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Abstract 

Throughout the last years there has been a considerable number of drugs that 

were discovered thanks to computer aided drug design (CADD) techniques. 

Using the 3D information, such as protein structures obtained by X-ray 

crystallography or nuclear magnetic resonance (NMR), it is possible to identify 

the binding sites and to design molecules that may specifically target these sites. 

This approach saves a lot of time and money, as the lead search is more 

accurate: less compounds need to be synthesised and tested. Although a great 

number of proteins have been successfully targeted with this structure-based 

approach, there are a lot of disease-linked proteins that have been considered 

“undruggable” by conventional structure-based techniques. This is mainly due to 

failure in detection of potential binding sites, which precludes the structure-guided 

design of suitable ligands.  

There is the presumption that the “druggable” human proteome may be larger 

than previously expected. Protein structures may present multiple binding sites 

(allosteric and/or cryptic) that cannot be targeted by the means of conventional 

CADD techniques. In the past years, several novel methods have been 

developed to identify and/or unveil these binding hotspots. Amongst them 

cosolvent Molecular Dynamics (MD) simulations are increasingly popular 

techniques developed for prediction and characterisation of allosteric and cryptic 

binding sites, which can be rendered “druggable” by small molecule ligands. 

Despite their conceptual simplicity and effectiveness, the analysis of cosolvent 

MD trajectories relies on pocket volume data, which requires a high level of 

manual investigation and may introduce a bias. The present study focused on the 

development of the novel cosolvent analysis toolkit (denoted as CAT), as an 

open-source, freely accessible analytical tool, suitable for automated analysis of 

cosolvent MD trajectories. CAT is compatible with popular molecular graphics 

software packages such as UCSF Chimera and VMD. Using a novel hybrid 

empirical force field scoring function, CAT accurately ranked the dynamic 

interactions between the macromolecular target and cosolvent molecular probes.   
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Alongside the development of CAT, this work investigated the signal transducer 

activator of transcription 3 (STAT3) as the case study. STAT3 is among the most 

investigated oncogenic transcription factors, as it is highly associated with cancer 

initiation, progression, metastasis, chemoresistance, and immune evasion. 

Constitutive activation of STAT3 by mutations occurs frequently in tumour cells, 

and directly contributes to many malignant phenotypes. The evidence from both 

preclinical and clinical studies have demonstrated that STAT3 plays a critical role 

in several malignancies associated with poor prognosis such as glioblastoma and 

triple-negative breast cancer (TNBC), and STAT3 inhibitors have shown efficacy 

in inhibiting cancer growth and metastasis. Unfortunately, detailed structural 

biology studies on STAT3 as well as target-based drug discovery efforts have 

been hampered by difficulties in the expression and purification of the full length 

STAT3 and a lack of ligand-bound crystal structures. Considering these, 

computational methods offer an attractive strategy for the assessment of 

“druggability” of STAT3 dimers and allow investigations of reported activating and 

inhibiting STAT3 mutants at the atomistic level of detail. This work studied effects 

exerted by reported STAT3 mutations on the protein structure, dynamics, DNA 

binding and dimerisation, thus linking structure, dynamics, energetics, and the 

biological function. By employing a combination of equilibrium molecular 

dynamics (MD) and umbrella sampling (US) simulations to a series of human 

STAT3 dimers, which comprised wild-type protein and four mutations; the work 

presented herein explains the modulation of STAT3 activity by these mutations. 

The binding sites were mapped by the combination of MD simulations, molecular 

docking, and CAT analysis, and the binding mode of a clinical candidate 

napabucasin/BBI-608 at STAT3, which resembles the effect of D570K mutation, 

has been characterised.  

Collectively the results of this study demonstrate the robustness of the newly 

developed CAT methodology and its applicability in computational studies aiming 

at identification of protein “hotspots” in a wide range of protein targets, including 

the challenging ones. This work contributes to understanding the 

activation/inhibition mechanism of STAT3, and it explains the molecular 

mechanism of STAT3 inhibition by BBI-608. Alongside the characterisation of the 

BBI-608 binding mode, a novel binding site amenable to bind small molecule 
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ligands has been discovered in this work, which may pave the way to design 

novel STAT3 inhibitors and to suggest new strategies for pharmacological 

intervention to combat cancers associated with poor prognosis. It is expected that 

the results presented in this dissertation will contribute to an increase of the size 

of the potentially “druggable” human proteome. 
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Chapter 1 In the search of allosteric binding sites 

1.1 Allostery 

Many protein drug targets exert their activity, when a substrate binds to their 

distinctive active site, promoting their biological function. Classic orthosteric 

ligand may be compared to a competitive inhibitor: a small molecule that 

competes with the endogenous substrate for its occupancy at its cognate binding 

site, thus blocking the protein’s activity (Figure 1). Limitations in applications of 

orthosteric ligands in clinics include a decreased efficacy due to chronic 

administration, limited or poor selectivity, and chemoresistance, occurring when 

crucial binding site residues mutate, changing the landscape of the protein and 

affecting the ligands binding to the protein.1–3 These limitations may be tackled 

by targeting a protein of interest via allosteric regulation. A protein can be 

modulated by small molecules that bind at other regions of the protein (allosteric 

sites), either alone or in the presence of the orthosteric ligand, to stabilise either 

an active or inactive conformation of the system. Regarding the concept of 

allostery, there are two main schools of thought. The first and most classical one 

relies on the MWC model4, which assumes that proteins exist in different 

interconvertible states in the absence of any regulator. The change between the 

different states is regulated by a thermodynamic equilibrium. Furthermore, 

ligands can bind to the receptor in either conformation, which can be altered by 

its affinity with the ligand. Therefore, the binding of a ligand in a state might 

regulate protein activity as it induces a conformational change. A more recent 

and updated view on allostery is the Nussinov model, which insists to put the 

concept of allostery in the framework of cells.5–7 Allosteric effects are propagated 

through their mechanism pathway, and as a consequence, they are likely to 

further affect multiprotein complexes, which are shared by several pathways. 

These observations increase considerably the number of possible combinations 

that an allosteric effect can trigger. The binding of an allosteric ligand unveils a 

unique conformation of the protein that in essence is a new receptor that has a 

propensity for unique pharmacology. Allosteric ligands possess a series of 

advantages that overcome some of the biggest challenges in orthosteric drug 

design. Since allosteric ligands bind at pockets different from the protein , they 
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can afford higher levels of selectivity. This feature is crucial for ligands that 

attempt to target specific receptors that belong to a large family of proteins, such 

as protein kinases or G-protein coupled receptors (GPCR).8 There has been a 

huge effort, albeit with poor results, to produce a series of compounds specific to 

these proteins, mainly due to the highly conserved orthosteric sites, and/or due 

to unfavourable physicochemical and drug metabolism/pharmacokinetic 

properties (ADME) of synthethic orthosteric ligands. Furthermore, it has been 

proven that many direct-acting agonists are toxic or lead to target desensitisation, 

internalisation, or downregulation when they are activated for prolonged periods. 

Allosteric ligands can reach unprecedented levels of selectivity as they target less 

conserved, thus more unique, binding sites at their cognate receptors.1–3,9 

Furthermore, as allosteric ligands bind to a different binding site, there is no need 

to design a candidate that competes with the substrate, meaning that a less 

potent ligand than the orthosteric substrate can show efficacy (Figure 1). 

 

Figure 1 Graphical definition of allostery versus competitive orthosteric inhibition. Small molecule 

inhibitors can be divided in two groups: competitive orthosteric inhibitors and allosteric inhibitors. 
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A competitive inhibitor (red) binds to the proteins binding site competing with the natural substrate 

(green) An allosteric inhibitor (blue) binds to a distinct site on the proteins surface to prevent 

substrate binding (non-competitive inhibition) 

Despite the numerous advantages that allostery can offer over orthosteric 

modulation, it is not a panacea for drug discovery, and there are many 

pharmacological and chemical issues to consider when developing allosteric 

ligands. 

From the pharmacological point of view, allosteric ligands could lead to adverse 

effects, as they might trigger homo- and heterodimer formations for multimeric 

proteins, with unnecessary and/or unknown physiological responses. 

Furthermore, allosteric modulation could induce the formation of different 

oligomeric species, leading to a loss of the orthosteric function of the protein10,11.  

Success stories regarding allosteric sites targeting include Maraviroc, an 

allosteric modulator of CCR5 chemokine receptor that helps tackling the HIV 

infection12. Benzodiazepines have been highly successful therapeutics that 

allosterically regulate ion channels13,14 as well as the AMPA receptors15–17. 

Trametinib is another allosteric inhibitor for kinases MEK1 and MEK2 that was 

approved by the Food and drug administration (FDA) in 2013.18,19 

These are numerous reasons for growing interest in the search of allosteric 

ligands. The discovery of a new allosteric site could bring back to life the interest 

in targets that previously were considered “undrugabble”. Discovery of new 

binding sites means a whole new series of compounds for these targets to be 

discovered.  

1.2 Computer aided drug design 

The main principle of drug design is the assumption that drug activity is exerted 

through the binding to the pocket of a macromolecular target. Chemical and 

geometric/shape complementarity between the ligand and the binding site is 

essential for a successful binding event. The interaction between a ligand and its 

target is usually driven by non-covalent interactions, such as hydrogen-bonds 

and aromatic π-π stacking. The receptors binding site can have a hydrophobic or 
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hydrophilic character, depending on the residues that form them. For example, a 

group of non-polar amino acids like alanine, leucine and/or valine will form a 

hydrophobic pocket.20,21 An example of this feature would be the comparison 

between the recombinant mouse major urinary protein (rMUP) and the 

recombinant histamine binding protein (rRaHBP2), both proteins with similar folds 

but different binding signatures.22 Both systems form part of the lipocalin family 

and present a similar entropy of binding, but while rMUP binds small hydrophobic 

ligands, rRaHBP2 is a “hydrophilic” binder with high affinity for histamine and 

related amines. Nevertheless, binding sites tend to be hydrophobic.However, 

even if a compound binds well to its target, i.e. with high affinity, it does not 

necessarily mean that it is a good drug candidate. The drug must be transported 

from the site of administration (oral, intravenous, etc.) to their target. For 

intracellular targets, this process would involve passing through cell membranes, 

either via pressure (diffusion) or active transport. Once inside the cell, the inhibitor 

must reach its target and later be metabolised and excreted. Therefore, 

properties like solubility or the partition coefficient (logP) are fundamental in the 

small molecule drug development.20,21 Furthermore an additional set of features 

is recommended to be met in order to consider a molecule a drug. Known as 

Lipinski’s rule of five, an orally available drug should have no more than one 

violation to the following criteria: no more than 5 hydrogen bond donors, no more 

than 10 hydrogen bond acceptors, a molecular weight (MW) less than 500 

daltons, and a logP value that does not exceed 5. These criteria should be taken 

more into account as a guide rather than a rule. 

 

Figure 2 Drug discovery pipeline 
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The drug discovery and development is a long and costly process. A drug, in 

order to get approved, must fulfil two main requirements: produce the desired 

response (efficacy) with minimal side-effects (safety), and attempt to be better 

than existing therapies. In the drug discovery pipeline (Figure 2), after target 

identification and validation, the first two steps in many drug discovery programs 

consist in the identification of hits and lead molecules. The hits are compounds 

with some reproducible biological activity of interest. Lead series are usually the 

improvement of the hit. They comprise a set of related molecules that share some 

common structural features and show better or worse activity than the initial hit 

along with an improvement on its drug-like properties such as MW and logP. 

The launch of a new drug to the market costs between 800 and 1600 million GBP 

and it takes between 10 to 15 years to develop.23 In a classical pipeline, 1 out of 

40,000 hits will become a commercial drug. Thanks to CADD techniques, 

nowadays 1 out of 10,000 hits end up in the market.23 

Molecular modelling is a field of research focused on the application of 

fundamental laws of physics and chemistry to the study of molecules and 

biological macromolecules. Molecular modelling techniques have been 

developed as a product of, or in conjunction with, some new technological 

advance such as combinatorial chemistry, high throughput screening (HTS), or 

fast graphical processing units (GPU). In the case of drug discovery, the principal 

aim is to create models and simulations that can predict the properties of 

molecules and their interactions. A correct implementation of these techniques 

means a considerable saving of time and money and an increase of the 

successful rate on the development of a new drug. In some cases there is  

evidence that the use of computer aided drug design (CADD) techniques led to 

an increase of the hit rates in comparison to HTS.24–26 Furthermore, CADD has 

already been used in the discovery of several compounds that have passed 

clinical trials and become novel therapeutics of a variety of diseases. Examples 

include the following: carbonic anhydrase inhibitor dorzolamide, approved in 

199527; the angiotensin-converting enzyme (ACE) inhibitor captopril, approved in 

1981 as an antihypertensive drug28; three therapeutics for the treatment of human 

immunodeficiency virus (HIV): saquinavir (approved in 1995), ritonavir and 
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indinavir (both approved in 1996)25; and tirofiban, a fibrinogen antagonist 

approved in 199829. More recently HIV integrase inhibitor raltegravir30 and human 

renin inhibitor aliskiren31 (both approved in 2007) were discovered through the 

means of CADD. Nevertheless, CADD is still not fully integrated in the drug 

discovery pipeline as most approved drugs did not require crucial involvement of 

CADD. 

CADD techniques can be based in two general types of approach, applied 

independently or in conjunction (Figure 3). Structure based drug design (SBDD) 

analyses the three-dimensional structures of a given target of interest, usually a 

protein, with the objective to identify potential binding sites and/or interactions 

that are key for its respective biological functions. Ligand-based drug design 

(LBDD) relies on known ligands for a target, in order to establish a structure-

activity relationship (SAR) between the physicochemical properties and their 

activity. This information is then used to optimise the already known drugs or 

ease the path to a new set of ligands with improved activity.32 

 

 

 

Figure 3 Basic CADD workflow in drug discovery. Wet-lab methods are coloured blue, SBDD 

techniques in orange and LBDD ones in green32. 

 



7 

 

1.2.1 Predicting allosteric sites 

Allostery is a very promising phenomenon for drug design, especially in the case 

of proteins for which the design of orthosteric inhibitors has failed. The problem 

relies on the correct identification of the aforementioned allosteric sites. These 

are usually determined by X-ray crystallography: if the target of interest can be 

crystallised in a holo state (ligand-bound), then the binding site can be easily 

characterised. With a known binding site, usually a pocket of a cleft, known, it is 

relatively straightforward to design novel ligands through the means of SBDD 

techniques. For targets with no reported allosteric sites, the situation is more 

challenging. New allosteric ligands cannot be designed if there is no binding site 

mapped.  

To facilitate the mapping of potentially functional allosteric binding sites, a series 

of techniques have been developed in the last years. Some of these techniques 

are outlined below.  

1.2.1.1 Experimental prediction methods 

Allosteric sites have been identified mainly by the means of high throughput 

screening (HTS), which means the screening of thousands or even hundreds of 

thousands of ligands for a given protein target. Techniques based on solution 

Nuclear Magnetic Resonance (NMR) or X-ray crystallography are research-

favorites due to their ability to detect ligand binding, even at low affinity levels (Kd 

values up to 10 mM). In the case of X-ray crystallography, a handful of information 

is provided, since it not only reveals the location of the binding site, but also which 

are the specific protein-ligand interactions. Once a binding site is identified, the 

hit-to-lead process follows to design a series of suitable candidates. Although the 

outcomes of X-ray crystallography are very enlightening for the determination of 

binding sites, there are many limitations related to it. In many cases, due to the 

protein’s behaviour or any other factors such as expression or purification, it is 

close to impossible to crystallise the product of interest. Crystal growth may be a 

slow and tedious process, and even after the protein has been successfully 

crystallised, there is no guarantee that the particular crystal form will be suitable 

for X-ray diffraction.33 Nowadays, the use of novel and promising techniques such 

as cryogenic electron microscopy (CryoEM), and microcrystal electron diffraction 
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(MicroED)34, help to address the need for a fast and reliable structure 

determination. CryoEM changed completely the structure determination game, 

providing an effective and fast tool to determine protein targets that in a previous 

time were near to impossible to crystallise.33,35 The breakthrough of MicroED 

opened the door for the development of a high-throughput MicroED screening, in 

were hundreds of datasets can be collected in a short period of time.36 

Techniques such as Multiple Solvent Crystal Structures (MSCS),37 alanine 

scanning38, and structure activity relationship by nuclear magnetic resonance 

(SAR by NMR)39 have been employed to identify ‘hotspots’ in a number of 

proteins. While MSCS has lost popularity in the last years40, SAR by NMR has 

facilitated the development of several compounds and it continues to be a popular 

technique for fragment based drug design41–46.  

For an identification of a binding site with a higher level of confidence through this 

method, screening compounds would require of a certain size (MM>200 Da) as 

well as complementarity of shape and pharmacophoric interactions47,48. 

Furthermore, the observation of molecule binding to a pocket does not 

necessarily mean that this pocket would have the desirable properties, such as 

size or presence of residues that establish polar interactions with the ligand 

(especially H-bonds), to develop a potential drug based on this site.49 Following 

this idea, Wood and coworkers developed FragLites.50 

This method claims to find potential interacting binding sites through X-ray 

crystallisation with a library of designed small halogenated compounds called 

FragLites. These are defined as small (≤13 heavy atoms) compounds bearing a 

pharmacophore doublet (combination of two functionalities capable of forming 

polar protein-ligand interactions, especially hydrogen bonds) and a heavy 

halogen atom because of their minimal size, maximal simplicity, and high visibility 

in X-ray crystallography due to anomalous scattering of the halogen atom. These 

ligand features give a degree of aqueous solubility that allows them to be used at 

high concentrations in crystallographic and other assay conditions.  

The variation from the small, low affinity ligands to FragLites helps to map our 

targets of interest with more insight. Nevertheless, there is the possibility that a 
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protein might not crystallise. In those cases, the use of computational tools seems 

more feasible for the identification of allosteric hotspots. 

1.2.1.2 Computational prediction methods 

Although the experimental methods mentioned before yield a considerable 

success in the identification of allosteric sites, the toll to pay is high. X-ray 

crystallography can be a “Russian roulette”: determining the optimal conditions 

for protein crystallisation can take a considerable amount of time and resources. 

Furthermore, for protein crystallisation it is required to have the latter expressed 

(bought or expressed in-house) along with the synthesised or purchased 

screening compounds. Approaches involving machine learning6 and Multiple 

Copy Simultaneous Search (MCSS)51, a method that involves a fragment-based 

design approach to identify energetically favourable positions in a pre-specified 

binding site of interest52, among others. Methods involving machine learning rely 

on experimental data, i.e. cryptic pockets solved by X-ray crystallography, whose 

number is very limited53. In MCSS probes do not interact with one another, which 

results in the loss of any possible cooperativity in their binding. Another limitation 

lies in the static structure of the protein target analysed: any ligand-induced 

conformational changes cannot be observed, which precludes its applicability to 

identification of cryptic and transient pockets. MCSS is a very “rigid” method that 

neglects protein flexibility. 

 

Nevertheless, via the means of computational tools one can study the behaviour 

of a protein and even identify new potential binding sites in a shorter time. 

Through last years, thanks to the increasing interest in the matter, a series of 

computational tools and techniques have been developed to identify allosteric 

sites, therefore paving the way for the computational discovery of novel binding 

sites (Table 1).  

Table 1 Some of the most widely used allosteric pocket detection webservers that are nowadays 

available 



10 

 

Name Reference Method Web server available 

FTMap 54 
Fast fourier 

transformation 
https://ftmap.bu.edu/login.php  

Cryptosite 55 Machine learning https://modbase.compbio.ucsf.edu/cryptosite/  

AlloPred 56 

Normal Mode 

Analysis + 

Machine Learning 

http://www.sbg.bio.ic.ac.uk/allopred/home 

AllosMod 57 
Molecular 

Dynamics 
http://modbase.compbio.ucsf.edu/allosmod 

PARS 58,59 
Normal Mode 

Analysis 
http://bioinf.uab.cat/pars 

SPACER 60,61 
Normal Mode 

Analysis 
http://allostery.bii.a-star.edu.sg 

fpocket 62,63 
Voronoi 

tessellation 

http://bioserv.rpbs.univ-paris-

diderot.fr/services/fpocket/ 

 

Webservers are the most popular among medicinal chemists. Due to their ease 

of use and fast production of results, researchers use them to identify potential 

binding hotspots. In pocket detection webservers the user inputs a PDB structure 

and waits a short amount of time (minutes to days) to obtain results.  One of the 

most popular pocket detection webservers is the FTMap64. It employs a fast, easy 

to use method based on the sampling of several probe molecules on a densely 

space grid. It uses sixteen different probe molecules which include ethanol, 

isopropanol, isobutanol, acetone, acetaldehyde, dimethyl ether, cyclohexane, 

ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, benzene, 

acetamide, and N,N-dimethylformamide. This method is very fast because the 

sampling is achieved by an energy function that is evaluated using a fast-Fourier 

transform. FTMap’s energy function incorporates cavity terms to reward 

https://ftmap.bu.edu/login.php
https://modbase.compbio.ucsf.edu/cryptosite/
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hydrophobic enclosure and a statistical, knowledge-based, pair-wise potential to 

account for solvation effects.54 

There are other similar tools that share comparable goals and/or methods 

available such as Cryptosite and Allosite (Table 1). Even if all these methods 

predict allosteric sites based on protein structure, the underlying approach varies 

from the normal mode analysis (NMA) employed in tools such as SPACER and 

AlloPred, to Machine Learning methods in AlloSite and CryptoSite. These tools 

attempt to identify different features, such as structural fluctuations of the protein, 

the effect of different perturbations in the active site or at other specific positions 

or using sequence and structural features. Though webservers achieve a 

remarkable agreement with experimental data54,64, they present some caveats. 

Mainly, the lack of a longer sampling through dynamics affecting the overall cleft 

formation, which restricts its ability to identify new cryptic binding sites. Neglecting 

protein dynamics and flexibility does not allow the user to discover the 

conformational changes of a protein that could lead to the identification of novel 

binding hotspots. 

 

One way to overcome the challenge presented by rigid of crystal structures is to 

employ molecular dynamics (MD) simulations. Briefly, MD consists of calculating 

the trajectory of a system by the application of Newtonian mechanics. Via the 

evolution through the time of the system of interest, its intrinsic dynamics and 

conformational changes can be assessed. This allows for the identification of 

binding sites previously hidden in the obtained crystal structure. 
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Figure 4 Nowadays proteins can be simulated for hundreds of nanosecond or several 

microseconds but allosteric conformational changes tend to happen around the millisecond 

timescale, where most computers struggle to sample in a considerable amount of time. 

To observe a pocket opening, a conformational change needs to occur: such 

conformational changes often happen in the millisecond time scales (Figure 4). 

The computer power required for simulating these time scales is too demanding. 

Furthermore, biologically relevant events tend to present rough energy 

landscapes, with many local minima separated by high energy barriers. An 

unbiased MD simulation may easily get stuck in a local minimum that is non-

functional or irrelevant for the binding event. Recent studies have demonstrated 

that, in long simulations, proteins can get trapped in irrelevant conformations 

without returning to the original, functionally relevant conformation. It is quite 

common that a protein remains in a local energy minimum for a large fraction of 

a simulation time, and therefore the sampling process is inefficient65–67.  
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Figure 5 Summary of some of the most relevant enhanced sampling techniques67,68  

One strategy to overcome this issue is the use of enhanced sampling techniques. 

These methods add a bias force/potential to the system to overcome the energy 

barrier that grounds the system in a local minimum, providing an acceleration in 

conformational sampling, and therefore allow to study processes such as ligand 

binding or unbinding. Enhanced sampling techniques consist of methods that 

make use of collective variables to introduce the bias, and methods that do not, 

such as replica-exchange MD69. A collective variable (CV) represents degrees of 

freedom of interest or “reaction coordinates” of the system under investigation.  

CV dependent enhanced sampling methods add a bias along the CVs during the 

simulation to observe the process of interest. This process will reduce the energy 
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penalty required to sample and/or observe a conformational change or a 

binding/unbinding event (Figure 5). Some of the most commonly used enhanced 

sampling techniques would be replica exchange MD70, umbrella sampling71 or 

metadynamics72. Especially the last two methods are used for the prediction of 

binding or unbinding events in ligand-protein complexes.  

The main issue regarding the use of enhanced sampling techniques to identify 

allosteric binding sites is that, since these hotspots are unknown, one does not 

know what bias to apply. In most cases there, is no evidence of the 

conformational changes occurring and therefore the use of enhanced sampling 

might not be the best technique to use in the studies of allosteric events. 

Nevertheless, a series of collective variables for the exploration of protein 

druggability have been proposed with promising results. This approach, that 

goues under the name JEDI (Just Exploring the Druggability at Protein Interfaces) 

features a druggability potential that is made of a combination of different 

empirical descriptors73 

 

1.3 Cosolvent MD 

To avoid the bias of enhanced sampling, an alternative approach was proposed 

to overcome the problem of trapping in a local minimum: namely, the cosolvent 

molecular dynamics. In the cosolvent MD, the protein of interest is simulated in a 

mixture of water and small molecule drug-like probes (cosolvents). The 

competition of the probes with water to interact with different protein regions helps 

to map potential allosteric binding sites (Figure 6). Binding of a cosolvent probe 

to the protein may induce conformational changes in the protein in a relatively 

short time scale, thus overcoming one of the aforementioned issues. Also, this 

alternative mapping strategy might be able to unveil cryptic sites that would not 

be discovered by conventional approaches74,75. Due to the novelty of the method 

there is still no evidence in the literature that relates to the discovery of novel 

allosteric or cryptic binding sites with this technique. Nevertheless, different 

cosolvent MD approaches have been benchmarked with successful results74, 

indicating that this technique is expected to be successful. 
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Figure 6 Small molecular fragments could have a different with the protein than water, that can 

lead to the formation of new binding hotspots unvisited in classical MD conditions 

 

1.3.1 Cosolvent methods today 

As with other methods, cosolvent MD can have many flavours, starting from the 

simulation conditions to the scoring energy function that identifies and ranks the 

potential hotspots. As it is a relatively novel method, there is still no consensus 

regarding the best simulation conditions for it (Table 2).  

An important factor to consider while carrying out cosolvent MD is the appropriate 

simulation time. A lot of groups using cosolvent MD choose to perform many 

replicas of short MD (10-30 ns), rather than performing longer (100-1000 ns) 

simulations. Relatively short simulations are chosen to avoid the phase 

separation between water and more hydrophobic cosolvent probes, which would 

lead to unrealistic results. The phase separation problem is related to cosolvent 

concentration: first cosolvent MD attempts were performed at high probe 

concentration (50% v/v) and suffered from a prompt phase separation. Although 

it is important to maximise the number of probes interacting with the protein, 

oversaturation of probe molecules in the system might cause clustering and poor 

sampling. It is recommended to have fewer probes that freely interact with the 



16 

 

protein than a higher concentration that may induce artefacts. If, a higher 

concentration is desired, a way to avoid probe clustering and other artefacts is to 

a repulsion potential to the probes, similar to what MacKerell’s group does in 

SILCS for benzene.75 

Another important consideration in cosolvent MD is the probe selection. 

Currently, there is a consensus regarding this aspect. Most cosolvent techniques 

use a series of different probes, individually tested, which share a number of 

features: they should be small drug-like fragments and present a range of 

different functional groups that comprise different degrees of polarity, aromaticity, 

charge and shape diversity. The main idea is to use molecules that achieve the 

same kind of interactions potential drugs could. With the use of small drug-like 

fragments it is easier to extensively map the target of interest, as small molecules 

could interact with different pockets from a potential binding region. By pooling a 

different range of chemical features in the tested cosolvents it would be possible 

to identify which pockets would be more prone for one or another chemical entity 

in the final drug to be designed. The use of Mackerell’s SILCS75 has led to the 

design of novel ligands in proteins such as Mcl-1 or the B-cell lymphoma 6 (BCL6) 

BTB domain (BCL6BTB)76,77. Cosolvent MD does not only help to identify new 

binding sites, but also give a head start on the structure-based ligand design. 

Considering the improvements and evaluations of the existing cosolvent MD 

methods, there is a consensus regarding the simulation conditions. Simulations 

should not be long to avoid unrealistic phase separation. A range of 10-50 ns 

seems to be the optimal one to obtain enough sampling of the tested system. 

Mixture concentration should not exceed 10%, especially in larger systems that 

would require a larger number of probe molecules. It is preferential to perform 

several short MD simulations than a long one. Cosolvent probes must be small-

sized (fragments), drug-like, and range a broad spectrum of polarities. Mixture of 

several cosolvents with water is still not well established and more validation is 

required.  
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Table 2 Some of the established cosolvent MD techniques used to identify hotspots and binding 

sites on protein surfaces 

Developer 

(method) 
Cosolvent probes Proteins 

Barril (MDmix)78,79 
Isopropanol, ethanol, acetanitrile, 

methanol, acetamide 

Thermolysin, p53, elastase. 

MDM2, LFA-1/ICAM-1, PTP1B, 

p38 MAPK, AR, HEWL, Hsp90, 

HIVp 

MacKerell 

(SILCS)75,80 

Benzene, propane, water (as a 

hydrogen-bonding probe), 

acetonitrile, methanol, formamide, 

acetaldehyde, methylammonium, 

acetate, imidazole 

BCL-6, trypsin, a-thrombin, 

HIVp, FKBP, Fxa, NadD, Rnase 

A, IL-2, p38 MAPK, DHFR, 

FGFr1 kinase, adenosine 

deaminase, ERα, AmpC, β-

lactamase, T4-L99A, AR, 

PPARγ, mGluR5, β2AR 

Carlson 

(MixMD)74,81,82 

Acetonitrile, isopropanol, 

pyrimidine, imidaole, N-

methylacetamide, acetate, 

methylammonium 

HEWL, elastase, p53, Rnase A, 

thermolysin, HIVp, ABL kinase, 

AR, CHK1 kinase, glucokinase, 

PDK1 kinase, PTP1B, farnesyl 

pyrophosphate synthase 

Gervasio 

(SWISH)83,84 

Benzene, imidazole, indole, 

pyrimidine, pyridine, 

tetrahydropyran 

TEM-1, IL2, PLK1, NPC2, p38α, 

LfrR, hPNMT 

 

Despite the considerable progress in the development of cosolvent techniques 

achieved in the past years, it is still challenging for the common user to employ 

these methods. Although an experienced computational chemist may conduct 

cosolvent MD with no difficulties, they may need to use some of the scoring and 

analysis methods reported in the literature to evaluate the simulations. Sadly, the 

codes for these analysis tools are usually not available and when they are, one 
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could face several unexpected difficulties upon installation of the code. In some 

cases, the tool is included as a plugin from another molecular visualisation suite 

such as PyMol,81 forcing the user to perform the analysis with this specific 

software.    
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Chapter 2 Signal transducer and activator of transcription 3 

Signal transducer and activator of transcription 3 (STAT3) protein is a 

transcription factor with the ability to transduce signals from the cell membrane 

to the nucleus to activate gene transcription, thus bypassing the involvement of 

secondary messengers. STAT3 over-expression or inhibition plays an important 

role in processes such as inflammation, cellular proliferation, survival, apoptosis, 

transformation, angiogenesis, invasion and metastasis of cancer85,86.   

2.1 Influence of STAT3 on biological functions 

In its resting state, STAT3 is predominantly localised in the cytosol. STAT3 is 

activated in response to ligand binding to cytokine receptors, including growth 

hormone (GH), prolactin (Prl), and erythropoietin (Epo), as well as several growth 

factor receptors (EGF, insulin, IL-6 and others). When STAT3 is activated, it 

translocates to the nucleus and regulates the expression of certain genes. The 

activation is rapid and transient under normal conditions, but in most cancers 

STAT3 is excessively activated and phosphorylated. Although STAT3 monomers 

tend to be located in the cytoplasm, they can also be found in the mitochondria.87 

Constitutive STAT3 activation results in dysregulation of cell cycle control and 

apoptosis genes. STAT3 has been shown to be constitutively activated or 

overexpressed in breast, lung, prostate, ovarian, colon, gastric and head and 

neck cancers as well as melanoma, leukaemia, multiple myeloma and 

lymphoma88 (Table 3).  

STAT3 activation confers resistance to some conventional therapies that promote 

apoptosis to eliminate tumour cells. In fact, STAT3 drives the expression of 

proliferation and survival genes, like c-my, bcl-XL and mcl-189–91.STAT3’s ability 

to inhibit inflammation has been related to tumour development. The blocking of 

STAT3 signalling in tumour cells leads to the production of inflammatory signals, 

which in turn activates innate immune cells against tumour cells85,86.  

Blocking of STAT3 signalling leads to apoptosis of tumour cells, it also prevents 

the transformation of normal into tumour cells. Therefore, STAT3 is an attractive 

therapeutic target due to its over-expression in tumour cells and the fact that it 

can regulate the expression of a number of genes involved in oncogenesis. 
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Table 3 Status of STAT3 in various cancers 

Cancers Characterized by 

Elevated STAT3 

Expression or Activity 

Poor Prognosis 

Linked to High 

STAT3 Levels 

Upstream/Downstrem 

Abnormalities of STAT3 

Signaling 

Xenograft Models 

Responisve to Inhibition 

of STAT3 

Leukemia 
Renal cell 

carcinoma 

Elevated EFGR 

expression 

Head and neck squamous 

cell carcinoma 

Lymphomas Colorectal cancer 
Constitutively activated 

EGFR-RTK 
Gliobastoma 

Multiple myeloma Ovarian carcinoma Overexpression of SFKs 
Myeloproliferative 

neoplasms 

Breast cancer Gastric carcinoma Hyperactivated JAKs Renal cell carcinoma 

Prostate carcinoma 

Intestinal-type 

gastric 

adenocarcinoma 

Elevated TGFa/IL-6 Breast cancer 

Lung cancer (non-small-

cell) 

Cervical 

squamous-cell 

carcinoma 

- Lung adenocarcinoma 

Renal cell carcinonma 

lung cancer 
Osteosarcoma - 

Acute lymphoblastic 

leukemia 

Hepatocellular carcinoma 
Epithelial ovarian 

carcinoma 
- - 

Cholangiocarcinoma - - - 

Ovarian carcinoma - - - 

Pancreatic 

adenocarcinoma 
- - - 

Melanoma - - - 

Head and neck squamous 

cell carcinoma 
- - - 
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2.2 STAT family 

Seven mammalian STAT family members have been identified: STAT1, STAT2, 

STAT3, STAT4, STAT5 (STAT5A and STAT5B) and STAT6 (Table 4). STAT2, 

STAT4 and STAT6 are only activated in normal human cells. However, STAT1, 

STAT3 and STAT5 play an important role in cancer development. STAT1 acts as 

tumour suppressor, while STAT3 and STAT5 act as oncogenes.85,86 The main 

difference between STAT isoforms is their binding sequence specificity.92 

2.3 Structural features of the STAT family 

STAT proteins have a modular structure that include six different domains: N-

terminal coiled-coil domain, DNA binding domain,linker-domain, SH2 domain, 

and C-terminal transactivation domain (Figure 7).93 Each of these domains are 

important for the physiological functions of STAT proteins.94 The N-terminal 

domain is involved in STAT dimerisation and tetramerisation. While a STAT dimer 

is required to bind to DNA, STATs tetramerisation contributes to stability of that 

binding by interaction with low-affinity STAT binding sites and therefore 

increasing transcriptional activity.95 The DNA-binding domain (residues 320-494 

in human STAT3) forms complexes between STAT and DNA.96 The DNA-binding 

domain binds to DNA as a homodimer, adopting an immunoglobulin-fold 

structure. Between residues 500-585 (493-583 in human STAT3) there is an α-

helix linker domain followed by a SH2-domain97, which spans between residues 

600-700 (583-688 in human STAT3). The SH2-domain is essential for the binding 

of STATs to phosphorylated receptors and for the dimerisation between two 

activated STAT monomers. The dimerisation is enhanced by phospho-

tyrosine/SH2-domain interactions. The C-terminal transactivation domain (723-

770 in human STAT3) is natively unfolded and forms structure only upon binding 

with interacting partners and is involved in communication with transcriptional 

complexes.97 It contains two residues crucial for STAT activation: Y705 and 

S727. These are essential for the activation and dimerisation of STATs. 
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Table 4 Comparison of the human STAT family members 

STAT 

Isoform 

Structural 

features 

Amino-

acid 

stretch 

pTyr pSer 
STAT 

Isoform 

Structural 

features 

Amino-acid 

stretch 
pTyr pSer 

STAT1 N-terminal domain 1-136 Y701 S727 STAT5A N-terminal domain 1-144 Y694 S726 

 Coiled-coil domain 136-315    Coiled-coil domain 145-331   

 DNA-binding 

domain 
316-487    DNA-binding 

domain 
332-497   

 Linker domain 488-576    Linker domain 498-572   

 SH2 domain 577-682    SH2 domain 592-684   

 Transactivation 

domain 
712-750    Transactivation 

domain 
706-794   

STAT2 N-terminal domain 1-138 Y690 - STAT5B N-terminal domain 1-144 Y699 S731 

 Coiled-coil domain 139-315    Coiled-coil domain 145-331   

 DNA-binding 

domain 
316-485    DNA-binding 

domain 
332-497   

 Linker domain 486-574    Linker domain 498-572   

 SH2 domain 575-680    SH2 domain 592-684   

 Transactivation 

domain 
698-851    Transactivation 

domain 
711-787   

STAT3 N-terminal domain 1-136 Y705 S727 STAT6 N-terminal domain 1-123 Y641 - 

 Coiled-coil domain 137-319    Coiled-coil domain 124-272   

 DNA-binding 

domain 
320-493    DNA-binding 

domain 
273-441   

 Linker domain 494-582    Linker domain 442-591   

 SH2 domain 583-688    SH2 domain 592-685   

 Transactivation 

domain 
723-770    Transactivation 

domain 
711-787   

STAT4 N-terminal domain 1-136 Y693 S721      

 Coiled-coil domain 137-315        

 DNA-binding 

domain 
316-483        

 Linker domain 484-571        

 SH2 domain 572-677        

 Transactivation 

domain 
705-748        
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Figure 7 Crystal of STAT3-DNA complex (PDB code: 1BG1) displayed in cartoon representation. 

Different domains are colour coded. DNA duplex (blue) is located between the two monomers 

2.4 STAT3 pathway and activation 

STAT3 is involved in the Janus Kinase (JAK) pathway.  It can be activated via 

the tyrosine phosphorylation cascade after ligand binding and stimulation of the 

cytokine receptor-kinase complex and growth factor complex like epidermal 

growth factor receptors (EGFRs), interleukin-6 (IL-6), fibroblast growth factor 

receptors (FGFRs), vascular endothelial growth factor receptors (VEGFRs) and 

more98 (Figure 8). These receptors will induce the phosphorylation of tyrosine 

residues on specific sites at the cytoplasmic domain of the receptors. STAT3 is 

phosphorylated at two sites, Y705 and S727. The phosphorylation of STAT3 

induces its dimerisation via (pTyr)-SH2 domain interactions. Next, the homodimer 
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translocates to the nucleus and activates specific target genes that promote the 

transcription of DNA.  

 

Figure 8 Graphical representation of the STAT3 pathway and small molecule inhibitors proposed 

to act at different stages 

The formation of the dimer is crucial for STAT3 activation. Previously it was 

thought that by suppressing the phosphorylation of STAT3 the pathway would be 

switched off, but recently it has been described that unphosphorylated STAT3 is 

able to form homodimers, via reciprocal interaction of their SH2 domains and 

translocation to the nucleus, where they bind to specific DNA sequences.99 

2.5 Crystal structures of STAT3 

For the structure-guided development of new STAT3 inhibitors, it is required to 

gather information about the protein and more specifically the binding sites. 

Therefore, it is crucial to access the crystal structure for structure-guided studies 

including drug design. Currently, there are only five crystal structures of STAT3 

deposited in the Protein Data Bank:100 



25 

 

• 1BG1:101 Phosphorylated STAT3 homodimer bound to DNA (resolution: 

2.25 Å) (organism: Mus musculus) (residues 127-722) (Figure 9A) 

• 3CWG:102 Unphosphorylated STAT3 core fragment (resolution: 3.05 Å) 

(organism :Mus musculus) (residues 127-688) (Figure 9B) 

• 4E68:99 Unphosphorylated STAT3 core fragment bound to DNA 

(resolution: 2.59 Å) (organism: Mus musculus, synthetic construct) 

(residues 127-722) (Figure 9C) 

• 4ZIA:103 Crystal structure of STAT3 N-terminal domain (resolution: 2.70 Å) 

(organism: Mus musculus) (residues 1-127) (Figure 9D) 

• 6QHD:104 Lysine acetylated and tyrosine phosphorylated STAT3 in 

complex with DNA (resolution 2.85 Å) (organism: Homo sapiens) (residues 

127-722) (Figure 9E) 

 

Figure 9 Crystallographic STAT3 structures available to date. A) 1BG1, B) 3CWG, C) 4E68, D) 

4ZIA and E) 6QHD100 

All these structures have some regions of tertiary structure missing in the protein-

protein interaction domains. A flexible loop of residues containing the tyrosine 

residue Y705, which is enhancing dimer stabilisation and interaction surface, is 

missing. This loop interacts with the partner SH2 domain, stabilises the 
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association, and binds their phosphorylated Tyr into a specific binding site on the 

partner SH2 domain. This uncertainty of the structural arrangement makes the 

application of computational drug design techniques very challenging. The lack 

of crystal structures with a bound ligand makes the prediction of potential binding 

sites even more challenging. 

2.6 STAT3 “druggability” studies and reported inhibitors 

STAT3 can be inhibited directly or indirectly. Indirect inhibition of STAT3 can be 

achieved by the blockage of upstream tyrosine kinases or other factors involved 

in the STAT3 pathway. Indirect inhibitors are characterised by a non-selective 

mechanism of actions, which increases the likelihood of undesirable toxicity and 

other adverse off-target effects. 

The problem with this strategy is that the STAT3 pathway may not be effectively 

blocked by a single compound and that compounds may inhibit other downstream 

targets. Furthermore, in cells in which proliferation results from the inactivation of 

negative regulators of signaling the inhibition of upstream signaling pathways 

may have little effect86,105. The nonspecific mechanism of action of indirect 

inhibitors highlights the restriction of this approach. 

Direct inhibition can be achieved by targeting one of the three structural STAT3 

domains: SH2 domain, DNA binding domain, and N-terminal domain. Direct 

inhibition should block one or more processes related to STAT3 signaling, 

including STAT3 phosphorylation, dimerisation, DNA binding, and STAT3-

induced expression of genes. 

Many authors focused on inhibiting the SH2 domain, considering its key role in 

STAT3 activation105–108. The SH2 domain is responsible for the interaction with 

phosphorylated Tyrosine residues within the cytoplasmic portion of the upstream 

receptors. It is also involved in the dimerisation of STAT3. Therefore, inhibition of 

SH2 domain by small molecules is expected to suppress the phosphorylation and 

activation of STAT3, as well as inhibit STAT3-DNA interaction.109 

Several compounds have been reported as binders that effectively compete with 

phosphorylated STAT3 monomers for the pTyr-binding site. Some examples of 
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these inhibitors are the salicylic acid derivatives105, S31-201110, stattic111 and 

S31-1757112 (Figure 8). They all have been described as SH2 inhibitors, but there 

is no conclusive evidence that their mechanism of action is by binding in the pTyr-

binding site. 

Several authors showed discrepancies regarding the SH2 sub-pockets that are 

targeted by small molecule inhibitors. There is no consensus: some authors 

describe three sub-pockets, which do not match in most cases, and some others 

describe only two sub-pockets (Figure 10). There is mostly discrepancy in which 

is the third sub-pocket. 

 

Figure 10 Most reports agree that STAT3 SH2 binding site is formed by three pockets: pY+0, pY-

X and pY+1  
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Table 5 STAT3 binding sites defined by different authors 

Park et al.113 Poli et al.114 Chiao et al.115 

Pocket 

pY+0 

Pocket 

pY-X 

Pocket 

pY+1 

Pocket 

pY 

Pocket 

pY+1 

Pocket 

pY 

Pocket 

pY-X 

K591 M586 S636 K591 S636 K591 M586 

R609 G587 Q635 R609 W623 R609 G587 

S611 F588 T620 S611 Q635 S611 F588 

E612 I589 K626 E612 V637 E612 I589 

S613 S590  S613 Y657 S613 S590 

Shahani et al.105 Siddiquee et al.106 Fletcher et al.110 

Pocket A Pocket B Pocket C Pocket A Pocket B Pocket A Pocket B 

K591 I634 W623 K591 K592 K591 K592 

R609 R595 V637 R609 R595 R609 R595 

S611 E594 I659 S611 I597 S611 R595 

S613 I597 F716 S613 I634 S613 I597 

  K626    I634 

Pallandre et al.116 Zhang et al.105 

Pocket A Pocket B Pocket C Pocket A Pocket B Pocket C 

K591 R595 Q635 T620 K591 R595 I659 

R609 I634 S636 F621 E594 I634 W623 

S611  W623 P639 R609  V637 

S613  V637 Y640 E612  E638 

S614  E638 Y657    

   I659    

 

Table 5 summarises some of the different descriptions by several authors. As 

showed, in most cases the pockets A or pTyr (Figure 10) are identical or highly 

similar, containing K591 and R609 in all descriptions. Residues like R595, W623 

and S636, are present in most identifications, but in some studies completely 
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different pockets are annotated115,117. The lack of a STAT3 co-crystallised with 

ligands hampers the identification of STAT3 binding sites. 

Another issue in the STAT3 binding site annotation is that these binding sites 

have been identified solely by means of molecular docking. Considering the 

number of drug design tools available to date that would be able to validate these 

findings, relying solely on molecular docking results renders those predictions not 

trustworthy and would require further validation studies. 

2.6.1 Classification of direct inhibitors 

The direct inhibitors can be divided into different categories: 

• Peptides were the first compounds designed for inhibiting STAT3 in a 

direct approach. They block aberrant activity of STAT3 in cancer cells via 

preventing protein dimerisation. Their specific target is the SH2 domain, at 

the pY705 level. Starting from the sequence around pTyr705, the first 

phosphopeptide inhibitor PpYLKTK was developed.118 This 

phosphopeptide inhibits STAT3 activity in tumour cell lines, induces cell 

death and has a high affinity and specificity for STAT3.118 

While peptide‐based inhibitors can bind to STAT3 with high affinities, they 

suffer from low metabolic stability and the lack of cellular permeability due 

to their molecular nature and the negative charges on the phosphotyrosine 

group. However, they provided an excellent starting point for the 

development of more cell‐permeable peptidomimetics105,109,119. 

• Peptidomimetics are inhibitors that mimic pYX1X2Q motif and inhibits 

STAT3 dimerisation by competitive binding to the SH2 domain.  

• Natural compounds. Only a small number of natural compounds were 

found to directly target STAT3 protein like cryptotanshinone, a natural 

compound extracted from the root of Salvia Miltiorrhiza Bunge.120,121 

Previously curcumin was thought to be a relevant STAT3 inhibitor but 

recent studies have classified this molecule both as a PAINS (panassay 

interference compounds) and an IMPS (invalid metabolic panaceas), 

proving that curcumin is an unstable, reactive, nonbioavailable compound 

and, therefore, a highly improbable lead.122 
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• Small molecules. Non‐peptide small‐molecule inhibitors are cell‐

permeable, but most of the reported compounds bind STAT3 with weak 

affinities (IC50 values in the micromolar range) and the cellular activity 

cannot be clearly attributed to STAT3 targeting105,119,123. 

The non‐peptide small molecules represent a more attractive approach for 

inhibiting STAT3 directly, compared to peptides and peptidomimetics, 

given their cell permeability and physicochemical properties. However, 

optimisation of their structures and increasing the binding affinity is 

required to improve their in vivo activity and efficacy. 

• Oligonucleotides represent a new, highly selective and low toxic class of 

drugs for targeting STAT3, which has shown promising results in vivo on 

nude mice xenografts119. 

2.6.2 SH2 domain inhibitors 

Table 6 shows the most relevant STAT3 SH2 domain inhibitors reported up to 

date in the literature. Structures of these compounds are shown in Figure 11. 

Table 6 SH2 domain inhibitors described to date. 

Inhibitor Name Reference 

PpYLKTK 118 

SPI 124 

S31-201 110 

S31-M2001 125 

S31-1757 88 

FLL32 126 

Cryptotashinone 120 

STA-21 107 

Stattic 127 
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Celecoxib 128 

Niclosamide 129 

LLL-12 130 

LLL-3 131 

TPCA-1 132 

BBI-608/Napabucasin   

 

Peptidomimetic inhibitors 

• S31‐M2001 (Figure 11) is a novel oxazole‐based peptidomimetic that 

selectively disrupts STAT3 dimerisation and therefore inhibits STAT3 

transcription and migration in both human and mouse cells.118 

Natural compounds.  

• Cryptotanshinone (Figure 11) is a natural compound that binds to the 

SH2 domain and inhibits the formation of STAT3 dimers. 

Cryptotanshinone inhibits the STAT3 phosphorylation and decreases the 

expression of STAT3 downstream target genes involved in cell survival.113 

Small molecules. Some small compounds have been developed to inhibit 

STAT3’s SH2 domain by the means of computational drug design techniques 

such as virtual screening and QSAR.98,101 These include STA‐21, stattic and S31‐

201. 

• S31‐201 (Figure 11) is a low‐molecular‐weight salicylic acid derivate that 

blocks STAT3 dimerisation through SH2 domain binding. Furthermore, 

S31‐201 induces apoptosis in malignant cell by suppressing STAT3‐

dependent expression of cyclin D1, Bcl‐XL, and surviving.103 
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• Stattic (Figure 11) inhibits selectively the dimerisation and DNA binding of 

STAT3, by preventing activating enzymes to the STAT3 SH2 domain. As 

a result, stattic induces apoptosis in breast cancer cell lines.104 

• STA‐21 (Figure 11) is an antibiotic that specifically binds to SH2 domain 

inhibiting the STAT3 dimerisation and nuclear translocations. It has been 

reported that STA‐21 inhibits breast cancer cell growth and survival.100 

• Celecoxib (Figure 11) also binds to the SH2 domain of STAT3 and inhibit 

the binding of the native peptide. It has been reported that this inhibitor 

reduces cell viability and migration in human rhabdomyosarcoma cells.121 

• LLL12 (Figure 11) inhibits STAT3 phosphorylation, DNA-binding and 

induces apoptosis in various cell lines.123 

• TPCA-1 (Figure 11) blocks STAT recruitment to upstream kinases by 

docking into SH2 domain. Is an effective inhibitor of STAT3 

phosphorylation, DNA binding, and transactivation in vivo.125 
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Figure 11 Chemical structures of described STAT3 inhibitors 

2.6.3 Targeting the DNA binding domain BBI-608  

Obtaining a ligand that effectively targets the SH2 domain is a hard quest. Most 

of the described inhibitors did not succeed in the drug design development 
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pipeline due to their poor activity, selectivity and toxicity issues. The lack of a co-

crystallised STAT3 structure impedes a structure-guided drug design, as the most 

favourable protein conformation for binding is unknown. Although many reported 

STAT3 inhibitors are considered to target SH2, none of them has made it to clinic. 

The proposed mode of action (MoA) of those inhibitors remains elusive as it is 

not supported by structural biology data and relies solely on molecular docking 

calculations.  

At the time of writing of this dissertation, only three direct STAT3 inhibitors are 

undergoing clinical trials. OPB-51602 and OPB-31121 (Otsuka Pharmaceuticals) 

have reached early phase clinical trials in both advanced solid 

malignancies127,128. Although signals of efficacy were observed in EGFR inhibitor-

resistant non-small cell lung cancer (NSCLC) and gastrointestinal malignancies, 

the further development of these compounds was limited by concerns over their 

unpredictable PK profiles and potentially severe toxicities129. A plausible 

explanation for these side-effects is the ubiquitous expression of STAT3 within 

the body and its diverse physiological roles, including the modulation of 

mitochondrial metabolism and the immune system130. Second-generation OPB 

compounds with more favourable toxicity profiles have been identified and are 

currently being evaluated in early phase clinical trials128. OPB ligands are claimed 

to bind in the SH2 binding site, but in an allosteric position close to the canonical 

pTyr site. TTI-101 (Tivardi Therapeutics), which is another STAT3 inhibitor, is 

currently being evaluated in Phase I clinical trials for a range of advanced 

cancers, including breast cancer128.TTI-101 is an antisense oligonucleotide and 

its mechanism is completely different from small molecule inhibitors. 

Napabucasin/BBI-608 is a first-in-class cancer stemness inhibitor that 

targets STAT3131 , which is being tested (Phase 3) as a treatment in advanced 

colorectal cancer132. The BBI-608 patent documents contain a solved crystal 

structure of drug-STAT3 complex, with the BBI-608 bound in a pocket between 

the linker and DNA binding domain (Figure 12). The structure has not been 

deposited to the PDB Data Bank, though 133. The community has not been eager 

on targeting the DBD due to the belief that targeting DBD of transcription factors 

has potentially limited selectivity134–136. Hence, DBDs has been considered 

“undrugabble”. This consensus has been challenged by the solution of BBI-608 
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structure bound to the DBD, which serves as “proof-of-concept” for direct 

inhibition of STAT3 DBD by small molecules. BBI-608 has been originally 

described as a SH2 domain inhibitor, and its derivatives are considered as such 

in the literature (again based on insufficient in silico methods such as virtual 

screening). In the recent years, interest in targeting STAT3 DBD has grown, and 

there is already a handful of described inhibitors claim to bind in the DBD based 

on their studies.134,135,137 Small molecule ligands shikonin and the inS family of 

compounds (Figure 11) have been reported as effective STAT3 DBD inhibitors 

as the protein is dimerised upon inhibition135.   

 

Figure 12 BBBI-608 binding conformation as per Ji et al133 

2.7 Inter-domain mutations affect STAT3 activity 

It has been recently reported by Mertens et al.138 that mutations in the linker 

domain strongly suggest contacts between this domain and both the DNA binding 

and SH2 domains. These are likely to cause changes that strongly affect STAT3 

activity. Residues within the linker domain (Figure 13), which form inter-domain 
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interactions, are involved in the hydrogen bonding and are presumably crucial for 

maintaining STAT3 biological activity. W564 forms the H-bond with SH2 domain 

S611, and W546 and K551 form an H-bond with E434. Alanine scanning of these 

residues showed a significantly drop in STAT3 DNA-binding and phosphorylation 

compared to the wild type protein. These destabilising effects could provide a 

plausible mechanism for STAT3 disruption138. 

 

Figure 13 Location of mutated residues in the STAT3 linker domain structure. View of mouse 

STAT3 in complex with DNA (PDB ID: 1BG1). DNA binding domain (red), linker domain (orange) 

and SH2 domain (cyan), are highlighted. Hydrogen bonds are highlighted by yellow dashes and 

distances labelled in angstroms.  

There also several reports that STAT3 undergoes allosteric communication 

across domains.139 Solution NMR analysis shows that during pTyr binding and 

dimer formation (which occurs via the SH2 domain) considerable chemical shift 

perturbations are observed in the linker domain residues which are not directly 

involved in this processes.139 One of the residues with the largest chemical shift 

perturbation upon binding of p-Tyr is I568, an interfacial residue between SH2 

and linker domain, which alongside V572  is involved in hydrophobic interactions 

with F610 in SH2. These results show importance of allosteric sites within STAT3, 

and suggest focusing beyond the SH2 domain as a viable strategy for structure-

guided development of novel STAT3 inhibitors. Potential novel allosteric sites at 

STAT3, which could be mapped, could then be rendered as alternative binding 

sites for small molecule inhibitors. 
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Chapter 3 Objectives 

The main goal of this work was to develop a robust computational method to 

identify new, transient and/or cryptic “druggable” sites on hard-to-target proteins, 

such as STAT3. To achieve this goal, the following objectives were proposed: 

1. Develop a workflow to identify potentially “druggable” allosteric and/or 

cryptic binding sites through the means of cosolvent molecular 

dynamics simulations. 

2. Develop a robust, easy-to-use, and open source platform to analyse 

and interpret the results of cosolvent MD simulations, in terms of 

scoring and ranking of the identified “druggable” binding sites. 

3. Apply the developed method in objective 2 to identify potential STAT3 

allosteric binding sites, which could not be identified via conventional 

computational approaches. 

4. Characterise STAT3 SH2 domain “druggability” in terms of the 

behaviour of the activation peptide binding site by means of equilibrium 

atomistic MD simulations and molecular docking studies, in order to 

assess the local flexibility and transient cavities. Molecular docking 

would be performed to evaluate the conservation of the pTyr binding 

site and to identify any potential binding pockets unreported to date. 

5. Assess the effect of reported inter-domain mutations on STAT3 

structure, dynamics, and ligand binding by means of umbrella sampling 

simulations of the STAT3-DNA complexes. These results would enable 

understanding of STAT3 allostery at the atomistic level. 

6. Evaluate the binding mode and the mechanism of action of the STAT3 

inhibitor BBI-608 by means of molecular docking, equilibrium MD, and 

umbrella sampling simulations. The calculated structure of BBI-608 

bound to STAT3 would facilitate the structure-guided design of potent 

and selective allosteric STAT3 inhibitors.  

  



38 

 

Chapter 4 Methodology 

The lack of a detailed understanding of how difficult to target proteins such as 

STAT3 interact with their ligands remains a major roadblock in advancing drug 

discovery efforts and uncover allosteric regulatory mechanisms. Reliable 

mapping of novel binding sites is essential for designing specific inhibitors, thus 

to develop new therapeutics in structure-guided manner. 

This chapter covers the methods applied in this project. A need to include protein 

flexibility throughout binding events and druggability assessment, combined with 

the proteins’ large size, requires usage of methods based on classical molecular 

mechanics, which are relatively fast and proven successful in structure-based 

drug discovery efforts. These comprise molecular dynamics simulations 

(equilibrium as well as enhanced sampling techniques, including cosolvent 

dynamics) and molecular docking/virtual screening. 

4.1 Classical molecular mechanics 

Computational methods applied in structure-based studies of biomolecular 

systems can be divided into two main groups based on their levels of theory. 

Quantum mechanics (QM) describes electrons explicitly, and is used to describe 

the process that involves their movement in atoms (and molecules), like breaking 

or formation of covalent bonds.140 QM methods are very accurate yet they 

requires a high amount of computational resources and time, therefore 

application of these methods is limited to small systems. In classical molecular 

mechanics (MM), which utilises Born-Oppenheimer approximation (Equation 1), 

the electrons are treated implicitly and each atom is treated as a single particle. 

The Born-Oppenheimer approximation dictates that the nucleus motions not 

affected by the electronic movement, given the fact that the nucleus is thousand 

times heavier than the electron. Therefore, the electron-nucleus motion is 

decorrelated and the solution of the problem in the Schrödinger equation can be 

narrowed down to electronic motion only. This allows to study the structure and 

dynamics of large systems such as protein-ligand complexes, but it does not 

permit any covalent bond breaking or making. 
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�̂�Ψ(𝑞𝑖, 𝑄𝐼) = 𝐸Ψ(𝑞𝑖, 𝑄𝐼)     Equation 1 

                  �̂� =  �̂� 𝑒𝑙 + �̂� 𝑁 

Ψ(𝑞𝑖, 𝑄𝐼) ≈ Ψ𝑒𝑙(𝑞𝑖: 𝑄𝐼)Ψ𝑁𝑈𝐶(𝑄𝐼) 

 Both MM and QM levels of theory permits to:140 

• Calculate the free binding energy changes associated with the formation 

of non-covalent protein-ligand complexes and determine their properties 

(QM and MM levels of theory) 

• Model the chemical reactions (QM only) 

• Perform conformational analysis of small molecules (QM and MM) 

• Identify the near-native structure of the protein-ligand complex (molecular 

docking) and rank the set of small molecule ligands based on their 

calculated binding affinity to a given protein target (QM and MM; virtual 

screening and hit identification) 

• Suggest the changes in the ligand molecule to improve the binding affinity 

(QM and MM; hit-to-lead and lead optimisation) 

• Assess the flexibility and conformational changes within the system of 

interest (MM; classical molecular dynamics) 

MM relies on three basic principles. The first one, also known as the Anfinsen 

dogma of protein folding, is the thermodynamic hypothesis. It states that a 

(macro)molecule driven by thermodynamic forces will change its conformation 

from the structure that represents a high energy state to a native structure which 

represents the global energy minimum state in a reversible fashion.140,141 The 

second principle, the additive assumption, states that the total potential energy 

(V) of a system can be written as a sum of different potentials with simple physical 

interpretations (bond stretching, angle bending, Coulombic interactions, 

dispersion forces, etc.). The third principle, which is the transferability, is based 

on the assumption that parameters derived from small molecules such as bond 

lengths and angles can be transferred to larger, more complex, macromolecular 

systems, such as proteins and nucleic acids. Therefore, systems of different sizes 

can be studied using the same physical model (the force field). 
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4.1.1 Force field 

The force field is a core concept in classical molecular mechanics, which 

approximates the potential energy of a system with a combination of bonded 

(intramolecular) and non-bonded (intra- and intermolecular) contributions 

(Equation 2).  

𝑉𝑡𝑜𝑡𝑎𝑙 =  𝑉𝑏𝑜𝑛𝑑 + 𝑉𝑎𝑛𝑔𝑙𝑒𝑙 + 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + 𝑉𝐿𝐽    Equation 2 

The harmonic terms describing the distortions from equilibrium positions in bond-

stretching and angle-bending can be calculated using Equation 3 and Equation 4 

respectively.140 

𝑉𝑏𝑜𝑛𝑑 =  ∑
1

2

𝑁𝑏

𝑖=1

𝑘𝑖
𝑏(𝑟𝑖 − 𝑟0,𝑖)

2 

Equation 3 

𝑉𝑎𝑛𝑔𝑙𝑒 =  ∑
1

2

𝑁Θ

𝑖=1

𝑘𝑖
Θ(Θ𝑖 − Θ0,𝑖)

2 

Equation 4 

The term constructed to describe the torsional motion of dihedral angles can be 

calculated from (Equation 5). 

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 =  ∑
1

2

𝑁ϕ

𝑖=1

𝑘𝑖
ϕ

(1 + cos (𝑛𝑖ϕ𝑖 − 𝛿)2) 

Equation 5 

All the above interactions are represented by harmonic potentials for the bond 

lengths  𝑟𝑖, bond angle Θ𝑖, dihedral angle ϕ𝑖  and phase angle 𝛿 that takes values 

of either 0º or 180º.  The kb, k, kϕ  denote the force constants for the bond-

stretching, angle-bending and dihedral angle terms.  

The non-bonded interactions are more distant and not connected by covalent 

bonds. These can be divided in to short-range and long-range. The short-range 

interactions correspond to the van der Waals interactions and describe the 
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repulsion of two atoms due to overlapping valence electrons and attraction due 

to induction and dispersion forces. These interactions are commonly 

approximated by the 12-6 Lennard-Jones potential (Equation  6).142 The distance 

dependence of the repulsion term is proportional to 𝑟𝑖𝑗
−12 inter-atomic distance 

mimicking the exponential soft-wall behaviour, and proportional to 𝑟𝑖𝑗
−6  with 

regards to the attraction. The 12-6 Lennard-Jones potential on a given particle 𝑖 

due to particles j in a system is described by:  

𝑉𝐿𝐽
𝑖𝑗

= ∑ 4𝜖𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖≠𝑗

 
Equation 6 

where 𝜖𝑖𝑗 denotes the depth of the potential well, or region surrounding a local 

minimum of potential energy, and 𝑟𝑖𝑗 is a finite distance at which the inter-particle 

potential is zero. 

The long-range interactions are the consequence of electric charges in the 

system. The individual atoms of a molecule are charged, allowing for the use of 

Coulomb’s law to describe the mutual interactions between two (partial) atomic 

charges, and providing multipoles for molecules or individual charge groups. The 

Coulomb potential on particle 𝑖 due to particle j reads (Equation 7): 

𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = ∑
1

4𝜋𝜖0𝜖𝑟𝑒𝑙
𝑖≠𝑗

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 

Equation 7 

where 𝜖𝑟𝑒𝑙 is dielectric constant of the medium. The electrostatic interactions 

decrease as 𝑟𝑖𝑗
−1 increases, making them longer ranged than the van der Waals 

interactions. 

The most widely used biomolecular force fields include the AMBER143,144, 

CHARMM145, GROMOS146 and OPLS147 force fields. In this work, AMBER force 

field (AMBERFF99 SB-ILDN148) has been used. These force fields share similar 

mathematical functional forms and they differ in the parameters that describe the 

various energetic components and in the methods used to obtain these 
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parameters. Recent force fields were in the most part defined by fitting 

parameters to data obtained from quantum-level calculations or experiments on 

small molecules thought to mimic the properties of proteins.149 Most of these force 

fields have not changed in some time, but a few parameters such as a few torsion 

angles have been refined to improve their accuracy for proteins and peptides. 

Although, standard and commonly used force fields like Amber ff99-SBILDN tend 

to sample globular proteins reasonably well, their performance is subpar with 

intrinsically disordered proteins (IDPs) and other very flexible regions of a 

protein.150 Therefore, there have been force fields specifically designed to 

properly model the folding of IDPs such as Amber ff03ws, the counterpart was 

that these force fields are so fitted to IDPs that tend to sample the behavior of 

folded proteins. Recently, a rewrite of a99SB by Robutstelli et al (a99SB-disp) 

also helped improve the modelling of IDPs along with an accurate description of 

folded protein properties.151 In this work the Amber ff99-SBILDN was solely used 

for MD simulation as the studied systems correspond to folded proteins. A99SB-

disp could have been used to better sample very flexible regions of the studied 

proteins such as STAT3’s transactivation domain but sadly these corrections 

were not available upon the time the simulations were performed. 

4.2 Molecular dynamics 

Molecular dynamics (MD) consist in a computer simulation technique that 

predicts the time evolution of a system of interacting particles (atoms, molecules, 

beads, etc). An outcome of an MD simulation is a trajectory that specifies how 

the positions and velocities of the particles in the system vary with time. Analysis 

of the trajectory for a given biomolecular system can provide valuable information 

concerning molecular geometries and energies; mean atomic fluctuations; local 

fluctuations (like formation/breakage of hydrogen bonds, water/solute/ion 

interaction patterns, or nucleic-acid backbone torsion or motions); 

enzyme/substrate binding; free energies and even large-scale conformational 

changes of macromolecules such as small protein folding.140 

The principle behind the classical MD is Newton’s second law of motion, used to 

calculate the dynamics of the system (Equation 8). 
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�⃗� = 𝑚�⃗� Equation 8 

If the mass of each particle in the system is known and the forces are derived 

from the interactions with surrounding particles using the force field (Chapter 4.1), 

the acceleration of each particle can be calculated. Then, the instantaneous 

velocity and the displacement can be calculated by the numerical integration from 

Equation 9 and Equation 10: 

�⃗�𝑖(𝑡)

𝑚𝑖
= �⃗�𝑖(𝑡) =

𝑑�⃗�𝑖(𝑡)

𝑑𝑡
 

Equation 9 

�⃗�𝑖(𝑡) =
𝑑𝑟𝑖(𝑡)

𝑑𝑡
  

Equation 10 

The force acting on each atom 𝑖 in the system is given by the negative gradient 

of potential energy function V, which depends on the coordinates of all other 

atoms in the system (Equation 11)140 

�⃗�𝑖(𝑡) =
−𝛿𝑉(𝑟1(𝑡), 𝑟2(𝑡), … , 𝑟𝑁(𝑡)

𝛿𝑟𝑖(𝑡)
 

Equation 11 

If the potential energy of the system is known and the coordinates for a starting 

structure and a set of velocities are given, then the force acting on each atom can 

be calculated and a new set of coordinates is generated by advancing the 

simulation in a short span of time called timestep (𝛿𝑡), from which new forces are 

calculated. These integration cycles are usually calculated via a leapfrog 

integration method. This method defines the positions and velocities as time-

dependent Taylor series, which can be integrated to obtain its related primitive 

function. Repetition of this procedure will generate a trajectory corresponding to 

the evolution of the system in time (Figure 14).140 In case the velocities are 

unknown (e.g. first equilibration step) these are calculated from a Maxwell 

distribution for a set temperature. 
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Figure 14 An overall scheme of the molecular dynamics simulation 

In order to reproduce the behaviour of real molecules in motion, the force field 

terms are parameterised to fit quantum‐mechanical calculations and 

experimental data. Parameterisation includes identifying the ideal stiffness and 

lengths of the springs that describe chemical bonding and atomic angles, 

determining the most appropriate partial atomic charges used for calculating 

electrostatic‐interaction energies, identifying the proper Van der Waals atomic 

radii, and more.152  

Application of molecular dynamics simulations to ligand-protein interaction are 

still limited by two major roadblocks: inaccuracies in the force fields applied, and  

an insufficient sampling problem, which is related to time scales accessible (up 

to microseconds, due to high computational costs of longer simulations).152 
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4.2.1 Classic/canonical MD 

MD simulations with the atomistic resolution are well-established and deliver a 

generous amount of details and insights for the studied system allowing 

investigation of intra and inter-molecular processes. In the atomistic description, 

each atom in the system is defined as a single interaction centre, and the forces 

acting on it are evaluated every time step. The time step is limited by the fastest 

vibrations in the system (C-H) that corresponds to 1-2 fs. A time step of this size 

allows for stable numerical integration, however, limits the accessible time and a 

total length for biomolecular simulations. Thus, studies of conformational 

changes of large proteins are out of reach for conventional atomistic simulations 

at equilibrium. Therefore, the use of full atomistic models is restricted to relatively 

small systems or short time scales (nanoseconds to microseconds). The clear 

advantage of the atomistic simulation is that the results are detailed and enable 

to study the phenomena which are difficult to access by experimental methods, 

e.g. the lifetime of a single hydrogen bond.  

4.2.2 Conditions in molecular dynamics simulations 

Simulations are usually carried out in the explicit solvent (water), and the water 

molecules are added to fully immerse the system in the box (Figure 15). There 

are many water models available for MD simulations, three-point TIP3P water 

model being the most popular and the one used in this work. The system should 

have periodic boundary conditions, meaning that molecules that exit one side of 

the system will wrap to the other side of it. This is to enable the constant number 

of particles in the simulation box, which is required by statistical mechanical 

ensemble (NVT or NPT), and to avoid finite-size effects. It is important that the 

periodic box would be large enough to embed the whole molecular system. 
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Figure 15 Simulated protein in a cubic TIP3P water box 

Three input files are needed to start the simulations. These are the topology file, 

the coordinate file, and the force field. The topology file contains all the 

information about the structure and connectivity between atoms in the system. 

A typical MD simulation consists of several subsequent stages, which are outlined 

in Table 7. 

Table 7 Different stages of an MD dynamics performed 

Stage Purpose 

Energy minimisation Adjust the structure to the force field, particular 

distribution of solvent molecules and relaxation 

of possible steric clashes 

Heating (NVT) Linear heating of the system from 0K to 300K 

Equilibration (NPT) Equilibration at constant pressure. Used to 

equilibrate kinetic and potential energies 

Production Sample structural and dynamics characteristics 
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4.2.2.1 Energy minimization 

The methods to obtain the protein structure tend to present several atomic 

clashes. Therefore, in order to assure the structural stability of the system, energy 

minimisation is required. If the system energy is too high, the resulting force 

vector will have a momentaneous high intensity, disrupting the simulation box 

and crashing the integration cycle. Energy minimisation consists in an approach 

to reduce the probability of the aforementioned crash. One of the most popular 

methods to reach an energy minimum in molecular mechanics are the steepest 

descent algorithm. Nevertheless, it should be considered that the system might 

get trapped in a local energy well, therefore a more global method to sample the 

global energy minimum might be required. 

The steepest descent (SD)153 algorithm is a method based on the derivative of 

the potential energy. For every minimisation cycle, the 3N dimension position 

vector 𝑟𝑛+1 can be calculated following equation 12. 

𝑟𝑛+1 = 𝑟𝑛

𝐹𝑛

𝑀𝐴𝑋(𝐹𝑛)
ℎ𝑛 

Equation 12 

Where 𝑟𝑛 is the starting position, 𝐹𝑛 is the force applied in that atom, 𝑀𝐴𝑋(𝐹𝑛) is 

the maximum force applied in any atom and ℎ𝑛 corresponds to the atomic 

displacement for that cycle. For this reason, the process goes through all system 

atoms, and the convergence criteria is either a predefined number of cycles or an 

upper threshold of the system highest force. 

SD is a simple method that tends to be quick. Due to its use of only orthogonal 

gradients, it is prone to get trapped in a local energetic well153. This cause might 

be attenuated by modifying the parameter ℎ (maximum allowed displacement per 

cycle), with a progressive decrease in a series of cycles to improve the final 

configuration. From a biomolecular point of view, the protein’s starting 

configuration tends to be close to the global minimum, since in most cases 

corresponds to a representation of the native state. Nevertheless, issues with the 

experimental data upon resolving its structures may arise erroneous sidechain 
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configurations that energy minimisation should solve. Once the system is 

energetically minimised, the thermodynamic variables need to be defined. 

4.2.2.2 Reaching thermodynamic equilibrium 

In principle, the model obtained after the energy minimisation procedure has a 

temperature of 0K, as there is no dynamical atomic motion assigned to it. 

Therefore, the system temperature must be resolved. A specific condition of the 

experiment should temperature increase. In the case of system heating and NVT 

ensemble is used. 

The NVT ensemble is a statistical ensemble that represents the probability of 

accessible states in a predefined configuration. For this case, the number of 

particles (N), the system volume (V) and the temperature (T) are set as constant. 

The probabilities assigned to each microstate of the system follow equation 13: 

𝜌 =
𝑒

−𝐸
𝑘𝑇

𝑍
 

Equation 13 

Where 𝑘 corresponds to the Boltzmann constant, 𝑇 to the temperature, 𝐸 is the 

state energy and 𝑍 or partition function is (Equation 14): 

𝑍 = ∑  

𝑛

1

𝑒
−𝐸
𝑘𝑇  

Equation 14 

As the probabilities in this ensemble are not dependant on any other variable (i.e. 

pressure), this approach can be used for heating the system. Position restraints 

are applied to ensure that this process does not affect the starting structural 

conformation. These restraints tend to be applied through the addition of a 

harmonic potential on selected protein atoms.140 

Next, in order to reach a microstate temperature T in a restrained configuration, 

a distribution of velocities is applied to the atoms (Equation 15). 
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∑

𝑚𝑖|𝑉𝑖|
2

2
⁄

𝑁

𝑖=1

 =  
𝑘𝑇

2
(3𝑁 − 𝑁𝑐) 

Equation 15 

Where 𝑚𝑖is the mass and |𝑉𝑖|
2 corresponds to the average velocity of atom 𝑖, 𝑁 

to the total number of particles and 𝑁𝑐 to the number of restrained components. 

This corresponds to a Boltzmann-Maxwell distribution of velocities that reaches 

the desired temperature154. To keep the temperature updated through the 

integration timesteps, a thermostat algorithm is applied to the system. A simple 

method to change the temperature corresponds to rescaling the velocity for every 

new step to the temperature T. Following this principle Equation 15 turns into 

Equation 16 

 
∑

𝑚𝑖|𝑉𝑖|
2

2
⁄

𝑁

𝑖=1

 →  ∑
𝑚𝑖𝛾|𝑉𝑖|

2

2
⁄

𝑁

𝑖=1

 
Equation 16 

Where 𝛾 is (Equation 17) 

𝛾 = √
𝑇

𝑇𝑖
 

Equation 17 

And 𝑇𝑖 is the temperature of step 𝑖. These methods do not actually allow thermal 

fluctuations through the system due to the fact that the temperature rescales 

directly with the velocity. Based on the aforementioned feature, the Berendsen 

thermostat was devised. This is an algorithm that assumes that the system is 

weakly coupled to a heating bath, which updates the average temperature. 

Because of the weak coupling, the temperature does not scale directly with 

velocity.154,155 Therefore, 𝛾 for a Berendsen thermostat follows Equation 18. 

𝛾 = √1 +
Δ𝑡

𝜏
(

𝑇

𝑇𝑖
− 1) 

Equation 18 

Where t corresponds to a coupling term named “rise time”. This term controls 

how strong the system feels the temperature bath. Because scaling methods 



50 

 

scale the velocity directly, they do not allow stochastic variations. Other 

thermostats, such as the Nosé-Hoover thermostat address this issue. Usually 

these thermostats demand more computational resources but are able to 

simulate a proper canonical ensemble. An alternative between both methods 

would be velocity rescaling.156 This method, implanted in Gromacs, adds a wiener 

stochastic function to the 𝛾 term. Therefore, the velocity scaling becomes 

randomised, sampling a full canonical ensemble. This thermostat was the one 

used throughout this work. 

4.2.2.3 Pressure equilibration 

Once the system has reached thermal equilibration, the volume configuration 

needs to be set. In an NVT ensemble, the box volume is constant, and this might 

not be the most accurate volume conditions for the box in question. Therefore, 

equilibration is needed to set up the remaining macro thermodynamic variables, 

such as pressure. Furthermore, the experiments we aim to model tend to happen 

in a constant pressure regime.  

In this second stage of equilibration we use an NPT or isothermal-isobaric 

ensemble with N – number of particles, P – pressure and T- temperature as 

constants. For this case the system is coupled to a pressure control as well as a 

temperature bath. The two most typical ways are the weak Berenden coupling153 

and the Parrinello-Rahman barostat157. The Berendsen coupling barostat works 

in a similar manner to its thermostat, as it scales the box volume through time to 

achieve a predefined pressure. This barostat belongs to a class called isotropic 

scaling as it does not change the overall shape of the box but equally modifies 

the size of the box in all dimensions. On the other hand, the Parrinello-Rahman 

barostat performs an anisotropic scaling.  

4.2.2.4 Production simulation 

Once the thermodynamic macro variables are defined and the system is 

equilibrated, the dynamical ensemble can be calculated. As mentioned before, 

the integration cycle drives the calculations. After the equilibration stages, the 

atomic harmonic restraints are disable so the protein system can sample in a 
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more realistic manner. In most cases, the parameters used for a production run 

are the same that for an NPT configuration. 

4.2.3 Variations in classic conditions 

The main aim of this project is to detect new transient or cryptic pockets that may 

be difficult to identify by the use of classical computer-aided drug design (CADD) 

techniques. Modifications in the typical simulation conditions could be exploited 

in the identification of new “druggable” cavities.  

4.2.3.1 The cosolvent approach 

The discovery of novel binding sites is not always coupled to the local minima 

retrieved from the simulated landscape, or the highest-populated clusters. The 

use of small, drug-like “probes” as cosolvents (Figure 16) can be used to assess 

which functional groups would best complement the surface of the binding site of 

interest (either already known or newly identified). 

Several cosolvent dynamics approaches have been developed in recent years. 

Most of these approaches use very small probes such as: ethanol, isopropanol, 

methanol, acetonitrile or acetamide.158  In the present work, the cosolvent based 

framework has been extended to usage of drug-like fragments derived from 

known drugs/inhibitors. The low probe concentration permits to perform longer 

simulations before observing phase separation without the use of repulsive 

potentials. Longer trajectories permit the ligands to search for more cavities, 

evaluate a longer protein-probe stability and therefore determine its affinity. 
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Figure 16  Cartoon depiction of a cosolvent simulation. In step 1 cosolvents A (crosses) and B 

(circles) are randomly in a simulation box put in a protein (green) – water (red dots) system. After 

the simulation (step 2) molecules A show a higher affinity to one cavity of the protein and interact 

with it, while B molecules do not interact with the protein at all. 

4.2.3.2 Enhanced sampling techniques 

The energy landscape of a protein is characterised by a series of metastable 

states separated by high energy barriers. Since atomistic MD is limited to a few 

femtoseconds integration timesteps, it is difficult to go into the millisecond 

timescale and beyond with nowadays machines, where these new 

conformational states could be visited.159 Only a few special machines, such as 

Anton or the use of the Folding@home, are able to reach extensive 

timescales.160,161According to the transition state theory, the relationship between 

the timescale of state transition and the height of an energy barrier is 

exponential.162–164 This means that most conformational events of interest, such 

as the folding process of a protein or the binding/unbinding process of a 



53 

 

substrate, often occur at a larger timescale.165 In an attempt to overcome this 

issue, a number of enhanced sampling techniques have been developed over the 

past decades to allow for fast thermodynamics and/or kinetics calculations. In the 

next section I will discuss the umbrella sampling (US), since it is the method that 

was used in this project. 

4.2.3.2.1 Umbrella sampling 

Umbrella sampling, developed by Torrie and Valleau64, consists on the 

application of a bias, an additional energy term, to the system to ensure efficient 

sampling along a reaction coordinate. A reaction coordinate (ξ) is a continuous 

parameter that provides a distinction between two thermodynamic states. 

Generally, ξ appears to be defined on geometric grounds, such as distance, 

torsion, or the difference between the root mean square deviations from two 

reference states. If the reaction coordinate of choice is good enough to 

differentiate distinct states, the free energy between these would be calculated. 

This is aimed in different simulations (windows), the distributions of which 

overlap.166 Window 𝑖 bias potential 𝜔𝑖 is an additional energy term that only 

depends on the reaction coordinate (Equation 12). 

𝐸𝑏(𝑟) =  𝐸𝑢(𝑟) + 𝜔𝑖(ξ) Equation 12 

The superscript ‘𝑏’ denotes biased quantities, while the superscript ‘𝑢’ denotes 

unbiased quantities. Quantities without superscripts are always unbiased. 

The reaction coordinate is split into a number of windows to ensure an optimal 

sampling. A bias function is implemented in each of these windows to keep the 

system close to window 𝑖 reference point. A simple harmonic bias of strength 𝐾 

is often used (Equation 13). 

𝜔𝑖(ξ) = 𝐾/2(ξ − ξ𝑖
𝑟𝑒𝑓

)2   Equation 13 

To obtain unbiased free energy 𝐴𝑖(ξ), the unbiased distribution of the reaction 

coordinate must be obtained, as showed in Equation 14. 
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𝑃𝑖
𝑢(ξ) =

∫ exp[−𝛽𝐸(𝑟)] 𝛿[ξ′(r) − ξ]𝑑𝑁𝑟

∫ exp[−𝛽𝐸(𝑟)] 𝑑𝑁𝑟
    

Equation 14 

The unbiased probability 𝑃𝑖
𝑢(ξ)can be determined by Equation 15. 

𝑃𝑖
𝑢(ξ) = 𝑃𝑖

𝑏(ξ) exp[𝛽𝜔𝑖(ξ)] 〈exp [−𝛽𝜔𝑖(ξ)]〉   Equation 15 

Biased probability can be obtained from the simulation of each window, and the 

free energy of every window could be calculated by Equation 16. 

𝐴𝑖(ξ) =  − (
1

𝛽
) 𝑙𝑛𝑃𝑖

𝑏(ξ) − 𝜔𝑖(ξ) + 𝐹𝑖 
Equation 16 

Where 𝐹𝑖 = − (
1

𝛽
) 𝑙𝑛〈exp [−𝛽𝜔𝑖(ξ)]〉 as long as one window covers the entire 

range of ξ to be examined. If the free energy curves are to be combined into a 

global one (Figure 17), 𝐹𝑖 has to be calculated with methods such as the weighted 

histogram analysis method (WHAM)167,168.  

 

Figure 17 Global free energy (black solid curve) and the contributions Ai of some of the windows 

(dashed curves). Only every third window is shown for clarity. At the bottom: the biased 

distributions Pi
b as obtained from a simulation are shown (coloured solid curves). Relatively few 

bins (100) have been used to generate this scheme166 
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WHAM is applied to minimise the statistical error of 𝑃𝑢(ξ). The global distribution 

is calculated by a weighted average of the distributions of the umbrella windows 

(Equation 17): 

𝑃𝑢(ξ) =  ∑ 𝑝𝑖(ξ)P𝑖
𝑢(ξ)

𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑖

 

Equation 17 

The weights 𝑝𝑖 are chosen in order to minimise the statistical error of 𝑃𝑢 (Equation 

18): 

𝜕𝜎2(𝑃𝑢)

𝜕𝑝𝑖
= 0 

Equation 18 

Under the condition ∑ 𝐸𝑝𝑖 = 1. This leads to (Equation 19)167,168: 

𝑝𝑖 =
𝑎𝑖

∑ 𝑎𝑗𝑗
, 𝑎𝑖(ξ) = 𝑁𝑖 exp[−𝛽𝜔𝑖(𝜉) + 𝛽𝐹𝑖] 

Equation 19 

With 𝑁𝑖 being the total number of steps sampled for window 𝑖. Equation 20 

calculates 𝐹𝑖.  

exp(− 𝛽𝐹𝑖) = ∫ 𝑃𝑢( 𝜉) exp[−𝛽𝜔𝑖(𝜉)] 𝑑𝜉 
Equation 20 

Since 𝑃𝑢 enters Equation 20 and 𝐹𝑖 enters Equation 17 via Equation 19, these 

have to be iterated until convergence. 

For an efficient umbrella sampling run, an overlap between windows is required 

for WHAM analysis. Good sampling is essential for a proper choice of the reaction 

coordinate. If the reaction coordinate misses important structural changes, it can 

lead to artificial reduction or increase of the energy barriers from the results 

obtained by umbrella sampling. 
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4.2.4 Data analysis 

MD simulations produces trajectories, which are series of sequential snapshots 

of the simulated molecular system which represent atomic coordinates at specific 

time periods. This generates large amounts of data, which must be processed 

and analysed. The type of analysis performed can vary substantially depending 

on the question(s) and hypothesis posed before even carrying out the simulation. 

In the next section, I will outline the analytical techniques applied in this work. 

4.2.4.1 Root-mean squared deviations and root-mean squared fluctuations 

Root-mean squared deviation (RMSD) is the calculation of the average distance 

of certain atoms in a system from a reference structure, 𝑟𝑖
𝑟𝑒𝑓

, as showed in 

Equation 21: 

𝑅𝑀𝑆𝐷(𝑡) = √(
1

𝑀
∑ 𝑚𝑖|𝑟𝑖(𝑡) − 𝑟𝑖

𝑟𝑒𝑓

𝑁

𝑖=1

|2) 

Equation 21 

Where 𝑀 = 𝛴𝑖𝑚𝑖 and 𝑟𝑖(𝑡) is the position of atom 𝑖 at time 𝑡 after the structure is 

fitted to the reference state. RMSD is calculated to evaluate the stability of the 

simulated system. If the obtained RMSD plot shows severe deviations through 

time, then the system has not reached energy convergence, meaning that further 

simulations would be required.140 An example of the RMSD plot is showed in 

Figure 18.a. 

Root-mean square fluctuation (RMSF) is a measure of the difference between 

the position of particle 𝑖 and some reference position (Equation 22). 

𝑅𝑀𝑆𝐹𝑖 = √
1

𝑇
∑ |𝑟𝑖(𝑡𝑗) −

𝑇

𝑡𝑗=1

𝑟𝑖
𝑟𝑒𝑓

|2 

Equation 22 

Where 𝑇 is the time over which one wants to average and 𝑟𝑖
𝑟𝑒𝑓

 is particle 𝑖 

reference location. RMSF is distinguished from RMSD by giving a value for each 
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particle or group, such as an amino acid residue, over time. This means that the 

fluctuation of every particle (residue, atom, chain, etc.) can be evaluated, and 

thus the regions of the system showing large conformational changes can be 

identified.140 An example of the RMSF plot is showed in Figure 18.b. 

 

Figure 18 RMSD (A) and RMSF (B) plots 
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4.2.4.2 Geometric clustering 

MD simulations can generate thousands of snapshots (conformations) to be 

analysed. In some cases, these conformations can be very similar, and it is of 

interest to reduce the set of conformations for subsequent analysis. Geometric 

clustering is an analysis technique performed to classify different structure 

samples during an MD simulation (Figure 19). There are several clustering 

methods available, but in this work user approached the one developed by Daura 

and coworkers169 (via the gmx cluster module), which is based on the mutual 

RMSD between all conformations sampled during the MD simulation (for a 

specified RMSD cut-off). The generated clusters are mutually exclusive, meaning 

that a structure can only be a member of a single cluster. Geometrical clustering 

is often used to describe the various conformational changes in a protein. These 

structures can also be used for further studies such as virtual screening (VS) or 

umbrella sampling (US) simulations. 

 

Figure 19 Top three clusters from an MD simulation 

 

4.2.4.3 Principal component analysis (PCA) 

Following the idea of the previous section the number of variables that are used 

to describe each conformation is very large. These variables may be correlated. 

Principal component analysis (PCA) is a commonly used method to eliminate 

these correlations and to reduce the dimensionality of the data set. In general, a 

principal component (PC) is a linear combination of the variables. The first PC of 

a data set corresponds to that linear combination of the variables which give the 
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“best fit” straight line through the data if plotted in a n-dimensional space, 

meaning that it has the largest possible variance (Figure 20). The second and 

succeeding principal components have the highest variance possible with data 

not already accounted by previous principal components. Each PC corresponds 

to an axis in a n-dimensional space and is orthogonal to all other PC. There can 

be as many dimensions as variables the original data set provides, but in an 

optimal situation only a few (3-5) principal components may be required to explain 

most of the data.140 The modules gmx covar and gmx anaeig have been used to 

perform PCA analysis. 

 

Figure 20 Two dimensional PCA plot from an MD simulation. Different clusters of the simulation 

are differentiated by colour 
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 4.2.4.4 Distances 

Monitoring of distance between two groups of atoms is another way to obtain 

useful information about the system. H-bond formation (or breaking), shifting of 

sidechain unveiling cavities or distance between protein monomers are some of 

the several outcomes that distance measure can provide. 

4.2.4.5 Solvent accessible surface area (SASA) 

In the context of cosolvent MD, it is a matter of interest to evaluate if the 

participation of the cosolvent probes is indeed promoting the formation of new 

binding regions. One way to evaluate this feature may be to calculate the solvent 

accessible surface area (SASA). As its name states, SASA is the surface area of 

a biomolecule that is accessible to a solvent. In this work, the SASA of the 

systems were computed with the gmx sasa module, which applies the double 

cubic lattice method170. 

4.3 Molecular docking 

Molecular docking is a technique used to predict the interaction between a ligand 

and a protein binding site. This technique calculates the most optimal binding 

geometries (poses) and binding energies, by placement of the ligand in different 

orientations and conformations within the binding site, which can be considered 

completely rigid or semi-flexible. Molecular docking attempts to mimic the natural 

course of interactions between the ligand and its cognate receptor.20,140 

There are three important applications of the molecular docking. One is the 

determination of the binding mode (geometry) of a ligand bound to a protein. 

Molecular docking generates hundreds of thousands of putative ligand binding 

orientations/conformations at the defined binding site within the protein target.171 

A scoring function is used to rank these ligand conformations by evaluating the 

approximate binding energy of each of the putative complexes.  

The second application is to identify the potential hits for a given protein target by 

searching large ligand databases, i.e. the virtual screening.172 A reliable scoring 

function should be able to distinguish binder and non-binders and to rank known 

binders the highest.  
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The third application of molecular docking is to predict the absolute binding affinity 

between the protein target and the given conformation of a ligand. This is 

particularly important to the hit-to-lead and lead optimisation.173 An accurate 

scoring greatly increases the optimisation efficiency and saves costs by correctly 

predicting the binding affinities of the modified ligands before the much more 

expensive step of ligand synthesis and experimental testing.  

Most modern molecular docking methodologies consider the backbone of the 

protein target rigid, with partially flexible chains. The more flexibility is considered 

in the process, the more computational time and resources are required. The 

docking procedure involves sampling over many degrees of freedom.  

For each ligand, a certain number of different conformations is generated, 

oriented, fitted, energy minimised, and energy scored. This number is user-

defined, but it may vary from hundreds to many thousands. The number of 

orientations is also user-defined and typically within thousands. The resulting 

binding poses with lower energy scores (more favourable binding energy) are 

selected for further studies.  

To evaluate the energies of binding poses resulting from the docking, scoring 

functions are used. Scoring functions are simplified descriptors of free binding 

energy. The appropriate scoring function would rank the experimentally 

determined binding modes the highest (lowest energy, most favourable).  

Scoring functions can be grouped into three classes: force field‐based, 

knowledge‐based, and empirical scoring functions. Force field based scoring 

functions are developed based on the classical molecular mechanical force fields, 

i.e. physical atomic interactions,174 including van der Waals interactions, 

electrostatic interactions and bond stretching/bending/torsional forces. Empirical 

scoring functions estimate the binding affinity of a complex on the basis of a set 

of weighted energy terms obtained empirically.175 Compared to the force field 

scoring functions, the empirical scoring functions are much faster to calculate due 

to their simplified energy terms. A third kind of scoring functions are knowledge-

based scoring functions, which employ energy potentials that are derived from 

the structural information embedded in experimentally determined atomic 
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structures.176 Moreover, quantum mechanical (QM) and semi-empirical QM 

(SQM) based scoring functions have been recently designed to capture the 

binding affinity trend and native pose identification.177,178 

To improve the quality of predictions, sometimes a combination of different 

scoring functions is used and weighed to give a new scoring value or rescore 

previous results. (Figure 21). 

Docking is divided into stages, as illustrates in the diagram (Figure 21). For each 

stage, multiple methods are available. 

 

Figure 21 Molecular docking protocol to follow for a regular virtual screening. Dashed boxes 

represent optional steps considering the purpose of the procedure or the software used. 

Despite a large number of comparative studies, it is still impossible to determine 

which programme and protocol are the best. Many studies have shown that 

success in molecular docking depends heavily on a number of factors such as 

the scoring function, the nature of the studied target, input docking and/or the 

metrics used to determine the study success. Comparisons between studies may 
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result in contradictory conclusions.179  In this work, three different docking 

software packages were used: MOE-Dock180, UCSF DOCK181 and AutoDock4182. 

These three packages are a selection of some of the most popular applications. 

Each docking software has implemented its own placement methodology and 

scoring functions which differs from the other to a greater or lesser extent. With 

respect to the most commonly used package applied in this work (MOE-Dock), 

the docking procedure is divided into four main components: ligand-conformation 

generation, optional pharmacophore filtering, ligand placement and scoring in the 

pocket and flexible receptor and ligand refinement with re-scoring. The 

generation of ligand conformations is accomplished by supplying a collection of 

prepared ligand conformations generated using the Conformation Import 

application to the docking engine. The maximum number of outputted 

conformations is set to 10 000 by default. Then, using the MMF94x force field183–

187 the resulting ensemble is energy minimised, and partial charges are assigned 

to the atoms. Using the Triangle Matcher protocol, which defines the active site 

using α-spheres188 similar to the spheres generated in UCSF DOCK (SPHGEN), 

ligand placement takes place. For AutoDock, a Lamarckian Genetic Algorithm 

(LGA) approach is typically used for globe pose sampling.189 The top 1000 poses 

produced from placement are then scored using the London ΔG scoring 

function190 (Equation 23)180: 

∆𝐺𝐿𝑑𝐺 = 𝑐 + 𝐸𝑓𝑙𝑒𝑥 + ∑ 𝑐ℎ𝑏𝑓ℎ𝑏 + ∑ 𝑐𝑚𝑓𝑚 + ∑ ∆𝐷𝑖

𝑎𝑡𝑜𝑚𝑠𝑖𝑚𝑒𝑡𝑎𝑙−𝑙𝑖𝑔ℎ−𝑏𝑜𝑛𝑑𝑠

 Equation 23 

𝑐, 𝑐ℎ𝑏 and 𝑐𝑚 are constants that have been trained over 400 protein ligand 

complexes. 𝐸𝑓𝑙𝑒𝑥 is a topological estimate of ligand entropy. Both 𝑓ℎ𝑏 and 𝑓𝑚 are 

measures of geometric imperfections of protein-ligand and metal-ligand 

interaction. ∆𝐷𝑖 is the desolvation energy term which is approximated using a 

volume integral London dispersion. The top conformations (number defined by 

the user) are kept and minimised using MMF94x within a rigid receptor. The 

resulting poses are the scored using the generalized-Born volume 

integral/weighted surface area (GBVI/WSA dG) scoring function180 in a flexible 

receptor (optional) (Equation 24). 
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∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔
𝐶𝑎𝑙𝑐. = 𝛼 (

2

3
(𝐸𝐼𝑛𝑡𝑒𝑟

𝐶𝑜𝑢𝑙. + ∆𝐺𝐵𝑖𝑛𝑑
𝑅 ) + 𝐸𝐼𝑛𝑡𝑒𝑟

𝑣𝑑𝑊 + ∆𝐺𝐵𝑖𝑛𝑑
𝑛𝑝𝑠𝑜𝑙) + 𝑐   

Equation 24 

𝐸𝐼𝑛𝑡𝑒𝑟
𝐶𝑜𝑢𝑙. and 𝐸𝐼𝑛𝑡𝑒𝑟

𝑣𝑑𝑊  correspond to the coulombic and van der Waals contribution to 

binding respectively. The electrostatic solvation contribution, ∆𝐺𝐵𝑖𝑛𝑑
𝑅 , is the 

change in reaction field energy upon binding. Reaction field energies are 

calculated using the generalized Born/volume integral implicit solvent model 

(GB/VI)191, which estimates the free energy of hydration as a classical 

electrostatic energy plus a cavitation energy using a volume integral London 

dispersion energy. The ∆𝐺𝐵𝑖𝑛𝑑
𝑛𝑝𝑠𝑜𝑙

 term represents the change in non-polar solvation 

(van der Waals and cavitation cost) upon binding.180  Instead of the double-

scoring process, UCSF DOCK and AutoDock rely on a single scoring process 

with different procedures. In both cases the accessory program GRID192 is used 

to pre-compute the energy interaction between a dummy probe atom and all 

receptor atoms on a 0.3 Å resolution grid within the area of study. Afterwards, 

every ligand pose is evaluated with each own scoring function. AutoDock uses a 

semiempirical free binding energy force field scoring function, while DOCK 6 uses 

a force field based one. The default conditions applied for each methodology are 

summarised in Table 8. 

Table 8 Standard conditions employed in the different docking programs  

 
Placement 

methodology 
Scoring Function I Scoring Function II 

MOE Triangle Matcher London dG GBI/WSA dG 

AutoDock 
Lamarckian Genetic 

Algorithm 

AutoDock 4 Scoring Function (semiempirical 

free energy force field) 

DOCK6 Sphere Generation 
DOCK 6 Scoring 

Function 
 

4.3.1 Analysis of the molecular docking results 

4.3.1.1 Cluster analysis 

Hundreds or even thousands of poses can be calculated for a single ligand in 

every docking calculation. In the case of a blind docking experiment, where the 
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binding site is unknown and the whole protein is selected as a receptor, the 

analysis of the molecular docking results can be challenging. Not only 

conformations are evaluated but also their location of binding. A frequently used 

resource to facilitate the analysis is to clusterise the scored conformations within 

an RMSD value (2.0-4.0 Å)182. Most populated clusters mean that the visited 

cavity could be more druggable than its counterparts.  

4.3.1.2 Ligand interactions 

Ligand-receptor interactions are analysed to determine which could be the key 

residues for a good interaction with the receptor, or if the docked ligand shows 

the same interactions as the crystallised one. Such interactions include hydrogen 

bonds, hydrophobic interactions and solvent interactions.193,194 For an easier 

visualisation, some docking software packages like MOE provide a two-

dimensional diagram of the ligand interactions with the receptor residues (Figure 

22). 

 

Figure 22 Ligand interaction map for a TPCA-1 docked conformation 
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 4.3.2 Validation of the molecular docking results 

As mentioned before, the number of molecular docking packages available to 

date is very extensive. The user has many flavours to choose which could lead 

to very different results. Before performing any virtual screening on a protein 

target (with a known binding site) it is general practice to validate the package of 

choice. Molecular docking is performed with the same crystallised ligand in order 

to replicate the crystallographic conformation. If that conformation is between the 

top scored ones, that is an indicator that the applied docking package is likely to 

provide trustworthy results. Decoys (molecules known to not bind in the region of 

study) are often used to evaluate the ratio of false positives that the used docking 

programme could encounter195. 

4.4 MM-PBSA 

The molecular mechanics – Poisson-Boltzmann surface area (MM-PBSA) 

approach is used to calculate the free energy difference between two states, 

typically the bound and unbound state of two solvated molecules, or to compare 

the free energy of two different solvated conformations of the same molecule.196 

The overall objective is to calculate the absolute binding free energy for the non‐

covalent association of any two molecules, A and B, in solution (Equation 25): 

[𝐴]𝑎𝑞 + [𝐵]𝑎𝑞 ⇔ [𝐴≠𝐵≠]𝑎𝑞
±  Equation 25 

[𝐴]𝑎𝑞 refers to the ensemble of molecule A free in solution, [𝐵]𝑎𝑞  refers to the 

ensemble of molecule B free in solution, and [𝐴≠𝐵≠]𝑎𝑞
±  represents the complex 

formed from molecules A and B, considering any structural changes and the 

solvent reorganisation (aq±) that may occur upon the complex formation. 

Free energy is a state function, meaning that the free‐energy difference 

associated with a given event like a drug binding to its protein target is determined 

only by the energy prior to that event and the energy following it. In other words, 

to calculate the binding free energy of a ligand to a protein, the ligand-protein 

complex, needs to be “compared” to both the ligand and the protein as separate 

entities in the solution. 
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Ideally the free energy of binding would be calculated directly as shown in Figure 

23. 

 

 

Figure 23 Adapted diagram of binding free energy between of a ligand to a protein196 

However, calculating free energies can usually only be done using small steps 

according thermodynamic cycle (Figure 24)143: 

 

 

Figure 24 Adapted diagram of the thermodynamic cycle used to calculate the binding free 

energy196 



68 

 

From this diagram (Figure 24), the binding free energy can be calculated by 

Equation 26. 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣
0 = ∆𝐺𝑏𝑖𝑛𝑑,𝑣𝑎𝑐𝑐𝑢𝑚

0 + ∆𝐺𝑠𝑜𝑙𝑣,𝑐𝑜𝑚𝑝𝑙𝑒𝑥
0

− (∆𝐺𝑠𝑜𝑙𝑣,𝑙𝑖𝑔𝑎𝑛𝑑
0 + ∆𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

0 )  

Equation 26 

In the MM-PBSA approach, different contributions to the binding free energy are 

calculated in the following ways: 

• Solving the linearised Poisson-Boltzmann or Generalised Born 

equation for each of the three states and adding an empirical term 

for hydrophobic contributions, solvation free energies are 

calculated (Equation 27)143: 

 

∆𝐺𝑠𝑜𝑙𝑣
0 = 𝐺𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐,∈=80

0 − 𝐺𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐,∈=1
0 + ∆𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐

0  Equation 27 

• Obtaining ∆𝐺𝑣𝑎𝑐𝑐𝑢𝑚
0    by calculating the average interaction between 

a protein and a ligand. If necessary, the entropy change upon 

binding is taken into account143 (Equation 28): 

∆𝐺𝑣𝑎𝑐𝑐𝑢𝑚
0 = ∆𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑠

0 − 𝑇 · ∆𝑆𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠
0   Equation 28 

Often, entropy contributions are neglected, if only a comparison of states of 

similar entropy is desired, such as two similar ligands binding to the same protein. 

The reason is that the entropy calculations using normal mode analysis or quasi-

harmonic approach are computationally expensive and are associated with large 

errors that introduce significant uncertainty to the results. The average ligand-

protein interaction energies are usually obtained by performing calculations on a 

group of uncorrelated snapshots collected from equilibrated MD simulation 

trajectories.143 Although MM-PBSA is a popular approach to estimate the free 

binding energy of small ligands to biological macromolecules its accuracy is not 

excellent. This method is very sensitive to the solute dielectric constant and 

contain several questionable approximations such as lack of conformational 

entropy and information about the number and free energy of water molecules in 

the binding site.197 There are several benchmarks assessing the performance of 
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this method.198,199 In this work, MM-PBSA has been calculated using GROMACS 

via the g_mmpbsa module.196,200 
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Chapter 5 Development of the Cosolvent Analysis Toolkit (CAT) 

In this part of the work, the focus was on the development of an analysis tool that 

helps the identification of binding hotspots resulting from cosolvent MD. The main 

goal was to design a platform able to identify newly formed sites with a user-

friendly analysis. The result is the Cosolvent Analysis Toolkit (CAT). CAT has 

been designed as an open-source analytical platform, compatible with commonly 

used molecular graphics software packages such as UCSF Chimera and 

VMD201,202. CAT incorporates two types of analysis: identification and ranking of 

the entire ‘hotspots’, and identification and ranking of the molecular fragments 

suitable for targeting those ‘hotspots’. The former serves as a general detector 

and can be readily used to guide structural biology experimental efforts, while the 

latter brings useful information about the inhibitor/ligand design from the 

structure-guided standpoint. 

  

5.1 Scoring function development 

To create a robust analytical method for reliable detection of molecular hotspots, 

the development of a scoring function was required. From a molecular interaction 

standpoint, such scoring function should include three characteristics: calculation 

of the intrinsic interaction energy between the protein and a cosolvent (probe) 

molecule, and two normalizing factors: retention time of the probe at the binding 

site, and the overall depth of the binding site relatively to the protein surface.  With 

this selection of features, we attempt to identify regions with better probe-protein 

interaction as well as other geometrical features that would deem the detected 

hotspot as “druggable”. Therefore, the scoring function per residue can be written 

as follows (Equation 29):  

 𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑒 = 𝑆𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝐷𝑒𝑝𝑡ℎ Equation 29 

 

 To calculate the interaction scoring part per residue in the protein, CAT defines 

a sphere surrounding the geometric centre of each residue (dashed blue circle in 
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Figure 25). Hence, the interaction energy between the protein and every probe 

inside the sphere is calculated. To avoid atomic clashes, softcore potentials203 

were used, as described in Equation 30.  

∆𝐸𝑖 = 𝐸𝐿𝐽 + 𝐸𝑐𝑜𝑢𝑙𝑢𝑚𝑏                                                                     

= 4𝜀 [(
𝜎

(𝑟 + 𝛿𝑙𝑗)
)

12

− (
𝜎

(𝑟 + 𝛿𝑙𝑗)
)

6

] +
𝐾𝑞𝑖𝑞𝑗

(𝑟 + 𝛿𝑒𝑙𝑒𝑐)
 

Equation 30 

Where r is the interatomic distance, 𝜀 corresponds to the depth of the Lennard-

Jones potential, 𝜎 is the finite distance to the zero potential, 𝐾 is the Coulombic 

constant in kcal/mol , 𝛿𝑙𝑗 and 𝛿𝑒𝑙𝑒𝑐 are the softcore deltas for the Lennard-Jones 

potential and Coulombic potential respectively204. 

Within the assigned sphere, the average number of cosolvent molecules <M> 

inside the sphere can be calculated. From a simulation trajectory with N frames, 

Sinteraction can be calculated as the ratio between the average interaction energy 

though the trajectory and the average number of molecules inside the sphere 

(Equation 31):  

 
𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  

1

< 𝑀 >
∑

𝐸𝑖

𝑁

𝑁

1

 
Equation 31 

 

For the stability score, which quantifies the retention time of the probe at the 

binding site, the RMSD of the total number of cosolvent molecules  √∆𝑀2 inside 

the sphere was used in (Equation 32):  

 
𝑆𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

(1 − √∆𝑀2)

(< 𝑀 > −√∆𝑀2)
             

Equation 32 

 

Sstability values range from 0 to 1, allowing the highest values for low variance, 

representing more stable interactions and molecules being retained for a longer 

time.  
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For the third scoring term, which describes the overall depth of the binding site 

relatively to the protein surface, CAT counts the number of protein atoms 

(𝐽𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠)  inside each residue sphere (Figure 25), assigning to it a volumetric 

score 𝑆𝐷𝑒𝑝𝑡ℎ. Afterwards, it is normalised to the highest scored residue, to set the 

range between 1 and 0, as showed in Equation 33: 

 
𝑆𝐷𝑒𝑝𝑡ℎ =

< 𝐽𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 >

𝑀𝐴𝑋 < 𝐽𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 >
          

Equation 33 

 

To define the regions, dummy atoms are created for each residue in its 

corresponding centre of geometry, with its respective Sinteraction (Equation 27) 

assigned to it. 

To define binding regions, CAT systematically scans through the protein 

backbone, defining a new spherical region (Figure 25) which clusterises the 

dummy atoms. This “CAT cluster” has a 𝑆𝑅𝑒𝑔𝑖𝑜𝑛 assigned as (Equation 34):  

 
𝑆𝑅𝑒𝑔𝑖𝑜𝑛 =  

1

𝑁𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠
𝐼𝑛𝑠𝑖𝑑𝑒

∑ 𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑒

𝐼𝑛𝑠𝑖𝑑𝑒

 
Equation 34 

 

CAT outputs a PDB file with dummy atoms highlighting the areas of interest 

regarding the Sresidue per residue and SRegion per region, ranked from the best 

(most likely) to the worst. 
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Figure 25 Clustering scheme of CAT: A sphere is generated per residue, which encapsulates 

shells of interacting comolecules (yellow circular regions defined by the variable Rresidue). 

Afterwards, a secondary clustering region (blue shaded area, defined by the variable RCluster) 

defines close side-chains centres of geometry, resulting in a series of representative clusters of 

interest. 

In this study, values for the electrostatic and Lennard-Jones softcore delta were 

scanned (Appendix). The best result was attained with deltas set to 1 Å. The 
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sphere radius for the residue–cosolvent interaction was set at 8Å, to incorporate 

approximately 3 solvation shells. The clustering sphere radius was set to 5 Å, 

which encapsulated inter Cα distances for different secondary structure motifs.   

5.2 Probe selection 

Five probe molecules: acetamide, benzene, acetanilide, imidazole, and 

isopropanol were chosen based on three criteria. First, the set has a broad range 

of solubility characteristics, going from highly hydrophobic molecules (benzene) 

to more hydrophilic molecules (acetamide). Second, all probes are widely used 

as crystallisation co-factors, probes employed in fragment-based drug discovery 

(FBDD) efforts, and as moieties present in known small molecule ligands. Third, 

it is a set validated in previously reported studies on allosteric hotspot 

mapping47,74,205,206. 

5.3 Benchmark 

To benchmark the method, the aim was to select proteins with reported 

crystallographic structures of their orthosteric binding site with more than one 

reported allosteric site. Furthermore, proteins that have been studied in 

benchmarks including cosolvent methodologies have been taken into special 

account207. After a careful curation, four structurally diverse targets were 

selected: the ligand-binding domain of androgen receptor (AR-LBD), protein-

tyrosine phosphatase 1B (PTP1B), GTPase HRas and cyclin-dependent kinase 

2 (CDK2) with novel allosteric sites recently described43. Benchmark structures 

with PDB codes are listed in Table 9. 
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Table 9 PDB codes of the crystal structures used for our benchmarking, codes highlighted in bold 

correspond to the structures used for the cosolvent simulations 

Molecule Starting structure Benchmark structures 

 

AR ligand binding 

domain 

(AR-LDB) 

 

2PIO 
2PIQ, 2PIR, 2PIT, 2PIU, 2PIV, 

2PIW, 2PIX, 2PKL 

Protein-tyrosine 

phosphatase 1B 

(PTP1B) 

1XBO 1T4J208, 1T48, 6B95209 

 

GTPase HRas 

(HRas) 

 

1P2S 

1P2T, 1P2U, 1P2V, 3K8Y, 3K9L, 

3K9N, 3RRZ, 3RS0, 3RS2, 3RS3, 

3RS4, 3RS5, 3RS7 

Cyclin-dependent 

kinase 2 (CDK2) 
4EK3 

6Q3C, 6Q3B, 6Q3F, 6Q49, 

6Q48,6Q4B, 6Q4A, 6Q4C, 6Q4D,  

6Q4F, 6Q4E, 6Q4J, 6Q4I, 6Q4H, 

6Q4G, 6Q4K. 

5.4 Results 

An in-depth study of the molecules used to test the accuracy of the CAT scoring 

function and its corresponding ranking has been done in this study. The obtained 

results were directly compared to the FTMap webserver, a robust, powerful and 

widely popular ‘hotspot’ detecting tool47,57. The comparison concluded that the 

explicit solvent/cosolvent interactions and MD sampling were crucial for the right 

assessment of cryptic binding sites, and CAT scoring function reliably detected, 

filtered and correctly ranked “druggable” regions. 
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5.4.1 Androgen receptor ligand binding domain (AR-LBD) 

The androgen receptor is a multimeric DNA-binding transcription factor that 

regulates expression of genes critical for the development and maintenance of 

the male sexual phenotype.210 Through its ligand binding domain (LBD) it binds 

to male steroid hormones such as testosterone, androsterone, or 

dihydrotestosterone; the binding event occurs at the internal ligand binding 

pocket (LBP).207 Furthermore, the presence of auxiliary allosteric binding sites 

has been reported in two of the solvent exposed regions of the protein: at the 

activation function 2 (AF-2) between helices 3 and 4 and at the binding function 

3 (BF-3) close to helix 9.207 (Figure 26) 

The average structure with its respective CAT clusters have been superimposed 

to a series of experimentally-solved structures with bound ligands in orthosteric 

and allosteric regions (Table 9).207 Binding poses of these ligands and their 

corresponding interactions with protein residues have been considered in the 

analysis. CAT detected both allosteric regions with fragments interacting with 

some of the key residues interacting with the crystallised ligands, as shown in 

Figure 26. At the allosteric AF-2 binding site (Figure 26), several highly ranked 

clusters were mapped mainly in helix 3(H3), including key residues K720 and 

V716 involved in hydrophobic interactions with the ligand, as depicted Figure 

26.c. This was consistent with the values of energy scores, as highest-ranked 

clusters in that area corresponded to fragments with hydrophobic/aromatic 

probes such as benzene and acetanilide. The smaller polar probes also detected 

the H3 area, albeit with a cluster rank (Table 10). Probes interacted with R726 

and N727, two very flexible residues that enclosed or open the allosteric pocket. 

As assessed by visual inspection and covariance analysis (Appendix), the shape 

of the pocket considerably varied, tuned by the behaviour of these two residues, 

which acted as gatekeepers. Considering the small size of this binding site, the 

success of detection of this area as a potential “druggable” hotspot was very 

encouraging. CAT identified regions that not only interact with a couple of helix 3 

residues (Figure 26), but with the majority of the residues within this site and 

surrounding sidechains that could contribute to the further pocket opening. The 
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interaction of the probes with helix 4 was not as favourable as with other areas, 

as no highly ranked clusters were found close to it. 

 

Figure 26 Androgen receptor LBD hotspots found by CAT. Clusters have the following colours 

assigned: acetamide – blue, benzene – purple, acetanilide – orange, imidazole – yellow, and 

isopropanol – green. The crystallographic ligand is coloured cyan. A) Panoramic representation 

of LBD domain centred on the AF-2 site compromised around the H3 and the respective top 

cluster given by CAT; B) Panoramic representation centred around the BF-3 region and the 

respective CAT clusters. Simulations with all five probes found the site with a high rank, as 

described in Table 10. For the second site, only acetamide and benzene show high ranks. C) AF-

2 site and its key residues; K720, V716 and H714, that form part of H3, are detected by 

simulations with all five probes. D) BF-3 and its key residues; simulations with acetamide detected 

N833 and N727 as key residues for the site, but with a lower ranking than the clusters found in 

AF-2 site. 
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For the BF-3 allosteric binding site (Figure 26), CAT also gave satisfying results 

when compared with the experimental data. Although there was a higher number 

of CAT clusters in this area, especially around H9, the scoring rank of them was 

worse than that obtained for the AF-2 site. Key residues contributing to the 

binding site architecture, such as R840, Y834, G829 and F826, presented a CAT 

cluster (Figure 26.d). In this case, acetamide was the fragment with the highest 

affinity to the area. Enclosing the site, CAT also detected interactions with the N-

terminal area at F673 and the “gatekeeper” residues from AF-2 site: R726 and 

N727. To summarise, all clusters detected within AF-2 included the majority of 

the residues from this binding site. These residues are listed in Table 10. 

Table 10 AR-LBD CAT results and comparison with FTMap 

Target 
Binding 

Site 
Protein Contacts Cosolvent 

CAT 
Rank 

Found by 
FTMap? 

AR-
DBD 

Orthosteric 
E706, V746, R752, 
F764, H874, F878 

Not found - ✓ 

AF-2 
Allosteric 

I672, F673, V716, 
K720, P723, G724, 

N727, K734 

Acetamide 9 

X 

Acetanilide 1,2,9 

Benzene 1 

Imidazole 4 

Isopropanol 2 

BF-3 
Allosteric 

F826, E829, Y834, 
E,833, R840, E897 

Acetamide 1,3 

X 

Acetanilide 6,7 

Benzene 10 

Isopropanol 8 
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The crystal structure of the AR dimer has been recently reported,211 where the 

interactions between the AR monomers could be observed (PDB code: 5JJM). 

These interactions are crucial for the DNA binding and disrupting them could be 

a novel way to inhibit the protein. Interestingly, parts of the region involved in 

protein-protein interactions were detected by CAT along the dimerisation 

interface. This validates the applicability of CAT in mapping of novel and unique 

superficial interaction hotspots, which are very challenging to be detected by 

established methods, such as FTMap.  

The only reported AR binding site that was not detected by CAT was the 

orthosteric one. This site, which is a deep pocket binding dihydrotestosterone 

(DHT), was too buried inside the protein core and shielded from the surface for 

the cosolvent molecules to detect it. The opening of this pocket would require 

large conformational changes and thus simulations longer than performed in this 

study. It is very likely that in the timescales required some of the probes would 

undergo phase separation, which is not desirable in CAT analysis and may lead 

to observing artefacts. We believe that the use of repulsive potentials for probes 

in combination with longer simulations would improve the identification of this 

binding spot. 

Comparison between CAT and FTMap outcomes showed some interesting 

results, as the latter covers what CAT misses. FTMap identified the orthosteric 

binding site as a potential druggable hotspot (Table 10), as the highest populated 

clusters were mapped to that site. However, FTMap failed to identify the allosteric 

binding sites: only one sparsely populated cluster is placed at the AF-2 site and 

none at the BF-3 site (Figure 26). Moreover, unlike CAT, FTMap did not identify 

any dimer-forming regions of AR as potential hotspots. Therefore, an apparent 

strength of CAT is to reliably detect the hotspots that are challenging to FTMap. 

5.4.2 PTP1B 

Tyrosine-protein phosphatase non-receptor type 1 (PTP1B) is a negative 

regulator of the insulin signalling pathway. It has emerged as a promising drug 

target for obesity and type II diabetes mellitus212. Numerous potent PTP1B 

inhibitors have been discovered during last years, unfortunately nearly all 
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medicinal chemistry efforts have been hampered by lack of selectivity and 

inhibition of related proteins, especially T-cell protein tyrosine phosphatase 

(TCPTP)212. 

PTP1B orthosteric binding site is formed by three loops: the WPD with W179, 

P180 and D181, a phosphotyrosine (pTyr) loop including Y46, and a Q loop with 

G262213. An allosteric site (BB site) has been discovered by X-ray 

crystallography208, which has paved a new path to design selective PTP1B 

inhibitors. This site is located between helices 3 and 6, and it includes residues 

L192, A193, F196, E276 and F280.208 (Figure 27). Allosteric sites and other 

binding events have been identified by the means of multitemperature 

crystallography, fragment screening, and covalent tethering209. This last study 

included more than hundred crystal structures and different binding events. In this 

study we focused focus in the two newly identified allosteric sites: the allosteric 

197 site, close to the previously known BB allosteric site, and the loop 16 (L16) 

site (Figure 27). 

CAT analysis for the cosolvent MD simulations in the apo/open state (PDB code: 

1XBO) identified both binding sites: orthosteric and allosteric. For the orthosteric 

site, all probe molecules tested interacted with various regions of the site. As 

showed in Figure 27.a and Figure 27.b, imidazole mapped all regions of interest: 

WPD- , pTyr- , and Q- loops. Isopropanol interacted preferentially with the WPD 

loop, while acetamide, acetanilide, and benzene interacted with the pTyr loop 

residues. For the BB allosteric site, CAT placed clusters for all probes except 

imidazole, with clusters centred at the binding site (Figure 27.c). Helix 3 was 

mapped in its entirety, as it was the helix 4 region that comprised the pocket along 

with its key residues. The close proximity of the 197 site to the BB site might have 

induced some bias to to CAT clusters, as both pockets share residues. Although 

both pockets might be included in the same cluster, the 197 site was mapped by 

CAT, mainly by acetanilide and benzene. Interestingly, most of the clusters from 

this pocket included K197, the mutated residue reported by Keedy and coworkers 

in their study on the “drugabbility” of this pocket.209 Regarding the L16 site, CAT 

placed a series of highly ranked clusters close to the binding site, but in direct 
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contact with just one, two, or no pocket residues. Nevertheless, the level of 

mapping was sufficient to determine the area as a potentially “druggable”. 

Table 11 PTP1B CAT results and comparison with FTMap 

Target 
Binding 

Site 
Protein Contacts Cosolvent 

CAT 
Rank 

Found by 
FTMap? 

PTP1B 

Orthosteric 
Y46, W179, P180, D181, 

G262 

Acetamide 3 

✓ 

Benzene 5,6 

Imidazole 6 

Isopropanol 2 

Allosteric 
L192, A193, F196, E276, 

F280 

Imidazole 1,5,7 

X 

Acetanilide 1,3,10 

Benzene 2 

Isopropanol 3,6,7 

197 
R105, D148, K150, Y152, 
Y153, E157, N193, K197 

Acetanilide 4,5,7 

X Benzene 2,6 

Isopropanol 5,6 

L16 K237, K239, S242, I281 

Acetanilide 1 

X Benzene 1 

Imidazole 10 
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Figure 27 PTP1B hotspots found by CAT.  Clusters have the following colours assigned: 

acetamide – blue, benzene – purple, acetanilide – orange, imidazole – yellow, and isopropanol – 

green. The crystallographic ligand is coloured cyan. A) Panoramic view centred on the allosteric 

binding sites; B) View centred on the orthosteric binding site. CAT performs well finding and 

scoring the binding site for PTP1B, since 4 out of the 5 probes are able to interact with the site 

residues. Unfortunately, only isopropanol and benzene find the orthosteric binding site, and 

acetamide interact with neighbour key residues. C) BB allosteric binding site and its main 

residues; all probes but acetamide rank cluster in the allosteric binding site, principally 

isopropanol, which shows interactions with N193, F196 and F280. D) 197 site recently identified 

by Keedy and coworkers209 CAT mapped the whole site, including K197. 

As showed in Table 11, FTMap has not been able to identify the allosteric binding 

site, which further validated CAT as an appropriate toolkit to detect the allosteric 

hotspots that are challenging to established methods such as FTMap. The 
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comparison between CAT and FTMAP shows a remarkable performance and 

robustness of the scoring function and the clustering method implemented in 

CAT.  The drug-like small molecule bound at the allosteric PTP1B site reported 

by Wiessmann and coworkers using X-ray crystallography208 showed that this 

binding site is a bona fide “druggable” site which could be used as starting point 

for a structure-guided design, and which has been validated in the follow-up drug 

discovery efforts208. As showed in Figure 27, CAT ranked the clusters at the 

orthosteric site high, yet it was not biased towards deep pockets, being able to 

report all experimentally detected pockets in the top-ranked 10 CAT clusters, 

which included the allosteric site undetected by FTMap. 

5.4.3 Fragment hotspot screening – H-ras GTPase 

The main difference of the three isoforms of the human Ras proteins, H-Ras, K-

Ras and N-Ras, lies within the primary sequence of the hypervariable region and 

its post-translational modifications214. The catalytic G-domains of the three 

respective Ras proteins are highly conserved, with only a 10% average difference 

in primary sequence identity in the C-terminal lobe (residues 87 to 171)215. The 

N-terminal lobe 1 carries the catalytic binding site with all the G-domains 

switches216 (Figure 28). 

The “effector lobe” contains the small molecule binding sites of Ras, including the 

allosteric site consisting of residues R97, D107 and Y137 (denoted as the 

allosteric lobe)217. This allosteric site is connected to the active site in H-Ras by 

helix 3 (H3), one edge of the inter-lobe linker, and one of the switches of the N-

terminal lobe at the other. This is showed in Figure 28. 

Due to the sensitivity regarding the conformational changes of the H-Ras, the 

cosolvent MD simulations prior to the CAT analysis were run only in the “off” state, 

to enable the direct comparison with the reported experimental MSCS (Multiple 

Solvent Crystal Structure) results on the H-Ras46,218. The MSCS showed several 

hotspots formed in different regions of the protein in the “off” conformation. The 

CAT analysis detected several of these hotspots in highly-ranked clusters. 
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Two major ‘hotspots’ were identified for H-Ras: one found in the inter-lobe linker 

region, and another one in the allosteric lobe (Figure 28). Both hotspots involved 

H3 helix, but each of them was situated on either side of the helix. Cluster 1, as 

numbered in the study by Buhrman and coworkers219, was located near to the 

active site, between H3 and switch II, showing R68 and Y96 as the major 

contributors.  Several highly-ranked CAT clusters interacted with cluster 1 

residues, mainly in helix H3. All probes but acetamide interacted with the key 

residues R68 and Y96. Although acetamide did not interact with these amino 

acids, it placed its highest-ranking cluster around a large region of H3. Cluster 2, 

found between helices H3 and H4, mapped to one of the largest hotspots. In this 

case, CAT interacted with both helix 3 and 4, with residues I93 and H94 from 

helix 3 and virtually all residues from helix 4. There were no acetamide clusters 

found around the pocket, which indicated that this region had a low affinity for 

highly polar moieties. Cluster 4 consisted of a pocket in the inter-lobe linker region 

very close to the nucleotide substrate binding site. It was comprised by D30 and 

K147; the latter being a target for ubiquitination on Ras-GTP220. There were only 

two CAT clusters that interacted with the residues from this pocket. Acetamide 

interacted with D30, while imidazole did with K147. Remaining clusters mapped 

to the pockets that overlapped with sites occupied by effector Ras binding (RBD) 

or cysteine-rich (CRD) domains and RasGAP220. 
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Figure 28 H-ras hotspots found by CAT. The clusters are coloured as follows: acetamide – blue, 

benzene – purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The 

crystallographic fragment is coloured cyan. A) Panoramic view of the H-ras and the highest 

ranked cluster for each cosolvent molecule. A)  Depiction of Site 3, B) Site 5, C) Site 6 D) Site 7 

and E) Site 8, Following the naming and numbering from Buhrman and coworkers 219. As shown, 

acetamide and benzene performed better than the other three probes, but the combination of the 

five different probes found most of the superficial binding sites and CAT score found the 

interacting residues to different crystallised molecular fragments. 

At the inter-lobe linker region and at the region overlapping with Raf-CRD, CAT 

has mapped cluster 7. Clusters 3 and 6 overlapped with the RasGAP binding site. 

Although CAT mapped all experimentally detected sites, its performance for the 

lower-ranking clusters was worse than for the first two hotspots. Not all the probes 
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interacted with these binding sites. Interestingly, binding sites mapped by MD 

simulations using our most polar probe, acetamide, did not overlap with hotspots 

detected by other fragments (and vice versa). This suggests that putative 

hotspots detected by acetamide might not be druggable, or that they may be very 

small hence not amenable for fragment growth and structure-based ligand 

design.  

FTMap detected only hotspots marked by clusters 1 and 2; both being among 

highly-ranked FTMap clusters (Table 12). On the other hand, FTMap detected 

the calcium acetate binding site221 whereas neither CAT nor MSCS succeeded. 

Table 12 H-Ras CAT results and comparison to FTMap 

Target 
Binding 

Site 
Protein 

Contacts 
Cosolvent CAT Rank 

Found by 
FTMap? 

HRAS 

Site 1 
R68, Q95, 
Y96, Q99, 

D92 

Acetamide 1 

✓ 

Acetanilide 2,7 

Benzene 1,5 

Imidazole 1,4,5 

Isopropanol 2,4 

Site 2 
H94, L133, 
S136, Y137 

Acetanilide 1,5,9 

✓ 

Benzene 8 

Imidazole 4,7,10 

Isopropanol 2,5,6 

Site 3 

S17, I21, 
Q,25, H27, 

V29, 

D33, T35, 
D38, Y40 

Acetamide 3,9 

X 

Imidazole 8 
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Site 4 
F28, D30, 

K147 

Acetamide 3 

X 

Imidazole 9 

Site 5 
A11, G12, 
N86, K88, 
S89, D92 

Acetanilide 9 

X 

Benzene 3 

Imidazole 4 

Isopropanol 5,6 

Site 6 
D30, E31, 

Y32 
Acetamide 3 X 

Site 7 

L23, N26, 
K42, V44, 

V45, 

R149, E153, 
Y157 

Acetanilide 6,8 

X Benzene 4,6 

Isopropanol 7 

Site 8 
G13, Y32, 
N86, K117 

Acetamide 3 

X 

Benzene 2 

 

5.4.4 Novel sites prediction on CDK2 

Cyclin-dependent kinase 2 (CDK2) is a serine/threonine kinase that interacts with 

several different cyclins222. It is comprised by two regions known as C and N 

lobes, connected by a hinge, with a significant role in the cell cycle, in the 

transcription regulation223. CDK2 directly acts on the protein expression related 

to the transition from the G1 to S phase of the cell cycle. Hence, it is an interesting 

protein target for cancer drugs. Functionally, CDK2 goes through a consisting 

series of conformational changes to reach an active state. The interlobe region 

interacts with cyclins (preferably A and E), shifting the activation loop (located 

between residues A149 to T165) and subsequently revealing the ATP binding 

site. This allows the phosphorylation of the threonine located in the active site, 

reaching a final active configuration. 
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Recently, CDK2 was used in a novel experimental approach for the identification 

of binding sites called Fraglite43. Wood and coworkers experimentally mapped a 

series of CDK2 allosteric sites using halogenated fragments expressing paired 

hydrogen-bonding motifs, improving the assessment on its allosteric 

“druggability” and tractability. The method reliably identifies drug-like interactions, 

which are detected by X-ray crystallography, exploiting the anomalous scattering 

of the halogen substituent. The study reported a set of five regions with known 

fragment binding.  

To further assess the capacities of the CAT scoring function, cosolvent dynamics 

runs were carried out with all five previously used probes. This methodology could 

be used with the FragLite probes, CAT analysis can be performed with any kind 

of small molecule probe, but the purpose of this methodology is also to design a 

series of optimal conditions for an orthogonal workflow. Since most of these sites 

were only recently discovered, these serve as the evidence for non-biasing of the 

scoring function developed in this study. CAT analysis ranked all 5 novel fragment 

binding sites43 along with the ATP binding site. Detected hotspots are shown in 

Table 13. 

Table 13 CDK2 CAT results and comparison to FTMap 

Target 
Binding 

Site 
Protein Contacts Cosolvent 

CAT 
Rank 

Found by 
FTMap? 

CDK2 

Orthosteric 

E12, G13, Q131, 

N132, D86, L134, 
L134, D145 

Acetamide 1 

✓ 

Imidazole 4,8 

Site 1 
K33, K34, Y77, K6, 
Y19, L32, K75, K34, 

H71L 

Acetanilide 1,9 

X Benzene 1,3 

Isopropanol 2,3 

Site 2 
T160, H161, R157, 

T158 

Acetamide 7 

X 

Imidazole 6 
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Benzene 5 

Isopropanol 4 

Site 3 
L124, R150, G147, 
H125, R126, C177, 

J178, Y179 

Acetamide 3 

✓ 

Acetanilide 2,4,5 

Benzene 5,8 

Imidazole 9 

Isopropanol 8 

Site 4 
T221, P222, D223, 
L219, R245, L267, 

Y262 

Acetanilide 2,4 

X 

Imidazole 10 

Site 5 
R199, T198, M192, 

T97, I104 

Acetamide 3 

X Acetanilide 2,8,10 

Isopropanol 7 

 

Site 2 was located exactly in the activation loop. CAT highlighted all residues 

comprising this loop, including T160, with overlapping clusters of several different 

probes (Figure 29). T160 goes through a phosphorylation event, being one of the 

main contributors of binding site stabilisation224. The region along site 3 

represented the dimerisation area where the binding of cyclin occurs, being found 

by CAT with different cluster ranks. Protein-protein areas were commonly 

highlighted by CAT scoring function, given the calculated energetic aspect which 

can filter highly favourable interactions within shorter residence periods of probe 

molecules. 
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Figure 29 CDK2 hotspots found by CAT. The clusters are coloured as follows: acetamide – blue, 

benzene – purple, acetanilide – orange, imidazole – yellow, and isopropanol – green. The 

crystallographic fragment is coloured cyan. A) Panoramic view of CDK2 and the highest ranked 

cluster for each cosolvent molecule. A)  Depiction of CDK2 and highest scored clusters, B) 

Orthosteric site, C) Site 1 D) Site 2 E) Site 3 F) Site 4 G) Site 5. As shown, acetamide and 

acetanilide performs better than the other 3 cosolvent molecules, given the nature of the 

experimental X-ray mapped crystallographic binding regions. Site 4 and 5 in specific shows high 

ranked clusters for these 2 probes, given by the high polarity of the site sidechains. 

Sites 4 and 5 were located in the C-Lobe region. Site 4 was directly related to the 

C-lobe loops and it is a novel binding site for CDK2. It interacted with polar 

residues (such as T221 and R245), which explains its high affinity for acetanilide.  

When constrained, this region can change the dynamics of the semi-unstructured 

T221-D247 C-Lobe loop, which is related to the cyclin dimerisation stabilisation 

event, resulting in a plausible site for structured based drug design.  

Site 5 was found at the end of the α-helical bundle that comprised most of the C-

lobe sequence (Figure 29). It was highly ranked in CAT, particularly for highly 

polar probes, such as acetamide and acetanilide. As described by Wood and 

coworkers, fragments used in their study should be tailored to accurately find a 

specific binding region by the usage of fragments prone to form hydrogen-

bonding interactions. Hence, the used structures should represent highly specific 

interactions, resonating with the results given by CAT, which ranked polar probes 

in the same manner. 
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Chapter 6 STAT3 

Signal transducer activator of transcription 3 (STAT3) protein has emerged as a 

prominent target in tumour progression due to its pivotal role in cell signalling. 

The activation of STAT3 has been related to drug resistance225, the expression 

of anti-apoptotic proteins226, and the inflammatory processes in tumour 

development, among others80,227,228. In spite of its importance in cancer 

progression, the pharmacological targeting of STAT3 by small molecule inhibitors 

is still in infancy. Due to its tendency to aggregate, STAT3 structure determination 

is a major hurdle that prevents structure-guided design based on STAT3 structure 

in both monomeric and dimeric forms, as well as bound to an inhibitor92,94,95. 

Although many strategies have been described in literature to inhibit STAT3, a 

few inhibitors are still going through clinical trials (e.g. TTI-101 [ClinicalTrials.gov 

Identifier: NCT03195699] or napabucasin (BBI-608)126,131,132[ClinicalTrials.gov 

Identifier: NCT03647839]) and STAT3 has become one of the most challenging 

cancer-related protein to target by small molecule, due to its inconclusive ligand 

binding nature. Gaining insights into the atomistic level structure and dynamics 

of STAT3 permits the identification of small molecule binding sites and structure-

guided development of novel therapeutic strategies targeting STAt3 and 

modulating its oncogenic pathways.  

The SH2 domain has traditionally been the main target for drug design, mostly 

accompanied by computational studies relying on molecular docking calculations 

or similar structure-based approaches100,101,108,110,113,118,124,229,230, despite no 

crystallographic data available up to date to support them. These ligands attempt 

– albeit with limited success - to compete with p-Y705 at the binding site known 

for the binding of the phosphorylated residue.111,231OPB-31121127 and OPB-

5160231, are at the time of writing this dissertation, the only two ligands described 

as SH2 inhibitors that bind in a different pocket than p-Y705127,227. Furthermore, 

STAT3 can undergo other post-translational modifications besides Y705 

phosphorylation such as S727 phosphorylation232,233 or K685 acetylation234 and 

it has been experimentally demonstrated that unphosphorylated STAT 

monomers can  dimerise and bind to DNA.234 These allow STAT3 to overcome 
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inhibition targeting SH2 domain, and contributes the explanation of limited 

success of ligands binding to the SH2 domain.  

This chapter describes the evaluation of STAT3 “druggability” with special 

interest in the SH2 and DBD domains. MD simulations and molecular docking 

were performed for the SH2 domain to evaluate its stability and conservation, that 

would deem it as an optimal binding site. The application of umbrella sampling 

(simulations), relationships between inter-domain mutations and binding of a 

potent ligand, BBI-608, in order to decipher the mode of action of the ligand.  

6.1 Is SH2 the ideal site to target? 

For the past years, STAT3 inhibition has been focused on its dimerisation 

process. STAT3 monomers are activated via a peptide (PY*LKTK)111 that induces 

the dimer formation and, for the past years, the modus operandi for STAT3 ligand 

design relied on the search of small molecules competing with this peptide. 

Several candidates have been proposed, but only a few of them have made it 

through the preclinical testing. Low specificity and activity was the main issue for 

these compounds to not go further. This raises the questions on (i) whether 

STAT3 SH2 domain binding site is the best site to target, (ii), whether alternative, 

allosteric binding sites exist in the SH2 domain, and (iii) whether other STAT3 

domains would be feasible for targeting by small molecules.  

6.1.1 Molecular dynamics of the SH2 domain and its “druggability” 

A series of equilibrium molecular dynamics (MD) simulations of SH2 domain have 

been carried out, to study the intrinsic dynamics of this domain, with the focus on 

the pTyr binding site (residues K591, R609, S611, E612, S613). Five 100 ns 

replicas were performed. 

Simulation data showed that SH2s pTyr binding site is highly flexible and 

conformationally adaptive, as key residues from the β-sheet that form the SH2 

pocket are displaced, therefore changing its conformation (Figure 30).  
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Figure 30 Surfaces of the SH2 domain. A) corresponds to the SH2 crystal structure while B) 

shows the three most populated clusters for each of the replicas simulated 

To assess the “druggability” of the obtained SH2 ensemble, FTMap, a well-

established pocket detection tool is used. The most populated cluster for each 

replica has been selected in order to identify the stable binding pockets. 

Interestingly, the modified cavity generated around the phosphorylated pTyr 

residue has not been identified as “druggable” by FTMap (Figure 31) in favour of 

other regions of the domain. These results indicate that the pTyr binding site 

might not be as “druggable” as previously thought. Due to the lack of ligand-

bound crystal structure, CADD approaches focusing on the pTyr binding site 

could be wrongly biased and massively improved if more stable conformations 

obtained by MD are used for drug discovery methods such as virtual screening. 

Since there is no experimental evidence for the direct binding of most of the 

described SH2 inhibitors, there is the possibility that they bind to another cavity 

within the SH2 domain (or elsewhere). Collectively, MD simulations show the 

need of the further study in search of new STAT3 binding sites. 



95 

 

 

Figure 31 FTMap results for the SH2 domain. The crystal structure and five different MD replicas 

have been calculated. Fragments in sticks correspond to the mapped areas by FTMap. In orange, 

the surface region corresponding to the pTyr site residues. It can be seen how after MD, FTMap 

does not deem the pTyr site as a “druggable” pocket in favour of other regions of the domain. 

 Some of the sites predicted by FTMap agree with the sites mapped by 

AutoDock4 and DOCK6 from the molecular docking benchmark (see section 

4.2.1.2). The site predicted by AutoDock4 (Site A) is situated just below the P site 

between residues I634 and P639 for one pocket and I 652 and I660 for the second 



96 

 

while the one predicted by DOCK6 (Site B) is situated just behind the P site, 

interacting with residues like Y584, E593 and L606. The proximity of these 

cavities to the P site might be causing the movement of near residues, closing 

the P site and therefore inhibiting its activation. Backbone RMSD between the 

crystal structure and MD clusters are calculated, showing a considerable 

difference between the initial and simulated structures. Furthermore, RMSD 

between the simulation clusters are also considerably high (>5Å in most cases), 

indicating the flexibility of the domain (Figure 32.b). RMSF analysis showed high 

fluctuation of pTyr. Upon comparing all runs, some of the residues with a higher 

difference between each other are the ones that form pTyr binding site or close 

companions (Figure 32.a). 

 

Figure 32 A) RMSF per residue for every SH2 MD simulation B) RMSD comparison between the 

SH2 domain crystal structure and the main cluster for every MD simulation 

6.1.2 Molecular docking 

Several of the STAT3 inhibitors described in the literature have been discovered 

via virtual screening (VS). This means that a database of tens of thousands of 

compounds has been tested computationally to a target via molecular docking. 

Typically, validation is performed to verify the applicable scoring function for 

molecular docking. This means that, if possible, molecular docking is performed 

with the crystallised ligand to reproduce the native binding mode, which serves 

as the direct validation of the docking procedure. In the case of STAT3, there is 

no ligand-bound crystal structure available, meaning that the direct validation of 

the docking procedure is not possible. In most cases, it cannot be certain, though, 
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whether the reported STAT3 inhibitors truly bind at the pTyr site, given the lack 

of experimental data for holo STAT3.  Usage of the pTyr activation peptide could 

serve in the validation, unfortunately, peptide docking requires parameters not 

available in scoring functions developed for the most commonly used small 

molecule docking packages. 

In order to validate the STAT3 docking results another, indirect approach was 

used in this study. A virtual screening of the series of STAT3 inhibitors denoted 

as “direct inhibitors” (believed to bind to the pTyr site) was performed, using three 

different docking programs, employing different scoring functions: MOE-Dock, 

AutoDock4 and UCSF DOCK6. Rather than focusing solely on the pTyr binding 

site, the whole SH2 domain was considered to be the target. Convergence of the 

results obtained by different scoring functions would be a viable strategy for 

boosting the confidence in the results, in the absence of structural data. 

The obtained results were heavily dependent on the docking software and the 

scoring function used, as each of the three docking packages identified different 

regions of the SH2 domain as the main binding site (Figure 33). Only MOE 

identified the pTyr binding site as the most populated and highest scoring cluster. 

While AutoDock4 selected a region adjacent to the pTyr site, formed by residues 

Q635 to E638, T714 to T717, K626, I658 and V667 DOCK6 picked the back of 

the SH2 domain as the most likely “druggable” site. These results indicated that  

the outcomes of virtual screening are heavily biased by the method chosen (e.g. 

scoring function), and defining the mechanism of action (i.e. binding mode) of 

STAT3 inhibitors solely via the molecular docking results is not recommended.  
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Figure 33 Molecular docking results vary depending on the software used. From a set of 

described inhibitors A) Autodock4 identified a region below the pTyr site while B) UCSF DOCK6 

conformations bound preferentially at the back of the domain (pTyr site highlighted in red) 

Considering the high flexibility of SH2 domain and large conformational changes 

within it observed during MD simulations, molecular docking has been 

subsequently attempted, using the newly obtained conformations. The most 

populated cluster of each simulation run (0,20 nm cut-off) from section 6.1.1 has 

been used as its corresponding receptor.  

Figure 33 shows poor “druggability” ofthe pTyr site, and a strong preference of 

other regions of the domain. Unlike in the previous calculations, the results 

obtained by all docking programmes and different conformation were highly 

consistent.  The highest scoring position and most populated clusters were the 

same for all the used scoring functions employed. The procedure identified two 

putative binding sites (Figure 34). 

The results indicate that these two sites have different preferences regarding the 

chemical structure of the ligand. Smaller and planar ligands, containing two or 

more aromatic rings, bind preferentially in an area below the pTyr site (Figure 34). 
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This site, denoted as Site L, forms a deep cavity due to the loops that comprise 

it. High flexibility of these loops (observed during MD simulations) make this site 

transiently open and close. Larger and more flexible ligands bind preferentially to 

the site denoted as Site P, located the opposite side of the SH2 domain, where 

interactions with the linker domain may occur (Figure 34). Potency of these 

ligands is poor (micromolar level), and none of them have made it to clinic. These 

ligands were specifically designed to bind in to the pocket which they could not 

interact with, resulting in a poor affinity. 

 

Figure 34 After MD simulation molecular docking binds known inhibitors in the depicted two areas 

instead of the pTyr site 

6.2 If you cannot win them, join them 

Experimental data have demonstrated that point mutations in the linker domain 

suggest contacts with both the DNA-binding and SH2 domains, which could 

cause structural changes that severely affect STAT3 activity138. Alanine scanning 

demonstrated that the modification of interdomain hydrogen bonds can produce 

a significant decrease (i.e., K551A, W546A) or increase (D570K) in the 

STAT3−DNA-binding compared to that in the wild-type protein138. Understanding 

the effect of point mutations on STAT3 activity at the atomistic level could provide 

significant information about novel binding sites, unveiling new ways to target 

STAT3 by small-molecule ligands. 

6.2.1 Equilibrium MD simulations 

In the study by Mertens and coworkers, several mutations were indicated as 

crucial to control DNA retention time within its respective binding cleft at STAT3138. 

These mutations occurred either in DNA-binding domain, or in the inter-domain 
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region. To evaluate the DNA-binding in the mutated-STAT3, three replicas of 50 

ns MD simulations were performed to equilibrate the STAT3-DNA complexes prior 

to umbrella sampling (US) simulations, and to assess any differences between 

WT and mutants, in respect to their structures and dynamics. Systems have been 

studied for that amount of time based on work by Husby and coworkers, which 

claimed to achieve an energetically conserved and stable simulation.235 The 

results obtained in this work agreed with the published data235, as one of the 

STAT3 monomers was more flexible than another monomer. RMSD variations 

were pronounced mainly in the loops of SH2 and Coiled-Coil (CC).  

 

Figure 35 MD simulations show conformational changes between WT (blue) and D570K (red) 

STAT3 dimers systems. In the D570K mutant, one of the monomers is shifted (B), changing the 

conformational landscape of the dimer. Panel C) shows how the position of the DNA duplex is 

shifted downwards in D570K mutant compared to WT. 

One of the most significant configurational changes occurred within D570K 

mutant, as the DNA double helix shifted downwards (Figure 35). This was most 
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likely caused by the electrostatic effects at the residue located in the interface 

between linker and DNA-binding domain. The modification of the side chain 

charge from negative (D) to positive (K) increased favourable protein interaction 

with the negatively charged nucleic backbone. This tightened the DNA binding, 

resulting in a higher average DNA RMSD when compared to the crystal structure. 

It strongly indicates that the end-point configurations of the protein-DNA 

complexes play a significant role in their binding free energy, since the protein-

nucleotide interactions change significantly between different mutants. 

 

Figure 36 Protein A) and DNA B) RMSD after 50 ns of MD simulation. D570K (brown) mutation 

shows higher RMSD in both protein and DNA counterparts, compared to the other mutations and 

WT-STAT3 

Next, I assessed whether the conformational changes induced by D570K 

mutation were observed in other mutations. Figure 36 shows root-mean-square 

deviation (RMSD) plots of all STAT3 considered in this study as well as WT 

protein. The obtained RMSD values are considerably high, but it should be taken 

into account that the STAT3 dimer is modelled. This leads to the observation of 

the displacement of one monomer, reason of that high RMSD along with the 

modelled loops in the CC domain. The STAT3 dimer is thought to be a mirrored 

image of every monomer, but these simulations indicate a different result. Except 

D570K, there were no large differences in protein RMSD between the mutated 

STAT3 dimers and WT. This gap between D570K and other mutants was likely to 

arise from the combination of electrostatic and steric effects (all other mutations 

replaced large and polar residue with smaller and apolar alanine), which affects 

intrinsic dynamics of the CC domain. Hence, the dynamics of the CC domain 
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might “tune” DNA-STAT3 interactions by allowing adjacent SH2 and DBD 

domains to improve their structural “fit” to the DNA.  

6.2.2 Umbrella Sampling (US) simulations 

To follow up on the effects of the mutations which control DNA retention at the 

STAT3 on the structure, dynamics, and energetics of STAT3-DNA complexes, I 

carried out a set of umbrella sampling (US) simulations, where DNA has been 

pulled from STAT3 dimer. This process was carried out using a series of US 

windows and simulated for 10ns each. We understand that the simulation time 

per window is short for this technique and it will struggle at the moment of 

evaluating convergence and presumably provide a series of energy values 

biologically impossible. Our main interest for this analysis is the comparison 

between the different mutated systems and the profiles they can provide. At no 

point we presume that the obtained values will be representative. 

The potentials of mean force (PMF) calculated via weighted histogram analysis 

method (WHAM) were consistent with the results reported by Mertens and 

coworkers14 in most cases. Experimental results showed a drop in DNA-binding 

for the tested inter-domain mutations (EE434/435AA, W546A and K551A) 

through time and an extraordinary high retention time for D570K, with a 100% 

DNA-binding even after two hours.138 The WT STAT3 had a higher energy barrier 

to reach its unbound state in comparison to W546A mutant (Table 14). The mutant 

showed a lower retention time, which indicates that inter-domain interactions 

between mutated residues and E434 are crucial for STAT3-DNA binding. 

Therefore, disrupting these interactions could represent an attractive strategy to 

target STAT3 by small molecules. K551A shows a similar profile than W546A but 

presented a higher PMF value than the other mentioned and a few kcal/mol more 

than WT (Table 14). 

Consistently with the results of the equilibrium MD simulations, PMF showed 

that D570K binding affinity to DNA was more favourable than of any other mutant, 

and more than WT STAT3 (Table 14). This indicates that this mutation promotes 

a very tight binding between STAT3 and DNA, with a higher energy gap for DNA 

release upon pulling (Figure 37). The PMF curve showed that DNA pulling from 

D570K required a higher energy gap to release DNA from the STAT3 dimer. 
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Experimental retention time correlated with the simulations when compared to 

WT STAT3. The data showed that DNA binding to the D570K was persistent 

through time, it did not drive transcription and resisted dephosphorylation, thus 

prevented STAT3 to exert its function138.  

Collectively, these results indicate that D570K promotes a very tight DNA 

binding, so much that the bound duplex stays “locked” between the dimers, which 

effectively inhibits STAT3 by preventing it from releasing DNA and exerting its 

function as a transcription factor. 

 

Figure 37 Potential of mean force (PMF) of dissociation of DNA from the STAT3 dimer. Both 

K551A (orange) and W546A (pink) mutants showed a lower PMF than WT (violet). EE434435AA 

(light green) would have displayed similar results, but the interaction between DNA duplex and 

DBD of one STAT3 monomer in the latest sampling windows resulted in higher PMF value than 

expected. In comparison, D570K (marine green) showed much higher PMF value than WT, 

indicating that DNA-protein interaction is more favourable in this mutant, relatively to WT. The 

BBI-608 binding (blue) showed similar effect to D570K mutation. 
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Table 14 Free energy change calculated for all umbrella sampling (US) calculations 

Run ΔGUS  (kcal/mol) 

WT -50.0 

EE43435AA -65.0 

W546A -35.7 

K551A -52.7 

D570K -60.0 

BBI-608 -130.0 

 

The only discrepancy between these results and experimental data was 

observed for the EE434/435AA double mutant. In the simulations, the mutant 

showed a higher PMF value than WT, which indicated that its DNA binding affinity 

should be higher, while experimental data showed that its behaviour resembled 

that of K551A and W546A mutants, which have shown a considerable drop of 

DNA-binding through time. Analysis of the final US windows indicated that the 

middle of the DNA duplex interacted favourably with the DNA-binding domain of 

one STAT3 monomer, but not another.  Therefore, the US curve of EE434435AA 

mutant displayed higher values arising from these interactions (DNA-STAT3 

monomer) rather than from favourable interactions DNA-STAT3 dimer, as it was 

for D570K mutant. 

The results by Mertens and coworkers138 are based on 60 to 100 min 

experiments that evaluated the percentage of DNA-binding of STAT3. This 

process would include several STAT3 molecules that would most likely go 

through several mechanistic cycles. Therefore, it is plausible that I did not sample 

the conformations that are contributing to these results. As expected, the 

obtained energy values are far from what it should be expected for this system. 

But the size of this system along with the available computer power and time 

impedes the desired further sampling for it. Therefore, as mentioned before, we 

pretend to interpret these values more as a comparison/estimation between the 
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studied systems rather than an absolute indicative of the energy profile of the 

system. 

All simulations indicated significant conformational changes of the arginine 

R414, which were required to release DNA (or to allow the DNA binding to the 

STAT3 dimer). R414 has been shown  as one of the main residues for DNA 

identification and binding235, but it was not described as a “gatekeeper” residue.  

R414 is at close distance from DNA and its initial position did not allow the DNA 

exit from the dimer. By acting as a “gatekeeper” of DNA binding (Figure 38), R414 

exerted a key role in controlling opening and closing of STAT3 dimer, as well 

tuned the dynamics of STAT3 monomers by modulating intra-domain DBD-SH2, 

CC-SH2, DBD-LD, and CC-LD interactions.  

 

Figure 38 Conformational changes of arginine R414 observed during the simulations. Evolution 

of the DNA duplex and R414 position over the simulation time is depicted by colours, from red to 

white. Along the DNA pulling pathway from the STAT3 dimer the R414 sidechain rotates, allowing 

the dissociation to occur. 
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6.2.3 Inhibition of STAT3 by napabucasin (BBI-608) 

The results of simulations of apoSTAT3 (WT and mutants) highlighted a set of 

inter-domain residues, explaining their effect on STAT3 behaviour and function at 

the atomistic level of detail. These observations may pave the way to novel 

strategies for STAT3 inhibition using small molecule ligands.  

 

Figure 39 The binding pose of BBI-608, according to the data reported by Ji and coworkers133. 

Since the crystal structure has not been released, I have modelled the most plausible binding 

mode by molecular docking. The side chain of the mutated K570 residue is displayed and 

coloured green – it is overlapping with the plausible location of BBI-608. 

Recently, Ji and coworkers reported that napabucasin (BBI-608), which is a 

STAT3 inhibitor in advanced clinical trials (Phase 3), binds to a small pocket 

between the linker and DNA binding domain in a STAT3 crystal structure133. 

Since the crystal structure has not been released to the public domain, I have 

assessed the druggability of this segment of STAT3, identified the putative 

pocket, and subsequently built the model of BBI-608 bound to STAT3 using 

molecular docking approach, and subsequently validated the obtained binding 

mode by the atomistic MD and US simulations.  
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Figure 40 A) Interatomic distances between the Cα of residues Q344 and G432 and residues 

T412 and Q344, calculated along a 50ns MD simulation of ligand-STAT3 complexes. Replica 1 

(blue) consists in the dissociated system and both Replicas 2 and 3 (orange and green) keep 

their ligand bound through the whole simulation B) Close-up and C) panoramic view as STAT3 

dimer closes once the BBI-608 molecule is bound D) Protein-ligand energy interaction for both 

BBI-608 molecules interacting with each monomer along a 50 ns MD simulation (three replicas: 

blue, red, and green). STAT3 dimer bound to DNA (black) is showed as the reference. 
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Molecular docking was performed by MOE for each STAT3 monomer 

separately, in an attempt to generate the most plausible conformation relying the 

limited data available. Both blind (whole monomer) and targeted (residues of the 

identified pocket) docking calculations resulted in a set of conformations with 

favourable energy scores and highly-populated cluster located within the DBD 

site pocket, in close contact with residues H332, P333, R335, K573 and D570 

(Figure 39). Two conformations, matching the published data, were found: both 

were assessed and validated. 

To validate the binding mode of BBI-608, MD simulations of WT STAT3-DNA-

BBI-608 complex were performed for 100 ns in triplicate. Subsequently, the ligand 

affinity has been calculated. The ligand docked either of STAT3 monomers 

remained bound through the whole simulation. Interaction energies, calculated 

by MMPBSA analysis (g_mmpbsa200 module) resulted in -18.1 ± 2.6 kcal/mol, 

showing a favourable binding. 

US simulations, performed using the same protocol as for STAT3-DNA 

complexes, started the pull from the most populated cluster. The calculated 

binding affinity has been severely overestimated (-160 kcal/mol), nevertheless it 

showed very tight binding. It is obvious that these values are completely 

unthinkable and therefore the experiment was replicated with similar results. 

Much longer sampling is required for this system to reach convergence and 

obtain a proper picture of the energetic profile of the system, but we believe that 

even so there is a correlation between the studied systems. Compared with the 

results obtained for protein-DNA complexes described in the previous section, it 

implies that the presence of BBI-608 enhances DNA binding with a similar effect 

to D570K mutation. As such, BBI-608 inhibits the function of STAT3 in a similar 

manner to D570K mutation, which does not drive transcription and resists 

phosphorylation12. Since D570 has been annotated by Ji and coworkers133 as the 

BBI-608 binding site residue, we concluded that BBI-608 binding to WT STAT3 

generated a similar DNA-protein interaction pattern and retention time than 

D570K mutation. 

Next, I performed MD simulations of BBI-608-bound WT STAT3 dimer without 

DNA, to study the influence of the ligand on the protein behaviour in the absence 

of DNA. BBI-608 was bound to each STAT3 monomers and four 100 ns replicas 
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showed a variation of results. In only one out of the four replicas, both BBI-608 

molecules remained bound in their pockets through the whole trajectory, while 

DBD domains of both STAT3 monomers moved closer to each other, reaching 

the point of forming inter-domain hydrogen bonds. In one simulation both ligand 

molecules dissociated from the pockets, which caused an opening of the STAT3 

dimer and in the other two simulations one of the ligands left the binding cavity at 

the 35 and 70ns of MD simulations, while another remained bound to STAT3.  

To assess ligand-induced conformational changes within the DNA entry through 

both DBD domains, distances between some of the residues involved in H-

bonding (e.g. Q344-G342 and T412-Q344) were measured and analysed in all 

four replicas and compared to the simulation of the WT STAT3 dimer without DNA 

and/or BBI-608 bound (Figure 40).  

STAT3 dimer closed further down in the presence of BBI-608. This was 

particularly pronounced in one of the replicas, in which the distance between 

monomers reduced to <5 Å. These results indicated that BBI-608 binding to 

apoSTAT3 is likely to trigger conformation changes that would prevent DNA from 

binding. In the replica simulation, where both ligands dissociated from STAT3, the 

distance between monomers increased upon ligand dissociation, as both ligands 

exit via the gap formed between DBD domains of STAT3 monomers.  

Protein-ligand interaction energy was calculated and a correlation between 

ligand dissociation, dimer separation and poor ligand affinity was observed.  

The simulations also indicated that ligand binding to one of the STAT3 monomers 

is more favourable than binding to another one. Although interaction energies are 

favourable for both monomers, one showed an interaction energy value twice as 

favourable as for another monomer. Although the allosteric effects within STAT3 

were beyond the scope of this study, these results strongly suggest that such 

effects may occur in STAT3 dimers and contribute to the modulation of STAT3 

by inhibitors. Another explanation could be that the model was not optimal. 

Although the used docking poses have an extraordinary resemblance to Ji’s 

data,133 only one is shown in the patent. Since this dimer is asymmetric, DNA 

interactions with both cavities would be different and could imply a different 

conformation and/or location for the ligand that does not correspond to the model 
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one. Furthermore, the MD results strongly indicate that one monomer is much 

more mobile than the other, and this is likely to affect protein−ligand affinity. 

 

Figure 41 “Druggability” of STAT3 dimer. Sitefinder A) and fpocket B) were used to identify new 

potential pockets for structure-based drug design. In both cases the BBI-608 DBD site was 

identified along with novel DBD pockets. 

6.2.4 Identification of a novel “druggable” binding site 

Experimental results12 combined by the simulations strongly indicated that 

targeting the interface between STAT3 monomers may trigger similar response 

to the inhibition by ligands binding to the DBD domain, and therefore be explored 

in structure-based ligand design efforts. With most STAT3 ligands being designed 

for the SH2 domain and just a few for the DBD domain, the identification of new 

“druggable” pockets for STAT3 inhibition is of a great interest. 

As such, I scanned STAT3 for the presence of potential binding sites with two 

pocket detection tools: fpocket55 and MOE’s Site Finder. Upon selection of the 

dimer model and different clusters from its MD simulation trajectories I confirmed 

the binding site identified for BBI-608133, which has been identified by both tools 

as their top-ranked site. Interestingly, that site was detected by both fpocket and 

SiteFinder for all analysed structures (Figure 41). In addition, a new pocket within 

DNA binding domain (close contact with E434 and E435) was identified. The main 

difference between results obtained by both tools is that fpocket was more prone 

to detect SH2 domain sites as pockets (Figure 41, panels B2 and B3) while 

SiteFinder identified a novel “druggable” pocket close to R414 (Figure 41, panel 

A1). Ligand binding to the R414 pocket could result in a possible DNA 

release/binding impediment. 
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6.3 New site, new opportunities 

The identification of the DBD groove as a binding site “druggable” by small 

molecules provided two outcomes relevant for the STAT3 structure-based drug 

design: (1) ligand binding outside of the SH2 domain is possible, and (2) there is 

a specific pocket to be scrutinised. Most of the computationally designed STAT3 

inhibitors were intended to target the pTyr site at the SH2 domain. Targeting the 

new DBD pocket would require a set of different features in order to optimise the 

potency and selectivity. Since there is only one ligand identified to bind to that 

pocket (BBI-608), I used SBDD techniques to explore this pocket and to discover 

new inhibitors.  

6.3.1 Drug repurposing 

Since de novo design is inherently time consuming and its application would be 

beyond the scope of this project, I screened a set of FDA approved drugs 

(repurposing). For the validation, both a blind docking including linker and DBD 

domains, and a DBD-targeted docking have been performed. Considering the 

success in application of MOE in deconvoluting of the BBI-608 binding mode, I 

applied the same protocol in the repurposing study. Out of the whole database236 

(1930 molecules), a series of non-steroidal anti-inflammatory drugs (NSAIDs) 

scored the highest in meeting the selection criteria based on the binding energy 

(score) and ability to reproduce protein-ligand interaction (K573) and 

conformation observed for BBI-608 (Figure 42). 
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Figure 42 A) Overlap between most favourable conformations, ligand interactions maps of BBI-

608 (B), ibuprofen (C) and naproxen (D) 

From the series, six ligands were selected for the further evaluation: carprofen, 

fenoprofen, flurbiprofen, ibuprofen, naproxen and suprofen (Table 15). 

To validate the predicted binding modes, molecular docking calculations were 

followed-on by equilibrium MD simulations. Simulations were performed for 100 

ns in triplicates, and the binding affinity was calculated using MM-PBSA. 

Fenoprofen and suprofen had poor interaction energies and they dissociated 

from the binding site during the simulation. The other ligands formed stable 

complexes and their interaction energies calculated by MM-PBSA 

(g_mmpbsa200) showed an excessively favourable binding, with predicted affinity 

higher than BBI-608 (Table 15). Like in the case of US, we take these values 

more into account as comparison between rather than a prediction. Otherwise 

they would be fairly strong binders which we believe is not the case. These values 

can be related directly to the method, MM-PBSA. Other techniques such as free 

energy perturbation (FEP) could have been employed to determine the ligand-

binding affinity. 
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Table 15 Energy interaction studied compounds calculated by MM-PBSA 

Ligand 
MMPBSA 
(kcal/mol) 

Carprofen 17,9 ± 6,6 

Flurbiprofen 29,9 ± 6,5 

Ibuprofen 23,9 ± 4,8 

Naproxen 34,9 ± 5,4 

BBI-608 18,1 ± 2,6 

 

6.4 CAT analysis of STAT3 

As mentioned in previous sections STAT3 is a hard to target protein. A lack of 

structures co-crystallised with small molecule ligands hinders proof of its 

canonical binding site. Although there is evidence on its allosteric behaviour, most 

studies on the protein hotspot identification are inconclusive due to their lack of 

experimental validation. Therefore, in an attempt to identify potential binding 

sites, I performed cosolvent MD and its further analysis with CAT for STAT3.  

The same protocol as the CAT benchmark was followed. This includes selection 

of the same probes (acetamide, acetanilide, benzene, imidazole, isopropanol), at 

the same concentration, 10% (m/m), and that three times 50 ns replicas per 

cosolvent were performed for the CAT analysis. The STAT3 monomer, except 

the CC domain, was simulated instead of the dimer. 

Taking into account the data gathered in this work, it can be assumed that STAT3 

presented at least two binding regions: the pTyr site in the SH2 domain, and the 

DBD groove identified by Ji and coworkers133. CAT identified the pTyr site but 

struggled to properly map the buried DBD pocket (Figure 43). At the pTyr site 

several highly ranked clusters were mapped, mainly in the helix that comprises 

the pY+0 pocket including key residues K591 and R595 (Figure 43.b). Three 

different probes identified the aforementioned region: benzene, imidazole and 

isopropanol. Interestingly, other cosolvent clusters (mainly acetamide) were 

placed mainly in two other regions from the SH2 domain. These correspond to 

the preferential hotspots for AutoDock4 and UCSF DOCK6 mentioned in section 
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4.2.1.3 (Figure 43.c). Regarding the DBD site, no clusters identified the internal 

residues of the pocket, but all probes identified at different levels of preference 

the external face of the pocket (K573, T515 and D334) (Figure 43.d). Acetanilide 

seemed to have a different behaviour, as it does not map any region from the 

SH2 or Linker domain, meaning that it has a considerable preference for the 

DNA-Binding Domain. Its affinity is very favourable on the region close to R414, 

residue that as a gatekeeper for DNA exit as mentioned in 6.2.2 (Figure 43.e). 

 

Figure 43 STAT3 hotspots found by CAT. Clusters have the following colours assigned: 

acetamide as cyan, benzene as magenta, acetanilide as orange, imidazole as yellow, and 

isopropanol as green. A) Panoramic view of the STAT3 monomer and the respective top regions 

identified by CAT. B) The loop (K591-E594) that forms the pY+0 pocket from the pTyr site is 
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identified by different cosolvents with high ranks. C) The L site, identified previously with AutoDock 

molecular docking is also mapped by CAT clusters as well as the newly identified DBD pocket 

(D) and a pocket close to the gatekeeper R414 (E) 

Performing cosolvent MD and further CAT analysis with the STAT3 system is a 

challenge. STAT3 is a multidomain protein with scarce evidence around its 

“druggability”. Cosolvent MD has been mainly tested with small proteins and/or 

single domains. This means that the bigger the system, the larger number of 

probes to be found in the system leading to a potential clustering and/or phase 

separation. Nevertheless, these results were deemed as satisfactory. The main 

goal was to identify both the pTyr and DBD binding sites, and while we succeed 

with the first, CAT struggles to map the DBD pocket due to its “hidden” nature. 

Again, it is likely that the binding site would be mapped more accurately if longer 

simulations were performed, but the risk to undergo phase separation is too big. 

As mentioned in section 1.3 one way to overcome this issue could have been to 

use of repulsion potentials in combination with longer simulations. Furthermore, 

regions that were classified as the preferential SH2 domain binding site for 

AutoDock4 and UCSF DOCK6 are also mapped. I believe that these regions 

should be taken into higher account as for example OPB-31121127, one of the few 

inhibitors going through clinical trials, is believed to bind in the “AutoDock region”.  

It is also interesting how CAT maps an area close to R414, the gatekeeper 

residues for the DNA binding/unbinding process. If ligand binding were to be 

achieved in that region, it could lead to a new mechanism of inhibition. 

Table 16 STAT3 CAT results 

Target 
Binding 

Site 
Protein Contacts Cosolvent CAT Rank 

STAT3 

pTyr site 
M586, G587, I589, K591, 
R595, R609, E612, W623, 

K626, S636 

Benzene 1,4 

Imidazole 1 

Isopropanol 3,10 

Acetamide 5 
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DBD 
pocket 

M331, H332, P333, D334, 
R335, P470, M471, T515, 

D570, K573 

Benzene 2,4 

Imidazole 4 

Isopropanol 6 
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Chapter 7 Conclusions 

The correct assessment of the structural changes within the protein target is 

crucial for the right evaluation of possible time-dependent binding sites. As such, 

an accurate tool is pivotal for selecting possible contact regions to be further 

studied.  While standard analysis of hotspot mapping quantifies primarily the 

volume of the binding region, cosolvent MD simulation followed by CAT analysis 

focuses on the cosolvent-induced conformational changes, to map, assess, and 

rank the putative ‘hotspots’, via an empirical scoring function. This characteristic 

gives the algorithm presented herein a high level of robustness and reliability in 

searching and ranking hotspots, as shown by the comparison with experimental 

data and FTMAP predictions. The scoring function implemented in CAT makes it 

unique and distinct from computational methodologies reported in the literature. 

In the present work, it has been developed, tested and validated the applicability 

of CAT analysis to detect several potentially druggable allosteric sites, which 

were detected by X-ray crystallography studies. The usage of five different 

cosolvent molecules demonstrated, at the same time, a broad sample space 

regarding interacting molecules and provides an insight on the chemical nature 

of the putative ligand moieties that would preferentially bind to the respective site. 

CAT is robust yet versatile: the analysis can be performed on cosolvent 

trajectories using any cosolvent molecule of choice.  

The major shortcoming of CAT observed so far was its inability to map some deep 

buried pockets. This could be attributed to insufficient sampling during MD 

simulation, however FTmap performs very well on this task. Although this issue 

may be easily sorted by longer MD simulation in water prior to cosolvent MD 

simulations, a combination of both tools could be an interesting approach. I 

understand that the principle in which FTMap is based is not the same, although 

they share some features. The main goal while choosing this tool as a 

comparison with CAT relied in the ease of use and fast results one could get. The 

use of cosolvent tools such as CAT can give more insights in the dynamics and 

crypticity of the target in comparison to FTMap. 
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In future works, I would aim to explore CAT analysis applied to multi-cosolvent 

trajectories and to address the sampling problem which underlies the sub-optimal 

performance in mapping the buried pockets. 

Using computational approaches based on atomistic molecular dynamics 

simulations, enabled me to understand the effects of specific STAT3 mutations, 

which were described in the literature, and to explain their modulation of the 

STAT3 activity. Consistently with Mertens and coworkers138, D570K mutation 

exerted its effect by enhancing interactions between STAT3 and DNA, which 

interfered with the DNA release by the STAT3 dimer and thus inhibited the 

protein’s function by not driving transcription and resisting dephosphorylation.  

Subsequently, recent identification of a plausible binding site for small molecule 

STAT3 inhibitor nababucasin (BBI-608) helped me to deconvolute its inhibition 

mechanism, with resembled the effect exerted by D570K mutation. The 

identification of the putative binding site for BBI-608 around the DNA binding 

domain may contribute to novel potent and selective STAT3 inhibitors, similarly 

as the binding site shown in Ji’s work133. The accuracy and similarity between the 

model and the available patent data, raising the question on why this pocket was 

not identified before. Mutated inter-domain residues E435, W546 and K551 unveil 

a poor binding to DNA, leading to another way of targeting STAT3 by disrupting 

theses residues, pointing towards possible novel allosteric binding sites. 

Structure-based ligand design targeting these novel pockets, coupled with novel 

methodologies, such as employing recently the developed FragLites237, is likely 

to expand a set of chemotypes active towards STAT3 and contribute to the 

development of novel inhibitors of this important yet very challenging drug target. 
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Appendix A 

A.1 Cosolvent MD simulation protocol 

Structure preparation  

The crystal structures used as starting conformations for the cosolvent MD 

simulations were in the apo state, whenever available (PDB codes are listed in 

Table 9). Structures were stripped of water molecules and any present cofactors 

and/or ligands. For structures with missing loops, the MODELLER238 interface in 

UCSF Chimera239 was used to rebuild the missing fragments. The best ZDOPE 

scored loops were selected to complete the model.  

Incomplete side chains were replaced using the Dunbrack rotamer library240, 

implemented in UCSF Chimera21. For side chains with multiple locations, the 

highest occupancy conformations have been selected.  Structural hydrogens 

were added and the following protein parametrisation was performed using the 

Gromacs 2016.03241 suite with AMBERFF99SB-ILDN148 force field. A cubic box 

was centred around the protein target with 1 nm distance between the protein 

extreme to the edge. A pre-defined number of molecular probes (cosolvent 

molecules) were randomly inserted into to the system, ensuring that after the 

following solvation with TIP3P waters there was a 10% (m/m) probe concentration 

in water in order to avoid phase separation and/or probe clustering. Each 

simulation used a single type of cosolvent molecule. The probe selection criteria 

consisted of using a series of drug-like small molecular fragments with a broad 

range of relevant properties, including hydrophilicity/hydrophobicity, aromaticity, 

and number of hydrogen-bonding acceptors/donors, with a diverse range of logP 

values. The following molecules were used: acetamide, benzene, acetanilide, 

imidazole and isopropanol. To diminish the effect of phase separation and 𝜋 − 𝜋 

stacking of aromatic and very hydrophobic cosolvent molecules such as 

benzene, an approach similar to Mackerell and colleagues242 was chosen, which 

relied on placing a dummy atom with a negligible negative charge (e=-0.01) in 

the centre of the 6-membered ring. All probes were parametrised using GAFF243 

with AM1-BCC244 charges assigned by ACPYPE/ANTECHAMBER245.   
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MD simulation protocol 

To maintain the charge neutrality of the simulated unit, sodium and chloride ions 

were added to a concentration of 0.1 M. Bonds were constrained using the 

LINCS246 algorithm, with a 2 fs time step. The electrostatic interactions were 

calculated using the particle-mesh Ewald method, with a non-bonded cut-off set 

at 0.1 nm. All structures were minimised via the steepest descent algorithm for 

20000 steps was stopped when the maximum force fell below 1000kJ/mol/nm 

using the Verlet cutoff scheme.  After minimisation, heating via NVT ensemble 

was performed for 100 ps with a time step of 2 fs with position restraint (1000 

kJ/mol.mn2 in all three dimensions) applied to the backbone. The temperature 

coupling was set between the protein and the non-protein entities by using a 

Berendsen thermostat, with a time constant of 0.1 ps and the temperature set to 

reach 300 K with the pressure coupling off. Sequentially, a pressure NPT 

ensemble equilibration was performed followed by 100 ps, and three NPT 

ensemble production run replicas of 50 ns, totalling 150 ns for each different 

combination of protein and cosolvents, including the control simulations that are 

comprised of only protein-water systems. All production runs were unrestrained 

simulations.247 The temperature was set constant at 300 K by using a modified 

Berendsen thermostat (τ = 0.1 ps) 156. Pressure was kept constant at 1 bar by 

Parinello-Rahman isotropic coupling (τ = 2.0 ps) to a pressure bath.  

Data analysis has initially been done within the Gromacs package. For each data 

set, the analysis involved calculating root-mean-square deviation (RMSD), root-

mean-square fluctuations (RMSF), the covariance matrices and principal 

component analysis (PCA) and solvent accessible surface area (SASA) to 

analyse convergence of the runs. Afterwards, CAT analysis was employed for 

every dataset to identify any potentially druggable hotspots. 
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A.2 CAT supplementary information 

 

Figure A.1 PCA distribution of control simulations (protein-water) with cosolvent systems in 

HRAS GTPase. Black dots correspond to the control simulation, and orange dots to the cosolvent 

MD. 
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Figure A.2 RMSD plots for HRAS 5 cosolvent runs and water simulation. 

 

Figure A.3 SASA plots for HRAS 5 cosolvent runs and water simulation. 
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Figure A.4 PCA distribution of control simulations (protein-water) with cosolvent systems in 

PTP1B. Black dots correspond to the control simulation, and orange dots to the cosolvent MD. 

 

 

Figure A.5 RMSD plots for PTP1B for all 5 cosolvent runs and water simulation. 
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Figure A.6 SASA plots for HRAS 5 cosolvent runs and water simulation. 
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Figure A.7 PCA distribution of control simulations (protein-water) with cosolvent systems in AR 

ligand-binding domain. Black dots correspond to the control simulation and orange dots to the 

cosolvent MD. 
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Figure A.8 RMSD plots for AR-LBD cosolvent runs and water simulation. 

 

Figure A.9 RMSD plots for AR-LBD cosolvent runs and water simulation. 
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Figure A.10 PCA distribution of control simulations (protein-water) with cosolvent systems for 

CDK2. Black dots correspond to the control simulation and orange dots to the cosolvent MD. 

 

Figure A.11 RMSD plots for CDK2 cosolvent runs and water simulation. 
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Figure A.12 SASA plots for CDK2 5 cosolvent runs and water simulation. 

Table A.1 CAT scores for all targets and the top 10 clusters 

AR-LBD 

Rank Acetamide Benzene Isopropanol Acetanilide Imidazole 

1 -0,65 -0,68 -0,93 -1,15 -1,73 

2 -0,61 -0,64 -0,84 -0,98 -1,49 

3 -0,56 -0,54 -0,81 -0,83 -1,29 

4 -0,51 -0,45 -0,71 -0,74 -1,13 

5 -0,46 -0,35 -0,68 -0,62 -1,02 

6 -0,43 -0,35 -0,62 -0,54 -0,94 

7 -0,43 -0,33 -0,56 -0,54 -0,87 
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8 -0,41 -0,27 -0,5 -0,49 -0,84 

9 -0,41 -0,24 -0,42 -0,47 -0,82 

10 -0,4 -0,24 -0,42 -0,45 -0,81 

PTP1B 

Rank Acetamide Benzene Isopropanol Acetanilide Imidazole 

1 -2,3 -0,47 -1,65 -0,88 -1,68 

2 -1,08 -0,47 -0,92 -0,53 -1,02 

3 -0,8 -0,42 -0,58 -0,44 -0,78 

4 -0,68 -0,31 -0,57 -0,4 -0,77 

5 -0,67 -0,3 -0,49 -0,4 -0,74 

6 -0,54 -0,28 -0,43 -0,34 -0,73 

7 -0,53 -0,26 -0,42 -0,29 -0,65 

8 -0,52 -0,24 -0,42 -0,29 -0,62 

9 -0,51 -0,22 -0,41 -0,29 -0,58 

10 -0,51 -0,22 -0,4 -0,28 -0,57 

HRas 

Rank Acetamide Benzene Acetanilide Imidazole Isopropanol 

1 -0,64 -0,32 -0,4 -0,83 -0,55 

2 -0,64 -0,19 -0,33 -0,64 -0,5 

3 -0,57 -0,17 -0,3 -0,59 -0,49 

4 -0,52 -0,17 -0,28 -0,57 -0,49 
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5 -0,52 -0,16 -0,22 -0,56 -0,42 

6 -0,45 -0,15 -0,21 -0,51 -0,41 

7 -0,43 -0,15 -0,2 -0,49 -0,41 

8 -0,39 -0,14 -0,19 -0,45 -0,34 

9 -0,37 -0,14 -0,19 -0,44 -0,32 

10 -0,34 -0,08 -0,19 -0,41 -0,31 

CDK2 

Rank Acetamide Benzene Acetanilide Imidazole Isopropanol 

1 -0,74 -0,94 -0,89 -0,92 -1,21 

2 -0,67 -0,78 -0,87 -0,78 -1,01 

3 -0,61 -0,68 -0,71 -0,75 -0,74 

4 -0,57 -0,52 -0,63 -0,62 -62 

5 -0,56 -0,46 -0,59 -0,58 -0,62 

6 -0,55 -0,43 -0,57 -0,55 -0,53 

7 -0,5 -0,41 -0,56 -0,55 -0,47 

8 -0,5 -0,35 -0,54 -0,51 -0,46 

9 -0,48 -0,35 -0,53 -0,51 -0,45 

10 -0,45 -0,32 -0,52 -0,5 -0,44 
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Appendix B 

B.1 Chapter 6 Simulation/Docking protocol 

Molecular modelling of human STAT3 dimer.  

Initial models of dimeric human STAT3 (wild type and mutants) in complex with 

DNA were created using crystal structure of unphosphorylated mouse STAT3B 

(PDB code: 4E68), which spans residues 136-716. The N-terminal domain has 

been excluded from the structures subjected to the simulations. Loops spanning 

the residues 184-194 and 688-702 were modelled using MODELLER 

interface248,249 in UCSF Chimera250. The DNA double strand bounded to the 

model was designed based on 4E68, with the 5’-3’ strand sequence as 

TGCATTTCCCGTAATC. The final model was subjected to 20000 cycles of 

steepest descent energy minimisation. 

The STAT3 mutations (Figure 13), which were selected following the study by 

Mertens and coworkers138, were introduced in UCSF Chimera by swapping side 

chains to the target residues and adjusting new conformations using Dunbrack 

rotamer library integrated within UCSF Chimera. 

Modelling of ligand-bound STAT3. The crystal structure of ligand-bound 

STAT3 is yet not available, therefore we built the most similar model possible with 

the accessible data. Starting from the dimer model of wild-type STAT3 described 

in the previous section, molecular docking calculations were performed with 

MOE251, using napabucasin (BBI-608) as the ligand. To ensure the scoring 

function accuracy with the target and the best possible fit both blind (full dimer) 

and targeted docking (pocket described) were performed. 200 different 

conformations of the ligand were scored per each run using Triangle Matcher, 

and London dG for the first scoring function. Thereafter, the top 100 

conformations were rescored using Induced Fit and GBVI/WSA (Generalized-

Born volume integral/weighted surface area) score 251. From the final poses 

obtained, one for each monomer was selected based on score, interactions and 

consistency with the experimental structure shown in Ji’s work133 which shows 

BB1-608 bound to a pocket located within the DNA-STAT3 interface. 
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Molecular dynamics and umbrella sampling simulations. In order to study the 

dynamics effects of mutations in the STAT3 dimer, each of the listed mutation 

were created in UCSF Chimera250. Structural hydrogens were added and the 

following protein parametrisation was performed using the Gromacs 2016.03252 

suite with AMBERFF99SB-ILDN253 force field. Before pulling the DNA from the 

complex, the systems were relaxed with a short equilibrium MD production run. 

Hence, a 1 nm cubic box was centred on the structure and the system is solvated 

with TIP3P waters.  Sodium and chloride ions were added to a concentration of 

0.1 M resulting in systems with more than seven hundred thousand atoms. Bonds 

were constrained using the LINCS254 algorithm. The electrostatic interactions 

were calculated using particle-mesh Ewald method, with a non-bonded cut-off set 

at 0.1 nm. All structures were minimised via the steepest descent algorithm for 

20,000 steps of 0.02 nm, and minimisations were stopped when the maximum 

force fell below 1000kJ/mol/nm using the Verlet cut-off scheme255. After 

minimisation, temperature equilibration  was performed for 100ps with a time step 

of 2fs with position restraints applied to the backbone using an NVT. The 

temperature coupling was set between the protein and the non-protein entities by 

using a Berendsen thermostat256, with a time constant of 0.1 ps, and the 

temperature set to reach 300K with the pressure coupling off. Sequentially, a 

pressure NPT equilibration was performed followed by 100ps of an NVT 

equilibration, the following 100ps of NPT equilibration, and a production run of 

100 ns. Temperature was set constant at 300K by using a modified Berendsen 

thermostat (τ = 0.1 ps)256. Pressure was kept constant at 1 bar by Parinello-

Rahman isotropic coupling (τ = 2.0 ps) to a pressure bath257.  

For the umbrella sampling simulation, a 50 ns pre-umbrella equilibration was 

made, with the complex rotate its principal axis to align with the z-axis of the 

simulation box. A pull sampling was used using a constant force approach (k = 

1000 kJ/mol/nm, with a rate of 0.01 nm) between the centres of masses of SH2 

domain and the DNA double helix, along the described path shown in Figure 2. 

From each corresponding pull simulation, a series of conformations have been 

selected in order to sample the process of entering-exiting the DNA-binding site. 

Each of the 25 selected umbrella windows has been through a 1ns NPT 
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equilibration run, followed by a 5ns NPT distance restrained production run, 

totalizing per system, 135ns of simulation time, using the previously described 

protocol and parameters. Afterwards, the potential of mean force (PMF) curve of 

the studied scenario has been calculated with the Weighted Histogram Analysis 

Method (WHAM) tool from Gromacs258, and associated errors was calculated 

using both a convergence criteria and the implemented bootstrap method in 

gromacs WHAM. All calculations for the analysis were made using the gromacs 

tools. 

 

B.2 STAT3 supplementary information 

 

Figure A.13 RMSD values for the three performed simulations of STAT3-BBI608 complexes. For 

all three replicas, the systems attained convergence. However, the replica C had shown some 

loop fluctuations which increased the RMSD values. 
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Figure A.14 PMF per ns for the WT apo STAT3, where ξ is the DNA pulling coordinate. We can 

see a clear convergence after 5 ns. The variations are negligible after 7 ns. 

 

Figure A.15 PMF per ns for the K551A STAT3 mutant, where ξ is the DNA pulling coordinate. 

After 7 ns, the overall energy of unbinding has converged. However, after 9 ns, a new energetic 

state has been sampled. This does not change the ΔG but does change the PMF landscape. 
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Figure A.16 PMF per ns for the EE434435AA STAT3 double mutant, where ξ is the DNA pulling 

coordinate. The system has a steady convergence after 5 ns, with negligible fluctuations after 7 

ns. 

 

Figure A.17 PMF per ns for the W546A STAT3 mutant, where ξ is the DNA pulling coordinate. 

The system has a steady convergence after 5 ns, with negligible fluctuations after 7 ns 
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Figure A.18 6 PMF per ns for the D570K STAT3 mutant, where ξ is the DNA pulling coordinate. 

The system has a steady convergence after 3 ns, with negligible fluctuations after 5 ns. 

 

Figure A.19 PMF per ns for the BBI608-STAT3-DNA complex. where ξ is the DNA pulling 

coordinate. The system has a steady convergence after 5 ns. Regardless of the PMF landscape 

change in the 10ns run, the overall ΔG has been achieved convergence after 7 ns. 
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Figure A.20 8 RMSD values for the performed STAT3-BBI608 simulations without DNA. Given 

the lack of DNA structure to stabilize the dimer, the RMSD fluctuates significantly more in 

comparison to the DNA-bound dimer. 
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Appendix C 

C.1 Equipment 

Computational methods and procedures described in this work were 

accomplished with in-house systems and high performance computing resources 

(HPC): 

C.1.1 In-house equipment 

Local machine: 

• 1 Intel Core E3-1200 processor (4.00 GHz, 8 cores, X MB cache) 

• 1 GeForce GTX 1070 GPU 

• 16 GB memory 

• 6 TB SATA Disk 

C.1.2 HPC resources 

Rocket (Newcastle University) 

110 standard nodes, each with: 

• 2 Intel Xeon E5-2699 v4 processors (2.2 GHz, 22 cores, 55 MB cache) 

• 44 cores (2 processors * 22 cores), totalling 4840 across the standard 

nodes 

• 128 GB memory - (8 DDR4 RDIMMs, each with 16GB) – ie. 2.9 GB per 

core 

• 600 GB SAS disk (469 GB scratch space) 

6 medium (M) nodes: 

• 2 Intel Xeon E5-2699 v4 processors (2.2 GHz, 22 cores, 55 MB cache) 
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• 44 cores (2 processors * 22 cores), totalling 264 across the medium nodes 

• 512 GB memory - (16 DDR4 RDIMMs, each with 32GB) – ie. 11.6 GB per 

core 

• 1200 GB SAS disk (1.1 TB scratch space)  

4 large (L) nodes: 

• 2 Intel Xeon E5-2699 v4 processors (2.2 GHz, 22 cores, 55 MB cache) 

• 44 cores (2 processors * 22 cores), totalling 176 across the large nodes 

• 512 GB memory - (16 DDR4 RDIMMs, each with 32GB) – ie. 11.6 GB per 

core 

• 2 * 4000 GB SAS disks (7.2 TB scratch space) 

2 extra-large (XL) nodes: 

• 4 Intel Xeon E7-4830 v4 processors (2.0 GHz, 14 cores, 35 MB cache) 

• 56 cores (4 processors * 14 cores), totalling 112 across the extra-large 

nodes 

• 1536 GB memory - (48 DDR4 RDIMMs, each with 32GB) – ie. 27.4 GB 

per core 

• 8 * 1200 GB SAS disks (8.7 TB scratch space) 

1 GPU node: 

• 2 * 16 core IBM POWER9 processors (2.6GHz, 3.09 GHz Turbo) 

• 4 NVIDIA Tesla V100 GPUs, each with 16GB VRAM and NVLink2 

interconnect  

• 256 GB memory 
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• 893 GB scratch space 

 

C.2 Software used 

Name Version Reference 

Data visualization and analysis 

VMD 1.9.3 202 

Pymol 2.0 259 

UCSF Chimera 1.12 239 

RStudio 1.2.5001 260 

Docking 

MOE 2016.01 190 

AutoDock 4.2.6 182 

AutoDock Tools 1.5.6 182 

Raccoon 1.0b 261 

UCSF DOCK 6.9 181 

Molecular dynamics simulation and analysis 

Gromacs 2016.1 241 
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Appendix D 

D.1 Digital repositories 

Digital data such as molecular docking results, modelled systems or molecular 

dynamics trajectories can be found at: 

http://tiny.cc/SabanesData 

or 

 

The code for the Cosolvent Analysis Toolkit as well as tutorials can be found on 

github: 

http://tiny.cc/CAT_MD 

or 

 

http://tiny.cc/SabanesData
http://tiny.cc/CAT_MD
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