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Abstract 
Introduction: Cervical cancer is the 4th most common cause of cancer-related death in 

women. It is caused by infection with high-risk HPV (HR-HPV). Current therapy with cisplatin 

and radiotherapy acts by damaging DNA. The DNA damage response (DDR), critical for 

survival following endogenous and therapeutic DNA damage, comprises signalling to cell 

cycle checkpoints and DNA repair. HR-HPV inactivates p53 and pRB and thereby the GI/S 

checkpoint, making cervical cancer an ideal target for inhibition of intra-S and G2/M cell 

cycle checkpoints. This thesis directly compares the efficacy of inhibitors of the S and G2/M 

checkpoints: ATR, CHK1 and WEE1 as single agents and as sensitisers to cisplatin and ionising 

radiation in cervical cancer cell lines 

Methods: A panel of 6 cervical cancer cell lines with different histopathology and HPV status 

were used. DDR protein expression and inhibition of ATR, CHK1 and WEE1 by VE-821, PF-

477736 and MK-1775, respectively were measured by Western blot. Checkpoint proteins 

were measured in a TMA of human cervical cancer by IHC. Cytotoxicity of inhibitors and 

combinations with cisplatin or IR was determined by clonogenic assay. Cell cycle analysis 

with propidium iodide was used to investigate cell cycle changes.   

Results: The expression of DDR and checkpoint proteins varied in both cell lines and the 

TMA. There was a modest spectrum of sensitivity to cisplatin, IR and the inhibitors but the 

rank order was different for each agent, which was not related to the levels of DDR proteins 

in general but low ATM was associated with VE-821 sensitivity. The inhibitors were used at 

fixed concentrations for chemo- and radio-sensitisation studies: 1 µM VE821, 50 nM PF-

477736 and 100 nM MK-1775 reflecting their relative target inhibition potency and intrinsic 

cytotoxicity. Greater sensitisation was observed with cisplatin than IR, with VE-821 having 

the greatest and MK-1775 the least effect. Cisplatin caused S-phase accumulation that was 

reduced by the kinase inhibitors in 4/6 cell lines but increased in the other 2. The effects 

were more marked for VE-821 and PF-477736 vs MK-1775 and were not related to cisplatin 

sensitisation.  

Conclusions: Cytotoxicity and sensitisation effects were not explained by protein expressions 

or enzyme inhibition. The effect of the inhibitors on cisplatin-induced S-phase arrest varied 

across the cell line panel and did not correlate with sensitisation data. Analysis was 

hampered by the size of the panel and their similarity. Further work with a larger, more 
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diverse panel of cell lines is required before the mechanisms and potential biomarkers of 

response to ATR, CHK1 and WEE1 inhibition in cervical cancer can be identified.   
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1 Introduction 

1.1 Cervical cancer – Morbidity, mortality and current treatment 

 
Cervical cancer accounted for over 310,000 cancer deaths worldwide in 2018 despite 

important advances in the detection of pre-invasive disease through effective screening 

programmes (Landy et al., 2016, Rebolj et al., 2019) and the availability of vaccines targeted 

at high-risk human papillomavirus (HPV) (Simms et al., 2019). Cervical cancer remains 

stubbornly amongst the top four worldwide causes of female cancer death, accounting for 

7.5 % of cancer related mortality in women. In low Human Development Index (HDI) settings 

cervical cancer is the second most common cause of female cancer death and in Western 

and sub-Saharan Africa it is the most commonly diagnosed cancer in women (Bray et al., 

2018). The overwhelming majority of cervical cancers are carcinomas arising from the 

squamous cells of the ectocervical transition zone or adenocarcinomas (and a variant known 

as adenosquamous cancers) arising from the glandular endocervix. Both histopathological 

sub-types have the same aetiology: mucosal infection with human papillomavirus (HPV) and 

are treated similarly, although adenocarcinomas have a marginally poorer response to non-

surgical treatments and a slightly poorer prognosis (Katanyoo et al., 2012, Chen et al., 2014).  

 

In all settings, the likelihood of surviving cervical cancer depends on the stage of the disease. 

The five-year survival rates from cervical cancer range from 95% in stage 1 disease to just 5% 

for those with stage 4 disease (CRUK, 2019).  Cervical cancer is staged according to the 2018 

FIGO (International Federation of Gynaecology and Obstetrics) staging system (Bhatla et al., 

2018), which uses a combination of clinical and radiological findings (Table 1.1). Initial 

treatment is defined by stage at presentation. Early disease, confined to the cervix is usually 

treated surgically with either a local or radical excision of the tumour, cervix and uterine 

corpus along with common sites of metastases such as the parametrium and pelvic lymph 

nodes. Locally advanced disease in which there is evidence of spread to the parametrium or 

pelvic nodes is usually treated with concurrent radical radiotherapy and cisplatin 

chemotherapy (Cibula et al., 2018).  
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Table 1.1 Cervical cancer treatment options and 5-year survival by stage at 
presentation.   

Staging does not include sub-categorisation that do not affect treatment choices or have 
significant impacts on survival outcomes, which are based on previous FIGO (2009) 
staging classifications. Local excision refers to cervical conisation or simple excision of the 
cervix ± uterine corpus (depending on the tumour size and fertility preservation wishes of 
the patient). Radical excision refers to excision of the cervix ± uterine corpus with excision 
of the parametria and upper vagina. Table derived from Bhatla et.al., 2018  

 

 

For patients who have disease outside of the pelvis at presentation or for those who have 

recurrent disease in anatomical areas previously treated with radiotherapy, therapeutic 

options are often limited to palliative chemotherapy, often with platinum-based regimes if 

the disease is not amenable to salvage surgery (Scatchard et al., 2012). Despite the recent 

introduction of newer agents such as the anti-vascular endothelial growth factor drug 

Bevacizumab (Bizzarri et al., 2016, Rosen et al., 2017) into chemotherapy regimens, the 

prognosis for advanced or recurrent disease remains poor.  This underlies the urgent need to 

find new and effective strategies to treat cervical cancer, including strategies aimed at 

enhancing the effectiveness of standard of care treatments at all stages of disease.  
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1.2 Cervical cancer and high-risk HPV 

1.2.1 Cervical cancer is strongly associated with high-risk HPV 

Cervical cancer is almost ubiquitously a disease resulting from infection of the cervical 

transition zone by ‘high-risk’ HPV subtypes (HR-HPV). The HPV family of deoxyribonucleic 

acid (DNA)-viruses is large and diverse (Figure 1.1) (de Villiers, 2013). The majority of HPV 

viruses, especially from the beta- and gamma- types persist in host species as commensals, 

without causing disease. Others such as the ‘low-risk’ alpha-type HPV-3 can cause benign 

papillomatous diseases in humans, such as anogenital warts. A relatively small number of 

alpha-HPV viruses are regarded as HR-HPV and are capable of causing malignant disease, 

most notably in the cervix.  

 

Alpha- HPV types have a greater diversity in their E6 and E7 genes than other HPV types. The 

transcriptional products of these genes: virus proteins E6 and E7 play important roles in host 

immune evasion and virus genome amplification within the host cell replication machinery 

(Doorbar et al., 2015). An important feature of HR-HPV E6 and E7 is their respective 

interactions with host cell tumour protein 53 (p53) and retinoblastoma protein (pRB), and 

the resulting interference with cell-cycle DNA damage checkpoint control (see section 1.3.1).  

 

Confirmation of the association between HR-HPV and cervical cancer was provided by the 

International Biological Study on Cervical Cancer (IBSCC), which reported 93% positivity for 

HR-HPV in 981 cervical cancer patients from 22 countries (Bosch et al., 1995). The relative 

distribution of HR-HPV sub-types in this study confirmed a predominance of HPV-16 and 

related sub-types (16, 31, 33, 35, 52 and 58) in squamous cancers (68%), while HPV-18 and 

related sub-types (18, 39, 45, 59 and 68) predominated in adenocarcinomas and 

adenosquamous cancers (71% in each), findings that were subsequently corroborated in 

later studies (Zehbe and Wilander, 1997). Following this, re-analysis of many of the IBSCC 

HPV-negative specimens using polymerase chain reaction (PCR) targeting HR-HPV E6 and E7 

genes, which are integral to carcinogenesis established that the worldwide prevalence of 

HPV in cervical cancer is as high as 99.7% (Walboomers et al., 1999).  
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Figure 1.1 Phylogenic tree of human papillomavirus (HPV). 

Most human-disease causing HPV are found amongst the alpha-types. The location of the 
high-risk HPV subtypes related to HPV-16: most common in squamous cervical cancers, and 
HPV-18: most common in adenocarcinomas are noted. Diagram adapted from de Villiers, 
2013. 
 

 

The possibility of a truly HPV negative cervical cancer cannot be completely ruled out. 

However, such an entity appears to be rare and the prevalence of HPV negative cervical 

cancers is universally accepted to be extremely low. The existence of human cervical cancer 

cell lines in which there are no detectable HPV DNA sequences, refutes the conclusion that 

these cancers are non-existent. Characterisation of these cell lines however, suggests that 

pathogenic mutations of one or both of the tumour suppressor genes: Tumour Protein 53 

(TP53 ) and; Retinoblastoma 1(RB1) are present. This is in contrast to the situation in HPV 

positive cell lines, where the cell lines expressed normal gene products at comparatively low 

levels, indicative of post transcription suppression by The HPV proteins E6 and E7 
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(Walboomers and Meijer, 1997). This evidence suggests that disruption of the functions of 

the tumour suppressor proteins p53 and pRB play a vital role in promoting human cervical 

cancer carcinogenesis in the presence or absence of HR-HPV. 

 

1.2.2 HPV-driven cervical cancer pathogenesis 

It is persistent infection of the cervical epithelium with HR-HPV sub-types that increases an 

individual’s risk of developing pre-invasive lesions or cervical cancer (Munoz et al., 2003). 

The development of pre-invasive cervical lesions known as cervical intra-epithelial neoplasia 

(CIN) is the pathognomonic prodrome in the development of cervical cancer and these 

lesions usually appear years before the development of a frankly malignant lesion.  

 

A detailed description of the pathophysiology of CIN progression is beyond the scope of this 

thesis and is summarised in Figure 1.2 however, it should be noted that the molecular 

processes in CIN lesions are identical to invasive cancer and the ability to detect CIN in 

cervical samples underlies the effectiveness of cervical cancer screening programmes. Low 

grade lesions (CIN-I) may, however regress spontaneously under the influence of host 

immunity (Tainio et al., 2018), whilst high grade CIN (CIN-II or CIN-III) have a higher risk of 

progression to cervical cancer (Vink et al., 2013).   

 

The prevalence of HR-HPV infection is as high as 20% in the UK female population 

(Ramanakumar et al., 2016). It is important to recognise that up to 50% of lower genital tract 

HR-HPV infections will clear spontaneously within 1 year of detection. The true prevalence of 

high grade cervical pre-invasive lesions amongst the population is difficult to estimate given 

the variable uptake of screening and the often-transient nature of the disease, which may 

not progress to cancer. A Canadian study, conducted in settings similar to the UK, with HPV 

vaccination and cervical screening programmes estimate an incidence rate for CIN-II or CIN-

III of between 1 and 2 per 1000 person years (Racey et al., 2020).   

 

The impact of HPV vaccination on cervical cancer rates is not yet fully understood. The 

incidence of cervical cancer across all regions of the UK from 2015 to 2017 was 

approximately 10 per 100,000 women per year. Whilst the incidence rates are projected to 
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fall under the continued influence of HPV vaccination, rates are expected to remain at above 

8 per 100,000 women per year until at least 2040 (Castanon et al., 2018). 

 

In the progression from viral infection, through CIN to cervical cancer, rather than a normal 

virus-host relationship in which HPV uses the host DNA replication machinery to propagate 

its life cycle, under certain circumstances viral DNA is integrated into the host genetic 

material. Viral integration represents a pre-cancer event for the host as integration is 

associated with dysregulation of the key E6 and E7 oncogenes resulting in the promotion of 

cell proliferation, checkpoint dysfunction and genetic instability through interaction with the 

gene products of the tumour suppressor genes, TP53 and RB1 (Jeon et al., 1995). The 

resulting clonal expansion of cells with integrated HR-HPV results in the characteristic pre-

invasive cervical lesions and in some cases, invasive cancer (McBride and Warburton, 2017).  

 

 

 

Figure 1.2 HPV infection progressing to cervical cancer through pre-invasive disease 

Host factors including age, immunity and smoking status play a role in immune mediated 
virus clearance. Persistence of infection over years leads to the development of invasive 
disease in a small number of women. The risk of progression from CIN II/CIN III to invasive 
cancer is approximately 2% over 10 years. 50% of CIN II lesions may regress spontaneously 
over 2 years. 
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1.3 Cell cycle control and the DNA damage checkpoints 
 

Non-dividing cells are frequently referred to as being in resting- or G0- phase. Dividing cells 

are described as being in one of four observable cell cycle phases at any one time: G1, S, G2 

or M (Figure 1.3). G1 and G2 phases represent periods of growth and biosynthesis in 

preparation for DNA replication or synthesis (S-phase) or cell division (M-phase or Mitosis). 

G1 cells may enter S-Phase and continue the cell cycle, undergo terminal differentiation 

(enter G0) or arrest in G1 in the face of DNA damage at the G1/S DNA damage checkpoint. 

G1 arrest prevents DNA replication in the presence of problematic DNA lesions and allows 

time for DNA repair. G2 cells may also arrest in response to DNA damage at the G2/M DNA 

damage checkpoint. This prevents potentially harmful DNA lesions that have occurred during 

synthesis from being incorporated into the genome of daughter cells following cell division 

(M-phase or mitosis) (Curtin, 2012, Sancar et al., 2004). A further check on the fidelity of the 

cell’s DNA occurs at the intra-S checkpoint.  

 

 

Figure 1.3 Schematic representation of the cell cycle and DNA damage checkpoints. 

The principal signalling pathways to each cell cycle checkpoint are shown. DNA damage is 
signalled to the intra-S and G2/M transition checkpoints mainly via ATR signalling through 
CHK1. The G1/S checkpoint is mainly signalled to via the ATM-CHK2 pathway leading to 
activation of p53. Closely related to the G1/S checkpoint is the pRB controlled G1 restriction 
point. There is some degree of crossover between ATM and ATR signalling to G1/S and G2/M 
checkpoints. Function of G1/S checkpoint is inhibited by interactions of p53 and pRB with 
high-risk HPV proteins E6 and E7 (section 1.3.2) 
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During S-phase the DNA replication machinery: a complex interplay of helicases, primases 

and polymerases, operating at the replication fork encounters each base in the genome and 

is therefore a sensitive probe for DNA lesions (Lodish H, 2000). Lesions that block the 

progression of replication polymerases result in a stalled replication fork characterised by 

uncoupling of the helicase (unwinding) and polymerase (replication) functions of the 

replication machinery.  Replication fork stalling and the resulting generation of single 

stranded DNA is a powerful indicator of replication stress and inducer of signalling to intra-S 

and G2/M cell cycle checkpoints (Iyer and Rhind, 2017). This signalling occurs principally 

through Ataxia Telangiectasia and Rad3-related (ATR) mediated signalling pathways (Figure 

1.4 and Chapter 1.3) (Cimprich and Cortez, 2008, MacDougall et al., 2007, Maréchal and Zou, 

2013).  

 

 

Figure 1.4 A stalled replication fork resulting from a DNA lesion 

The DNA replication machinery is preceded by helicase unwinding of the dsDNA. In this case 
replication of the leading strand is halted by the lesion on the leading strand template, 
resulting in the presence of ssDNA. The stalled replication fork is characterised by the 
presence of this ssDNA and the uncoupling of the helicase and polymerase functions of the 
replication machinery. The stalled replication fork signals to DNA damage checkpoints 
through ATR. 
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1.3.1 p53 and pRB at the G1/S checkpoint 

In addition to its established roles in the detection and repair of DNA double strand breaks 

(Maréchal and Zou, 2013), ataxia telangiectasia mutated (ATM) and its immediate 

downstream kinase, checkpoint kinase 2 (CHK2) play important roles in signalling DNA 

damage to the G1/S checkpoint (Figure 1.3) (Sancar et al., 2004). ATM and CHK2, and to a 

lesser extent ATR and checkpoint kinase 1 (CHK1), directly phosphorylate p53. Accumulation 

of phosphorylated p53 and its action as a transcription factor for p21(CIP1) results in 

increased p21(CIP1) mediated inhibition of the cyclin dependent kinase-2 (CDK2)/cyclinE 

complex. CDK2/cyclinE complex function is crucial the progression of the cell into S-phase 

(Figure 1.5) (Bertoli et al., 2013, Kastan and Bartek, 2004).  

 

Further control of the G1/S transition is exerted by pRB through regulation of the E2F 

transcription factors. During early G1 phase, pRB binding of E2F proteins inhibits 

transcription of S-phase proteins. Phosphorylation of pRB under the influence of activated 

cyclin dependent kinase-4 (CDK4)/cyclinD complex, arising from cyclinD accumulation in 

response to mitogenic stimuli, results in the dissociation of pRB from E2F allowing E2F to 

initiate transcription of S-phase proteins (Molinari, 2000). Accumulation of p21(CIP1) also 

leads to inhibition of CDK4/cyclinD phosphorylation of pRB resulting in reduced E2F activity 

in the presence of DNA damage or replication stress (Dick and Rubin, 2013) A summary of 

the characteristics of the key G1/S cell cycle checkpoint proteins and  their function at the 

G1/S transition is given in Table 1.2.  
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Table 1.2 Key cell cycle factors associated with the G1/S cell cycle checkpoint. 
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Figure 1.5 p53 and pRB at the G1/S cell cycle checkpoint. 

Activation of p53 resulting from phosphorylation by both ATM and CHK2 (and to a lesser 
extent, ATR and CHK1, not shown) results in increased transcription of p21(CIP1) and 
inhibition of CDK2 mediated promotion of transition to S-phase. This pathway interacts with 
the pRB controlled transcription of S-Phase proteins, needed for DNA synthesis by the E2F 
transcription factors via inhibition of pRB phosphorylation and dissociation from E2F by 
p21(CIP1).  

 

 

 

1.3.2 High-risk HPV interaction with p53 and pRB  

The most important feature associated with HR-HPV subtypes is the ability of viral proteins 

E6 and E7 to interact with and disrupt the activity of the tumour suppressor gene products: 

p53 and pRB. The vast majority of cervical cancers express wild-type p53 and pRB and it is 

thought that functional depletion of these proteins by E6 and E7 and the resulting loss of G1 

checkpoint control is key to carcinogenesis in HPV associated cervical cancer (Munger et al., 

1992). The loss of G1/S checkpoint function as a key inducer of cervical squamous carcinoma 

and adenocarcinoma is supported by the observation of mutated p53 and pRb in HPV 

negative cervical cancer cell lines (section 1.2.1). 
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Viral protein E6 interacts with a cellular protein known as E6 associated protein (E6AP). 

Following binding, E6AP catalyses degradation of p53 by multi-ubiquitination. E6AP is a 

prominent member of the HECT (homologous to E6AP C Terminus) E3 ubiquitin ligase family 

(Huibregtse et al., 1995): enzymes which mediate recognition of proteins targeted for 

degradation by the ubiquitin proteasome pathway (Livneh et al., 2016). The exact nature of 

the interaction between E6, E6AP and p53 is not clear, however recent evidence suggests 

that E6 binding of E6AP induces a conformational change in the protein-substrate complex 

allowing p53 access to the catalytic site of E6AP, facilitating ubiquitin transfer (Sailer et al., 

2018). Though low-risk HPV E6 may bind E6AP, the degradation of p53 by activated E6AP 

appears to be an exclusive property of E6 from HR-HPV subtypes (Tommasino et al., 2003, 

Thomas et al., 1999).   

 

Stable complex formation between HPV viral protein E7 and pRB is thought to interfere with 

CDK4/cyclinD phosphorylation of pRB when bound to E2F transcription factors (Songock et 

al., 2017), resulting in reduced free E2F and therefore inhibition of transcription of key S-

phase proteins in late G1 phase. Though this property of E7 appears to be consistent across 

multiple sub-types of human papilloma viruses, the affinity of E7 from low-risk HPV sub-

types for human pRB has been shown to be considerably lower than that for E7 from HPV-16 

and HPV-18, the most commonly identified HR-HPV sub-types detected in cervical cancer 

(Munger et al., 1989). 

 

Deficiency in G1/S checkpoint control by mutation or loss of either p53 or pRB are thought 

to be one of the most common defects in cancer cells (Massague, 2004). These defects, 

however open therapeutic opportunities through manipulation of the S-phase and G2/M 

checkpoints on which the cell has become reliant to prevent mitotic catastrophe (Curtin, 

2012). Targeting the checkpoint kinases ATR, CHK1 and WEE1 on whose function these 

checkpoints rely provides such a therapeutic opportunity. 

 

1.4 The DNA damage response and the ATR-CHK1-WEE1 axis 

DNA damage occurs continuously, with an estimated 104 – 105  lesions per cell per day 

caused by products of normal cell functions (Hoeijmakers, 2001). Endogenous lesions such as 

abasic sites and base transitions, caused by depurination or cytosine deamination, 
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respectively as well as methylations and oxidative lesions account for the majority of these 

(Ciccia and Elledge, 2010).  Environmental DNA damage may also result in a heavy burden 

for the cell through, for example, UV radiation induced pyrimidine dimers and 6-4 

photoproducts (Hoeijmakers, 2001).  

 

As well as the elimination of cells with irrevocably damaged DNA by apoptosis, and 

interruption of the cell’s progression through the cell cycle via activation of DNA damage 

checkpoints (Chapter 1.2), the cell’s response to DNA damage includes the removal of 

lesions through lesion-specific DNA repair pathways (Table 1.2) (Sancar et al., 2004). 

These three interconnected processes are collectively referred to as the DNA damage 

response (DDR). The DNA damage response is characterised by the presence and activity 

of detector, signalling and effector proteins in coordinated pathways that lead to the 

induction of DNA repair and checkpoint engagement. ATR recruitment to sites of DNA 

damage and the subsequent signalling of this damage to the cells DDR machinery is one 

such pathway. The ATR-CHK1-WEE1 pathway not only signals to checkpoint activation, as 

described in Chapter 1.3, but also to a number of DNA repair pathways. The following 

section briefly describes DNA repair pathways. This is followed by an overview of ATR-

CHK1-WEE1 activation, their roles at the intra-S and G2/M cell cycle checkpoint and 

finally, ATR-CHK1 signalling in DNA repair 

 

1.4.1 DNA repair pathways 

A summary of the principal described DNA repair pathways, the lesions that they repair 

and examples of endogenous, environmental and therapeutic inducers of those lesions 

are given in Table 1.3. Replication errors, resulting from mis-incorporation of bases into 

the DNA strand, base deletions or insertions are dealt with by mismatch repair (Jiricny, 

2006). The simplest lesions, resulting from S-adenosyl-methionine (SAM) methylation or 

alkylation of guanine are directly repaired by DNA methyltransferase (MGMT) 

demethylation (Curtin, 2012). Base modifications, reactive oxygen species (ROS)-induced 

oxidation (e.g. 8-OHdG), methylation and deamination (dC to dU) are repaired by base 

excision repair (BER), which includes base removal, SSB generation and the downstream 



 

 14 

pathway of SSB repair. SSBR can also act on frank SSB (e.g .ROS or IR-induced) or 

topoisomerase I-linked lesions (Curtin, 2012, Wallace, 2014).  

 

DNA double strand breaks (DSB) are less numerous though more toxic to the cell than 

SSBs. DSBs also occur as a result of ROS induced damage, directly or through a failure to 

repair SSBs. Therapeutic induction of DSBs commonly occurs through the use of 

topoisomerase II (TOPOII) poisons, or antimetabolites that cause collapsed replication 

forks and ionising radiation (Curtin, 2012). The cell is reliant on two pathways for the 

restoration of DNA integrity in the face of DSBs. Non-homologous end joining (NHEJ) 

accounts for the repair of the majority of lesions in all phases of the cell cycle but 

predominates in G0 and G1 phase (Shrivastav et al., 2008). NHEJ is rapid and not without 

error (Mahaney et al., 2009). In G2 and M-phase, where a template strand of DNA is 

available, DSBs may be repaired by homologous recombination repair (HRR). HRR is a 

highly complex process that results in high fidelity re-synthesis of the damaged segment 

of DNA (Shrivastav et al., 2008).  

 

Platinum exposure results in the formation of bulky DNA adducts, which along with intra-

strand crosslinks, UV induced 6-4 photoproducts (6-4PPs) and damage resulting from 

aromatic hydrocarbon exposure are repaired by the nucleotide excision repair (NER) 

pathway (Marteijn et al., 2014). Along with these helix distorting adducts, exposure to 

platinum agents also results in inter-strand strand crosslinks. NER shares components 

with and contributes to inter-strand crosslink (ICL) repair (Deans and West, 2011). The 

role and contribution of the ATR-CHK1 pathway in DNA repair will be further discussed in 

Chapter 1.4.4.  
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Table 1.3 Principal described DNA repair pathways, activating lesions and causative agents 
or insults 

Table is derived from Curtin 2012 and gives examples of endogenous and environmental 
agents which may give rise to lesions repaired by the specific DNA repair pathways listed. 
Therapeutic insults refer to commonly used DNA damaging cancer therapies.  

 

1.4.2 ATR-CHK1-WEE1 activation  

ATR is a phosphatidyl inositol 3' kinase-related kinases (PIKK) family member that is closely 

related in structure to ATM, another DNA damage sensing kinase that has considerable 

crossover in signalling function with ATR (Figure 1.3) (Maréchal and Zou, 2013). ATR is 

activated by the presence of single stranded DNA (ssDNA) that arises at stalled replication 

forks (Figure 1.4) or DNA damage repair pathway intermediates such as nucleotide excision 

repair (NER)  intermediates and resected double strand breaks (DSB) (Figure 1.6) 

(MacDougall et al., 2007, Cimprich and Cortez, 2008). The scale of ATR activation may be 

proportional to the amount of ssDNA present, signalled through increasing complexation of 

replication protein-A (RPA) with the exposed ssDNA lengths (Choi et al., 2010).  

 

ATR interacting protein (ATRIP) localises ATR to the ssDNA-RPA complex (Cortez et al., 2001, 

Ball et al., 2007). RPA-ssDNA complexation also results in the RAD-17 mediated recruitment 

of the heterotrimeric ring complex: 9-1-1 comprised of RAD9-RAD1-HUS1. The 9-1-1 complex 

recruits DNA-topoisomerase-2-binding protein-1 (TOPBP1) to the site of DNA damage. The 
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recruitment of TOPBP1 appears to be a crucial step in ATR activation and subsequent 

phosphorylation events (Burrows and Elledge, 2008, Shiotani and Zou, 2009). Following 

activation by TOPBP1, ATR phosphorylates its main effector kinase, checkpoint protein 1 

(CHK1). 

 

ATR activates CHK1 by phosphorylation at two serine residues (S317 and S345) in a claspin 

dependent reaction (Walworth and Bernards, 1996, Walworth et al., 2000, Liu et al., 2000). 

Claspin transiently localises CHK1 to the site of DNA damage following recruitment by 

phosphorylated-RAD17 (Liu et al., 2006, Kumagai and Dunphy, 2000). RAD17 is 

phosphorylated by ATR following ATR localisation at the DNA damage site (Wang et al., 

2006). Following activation, CHK1 dissociates from the nuclear chromatin, signalling the DNA 

damage to ATR-CHK1 dependent checkpoint reactions and DDR pathways (Smits and 

Gillespie, 2015).  
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Figure 1.6 ATR recruitment and activation at stalled replication forks and sites of DNA 
damage and repair. 

A: Lesions that activate ATR are stalled replication forks, resected DSBs and NER 
intermediates. All lesions have the presence of ssDNA in common, which complexes with RPA 
and recruits ATR to the lesion via ATRIP. B: The ssDNA-RPA complex also recruits 9-1-1 and 
TOPBP1 to the damage site. TOPBP1 mediated ATR activation results in CHK1 
phosphorylation and activation of the downstream, DDR effects of ATR activation. Figure 
derived from Rundle et al, 2017. 

 

1.4.3 ATR, CHK1 and WEE1 at the Intra-S and G2/M checkpoints. 

Following activation of ATR and CHK1 at sites of DNA damage, during DNA repair or through 

replication stress characterised by stalled replication forks, phosphorylation of CHK1 

substrates may result in arrest in S-phase or at the G2/M transition.  Important CHK1 

phosphorylation targets are WEE1 and the cell division cycle (cdc) proteins: cdc25A and 

cdc25C. WEE1 activation results in direct inhibitory phosphorylation of cyclin dependent 

kinase 1 (CDK1) and CDK2 at threonine14/tyrosine15. CHK1 phosphorylation of cdc25 

phosphatases targets these proteins for degradation, resulting in a reduction in the removal 
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of the inhibitory phosphorylations from CDK1/2. The combined effect is one of a reduction in 

CDK activity (Figure 1.7) (Sorensen and Syljuasen, 2012). 

 

 

Figure 1.7 The regulation of CDK activity by ATR, CHK1 and WEE1. 

CDK phosphorylation at tyrosine 15 results in negative regulation of cell cycle progression at 
the G2/M transition and negative regulation of replication origin firing in S-phase. DNA 
damage or replication stress signalled though ATR activation results in CHK1 phosphorylation 
of WEE1 and the cdc25 phosphatases. Activated WEE1 phosphorylates CDK1/2, inhibiting M-
phase entry and replication origin firing. CHK1 phosphorylation of cdc25A/C targets these 
proteins for degradation, reducing CDK dephosphorylation. 

 

In S-phase, CDK2 activity initiates replication origin firing. Inhibition of CDK2 by 

phosphorylation (maintained through the combined effects of CHK1 mediated inhibition of 

the phosphatase cdc25A and WEE1 kinase activation) therefore reduces the accumulation of 

stalled replication forks and the depletion of nucleotides in the face of DNA lesions that 

prevent replication fork progression (Beck et al., 2012, Parsels et al., 2018). This effectively 

prevents the cell from progressing through S-phase, resulting in S-phase arrest. Active CDK2 

is a key protein in the pathway for the loading of cdc45L and co-factors onto the nuclear 

chromatin and the subsequent binding of helicase and DNA polymerase-a (pol-a) that is 

required for replication initiation (Zheng et al., 2017).  In addition to contributing to the 

inhibition of new replication origin firing, ATR and CHK1 appear to have important roles in 

the stabilisation of stalled replication forks, preventing replication fork collapse and thus 
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further reducing DNA-damage induced replication stress (Paulsen and Cimprich, 2007, 

Friedel et al., 2009).  

 

At the G2/M checkpoint, CHK1 phosphorylation of WEE1 and cdc25C results in inhibition of 

CDK1 through the maintenance of the inhibitory phosphorylation at tyrosine residue 15: 

CDK1(Y15) (Mueller and Haas-Kogan, 2015). Arrest at the G2/M transition prevents entry of 

the cell to mitosis. This action then, prevents either the permanent loss or disruption of 

genetic information through passage to daughter cells, or in the case of major DNA damage, 

immediate mitotic catastrophe (Sorensen and Syljuasen, 2012, Chen et al., 2003, Dai and 

Grant, 2010) A summary of the characteristics of the key G2/M and intra-S cell cycle 

checkpoint proteins and their function through S-phase and at the G2/M transition is given 

in Table 1.4.  
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Table 1.4 Key cell cycle factors at the intra-S and G2/M DNA damage cell cycle 
checkpoints  

 

1.4.4 ATR, CHK1 and WEE1 in DNA repair 

The removal of DNA lesions and restoration of DNA integrity is performed by discreet DNA 

repair pathways that are largely dependent on the nature of the DNA lesion and therefore, 

the causative insult or DNA damaging agent as described in section 1.4.1 (Table 1.3). Current 

therapies for cervical cancer: platinum chemotherapy and ionising radiation cause different 

DNA lesions that are repaired by different pathways. 
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In addition to its role in in DNA damage checkpoint reactions, ATR and its associated 

downstream kinase: CHK1 play important roles in a number of DNA repair pathways. These 

include a role for ATR in the regulation of recruitment of key proteins to the Fanconi 

anaemia pathways for inter-strand crosslink repair (Shigechi et al., 2012, Andreassen et al., 

2004) and also to nucleoside excision repair (NER) (Wu et al., 2007). 

 

 

Table 1.5 DNA damaging agents, lesions and repair pathways. 

DNA damaging agents cause distinct DNA lesions that are repaired though specific repair 
pathways. Table derived from Hoeijmakers 2001. 
 

 

ATR, CHK1 and WEE1 are also involved in the regulatory mechanisms of homologous 

recombination repair (HRR), an important repair pathway for lesions associated with both 

cisplatin and ionising radiation (IR) treatment.  ATR phosphorylates and activates the key 

HRR regulatory protein BRCA1 (Tibbetts et al., 2000), whilst CHK1 is involved in the 

recruitment and activation of BRCA2 and RAD51 recombinase (Sorensen et al., 2005) (Figure 

1.8). Cells treated with ATR or CHK1 inhibitors show reductions in HRR function by RAD51 

foci assays in response to hydroxyurea or gemcitabine induced replication stress (Parsels et 

al., 2009, Morgan et al., 2010, Peasland et al., 2011). A coupling of the HRR and checkpoint 

signalling roles of ATR has recently been described. ATR inhibits cyclin dependent kinases 

(CDKs) at the cell cycle checkpoint through phosphorylation of CHK1 and subsequently of 
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WEE1 (section 1.3.2). Evidence now exists to suggest that CDK inhibition also promotes HRR 

function (Buisson et al., 2017).  

 

 

 

 

Figure 1.8 Simplified schematic diagram of the role of ATR, CHK1 and WEE1 in 
homologous recombination repair (HRR). 

 BRCA1 phosphorylation by ATM and ATR is a key step in the initiation of HRR. ATR further 
promotes HRR function through activation of CHK1, which has a role in the recruitment and 
activation of BRCA2. BRCA2 is necessary for RAD51 recruitment. CHK1 activation of WEE1 
and subsequent CDK inhibition further promotes HRR function.  
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1.5 ATR, CHK1 and WEE1 inhibitors 

1.5.1 Target validation by genetic downregulation 

Homozygous disruption of ATR or CHK1 or WEE1 is incompatible with life at an early 

embryonic stage, highlighting the importance of the pathway (Brown and Baltimore, 2000, 

Takai et al., 2000). Seckel syndrome, a human genetic condition caused by reduced 

expression of ATR secondary to a hypomorphic mutation of the ATR gene is characterised by 

growth retardation and microcephaly, but not increased carcinogenesis (O'Driscoll et al., 

2003). Kinase-dead ATR cells, where an inactive form of the kinase acts as a negative 

inhibitor to native ATR function have been shown to be sensitive to DNA damaging agents 

(Cliby et al., 2002, Nghiem et al., 2001) including IR and platinum and failed to arrest at the 

G2/M checkpoint (Cliby et al., 1998).  

 

CHK1 knockdown by small interfering RNA (siRNA) or short hairpin RNA (shRNA) also 

sensitises cells to a variety of DNA damaging agents (Carrassa et al., 2004, Flatten et al., 

2005, Ganzinelli et al., 2008, Pan et al., 2009, Azorsa et al., 2009). However, unlike ATR 

knockdown, the results are less convincing for sensitisation of platinum agents: for example, 

CHK1 downregulation failed to sensitise HCT-116, HeLa or U2OS cells to cisplatin (Wagner 

and Karnitz, 2009). Genetic downregulation or knockdown of WEE1 has been reported to 

increase cell susceptibility to DNA damage by exogenous DNA damaging agents and also to 

result in increased apoptotic cell death in p53 deficient cervical cancer cell lines through 

G2/M checkpoint abrogation (Pappano et al., 2014, Wang et al., 2004), though studies are 

fewer in number than those for ATR and CHK1. 

 

It has been suggested that the downregulation of ATR, CHK1 or WEE1 sensitises p53 

deficient cells to a greater extent than cells with normal p53 function (Pan et al., 2009, 

Ganzinelli et al., 2008) and that targeting the ATR-CHK1-WEE1 pathway would lead to 

greater effects in p53-mutant tumours. However, this has been contradicted in some 

studies: siRNA downregulation of ATR has been observed to be equally efficacious as a 

sensitiser of U2OS p53-wild type and HeLa p53-defective cells to the topoisomerase I 

poisons camptothecin and SN-38 (Flatten et al., 2005). In addition, CHK1 downregulation by 
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siRNA caused similar sensitisation of paired p53-wild type and p53-defective U2OS cells to 

irinotecan and cisplatin (Zenvirt et al., 2010). Furthermore, in U2OS cells with G1-checkpoint 

deficiencies caused by other abnormalities (cyclin D1, cyclin E1, MDM2 or CDK2 

overexpression or infection by HPV) ATR knockdown resulted in sensitisation to DNA damage 

that was reversed by p21 or p27 induced expression (Nghiem et al., 2001). Overall, it is likely 

that G1/S checkpoint deficiency, rather than p53 status is a key determinant of sensitivity to 

downregulation of ATR, CHK1 or WEE1 function. A similar pattern of results is seen when the 

enzymes are inhibited by specific, potent small molecule inhibitors. 

 

 

1.5.2 Development of ATR, CHK1 and WEE1 inhibitors 

The potent and selective kinase inhibitors targeting ATR, CHK1 and WEE1 that have been 

developed for clinical use (listed in Table 1.6) are reversible, ATP competitive inhibitors. 

These molecules bind to the target principally through hydrogen bond formation between 

the inhibitor molecule and residues within the ATP binding pockets of the kinases (Knight 

and Shokat, 2005). A common feature of the inhibitor molecules is a hydrophobic tail which, 

following binding interacts with the catalytic sites on the enzyme. This interaction prevents 

conformational changes that are required for activation and cycling of the target enzyme 

(Roskoski, 2015). 

 

Early inhibitors of ATR and CHK1, such as UCN-01 were initially developed with other targets 

in mind and consequently showed poor selectivity and potency against these enzymes 

(Senderowicz, 2000). More recently, potent and selective inhibitors have been developed, 

though the development of WEE1 inhibitors has lagged behind that of ATR and CHK1 

inhibitors. A number of these compounds, with a focus of those for which significant pre-

clinical data is available are detailed in Table 1.3 and their development is described herein.   

 

ATR inhibitor development 

Caffeine was amongst the first natural product observed to inhibit ATR, sensitising cells to 

UV induced DNA damage (Sarkaria et al., 1999). However, other DDR enzymes including ATM 

and DNA protein kinase catalytic subunit (DNA-PKcs) are also inhibited by caffeine and its 
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potency against ATR is much less than that seen for more modern inhibitors (ATR IC50 = 1.1 

mM). Schisandrin B was another naturally occurring compound that was identified as a 

potent ATR inhibitor (ATR IC50 = 7.3 µM). It is much more specific for ATR than caffeine 

making abrogation of UV induced G2/M checkpoint induction much more readily 

attributable to inhibition of ATR (Nishida et al., 2009).  

 

Amongst the first novel compounds, NU6027 was found to be a more potent inhibitor of ATR 

than of its intended developmental target, CDK2 (Peasland et al., 2011). The first highly 

specific and potent ATR inhibitor identified with this target in mind was ETP-46464, which 

was identified by screening a pool of PI-3K inhibitors (likely to be enriched for ATR inhibitors 

due to the similarities between the two PIKK enzyme family members), utilising a screening 

platform specific for ATR inhibition (Toledo et al., 2011). Poor pharmacokinetics, however 

prevented its development into a clinical candidate.  

 

Further ATR specific screening assays enabled the identification of precursors to the related 

aminopyrazine compounds VE-821 and VE-822 (Charrier et al., 2011, Fokas et al., 2012). 

Both compounds show >100-fold selectivity for ATR versus other DDR kinases such as ATM 

and DNA-PKcs and have extensive pre-clinical data related to them in anti-cancer 

investigations. Favourable toxicological profiles and pre-clinical in vivo performance have led 

to VE-822 being introduced into clinical trials as VX-970 (Fokas et al., 2012, O'Carrigan B, 

2016). Another screen using compounds with structural similarities to known PIKK inhibitors 

led to the development of a series of morpholone compounds into AZ20 (Foote et al., 2013) 

and AZD6738 (Vendetti et al., 2015). AZ20 development was limited by its poor aqueous 

solubility but AZD6738 progressed to clinical trials as an orally bioavailable drug.  
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Table 1.6 Potent and specific small molecule inhibitors of ATR, CHK1 and WEE1. 

Inhibitors for which there is considerable pre-clinical data available are given, along with the 
chemical group to which they belong and data supporting their specificity for the target 
enzyme. Table is adapted from Rundle et al. 2017. 
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CHK1 inhibitor development 

Structure based drug design led to the development of AZD7762 from a thiophene 

carboxamide urea compound identified in high throughput screening (Oza et al., 2012). Like 

the similarly developed compound, V158411 (Massey et al., 2015) these small molecule 

inhibitors show dual CHK1 and CHK2 inhibitor activity with greater CHK1 selectivity in cell-

based assays. Truly selective CHK1 inhibitors were first seen with the development of PF-

477736 (Blasina et al., 2008) and the pyrazole compound SCH900776 (now known as MK-

8776) (Guzi et al., 2011), which show a 100-fold and 500-fold selectivity for CHK1 over CHK2, 

respectively (Matthews et al., 2013). Extensive pre-clinical data is available for both drugs 

though detailed descriptions of their development are limited.  

 

A number of pyrazine compounds have been developed and described as potent and specific 

inhibitors of CHK1: high throughput and virtual screening for fragment hits, followed by 

structure-based drug design led to the development of CCT244747 and CCT245737 (Walton 

et al., 2012, Walton et al., 2016). These compounds show over 1000-fold selectivity for CHK1 

over CHK2 and were the first orally bioavailable CHK1 inhibitors. CCT245737 has now 

entered clinical trials as SRA-737. A further pyrazine derived compound, LY2603618 and its 

follow-on drug LY2606368 also show >1000-fold selectivity for CHK1 and the latter has also 

entered clinical trials (King et al., 2014, Hong et al., 2016).  

 

WEE1 inhibitor development 

The development of clinically promising WEE1 inhibitors has been hindered by difficulties in 

establishing target specificity. Early WEE1 inhibitors such as the pyrido-pyrimidine derivative, 

PD0166285 or the pyrolo-carbazole derivative, PD0407842 were potent (WEE1 IC50 < 100 

nM) but non-selective. These compounds showed significant interference with other DDR 

targets such as MYT1 and CHK1 (Panek et al., 1997, De Witt Hamer et al., 2011). MK-1775 is 

a pyrazolo-pyrimidine derivative that is the first and so far, only potent selective inhibitor of 

WEE1 that has shown promise as a clinical candidate (Mizuarai et al., 2009, Hirai et al., 

2009). Now known as AZD1775 or its commercial name: Adaversotib, it has been taken 
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forward into clinical trials and used in combinations including with platinum agents (Pilie et 

al., 2019). 

 

1.6 Single agent activity and determinants of sensitivity for inhibition of the 
ATR-CHK1-WEE1 axis 

1.6.1 Oncogene driven replication stress as a sensitiser to ATR, CHK1 or WEE1 

inhibition 

Whilst much attention is focussed on the ability of these potent and specific inhibitors of 

ATR, CHK1 and WEE1 to potentiate the cytotoxic effects of existing genotoxic chemotherapy 

treatments (section 1.6), investigations of the potential for existing characteristics of cancer 

cells to act as determinants of sensitivity are also described. Oncogene transformations, with 

particular focus on those which promote S-phase entry or result in increased levels of 

replication stress through loss of control of the G1/S cell cycle checkpoint have been shown 

to promote sensitivity to inhibition G2/M checkpoint manipulation by ATR-CHK1-WEE1 axis 

inhibition. A summary of this evidence is presented in Table 1.7.  

 

Whist the oncogene transformations that are detailed in Table 1.7 are rarely present in 

cervical cancer cells, the evidence presented supports the hypothesis that inhibitors of ATR, 

CHK1 and WEE1 are a potentially effective strategy as single agents against cervical cancer 

cells rendered G1/S checkpoint deficient through p53 or pRB insufficiency either by HPV 

driven degradation or by mutation. 
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Table 1.7 Studies describing replication stress inducing transformations that promote S-
phase entry that evidence potential synthetic lethality with ATR, CHK1 or WEE1 
inhibition. 

 The Oncogene is the mutation or transformation which renders the cell susceptible to ATR, 
CHK1 or WEE1 inhibition. The sensitiser is the mode of ATR, CHK1 or WEE1 inhibition or 
silencing used. ATRi = small molecule ATR inhibitor, CHK1i = small molecule CHK1 inhibitor 
and WEE1i = WEE1 small molecule inhibitor. (Murga et al., 2011, Gilad et al., 2010, Vendetti 
et al., 2015, Toledo et al., 2011, Morgado-Palacin et al., 2016, Williamson et al., 2016, Chen 
et al., 2018) 
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1.6.2 DDR abnormalities as determinants of sensitivity to ATR, CHK1 or WEE1 

inhibition. 

Exploiting the concept of synthetic lethality for cancer treatment is well described. In its 

simplest form, the simultaneous alteration of the function of two genes or proteins that, in 

isolation are not essential for cell viability, causes cell death. In the case of cancer treatment, 

if one of these genes represents an oncogene, tumour suppressor gene or oncogenic 

process/pathway that is dysfunctional in the cancer cell, the other may become a candidate 

for inhibition or knockdown. The result of endogenous dysfunction of one gene product plus 

inhibition of the other would result in selective killing of the cancer cell (Curtin, 2012, Lord 

and Ashworth, 2017). 

 

The most commonly cited example of therapeutic synthetic lethality is the use of poly (ADP-

ribose) polymerase (PARP) inhibitors (PARPi) to selectively kill cells that are HRR defective 

(Bryant et al., 2005, Farmer et al., 2005). The enzyme PARP1 is an essential component of 

the cell’s response to endogenous or therapy induced SSB. PARP1 binding to DNA induces its 

catalytic function. This function synthesises negatively charged poly (ADP-ribose) chains on 

target proteins (PARylation), which acts as a recruitment signal for DNA repair effector 

proteins. Dissociation of PARP1 from the site of DNA damage occurs following auto-

PARylation (Eustermann et al., 2015), however PARPi function to disrupt auto-PARylation, 

trapping PARP1 on the DNA double helix (Pommier et al., 2016). The result is disruption of 

PARP1 catalytic function, as well as the inability of the cell to process the DNA-PARP1 

complex at the replication fork. Resolution of this lesion requires HRR function, involving 

BRCA1 and BRCA2 tumour suppressor genes. In cells that have defective BRCA1/2, HRR is 

also dysfunctional, leading to the inability to resolve the replication fork lesion and cell death 

(Lord and Ashworth, 2017). 

 

ATR and CHK1 are crucial to the functioning of HRR and inhibition of these kinases has been 

shown to convey synthetic lethality in cells lacking BER function through knockdown of x-ray 

cross-complimenting protein 1 (XRCC1) in a reversal of the situation described for PARP 
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inhibitors (Peasland et al., 2011, Sultana et al., 2013, Middleton et al., 2015). Defects in BER 

are relatively common in cancers and exploiting this through ATR pathway inhibition is a 

therapeutic option. Defects in HRR itself have also been shown to confer sensitivity to ATR, 

CHK1 and WEE1 inhibition: Chinese hamster ovary cells with inactivated XRCC3 or BRCA2 

(both of which are involved in recruitment and function of RAD51 to HRR) resulted in 

increased sensitivity to the ATR inhibitor, VE-821 and inhibition of RAD51 itself conferred 

sensitivity to VE-821 and the CHK1 inhibitor AZD7762 (Middleton et al., 2015, Krajewska et 

al., 2015). In an siRNA screen for determinants to sensitivity to the WEE1 inhibitor MK-1775, 

HRR genes including RAD51,BRCA1 and BRCA2 increased sensitivity in short survival assays 

but validation in clonogenic survival assays was hindered by the effects of silencing the HRR 

genes themselves on cell viability (Aarts et al., 2015).  

 

Other DNA repair related determinants of sensitivity to ATR and CHK1 inhibition include 

disruptions in non-homologous end joining (NHEJ), Fanconi anaemia (FA) and nucleotide 

excision repair (NER) pathways. Knockdown of the key nucleotide excision repair (NER) 

enzyme: excision repair cross-complimenting protein 1 (ERCC1) and its co-factors has been 

shown to render cells sensitive to ATR and CHK1 inhibition, though the validity of this as a 

therapeutic strategy for NER deficient cancers is unclear as inactivation of other NER 

enzymes did not increase sensitivity to ATR or CHK1 inhibition (Mohni et al., 2014).  

 

The NHEJ heterotrimer DNA protein kinase (DNA-PK) consists of the catalytic sub-unit DNA-

PKcs, Ku70a and Ku80. High levels of DNA-PKcs expression have been correlated with 

sensitivity to ATR and CHK1 inhibition. In contrast to this, Ku80 depletion was observed to be 

associated with sensitivity to ATR inhibition with VE-821 (Middleton et al., 2015). 

Interestingly pRB has been reported to have a role in Ku protein stabilisation within the 

DNAPK complex in addition to its role in the G1/S cell cycle checkpoint (Cook et al., 2015, 

Huang et al., 2015). This may be an important factor when considering the sensitivity of 

cervical cancer cells to ATR inhibition given the effects of HR-HPV protein E7 on pRB 

function.  

 

Isogenic cell line pairs differing in FA pathway function alone were differentially sensitive to 

pharmacological CHK1 inhibition with UCN-01 and another early CHK1 inhibitor GO6976, 
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with FA deficient cells showing the greater sensitivity. Confirmation that this relationship 

was valid in vivo was achieved using pharmacological CHK1 inhibition in FANCD2 knockdown 

zebra fish embryos (Chen et al., 2009). Knock down of FA pathway genes FANCM and BRIP1 

also sensitised a variety of human cancer cell lines to WEE1 inhibition with MK-1775 (Aarts 

et al., 2015). 

 

Finally, due the complimentary functions and close relationships between ATR and ATM in 

the DDR, it has been suggested that ATM deficiency may prove to be synthetically lethal with 

ATR inhibition. ATR inhibition by AZD6738 and VE-821 has shown selective cytotoxicity in 

ATM deficient cells and this was further confirmed in ATM deficient chronic lymphocytic 

leukaemia (CLL) xenografts (Kwok et al., 2016, Middleton et al., 2015). The mechanism of 

ATRi cytotoxicity in ATM deficient cells is proposed to involve a loss of ATM stimulated HRR 

function, and therefore reduced ablity of the cell to resolve lesions arising from collapsed 

replication forks that result from the replication stress induced by ATR inhibition. 

Additionally, the combined loss of cell cycle control that results from defective or impaired 

ATR/CHK2 and ATM/CHK1/p53 pathways is likely to compound the sensitivity of the ATM 

deficient cell to ATR inhibition (Kwok et al., 2016).  

 

1.7 Pre-clinical data: chemo-sensitisation and radio-sensitisation  

Potent and selective inhibitors of ATR, CHK1 and WEE1 have been developed as outlined in 

the previous sections. These drugs have been extensively investigated with respect to their 

single agent cytotoxicity and as sensitisers of DNA damaging chemotherapy agents and IR 

(Rundle et al., 2017, Pilie et al., 2019). The following sections review the literature that 

describes the effects of these drugs for sensitising cancer cells, in-vitro and in vivo, with 

particular reference to potentiation of existing standard of care treatment in cervical cancer: 

platinum-based chemotherapy and IR. 

 

1.7.1 Combinations with platinum chemotherapy agents 

ATR inhibitors 

ATR is activated by the single-stranded DNA fragments that arise from NER intermediates 

and at stalled replication forks, both of which arise as a result of inter- and intra-strand 
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crosslinks caused by platinum agents. ATR is also a key enzyme in the FANC/HRR DNA repair 

pathways that resolve inter-strand crosslinks, which also arise following platinum treatment 

(Eastman, 1990, Siddik, 2003, Demarcq et al., 1994). It is not surprising then, that 

potentiation of platinum agents by ATR inhibitors is widely reported. Caffeine mediated 

potentiation of cis-platin cytotoxicity through ATR inhibition and abrogation of the G2/M 

checkpoint was one of the earliest observations made regarding prototype ATR inhibitors 

(Roberts and Kotsaki-Kovatsi, 1986, Yazlovitskaya and Persons, 2003) and was a precursor to 

investigations using the more selective, specifically developed inhibitors.  

 

The potent and selective ATR inhibitor, VE-821 caused a 10-fold potentiation of cisplatin 

cytotoxicity in p53-mutant or ATM deficient human colon cancer cells and showed 

synergistic activity in ATM-null fibroblasts in combination with cisplatin (Reaper et al., 2011, 

Teng et al., 2015). VE-822 (VX-970) showed promise as a potentiator of cisplatin in lung 

cancer cells with similar results seen in gemcitabine-VX-970 combinations (Hall et al., 2014). 

In this study, p53 deficient cells again showed the greatest potentiation of cisplatin by VX-

970 but a significant potentiation was also seen with AZD6738 in a further panel of non-

small cell lung cancer (NSCLC) cell lines with other DDR abnormalities including ATM 

deficiency and K-ras mutation (Vendetti et al., 2015). ETP-46464 increased the cytotoxic 

effects of cisplatin in a range of gynecological cancer cell lines including those derived from 

ovarian, endometrial and cervical cancers. These results were independent of p53 status 

(Teng et al., 2015).   

 

VE-822 and AZD6738 have shown promise with respect to anti-tumour performance in vivo 

in combination with platinum, underlying their progression to clinical trials. VE-822 

significantly enhanced the efficacy of cisplatin in mice xenograft models of lung cancer 

including complete tumour growth inhibition in three platinum insensitive models (Hall et 

al., 2014). Additionally, a complete response to combination treatment was observed in a 

cisplatin sensitive tumour, which was sustained for three weeks following cessation of 

treatment. AZD6738 combinations with cisplatin also resulted in significant tumour growth 

delay in NSCLC xenograft models in which neither AZD6738 nor cisplatin monotherapy was 

effective (Vendetti et al., 2015). No significant increase in toxicity was observed in these 

studies with ATR inhibitor versus cisplatin alone.  
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CHK1 inhibitors 

There is inconsistency in the reported effects of CHK1 inhibitors as a strategy for 

potentiating platinum induced cytotoxicity and it is suggested that CHK1 activity is not 

required for resistance to cisplatin (Wagner and Karnitz, 2009). The CHK1/2 inhibitor 

AZD7762 reversed cisplatin resistance in a panel of p53 mutant NSCLC cell lines (Bartucci et 

al., 2012) and the same drug also reversed cisplatin resistance in a panel of clear cell ovarian 

cancer and p53 mutant head and neck squamous cell cancer (HNSCC) cell lines (Itamochi et 

al., 2014). AZD7762 also potentiated cisplatin toxicity in neuroblastoma cells lines that were 

G1 checkpoint deficient due to MDM2 amplification or p14 deletion as well as in p53 

mutated cases. In this study, an effect was not seen in G1 checkpoint proficient cell lines (Xu 

et al., 2011).  

 

In contrast to the above examples, MK-8776 failed to sensitise p53 mutated triple negative 

breast cancer (TNBC) cells to cisplatin (Montano et al., 2012) and whilst V158411 

potentiated the effects of platinum agents in a number of cell line panels in a p53 dependent 

manner, the effects were substantially less than those reported in the same studies for 

gemcitabine potentiation (Bryant et al., 2014).  

 

Perhaps due to the mixed results observed for CHK1 inhibitor potentiation of cisplatin, in 

vivo xenograft data is less extensive than for ATR inhibitors. Studies with AZD7762, however 

showed some encouraging results. Co-treatment of xenograft models of ovarian clear cell 

cancer showed with cisplatin and AZD7762 resulted in greater inhibitory effects than with 

cisplatin alone (Itamochi et al., 2014) and the same drug was also shown to significantly 

enhance tumour growth reduction versus cisplatin alone in a variety of NSCLC models with 

sustained effects being recorded for up to three weeks following treatment (Bartucci et al., 

2012).  

 

WEE1 inhibitors 

Fewer reports exist of WEE1 inhibitors in combination with cisplatin or carboplatin. Much of 

the literature concerned with WEE1 potentiation of genotoxic agents focussed on 

combinations with anti-metabolites such as gemcitabine or cytarabine, where a p53 
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dependent sensitisation has been reported across a number of human cancer cell lines 

including in cervical cancer cell lines (Matheson et al., 2016). MK-1775 has, however been 

observed to potentiate cisplatin in medulloblastoma cells (Harris et al., 2014) and also 

increased sensitivity to cisplatin in combination with shRNA p53 knockdown in ovarian 

cancer cells, with no effect seen in cells with intact p53 (Hirai et al., 2009).  

 

In vivo, MK-1775 potentiated carboplatin in cervical cancer xenografts and showed a 

reduction in tumour growth when combined with cisplatin in murine models of ovarian 

cancer (Hirai et al., 2009). As with the data for ATR and CHK1 inhibition, combinations with 

platinum agents do not appear to significantly alter the toxicity profiles compared to 

platinum treatment alone in these models and at the doses or concentrations used.  

 

 

1.7.2 Combinations with ionising radiation 

Ionising radiation, usually in combination with cisplatin is the most important treatment 

modality for locally advanced cervical cancer. IR causes a variety of DNA lesions (Table 1.2) 

that are potent inducers of the ATR mediated DNA damage response reactions. As such, 

ATR, CHK1 and WEE1 inhibitors have all been shown to be effective sensitisers of IR effects 

on tumour cells, in-vitro and in vivo. 

 

ATR inhibitors 

VE-821 has been shown to increase cell killing in combination with IR in a variety of human 

cancer cell lines, including those derived from cervical cancer, TNBC, HNSCC and colon 

cancer (Zhang et al., 2016, Pires et al., 2012).  Following successful potentiation of IR in 

pancreatic cancer cells in-vitro, VE-822 enhanced tumour growth delay of both single 

fraction and fractionated IR in pancreatic ductal carcinoma xenografts without increasing 

toxicity (Fokas et al., 2012). Reports also suggest that VE-821 sensitised cancer cells to IR 

under hypoxic conditions. Treatment of hypoxic cells (often associated with large, solid 

organ tumours such as that found in cervical cancer) is often difficult due to their aggressive 

phenotype and tendency to chemo- and radio-resistance (Bristow and Hill, 2008). However, 

this finding has not been replicated in tumour models.   
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CHK1 inhibitors 

The dual CHK1/2 inhibitor AZD7762 caused p53 dependent radio sensitisation of 

glioblastoma, colon, lung, and pancreatic cancer cell lines in clonogenic assays (Mitchell et 

al., 2010). Conversely, other studies demonstrate sensitisation by AZD7762 of a large 

number of human cell lines to IR independent of p53 status (Yang et al., 2011, Dillon et al., 

2017). In contrast to these results neither AZD7762 or the CHK1 specific inhibitor LY2603618 

sensitised a range of radio-resistant cell lines with high levels of DDR protein and oncogene 

expressions to IR (Zhang et al., 2016). However, both drugs suppressed growth of the radio-

resistant cell lines when used as single agents, but not their radio-sensitive parental cells, 

supporting evidence for CHK1 inhibition as a therapeutic strategy for cells with high levels of 

endogenous replication stress (see Chapter 1.5.1).  

 

The in vivo performance of CHK1 inhibitors as a sensitiser of IR mirrors the results of in-vitro 

reports. AZD7762 prolonged survival in mouse models of lung cancer metastases (Yang et al., 

2011) and more than doubled tumour growth delay following fractionated IR in colorectal 

cancer xenografts (Mitchell et al., 2010). 

 

WEE1 inhibitors 

Whilst there are fewer reports of WEE1 radio-senstisation, results of MK-1775 combinations 

with IR appear to be positive. MK-1775 has sensitised high grade glioma (HGG) cells to IR in-

vitro and this translated into a significant survival advantage for mice bearing HGG 

xenografts treated with the combination over those treated with IR alone (Mueller et al., 

2014). As with ATR and CHK1 inhibitors, there are reports of p53 dependent sensitisations 

that are likely to represent the importance of G1/S checkpoint deficiency rather that p53 

mutated status specifically: a p53-defective panel of human lung, prostate and breast cancer 

cell lines showed sensitisation by MK-1775 to IR but no effect was measured in wild-type 

matched cells (Bridges et al., 2011).  
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1.8 ATR, CHK1 and WEE1 inhibitors in clinical practice 
Four ATR inhibitors are currently undergoing clinical trials and have shown anti-tumour 

activity as single agents and in combination with other chemotherapy drugs. Amongst these 

are VE-822 (VX-970) and AZD6738, for which a description of the available pre-clinical data is 

given in sections 1.5 and 1.6 have been tested in combinations with platinum chemotherapy 

agents and have available results. VE-822 (as M6620) showed good tolerability as a single 

agent and achieved a complete response (CR) in patient with metastatic colorectal cancer 

that showed 100% ATM loss on immunohistochemistry (O'Carrigan B, 2016). AZD6738 

monotherapy appeared to be less well tolerated with bone marrow suppression observed 

with continuous dosing schedules. However, two partial responses (out of 26 enrolled 

patients) were observed in patients with advanced solid organ tumours (Dillon, 2017).  

 

Combinations with either VX-970/M6620 or AZD6738 have proved to be more problematic 

with respect to dose limiting toxicities, particularly in relation to bone marrow suppression. 

Despite frequent dose delays and interruptions due to neutropenia, a phase 1 trial, which 

combined VX-970 with carboplatin in 15 patients saw a sustained partial response in one 

patient and stable disease maintained in 8 others over 6-months (O'Carrigan B, 2016). 

Furthermore, in another cohort, combinations of VX-970 with cisplatin showed anti-tumour 

activity in patients with previously platinum resistant or refractory disease (Shapiro, 2016). 

AZD6738 combinations with carboplatin have resulted in 3 three observed partial responses, 

two of which were in patients with ATM deficient tumours (ovarian clear cell cancer and 

colorectal cancer) (Yap, 2016). 

 

Trials of CHK1 inhibitors as single agents and in combinations with other chemotherapy 

drugs have been hampered by severe dose limiting toxicities including bone marrow 

suppression, cardiotoxicity and severe thrombo-embolic events (Pilie et al., 2019). Three 

CHK1 inhibitors are currently undergoing clinical trials, including LY2602638 (Prexasertib) 

and CCT245737 (SRA737). A phase II trial of Prexasertib has demonstrated tumour responses 

in 5 out of 22 patients with advanced BRCA wild-type high grade serous ovarian cancer 

(HGSOC) (Lee, 2016). This result is notable due to the high frequency of p53 mutation 

present in HGSOC. 
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The only selective WEE1 inhibitor to enter trials is AZD1775 (MK-1775). The progress of this 

drug through trials has been hampered by the need for unconventional dosing schedules 

dictated by cumulative toxicity effects. A phase I study has reported a PR in two out of 25 

patients, both of whom had BRCA-2 mutant tumours. However, given the pre-clinical data 

that suggests a strong selectivity for response to WEE1 inhibition in p53 deficient tumours, 

none of the p53 mutant tumours in this trial responded to AZD1775 therapy (Do et al., 

2015). However, a phase II trial reported that addition of AZD1775 to carboplatin and 

paclitaxel chemotherapy in 122 patients with advanced p53-mutant ovarian cancer resulted 

in an increase in progression free survival (Oza, 2015). Another Phase II trial reported a 

greater overall response rate in p53 mutant vs p-53 null-type tumours (Leijen et al., 2016). 

 

1.9 Aims and Objectives: 

Cervical cancer is associated with HR-HPV infection, and the E6 and E7 viral proteins are 

responsible for p53 degradation and inactivation of pRb, thereby abrogating the G1 

checkpoint in a similar manner to cells with pathogenic mutations in p53 and pRB. 

Inhibition of the intra-S and/or G2/M checkpoint with an ATR, CHK1 or WEE1 inhibitor 

may therefore selectively sensitise cervical cancer cells with dysfunctional G1 control to 

DNA damaging agents (e.g. IR and cisplatin). Furthermore, data indicates that DNA-PKcs 

overexpression and ATM deficiency are potential determinants of sensitivity to ATR-CHK1 

pathway inhibition and therefore may render cells more sensitive to ATR, CHK1 and 

WEE1 inhibition alone or in combination with IR and cisplatin. The aim of this work was 

(i) to directly compare ATR, CHK1 and WEE1 inhibitors for their ability to kill cervical 

cancer cells and to chemo- and radio-sensitise these cells, (ii) identify determinants of 

sensitivity and (iii) to explore the underlying mechanisms.  

 

Hypotheses to be tested: 

1. The cervical cancer cell lines will display a spectrum of sensitivity to cisplatin and IR 

as well as ATR, CHK1 and WEE1 inhibitors alone that will be related to the expression 

of DDR proteins  

 



 

 39 

2. ATR, CHK1 and WEE1 inhibitors will sensitise cervical cancer cells to IR and cisplatin 

and that sensitisation will be dependent on HR-HPV and p53/pRb status and 

consequent impairment of G1 cell cycle control 
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2 Materials and Methods 

 
2.1 General laboratory practice 
All experiments were performed to Newcastle University standards for safe working 

regulations and with adherence to the Control of Substances Hazardous to Health (CoSHH) 

and Biological CoSHH (BioCoSHH) regulations. Culture of live cell line material was conducted 

in a class II biosafety cabinet within in a dedicated tissue culture laboratory.  

 

2.2 Chemicals and Reagents 
Unless stated otherwise, chemicals and reagents were purchased from Sigma-Aldrich (Poole, 

Dorset UK). Cisplatin (cis-Diammineplatinum(II) dichloride) stock solution was prepared by 

dissolution in sterile 0.9% w/v sodium chloride (NaCl) solution at 1 mM, filter sterilised 

through a 0.2 micron filter, aliquoted and stored at -20 °C. All inhibitors were purchased 

from Selleckchem.com. (Houston, Texas USA). A stock solution of VE-821 (ATR inhibitor) was 

prepared by dissolution inflame sealed, sterile dry dimethyl-sulfoxide (DMSO) from flame-

sealed vials at 20 nM, aliquoted and stored at -80 °C. Stock solutions of PF-477736 (CHK1 

inhibitor) and MK-1775 (WEE1 inhibitor) were prepared by dissolution in dry DMSO at 10 

mM, aliquoted and stored at -80 °C. 

 

2.3 Cell Culture 

Six human cervical cancer cell lines were used: HeLa; SiHa; C33A; CaSki; ME-180; and HT-3. 

Cell lines were purchased from the American Type Culture Collection (ATCC) cell biology 

collection and authenticated by short tandem repeat (STR) profiling according to 

institutional protocols. Cells were stored under liquid nitrogen at -190 °C. For experimental 

use, cells were thawed and transferred to 25 cm2 tissue culture flasks in cell specific growth 

media containing 2 mM L-glutamine and 10% v/v foetal bovine serum (FBS) (table 2.1). Cells 

were then incubated at 37 °C, 5% CO2 and 95% humidity. Growth medium was changed after 

24 hours, once the cells were observed to have adhered to the bottom of the culture flask. 

When the cells reached 60% confluence, they were harvested: cells were washed twice with 

10 ml sterile phosphate buffered saline (PBS) and incubated in 10% Trypsin-
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ethylenediaminetetraacetic acid (trypsin-EDTA) for 5-10 minutes until they were observed to 

have detached from the flask. Cells were then resuspended in full culture medium to 

neutralise the trypsin and seeded into 75 cm2 tissue culture flasks for ongoing culture.  

 

Continuous cell culture was maintained by serial passage of cells at 60% – 80% confluence to 

maintain exponential growth. Cells were used for experiments at post-authentication 

passage number 30 or less to limit the effects of genetic drift that can occur at high passage 

numbers. Cells were passaged at least once following thawing and prior to use. For 

experimental use, cultured cells were harvested as outlined above. Early passage, 

exponentially growing cells were frozen for future use in 2 ml aliquots of 1 - 2 x 106 cells/ml 

and in cell specific freezing medium (cell specific growth medium with 10% FBS and 10% 

DMSO). Cells in freezing medium were immediately frozen at -80 ºC for 24 hours prior to 

transfer to storage under liquid nitrogen.  

 

To avoid cross contamination, one cell line and corresponding dedicated media and reagents 

were handled exclusively at any one time within the biosafety cabinet. The cabinet was 

cleaned thoroughly with 70% ethanol between experiments using different cell lines. All 

media was prepared in aseptic conditions, sterility checked, stored at 4 °C and warmed to 37 

°C prior to use. All continuously cultured cells lines were regularly tested for mycoplasma 

infection according to NICR protocols. 
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Cell line Growth medium 

HeLa 
EMEM +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

SiHa 
EMEM +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

C33A 
EMEM +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

CaSki 
DMEM +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

ME-180 
RPMI +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

HT-3 
RPMI +2 mM L-glutamine, 10% FBS,  

100 IU/ml penicillin and 100 ug/ml streptomycin 

Table 2.1 Human cervical cancer cell lines used and their specific growth media for 
continuous culture. EMEM = Eagle’s Minimum Essential Medium, DMEM = Dulbecco’s 
Modified Eagles Medium, RPMI = Roswell Park Memorial Institute (medium), FBS = Fetal 
Bovine Serum.  
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2.4 SRB assay 
The Sulforhodamine B (SRB) assay relies on the stoichiometric binding of SRB dye to cell 

proteins under mildly acidic conditions. The dye is then solubilised into a defined volume of 

basic solvent. This produces a dye concentration that is directly proportional to the cell mass 

being measured. Measurement of absorbance at wavelength 510 nM then allows for 

estimation of the quantity of cell material present (Skehan et al., 1990). 

 

2.4.1 Determination of cell line growth rate by SRB assay 

Cell preparation and fixation 

Exponentially growing cells were harvested as described in section 2.3, above at 60% 

confluence and seeded into five rows of six separate 96-well plates in 100 µl full growth 

medium per well. Each row of an individual 96-well plate contained cells seeded at a 

different seeding density ranging from 6.75 x103 cells/well to 1.0 x 105 cells/well to allow for 

selection of the optimal seeding density for each cell line, as shown in figure 2.1. Cells were 

incubated at 37 °C and allowed to adhere to the bottom of the wells for 24 hours prior to 

fixation of the first plate: the ‘Day 0 plate’. An individual 96-well plate was then fixed at a 

recorded time on each of the following 5 days. 

 

Cells were fixed by addition of 25 µl fresh methanol-acetic acid 3:1 (v/v) to each cell-

containing well and incubated at 4 °C for at least 60 minutes. Following fixation of the cells 

in an individual 96-well plate, the plate was washed in slow running tap water and allowed 

to air dry. Plates were stored at 4 °C until all were fixed, prior to staining.  
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Figure 2.1 Diagram showing the layout of an individual 96-well plate used for SRB 
growth assays. 

Each of five rows (B-F) of a 96-well plate contained cells in full growth media at increasing 
seeding densities ranging from 6.75 x103 cells/well to 1.0 x 105 cells/well. Experimental cells 
are surrounded by wells containing growth media only to reduce ‘edge effect’ associated 
with microplate-based assays. 
  

SRB staining and absorbance measurement 

When all of the 96-well plates had been fixed, they were allowed to attain room 

temperature prior to addition of 20 µl 0.04% w/v SRB to each well. Cells were incubated with 

the dye at room temperature for 1 hour, washed briskly four times in 1% acetic acid and 

dried in a drying cabinet at 37 °C. Once dry, 100 µl of 10 mM Tris-base (pH 10.5) was added 

to each well and the plates agitated on a plate shaker at room temperature for 10 minutes 

to solubilise the bound dye. Absorbance at wavelength 510 nM was measured using a 

FLUOstarâ Omega microplate reader.  

 

2.4.2 Data analysis 

Absorbance measurements for each individual seeding density (averaged over each row) for 

each 96-well plate was measured.  Data was exported to Graphpad Prismâ and curves of 

log10 Absorbance vs time were constructed. Points on the curve that fall along a straight line 

represent cells in exponential growth phase, and these were used to calculate the doubling 

times for each cell line under investigation. 
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2.5 Colony formation assay 
A colony formation (clonogenic survival) assay is a cell survival assay based on the ability of a 

single cell to grow into a colony of cells. Developed as a method for determining 

reproductive death of cells after exposure to IR, it can also be used to test the cytotoxic 

effects of agents in solution (Franken et al., 2006). Cells are seeded out at known densities 

and the fractional survival of cells following treatment with a cytotoxic insult is calculated 

based on the number of colonies observed to have survived over the number of cells 

seeded. When the dose of IR, or concentration of the cytotoxic drug is varied, a survival 

curve can be constructed 

 

In-vitro results from clonogenic assays have been shown to correlate with in vivo clinical 

drug trial results and tumour response to chemotherapy agents (Salmon et al., 1978). Colony 

formation assays do, however have some limitations:  Whilst the seeding of cell aggregates 

can be guarded against by disaggregation techniques, this action in itself may disrupt normal 

cell-cell interactions of importance in the three-dimensional tumour system or micro-

environment (Miller et al., 1984); non-dividing and reversibly resting G0 cells are not 

assessed in colony formation assays as they are not dividing (Hoffman, 1991). However, 

while this may be problematic in assessing cells derived from clinical tumours that may be 

enriched with G0 phase cells, it is unlikely to represent a significant problem in rapidly 

proliferating, cell line culture experiments. Overall, colony formation assays represent a 

convenient and reliable way of assessing the cytotoxic effects of drugs and IR on 

proliferating cell populations.  

 

2.5.1 Cell preparation and fixation 

Exponentially growing cells were harvested as described in section 2.3, above at 60% 

confluence and seeded into 6-well plates at three different seeding densities per drug 

concentration to allow for differential plating efficiencies and expected cytotoxicity. Cells 

were incubated at 37 °C and allowed to adhere for 24 hours. Growth media was aspirated 

from the wells and replaced with medium containing drug, diluted to the desired 

concentration. All control wells were exposed to growth media with DMSO at an identical 
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concentration to that used for dilution of the inhibitor drug and not more than 0.5% v/v. 

Exposure times were 24 hours unless otherwise stated.  

 

At 24 hours exposure, the drug-containing media was aspirated and replaced with full 

growth media (table 2.1). The cells were incubated for 8 – 14 days, depending on the 

doubling time of the cell line, allowing for at least 5 doubling-times. Following the desired 

incubation period colonies were fixed with methanol-acetic acid 3:1 (v/v) and stained with 

0.4% w/v crystal violet solution. Colonies of over 30 cells were counted to determine colony 

survival at each drug concentration used. 

 

2.5.2 Single agent cytotoxicity assay 

Serial dilutions of drugs for cytotoxicity assays were made according to the individual 

experiment requirements. Stock solutions of cisplatin or inhibitor were removed from 

storage and allowed to thaw to room temperature prior to serial dilution with either 0.9% 

w/v NaCl (for cisplatin) or DMSO (inhibitors). Final dilutions to achieve experimental 

concentrations were made in cell line specific growth medium at a DMSO concentration of 

not more than 0.5% v/v. 

 

2.5.3 Cisplatin potentiation cytotoxicity assay 

For colony formation assays investigating the potentiation of the cytotoxic effects of 

cisplatin by inhibitors of ATR, CHK1 and WEE1, single concentrations of inhibitor drugs were 

used to potentiate the effects of a range of cisplatin concentrations. Inhibitor concentrations 

were chosen at which substantial enzymatic inhibition was observed in Western blot analysis 

of target inhibition, but little inherent cytotoxicity was observed in single agent cytotoxicity 

assays.  

 

Serial dilutions of cisplatin stock solution in NaCl were prepared as described in section 2.5.2, 

above. Final dilutions were prepared in duplicate in growth media containing either: the 

chosen concentration of inhibitor in DMSO; or an equivalent concentration of DMSO only as 

control. Identical series of 6-well plates (Figure 2.2) were therefore incubated, fixed and 
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analysed. The percentage survival of colonies in wells treated with cisplatin + inhibitor 

relative to the cisplatin only controls represents the potentiation effect of the inhibitor drug. 

 

 

Figure 2.2 Example of 6-well plate layout for cisplatin potentiation colony formation 
assay. 

Identical series of 6-well plates containing media with either A: DMSO + cisplatin 
concentrations or B: inhbitor + cisplatin concentrations were incubated as described in 
chapter 2.5.3. Colony survival was normalised to DMSO or inhibitor only controls (Row 1). 
Rows 2 -6 contained increasing concentrations of cisplatin of between 0.03 µM and 3.0 µM 
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2.5.4 Radio-potentiation cytotoxicity assay 

The same concentrations of inhibitors were used to investigate any potential of these drugs 

to potentiate the cytotoxic effect of ionising radiation (IR) in colony formation assays. 

Growth media containing either: the chosen concentration of inhibitor in DMSO; or an 

equivalent concentration of DMSO only as control were added to each well of a series of 6 

well plates. Each plate contained 1 row of three wells containing inhibitor, and one row of 

three wells as control. The 6-well plates containing known seeding densities of cells, and 

inhibitor or DMSO in growth media were then immediately exposed to increasing doses of 

ionising radiation and incubated, fixed and analysed as described in section 5.1 (figure 2.2). 

The percentage survival of colonies in wells treated with IR + inhibitor relative to the IR only 

controls represents the potentiation effect of the inhibitor drug. 

 

 

Figure 2.3 Example of 6-well plate layout for IR potentiation colony formation assay.   

Identical series of 6-well plates containing cells + media with either DMSO or inhibitor were 
exposed to no IR (plate 1) increasing doses of IR (Plate 2 and higher) and incubated as 
described in chapter 2.5.3. Colony survival was normalised to DMSO or inhibitor controls 
(Plate 1). Irradiated plates were exposed to 2 Gy, 4 Gy or 6 Gy of IR. 

 



 

 49 

2.5.5 Data Analysis 

Following fixation and staining, colonies were counted manually, and the percentage survival 

calculated in Microsoft Excelâ. Percentage survival results for each cell for each biological 

repeat were copied to Graphpad Prismâ and the mean and standard deviation of survival 

for each individual condition calculated. Survival curves were plotted. For cisplatin and IR 

potentiation experiments, two-way analysis of variance (ANOVA) was conducted to detect 

significant potentiation effects.  

 

2.6 Western blot 

Western blot was used to measure the relative expression of cell cycle checkpoint kinases 

and other DDR proteins. Western blot was also used to assess the activation of ATR, CHK1 

and WEE1 by cisplatin in each cell line and the inhibition of these kinases by their respective 

small molecule inhibitors: VE-821; PF-477736; and MK-1775, by staining for the principle 

activation target of each enzyme (Table 2.2, Target Protein). 

 

Western blot is a semi-quantitative method for assessing protein expression. Proteins from 

whole cell lysates are separated by their molecular weight by gel electrophoresis and 

transferred onto a cellulose blotting membrane. The membrane is incubated with a 

sequence of primary antibodies (antibodies raised against the protein under investigation) 

and secondary antibodies that are conjugated to horseradish peroxidase (HRP). Addition of a 

chemi-luminescence substrate to the HRP conjugated secondary antibody allows for analysis 

by correlating the intensity of the chemi-luminescence with the amount of protein present.  
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Cell Cycle 
Kinase 

Target protein 
(activated) 

Mol. Wt. of target 
protein (kDa) Antibody used Supplier, product Antibody dilution 

ATR pCHK1S345 56 Anti-Phospho-CHK1 (S345) Rabbit mAb Cell Signalling, 2348 1:1000 in 5% BSA 

CHK1 pCHK1S296 56 Anti-Phospho-CHK1 (S296) Rabbit pAb Cell Signalling, 2349 1:1000 in 5% BSA 

WEE1 pCDK1Y15 34 Anti-Phospho-CDK1 (Y15) Rabbit pAb Cell Signalling, 9111 1:1000 in 5% BSA 

 Protein Mol. Wt. of protein 
(kDa) Antibody used Supplier, product Antibody dilution 

 ATR 250 Anti-ATR (N-19) Goat mAb Santa-Cruz, 1887 1:500 in 5% milk 

 CHK1 56 Anti-CHK1 (G-4) Mouse mAb Santa-Cruz, 8408 1:500 in 5% milk 

 WEE1 96 Anti-WEE1 (B-11) Mouse mAb Santa-Cruz, 5285 1:500 in 5% milk 

 CDK1 34 Anti-CDK1 (POH1) Mouse mAb Cell signalling, 9116 1:1000 in 5% BSA 

 ATM 350 Anti-ATM (D2E2) Rabbit mAb Cell signalling, 2873 1:1000 in 5% BSA 

 DNA-PKcs 450 Anti-DNA-PKcs (H-163) Rabbit pAb Santa-Cruz, 9051 1:500 in 5% milk 

 Ku80  Anti-Ku80 (EPR3468) Rabbit mAb Abcam, ab3114 1:500 in 5% milk 

 Ku70  Anti-Ku70 (N3H10) Mouse mAb Abcam, ab80592 1:500 in 5% milk 

 a-tubulin 50 Anti-a-tubulin Mouse monoclonal Sigma, T6074 1:80000 in 5% milk 

   Polyclonal goat anti-rabbit IgG/HRP Dako, PO447 1:2000 in 5% milk 

   Polyclonal goat anti-mouse IgG/HRP Dako, PO448 1:2000 in 5% milk 

   Polyclonal Donkey anti-goat IgG/HRP Santa-Cruz, 2020 1:2000 in 5% milk 

Table 2.2 Primary and secondary antibodies used for Western blot experiments to determine the baseline expression of key DDr and cell 
cycle checkpoint proteins, their manufacturer, and experimental dilutions. 

HRP = Horseradish Peroxidase, pAB = polyclonal antibody, mAb = monoclonal antibody, 5% BSA = Bovine serum albumin % w/v in TBS-Tween 20, 
5% milk = dried skimmed milk 5% w/v in TBS-Tween 20.
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2.6.1 Preparation of cell lysates 

Preparation of lysates from untreated cells 

For the determination of baseline protein expression in each of the cell lines, cell lysates 

were prepared from cells that were not exposed to genotoxic agents or inhibitors. 

Exponentially growing cells were seeded into 10 cm tissue culture dishes and incubated at 37 

°C in 10 ml of growth media. At 60% confluence, cells were washed twice in PBS. Cells were 

incubated for 5 minutes at room temperature with 300 µl radioimmunoprecipitation (RIPA) 

lysis buffer and 1:100 protease inhibitor cocktail (ThermoFisher-Scientific, Rockford, USA) 

prior to mechanical agitation and transfer to Eppendorf tubes for centrifugation at 16000 g 

for 5 minutes. The supernatant was removed and stored at -80 °C until analysis.  

 

Preparation of lysates from drug-treated cells 

For the determination of the levels of phosphorylated proteins associated with activation or 

inhibition of enzymes by the genotoxic agents and inhibitors under investigation, cells were 

treated with combinations of drugs as described in the individual experimental protocols 

(see sections 3.3 and 4.3). Exponentially growing cells were seeded into wells of 6-well plates 

and cultured at 37 °C to 60% confluence. Growth media was replaced with treatment media 

containing the drug combinations and cells were further cultured until the desired time for 

lysis. Cells were washed twice in PBS and cultured for 10 minutes on ice with 70 µl per well 

of Phosphosafe extraction reagent (Novogen/Merk KGaA, Darmstadt, Germany) with 1:100 

protease inhibitor cocktail (ThermoFisher-Scientific, Rockford, USA) prior to mechanical 

agitation, transfer to Eppendorf tubes and centrifugation at 16000 g for 5 minutes. 

Supernatant was removed and stored at -80 °C. To avoid repeated freeze-thaw cycles, a 10 

µl aliquot of all lysate samples was diluted with 40 µl de-ionised water (DIW) and used for 

BCA assay.  
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2.6.2 BCA assay  

In order to measure the relative amounts of specific proteins in multiple samples by Western 

blot, each experimental sample analysed should be of identical overall protein 

concentration. This is achieved by dilution of whole cell lysates for each experimental sample 

to the equivalent protein concentration of the sample with the lowest value. In order to 

determine the overall protein concentration of the lysate, bicinchoninic acid assay (BCA 

assay) was performed using a Pierce protein assay kit (ThermoFisher-Scientific, Rockford, 

USA).  

 

The BCA assay relies on the ability of peptide bonds within proteins to reduce copper (II) 

sulphate (Cu2+ ions) to Cu+. The amount of Cu2+ reduced is stoichiometric with the amount of 

protein present. Following this reduction reaction, bicinchoninic acid molecules complex 

with the Cu+ ions forming a purple coloured complex that absorbs light at a wavelength of 

562 nm. Therefore, absorption of light at 562 nm correlates with the amount of protein 

present in the reaction solution (Smith et al., 1985). 

 

The protein concentrations in 1:5 dilutions of whole cell lysates were measured in 

quadruplicate alongside known dilutions of a standard solution of bovine serum albumin.  

10 µl aliquots of dilute lysate and protein standards were pipetted in quadruplicate into 

individual wells of a 96-well plate as shown in figure 2.3. Using deionised water (DIW) as a 

blank-control, 190 µl Pierce assay reagent was added to each well and the plate was 

incubated at 37 °C for 30 minutes. Absorbance at 562 nM was measured using a FLUOstarâ 

Omega microplate reader.  Protein concentrations were calculated by fit to a standard curve 

determined by linear regression analysis of the bovine serum albumin standards (figure 2.4).  
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Figure 2.4 The layout of a 96 well plate used for BCA protein assays 

DIW was used as a blank control in column A. Protein standard dilutions were added to 
columns B to D. 1:5 dilutions of whole cell lysates were added to remaining wells in 
quadruplicate prior to the addition of Pierce reagent and incubation at 37°C for 30 minutes. 
 

 

 

Figure 2.5 Example of a standard curve generated by linear regression analysis of 

absorbance at 256 nm for a series of standard serum albumin solutions. 

Protein concentrations of whole cell lysates were determined by fit of the average of 
absorbance values, measured in quadruplicate to the standard curve. 
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2.6.3 Gel electrophoresis 

Unless otherwise stated all reagents for electrophoresis were purchased from Bio-Rad 

laboratories (Hercules, California USA). Cell lysates were thawed on ice and diluted to a 

maximum protein concentration of 1.0 mg/ml in DIW, 25% XT sample buffer and 0.5% XT 

reducing agent. Samples were heated to 94 °C for 5 minutes to allow for protein 

denaturation and epitope exposure. Once cooled, Samples were loaded as 30 µl aliquots into 

separate wells of an XT precast 3% - 8% tris-acetate electrophoresis gel. High-mark protein 

ladder (ThermoFisher-Scientific, Rockford, USA) was loaded into wells at either side of the 

gel to estimate the molecular weight of the protein bands.  

 

Electrophoresis was driven by a potential difference down the gel of 150 V for 65 minutes in 

10% tris-glycine running buffer. Following electrophoresis, the proteins were transferred to a 

nitrocellulose blotting membrane (Amersham Protran premium 0.45 µm NC) across a 

potential difference of 100 V for 60 minutes in 10 % tris-glycine transfer buffer and 20% 

methanol. The membrane was then placed in 5% milk in Tris-Buffered Saline + Tween 20 

(TBST) and incubated for at least 60 minutes at room temperature on a rocking platform to 

prevent non-specific antibody binding during antibody staining.  

 

2.6.4 Antibody staining and chemi-luminescence 

The membrane was cut at the appropriate molecular weight markers, to enable multiple 

proteins to be analysed without stripping and re-probing, as desired and incubated with 

primary antibodies at the dilutions given in table 2.2. All primary antibodies were incubated 

with the membrane at 4°C, overnight. Membranes were washed with TBST for 20 minutes 

prior to incubation with the secondary antibodies at room temperature for at 60 minutes. 

Following incubation with the secondary antibodies, the membrane was exposed to Clarity 

Western enhanced chemiluminescence (ECL) substrate for 5 minutes and chemi-

luminescence was measured and quantified using a G-boxâ image analyser (Syngene, 

Cambridge UK) and associated Gene-Toolsâ image analyser software. 

 

 



 

 55 

2.6.5 Data Analysis 

Once the intensity of chemiluminescence associated with each protein band of interest was 

measured it was recorded in Microsoft Excelâ. The ratio of intensity of the band of interest 

to its corresponding loading control protein band minus the background fluorescence was 

calculated. Values were then imported to Graphpad Prismâ for further evaluation and 

display as detailed in chapters 2 and 3. 

 

2.7 Cell cycle analysis  

The cell cycle profile of a population of cells within a sample can be used to determine the 

effects of drugs and other exogenous influences on the progression of proliferating cells 

through the cell cycle. The cell cycle profile of a sample containing proliferating cells can be 

determined using a fluorescent dye that binds to the DNA of the cells and then measuring 

the intensity of the fluorescence from each cell as it passes through a laser. Propidium Iodide 

(PI) is a dye that binds stoichiometrically to the DNA and RNA of fixed, permeable cells. PI is 

maximally excited by lasers at wavelength 493 nM and has maximal emission spectra at 636 

nM. 

 

Proliferating cells are fixed and permeabilised with Ethanol, treated with ribonuclease 

(RNase) to degrade RNA content and then exposed to saturating concentrations of PI. The 

stoichiometric relationship between bound PI and the DNA content of the cell results in a 

direct correlation between cell DNA content and cell fluorescence, measured by flow 

cytometry. Cells in G2-/M-phase will have roughly twice the fluorescence of either G0 

(resting) or G1-phase cells, due to there being twice the DNA content in these cells, as they 

have duplicated their DNA in preparation for mitosis. S-phase cells will have fluorescence on 

a scale between G0/G1 and G2/M cells, as shown in figure 2.5. 
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Figure 2.6 An example of a cell cycle profile of unperturbed HeLa cells. 

The populations of G0-/G1-phase, S-phase and G2-/M-phase cells are shown along an 
arbitrary fluorescence scale. G2- or M-phase cells have twice the fluorescence of the G1- or 
G1-phase cells owing to DNA duplication that occurs in S-Phase. S-phase cells have a DNA 
content and fluorescence on a scale between the G0/G1 and G2/M populations. Apoptotic 
cells have fragmented DNA and their fluorescence is less than that of G-phase1 cells (sub-
G1). 
 

2.7.1 Preparation of samples for cell cycle analysis 

Cell harvesting and permeabilisation 

Serial dilutions of cisplatin stock solution in NaCl were prepared as described in section 2.5.2, 

above. Final dilutions were prepared in duplicate in growth media containing either: the 

chosen concentration of inhibitor in DMSO; or an equivalent concentration of DMSO only as 

control. 

 

Cells were cultured in 10 cm tissue culture dishes until they were 60% confluent. Growth 

media was aspirated from the wells and replaced with drug, diluted to the desired 

concentration in growth media. All control wells were exposed to growth media with DMSO 

at an identical concentration to that used for dilution of the inhibitor drug and not more 

than 0.5%. Exposure times were 24 hours. 
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Following the drug exposure, the drug-containing media was aspirated and reserved to 

ensure non-adhered cells were not lost to analysis. The cells were washed twice with PBS 

and incubated with 4 ml trypsin-EDTA until all cells were observed to have detached from 

the bottom of the culture dish. The cells were then re-suspended in 5 ml PBS and transferred 

to 20 ml universal tubes with the reserved media and centrifuged at 250G for 3 minutes.  

The supernatant was discarded, the cells were resuspended in 1 ml ice-cold PBS and 

transferred to Eppendorf tubes. Following further centrifugation at 250G for 5 minutes, the 

supernatant was again discarded, and the cells were resuspended in 1 ml 70% ethanol. Cells 

in ethanol were stored at 4 °C for no longer that 2 weeks. 

 

RNA digestion and PI staining 

Cells were removed from cold storage and allowed to reach room temperature before 

centrifugation at 250 g for 5 minutes. The ethanol supernatant was then discarded, and cells 

resuspended in 800 µl PBS for 20 minutes. This step was repeated to ensure adequate 

elimination of ethanol. Bovine RNase A at a final concentration of 1 mg/ml was added to the 

cell suspension and the cells were incubated at 37 °C for 30 minutes. PI at a final 

concentration of 400 µg/ml was added to the RNA free cell suspension followed by further 

30 minutes at 37 °C. 

 

2.7.2 Fluorescence cytometry and data analysis 

Permeabilised and PI stained cells were analysed for DNA content using a BD FACSCanto II 

flow cytometer. Data was stored and transferred to FCS Express 6â software for analysis. 

Doublets were excluded, as described in chapter 6 and the sub-G1, G0/G1, S and G2/M 

populations were determined from the cell cycle histogram.  

 

2.8 Tissue microarray and Immunohistochemistry 

A tissue microarray (TMA) was constructed from formalin fixed and paraffin embedded 

cervical cancer tissue following diagnosis or treatment from patients who consented to 

biobanking under existing ethical permissions (2012 REC: 12/NE0395. R&D sponsor: NUTH 

NHS foundation trust No. 6579). The TMA was prepared and IHC undertaken according to 

the procedures detailed in Chapter 8.3. 
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2.9 Data analysis and statistics 

Statistical analysis of all experimentally generated data was undertaken using Graphpad 

Prismâ statistics software. Pearson correlation analysis was used to explore relationships 

between data. Where correlation analyses are given, r2 represents the goodness-of-fit of 

the data to the linear regression line and the p-value represents the probability that the 

result would have occurred if the correlation co-efficient was zero. 
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3 Characterisation of cervical cancer cell lines 

 

3.1 Introduction 

Due to the strict measurement of tumour dimensions necessary for the accurate staging of 

cervical cancer and the often-small volume of primary tumour present at diagnosis, 

harvesting adequate tissue for primary tumour cultures from cervical cancer is rarely 

possible. Even in advanced or recurrent disease, small biopsies are usually taken to confirm 

diagnosis, again necessitating fixation and paraffin section of the whole specimen to ensure 

that adequate material is available for diagnosis and histopathological subtyping prior to 

non-excisional treatments being undertaken.  

 

3.1.1 Cervical cancer cell lines as a useful pre-clinical tool 

Cancer cell lines offer a readily available alternative to primary cultures. Immortalised cell 

lines have the advantage of providing a theoretically limitless supply of consistent material, 

supporting reproducible outcomes between researchers and over long-time periods 

compared to non-immortalised primary cultures. However, care must be taken when 

interpreting results from experiments with cell lines: while cell lines aim to reproduce the 

features of their parent primary cells, genotypic and phenotypic characteristics may change 

over time and serial passage. Additionally, significant heterogeneity may exist in a single 

culture. Cross culture and contamination with either other cell lines or infective agents such 

as mycoplasma species may also affect or disrupt cell behaviours or gene expression and 

must be guarded against and regularly tested for (Kaur and Dufour, 2012). To avoid these 

problems, one individual cell line of post-authentication passage < 30 was handled 

exclusively at any one-time, biological safety cabinets were thoroughly cleaned between 

experiments using different cell lines and regular mycoplasma contamination testing was 

conducted.  

 

A limited range of cervical cancer cell lines are commercially available, however within their 

number are some of the most widely used human cancer cell lines used in research today. 

Most notable are HeLa cells, immortalised from primary cell culture in 1951 this cell line is 

perhaps the most prolific in modern research (Lucey et al., 2009). HeLa cells have been used 
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to successfully inform clinical practice in fields as diverse as vaccine development to cancer 

research (Skloot, 2010). HeLa cells have been reported to be a viable cell line for tumour 

xenografts in mice (Rastogi et al., 2015, Nin et al., 2014). Similarly, other human cervical 

cancer cell lines used in the investigations described in this thesis (ME-180, CaSki, SiHa and 

C33A) have been successfully used to produce murine models of human cervical cancer 

(Cairns and Hill, 2004, Donat et al., 2014).  

 

3.1.2 Choosing cervical cancer cell lines to represent clinical conditions 

Choosing cell lines from a limited commercially available range to be representative of the 

prevalence and distribution of HPV and histological sub-types prevalent in cervical cancers 

requires an appreciation of the distribution of these factors in the worldwide population as 

considered in Chapter 1.  Considering the variance in histological and HPV sub-type 

distribution as well as presence or absence of HPV DNA, and within the limitations of the 

small number available commercially, a panel of cervical cancer cell lines was chosen to 

represent: squamous and glandular cancers with common high-risk HPV sub-type (HPV 16 

and 18); a rare but observed HPV subtype infection with uncertain oncological significance 

(HPV 68) (Longuet et al., 1996); and for completeness, two cervical cancer cell lines with no 

detectable HPV DNA but known pathogenic BP53 and RB1 mutations (Table 3.1).  

 

3.2 Aims and Objectives 

The aims of the investigations described in this chapter are threefold:  

1. to determine the growth rate (doubling time) of the cell lines, as this may be a 

determinant of sensitivity to cytotoxic drugs and inhibitors of ATR, CHK1 and WEE1; 

2. to determine the clonogenic potential (cloning efficiency) of the cervical cancer cell lines 

for use in future cytotoxicity assays;  

3. to establish baseline DDR and G2/M cell cycle checkpoint protein expression as this may 

reflect HPV/p53/pRB status or be a determinant of sensitivity to inhibition of ATR, CHK1 or 

WEE1. 
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3.3 Materials and methods 

3.3.1 Cervical cancer cell lines 

The cervical cancer cell lines used for experiments described herein were purchased from 

the American Type Culture Collection (ATCC) Cell Biology Collection and stored in the 

authenticated cell bank within the Northern Institute for Cancer Research (NICR). The ATCC 

lists 9 commercially available cell lines derived from human cervical cancer, of which, 6 were 

chosen for their array of known HPV subtype infection and genotypic characteristics as 

outlined, above (Table 3.1).  

 

Three of the cell lines are known to be high risk HPV positive: HeLa (HPV 18+), SiHa (HPV 

16+) and CaSki (HPV16+ and HPV18+). Two are HPV negative but harbour TP53 +/- RB1 

mutations: C33A; and HT-3. One: ME-180, is positive for HPV 68. 

 

3.3.2 Determination of cell doubling times by SRB assay 

The doubling times of two cervical cancer cell lines (ME-180 and HT-3) were determined by 

SRB assay. Cells were seeded in six identical 96 well plates at seeing densities from 6.75 x103 

cells/well to 1.0 x 105 cells/well and incubated for 6 days with fixation of a single 96 well 

plate at a documented time on each successive day of incubation, as described in section 

2.4. The doubling times of the remaining four cell lines used for the experiments described in 

this thesis (HeLa, SiHa, C33a and CaSki) were determined by SRB assay in work carried out by 

I. Kotsopoulos (MD thesis, 2018) using the method described here.   
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Table 3.1 Cervical cell lines used in experiments, their HPV status, histological sub-type 

and TP53/RB1 status. 

 

3.3.3 Determination of cloning efficiency by colony formation assay 

In order to determine the optimal seeding densities for cytotoxic colony formation assays, 

the cloning efficiency of the six cell lines were determined by undertaking colony formation 

assays in the absence of cytotoxic agents. Cells were seeded in individual six well plates at 

known seeding densities and incubated for 7 – 14 days in cell specific full growth media, as 

described in Chapter 2.5. Incubation time depended on the doubling time of the cell line, 

allowing for at least 5 doubling-times. Following the desired incubation period colonies were 

fixed with methanol-acetic acid 3:1 (v/v) and stained with 0.4% crystal violet solution. 

Colonies of over 30 cells were counted by eye to determine colony survival at each drug 

concentration used (Figure 3.1). Mean cloning efficiencies in the absence of cytotoxic agents 

were calculated from three individual experiments. The cloning efficiency for a cell line 

seeded at a known seeding density in an individual well of a 6-well plate is calculated as 

follows: 

!"#$%$%&	())$*$(%*+	(%) = 	 0
1234(5	#)	*#"#%$(6	#46(57(8

1234(5	#)	*(""6	6((8(8
9 × ;<< 
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Figure 3.1 Photograph showing HeLa cell colonies. 

HeLa cells were seeded at seeding densities of 50, 100 and 200 cells per well in duplicate 
from left to right. Cells were incubated in full growth media for 10 days (>5 doublings) prior 
to fixation with methanol-acetic acid 3:1 (v/v). Colonies were stained with 0.4% crystal violet 
and counted manually. 
 
 

3.3.4 Determination of baseline protein expression by Western blot 

Western blot was used to measure the relative expression of cell cycle checkpoint kinases 

and DDR proteins. Whole cell lysates were prepared from unperturbed and exponentially 

growing cells, separated by gel electrophoresis and transferred to a blotting membrane, as 

described in chapter 2.6. Membranes were incubated with primary and secondary 

antibodies (table 2.2) prior to exposure to a chemiluminescence agent. The fluorescence of 

each protein band was measured and normalised to the loading control protein, a-tubulin.   
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3.4 Results 

3.4.1 Cell line doubling times and cloning efficiency 

Antiproliferative anticancer agents and cell cycle checkpoint inhibitors are likely to be more 

cytotoxic to rapidly dividing cells, so it was important to calculate the cell cycle time. 

Additionally, the cell doubling time is a useful indicator of how long is needed for colony 

formation in cytotoxicity assays. Calculating the population doubling time is also a useful 

surrogate for estimating the rate at which the cells grow and the length of the cell cycle for 

each of the individual cell lines used. Representative growth curves for ME-180 and HT-3 cell 

lines are shown in Figures3.2.  

 

When plotted on a log scale, exponentially growing cells will have absorbance values that fall 

along a straight line. Cells that are confluent, or that are not growing in an exponential 

growth phase will show a ‘plateau’. Data points which indicated pre- or -post exponential 

growth ‘plateau’ phase cells, were omitted from the doubling time calculation. Doubling 

times for each of two replicate experiments for ME-180 cells and HT-3 cells were calculated 

from the exponential growth phases observed from each of the five technical replicates 

within that experiment.   

 

Mean doubling times and the standard error of the means for these experiments and those 

previously undertaken by I. Kotsopoulos are presented in Table 3.2. Hela, C33A and Caski 

displayed broadly similar doubling times (around 45 h). SiHa cells grew the slowest (59 

hours) and ME-180 cells and HT-3 cells grew the fastest (31 hours).  
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Figure 3.2 Representative examples of growth curves for ME180 and HT-3 cells at five 

different seeding densities.   

Cells were seeded at the densities shown in replicate 96-well plates. After overnight 
incubation the first plate was fixed (time 0) and the remainder were fixed at daily intervals 
for 6 days prior to staining all plates with SRB and reading the optical density at 450 nm. 
Data are mean and SD from a single representative experiment with 6 replicate wells/cell 
density and time points corresponding to the exact number of hours after time 0 fixation.   
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Table 3.2 Doubling times and cloning efficiency for six cervical cancer cell lines. 

Doubling times were calculated from experiments as shown in Fig 3.2 and 3.1. Data are mean 
and SEM of the mean doubling time/individual experiment (which was the mean of the 5 
technical replicates/experiment). For ME-180 cells, the mean doubling time of two biological 
replicates are given. Points that fell outside of exponential growth were excluded from 
analysis. For all other data, the mean and SEM of three biological replicates are given. 
 

The mean cloning efficiencies for each cell line are also shown Table 3.2. CaSki cells and HT-3 

cells showed the poorest cloning efficiencies at 22 percent and 23 percent, respectively. 

C33A cells showed the greatest cloning efficiency at 79 percent. Relative cloning efficiencies 

showed no relationship to the cell doubling times.  

 

3.4.2 Baseline expression of checkpoint and DDR proteins 

In order to confirm that the cells expressed the protein kinases that are key to the 

functioning of the G2-M cell cycle checkpoint and that are under investigation in this thesis, 

their expression in unperturbed exponentially growing cells were measured. ATR, CHK1, 

WEE1 and the principal WEE1 target protein CDK1 levels were measured. Additionally, 

expression of the important DNA damage signalling kinase: ATM and the key NHEJ proteins: 

DNA-PKcs; Ku70; and Ku80 were also measured, due to the previously described correlations 

between expression of these proteins and sensitivity to inhibition of ATR (Chapter 1.6.2). 

Representative Western blots for the six cervical cancer cell lines used are shown in  

Figure 3.3. 

 

Potential differences in the expression of cell cycle checkpoint and DDR proteins between 

the cell lines were investigated. Protein expression was quantified by expressing the 
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absolute densitometry value associated with the band corresponding to the protein of 

interest as a ratio to the loading control protein, α-tubulin: 

 

	=5#>($%	(?@5(66$#%	 = 	
=5#>($%	8(%6$>#3(>5+	7A"2( − 4A*C&5#2%8
D	>242"$%	8(%6$>#3(>5+	7A"2( − 4A*C&5#2%8

	 

 

Variation in α-tubulin expression was noted across the cell line panel. Tubulin and other 

housekeeping proteins can vary between cells (Li and Shen, 2013). This variation was 

consistent across individual experimental repeats and was unlikely to represent chance 

differences in total protein content of individual Western Blot electrophoresis lanes.  

 

There was substantial inter-assay variation, despite normalising expression to the loading 

control (Figure 3.5). Nevertheless, differences could be detected between the cell lines. 

Amongst the G2/M checkpoint protein kinases under investigation: there was a 2-fold 

variation in ATR expression between Caski (lowest) to SiHa (highest); a 3-fold variation in 

CHK1 expression between SiHa (lowest) to HT3 (highest); and a 5-fold variation in expression 

of WEE1 between CaSki (lowest) to ME-180 (highest).   

 

HT-3 cells appeared to have very little baseline expression of ATM when compared to the 

other five cell lines, with a marked difference of over 20-fold in the expression of this protein 

when compared to any of the other cell lines. In contrast, a difference of less than 3-fold was 

observed when ATM expression was compared between the other five cell lines. 

With regard to the NHEJ proteins measured:  DNA-PKcs expression varied considerably 

across the six cervical cancer cell lines, with a greater than 5-fold variation between HeLa 

cells (highest) and HT-3 cells (lowest); both Ku70 and Ku80 proteins appeared to be 

expressed at higher levels in HeLa cells than in any of the other cell lines and this difference 

was greatest in the case of Ku80, with a 5-fold greater expression that in the cells with the 

least measured expression (SiHa). 
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Figure 3.3 Baseline protein expression in unperturbed cells. 

Baseline Expression of G2-M cell cycle checkpoint kinases and other key DDR proteins were 
measured by western blot of cell lysates from exponentially growing cells in the absence of 
DNA damaging agents. Individual blots showing the expression of cell cycle and DDR proteins 
representing two individual measurements of expression of each protein are shown. Protein 
ladder is High-Mark Pre-Stained (Invitrogen, UK). 
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Figure 3.4 Expression of cell cycle checkpoint and NHEJ proteins. 

The protein content of exponentially growing cell lysates was measured by densitometry 
analysis of Western blots. Data are mean and range of expression normalised to the loading 
control protein, a-tubulin. 
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3.4.3 Correlations between protein expressions 

Relationships between the expression of the key G2/M checkpoint proteins and DDR 

proteins were investigated by correlation analysis. The baseline expressions of individual 

proteins were compared between cell lines. No correlations were observed between the 

levels of expression of ATM and any of the other proteins measured in the cell lines. 

Similarly, no proteins correlated with the expression of WEE1 in the cell lines. The expression 

of the Ku proteins, Ku 70 and Ku 80 showed a very strong positive correlation (r2 = 0.93, p < 

0.01), as expected. The human Ku protein is a heterodimer made up of a single Ku70 and a 

single Ku80 domain and therefore proportional expression of each protein would be 

expected in each cell. DNA-PKcs is the catalytic sub-unit of the nuclear DNA dependent 

protein kinase, DNA-PK. DNA-PK is formed from a stoichiometric interaction between the Ku 

heterodimer and the DNA-PKcs catalytic sub-unit. Despite this, a correlation between either 

Ku protein and DNA-PKcs expression was not observed. 

 

Significant negative correlations were observed between: the expression of ATR and both 

CHK1 and CDK1; and the expression of DNA-PKcs and both CHK1 and CDK1 (figure 3.6). 

Positive correlations were observed between the expression of CHK1 and CDK1; and 

between ATR and DNA-PKcs, though this particular relationship did not reach significance 

(Figure 3.5). 
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Figure 3.5 Scatter plots showing correlations between baseline protein expressions of 

pairs of proteins in human cervical cancer cell lines. 

Correlations between all combinations of pairs of proteins was undertaken. Scatter plots for 
those pairs that showed significant Pearson correlations, along with the relevant p-values are 
shown: ATR and CHK1 (A); ATR and CDK1 (B); DNA-PKcs and CHK1 (C); and DNA-PKcs and 
CDK1 (D): and CHK1 and CDK1 (E). ATR and DNA-PKcs (E), though this did not reach statistical 
significance. Data are mean expression values, as displayed in Figure 3.4. 
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3.4.4 Correlations between cell growth and protein expressions 

Correlation analyses were performed to determine if there was any relationship between 

the expression of cell cycle checkpoint or DDR proteins measured and the growth rate of the 

six cervical cancer cell lines. The individual scatter plots for protein expressions vs doubling 

time are shown in Figure 3.6. No Significant correlation was observed between the doubling 

times of the cell line panel and the baseline protein expression of any of the proteins 

measured.  

 

 

 

Figure 3.6 Scatter plots of cell cycle checkpoint and DDR protein expression vs cell line 

doubling times. 

Data are mean values calculated and displayed in table 3.2 and figure 3.5. 
 

3.5 Discussion 

Knowledge of the basic growth characteristics of the cell lines under investigation allows for 

consistent experimental conditions to be created with respect to exposure to genotoxic 

agents, enzyme inhibitors and post exposure incubation for colony formation and 

cytotoxicity assays. The doubling times calculated for the individual cell lines during 

exponential growth fell within a narrow range, with a less than two-fold difference in the 

doubling time between the ME-180 cell line (shortest doubling time) and the SiHa cell line 

(longest doubling time). It should be noted that whilst the calculated doubling times of HeLa, 
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SiHa, C33A and ME-180 cell lines were consistent with that reported in the accepted 

literature (Artimo P, 2012), the calculated doubling times for CaSki and HT-3 cells were 

found to be significantly shorter under experimental conditions in our laboratory than that 

reported previously (Kalu et al., 2017). In order to ensure the most consistent conditions for 

the experiments described in subsequent chapters, the doubling time determined under 

experimental conditions in our laboratory was used to calculate appropriate post drug-

exposure incubation times. 

  

Though doubling time does not have any bearing on colony formation the demonstration of 

the ability of the cell lines to form colonies under non-perturbed conditions provides a 

second measure of their intrinsic viability. All six of the cell lines used in experiments 

described in this thesis demonstrated the ability to form colonies under experimental 

conditions described in Chapter 2. It is difficult to estimate accepted literature values for 

cloning efficiencies for the cell lines used, as this value will be affected by such individual 

experimental parameters as the cell seeding density and volume of growth media used. The 

experiments described in this chapter therefore provide vital information to guide the 

appropriate conditions (seeding densities) to be used in cytotoxicity assays described in 

subsequent chapters, which were conducted under similar experimental conditions.  

 

Many researchers use the presence of mRNA as a marker for the expression of DDR pathway 

proteins and the lack of inclusion of mRNA data from the cell lines under investigation here, 

could be viewed as a potential weakness in this thesis. This approach, however, is not 

without disadvantage. Production and maintenance of cellular proteins requires complex 

integration of transcription, post-transcriptional modification and degradation processes 

(Vogel and Marcotte, 2012). Protein concentrations in the cell represent a dynamic balance 

between these processes. Several large studies comparing the transcriptome and proteome, 

including in human cancer systems have shown poor correlation between the two (Chen et 

al., 2002, Tian et al., 2004), whilst others have shown greater alignment (Orntoft et al., 

2002). Overall it is estimated that between 15% and 70% of the variation of protein levels in 

human cells might be explained by post-transcriptional processes, rather than variation in 

mRNA expression (de Sousa Abreu et al., 2009). 
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The overall aim of this thesis is to compare a panel of checkpoint protein inhibitors in their 

effects on cell survival through functional inhibition of their target proteins. The primary aim 

of the investigations described in this chapter was to demonstrate the presence of these 

proteins and that of selected DDR proteins which have previously been shown to be 

determinants of sensitivity to ATR, CHK1 Or WEE1 inhibition (Middleton et al., 2015, Kwok et 

al., 2016). Protein levels, determined by Western blot were felt to be a more appropriate 

measure for this aim and to correlate with kinase activity (Chapter 4) 

 

Despite the expectation that faster growing cells might have higher levels of replication 

stress, and therefore have higher levels of signalling to S and G2/M checkpoints via the ATR-

CHK1 pathway, there was no significant correlation between growth rate (doubling time) 

and baseline expression of any of the key checkpoint proteins: ATR; CHK1; WEE1; and CDK1. 

While it is accepted that the principal activator of the ATR-CHK1 pathway is replication 

stress, characterised by lesions arising from stalled replication forks and the resulting 

dsDNA-ssDNA junction (Zeman and Cimprich, 2014), evidence suggests that this higher level 

of activation arises out of the complex interplay of ATR, CHK1 and their co-factors (Zeman 

and Cimprich, 2014, Shiotani and Zou, 2009) with the damaged DNA molecule rather than by 

increasing the expression of these proteins in their non-activated form. It cannot, however 

be ruled out that a rapidly dividing cell might adapt to increased replication stress by 

increasing expression of these DNA damage sensing, signalling and effector proteins.  

 

When considering relationships between the baseline expression of cell cycle checkpoint 

proteins and DDR proteins, it is important to bear in mind the small sample size of cell lines 

under consideration in these experiments. Nevertheless, there appear to be highly 

significant inverse correlations between ATR and both CHK1 and CDK1. Additionally, and in-

keeping with this finding is the significant positive correlation between CHK1 and CDK1. 

There is a paucity of published evidence to confirm any relationships between the 

expression of these proteins in either human cell lines or clinical tumour specimens.  Whilst 

it might be expected that all components in a given pathway would be upregulated together, 

or expressed in similar quantities, this inverse relationship between ATR and CHK1/CDK1 

might suggest some functional redundancy in the pathway that warrants further exploration 

in a larger panel of cell lines or tumour material 
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Concerning the positive correlation observed between CDK1 and CHK1: it could be 

hypothesised that a cell with high levels of CDK1 might require high levels of CHK1, acting 

though CDC25C and WEE1 in order to prevent inappropriate entry to mitosis at the G2/M 

checkpoint. These correlations, while interesting are however observed in a small panel of 

cell lines. The cell may have adapted to high levels of replication stress by over-expression of 

proteins that are not measured in these experiments. Verification of these findings would 

require a substantial expansion of the sample size, including in clinical tumour samples 

before any definitive conclusion of their significance could be drawn. 

 

Relationships between DNA-PKcs and the G2/M cell cycle checkpoint signalling kinases were 

also observed. Though there is, again little in published evidence to support a relationship 

between DNA-PKcs expression and that of CDK1 in either pre-clinical or clinical tumour 

samples, correlations between CHK1 and DNA-PKcs mRNA expression levels have been 

observed in publicly available data sets derived from tumour samples from a variety of 

tissues including lung, hepatocellular, ovarian and colon carcinomas. Less convincing 

correlations have been observed in ovarian cancers and there was no observed correlation 

in breast cancer samples (Massey et al., 2016). Though no negative correlations between 

these two proteins were observed, cervical tissue was not included in the analysis. In this 

study a positive correlation was noted to be present between the expression of DNA-PKcs 

and ATR. This relationship has previously been shown to exist in glioma samples using mRNA 

expression data, following the observation that high DNA-PKcs expression conferred 

sensitivity to ATR inhibition (Middleton et al., 2015). Furthermore, both high ATR and high 

DNA-PKcs expression have been shown to correlate with survival in ovarian cancer patients, 

though no correlation was performed between DNA-PKcs and ATR expression in individual 

tumour samples in this study (Abdel-Fatah et al., 2014). 

 

The presence of high-risk HPV (HPV 16/18) has been previously shown to have an impact on 

the sensitivity of head and neck squamous cell cancers (HNSCC) to PARP inhibitors through 

reduced recruitment or expression of NHEJ and HRR pathway proteins including DNA-PK 

(Weaver et al., 2015). High-risk HPV positivity has also been shown to be related to the 

upregulation of other proteins involved in BER and SSB repair pathways (Nickson et al., 
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2017). Though the HPV negative cell lines, C33A and HT-3 showed the lowest overall 

expression of ATM, no other relationships were noted between high-risk HPV status and 

expression of any of the other DDR or cell cycle checkpoint proteins measured.  

 

3.6 Conclusions 

• The cervical cancer cell lines HeLa, SiHa, C33A, CaSki, ME-180 and HT-3 have doubling 

times that show a less than two-fold difference. The differences in doubling time do not 

correlate with expression of any of the cell cycle checkpoint or DDR proteins measured, or 

the HPV status of the cell line. 

• The cervical cancer cell lines form colonies with cloning efficiencies that are high enough 

to allow for cytotoxicity clonogenic assays to be conducted using standard techniques. 

• Significant correlations were observed between ATR, CHK1 and CDK1, which are all 

components of a common pathway signalling DNA damage to the G2/M cell cycle 

checkpoint.  

• CHK1 expression was seen to correlate with DNA-PKcs expression in an inverse 

relationship, contrary to that observed in mRNA expression from other cancer tissues. 

• ATR expression was seen to correlate with DNA-PKcs expression. Though this 

relationship was non-significant, it is consistent with previously observed correlations in 

brain cancer tissue.  

• DDR protein expression in unperturbed cells was not influenced by HPV status 



 

 77 

4 Target enzyme activity and single agent cytotoxicity 

 

4.1 Introduction 

A panel of six human cervical cancer cell lines, with known HPV status and pathogenic 

mutations of TP53 and RB1 tumour suppressor genes were characterised for doubling times, 

DDR protein expressions and cloning efficiencies in the previous chapter so that subsequent 

data could be interpreted in light of this knowledge. 

 

The loss of G1 checkpoint control through inactivation of TP53 and/or RB1 is likely to result 

in increased replication stress and a reliance on the Intra-S and G2/M cell cycle checkpoints 

(Chapter 1.3). It might be anticipated that inhibition of ATR, CHK1 or WEE1 and hence S and 

G2/M checkpoints would result in increased in cell death in the face of (endogenous) DNA 

damage. Evidence supporting p53 mutation or loss as a sensitiser to ATR or CHK1 inhibition 

is derived from experiments conducted on isogenic cell lines and the results are less 

consistent in unmatched, wild-type and dysfunctional cells (Rundle et al., 2017). Recent 

evidence also suggests that p53 deficiency may only confer sensitivity to ATR-CHK1 inhibition 

in the presence of a genotoxic insult, such as that delivered by co-treatment with IR or 

gemcitabine (Middleton et al., 2018). 

 

Defects in the DDR pathways HRR, BER and NHEJ have previously been shown to confer 

sensitivity to inhibition of ATR, CHK1 and WEE1 (Chapter 1.6.2). Of particular interest are 

observations that aberrations in the expression of components of NHEJ confer sensitivity to 

ATR-CHK1 pathway inhibition: overexpression of DNA-PKcs (a marker for replication stress 

and catalytic sub-unit of DNA-PK) is associated with sensitisation of cells to ATR and CHK1 

monotherapy (Middleton et al., 2015, Massey et al., 2016). Conversely, loss or knockdown of 

the DNA-PK components, Ku70 and Ku80 are also associated with sensitisation of cells to 

ATR and CHK1 inhibition (Middleton et al., 2015, Massey et al., 2016, Sultana et al., 2013). 

 

ATM deficiency has also been suggested as a potential sensitising characteristic for ATR, 

CHK1 or WEE1 inhibition, due to the complimentary functions of the ATR-CHK1 and ATM-

CHK2 mediated pathways in the DDR. ATM deficiency has been shown to sensitise leukeamic 
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cells to ATR inhibition (Kwok et al., 2016) though convincing evidence of a similar effect on 

CHK1 and WEE1 inhibitors is lacking. 

 

Investigations described in this chapter will measure the potency of the inhibitors: VE-821; 

PF-477736; and MK-1775 against their respective kinase targets in intact cells and 

investigate whether this target inhibition or the characteristics described in chapter 3, 

including baseline expression of DDR proteins has an impact on the cell’s sensitivity to the 

single agent cytotoxicity of the inhibitors.  

 

4.2 Aims and objectives 

The aims of the investigations described in this chapter are: 

1. To demonstrate the target enzyme inhibition of ATR, CHK1 and WEE1 by VE-821, PF-

477736 and MK-1775, respectively in each cervical cancer cell line. 

2. To determine the single agent cytotoxicity of VE-821, PF-477736 and MK-1775 in each 

cervical cancer cell line. 

 

This will enable the following hypotheses to be tested: 

1. The inhibitors will have similar potencies against their target across all cell lines. 

2. The cytotoxicity of the inhibitor will be dependent on the baseline expression level of 

the target enzyme and its inhibition. 

3. The cytotoxicity of the inhibitors will be dependent on the expression levels of other 

DDR proteins (ATM, DNA-PKcs, Ku70 and Ku80). 

An additional aim will be to determine suitable concentrations of VE-821, PF-477736 and 

MK-1775 to use in cytotoxicity assays in combination with cisplatin and IR. 

 



 

 79 

4.3 Materials and methods 

4.3.1 Investigations of enzyme activation and inhibition by western blot 

Activation of the ATR-CHK1-WEE1 pathway by cisplatin 

Exponentially growing HeLa cells were exposed to cisplatin at a concentration of 3 µM for 

time intervals of between 1 hour and 24 hours. Cell lysates were prepared as described in 

chapter 2.6 and analysed by western blot. Western blot membranes were incubated with 

antibodies raised against the principal phosphorylation target of ATR, CHK1 and WEE1 (Table 

2.2 and section 1.4). Following HRP-conjugated secondary antibody binding and exposure to 

ECL substrate, the intensity of chemiluminescence at bands corresponding to pCHK1S345, 

pCHK1S296 and pCDK1Y15 (O'Connell et al., 1997, Peasland et al., 2011, Okita et al., 2012) at 

each time-point was compared (Figure 4.1). Activation by cisplatin was compared to a 

positive control using 4-Nitroquinoline 1-oxide (4NQO), a known potent UV mimetic and 

activator of ATR (Chen et al., 2015).  

 

Target enzyme inhibition as a function of inhibitor concentration 

The extent to which each of the three inhibitors under investigation is able to prevent 

phosphorylation of the principal phosphorylation target of their respective substrate enzyme 

was investigated at multiple inhibitor concentrations. Exponentially growing HeLa, SiHa, 

C33A and CaSki cells were concurrently exposed to 3 µM cisplatin alone or with increasing 

concentrations of VE-821, PF-477736 or MK-1775 for 24-hour incubations. ME-180 and HT-3 

cells were exposed to 3 µM cisplatin alone or with a single fixed concentration of inhibitor 

drug, determined in initial experiments with the other four cell lines. Cell lysates were 

prepared immediately following 24 hours exposure to the drug combinations and analysed 

by Western blot as described in Chapter 2.6. ATR activity was determined by measuring 

pCHK1S345, CHK1 activity by measuring pCHK1S296 and WEE1 activity by measuring pCDK1Y15. 

Percent (%) inhibition was calculated by comparison of the activity with cisplatin alone, as 

follows: 
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Control	(DMSO)		 	 =		 X	

3	µM	Cisplatin	 		 =	 Y	

3	µM	Cisplatin	+	inhibitor		 =	 Z	

Z[\]	^_`ab^`a[c	de	3	µf	_agh\^`ac = 	i jk 		 

%	acℎada`a[c	^`	ghm_ana_	acℎada`[o	_[c_mc`o^`a[c = 100 −	r
(s − j)
(i − j)

	t	100u	 

 

 

4.3.2 Single agent cytotoxicity of inhibitors of ATR, CHK1 and WEE1 

Exponentially growing cells were seeded at known densities in 6 well plates and exposed to 

increasing concentrations of inhibitor in growth medium for 24 hours using an equivalent 

concentration of DMSO as a vehicle control as described in section 2.5. Following incubation 

in fresh medium for 10 - 14 days (dependent on cell growth rate) to allow colonies to form 

they were fixed, stained and counted. The survival at each inhibitor concentration was 

calculated relative to the DMSO control. Survival curves of relative colony survival against 

inhibitor concentrations were used to calculate the inhibitor concentration that resulted in 

50% inhibition of colony survival relative to control (LC50) for each of the inhibitors: VE-821; 

PF-477736; and MK1-775 as well as survival at a defined concentration. Inhibitor 

concentrations were chosen to range between those which caused minimal cytotoxicity to 

those which resulted in <10% colony survival in pilot experiments using HeLa cells.  
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4.4 Results 

4.4.1 Activation of the ATR-CHK1-WEE1 pathway by cisplatin 

Activation of all three enzymes, ATR, CHK1 and WEE1 by cisplatin (3 µM), at levels 

comparable with positive control, 4NQO was observed at 8 hours and 24 hours (Figure 4.2). 

Subsequent activation and inhibition assays were therefore conducted following 24-hour 

exposure to cisplatin.  

 

 

Figure 4.1 Representative Western blots showing protein bands corresponding to ATR 

and the principal phosphorylation targets of ATR CHK1 and WEE1 in HeLa cells. 

 HeLa cells were exposed to 3 µM cisplatin for periods of time between 1 and 24 hours. 
Reliable activation of ATR, CHK1 and WEE1 was seen at 8 hours and 24 hours. Kinase 
activation by cisplatin was compared to that seen in a positive control using 4NQO 
 

 

4.4.2 Target enzyme inhibition: ATR and VE-821  

Concentration dependent inhibition of ATR by VE-821 

HeLa, SiHa, C33A and CaSki cells were cultured in media containing 3 µM cisplatin ± VE-821 

at increasing concentrations between 0.3 µM and 30 µM. After 24-hours exposure, cell 

lysates were prepared and analysed by Western blot as outlined, above. Concentration vs 

inhibition curves were used to calculate the concentration of VE-821 needed to achieve 50% 
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enzymatic inhibition (VE-821 IC50) for each of these four cell lines. The mean IC50 values for 

VE-821 fell over a narrow range of concentrations from 620 nM (C33A) to 840 nM (CaSki) 

(Figure 4.2). 

 

Inhibition of ATR by equimolar concentrations of VE-821 

Greater than 50% inhibition of ATR phosphorylation of CHK1 was observed at concentrations 

of VE-821 ≥ 1 uM in all four cell lines: HeLa, SiHa, C33A and CaSki (Figure 4.2) so this 

concentration of VE-821 was further evaluated across the complete panel of six cell lines. To 

minimise inconsistencies associated with constitutive ATR activity, these assays were 

normalised to a control in which cells were exposed to DMSO only. This also revealed 

differences in the extent of ATR activation by cisplatin across the cell line panel. Activation 

was strongest in HeLa cells with a mean of 106-fold activation observed, and least in SiHa 

cells, with a mean activation of just 1.3-fold. Inhibition of cisplatin mediated ATR activation 

by 1 µM VE-821 was observed to be more consistent, with greater than 50% inhibition 

observed in five out of the six cell lines. The greatest inhibition was seen in SiHa cells, with a 

mean inhibition of 93% and the lowest in ME-180 cells, with a mean inhibition of 43%  

(Figure 4.3).  
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Figure 4.2 Concentration dependent inhibition of ATR by VE-821. 

A: Representative Western blots for HeLa, SiHa, C33A and CaSki cells. B: pCHK1S345 levels in 
cells treated with cisplatin (3 µM) and increasing concentrations of VE-821 relative to levels 
in cells treated with cisplatin alone. Data are mean and SEM of 3 independent experiments C: 
Concentration of VE-821 required to achieve a 50% reduction in expression of pCHK1S345 
compared to a cisplatin control (VE-821 IC50) was calculated from the expression vs 
concentration curves (B). Data are the mean and individual values from three independent 
experiments  
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Figure 4.3 Activation of ATR by cisplatin and inhibition by VE-821. 

Cells were cultured with 3 µM cisplatin (C) ± 1 µM VE-821 (VE). Representative Western blots 
are shown. Fold activation of ATR by cisplatin is given as a ratio of the pCHK1S345 band 
intensity to that of the untreated (DMSO) control. % inhibition is the percent-reduction in 
pCHK1S345 band intensity of the Cisplatin + VE-821 treated cells compared to that of cisplatin 
alone and normalised to the control. Figures given are a mean of at least two independent 
experiments. Experiments in which high levels of background ATR activity, out of keeping 
with other results, were excluded. 
 

 

4.4.3 Target enzyme inhibition: CHK1 and PF-477736  

Concentration dependent inhibition of CHK1 by PF-477736 

The inhibition of CHK1 by increasing concentrations of PF-477736 (10 nM – 200 nM) was 

investigated in HeLa, SiHa, C33A and CaSki cells treated with 3 µM cisplatin ± PF-477736 

prior to cell lysis and analysis of pCHK1S296 by Western blot. Concentration vs inhibition 

curves were used to calculate the concentration of VE-821 needed to achieve 50% enzymatic 

inhibition (PF-477736 IC50) for each of these four cell lines (Figure 4.4). The mean values of 

PF-477736 IC50 fell over a narrow (2-fold) range from 6.5 nM (CaSki) to 15 nM (SiHa). 

 

Inhibition of CHK1 by equimolar concentrations of PF-477736 

Greater than 50% inhibition of CHK1 auto-phosphorylation at Serine 296 by PF-477736 was 

observed at the concentrations ≥50 nM in the cell lines for which IC50 values were calculated. 

This concentration of inhibitor was then further evaluated in the complete panel of six 

cervical cancer cell lines. Normalising this panel of activation and inhibition results to an 

untreated control, again revealed that while there was considerable variation in the 

activation of CHK1 by cisplatin from just over two-fold (CaSki) to 141-fold (HeLa). Inhibition 

of cisplatin mediated activation of CHK1 was, however consistent across the cell line panel, 

with 50 nM PF-477736 causing between 79% (HT-3) and 100% (C33A) inhibition (Figure 4.5). 
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Figure 4.4 Concentration dependent inhibition of CHK1 by PF-477736. 

 A: Representative Western blots for HeLa, SiHa, C33A and CaSki cells. B: Phospho-
CHK1(S296) levels in cells treated with cisplatin (3 µM) and increasing concentrations of PF-
477736 relative to levels in cells treated with cisplatin alone. Data are mean and SEM of 3 
independent experiments C: Concentration of PF-477736 required to achieve a 50% reduction 
in expression of pCHK1S296 compared to a cisplatin control (PF-477736 IC50) was calculated 
from the expression vs concentration curves (B). Data are the mean and individual values 
from independent experiments  
 

 



 

 86 

 

Figure 4.5 Activation of CHK1 by cisplatin and inhibition by PF-477736. 

Cells were cultured with 3 µM cisplatin (C) ± 50 nM PF-477736 (PF). Representative Western 
blots are shown. Fold activation of CHK1 by cisplatin is given as a ratio of the pCHK12965 band 
intensity to that of the untreated (DMSO) control. % inhibition is the percent-reduction in 
pCHK1S296 band intensity of the Cisplatin + PF-477736 treated cells compared to that of 
cisplatin alone and normalised to the control. Figures given are a mean of at least two 
independent experiments. Experiments in which high levels of background CHK1 activity, out 
of keeping with other results, were excluded 
 

 

4.4.4 Target enzyme inhibition: WEE1 and MK-1775  

Concentration dependent inhibition of WEE1 by MK-1775 

HeLa, SiHa, C33A and CaSki cells were cultured with 3 µM cisplatin ± MK-1775 at 

concentrations between 50 nM and 800 nM prior to probing for pCDK1Y15. MK-1775 IC50 was 

calculated for each of these four cell lines (Figure 4.6). In contrast to the results described for 

ATR and CHK1, the inhibition of WEE1 by MK-1775 in HeLa, SiHa, C33A and CaSki cells 

showed less consistency with an approximate 4-fold range in IC50 values ranging from 130 

nM (HeLa) to 520 nM (C33A).  
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Figure 4.6 Concentration dependent inhibition of WEE1 by MK-1775. 

A: Representative Western blots for HeLa, SiHa, C33A and CaSki cells. B: pCDK1Y15 levels in 
cells treated with cisplatin (3 µM) and increasing concentrations of MK-1775 relative to levels 
in cells treated with cisplatin alone. Data are mean and SEM of 3 independent experiments C: 
Concentration of MK-1775 required to achieve a 50% reduction in expression of pCDK1Y15 
compared to a cisplatin control (MK-1775 IC50) was calculated from the expression vs 
concentration curves. (B). Data are the mean and individual values from independent 
experiments. 
 

Inhibition of WEE1 by equimolar concentrations of MK-1775 

Greater than 50% inhibition of WEE1 by MK-1775 was not consistently observed in all four of 

the cell lines in the concentration range used. Given the substantial inhibition seen in HeLa 

and CaSki cells at 100 nM MK-1775 and the fact that higher concentrations resulted in 
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substantial single agent cytotoxicity (see section 4.5), a concentration of 100 nM was 

selected to expand into the full panel of six cervical cancer cell lines. In these experiments, a 

high level of constitutive pCDK1Y15 was noted. When the WEE1 inhibition was calculated and 

normalised to the background WEE1 activity, consistent inhibition of >50% was observed at 

100 nM MK1775, ranging from 54% (SiHa) to >100% (ME-180): representing less than 

constitutive levels of phosphorylated CDK1 (Figure 4.7). Activation of WEE1 by cisplatin was 

more consistent that that seen of ATR and CHK1 but overall was less marked with a range of 

1.2-fold (ME-180) to 2.8-fold (SiHa) (figure 4.7). This is likely to be a consequence of the high 

level of constitutive CDK1 phosphorylation observed.  

 

Despite the differences described, none of the cell lines were consistently either the least or 

most susceptible to enzymatic inhibition by the three inhibitors under investigation. The 

results of these experiments confirm that the cell lines have intact ATR-CHK1-WEE1 

pathways and that the individual constituent kinases are susceptible to inhibition by the 

small molecule inhibitors under investigation. 

 

 

 

Figure 4.7 Activation of WEE1 by cisplatin and inhibition by MK-1775. 

Cells were cultured with 3 µM cisplatin (C) +/- 100 nM MK-1775 (MK). Representative 
Western blots are shown. Fold activation of WEE1 by cisplatin is given as a ratio of the 
pCDK1Y15 band intensity to that of the untreated (DMSO) control. % inhibition is the percent-
reduction in pCDK1Y15 band intensity of the Cisplatin + MK-1775 treated cells compared to 
that of cisplatin alone and normalised to the control. Figures given are a mean of at least 
three independent experiments. Experiments in which cisplatin appeared to reduce WEE1 
activity, out of keeping with other results, were excluded.  
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4.5 Single agent cytotoxicity 

4.5.1 ATR inhibitor single agent cytotoxicity: VE-821 

The single agent cytotoxicity of VE-821 at concentrations of 300 nM to 30 µM was 

determined. Four out of the six, cell lines: HeLa; C33A; CaSki; and HT-3 showed very similar 

survival across the range of VE-821 concentrations used (Figure 4.8) and the calculated mean 

VE-821 LC50 values fell within a narrow range for these cell lines of between 5.0 µM (C33A) 

and 6.6 µM (HeLa). The survival of both SiHa and ME-180 cells however, was substantially 

greater across all concentrations tested. The mean LC50 for ME-180 was 14 µM. SiHa cells 

failed to reach 50% survival in two out of three experiments and in a third the LC50 was 

calculated to be 22 µM. 

 

 

Figure 4.8 Single agent cytotoxicity of VE-821 in the cervical cancer cell line panel. 

A: The Survival of six cervical cancer cell lines at increasing concentrations of VE-821. Cells 
were exposed to VE-821 at concentrations of 300 nM to 30 µM in growth media for 24 hours. 
Following exposure, cells were incubated in fresh full growth media for at least five doubling 
times prior to fixation and staining. Survival is given as a percentage relative to the survival in 
a DMSO only control. Data are the means ± SEM for three independent experiments. B: LC50 
values for VE-821 in six cervical cancer cell lines. The calculated mean value for the 
concentration of VE-821 required to achieve a 50% reduction in survival compared to a 
DMSO control for each of the cervical cancer cell lines, along with the individual values for 
three independent experiments are shown. 50% survival was reached in one out of three 
experiments with SiHa cells. 
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4.5.2 CHK1 single agent cytotoxicity: PF-477736 

The single agent cytotoxicity of PF-477736 at concentrations of 100 nM to 800 nM was 

determined. In contrast to the results for VE-821, the cells lines showed a greater variation 

in survival across the range of concentrations used (Figure 4.9). Despite this, the range of PF-

477736 LC50 in five of the six cell lines: HeLa; SiHa; C33A; CaSki; and ME-180 fell within a < 4-

fold range of between < 100 nM (CaSki) and 320 nM (ME-180). This inhibitor, however 

showed substantially less cytotoxicity in HT-3 cells than the other cell lines with two out of 

three experiments failing to reach 50% survival and a third giving an LC50 value of 1300 nM. 

At higher concentrations of PF-477736 the survival of the cell lines appeared to diverge, with 

400 nM PF-477736 giving survivals in a range from 5% (CaSki) to 36% (ME-180).  

 

 

Figure 4.9 Single agent cytotoxicity of PF-477736 in the cervical cancer cell line panel. 

A: The Survival of six cervical cancer cell lines at increasing concentrations of PF-477736. Cells 
were exposed to PF-477736 at concentrations of 100 nM to 800 nM in growth media for 24 
hours. Following exposure, cells were incubated in fresh full growth media for at least five 
doubling times prior to fixation and staining. Survival is given as a percentage relative to the 
survival in a DMSO only control. Data are the means ± SEM for three independent 
experiments.  B: LC50 values for PF-477736 in six cervical cancer cell lines. The calculated 
mean value for the concentration of PF-477736 required to achieve a 50% reduction in 
survival compared to a DMSO control for each of the cervical cancer cell lines, along with the 
individual values for three independent experiments are shown. 50% survival was reached in 
one out of three experiments with SiHa cells.  
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4.5.3 WEE1 inhibitor single agent cytotoxicity: ML-1775 

The single agent cytotoxicity of MK-1775 at concentrations of 50 nM to 1.6 µM was 

determined. The cell lines showed a variation in survival across the concentration range with 

some clustering of LC50 values (Figure 4.10). Four out of the six cell lines showed MK-1775 

LC50 values in a narrow range of between 250 nM (C33A) and 300 nM (CaSki). ME-180 

showed a slightly higher LC50 of 400 nM and the value for HT-3 cells was substantially higher 

at 720 nM.  

 

As with experiments using PF-477736, divergence of survival between the cell lines was seen 

at higher concentrations of MK-1775. At 800 nM MK-1775 the difference in survival between 

the least and most sensitive was greater than 20-fold, with Hela survival being 2% and HT-3 

survival being 46%.  

 

 

Figure 4.10 Single agent cytotoxicity of MK-1775 in the cervical cancer cell line panel. 

A: The Survival of six cervical cancer cell lines at increasing concentrations of MK-1775. Cells 
were exposed to MK-1775 at concentrations of 100 nM to 1.6 µM in growth media for 24 
hours. Following exposure, cells were incubated in fresh full growth media for at least five 
doubling times prior to fixation and staining. Survival is given as a percentage relative to the 
survival in a DMSO only control. Data are the means ± SEM for three independent 
experiments. B: LC50 values for MK-1775 in six cervical cancer cell lines. The calculated mean 
value for the concentration of MK-1775 required to achieve a 50% reduction in survival 
compared to a DMSO control for each of the cervical cancer cell lines, along with the 
individual values for three independent experiments are shown.  
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The results of the single agent cytotoxicity assays are summarised by the inhibitor LC50 

values obtained as given in Table 4.1. Notable results include that SiHa cells were the most 

resistant to the cytotoxic effects of VE-821, despite being the cell line which showed the 

most overall inhibition of ATR at 1 µM. HT-3 cells were the most resistant to the cytotoxic 

effects of both PF-477736 and MK-1775 but showed average inhibition of CHK1 and WEE1, 

respectively at the concentrations tested. ME-180 cells were amongst the two most resistant 

cell lines for all of the inhibitors and whilst this cell line showed the greatest inhibition of 

WEE1 by MK-1775, it also showed the least inhibition of ATR by VE-821. The single agent 

cytotoxicity results are unlikely to be explained by the extent of inhibition of the target 

kinases alone and point to a much more complex interplay of factors that determine 

sensitivity to these drugs. 

 

 

Table 4.1 LC50 values for each VE-821, PF-477736 and MK-1775 in all six cervical cancer 

cell lines. 

The mean ± Standard error of the mean for three independent experiments is given 
(*indicates that survival fell to 50% in one-out of three experiments with this cells line and 
drug). 
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4.6 Correlations between cell line characteristics, target inhibition and single 

agent cytotoxicity. 

Correlation analyses were performed to investigate relationships between the cell line 

characteristics, described in Chapter 3, and the activity of the inhibitors determined in this 

chapter.  

 

4.6.1 Correlations between enzyme inhibition and single agent cytotoxicity 

It would be expected that some relationship should exist between the activity of the 

inhibitor against its target enzyme and the relative cytotoxicity of that inhibitor to the cancer 

cell. However, no correlation was observed between the cytotoxicity (LC50) and target 

inhibition at a fixed concentration for any of the three inhibitors (Figure 4.11). When an 

alternative measure of cytotoxicity (colony survival at a fixed concentration of inhibitor) is 

used in order to avoid the clustering of LC50 values seen with all inhibitors, neither is there a 

relationship observed between cytotoxicity and target enzyme inhibition for any of the three 

inhibitors (Figure 4.12). 

 

Figure 4.11 Scatter plots of target enzyme % inhibition vs cytotoxicity (LC50). 

 Inhibition is given as the % inhibition at a fixed concentration of inhibitor drug (1 µM VE-821, 
50 nM PF-477736 and 100 nM MK-1775). Cytotoxicity is given as the inhibitor specific 
concentration at 50% colony survival (LC50). 
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Figure 4.12 Scatter plots of target enzyme % inhibition vs cytotoxicity (% colony survival 
at fixed inhibitor concentrations). 

 Inhibition is given as the % inhibition at a fixed concentration of inhibitor drug (1 µM VE-821, 
50 nM PF-477736 and 100 nM MK-1775) as determined in experiments described in chapter 
4.4). Cytotoxicity is given as % colony survival at a fixed concentration of inhibitor drug (10 
µM VE-821, 400 nM PF-477736 and 800 nM MK-1775) as determined in colony formation 
assays. 
 

 

Given the lack of correlation between target enzyme inhibition and the LC50, the % enzyme 

inhibition was compared to the % inhibition of colony survival at the concentrations used for 

the enzyme activation/ inhibition assays. This showed that at the specific concentrations 

used for each enzyme (1µM VE-821, 50 nM PF-477736 and 100 nM MK-1775) greater than 

50% enzyme inhibition and less than 30% inhibition of colony survival was seen for the 

majority of cell line-inhibitor combinations, though ME-180 cells were particularly sensitive 

to VE-821 and CaSki cells were particularly sensitive to PF-477736 (Table 4.2). These 

concentrations of inhibitors, therefore gave a pragmatic balance between adequate enzyme 

inhibition without excessive single agent cytotoxicity for investigating the relative potential 

of the three inhibitors as sensitisers of cisplatin and ionising radiation.  
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Table 4.2 Concentration specific target enzyme inhibition and inhibition of colony 

survival for the cervical cancer cell lines using 1 µM VE-821, 50 nM PF-477736 and 100 

nM MK-1775. 

Enzyme inhibition data is derived from that given in section 4.4 and is data derived from at 
least 2 independent experiments. For colony survival data Mean ±  SEM is given from at least 
three independent experiments. *Data for colony survival at 50 nM PF-477736 is interpolated 
from the survival curves.  
 

 

4.6.2 Correlations with baseline protein expressions 

Single agent cytotoxicity 

There was no relationship between the cytotoxicity (LC50) of VE-821, PF-477736 or MK-1775 

and the expressions of the kinases targeted by them in this cell line panel. Neither was there 

any significant correlation between the expression of the key DDR proteins ATM, DNA-PKcs, 

Ku 70 or Ku 80 and the single agent cytotoxic effects of PF-477736 or MK-1775 (data not 

shown). However, ATM and DNA-PKcs did appear to show some relationship to VE-821 

cytotoxicity. Neither correlation significant was significant, but HT-3 cells had particularly low 

ATM and DNA-PKcs expression and were the most sensitive to VE-821 (Figure 4.13).  
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Figure 4.13 Scatter plots of ATM and DNA-PKcs expression vs single agent cytotoxicity. 

The expressions of ATM and DNA-PKcs proteins are shown as a ratio to loading control (α-
tubulin). Cytotoxicity is given as the inhibitor specific concentration at 50% colony survival in 
colony formation assays (LC50). 
 

Given the observed clustering of LC50 values, as described in chapter 4.5 and the apparent 

divergence of colony survival results at higher concentrations of PF-477736 and MK-1775, 

further correlations were tested using colony survival at 400 nM PF-477736 and 800 nM MK-

1775 as the measure of cytotoxicity. There was however, no relationship seen between this 

measure of single agent cytotoxicity and baseline protein expressions using these values 

(data not shown). 

 

Target enzyme inhibition 

As IC50 values were calculable for just four of the six cervical cancer cell lines, correlations 

between the extent of inhibition at single inhibitor concentrations (1 µM VE-821, 50 nM PF-

477736 and 100 nM MK-1775) were tested for correlation with the baseline expression of 

the associated target enzyme. Potential relationships were observed between i) the baseline 

expression of ATR and the inhibition of ATR by VE-821, and ii) the baseline expression of 

WEE1 and the inhibition of WEE1 by MK-1775 (Figure 4.14). In both cases, higher baseline 

expression appeared to be associated with greater enzyme inhibition at the stated 

concentrations. Neither relationship reached significance on Pearson correlation testing, 

which may be due to the small number of data points. Additionally, the correlation between 
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WEE1 expression and inhibition by MK-1775, does appear to be driven by ME-180, which 

appears as an outlier in both expression and inhibition datasets.  

 
Figure 4.14 Correlations between inhibitor % target enzyme inhibition and baseline 
expressions of G2/M cell cycle checkpoint kinases. Scatter plots of the % inhibition of ATR, 
CHK1 and WEE1 at fixed concentrations vs the baseline expressions of the target enzyme for 
inhibition and the immediate downstream kinase or phosphorylation target.  The expression 
of ATR, CHK1 and WEE1 are shown as a ratio to loading control (α-tubulin).  
 

In summary, correlation analysis has revealed potential relationships between results 

described in this chapter and baseline characteristics of the cell lines explored in chapter 3. 

While there were no relationships seen between the target enzyme inhibition and single 

agent cytotoxicity of the ATR, CHK1 and WEE1 inhibitors, some degree of correlation was 

noted to exist between baseline expression of ATR and the extent of its inhibition by VE-821, 

and between baseline expression of WEE1 and its inhibition by MK-1775. Additionally, 

possible positive correlations were observed between VE-821 cytotoxicity and both ATM and 

DNA-PKcs baseline expression. Further correlation analysis between cell growth (doubling 

time) and the single agent cytotoxicity of all three inhibitors revealed no relationship (data 

not shown). 

 

4.7 Discussion 

Consistent, concentration dependent inhibition of ATR and CHK1 was observed when HeLa, 

SiHa, C33A and CaSki cells were exposed to increasing concentrations of VE-821 and PF-

477736, respectively with IC50 and values falling within narrow ranges. Inhibition of WEE1 by 

MK-1775 showed a greater variation in these initial assays and with a wider range of MK-

1775 IC50 values. Expanding the inhibition assays at a fixed concentration of inhibitors to all 
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six cell lines and controlling for background revealed high levels of constitutive pCDK1Y15 . 

This resulted in comparatively small increases in CDK1 phosphorylation in response to WEE1 

activation by cisplatin and hence a smaller dynamic range from which to measure inhibition 

by MK-1775.  When the baseline levels of target phosphorylation were controlled for, 

consistent inhibition levels of > 50% were seen in all cell-inhibitor combinations except that 

with ME-180 cells and the ATR inhibitor VE-821. 

 

The presence of high levels of pCDK1Y15 in untreated cells could suggest a high level of WEE1 

activity. However, WEE1 activity promoted by high levels of replication stress would likely 

occur along with high levels of ATR and CHK1 activity in untreated cells, which was not seen, 

making an alternative explanation more likely. Phosphorylated CDK1 may exist in low levels 

of replications stress as phosphorylation of CDK1 at Y15 is not solely dependent on WEE1 

activity. Cdc25c (whose function is also dependent on CHK1 phosphorylation) also influences 

the phosphorylated state of CDK1 (Sorensen and Syljuasen, 2012). CDK1 also interacts with 

and is phosphorylated by a number of other important kinases that are not involved in the 

DNA damage response. One such kinase is Myelin transcription factor 1 (MYT1), which is 

implicated in the G2/M checkpoint response (de Gooijer et al., 2017, Chow and Poon, 2013). 

MYT1 phosphorylates CDK1 at tyrosine 15 (Y15) as well as at tyrosine 14 (Y14) (Welburn et 

al., 2007, Chow and Poon, 2013),and the antibody used may not discriminate between these 

residues. 

 

Overall, there was little consistency in the profile of cytotoxicity amongst the six cervical 

cancer cell lines across the three inhibitors used, however, a number of results are worthy of 

further discussion. ME-180 cells appeared amongst the most resistant to the cytotoxic 

effects of all three inhibitors. This was in keeping with the observation that these cells also 

expressed the highest levels of ATM: ATM having been previously described as a 

determinant of sensitivity to ATR inhibition (Kwok et al., 2016, Middleton et al., 2015). 

Consistent with this was the finding that the HPV-negative and RB1/TP53 mutated cell line 

HT-3 was amongst the most sensitive to the ATR inhibitor and expressed the least ATM in 

baseline expression assays (Chapter 3). HT3 cells were, however the least sensitive to both 

the CHK1 inhibitor and the WEE1 inhibitor.  
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This difference in the response of the HT-3 cells to the cytotoxic effects of ATR inhibition 

versus CHK1 or WEE1 inhibition, despite similar levels of target enzyme inhibition across the 

three inhibitors, points at subtle differences in the roles of the kinases in the DDR and 

confirms that the ATR-CHK1-WEE1 pathway does not exist or act in isolation from other 

responses to DNA damage. The cells response to the inhibitors was also not solely 

dependent on the extent of enzymatic inhibition at a given concentration. This is further 

confirmed by the observation that whilst SiHa cells were the most resistant to VE-821 

cytotoxicity, they showed the greatest extent of inhibition of ATR at the concentration 

tested (Table. 4.2). 

  

Depletion of the human Ku proteins or upregulation of DNA-PKcs has previously been shown 

confer sensitivity to ATR and CHK1 inhibition (Middleton et al., 2015, Massey et al., 2016). 

No clear relationship was observed between the levels of expression of Ku70 or Ku80 and 

the cytotoxicity of the inhibitors in the cell line panel. However, in contrast to this evidence 

the cervical cancer cells with low DNA-PKcs expression reported here were more sensitive to 

ATR inhibitor cytotoxicity, though this should be interpreted with caution the non-significant 

nature of the correlation.  

 

4.8 Conclusions 

With reference to the aims and objectives set out at the start of this chapter: 

• ATR, CHK1 and WEE1 were inhibited in a concentration dependent manner by VE-821, 

PF-477736 and MK-1775, respectively. When the background activity or baseline 

phosphorylation of the downstream target kinase was controlled for, enzyme inhibitions fell 

within a consistent range, with similar potencies across the cell line panel.  

• The cervical cancer cell lines had a variable response to the cytotoxic effects of the ATR, 

CHK1 and WEE1 inhibitors that was not dependent of the extent of target inhibition or the 

baseline level of checkpoint kinase expression. 

• The cytotoxic effects of the ATR inhibitor VE-821 may be related to the baseline 

expression levels of both ATM and DNA-PKcs, though it is difficult to draw conclusions in this 

small cell line panel. VE-821 cytotoxicity did not appear to be related to expression of any of 

the other proteins measured 
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• CHK1 and WEE1 inhibition by PF-477736 and MK-1775, respectively did not show any 

correlation with baseline DDR proteins measured. 

Experiments reported in this chapter allowed the determination of suitable fixed 

concentrations of VE-821, PF-477736 and MK-1775 to use in cytotoxicity assays in 

combination with cisplatin and IR (1 µM VE-821, 50 nM PF-477736 and 100 nM MK-1775). 

These concentrations, in general, resulted in greater than 50% target enzyme inhibition 

while causing less than 30% inhibition of colony survival as single agents (Table 4.2). 



 

 101 

5 Sensitisation of cervical cancer cell lines to cisplatin and 

ionising radiation using inhibitors of ATR, CHK1 and WEE1 

 

5.1 Introduction 

Results of experiments detailed in the previous chapter identified a spectrum of sensitivity 

to ATR, CHK1 and WEE1 inhibitor single agent cytotoxicity with no obvious consistency in the 

rank order of sensitivity or relationship with target inhibition or DDR protein expression. 

Western blot analysis provided confidence that substantial target enzyme inhibition was 

achieved at inhibitor concentrations that showed modest single agent cytotoxic effects.  

 

The overall aim of this thesis was to determine the potential of inhibitors of the intra-S and 

G2/M cell cycle checkpoint kinases to improve cervical cancer treatment and to understand 

the underlying biological mechanisms that may underlie such improvements. The standard 

of care treatments for cervical cancer are cisplatin and ionising radiation (IR) used alone or in 

combinations as described in Chapter 1. The aim of this chapter was to compare the extent 

to which the inhibitors enhance the cytotoxicity of IR and cisplatin and to determine if this 

ability was related to any of the parameters measured in chapters 3 and 4. 

 

Cisplatin and IR produce different DNA lesions that are repaired by different DNA repair 

pathways (Chapter 1). Both agents, however result in the key ATR-CHK1 activating single-

strand-double-strand junctions (Hoeijmakers, 2001) and, more importantly lead to the 

presence of collapsed replication forks (Paulsen and Cimprich, 2007, Nam and Cortez, 2011). 

It would therefore be expected that both insults will invoke a strong ATR-CHK1-WEE1 

pathway induction response that would be amenable to inhibition by inhibitors of these 

enzymes. In respect of cisplatin, this is shown in results described in Chapter 4 and the 

activation of this pathway by IR is established through investigations into inhibition of this 

pathway in radio-resistant breast cancer tissue (Zhang et al., 2016) and recently in studies 

involving human squamous cancers (HNSCC) (Dillon et al., 2017). The rationale for ATR, CHK1 

and WEE1 inhibitor combinations as a strategy in cervical cancer treatment is therefore 

strong and ATR, CHK1 or WEE1 knockdown or pharmacological inhibition has been reported 
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to sensitise human cancer cells and xenografts to cisplatin and IR, as reviewed in Chapter 

1.5.  

 

Single agent cytotoxicity did not reflect the extent of target inhibition across the cell line 

panel and there are limitations in estimating this inhibition by Western blot. For these 

reasons a fixed concentration of each of the inhibitors, rather that concentrations that 

caused a defined level of target inhibition, was used to study the chemo- and radio-

sensitisation. Concentrations were selected that showed good inhibition of the target 

enzyme as detailed in Table 4.2.  

 

5.2 Aims and Objectives 

The aims of the investigations described in this chapter were: 

1. To determine the relative sensitivity of the six cervical cancer cell lines to cisplatin and 

ionising radiation (IR). 

2.  To determine the relative potential of the ATR, CHK1 and WEE 1 inhibitors: VE-821, PF-

477736 and MK-1775, respectively to sensitise cervical cancer cell lines to cisplatin and 

ionising radiation. 

 

This will enable the following hypotheses to be tested: 

1. Sensitisation of cell lines to cisplatin by ATR, CHK1 or WEE1 inhibitors will be dependent 

on the intrinsic sensitivity of the cell lines to cisplatin. 

2. Sensitisation of cell lines to IR by ATR, CHK1 or WEE1 inhibitors will be dependent on the 

intrinsic sensitivity of the cell lines to IR. 

3. Sensitisation of cell lines to cisplatin or IR will depend on the single agent cytotoxicity in 

of the inhibitor. 

 

5.3 Materials and methods 

5.3.1 Colony formation assays with cisplatin and ionising radiation 

Exponentially growing cells were seeded at known densities in 6 well plates and exposed to 

increasing concentrations of cisplatin or increasing doses of ionising radiation (IR) in order to 
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assess the cell lines’ intrinsic sensitivity to cisplatin and IR. Exposure to cisplatin was for 24 

hours in all cases. Following exposure to cisplatin, the growth media was changed to fresh 

full media and the cells were incubated for at least five doubling times as described in 

Chapter 2.5.1. For IR sensitivity and sensitisation assays, the IR dose was delivered in a single 

fraction using a D3300 X-ray system (Gulmay Medical Ltd. Chertsey, UK). For IR-only assays, 

the growth media was not changed prior to incubation for five doublings. For IR + inhibitor 

assays, the growth media was changed to fresh full media following 24-hour drug exposure 

as described in Chapter 2.5.4. 

 

The results of these assays were used to determine suitable concentration and dose ranges 

for sensitisation experiments using fixed concentration ATR, CHK1 and WEE1 inhibitors in 

the cell lines. Colony formation assays assessing the sensitisation of the cell lines to cisplatin 

and IR were carried out as described in Chapter 2.5.3 and Chapter 2.5.4. In all sensitisation 

assays, fixed concentrations of inhibitor drug were used, as described in Chapter 5.1, above. 

These were 1 µM VE821, 50 nM PF-477736 and 100 nM MK-1775. 

 

5.4 Results 

5.4.1 Cell line sensitivity to cisplatin and ionising radiation alone 

Sensitivity to cisplatin 

The six cervical cancer cell lines showed a range of sensitivity to cisplatin. There was just 

over a two-fold difference in Cisplatin LC50 values between the least sensitive cell line (HeLa) 

and the most sensitive (SiHa), as shown in Table 5.1. There was no clear relationship 

between cisplatin cytotoxicity and cell line HPV, p53 or pRB status: the HPV negative and p53 

mutated cell lines C33A and HT-3 showed average sensitivity to cisplatin across the 

concentration range used (Figure 5.1).  Nor was there any relationship seen between 

cisplatin cytotoxicity and baseline expression of any of the cell cycle or DDR proteins 

measured, as described in Chapter 3 (data not shown).  

 

Potential relationships were found between cisplatin cytotoxicity and cisplatin mediated 

activation of both ATR and CHK1 (Figure 5.2). Cisplatin induced ATR, CHK1 and WEE1 activity 

to differing extents across the cell lines (Chapter 4). Activation of ATR and CHK1 was greatest 
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in HeLa cells, which showed the least sensitivity to cisplatin. SiHa cells, which were the most 

sensitive to cisplatin cytotoxicity had amongst the lowest ATR activation and CHK1 

activation. Though Pearson correlation analysis suggested a significant correlation in the 

case of ATR, the clustering of ATR activation and cisplatin LC50 and the likely heavy reliance 

of the outlying HeLa result for both parameters indicates that whilst extremes may fit the 

hypothesis that cisplatin sensitivity is related to ATR/CHK1 activity, it is not possible to 

determine if there is a true correlation with such a small panel of cells. There was no 

relationship found between cisplatin activation of WEE1 and cisplatin cytotoxicity. 

 

  

 

Figure 5.1 Cisplatin cytotoxicity in the cervical cell line panel. 

A: The survival of six cervical cancer cell lines at increasing concentrations of cisplatin. Cells 
were exposed to cisplatin at concentrations of 0.03 µM to 3 µM in growth media for 24 
hours. Following exposure, cells were incubated in fresh growth media for at least five 
doubling times prior to fixation and staining. B: LC50 values for cisplatin in the cervical cancer 
cell lines. The calculated mean cisplatin concentration required to cause 50% reduction in 
survival compared to control, along with the individual values for three individual 
experiments are given. Data are from three individual experiments and normalised to 
control. 
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Figure 5.2 Correlations between cisplatin cytotoxicity and relative activation of target 

enzymes by cisplatin in cervical cancer cell lines. 

Scatter plots of the concentration of cisplatin alone required to reduce colony survival to 50% 
compared to an untreated control vs the fold-activation over baseline of each of the 
enzymes: ATR, CHK1 and WEE1 in response to exposure to cisplatin, as determined in 
experiments described in chapter 4. All values correspond to the means of at least two 
independent experiments.  
 

 

Sensitivity to IR 

Similar to that found with cisplatin, there was some variation in the sensitivity of the cell 

lines to IR, but over a fairly narrow range (Figure 5.3). There was a just under two-fold 

difference between the dose of IR required to reduce colony survival by 50% compared to 

control (IR LD50) between the most sensitive (C33A: 1.3 Gy) and the least sensitive (HeLa: 2.5 

Gy). The four remaining cell lines all had LD50 values of between 1.5 Gy and 1.8 Gy. The order 

of sensitivity of the cell line panel was not similar for cisplatin and IR, though ME-180 and 

HT-3 cells were amongst the three most sensitive cell lines and HeLa was the least sensitive 

in each case. The sensitivity of the cell lines to IR did not appear related to HPV, p53 or pRB 

status. 
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Figure 5.3 Ionising radiation cytotoxicity in the cervical cell line panel. 

A: The survival of six cervical cancer cell lines at increasing doses of cisplatin. Cells in full 
growth media were exposed to IR at doses of 2 Gy to 6 Gy. Following exposure, cells were 
incubated for at least five doubling times prior to fixation and staining. Survival is given as a 
percentage relative to the survival of untreated cells. B: LD50 values for IR in the cervical 
cancer cell lines. The calculated mean IR dose required to cause 50% reduction in survival 
compared to control, along with the individual values for three individual experiments are 
given. Data are from three individual experiments and normalised to control. 
 

 

Considering the relative similarity of the IR LD50 values and the impact that this could have in 

determining trends, an alternative measure of IR cytotoxicity: colony survival following 

exposure to a fixed dose of IR (4 Gy) was used to compare cytotoxicity with baseline 

expression of the cell cycle kinases and DRR proteins. When this alternative measure of 

cytotoxicity was used, potential relationships between IR cytotoxicity and both ATR and 

CHK1 expression were seen (Figure 5.4).  
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Figure 5.4 Correlations IR cytotoxicity and baseline expression of target enzymes 

cervical cancer cell lines. 

Scatter plots of the % colony survival following exposure to 4 Gy IR vs baseline expression of 
the enzymes: ATR, CHK1 and WEE1, as determined in experiments described in chapter 3. All 
values correspond to the means of three independent experiments.  
 

5.4.2 Sensitisation of cell lines to cisplatin by ATR, CHK1 and WEE1 inhibitors 

The cytotoxicity of increasing concentrations of cisplatin ± a fixed concentration of inhibitor 

drug was investigated. In addition to the survival curves, results for the sensitisation of cells 

to cisplatin by the inhibitors are given as potentiation factors (PF). PF50 is the ratio of LC50 in 

the absence or presence of the inhibitor.  PF0.3-cis is the ratio between survival at a fixed 

cisplatin concentration of 0.3 µM in the absence and presence of the inhibitor drug. 

 

VE-821 

VE-821 (1 µM) caused variable sensitisation to cisplatin cytotoxicity in the six cervical cancer 

cell lines. When survival curves for cisplatin ± inhibitor (Figure 5.5) were compared using 

two-way ANOVA, a significant potentiation of cisplatin across the range of concentrations 

was confirmed in four of the cell lines: HeLa; SiHa; C33A; and ME-180. The largest magnitude 

of potentiation was seen in C33A cells (PF50 = 5.9) and the smallest in CaSki cells (PF50 = 1.8) 

and SiHa cells (PF50 = 1.8). At higher concentrations the order of sensitisation appeared to 

change. The potentiation factor at 0.3 µM cisplatin was largest in ME-180 cells  

(PF0.3-cis = 12.7) and lowest in CaSki (PF0.3-cis =1.2) (Table 5.1).  

  

When either measure of sensitisation to cisplatin is used, there was no relationship between 

sensitisation by VE-821 and expression of baseline proteins across the cell line panel. VE-821 
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caused the least sensitisation to cisplatin in SiHa cells and the greatest in ME-180 cells. This 

appears at odds with the observation that SiHa showed the greatest inhibition of ATR by the 

same concentration of VE-821 and ME-180 the least. When the other cell lines are included, 

there was no relationship between either ATR activation by cisplatin or its inhibition by VE-

821 and VE-821 mediated sensitisation of the cell lines to cisplatin cytotoxicity. Neither is the 

extent of sensitisation to cisplatin by VE-821 predicted by single agent VE-821 cytotoxicity or 

cisplatin cytotoxicity. 

 

Figure 5.5 Colony survival of cervical cancer cell lines exposed to cisplatin ± VE-821. 

Cells were exposed to cisplatin at concentrations of 0.03 µM to 3 µM ± 1 µM VE-821 in 
growth media for 24 hours. Following exposure, cells were incubated in fresh growth media 
for at least five doubling times prior to fixation and staining. Data are the means and SEM 
from three independent experiments. Survival is normalised to vehicle (DMSO) or VE-821 
alone. 
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Table 5.1 Sensitisation of cervical cancer cell lines to cisplatin by VE-821.   

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 1 µM VE-821. PFcis 0.3 (Potentiation Factor at 0.3µM cisplatin) is 
the factor by which % colony survival at 0.3µM cisplatin is reduced vs control by 1 µM VE-
821. The differences between the mean LC50/LC0.3-cis  ±  inhibitor was compared using a paired 
t-test.* = p < 0.05, ** = p < 0.005 

 

PF-477736 

Sensitisation of the cell lines to cisplatin by 50 nM PF-477736 was less than that seen for 1 

µM VE-821 (Figure 5.6), despite the observation that 50 nM PF-477736 inhibited CHK1 more 

than 1 µM VE-821 inhibited ATR across the cell line panel (Chapter 4.4). ME-180 cells again 

showed the greatest sensitisation by PF-477736 (PF50 = 2.5; PF0.3-cis = 1.8). PF-477736 did not 

sensitise HeLa cells to cisplatin. 

 

Analysis of the sensitisation effects of 50 nM PF477736 on cisplatin cytotoxicity in the 

individual cell lines were mixed. Comparison of the survival curves ± inhibitor by two-way 

ANOVA suggested a significant sensitisation was seen in HT-3 cells, however this was likely to 

be due to the results at low cisplatin concentrations and the curves appear to converge at 

higher concentrations. Differences in the ME-180 survival curves approached significance 

but neither the difference between LC50 or LC0.3-cis with and without inhibitor were significant 

on paired t-testing (Table 5.2).  
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There were no significant correlations found between PF-477736 sensitisation to cisplatin 

and PF-477736 single agent cytotoxicity. Despite the greatest activation of CHK1 by cisplatin 

in HeLa cells, the strong inhibition of CHK1 by PF-477736 and and the resistance of this cell 

line to cisplatin, PF-477736 did not enhance cisplatin cytotoxicity in HeLa cells. Across the 

cell line panel, sensitisation of cisplatin was not related to CHK1 activation by cisplatin or 

extent of inhibition of CHK1 by PF-477736 as measured in Chapter 4.4.3. In contrast to HeLa 

cells, ME-180 cells were most sensitive to cisplatin and were sensitised the most to cisplatin 

by PF-477736, though there was no relationship between cisplatin cytotoxicity and PF-

477736 sensitisation across the panel. 

 

Figure 5.6 Colony survival of cervical cancer cell lines exposed to cisplatin ± PF-477736. 

Cells were exposed to cisplatin at concentrations of 0.03 µM to 3 µM ± 50 nM PF-477736 in 
growth media for 24 hours. Following exposure, cells were incubated in fresh growth media 
for at least five doubling times prior to fixation and staining. Data are the means and SEM 
from three independent experiments. Survival is normalised to vehicle (DMSO) or PF-477736 
alone. 
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Table 5.2 Sensitisation of cervical cancer cell lines to cisplatin by PF-477736.   

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 50 nM PF-477736. PF0.3-cis (Potentiation Factor at 0.3µM cisplatin) 
is the factor by which % colony survival at 0.3µM cisplatin is reduced vs control by 50 nM PF-
477736. The differences between the mean LC50/LC0.3-cis  ±  inhibitor was compared using a 
paired t-test. 

 

 

MK-1775 

There was a much smaller spectrum of potentiation of cisplatin by MK-1775 than by VE-821 

or PF-477736 at the concentrations used (Figure 5.7).  Comparison of the survival curves 

with and without inhibitor by two-way ANOVA revealed no significant differences. 

Consistent with results for VE-821 and PF-477736, ME-180 showed the greatest potentiation 

using both PF50 and PF0.3-cis but paired t-testing of the differences between the means used 

to calculate these values again showed no significant differences (Table 5.3).  
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Figure 5.7 Colony survival of cervical cancer cell lines exposed to cisplatin ±  MK-1775. 

Cells were exposed to cisplatin at concentrations of 0.03 µM to 3 µM ±  100 nM MK-1775 in 
growth media for 24 hours. Following exposure, cells were incubated in fresh growth media 
for at least five doubling times prior to fixation and staining. Data are the means and SEM 
from three independent experiments. Survival is normalised to vehicle (DMSO) or MK-1775 
alone. 
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Table 5.3 Sensitisation of cervical cancer cell lines to cisplatin by MK-1774.   

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 100 nM MK-1775. PFcis 0.3 (Potentiation Factor at 0.3µM cisplatin) 
is the factor by which % colony survival at 0.3µM cisplatin is reduced vs control by 100 nM 
MK-1775. The differences between the mean LC50/LC0.3-cis  ±  inhibitor was compared using a 
paired t-test. 
 

 

Whilst MK-1775 was more cytotoxic as a single agent to both HT-3 and ME-180 cells than in 

the other cell lines, MK-1775 only sensitised ME-180 cells and there was no trend for the 

sensitisation by MK-1775 across the panel. Neither was sensitisation predicted by sensitivity 

to cisplatin alone. Despite the narrow spectrum of sensitisation to cisplatin by MK-1775 and 

the lack of statistical significance in the differences in survival, a significant correlation was 

found between the sensitisation of cells to cisplatin by MK-1775 and baseline WEE1 

expression. This was observed when either measure of sensitisation was used (Figure 5.9). 

These results should be treated with caution due to the very small effects observed and the 

size of the panel, but it may be worth following up in a larger study. No relationship was 

seen between sensitisation and expression of any of the other proteins measured in Chapter 

3 or the values for activation or inhibition of WEE1 determined in Chapter 4.  
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Figure 5.8 Correlations between cell line sensitisation to cisplatin by MK-1775 and 

baseline expression of WEE1 in cervical cancer cell lines. 

Scatter plots of the calculated PF50 and PFcis. 0.3 values for MK-1775 sensitisation to cisplatin 
vs WEE1 expression as determined in experiments in chapter 3. All values are the mean of 
three individual experiments. 
 

 

5.4.3 Sensitisation of cell lines to IR by inhibitors of ATR, CHK1 and WEE1 

The cytotoxicity of increasing concentrations of IR ± a fixed concentration of inhibitor drug 

was investigated using the same fixed concentrations of individual inhibitors as above. In 

addition to the survival curves, PF50 and PF2-IR were calculated, as above. PF2-IR is the ratio 

between survival at a clinically relevant fixed IR dose of 2 Gy in the absence and presence of 

the inhibitor drug. 2 Gy IR is a standard fractional dose for clinical radiotherapy and gives a 

similar range of colony survival across the cell line panel as 0.3 µM cisplatin used for the 

calculation of PF0.3-cis. 
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VE-821 

VE-821 radio-sensitised HeLa cells and ME-180 cells the most (Figure 5.9, Table 5.4) and HT-3 

cells were radio-sensitised the least. Comparison of the survival curves with and without 

inhibitor by two-way ANOVA revealed significant potentiation for HeLa and ME-180 cells. 

Significant potentiation of IR cytotoxicity was also seen in HT-3 cells but the magnitude of 

the effect was much smaller. Paired t-test of the difference in mean LD2-IR revealed a 

significant difference in HeLa cells and CaSki cells only (Table 5.4).  

 

HeLa cells were the most radio-resistant and had amongst the greatest sensitisation to IR by 

VE-821 (at the LD50) whilst C33A cells were the most radio-sensitive and were amongst the 

least sensitised by VE-821 at the LD50 and at 4 Gy. VE-821 radio-sensitisation (PF50) was 

correlated with radio-resistance across the cell line panel (Figure 5.10).  

 

Sensitisation of cell lines to IR by VE-821 was not predicted by single agent VE-821 

cytotoxicity or the extent of inhibition of ATR by VE-821 calculated in experiments in Chapter 

3. VE-821 sensitisation of cell lines to IR did not correlate with cell line doubling time, HPV or 

p53/pRB status or baseline expression of the proteins measured in Chapter 3 (data not 

shown).  
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Figure 5.9 Colony survival of cervical cancer cell lines exposed to IR ± VE-821. 

Cells were exposed to 2 Gy to 6 Gy IR ±  immediate 24-hour culture with 1 µM VE-821. After 
24 hours, cells were incubated in fresh growth media for at least five doubling times prior to 
fixation and staining. Data are the means and SEM from three independent experiments. 
Survival is normalised to vehicle (DMSO) or VE-821 alone. 
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Table 5.4 Sensitisation of cervical cancer cell lines to IR by VE-821.   

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 1 µM VE-821. PF2-IR (Potentiation Factor at 2 Gy IR) is the factor by 
which % colony survival at 2 Gy IR is reduced vs control by 1 µM VE-821. The differences 
between the mean LD50/LD2-IR ±  inhibitor was compared using a paired t-test. * = p < 0.05, 
 

 

  

Figure 5.10 Correlations between sensitisation to IR by VE-821 and sensitivity to IR 

alone. 

Scatter plots of calculated VE-821 PF50 values vs two measures of IR sensitivity: calculated IR 
dose resulting in 50% colony survival (LD50); and measured survival at 4 Gy IR alone. All 
values are means of three independent experiments. 
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PF-477736 

Radio-sensitisation by PF-477736 was much more modest than that observed with VE-821 or 

cisplatin sensitisation by PF-477736 (Figure 5.11). Whilst it appeared that again, HeLa and 

ME-180 cells show the greatest sensitisation and HT-3 the least, there was no significant 

difference found between the colony survival ± PF-477736. Unsurprisingly, given the very 

modest potentiation at both 50% colony survival and at 2 Gy IR (Table 5.5), no significant 

correlations were observed between any of the cell line characteristics, determined in 

experiments from Chapter 3, or the cytotoxicity of IR or PF-477736 alone (Chapter 4 and 

section 5.4.1, above: data not shown).  

 

 

Table 5.5 Sensitisation of cervical cancer cell lines to IR by PF-477736.   

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 50 nM PF-477736. PF2 Gy IR (Potentiation Factor at 2 Gy IR) is the 
factor by which % colony survival at 2 Gy IR is reduced vs control by 50 nM PF-477736. The 
differences between the mean LD50/LD2-IR ±  inhibitor was compared using a paired t-test.  
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Figure 5.11 Colony survival of cervical cancer cell lines exposed to IR ± PF-477736. 

Cells were exposed to 2 Gy to 6 Gy IR ±  immediate 24-hour culture with 50 nM PF-477736. 
After 24 hours, cells were incubated in fresh growth media for at least five doubling times 
prior to fixation and staining. Data are the means and SEM from three independent 
experiments. Survival is normalised to vehicle (DMSO) or PF-477736 alone. 
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MK-1775 

MK-1775 was a poor radiosensitiser. There was no relationship seen between the 

sensitisation of cells to IR by MK-1775 and the cells’ intrinsic sensitivity to IR or MK-1775 

alone or the baseline expression of WEE1. Given the modest and non-significant radio-

sensitisation any correlations must be taken with caution, nevertheless, a significant 

correlation was seen with baseline expressions of ATR, CHK1, CDK1 and DNA-PKcs (Figure 

5.13). Cells with high expression of ATR and DNA-PKcs appeared to have greater sensitisation 

to IR by MK-1775. By contrast cells with high levels of either CHK1 or CDK1: the kinases 

directly upstream and downstream of WEE1, respectively at the G2/M cell cycle checkpoint, 

appeared to be less sensitised to IR by MK-15775. This may be a chance finding given the 

number of correlations investigated but is worthy of further investigation in other cell lines. 

 

 

Table 5.6 Sensitisation of cervical cancer cell lines to IR by MK-1775 

Two measures of sensitisation are given: PF50 (Potentiation Factor at 50% survival) is the 
factor by which the mean concentration of cisplatin causing 50% colony survival vs control is 
reduced in the presence of 100 nM MK-1775. PF2 Gy IR (Potentiation Factor at 2 Gy IR) is the 
factor by which % colony survival at 2 Gy IR is reduced vs control by 100 nM MK-1775. The 
differences between the mean LD50/LD2-IR ±  inhibitor was compared using a paired t-test. 
 



 

 121 

 

Figure 5.12 Colony survival of cervical cancer cell lines exposed to IR ± MK-1775. 

Cells were exposed to 2 Gy to 6 Gy IR ±  immediate 24-hour culture with 100 nM MK-1775. 
After 24 hours, cells were incubated in fresh growth media for at least five doubling times 
prior to fixation and staining. Data are the means and SEM from three independent 
experiments. Survival is normalised to vehicle (DMSO) or PF-477736 alone. 
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Figure 5.13 Correlations between MK-1775 sensitisation of cell lines to cisplatin 

cytotoxicity and baseline expression of target enzymes in cervical cancer cell lines. 

Scatter plots of the calculated MK-1775 PF50 values for IR sensitisation vs baseline expression 
of the enzymes: CHK1, CDK1 and DNA-PKcs, as determined in experiments described in 
chapter 3. All values correspond to the means of three independent experiments. 
 

 

5.5 Discussion 

The aim of this chapter was to relate the chemo- and radio-sensitivity of the cervical cancer 

cell lines to their baseline characteristics determined in previous chapters and to compare 

how effectively VE-821, PF-477736 and MK-1775 sensitise cervical cancer cell lines to 

cisplatin and ionising radiation. ATR, CHK1 and WEE 1 knockdown utilising siRNA/shRNA 

techniques have previously been used in validating these kinases as targets for inhibition 

with the aim of sensitising cancer cells to the effects of DNA damaging agents and are 

reviewed in Chapter 1.5.1. Similar experiments have not been repeated in these 

investigations. Whilst this raises the possibility that some of the enhanced cytotoxicity seen 

in combination with cisplatin or IR may be the result of off-target effects of the inhibitors, 

the experiments in previous chapters provide reassurance that substantial inhibition of ATR, 
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CHK1 and WEE1 by their inhibitors is achieved at the drug concentrations used. Though the 

small number of cell lines included in the cell line panel is another limitation to the wider 

applicability of the results, this is the first time that a direct comparison of inhibitors of ATR, 

CHK1 and WEE1 has been made.   

 

Similar survival was seen for the cervical cancer cell lines over the range of cisplatin 

concentrations / IR exposures used to determine the cisplatin and radio-sensitivity of the cell 

line panel. The rank order of cytotoxicity for cisplatin and IR was not the same (Figure 5.14). 

Whilst no relationships were found between protein expressions and cisplatin sensitivity, 

potential determinants of sensitivity to IR were seen. Hela and SiHa cells had high ATR and 

low CHK1 expression and were the least sensitive to IR. C33A, CaSki, ME-180 and HT-3 all 

expressed low ATR and high CHK1, and were more sensitive to IR. Interestingly HeLa and 

SiHa also showed the highest DNA-PKcs expression and SiHa showed the highest ATM 

expression, though no correlation was found when the other cell lines were considered.  

 

ATM and DNA-PKcs are important in the detection of IR induced DSBs and their repair by 

NHEJ (Hoeijmakers, 2001) and NHEJ function has previously been reported as a determinant 

of sensitivity to IR (Mahaney et al., 2009). NHEJ is less important in the repair of cisplatin 

induced DNA damage (Hoeijmakers, 2001, Curtin, 2012). The differences in the rank order of 

sensitivity to cisplatin and IR and the presence of potential relationships between key NHEJ 

proteins and IR sensitivity, supports the hypothesis that the determinants of sensitivity to 

cisplatin and IR are different, owing to the different DNA repair pathways involved.  

 

Inhibition of ATR by VE-821 caused greater cisplatin and IR sensitisation than either CHK1 

inhibition by PF-477736 or WEE1 inhibition by MK-1775 at the concentrations used. This may 

suggest that ATR is a better target for inhibition than either CHK1 or WEE1, however the 

overall lower inhibition of WEE1 activity by 100 nM MK-1775 compared to ATR inhibition by 

1 µM VE-821 should be considered when making this direct comparison. The smaller 

magnitude of cisplatin and IR sensitisations caused by PF-477736 and MK-1775 precluded 

meaningful correlations with the cytotoxicity of either agent or with single agent inhibitor 

cytotoxicity. For VE-821 however, sensitisation of IR did appear to correlate with intrinsic IR 

sensitivity.  
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ME-180 and HeLa cells appeared to show the greatest sensitisation across all inhibitors. HT-3 

cells and C33A cells were consistently amongst the least sensitised to IR (Figure 5.14), 

notable due to the HPV negative and TP53-/RB1- mutant status of these cell lines. Beyond 

those features described above it was not possible to relate any of the molecular 

characteristics of the cells, determined as part of this study, to intrinsic chemo- or 

radiosensitivity or significant sensitisation by the inhibitors. This was largely because of the 

size of the panel, the spectrum of sensitivity and magnitude of the sensitisation.  
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Figure 5.14 Heatmaps showing the relative sensitisation of cervical cancer cell lines to 

cisplatin and IR by VE-821, PF-477736 and MK-1775. 

A: Cisplatin PF50 (potentiation factor at 50% survival) by cell line and inhibitor. B: Cisplatin 
PF0.3-cis (potentiation factor at 0.3 µM cisplatin) by cell line and inhibitor. C: IR PF50 by cell line 
and inhibitor. D: IR PF2-IR (potentiation factor at 2 Gy IR) by cell line and inhibitor. Data taken 
from Tables 5.1 to 5.6 and are derived from the mean potentiation factor from three 
independent experiments. 
 

 

MK-1775 radio-sensitisation, though not-significant for any cell, correlated with high ATR 

and DNA-PKcs expression (Chapter 3). DNA-PKcs overexpression was previously described as 
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a determinant of sensitivity to ATR and CHK1 inhibitors (Middleton et al., 2015, Massey et 

al., 2016), however, this relationship has not previously been noted with respect to WEE1, 

either as a single agent or as a sensitising agent for IR. The very narrow and non-significant 

range of sensitisation by this inhibitor, however limits confidence that a true correlation 

exists, though it may warrant evaluation in a larger panel of cell lines.  

 
 

5.6 Conclusions 

With reference to the aims and objectives set out at the start of this chapter: 

• The cervical cancer cell lines showed a range of sensitivity to cisplatin and IR. 

• VE-821 was a more potent sensitiser to both cisplatin and IR than PF-477736 or MK-

1775 at the concentrations used. 

• Overall sensitisation of the cell lines to cisplatin or to IR by the inhibitors was not 

dependent on intrinsic sensitivity to the either agent, though a potential correlation 

between VE-821 sensitisation to IR and IR cytotoxicity was noted.  

• Sensitisation of the cell lines to cisplatin or IR by VE-821, PF-477736 or MK-1775 was not 

dependent on the single agent cytotoxicity of the inhibitors. 
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6 Evaluation of cell cycle profile changes following cisplatin and 

inhibitor exposure. 

 

6.1 Introduction 

Experiments described in the previous chapters have demonstrated that in a panel of 

cervical cancer cell lines the spectrum of sensitivity to VE-821, PF-477736 and MK-1775 

induced cytotoxicity, or their sensitisation of cisplatin or IR, could not be explained by the 

extent of target inhibition (Table 4.2). Furthermore, no clear determinants of sensitivity to 

the inhibitors have been identified.  The mechanism of cisplatin sensitisation by ATR, CHK1 

and WEE1 inhibitors is hypothesised to be due to abrogation of S and G2/M checkpoint 

function in the presence of G1/S checkpoint deficiency (Chapter 1). 

 

ATR inhibition by VE-821 has been shown to reduce IR induced G2 arrest in a p53 

independent manner in paired cell lines (Middleton et al., 2018). Another ATR inhibitor 

AZD6738 has also been shown to successfully abrogate a cisplatin induced G2 arrest without 

causing significant cell cycle perturbations as a single agent at an equivalent concentration in 

NSCLC cells (Vendetti et al., 2015).  Whilst reports of the cell cycle effects of CHK1 

combinations with platinum agents are sparse. The CHK1 inhibitor AZD7762 was shown to 

abrogate the intra S and G2/M checkpoints, evidenced by loss of S/G2 arrest in 

neuroblastoma cells treated with the anti-mitotic agent, nocodazole or the topoisomerase 

inhibitor, SN38 (Xu et al., 2011). SN38 mediated G2 arrest was also shown to be abolished by 

co-incubation with the CHK1 inhibitor SCH900776 in breast cancer cell lines (Montano et al., 

2012). Likewise, the WEE1 inhibitor used in these experiments, MK-1775, has been reported 

to abolish G2 arrest in cisplatin treated p53-mutated ovarian cancer cells (Hirai et al., 2009). 

 

This chapter focuses on attempts to understand the underlying mechanisms that determine 

the differential cisplatin sensitisation observed across the cell line and inhibitor panel: with 

specific reference to changes in the cell cycle in response to treatment with cisplatin with 

and without ATR, CHK1 or WEE1 inhibitors. Cisplatin was used as the genotoxic agent in 

these experiments due to the larger magnitude and range of effects seen in previous 

chapters with this agent compared to IR.  
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6.2 Aims and objectives 

The aims of the investigations described in this chapter were: To determine the nature of 

cell cycle profile changes of the cervical cancer cell lines in response to cisplatin and 

inhibitors of ATR, CHK1 and WEE1 as single agents and in combination. 

 

This will enable the following hypotheses to be tested: 

1. Cisplatin will have similar effects on the cell cycle profiles of the cervical cancer cell 

lines, irrespective of HPV status 

2. The inhibitors will have similar effects on cisplatin-induced cell cycle profile changes. 

3. The effects of the inhibitors on cisplatin-induced cell cycle changes will be proportional 

to the degree of potentiation of cisplatin-induced cytotoxicity described in Chapter 5. 

4. The effects of the inhibitors on cisplatin-induced cell cycle profile changes will correlate 

with baseline expression of the target enzymes. 

 

6.3 Materials and Methods 

Permeabilised and PI stained cells were prepared, as detailed in Chapter 2.7. The DNA 

content of cells was determined using a BD FACSCanto II flow cytometer. Data was stored 

and transferred to FCS Express 6â software for analysis. Doublets were excluded by gating in 

area versus height plots. Histograms were generated for each experimental condition for 

each cell line (Figure 6.1) and the percent of cells in sub-G1, G1/0, S and G2/M phases were 

determined by application of gates to the histograms, as shown in Figure 6.1.  
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Figure 6.1 Representative example of cell cycle profile histograms showing cell cycle 

distributions of SiHa cells with and without treatment using cisplatin +/- VE-821, PF-

477736 and MK-1775. 

Cells were stained with PI and doublets were gated out using height vs area plots for more 
than 20000 individual events. Percent-populations of cells in sub-G1, G0/G1, S and G2/M 
were calculated by gating the histograms as shown. The PI content of individual cell cycle 
phases were determined on histograms from control cells and applied to histograms from 
treated cells.  
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6.4 Results 

6.4.1 Cell cycle responses to single agents 

Exposure to minimally cytotoxic concentrations of the checkpoint inhibitors alone for 24 h 

did not substantially affect the cell cycle profile of any of the cell lines (Table 6.1 and Figures 

6.2 – 6.4). However, cisplatin at a concentration of 3 µM for 24 hours (that causes > 90% 

inhibition of survival in all cell lines) resulted in marked changes in the cell cycle profiles.  

 

The most remarkable effect of cisplatin was a substantial and significant increase in the S-

phase fraction for all cell lines, which varied from 300% in Hela to 175% in C33A. In general, 

this was at the expense of the G1 fraction, which was correspondingly decreased. Because 

the G1 population was the largest, the proportional change was less than for S-phase. The 

decrease in G1 ranged from 69% (HeLa) to 36% SiHa and was significant (p<0.05 for all cells 

except CaSki (p=0.10). The shift from G1 to S could be a result of the lack of a functional G1 

checkpoint. The G2/M fraction was low in control cells and cisplatin had a modest and 

variable effect on percentage of cells in this fraction. 

 

6.4.2 Effect of ATR, CHK1 and WEE1 inhibitors on cisplatin-induced cell cycle 

profile changes. 

VE-821 caused substantial reductions in cisplatin induced S-phase accumulations in HeLa 

(57% reduction, p=0.02), SiHa (62% reduction, p=0.02) and C33A (24% reduction, p=0.05) 

cells. This was accompanied by corresponding increases in G2/M-phase populations in HeLa 

(250%, p<0.01), SiHa (200%, p=0.07) and C33A (100%, p=0.02) cells. A less marked decrease 

in G1 cells that varied between the cell lines was observed (Figure 6.2). In contrast, co-

incubation with VE-821 and cisplatin caused 50% increase in the S-phase populations in ME-

180 and 30% in HT-3 cells compared to cisplatin alone, but neither increase was statistically 

significant due to inter-assay variability and the limited number of experiments.  
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Table 6.1 Percent-single cell populations per cell cycle phase for six cervical cancer cell 

lines exposed to cisplatin +/- inhibitors drugs.   

Exponentially growing cells were treated with 1 µM VE821, 50 nM PF-477736 or 100 nM MK-
1775 +/-3 µM cisplatin for 24 hours. Control cells were co-incubated in fresh media + DMSO 
at an equivalent concentration. At least 20000 events per sample were recorded. Percent-
populations from single cells in each phase of the cell cycle were quantified using FCS Express 
(De Novo software) in two separate experiments: A and B.   
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Figure 6.2 Cell cycle profiles of cervical cancer cell lines treated with VE-821 and cisplatin 

as single agents and in combination. 

Exponentially growing cells were treated with 1 µM VE821, 3 µM cisplatin or both drugs in 
combination for 24 hours before being fixed in 70% ethanol. Cells were washed in PBS, treated 
with RNase and stained with PI. DNA content was analysed using a FACSCanto II flow 
cytometer. At least 20000 events per sample were recorded. Percent-populations from singlet 
cells in each phase of the cell cycle were quantified using FCS Express (De Novo software). Data 
are the mean and range of values from two independent experiments and are derived from 
values shown in Table 6.1 

 

 

Similarly, co-incubation with PF-477736 (50 nM) caused reductions in cisplatin induced S-

phase accumulations in HeLa (78% reduction, p<0.01), SiHa (75% reduction, p<0.01) and 

C33A (26% reduction, p<0.01) cells, accompanied by a corresponding increase in the G2/M 

fraction of HeLa (230%, p<0.01), SiHa (190%, p=0.08) and C33A (68%, p=0.06) cells. As with 

ATR inhibition, the CHK1 inhibitor increased the cisplatin-induced S-phase accumulation (by 

43%) and reduced the G2/M fraction in ME-180 (23% reduction) but these were not 

significant. PF-477736 did not substantially affect the cell cycle changes associated with 

cisplatin exposure in CaSki or HT-3 cells (Figure 6.5). Co-incubations with 100 nM MK-1775 

also reduced cisplatin-induced S-phase accumulation and increased the G2/M fraction in 

HeLa cells but to a lesser degree than with VE-821 and PF-47736. In general, the effects of 

MK-1775 were similar but less pronounced than with the ATR or CHK1 inhibitors.  
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Figure 6.3 Cell cycle profiles of cervical cancer cell lines treated with PF-477736 and 

cisplatin as single agents and in combination. 

Exponentially growing cells were treated with 50 nM PF-477736, 3 µM cisplatin or both drugs 
in combination for 24 hours before being fixed in 70% ethanol. Cells were washed in PBS, 
treated with RNase and stained with PI. DNA content was analysed using a FACSCanto II flow 
cytometer. At least 20000 events per sample were recorded. Percent-populations from 
singlet cells in each phase of the cell cycle were quantified using FCS Express (De Novo 
software). Data are the mean and range of values from two independent experiments and 
are derived from values shown in Table 6.1 
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Figure 6.4 Cell cycle profiles of cervical cancer cell lines treated with MK-1775 and 

cisplatin as single agents and in combination. 

Exponentially growing cells were treated with 100 nM MK-1775, 3 µM cisplatin or both drugs 
in combination for 24 hours before being fixed in 70% ethanol. Cells were washed in PBS, 
treated with RNase and stained with PI. DNA content was analysed using a FACSCanto II flow 
cytometer. At least 20000 events per sample were recorded. Percent-populations from 
singlet cells in each phase of the cell cycle were quantified using FCS Express (De Novo 
software). Data are the mean and standard deviation of two independent experiments and 
are derived from values shown in Table 6.1  
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Figure 6.5 Changes in S-phase and G2/M-phase populations in cells treated with 

cisplatin-inhibitor combinations compared to cells treated with cisplatin alone. 

A. % change in cisplatin induced S-phase accumulation of cells treated with cisplatin-inhibitor 
combinations. B. % difference in G2/M-phase populations of cells treated with cisplatin-
inhibitor combinations compared to cells treated with cisplatin alone. Raw data is taken from 
cell cycle profiles, as displayed in figures 6.1 to 6.3 and represent mean and SD resulting from 
two independent experiments. 
 

 

6.4.3 Correlations between cell cycle changes, cell line characteristics and 

cytotoxicity profiles 

Changes with cisplatin exposure compared to control 

Though HeLa cells are the least sensitive to cisplatin in survival assays (Chapter 5), they 

showed the greatest disturbance in their cell cycle profile in response to cisplatin exposure. 

Conversely, SiHa cells were the most sensitive to cisplatin but had one of the more modest 

disturbances in their cell cycle profile. When the other cell lines were considered, however 

no relationship was seen between sensitivity (survival) to cisplatin and the magnitude of 

changes G0/G1, S-phase or G2/M populations.  

 

It would be expected that changes in the cell cycle profile in response to cisplatin would be 

related to the activation of ATR, CHK1 or WEE1 by cisplatin. No such correlations were 

found. Neither was there any relationship with the characteristics of the cell lines described 

in Chapter 3: baseline DDR protein expression and cell line growth rate (data not shown).  
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Changes with cisplatin + inhibitor co-exposure compared to cisplatin alone 

The effect of 1 µM VE-821 on cisplatin induced S-phase and G2/M cell cycle changes strongly 

correlated with the extent of ATR inhibition measured in the cell lines at this concentration 

(Chapter 4). There were, however no such relationships between cisplatin induced S-phase 

or G2/M changes and CHK1 or WEE1 inhibition in response to PF-477736 or MK-1775, 

respectively (Figure 6.6).  

 

Unsurprisingly, given the previously noted relationship between ATR expression and the 

magnitude of ATR inhibition by 1 µM VE-821, a relationship was also found to exist between 

baseline ATR expression and the S-Phase and G2/M changes, described above (Figure 6.7). 

Higher ATR expression resulted in larger reduction of the cisplatin induced S-phase 

accumulation in response to 1 µM VE-821, with a corresponding increase in G2/M 

populations. As would be expected given the relationship between ATR and CHK1 expression 

(Chapter 3), an inverse relationship between these cell cycle changes and CHK1 expression 

was also noted, though this failed to reach statistical significance.  
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Figure 6.6 Correlations between target enzyme inhibition and effect of 1µM VE-821, 50 

nM PF-477736 and 100 nM MK-1775 on cell cycle profile changes induced by 3 µM 

cisplatin. 

A: Changes in S and G2/M populations vs inhibition of ATR by 1µM VE-821. B: Changes in S 
and G2/M populations vs inhibition of CHK1 by 50 nM PF-477736. C: Changes in S and G2/M 
populations vs inhibition of WEE1 by 100 nM MK-1775. All exposure times were for 24 hours. 
Data are taken from that displayed in Figures 4.3, 4.5 and 4.7 and Figures 6.2 to 6.3 and are 
the mean of at least two independent experiments.  
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Figure 6.7 Correlations between ATR and CHK1 expression and effect of 1 µM VE-821 

on cell cycle profile changes induced by 3 µM cisplatin. 

A: Changes in cisplatin induced S-phase accumulations vs expression of ATR and CHK1. B: 
Changes in G2/M populations vs expression of ATR and CHK1. All exposure times were for 24 
hours. Data are taken from that displayed in Figure 3.5 and Figures 6.2 to 6.4 and are the 
mean of at least two independent experiments.  
 

Changes in cisplatin induced S-phase and G2/M changes caused by 50 µM of the CHK1 

inhibitor PF-477736 also correlated with CHK1 and ATR baseline expressions, though the 

relationship did not reach significance for CHK1 expression (Figure 6.8), high ATR expression 

and Low CHK1 expression was associated with larger reductions in cisplatin induced S-phase 

accumulations and also with larger increases G2/M populations. No such correlations existed 

for the WEE1 inhibitor, MK-1775.  
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Figure 6.8 Correlations between ATR and CHK1 expression and effect of 50 nM PF-

477736 on cell cycle profile changes induced by 3 µM cisplatin. 

A: Changes in S-phase populations vs expression of ATR and CHK1. B: Changes in G2/M 
populations vs expression of ATR and CHK1. All exposure times were for 24 hours. Data are 
taken from that displayed in Figure 3.5 and Figures 6.1 to 6.3 and are the mean of at least 
two independent experiments.  
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6.5 Discussion 

Consistent with observations from previous studies (Middleton et al., 2018), at 

concentrations that were not profoundly cytotoxic (Table 4.2), VE-821, PF-477736 and MK-

1775 had no significant impact on cell cycle distributions despite substantial target inhibition 

(Chapter 4). In contrast to this, treatment of the cell lines with 3 µM cisplatin for 24 hours 

resulted in significant changes. Substantial increases in S-phase populations were seen, and 

this appeared predominantly at the expense of G1/S populations, indicative of dysfunction 

of the G1/S checkpoint in all cell lines. However, reductions in G2/M populations were also 

seen in C33A, CaSki and ME-180 cells. Only in HeLa cells did cisplatin cause an increase in 

G2/M cell population.  

 

The increase in S-phase populations seen across all cell lines points towards engagement of 

intra-S checkpoint functions as the dominant DDR component in response to cisplatin 

induced DNA damage in the cervical cancer cell lines. However, physical slowing of 

replication forks by ICLs and engagement of repair without checkpoint signalling could also 

contribute. This pattern was irrespective of HR-HPV, p53 or pRB status. Increased replication 

stress resulting from stalled replication forks will activate ATR-CHK1-WEE1 mediated 

signalling to slow replication origin firing and may be responsible for arrest of the cell in S-

phase, causing the measured cell cycle profile changes (Iyer and Rhind, 2017, Cimprich and 

Cortez, 2008, Maréchal and Zou, 2013). Consistent with this are the observations that the 

cells with highest ATR expression and the greatest ATR inhibition by VE-821 had the greatest 

reduction in cisplatin-induced S-phase arrest when treated with VE-821. However, the lack 

of corresponding correlations for CHK1 and WEE1, and their inhibitors make drawing 

conclusions on the importance of either the extent of the observed inhibition or level of 

baseline expressions of the enzymes difficult.  

 

Modest but non-significant increases in cisplatin-induced S-phase accumulations, particularly 

by VE-821 in ME-180 and HT-3 cells (Figure 6.5), may reflect its lower target inhibition in 

these cells (Chapter 4) but without further studies, including in additional cell lines, the 

mechanisms underlying this effect cannot be elucidated. With this evidence, we can only 

speculate that the increase in cisplatin induced S-phase accumulations arose out of other 
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mechanisms related to the cells difficulty in resolving platinum induced DNA lesions and the 

roles the kinases and inhibitors may play in these pathways.  

 

For HeLa, SiHa and C33A cells the decrease in S-phase accumulation was accompanied by a 

corresponding increase in G2/M cells and so for these cells at least, the intra-S checkpoint 

may be the most important for cisplatin induced DNA damage resolution. A limitation of PI 

staining is its inability to distinguish between G2 and M-phase cells. It could be hypothesised 

that in these cell lines, cells which have escaped G2 arrest and entered mitosis may be 

responsible for the apparent increase in G2/M phase cells, particularly as there was limited 

evidence for a corresponding increase in sub-G1 cell populations, indicating that most cells 

were still cycling at the point of fixation.  

 

Further studies are, however needed with additional DNA damaging agents (e.g. IR), 

additional methods for distinguishing G2 and M-Phase cells (e.g. staining for phospho-

histone-H3S10) and other cell lines. This will help to elucidate whether the inhibitors always 

have the greatest impact on the intra-S checkpoint. Whether it was a function of the type of 

DNA damage caused by cisplatin that primarily engaged intra-S DDR functions and whether 

the changes in G2/M fractions are due to G2 arrest and escape remain to be determined.  

 

6.6 Conclusions 

With reference to the aims set out at the start of this chapter: 

1. Minimally cytotoxic concentrations of all three inhibitor drugs caused little or no 

disturbance in the cell cycle profile of the cells across the cell line panel 

2. All three inhibitors caused similar pattern changes to cisplatin induced S-phase 

accumulations across the cell line panel 

3. The cells appeared to fall into two groups: 

a. HeLa, SiHa and C33A cells, which showed a reduction in cisplatin-induced S-phase 

accumulations in response to inhibitor treatment suggesting attenuation of cisplatin induced 

S-phase arrest 

b. ME-180, HT-3 (and CaSki) cells, which showed an increase in cisplatin-induced S-phase 

accumulations in response to inhibitor treatment and which is so far unexplained. 
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4. The magnitude or nature of cell cycle profile changes did not correlate with the extent 

of sensitisation to cisplatin across the cell line panel for any of the inhibitors.  

5. Some correlations were seen between the magnitude of effect of VE-821 on cisplatin-

induced S-phase accumulation and inhibition or expression of ATR and CHK1, but data with 

PF-477736 and MK-1775 were not convincing. 
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7 Exploration of checkpoint protein expression in clinical 

tumour samples 

 

7.1 Introduction 

Earlier experiments, described in Chapter 3, have demonstrated that cervical cancer cell 

lines with known HR-HPV and oncogene status display a range of cell cycle checkpoint 

protein expression and that there appear to be relationships between the levels of 

expression of some of these proteins. Despite the small number of cell lines available for 

investigation, positive correlations were noted between CHK1 and CDK1 and a significant 

inverse correlation was found between ATR and CHK1 levels. An inverse correlation was 

also noted between ATR and CDK1, as might be expected given this result. There 

appeared to be limited evidence that the expressions of cell cycle proteins were 

significant determinants of sensitivity to the ATR, CHK1 or WEE1 inhibitors VE-821, PF-

477736 or MK-1775, respectively as single agents or sensitisers of cisplatin and IR, though 

WEE1 expression appeared to correlate with a narrow range of MK-1775 sensitisation of 

cell lines to cisplatin.  

 

Given the absence of a clear determinant of sensitivity to the inhibitors or cisplatin and IR 

amongst the cell line panel a decision was taken to investigate the expression of the cell 

cycle proteins: ATR; CHK1; and WEE1 by immunohistochemistry (IHC) in a panel of 

formalin fixed and paraffin embedded (FFPE) clinical cervical cancer tumour from 

patients, and to supplement this with expression data from publicly available datasets.  

The presence of a range of level of protein expression and any similar correlations to that 

seen in the cell line panel would provide further validation of the cervical cancer cell lines 

as a useful tool in pre-clinical investigations and provide confidence in the applicability of 

cell line derived results to clinical cancer investigations.  
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7.2 Aims and Objectives 

The aim of the investigations described in this chapter is to determine the range of 

expression of ATR, CHK1 and WEE1 in a panel of clinical cervical cancer tumour samples 

and to explore whether relationships between these proteins, as observed in cervical 

cancer cell lines, exist in clinical tumour samples. The clinical sample set will be 

supplemented by investigation of mRNA expression data from The Cancer Genome Atlas 

(TCGA) dataset.  

 

 

7.3 Materials and methods 

7.3.1 TMA construction and slide preparation 

Women with cervical cancer who underwent treatment or investigation at the Northern 

Gynaecological Oncology Centre, Queen Elizabeth Hospital (QEH), Gateshead between 

February 2017 and January 2018 were approached under existing ethical permissions 

(2012 REC: 12/NE0395. R&D sponsor: NUTH NHS foundation trust No. 6579) for 

retrospective written consent to biobank formalin-fixed, paraffin-embedded (FFPE) 

diagnostic or surgical specimens (blocks) containing primary cervical cancer tissue. 29 

women with cervical cancer consented. 10 blocks were available from storage at the QEH 

pathology lab following diagnosis or treatment that contained sufficient tumour material 

to allow for core extraction and inclusion in the tissue micro-array (TMA) along with one 

historical sample. Slides were prepared from candidate blocks by clinical scientists at the 

QEH laboratory and Haematoxylin and Eosin (H+E) stained prior to review by a consultant 

histopathologist pathologist to identify areas corresponding regions containing tumour 

for core extraction.  

 

The TMA assembly contained a total of 26 x 1 mm cores: duplicate samples from 11 

patients and 2 positive control blocks (human testes and a HeLa-agarose cell block). 

Cores were randomly assigned to TMA locations by the Galileo TMA CK3500Ò and 

associated computer software to reduce the risk of core loss or reading bias affecting 

results (Figure 7.1). Ideally a TMA will contain tumour known not to express the protein 
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under investigation to provide a further negative control. As ATR, CHK1 and WEE1 are 

required for viability, this was not possible.  

 

 

 

 
Figure 7.1 Tissue microarray layout containing duplicate cores from 11 patient samples 

and 2 positive control cores. 

Core locations were randomly selected by computer software. S = patient sample. Control 
1= HeLa cells. Control 2 = human testes. 

 

Individual 5 µm sections were taken by microtome and positioned on glass slides for 

immunohistochemical staining. HeLa block preparation and microtome sectioning of the 

TMA and H+E staining were undertaken by a dedicated immunohistochemistry (IHC) 

technician at the NICR according to local protocols.  

 

7.3.2 Immunohistochemistry 

Primary and secondary antibodies used for IHC investigation of ATR, CHK1 and WEE1 

expression as well as antigen retrieval methods are given in Table 7.1. CHK1 antigen 

retrieval and antibody dilution optimisation was undertaken by MRES student, Mr Harry 

Robinson. Due to time limitations for these investigations, antigen retrieval methods for 

ATR and WEE1 were undertaken according to antibody manufacturer and expert advice. 

A range of three antibody dilutions were tested for each antibody including: the dilution 

advised by the manufacturer and; a single dilution more or less concentrated. 
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Slides were de-waxed in xylene hydrated through graded ethanol (100% to 50%) and 

washed in tap water. Antigen retrieval was performed using citrate buffer (pH 6) heated 

to at 125 °C for 30 s under pressure. Slides were rinsed in tap water before and after 

exposure to 3% hydrogen peroxide solution for 10 minutes. Incubations were performed 

with diluted primary antibody (Table 7.1) for 60 minutes each at room temperature prior 

to application of MenapathÒ IHC kit HRP-polymer +/- universal probe (A. Menari 

diagnostics, USA) for 30 minutes each. No-antibody negative controls slides were 

prepared without primary antibody staining. Slides were rinsed in Tris-buffered saline + 

0.1% Tween 20 (TBST). DAB solution applied to each slide for 1 minute before 

neutralisation in sodium hypochlorite and a further tap water rinse. All slides were then 

counterstained in Gills II haematoxylin for 5 seconds and blued in Scott’s Tap Water. 

Following dehydration through graded ethanol (50% to 100%) and Xylene, cover-slips 

were applied using DPX mounting medium and allowed to dry.  

 

 

Table 7.1 Antibodies and dilutions used for IHC staining of clinical TMA slides. 

Antigen retrieval was undertaken in citrate buffer (pH 6) in a pressure cooker in all cases. 
Secondary antibodies were applied according to the MenapathÒ protocol using reagents 
supplied in the IHC kit.  
 
 
7.3.4 Slide scanning and data analysis 

Slides were scanned by Ms Xin Xu at the Newcastle University central biobank facility 

using Leica SCN400Ò slide scanner and images were accessed and viewed remotely using 

a web-based Leica digital image hub (slidepath.ncl.uk). A modified H-score was calculated 

for each core in the TMA at the antibody dilution which best allowed differentiation 

between stained and non-stained nuclei.  
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The modified H-score was calculated by multiplying the staining intensity of nuclear 

staining (0-3) by the proportional area of tumour positively stained (0-6), to give a 

minimum score of 0 and a maximum score of 18 (Table 7.2). A single score was 

determined for each core, as tumour staining tended to be of uniform intensity in each 

core. The mean score from duplicate cores was calculated. Where there was core loss or 

artefact impeding interpretation the score from the remaining core was used. Cores 

composed of less-than 20% tumour were excluded.  

 

Pearson’s correlation analysis was performed on H-scores determined experimentally 

using Graphpad Prismâ. TCGA mRNA expression data for ATR, CHK1 and WEE1 was 

analysed by Pearson correlation analysis by Dr Sweta Sharma Saha.  Survival analysis of 

TCGA patient cohorts was by Kaplan-Meier plot undertaken on open source software 

available at http://www.proteinatlas.org and significance testing for correlations 

between mRNA expression data and patient survival was by Log-rank test.   

 

 

7.4 Results 

7.4.1 Optimisation of antibody dilutions 

The optimal dilution for CHK1 staining was previously determined to be 1:500 (Figure 

7.2). The antibody dilutions tested for ATR staining were 1:50, 1:100 and 1:200 with an 

optimal dilution of 1:200 selected for quantification of ATR expression in tumour samples 

by modified H-score (Figure 7.3, D-F). The WEE1 antibody failed to stain satisfactorily at 

any of the dilutions tested (Figure 7.3, G-I) and no quantification of WEE1 expression in 

the tumour samples was possible. 
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Figure 7.2 Micrographs of human testes positive control tissue demonstrating CHK1 

staining. 

A: H+E stained section showing cellular areas. B: Anti-CHK1 antibody staining at dilution 
of 1:500 with corresponding nuclear staining. C: No-primary antibody negative control 
with anti-mouse secondary antibody.  
 

 
Figure 7.3 Micrographs of human testes positive control tissue demonstrating ATR 

staining but inadequate WEE1 staining. 

A: H+E stained section showing cellular areas. B: No-primary antibody negative control 
with anti-rabbit secondary antibody. C: No-primary antibody negative control with anti-
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mouse secondary antibody. D-F: Anti-ATR antibody staining at 1:50 (D), 1:100 (E) and 
1:200 (F). G-I: Anti-WEE1 antibody staining at 1:100 (G), 1:200 (H) and 1:500 (I).  
 
 
7.4.2 IHC scoring 

ATR and CHK1 stained cores were scored using the method and antibody dilutions 

detailed in section 7.3.4. Figure 7.4 shows representative TMA cores stained for ATR and 

CHK1 and examples of stain intensity used to calculate the modified H-score. H-Scores for 

both ATR and CHK1 varied between 0 and 18 (Table 7.2). The core that scored most 

strongly for both proteins was later noted to be a serous cancer of the cervix, a rare 

tumour that is not associated with HR-HPV infection. With this core excluded, the highest 

H-score for ATR was 12.5 in a squamous cancer. The highest H-score for CHK1 was 10.5 in 

an adenocarcinoma. Due to the limited number of clinical samples and the fact that 

tumour-deficient exclusions were exclusively in the adenocarcinoma group, it was not 

possible to determine if there was a difference in the expression of ATR or CHK1 amongst 

the tumour sub-types. 

 
 
 

 

 
Figure 7.4 Micrographs of representative TMA cores stained for ATR (top) and CHK1 

(bottom). 

A: Positive control tissue (human testes). B: Tumour demonstrating strong stain intensity 
(score = 3). C: Tumour demonstrating moderate stain intensity (score = 2). D: Tumour 
demonstrating weak stain intensity (score = 1). E: Tumour demonstrating no tumour 
staining, including cytoplasmic staining only (score = 0). Antibody dilutions were 1:200 in 
1%BSA-TBS for ATR and 1:500 in TBS for CHK1.  
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Table 7.2 Modified H-score results for individual cores from a cervical cancer TMA 

stained for ATR and CHK1. 

Sample numbers correspond to the core locations detailed in Figure 7.1. Mean scores 
were calculated from the individual scores from duplicate cores. Where core loss or 
artefact impeded scoring, a single core score was used. Cores with 20% tumour were 
excluded. Sample S2 was later found to be a serous cancer of the cervix and was excluded 
from further analyses. 

 
 

Given the strong negative correlation between ATR and CHK1 expression noted in 

Western blot analysis of baseline proteins in cervical cancer cell lines (Chapter 3), 

correlation analysis was conducted to determine whether a similar relationship between 

ATR and CHK1 existed in these clinical tumour samples. Whilst no correlation was present 

when the whole panel of clinical tumour samples was included, exploration of a 

difference observed in the squamous carcinoma sub-type revealed a significant inverse 

correlation between ATR and CHK1 expression (Figure 7.5) in keeping with that seen in 

the cervical cancer cell lines, however as the cell line data did not similarly exclude those 

derived from glandular cancers, and each correlation relies on a very small number of 
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data points. These investigations should be undertaken in a much larger set of samples 

before concluding that they are meaningful.  

 

 

Figure 7.5 Correlations between ATR and CHK1 expression in clinical tumour samples 

A: Scatter plot of ATR vs CHK1 expression for all cervical cancer sub-types. B: Scatter plot 
and linear regression of ATR vs CHK1 in cervical squamous cancers only. Data is taken 
from that displayed in Table 7.2.  

 
 

7.4.3 ATR, CHK1 and WEE1 expression in a wider context. 

In order to further explore the observed correlation between ATR and CHK1 protein 

expression from cell line data described in Chapter 3 (Figure 3.5) in clinical tumour 

samples, a correlation analysis of ATR and CHK1 mRNA expression derived from the TCGA 

study of cervical cancer (Cancer Genome Atlas Research et al., 2017) was performed by 

Dr Sweta Sharma Saha. The TCGA data included 291 clinical cervical cancer tissue 

samples, of which 75% were SCC. Pearson’s Correlation analysis of ATR and CHK1 mRNA 

expression in the TGCA dataset showed no correlation between ATR and CHK1 

expression (Figure 7.6). Neither protein showed correlation with WEE1 mRNA expression 

levels (data not shown).  
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Figure 7.6 Correlation between ATR and CHK1 mRNA expression in TCGA data 

Scatter plot showing ATR and CHK1 mRNA expression in 291 cervical cancers (75% SCC). 
The results shown here are based upon data generated by the TCGA Research Network: 
https://www.cancer.gov/tcga, analysed by Dr Sweta Sharma Saha 

 
7.4.4 Clinical correlation 

Clinical diagnostic and treatment data for the cervical cancer patients who donated 

tumour samples to these investigations are given in Table 7.3. The short time period 

between sample collection and data analysis and a median follow up interval of just 18.7 

months at the time of writing, and the presence of a single a single episode of disease 

progression has occurred in this small patient cohort makes assessment of the prognostic 

significance for the expression of ATR and CHK1 in this patient cohort difficult. All 

patients included were treated with primary surgery and two received adjuvant 

radiotherapy without macroscopic disease. No correlations with response to cisplatin or 

IR are therefore possible.  
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Table 7.3 Clinical, diagnostic, treatment and follow-up data for cervical cancer patients 

who donated tumour samples to these investigations. 

Loop excision = local excision with margin. Surgery = hysterectomy with pelvic 
lymphadenectomy. Radical surgery = radical hysterectomy or radical trachelectomy with 
pelvic lymphadenectomy. Patient S11 was diagnosed with primary cervical cancer on 
operative histology. AWD = alive without disease. REC = recurrence with date of 
progression/recurrence. 
 

The TCGA study of cervical cancer (Cancer Genome Atlas Research et al., 2017) did not 

report survival effects of ATR, CHK1 or WEE1 gene alterations, underlining the novel 

nature of the data reported in this thesis. Using data from the Human Protein Atlas, 

available from http://www.proteinatlas.org  (Uhlen et al., 2017), survival data for the 

patients included in the TCGA dataset was categorised by high (above the median) or low 

(below the median) expression (mRNA) of ATR, CHK1 and WEE1 (Figure 7.7 and Table 

7.4). Overall, high expression of any of ATR or CHK1 was not prognostic in cervical cancer. 

High expression of WEE1, however showed a tendency towards increased survival. In this 

data, 75% of patients had SCC versus 25% with adenocarcinoma or adenosquamous 

cancer and 70% underwent primary surgical management.  
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Figure 7.7 Kaplan-Meier plots showing survival of kinase high vs low expression from 

the TCGA study of cervical cancer dataset 

Data for 291 cervical cancer patients was analysed from Human Protein Atlas data 
http://www.proteinatlas.org. Cut off for low vs high expression was the median mRNA 
expression for the checkpoint kinase Median follow up is 23.5 months 
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Table 7.4 Survival of cervical cancer patients from the TCGA study of cervical cancer 

dataset by checkpoint kinase expression 

Data for 291 cervical cancer patients was analysed from Human Protein Atlas data 
http://www.proteinatlas.org. Cut off for low vs high expression was the median mRNA 
expression for the checkpoint kinase expressed as Fragments Per Kilobase of transcript 
per Million mapped reads (FKPM) and determined by RNA-seq. Log-rank p-value for 
Kaplan-Meier plot is shown. Median follow up is 23.5 months 

 
7.5 Discussion and conclusions. 

It is not possible to draw significant conclusions regarding the prognostic value of ATR or 

CHK1 expression in cervical cancer given the small number of tumour samples included in 

the investigations of protein expression by IHC. The short follow up period and the 

absence of non-surgical primary treatment used in this patient cohort precludes 

meaningful correlation with survival or comparison with primary non-surgical treatment 

modalities. The fact that a range of expression of both kinases was observed in the 

patient FFPE samples is consistent with the cell line data presented in Chapter 3 and that 

seen in the TCGA study of cervical cancer data set. This provides additional validation of 

the cervical cancer cell lines as representative clinical substitutes for the ongoing 

investigation of ATR-CHK1 pathway inhibition.  

 

Published prevalence data suggests that 80% - 90% of cervical cancer worldwide is SCC 

(Mathew and George, 2009), but that the relative incidence of this sub-type is falling 

under the influence of cervical screening programmes which are better able to detect 

pre-cancerous squamous lesions (Castanon et al., 2016). The proportion of SCC in our 

limited clinical sample set was 60% and that in the TCGA data set is broadly comparable 

at 75% with the large majority of patients (70%) undergoing primary surgical treatment 

rather than platinum chemotherapy or IR based therapy. The TCGA patient cohort is 
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therefore a comparable group of patients to those recruited for this study and the data is 

applicable to the global cervical cancer population. No association between high 

expression of either ATR, CHK1 and survival was seen. High WEE1 expression showed a 

potential association with better survival, justifying ongoing investigation of WEE1 as a 

potential biomarker in the investigation of cervical cancer treatment. 

  

In order to broaden the options for further investigations into the expression of DDR 

proteins in cervical cancer and to provide opportunity to validate any future cell line 

findings in clinical samples, biobanking of tissue from women with cervical cancer is 

ongoing.  Efforts will need to be made to identify patients who have received platinum 

and IR, alone and in combination as their primary treatment modality so that any future 

identified determinants of sensitivity can be correlated with tumour response to provide 

prognostic data.  
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8 Final discussion, conclusions and future directions 

 

The investigations in this thesis, for the first time directly compare the relative potential of 

ATR, CHK1 and WEE1 inhibition in cervical cancer cells using potent and selective inhibitors 

of these cell cycle checkpoint kinases. Furthermore, attempts were made to elucidate the 

determinants of sensitivity that may underpin differences in sensitivity across a cervical 

cancer cell line panel and to understand the mechanisms that may be responsible for 

differences in the sensitisation of cisplatin and IR observed between the inhibitors. The aim 

of these investigations was to inform future studies of the relative potential of these drugs 

in cervical cancer therapy so that attention may be focussed on those that are likely to 

provide the best solution to the urgent need for novel therapies for this disease. The 

exploration of the role of HPV and consequent p53/pRb inactivation as a determinant of 

sensitivity was somewhat confounded by the fact that the 2 HPV negative cells (C33A and 

HT-3) are known to harbour mutations in TP53 and RB1. The functional status of p53/pRB 

was not confirmed in the experiments described in this thesis. Nevertheless, the functional 

consequence for the cell: G1/S dysfunction is of primary importance to the rationale of the 

investigations and this was demonstrated in all cell lines in response to cisplatin induced 

DNA damage.  

 

In order to establish that cytotoxicity or sensitisation results later attributed to the 

inhibitors under investigation were due to enzyme inhibition rather than absence of the 

enzymes, the expressions of the key enzymes in the pathway were established by Western 

blot. ATR, CHK1, WEE1 and CDK1 were all expressed by the cervical cancer cell lines and this 

expression did not appear to be related to HPV status. The level of expression of these 

proteins was quantified by densitometric analysis and was seen to vary across the cell line 

panel (Figure 3.4).  The magnitude of the differences between the cell lines, the semi-

quantitative nature of Western blot densitometry as well as the limited number of cell lines 

in the panel make drawing definite conclusions from these results difficult and these are 

limitations that are applicable to many of the results herein. Some of these variations and 

apparent relationships between them are note-worthy and novel and are discussed below. 
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Whilst CHK1 expression correlated with CDK1 expression, there was a negative relationship 

between levels of both of these kinases and ATR levels. Levels of WEE1 showed no 

relationships with expression of any of the kinases in this common pathway. These results 

along with the fact that none of the kinase expressions correlated with the cell doubling 

time, a marker of cell growth suggest that these cells do not have constitutively up-

regulated ATR-CHK1-WEE1 pathways in response to G1/S checkpoint insufficiency induced 

replication stress. In fact, the inverse relationship between ATR expression and that of 

downstream pathway components may suggest a level of functional redundancy in the 

pathway that could form the basis of future investigations. 

 

High ATR expression correlated with high DNA-PKcs expression in this cell line panel (Figure 

3.5) and this relationship has previously been described. Furthermore, a functional 

relationship between these two enzymes has also been previously observed.  High ATR and 

high DNA-PKcs levels have been reported to confer survival advantages in ovarian cancer 

patients (Abdel-Fatah et al., 2014), and High DNA-PKcs has also been shown to confer 

sensitivity to ATR inhibition by VE-821 (Middleton et al., 2015). A potential relationship was 

observed between single agent VE-821 cytotoxicity and DNA-PKcs expression across the cell 

line panel, though this was the inverse to previous reports and suggested that high DNA-

PKcs levels conferred resistance rather than sensitivity to VE-821 cytotoxicity. The results of 

this should be interpreted with caution given the lack of statistical significance, and the 

panel size (Figure 4.13). 

 

A further relationship between ATM expression and VE-821 single agent cytotoxicity was 

observed: though the correlation was not significant, the relative resistance of ME-180 cells 

(which expressed the most ATM) to VE-821 single agent cytotoxicity and the sensitivity of 

HT-3 cells (which expressed the least ATM) to VE-821 is consistent with previous reports 

that ATM is a determinant of sensitivity to ATR inhibition (Middleton et al., 2015, Kwok et 

al., 2016). Although ME-180 cells were, in fact amongst the most sensitive to all three 

inhibitors, clear relationships were not noted to exist between either PF-477736 or MK-1775 

single agent cytotoxicity and ATM expression.  
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The range of sensitivities of the cell lines to the single agent effects of VE-821, PF-477736 or 

MK-1775 was not wholly explained by the baseline expression of any of the measured 

checkpoint or DDR proteins and nor were the sensitisation effects of the inhibitors on either 

cisplatin or IR. Interestingly, the single agent cytotoxicity of the inhibitors was also unrelated 

to the observed extent of target inhibition of cisplatin induced ATR, CHK1 and WEE1 activity. 

 

The cells displayed a modest range of sensitivity to cisplatin but the difference between the 

most sensitive and least sensitive was only around 2-fold, making it difficult to draw 

conclusions regarding what determines sensitivity. HeLa cells were the most resistant to 

cisplatin and interestingly, the greatest cisplatin mediated ATR and CHK1 activation was 

seen in this cell line. 

 

The cell cycle profile changes associated with exposure to 3 µM cisplatin were uniform 

across the cell line panel with a significant increase in S-phase populations that appeared 

largely at the expense of G1 cells. Whilst this is consistent with a deficient G1/S checkpoint 

either through p53 or pRB mutation or HR-HPV infection as described in Chapter 1, a strong 

S-phase arrest in response to cisplatin is also consistent with the DNA lesions produced by 

this agent. Inter-strand cross links are difficult to resolve, requiring multiple DNA repair 

proteins and the process of repair could itself cause a slowing of progression through S-

phase (Deans and West, 2011). Moreover, Intra-strand cross links are a key cause of 

replication stress and as such are likely to make the cisplatin treated cell heavily dependent 

on the ATR-CHK1-WEE1 pathway to engage the intra-S checkpoint. S-phase arrest 

associated with CHK1 phosphorylation by ATR has previously been reported as the major 

cell cycle response to cisplatin induced DNA damage (Cruet-Hennequart et al., 2009).  

 

HeLa cells showed the greatest cell cycle disturbance in response to cisplatin, with the 

largest increase in S-phase populations (300% increase). There were no clear correlations 

between the size of S-phase accumulations and sensitivity to cisplatin across all cell lines, 

however HeLa cells were the most resistant to cisplatin. This observations is consistent with 

a report that increased S-phase populations in response to cisplatin may be linked to 

platinum resistance (Kielbik et al., 2018). This could represent a greater ability to engage cell 
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cycle arrest or DNA repair during S-phase, slowing the cell cycle progression in response to 

cisplatin and conferring a survival advantage.  

 

In terms of chemo-sensitisation by the inhibitors, ATR inhibition by VE-821 caused the 

greatest sensitisation to cisplatin. Cisplatin sensitisation of over 5-fold was seen in C33A 

cells (PF50 = 5.9 ± 1.3) and at higher cisplatin concentrations ME-180 cells were sensitised by 

over 12-fold (PF0.3-cis = 12.7 ± 2.9) in keeping with previous reports, which suggested up to 

10-fold sensitisation of cells to cisplatin by ATR inhibitors (Reaper et al., 2011). Despite the 

relatively wide variation in cisplatin sensitisation by VE-821 across the cell line panel (Table 

5.1) with the least sensitised cell lines (HT-3 and SiHa) being sensitised by less than 2-fold, 

no significant correlations with ATR expression or inhibition or baseline cisplatin sensitivity 

were seen. It is worth noting, however that ME-180 cells showed the least VE-821 inhibition 

of cisplatin induced ATR activity, contrary to what may be expected given the sizeable 

cisplatin sensitisation effects associated with VE-821 in this cell line.  

 

The concentrations of the inhibitors used for chemo-and radio-sensitisation experiments: 1 

µM VE-821, 50 nM PF-477736 and 100 nM MK-1775 caused broadly similar levels of target 

enzyme inhibition. Despite this, CHK1 inhibition by PF-477736 caused a much smaller 

magnitude of sensitisation to cisplatin (Table 4.2). ME-180 cells again showed the greatest 

sensitisation by PF-477736 (PF50 = 2.5 and PF0.3-cis = 1.8). In contrast with the results for VE-

821, PF-477736 did not sensitise HeLa cells to cisplatin. As with VE-821, cisplatin 

sensitisation by PF-477736 was not related to intrinsic cisplatin sensitivity of the cell lines, 

despite ME-180 also being amongst the most sensitive to cisplatin alone. No clear 

relationships were noted with the previously determined phenotypic characteristics of the 

cell lines, including HPV or p53 status. MK-1775 showed the least overall sensitisation of the 

cell lines to cisplatin with a maximum but non-significant effect seen, in ME-180 cells (PF50 = 

2.3 ± 0.5 and PF0.3-cis = 1.5 ± 0.5) and no sensitisation seen in SiHa CaSki or HT-3 cells. 

Despite this, MK-1775 sensitisation of cisplatin did appear to correlate strongly with 

baseline WEE1 expression, and this may be worthy of further exploration in a wider cell line 

panel. 
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The cells showed little change in their cell cycle profiles in response to exposure to all three 

inhibitors alone at the concentrations used in sensitisation experiments in keeping with 

previous reports (Vendetti et al., 2015, Middleton et al., 2018). However, strikingly different 

responses to the inhibitors were seen within the cell line panel on cisplatin-induced S-phase 

arrest that were similar for VE-821 and PF-477736. Both inhibitors induced a substantial 

reduction in S-phase accumulation in HeLa, SiHa and C33A but a substantial further increase 

in ME-180 (and HT-3 for PF-477736). Whilst the reductions of cisplatin induced S-phase 

accumulations may be attributable to attenuation of ATR-CHK1 mediated S-phase arrest 

(Cruet-Hennequart et al., 2009), the response in ME-180 and HT-3 cells is, so far 

unexplained.  

 

That such a difference in the response of the cells to ATR or CHK1 inhibition in the face of 

cisplatin induced DNA damage exists, along with the fact that neither the magnitude of the 

S-phase or other cell cycle population changes correlated with the sensitisation of the cells 

to cisplatin in cytotoxicity assays suggests that any observed cisplatin sensitisation by VE-

821 or PF-477736 is unlikely to be directly attributable to cell cycle checkpoint abrogation. 

Instead it is possible that it is due to inhibition of homologous recombination DNA repair 

(HRR) by inhibition of the ATR-CHK1-WEE1 pathway. HRR is needed to resolve DNA damage-

induced collapsed replication forks and there is emerging evidence of a coupling of ATR-

mediated checkpoint activation and HRR function (Buisson et al., 2017). This should be 

considered in future investigations of ATR and CHK1 inhibitors in particular, and their utility 

as sensitisers to cisplatin or IR in cervical cancer. 100 nM MK-1775 caused a broadly similar 

pattern of cell cycle changes but with much smaller effects in keeping with the smaller 

sensitisation effects observed in chemo-sensitisation assays and the slightly lower overall 

target inhibition observed at this concentration compared to 1 µM VE-821 and 50 nM PF-

477736. 

 

The rank order of sensitivity of the cells was different for IR and cisplatin, implying different 

determinants of sensitivity to each agent, which might be expected given their different 

types of DNA damage (Table 1.2). Resistance to IR correlated with high ATR and low CHK1 

expression. Surprisingly, given the relationship between ATR and DNA-PKcs discussed 

above, no correlation existed between DNA-PK-cs and IR sensitivity. NHEJ function is a 
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known determinant of sensitivity to IR (Mahaney et al., 2009). Although there was no 

correlation between IR sensitivity and expression of the key NHEJ proteins: DNA-PKcs; Ku70; 

or Ku80, HeLa cells (which were the most radio-resistant) expressed amongst the highest 

levels of all three proteins. Unexpectedly, ATM expression also showed no correlation with 

IR sensitivity despite its established role in the detection of IR induced DSBs (Maréchal and 

Zou, 2013) but SiHa with high ATM and DNA-PKcs were also radioresistant. Overall, the 

detection of IR induced DNA damage and the functioning of repair pathways such as NHEJ is 

complex (Thompson, 2012) and functional assays may need to be developed to capture the 

activity of the entire pathway.    

 

Compared to the results for chemo-sensitisation assays, radio-sensitisation by VE-821 was 

of a smaller magnitude and over a smaller range at the LD50, though still greater than that 

seen for PF-477736 and MK-1775.  Maximum sensitisation by 1 µM VE-821 was seen in HeLa 

cells (PF50 = 1.7 ± 0.4) compared to no sensitisation in C33A cells (PF50 = 1.1 ± 0.2). Despite 

this smaller range of sensitisations and the lack of statistical significance, radio-sensitisation 

by VE-821 did correlate with intrinsic IR resistance of the cell lines. Unfortunately, it was not 

possible to complete cell cycle investigations using IR as the DNA damaging agent within the 

scope of these investigations, and therefore we are unable to relate IR cell cycle changes 

and the response of the cell to IR + inhibitors to the results obtained for cisplatin, described 

above.  The cell line panel displayed not only a different rank order of sensitivity to IR and 

cisplatin but also chemo- and radio-sensitisation by the inhibitors, no-doubt reflecting the 

different nature of the DNA lesions caused by IR and cisplatin and their dependence on 

different DNA damage signalling and repair pathways. Future experiments should therefore 

aim at quantifying these differences though, for example DSB-quantification (Rogakou et al., 

1998). 

 

The data presented in these investigations comparing the effects of cell cycle checkpoint 

kinase inhibitors in a panel of cervical cancer specific cell lines is novel. Attempts have been 

made to determine whether the observed differences and similarities can be explained by 

relationships with previously described determinants of sensitivity, or through observation 

of inhibitor specific changes in the cell’s engagement of cell cycle checkpoints in the 

presence of induced DNA damage. Previously identified determinants of sensitivity were not 
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confirmed, partially due to the size of the panel and the relatively narrow spectrum of data. 

Due to time limitations, further mechanistic studies were not undertaken. However, the 

data serve to highlight the difficulty in translating a determinant of sensitivity identified 

using genetic knockdown/ isogenic pairs of cells to the much more complex phenotype of a 

cancer cell. In this respect, use of these cell lines relates to the difficulty in identifying 

predictive biomarkers that will be useful clinically. These results do, however allow 

identification of future directions that have the potential to provide mechanistic evidence 

that might underly the observed findings using previously described assays. 

 

8.1 Final conclusions 

Inhibitors of ATR, CHK1 and WEE1 caused a range of single agent cytotoxicity to cervical 

cancer cells that was independent of HR-HPV, p53 or pRB status. The cervical cancer cell 

lines showed variable expressions of checkpoint and DDR proteins and clinical samples 

showed a range of expression of ATR and CHK1. Because the spectrum of differences in 

cytotoxicity and protein levels was quite narrow, no clear determinants of single agent 

activity to PF-477736 and MK-1775 were identified. Nevertheless, ATM deficiency appeared 

to correlate with VE-821 sensitivity, in keeping with prior reports.  

 

 VE-821 sensitised cervical cancer cells lines to cisplatin and IR, independent of HR-HPV, p53 

or pRB status and to a greater extent than either PF-477736 and MK-1775 at concentrations 

that caused broadly similar levels of target enzyme inhibition, suggesting that this is the 

most promising candidate for future studies. This sensitisation was greatest for cisplatin and 

this is consistent with cisplatin induced DNA lesions causing greater replication stress and 

dependence on ATR signalling to cell cycle checkpoints and DNA repair than lesions typically 

resulting from IR.  

 

Cell cycle analysis suggests that intra-S events predominate in the cell lines’ response to 

cisplatin induced DNA damage.  VE-821 and PF-477736 increased cisplatin induced S-phase 

arrest in some cells but attenuated it in others and this was not related to the extent of 

cisplatin sensitisation by these drugs. It seems likely, therefore that cisplatin sensitisation by 

ATR pathway inhibition is not solely dependent on intra-S or G2/M cell cycle checkpoint 
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abrogation but may be influenced by a balance between the effects of pathway inhibition 

on checkpoint and DNA repair pathways (Figure 8.1). The repair pathways that may 

influence this balance have not been determined in these investigations.  

 

 

Figure 8.1 Schematic representation of proposed balance of DNA damage checkpoint and 

repair reactions influencing cell cycle progression in response to DNA damage. 

ATR-CHK1-WEE1 inhibition is likely to lead to abrogation of S-phase arrest in cells. The 
relative effect of ATR-CHK1-WEE1 inhibition on DNA repair (for example on HRR or NHEJ 
function) is likely to influence the cells ability to overcome S-phase arrest and 
accumulations. 
 

 

8.2 Future directions 

Whilst the investigations described in this thesis did not identify clear determinants of 

sensitivity to ATR, CHK1 and WEE1 inhibitors, some associations between the cell lines’ 

response to either single agent inhibitors or their sensitisation of cisplatin and IR and 

baseline protein expressions are worthy of expansion in wider studies. These include: 

 

1. The relationship between ATM and DNA-PKcs expression and VE-821 single agent 

cytotoxicity. Despite some conflict with existing literature, the presence of potential 
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relationships between these enzyme expressions and cells’ sensitivity to ATR 

inhibitors may provide a useful biomarker for future clinical use. 

2. MK-1775 sensitisation of cisplatin and expression of WEE1. Though MK-1775 was, 

overall a poor sensitiser of cisplatin a strong correlation with WEE1 expression 

suggests that future studies using this agent should be targeted at cells with WEE1 

overexpression for maximum effect. 

 

Cisplatin induced S-phase arrest was not uniformly attenuated by the inhibitors across the 

cell line panel it is likely therefore that rather than abrogation of cell cycle checkpoints, 

some other function of ATR, CHK1 and to a lesser extent WEE1 are responsible for chemo-

sensitisation. Investigation of the effects of ATR, CHK1 and WEE1 inhibition on DNA repair 

mechanisms implicated in the response to cisplatin and IR induced DNA damage 

(particularly HRR and NHEJ) may provide further insight into the reasons for the differences 

in the cell cycle responses seen and help identify useful determinants of sensitivity for 

future exploitation. Furthermore, investigations aimed at establishing the cell cycle effects 

of IR and IR + inhibitor combinations are needed. This is likely to provide further insight into 

the differences seen between IR and cisplatin with regard to both the cervical cancer cells 

intrinsic sensitivity to these agents and their sensitisation to them by ATR, CHK1 or WEE1 

inhibitors.   

 

There are currently over 70 ongoing early-phase clinical trials of ATR, CHK1 and WEE1 

inhibitors as monotherapy or in combinations with chemotherapy agents or IR 

(www.clinicaltrials.gov). None specifically targets cervical cancer, though patients with 

advanced cervical cancer may be included in cohorts of patients with solid organ tumours. 

Ultimately, an understanding of the mechanisms involved in the sensitivity to these 

inhibitors or their sensitisation of standard of care therapies will enable better 

interpretation of these clinical trial results and targeting of patients who are likely to receive 

maximum benefits from these therapies.  

 

  

 

 



 

 166 

 

 

 

  



 

 167 

References 

 
AARTS, M., BAJRAMI, I., HERRERA-ABREU, M. T., ELLIOTT, R., BROUGH, R., 

ASHWORTH, A., LORD, C. J. & TURNER, N. C. 2015. Functional Genetic 
Screen Identifies Increased Sensitivity to WEE1 Inhibition in Cells with Defects 
in Fanconi Anemia and HR Pathways. Mol Cancer Ther, 14, 865-76. 

 
ABDEL-FATAH, T. M., ARORA, A., MOSELEY, P., COVENEY, C., PERRY, C., 

JOHNSON, K., KENT, C., BALL, G., CHAN, S. & MADHUSUDAN, S. 2014. 
ATM, ATR and DNA-PKcs expressions correlate to adverse clinical outcomes 
in epithelial ovarian cancers. BBA Clin, 2, 10-7. 

 
ANDREASSEN, P. R., D'ANDREA, A. D. & TANIGUCHI, T. 2004. ATR couples 

FANCD2 monoubiquitination to the DNA-damage response. Genes & 

Development, 18, 1958-1963. 
 
ARTIMO P, J. M., ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, 

FLEGEL V, FORTIER A, GASTEIGER E, GROSDIDIER A, HERNANDEZ C, 
IOANNIDIS V, KUZNETSOV D, LIECHTI R, MORETTI S, MOSTAGUIR K, 
REDASCHI N, ROSSIER G, XENARIOS I, AND STOCKINGER H. 2012. 
ExPASy Bioinformatics Resource Portal [Online]. Swiss Institute of 
Bioinformatics. Available: https://web.expasy.org/cellosaurus/CVCL_0030 
[Accessed 2nd February 2019]. 

 
AZORSA, D. O., GONZALES, I. M., BASU, G. D., CHOUDHARY, A., ARORA, S., 

BISANZ, K. M., KIEFER, J. A., HENDERSON, M. C., TRENT, J. M., VON 
HOFF, D. D. & MOUSSES, S. 2009. Synthetic lethal RNAi screening identifies 
sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med, 
7, 43. 

 
BALL, H. L., EHRHARDT, M. R., MORDES, D. A., GLICK, G. G., CHAZIN, W. J. & 

CORTEZ, D. 2007. Function of a conserved checkpoint recruitment domain in 
ATRIP proteins. Molecular and Cellular Biology, 27, 3367-3377. 

 
BARTUCCI, M., SVENSSON, S., ROMANIA, P., DATTILO, R., PATRIZII, M., 

SIGNORE, M., NAVARRA, S., LOTTI, F., BIFFONI, M., PILOZZI, E., 
DURANTI, E., MARTINELLI, S., RINALDO, C., ZEUNER, A., MAUGERI-
SACCA, M., ERAMO, A. & DE MARIA, R. 2012. Therapeutic targeting of Chk1 
in NSCLC stem cells during chemotherapy. Cell Death Differ, 19, 768-78. 

 
BECK, H., NAHSE-KUMPF, V., LARSEN, M. S. Y., O'HANLON, K. A., PATZKE, S., 

HOLMBERG, C., MEJLVANG, J., GROTH, A., NIELSEN, O., SYLJUASEN, R. 
G. & SORENSEN, C. S. 2012. Cyclin-Dependent Kinase Suppression by 
WEE1 Kinase Protects the Genome through Control of Replication Initiation 
and Nucleotide Consumption. Molecular and Cellular Biology, 32, 4226-4236. 

 
BERTOLI, C., SKOTHEIM, J. M. & DE BRUIN, R. A. 2013. Control of cell cycle 

transcription during G1 and S phases. Nat Rev Mol Cell Biol, 14, 518-28. 



 

 168 

BHATLA, N., AOKI, D., SHARMA, D. N. & SANKARANARAYANAN, R. 2018. Cancer 
of the cervix uteri. Int J Gynaecol Obstet, 143 Suppl 2, 22-36. 

 
BIZZARRI, N., GHIRARDI, V., ALESSANDRI, F., VENTURINI, P. L., VALENZANO 

MENADA, M., RUNDLE, S., LEONE ROBERTI MAGGIORE, U. & FERRERO, 
S. 2016. Bevacizumab for the treatment of cervical cancer. Expert Opin Biol 

Ther, 16, 407-19. 
 
BLASINA, A., HALLIN, J., CHEN, E., ARANGO, M. E., KRAYNOV, E., REGISTER, J., 

GRANT, S., NINKOVIC, S., CHEN, P., NICHOLS, T., O'CONNOR, P. & 
ANDERES, K. 2008. Breaching the DNA damage checkpoint via PF-00477736, 
a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther, 7, 
2394-404. 

 
BOSCH, F. X., MANOS, M. M., MUNOZ, N., SHERMAN, M., JANSEN, A. M., PETO, 

J., SCHIFFMAN, M. H., MORENO, V., KURMAN, R. & SHAH, K. V. 1995. 
Prevalence of human papillomavirus in cervical cancer: a worldwide 
perspective. International biological study on cervical cancer (IBSCC) Study 
Group. J Natl Cancer Inst, 87, 796-802. 

 
BRAY, F., FERLAY, J., SOERJOMATARAM, I., SIEGEL, R. L., TORRE, L. A. & 

JEMAL, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of 
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer 

J Clin, 68, 394-424. 
 
BRIDGES, K. A., HIRAI, H., BUSER, C. A., BROOKS, C., LIU, H., BUCHHOLZ, T. A., 

MOLKENTINE, J. M., MASON, K. A. & MEYN, R. E. 2011. MK-1775, a novel 
Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin 

Cancer Res, 17, 5638-48. 
 
BRISTOW, R. G. & HILL, R. P. 2008. Hypoxia and metabolism. Hypoxia, DNA repair 

and genetic instability. Nat Rev Cancer, 8, 180-92. 
 
BROWN, E. J. & BALTIMORE, D. 2000. ATR disruption leads to chromosomal 

fragmentation and early embryonic lethality. Genes & Development, 14, 397-
402. 

 
BRYANT, C., RAWLINSON, R. & MASSEY, A. J. 2014. Chk1 inhibition as a novel 

therapeutic strategy for treating triple-negative breast and ovarian cancers. 
BMC Cancer, 14, 570. 

 
BRYANT, H. E., SCHULTZ, N., THOMAS, H. D., PARKER, K. M., FLOWER, D., 

LOPEZ, E., KYLE, S., MEUTH, M., CURTIN, N. J. & HELLEDAY, T. 2005. 
Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) 
polymerase. Nature, 434, 913-7. 

 
BUISSON, R., NIRAJ, J., RODRIGUE, A., HO, C. K., KREUZER, J., FOO, T. K., 

HARDY, E. J., DELLAIRE, G., HAAS, W., XIA, B., MASSON, J. Y. & ZOU, L. 
2017. Coupling of Homologous Recombination and the Checkpoint by ATR. 
Mol Cell, 65, 336-346. 



 

 169 

BURROWS, A. E. & ELLEDGE, S. J. 2008. How ATR turns on: TopBP1 goes on 
ATRIP with ATR. Genes Dev, 22, 1416-21. 

 
CAIRNS, R. A. & HILL, R. P. 2004. Acute hypoxia enhances spontaneous lymph node 

metastasis in an orthotopic murine model of human cervical carcinoma. Cancer 

Res, 64, 2054-61. 
 
CANCER GENOME ATLAS RESEARCH 2017. Integrated genomic and molecular 

characterization of cervical cancer. Nature, 543, 378-384. Available: 
https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga. Accessed November 2019. 

 
CARRASSA, L., BROGGINI, M., ERBA, E. & DAMIA, G. 2004. Chk1, but not Chk2, is 

involved in the cellular response to DNA damaging agents - Differential activity 
in cells expressing or not p53. Cell Cycle, 3, 1177-1181. 

 
CASTANON, A., LANDY, R., PESOLA, F., WINDRIDGE, P. & SASIENI, P. 2018. 

Prediction of cervical cancer incidence in England, UK, up to 2040, under four 
scenarios: a modelling study. Lancet Public Health, 3, e34-e43. 

 
CASTANON, A., LANDY, R. & SASIENI, P. D. 2016. Is cervical screening preventing 

adenocarcinoma and adenosquamous carcinoma of the cervix? Int J Cancer, 
139, 1040-5. 

 
CHARRIER, J. D., DURRANT, S. J., GOLEC, J. M., KAY, D. P., KNEGTEL, R. M., 

MACCORMICK, S., MORTIMORE, M., O'DONNELL, M. E., PINDER, J. L., 
REAPER, P. M., RUTHERFORD, A. P., WANG, P. S., YOUNG, S. C. & 
POLLARD, J. R. 2011. Discovery of potent and selective inhibitors of ataxia 
telangiectasia mutated and Rad3 related (ATR) protein kinase as potential 
anticancer agents. J Med Chem, 54, 2320-30. 

 
CHEN, C. C., KENNEDY, R. D., SIDI, S., LOOK, A. T. & D'ANDREA, A. 2009. CHK1 

inhibition as a strategy for targeting fanconi anemia (FA) DNA repair pathway 
deficient tumors. Molecular Cancer, 8. 

 
CHEN, G., GHARIB, T. G., HUANG, C. C., TAYLOR, J. M., MISEK, D. E., KARDIA, 

S. L., GIORDANO, T. J., IANNETTONI, M. D., ORRINGER, M. B., HANASH, 
S. M. & BEER, D. G. 2002. Discordant protein and mRNA expression in lung 
adenocarcinomas. Mol Cell Proteomics, 1, 304-13. 

 
CHEN, J. L., HUANG, C. Y., HUANG, Y. S., CHEN, R. J., WANG, C. W., CHEN, Y. 

H., CHENG, J. C., CHENG, A. L. & KUO, S. H. 2014. Differential clinical 
characteristics, treatment response and prognosis of locally advanced 
adenocarcinoma/adenosquamous carcinoma and squamous cell carcinoma of 
cervix treated with definitive radiotherapy. Acta Obstet Gynecol Scand, 93, 661-
8. 

 
CHEN, M. S., RYAN, C. E. & PIWNICA-WORMS, H. 2003. Chk1 kinase negatively 

regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. 
Molecular and Cellular Biology, 23, 7488-7497. 



 

 170 

 
CHEN, T., MIDDLETON, F. K., FALCON, S., REAPER, P. M., POLLARD, J. R. & 

CURTIN, N. J. 2015. Development of pharmacodynamic biomarkers for ATR 
inhibitors. Mol Oncol, 9, 463-72. 

 
CHEN, X., LOW, K. H., ALEXANDER, A., JIANG, Y., KARAKAS, C., HESS, K. R., 

CAREY, J. P. W., BUI, T. N., VIJAYARAGHAVAN, S., EVANS, K. W., YI, M., 
ELLIS, D. C., CHEUNG, K. L., ELLIS, I. O., FU, S., MERIC-BERNSTAM, F., 
HUNT, K. K. & KEYOMARSI, K. 2018. Cyclin E Overexpression Sensitizes 
Triple-Negative Breast Cancer to Wee1 Kinase Inhibition. Clin Cancer Res, 24, 
6594-6610. 

 
CHOI, J. H., LINDSEY-BOLTZ, L. A., KEMP, M., MASON, A. C., WOLD, M. S. & 

SANCAR, A. 2010. Reconstitution of RPA-covered single-stranded DNA-
activated ATR-Chk1 signaling. Proc Natl Acad Sci U S A, 107, 13660-5. 

CHOW, J. P. & POON, R. Y. 2013. The CDK1 inhibitory kinase MYT1 in DNA damage 
checkpoint recovery. Oncogene, 32, 4778-88. 

 
CIBULA, D., POTTER, R., PLANCHAMP, F., AVALL-LUNDQVIST, E., FISCHEROVA, 

D., HAIE MEDER, C., KOHLER, C., LANDONI, F., LAX, S., LINDEGAARD, J. 
C., MAHANTSHETTY, U., MATHEVET, P., MCCLUGGAGE, W. G., 
MCCORMACK, M., NAIK, R., NOUT, R., PIGNATA, S., PONCE, J., 
QUERLEU, D., RASPAGLIESI, F., RODOLAKIS, A., TAMUSSINO, K., 
WIMBERGER, P. & RASPOLLINI, M. R. 2018. The European Society of 
Gynaecological Oncology/European Society for Radiotherapy and 
Oncology/European Society of Pathology Guidelines for the Management of 
Patients With Cervical Cancer. Int J Gynecol Cancer, 28, 641-655. 

 
CICCIA, A. & ELLEDGE, S. J. 2010. The DNA damage response: making it safe to 

play with knives. Mol Cell, 40, 179-204. 
 
CIMPRICH, K. A. & CORTEZ, D. 2008. ATR: an essential regulator of genome 

integrity. Nature Reviews Molecular Cell Biology, 9, 616-627. 
 
CLIBY, W. A., LEWIS, K. A., LILLY, K. K. & KAUFMANN, S. H. 2002. S phase and G2 

arrests induced by topoisomerase I poisons are dependent on ATR kinase 
function. J Biol Chem, 277, 1599-606. 

 
CLIBY, W. A., ROBERTS, C. J., CIMPRICH, K. A., STRINGER, C. M., LAMB, J. R., 

SCHREIBER, S. L. & FRIEND, S. H. 1998. Overexpression of a kinase-inactive 
ATR protein causes sensitivity to DNA-damaging agents and defects in cell 
cycle checkpoints. Embo Journal, 17, 159-169. 

 
COOK, R., ZOUMPOULIDOU, G., LUCZYNSKI, M. T., RIEGER, S., MOQUET, J., 

SPANSWICK, V. J., HARTLEY, J. A., ROTHKAMM, K., HUANG, P. H. & 
MITTNACHT, S. 2015. Direct Involvement of Retinoblastoma Family Proteins 
in DNA Repair by Non-homologous End-Joining. Cell Reports, 10, 2006-2018. 

CORTEZ, D., GUNTUKU, S., QIN, J. & ELLEDGE, S. J. 2001. ATR and ATRIP: 
Partners in checkpoint signaling. Science, 294, 1713-1716. 

 



 

 171 

 
CRUET-HENNEQUART, S., VILLALAN, S., KACZMARCZYK, A., O'MEARA, E., 

SOKOL, A. M. & CARTY, M. P. 2009. Characterization of the effects of cisplatin 
and carboplatin on cell cycle progression and DNA damage response activation 
in DNA polymerase eta-deficient human cells. Cell Cycle, 8, 3039-50. 

CRUK. 2019. Cancer Research UK [Online]. Available: 
https://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/cervical-cancer/mortality [Accessed May 
30th 2019]. 

 
CURTIN, N. J. 2012. DNA repair dysregulation from cancer driver to therapeutic target. 

Nature Reviews Cancer, 12, 801-817. 
 
DAI, Y. & GRANT, S. 2010. New Insights into Checkpoint Kinase 1 in the DNA 

Damage Response Signaling Network. Clinical Cancer Research, 16, 376-383. 
DE GOOIJER, M. C., VAN DEN TOP, A., BOCKAJ, I., BEIJNEN, J. H., WURDINGER, 

T. & VAN TELLINGEN, O. 2017. The G2 checkpoint-a node-based molecular 
switch. FEBS Open Bio, 7, 439-455. 

DE SOUSA ABREU, R., PENALVA, L. O., MARCOTTE, E. M. & VOGEL, C. 2009. 
Global signatures of protein and mRNA expression levels. Mol Biosyst, 5, 1512-
26. 

 
DE VILLIERS, E. M. 2013. Cross-roads in the classification of papillomaviruses. 

Virology, 445, 2-10. 
 
DE WITT HAMER, P. C., MIR, S. E., NOSKE, D., VAN NOORDEN, C. J. & 

WURDINGER, T. 2011. WEE1 kinase targeting combined with DNA-damaging 
cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res, 17, 4200-7. 

DEANS, A. J. & WEST, S. C. 2011. DNA interstrand crosslink repair and cancer. 
Nature Reviews Cancer, 11, 467-480. 

 
DEMARCQ, C., BUNCH, R. T., CRESWELL, D. & EASTMAN, A. 1994. The role of 

cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary 
cells. Cell Growth Differ, 5, 983-93. 

 
DICK, F. A. & RUBIN, S. M. 2013. Molecular mechanisms underlying RB protein 

function. Nature Reviews Molecular Cell Biology, 14, 297-306. 
 
DILLON, M. T., BARKER, H. E., PEDERSEN, M., HAFSI, H., BHIDE, S. A., 

NEWBOLD, K. L., NUTTING, C. M., MCLAUGHLIN, M. & HARRINGTON, K. J. 
2017. Radiosensitization by the ATR Inhibitor AZD6738 through Generation of 
Acentric Micronuclei. Mol Cancer Ther, 16, 25-34. 

 
DILLON, M. T. E., A.; ELLIS, S.; MOHAMMED, K.; GROVE, L. G.; MCLELLAN, L.; 

SMITH, S.A.; ROSS, G.; ADELEKE, S.; WOO, K.; JOSEPHIDES, E.; SPICER, 
J. F.;  FORSTER, M. D.; HARRINGTON, K. J. 2017. A Phase I dose- escalation 
study of ATR inhibitor monotherapy with AZD6738 in 

advanced solid tumors (PATRIOT Part A) (Abstract). Cancer Res. , 77. 
DO, K., WILSKER, D., JI, J., ZLOTT, J., FRESHWATER, T., KINDERS, R. J., 

COLLINS, J., CHEN, A. P., DOROSHOW, J. H. & KUMMAR, S. 2015. Phase I 



 

 172 

Study of Single-Agent AZD1775 (MK-1775), a Wee1 Kinase Inhibitor, in 
Patients With Refractory Solid Tumors. J Clin Oncol, 33, 3409-15. 

 
DONAT, U., ROTHER, J., SCHAFER, S., HESS, M., HARTL, B., KOBER, C., 

LANGBEIN-LAUGWITZ, J., STRITZKER, J., CHEN, N. G., AGUILAR, R. J., 
WEIBEL, S. & SZALAY, A. A. 2014. Characterization of metastasis formation 
and virotherapy in the human C33A cervical cancer model. PLoS One, 9, 
e98533. 

 
DOORBAR, J., EGAWA, N., GRIFFIN, H., KRANJEC, C. & MURAKAMI, I. 2015. 

Human papillomavirus molecular biology and disease association. Rev Med 

Virol, 25 Suppl 1, 2-23. 
 
EASTMAN, A. 1990. Activation of programmed cell death by anticancer agents: 

cisplatin as a model system. Cancer Cells, 2, 275-80. 
 
EUSTERMANN, S., WU, W. F., LANGELIER, M. F., YANG, J. C., EASTON, L. E., 

RICCIO, A. A., PASCAL, J. M. & NEUHAUS, D. 2015. Structural Basis of 
Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Mol 

Cell, 60, 742-754. 
 
FARMER, H., MCCABE, N., LORD, C. J., TUTT, A. N., JOHNSON, D. A., 

RICHARDSON, T. B., SANTAROSA, M., DILLON, K. J., HICKSON, I., 
KNIGHTS, C., MARTIN, N. M., JACKSON, S. P., SMITH, G. C. & ASHWORTH, 
A. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic 
strategy. Nature, 434, 917-21. 

 
FLATTEN, K., DAI, N. T., VROMAN, B. T., LOEGERING, D., ERLICHMAN, C., 

KARNITZ, L. M. & KAUFMANN, S. H. 2005. The role of checkpoint kinase 1 in 
sensitivity to topoisomerase I poisons. Journal of Biological Chemistry, 280, 
14349-14355. 

 
FOKAS, E., PREVO, R., POLLARD, J. R., REAPER, P. M., CHARLTON, P. A., 

CORNELISSEN, B., VALLIS, K. A., HAMMOND, E. M., OLCINA, M. M., 
GILLIES MCKENNA, W., MUSCHEL, R. J. & BRUNNER, T. B. 2012. Targeting 
ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of 
pancreatic tumors to radiation. Cell Death Dis, 3, e441. 

 
FOOTE, K. M., BLADES, K., CRONIN, A., FILLERY, S., GUICHARD, S. S., HASSALL, 

L., HICKSON, I., JACQ, X., JEWSBURY, P. J., MCGUIRE, T. M., NISSINK, J. 
W., ODEDRA, R., PAGE, K., PERKINS, P., SULEMAN, A., TAM, K., 
THOMMES, P., BROADHURST, R. & WOOD, C. 2013. Discovery of 4-{4-[(3R)-
3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-y l}-1H-
indole (AZ20): a potent and selective inhibitor of ATR protein kinase with 
monotherapy in vivo antitumor activity. J Med Chem, 56, 2125-38. 

 
FRANKEN, N. A., RODERMOND, H. M., STAP, J., HAVEMAN, J. & VAN BREE, C. 

2006. Clonogenic assay of cells in vitro. Nat Protoc, 1, 2315-9. 
 



 

 173 

FRIEDEL, A. M., PIKE, B. L. & GASSER, S. M. 2009. ATR/Mec1: coordinating fork 
stability and repair. Curr Opin Cell Biol, 21, 237-44. 

 
GANZINELLI, M., CARRASSA, L., CRIPPA, F., TAVECCHIO, M., BROGGINI, M. & 

DAMIA, G. 2008. Checkpoint kinase 1 down-regulation by an inducible small 
interfering RNA expression system sensitized in vivo tumors to treatment with 
5-fluorouracil. Clinical Cancer Research, 14, 5131-5141. 

 
GILAD, O., NABET, B. Y., RAGLAND, R. L., SCHOPPY, D. W., SMITH, K. D., 

DURHAM, A. C. & BROWN, E. J. 2010. Combining ATR Suppression with 
Oncogenic Ras Synergistically Increases Genomic Instability, Causing 
Synthetic Lethality or Tumorigenesis in a Dosage-Dependent Manner. Cancer 

Research, 70, 9693-9702. 
 
GUZI, T. J., PARUCH, K., DWYER, M. P., LABROLI, M., SHANAHAN, F., DAVIS, N., 

TARICANI, L., WISWELL, D., SEGHEZZI, W., PENAFLOR, E., BHAGWAT, B., 
WANG, W., GU, D., HSIEH, Y., LEE, S., LIU, M. & PARRY, D. 2011. Targeting 
the replication checkpoint using SCH 900776, a potent and functionally 
selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther, 
10, 591-602. 

 
HALL, A. B., NEWSOME, D., WANG, Y., BOUCHER, D. M., EUSTACE, B., GU, Y., 

HARE, B., JOHNSON, M. A., MILTON, S., MURPHY, C. E., TAKEMOTO, D., 
TOLMAN, C., WOOD, M., CHARLTON, P., CHARRIER, J. D., FUREY, B., 
GOLEC, J., REAPER, P. M. & POLLARD, J. R. 2014. Potentiation of tumor 
responses to DNA damaging therapy by the selective ATR inhibitor VX-970. 
Oncotarget, 5, 5674-85. 

 
HARRIS, P. S., VENKATARAMAN, S., ALIMOVA, I., BIRKS, D. K., BALAKRISHNAN, 

I., CRISTIANO, B., DONSON, A. M., DUBUC, A. M., TAYLOR, M. D., 
FOREMAN, N. K., REIGAN, P. & VIBHAKAR, R. 2014. Integrated genomic 
analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic 
target in medulloblastoma. Molecular Cancer, 13. 

 
HIRAI, H., IWASAWA, Y., OKADA, M., ARAI, T., NISHIBATA, T., KOBAYASHI, M., 

KIMURA, T., KANEKO, N., OHTANI, J., YAMANAKA, K., ITADANI, H., 
TAKAHASHI-SUZUKI, I., FUKASAWA, K., OKI, H., NAMBU, T., JIANG, J., 
SAKAI, T., ARAKAWA, H., SAKAMOTO, T., SAGARA, T., YOSHIZUMI, T., 
MIZUARAI, S. & KOTANI, H. 2009. Small-molecule inhibition of Wee1 kinase 
by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging 
agents. Molecular Cancer Therapeutics, 8, 2992-3000. 

 
HOEIJMAKERS, J. H. J. 2001. DNA repair mechanisms. Maturitas, 38, 17-22. 
HOFFMAN, R. M. 1991. In vitro sensitivity assays in cancer: a review, analysis, and 

prognosis. J Clin Lab Anal, 5, 133-43. 
 
HONG, D., INFANTE, J., JANKU, F., JONES, S., NGUYEN, L. M., BURRIS, H., 

NAING, A., BAUER, T. M., PIHA-PAUL, S., JOHNSON, F. M., KURZROCK, R., 
GOLDEN, L., HYNES, S., LIN, J., LIN, A. B. & BENDELL, J. 2016. Phase I 



 

 174 

Study of LY2606368, a Checkpoint Kinase 1 Inhibitor, in Patients With 
Advanced Cancer. J Clin Oncol, 34, 1764-71. 

 
HUANG, P. H., COOK, R. & MITTNACHT, S. 2015. RB in DNA repair. Oncotarget, 6, 

20746-20747. 
 
HUIBREGTSE, J. M., SCHEFFNER, M., BEAUDENON, S. & HOWLEY, P. M. 1995. 

A family of proteins structurally and functionally related to the E6-AP ubiquitin-
protein ligase. Proc Natl Acad Sci U S A, 92, 5249. 

 
ITAMOCHI, H., NISHIMURA, M., OUMI, N., KATO, M., OISHI, T., SHIMADA, M., 

SATO, S., NANIWA, J., SATO, S., KUDOH, A., KIGAWA, J. & HARADA, T. 
2014. Checkpoint kinase inhibitor AZD7762 overcomes cisplatin resistance in 
clear cell carcinoma of the ovary. Int J Gynecol Cancer, 24, 61-9. 

 
IYER, D. R. & RHIND, N. 2017. The Intra-S Checkpoint Responses to DNA Damage. 

Genes (Basel), 8. 
JEON, S., ALLEN-HOFFMANN, B. L. & LAMBERT, P. F. 1995. Integration of human 

papillomavirus type 16 into the human genome correlates with a selective 
growth advantage of cells. J Virol, 69, 2989-97. 

 
JIRICNY, J. 2006. The multifaceted mismatch-repair system. Nature Reviews 

Molecular Cell Biology, 7, 335-346. 
 
KALU, N. N., MAZUMDAR, T., PENG, S., SHEN, L., SAMBANDAM, V., RAO, X., XI, 

Y., LI, L., QI, Y., GLEBER-NETTO, F. O., PATEL, A., WANG, J., FREDERICK, 
M. J., MYERS, J. N., PICKERING, C. R. & JOHNSON, F. M. 2017. Genomic 
characterization of human papillomavirus-positive and -negative human 
squamous cell cancer cell lines. Oncotarget, 8, 86369-86383. 

 
KASTAN, M. B. & BARTEK, J. 2004. Cell-cycle checkpoints and cancer. Nature, 432, 

316-323. 
 
KATANYOO, K., SANGUANRUNGSIRIKUL, S. & MANUSIRIVITHAYA, S. 2012. 

Comparison of treatment outcomes between squamous cell carcinoma and 
adenocarcinoma in locally advanced cervical cancer. Gynecol Oncol, 125, 292-
6. 

 
KAUR, G. & DUFOUR, J. M. 2012. Cell lines: Valuable tools or useless artifacts. 

Spermatogenesis, 2, 1-5. 
 
KIELBIK, M., KRZYZANOWSKI, D., PAWLIK, B. & KLINK, M. 2018. Cisplatin-induced 

ERK1/2 activity promotes G1 to S phase progression which leads to 
chemoresistance of ovarian cancer cells. Oncotarget, 9, 19847-19860. 

 
KING, C., DIAZ, H., BARNARD, D., BARDA, D., CLAWSON, D., BLOSSER, W., COX, 

K., GUO, S. & MARSHALL, M. 2014. Characterization and preclinical 
development of LY2603618: a selective and potent Chk1 inhibitor. Invest New 

Drugs, 32, 213-26. 
 



 

 175 

KNIGHT, Z. A. & SHOKAT, K. M. 2005. Features of selective kinase inhibitors. Chem 

Biol, 12, 621-37. 
 
KRAJEWSKA, M., FEHRMANN, R. S., SCHOONEN, P. M., LABIB, S., DE VRIES, E. 

G., FRANKE, L. & VAN VUGT, M. A. 2015. ATR inhibition preferentially targets 
homologous recombination-deficient tumor cells. Oncogene, 34, 3474-81. 

 
KUMAGAI, A. & DUNPHY, W. G. 2000. Claspin, a novel protein required for the 

activation of Chk1 during a DNA replication checkpoint response in Xenopus 
egg extracts. Molecular Cell, 6, 839-849. 

 
KWOK, M., DAVIES, N., AGATHANGGELOU, A., SMITH, E., OLDREIVE, C., 

PETERMANN, E., STEWART, G., BROWN, J., LAU, A., PRATT, G., PARRY, 
H., TAYLOR, M., MOSS, P., HILLMEN, P. & STANKOVIC, T. 2016. ATR 
inhibition induces synthetic lethality and overcomes chemoresistance in TP53- 
or ATM-defective chronic lymphocytic leukemia cells. Blood, 127, 582-95. 

 
LANDY, R., CASTANON, A., HAMILTON, W., LIM, A. W., DUDDING, N., 

HOLLINGWORTH, A. & SASIENI, P. D. 2016. Evaluating cytology for the 
detection of invasive cervical cancer. Cytopathology, 27, 201-9. 

 
LEE, J. M. 2016. A phase II study of the cell cyclecheckpoint kinases 1 and 2 inhibitor 

(LY2606368;Prexasertib monomesylate monohydrate) in sporadichigh- grade 
serous ovarian cancer (HGSOC) andgermline BRCA mutation- associated 
ovarian cancer(gBRCAm+ OvCa). . Ann. Oncol. , 27, 8550. 

LEIJEN, S., VAN GEEL, R. M., SONKE, G. S., DE JONG, D., ROSENBERG, E. H., 
MARCHETTI, S., PLUIM, D., VAN WERKHOVEN, E., ROSE, S., LEE, M. A., 
FRESHWATER, T., BEIJNEN, J. H. & SCHELLENS, J. H. 2016. Phase II Study 
of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated 
Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. 
J Clin Oncol, 34, 4354-4361. 

 
LI, R. & SHEN, Y. 2013. An old method facing a new challenge: re-visiting 

housekeeping proteins as internal reference control for neuroscience research. 
Life Sci, 92, 747-51. 

 
LIU, Q. H., GUNTUKU, S., CUI, X. S., MATSUOKA, S., CORTEZ, D., TAMAI, K., LUO, 

G. B., CARATTINI-RIVERA, S., DEMAYO, F., BRADLEY, A., DONEHOWER, 
L. A. & ELLEDGE, S. J. 2000. Chk1 is an essential kinase that is regulated by 
Atr and required for the G(2)/M DNA damage checkpoint. Genes & 

Development, 14, 1448-1459. 
 
LIU, S., BEKKER-JENSEN, S., MAILAND, N., LUKAS, C., BARTEK, J. & LUKAS, J. 

2006. Claspin operates downstream of TopBP1 to direct ATR signaling towards 
Chk1 activation. Molecular and Cellular Biology, 26, 6056-6064. 

 
LIVNEH, I., COHEN-KAPLAN, V., COHEN-ROSENZWEIG, C., AVNI, N. & 

CIECHANOVER, A. 2016. The life cycle of the 26S proteasome: from birth, 
through regulation and function, and onto its death. Cell Res, 26, 869-85. 

 



 

 176 

LODISH H, B. A., ZIPURSKY SL, MOLECULAR CELL BIOLOGY. 4TH EDITION. 
NEW YORK: W. H. FREEMAN; 2000. SECTION 12.2, THE DNA 
REPLICATION MACHINERY. 2000. The DNA Replication Machinery. 4th 
Edition. Molecular Cell Biology. New York: W. H. Freeman. 

 
LONGUET, M., BEAUDENON, S. & ORTH, G. 1996. Two novel genital human 

papillomavirus (HPV) types, HPV68 and HPV70, related to the potentially 
oncogenic HPV39. J Clin Microbiol, 34, 738-44. 

 
LORD, C. J. & ASHWORTH, A. 2017. PARP inhibitors: Synthetic lethality in the clinic. 

Science, 355, 1152-1158. 
 
LUCEY, B. P., NELSON-REES, W. A. & HUTCHINS, G. M. 2009. Henrietta Lacks, 

HeLa cells, and cell culture contamination. Arch Pathol Lab Med, 133, 1463-7. 
 
MACDOUGALL, C. A., BYUN, T. S., VAN, C., YEE, M. C. & CIMPRICH, K. A. 2007. 

The structural determinants of checkpoint activation. Genes & Development, 
21, 898-903. 

 
MAHANEY, B. L., MEEK, K. & LEES-MILLER, S. P. 2009. Repair of ionizing radiation-

induced DNA double-strand breaks by non-homologous end-joining. Biochem 

J, 417, 639-50. 
 
MARÉCHAL, A. & ZOU, L. 2013. DNA Damage Sensing by the ATM and ATR 

Kinases. Cold Spring Harbor Perspectives in Biology, 5, a012716. 
 
MARTEIJN, J. A., LANS, H., VERMEULEN, W. & HOEIJMAKERS, J. H. J. 2014. 

Understanding nucleotide excision repair and its roles in cancer and ageing. 
Nature Reviews Molecular Cell Biology, 15, 465-481. 

 
MASSAGUE, J. 2004. G1 cell-cycle control and cancer. Nature, 432, 298-306. 
 
MASSEY, A. J., STEPHENS, P., RAWLINSON, R., MCGURK, L., PLUMMER, R. & 

CURTIN, N. J. 2016. mTORC1 and DNA-PKcs as novel molecular 
determinants of sensitivity to Chk1 inhibition. Molecular Oncology, 10, 101-112. 

 
MASSEY, A. J., STOKES, S., BROWNE, H., FOLOPPE, N., FIUMANA, A., SCRACE, 

S., FALLOWFIELD, M., BEDFORD, S., WEBB, P., BAKER, L., CHRISTIE, M., 
DRYSDALE, M. J. & WOOD, M. 2015. Identification of novel, in vivo active 
Chk1 inhibitors utilizing structure guided drug design. Oncotarget, 6, 35797-
812. 

 
MATHESON, C. J., BACKOS, D. S. & REIGAN, P. 2016. Targeting WEE1 Kinase in 

Cancer. Trends Pharmacol Sci, 37, 872-881. 
 
MATHEW, A. & GEORGE, P. S. 2009. Trends in incidence and mortality rates of 

squamous cell carcinoma and adenocarcinoma of cervix--worldwide. Asian Pac 

J Cancer Prev, 10, 645-50. 
 



 

 177 

MATTHEWS, T. P., JONES, A. M. & COLLINS, I. 2013. Structure-based design, 
discovery and development of checkpoint kinase inhibitors as potential 
anticancer therapies. Expert Opin Drug Discov, 8, 621-40. 

 
MCBRIDE, A. A. & WARBURTON, A. 2017. The role of integration in oncogenic 

progression of HPV-associated cancers. PLoS Pathog, 13, e1006211. 
 
MIDDLETON, F. K., PATTERSON, M. J., ELSTOB, C. J., FORDHAM, S., HERRIOTT, 

A., WADE, M. A., MCCORMICK, A., EDMONDSON, R., MAY, F. E. B., ALLAN, 
J. M., POLLARD, J. R. & CURTIN, N. J. 2015. Common cancer-associated 
imbalances in the DNA damage response confer sensitivity to single agent ATR 
inhibition. Oncotarget, 6, 32396-32409. 

 
MIDDLETON, F. K., POLLARD, J. R. & CURTIN, N. J. 2018. The Impact of p53 

Dysfunction in ATR Inhibitor Cytotoxicity and Chemo- and Radiosensitisation. 
Cancers (Basel), 10. 

MILLER, B. E., MILLER, F. R. & HEPPNER, G. H. 1984. Assessing tumor drug 
sensitivity by a new in vitro assay which preserves tumor heterogeneity and 
subpopulation interactions. J Cell Physiol Suppl, 3, 105-16. 

 
MITCHELL, J. B., CHOUDHURI, R., FABRE, K., SOWERS, A. L., CITRIN, D., 

ZABLUDOFF, S. D. & COOK, J. A. 2010. In vitro and in vivo radiation 
sensitization of human tumor cells by a novel checkpoint kinase inhibitor, 
AZD7762. Clin Cancer Res, 16, 2076-84. 

 
MIZUARAI, S., YAMANAKA, K., ITADANI, H., ARAI, T., NISHIBATA, T., HIRAI, H. & 

KOTANI, H. 2009. Discovery of gene expression-based pharmacodynamic 
biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol 

Cancer, 8, 34. 
 
MOHNI, K. N., KAVANAUGH, G. M. & CORTEZ, D. 2014. ATR pathway inhibition is 

synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res, 74, 
2835-45. 

 
MOLINARI, M. 2000. Cell cycle checkpoints and their inactivation in human cancer. 

Cell Proliferation, 33, 261-274. 
 
MONTANO, R., CHUNG, I., GARNER, K. M., PARRY, D. & EASTMAN, A. 2012. 

Preclinical development of the novel Chk1 inhibitor SCH900776 in combination 
with DNA-damaging agents and antimetabolites. Mol Cancer Ther, 11, 427-38. 

 
MORGADO-PALACIN, I., DAY, A., MURGA, M., LAFARGA, V., ANTON, M. E., 

TUBBS, A., CHEN, H. T., ERGAN, A., ANDERSON, R., BHANDOOLA, A., 
PIKE, K. G., BARLAAM, B., CADOGAN, E., WANG, X., PIERCE, A. J., 
HUBBARD, C., ARMSTRONG, S. A., NUSSENZWEIG, A. & FERNANDEZ-
CAPETILLO, O. 2016. Targeting the kinase activities of ATR and ATM exhibits 
antitumoral activity in mouse models of MLL-rearranged AML. Sci Signal, 9, 
ra91. 

 



 

 178 

MORGAN, M. A., PARSELS, L. A., ZHAO, L., PARSELS, J. D., DAVIS, M. A., 
HASSAN, M. C., ARUMUGARAJAH, S., HYLANDER-GANS, L., MOROSINI, 
D., SIMEONE, D. M., CANMAN, C. E., NORMOLLE, D. P., ZABLUDOFF, S. 
D., MAYBAUM, J. & LAWRENCE, T. S. 2010. Mechanism of radiosensitization 
by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and 
inhibition of homologous recombinational DNA repair. Cancer Res, 70, 4972-
81. 

 
MUELLER, S. & HAAS-KOGAN, D. A. 2015. WEE1 Kinase As a Target for Cancer 

Therapy. Journal of Clinical Oncology, 33, 3485-+. 
 
MUELLER, S., HASHIZUME, R., YANG, X. D., KOLKOWITZ, I., OLOW, A. K., 

PHILLIPS, J., SMIRNOV, I., TOM, M. W., PRADOS, M. D., JAMES, C. D., 
BERGER, M. S., GUPTA, N. & HAAS-KOGAN, D. A. 2014. Targeting Wee1 for 
the treatment of pediatric high-grade gliomas. Neuro-Oncology, 16, 352-360. 

 
MUNGER, K., SCHEFFNER, M., HUIBREGTSE, J. M. & HOWLEY, P. M. 1992. 

Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene 
products. Cancer Surv, 12, 197-217. 

 
MUNGER, K., WERNESS, B. A., DYSON, N., PHELPS, W. C., HARLOW, E. & 

HOWLEY, P. M. 1989. Complex formation of human papillomavirus E7 proteins 
with the retinoblastoma tumor suppressor gene product. EMBO J, 8, 4099-105. 

 
MUNOZ, N., BOSCH, F. X., DE SANJOSE, S., HERRERO, R., CASTELLSAGUE, X., 

SHAH, K. V., SNIJDERS, P. J., MEIJER, C. J. & INTERNATIONAL AGENCY 
FOR RESEARCH ON CANCER MULTICENTER CERVICAL CANCER 
STUDY, G. 2003. Epidemiologic classification of human papillomavirus types 
associated with cervical cancer. N Engl J Med, 348, 518-27. 

 
MURGA, M., CAMPANER, S., LOPEZ-CONTRERAS, A. J., TOLEDO, L. I., SORIA, 

R., MONTANA, M. F., D'ARTISTA, L., SCHLEKER, T., GUERRA, C., GARCIA, 
E., BARBACID, M., HIDALGO, M., AMATI, B. & FERNANDEZ-CAPETILLO, O. 
2011. Exploiting oncogene-induced replicative stress for the selective killing of 
Myc-driven tumors. Nature Structural & Molecular Biology, 18, 1331-U38. 

 
NAM, E. A. & CORTEZ, D. 2011. ATR signalling: more than meeting at the fork. 

Biochem J, 436, 527-36. 
 
NGHIEM, P., PARK, P. K., KIM, Y. S., VAZIRI, C. & SCHREIBER, S. L. 2001. ATR 

inhibition selectively sensitizes G(1) checkpoint-deficient cells to lethal 
premature chromatin condensation. Proceedings of the National Academy of 

Sciences of the United States of America, 98, 9092-9097. 
 
NICKSON, C. M., MOORI, P., CARTER, R. J., RUBBI, C. P. & PARSONS, J. L. 2017. 

Misregulation of DNA damage repair pathways in HPV-positive head and neck 
squamous cell carcinoma contributes to cellular radiosensitivity. Oncotarget, 8, 
29963-29975. 

 



 

 179 

NIN, D. S., YEW, C. W., TAY, S. K. & DENG, L. W. 2014. Targeted silencing of 
MLL5beta inhibits tumor growth and promotes gamma-irradiation sensitization 
in HPV16/18-associated cervical cancers. Mol Cancer Ther, 13, 2572-82. 

 
NISHIDA, H., TATEWAKI, N., NAKAJIMA, Y., MAGARA, T., KO, K. M., HAMAMORI, 

Y. & KONISHI, T. 2009. Inhibition of ATR protein kinase activity by schisandrin 
B in DNA damage response. Nucleic Acids Res, 37, 5678-89. 

 
O'CARRIGAN B, J. D. M. L. M., PAPADATOS-PASTOS D,  BROWN J, TUNARIU N, 

PEREZ R,  GANEGODA M, RIISNAES R, FIGUEIREDO I, CARREIRA S, 
HARE B, YANG F, MCDERMOTT K, PENNEY M, POLLARD J, LOPEZ JS, 
BANERJI U, DE BONO JS, FIELDS SZ, YAP TA. 2016. Phase I trial of a first-
in-class ATR inhibitor VX-970 as monotherapy (mono) or in combination 
(combo) with carboplatin (CP) incorporating pharmacodynamics (PD) studies 
(Astract). Journal of Clinical Oncology, 34, s2054. 

 
O'CONNELL, M. J., RALEIGH, J. M., VERKADE, H. M. & NURSE, P. 1997. Chk1 is a 

wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 
phosphorylation. EMBO J, 16, 545-54. 

 
O'DRISCOLL, M., RUIZ-PEREZ, V. L., WOODS, C. G., JEGGO, P. A. & GOODSHIP, 

J. A. 2003. A splicing mutation affecting expression of ataxia-telangiectasia and 
Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet, 33, 497-
501. 

 
OKITA, N., MINATO, S., OHMI, E., TANUMA, S. & HIGAMI, Y. 2012. DNA damage-

induced CHK1 autophosphorylation at Ser296 is regulated by an intramolecular 
mechanism. FEBS Lett, 586, 3974-9. 

 
ORNTOFT, T. F., THYKJAER, T., WALDMAN, F. M., WOLF, H. & CELIS, J. E. 2002. 

Genome-wide study of gene copy numbers, transcripts, and protein levels in 
pairs of non-invasive and invasive human transitional cell carcinomas. Mol Cell 

Proteomics, 1, 37-45. 
 
OZA, A. 2015. An international, biomarker- directed, randomized, phase II trial of 

AZD1775 plus paclitaxel and carboplatin (P/C) for the treatment of women with 
platinum- sensitive, TP53-mutant ovarian cancer. Journal of Clinical Oncology 

33, 5506. 

OZA, V., ASHWELL, S., ALMEIDA, L., BRASSIL, P., BREED, J., DENG, C., GERO, 
T., GRONDINE, M., HORN, C., IOANNIDIS, S., LIU, D., LYNE, P., 
NEWCOMBE, N., PASS, M., READ, J., READY, S., ROWSELL, S., SU, M., 
TOADER, D., VASBINDER, M., YU, D., YU, Y., XUE, Y., ZABLUDOFF, S. & 
JANETKA, J. 2012. Discovery of checkpoint kinase inhibitor (S)-5-(3-
fluorophenyl)-N-(piperidin-3-yl)-3-ureidothiophene-2-carboxamide (AZD7762) 
by structure-based design and optimization of thiophenecarboxamide ureas. J 

Med Chem, 55, 5130-42. 
 
PAN, Y., REN, K. H., HE, H. W. & SHAO, R. G. 2009. Knockdown of Chk1 sensitizes 

human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin 



 

 180 

through abrogation of a G(2)/M checkpoint and induction of apoptosis. Cancer 

Biology & Therapy, 8, 1559-1566. 
 
PANEK, R. L., LU, G. H., KLUTCHKO, S. R., BATLEY, B. L., DAHRING, T. K., 

HAMBY, J. M., HALLAK, H., DOHERTY, A. M. & KEISER, J. A. 1997. In vitro 
pharmacological characterization of PD 166285, a new nanomolar potent and 
broadly active protein tyrosine kinase inhibitor. J Pharmacol Exp Ther, 283, 
1433-44. 

 
PAPPANO, W. N., ZHANG, Q., TUCKER, L. A., TSE, C. & WANG, J. 2014. Genetic 

inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 
inactive tumor cells. BMC Cancer, 14, 430. 

 
PARSELS, L. A., MORGAN, M. A., TANSKA, D. M., PARSELS, J. D., PALMER, B. 

D., BOOTH, R. J., DENNY, W. A., CANMAN, C. E., KRAKER, A. J., 
LAWRENCE, T. S. & MAYBAUM, J. 2009. Gemcitabine sensitization by 
checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA 
damage response in pancreatic cancer cells. Mol Cancer Ther, 8, 45-54. 

 
PARSELS, L. A., PARSELS, J. D., TANSKA, D. M., MAYBAUM, J., LAWRENCE, T. 

S. & MORGAN, M. A. 2018. The contribution of DNA replication stress marked 
by high-intensity, pan-nuclear gammaH2AX staining to chemosensitization by 
CHK1 and WEE1 inhibitors. Cell Cycle, 17, 1076-1086. 

 
PAULSEN, R. D. & CIMPRICH, K. A. 2007. The ATR pathway: fine-tuning the fork. 

DNA Repair (Amst), 6, 953-66. 
 
PEASLAND, A., WANG, L. Z., ROWLING, E., KYLE, S., CHEN, T., HOPKINS, A., 

CLIBY, W. A., SARKARIA, J., BEALE, G., EDMONDSON, R. J. & CURTIN, N. 
J. 2011. Identification and evaluation of a potent novel ATR inhibitor, NU6027, 
in breast and ovarian cancer cell lines. Br J Cancer, 105, 372-81. 

 
PILIE, P. G., TANG, C., MILLS, G. B. & YAP, T. A. 2019. State-of-the-art strategies 

for targeting the DNA damage response in cancer. Nat Rev Clin Oncol, 16, 81-
104. 

 
PIRES, I. M., OLCINA, M. M., ANBALAGAN, S., POLLARD, J. R., REAPER, P. M., 

CHARLTON, P. A., MCKENNA, W. G. & HAMMOND, E. M. 2012. Targeting 
radiation-resistant hypoxic tumour cells through ATR inhibition. British Journal 

of Cancer, 107, 291-299. 
 
POMMIER, Y., O'CONNOR, M. J. & DE BONO, J. 2016. Laying a trap to kill cancer 

cells: PARP inhibitors and their mechanisms of action. Sci Transl Med, 8, 
362ps17. 

 
RACEY, C. S., ALBERT, A., DONKEN, R., SMITH, L., SPINELLI, J. J., PEDERSEN, 

H., DE BRUIN, P., MASARO, C., MITCHELL-FOSTER, S., SADARANGANI, 
M., DAWAR, M., KRAJDEN, M., NAUS, M., VAN NIEKERK, D. & OGILVIE, G. 
2020. Cervical Intraepithelial Neoplasia Rates in British Columbia Women: A 



 

 181 

Population-Level Data Linkage Evaluation of the School-Based HPV 
Immunization Program. J Infect Dis, 221, 81-90. 

 
RAMANAKUMAR, A. V., NAUD, P., ROTELI-MARTINS, C. M., DE CARVALHO, N. 

S., DE BORBA, P. C., TEIXEIRA, J. C., BLATTER, M., MOSCICKI, A. B., 
HARPER, D. M., ROMANOWSKI, B., TYRING, S. K., RAMJATTAN, B., 
SCHUIND, A., DUBIN, G., FRANCO, E. L. & GROUP, H. P. V. S. 2016. 
Incidence and duration of type-specific human papillomavirus infection in high-
risk HPV-naive women: results from the control arm of a phase II HPV-16/18 
vaccine trial. BMJ Open, 6, e011371. 

 
RASTOGI, N., DUGGAL, S., SINGH, S. K., PORWAL, K., SRIVASTAVA, V. K., 

MAURYA, R., BHATT, M. L. & MISHRA, D. P. 2015. Proteasome inhibition 
mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical 
cancer cells. Oncotarget, 6, 43310-25. 

 
REAPER, P. M., GRIFFITHS, M. R., LONG, J. M., CHARRIER, J. D., MACCORMICK, 

S., CHARLTON, P. A., GOLEC, J. M. & POLLARD, J. R. 2011. Selective killing 
of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol, 
7, 428-30. 

 
REBOLJ, M., RIMMER, J., DENTON, K., TIDY, J., MATHEWS, C., ELLIS, K., SMITH, 

J., EVANS, C., GILES, T., FREW, V., TYLER, X., SARGENT, A., PARKER, J., 
HOLBROOK, M., HUNT, K., TIDBURY, P., LEVINE, T., SMITH, D., PATNICK, 
J., STUBBS, R., MOSS, S. & KITCHENER, H. 2019. Primary cervical screening 
with high risk human papillomavirus testing: observational study. BMJ, 364, 
l240. 

 
ROBERTS, J. J. & KOTSAKI-KOVATSI, V. P. 1986. Potentiation of sulphur mustard 

or cisplatin-induced toxicity by caffeine in Chinese hamster cells correlates with 
formation of DNA double-strand breaks during replication on a damaged 
template. Mutat Res, 165, 207-20. 

 
ROGAKOU, E. P., PILCH, D. R., ORR, A. H., IVANOVA, V. S. & BONNER, W. M. 

1998. DNA double-stranded breaks induce histone H2AX phosphorylation on 
serine 139. J Biol Chem, 273, 5858-68. 

 
ROSEN, V. M., GUERRA, I., MCCORMACK, M., NOGUEIRA-RODRIGUES, A., 

SASSE, A., MUNK, V. C. & SHANG, A. 2017. Systematic Review and Network 
Meta-Analysis of Bevacizumab Plus First-Line Topotecan-Paclitaxel or 
Cisplatin-Paclitaxel Versus Non-Bevacizumab-Containing Therapies in 
Persistent, Recurrent, or Metastatic Cervical Cancer. Int J Gynecol Cancer, 27, 
1237-1246. 

 
ROSKOSKI, R., JR. 2015. A historical overview of protein kinases and their targeted 

small molecule inhibitors. Pharmacol Res, 100, 1-23. 
 
RUNDLE, S., BRADBURY, A., DREW, Y. & CURTIN, N. J. 2017. Targeting the ATR-

CHK1 Axis in Cancer Therapy. Cancers (Basel), 9. 
 



 

 182 

SAILER, C., OFFENSPERGER, F., JULIER, A., KAMMER, K. M., WALKER-GRAY, 
R., GOLD, M. G., SCHEFFNER, M. & STENGEL, F. 2018. Structural dynamics 
of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun, 9, 
4441. 

 
SALMON, S. E., HAMBURGER, A. W., SOEHNLEN, B., DURIE, B. G., ALBERTS, D. 

S. & MOON, T. E. 1978. Quantitation of differential sensitivity of human-tumor 
stem cells to anticancer drugs. N Engl J Med, 298, 1321-7. 

 
SANCAR, A., LINDSEY-BOLTZ, L. A., UNSAL-KACMAZ, K. & LINN, S. 2004. 

Molecular mechanisms of mammalian DNA repair and the DNA damage 
checkpoints. Annual Review of Biochemistry, 73, 39-85. 

 
SARKARIA, J. N., BUSBY, E. C., TIBBETTS, R. S., ROOS, P., TAYA, Y., KARNITZ, 

L. M. & ABRAHAM, R. T. 1999. Inhibition of ATM and ATR kinase activities by 
the radiosensitizing agent, caffeine. Cancer Res, 59, 4375-82. 

 
SCATCHARD, K., FORREST, J. L., FLUBACHER, M., CORNES, P. & WILLIAMS, C. 

2012. Chemotherapy for metastatic and recurrent cervical cancer. Cochrane 

Database Syst Rev, 10, CD006469. 
 
SENDEROWICZ, A. M. 2000. Small molecule modulators of cyclin-dependent kinases 

for cancer therapy. Oncogene, 19, 6600-6. 
 
SHAPIRO, G., WESOLOWSKI, R, MIDDLETON, M, DEVOE, C, CONSTANTINIDOU, 

A, PAPADATOS-PASTOS, D, FRICANO, M, ZHANG, Y, KARAN, S, 
POLLARD, J, XCANCER RES. 2016. 2016. Phase 1 trial of first-in-class ATR 
inhibitor VX-970 in combination with cisplatin (Cis) in patients (pts) with 
advanced solid tumors (NCT02157792) (Abstract).  2016. Cancer Res. 

SHIGECHI, T., TOMIDA, J., SATO, K., KOBAYASHI, M., EYKELENBOOM, J. K., 
PESSINA, F., ZHANG, Y. B., UCHIDA, E., ISHIAI, M., LOWNDES, N. F., 
YAMAMOTO, K., KURUMIZAKA, H., MAEHARA, Y. & TAKATA, M. 2012. ATR-
ATRIP Kinase Complex Triggers Activation of the Fanconi Anemia DNA Repair 
Pathway. Cancer Research, 72, 1149-1156. 

 
SHIOTANI, B. & ZOU, L. 2009. ATR signaling at a glance. Journal of Cell Science, 

122, 301-304. 
 
SHRIVASTAV, M., DE HARO, L. P. & NICKOLOFF, J. A. 2008. Regulation of DNA 

double-strand break repair pathway choice. Cell Research, 18, 134-147. 
 
SIDDIK, Z. H. 2003. Cisplatin: mode of cytotoxic action and molecular basis of 

resistance. Oncogene, 22, 7265-79. 
 
SIMMS, K. T., STEINBERG, J., CARUANA, M., SMITH, M. A., LEW, J. B., 

SOERJOMATARAM, I., CASTLE, P. E., BRAY, F. & CANFELL, K. 2019. 
Impact of scaled up human papillomavirus vaccination and cervical screening 
and the potential for global elimination of cervical cancer in 181 countries, 2020-
99: a modelling study. Lancet Oncol, 20, 394-407. 

 



 

 183 

SKEHAN, P., STORENG, R., SCUDIERO, D., MONKS, A., MCMAHON, J., VISTICA, 
D., WARREN, J. T., BOKESCH, H., KENNEY, S. & BOYD, M. R. 1990. New 
colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer 

Inst, 82, 1107-12. 
 
SKLOOT, R. 2010. The Immortal Life of Henriettta Lacks, New York, Crown/Random 

House. 
 
SMITH, P. K., KROHN, R. I., HERMANSON, G. T., MALLIA, A. K., GARTNER, F. H., 

PROVENZANO, M. D., FUJIMOTO, E. K., GOEKE, N. M., OLSON, B. J. & 
KLENK, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal 

Biochem, 150, 76-85. 
 
SMITS, V. A. & GILLESPIE, D. A. 2015. DNA damage control: regulation and functions 

of checkpoint kinase 1. FEBS J, 282, 3681-92. 
 
SONGOCK, W. K., KIM, S. M. & BODILY, J. M. 2017. The human papillomavirus E7 

oncoprotein as a regulator of transcription. Virus Res, 231, 56-75. 
 
SORENSEN, C. S., HANSEN, L. T., DZIEGIELEWSKI, J., SYLJUASEN, R. G., 

LUNDIN, C., BARTEK, J. & HELLEDAY, T. 2005. The cell-cycle checkpoint 
kinase Chk1 is required for mammalian homologous recombination repair. 
Nature Cell Biology, 7, 195-U121. 

 
SORENSEN, C. S. & SYLJUASEN, R. G. 2012. Safeguarding genome integrity: the 

checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal 
DNA replication. Nucleic Acids Research, 40, 477-486. 

 
SULTANA, R., ABDEL-FATAH, T., PERRY, C., MOSELEY, P., ALBARAKTI, N., 

MOHAN, V., SEEDHOUSE, C., CHAN, S. & MADHUSUDAN, S. 2013. Ataxia 
telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is 
synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One, 8, 
e57098. 

 
TAINIO, K., ATHANASIOU, A., TIKKINEN, K. A. O., AALTONEN, R., CARDENAS, J., 

HERNANDES, GLAZER-LIVSON, S., JAKOBSSON, M., JORONEN, K., 
KIVIHARJU, M., LOUVANTO, K., OKSJOKI, S., TAHTINEN, R., VIRTANEN, 
S., NIEMINEN, P., KYRGIOU, M. & KALLIALA, I. 2018. Clinical course of 
untreated cervical intraepithelial neoplasia grade 2 under active surveillance: 
systematic review and meta-analysis. BMJ, 360, k499. 

 
TAKAI, H., TOMINAGA, K., MOTOYAMA, N., MINAMISHIMA, Y. A., NAGAHAMA, H., 

TSUKIYAMA, T., IKEDA, K., NAKAYAMA, K. & NAKANISHI, N. 2000. Aberrant 
cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. 
Genes & Development, 14, 1439-1447. 

 
TENG, P. N., BATEMAN, N. W., DARCY, K. M., HAMILTON, C. A., MAXWELL, G. L., 

BAKKENIST, C. J. & CONRADS, T. P. 2015. Pharmacologic inhibition of ATR 
and ATM offers clinically important distinctions to enhancing platinum or 



 

 184 

radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol 

Oncol, 136, 554-61. 
 
THOMAS, M., PIM, D. & BANKS, L. 1999. The role of the E6-p53 interaction in the 

molecular pathogenesis of HPV. Oncogene, 18, 7690-7700. 
 
THOMPSON, L. H. 2012. Recognition, signaling, and repair of DNA double-strand 

breaks produced by ionizing radiation in mammalian cells: the molecular 
choreography. Mutat Res, 751, 158-246. 

 
TIAN, Q., STEPANIANTS, S. B., MAO, M., WENG, L., FEETHAM, M. C., DOYLE, M. 

J., YI, E. C., DAI, H., THORSSON, V., ENG, J., GOODLETT, D., BERGER, J. 
P., GUNTER, B., LINSELEY, P. S., STOUGHTON, R. B., AEBERSOLD, R., 
COLLINS, S. J., HANLON, W. A. & HOOD, L. E. 2004. Integrated genomic and 
proteomic analyses of gene expression in Mammalian cells. Mol Cell 

Proteomics, 3, 960-9. 
 
TIBBETTS, R. S., CORTEZ, D., BRUMBAUGH, K. M., SCULLY, R., LIVINGSTON, 

D., ELLEDGE, S. J. & ABRAHAM, R. T. 2000. Functional interactions between 
BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes & 

Development, 14, 2989-3002. 
 
TOLEDO, L. I., MURGA, M., ZUR, R., SORIA, R., RODRIGUEZ, A., MARTINEZ, S., 

OYARZABAL, J., PASTOR, J., BISCHOFF, J. R. & FERNANDEZ-CAPETILLO, 
O. 2011. A cell-based screen identifies ATR inhibitors with synthetic lethal 
properties for cancer-associated mutations. Nat Struct Mol Biol, 18, 721-7. 

TOMMASINO, M., ACCARDI, R., CALDEIRA, S., DONG, W., MALANCHI, I., SMET, 
A. & ZEHBE, I. 2003. The role of TP53 in Cervical carcinogenesis. Hum Mutat, 
21, 307-12. 

 
UHLEN, M., ZHANG, C., LEE, S., SJOSTEDT, E., FAGERBERG, L., BIDKHORI, G., 

BENFEITAS, R., ARIF, M., LIU, Z., EDFORS, F., SANLI, K., VON FEILITZEN, 
K., OKSVOLD, P., LUNDBERG, E., HOBER, S., NILSSON, P., MATTSSON, 
J., SCHWENK, J. M., BRUNNSTROM, H., GLIMELIUS, B., SJOBLOM, T., 
EDQVIST, P. H., DJUREINOVIC, D., MICKE, P., LINDSKOG, C., 
MARDINOGLU, A. & PONTEN, F. 2017. A pathology atlas of the human cancer 
transcriptome. Science, 357. 

 
VENDETTI, F. P., LAU, A., SCHAMUS, S., CONRADS, T. P., O'CONNOR, M. J. & 

BAKKENIST, C. J. 2015. The orally active and bioavailable ATR kinase inhibitor 
AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient 
non-small cell lung cancer in vivo. Oncotarget, 6, 44289-305. 

 
VINK, M. A., BOGAARDS, J. A., VAN KEMENADE, F. J., DE MELKER, H. E., 

MEIJER, C. J. & BERKHOF, J. 2013. Clinical progression of high-grade cervical 
intraepithelial neoplasia: estimating the time to preclinical cervical cancer from 
doubly censored national registry data. Am J Epidemiol, 178, 1161-9. 

 



 

 185 

VOGEL, C. & MARCOTTE, E. M. 2012. Insights into the regulation of protein 
abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 13, 
227-32. 

 
WAGNER, J. M. & KARNITZ, L. M. 2009. Cisplatin-Induced DNA Damage Activates 

Replication Checkpoint Signaling Components that Differentially Affect Tumor 
Cell Survival. Molecular Pharmacology, 76, 208-214. 

 
WALBOOMERS, J. M., JACOBS, M. V., MANOS, M. M., BOSCH, F. X., KUMMER, J. 

A., SHAH, K. V., SNIJDERS, P. J., PETO, J., MEIJER, C. J. & MUNOZ, N. 
1999. Human papillomavirus is a necessary cause of invasive cervical cancer 
worldwide. J Pathol, 189, 12-9. 

 
WALBOOMERS, J. M. & MEIJER, C. J. 1997. Do HPV-negative cervical carcinomas 

exist? J Pathol, 181, 253-4. 
 
WALLACE, S. S. 2014. Base excision repair: a critical player in many games. DNA 

Repair (Amst), 19, 14-26. 
 
WALTON, M. I., EVE, P. D., HAYES, A., HENLEY, A. T., VALENTI, M. R., DE HAVEN 

BRANDON, A. K., BOX, G., BOXALL, K. J., TALL, M., SWALES, K., 
MATTHEWS, T. P., MCHARDY, T., LAINCHBURY, M., OSBORNE, J., 
HUNTER, J. E., PERKINS, N. D., AHERNE, G. W., READER, J. C., RAYNAUD, 
F. I., ECCLES, S. A., COLLINS, I. & GARRETT, M. D. 2016. The clinical 
development candidate CCT245737 is an orally active CHK1 inhibitor with 
preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell 
lymphoma. Oncotarget, 7, 2329-42. 

 
WALTON, M. I., EVE, P. D., HAYES, A., VALENTI, M. R., DE HAVEN BRANDON, A. 

K., BOX, G., HALLSWORTH, A., SMITH, E. L., BOXALL, K. J., LAINCHBURY, 
M., MATTHEWS, T. P., JAMIN, Y., ROBINSON, S. P., AHERNE, G. W., 
READER, J. C., CHESLER, L., RAYNAUD, F. I., ECCLES, S. A., COLLINS, I. 
& GARRETT, M. D. 2012. CCT244747 is a novel potent and selective CHK1 
inhibitor with oral efficacy alone and in combination with genotoxic anticancer 
drugs. Clin Cancer Res, 18, 5650-61. 

 
WALWORTH, N. C. & BERNARDS, R. 1996. rad-dependent response of the chk1-

encoded protein kinase at the DNA damage checkpoint. Science, 271, 353-
356. 

 
WALWORTH, N. C., WAN, S., LIU, H. Y., CAPASSO, H., RAO, H., CHEN, L. & 

NEFSKY, B. S. 2000. DNA damage checkpoint signaling through the protein 
kinase Chk1. Faseb Journal, 14, A1582-A1582. 

 
WANG, X., ZOU, L., LU, T., BAO, S., HUROV, K. E., HITTELMAN, W. N., ELLEDGE, 

S. J. & LI, L. 2006. Rad17 phosphorylation is required for claspin recruitment 
and Chk1 activation in response to replication stress. Molecular Cell, 23, 331-
341. 

 



 

 186 

WANG, Y., DECKER, S. J. & SEBOLT-LEOPOLD, J. 2004. Knockdown of Chk1, 
Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces 
apoptosis. Cancer Biol Ther, 3, 305-13. 

 
WEAVER, A. N., COOPER, T. S., RODRIGUEZ, M., TRUMMELL, H. Q., BONNER, 

J. A., ROSENTHAL, E. L. & YANG, E. S. 2015. DNA double strand break repair 
defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in 
human papillomavirus 16-positive head and neck squamous cell carcinoma. 
Oncotarget, 6, 26995-7007. 

 
WELBURN, J. P., TUCKER, J. A., JOHNSON, T., LINDERT, L., MORGAN, M., 

WILLIS, A., NOBLE, M. E. & ENDICOTT, J. A. 2007. How tyrosine 15 
phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol 

Chem, 282, 3173-81. 
 
WILLIAMSON, C. T., MILLER, R., PEMBERTON, H. N., JONES, S. E., CAMPBELL, 

J., KONDE, A., BADHAM, N., RAFIQ, R., BROUGH, R., GULATI, A., RYAN, C. 
J., FRANCIS, J., VERMULEN, P. B., REYNOLDS, A. R., REAPER, P. M., 
POLLARD, J. R., ASHWORTH, A. & LORD, C. J. 2016. ATR inhibitors as a 
synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun, 7, 
13837. 

 
WU, X., SHELL, S. M., LIU, Y. & ZOU, Y. 2007. ATR-dependent checkpoint modulates 

XPA nuclear import in response to UV irradiation. Oncogene, 26, 757-764. 
 
XU, H., CHEUNG, I. Y., WEI, X. X., TRAN, H., GAO, X. & CHEUNG, N. K. 2011. 

Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G1 
checkpoint-defective neuroblastoma. Int J Cancer, 129, 1953-62. 

 
YANG, H., YOON, S. J., JIN, J., CHOI, S. H., SEOL, H. J., LEE, J. I., NAM, D. H. & 

YOO, H. Y. 2011. Inhibition of checkpoint kinase 1 sensitizes lung cancer brain 
metastases to radiotherapy. Biochem Biophys Res Commun, 406, 53-8. 

 
YAP, T. A. 2016. Phase I modular study of AZD6738, a novel oral, potent and selective 

ataxia telangiectasia Rad3-related (ATR) inhibitor in combination (combo) with 
carboplatin, olaparib or durvalumab in patients (pts) with advanced cancers 
(Abstract). . Eur. J. Cancer 69  

 
YAZLOVITSKAYA, E. M. & PERSONS, D. L. 2003. Inhibition of cisplatin-induced ATR 

activity and enhanced sensitivity to cisplatin. Anticancer Res, 23, 2275-9. 
 
ZEHBE, I. & WILANDER, E. 1997. Human papillomavirus infection and invasive 

cervical neoplasia: a study of prevalence and morphology. J Pathol, 181, 270-
5. 

 
ZEMAN, M. K. & CIMPRICH, K. A. 2014. Causes and consequences of replication 

stress. Nat Cell Biol, 16, 2-9. 
 



 

 187 

ZENVIRT, S., KRAVCHENKO-BALASHA, N. & LEVITZKI, A. 2010. Status of p53 in 
human cancer cells does not predict efficacy of CHK1 kinase inhibitors 
combined with chemotherapeutic agents. Oncogene, 29, 6149-59. 

 
ZHANG, Y., LAI, J., DU, Z., GAO, J., YANG, S., GORITYALA, S., XIONG, X., DENG, 

O., MA, Z., YAN, C., SUSANA, G., XU, Y. & ZHANG, J. 2016. Targeting 
radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing 
replication stress. Oncotarget, 7, 34688-702. 

 
ZHENG, H., SHAO, F., MARTIN, S., XU, X. & DENG, C. X. 2017. WEE1 inhibition 

targets cell cycle checkpoints for triple negative breast cancers to overcome 
cisplatin resistance. Sci Rep, 7, 43517. 

 

 

 

 

  



 

 188 

 

Appendix 

Poster presentations at scientific conferences 

1. Targeting replication stress in cervical cancer by inhibiting checkpoint signalling. 
Rundle, S and Curtin, N J. 6th EU-US Conference on the repair of endogenous DNA 
damage. Udine, Italy. September 24th -28th 2017. 

 
2. Exploiting endogenous replication stress in cervical cancer by inhibition of 

checkpoint signalling. Rundle, S. Drew, Y. Kucukmetin, A K and Curtin, N J. National 
Cancer Research Institute Conference. Liverpool, UK. 5th – 8th September 2017. 
 
 

 
 


