPV (2010) by considering the heteroscedasticity in return residuals. 

The news series is modelled as a function of standardized residual, which is computed as the 

VAR residuals over the conditional covariance matrix of the residuals. As such, the more 

volatile shocks have lesser impact on the new series. Their findings reconcile the findings of 

CV (2004), in which value and small stocks have lower βi,DR but higher βi,CF. Unlike CV 

(2004), their model produces a relatively stable beta estimates over time. Koubouros et al. 
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(2010) show that this four-beta model has been found to price the average asset returns at the 

cross-sectional level, and performs even better than the two-beta model of CV (2004).  

Recently, Campbell, Giglio, Polk and Turley (2018) propose a three-beta model that 

captures the sensitivity of stock returns with respect to the NCF, NDR and a market risk news 

(NRisk) given that a long term investor will hedge against not only the decrease in expected 

stock returns, but also the increase in the volatility of stock returns. Their model shows that 

large and growth stocks have higher discount rate and variance betas, and that these two betas 

provide much lower risk premium as compared to cash-flow beta, and hence explain the lower 

average returns of these stocks.  

Meanwhile, Botshekan, Kraeussl and Lucas (2012) decompose the market risk into 

four different components conditional on the market ups and downs. Their idea is built on the 

framework of prospect theory, where they argued that long-term loss averse investors 

perceive losses caused by unexpected decrease in cash flows worse than unexpected increase 

in discount rates during the market downturns, and thus require a higher premium for bearing 

the downside cash flow risk. Their result is consistent with their intuition in that the downside 

βi,CF receives the largest premium even though all four betas are significantly priced across 

different assets.  

Despite studies in this research area are still counting, to the best of our knowledge, no 

study has decomposed the cash flow and discount rate betas into the rational and irrational 

components. The most closely related work would be CPV (2010). Nevertheless, their claim 

on the rational and irrational views is rather restrictive in the sense that the sensitivity of stock 

returns with market news driven by firms’ cash flow movement is claimed to be due to 

fundamental factors; whereas investor sentiment drives the discount rate movements of an 

asset with the market news. Given that stock markets constituted from individual stocks, their 

assumptions of the rational and irrational views applied to every stock also implicitly implies 

that unexpected moves of the market-wide cash flows and discount rate are also driven by 

fundamental factors and investor sentiment, respectively. Besides that, they left an open 

question in their study: Are their four betas priced in the cross-section of stock returns? 

In spite of CPV’s assumptions, both rational and irrational views co-exist in the stock 

markets, and the interplay between the rational and irrational expectations could have affected 

the stock prices through both cash flow and discount rate channels. Next, the literature focus 

on the expected cash flows is reviewed, followed by the literature on the expected return.  
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5.2.2 Expectations of future cash flows 

Different measures have been used as a proxy for the expected cash flows, such as 

profitability, asset growth, stock repurchase, net stock issue, and accruals, and the review of 

the effect of each variable on stock returns is given in Fama and French (2008). In particular, 

profitability and asset growth, which have wide applications, tend to predict positively and 

negatively, respectively, the expected returns (see, for example, Cohen, Gompers and 

Vuolteenaho, 2002; Fama and French 2006; 2008; Fairfield, Whisenant and Yohn, 2003; 

Haugen and Baker, 1996; Hou, Xue and Zhang, 2015; Novy-Marx, 2013). Although the 

profitability and investment effects82 are in line with the prediction of the dividend discount 

model (DDM)83, the DDM does not distinguish between the rational and irrational pricing 

since the model is unable to differentiate if the forecasts of future cash flows are rational or 

irrational (Fama and French, 2006; 2008), which is a highly debated issue. 

From the rational view, if investors fully understand the profitability information, a 

rational expectation about the future cash flows could be formed based on that information. 

Fama and French (FF, 1995) examine whether the price behaviours of different stocks is 

consistent with their earnings behaviours. They reported a negative relationship between the 

profitability and book-to-market ratio, i.e. high BE/ME stocks (so-called value stocks), which 

usually have higher average returns, persistently have lower profits than low BE/ME stocks 

(i.e. growth stocks), which have lower average returns (see also Penman 1991; 1996). 

Contrary to LSV (1994), who claim that the market corrects the mispricing of value and 

growth stocks after the unraveling of actual growth rates, FF argued that market rationally 

estimates the future growth rates of earnings and understand about the convergence of the 

growth rates between these two types of stocks after portfolio formation period, which leads 

to high (low) average returns for value (growth) stocks.  

Studies supporting the view that both profitability and investment effects are mainly 

driven by the rational pricing adopt q-theory of investment in their justifications and present 

evidences that rational explanation dominates the behavioural biases. Both effects are closely 
 

82 Profitability, which is commonly measured as earnings on book equity or gross profit to assets, embeds the 

information about the future cash flows. Dechow, Kothari and Watt (1998), Greenberg, Johnson and Ramesh 

(1986) and Kim and Kross (2005) claim that future cash flows are more predictable by current earnings instead 

of current cash flows, supporting the assertion of the Financial Accounting Standards Board (see also Barth, 

Cram and Nelson, 2001). Investment is measured by the asset growth, which is the change in book equity.  

83 As shown in Fama and French (2006, 2015), the expected dividend in the dividend discount model can be 

expressed as expected earnings minus the asset growth under the clean surplus accounting principle. 
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linked under this theory. According to the q-theory, producer determines the optimal 

investment level to maximize the market value of the firm by evaluating the expected future 

cash flows against the current cash flows. Discounting the expected future cash flows at a 

high cost of capital leads to a low net present value and hence a low investment. As such, if 

the marginal profitability of investment (discounted to time 0) is greater than the marginal 

cost of investment at time 0, of which occurred when the discount rate is low, the firm will 

invest more. The investment demand will be adjusted until it achieves an optimality condition 

where the discount rate is sufficiently high to offset the high profitability of the investment. 

At this point, the marginal benefit equals to the marginal cost of investment, or the discount 

rate is equal to the marginal investment return (i.e. marginal benefit to the marginal cost of 

investment). Hence, high (low) profitability should project high (low) expected returns for a 

given level of investment. Also, the profitability premium is higher for the firms with less 

friction (Jiang, Qi and Tang, 2018) and in developed markets (Chen, Sun, Wei and Xie, 

2018)84.  

As for the investment effect, the decreasing return to scale indicates that lower 

marginal benefit of investment is realized when more investments are undertaken. 

Equivalently, the expected returns, which equals to the marginal benefit to marginal cost of 

investment, also decrease with investment. Meanwhile, the discount rate effect claims that 

large investments are made when the discount rate is low. Both effects predict a negative 

expected return–investment relationship. Based on the cross-country analysis, Titman, Wei 

and Xie (2013) and Watanabe, Yu, Yao and Yu (2013) find that investment effect is more 

prevalent in the developed markets, showing that the effect of investment on the expected 

future cash flows and expected returns is correctly priced in the markets.  

Ball, Gerakos, Linnainmaa and Nikolaev (2015; 2016) provide rational explanation of 

the profitability effect without relating it to the q-theory. They revealed that the predictive 

power of profitability on future returns persists up to ten years, and hence claim that both 

profitability and expected returns have common underlying risk, and that the mispricing 

cannot be an explanation in this case85. Nevertheless, the type of risk shared by these two 

variables is unknown in their papers, but is proposed in other studies. Bansal, Dittmar and 

 
84 Managers in developed markets, which have lower investment frictions, tend to maximize the firm value by 

practicing capital budgeting, consistent with the q-theory of investment model. 

85 They argued that mispricing will not last that long.  
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Lundblad (2005), Bansal, Ditmar and Kiku (2009) and Hansen, Heaton and Li (2005) show 

that the aggregate consumption risk is reflected in the assets’ cash flows and their cash flow 

beta explains the variation in the cross section of stock returns.  

From the behavioural standpoint, the profitability effect could be observed as a result 

of investors’ misinterpretation of current profitability that leads to the expectation errors in 

future cash flow estimates. A horse race between the rational and irrational explanations in 

Lam, Wang and Wei (2015) and Wang and Yu (2013) suggests that the profitability effect is 

ensued from the misperception of current profitability of the firm that leads to the expectation 

errors in the future cash flow estimates. Both also reported that stronger profitability premium 

(i.e. return spread between the most profitable and the least profitable firms) is seen after the 

high sentiment period.  

Similarly, the findings of Cooper, Gullen and Schill (2008) and Titman, Wei and Xie 

(2004) lean towards the behavioural bias. Cooper et al. (2008) find that investors overreact to 

the previous growth rates and the reactions of low asset growth and high asset growth stocks 

to the earnings announcements is consistent with the expectational errors hypothesis. Titman, 

Wei and Xie (2004) explain the negative relationship between the investment and average 

returns on the ground of overinvestment and investor misperception. Firms may overinvest 

but investors who are unaware of this unfavourable managerial action may irrationally expect 

higher future cash flows to be realized based on the high investment. The lower future returns 

simply reflects the correction of mispricing.  

The abovementioned studies documented the fact that expected cash flows are 

irrationally formed through distinguishing the underlying explanations – rational vs. irrational 

– of the profitability and investment effects, other studies provided direct evidence on 

irrational expectations of future cash flows based on the irrational earnings forecasts produced 

by analysts. Specifically, Hribar and Mclnnis (2012) find that analysts’ forecasts tend to be 

more optimistic (pessimistic) when investor sentiment is high (low) and thus forecast errors 

are higher (lower) during high (low) sentiment period. Furthermore, the result of Seybert and 

Yang (2012) also implies that analysts form irrational earnings forecasts since the 

management earnings guidance corrects the sentiment-induced mispricing.   

Apart from investigating the expectation errors made by analysts, other supporting 

literature in this strand focus on the dispersion (or disagreement) of analysts’ forecasts, which 

reflects different earnings forecasts produced by optimistic and pessimistic analysts. Hong 
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and Sraer (2016) show that high-beta stocks are overpriced when there is a high disagreement 

about future cash flows since only optimists’ opinions are reflected in the stock prices, but 

pessimists stand on the sideline in the presence of short-sale constraint. Similar evidence also 

documented for small and loser stocks (see Diether et al., 2002). Using BE/ME sorted 

portfolio as a test instrument86, Yu (2011) also find that growth stock mispricing is stronger 

when there is a high disagreement about the future cash flows, which can be interpreted as 

only optimists’ views are reflected in the stock prices when there is a high disagreement. 

Optimists are badly informed investors (Miller, 1977) since analysts produce optimistic 

forecasts during high sentiment periods (Bergman and Roychowdhury, 2008; Walther and 

Willis, 2013). In fact, Kim, Ryu and Seo (2014) reveal that significant mispricing induced by 

high disagreement can only be found in high sentiment period. Therefore, high disagreement 

about future payoffs, which is measured by the analysts’ forecasts dispersion, is a proof that 

analysts form irrational expectations about future cash flows.   

Instead of examining the analysts’ forecasts dispersion in different states of investor 

sentiment, a few studies investigated whether investor sentiment predicts future cash flows. 

There is a vast literature documented that investor sentiment predicts negatively future stock 

returns, where the current overvaluation or undervaluation is being corrected by arbitrageurs 

in the future87. This predictive power of investor sentiment could stem from the correction of 

biased beliefs about future cash flows and/ or expected returns made in the past. Huang et al. 

(2015), who seek to find out the channel through which investor sentiment affects future stock 

returns, reveal that the return predictability of investor sentiment is a manifestation of 

investors’ biased beliefs about future cash flows where investor sentiment predicts negatively 

future cash flows. A similar conclusion is also documented by Ma, Xiao and Ma (2018).  

Investor sentiment is not the only underlying source of irrationality, literature also 

found that other investor psychology could have played a role in the formation of irrationally 

expected cash flows. One of the common biased expectations documented in the literature is 

the extrapolative bias. Extrapolation is a process whereby investors tend to overweight the 

recent past information and extrapolate it into the future. The law of small number (a version 

 
86 Growth stocks (i.e. low BE/ME) tend to be overpriced during the optimism period. Hence, Yu (2011) employs 

growth (value) stocks to represent optimistic (pessimistic) view of investors.  

87 See Chapter 2 for a review of literature on the predictive power of investor sentiment on future stock returns. 
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of representativeness heuristic) is the root of this extrapolation process, where investors 

generalise from a small sample of observations to the population properties. 

As early as Barsky and De Long (1993), investors are found to form the expected 

dividend growth by extrapolating the dividend growth from the recent past. Cross-sectionally, 

LSV (1994) find that systematic errors made by naïve investors in forming their expectations 

about future earnings growth leads to an undervaluation (overvaluation) of value (growth) 

stocks. Specifically, investors extrapolate the past growth in forming overoptimistic 

expectations about future earnings/ cash flow growth rates of growth stocks, and inflate the 

current prices. The opposite is seen for value stocks. Hence, the average stock returns of 

growth (value) stocks will be lower (higher) when the realized earnings of growth (value) 

stocks are worse (better) than expected and investors corrected for their errors. Studies which 

support this view include Piotroski and So (2012)88 and De Bondt and Thaler (1985; 1987) for 

momentum sorted portfolios. Considering a wider set of cross-sectional stocks, Chan, 

Karceski and Lakonishok (2003) claim that the low realized growth rate simply does not 

justify the high PE ratio, and that the long-term realized earnings growth rate is of little 

predictability, yet, investors and analysts extrapolate the recent past growth rates far into the 

future89. They also found that the Institutional Brokers’ Estimate System’s (IBES) growth 

estimates are found to be too optimistic in the long horizons.  

Meanwhile, Chopra, Lakonishok and Ritters (1992), La Porta (1996), La Porta, 

Lakonishok, Shleifer and Vishny (1997) investigate the market’s responses to the earnings 

announcements. Collectively, they found that returns of growth (winner) stocks are 

significantly lower than those of value (loser) stocks around the earnings announcement dates 

once investors learn the actual earnings. These evidences are consistent with the errors-in-

expectation hypothesis, where investors formed overly optimistic (pessimistic) forecasts of 

earnings for the growth and winner (value and loser) stocks. La Porta (1996) reveals that the 

extreme growth expectations from the IBES is partially attributable to the extrapolative bias. 

He found that the high returns of value stocks cannot be fully explained by extrapolative bias, 

but other behavioural biases could play a role. Based on a large set of equity anomalies and a 

horse race of different explanations, Engelberg, Mclean and Pontiff (2018) confirm that 

 
88 Piotroski and So (2012) document the largest return for the value-minus-growth strategy during high sentiment 

periods and vice versa.  

89 They analyse different subsets of stocks include technology, value, growth, large, mid-capitalization and small 

stocks apart from the analysis that consists all firms.  
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investors extrapolate the past growth, forming optimistic and pessimistic forecasts, which are 

then corrected on the earnings announcement days, and subsequently unfolding the 

predictability of the cross-sectional stock returns.  

Besides that, a few papers proposed theoretical models that revolve around the 

extrapolative bias in the formation of cash flow expectations. Fuster, Herbert and Laibson 

(2011) employ the quasi-rational model developed by Fuster, Laibson and Mendel (2010) 

with a zero weight is being assigned to the rational expectations, i.e. investors employ a 

parsimonious model (AR model), to explain a set of empirical implications. Their model 

argued that investors extrapolate the past earnings in forming their forecasts, overly optimistic 

during the good time and vice versa, and hence underestimate the long-run mean reversion in 

earnings. Recently, Alti and Tetlock (2014) propose a model that explains the differences in 

asset returns across firms on the basis of investors’ expectation errors ensued from 

overconfidence and extrapolation. In contrast to overconfident agents, extrapolative investors 

overly depend on the past cash flows in forecasting the future productivity.   

In addition to the extrapolative bias, conservatism bias is another source for the 

irrational expectations of future cash flows. Conservatism bias asserts that individuals 

overweight prior believes but underweight new evidence, leading them to adjust their beliefs 

slowly. Investors who are prone to this bias tend to underestimate the useful earnings 

announcements that contradict their prior beliefs and hence revise expected future cash flows 

in response to the announcements slowly. Therefore, stock prices do not react sufficiently to 

incorporate news. Barberis et al. (1998) construct an investor sentiment model that is 

consistent with both the conservatism and extrapolative biases, showing how the investors 

form biased beliefs about future earnings in two different earnings regimes. For the 

conservatism bias, investors in their model think that earnings are mean-reverting. As such, 

they underreact to the latest earnings announcement and formed biased expectations about 

future cash flows. In contrast, other investors believe that earnings have a trend in another 

regime. They tend to extrapolate past growth of stocks after a series of good and bad earnings 

news (i.e. extrapolative bias), resulting in overreaction. They assumed the expected returns to 

be constant in the model, and hence all mispricing is attributable to the expectation errors in 

the cash flows. Their simulation results render support to their model. 
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5.2.3 Expectations of future returns 

Extrapolation occurs not only through the cash flow channel, but also through the 

discount rate channel, where investors extrapolate from past price changes in forming their 

expected returns. Early studies by Barberis and Shleifer (2003), Cutler, Poterba and Summers 

(1990), De Long, Shleifer, Summers and Waldmann (1990), and Hong and Stein (1999) 

present theoretical models showing how the asset price is determined through the interaction 

between rational investors, who base their expected returns to the fundamental news, and 

extrapolators, who form their expected return based on past price changes. Generally, their 

models demonstrate that extrapolators become more bullish by extrapolating positive past 

price changes, and hence form the optimistic expectation about future returns, leading the 

stock price to deviate further from its fundamental value. The mispricing is hard to be 

corrected by rational investors within short-term period in the presence of extrapolators.  

Recently, Barberis, Greenwood, Jin and Shleifer (2015, henceforth BGJS) develop a 

new consumption-based asset pricing model at the aggregate stock market level by taking into 

account of the expectations formed by extrapolators. Unlike studies mentioned above, the role 

of investor sentiment is explicitly spelled out in their model in order to formalize the concept 

of extrapolation. Specifically, the high sentiment level, which is built upon the positive past 

price changes, leads to a more bullish expectation of future stock returns to be formed by 

extrapolators. Their model shows that the expectations formed by less rational investors could 

cause the stocks to be overvalued, and BGJS (2018) demonstrate that expected returns formed 

by extrapolating past price changes could lead to a bubble, even in a market where both 

rational traders and extrapolators co-exist. Therefore, irrational expectations about future 

stock returns should be given a credit in the asset pricing model. 

Whilst theoretical research studied the implication of the interaction between 

heterogeneous agents has on the asset prices, empirical research provided evidences on the 

existence of investors’ irrational expectations about future stock returns, for instance, Cassella 

and Gulen (2018), Greenwood and Shleifer (2014), Vissing-Jorgensen (2004). These studies 

employed the survey-based investor expectation data, such as UBS/Gallup investor survey, 

American Association of Individual Investors, Investors’ Intelligence and etcetera 90 , to 

measure the investors’ expectations of future stock market returns. 

 
90 These indexes are also used as measures of investor sentiment in other literature (e.g. Qiu and Welch, 2004; 

Fisher and Statman, 2000; Brown and Cliff, 2004; 2005). 
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Using only the Investor Optimism Index from UBS/Gallup as a measure of investor 

belief, Vissing-Jorgensen (2004) find that investors hold irrational expectations since 

investors expected a higher future returns during market boom, which is contradicting to the 

rational expectation model. Their beliefs are not corrected immediately even though investors 

are aware of the stock market overvaluation. Their findings that investors form irrational 

expectations was reinforced by Greenwood and Shleifer (2014) who provide a more 

comprehensive investigation on the existence of bias in investors’ expectations by employing 

various survey data of investor expectations. Greenwood and Shleifer (2014) reveal that 

investor expectations retrieved from different measures are highly correlated, but are 

negatively correlated with the ‘true’ model-based expected returns. These widely shared and 

biased beliefs have been found to predict negatively future stock returns, which, is not in line 

with the rational expectation model, but is consistent with the sentiment view that investor 

optimism lifts the current stock prices due to their high expected returns, leading to lower 

future stock returns. 

Building upon the works of Greenwood and Shleifer (2014) and Barberis et al. (2015), 

Cassella and Gullen (2018) propose a measure – degree of extrapolative weighting (DOX) – 

to quantify the degree to which investors rely on more recent returns in forming their 

expectations, and find that the predictive power of price-scaled variables, e.g. dividend-price, 

book-to-market, and earnings-price ratios, could be explained by time-varying irrational 

expectations.  

Under the efficient market hypothesis framework, different rational explanations are 

proposed to account for the change in expected returns formed by rational agents. The time-

varying returns required by rational investors could simply represent (1) time-varying risk-

aversion (Bekaert, Engstrom and Xing, 2009; Campbell and Cochrane, 1999; Cochrane, 

2011), (2) time-varying risk (Bansal, Kiku, Shaliastovich and Yaron, 2014; Bansal, Kiku and 

Yaron, 2012; Bansal and Yaron, 2004; Bollerslev, Tauchen and Zhou, 2009), (3) disaster (e.g. 

Great Depression and wars) risk (Barro, 2006; Gabaix, 2012; Watcher, 2013), and (4) time-

varying firm’s asset portfolio and interest rates (Berk, Green and Naik, 1999).  

Campbell and Cochrane (1999, CC) build a habit formation type of consumption-

based asset pricing model by allowing the risk aversion to vary over time. According to their 

theoretical model, investors become more risk averse as the consumption tends towards the 
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habit level 91 , which is measured by the surplus consumption ratio (SCR) 92 , during the 

recession period. Consequently, expected returns (i.e. discount rate) increase and current stock 

prices decrease. Cochrane (2011) depicts graphically that the SCR covaries with the price-

dividend ratio, reinforcing the idea that time-varying risk aversion alters the investors’ 

expected returns. Despite the consumption-wealth ratio (CAY) 93  model of Lettau and 

Ludvigson (2001a) is not built upon the framework of time-varying risk aversion, they, 

however, indirectly interpreted the comovement of CAY with expected returns using the 

concept of time-varying risk aversion. A decline in CAY reflects lower expected returns in the 

future is consistent with the time-varying risk-aversion framework. The CC model argues that 

the consumption exceeds the habit level during expansion periods and investors become less 

risk averse, leading to an increase in the asset demand but a decrease in the expected returns. 

Despite the consumption boom, asset wealth will increase at a much higher rate as compared 

to consumption, leading to a lower CAY that reflects lower expected returns. Bekaert et al. 

(2009) develop a model that accounts for both time-varying risk aversion and time-varying 

risk explanations, but found that the fluctuation in expected returns is driven mainly by the 

time-varying risk aversion.   

With respect to the risk channel, Bansal and Yaron (2004, henceforth BY) propose a 

long-run risk model to explain the variation in discount rates. Their model implies that the 

variation in stock prices is a response to the variation in long-run expected growth and 

consumption volatility. They showed that the discount rate news is largely attributable to the 

time variation in the aggregate consumption risk, where an increase in the consumption 

volatility is associated with an increase in the discount rates. The relationship between 

volatility news and discount rate news has been further emphasized in the works of Bansal, 

Kiku and Yaron (2012), who provide empirical evidence to support BY’s model, and Bansal, 

Kiku, Shaliastovich and Yaron (2014), who focus on the fluctuations of macroeconomic 

volatility. Meanwhile, the variance risk premium of Bollerslev, Tauchen and Zhou (2009), 

which is measured as the difference between implied and realized volatility, predicts 

positively expected returns.  

 
91 The habit in their model is governed by the aggregate consumption.  

92 A lower SCR indicates that the consumption approaches habit level. 

93 CAY measures the short run deviations of aggregate consumption, asset holdings, and labour income from 

their common trend. To shield the future consumption from the time-varying expected returns, investors will 

adjust their consumption level based on their expected future stock returns, resulted in a temporary deviation of 

the consumption from the shared trend, either move above (i.e. high CAY) or below (i.e. low CAY) the trend.  
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The disaster, such as Great Depression and wars, are events that do not happen very 

often but the impact brought by these events are huge in magnitude. Therefore, investors 

should be highly compensated for the risk ensued from the disaster (Rietz, 1988). Relax the 

low-probability disasters of Rietz, the time-varying probabilities of disaster explains the time-

varying risk premium (Barro, 2006; Gabaix, 2012; Watcher, 2013). Apart from the macro 

perspective (i.e. interest rates in their model), Berk et al. (1999) also look into the micro 

perspective (i.e. firm’s asset portfolio in their model), and tie both perspectives in explaining 

the time-series dynamic behaviour of conditional expected returns. They showed that increase 

in interest rates leads the firms to undertake lower risk projects lately as well as in the near 

future. Since the expected risk associated with receiving anticipated cash flows is decrease, 

the expected return is decrease.  

5.2.4 Summary 

The review of literature shows that most papers studied the expectations of future cash 

flows and discount rates in isolation with some even focused solely on the rational or 

irrational expectations in a particular channel. Studying the effect of each expectation on asset 

prices separately implicitly assumes the other expectations to hold constant. Nevertheless, 

some information about asset returns captured by one expectation could have been omitted by 

the other. Asset pricing model that considers only on the changes in one expectation may not 

truly reflects the effect of each expectation on asset prices as the model does not control for 

other expectations. Therefore, a more comprehensive view is provided by integrating the four 

expectations – irrational expectations of future cash flows and discount rate, and rational 

expectations of future cash flows and discount rate – into one model. As discussed earlier, 

different beta risks expanding from the work of CV (2004) have been proposed in the 

literature. However, to the best of our knowledge, none of them distinguish between irrational 

and rational beta risks. Thus, this study fills in this gap by evaluating the responsiveness of 

stock returns to changes in each of the four expectations. This enables us to evaluate the 

relative importance of irrational expectations and rational expectations risks in each cash flow 

and discount rate channel. 

5.3 Return decomposition framework 

Based on the present value concept, stock prices change because of a change in the 

expected cash flows and/ or discount rates. An increase in the expected future cash flows will 

lead to an increase in stock prices; an increase in the discount rates will cause a drop in stock 
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prices. This simple concept leads to the development of the return decomposition framework 

introduced by Campbell and Shiller (1988a) and Campbell (1991). The framework starts with 

the log-linear approximation of the present value approach (Campbell and Shiller, 1988a), 

where the next-period stock returns approximate to the log-linear returns around the average 

of log dividend-price ratio which can be expressed as 1 1 1(1 )t t t tr k p d p + + + + + − − . The 

lowercase letters rt, pt and dt denote the log transformed stock returns (Rt), stock price (Pt) and 

dividend (Dt), respectively. k is a constant term expressed as log (1 ) log(1/ 1)k   = − − − −  

and the discounting coefficient, ρ, is assumed to be 0.95 per annum. 

Iterating the one-period log-linear return approximation forward with 

lim ( ) 0j

j t j t jd p→ + +− =  yields the following linearized present value identity, which is an 

ex-ante measure using an expectation notation: 

 
1 1

0

[ ]
1

j

t t t t j t j

j

k
p d E d r





+ + + +

=

− = +  −
−

   (5.1) 

where Et denotes the expectations made at time t. This model implies that the increase in the 

expectation of future log dividend growth, 
1t jd + + , and/ or a drop in the expectation of future 

stock returns, 
1t jr + +

, will produce a high log price-dividend ratio, t tp d− . The assumption of 

lim ( ) 0j

j t j t jd p→ + +− =  implies that the mean reverting (or non-explosive) condition holds 

for the terminal value of log price-dividend ratio.  

Instead of employing the above present value identity to imply the forecasts of stock 

returns, Campbell (1991) explicitly forecast the stock returns. He decomposed stock returns 

into the expected cash flow and expected return components, and derived the equation for 

unexpected stock returns as follows: 
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 

+ + + + + + + +

= =

− = −  − −    (5.2) 
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+ + + + + + + +

= =

− =   −    (5.3) 

where Et represents the expectations made at time t. The unexpected stock 

returns, 1 1( )t t tr E r+ +− , at time t+1 is simply the combination of the change in expectations, Et+1 
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– Et ,  of cash flows and discount rates at time t + 1. The shocks in these return components 

are defined as cash flow news, NCF, and discount rate news, NDR.  
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The above equations indicate that a decrease in the unexpected return is a result of a 

decrease in the current and expected future cash flows and/ or an increase in the discount rates, 

and vice versa. The negative relationship between the unexpected returns and discount rate 

news is intuitive. A higher future stock return can only be realised from a lower current stock 

price (i.e. currently suffer from a loss), assuming the dividend growth holds constant. An 

investor, who is considering adding an additional stock into a well-diversified portfolio, will 

need to make the decision based on the comovement of that particular stock with the stock 

market news, which are NCF and NDR, and this leads to the construction of two-beta model in 

CV (2004). The empirical estimation of NCF and NDR as well as the extension of the two-beta 

model into four-beta model are presented in the next section.  

5.4 Empirical methodology 

This section presents four different approaches used to decompose stock market 

returns into NCF and NDR. The second sub-section presents the construction of the four-beta 

model, where the procedure of decomposing NCF and NDR
 into a rational and an irrational 

component is first discussed. The final sub-section describes the asset pricing test.  

5.4.1 Return decomposition approaches 

(I) VAR approach 

To operationalize equation (5.2), Campbell and Shiller (1988a) and Campbell (1991) 

propose the use of vector autoregression (VAR) model in decomposing the stock market 

returns. The main idea of this approach is to extrapolate the short run forecasts of stock 

market returns into the long run forecasts since the data of the state variables on an infinite 
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period (or long horizon) is hard to obtain. First, stock market returns are assumed to be 

generated by the first-order VAR model following CV (2004)94.  

 t+1 t t+1z = a +Γz +u   (5.6) 

where the stock market return is the first element in an m-by-1 state vector, 
t+1

z , and other 

state variables constitute any of the variables that are known to predict stock market return. 

Although studies by Cohen et al. (2002), CPV (2010), and Khimich (2017) employ individual 

stock returns as the first element in 
t+1

z , this study opts for stock market returns for two 

reasons. First, this study follows closely the procedure of CV (2004) who decompose stock 

market returns instead of individual stock returns. Second, the effect of investor sentiment is 

pervasive in the stock market. This enables us to estimate the irrational component of stock 

market news.  

Whilst the real stock market returns, , 1

e

M tr + , can be retrieved from the vector t+1z  as 

, 1

e

M tr + = t+1e1'z , where e1' = [1,0, ... ,0] , the one-period unexpected stock market returns can 

be computed as , 1 , 1( )e e

M t M tr E r+ +− = t+1e1'u . Given that the simple multi-period forecasts of 

future stock market returns can be generated from the first-order VAR as , 1

e

t M t jE r + + = j+1

te1'Γ z , 

the discount rate news, which is the changes in the discounted sum of future expected returns 

over the long-run, can be estimated as:  

 , 1 1 1

1

( ) j

DR t t t t j
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N E E r


+ + + +

=

= −    (5.7) 

 , 1DR tN


+ = = j j -1

t+1 t+1 t+1

j=1

e1' ρ Γ u = e1'ρΓ(I -ρΓ) u e1'λu   (5.8) 

where = -1
λ ρΓ(I -ρΓ) , e1' = [1,0, ... ,0] , Γ is the point estimates of the VAR matrix, the 

discounting coefficient,  , is set at 0.951/12 (see CV, 2004)95 and t+1u is the error terms of the 

 
94 The first-order VAR is chosen since the optimal lag for the return predictive regression is one based on the 

information criteria of AIC and BIC and it is in line with other studies apart from CV (2004) (see Botshekan et 

al., 2012; CPV, 2010; Campbell et al., 2018; Garrett and Priestley, 2012). Furthermore, Chen and Zhao (2009) 

and CPV (2010) also find that their findings are robust to the inclusion of additional VAR lags. 

95 Chen and Zhao (2009) and CV (2004) find that their results are robust to the use of different discounting 

coefficients, ρ. Hence, this study follows the norm in the beta decomposition literature.  
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VAR system. The cash-flow news, NCF, is simply the difference between the total unexpected 

stock market returns and the NDR, and can be computed as: 

 
, 1CF tN + = t+1(e1'+e1'λ)u    (5.9) 

This study accounts explicitly for the irrational expectations of the future cash flows 

and discount rates. Unlike Lof (2015) which allows for a non-zero limiting value of the 

dividend-price ratio in the short term, this study follows Campbell and Shiller (1988a) and 

Campbell (1991) that the terminal condition of dividend-price ratio is non-explosive, which is 

the assumption of equation (5.1). Even though this study accounts for the irrational 

expectations of the future cash flows and discount rate, the irrational expectations do not 

always lead to the occurrence of a bubble, rather it does have an impact on the stock prices 

even during the normal period. Each expectation, therefore, should be decomposed into 

rational and irrational components for the beta computation.  

The return decomposition framework of Campbell and Shiller (1988a) and Campbell 

(1991) utilizes the financial theory in forming the expected returns since investors’ 

expectations are not directly observable and are extracted from the dynamic relations between 

the stock market returns and its predictors. Therefore, the expectations formed are rational if 

and only if the VAR follows the true data generating process as argued by Lof (2015). 

However, Lof (2015) shows that the VAR does not account for all expectations due from 

different agents and that the prices produced by irrational contrarian model96 is closer to the 

direction of true prices as compared to rational speculator model. Despite Lof (2015) 

modifying the return decomposition of Campbell and Shiller (1988a) to allow for a rational 

bubble by relaxing the assumption of non-explosive terminal condition of dividend price ratio, 

their short-term strategies, however, still based on the rational expectations of speculators. For 

the irrational contrarian strategy, they take the opposite direction of the expected returns 

formed by rational speculators. This procedure, however, does not rule out the possibility that 

some of the contrarian investors are rational. Therefore, it is important to explicitly consider 

the effect of investor sentiment in forming the irrational expectations.  

 

 

 
96 Lof (2015) defines the contrarian as an investment strategy where the investors trade against the prediction 

produced by VAR.  
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(II) Time-varying VAR (TV-VAR) 

The constant parameter estimates retrieved from the VAR may not truly reflect or 

capture the expectations formed by investors through the time. As shown in Neely and Weller 

(2000), estimating a VAR on a rolling window basis greatly improves the forecasting 

performance, implying the parameter instability of VAR process. In view of this, this study 

modifies slightly the constant VAR procedure, constructing the news series from the TV-

VAR approach. Specifically, the VAR parameters and the news series are estimated on a 

rolling window basis with a window size of 72 months97. Since the estimation window which 

produces the news series that best describe the evolution of stock market returns is unknown, 

the news series are averaged across different windows at each point in time in order to obtain 

a single series of cash flow and discount rate news. Then, the sentiment-induced irrational 

component and the rational component from each news series are extracted, producing the 

four news series, which are the irrational cash flow news, the rational cash flow news, the 

irrational discount rate news and the rational discount rate news. 

There are pros and cons associated with the constant VAR and TV-VAR 

specifications. The advantage of the constant VAR specification is that retrieving the news 

series from the full sample is less subject to the small sample bias. However, applying  

constant weights to state variables may not capture optimally the variation in expected returns, 

which is well depicted in the Figure 5.1 that plots the estimated coefficients (panel A) of the 

return predictive regression from the TV-VAR model associated with the p-value (panel B) 

for each state variable on a rolling window basis. Panel A clearly shows that the estimated 

coefficient of each state variables is changing over time. Moreover, their predictive strengths 

are not constant through time as depicted in panel B, where each state variable predicts 

significantly the future stock market returns at certain periods but not the others. Hence, 

accurately modelling the expected returns over time is important in retrieving the real 

unexpected returns that will contribute to the construction of the news series. On the other 

hand, TV-VAR relaxes this restriction, allowing the contribution or weight of each state 

variable in the VAR specification to change through time. Nevertheless, the potential small 

sample bias faced by TV-VAR could introduce an upward or a downward bias on the 

estimates as compared to the constant VAR estimates98. As such, it is a trade-off between 

 
97 The window size is equivalent to a business cycle according to the NBER.  

98 The online appendix of CV (2004) show that the cash flow and discount rate betas in their modern sample 

period are affected by the small sample bias given that the state variables of the VAR system are highly 
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“correctness” and small sample bias. Employing a window length of less than 6 years (a full 

business cycle) could potentially induce severe small sample bias since all state variables are 

highly autocorrelated. Meanwhile, a longer estimation window length of 15 years has been 

tested and this longer window length has been found to be less optimal in capturing the 

variation in expected returns since the adjusted R2 statistics is lower for the return regression 

performed on a longer window length, i.e. 15 years. Hence, the window length is chosen to 

mitigate the small sample bias, yet, is able to uncover the temporal variation in expected 

returns. If both constant VAR and TV-VAR produce commonality in the betas estimates, the 

results would be more convincing and reliable. Thus, the beta estimates from both approaches 

are presented even though the baseline results are derived from the TV-VAR due to its 

superior model fit as demonstrated in Section 5.6.1. 

Figure 5.1: 72-month rolling estimates for return predictive regression 

This figure plots the rolling regression estimates for the return predictive regression on a rolling window basis 
estimated from December 1969 to December 2014. The state variables used to predict the excess market return 

are the lagged terms of the excess market return ( e

Mr ), the term yield spread (TMS), the price-earnings ratio (PE) 

and the small-stock value spread (VS). Panel A depicts the rolling slope coefficient of each state variable 

associated with its 95% confidence interval represented by dotted lines. Panel B plots the rolling p-value for the 
estimated coefficient of each state variable. The horizontal line in panel B denotes the significance level of 10%.  

 

Panel A: Rolling Coefficient Estimates 

 
 

 

 
persistent. The estimated risk premium associated with the cash flow beta reduces greatly and reverse the 

conclusion that the cash flow beta earns a higher premium than the discount rate beta.  
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Panel B: Rolling p-values 

    

 (III) Revision in Analysts’ Forecasts (AF) 

In addition to the VAR-type approach, which is widely used in the literature, this 

study also considers an alternative approach that is based on analysts’ forecasts in 

constructing the news series. Using the standard return decomposition of Campbell and 

Shiller (1988a) and Campbell (1991), Khimich (2017) define the NCF as the revision in the 

analysts’ forecasts of the ROE (FROE) instead of discounted sum of clean-surplus ROE99 as 

proposed in Cohen et al. (2002) and Vuolteenaho (2002), and back out the NDR as the residual, 

as shown below: 
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99 Clean surplus accounting requires that the variation in the book value to be calculated by subtracting the net 

dividends from earnings in order to ensure that gains and losses affecting the earnings are accounted in the 

computation.  
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where 
1 1

1

j

t t j

j

E r


+ + +

=

  represents the variation in the discounted sum of expected returns and 

is computed as the difference between unexpected stock market returns and NCF. The NCF is 

defined as the discounted sum of the revision in analysts’ forecasts, which is the difference 

between the ROE forecasts generated at time t (
, 1t t jFROE + +

) and the ROE forecasts produced 

at time t + 1 (
1, 1t t jFROE + + +

). Similar to previous approaches, the discounting factor used in 

this method is assumed to be 0.951/12 as well. The ROE forecasts are computed as 

1/t i t i t iFROE FEPS BV+ + + −= . Despite cash flow news in equation (5.11) requiring an infinite 

sum of FROE, forecasts of only up to twelve years are used for practical purpose following 

the works of Gebhardt et al. (2001) and Khimich (2017). The mean of one- and two-year-

ahead EPS forecast, FEPS, is readily available from the Bloomberg. The three-year-ahead 

FEPS can be computed as FEPSt+3 = FEPSt+2 (1 + LTG), where LTG represents the long-term 

EPS growth rate predicted by analysts. In line with other literature, the FROE beyond three 

years is assumed to revert to the median of aggregate ROE. As for the book value, BV, it can 

be forecasted based on the clean surplus principle as 1t i t i t i t iBV BV FEPS FDPS+ + − + += + − , 

where  

 1 1( / )t i t i t t i t i t iFDPS FEPS k FEPS D E+ + + + − + −=  =    (5.13) 

kt is the current dividend payout ratio computed as a ratio of dividend over earnings. This 

study accounts for the possibility that the accounting information is publicly available only 

after forecasts have been made by taking the lagged term of dividend and earnings in the 

construction of k.   

This measure reflects the markets’ expectation about the future cash flows and hence 

analysts maybe optimistic in their forecasts. Zhu and Niu (2016) indeed find that investor 

sentiment does affect the predicted earnings growth rate. Also, Hribar and Mclnnis (2012) 

reveal that one-year-ahead FEPS and LTG tend to be more optimistic during high sentiment 

periods. Meanwhile, Easton and Monahan (2005) claim that the low-quality of analysts’ 

forecasts is the culprit for the lack of reliability of the accounting-based measures as a proxy 

to the expected returns. They found that accounting-based proxies are less reliable in 

estimating the expected stock returns when the LTG is high. On the other hand, all proxies are 

positively correlated to the expected returns when the LTG is low and ex-post analysts’ 

forecasts have lower errors. Their findings are hence a manifestation that analysts’ forecasts 
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could be rational at some times but irrational at another times. Since the analysts’ forecasts 

are of low quality and the degree of rationality of analysts’ forecasts is varying over time, the 

analysts’ forecasts may not be a good proxy to the cash flow expectations.  

(IV) Direct proxy 

 CPV (2010) employ a direct proxy to measure the market news apart from the VAR 

approach. Following Cohen et al. (2002), they employed the changes in the discounted sum of 

ROE as a proxy for NCF. For the proxy of NDR, CPV (2010) use the annual changes in 

market’s log smoothed PE ratio as follows: 
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  (5.14) 

ln( )t k MPE+  refers to the changes in market’s PE ratio from t + k – 1 to t + k and, as 

previously, ρ is the discounting coefficient. To be consistent with the VAR approach, ρ = 

0.951/12. This is done to check for both short-term and long-term fluctuation caused by 

discount rate news.  

 While the cash flow proxy may merely reflect accounting information, since historical 

ROE is used in the computation, the direct proxy of the discount rate news may not fully 

reflect the rational expectations of investors given that stock prices could be affected by 

investor sentiment. Basu (1977) finds that the PE ratio reflects the bias in stock prices (i.e. 

low PE stocks have higher risk-adjusted return than high PE stocks). This could be due to the 

optimistic (pessimistic) response of investors towards the information in PE ratio causing the 

overpricing (underpricing) in the high (low) PE stocks according to the price-ratio hypothesis 

(De Bondt and Thaler, 1985). Besides that, Dechow and Sloan (1997) find that the naïve 

dependence of investors on the analysts’ long-term earnings growth forecasts, which are 

biased, lead them to overvalue the high PE stocks that resulted in a future price reversal. On 

the other hand, other possible risk-based explanations, which are irrelevant to the irrational 

aspects, have been proposed to study the contrarian strategy as shown by PE multiple, such as 

market friction (Amihud and Mendelson, 1986) and misspecification of the model 

(Reinganum, 1981). Therefore, both rational and irrational expectations of future returns (i.e. 

discount rates) could be extracted from the PE ratio. Once the NDR
 is retrieved, the NCF can be 
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computed as a difference between unexpected returns and NDR following the return 

decomposition as in the equation (5.3).  

The direct proxy approach is not prominently applied in the beta decomposition 

literature apart from CPV (2010). Therefore, only the result summary of the two-beta and 

four-beta models constructed based on this approach is provided in Section 5.6.4, and the 

detailed results are not reported.  

5.4.2 Four-beta model 

Given the estimated NCF and NDR, the rational and irrational components of the market 

news can be retrieved as either the residuals or fitted values respectively in the following 

regressions100: 
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where NCF,t and NDR,t are cash flow and discount rate news, respectively, estimated based on 

the framework of return decomposition. STV denotes the time-varying weighted investor 

sentiment index computed in Chapter 3101. As previously stated, the residual series, εt and 
t , 

represent the rational component of the cash flow news, ,

R

CF tN , and the discount rate news, 

,

R

DR tN . The irrational component of the cash flow news, ,

IR

CF tN , and the discount rate news, 

,

IR

DR tN , are simply the fitted values of the above regressions.  

 
100 A high investor sentiment today is associated with an increase (decrease) in the expectation of future cash 

flows (discount rate) formed from the period t-1 to t.  Hence, investor sentiment is positively correlated with 

cash flow news (ρ = 0.0239) and is negatively correlated with discount rate news (ρ = -0.0171).  

101 Since investor sentiment is highly persistent, as documented in the Chapter 3, the lagged terms of investor 

sentiment index have been incorporated in the regressions to avoid the omitted variable bias. Although the 

lagged terms could have selected based on the information criterion, such as AIC or BIC, but the information 

criterion tends to select the parsimonious model of up to one lagged term. This may not truly reflect the effect of 

investor sentiment on unexpected stock market returns given the persistence feature of investor sentiment. The 

main goal here is to capture as much as possible the sentiment effect in the irrational new series, and to clean out 

as much sentiment effect as possible from the rational new series. Hence, investor sentiments from the past 

twelve months are incorporated in equations (5.15) and (5.16). Besides that, capturing the previous twelve 

months’ sentiment could remove (or reduce) any possible seasonal effect of investor sentiment on stock returns.   
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A four-beta model is then constructed to measure the sensitivity of stock returns to 

each of these news series. Considering that only one sentiment measure is used to pick out the 

irrational components in the news series, the model does introduce downward bias against the 

irrational betas.  

CPV (2010) compute the cash flow beta and discount rate beta based on the scaled 

news series in order to adjust the regression coefficients of different scales to a common scale 

- variance of excess market return ( ( )e

MVar r ), so that βi,CF and βi,DR sum up to the market beta. 

Adapting their approach, each news series is scaled by the ratio of the variance of excess 

market return, ( )e

MVar r , to the variance of each news series as follows: 
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where ,

IR

CF tSN  and ,

R

CF tSN  are irrational and rational scaled cash flow news series; ,

IR

DR tSN  and 

,

R

DR tSN  are irrational and rational scaled discount rate news series. Accordingly, the four betas 

can be defined as: 
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To empirically obtain these four betas, the following regression is performed: 



155 

 

 
, ,

, , , , ,where { , , , }

k

i t j t t

k IR R IR R

j t CF t CF t DR t DR t

r SN

SN SN SN SN SN

  = + +

=
  (5.25) 

where ri,t represents the portfolio’s log returns and ,

k

j tSN  denotes one of the four scaled new 

series computed from equations (5.17) to (5.20). The β is the corresponding beta estimates for 

each news series depending on which scaled news series is used to perform the above 

regression. 

The following equations show that cash flow beta, ,i CF , comprises of the irrational 

cash flow beta, ,

IR

i CF , and the rational cash flow beta, ,

R

i CF ; whereas the discount rate beta, 

,i DR , comprises of the irrational discount rate beta, ,

IR

i DR , and the rational discount rate beta, 

,

R

i DR .  

 , , ,

IR R

i CF i CF i CF  = +   (5.26) 

 , , ,

IR R

i DR i DR i DR  = +   (5.27) 

The summation of the cash flow beta and the discount rate beta adds up to the market beta 

(see CPV, 2010).  

5.4.3 Pricing of the four-beta model  

If a market is not fully dominated by the long-term risk averse investors but both risk 

averse and risk seeking investors constitute the market players instead, the rational and 

irrational risks could carry different premiums. Distinguishing between the sensitivity of stock 

returns to the rational and irrational components in each channel allows us to answer the 

question: does the stock market reward investors for bearing both types of risks in each 

channel? This study performs the FMB regression in order to estimate the risk premium 

associated with each beta risk in the four-beta model. Concretely, the betas estimated from the 

previous section are used as explanatory variables (i.e. risk factor) in the following cross-

sectional regression at each month t.  

 , , , , , , , , , ,
ˆ ˆ ˆ ˆ. . . .e IR IR R R IR IR R R

i t CF t i CF CF t i CF DR t i DR DR t i DR i tR e       = + + + +   (5.28) 

where ,

e

i tR  , denotes the simple excess returns on portfolio i at month t, ,
ˆ IR

i CF  is the estimated 
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irrational cash flow beta on portfolio i, 
,

ˆ R

i CF  is the estimated rational cash flow beta on 

portfolio i, 
,

ˆ IR

i DR  is the estimated irrational discount rate beta on portfolio i, 
,

ˆ R

i DR  is the 

estimated rational discount rate beta on portfolio i. λj,t  and ei,t are the cross-sectional slope 

coefficients and the pricing errors, respectively, at month t. The risk premium associated with 

each risk factor is the time-series average of the cross-sectional slope coefficients, i.e. 

,

1

1ˆ ˆ
T

j j t

tT
 

=

=  . This study then tests whether this estimated risk premium is significantly 

different from zero with the use of Newey-West standard errors in order to account for the 

autocorrelated ,
ˆ

j t . The pricing performances of the four-beta model, constructed based on 

different approaches, are compared to the CAPM and the CV’s two-beta models, where all 

models are estimated based on the Fama-Macbeth (FMB) procedure.  

As mentioned by Lewellen, Nagel and Shanken (2010), the freely estimated risk 

premia will inflate the cross-sectional explanatory power, in terms of the cross-sectional R2 

statistic. Therefore, following Campbell et al. (2018) and Ho and Hung (2009), this study 

imposes theoretical restriction on the asset pricing specification. Particularly, the zero-beta 

rate102 is restricted to be equal to the risk-free rate and the risk premium equals the excess 

returns of the factor.  

To assess the performance of each asset pricing model, this study computes the 

adjusted cross-sectional R2 statistic that measures the proportion of the cross-sectional 

variation in the average excess returns that is explained by the model. The higher the adjusted 

cross-sectional R2 statistic, the better the model is at explaining the average stock returns at 

cross-section level. Another evaluation criterion that is widely used in the literature is the 

pricing errors. Both the root-mean-squared-pricing-error (RMSPE) and the mean-pricing-error 

(MPE) are computed. A better asset pricing model will deliver relatively lower pricing errors. 

5.5 Data and descriptive statistics 

The following sub-sections provide the details of data used to decompose the stock 

market returns based on different approaches, followed by the data of test asset portfolios 

 
102 The zero-beta rate is the expected returns of the zero-beta portfolio, which has its returns uncorrelated to the 

market portfolio’s returns. This concept was invented by Black (1972) which explored the capital market 

equilibrium where risk-free asset does not exist in the markets and riskless borrowing or lending is not possible.  
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used to test the four-beta model. The descriptive statistics of data is presented at the end of 

this section.  

5.5.1 VAR (and TV-VAR) data 

To ensure our result is comparable to CV (2004), four state variables, which are 

excess market returns ( e

Mr ), the term yield spread (TMS), the price-earnings ratio (PE) and the 

small-stock value spread (VS), employed in their study are used in our VAR model to 

decompose the excess market returns into NCF and NDR for the period 1969:12 – 2014:12103. 

These four state variables are also employed in the literature (see Celiker, Kayacetin, Kumar 

and Sonaer, 2016; Chen and Zhao, 2009; CPV, 2010; Campbell, Giglio and Polk, 2013, CGP 

hereafter). The detailed construction of each variable is discussed as follows.  

The excess market return ( e

Mr ) is computed as the monthly log stock market return 

minus the log risk-free rate. The stock market return is the value-weighted S&P 500 index 

returns (inclusive of dividends) retrieved from the Center for Research in Security Press 

(CRSP). The risk-free rate is 3-month Treasury-bill rate. As in Welch and Goyal (2008), the 

second state variable, TMS, is computed as the difference between the yield on U.S. long-term 

government bond and the yield on U.S. Treasury-bills. This measure is included in the VAR 

framework since it captures the business cycle variation (Fama and French, 1989), where the 

TMS is low (high) at the peaks (troughs) of the business cycle. Since expected stock market 

return is countercyclical, low term yield spread hence predicts low expected returns during the 

expansion period and vice versa. The risk-free rate together with both series used in the TMS 

computation are retrieved from Amit Goyal’s website104. 

Next, the price-earnings ratio (PE) is defined as the log-smoothed PE ratio. Following 

CV (2004), it is constructed as ratio of the price of the S&P 500 index to a ten-year trailing 

moving average of the earnings of S&P 500 index, which aims to smooth out the cyclical 

variation in earnings. In their online appendix, CV (2004) advocate the use of data available 

 
103 The news series are computed from December 1969 in order to account for the effect of investor sentiment, 

which has its first data point in December 1968, from the previous twelve months on the news series. Hence, the 

sample from December 1968 to November 1969 are excluded in the VAR estimation in order to exclude the 

possibility that the unexpected returns during this period is affected by investor sentiment from the past twelve 

months, of which is not available prior to December 1968.  

104 http://www.hec.unil.ch/agoyal/ 
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only up to time t to avoid any look-ahead bias. This ratio is log transformed. The S&P 500 

index and market’s earnings series are retrieved from the website of Robert J. Shiller105.  

The last state variable, the small-stock value spread (VS), is computed using the book-

to-market ratio of small value and small growth portfolios obtained from the website of 

Kenneth R. French 106. As stated on his website, “[t]he portfolios, which are constructed at the 

end of each June, are the intersections of 2 portfolios formed on size (market equity, ME) and 

3 portfolios formed on the ratio of book equity to market equity (BE/ME). The size breakpoint 

for year t is the median NYSE market equity at the end of June of year t.” This study employs 

the value-weighted average of BE/ME computed for June of year t to the June of year t+1. 

The value-weighted average of BE/ME is calculated as ( )
12 12

1

1 1

/ /i t t i

i i

ME BE ME ME−

= =

    , 

where i represents a month from June of t to June of t + 1. 1tBE −  is the book equity for the 

last fiscal year end in t – 1 and tME is market equity for June of year t107. The BE/ME 

breakpoints are the 30th and 70th NYSE percentiles. The monthly small-stock value spread is 

computed by subtracting the log BE/ME of small growth stocks from the log BE/ME of small 

value stocks.  

5.5.2 Analysts’ forecasts data 

The calculation of the analyst forecast of returns on equity (FROE) requires the 

forecast of earnings per share (FEPS) and the book value (BV). The data and the construction 

of the numerator of FROE, which is the FEPS, is first discussed. The mean of one- and two-

year-ahead FEPS can be obtained from the Bloomberg Estimates (BEst)108. In line with the 

literature, the forecast fiscal period value associated with a fiscal year is adopted in this study. 

 
105 http://www.econ.yale.edu/~shiller/data.htm 

106 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

107 The BE/ME constructed from the ME for June of year t instead of the ME for December of t – 1, such as that 

used in the test asset portfolios in Section 5.5.3, is used here. The rationale being that VS computed using the 

BE/ME where the ME for June of year t is used has a higher correlation with the VS data provided by CV (2004) 

than the VS computed using the BE/ME where the ME for December of year t – 1 is used (i.e. 0.935 vs. 0.898). 

108  Although most studies employed the analysts’ earnings forecasts retrieved from the Institute of Broker 

Estimates System (IBES), this study retrieves those forecasts from BEst as the access to the IBES is limited.   
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These forecasts are available from January 1990. The two-year-ahead FEPS from January to 

March of 2005 are missing109. These missing values are filled by using linear interpolation.  

Although three-year-ahead FEPS does provided by BEst, many missing values (about 

22% of the series) have been found in the series. Hence, the three-year-ahead forecast is 

computed based on the available one- and two-year-ahead forecasts and long-term earnings 

per share (EPS) growth rate (LTG) following Gebhardt et al. (2001) and Khimich (2017). LTG 

from BEst is the estimated Compounded Annual Growth Rate (CAGR) of the operating EPS 

over the company's next full business cycle, which is typically three to five years. The LTG 

series from BEst is only available from July 2005, the missing values prior to this month is 

filled by computing the composite growth rate underlying in the one- and two-year-ahead 

FEPS as in Gebhardt et al. (2001). The FROE beyond year 3 is interpolated linearly up to year 

12, of which the FROE is the median of ROE computed as the 5-year moving median of past 

ROEs110. 

The denominator of FROE – BV – is computed using the FEPS, forecasted dividend 

per share (FDPS) and historical BV, which is used to construct the one-year-ahead BV. The 

historical dividends and earnings used to obtain the FDPS as well as the historical BV are 

retrieved from the Bloomberg terminal in order to ensure the forecast value is congruent to the 

realized value. For the historical dividend, this study opts for the most recently announced 

gross dividend in order to truly reflect the dividends received by investors. Meanwhile, the 

basic EPS is employed in this study. 

There is a caveat using the analysts’ earnings forecasts from BEst. As described in the 

footnotes 109, the aggregate value of forecast is provided by BEst as long as more than 50% 

of the securities have their FEPS reported by brokers. Nevertheless, it is uncertain what is the 

actual percentage of securities that have the brokers’ estimates in each month, i.e. the actual 

coverage percentage could vary in between 51% to 100%. Apart from the issue of the 

coverage factor at the index level, the coverage at the individual securities also have the same 

issue, where the minimum number of brokers’ estimates required for each security is one. 

Hence, the consistency of the earnings forecasts for the S&P 500 index across months could 

 
109 The missing values could be due to the lower coverage factor, where less than 50% of the securities have their 

FEPS reported from brokers for these few months. Hence, BEst is unable to aggregate the forecasts of the 

underlying constituent stocks to the index level forecast.  

110 This procedure follows closely to that of Gebhardt et al. (2001) and Khimich (2017), whose study focuses on 

the firm level. Instead of using the median industry ROE, this study uses the median value of aggregate ROE.  
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be a question. Besides that, the earnings forecasts available on the BEst has a much shorter 

sample period as compared to the earnings forecasts provided by IBES, which can be traced 

back to the year 1983. Hence, the results of the four-beta model computed based on the 

analysts’ forecasts approach could be affected and may not fully comparable to previous 

studies which employed the forecasts from IBES.  

5.5.3 Test asset portfolios 

 With the market news series computed from different approaches, the four-beta model 

can be tested on the 25 portfolios formed based on firm size and book-to-market ratio. These 

portfolios are downloaded from Kenneth R. French’s website. The portfolios are the 

intersection of five portfolios sorted based on ME and five portfolios sorted based on BE/ME 

ratio, constructed at the end of each June. BE/ME for June of year t is the book equity for the 

last fiscal year end in t – 1 divided by ME for December of t – 1. The breakpoints for size and 

BE/ME are the NYSE quintiles. To perform the regression (5.28), we compute monthly 

simple excess returns on the test asset portfolios.  

5.5.4 Descriptive statistics of data 

Table 5.1 reports the descriptive statistics for the data used to decompose excess 

market returns into different news series based on VAR-type and analysts’ forecasts approach, 

in panel A and B, respectively. The correlations among the state variables of VAR model are 

presented at the bottom of panel A. 

Overall, the descriptive statistics of VAR’s state variables are in line with that of 

reported in CV (2004). The e

Mr  has a mean of 0.4% and a median of 0.8%. The standard 

deviation of e

Mr  is 4.5%. These statistics of e

Mr  are in line with the literature (see CV, 2004; 

Huang et al., 2015; Neely, Rapach, Tu and Zhou, 2014). Among all the state variables, PE 

ratio has the highest mean value, whereas TMS varies the most around its mean according to 

the standard deviation measure. The first-order autocorrelation measure indicates that all state 

variables but e

Mr  are highly persistent with autocorrelation statistics of greater than 0.9.  

The contemporaneous correlations among VAR state variables, as shown in the 

bottom of panel A, are highly significant even though the magnitude of each correlation is 

relatively low. The highest correlation of 0.269 is reported for the relationship between VS 
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Table 5.1: Summary statistics of data  

Panel A: VAR Approach       

  Mean Median SD Min Max ρ(1) 
e

Mr  0.004 0.008 0.045 -0.248 0.149 0.057 

TMS 2.059 2.230 1.493 -3.650 4.550 0.946 

PE 3.070 3.092 0.367 2.298 3.891 0.994 

VS 1.495 1.487 0.145 1.231 1.952 0.945 

Correlations 
e

Mr  TMS PE VS 
e

Mr  1.000    
TMS 0.086** 1.000   
PE 0.031 0.083* 1.000  
VS -0.106** 0.255*** 0.269*** 1.000 

Panel B: Analysts’ Forecasts Approach 

       Mean Median SD Min Max 

DPS 1.672 1.509 0.831 0.538 4.680 

EPS 47.963 43.590 28.532 4.660 108.710 

BV 375.824 334.500 172.111 165.570 739.050 

ROE 0.131 0.144 0.046 0.027 0.193 

LTG 0.133 0.133 0.056 -0.133 0.464 

FROE1 0.167 0.168 0.019 0.117 0.204 

FROE2 0.165 0.165 0.013 0.136 0.194 

FROE3 0.152 0.152 0.013 0.107 0.204 

FROE4 0.150 0.150 0.012 0.113 0.198 

FROE5 0.148 0.147 0.012 0.118 0.192 

FROE6 0.147 0.143 0.013 0.122 0.185 

FROE7 0.145 0.139 0.014 0.119 0.179 

FROE8 0.143 0.138 0.016 0.116 0.175 

FROE9 0.141 0.138 0.018 0.112 0.175 

FROE10 0.140 0.138 0.021 0.109 0.175 

FROE11 0.138 0.137 0.023 0.106 0.175 

FROE12 0.136 0.135 0.026 0.102 0.176 
Notes: This table presents the descriptive statistics of the state variables used in the VAR (panel A) and analysts’ 

forecasts (panel B) approaches. The sample period for the VAR approaches spans for the period 1969:12 – 

2014:12 (i.e. 541 months); whereas the sample period for the analysts’ forecasts approach covers from 1990:01 

to 2014:12. For the VAR approaches, 
e

Mr  is the excess market returns, TMS is the term yield spread, PE is the 

log smoothed PE ratio and VS is the small-stock value spread. For the analysts’ forecasts approach, DPS is the 

dividend per share, EPS is the basic earnings per share, BV is the book value per share, ROE is the returns on 

common equity, LTG is the long-term EPS growth rate, and FROE1 to FROE12 denotes the one-year-ahead to 

twelve-year ahead ROE forecasts. SD denotes standard deviation, Min is the minimum value, Max is the 

maximum value and ρ(1) is the first-order autocorrelation. *, ** and *** indicate statistical significance at 10%, 

5% and 1% level, respectively. 

and PE. Although the sign of the correlation between e

Mr and PE is inconsistent with the 

correlation reported in CV (2004), it is consistent with CGP (2013), who include a relatively 

latest sample period as compared to CV (2004). The stock market return is positively 
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associated with PE ratio since the current high (low) price inflates (deflates) the 

contemporaneous stock return.  

Panel B shows that the average of historical ROE over the sample period of 1990:01 – 

2014:12 is 0.131, a value lower than the average forecasts of ROE across different forecast 

horizons, which range from 0.136 at twelve-year-ahead forecast to 0.167 at one-year-ahead 

forecast. This reflects that analysts generally produce optimistic forecasts, which is consistent 

with the literature (e.g. Chen, Da and Zhao, 2013; Hribar and McInnis, 2012). Nevertheless, 

the median forecast of ROE is not higher than the median historical ROE beyond six-year-

ahead forecasts, reflecting pessimistic forecasts to a certain extent. Also, the difference 

between the mean historical ROE and the mean forecasts of ROE (i.e. approximation of 

forecast errors) decreases with the forecast horizon. This could probably indicate that the 

forecasts of ROE are not entirely optimistic across different forecast horizons, instead the 

initial optimistic bias could be offset by the pessimistic bias (or a reduction in the optimistic 

bias) in the long-horizons forecasts. Therefore, a neutral tone (i.e. no bias) in the news series 

could be obtained when we add up the revision in analysts’ forecasts over time to form the 

news series as shown in equation (5.11). 

5.6 Empirical results  

5.6.1 The estimation of the TV-VAR model 

Table 5.2 presents the average parameter estimates of the first-order TV-VAR model 

retrieved across 470 windows. The values in the square brackets underneath the parameter 

estimates are their heteroscedasticity and autocorrelation consistent (HAC) standard errors. 

Each regression regresses a state variable on five independent variables, which are a constant 

and the lagged terms of four state variables, in each window. The table also reports the 

average of time-series adjusted R-squared obtained from the OLS estimation across different 

windows in the last column.  

As shown in the table, the coefficient sign of each state variable in the first row is 

consistent with the literature. First, the term yield spread, although statistically insignificant, 

predicts positively the excess market returns, consistent with Campbell and Thomson (2008), 

Fama and French (1989), Keim and Stambaugh (1986), Rapach, Ringgenberg and Zhou 

(2016). Second, both price-earnings ratio and value spread predict negatively and significantly 
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the excess market returns, with the coefficient of -0.107 and -0.040, respectively111. Finally, 

the excess market return has a negative but statistically insignificant coefficient of -0.033, 

displaying a moderate price reversal, which is consistent with Campbell, Giglio and Polk 

(2013)112.  

Table 5.2: TV-VAR parameter estimates for aggregate stock market returns 

  Constant ,

e

M tr  TMS t PE t VS t Adj-R2 (%) 

, 1

e

M tr +  0.394*** -0.033 0.001 -0.107*** -0.040** 7.90 

 [0.041] [0.023] [0.001] [0.013] [0.020]  
       

TMS t+1 0.989** 0.657*** 0.901*** -0.564*** 0.547*** 88.00 

 [0.501] [0.131] [0.008] [0.168] [0.110]  
       

PE t+1 0.302*** 0.435*** 0.000 0.915*** -0.027* 94.90 

 [0.039] [0.012] [0.001] [0.010] [0.014]  
       

VS t+1 -0.006 0.056*** 0.000 0.057*** 0.881*** 84.80 

 [0.051] [0.018] [0.001] [0.018] [0.013]  
       

Notes: This table reports the OLS parameter estimates for the first-order TV-VAR average across different 

estimation windows for the period 1969:12 – 2014:12. The associated Newey-West standard errors (with 12 lag) 

are reported in the square bracket. The state variables used in the TV-VAR model include the excess market 

returns (
e

Mr ), the term yield spread (TMS), the 10-year smoothed PE ratio (PE), and small-stock value spread 

(VS). The dependent variable of each regression is presented in the first column and the coefficients of 

explanatory variables are shown from the second through the sixth columns. The average of time-series adjusted-

R2 (in percentage term) is reported in the last column. *, ** and *** indicate statistical significance at 10%, 5% 

and 1% level, respectively.  

The regressions of other state variables, from rows two to four, depict that most 

explanatory variables are highly autocorrelated with the coefficients on their lagged terms 

being greater than 0.90 in all cases, except that of VS. Their autocorrelation coefficients are 

highly significant at 1% level. These results are consistent with the autocorrelation statistics 

reported in Table 5.1. For the TMS, the table shows that other state variables also significantly 

predict future TMS at 1% significance level. In contrast to CV (2004), this study finds that not 

only the excess market returns, but VS also predicts significantly the next month’s PE ratio. 

The coefficient of excess market returns, 0.435, is highly significant at 1% level; the 

 
111 Campbell and Thompson (2008), Neely et al. (2014), Rapach et al. (2016) find that earnings-price ratio 

predict aggregate stock returns positively. The negative relation between value spread and future excess market 

returns can be interpreted as lower future stock market returns is a result of the overvaluation of current small-

growth stocks, which creates a larger value spread. Brennan, Wang and Xia (2002) report this negative 

relationship between VS and future excess market returns.  

112 The full sample estimation, however, shows that stock market returns exhibit a momentum with the lagged 

excess market returns has an insignificant coefficient of 0.053, in line with CV (2004).  
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coefficient of VS, -0.027, is statistically significant at 10% level. The negative association 

between VS and future PE is similar to that of VS and excess market returns. Increase in the 

value spread denotes that small growth stocks are currently overvalued, which forecast a 

lower expected stock market return and PE ratio. As for the value spread, it is also highly 

predictable by the lagged one month of other state variables, which are excess market returns 

and PE ratio, apart from its own lagged term.  

Since TMS, PE and VS are highly persistent, the regression model for these state 

variables have higher explanatory power, in terms of the average of time-series adjusted R2 

statistics, as compared to the return predictive regression. One important thing to note is that a 

higher adjusted R2 (7.90%) is obtained when the expected returns is estimated on a rolling 

window basis. Contrarily, the constant VAR approach produces an adjusted R2 of 1.62%, 

close to 2% as reported in CV (2004) and Maio (2013a, 2013b) who estimate the VAR over 

the full sample period as well. This indicates that allowing the coefficients to pick up the 

dynamics of the state variables over time improves the predictive power of the return 

regression.  

Table 5.3 reports the attributes of the two components of unexpected returns – NCF and 

NDR. Both news series are the values of the news series average across different estimation 

windows at each time t. The top panel of the table presents the variance-covariance matrix of 

NCF and NDR, and the values in bracket are correlation of the new series. It shows that the 

variance of NDR is slightly higher than that of NCF, which are 0.52% and 0.43%, respectively. 

This finding suggests that NDR has a slightly more important role in the stock market returns, 

in line with most literature (e.g. Botshekan et al., 2012; Campbell, 1991; CV, 2004; CPV, 

2010; Campbell et al., 2018). Furthermore, the discount rate news and cash flow news have a 

correlation of 0.8268, indicating that a good (bad) cash flow news is associated with an 

increase (a drop) in the discount rate. This relationship could be attributable to the mispricing, 

where investors extrapolate the favourable (unfavourable) stock prices movement resulted 

from good (bad) cash flow news in forming their expected return as discussed in Section 5.2, 

or could be due to the risk-based explanations as discussed in Cohen et al. (2002, p. 442).   

The bottom panel depicts the time-series average of the linear function coefficients 

that connect the VAR shocks to the news series. 1' 1'e e +  is the cash flow news function and 

1'e   is the discount rate news function. Based on equations (5.8) and (5.9), only the 

innovation in e

Mr  will be mapped differently into both news series. The additional term of 
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t+1e1'u  in the , 1CF tN +  , where e1'  has a unity value for only the first element in the vector, 

adds the value of e

Mr  shocks (zero) to the , 1CF tN +  when the innovation of e

Mr (other state 

variables) is mapped into the , 1CF tN + . As such, shocks in TMS, PE and VS have the same 

contributions to both news series. 

Table 5.3: The attributes of cash flow and discount rate news     

News Cov / Corr  NCF  NDR 

NCF 0.0043 0.0039 

 (1.0000) (0.8268) 

NDR 0.0039 0.0052 

 (0.8268) (1.0000) 

News Functions 1' 1'e e +   1'e    
e

Mr shocks 0.6188 -0.3812 

TMS shocks -0.0465 -0.0465 

PE shocks -0.6636 -0.6636 

VS shocks 0.4298 0.4298 
Notes: This table reports the attributes of the cash flow news (NCF) and discount rate news (NDR) estimated from 

the TV-VAR model for the period 1969:12 – 2014:12. The top panel shows the variance-covariance of both 

news series. The values in the bracket are the correlation matrix of news series. The bottom panel shows the 

time-series average of the linear function coefficients of NCF ( 1' 1'e e + ) and NDR ( 1'e  ), 

where 1( )I   −=  −  ,  is the point estimates of the VAR matrix and ρ = 0.951/12. 
e

Mr  is the excess market 

returns, TMS is the term yield spread, PE is the log smoothed PE ratio and VS is the small-stock value spread.  

The coefficients of the linear functions capture the long-run effect of the shock in each 

state variable to the NCF and NDR. Therefore, the shocks of a state variable have a greater 

contribution to the discount rate news when that variable’s coefficient is higher in the return 

predictive regression (CPV, 2010). Consistent with the coefficients shown in the first row of 

Table 5.2, TMS, which has the least impact on the expected excess market returns, also 

contributes the least (in absolute value) to both news series. On the other hand, shocks in PE 

receive the greatest weight (in absolute value) in the computation of both news series. The 

innovation of e

Mr  have a positive long-run effect on the NCF (0.6188), but a negative long-run 

effect on the NDR (0.3812). This suggests that an increase in the e

Mr  shocks is associated with 

an increase in the CF expectations and a decrease in the DR expectation. Whilst the shocks in 

TMS and PE are negatively correlated to the news series, VS shocks are mapped positively to 

the news series113.  

 
113 The coefficients of the TMS and the VS shocks produced by constant VAR have a positive and negative 

effect, respectively, to the new series, consistent with CV (2004), CPV (2010), and Campbell et al. (2018). 

Therefore, the time-series average of the coefficients of these two shocks having an opposite sign under the TV-

VAR framework could be due to the outliers in a few windows.  



166 

 

5.6.2 The cash flow and discount rate beta  

Prior to the discussion of the two-beta model, Table 5.4 depicts the mean difference of 

portfolio returns. Panel A shows the difference in returns between value and growth stock 

portfolios across different firm sizes. The difference between extreme size portfolios’ returns 

is shown in panel B. Panel A confirms that value stocks have attained significantly higher 

average returns than growth stocks despite the significance of return spread decreases with 

size. However, the higher returns of value stocks relative to growth stocks are not justifiable 

by their lower CAPM betas, which are the summation of βi,CF and βi,DR, which will be shown 

in Table 5.5. On the other hand, the returns of large stocks exceed that of small stocks by a 

small amount for the lower BE/ME portfolios as shown in panel B. Specifically, a positive 

mean difference of returns between large and small stocks is seen for the growth stocks and 

the second BE/ME quintile portfolios. However, this pattern is reversed in the higher BE/ME 

portfolios, in which large stocks deliver lower average returns than small stocks.    

Table 5.4: Mean difference of portfolio returns 

  Diff S.E t-statistics 

 Panel A: V – G   

Small 1.10   10-2 1.79   10-3 6.126 

2 6.18   10-3 1.80   10-3 3.439 

3 6.38   10-3 1.92   10-3 3.320 

4 2.57   10-3 1.83   10-3 1.403 

Large 2.22   10-3 1.83   10-3 1.214 

 Panel B: L – S  

Growth 5.81   10-3 2.49   10-5 2.333 

2 1.35   10-4 2.21   10-5 0.061 

3 -6.74   10-4 1.96   10-5 -0.344 

4 -4.22   10-3 1.94   10-5 -2.181 

Value -2.96   10-3 2.00   10-5 -1.476 
Notes: This table illustrates the mean difference in return for extreme portfolios from December 1969 to 

December 2014. Panel A reports the return differences between value and growth stocks across various firm 

sizes and panel B shows the return difference between large and small stocks across different BE/ME portfolios. 

“Diff” is the mean difference of returns, “S.E” denotes the standard errors and the t-statistics are reported in the 

final column.  

Table 5.5 reports the estimated cash flow beta (βi,CF) and discount rate beta (βi,DR) 

based on the stock market’s cash flow and discount rate news retrieved from Table 5.3 for 25 

portfolios sorted based on firm size (ME) and book-to-market (BE/ME) ratio. The top panel 

depicts the cash flow beta of 25 portfolios; the bottom panel shows the discount rate beta of 

25 portfolios. These two betas sum up to the CAPM market beta. The betas are the slope 

coefficients obtained from the OLS estimation for the period 1969:12 – 2014:12. This sub-
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section investigates whether the beta patterns, i.e. value (growth) stocks have higher βi,CF 

(βi,DR),  as documented in CV (2004) is supported by the data of this study. 

Consistent with the literature (e.g. CV, 2004; Garrett and Priestley, 2012), all 

portfolios have higher βi,DR than βi,CF, indicating that most portfolios are more sensitive to the 

changes in discount rate expectations. The top panel shows that the cash flow beta decreases 

with the BE/ME ratio, regardless of the firm size. This reflects that growth stocks tend to have 

higher βi,CF than value stocks. This spread in βi,CF, however, lose its significance in higher ME 

portfolios as shown in the last column. The finding that value stocks have lower βi,CF is in 

contrast to that of in the CV (2004) for their post-1963 findings114. Nevertheless, Chen and 

Zhao (2009) obtain similar finding as in this study when they re-estimated the stock market 

news terms and betas for the post-1952 period. Comparing the βi,CF between small and large 

stocks, large stocks have significantly higher cash flow beta across different BE/ME  sorted 

portfolios, with the greatest spread concentrates in the growth and value portfolios, which are 

0.19 and 0.20, respectively. Again, this finding is different from CV (2004), who find that the 

small stocks have greater βi,CF. The results are closer to Garrett and Priestley (2012) who find 

that the βi,CF spreads of size portfolios across different BE/ME sorted portfolios are 

inconsistent, where the large stocks have higher βi,CF than small stocks in three out of five 

cases. 

The estimated βi,DR, as depicted in the bottom panel, show that growth stocks 

consistently have higher βi,DR than value stocks. Although the absolute term of the spread in 

βi,DR is greater than that in the βi,CF in three out of five portfolios of different size quintiles, 

only the small-growth stocks have significantly higher βi,DR than the small-value stocks with a 

spread of 0.22. The rest of the BE/ME sorted portfolios across different size quintiles show 

marginal and insignificant spread in βi,DR. An exception to this can be seen from the large-

value stocks, which have higher βi,DR. However, the βi,DR spread between large-value and 

large-growth stocks is less than 0.05 and is insignificant. Contrarily to the top panel, the small 

stocks generally have higher βi,DR than the large stocks. The largest beta spread of large and 

small stocks is reported at -0.48 in the growth stocks category; the smallest spread is reported 

for the 4th quintile of the BE/ME sorted portfolio, which is -0.20. All discount rate beta 

spreads between large and small stocks are highly significant. Generally, the beta spreads in 

βi,DR across different size portfolios are consistent with the patterns documented in CV (2004).  

 
114 CV (2004) estimate the cash flow and discount rate news over the full sample period of 1929:1 – 2001:12, 

and subsequently compute the cash flow and discount rate betas for pre- and post-1963 periods. 
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Table 5.5: The reaction of portfolio returns in relation to the cash flow and discount rate 

news computed from TV-VAR 

  Growth 2 3 4 Value V - G 

βi,CF       

Small 0.06 0.05 0.03 0.02 0.00 -0.06 

 [0.38] [0.35] [0.23] [0.14] [-0.02] [-1.89] 

2 0.13 0.07 0.05 0.07 0.04 -0.08 

 [0.83] [0.52] [0.40] [0.50] [0.26] [-1.69] 

3 0.17 0.10 0.10 0.09 0.08 -0.09 

 [1.14] [0.70] [0.74] [0.62] [0.47] [-1.91] 

4 0.17 0.14 0.13 0.11 0.12 -0.05 

 [1.20] [1.00] [0.93] [0.75] [0.67] [-0.82] 

Large 0.25 0.17 0.18 0.18 0.20 -0.05 

 [2.02] [1.24] [1.21] [1.16] [1.31] [-0.77] 

L - S 0.19 0.13 0.15 0.17 0.20  
  [3.76] [2.72] [2.58] [2.63] [3.08]   

βi,DR       

Small 1.10 0.94 0.87 0.81 0.88 -0.22 

 [3.48] [3.45] [3.55] [3.42] [3.43] [-2.31] 

2 1.03 0.91 0.83 0.78 0.92 -0.12 

 [3.39] [3.21] [3.31] [3.23] [3.31] [-1.29] 

3 0.94 0.86 0.77 0.72 0.84 -0.10 

 [3.05] [3.30] [3.18] [3.10] [3.29] [-0.99] 

4 0.88 0.82 0.76 0.71 0.84 -0.04 

 [2.98] [3.09] [3.00] [2.98] [3.07] [-0.44] 

Large 0.62 0.68 0.60 0.61 0.66 0.03 

 [2.33] [2.86] [2.80] [2.74] [2.77] [0.35] 

L - S -0.48 -0.25 -0.27 -0.20 -0.23  
  [-4.91] [-3.21] [-3.26] [-2.54] [-2.93]   
Notes: This table presents the cash flow beta (βi,CF) and the discount rate beta (βi,DR) for size (ME) and book-to-

market (BE/ME) ratio sorted portfolios for the period 1969:12 – 2014:12. The estimation is based on the 

following regression: 

, ,i t j t tr SN  = + +  ,   
, , ,{ , }j t CF t DR tSN SN SN=                            

where ri,t represents the portfolio returns and 
,j tSN  denotes either the scaled cash flow news (SNCF,t) or the scaled 

discount rate news (SNDR,t) computed as 
, ( ) / ( )e

j t M jN Var r Var N . The beta coefficient, β, is cash flow or discount 

rate beta depending on which scaled news series is used to perform the above regression. Portfolios are sorted 

based on BE/ME ratio from left to right and based on ME from top to bottom in each panel. “Growth” portfolio 

has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, 
and “large” portfolio has the highest ME. “V – G” denotes the beta difference between value and growth 

portfolios. “L – S” denotes the beta difference between large and small portfolios. HAC standard errors are used 

and the values shown in square bracket are Newey-West t-statistics.  

Overall, adding βi,CF and βi,DR shows that growth and small stocks have higher market 

betas (i.e. CAPM betas), implying that these portfolios are riskier than value and large stocks. 

Furthermore, the patterns of beta spread found in CV (2004), where value stocks have 

significantly higher βi,CF, and growth stocks have significantly higher βi,DR, are not seen in our 
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sample. Since value stocks do not consistently have higher cash flow beta (i.e. bad beta) and 

vice versa for the growth stocks, the assumptions of CPV (2010) that are made based on the 

systematic risk patterns found in CV (2004) could be inappropriate115. 

5.6.3 The four news terms 

Table 5.6 presents the correlations among the four scaled new series, which are 

irrational cash flow news ( IR

CFSN ), rational cash flow news ( R

CFSN ), irrational discount rate 

news ( IR

DRSN ), and rational discount rate news ( R

DRSN ). By construction, irrational news series 

and rational news series are uncorrelated. Besides that, in line with Table 5.3, the cash flow 

and discount rate are positively correlated in both rational and irrational channels. The 

irrational news series have a correlation of 0.896; whereas the rational news series have a 

correlation of 0.825. 

Table 5.6: Correlations among the four news series 

  
IR

CFSN  R

CFSN  IR

DRSN  R

DRSN  

IR

CFSN  1    
R

CFSN  0 1   
IR

DRSN  0.896 0 1  
R

DRSN  0 0.825 0 1 
Notes: This table reports the correlations of the four scaled news series: irrational cash flow news ( IR

CFSN ), 

rational cash flow news ( R

CFSN ), irrational discount rate news ( IR

DRSN ), and rational discount rate news ( R

DRSN ). 

Figure 5.2 plots the four smoothed news series116 estimated based on the equations 

(5.17) to (5.20) with the NCF and NDR retrieved from the TV-VAR specification. Each row 

corresponds to one news series, where the first row presents the irrational cash flow news 

series ( IR

CFSN ), the second row depicts the rational cash flow news series ( R

CFSN ) followed by 

the irrational discount rate news series ( IR

DRSN ), and the rational discount rate news series 

( R

DRSN ) is in the last row. The shaded bars denote the NBER-dated recessions. 

The illustration is consistent with the correlation reported in Table 5.6, where the 

rational and irrational news series in both cash flow and discount rate channels appear to not 

have any relationship. The variation in the NCF seem to be mainly picked up by the variation 

 
115 In CV’s two-beta model, the systematic risk of the value (growth) stocks is cash flow (discount rate) beta. 

116 The smoothed news series is used for the plot only. All empirical results reported in this study are based on 

unsmoothed news series.  
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Figure 5.2: Four scaled news series of the four-beta model 
This figure depicts the four scaled news series estimated from equations (5.17) to (5.20) based on the TV-VAR specification for the sample period of 1969:12 – 2014:12. These news series are irrational 
cash flow news ( IR

CFSN ), rational cash flow news ( R

CFSN ), irrational discount rate news ( IR

DRSN ), and rational discount rate news ( R

DRSN ), presented in each row of the figure. These news terms are smoothed 

under the specification of an exponentially weighted moving average: 
, 1( ) 0.08 (1 0.08) ( )E E E

t j j t t jMA SN SN MA SN−= + − , where E

jSN  is the respective news series. The shaded bars represent the recession 

period as dated by NBER. 
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in IR

CFSN  since the R

CFSN  wavering around the zero value (i.e. no apparent shocks), except a 

few periods where the R

CFSN  has noticeable variation. Unlike the cash flow channel, both 

irrational and rational discount rate news vary considerably over time, justifying the greater 

role of discount rate news (i.e. greater variance) in the stock market as shown in Table 5.3. 

In the early 1970s, both irrational cash flow and irrational discount rate news exhibit 

greater fluctuations during the oil shock, especially the huge increase of IR

DRSN  moving from 

negative news to positive news, which reflects the deterioration of investor sentiment  that 

penalizes the expected returns heavily. During this period, the R

CFSN  drops from positive 

values to negative values, indicating a downward revision in the expectations of future 

fundamental cash flows.  

The recession in the early 1980s can be explained by the declining rational and 

irrational cash flows given that both IR

CFSN  and R

CFSN  experience a sharp decline during this 

period. Also, there is an increase in both IR

DRSN  and 
R

DRSN . Together, all forces push down the 

stock market price during this period. The expansion state after this period can be described 

by the negative rational discount rate news and an improvement in the irrational expectations 

of future cash flows. Turning to the recession in 1991, CV (2004) claim that it is a 

profitability recession caused by unfavourable move in the expectations about future cash 

flows. As shown in Figure 5.2, the bad cash flow news in 1991 is mainly ensued from the 

declining irrational expectations of future cash flows since changes in the rationally expected 

cash flows are near zero.  

The technology boom in the late 1990s can be justified by not only the decrease in 

both irrational and rational discount rates, but also an increase in the irrational expectations of 

future cash flows, in line with Ofek and Richardson (2002) findings. The decrease in both 

rational and irrational discount rates also shows that lower discount rates during this period is 

not merely due to the improving sentiment as claimed by Campbell, Giglio and Polk (2013), 

but the risk-based explanation of discount rates also plays a role here. As for the R

CFSN , the 

revision in the rational cash flow expectations remains positive even though the magnitude of 

the news is reducing. Similar causes but in the opposite direction are accountable for the burst 

of the dot-com bubble, where investors increased both discount rates and the high irrational 

expectations of future cash flows is now reversed.  Prior to the recession in late 2000s, 
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investors irrationally expected a high future payoff, which can be seen from the positive IR

CFSN . 

Later, the recession in 2007 – 2009 could be ascribed to the negative R

CFSN , supported by the 

declining irrational expectations of future cash flows as well as the positive IR

DRSN . Overall, 

the four news terms align with the fluctuations in the US stock market. 

5.6.4 The four-beta model  

This section examines the sensitivity of portfolio returns to changes of both irrational 

and rational expectations in CF and DR channels. The investigation starts by evaluating the 

assumptions of CPV (2010). If their assumptions that cash flow news is driven by 

fundamentals and discount rate news is driven by sentiment are correct, then stock returns are 

not expected to react to the changes in irrationally expected cash flows and rational discount 

rate. Hence, this study tests the null hypothesis that the irrational cash flow betas and rational 

discount rate betas are not significantly different from zero, i.e. 
0 : 0IR

CFH  =  and 

0 : 0R

DRH  = . Later, this study answers to the research question of whether the predictive 

ability of investor sentiment is going through cash flow or discount rate channel by comparing 

the beta estimates of irrational cash flow and irrational discount rate betas.  

(I) Time-varying VAR (TV-VAR) approach  

The baseline results of TV-VAR model are reported in Table 5.7. Each panel in Table 

5.7 corresponds to the four betas, which are irrational cash flow beta ( ,

IR

i CF ), rational cash 

flow beta ( ,

R

i CF ), irrational discount rate beta ( ,DR

IR

i ), and rational discount rate beta ( ,DR

R

i ), 

by regressing the portfolio returns on each of the scaled news series as shown in equations 

(5.17) to (5.20) for 25 size- and BE/ME-sorted portfolios. Those news series are retrieved 

under TV-VAR framework as described in Section 5.4.1117. The summation of ,

IR

i CF  and 

,

R

i CF  equals to the βi,CF; whereas ,DR

IR

i  and ,DR

R

i  add up to the βi,DR. The betas are the slope 

coefficients obtained via OLS regression for the period of 1969:12 – 2014:12 and the Newey-

 
117 The beta estimation of the TV-VAR approach addresses only one issue – constant parameter estimates – in 

the constant VAR model, where the assumption that the parameter estimates of the VAR model is static is 

relaxed in constructing the news series. However, as mentioned in Section 5.4.1, the news series are averaged 

across different windows at a particular month. Besides that, the four betas are computed over the entire sample 

(i.e. betas are not varying over time). Therefore, this procedure does not address look-ahead bias that exists in 

the constant VAR approach. To further address the look-ahead bias whilst allowing the parameter estimates in 

the VAR framework to vary over time, this study conducts an out-of-sample analysis on the asset pricing test 

which is presented in Section 5.6.6. 
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Table 5.7: The stock price movements in respond to four news series computed from 

TV-VAR 

  Growth 2 3 4 Value 

  Panel A: Irrational cash flow beta 

Small 0.035 0.029 0.023 0.026* 0.020 

 [1.408] [1.498] [1.516] [1.726] [1.460] 

2 0.040** 0.026* 0.020 0.023* 0.017 

 [1.994] [1.692] [1.542] [1.871] [1.194] 

3 0.034* 0.035** 0.021** 0.016 0.021* 

 [1.955] [2.584] [2.011] [1.429] [1.860] 

4 0.037* 0.024** 0.018* 0.016 0.019 

 [1.836] [2.223] [1.872] [1.477] [1.430] 

Large 0.024 0.010 0.008 0.012 0.011 

 [1.616] [0.859] [0.914] [1.250] [0.902] 

 Panel B: Rational cash flow beta 

Small 0.023 0.018 0.007 -0.009 -0.023 

 [0.152] [0.137] [0.057] [-0.078] [-0.170] 

2 0.085 0.045 0.032 0.046 0.024 

 [0.593] [0.337] [0.251] [0.339] [0.156] 

3 0.131 0.063 0.075 0.071 0.054 

 [0.941] [0.470] [0.591] [0.524] [0.341] 

4 0.130 0.111 0.111 0.097 0.099 

 [0.995] [0.852] [0.816] [0.663] [0.572] 

Large 0.229* 0.163 0.174 0.171 0.190 

 [1.955] [1.192] [1.172] [1.102] [1.290] 

 Panel C: Irrational discount rate beta 

Small -0.003 -0.008 -0.003 -0.007 0.000 

 [-0.145] [-0.479] [-0.206] [-0.525] [0.038] 

2 -0.009 -0.004 0.000 -0.006 0.000 

 [-0.498] [-0.345] [0.007] [-0.527] [-0.037] 

3 -0.005 -0.012 -0.005 0.000 -0.006 

 [-0.299] [-0.983] [-0.497] [-0.030] [-0.609] 

4 -0.011 -0.001 -0.001 -0.001 0.003 

 [-0.688] [-0.139] [-0.133] [-0.135] [0.244] 

Large 0.000 0.009 0.011 0.006 0.008 

 [-0.012] [0.909] [1.303] [0.686] [0.792] 

 Panel D: Rational discount rate beta 

Small 1.104*** 0.944*** 0.869*** 0.820*** 0.882*** 

 [3.477] [3.457] [3.568] [3.421] [3.468] 

2 1.043*** 0.916*** 0.827*** 0.789*** 0.916*** 

 [3.323] [3.292] [3.346] [3.291] [3.365] 

3 0.944*** 0.870*** 0.770*** 0.725*** 0.850*** 

 [3.088] [3.338] [3.279] [3.160] [3.382] 

4 0.891*** 0.818*** 0.759*** 0.709*** 0.839*** 

 [3.036] [3.181] [3.081] [3.058] [3.141] 

Large 0.624** 0.673*** 0.588*** 0.608*** 0.649*** 

 [2.397] [2.931] [2.847] [2.801] [2.801] 

Notes: This table presents the four betas computed based on the news series retrieved from the time-varying VAR (TV-VAR) 
approach for portfolios sorted based on size (ME) and book-to-market (BE/ME) ratio from December 1969 to December 

2014 in four panels. Panel A and B report the irrational cash flow beta (
,

IR

i CF ) and the rational cash flow beta (
,

R

i CF ), 

respectively. Panel C and D show the irrational discount rate beta (
,DR

IR

i ) and the rational discount rate beta (
,DR

R

i ), 

respectively. The estimation is based on the following regression: 

, j,

k

i t t tr SN  = + +  ,                  , CF, CF, DR, DR,, , ,k IR R IR R

j t t t t tSN SN SN SN SN=    

where ri,t represents the portfolio returns and 
,

k

j tSN  denotes one of the four scaled news series computed in equations (5.17) – 

(5.20). The β is the beta estimate corresponds to one of the four scaled new series applied in the above regression. Portfolios 
are sorted based on BE/ME ratio from left to right and based on firm size (ME) from top to bottom in each panel. “Growth” 
portfolio has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, and 
“large” portfolio has the highest ME. HAC standard errors are used and the values shown in square bracket are Newey-West 
t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  

West t-statistics (automatic bandwidth selection) are reported underneath the beta estimates in 

the square brackets.   
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Panel A of Table 5.7 shows that the ,

IR

i CF  of all portfolios but one have a value of 

greater than 0.010. Furthermore, about half of the portfolios considered here are significantly 

affected by the changes in the irrationally expected cash flows at a significance level of at 

least 5%. Looking at the magnitude of ,

IR

i CF , the results show that growth stocks respond 

stronger to the fluctuations in irrational cash flow expectations, as do small stocks as 

compared to large stocks. On the other hand, variations in rational expectations of future cash 

flows, in general, do not significantly affect the stock price movements, as shown in panel B, 

even though the rational cash flow beta estimates (in absolute term) are higher than the 

irrational cash flow beta estimates for most portfolios, except for the small stocks. As for the 

discount rate channel, panel D depicts that all assets considered in this study react 

significantly (1% significance level) to the rational discount rate news but are not significantly 

affected by the shocks in irrational discount rates as shown in panel C. While none of the 

,

IR

i DR  has an estimate of greater than 0.10, the ,

R

i DR  estimates range from the value of 0.588 to 

1.104, which is more than five times of the ,

IR

i DR . 

In general, these results show that the covariances for most asset’s returns with the 

irrational cash flow news and the rational discount rate news are significantly different from 

zero, which does not support the claims made by CPV (2010) that cash flow news is driven by 

fundamentals whereas sentiment affects only the discount rate news. Besides that, the results 

presented in Table 5.7 also support the findings of Huang et al. (2015) who find that the 

predictive power of investor sentiment on the future stock market returns is going through the 

cash flow channel instead of the discount rate channel.  

To provide further comparison on the relative importance of ,CF

IR

i  and ,DR

IR

i , the 

proportion (in absolute term) of the irrational news to the rational news in each cash flow and 

discount rate channel is computed in Table 5.8. Panel A reports the results for the proportion 

of the irrational beta to the rational beta in the cash flow channel (i.e. , ,/IR R

i CF i CF  ); panel B 

shows the proportion of the irrational beta to the rational beta in the discount rate channel (i.e. 

,DR ,DR/IR R

i i  ). Apparently, the proportion of the irrational cash flow beta to the rational cash 

flow beta (i.e. , ,/IR R

i CF i CF   in panel A) is higher than the proportion of the irrational discount 

rate beta to the rational discount rate beta (i.e. ,DR ,DR/IR R

i i   in panel B) across all portfolios. 

For instance, the small-growth stocks have a , ,/IR R

i CF i CF   of 0.607 but a ,DR ,DR/IR R

i i  of only 
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0.003. This shows that the irrational component constitutes a higher proportion in the cash 

flow risk than in the discount rate risk.  Indeed, a considerable source of cash flow risk is 

originated from the irrational cash flow beta when , ,/IR R

i CF i CF   exceeds 0.50. These findings 

again suggest that the return predictability by investor sentiment is channelled through the 

cash flow.  

Table 5.8: The proportion of the irrational beta relative to the rational beta in CF and 

DR channels under the TV-VAR approach 

  Growth 2 3 4 Value 

 Panel A: Proportion of irrational cash flow beta 

Small 0.608 0.616 0.757 1.547 6.075 

2 0.323 0.366 0.386 0.331 0.406 

3 0.208 0.355 0.214 0.181 0.280 

4 0.221 0.176 0.143 0.142 0.161 

Large 0.095 0.059 0.044 0.065 0.056 

 Panel B: Proportion of irrational discount rate beta 

Small 0.003 0.008 0.003 0.008 0.000 

2 0.009 0.005 0.000 0.007 0.001 

3 0.005 0.014 0.007 0.000 0.007 

4 0.013 0.002 0.002 0.002 0.003 

Large 0.000 0.013 0.018 0.009 0.013 
Notes: This table presents the proportion of irrational cash flow beta over the rational cash flow beta 

, ,/IR R

i CF i CF   

in Panel A, and the proportion of irrational discount rate beta over the rational discount rate beta 
,DR ,DR/IR R

i i   in 

Panel B for 25 portfolios sorted based on size (ME) and book-to-market (BE/ME) ratio. The cash flow and 

discount rate news are estimated under the TV-VAR specification. The estimation covers the period from 

December 1969 to December 2014. 

 

The comparison in Table 5.8 also further strengthen the previous findings that the 

CPV’s assumption is not appropriate. If the claims from previous literature that cash flow 

news is linked to fundamentals and discount rate news is sentiment driven are true, we would 

expect that ,DR ,DR/IR R

i i  =   and , ,/ 0IR R

i CF i CF  = , or ,DR ,DR/IR R

i i   is higher than , ,/IR R

i CF i CF   if 

irrationality has a greater influence in the discount rate channel than in the cash flow channel. 

However, the results shown here reveal the opposite findings. Therefore, the findings from 

this comparison suggest that the cash flow (discount rate) news and hence the cash flow 

(discount rate) risk are not solely links to fundamentals (sentiment). 

As mentioned in the introduction, although the expected returns could be more 

accurately characterized by the TV-VAR approach, this approach does introduce small 

sample bias that could possibly affect the conclusions. In view of this, the results retrieved 
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from the constant VAR approach are presented next. The conclusion could be strengthened if 

both approaches with the trade-off between precision and bias lead to identical conclusions. 

(II) Constant VAR approach 

The sensitivity of portfolio returns to the changes in the four news series retrieved 

from the constant VAR approach is presented in Table 5.9. The four betas are arranged in the 

similar order as in Table 5.7. It is apparent from panel A that all portfolio returns, regardless 

of the firm size and the BE/ME ratio, are sensitive to the variations in the irrationally expected 

cash flows. The value of ,

IR

i CF  ranges from 0.012 to 0.023. Despite the responsiveness of 

stock prices to irrational cash flow news is not of great amount, irrational cash flow beta 

estimates are significant at 5% level in 22 out of 25 portfolios, and the beta estimates of the 

other three portfolios are significant at 10% level. Thus, this result again shows that the 

variations in the irrational expectations of cash flows should not be ignored and 
0 : 0IR

CFH  =  

is rejected. Meanwhile, panel B shows that ,

R

i CF of all portfolios sorted based on size and 

BE/ME ratio are highly significant at 1% level, with the magnitude of beta estimates higher 

than 0.40 across the board.  

Turning to the discount rate betas, panel D shows that discount rate betas in the 

rational channel are highly significant at 1% level, consistent with the results shown in Table 

5.7. Similar to ,

R

i CF , ,DR

R

i of each portfolio is greater than 0.40. As for the irrational discount  

rate betas in the panel C, all portfolios’ returns are significantly affected by the fluctuations in 

irrationally expected returns with the t-statistics of ,DR

IR

i  are greater than 1.96 in half of the 

portfolios considered. This finding shows that stocks’ exposure to the systematic variations in 

discount rates is attributable to both rational and behavioural explanations and hence 

0 : 0R

DRH  =  is not appropriate. 

Comparing ,

IR

i CF  against ,DR

IR

i as shown in Table 5.9, it appears that the irrational cash 

flow beta estimates are greater than the irrational discount rate beta across 25 portfolios. 

Besides that, the null hypothesis that stock price is not sensitive to the variations in the 

irrationally expected cash flows can be rejected at a more stringent significance threshold as 

compared to the irrational discount rate beta. To provide further comparison, the ratio of
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Table 5.9: The stock price movements in respond to four news series computed from 

VAR 

  Growth 2 3 4 Value 
 Panel A: Irrational cash flow beta  

Small 0.023** 0.016** 0.017** 0.017** 0.018** 

 [2.079] [1.990] [2.167] [2.277] [2.373] 

2 0.021** 0.017** 0.017** 0.015** 0.014* 

 [2.287] [2.181] [2.424] [2.118] [1.721] 

3 0.023*** 0.019*** 0.014* 0.014** 0.013* 

 [2.667] [2.654] [1.944] [1.984] [1.795] 

4 0.019** 0.021*** 0.015** 0.013** 0.016** 

 [2.485] [3.009] [2.158] [1.980] [2.053] 

Large 0.021*** 0.017*** 0.015** 0.012** 0.016** 

 [3.220] [3.029] [2.601] [1.988] [2.193] 

 Panel B: Rational cash flow beta  

Small 0.638*** 0.551*** 0.506*** 0.470*** 0.490*** 

 [11.899] [11.251] [9.520] [8.826] [8.298] 

2 0.655*** 0.562*** 0.501*** 0.492*** 0.545*** 

 [12.367] [11.563] [10.497] [10.668] [8.605] 

3 0.641*** 0.553*** 0.502*** 0.478*** 0.514*** 

 [13.757] [12.236] [12.939] [10.896] [10.617] 

4 0.604*** 0.550*** 0.521*** 0.481*** 0.567*** 

 [13.665] [15.174] [11.116] [12.048] [13.274] 

Large 0.504*** 0.498*** 0.452*** 0.469*** 0.520*** 

 [11.846] [15.094] [11.789] [9.701] [11.887] 

 Panel C: Irrational discount rate beta  

Small 0.016** 0.010* 0.010* 0.009* 0.009* 

 [2.328] [1.731] [1.798] [1.948] [1.827] 

2 0.015** 0.011** 0.010** 0.008* 0.009* 

 [2.453] [2.117] [2.047] [1.932] [1.729] 

3 0.013** 0.009** 0.008* 0.007** 0.008* 

 [2.399] [1.955] [1.771] [2.030] [1.715] 

4 0.011** 0.008* 0.008* 0.008* 0.011** 

 [2.317] [1.708] [1.930] [1.875] [2.271] 

Large 0.009** 0.008* 0.007** 0.009** 0.008** 

 [2.102] [1.852] [1.978] [2.447] [2.028] 

 Panel D: Rational discount rate beta  

Small 0.623*** 0.520*** 0.466*** 0.423*** 0.455*** 

 [17.906] [14.796] [12.956] [10.579] [9.671] 

2 0.604*** 0.513*** 0.453*** 0.430*** 0.490*** 

 [17.603] [12.287] [12.038] [11.430] [9.723] 

3 0.568*** 0.485*** 0.438*** 0.414*** 0.479*** 

 [16.422] [13.302] [12.983] [10.673] [11.023] 

4 0.544*** 0.490*** 0.457*** 0.427*** 0.476*** 

 [17.427] [14.577] [12.647] [11.704] [10.739] 

Large 0.464*** 0.437*** 0.400*** 0.419*** 0.420*** 

  [14.246] [13.891] [12.833] [8.998] [8.329] 

Notes: This table presents the four betas computed based on the news series retrieved from the constant VAR approach for 
portfolio sorted based on size and book-to-market (BE/ME) ratio from December 1969 to December 2014 in four panels. 

Panel A and B report the irrational cash flow beta (
,

IR

i CF ) and the rational cash flow beta (
,

R

i CF ), respectively. Panel C and D 

show the irrational discount rate beta (
,DR

IR

i ) and the rational discount rate beta (
,DR

R

i ), respectively. The estimation is based 

on the following regression: 

, j,

k

i t t tr SN  = + +  ,                  , CF, CF, DR, DR,, , ,k IR R IR R

j t t t t tSN SN SN SN SN=    

where ri,t represents the portfolio returns and 
,

k

j tSN  denotes one of the four scaled news series computed in equations (5.17) – 

(5.20). The β is the beta estimate corresponds to one of the four new series applied in the above regression. Portfolios are 
sorted based on BE/ME ratio from left to right and based on firm size (ME) from top to bottom in each panel. “Growth” 
portfolio has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, and 
“large” portfolio has the highest ME. HAC standard errors are used and the values shown in square bracket are Newey-West 
t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
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Table 5.10: The proportion of irrational beta relative to rational beta in CF and DR 

channels under the VAR approach 

  Growth 2 3 4 Value 

 Panel A: Proportion of irrational cash flow beta 

Small 0.035 0.029 0.033 0.034 0.036 

2 0.032 0.030 0.033 0.029 0.024 

3 0.035 0.033 0.026 0.028 0.024 

4 0.030 0.037 0.027 0.026 0.028 

Large 0.040 0.034 0.033 0.025 0.030 

 Panel B: Proportion of irrational discount rate beta 

Small 0.025 0.020 0.020 0.021 0.020 

2 0.025 0.021 0.021 0.019 0.017 

3 0.022 0.019 0.018 0.017 0.016 

4 0.020 0.016 0.017 0.018 0.022 

Large 0.018 0.017 0.018 0.021 0.019 
Notes: This table presents the proportion of irrational cash flow beta over the rational cash flow beta 

, ,/IR R

i CF i CF   

in Panel A, and the proportion of irrational discount rate beta over the rational discount rate beta 
,DR ,DR/IR R

i i   in 

Panel B for 25 portfolios sorted based on size (ME) and book-to-market (BE/ME) ratio. The cash flow and 

discount rate news are estimated under the VAR specification. The estimation covers the period from December 

1969 to December 2014. 

the irrational cash flow beta to the rational cash flow beta (i.e. , ,/IR R

i CF i CF   in panel A) and the 

ratio of the irrational discount rate beta to the rational discount rate beta (i.e. ,DR ,DR/IR R

i i   in 

panel B) are shown in Table 5.10. The findings are in line with that of in Table 5.8. The 

irrational beta has a higher proportion in the cash flow channel than in the discount rate 

channel. Even though the magnitude of , ,/IR R

i CF i CF   has seen a drop across the board, this does 

not affect the conclusion that a relatively greater irrational component is embedded in the cash 

flow risk than in the discount rate risk. The relatively important irrational cash flow beta again 

renders support to the findings of Huang et al. (2015) that the predictive ability of investor 

sentiment is stemmed from the cash flow channel.   

 (III) TV-VAR vs. VAR 

Comparing the beta estimates constructed from both approaches, this study confirms 

that cash flow channel is the underlying source of the sentiment-return relationship. Moreover, 

the assets’ returns are not immune to the changes in irrationally expected cash flows and 

rational discount rates since ,

IR

i CF  and ,DR

R

i  are the two beta estimates that remain significant 

under both approaches; whereas ,

R

i CF  and ,DR

IR

i  lose their significance under the TV-VAR 

approach. Hence, the findings do not support the claims that cash flow news is driven by 
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fundamentals and discount rate news merely reflects the changes in investor sentiment118. CV 

(2004) find that the cash flow and discount rate beta estimates are biased downward when 

there is a small sample bias. Looking at both Table 5.7 (TV-VAR) and Table 5.9 (constant 

VAR), we notice that the downward bias in the beta estimates could be due to ,

R

i CF  and ,

IR

i DR , 

where both estimates are substantially lower when the news series are retrieved from the TV-

VAR. 

(IV) Analysts’ forecasts (AF) approach 

The beta estimates produced under the analysts’ forecasts approach is reported in 

Table 5.11. As shown in panel B and D, stock returns are sensitive to the movements in the 

rational expectations, regardless of the cash flow or discount rate channel. However, panel C 

shows that only a few portfolios are affected by the changes in irrational discount rates. The 

result of insignificant irrational cash flow beta across 25 portfolios as in panel A is 

inconsistent with our intuition that the variations in irrationally expected cash flows computed 

from AF approach will significantly affect the stock prices, since previous studies found that 

analysts’ earnings forecasts contain systematic errors (La Porta, 1996) and could be 

overoptimistic (Abarbanell and Bernard, 1992; De Bondt and Thaler, 1990; Hribar and 

Mclnnis, 2012). This could be due that the sample period used for this approach is limited,  

where the data starts from January 1990, and the analysts’ forecasts in this study is sourced 

from the Bloomberg Earnings Estimates (BEst), which has a few issues as discussed in the 

Section 5.5.2. Nevertheless, the findings from three approaches agree that the discount rate 

news is not merely affected by sentiment, rather risk-based explanations seem to play a more 

important role. Meanwhile, both ,

IR

i CF  and ,DR

IR

i  are, on average, insignificant, and hence the 

relative importance of either channel on the predictive power of investor sentiment is 

indeterminate based on this approach. 

 
118 As a robustness check, the TV-VAR is estimated on a longer rolling window size – 180 months (consistent 

with Section 4.4). The results are robust to the change in the rolling window size of the TV-VAR framework. 

/IR R

CF CF   is greater than /IR R

DR DR   , confirming that cash flow channel is an important medium through 

which the sentiment affects the stock prices. The number of portfolios that are sensitive to the irrational cash 

flow and rational discount rate betas has also seen an increase. Furthermore, the degree of significance of the 

rational discount rate beta increases across the board. In general, the results tend towards the findings obtained 

from the constant VAR model. 
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Table 5.11: The stock price movements in respond to four news series computed from 

AF 

  Growth 2 3 4 Value 
 Panel A: Irrational cash flow beta  

Small -0.007 -0.003 -0.026 -0.023 -0.041 

 [-0.152] [-0.084] [-0.844] [-0.703] [-1.192] 

2 0.014 -0.003 -0.024 -0.014 -0.009 

 [0.393] [-0.094] [-0.845] [-0.487] [-0.241] 

3 0.007 -0.009 -0.016 -0.023 -0.007 

 [0.227] [-0.303] [-0.617] [-0.769] [-0.197] 

4 0.029 -0.017 -0.016 -0.009 0.004 

 [0.849] [-0.672] [-0.548] [-0.318] [0.102] 

Large 0.012 -0.004 -0.019 0.005 0.002 

 [0.588] [-0.174] [-0.772] [0.143] [0.061] 

 Panel B: Rational cash flow beta  

Small 0.242* 0.206*** 0.210*** 0.188** 0.209*** 

 [1.944] [2.707] [3.390] [2.583] [2.726] 

2 0.238** 0.183*** 0.176*** 0.241*** 0.278*** 

 [2.376] [2.638] [2.974] [3.681] [2.860] 

3 0.223*** 0.200*** 0.191*** 0.158** 0.146* 

 [2.764] [2.916] [3.251] [2.275] [1.820] 

4 0.182** 0.157** 0.190*** 0.173** 0.280*** 

 [2.034] [2.446] [2.649] [2.202] [2.681] 

Large 0.199* 0.193*** 0.212*** 0.275*** 0.332** 

 [1.924] [2.669] [3.436] [3.352] [2.601] 

 Panel C: Irrational discount rate beta  

Small 0.063 0.044 0.064** 0.059* 0.087*** 

 [1.409] [1.164] [2.136] [1.894] [2.622] 

2 0.038 0.046 0.061** 0.048 0.05 

 [1.023] [1.312] [2.071] [1.594] [1.228] 

3 0.048 0.049 0.05 0.058 0.049 

 [1.386] [1.468] [1.495] [1.640] [1.381] 

4 0.017 0.056* 0.054 0.042 0.042 

 [0.560] [1.946] [1.645] [1.224] [1.120] 

Large 0.02 0.034 0.037 0.026 0.041 

 [0.772] [1.227] [1.258] [0.739] [0.951] 

 Panel D: Rational discount rate beta  

Small 0.967*** 0.804*** 0.706*** 0.653*** 0.696*** 

 [4.577] [4.488] [3.953] [4.089] [3.940] 

2 0.937*** 0.805*** 0.708*** 0.654*** 0.767*** 

 [4.743] [4.299] [4.106] [4.158] [4.147] 

3 0.906*** 0.796*** 0.718*** 0.734*** 0.855*** 

 [4.773] [4.254] [4.279] [4.548] [4.983] 

4 0.913*** 0.807*** 0.784*** 0.740*** 0.779*** 

 [4.796] [4.682] [4.682] [4.741] [4.138] 

Large 0.729*** 0.687*** 0.613*** 0.681*** 0.729*** 

  [5.247] [5.467] [4.457] [3.988] [3.791] 

Notes: This table presents the four betas computed based on the news series retrieved from the constant analysts’ forecasts 
(AF) approach for portfolio sorted based on size and book-to-market (BE/ME) ratio from January 1990 to December 2014 in 

four panels. Panel A and B report the irrational cash flow beta (
,

IR

i CF ) and the rational cash flow beta (
,

R

i CF ), respectively. 

Panel C and D show the irrational discount rate beta (
,DR

IR

i ) and the rational discount rate beta (
,DR

R

i ), respectively. The 

estimation is based on the following regression: 
 

, j,

E

i t t tr SN  = + +  ,                  , CF, CF, DR, DR,, , ,E IR R IR R

j t t t t tSN SN SN SN SN=    

 

where ri,t represents the portfolio returns and 
,

E

j tSN  denotes one of the four scaled news series computed in equations (5.17) – 

(5.20). The β is the beta estimate corresponds to one of the four new series applied in the above regression. Portfolios are 
sorted based on BE/ME ratio from left to right and based on firm size (ME) from top to bottom in each panel. “Growth” 
portfolio has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, and 
“large” portfolio has the highest ME. HAC standard errors are used and the values shown in square bracket are Newey-West 
t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
 

 



181 

 

(V) Direct proxy approach 

Unreported results of the two-beta model constructed using the direct proxy approach 

show that all portfolios are sensitive to the discount rate news but none of them react to the 

changes in the cash flow expectations across all examining horizons, k, contradicting the 

theory that stock prices are affected by the cash flow expectations (e.g. Cohen et al., 2002; 

Hong and Sraer, 2016; Hou et al., 2015). Furthermore, the cash flow betas of value and 

growth stocks are not significantly different across various size quintiles, likewise for the 

small and large stocks across different BE/ME portfolios. These results are inconsistent with 

CV (2004) and Da and Warachka (2009).  

As for the four-beta model, unreported results also show that all portfolios react 

significantly only to the rational discount rate news and the effects of other news series – IR

CFN , 

R

CFN  and IR

DRN  – are muted across all examining horizons, except the 48-month horizon. The 

results show that portfolios are generally sensitive to all news series in the four-beta model at 

48-month horizon, with the exception of the rational cash flow news. Nevertheless, the 

irrational cash flow betas of the portfolios have a negative sign. Considering that the results 

contradict to the literature and are inconsistent across different examining horizons, 

conclusive finding is unable to be drawn from this approach. Hence, this approach will not be 

used for analyses conducted beyond this section.  

 (VI) Summary 

In general, the results confirm that the predictive ability of investor sentiment, which 

is captured by STV, is due to its influence on the cash flow expectations since irrational cash 

flow news consistently have significant effects on stock returns as compared to the irrational 

discount rate news. This finding implies that overly optimistic (pessimistic) expectations of 

future cash flows formed by naïve investors during high (low) sentiment period push the stock 

prices beyond and above (below) the fundamental values, leading to a price reversal in the 

future when fundamental cash flow information is unveiled. 

The results also confirm that CPV’s assumptions of cash flow news is driven by 

fundamentals and discount rate news is driven by sentiment are less appropriate seeing that 

the stock prices consistently move in response to the changes in IR

CFSN  and R

DRSN  according to 

TV-VAR and VAR approaches, and that ,

IR

i CF  is a relatively more important systematic risk 



182 

 

component as compared to ,DR

IR

i . Apart from validating the assumptions, the results do 

provide support to the findings of previous literature that stock prices are affected by the 

irrational expectations of future cash flows (e.g. Engelberg et al., 2018; Kim, Ryu and Seo, 

2014; LSV, 1994; Park, 2005), and the rationally expected future returns (e.g. Bansal et al., 

2012; Campbell and Cochrane, 1999; Lettau and Ludvigson, 2001b; Gabaix, 2012).  

Previous studies claimed that the cash flows of value stocks are fundamentally riskier 

than that of growth stocks since value stocks consistently have poor earnings (Fama and 

French, 1993; 1995), and hence the higher expected returns of value stocks are compensation 

for the high fundamental cash flow risk (see Campbell, Polk and Vuolteenaho, 2010; 

Campbell and Vuolteenaho, 2004). If their claim is correct, we would expect value stocks to 

have higher rational cash flow betas, which reflect the fundamental cash flow risk, than 

growth stocks. Yet, the results based on TV-VAR and VAR approaches show that values 

stocks are not fundamentally riskier since the rational cash flow betas of value stocks are 

lower than that of growth stocks across different size quintiles. Hence, the results do not 

support the risk-based explanation to a certain extent. 

5.6.5 The prices of four betas 

The results from previous section show that stocks are sensitive not only to the 

rational movement in the news series, but also to the irrational fluctuation in the news series. 

Therefore, the standard asset pricing test is employed to investigate how the four betas are 

being priced cross-sectionally by performing the FMB as shown in equation (5.28). The FMB 

estimates also allow us to examine the relative importance of the premium investors allocate 

to each component of the four-beta model. Furthermore, we compare the performance of the 

four-beta model against the Capital Asset Pricing Model (CAPM) and the two-beta model in 

pricing the risks. The CV’s two-beta model from this section onwards is constructed based on 

the news series retrieved from the TV-VAR approach119.  

Figure 5.3 provides a visual examination on the model fit of different asset pricing 

models. The figure plots the average realized returns in excess of risk-free rate (vertical axis) 

 
119 The TV-VAR approach is used in the construction of CV’s two-beta model to ensure a fair comparison with 

the four-beta model in the asset pricing test and since the TV-VAR estimates produce a higher adjusted-R2 

statistic for the return regression as in Table 5.2. In fact, the asset pricing tests reveal that the adjusted cross-

sectional R2 of the two-beta model constructed under the TV-VAR framework is higher than that of constructed 

under the constant VAR framework.  
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against the average fitted excess returns (horizontal axis). The average fitted excess returns is 

the fitted value of equation (5.28) estimated from December 1969 to December 2014, except 

the four-beta model (AF) where the sample period covers from January 1990 to December 

2014 due to the data availability. The dots in each graph are 25 portfolios sorted based on ME 

and ME/BE, represented by the two-digit number labelled next to each data point. The first 

digit denotes the size quintile (ME) and the second digit represents the book-to-market 

quintile (BE/ME)120. If a model explains 100% of the variation in the cross section of average 

stock returns, all data points would lie exactly on the 45-degree line.  

Figure 5.3: Realized vs. fitted average excess returns 

This figure plots the realized average excess return against the fitted (or predicted) average excess returns on 25 portfolios 
sorted based on firm size (ME) and book-to-market (ME/BE) ratio (represented as dots in the figure) for different asset 
pricing models: Capital Asset Pricing Model (CAPM), CV’s two-beta model, four-beta models computed with the news 
series retrieved from the time-varying VAR (TV-VAR), the constant VAR and the analysts’ forecasts (AF) approach. The 
predicted average excess returns are estimated from equation (5.28) for the period of 1969:12 – 2014:12, except the four-beta 

model (AF), which has the sample period spans from 1990:01 – 2014:12. The number labelled next to each data point 
represents the portfolios sorted according to ME and BE/ME ratio (e.g. double-digit 15 denotes small-value portfolio). 

 

 

 

 
120 For instance, the double-digit 11 denotes the small-growth portfolio, i.e. ME1BM1 portfolio. 
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The CAPM and CV’s two-beta models are plotted on the top of Figure 5.3, and the 

other three graphs are the four-beta models constructed under different approaches, which are 

the time-varying VAR (TV-VAR), the Vector Autoregressive Model (VAR) and the analysts’ 

forecasts (AF). Of all the five models, CAPM apparently performs the worst as the model 

seems to predict average excess returns of different portfolios far too away from the 45-

degree reference line. Although the model fit is improved in the two-beta model, we notice 

that the data points produced by the four-beta model generally have much smaller spread from 

the reference line, regardless of the approach used to compute the four-beta model. A 

noticeable exception can be seen from the small-growth portfolio (labelled as 11), where it 

has the greatest distance from the 45-degree line not only in the four-beta models, but also in 

the CAPM and two-beta models.  

To confirm the visual evidence, the cross-sectional regression result of each model is 

presented in Table 5.12. The result of each asset pricing model is presented in column (1) to 

(5). Each row is presented with the point estimate of a particular risk component (i.e. risk 

premium) associated with its heteroscedasticity and autocorrelation consistent t-statistics 

(shown in the square bracket). If a risk factor is an important factor, we would expect that risk 

factor to be priced significantly across different stocks. Hence, the null hypothesis of interest 

is that 0 ,: 0j tH  = . The tests statistics of adjusted cross-sectional R2 (Adj-R2) and pricing 

errors, measured as root-mean-squared-pricing-errors (RMSPE) and the mean-pricing-errors 

(MPE (%)), are used to evaluate the performance of each asset pricing model as presented in 

the last three rows. A better asset pricing model is expected to deliver a higher Adj-R2 whilst 

producing a lower pricing error. 

The first column shows that the explanatory power of CAPM, i.e. Adj-R2, on the cross-

sectional stock returns is only 0.3% although the model produces a positive risk price for the 

market beta (i.e. 7.2% per annum for M
121) that is highly significant at 1% level. This result 

suggests that the CAPM model is unable to price the cross-sectional stock returns and 

produces the largest average pricing error (e.g. 0.024 RMSPE), consistent with the visual 

representation as shown in Figure 5.3. When the market beta is disentangled into cash flow 

and discount rate beta, the Adj-R2 statistic even though does improved tremendously to 19.4%, 

as shown in column (2), the RMSPE improved by less than 0.005 to 0.021. Besides 

 
121 The point estimates reported in Table 5.12 are monthly risk premium estimates. To obtain the annual risk 

premium in the percentage term, simply multiply the point estimates by 1200. 
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Table 5.12: Prices of risks  

  CAPM 
Two-beta 

model 
Four-beta model 

   TV-VAR  VAR   AF 

       (1)       (2)       (3)    (4)    (5) 

 

  
0.006*** 

    

 [2.823]     
 

   
-0.002 

   

  [-0.272]    
 

   
0.009*** 

   

 
 [2.715]    

 

    
-0.622*** -0.282** -0.183 

 

  [-3.672] [-2.037] [-1.438] 

   0.015* 0.037* 0.002 

 
 

   
[1.859] [1.807] [0.197] 

   -0.554*** -1.017*** -0.086 

 

    
[-4.176] [-3.833] [-0.745] 

   0.023*** 0.004 0.013*** 

 

    
[4.723] [0.203] [3.123] 

Adj-R2 0.003 0.194 0.378 0.196 0.235 

RMSPE 0.024 0.021 0.016 0.019 0.021 

MPE (%) 0.023 0.023 0.009 0.009 0.007 
Notes: This table presents the results of the Fama-Macbeth regression for the Capital Asset Pricing Model (CAPM), the CV’s two-

beta model with the news series retrieved from the time-varying VAR (TV-VAR) approach, and the four-beta models computed with 

the news series retrieved from the time-varying VAR (TV-VAR), the constant VAR and the analysts’ forecasts (AF) approach. The 

test assets are 25 portfolios sorted based on size (ME) and book-to-market (BE/ME) ratio. The risk premium estimates are the time-

series average of the cross-sectional parameter estimates for the period of 1969:12 – 2014:12, except the four-beta model (AF), 

which has the sample period of 1990:1 – 2014:12. 
M  is the price of market risk, 

CF  is the price of cash flow risk, 
DR  is the price 

of discount rate risk, IR

CF  is the price of irrational cash flow risk, R

CF  is the price of rational cash flow risk, IR

DR  is the price of 

irrational discount rate risk, and R

DR  is the price of rational discount rate risk.  The heteroskedastic and autocorrelation consistent t-

statistics are presented within the square brackets. The adjusted cross-sectional R2 statistic (Adj-R2), the root-mean-squared-pricing-

errors (RMSPE), the mean-pricing-errors (MPE) are presented in the last three rows. *, ** and *** indicate statistical significance at 

10%, 5% and 1% level, respectively.  

that, only the discount rate beta carries a positive risk premium (i.e. 10.8% per annum for IR

DR ) 

that is significant at 1% level. Although CV (2004) and Garrett and Priestley (2012) report a 

higher cross-sectional R2 statistic (i.e. more than 40%) for the two-beta model, Botshekan et al. 

M

CF

DR

IR

CF

R

CF

IR

DR

R

DR
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(2012) who included a more recent sample period present a much lower cross-sectional R2 

statistic, which is less than 10%122.  

Columns (3) to (5) show the results of pricing tests for the four-beta models 

constructed using news series retrieved from TV-VAR, VAR, AF approach, respectively. The 

four-beta models perform better than the CAPM and CV’s two-beta models in terms of the 

Adj-R2 statistic. The higher Adj-R2 statistics together with much lower average pricing errors 

suggest that the four-beta models are able to explain the variation in average stock returns at 

the cross-sectional level better than the other two asset pricing models, reassuring the visual 

evidence shown in Figure 5.3. This improvement is purely the result of decomposing the cash 

flow and discount rate betas into irrational and rational components that yield a richer 

description of the risk components faced by different stocks since the news series used in both 

two-beta and four-beta models are retrieved from the TV-VAR approach.    

Of the three four-beta models, the TV-VAR approach performs best with the highest 

Adj-R2 (i.e. 37.8%), and all risk components but the rational cash flow risk ( R

CF ) are priced at 

1% significance level. Also, it produces the least RMSPE of 0.016. On the risk premia 

estimates, irrational beta risks are consistently and significantly priced in the cross-section of 

stock returns under the VAR frameworks. In particular, the irrational factors constructed 

based on the TV-VAR approach carry negative risk premia of about 60% with the t-statistics 

lie beyond three standard deviations from the mean. The exposure to the rational factors, on 

the other hand, demand positive risk premia, where the R

CF is consistently priced under both 

VAR approaches at 10% significance level.  

It is also worth noting that the irrational betas are relatively important components in 

describing the cross-sectional stock returns given that irrational cash flow and irrational 

discount rate betas consistently carry a larger risk premium (in the absolute terms) as 

compared to their rational counterparts across all four-beta models, i.e. IR R

CF CF  and 

IR R

DR DR  . Given the relative importance of irrational risk premia, and since expected returns 

are the product of beta estimates and the corresponding risk prices, investors should pay 

 
122 The modern sample period of CV (2004) is from July 1963 to December 2001 and Garrett and Priestley 

(2012) employ the annual data from 1928 to 2001; whereas Botshekan et al (2012) extend the sample period of 

CV (2004) to December 2008.  
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attention to the assets that are more sensitive to the variations in the irrational news, despite 

the magnitude of irrational betas is smaller than that of rational betas.  

In accord with our expectation and previous literature, irrational cash flow and 

irrational discount rate risks (i.e. IR

CF  and IR

DR ) consistently carry a negative risk premium 

across three different approaches used in retrieving the news terms. A few potential rational 

and behavioural explanations to the negative risk premium are discussed below.   

The pricing of irrational beta risks could be well reflected by the pricing of lottery-like 

stocks’ characteristics. Investors who trade on sentiment tend to invest in lottery-like stocks, 

and hence, the returns of lottery-like stocks tend to be driven by investor sentiment 

(Carpentier, Romon and Suret, 2018; Fong, 2013; Fong and Toh, 2014). At the same time, 

Kumar (2009) define the lottery-like stocks as stocks typically with high idiosyncratic 

volatility (IVOL) and positive idiosyncratic skewness (SKEW) 123 . As IVOL is highly 

correlated with market volatility, Barinov (2018) shows that IVOL carries a negative risk 

premium, an insurance investors pay to shield from an unfavourable move in market volatility 

– consistent with the rational explanation. Hence, lottery-like stocks with high IVOL beta 

tend to earn lower expected returns since it hedges against market volatility risk. 

As for the positive SKEW, Barberis and Huang (2008) claim that cumulative prospect 

theory investors overweight the small probability of huge gains of lottery-like stocks124, and 

hence investors are willing to pay a price for the lottery-like stocks, hoping for a potentially 

huge payoff, and accept a lower average excess returns – consistent with the behavioural 

explanation125. Therefore, the positive SKEW is priced negatively in the cross-section of 

expected returns (Bali, Cakici, and Whitelaw, 2011; Boyer, Mitton and Vorkink, 2010; Lin 

and Liu, 2018). Given that lottery-like stocks are affected by investor sentiment, and that the 

characteristics of lottery-like stocks are negatively priced, the negative risk premia of 

 
123 Fong (2013) also mention that other characteristics of lottery stocks are similar to that of the sentiment-driven 

stocks, such as small, young, unprofitable, distressed and high growth stocks.  

124 Apart from overweighting the tail probability, investors face limited downside risk with asymmetric payoff 

structure of lottery stocks. Pessimistic investors will stand on the side line when investment opportunities 

deteriorate and stock prices will not be punished severely, but they might be greatly rewarded when optimistic 

investors actively purchase the lottery-like stocks. 

125 In fact, investors prefer any securities that exhibit positive skewness in the return distribution, such as, 

premium bond (Lobe and Hölzl, 2008; Pfiffelmann; 2013) and lottery-linked deposit account (Guillén and 

Tschoegl, 2002). 
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sentiment-induced irrational betas could be a manifestation of the negative risk premia 

associated with those characteristics – IVOL and SKEW.  

As a whole, stocks with high irrational betas would command a negative risk premium. 

The pricing of irrational beta risks in the four-beta model is consistent with return differences 

and beta estimates reported in Table 5.4 and Table 5.7, respectively. As shown in Table 5.4, 

growth stocks consistently have lower average returns after controlling for the size effect. The 

lower average returns of growth stocks can be seen corresponding to higher irrational cash 

flow betas as compared to value stocks in Table 5.7. Meanwhile, Table 5.9 shows that the 

beta estimates constructed under the VAR approach have both irrational cash flow and 

irrational discount rate betas of growth stocks higher than that of value stocks. Therefore, 

growth stocks that are more sensitive to the changes in irrational expectations earn lower 

average excess returns. In sum, giving credit to irrational risk factors explicitly captures well 

the different risks faced by different stocks and hence the four-beta model describes average 

stock returns at the cross-sectional level better than the CAPM and the two-beta model. 

5.6.6 The price of four betas in the future returns 

The previous section shows that all four betas constructed based on the TV-VAR 

approach are significantly priced at the cross-sectional level when the contemporaneous 

relationship between average stock returns and different risk factors is considered. For a more 

stringent test on the pricing of four-beta model, this study considers the risk premia 

components of future returns. If a particular beta is an important factor that captures well 

certain risk, the risk premium estimate of that beta corresponds to future returns should be 

significantly different from zero.   

Following Botshekan et al. (2012), future information is not utilised in the beta 

construction. Hence, unlike the TV-VAR approach where CFN  and DRN  of a month are 

obtained by averaging out the news series computed across different windows where future 

information are utilized in some windows, this exercise uses the news series retrieved in a 

window of up to month t in estimating the beta, avoiding the potential look-ahead bias. In 

particular, the VAR parameters and news series are estimated on a rolling window basis with 

a window size of 72 months. The four betas are then estimated by regressing the portfolio 

returns on the news series over the same window. This process is repeated when the window 

is rolled over by one month and a series of updated beta estimates are obtained. For instance, 
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the VAR parameters, the four new series and the four betas are estimated using the data 

available from 1969:12 until 1975:11 in the first window. This fixed window-size estimation 

period is then rolled to estimate the betas over the period of 1970:01 to 1975:12. Finally, this 

study performs the FMB regression by regressing expected portfolio returns of different 

forecast horizons on four betas estimated up to time t. Consistent with previous chapters, the 

forecast horizons, h, from 1-month up to 60-month are considered in this sub-section. This 

presents another way of examining the economic source underlying the predictive ability of 

investor sentiment on future stock returns as documented in Section 5.6.4. 

Table 5.13: Future risk premia estimates of the four-beta model  

  h = 1 h = 3 h = 6 h = 9 h = 12 h = 24 h = 36 h = 60 

IR

CF  -0.093* -0.071 -0.077* -0.086* -0.088** -0.051* 0.016 0.069 

 [-1.708] [-1.510] [-1.666] [-1.939] [-2.054] [-1.677] [0.652] [2.833] 
         

R

CF  0.017 0.012 0.015 0.012 0.012 0.008 0.004 -0.005 

 [1.218] [0.926] [1.236] [1.084] [1.162] [0.960] [0.533] [-0.585] 
         

IR

DR  -0.021 -0.019 -0.021 -0.021 -0.018 -0.008 -0.013 0.001 

 [-0.905] [-0.961] [-1.226] [-1.301] [-1.275] [-0.709] [-1.194] [0.135] 
         

R

DR  0.014** 0.012** 0.014*** 0.016*** 0.017*** 0.016*** 0.016*** 0.013*** 

 [2.170] [2.069] [2.687] [3.038] [3.290] [3.912] [4.623] [4.985] 

Notes: This table reports the risk premia estimates associated with the irrational cash flow risk ( IR

CF ), rational cash flow risk 

( R

CF ), irrational discount rate risk ( IR

DR ), rational discount rate risk ( R

DR ) for the future expected returns across different 

forecast horizons retrieved from the following Fama-Macbeth (FMB) regression: 

, , , , , , , , , ,
ˆ ˆ ˆ ˆ. . . .e IR IR R R IR IR R R

i t h CF t i CF CF t i CF DR t i DR DR t i DR i tR e       + = + + + +  

The values in the square brackets are Newey-West t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 
1% level, respectively.  

The risk premium estimate of future stock returns associated with each of the four 

betas are presented in Table 5.13. The irrational cash flow risk is significantly and 

consistently priced in the cross-sectional of future stock returns from the next-month forecast 

up to the 24-month forecast horizons, except the 3-month forecast horizon. The negative risk 

premium estimate of IR

CF  is also consistent with the results shown in Table 5.12, confirming 

that investors are willing to pay a price for stocks that are sensitive to the changes in 

irrationally expected future cash flows. Despite the risk premium of IR

CF  in the out-of-sample 

is lower than that of in the in-sample analysis (i.e. Table 5.12), the monthly IR

CF  ranging 

between 5% and 9% for different forecast horizons are still sizeable. Contrarily, the irrational 

discount rate risk is not significantly priced in future stock returns across different forecast 

horizons even though this beta risk also commands a negative risk premium. These results 

again demonstrate that the predictability of sentiment on future stock returns is going through 
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the cash flow channel given that the irrational cash flow risk has its negative premium 

sustained even in the out-of-sample context.  

As for the rational component, only the rational discount rate risk is significantly 

priced in the cross-sectional of future stock returns at 5% significance level across all forecast 

horizons. Similar to IR

CF , the monthly R

DR  also experiences a drop, where the risk premium 

associated with the R

DR  decreases slightly from more than 2% in the in-sample analysis 

(Table 5.12) to less than 2% a month in the out-of-sample analysis (Table 5.13). On the other 

hand, the rational cash flow beta does not carry a significant risk premium in future stock 

returns regardless of the forecast horizon.  

In summary, only the risks originated from irrational cash flow beta and rational 

discount rate beta survive in both in-sample and out-of-sample asset pricing tests. Given that 

these two risk components are significantly priced in the cross-sectional of stock returns, the 

changes in irrational expectations of cash flows and rational discount rates should not be 

neglected. The results here provide further support to the findings that the cash flow news is 

not merely driven by fundamental and discount rate new is not merely sentiment induced. 

Indeed, the irrational cash flow expectations and rational discount rate expectations are two 

important risk components in pricing the stocks at cross-sectional level.  

5.6.7 Sub-sample analysis  

Recognizing the fact that beta is not constant across time, this section conducts a sub-

sample analysis to investigate if the beta estimates and their associated risk premia produced 

under the TV-VAR approach change across different sub-sample periods. The sub-sample 

analysis is performed under a structural break framework to identify the period when there is 

a breakdown in the return-beta relationship.  

This study employs the single break with unknown break point test of Andrew (1993) 

in locating the single break point. Specifically, the break point is identified separately on cash 

flow and discount rate news instead of each of the four news terms in order to avoid having 

different break points for all four series. Hence, both rational and irrational news series are 

combined in each channel when performing the test for structural break date. To avoid having 

different break points for each portfolio, this study treats 25 test asset portfolios as the 

representative of stock market and the break point identified on the stock market return-beta 

relationship is applied to all test asset portfolios considered in this study. Although the 
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multiple break test could have been used to identify multiple break points, the multiple break 

test complicates the analysis as the test produces multiple yet different break points for cash 

flow and discount rate news. Since a consistent break date for both cash flow and discount 

rate betas is required for further analysis of risk pricing, the single break test that identifies 

major structural change in the return-beta relationship is opted. The break date identified for 

the cash flow and discount rate beta are September 1997 and February 1998, respectively. In 

view of the need of having a consistent break point for both betas, the sample period from 

September 1997 to January 1998 is excluded. Therefore, the first sub-sample period covers 

from December 1969 to August 1997, and the second sub-sample period spans from February 

1998 to December 2014.  

(I) The effect of structural break on four beta estimates 

As usual, Table 5.14 and Table 5.15 report the four beta estimates in four panels for 25 

portfolios sorted based on ME and BE/ME ratio: the irrational cash flow beta, ,

IR

i CF  (panel A), 

the rational cash flow beta, ,

R

i CF  (panel B), the irrational discount rate beta, ,DR

IR

i  (panel C), 

and the rational discount rate beta, ,DR

R

i  (panel D) in the first and second sub-sample period, 

respectively. Each row provides the beta estimates together with the Newey-West t-statistics 

reported in square brackets. Similar to Section 5.6.4, this sub-section is interested at: (1) 

whether the predictive ability of investor sentiment is coming from discount rate or cash flow 

channel, (2) whether 
0 : 0IR

CFH  =  and 
0 : 0R

DRH  =  can be rejected in each sub-sample 

period.  

Panel A of Table 5.14 shows that all portfolios but one are insensitive to the 

fluctuations in irrationally expected cash flows in the first sub-sample period given that ,

IR

i CF  

are insignificant. Nonetheless, the results of panel A in Table 5.15 resemblance to that of 

panel A in Table 5.7, where some assets respond significantly to irrational cash flow news in 

the second sub-sample period. The responsiveness of each portfolio towards the variations in 

irrational expectations of cash flows, in terms of the magnitude of ,

IR

i CF , has seen a substantial 

increase from the first sub-sample period to the second sub-sample period for most of the 

portfolios. For instance, the estimate of ,

IR

i CF  for small-growth stocks increases from 0.009 in 

the first sub-sample period to 0.079 in the second sub-sample period.  
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Table 5.14: Four betas estimated for the first sub-sample period  

  Growth 2 3 4 Value 
 Panel A: Irrational cash flow beta 

Small 0.009 0.012 0.011 0.01 0.008 

 [0.440] [0.846] [0.765] [0.878] [0.631] 

2 0.025 0.012 0.01 0.012 0.001 

 [1.079] [0.813] [0.756] [0.932] [0.102] 

3 0.024 0.022* 0.015 0.005 0.01 

 [1.226] [1.663] [1.148] [0.405] [0.649] 

4 0.018 0.017 0.013 0.004 0.001 

 [1.068] [1.283] [1.087] [0.261] [0.061] 

Large 0.017 0.006 0.016 0.01 -0.007 

 [0.943] [0.397] [1.293] [0.792] [-0.548] 

 Panel B: Rational cash flow beta 

Small -0.037 -0.044 -0.06 -0.069 -0.095 

 [-0.257] [-0.349] [-0.485] [-0.619] [-0.731] 

2 0.015 -0.012 -0.04 -0.032 -0.067 

 [0.112] [-0.093] [-0.336] [-0.258] [-0.466] 

3 0.058 -0.011 -0.002 -0.006 -0.026 

 [0.445] [-0.093] [-0.019] [-0.052] [-0.176] 

4 0.062 0.034 0.028 0.021 0.012 

 [0.503] [0.284] [0.228] [0.156] [0.076] 

Large 0.161 0.084 0.085 0.08 0.093 

 [1.464] [0.673] [0.637] [0.575] [0.718] 

 Panel C: Irrational discount rate beta 

Small 0.014 0.004 0.004 0.005 0.006 

 [0.759] [0.232] [0.370] [0.455] [0.569] 

2 0.002 0.005 0.006 0 0.006 

 [0.096] [0.383] [0.535] [0.013] [0.597] 

3 0.001 -0.003 -0.002 0.009 -0.003 

 [0.053] [-0.325] [-0.142] [0.889] [-0.252] 

4 0.003 0.004 0.002 0.007 0.014 

 [0.198] [0.351] [0.187] [0.699] [1.116] 

Large 0.004 0.012 0.006 0.006 0.020* 

 [0.251] [0.906] [0.549] [0.615] [1.947] 

 Panel D: Rational discount rate beta 

Small 0.795*** 0.702*** 0.664*** 0.624*** 0.680*** 

 [2.995] [2.923] [3.013] [2.960] [2.985] 

2 0.768*** 0.685*** 0.633*** 0.588*** 0.686*** 

 [2.771] [2.766] [2.836] [2.791] [2.894] 

3 0.686** 0.647*** 0.569*** 0.532*** 0.621*** 

 [2.569] [2.800] [2.759] [2.623] [2.857] 

4 0.629** 0.614*** 0.559** 0.515** 0.599** 

 [2.529] [2.648] [2.567] [2.522] [2.594] 

Large 0.428* 0.498** 0.432** 0.413** 0.415** 

  [1.809] [2.357] [2.224] [2.212] [2.202] 

Notes: This table presents the four betas computed based on the news series retrieved from the TV-VAR approach for 
portfolio sorted based on size and book-to-market (BE/ME) ratio from December 1969 to August 1997 in four panels. Panel 

A and B report the irrational cash flow beta (
,

IR

i CF ) and the rational cash flow beta (
,

R

i CF ), respectively. Panel C and D show 

the irrational discount rate beta (
,DR

IR

i ) and the rational discount rate beta (
,DR

R

i ), respectively. The estimation is based on 

the following regression: 

, j,

k

i t t tr SN  = + +  ,                  , CF, CF, DR, DR,, , ,k IR R IR R

j t t t t tSN SN SN SN SN=    

where ri,t represents the portfolio returns and 
,

k

j tSN  denotes one of the four scaled news series computed in equations (5.17) – 

(5.20). The β is the beta estimate corresponds to one of the four new series applied in the above regression. Portfolios are 
sorted based on BE/ME ratio from left to right and based on firm size (ME) from top to bottom in each panel. “Growth” 

portfolio has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, and 
“large” portfolio has the highest ME. HAC standard errors are used and the values shown in square bracket are Newey-West 
t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
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Table 5.15: Four betas estimated for the second sub-sample period  

  Growth 2 3 4 Value 
 Panel A: Irrational cash flow beta 

Small 0.079 0.056 0.043 0.056 0.043 

 [1.363] [1.296] [1.299] [1.577] [1.374] 

2 0.067 0.05 0.038 0.043* 0.046* 

 [1.628] [1.604] [1.394] [1.687] [1.662] 

3 0.051 0.058** 0.029 0.038* 0.039* 

 [1.425] [2.267] [1.620] [1.842] [1.822] 

4 0.070** 0.034* 0.028 0.040** 0.051** 

 [2.013] [1.938] [1.507] [1.989] [2.544] 

Large 0.034 0.015 -0.007 0.013 0.046** 

 [1.581] [0.968] [-0.504] [0.676] [2.397] 

 Panel B: Rational cash flow beta 

Small 1.108** 1.101** 1.154** 0.998** 1.174** 

 [2.130] [2.152] [2.567] [2.082] [2.511] 

2 1.281*** 1.048** 1.239*** 1.326*** 1.542** 

 [3.001] [2.364] [3.300] [3.539] [2.602] 

3 1.372*** 1.321*** 1.351*** 1.318*** 1.389*** 

 [3.584] [3.518] [4.297] [3.743] [2.976] 

4 1.298*** 1.406*** 1.457*** 1.310*** 1.563*** 

 [4.095] [4.516] [4.840] [4.230] [4.374] 

Large 1.361*** 1.489*** 1.627*** 1.661*** 1.771*** 

 [7.381] [7.895] [7.521] [5.286] [8.434] 

 Panel C: Irrational discount rate beta 

Small -0.033 -0.028 -0.014 -0.031 -0.009 

 [-0.668] [-0.629] [-0.451] [-0.896] [-0.304] 

2 -0.029 -0.022 -0.012 -0.017 -0.013 

 [-0.792] [-0.748] [-0.457] [-0.677] [-0.439] 

3 -0.014 -0.03 -0.011 -0.021 -0.010 

 [-0.366] [-1.126] [-0.431] [-0.981] [-0.413] 

4 -0.037 -0.01 -0.007 -0.018 -0.016 

 [-1.022] [-0.531] [-0.353] [-0.762] [-0.67] 

Large -0.006 0.006 0.024 0.008 -0.016 

 [-0.295] [0.381] [1.417] [0.483] [-0.639] 

 Panel D: Rational discount rate beta 

Small 3.735*** 3.006*** 2.627*** 2.521*** 2.648*** 

 [16.000] [20.479] [10.363] [9.248] [10.080] 

2 3.412*** 2.886*** 2.505*** 2.551*** 2.921*** 

 [16.852] [11.180] [11.795] [13.342] [11.196] 

3 3.170*** 2.795*** 2.519*** 2.419*** 2.838*** 

 [13.802] [14.377] [14.296] [10.916] [13.140] 

4 3.126*** 2.575*** 2.507*** 2.41*** 2.898*** 

 [13.035] [15.346] [9.404] [13.228] [11.401] 

Large 2.328*** 2.182*** 1.943*** 2.317*** 2.698*** 

  [17.370] [13.312] [8.735] [6.584] [8.891] 

Notes: This table presents the four betas computed based on the news series retrieved from the TV-VAR approach for 
portfolio sorted based on size and book-to-market (BE/ME) ratio from February 1998 to December 2014 in four panels. Panel 

A and B report the irrational cash flow beta (
,

IR

i CF ) and the rational cash flow beta (
,

R

i CF ), respectively. Panel C and D show 

the irrational discount rate beta (
,DR

IR

i ) and the rational discount rate beta (
,DR

R

i ), respectively. The estimation is based on 

the following regression: 

, j,

k

i t t tr SN  = + +  ,                  , CF, CF, DR, DR,, , ,k IR R IR R

j t t t t tSN SN SN SN SN=    

where ri,t represents the portfolio returns and 
,

k

j tSN  denotes one of the four scaled news series computed in equations (5.17) – 

(5.20). The β is the beta estimate corresponds to one of the four new series applied in the above regression. Portfolios are 
sorted based on BE/ME ratio from left to right and based on firm size (ME) from top to bottom in each panel. “Growth” 
portfolio has the lowest BE/ME ratio, “value” portfolio has the highest BE/ME ratio, “small” portfolio has the lowest ME, and 
“large” portfolio has the highest ME. HAC standard errors are used and the values shown in square bracket are Newey-West 
t-statistics. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
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Comparing panel B of Table 5.14 and Table 5.15, a change in the ,

R

i CF  moving from 

the first sub-sample period to the second sub-sample period is observed. In the first sub-

sample period, the negative ,

R

i CF  reported in Table 5.14 indicates that the relationship 

between assets’ returns and rational cash flow news could possibly go in the wrong way since 

an increase in the rational cash flow expectations signifies a stronger fundamentals in the 

future and, hence, asset prices should move in the favourable direction. Nevertheless, these 

estimates are statistically insignificant and of smaller magnitude than the estimates of ,

R

i CF  in 

the second sub-sample period, as shown in Table 5.15. Panel B of Table 5.15 depicts that all 

assets’ returns have a positive covariance with the variations in rationally expected future cash 

flows and the beta estimates are mostly greater than 1. Furthermore, ,

R

i CF  for most of the 

portfolios are highly significant at 1% level, except the ,

R

i CF  of small stocks which have a 

slightly lower statistical significance (i.e. at 5% level). Based on this comparison, it seems 

that the negative beta estimates in the first sub-sample period together with the positive beta 

estimates in the second sub-sample period could potentially contribute to the insignificant 

estimates of ,

R

i CF  shown in Table 5.7. 

The statistically insignificance of ,

IR

i DR  in the full sample period could also be well 

justified from the sub-sample analysis. Panel C in Table 5.14 and Table 5.15 illustrate that the 

estimates of ,

IR

i DR  are small and statistically insignificant across the board in both sub-sample 

periods, with the exception of the large-value stocks which have a weak yet statistically 

significant (i.e. 10% significance level) ,

IR

i DR  in the first sub-sample period. Contrarily to 

the ,

R

i CF , ,

IR

i DR  are generally positive in the first sub-sample period, but are negative in the 

second sub-sample period.  

Finally, panel D of both tables depict that the estimates of ,

R

i DR  are highly significant 

at 1% level for most assets, especially in the second sub-sample period, indicating that all 

stock prices are affected by the fluctuations in rational expectations of future returns (i.e. 

discount rates). The variations in rational discount rates do not only affect stock prices, but 

also become more influential across the board with the passage of time considering that the 

estimates of ,

R

i DR  in the second sub-sample are about four times or more of the ,

R

i DR  

estimates in the first sub-sample period.  
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Overall, the findings in this sub-section is consistent with the findings documented in 

the Section 5.6.4. First, the significant IR

CF  and insignificant IR

DR  reinforce the finding that 

the predictive power of investor sentiment on future stock returns is going through the cash 

flow channel: investor sentiment affects the formation of cash flow expectations, which then 

drives stock prices to deviate from fundamental values. Second, findings on the beta estimates 

in this sub-sample analysis again do not support the claim made by CPV (2010). As shown in 

the tables, the effect of the variations in rational discount rates on stock prices is robust across 

different sub-sample periods. Besides that, some stocks are sensitive to the variations in 

irrational cash flow expectations as well in the second sub-sample period. Thereby, the 

findings suggest that , ,( , ) 0IR

i t CF tCov r SN   and , ,( , ) 0R

i t DR tCov r SN  , rejecting both 
0 : 0IR

CFH  =  

and 
0 : 0R

DRH  =  with confidence.  

Cochrane (2011), whose analysis spans from 1947 to 2009, argues that the variations 

in stock prices is entirely due to the variations in expected returns, leaving no role for the 

expected cash flows. Based on the sub-sample analysis in this study, the results from the first 

sub-sample period support his argument that only the variations in expected returns (i.e. 

discount rate news) is accountable for the variations in assets’ prices. The results also provide 

further details that within the discount rate channel, only shocks in the rational discount rate 

matter. The second sub-sample period analysis shows that, although rational discount rate 

news being the most important contributor to the variations in stock prices (in terms of the 

magnitude), the cash flow news, both irrational and rational channels, also play an important 

role in explaining the variations in stock prices.   

 (II) The pricing of risks across different sample periods  

Table 5.16 reports the risk premia estimates associated with each risk factor for the 

CAPM, CV’s two-beta model, and the four-beta model across different sample periods. Panel 

A presents the prices of risks for the first sub-sample period; whereas the prices of risks for 

the second sub-sample period are reported in panel B. The null hypothesis that the risk 

premium associated with a particular risk factor is not significantly different from zero 

( 0 ,: 0j tH  = ) is examined in both sub-sample periods. Besides that, this section investigates 

whether the explanatory power of the model represented by adjusted cross-sectional R2 has 

changed across sub-sample periods and whether the superiority of the four-beta model in 

pricing the risks continue to hold in the sub-sample analysis. 
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Panel A shows that the CAPM model, although has a significant risk premium for the 

market beta, delivers the lowest adjusted cross-sectional R2 of 1.80%, in the first sub-sample 

period. As for the CV’s two-beta model, it has a better explanatory power over the stock 

returns at cross-sectional level as compared to the CAPM given that its adjusted cross-

sectional R2 statistic is 20.4%. This is evident in the graphical depiction in panel A of Figure 

5.4, illustrating that all data points in the two-beta model spread more closely around the 45-

degree line relative to the CAPM model. Consistent with the full sample results, only discount 

rate risk factor is positively and significantly priced at 5% level with a risk premium of 1.10% 

per month, and the cash flow beta delivers a negative and insignificant risk price. The results 

from both full sample and sub-sample analysis are different from the findings of CV (2004) 

who emphasize on the higher risk premium of cash flow beta being the root cause to the 

higher average returns of value stocks which have a higher cash flow beta.  

The last column in panel A of Table 5.16 shows that the model fit has greatly 

improved in the four-beta model, where the adjusted cross-sectional R2 increases to 33.8% 

and it has the least RMSPE (i.e. 0.015) among three models in the first sub-sample period. 

This suggests that the four-beta model fits well the data in the cross-section, supported by the 

visual representation in panel A of Figure 5.4. The figure shows that the dispersion of each 

data point from the diagonal line is much smaller for the four-beta model than the other two 

models. All beta risks are precisely priced at 1% significance level, except the rational cash 

flow beta which is priced at 5% significance level. In line with the results obtained from the 

full sample analysis, rational beta risks carry a positive premium but the irrational beta risks 

carry a negative premium. Both irrational betas risks have a price of more than 50% per 

month (in absolute value), whereas the prices of risks for the rational betas are just slightly 

more than zero, i.e. about 3% per month. 

Panel B of Table 5.16 shows that the adjusted cross-sectional R2 statistics of all three 

asset pricing models have decreased in the second sub-sample period. FF (2015, p.10) 

mention that “we want to identify the model that is best (but imperfect) story for average 

returns on portfolios formed in different ways”. Similarly, this study is interested at the model 

that performs best in the second sub-sample period even though all pricing models have a 

weaker explanatory power. 

Across three models, the four-beta model again stands out to be the best model, 

delivering the highest Adj-R2 statistic of 21% with the lowest RMSPE (i.e. 0.020). This 
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Table 5.16: Prices of risks across different sample periods 

  CAPM Two-beta model Four-beta model (TV-VAR) 
 Panel A: First sub-sample period (December 1969 - August 1997) 

M  0.006** 
  

 [2.113]   

CF  
 

-0.005 
 

  [-0.524]  

DR  
 

0.011** 
 

 
 [2.144]  

IR

CF  
  

-0.577*** 

   [-3.752] 
R

CF  
  

0.033** 

   [2.469] 
IR

DR  
  

-0.549*** 

   [-3.998] 
R

DR  
  

0.026*** 

   [4.902] 

Adj-R2 0.018 0.204 0.338 

RMSPE 0.021 0.018 0.015 

MPE (%)  0.033 0.031 0.021 

 Panel B: Second sub-sample period (February 1998 - December 2014) 

M  0.007* 
  

 [1.820]   

CF  
 

0.001 
 

  [0.251]  

DR  
 

0.002 
 

 
 [0.637]  

IR

CF  
  

-0.242* 

   [-1.785] 
R

CF  
  

0.001 

   [0.257] 
IR

DR  
  

-0.285** 

   [-2.211] 
R

DR  
  

0.004 

   [1.522] 

Adj-R2 -0.011 0.186 0.210 

RMSPE 0.029 0.022 0.020 

MPE (%)  0.016 0.013 0.010 

Notes: This table presents the results of the Fama-Macbeth regression for the Capital Asset Pricing Model (CAPM), the CV’s two-

beta model, and the four-beta model computed with the news series retrieved from the time-varying VAR (TV-VAR) approach. 

Panel A reports the risk premium estimated from 1969:12 to 1997:08; Panel B provides the risk premium estimates for  the period of 

1998:02 to 2014:12.The test assets are 25 portfolios sorted based on size (ME) and book-to-market (BE/ME) ratio. The risk premium 

estimates are the time-series average of the cross-sectional parameter estimates. 
M

 is the price of market risk, 
CF  is the price of 

cash flow risk, 
DR  is the price of discount rate risk, IR

CF  is the price of irrational cash flow risk, R

CF  is the price of rational cash flow 

risk, IR

DR  is the price of irrational discount rate risk, and R

DR  is the price of rational discount rate risk.  The heteroskedastic and 

autocorrelation consistent t-statistics are presented in the square bracket. The adjusted cross-sectional R2 statistic (Adj-R2), the root-

mean-squared-pricing-errors (RMSPE), the mean-pricing-errors (MPE) are presented in the last three rows. *, ** and *** indicate 

statistical significance at 10%, 5% and 1% level, respectively.  
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Figure 5.4: Realized vs. fitted average excess returns across different sample periods  
This figure plots the realized average excess return against the predicted average excess returns on 25 portfolios 

sorted based on firm size and book-to-market ratio (represented as dots in the figure) for different asset pricing 
models: Capital Asset Pricing Model (CAPM), CV’s two-beta model, four-beta model computed with the news 

series retrieved from the time-varying VAR (TV-VAR). The predicted average excess returns are estimated from 

the equation (27) for the first sub-sample period (panel A) and the second sub-sample period (panel B). The 

number labelled next to each dot represents the portfolio sorted according to ME and BE/ME ratio (e.g. double-

digit 15 denotes small-value portfolio). 

 

 

Panel A: First Sub-sample Period (December 1969 - August 1997) 

 
 

 

Panel B: Second Sub-sample Period (February 1998 – December 2014)     
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shows that the superiority of the four-beta model in describing the cross section of average 

stock returns persist in the second sub-sample period. The two-beta model has a slightly lower 

adjusted cross-sectional R2 statistic (i.e. 18.6%) even though disentangling 
,i M  into 

,i CF  and 

,i DR  does improve the model fit of the CAPM. The CAPM delivers the worst adjusted cross-

sectional R2 statistic, which is -1.10%. The failure of the CAPM model in explaining the 

cross-section of stock returns is clearly shown in panel B of Figure 5.4, where the pairings of 

the realized and predicted average excess returns for most portfolios lying far above and 

below the diagonal line.  

The better ability of the four-beta model in explaining the cross-section of stock 

returns is seen in panel B of Figure 5.4, where most of the data points are lying closer to the 

reference line. A few portfolios are hard to be priced by all asset pricing models considered in 

this study, especially the small stocks, such as portfolios denoted with the two- digit numbers 

of 11, 14, 15 and 54. The failure to price these few assets could be the source that reduces the 

adjusted cross-sectional R2 statistic of the four-beta model in the second sub-sample period. 

As for the risk price of each risk factor, both 
,i CF  and 

,i DR  of the two-beta model are 

not significantly priced with risk premia estimates of 10 and 20 basis points, respectively. For 

the four-beta model, ,

R

i CF  and ,

R

i DR  have lost their influence in the cross-sectional asset 

pricing since the risk premia estimates of 10 basis points per month for ,

R

i CF  and 40 basis 

points per month for ,

R

i DR  are statistically insignificant. Contrarily, irrational beta risks 

remain significantly priced in the cross-section of stock returns. Both irrational betas have 

almost similar risk premia (20% to 30% per month in the absolute term). The findings suggest 

that significant risk premia for irrational beta risks are robust across different sub-sample 

periods. This observation is consistent with the results reported in the full sample period. 

Therefore, structural break in the beta estimates does not greatly affect the pricing of risk for 

the four-beta model despite the explanatory power reducing in the second sub-sample period.  

5.7 Robustness checks on asset pricing test 

This section performs some robustness checks to ensure that the performance of asset 

pricing test is robust to the inclusion of other portfolios and to the well-known control 

variables.  
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5.7.1 Adding extra test asset portfolios   

The asset pricing performance obtained thus far are performed on the standard 25 size 

and BE/ME sorted portfolios – the baseline results. As the 25 size and BE/ME sorted 

portfolios (FF25) possess a factor structure that explains well the variation of average stock 

returns at the cross-sectional level, Lewellen et al. (2010) mention that high cross-sectional R2 

can be easily obtained from any asset pricing model as long as the risk factor considered in a 

model is weakly correlates to the size and value effects. To address the concern of the 

potential inflated risk premium and cross-sectional R2 in the four-beta model, this section 

follows the suggestion of Lewellen et al. (2010) by including other test asset portfolios sorted 

either by other characteristics or by industry as a robustness check. They claimed that using 

industry portfolios provide a fairer test as compared to the use of momentum portfolios, of 

which the returns are hard to be explained by any asset pricing model. Hence, it would be 

interesting to examine also whether the results are robust to the inclusion of momentum 

portfolios as a test asset.  

Table 5.17 presents the risk premia estimates of different asset pricing models 

computed based on 35 test asset portfolios for the full sample period. The analysis begins by 

investigating the robustness of asset pricing test results to the inclusion of additional 10 

momentum sorted portfolios (10MOM) as in panel A, followed by the inclusion of additional 

10 industry sorted portfolios (10IND) as in panel B. The risk premium of each factor for 

different asset pricing models are presented in column (1) to (5) with the values in square 

brackets are the Newey-West t-statistics. As usual, the null hypothesis of interest is 

0 ,: 0j tH  =  and the performance of the four-beta model is evaluated against the CAPM and 

CV’s two-beta model.  

The pricing performance of the CAPM and the two-beta model in Table 5.17 are 

consistent with that in Table 5.12. The CAPM consistently be the inferior model in explaining 

the cross section of stock returns given its lowest adjusted-R2 statistics despite having a highly 

significant market risk premium estimate of 0.6% per month in both panels. As for the two-

beta model, 
DR continue to be significantly priced when extra portfolios are included as test 

assets, whereas CF  remains negative and insignificant. In general, the risk premia estimates 

of these two models are similar regardless of the test asset portfolios being employed.
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Table 5.17: Prices of risks estimated based on 35 test asset portfolios  

  CAPM Two-beta model Four-beta model 
   TV-VAR  VAR   AF 

      (1)       (2)      (3)     (4)    (5) 
 Panel A: FF25 + 10MOM 

M  0.006***    

 [2.631]     

CF  
 -0.008   

 

  [-1.177]  
 

DR  
 0.009***   

 

  [2.935]  
 

IR

CF  
  

-0.657*** -0.579*** -0.112 

   [-4.973] [-4.788] [-0.917] 
R

CF  
  

0.016** 0.016 0.026** 

   [2.142] [0.823] [2.409] 
IR

DR  
  

-0.685*** -0.782*** -0.128 

   [-6.057] [-3.021] [-1.203] 
R

DR  
  

0.023*** 0.032 0.010** 

   [5.710] [1.582] [2.233] 

Adj-R2 0.012 0.184 0.310 0.185 0.167 

RMSPE 0.026 0.022 0.019 0.021 0.023 

MPE (%) 0.029 0.030 0.013 0.015 0.026 
 Panel B: FF25 + 10IND 

M  0.006***     

 [2.835]     

CF   -0.001    

 
 [-0.158]    

DR   0.008***    

 
 [2.754]    

IR

CF    -0.361*** -0.244** -0.179 

 
  [-3.620] [-2.205] [-1.470] 

R

CF    0.007 0.038** 0.017** 

 
  [1.078] [2.270] [2.069] 

IR

DR    -0.288*** -0.470** -0.136 

 
  [-3.142] [-2.069] [-1.359] 

R

DR    0.017*** -0.011 0.012*** 

 
  [4.453] [-0.605] [2.897] 

Adj-R2 0.026 0.169 0.292 0.200 0.189 

RMSPE 0.027 0.024 0.021 0.023 0.025 

MPE (%) 0.025 0.026 0.010 0.011 0.015 
Notes: This table presents the results of the Fama-Macbeth regression for the Capital Asset Pricing Model (CAPM), the CV’s two-beta model with the 

news series retrieved from the time-varying VAR (TV-VAR) approach, and the four-beta models computed with the news series retrieved from the 

TV-VAR, the constant VAR and the analysts’ forecasts (AF) approach. The test assets are 25 portfolios sorted based on size and book-to-market ratio 

(FF25) plus the additional ten portfolios sorted based on either momentum portfolios (10MOM) in panel A or industry (10IND) in panel B. The risk 

premium estimates are the time-series average of the cross-sectional parameter estimates for the period of 1969:12 – 2014:12, except the four-beta 

model (AF), which has the sample period of 1990:1 – 2014:12. 
M

 is the price of market risk, 
CF  is the price of cash flow risk, 

DR  is the price of 

discount rate risk, IR

CF  is the price of irrational cash flow risk, R

CF  is the price of rational cash flow risk, IR

DR  is the price of irrational discount rate 

risk, and R

DR  is the price of rational discount rate risk.  The heteroskedastic and autocorrelation consistent t-statistics are presented in the square 

bracket. The adjusted cross-sectional R2 statistic (Adj-R2), the root-mean-squared-pricing-errors (RMSPE), the mean-pricing-errors (MPE (%)) are 
presented in the last three rows. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
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Looking at panel A in Table 5.17, a slight drop in Adj-R2 statistics is observed across 

the board, except the CAPM. Nevertheless, the four-beta model constructed based on the TV-

VAR approach delivers the highest Adj-R2 value of 31% as compared to the 18.4% of the two-

beta model and 1.2% of the CAPM. Thus, this does not affect the finding that the four-beta 

model improves the explanatory power of CAPM and two-beta model in explaining the 

difference in average stock returns at the cross-sectional level. 

Column (3) to (5) in panel A also show that the risk premia estimates of irrational 

betas are consistent with the baseline results, where the negative risk premia of these factors 

are highly significant at 1% level. Indeed, there is an upward shift in the risk premia (in 

absolute term) of irrational betas constructed under the TV-VAR framework. Similar to the 

baseline results, rational betas are seen to deliver positive risk premia even though they lose 

their significance when the news are constructed using the VAR approach.  

Panel B confirms the superior performance of the four-beta model in pricing a 

different set of portfolios, which include FF25 and 10IND. The four-beta model constructed 

under the TV-VAR framework again delivers the highest adjusted cross-sectional R2 statistic 

(29.2%) with the lowest pricing errors (RMSPE is 2.1%). The positive and negative risk 

premia associated with the rational and irrational risk premia, respectively, are in line with the 

baseline results. Most importantly, irrational beta risks have a strong presence in the pricing 

test across different portfolios, where these factors are significantly and negatively priced in 

different portfolios under the VAR frameworks. 

Overall, the baseline results of the four-beta model are robust to the inclusion of 

additional test asset portfolios. The four-beta model is not only able to price the 25 size and 

BE/ME sorted portfolios, but also able to describe the average stock returns of momentum 

portfolios, which are known to be anomalous to other models, and of industry-sorted 

portfolios better than the other two asset pricing models.  

5.7.2 Control for well-known risk factors 

Since the introduction of CAPM, different risk factors have been proposed in the 

literature to explain the cross section of average stock returns 126 . To arrive at a firm 

conclusion regarding the pricing performance of the four-beta model, a set of Fama-French 

 
126 Review of different systematic risks proposed in the literature can be found in Campbell (2000) and Goyal 

(2012).  
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factors is incorporated as control variables in the FMB regression (5.28). Specifically, this 

section considers the Fama and French (1993) three factors (FF-3), Carhart (1997) four 

factors (FFC-4)127, and Fama and French (2015) five factors (FF-5) as control variables in 

separate regressions. Incorporating FF-3 in the regression controls for the size (SMB) and 

value (HML) effects128, and the FFC-4 extended from the FF-3 accounts for the additional 

momentum effect (UMD). Finally, including FF-5 controls for the profitability (RMW) and 

the investment (CMA) effects apart from the size and value effects. Grounded on the 

robustness test results shown in Table 5.17, where the Adj-R2 statistics of the two-beta and 

four-beta models constructed under the TV-VAR framework are higher in panel A than that in 

panel B, the 35 portfolios that include FF25 and 10MOM is employed as the test assets in this 

sub-section.  

The risk premia estimates of the CAPM, the two-beta and the four-beta models after 

controlling for Fame-French factors are presented in Table 5.18. Each of the three columns in 

every asset pricing model corresponds to the FMB regression controlling for FF-3, FFC-4 and 

FF-5, respectively. The results of the four-beta model show that control for size, value and 

momentum variables have negligible effects on the four-beta model, as reported in the 

columns (7) and (8). Despite a downward shift in the risk premium is observed for the 

irrational betas (e.g. the absolute value of IR

CF  drops from 0.657 in the panel A of Table 5.17 

to 0.384 in the specification (7) of Table 5.18) and an upward shift in the R

DR  (i.e. risk 

premium estimate of 0.023 increases slightly to 0.025), all changes are immaterial. The only 

risk factor that is more sensitive to the control of other systematic risks is R

CF , where it has a 

negative risk premium when the FF-3 are used as control variables and loses its significance 

when we control for momentum effect as shown in the specification (8).  

If the RMW and CMA are added to the list of control variables as in the specification 

(9), the signs of all risk premia estimates are in line with the baseline results although IR

CF  has 

lost its significance. Since the HML factor is consistently and significantly priced in stock 

returns at the cross-sectional level as in columns (8) and (9), the decrease in the marginal 

 
127 Since Carhart (1997) four-factor model is built on the Fama and French (1993) three-factor model, this study 

terms it as Fama-French-Carhart four factors (FFC-4). 

128 The market risk effect in the Fama-French factor model is accounted for by the risk associated with the news 

series decomposed from stock market returns. Therefore, the excess market return is omitted as a risk factor in 

the control variable list.   
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Table 5.18: Prices of risks after controlling for Fama-French factors 

  CAPM Two-beta model Four-beta model 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

M
 0.004** 0.005** 0.017***         

 [2.12] [2.412] [5.152]       
CF   

 
 -0.052*** 0.006 0.024***    

 
 

 
 [-3.665] [0.637] [2.807]  

  
DR   

 
 0.020*** 0.006* 0.018***  

  
 

 
 

 [5.166] [1.764] [4.120]  
  

IR

CF   
 

  
 

 -0.384*** -0.220*** -0.037 

 
 

 
  

 
 [-5.387] [-3.176] [-0.623] 

R

CF   
 

  
 

 -0.024** 0.012 0.030*** 

 
 

 
  

 
 [-2.088] [1.331] [3.512] 

IR

DR   
 

  
 

 -0.466*** -0.270*** -0.207*** 

 
 

 
  

 
 [-6.045] [-3.582] [-3.224] 

R

DR   
 

  
 

 0.025*** 0.012*** 0.019*** 

 
 

 
  

 
 [5.680] [2.940] [4.354] 

SMB  0.001 0.0004 0.0002 -0.009*** 0.0004 0.001 -0.007*** -0.0001 0.000 

 [0.683] [0.281] [0.148] [-3.542] [0.220] [0.425] [-3.019] -0.053 [0.040] 

HML  0.005*** 0.005*** 0.006*** 0.002 0.005*** 0.005*** 0.001 0.004*** 0.006*** 

 [3.008] [3.458] [3.463] [0.985] [3.576] [3.390] [0.728] [2.674] [3.529] 

UMD   0.008***  
 0.007***   0.006***  

  [3.619]  
 [3.440]   [2.718]  

RMW  
 

 0.002   0.001  
 0.001 

  
 [0.705]   [0.470]  

 [0.378] 

CMA  
 

 0.013***   0.013***  
 0.013*** 

  
 [4.086]   [4.718]  

 [4.106] 

Adj-R2 0.332 0.478 0.467 0.416 0.486 0.473 0.442 0.511 0.493 

RMSPE 0.019 0.015 0.015 0.017 0.015 0.015 0.016 0.014 0.014 

MPE (%) 0.019 0.005 0.003 0.010 0.005 0.002 0.008 0.004 0.003 

Notes: This table presents the results of the Fama-Macbeth regression for the Capital Asset Pricing Model (CAPM), the CV’s two-beta model, and the four-beta models computed with the news series 

retrieved from the time-varying VAR (TV-VAR) approach. The test assets are 25 portfolios sorted based on size and book-to-market ratio (FF25) plus the additional ten portfolios sorted based on 

momentum (10MOM). The risk premium estimates are the time-series average of the cross-sectional parameter estimates for the period of 1969:12 – 2014:12. 
M  is the price of market risk, 

CF  is the 

price of cash flow risk, 
DR  is the price of discount rate risk, IR

CF  is the price of irrational cash flow risk, R

CF  is the price of rational cash flow risk, IR

DR  is the price of irrational discount rate risk, R

DR  is 

the price of rational discount rate risk, 
SMB  is the price for size factor, 

HML is the price for value factor, 
UMD is the price for momentum factor, 

RMW  is the price for profitability factor, and 
CMA  is the 

price for investment factor.  The heteroskedastic and autocorrelation consistent t-statistics are presented within the square bracket. The adjusted cross-sectional R2 (Adj-R2) statistic, the root-mean-squared-

pricing-errors (RMSPE), the mean-pricing-errors (MPE) are presented in the last three rows. *, ** and *** indicate statistical significance at 10%, 5% and 1% level, respectively.  
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effect of IR

CF  in specification (9) could be view as a result of controlling for investment effect 

which has its slope coefficient statistically significant at 1% level.  

Models (1) to (6) show that the risk premia estimates of the CAPM and two-beta 

model are generally robust to Fama-French factors. The CAPM consistently delivers a 

positive and significant risk premium for the market beta regardless of which control variables 

are being used. As for the two-beta model, the negative premium of CF  becomes significant 

after controlling for FF-3 factors. This cash flow risk, however, commands a positive risk 

premium that is falling beyond two standard errors from the mean when FF-5 factors are 

added to the regression. This indicates that the investment effect has strengthened the power 

of cash flow risk in explaining average returns of different stocks.  

The Adj-R2 and pricing errors statistics in three different specifications, i.e. the 

regressions controlling for FF-3, FFC-4 and FF-5 factors, for each asset pricing model clearly 

depict that the cross-sectional regression controlling for FFC-4 explains better the cross-

sectional variation of average stock returns. Furthermore, Table 5.18 does not only show that 

the pricing of the four betas generally stands firm even after controlling for the Fama-French  

factors, but also demonstrates the superiority of the four-beta model in explaining the 

difference in stock returns at the cross-sectional level given that the four-beta model 

consistently delivers the highest Adj-R2 statistic regardless of the regression specification 

considered as compared to its counterparts (e.g. the Adj-R2 statistics of the CAPM, the two-

beta and the four-beta models after controlling for FF-5 are 46.7%, 47.3% and 49.3%, 

respectively). 

Therefore, the baseline results that (1) the four-beta model explains the cross-sectional 

variation of asset returns better than the CAPM and the two-beta model, (2) the irrational beta 

risks are consistently priced at the cross-sectional level and carry negative premia, and (3) the 

rational beta risks demand a positive premium, are robust to different settings as discussed in 

this section.  

5.8 Anomalies tests 

Given the usefulness of the four-beta model in explaining the cross-sectional variation 

of average stock returns, it would be interesting to know whether the model can explain 

various equity anomalies documented in the literature. Following Campbell et al. (2018), this 
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section considers eight anomaly portfolios and five zero-cost portfolios, which will be 

discussed in detailed in the following. Data are retrieved from the website of Professor 

Kenneth French.  

5.8.1 Anomaly portfolios 

Market (RMRF). The RMRF represents the market returns in excess of risk-free 

returns, i.e. Rm – Rf. The difference in stock market returns and risk-free returns is called as 

equity risk premium, since, on average, stocks earn higher returns than risk-free assets such as 

Treasury bills given their higher risk level. Nevertheless, the substantial equity risk premium 

is hardly justified by the standard economic theory, resulting in an anomaly termed as the 

equity premium puzzle. Mehra and Prescott (1985) is the first paper that documented this 

anomaly, where they reported an average equity risk premium of about 6% per year for the 

US stock market from 1889-1978 and claimed that the large return dispersion between stocks 

and risk-free assets can only be realized if investors are extremely averse to risk, which is 

implausible. Mehra (2006) and Siegel and Thaler (1997) provide a detailed review on the risk-

based and behavioural models employed in the literature to explain this anomaly. Generally, 

the risk-based explanations built either on the utility of consumption of representative agents 

in a complete market or on models that focus on the idiosyncratic income shocks. On the 

other hand, Benartzi and Thaler (1995) propose a behavioural explanation to this puzzle, 

which is myopic loss aversion. Specifically, investors require a high equity premium since 

they are averse to losses and constantly evaluate the stock performance. Experimental tests 

are conducted by researchers to provide support to this possible explanation (see the review of 

experimental studies in Duxbury, 2015a).  

Size (SMB) and Value (HML). Banz (1981) find that the risk-adjusted returns of 

small stocks are higher than that of large stocks. This phenomenon is termed as the size effect 

anomaly. Van Dijk (2011) points out that the size effect re-emerged in 2000s even though 

empirical studies documented its disappearance after 1980s, and this anomaly should not be 

ignored. Another popular anomaly – value anomaly (or effect) – discovered by Rosenberg, 

Reid and Lanstein (1985) is a phenomenon where stocks with high book-to-market (BE/ME) 

ratio (i.e. value stocks) outperform stocks with low BE/ME ratio (i.e. growth stocks).  

These effects are then incorporated into the popular 3-factor model of Fama and 

French (1992; 1993) with the SMB factor refers to the return dispersion between small stocks 

and big stocks and the HML factor denotes the returns dispersion between high BE/ME stocks 
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and low BE/ME stocks. On the one hand, Fama and French (1995) explain the size and value 

effects from the risk perspective in that the return dispersion reflects the differences in the 

financial distress risk, where small and value stocks consistently have poor earnings and 

profits and hence require higher average returns. On the other hand, Lakonishok et al. (1994) 

explain the value effect from the behavioural perspective. They claimed that investors naively 

formed the expected future cash flow growth of value and growth stocks by extrapolating the 

past growth. Baker and Wurgler (2006) find that investor sentiment predicts negatively the 

returns of small stocks, consistent with the mispricing theory129.    

Profitability (RMW) and Investment (CMA). Fama and French (2006) and Novy-

Marx (2013) reveal that more profitable firms have significantly higher expected returns than 

less profitable firms. Meanwhile, Fama and French (2006), Titman, Wei and Xie (2004) and 

Xing (2008) discover that the expected returns of high-investment stocks are significantly 

lower than that of low-investment stocks. Therefore, Fama and French (2015) construct two 

factors mimicking portfolios correspond to the profitability and investment anomalous 

returns, which are RMW and CMA, respectively. RMW denotes the return difference between 

robust profitability firms and weak profitability firms; whereas CMA refers to the return 

spread between firms invest conservatively and firms invest aggressively. Detailed review on 

the explanations of these two anomalies based on both rational and behavioural perspectives 

are given in Section 5.2. 

Momentum (UMD). Momentum effect is one of the most well-known anomalies 

discovered by Jegadeesh and Titman (1993). They found that stocks with high past returns 

continue to perform well and outperform stocks with falling prices in the past medium-term 

period (i.e. 3 to 12 months)130. Hence, UMD refers to the returns of past winners minus the 

returns of past losers, and is included in the Carhart (1997) 4-factor model, which is extended 

from the Fama and French 3-factor model. From the behavioural point of view, investors 

underreact or overreact to the new information (Barberis et al., 1998; Daniel et al., 1998; 

Hong and Stein, 1999), especially during high sentiment periods (Antoniou, Doukas and 

Subrahmanyam, 2013). Duxbury (2015b) reviews a set of experimental studies that provide 

confirmation to the investors’ underreaction and overreaction. Conrad and Kaul (1998), on the 

 
129 A review on the size effect is provided by Van Dijk (2011). Different explanations on the value effect are 

discussed in Piotroski and So (2012).  

130 Momentum portfolio provided on the Professor Kenneth French’s website is constructed using the returns 

from prior two months to prior 12 months.  
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other hand, argue that cross-sectional variation in the mean returns instead of the return 

patterns at the time series level is accountable for the momentum profits.  

Short-term reversal (STR) and Long-term reversal (LTRVS). Jegadeesh (1990) 

shows that monthly stock returns exhibit a negative serial correlation and this phenomenon is 

termed as STR; whereas LTRVS, as documented in De Bondt and Thaler (1985), is a 

phenomenon where the losers outperform winners over the horizon of 3 to 5 years. Both 

phenomena suggest that buying losers and selling winners131 over either the short-term or the 

long-term, but not over the medium term, will generate profits, presenting an anomalous 

return.      

STR can be attributable to the (1) microstructure effects, where the profits associated 

with the contrarian strategy fall in the bid-ask bounce (Conrad, Gultekin and Kaul, 1997; 

Mech, 1993) or disappear in the presence of transaction cost (Avramov et al., 2006), (2) 

liquidity effect, where the profits from short-run contrarian strategy represent the 

compensation to liquidity providers who hold illiquid stocks (Avramov, et al., 2006; Da, et 

al., 2014), (3) overvaluation stemmed from biased belief (Da et al., 2014; Subrahmanyam, 

2005).  

As for the LTRVS, the underpinning psychological models of Barberis et al. (1998) 

and Daniel et al. (1998) that explain the momentum effect also contribute to the long-term 

price reversal, which occurs as a result of stock price reverting to fundamental value132. 

Besides that, McLean (2010) reports that idiosyncratic risk, which limits the arbitrage 

activities, explains the long-term reversal. Contrarily, Ball and Kothari (1989) argue that the 

returns spread between past winners and past losers in the long run is attributable to the 

difference in risk.  

5.8.2 Zero-cost portfolios 

Market β (BETA). It is widely known that the beta-return relationship as proposed in 

the CAPM does not hold (e.g. Baker, Bradley and Wurgler, 2011; Black, Jensen and Scholes, 

1972, Fama and French, 1992). Accordingly, buying low-beta stocks and shorting high-beta 

stocks yield excess returns as mentioned in Frazzini and Pedersen (2014). Different rationales, 

 
131 This is called as contrarian strategy. 

132 Other studies discuss about the price reversal as a consequence of investor overreaction to the news include 

Chopra, Lakonishok and Ritter (1992), De Bondt and Thaler (1985) and Shiller, Fischer and Friedman (1984).  
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both fundamentals and behavioural, have been suggested to explain this beta anomaly, such 

as, time-varying risk (Jagannathan and Wang, 1996), market friction (Baker et al., 2011), and 

sentiment-induced mispricing (Antoniou, Doukas, Subrahmanyam, 2016; Hong and Sraer, 

2016; Liu, Stambaugh and Yuan, 2018). 

Accruals (ACC). Sloan (1996) show that there is a negative relationship between 

accruals and stock returns in the subsequent period. Therefore, one could exploit this anomaly 

by buying low-accruals stocks and selling high-accruals stocks. He claimed that the source of 

this anomaly can be explained based on the earnings fixation hypothesis, where investors fail 

to distinguish the persistence of accruals and cash flow components of earnings when 

predicting future earnings. Investors who overestimate the persistence of accruals may be too 

optimistic about the future prospect of the earnings of high-accruals stocks, leading to the 

overvaluation, which is subsequently corrected. Literature discussing on the mispricing and 

the risk-based explanations of accruals anomaly can be found in Detzel, Schaberl and Strauss 

(2018).  

Net issuance (NI). The negative association between net stock issuance and expected 

returns has been put forward by Loughran and Ritter (1995). Subsequently, Fama and French 

(2008) and Pontiff and Woodgate (2008) report that NI predicts negatively and significantly 

the cross-sectional of average stock returns. This implies that abnormal returns can be realized 

from buying low-issuance stocks and selling high-issuance stocks. Baker and Wurgler (2000), 

Loughran and Ritter (1995) and Pontiff and Woodgate (2008) argue that more stocks are 

issued during the period when stocks are overvalued, leading to a price reversal in the 

subsequent period. Another stream of studies provides rational explanations, such as, cash-

flow proxy (Fama and French, 2008) and risk-based explanation (Carlson, Fisher and 

Giammarino, 2006; Greenwood and Hanson, 2012). 

Idiosyncratic volatility (IVOL). The notable study by Ang, Hodrick, Xing and Zhang 

(2006) find that stocks with higher idiosyncratic volatility earn lower average returns, 

attracting a bunch of studies to explain the underlying sources of this anomaly. The 

idiosyncratic volatility puzzle could be attributable to the risk (Chen, Chollete and Ray, 2010; 

Chen and Petkova, 2012), the risk-seeking attitude (Bhootra and Hur, 2015), and the arbitrage 

asymmetry (Stambaugh, Yu and Yuan, 2015). Other potential explanations, such as lottery 

preference, market frictions and other fundamental factors, are discussed in Hou and Loh 
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(2016). Following Fama and French (2015), this study considers two measures of IVOL – 

variance of returns (VARR), and variance of risk-adjusted returns (RESVAR)133.  

As discussed above, fundamental explanation is not the only branch of the underlying 

sources of the anomalies discussed here. Behavioural explanation also contributes to the 

understanding of those anomalies. Therefore, this study conjectures that the four-beta model, 

which incorporates both rational and irrational risks, could explain the anomalies better than 

the CAPM and CV’s two-beta model that do not give a role to the irrational risk factors.  

5.8.3 Test results 

Following Campbell et al. (2018), this study measures the ability of an asset pricing 

model in explaining the anomalies by comparing the abnormal returns,  , produced by 

different models. A model is claimed to have a superior ability in explaining the anomalies 

whenever it produces lower  . The abnormal returns of an anomaly portfolio is calculated as 

( )e e

i i iR E R = − , where e

iR  is the sample mean excess return and ( )e

iE R  is the predicted 

excess returns, following Campbell et al. (2018). 

The out-of-sample evaluation of anomalies is considered here. The risk premium 

estimate associated with each beta in the CAPM, the CV’s two-beta and the four-beta models 

are not re-estimated. Instead, the risk premium estimates are retrieved from panel A of Table 

5.17, where FF25+10MOM are used as the test asset portfolios 134 . We denote the risk 

premium corresponds to a particular beta as 35, . The betas of each asset pricing model are 

re-computed to measure the sensitivity of anomaly portfolio returns to the (1) market returns 

in the CAPM model, (2) cash flow and discount rate news in the two-beta model, (3) rational 

and irrational news series of each cash flow and discount rate channel in the four-beta model. 

Each of these betas is denoted as ,
ˆ

i k , where i represents one of the anomaly portfolios and k 

corresponds to one of the news series (or market returns for the CAPM model). The predicted 

excess returns of an anomaly portfolio are then computed as 35, ,
ˆ ˆ( )e

i i kE R  =  . 

 
 

133 The risk-adjusted returns are the residual of FF-3 regression. 

134 The risk premia estimates computed based on FF25+10MOM are employed because this set of test asset 

portfolios addresses the issue of the strong factor structure of FF25 and delivers higher adjusted R2 statistics for 

the two-beta and four-beta models constructed under TV-VAR framework. In fact, the general conclusion 

obtained in this section is unaffected by the use of FF25 or FF25+10IND as the test asset portfolios.  
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Table 5.19: Anomalies test performance 

Strategy     μ     σ 
IR

CF  R

CF  IR

DR  R

DR  CAPM  2B  4B  

RMRF 0.521 4.597 0.020 0.154 0.003 0.702 -0.067 0.024 0.182 

SMB 0.148 3.136 0.013 -0.128 -0.012 0.221 0.084 -0.139 -0.102 

HML 0.389 2.928 -0.013 -0.053 0.004 -0.066 0.483 0.390 0.044 

RMW 0.292 2.295 -0.002 0.002 0.002 -0.084 0.347 0.367 0.490 

CMA 0.370 2.017 -0.018 -0.044 0.005 -0.078 0.468 0.384 -0.226 

UMD 0.667 4.395 0.007 -0.053 -0.012 -0.056 0.756 0.690 0.535 

STR 0.470 3.281 0.010 0.079 -0.006 0.096 0.348 0.463 0.321 

LTRVS 0.291 2.577 -0.006 -0.045 -0.004 0.073 0.301 0.186 -0.467 

BETA 0.008 6.699 -0.046 -0.053 0.020 -0.697 0.544 0.542 0.082 

ACC 0.366 2.761 -0.003 -0.009 0.006 -0.056 0.410 0.402 0.775 

NI 0.528 3.263 -0.017 0.007 0.009 -0.175 0.659 0.671 0.428 

VARR 0.669 8.046 -0.057 0.044 0.020 -0.830 1.232 1.396 0.128 

RESVAR 0.802 7.341 -0.048 0.130 0.018 -0.726 1.242 1.516 0.331 
Notes: This table presents the performance of capital asset pricing model (CAPM), the two-beta model (2B), and 

the four-beta model (4B) in pricing the anomalies. Each of the anomaly strategies are discussed in Section 5.8.1 

and 5.8.2. α denotes the abnormal returns of anomaly computed as the difference between the mean excess 

returns (μ) and the predicted excess returns computed using different asset pricing models. The test covers the 

period from 1969:12 to 2014:12. All data are expressed in percentage term except beta estimates.  

The pricing performance of each model on the anomaly portfolios is shown in Table 

5.19. The mean excess returns (μ) and the standard deviation (σ) of anomaly portfolios are 

reported in second and third column, respectively, followed by the four-beta estimates. The 

last three columns present the abnormal returns of anomalies (expressed in percentage term) 

computed based on the CAPM ( CAPM ), the two-beta model ( 2B ), and the four-beta model 

( 4B ). The second column shows that all anomaly strategies have positive excess returns, 

which can be partially explained by the negative loadings associated with irrational risk 

components. As reported in Section 5.6 and 5.7, the irrational betas are robustly priced across 

assets and consistently command a negative risk premium. Therefore, assets that are highly 

sensitive to irrational risk components should earn lower returns and vice versa. The positive 

excess returns of anomaly portfolios, except the RMRF, are hence justifiable on the ground of 

their negative irrational betas in the cash flow and/ or discount rate channel.  

The abnormal returns produced by CAPM, CAPM , are positive across all anomalies 

but RMRF, which has the abnormal return of slightly below zero. This implies that realized 

returns are generally greater than expected returns as predicted by the CAPM. As mentioned 

earlier, a model performs better than other models in explaining a particular anomaly when 

the estimated alpha has reduced. The results show that CV’s two-beta model does not perform 
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any better than the CAPM since the abnormal returns (in the absolute term) of about half of 

the anomalies are higher with the two-beta model. Contrarily, the four-beta model is seen to 

perform better than the CAPM and the two-beta model, where the model produces the lowest 

abnormal returns for more than half of the anomaly portfolios. The four-beta model performs 

exceptionally well for the anomaly strategies of idiosyncratic volatility (VARR and 

RESVAR), HML, and BETA with more than 80% reduction in α relative to the other two 

models is observed. Exceptions where the four-beta model does not perform as well as the 

other two models in explaining the anomalies include the returns on RMRF, SMB, RMW, 

LTRVS and ACC.  

To get a clearer picture, the anomalies test results are summarized in Table 5.20. The 

mean absolute alphas,  , generated by different models across all anomaly strategies (All), 

the portfolios of Fama and French (1993) three-factor model (FF-3), the portfolios of Fama-

French-Carhart (1997) four-factor model (FFC-4), and the portfolios of Fama and French 

(2015) five-factor model (FF-5) are presented. Both the raw and scaled mean absolute alphas 

are shown in the table. The scaled alpha is estimated by rescaling the mean absolute alpha of 

each anomaly to have the same variability as RMRF.  

Table 5.20: Mean absolute alpha of asset pricing models 

Strategy CAPM (%) 2B (%) 4B (%) 

All (not scaled) 0.534 0.552 0.316 

All (scaled) 0.134 0.132 0.100 

FF-3 (not scaled) 0.211 0.185 0.109 

FF-3 (scaled) 0.069 0.061 0.029 

FFC-4 (not scaled) 0.347 0.311 0.216 

FFC-4 (scaled) 0.095 0.085 0.052 

FF-5 (not scaled) 0.289 0.261 0.209 

FF-5 (scaled) 0.118 0.107 0.083 
Notes: This table report the mean absolute alpha,   , of the capital asset pricing model (CAPM), the two-beta 

model (2B), and the four-beta model (4B) averaged across all anomaly strategies, three-factor, four-factor and 

five-factor anomalies. The scaled mean absolute alpha is computed as /i RMRF i   , where the alpha, 
i , and the 

volatility, 
i , of anomaly portfolio are obtained from Table 5.19. 

The last column clearly depicts that the four-beta model has the lowest mean absolute 

alpha, both scaled and unscaled, across all anomaly strategies. The anomaly returns left 

unattended by the four-beta model are about 0.30% and 0.10% for unscaled and scaled alpha, 

respectively. The two-beta model, on the other hand, have near zero reduction in the mean 

absolute alpha relative to the CAPM across all strategies. In fact, the unscaled mean absolute 

alpha of the two-beta model is slightly higher than that of the CAPM, which is 0.55% versus 
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0.53%. As for the Fama and French (1993) three-factor anomalies, the mean absolute 

abnormal returns of the four-beta model decrease from the CAPM’s 0.21% to 0.11%. Similar 

results are observed when the Fama-French-Carhart (1997) four-factor anomalies and the 

Fama and French (2015) five-factor anomalies are considered, where the four-beta model has 

about 0.10 percentage point reduction in the unscaled alpha as compared to CAPM.  

As emphasized in Lewellen et al. (2010), a model can be viewed as successful even if 

it explains only one or two anomalies as long as the factor structure issue is addressed by 

expanding the test asset portfolios. As such, the four-beta model not only can be viewed as a 

success, but also outperforms the other two models in describing the average returns of 

anomalies given the great shrink in anomaly returns averaged across all strategies. This result 

implies that the factors in the four-beta model capture well the risk exposures that describe the 

average stock returns. 

5.9 Conclusion 

This study decomposes the cash flow and discount rate betas of the CV’s two-beta 

model into a four-beta model by taking into consideration the effects of irrational expectations 

on stock prices. Thereby, the four-beta model comprises four components, which are the 

rational and irrational components in each cash flow and discount rate beta. By using the four-

beta model, this study investigates the channel (i.e. cash flow or discount rate) through which 

the investor sentiment transmits its impact on stock prices. A particular channel is claimed to 

be the main source of the sentiment-return relationship if irrational component in that channel 

is greater than in another channel. Besides that, the study also empirically evaluates the 

assumptions applied in previous studies, especially the claims made by CPV (2010), that the 

cash flow news is fundamentally driven and the discount rate news is mainly driven by 

investor sentiment. If these assumptions were correct, two null hypotheses should not be 

rejected: (1) covariances between stock returns and shocks in the irrational cash flow 

expectations (i.e. irrational cash flow beta) is zero, and (2) covariances between stock returns 

and shocks in the rational discount rate expectations (i.e. rational discount rate beta) is zero. 

Finally, the study also assesses whether each of the four components in the four-beta model is 

priced in the cross-section of average stock returns.  

The baseline results are based on the cash flow and discount rate news series 

generated from the time-varying VAR (TV-VAR) approach on account of the fact that the 

predictability of each state variable on future stock market returns is varying over time. The 
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baseline results are supported with the findings obtained from the constant VAR approach. 

Empirically, this study confirms that the predictive ability of investor sentiment is stemming 

from the cash flow channel since stock returns are relatively more sensitive to the variations 

in irrationally expected cash flows than in irrational discount rates.  

The four-beta model also reveals that the covariances of stock returns with irrational 

cash flow news and rational discount rate news are indeed significantly different from zero. 

Thus, the null hypotheses as stated above are rejected with confidence. In fact, only the 

irrational cash flow beta and the rational discount rate beta are consistently having positive 

and significant estimates under both TV-VAR and constant VAR frameworks. Meanwhile, 

the structural break analysis reveals that the response of asset prices to the variations in 

rational discount rate expectations is robust across different sub-sample periods. Also, the 

significant effect of irrational cash flow news on stock prices is observed in the latest sub-

sample period. All these findings reinforce the conclusion that the assumptions made in 

previous studies might not appropriate.  

The asset pricing test of the four-beta model against the CAPM and the two-beta 

model shows that the four-beta model greatly improves the explanatory power, in terms of the 

adjusted cross-sectional R2 statistic and the pricing errors, of the other two asset pricing 

models. The cross-sectional regression also shows that irrational beta risks (i.e. irrational cash 

flow and irrational discount rate betas) as well as the rational discount rate beta are priced in 

the cross section of stock returns. The sub-sample analysis also find that these three risk 

factors are consistently priced across different sub-sample periods even though the 

explanatory power of the four-beta model has been affected slightly in the second sub-sample 

period. Whilst irrational betas command negative risk premia, rational discount rate beta 

carries a positive risk premium across different stocks. These findings are robust to the 

inclusion of additional test asset portfolios as well as to the control of a set of Fama-French 

factors. Further empirical evaluation of the four-beta model shows that the model is useful in 

explaining a set of anomalies.  

Overall, these findings imply that the negative sentiment-return relationship is a result 

of mispricing coming from the irrational expectations on future cash flows: investors might 

form overly optimistic forecasts on future cash flows, leading to the current stock 

overvaluation and the subsequent price reversal, and the reverse holds during the pessimistic 

period. Besides that, the variation in the cash flow expectations is not merely link to the 
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fundamental factors, likewise, the variation in the discount rate should not be treated as 

mispricing news at all times. Therefore, the cash flow beta is not driven merely by 

fundamentals; the discount rate beta is not solely driven by sentiment. Furthermore, given that 

a better model fit in the cross section of stock returns is achieved by the four-beta model, the 

asset pricing model in the future should incorporate both irrational and rational elements into 

one model instead of studying their implication on the pricing of risk separately. The pricing 

of the four betas also suggests that investors are willing to pay a price for stocks that are 

sensitive to the irrational risk factors but require a risk premium for bearing the rational risks. 
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Chapter 6. Conclusion 

6.1 Summary of findings 

This thesis presents three empirical findings relating to investor sentiment and asset 

pricing. Given that the effect of investor sentiment in the stock market is well acknowledged 

and that academics have increasingly embraced the alternative explanations for the equity 

anomalies, this thesis concentrates on several issues: (1) how to accurately measure the 

investor sentiment over time (2) whether investor sentiment is more powerful in affecting the 

stock market as compared to the fundamental economic predictors (3) through which channel 

does the sentiment ‘exports’ its effect to the stock market (4) whether incorporating the 

sentiment-induced risks into the asset pricing model explains better the cross-sectional stock 

returns.  

In the third chapter, extending the framework of Baker and Wurgler (2006), an 

enhanced investor sentiment index is constructed to address the weak predictive power of BW 

index in the time-series context. The constant loadings being assigned to each sentiment 

component in the index over time could be the culprit for the failure of BW index in 

predicting stock market returns, as this feature hinders the dynamic ability of each sentiment 

component to capture the latent investor sentiment across time. In view of this, Chapter 3 

proposes a novel approach to accurately measure the investor sentiment by relaxing the 

constant contribution assumption applied to investor sentiment proxies in the BW index. 

Specifically, the new index is constructed by allowing the weights (i.e. contributions) of 

investor sentiment proxies to change through time, and hence the enhanced investor sentiment 

index is termed as the time-varying weighted investor sentiment index (STV). The construction 

of this index also avoids any look-ahead bias, another issue presented in the BW index. The 

validity of STV being a good proxy of investor sentiment (i.e. the sentiment values today 

predict negative future stock market returns) has been tested. The empirical findings confirm 

that STV does not only demonstrate the basic property of a good sentiment measure, but also 

demonstrates to be a superior investor sentiment index relative to its counterparts within the 

in-sample return predictive regression framework. Its superior in-sample predictive 

performance is not confined to the aggregate level, but is extended to the time-series of 

characteristics portfolio returns. In summary, Chapter 3 proposes a superior investor 

sentiment index that can be widely applied in future empirical studies.  
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The next chapter examines the main driving force behind the stock market movements 

after the superior predictive power of STV against its sentiment competitors, as reported in the 

Chapter 3, has been reaffirm within the out-of-sample framework. Although voluminous 

research exerts significant effort in searching for the variables that can be used to predict the 

stock market returns, fewer attempts are made to understand which type of predictor (i.e. 

sentiment or fundamentals) has overriding power in the stock market. Accordingly, Chapter 4 

performs a series of out-of-sample evaluations on the forecasting performance of STV and 

economic predictors in predicting stock market returns. Empirically, the results demonstrate 

that STV-based forecasts contain unique information that are useful to forecasting stock market 

returns, and hence outperforms economic predictors. Although the predictive power of STV is 

weakened slightly under the restrictive regression framework (i.e. the forecasts reduced to 

HMM-based forecasts when the coefficient sign is inconsistent with the theory) as compared 

to the economic predictors, this result, however, shows that investor sentiment has a greater 

influence in the stock market. The poorer forecasting performance of STV under the restrictive 

regression framework reflects that stock market returns would be better predicted purely from 

STV. In contrast, the forecasts produced solely from economic predictors are less accurate than 

the mixed forecasts (i.e. the mix of fundamental-based forecasts and HMM-based forecasts in 

the restrictive regression). As such, economic predictors cannot be the main driving force of 

stock market movements. The return forecasts generated by STV are also economically more 

valuable than those of economic predictors based on the economic value analysis. Overall, 

empirical results in this study confirm that investor sentiment is relatively more important to 

the stock market movements given the predictive validity presented in this chapter. This could 

possibly explain why the economic predictors are found to have poor out-of-sample 

forecasting performances as documented in Welch and Goyal (2008), if investor sentiment is 

the main driving force of the swings in the stock market.  

 The last empirical study investigates the channel (i.e. cash flow or discount rate) 

through which the investor sentiment drives the stock market movements after having 

established its relatively vital role in the stock market. To this aim, inspired by the two-beta 

model of Campbell and Vuolteenaho (2004), Chapter 5 develops a four-beta model that 

consists of irrational cash flow beta, rational cash flow beta, irrational discount rate beta and 

rational discount rate beta. Each beta measures the comovements of 25 size- and value-sorted 

portfolio returns and a particular news series: irrational and rational news series in both cash 

flow and discount rate channel. The conclusion on the underlying source of the sentiment-

return relationship is derived by comparing the beta loadings of the irrational cash flow betas 
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to the irrational discount rate betas. The empirical results suggest that the sentiment effect on 

stock market returns is ‘transmitted’ through the cash flow channel since irrational cash flow 

betas are significant and are of greater magnitude than the insignificant irrational discount rate 

betas. Furthermore, this chapter empirically evaluates the assumptions of CPV (2010) that the 

fundamentals is the main element which changes the cash flow expectation; whereas investor 

sentiment affects the discount rates. The four beta estimates, however, do not support these 

assumptions, and indeed the opposites are revealed, i.e. cash flow (discount rate) news is 

mainly driven by investor sentiment (fundamentals). Further to the key research questions as 

discussed, this chapter also investigates the pricing of these four beta risks and compares the 

pricing performance of the four-beta model to the CAPM and the two-beta model. The results 

reveal that irrational (rational) beta risks command a negative (positive) risk premium, and the 

four-beta model has a stronger explanatory power than the other two asset pricing model on 

the cross-section of stock returns.  

Generally, the implication emerging from this thesis is that the assumption of 

traditional finance theory, that only rational expectations matter and that the effect of 

sentiment (or noise) traders is trivial, is shown to be inappropriate. The strong predictive 

power of STV on the stock market returns, and indeed superior to the fundamental predictors, 

points out that the market is inefficient to a certain extent. This predictive ability of investor 

sentiment is ensued from the expectation errors in the forecasts of future cash flows, where 

investors might be overly optimistic or pessimistic in forming their forecasts, resulting in 

future price reversals when the facts unveil. However, to truly reflect the predictive power of 

investor sentiment on stock market returns, an accurate measure of investor sentiment is 

essential.  

6.2 Policy and practical implications 

Given the accurate measure of investor sentiment index constructed in this thesis 

together with an in-depth understanding on the transmission channel of the sentiment effect in 

the stock market, this thesis could have important implications for various parties: policy 

makers, practitioners and investors, and key parties participating in the corporate governance.  

6.2.1 Government and policy makers 

The findings from Chapter 4 that investor sentiment exerts a significantly stronger 

influence on stock markets than fundamental predictors in the stock market calls for policy 
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makers’ attention to closely monitor the time-varying market-wide investor sentiment. The 

enhanced investor sentiment index, STV, constructed in Chapter 3 allows policy makers to 

accurately measure investor sentiment at different times, which helps to have better return 

forecasts. With this information, policy makers would be able to take necessary action in a 

timely manner to prevent any damage to wealth, both at individual and at national level, 

caused by the time-varying investor sentiment.  

Prior to the collapse of the Dotcom bubble, Internet stocks experienced unprecedented 

growth with much evidence highlighting the irrationality of investors. Ofek and Richardson 

(2002) show that Internet stocks are widely traded by investors135 before the Dot-com bubble 

burst, with the trading volume for Internet stocks being threefold on average as compared to 

non-Internet stocks. They further documented that an excess return of 40.6% over a 10-year 

period is required to reach the excessively high implied price-earnings (PE) ratio of 605 for 

Internet stocks at the end of the year 1999136. Cooper, Dimitrov and Rau (2001) even find that 

an addition of “.com” to the company name generated an abnormal return of 74% 

accumulated for a 10-day period around the announcement day, despite little support in the 

literature for such a phenomenon. Furthermore, not only did the number of IPOs for Internet 

stocks increase tremendously during 1998-2000, but those IPOs recorded astronomically high 

first-day returns with an average of more than 95% (Ofek and Richardson, 2003). However, 

once the lockup agreements expired, the overwhelming selling pressure from pessimistic 

investors led the Dotcom bubble to burst, causing negative excess returns in Internet stocks 

(Ofek and Richardson, 2003). These phenomena support the view that investors are on 

aggregate overly optimistic, building up a bubble that eventually causes huge loses to 

investors when it bursts. Indeed, other studies also hold the same view that high investor 

sentiment led to the formation of various asset pricing bubbles and subsequently caused the 

financial crises (e.g. Brunnermeier and Nagel, 2004; Shiller, 2005; Pan, 2020; Temin and 

Voth, 2004; Zouaoui, Nouyrigat and Beer, 2011). 

Recognizing investor sentiment as a source of fluctuations in the stock market implies 

that an accurate measure of market-wide investor sentiment is key to avoiding a financial 

crisis in the future and hence STV is important in this regard. Since Kurov (2010) and Lutz 

 
135 Ofek and Richardson (2003) claim that retail investors constitute a greater proportion of participants in the 

Internet stocks.   

136 They employed industry’s income margins in the computation of implied PE ratio for the Internet stock in a 

particular industry since the aggregate earnings for Internet stocks is negative. 
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(2015) find that investor sentiment is affected by monetary policy, policy makers could 

introduce appropriate monetary policy to stabilize investor sentiment given the knowledge 

regarding the trajectory of sentiment level produced by STV index. For instance, a tightening 

(expansionary) monetary policy could be introduced when investors are persistently 

optimistic (pessimistic) as reflect by STV, i.e. STV is above (below) its steady state value.  

The findings of this thesis could also help to inform government policy on financial/ 

investor education. A negative relationship between investor sentiment and future stock 

returns indicates that investor sentiment will eventually fade away and stock prices will revert 

to fundamental values. Therefore, government could inform individual investors about 

sentiment trading and the risk of investing during periods characterised by excessive 

optimism. Government could also educate individual investors on how to efficiently allocate 

their portfolios based on their investment horizons. A passive investing strategy instead of an 

aggressive investing strategy could be promoted by government since investment 

performance is less likely to be affected by changes of investor sentiment in the long-run. 

This is especially beneficial to investors with long-term financial objectives. Moreover, 

government could advise retail investors to reduce their investment exposure in small, value 

and loser stocks since Chapter 3 demonstrates that these stocks are more sensitive to investor 

sentiment.  

6.2.2 Practitioners and investors 

 The findings documented in Chapter 4 and Chapter 5 bring awareness to the 

practitioners in the finance industry that stock prices do not merely reflect the fundamental 

information or rational news. Instead, practitioners should pay additional attention to changes 

in the sentiment-induced expectations, and the enhanced investor sentiment index, STV, 

constructed in Chapter 3 could be useful to them in this regard. The economic values 

generated by the STV that captures well the sentiment risk, which are systematically priced 

across different stocks, indicate that portfolio managers could benefit from the use of STV in 

generating profits to their clients. Finally, investors could also utilise the new sentiment index 

to gauge the impact of investor sentiment, helping them to develop appropriate investment 

strategies over time.  
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6.2.3 Key parties participating in corporate governance  

The findings that the sentiment-return relationship stem from the errors in the cash 

flow expectations is of relevance to the corporate governance. Since the sentiment effect has 

been found to be particularly strong during the expansion period and not during the recession 

period, any manipulation to the earnings could potentially magnify the sentiment effect when 

the market is in the good state and investors are optimistic. Brown, Christensen, Elliot and 

Mergenthaler (2011) reveal that the tendency for managers to disclose the pro forma earnings, 

which are usually higher than the GAAP earnings, is high when the investor sentiment is high. 

Their further analysis showed that managers attempt to mislead investors through favourable 

pro forma earnings metrics that are greatly emphasized in the earnings press releases. 

Similarly, Simpson (2013) finds that earnings are inflated by managers through accruals 

management during the high sentiment period, but rather conservative earnings are announced 

during low sentiment period, since sentiment traders could be ‘blinded’ by their optimistic 

expectations during high sentiment periods. Therefore, investors could potentially form an 

even more optimistic forecast about future cash flow due to the favourable pro forma earnings 

disclosure and earnings management during high sentiment periods.  

To avoid the potential build-up of speculative bubbles due to the exceptionally 

optimistic forecasts of future cash flows, regulators might want to intervene in the disclosure 

of pro-forma earnings and increase inspections of financial statements that attempt to 

influence the investor expectations about the future cash flow especially during the high 

sentiment period. Boards of directors, who also tend to be shareholders, might want to be able 

to measure the investor sentiment using our enhanced investor sentiment index in order to 

gauge the tendency of managers manipulating the earnings at a particular time, and hence take 

the necessary precaution to ensure that managers act in shareholders’ best interest. The 

findings of this thesis also bring awareness to the auditors. Given that stock prices are affected 

by irrationally expected cash flow and that managers have the motives to manipulate earnings 

in order to meet the expectations of sentiment traders, auditors might need to be more 

rigorous during the auditing process, especially when market-wide sentiment is high. Finally, 

standard-setters could introduce more stringent standards and guidelines to prevent managers 

from taking advantage of the loopholes in accounting standards, especially during the high 

sentiment period.  
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6.3 Limitations and extensions 

As in any study, this thesis has its limitations as discussed below. Following the 

discussion of each limitation, extensions that could possibly address the limitations or future 

directions are also discussed in this section.  

1) The arbitrary sign being assigned to principal components could be an issue in the 

construction of STV. Nonetheless, the PCA method has also been used in the estimation 

of SBW and this issue has been addressed in the construction of STV by flipping the sign 

of first principal component (PC1) if RIPO has a negative loading. Whilst RIPO has 

been used as a benchmark to construct STV
 given the rationales discussed in Section 

3.3.3, future research could consider using other sentiment proxy as a benchmark in 

constructing the time-varying weighted investor sentiment index. 

2) Since STV is defined as the PC1 in each window, the index captures slightly less than 

50% of the average proportion of variance across different windows. Nevertheless, 

PC1 is used to estimate STV in order to ensure that STV is comparable to SBW since 

Baker and Wurgler (2006) also define SBW as PC1. As our findings confirm that 

allowing the loadings of each sentiment to vary over time as in STV  does enhance the 

accuracy of the return forecasts, future study could construct the time-varying 

weighted investor sentiment index by combining first and second principal 

components in each window that potentially explains a greater proportion of variance 

across different sentiment proxies, and examine whether constructing investor 

sentiment index in this way could further enhance the forecasts of stock market 

returns. 

3) STV constructed in this thesis is a low-frequency sentiment measure (i.e. monthly 

sentiment index) that could be of practical use to long-term investors as they will not 

constantly and emotionally be affected by the fluctuations of investor sentiment 

measured at the high frequency level. Nevertheless, day traders might prefer to have a 

high-frequency sentiment measure (e.g. daily or intraday measure) if they would like 

to tap into the changes of investor sentiment on a daily basis. In view of this, future 

research could construct a high-frequency composite sentiment index (e.g. daily 

measure of sentiment) using market-based sentiment proxies. This would also produce 

a real-time measure of investor sentiment that might be useful to study the 

contemporaneous sentiment-return relationship and help to form profitable short-term 

trading strategies. Having a real-time sentiment measure would also help policy 
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makers to have a better understanding on investors’ instantaneous reaction to 

monetary policy changes as mentioned in Sun et al. (2016).  

4) Due to the data availability during which this research is conducted, the sample period 

of this thesis can only cover up to December 2014. Since Jeffrey Wurgler and Amit 

Goyal have updated their data recently, the analyses of this thesis can be extended to 

year 2018 in the future.  

5) One limitation of the four-beta model is that irrational news series used to estimate 

irrational betas could have noise since they are retrieved as the predicted values of the 

regression of news series on investor sentiment index. Despite each sentiment proxy 

has been orthogonalized to fundamental factors, we might not be able to claim that 

fundamental information has been completely removed from sentiment proxies. 

Nevertheless, as mentioned in Brown and Cliff (2005, p.417), “we acknowledge that 

we might be missing some important rational factor, but we feel our set of control 

variables is a reasonable effort in mitigating this problem”. Moreover, same 

macroeconomic variables as in Baker and Wurgler (2006) have been used in the 

orthogonalization process. Therefore, the approach employed in this thesis to extract 

information on investor sentiment is largely in line with the literature. To further 

confirm the results in Chapter 5, future study could possibly incorporate more 

macroeconomic variables in the orthogonalization process in order to remove as much 

fundamental information as possible. Besides that, different types of sentiment 

measures could also be used to retrieve irrational news series as to provide a 

robustness check to the findings.  

6) Since the access to the Institute of Broker Estimates System (IBES) is not granted, 

using analysts’ forecasts retrieved from Bloomberg Estimates (BEst) does not allow 

the results obtained in Chapter 5 to be directly comparable to the literature. Therefore, 

future study could consider the use of analysts’ forecast obtained from IBES in the 

construction of the four-beta model and compare the results obtained to the results 

presented in this thesis.  

7) Following the literature (e.g. Botshekan et al., 2012; Fama and French, 2008; Gregory, 

Tharyan and Christidis, 2013; Lettau and Ludvigson, 2001b), this thesis utilises the 

Fama-Macbeth (FMB) regression in the cross-sectional asset pricing test. Future 

research could consider estimating risk premia using Generalized Method of Moment 

(GMM) as Cochrane (2001) argues that GMM procedure accounts for the error-in-

variable bias associated with the estimated regressors in the cross-sectional regression 
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of FMB approach. This thesis does not use the GMM approach in the asset pricing test 

since Jagannathan, Skoulakis and Wang (2010) mention that a long historical data on 

stock returns is required in the GMM procedure in order to ensure that the variance-

covariance of stock returns can be estimated precisely. However, it is still worthwhile 

to apply the GMM approach to examine the pricing of different models, including the 

four-beta model, in the future. 

8) Having constructed an enhanced investor sentiment index, STV, in the future, research 

focus on the application of this newly constructed sentiment index could be 

conducted. For instance, future research could investigate (1) whether STV can be used 

to enhanced the profitability of long-short portfolio strategies, (2) whether STV can 

explain the mean-variance puzzle, and (3) whether STV can accurately predict the stock 

market crisis.   
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